Science.gov

Sample records for peak jumping mode

  1. Different Modes of Feedback and Peak Vertical Ground Reaction Force During Jump Landing: A Systematic Review

    PubMed Central

    Ericksen, Hayley M.; Gribble, Phillip A.; Pfile, Kate R.; Pietrosimone, Brian G.

    2013-01-01

    Context: Excessive ground reaction force when landing from a jump may result in lower extremity injuries. It is important to better understand how feedback can influence ground reaction force (GRF) and potentially reduce injury risk. Objective: To determine the effect of expert-provided (EP), self-analysis (SA), and combination EP and SA (combo) feedback on reducing peak vertical GRF during a jump-landing task. Data Sources: We searched the Web of Science database on July 1, 2011; using the search terms ground reaction force, landing biomechanics, and feedback elicited 731 initial hits. Study Selection: Of the 731 initial hits, our final analysis included 7 studies that incorporated 32 separate data comparisons. Data Extraction: Standardized effect sizes and 95% confidence intervals (CIs) were calculated between pretest and posttest scores for each feedback condition. Data Synthesis: We found a homogeneous beneficial effect for combo feedback, indicating a reduction in GRF with no CIs crossing zero. We also found a homogeneous beneficial effect for EP feedback, but the CIs from 4 of the 10 data comparisons crossed zero. The SA feedback showed strong, definitive effects when the intervention included a videotape SA, with no CIs crossing zero. Conclusions: Of the 7 studies reviewed, combo feedback seemed to produce the greatest decrease in peak vertical GRF during a jump-landing task. PMID:24067153

  2. Noise Induced Jumping Dynamics Between Synchronized Modes

    NASA Astrophysics Data System (ADS)

    Algar, Shannon D.; Stemler, Thomas; de Saedeleer, Bernard

    Synchronization is a common phenomenon whereby a dynamical system follows the pacemaker provided by an external forcing. Often, such systems have multiple synchronization modes, which are equivalent solutions. We investigate the specific case of two to one synchronization produced by the periodic forcing of a van der Pol oscillator where two possible modes, shifted by one period of the modulation, exist. By studying the flow and the local Lyapunov exponents along the orbit we give an explanation of the noise induced jumps observed in a stochastic forced oscillator. While this investigation gives results that are specific to this system, the framework presented is more general and can be applied to any system showing similar jumping dynamics.

  3. Relationship between jump landing kinematics and peak ACL force during a jump in downhill skiing: a simulation study.

    PubMed

    Heinrich, D; van den Bogert, A J; Nachbauer, W

    2014-06-01

    Recent data highlight that competitive skiers face a high risk of injuries especially during off-balance jump landing maneuvers in downhill skiing. The purpose of the present study was to develop a musculo-skeletal modeling and simulation approach to investigate the cause-and-effect relationship between a perturbed landing position, i.e., joint angles and trunk orientation, and the peak force in the anterior cruciate ligament (ACL) during jump landing. A two-dimensional musculo-skeletal model was developed and a baseline simulation was obtained reproducing measurement data of a reference landing movement. Based on the baseline simulation, a series of perturbed landing simulations (n = 1000) was generated. Multiple linear regression was performed to determine a relationship between peak ACL force and the perturbed landing posture. Increased backward lean, hip flexion, knee extension, and ankle dorsiflexion as well as an asymmetric position were related to higher peak ACL forces during jump landing. The orientation of the trunk of the skier was identified as the most important predictor accounting for 60% of the variance of the peak ACL force in the simulations. Teaching of tactical decisions and the inclusion of exercise regimens in ACL injury prevention programs to improve trunk control during landing motions in downhill skiing was concluded.

  4. Sample distribution in peak mode isotachophoresis

    SciTech Connect

    Rubin, Shimon; Schwartz, Ortal; Bercovici, Moran

    2014-01-15

    We present an analytical study of peak mode isotachophoresis (ITP), and provide closed form solutions for sample distribution and electric field, as well as for leading-, trailing-, and counter-ion concentration profiles. Importantly, the solution we present is valid not only for the case of fully ionized species, but also for systems of weak electrolytes which better represent real buffer systems and for multivalent analytes such as proteins and DNA. The model reveals two major scales which govern the electric field and buffer distributions, and an additional length scale governing analyte distribution. Using well-controlled experiments, and numerical simulations, we verify and validate the model and highlight its key merits as well as its limitations. We demonstrate the use of the model for determining the peak concentration of focused sample based on known buffer and analyte properties, and show it differs significantly from commonly used approximations based on the interface width alone. We further apply our model for studying reactions between multiple species having different effective mobilities yet co-focused at a single ITP interface. We find a closed form expression for an effective-on rate which depends on reactants distributions, and derive the conditions for optimizing such reactions. Interestingly, the model reveals that maximum reaction rate is not necessarily obtained when the concentration profiles of the reacting species perfectly overlap. In addition to the exact solutions, we derive throughout several closed form engineering approximations which are based on elementary functions and are simple to implement, yet maintain the interplay between the important scales. Both the exact and approximate solutions provide insight into sample focusing and can be used to design and optimize ITP-based assays.

  5. Sample distribution in peak mode isotachophoresis

    NASA Astrophysics Data System (ADS)

    Rubin, Shimon; Schwartz, Ortal; Bercovici, Moran

    2014-01-01

    We present an analytical study of peak mode isotachophoresis (ITP), and provide closed form solutions for sample distribution and electric field, as well as for leading-, trailing-, and counter-ion concentration profiles. Importantly, the solution we present is valid not only for the case of fully ionized species, but also for systems of weak electrolytes which better represent real buffer systems and for multivalent analytes such as proteins and DNA. The model reveals two major scales which govern the electric field and buffer distributions, and an additional length scale governing analyte distribution. Using well-controlled experiments, and numerical simulations, we verify and validate the model and highlight its key merits as well as its limitations. We demonstrate the use of the model for determining the peak concentration of focused sample based on known buffer and analyte properties, and show it differs significantly from commonly used approximations based on the interface width alone. We further apply our model for studying reactions between multiple species having different effective mobilities yet co-focused at a single ITP interface. We find a closed form expression for an effective-on rate which depends on reactants distributions, and derive the conditions for optimizing such reactions. Interestingly, the model reveals that maximum reaction rate is not necessarily obtained when the concentration profiles of the reacting species perfectly overlap. In addition to the exact solutions, we derive throughout several closed form engineering approximations which are based on elementary functions and are simple to implement, yet maintain the interplay between the important scales. Both the exact and approximate solutions provide insight into sample focusing and can be used to design and optimize ITP-based assays.

  6. Reversible jump MCMC approach for peak identification for stroke SELDI mass spectrometry using mixture model.

    PubMed

    Wang, Yuan; Zhou, Xiaobo; Wang, Honghui; Li, King; Yao, Lixiu; Wong, Stephen T C

    2008-07-01

    Mass spectrometry (MS) has shown great potential in detecting disease-related biomarkers for early diagnosis of stroke. To discover potential biomarkers from large volume of noisy MS data, peak detection must be performed first. This article proposes a novel automatic peak detection method for the stroke MS data. In this method, a mixture model is proposed to model the spectrum. Bayesian approach is used to estimate parameters of the mixture model, and Markov chain Monte Carlo method is employed to perform Bayesian inference. By introducing a reversible jump method, we can automatically estimate the number of peaks in the model. Instead of separating peak detection into substeps, the proposed peak detection method can do baseline correction, denoising and peak identification simultaneously. Therefore, it minimizes the risk of introducing irrecoverable bias and errors from each substep. In addition, this peak detection method does not require a manually selected denoising threshold. Experimental results on both simulated dataset and stroke MS dataset show that the proposed peak detection method not only has the ability to detect small signal-to-noise ratio peaks, but also greatly reduces false detection rate while maintaining the same sensitivity. PMID:18586741

  7. Peak power in the hexagonal barbell jump squat and its relationship to jump performance and acceleration in elite rugby union players.

    PubMed

    Turner, Thomas S; Tobin, Daniel P; Delahunt, Eamonn

    2015-05-01

    Recent research suggests that jump squats with a loaded hexagonal barbell are superior for peak power production to comparable loads in a traditional barbell loaded jump squat. The aim of this study was to investigate the relationship between relative peak power output during performance of the hexagonal barbell jump squat (HBJS), countermovement jump (CMJ) height, and linear acceleration speed in rugby union players. Seventeen professional rugby union players performed 10- and 20-m sprints, followed by a set of 3 unloaded CMJs and a set of 3 HBJS at a previously determined optimal load corresponding with peak power output. The relationship between HBJS relative peak power output, 10- and 20-m sprint time, and CMJ height was investigated using correlation analysis. The contribution of HBJS relative peak power output and CMJ height to 10- and 20-m sprint time was investigated using standard multiple regression. Strong, significant, inverse correlations were observed between HBJS relative peak power output, 10-m sprint time (r = -0.70, p < 0.01), and 20-m sprint time (r = -0.75, p < 0.01). A strong, significant, positive correlation was observed between HBJS relative peak power output and CMJ height (r = 0.80, p < 0.01). Together, HBJS relative peak power output and CMJ height explained 46% of the variance in 10-m sprint time while explaining 59% of the variance in 20-m sprint time. The findings of the current study demonstrate a significant relationship between relative peak power in the HBJS and athletic performance as quantified by CMJ height and 10- and 20-m sprint time.

  8. Micropattern of antibodies imaged by shear force microscopy: comparison between classical and jumping modes.

    PubMed

    González, L; Otero, J; Agusil, J P; Samitier, J; Adan, J; Mitjans, F; Puig-Vidal, M

    2014-01-01

    Quartz tuning fork devices are increasingly being used as nanosensors in Scanning Probe Microscopy. They offer some benefits with respect to standard microfabricated cantilevers in certain experimental setups including the study of biomolecules under physiological conditions. In this work, we compare three different working modes for imaging micropatterned antibodies with quartz tuning fork sensors: apart from the classical amplitude and frequency modulation strategies, for first time the jumping mode is implemented using tuning forks. Our results show that the molecules suffer less degradation when working in the jumping mode, due to the reduction of the interaction forces.

  9. Diffusion dependent focusing regimes in peak mode counterflow isotachophoresis

    NASA Astrophysics Data System (ADS)

    GanOr, Nethanel; Rubin, Shimon; Bercovici, Moran

    2015-07-01

    We present an analytical, numerical, and experimental study of pressure driven counterflow isotachophoresis (ITP). We study solutions to the Nernst-Planck equations in the axi-symmetric and radially dependent case, in the leading order of negligible body forces. We provide a simple model that describes the ITP interface shape for Poiseuille-type counterflows, and an asymptotic model which captures two distinct sample focusing regimes of peak mode ITP. We validate the existence of these regimes using numerical simulations and map the conditions under which each of the focal regions dominates. In particular, we demonstrate numerically that a species diffusivity is a key parameter determining its focusing regime. We experimentally show that this allows spatial separation of co-focusing species having distinctly different diffusivities. We further demonstrate that while dispersion associated with counterflow is typically considered to reduce peak concentrations, certain focusing regimes allow a net gain in sample concentration over the non-dispersed case.

  10. The effect of gender and fatigue on the biomechanics of bilateral landings from a jump: peak values.

    PubMed

    Pappas, Evangelos; Sheikhzadeh, Ali; Hagins, Marshall; Nordin, Margareta

    2007-01-01

    Female athletes are substantially more susceptible than males to suffer acute non-contact anterior cruciate ligament injury. A limited number of studies have identified possible biomechanical risk factors that differ between genders. The effect of fatigue on the biomechanics of landing has also been inadequately investigated. The objective of the study was to examine the effect of gender and fatigue on peak values of biomechanical variables during landing from a jump. Thirty-two recreational athletes performed bilateral drop jump landings from a 40 cm platform. Kinetic, kinematic and electromyographic data were collected before and after a functional fatigue protocol. Females landed with 9° greater peak knee valgus (p = 0.001) and 140% greater maximum vertical ground reaction forces (p = 0.003) normalized to body weight compared to males. Fatigue increased peak foot abduction by 1.7° (p = 0.042), peak rectus femoris activity by 27% (p = 0.018), and peak vertical ground reaction force (p = 0.038) by 20%. The results of the study suggest that landing with increased peak knee valgus and vertical ground reaction force may contribute to increased risk for knee injury in females. Fatigue caused significant but small changes on some biomechanical variables. Anterior cruciate ligament injury prevention programs should focus on implementing strategies to effectively teach females to control knee valgus and ground reaction force. Key pointsFemale athletes landed with increased knee valgus and VGRF which may predispose them to ACL injury.Fatigue elicited a similar response in male and female athletes.The effectiveness of sports injury prevention programs may improve by focusing on teaching females to land softer and with less knee valgus. PMID:24149228

  11. Axicons for mode conversion in high peak power, higher-order mode, fiber amplifiers.

    PubMed

    Nicholson, J W; DeSantolo, A; Westbrook, P S; Windeler, R S; Kremp, T; Headley, C; DiGiovanni, D J

    2015-12-28

    Higher-order mode fiber amplifiers have demonstrated effective areas as large as 6000 μm2, allowing for high pulse energy and peak power amplification. Long-period gratings are used to convert the fundamental mode to the higher-order mode at the entrance to the amplifier, and reconvert back to the fundamental at the exit, to achieve a diffraction limited beam. However, long period gratings are susceptible to nonlinearity at high peak power. In this work, we propose and demonstrate axicons for linear bulk-optic mode conversion at the output of higher order mode amplifiers. We achieve an M2 of less than 1.25 for 80% mode conversion efficiency. Experiments with pulsed amplifiers confirm that the mode conversion is free from nonlinearity. Furthermore, chirp pulse amplifier experiments confirm that HOM amplifiers plus axicon mode convertors provide energy scalability in femtosecond pulses, compared to smaller effective area, fundamental mode fiber amplifiers. We also propose and demonstrate a route towards fiber integration of the axicon mode convertor by fabricating axicons directly on the tip of the fiber amplifier end-cap.

  12. Dropout dynamics in pulsed quantum dot lasers due to mode jumping

    SciTech Connect

    Sokolovskii, G. S.; Dudelev, V. V.; Deryagin, A. G.; Novikov, I. I.; Maximov, M. V.; Ustinov, V. M.; Kuchinskii, V. I.; Viktorov, E. A.; Abusaa, M.; Danckaert, J.; Kolykhalova, E. D.; Soboleva, K. K.; Zhukov, A. E.; Sibbett, W.; Rafailov, E. U.; Erneux, T.

    2015-06-29

    We examine the response of a pulse pumped quantum dot laser both experimentally and numerically. As the maximum of the pump pulse comes closer to the excited-state threshold, the output pulse shape becomes unstable and leads to dropouts. We conjecture that these instabilities result from an increase of the linewidth enhancement factor α as the pump parameter comes close to the excitated state threshold. In order to analyze the dynamical mechanism of the dropout, we consider two cases for which the laser exhibits either a jump to a different single mode or a jump to fast intensity oscillations. The origin of these two instabilities is clarified by a combined analytical and numerical bifurcation diagram of the steady state intensity modes.

  13. Robust fuzzy control for stochastic Markovian jumping systems via sliding mode method

    NASA Astrophysics Data System (ADS)

    Chen, Bei; Jia, Tinggang; Niu, Yugang

    2016-07-01

    This paper considers the problem of sliding mode control for stochastic Markovian jumping systems by means of fuzzy method. The Takagi-Sugeno (T-S) fuzzy stochastic model subject to state-dependent noise is presented. A key feature in this work is to remove the restricted condition that each local system model had to share the same input channel, which is usually assumed in some existing results. The integral sliding surface is constructed for every mode and the connections among various sliding surfaces are established via a set of coupled matrices. Moreover, the present sliding mode controller including the transition rates of modes can cope with the effect of Markovian switching. It is shown that both the reachability of sliding surfaces and the stability of sliding mode dynamics can be ensured. Finally, numerical simulation results are given.

  14. Sliding mode control scheme for a jumping robot with multi-joint based on floating basis

    NASA Astrophysics Data System (ADS)

    Jianjun, Yao; Duotao, Di; Shuang, Gao; Lei, He; Shenghai, Hu

    2012-01-01

    A jumping robot has different jumping characteristics. The emphasis of its motion characteristics is placed on the sagittal plane, and every phase of a whole jumping motion has different constraints, so it is a variable constraint system. Its kinematic and dynamic equations, both of the stance phase and of the flight phase are established. Furthermore, the floating basis method is applied to unify the dynamic equations of the stance phase and the flight phase. The generalised coordinate is found based on the union of the tiptoe translation and the joint variables to obtain dynamic equations with constraints. Since the jumping robot is a strongly coupled system and has great impact when it lands on the ground, a reaching law is applied in the development of sliding mode controller in task space such that the state trajectory starting from anywhere can move towards the switching surface, making the system tracking error converge exponentially to zero. Simulation results demonstrate the efficiency and validity of the proposed control system.

  15. State estimation for discrete-time Markovian jumping neural networks with mixed mode-dependent delays

    NASA Astrophysics Data System (ADS)

    Liu, Yurong; Wang, Zidong; Liu, Xiaohui

    2008-12-01

    In this Letter, we investigate the state estimation problem for a new class of discrete-time neural networks with Markovian jumping parameters as well as mode-dependent mixed time-delays. The parameters of the discrete-time neural networks are subject to the switching from one mode to another at different times according to a Markov chain, and the mixed time-delays consist of both discrete and distributed delays that are dependent on the Markovian jumping mode. New techniques are developed to deal with the mixed time-delays in the discrete-time setting, and a novel Lyapunov-Krasovskii functional is put forward to reflect the mode-dependent time-delays. Sufficient conditions are established in terms of linear matrix inequalities (LMIs) that guarantee the existence of the state estimators. We show that both the existence conditions and the explicit expression of the desired estimator can be characterized in terms of the solution to an LMI. A numerical example is exploited to show the usefulness of the derived LMI-based conditions.

  16. Globally exponential stability and stabilization of interconnected Markovian jump system with mode-dependent delays

    NASA Astrophysics Data System (ADS)

    Chen, Zhaohui; Huang, Qi

    2016-01-01

    This paper focuses on the problems of globally exponential stability and stabilization with H∞ performance for a class of interconnected Markovian jump system with mode-dependent delays in interconnection. By constructing a Lyapunov-Krasovskii functional, delay-range-dependent globally mean-square exponential stability conditions are established in terms of linear matrix inequalities. Based on the obtained conditions, state feedback control utilizing global state information and state feedback control utilizing global state information of decentralised observers are developed to render the closed-loop interconnected Markovian jump time-delay system globally exponential stable with H∞ performance. Numerical simulation of a power system, composed of three coupled machines, is used to illustrate the effectiveness of the obtained results.

  17. Transit time instabilities in an inverted fireball. II. Mode jumping and nonlinearities

    SciTech Connect

    Stenzel, R. L.; Gruenwald, J.; Fonda, B.; Ionita, C.; Schrittwieser, R.

    2011-01-15

    A fireball is formed inside a highly transparent spherical grid immersed in a dc discharge plasma. The ambient plasma acts as a cathode and the positively biased grid as an anode. A strong nearly current-free double layer separates the two plasmas. Electrons are accelerated into the fireball, ionize, and establish a discharge plasma with plasma potential near the grid potential. Ions are ejected from the fireball. Since electrons are lost at the same rate as ions, most electrons accelerated into the fireball just pass through it. Thus, the electron distribution contains radially counterstreaming electrons. High-frequency oscillations are excited with rf period given by the electron transit time through the fireball. Since the frequency is well below the electron plasma frequency, no eigenmodes other than a beam space-charge wave exists. The instability is an inertial transit-time instability similar to the sheath-plasma instability or the reflex vircator instability. In contrast to vircators, there is no electron reflection from a space-charge layer but counterstreaming arises from spherical convergence and divergence of electrons. While the basic instability properties have been presented in a companion paper [R. L. Stenzel et al., Phys. Plasmas 18, 012104 (2011)], the present paper focuses on observed mode jumping and nonlinear effects. The former produce frequency jumps and different potential profiles, the latter produce harmonics associated with electron bunching at large amplitudes. In situ probe measurements are presented and interpreted.

  18. Nonlinear mode interactions and frequency-jump effects in a doubly tuned oscillator configuration

    NASA Astrophysics Data System (ADS)

    Grun, J.; Lashinsky, H.

    1980-05-01

    Frequency-jump effects associated with nonlinear mode competition are investigated in an oscillator configuration consisting of a passive linear resonance system coupled to an active nonlinear resonance system. These effects give rise to a hysteresis pattern whose height and width can be related to system parameters such as the resonance frequencies, dissipation, coupling coefficient, etc. It is noted that these effects offer a novel means of determining these parameters in cases in which conventional techniques may not be desirable or as advantageous. The analysis provides an qualitative explanation of empirical observations in a recent nuclear magnetic resonance experiment (Timsit and Daniels, 1976). The results also apply to other nonlinear resonance systems such as lasers, microwave generators, and electronic oscillators.

  19. Optimal ? and ? mode-independent filters for generalised Bernoulli jump systems

    NASA Astrophysics Data System (ADS)

    Fioravanti, A. R.; Gonçalves, A. P. C.; Geromel, J. C.

    2015-02-01

    This paper provides the optimal solution of the filtering design problem for a special class of discrete-time Markov jump linear systems whose transition probability matrix has identical rows. In the two-mode case, this is equivalent to saying that the random variable has a Bernoulli distribution. For that class of dynamic systems we design, with the help of new necessary and sufficient linear matrix inequality conditions, ? and ? optimal mode-independent filters with the same order of the plant. As a first proposal available in the literature, for partial information characterised by cluster availability of the mode, we also show it is possible to design optimal full-order linear filters. If some plant matrices do not vary within the same cluster, we show that the optimal filter exhibits the internal model structure. We complete the results with illustrative examples. A realistic practical application considering sensors connected to a network using a communication protocol such as the Token Ring is included in order to put in evidence the usefulness of the theoretical results.

  20. Mode jumping of split-ring resonator metamaterials controlled by high-permittivity BST and incident electric fields

    PubMed Central

    Fu, Xiaojian; Zeng, Xinxi; Cui, Tie Jun; Lan, Chuwen; Guo, Yunsheng; Zhang, Hao Chi; Zhang, Qian

    2016-01-01

    We investigate the resonant modes of split-ring resonator (SRR) metamaterials that contain high-permittivity BST block numerically and experimentally. We observe interesting mode-jumping phenomena from the BST-included SRR absorber structure as the excitation wave is incident perpendicularly to the SRR plane. Specifically, when the electric field is parallel to the SRR gap, the BST block in the gap will induce a mode jumping from the LC resonance to plasmonic resonance (horizontal electric-dipole mode), because the displacement current excited by the Mie resonance in the dielectric block acts as a current channel in the gap. When the electric field is perpendicular to the gap side, the plasmonic resonance mode (vertical electric-dipole mode) in SRR changes to two joint modes contributed simultaneously by the back layer, SRR and BST block, as a result of connected back layer and SRR layer by the displacement current in the BST dielectric block. Based on the mode jumping effect as well as temperature and electric-field dependent dielectric constant, the BST-included SRR metamaterials may have great potentials for the applications in electromagnetic switches and widely tunable metamaterial devices. PMID:27502844

  1. Mode jumping of split-ring resonator metamaterials controlled by high-permittivity BST and incident electric fields

    NASA Astrophysics Data System (ADS)

    Fu, Xiaojian; Zeng, Xinxi; Cui, Tie Jun; Lan, Chuwen; Guo, Yunsheng; Zhang, Hao Chi; Zhang, Qian

    2016-08-01

    We investigate the resonant modes of split-ring resonator (SRR) metamaterials that contain high-permittivity BST block numerically and experimentally. We observe interesting mode-jumping phenomena from the BST-included SRR absorber structure as the excitation wave is incident perpendicularly to the SRR plane. Specifically, when the electric field is parallel to the SRR gap, the BST block in the gap will induce a mode jumping from the LC resonance to plasmonic resonance (horizontal electric-dipole mode), because the displacement current excited by the Mie resonance in the dielectric block acts as a current channel in the gap. When the electric field is perpendicular to the gap side, the plasmonic resonance mode (vertical electric-dipole mode) in SRR changes to two joint modes contributed simultaneously by the back layer, SRR and BST block, as a result of connected back layer and SRR layer by the displacement current in the BST dielectric block. Based on the mode jumping effect as well as temperature and electric-field dependent dielectric constant, the BST-included SRR metamaterials may have great potentials for the applications in electromagnetic switches and widely tunable metamaterial devices.

  2. Mode jumping of split-ring resonator metamaterials controlled by high-permittivity BST and incident electric fields.

    PubMed

    Fu, Xiaojian; Zeng, Xinxi; Cui, Tie Jun; Lan, Chuwen; Guo, Yunsheng; Zhang, Hao Chi; Zhang, Qian

    2016-01-01

    We investigate the resonant modes of split-ring resonator (SRR) metamaterials that contain high-permittivity BST block numerically and experimentally. We observe interesting mode-jumping phenomena from the BST-included SRR absorber structure as the excitation wave is incident perpendicularly to the SRR plane. Specifically, when the electric field is parallel to the SRR gap, the BST block in the gap will induce a mode jumping from the LC resonance to plasmonic resonance (horizontal electric-dipole mode), because the displacement current excited by the Mie resonance in the dielectric block acts as a current channel in the gap. When the electric field is perpendicular to the gap side, the plasmonic resonance mode (vertical electric-dipole mode) in SRR changes to two joint modes contributed simultaneously by the back layer, SRR and BST block, as a result of connected back layer and SRR layer by the displacement current in the BST dielectric block. Based on the mode jumping effect as well as temperature and electric-field dependent dielectric constant, the BST-included SRR metamaterials may have great potentials for the applications in electromagnetic switches and widely tunable metamaterial devices. PMID:27502844

  3. Mode jumping of split-ring resonator metamaterials controlled by high-permittivity BST and incident electric fields.

    PubMed

    Fu, Xiaojian; Zeng, Xinxi; Cui, Tie Jun; Lan, Chuwen; Guo, Yunsheng; Zhang, Hao Chi; Zhang, Qian

    2016-08-09

    We investigate the resonant modes of split-ring resonator (SRR) metamaterials that contain high-permittivity BST block numerically and experimentally. We observe interesting mode-jumping phenomena from the BST-included SRR absorber structure as the excitation wave is incident perpendicularly to the SRR plane. Specifically, when the electric field is parallel to the SRR gap, the BST block in the gap will induce a mode jumping from the LC resonance to plasmonic resonance (horizontal electric-dipole mode), because the displacement current excited by the Mie resonance in the dielectric block acts as a current channel in the gap. When the electric field is perpendicular to the gap side, the plasmonic resonance mode (vertical electric-dipole mode) in SRR changes to two joint modes contributed simultaneously by the back layer, SRR and BST block, as a result of connected back layer and SRR layer by the displacement current in the BST dielectric block. Based on the mode jumping effect as well as temperature and electric-field dependent dielectric constant, the BST-included SRR metamaterials may have great potentials for the applications in electromagnetic switches and widely tunable metamaterial devices.

  4. Water-Based Concurrent Training Improves Peak Oxygen Uptake, Rate of Force Development, Jump Height, and Neuromuscular Economy in Young Women.

    PubMed

    Pinto, Stephanie S; Alberton, Cristine L; Cadore, Eduardo L; Zaffari, Paula; Baroni, Bruno M; Lanferdini, Fábio J; Radaelli, Régis; Pantoja, Patrícia D; Peyré-Tartaruga, Leonardo A; Wolf Schoenell, Maira C; Vaz, Marco A; Kruel, Luiz F M

    2015-07-01

    The study investigated the effects of different intrasession exercise sequences on the cardiorespiratory and neuromuscular adaptations induced by water-based concurrent training in young subjects. Twenty-six healthy young women (25.1 ± 2.9 years) were placed into 2 water-based concurrent training groups: resistance before (RA, n = 13) or after (AR, n = 13) aerobic training. Subjects trained resistance and aerobic training during 12 weeks, 2 times per week performing both exercise types in the same training session. Peak oxygen uptake (V[Combining Dot Above]O2peak), rate of force development (RFD) obtained during an isometric peak torque knee extension protocol, jump height, and neuromuscular economy (normalized electromyography at 80% of pretraining knee extension isometric peak torque) in young women were determined. After training, there was a significant increase (p < 0.001) in both RA and AR in the V[Combining Dot Above]O2peak, with no differences between groups (7 vs. 5%). The maximal isometric knee extension RFD showed significant increases (p = 0.003) after training (RA: 19 vs. AR: 30%), and both groups presented similar gains. In addition, the countermovement jump height also increased (p = 0.034) after training (RA: 5% vs. AR: 6%), with no difference between groups. After training, there were significant improvements on vastus lateralis (p < 0.001) (RA: -13% vs. AR: -20%) and rectus femoris (p = 0.025) (RA: -17% vs. AR: -7%) neuromuscular economy, with no difference between groups. In conclusion, 12 weeks of water-based concurrent training improved the peak oxygen uptake, RFD, jump height, and neuromuscular economy in young women independent from the intrasession exercise sequence.

  5. High peak power sub-nanosecond mode-locked pulse characteristics of Nd:GGG laser

    NASA Astrophysics Data System (ADS)

    Zhao, Jia; Zhao, Shengzhi; Li, Tao; Li, Yufei; Yang, Kejian; Li, Guiqiu; Li, Dechun; Qiao, Wenchao; Feng, Chuansheng; Wang, Yonggang

    2015-10-01

    Based on the dual-loss modulation, i.e. electro-optic (EO) modulator and GaAs saturable absorber, a sub-nanosecond mode-locked pulsed Nd:GGG laser with kHz repetition rates is presented for the first time. The repetition rate (0.5-10 kHz) of this pulsed laser is controlled by the modulation rate of EO modulator, so high stability can be obtained. The sub-nanosecond pulse width depends on the mode-locked pulse underneath the Q-switched envelope in the Q-switched mode-locked (QML) laser and high peak power can be generated. The condition on the generation of sub-nanosecond pulse and the needed threshold power for different modulation rates of EO are given. The average output power, the pulse width and the peak power versus pump power for different repetition rates are demonstrated. The shortest pulse width is 426 ps and the highest peak power reaches 239.4 kW. The experimental results show that the dual-loss modulation technology with EO and GaAs saturable absorber in QML laser is an efficient method to generate sub-nanosecond mode-locked pulsed laser with kHz repetition rates.

  6. Analytic expressions for mode conversion in a plasma at the peak of a parabolic density profile

    SciTech Connect

    Hinkel-Lipsker, D.E.; Fried, B.D.; Morales, G.J. )

    1992-07-01

    For mode conversion in an unmagnetized plasma with a parabolic density profile of scale length {ital L}, analytic expressions, in terms of parabolic cylinder functions, for the energy flux coefficients (reflection, transmission, and mode conversion) and the fields for both the direct'' problem (incident electromagnetic wave converting to a Langmuir wave) and the inverse'' problem (incident Langmuir wave converting to an electromagnetic wave) are derived for the case where the incident wave frequency {omega} matches the electron plasma frequency {omega}{sub {ital p}} at the peak of the density profile. The mode conversion coefficient for the direct problem is equal in magnitude to that of the inverse problem, and the corresponding reflection and transmission coefficients satisfy energy conservation. In contrast to the linear profile problem, the conversion efficiency depends explicitly on the value of the collision frequency (in the cold, collisional limit) or electron temperature (in the warm, collisionless limit), but a transformation of parameters relates the results for these two limits.

  7. Development of a single-longitudinal-mode, high-peak-power, tunable pulsed dye laser

    SciTech Connect

    Black, J.F.; Valentini, J.J. )

    1994-09-01

    A compact, high-peak-power, user-friendly, single-longitudinal-mode (SLM) tunable dye laser has been developed. The device yields [gt]12 mJ pulses of 6 ns duration and [similar to]2.7[times]transform-limited linewidths of [lt]200 MHz. Seamless single-mode tunability of [gt]20 cm[sup [minus]1] is possible without resetting. The dye laser makes efficient use of the pump laser, with [similar to]10% conversion of the 532 nm pump energy to tunable dye power and occupies [lt]4 m[sup 2] (including pump laser and all diagnostics). The linewidth of the device can be switched from [lt]200 MHz SLM operation to [lt]0.5 cm[sup [minus]1] broadband modeless operation by moving one mirror. This allows rapid interchange between high-resolution scanning and a fast survey scan'' mode of operation to isolate the spectral region of interest at low resolution.

  8. Mode shape analysis using a commercially available peak store video frame buffer

    NASA Technical Reports Server (NTRS)

    Snow, Walter L.; Childers, Brooks A.

    1994-01-01

    Time exposure photography, sometimes coupled with strobe illumination, is an accepted method for motion analysis that bypasses frame by frame analysis and resynthesis of data. Garden variety video cameras can now exploit this technique using a unique frame buffer that is a non-integrating memory that compares incoming data with that already stored. The device continuously outputs an analog video signal of the stored contents which can then be redigitized and analyzed using conventional equipment. Historically, photographic time exposures have been used to record the displacement envelope of harmonically oscillating structures to show mode shape. Mode shape analysis is crucial, for example, in aeroelastic testing of wind tunnel models. Aerodynamic, inertial, and elastic forces can couple together leading to catastrophic failure of a poorly designed aircraft. This paper will explore the usefulness of the peak store device as a videometric tool and in particular discuss methods for analyzing a targeted vibrating plate using the 'peak store' in conjunction with calibration methods familiar to the close-range videometry community. Results for the first three normal modes will be presented.

  9. Dynamics and stabilization of peak current-mode controlled buck converter with constant current load

    NASA Astrophysics Data System (ADS)

    Leng, Min-Rui; Zhou, Guo-Hua; Zhang, Kai-Tun; Li, Zhen-Hua

    2015-10-01

    The discrete iterative map model of peak current-mode controlled buck converter with constant current load (CCL), containing the output voltage feedback and ramp compensation, is established in this paper. Based on this model the complex dynamics of this converter is investigated by analyzing bifurcation diagrams and the Lyapunov exponent spectrum. The effects of ramp compensation and output voltage feedback on the stability of the converter are investigated. Experimental results verify the simulation and theoretical analysis. The stability boundary and chaos boundary are obtained under the theoretical conditions of period-doubling bifurcation and border collision. It is found that there are four operation regions in the peak current-mode controlled buck converter with CCL due to period-doubling bifurcation and border-collision bifurcation. Research results indicate that ramp compensation can extend the stable operation range and transfer the operating mode, and output voltage feedback can eventually eliminate the coexisting fast-slow scale instability. Project supported by the National Natural Science Foundation of China (Grant No. 61371033), the Fok Ying-Tung Education Foundation for Young Teachers in the Higher Education Institutions of China (Grant No. 142027), the Sichuan Provincial Youth Science and Technology Fund, China (Grant Nos. 2014JQ0015 and 2013JQ0033), and the Fundamental Research Funds for the Central Universities, China (Grant No. SWJTU11CX029).

  10. Bifurcation and chaos in high-frequency peak current mode Buck converter

    NASA Astrophysics Data System (ADS)

    Chang-Yuan, Chang; Xin, Zhao; Fan, Yang; Cheng-En, Wu

    2016-07-01

    Bifurcation and chaos in high-frequency peak current mode Buck converter working in continuous conduction mode (CCM) are studied in this paper. First of all, the two-dimensional discrete mapping model is established. Next, reference current at the period-doubling point and the border of inductor current are derived. Then, the bifurcation diagrams are drawn with the aid of MATLAB. Meanwhile, circuit simulations are executed with PSIM, and time domain waveforms as well as phase portraits in i L-v C plane are plotted with MATLAB on the basis of simulation data. After that, we construct the Jacobian matrix and analyze the stability of the system based on the roots of characteristic equations. Finally, the validity of theoretical analysis has been verified by circuit testing. The simulation and experimental results show that, with the increase of reference current I ref, the corresponding switching frequency f is approaching to low-frequency stage continuously when the period-doubling bifurcation happens, leading to the converter tending to be unstable. With the increase of f, the corresponding I ref decreases when the period-doubling bifurcation occurs, indicating the stable working range of the system becomes smaller. Project supported by the National Natural Science Foundation of China (Grant No. 61376029), the Fundamental Research Funds for the Central Universities, China, and the College Graduate Research and Innovation Program of Jiangsu Province, China (Grant No. SJLX15_0092).

  11. Bifurcation and chaos in high-frequency peak current mode Buck converter

    NASA Astrophysics Data System (ADS)

    Chang-Yuan, Chang; Xin, Zhao; Fan, Yang; Cheng-En, Wu

    2016-07-01

    Bifurcation and chaos in high-frequency peak current mode Buck converter working in continuous conduction mode (CCM) are studied in this paper. First of all, the two-dimensional discrete mapping model is established. Next, reference current at the period-doubling point and the border of inductor current are derived. Then, the bifurcation diagrams are drawn with the aid of MATLAB. Meanwhile, circuit simulations are executed with PSIM, and time domain waveforms as well as phase portraits in i L–v C plane are plotted with MATLAB on the basis of simulation data. After that, we construct the Jacobian matrix and analyze the stability of the system based on the roots of characteristic equations. Finally, the validity of theoretical analysis has been verified by circuit testing. The simulation and experimental results show that, with the increase of reference current I ref, the corresponding switching frequency f is approaching to low-frequency stage continuously when the period-doubling bifurcation happens, leading to the converter tending to be unstable. With the increase of f, the corresponding I ref decreases when the period-doubling bifurcation occurs, indicating the stable working range of the system becomes smaller. Project supported by the National Natural Science Foundation of China (Grant No. 61376029), the Fundamental Research Funds for the Central Universities, China, and the College Graduate Research and Innovation Program of Jiangsu Province, China (Grant No. SJLX15_0092).

  12. Real-time bilinear rotation decoupling in absorptive mode J-spectroscopy: Detecting low-intensity metabolite peak close to high-intensity metabolite peak with convenience.

    PubMed

    Verma, Ajay; Baishya, Bikash

    2016-05-01

    "Pure shift" NMR spectra display singlet peak per chemical site. Thus, high resolution is offered at the cost of valuable J-coupling information. In the present work, real-time BIRD (BIlinear Rotation Decoupling) is applied to the absorptive-mode 2D J-spectroscopy to provide pure shift spectrum in the direct dimension and J-coupling information in the indirect dimension. Quite often in metabolomics, proton NMR spectra from complex bio-fluids display tremendous signal overlap. Although conventional J-spectroscopy in principle overcomes this problem by separating the multiplet information from chemical shift information, however, only magnitude mode of the experiment is practical, sacrificing much of the potential high resolution that could be achieved. Few J-spectroscopy methods have been reported so far that produce high-resolution pure shift spectrum along with J-coupling information for crowded spectral regions. In the present work, high-quality J-resolved spectrum from important metabolomic mixture such as tissue extract from rat cortex is demonstrated. Many low-intensity metabolite peaks which are obscured by the broad dispersive tails from high-intensity metabolite peaks in regular magnitude mode J-spectrum can be clearly identified in real-time BIRD J-resolved spectrum. The general practice of removing such spectral overlap is tedious and time-consuming as it involves repeated sample preparation to change the pH of the tissue extract sample and subsequent spectra recording. PMID:27026651

  13. Real-time bilinear rotation decoupling in absorptive mode J-spectroscopy: Detecting low-intensity metabolite peak close to high-intensity metabolite peak with convenience.

    PubMed

    Verma, Ajay; Baishya, Bikash

    2016-05-01

    "Pure shift" NMR spectra display singlet peak per chemical site. Thus, high resolution is offered at the cost of valuable J-coupling information. In the present work, real-time BIRD (BIlinear Rotation Decoupling) is applied to the absorptive-mode 2D J-spectroscopy to provide pure shift spectrum in the direct dimension and J-coupling information in the indirect dimension. Quite often in metabolomics, proton NMR spectra from complex bio-fluids display tremendous signal overlap. Although conventional J-spectroscopy in principle overcomes this problem by separating the multiplet information from chemical shift information, however, only magnitude mode of the experiment is practical, sacrificing much of the potential high resolution that could be achieved. Few J-spectroscopy methods have been reported so far that produce high-resolution pure shift spectrum along with J-coupling information for crowded spectral regions. In the present work, high-quality J-resolved spectrum from important metabolomic mixture such as tissue extract from rat cortex is demonstrated. Many low-intensity metabolite peaks which are obscured by the broad dispersive tails from high-intensity metabolite peaks in regular magnitude mode J-spectrum can be clearly identified in real-time BIRD J-resolved spectrum. The general practice of removing such spectral overlap is tedious and time-consuming as it involves repeated sample preparation to change the pH of the tissue extract sample and subsequent spectra recording.

  14. Real-time bilinear rotation decoupling in absorptive mode J-spectroscopy: Detecting low-intensity metabolite peak close to high-intensity metabolite peak with convenience

    NASA Astrophysics Data System (ADS)

    Verma, Ajay; Baishya, Bikash

    2016-05-01

    "Pure shift" NMR spectra display singlet peak per chemical site. Thus, high resolution is offered at the cost of valuable J-coupling information. In the present work, real-time BIRD (BIlinear Rotation Decoupling) is applied to the absorptive-mode 2D J-spectroscopy to provide pure shift spectrum in the direct dimension and J-coupling information in the indirect dimension. Quite often in metabolomics, proton NMR spectra from complex bio-fluids display tremendous signal overlap. Although conventional J-spectroscopy in principle overcomes this problem by separating the multiplet information from chemical shift information, however, only magnitude mode of the experiment is practical, sacrificing much of the potential high resolution that could be achieved. Few J-spectroscopy methods have been reported so far that produce high-resolution pure shift spectrum along with J-coupling information for crowded spectral regions. In the present work, high-quality J-resolved spectrum from important metabolomic mixture such as tissue extract from rat cortex is demonstrated. Many low-intensity metabolite peaks which are obscured by the broad dispersive tails from high-intensity metabolite peaks in regular magnitude mode J-spectrum can be clearly identified in real-time BIRD J-resolved spectrum. The general practice of removing such spectral overlap is tedious and time-consuming as it involves repeated sample preparation to change the pH of the tissue extract sample and subsequent spectra recording.

  15. Optimizing Thomson's jumping ring

    NASA Astrophysics Data System (ADS)

    Tjossem, Paul J. H.; Brost, Elizabeth C.

    2011-04-01

    The height to which rings will jump in a Thomson jumping ring apparatus is the central question posed by this popular lecture demonstration. We develop a simple time-averaged inductive-phase-lag model for the dependence of the jump height on the ring material, its mass, and temperature and apply it to measurements of the jump height for a set of rings made by slicing copper and aluminum alloy pipe into varying lengths. The data confirm a peak jump height that grows, narrows, and shifts to smaller optimal mass when the rings are cooled to 77 K. The model explains the ratio of the cooled/warm jump heights for a given ring, the reduction in optimal mass as the ring is cooled, and the shape of the mass resonance. The ring that jumps the highest is found to have a characteristic resistance equal to the inductive reactance of the set of rings.

  16. AFM in peak force mode applied to worn siloxane-hydrogel contact lenses.

    PubMed

    Abadías, Clara; Serés, Carme; Torrent-Burgués, Juan

    2015-04-01

    The objective of this work is to apply Atomic Force Microscopy in Peak Force mode to obtain topographic characteristics (mean roughness, root-mean-square roughness, skewness and kurtosis) and mechanical characteristics (adhesion, elastic modulus) of Siloxane-Hydrogel Soft Contact Lenses (CLs) of two different materials, Lotrafilcon B of Air Optix (AO) and Asmofilcon A of PremiO (P), after use (worn CLs). Thus, the results obtained with both materials will be compared, as well as the changes produced by the wear at a nanoscopic level. The results show significant changes in the topographic and mechanical characteristics of the CLs, at a nanoscopic level, due to wear. The AO CL show values of the topographic parameters lower than those of the P CL after wear, which correlates with a better comfort qualification given to the former by the wearers. A significant correlation has also been obtained between the adhesion values found after the use of the CLs with tear quality tests, both break-up-time and Schirmer.

  17. Influence of photo- and thermal bleaching on pre-irradiation low water peak single mode fibers

    NASA Astrophysics Data System (ADS)

    Yin, Jianchong; Wen, Jianxiang; Luo, Wenyun; Xiao, Zhongyin; Chen, Zhenyi; Wang, Tingyun

    2011-12-01

    Reducing the radiation-induced transmission loss in low water peak single mode fiber (LWP SMF) has been investigated by using photo-bleaching method with 980nm pump light source and using thermal-bleaching method with temperature control system. The results show that the radiation-induced loss of pre-irradiation optical fiber can be reduced effectively with the help of photo-bleaching or thermal-bleaching. Although the effort of photo-bleaching is not as significant as thermal-bleaching, by using photo-bleaching method, the loss of fiber caused by radiation-induced defects can be reduced best up to 49% at 1310nm and 28% at 1550nm in low pre-irradiation condition, the coating of the fiber are not destroyed, and the rehabilitating time is just several hours, while self-annealing usually costs months' time. What's more, the typical high power LASER for photo-bleaching can be 980nm pump Laser Diode, which is very accessible.

  18. Multi-peak accumulation and coarse modes observed from AERONET retrieved aerosol volume size distribution in Beijing

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Li, Zhengqiang; Zhang, Yuhuan; Chen, Yu; Cuesta, Juan; Ma, Yan

    2016-08-01

    We present characteristic peaks of atmospheric columnar aerosol volume size distribution retrieved from the AErosol RObotic NETwork (AERONET) ground-based Sun-sky radiometer observation, and their correlations with aerosol optical properties and meteorological conditions in Beijing over 2013. The results show that the aerosol volume particle size distribution (VPSD) can be decomposed into up to four characteristic peaks, located in accumulation and coarse modes, respectively. The mean center radii of extra peaks in accumulation and coarse modes locate around 0.28 (±0.09) to 0.38 (±0.11) and 1.25 (±0.56) to 1.47 (±0.30) μm, respectively. The multi-peak size distributions are found in different aerosol loading conditions, with the mean aerosol optical depth (440 nm) of 0.58, 0.49, 1.18 and 1.04 for 2-, 3-I/II and 4-peak VPSD types, while the correspondingly mean relative humidity values are 58, 54, 72 and 67 %, respectively. The results also show the significant increase (from 0.25 to 0.40 μm) of the mean extra peak median radius in the accumulation mode for the 3-peak-II cases, which agrees with aerosol hygroscopic growth related to relative humidity and/or cloud or fog processing.

  19. 1400, +/- 900V PEAK PULSE SWITCH MODE POWER SUPPLIES FOR SNS INJECTION KICKERS.

    SciTech Connect

    LAMBIASE,R.ENG,W.SANDBERG,J.DEWAN,S.HOLMES,R.RUST,K.ZENG,J.

    2004-03-10

    This paper describes simulation and experimental results for a 1400A, {+-} 900V peak rated, switch mode power supply for SNS Injection Kicker Magnets. For each magnet (13 m{Omega}, 160{micro}H), the power supply must supply controlled pulses at 60 Hz repetition rate. The pulse current must rise from zero to maximum in less than 1 millisec in a controlled manner, flat top for up to 2 millisec, and should fall in a controlled manner to less than 4A within 500{micro}s. The low current performance during fall time is the biggest challenge in this power supply. The simulation results show that to meet the controlled fall of the current and the current ripple requirements, voltage loop bandwidth of at least 10 kHz and switching frequency of at least 100 kHz are required. To achieve high power high frequency switching with IGBT switches, a series connected topology with three phase shifted (O{sup o}, 60{sup o} & 120{sup o}) converters each with 40 kHz switching frequency (IGBT at 20kHz), has been achieved. In this paper, the circuit topology, relevant system specifications and experimental results that meet the requirements of the power supply are described in detail. A unique six pulse SCR rectifier circuit with capacitor storage has been implemented to achieve minimum pulse width to meet required performance during current fall time below 50A due to the very narrow pulse width and non-linearity from IGBT turn-on/off times.

  20. A single set of biomechanical variables cannot predict jump performance across various jumping tasks.

    PubMed

    Johnston, Lucas A; Butler, Robert J; Sparling, Tawnee L; Queen, Robin M

    2015-02-01

    Vertical jump performance is related to high-level function in athletics. The purpose of this study was to determine whether a single set of biomechanical variables exist that can predict vertical jump height during multiple jumping strategies: single foot jump, drop jump, and countermovement jump. Three-dimensional mechanics were collected during the 3 different jumping tasks in 50 recreational male athletes. Three successful trials were analyzed for each jump type. Testing order was randomized to minimize fatigue effects, and the dominant limb was used for analysis. All discrete variables were correlated to jump height and the 10 variables that had the strongest correlation were inserted into a linear regression model to identify what variables predicted maximum jump height. No single set of variables that predicted jump height existed across all 3 jumping tasks. One foot jump height was predicted by peak knee power, peak hip extension moment, peak knee extension velocity, and the percentage of the trial when peak knee flexion velocity occurred (r = 0.58). Countermovement jump height was predicted by peak hip power, ankle range of motion, and knee range of motion (r = 0.65). Drop jump height was predicted by the peak vertical ground reaction force and the percentage of the trial when the peak hip velocity occurred (r = 0.37). A single set of variables was not identified that could predict jump performance across different types of jumping tasks; therefore, additional interventional investigations are needed to better understand how to alter and improve jump performance.

  1. AFM PeakForce QNM mode: Evidencing nanometre-scale mechanical properties of chitin-silica hybrid nanocomposites.

    PubMed

    Smolyakov, G; Pruvost, S; Cardoso, L; Alonso, B; Belamie, E; Duchet-Rumeau, J

    2016-10-20

    PeakForce Quantitative Nanomechanical Mapping (QNM) AFM mode was used to explore the mechanical properties of textured chitin-silica hybrid films at the nanoscale. The influence of the force applied by the tip on the sample surface was studied for standard homogeneous samples, for chitin nanorods and for chitin-silica hybrid nanocomposites. Thick films of superimposed chitin nanorods showed a monotonous increase of DMT modulus (based on the Derjaguin-Muller-Toporov model) owing to an increase in modulus at the interface between nanorods due to geometrical constraints of the AFM acquisition. A similar variation of DMT modulus was obtained for chitin-silica hybrid thick films related to mechanical strengthening induced by the presence of silica. This work revealed the role of the organic-inorganic interface, at the nanoscale, in the mechanical behaviour of textured materials using PeakForce QNM mode, with optimized analysis conditions. PMID:27474579

  2. H∞ mode-dependent fault detection filter design for stochastic Markovian jump systems with time-varying delays and parameter uncertainties.

    PubMed

    Zhuang, Guangming; Xia, Jianwei; Chu, Yuming; Chen, Fu

    2014-07-01

    This paper deals with the problem of robust H∞ fault detection for a class of stochastic Markovian jump systems (SMJSs) The aim is to design a linear mode-dependent fault detection filter such that the fault detection system is not only stochastically asymptotically stable in the large, but also satisfies a prescribed H∞-norm level for all admissible uncertainties. By using Lyapunov stability theory and generalized Itô formula, some novel mode-dependent and delay-dependent sufficient conditions in terms of linear matrix inequality (LMI) are proposed to insure the existence of the desired fault detection filter. A simulation example and an industrial nonisothermal continuous stirred tank reactor (CSTR) system are employed to show the effectiveness of the proposed method.

  3. Dielectric spectroscopy in benzophenone: the beta relaxation and its relation to the mode-coupling Cole-Cole peak.

    PubMed

    Pardo, L C; Lunkenheimer, P; Loidl, A

    2007-09-01

    We report a thorough characterization of the glassy dynamics of benzophenone by broadband dielectric spectroscopy. We detect a well-pronounced beta relaxation peak developing into an excess wing with increasing temperature. A previous analysis of results from Optical-Kerr-effect measurements of this material within the mode-coupling theory revealed a high-frequency Cole-Cole peak. We address the question if this phenomenon also may explain the Johari-Goldstein beta relaxation, a so-far unexplained spectral feature inherent to glass-forming matter, mainly observed in dielectric spectra. Our results demonstrate that according to the present status of theory, both spectral features seem not to be directly related.

  4. [The Study of Characteristics of Cladding-Reduced Coated Long-Period Fiber Grating Based on Mode Transition and Dual Peak Resonance].

    PubMed

    Lan, Jin-long; Gu, Zheng-tian

    2015-11-01

    Based on coupled-mode theory, the mode transition of the high-order cladding modes in a coated long-period tiber grating (LPFG) has been studied firstly; the mode transition region and non-mode transition region of high-order cladding modes are divided. The response characteristic of cladding mode effective index with increasing the overlay thickness is analyzed; the shift of resonant wavelength in the mode transition region will be larger than that in the non-mode transition region. Further, the changes of the resonant wavelength of some high-order cladding modes with grating period are investigated when the cladding radius are different, the shift between two resonant wavelengths of dual peak in the mode transition region is bigger than that in non-mode transition region when the cladding radius are uniform. And the shift between two resonant wavelengths of dual peak will be increased by the decrease of the cladding radius in both mode transition and non-mode transition regions. Finally, the response characteristics of film refractive index of coated LPFG are investigated for a high-order cladding mode while the cladding radius are different and the overlay thickness is located in mode transition region and non-transition mode region, then the optimized design scheme is come up with. The higher sensitivity dual-peak sensor of coated LPFG than the traditional dual-peak sensor will be obtained when the overlay thickness and refractive index is located in the mode transition region and the grating period close to the phase matching turning points. Further, the resolution power of coated LPFG sensor will further be improved by the appropriate reducing of the cladding radius.

  5. Symmetrical dynamics of peak current-mode and valley current-mode controlled switching dc-dc converters with ramp compensation

    NASA Astrophysics Data System (ADS)

    Zhou, Guo-Hua; Xu, Jian-Ping; Bao, Bo-Cheng; Jin, Yan-Yan

    2010-06-01

    The discrete iterative map models of peak current-mode (PCM) and valley current-mode (VCM) controlled buck converters, boost converters, and buck-boost converters with ramp compensation are established and their dynamical behaviours are investigated by using the operation region, parameter space map, bifurcation diagram, and Lyapunov exponent spectrum. The research results indicate that ramp compensation extends the stable operation range of the PCM controlled switching dc-dc converter to D > 0.5 and that of the VCM controlled switching dc-dc converter to D < 0.5. Compared with PCM controlled switching dc-dc converters with ramp compensation, VCM controlled switching dc-dc converters with ramp compensation exhibit interesting symmetrical dynamics. Experimental results are given to verify the analysis results in this paper.

  6. High-peak-power, high-repetition-rate LD end-pumped Nd:YVO4 burst mode laser

    NASA Astrophysics Data System (ADS)

    Pan, Hu; Yan, Renpeng; Fa, Xin; Yu, Xin; Ma, Yufei; Fan, Rongwei; Li, Xudong; Chen, Deying; Zhou, Zhongxiang

    2016-06-01

    A compact high-peak-power, high-repetition-rate burst mode laser is achieved by an acousto-optical Q-switched Nd:YVO4 1064 nm laser directly pumped at 878.6 nm. Pulse trains with 10-100 pulses are obtained using acousto-optical Q-switch at repetition rates of 10-100 kHz under a pulsed pumping with a 1 ms duration. At the maximum pump energy of 108.5 mJ, the pulse energy of 10 kHz burst mode laser reaches 44 mJ corresponding to a single pulse energy of 4.4 mJ and an optical-to-optical efficiency of 40.5 %.The maximum peak power of ~468.1 kW at 10 kHz is obtained with a pulse width of 9.4 ns. The beam quality factor is measured to be M 2 ~1.5 and the pulse jitter is estimated to be less than 1 % in both amplitude and time region.

  7. Jumping hoops

    NASA Astrophysics Data System (ADS)

    Yang, Eunjin; Kim, Ho-Young

    2012-01-01

    We investigate the dynamics of an elastic hoop as a model of the jumps of small insects. During a jump the initial elastic strain energy is converted to translational, gravitational, and vibrational energy, and is dissipated by interaction with the floor and the ambient air. We show that the strain energy is initially divided into translational, vibrational, and dissipation energies with a ratio that is constant regardless of the dimension, initial deflection, and the properties of a hoop. This novel result enables us to accurately predict the maximum jump height of a hoop with known initial conditions and drag coefficient without resorting to a numerical computation. Our model reduces the optimization of the hoop geometry for maximizing the jump height to a simple algebraic problem.

  8. Peak equalization of rational-harmonic-mode-locking fiberized semiconductor laser pulse via optical injection induced gain modulation.

    PubMed

    Kang, Jung-Jui; Lin, Yu-Chan; Lee, Chao-Kuei; Lin, Gong-Ru

    2009-01-19

    Optical injection induced gain modulation of a semiconductor optical amplifier (SOA) is demonstrated to equalize the peak intensity of pulses generating from the rational-harmonic-mode-locking (RHML) SOA based fiberized semiconductor laser. This is achieved by adjusting the temporal shape of the injected optical signal generated from a Mach-Zehnder intensity modulator, in which the DC biased level exceeding Vpi and the electrical pulse amplitude of 1.5Vpi are concurrently employed. Numerical simulation on the injected optical signal profile and the SOA gain during the inverse-optical-pulse injection induced gain modulation process are also demonstrated. After a peculiar inverse-optical-pulse injection, each pulse in the 5th-order RHML pulse-train experiences different gain from temporally varied SOA gain profile, leading the pulse peak to equalize one another with a minimum standard deviation of 2.5% on the peak intensity variation. The optimized 5th-order RHML pulse exhibits a signal-to-noise suppression ratio of 20 dB and a reduced variation on temporal spacing from 11 to 4 ps. The clock amplitude jitter is compress from 35.3% to 7.3%, which is less than the limitation up to 10% for 5th order RHML generation.

  9. Egg Bungee Jump

    ERIC Educational Resources Information Center

    Tretter, Thomas

    2005-01-01

    In the spirit of the National Science Education Standards (NRC 1996), many teachers attempt to have their students experience science in a constructivist, inquiry-oriented manner. The egg bungee jump activity will certainly support that mode of teaching, and has the added benefit of providing a concrete context within which students can explore…

  10. Fault detection for a class of uncertain nonlinear Markovian jump stochastic systems with mode-dependent time delays and sensor saturation

    NASA Astrophysics Data System (ADS)

    Zhuang, Guangming; Li, Yongmin; Li, Ze

    2016-05-01

    This paper considers the problem of robust H∞ fault detection for a class of uncertain nonlinear Markovian jump stochastic systems with mode-dependent time delays and sensor saturation. We aim to design a linear mode-dependent H∞ fault detection filter that ensures, the fault detection system is not only stochastically asymptotically stable in the large, but also satisfies a prescribed H∞-norm level for all admissible uncertainties. By using the Lyapunov stability theory and generalised Itô formula, some novel delay-dependent sufficient conditions in terms of linear matrix inequality are proposed to guarantee the existence of the desired fault detection filter. Explicit expression of the desired mode-dependent linear filter parameters is characterised by matrix decomposition, congruence transformation and convex optimisation technique. Sector condition method is utilised to deal with sensor saturation, a definite relation of sector condition parameters with fault detection system robustness against disturbances and sensitivity to faults is put forward, and weighting fault signal approach is employed to improve the performance of the fault detection system. A simulation example and an industrial nonisothermal continuous stirred tank reactor system are utilised to verify the effectiveness and usefulness of the proposed method.

  11. Supersonic Jump

    ERIC Educational Resources Information Center

    Muller, Andreas

    2013-01-01

    On October 14,2012, Felix Baumgartner, an Austrian sky-diver, set some new world records for his discipline. Jumping from a height of about 39 km, he reached a top speed of 1342 km/h, becoming the first human being to break the sound barrier in free fall. In order to understand some essential physics aspects of this remarkable feat, we wonder why…

  12. Comparison of V[Combining Dot Above]O2peak and Achievement of V[Combining Dot Above]O2peak Criteria in Three Modes of Exercise in Female Triathletes.

    PubMed

    Snoza, Colleen T; Berg, Kris E; Slivka, Dustin R

    2016-10-01

    Snoza, CT, Berg, KE, and Slivka, DR. Comparison of V[Combining Dot Above]O2peak and achievement of V[Combining Dot Above]O2peak criteria in three modes of exercise in female triathletes. J Strength Cond Res 30(10): 2816-2822, 2016-The purpose of this study was to compare peak aerobic capacity in female triathletes in 3 modes of exercise: treadmill, cycle, and arm ergometer. A second purpose was to determine the extent that physiologic criteria for achieving V[Combining Dot Above]O2peak were reached in each mode of exercise. Six criteria were examined: V[Combining Dot Above]O2 plateau, heart rate (HR), blood lactate concentration (BLC), respiratory exchange ratio, oxygen saturation, and rating of perceived exertion (RPE). Twelve recreational level female triathletes completed maximal tests on the treadmill, stationary bike, and arm ergometer. Results indicated V[Combining Dot Above]O2peak (ml·kg·min) is highest on a treadmill (46.8 ± 2.1), intermediate in cycling (40.7 ± 5.0), and lowest in arm ergometry (28.2 ± 3.3) with mean differences being significant (p ≤ 0.05). Blood lactate concentration and RPE criteria were met by the highest number of subjects across the 3 modes of testing while the HR criterion was not achieved in any participant in arm ergometry and only 2 in cycling. It was concluded that in moderately trained recreational level triathletes, V[Combining Dot Above]O2peak is highest in running and lowest in arm ergometry. Criteria for achieving V[Combining Dot Above]O2peak most frequently were blood lactate level and RPE. Coaches and researchers should appreciate that V[Combining Dot Above]O2peak values of moderately trained triathletes differ considerably in contrast to elite triathletes and tend to be highest on the treadmill and lowest in arm ergometry. Also, criteria used to determine achievement of V[Combining Dot Above]O2peak should be carefully selected and seem to be best achieved using BLC and RPE.

  13. Asymmetric-shell ignition capsule design to tune the low-mode asymmetry during the peak drive

    NASA Astrophysics Data System (ADS)

    Gu, Jianfa; Dai, Zhensheng; Song, Peng; Zou, Shiyang; Ye, Wenhua; Zheng, Wudi; Gu, Peijun; Wang, Jianguo; Zhu, Shaoping

    2016-08-01

    The low-mode radiation flux asymmetry in the hohlraum is a main source of performance degradation in the National Ignition Facility (NIF) implosion experiments. To counteract the deleterious effects of the large positive P2 flux asymmetry during the peak drive, this paper develops a new tuning method called asymmetric-shell ignition capsule design which adopts the intentionally asymmetric CH ablator layer or deuterium-tritium (DT) ice layer. A series of two-dimensional implosion simulations have been performed, and the results show that the intentionally asymmetric DT ice layer can significantly improve the fuel ρR symmetry, hot spot shape, hot spot internal energy, and the final neutron yield compared to the spherical capsule. This indicates that the DT asymmetric-shell capsule design is an effective tuning method, while the CH ablator asymmetric-shell capsule could not correct the fuel ρR asymmetry, and it is not as effective as the DT asymmetric-shell capsule design.

  14. Formation and conversion of defect centers in low water peak single mode optical fiber induced by gamma rays irradiation

    SciTech Connect

    Wen, J. X.; Luo, W. Y.; Xiao, Z. Y.; Wang, T. Y.; Chen, Z. Y.; Zeng, X. L.

    2010-02-15

    The formation and conversion processes of defect centers in low water peak single mode optical (LWPSM) fiber irradiated with gamma rays were investigated at room temperature using electron spin resonance. Germanium electron center (GEC) and self-trapped hole center (STH) occur when the fibers are irradiated with 1 and 5 kGy cumulative doses, respectively. With the increase in irradiation doses, the GEC defect centers disappear, and new defect centers such as E{sup '} centers (Si and Ge) and nonbridge oxygen hole centers (NBOHCs) generate. The generation of GEC and STH is attributed to the electron transfer, which is completely balanced. This is the main reason that radiation-induced attenuation (RIA) of the LWPSM fiber is only 10 dB/km at communication window. The new defect centers come from the conversion of GEC and STH to E{sup '} centers and NBOHC, and the conversion processes cause bond cleavage, which is the root cause that the RIA of the LWPSM fiber significantly increases up to 180 dB/km at working window. Furthermore, the concentration of new defect centers is saturated easily even by increasing cumulative doses.

  15. Effects of Fusion Zone Size and Failure Mode on Peak Load and Energy Absorption of Advanced High Strength Steel Spot Welds under Lap Shear Loading Conditions

    SciTech Connect

    Sun, Xin; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2008-06-01

    This paper examines the effects of fusion zone size on failure modes, static strength and energy absorption of resistance spot welds (RSW) of advanced high strength steels (AHSS) under lap shear loading condition. DP800 and TRIP800 spot welds are considered. The main failure modes for spot welds are nugget pullout and interfacial fracture. Partial interfacial fracture is also observed. Static weld strength tests using lap shear samples were performed on the joint populations with various fusion zone sizes. The resulted peak load and energy absorption levels associated with each failure mode were studied for all the weld populations using statistical data analysis tools. The results in this study show that AHSS spot welds with conventionally required fusion zone size of can not produce nugget pullout mode for both the DP800 and TRIP800 welds under lap shear loading. Moreover, failure mode has strong influence on weld peak load and energy absorption for all the DP800 welds and the TRIP800 small welds: welds failed in pullout mode have statistically higher strength and energy absorption than those failed in interfacial fracture mode. For TRIP800 welds above the critical fusion zone level, the influence of weld failure modes on peak load and energy absorption diminishes. Scatter plots of peak load and energy absorption versus weld fusion zone size were then constructed, and the results indicate that fusion zone size is the most critical factor in weld quality in terms of peak load and energy absorption for both DP800 and TRIP800 spot welds.

  16. Puddle Jumping

    NASA Astrophysics Data System (ADS)

    Wollman, Andrew; Snyder, Trevor; Weislogel, Mark

    2014-11-01

    Rebounding droplets from superhydrophobic surfaces have attracted significant public and scientific attention because they are both enjoyable as well as industrially relevant. Demonstrations of bouncing droplets with volumes between 0.003 and 0.03 ml are common in the literature and limited primarily by gravity. In this presentation we demonstrate large droplet ``rebounds'' made possible by low-gravity testing in a drop tower. The up to 300 ml drops are best described as puddles that launch in a nearly identical manner to rebounding drops 4 orders of magnitude smaller in volume. A variety of jumping liquid and gas puddles are shown including puddles of highly specified and unusual initial geometry. The large length sales of the capillary fluidic surfaces ~ O (10 cm) enable 3D printing of all superhydrophobic surface topologies demonstrated. In addition, we demonstrate such puddle jumping as a passive drop-on-demand technique for large low-gravity drop dynamics investigations; such as collisions, rebounds, heat and mass transfer, and containerless possessing.

  17. Supersonic Jump

    NASA Astrophysics Data System (ADS)

    Müller, Andreas

    2013-01-01

    On October 14,2012, Felix Baumgartner, an Austrian sky-diver, set some new world records for his discipline. Jumping from a height of about 39 km, he reached a top speed of 1342 km/h, becoming the first human being to break the sound barrier in free fall. In order to understand some essential physics aspects of this remarkable feat, we wonder why his start height had to be that high (when the tremendous effort that was necessary for leaping from such a height required 50 million, as reported in the press). More precisely, can you give an estimate for the minimal start height—which we will call the Baumgartner limit, zB—of a sky diver who wants to break the sound barrier in free fall?

  18. Nonwork and off-peak trips by transit, walk and bicycle modes: An understanding of existing and potential markets. Final report, 1 August 1996--28 February 1998

    SciTech Connect

    Soeoet, S.; Sen, A.; Yang, D.; Dirks, L.; Sternberg, T.

    1999-03-01

    The study identifies the characteristics of neighborhoods that contribute to off-peak transit, walk or bike use. The emphasis is on off-peak and nonwork trips and how to promote modes other than the automobile. By producing thirty maps illustrating socioeconomic and travel behavior patterns in the Chicago area, the potential for stabilizing and then increasing the utilization of these modes is examined. Substantial amounts of data were processed and reported. For example, off-peak trips, accounting for 48% of daily travel, are shorter than trips during the peak (in miles and minutes) for travel by both public transit and by private vehicle. Regionally, walking trips vary from 42% of all trips made by Chicago CBD residents (mainly to shop and work), 17% in the rest of the city and less than 5% in suburban Chicago. Bicycle ownership is related to the number of vehicles in the household, household income, household size and distance from the Chicago CBD. These data and field observations of three case-study neighborhoods revealed that differences in modes used are related to the land-use patterns and the socioeconomic characteristics of the resident population. While areas with low automobile ownership rates might suggest walking and bicycling, these nonmotorized modes are more common in affluent neighborhoods with a large number of nearby commercial and recreational destinations.

  19. Quantum-dot saturable absorber and Kerr-lens mode-locked Yb:KGW laser with >450  kW of peak power.

    PubMed

    Akbari, R; Zhao, H; Fedorova, K A; Rafailov, E U; Major, A

    2016-08-15

    The hybrid action of quantum-dot saturable absorber and Kerr-lens mode locking in a diode-pumped Yb:KGW laser was demonstrated. Using a quantum-dot saturable absorber with a 0.7% (0.5%) modulation depth, the mode-locked laser delivered 90 fs (93 fs) pulses with 3.2 W (2.9 W) of average power at the repetition rate of 77 MHz, corresponding to 462 kW (406 kW) of peak power and 41 nJ (38 nJ) of pulse energy. To the best of our knowledge, this represents the highest average and peak powers generated to date from quantum-dot saturable absorber-based mode-locked lasers.

  20. Splitting of the zero-bias conductance peak as smoking gun evidence for the existence of the Majorana mode in a superconductor-semiconductor nanowire

    NASA Astrophysics Data System (ADS)

    Das Sarma, S.; Sau, Jay D.; Stanescu, Tudor D.

    2012-12-01

    Recent observations of a zero-bias conductance peak in tunneling transport measurements in superconductor-semiconductor nanowire devices provide evidence for the predicted zero-energy Majorana modes, but not the conclusive proof of their existence. We establish that direct observation of a splitting of the zero-bias conductance peak can serve as the smoking gun evidence for the existence of the Majorana mode. We show that the splitting has an oscillatory dependence on the Zeeman field (chemical potential) at fixed chemical potential (Zeeman field). By contrast, when the density is constant rather than the chemical potential—the likely situation in the current experimental setups—the splitting oscillations are generically suppressed. Our theory predicts the conditions under which the splitting oscillations can serve as the smoking gun for the experimental confirmation of the elusive Majorana mode.

  1. Differentiation of Deformation Modes in Nanocrystalline Pd Films Inferred from Peak Asymmetry Evolution Using In Situ X-Ray Diffraction

    NASA Astrophysics Data System (ADS)

    Lohmiller, Jochen; Baumbusch, Rudolf; Kraft, Oliver; Gruber, Patric A.

    2013-02-01

    Synchrotron-based in situ tensile testing was used to study the dominant deformation mechanisms of nanocrystalline Pd thin films on a compliant substrate. An x-ray diffraction peak profile analysis reveals an (hkl) independent deformation induced peak asymmetry. It is argued that the asymmetry is caused by a broad distribution of elastic strains among individual grains and the complexity of accommodation processes. The reversal of peak asymmetry manifests the transition from heterogeneous microplasticity to dislocation-based macroplasticity. Independently, stress-driven grain boundary migration is active.

  2. Multi-species particle transport in GYRO simulations of low-collisionality, peaked-density H-mode plasmas in C-Mod

    NASA Astrophysics Data System (ADS)

    Mikkelsen, D. R.; Greenwald, M.; Waltz, R.; Candy, J.

    2009-11-01

    Experimental results from Alcator C-Mod have confirmed earlier AUG and JET findings that spontaneous peaking of the density profile in H-mode plasmas depends on collisionality. Previously reported nonlinear, 'full-radius' GYRO simulations [1] of low-collisionality, peaked-density H-mode plasmas in C-Mod generated a particle pinch that was produced exclusively by higher-k modes. Nonlinear simulations of AUG have a similar character [2], and recent detailed linear analyses [2,3] suggest that density peaking may be common in low collisionality plasmas. Here we increase the number of ion species in the simulations to determine whether impurity pinches are also expected, and whether the degree of density peaking is predicted to differ for the three hydrogen isotopes. These simulations include experimentally relevant levels of several impurities, and a range of H/D and D/T mixes.[4pt] [1] D.R. Mikkelsen, et al., Bull. Am. Phys. Soc. 52, (2007) No. 16, 221, NP8.71 [0pt] [2] C. Angioni, et al., Phys. Plasmas 16 (2009) 060702 [0pt] [3] M. Maslov, et al., Nucl. Fusion 49 (2009) 075037

  3. Thermally accelerated life testing of single mode, double-heterostructure, AlGaAs laser diodes operated pulsed at 50 mW peak power

    SciTech Connect

    Barry, J.D.; Archambeault, W.J.; Dye, R.A.; Einhorn, A.J.; Mecherle, G.S.; Nelson, P.

    1985-04-01

    Single spatial mode, double-heterostructure, channel-substrate-planar AlGaAs laser diodes have been life tested under thermally accelerated conditions to characterize the reliability of the diodes in a digital, optical communication system intended for space application. The diodes were operated pulsed under constant drive current conditions at 50 mW peak power, 25 ns pulse width, and 1 percent duty cycle in a dry, inert environment at ambient test temperatures at 40, 55, and 70/sup 0/C. Diode performance parameters as related to the space application, such as pulsewidth, peak power, wavelength spectrum, spatial mode, and threshold current, were periodically monitored. Tests have continued for over 14 000 h. The test results for all diodes with failure defined by power degradation alone is compared to the test results for single mode diodes with failure defined by power degradation, wavelength shift and spatial mode changes. It is found that the life test results are substantially equivalent but differ from earlier published reports for laser diodes operated CW. An activation energy of about 0.39 eV is deduced with a predicted median life of about 5 X 10/sup 4/ h at 20/sup 0/C. These values are somewhat lower than those found for diodes operated CW and are attributed to the use of single mode laser diodes here. It is concluded that thermally accelerated life testing for single spatial mode laser diodes must incorporate a means to separate bulk material, current, and optical density induced degradation effects. A test scheme is proposed.

  4. Eye-safe single-frequency single-mode polarized all-fiber pulsed laser with peak power of 361  W.

    PubMed

    Zhang, Xin; Diao, Weifeng; Liu, Yuan; Zhu, Xiaopeng; Yang, Yan; Liu, Jiqiao; Hou, Xia; Chen, Weibiao

    2014-04-10

    An all-fiber, single-frequency, single-mode linearly polarized, high peak power pulsed laser at 1540 nm for coherent Doppler wind lidar is demonstrated. A narrow-linewidth seed laser is pulse modulated by an acousto-optic modulator and then amplified by two-stage cascade amplifiers. An 0.8 m long erbium/ytterbium co-doped polarization-maintaining fiber with a core diameter of 10 μm is used as the gain fiber of a power amplifier, and longitudinally varied strains are applied on the gain fiber to realize approximately 3.4 times enhancement of the stimulated Brillouin scattering threshold. Peak power of 361 W pulse width of 200 ns at 10 kHz repetition rate is achieved with transform-limited linewidth and diffraction-limited beam quality. To the best of our knowledge, it is the highest peak power of an eye-safe, single-mode narrow-linewidth pulsed fiber laser based on 10 μm core diameter silica fiber.

  5. All-fiber quasi-continuous wave supercontinuum generation in single-mode high-nonlinear fiber pumped by submicrosecond pulse with low peak power.

    PubMed

    Gao, Weiqing; Liao, Meisong; Yan, Xin; Suzuki, Takenobu; Ohishi, Yasutake

    2012-05-01

    We demonstrate quasi-continuous wave supercontinuum generation in a single-mode high-nonlinear fiber (HNLF) in 1.55 μm band, which is pumped by the amplified passively Q-switched submicrosecond pulse. The pump wavelength is in the normal dispersion region of HNLF and near to the zero-dispersion wavelength. The broad SC spectral range from 1200 to 2260 nm is obtained with the low pump peak power of 17.8 W. The 20 dB bandwidth of 922 nm from 1285 to 2207 nm is obtained with the assumption that the peak near 1560 nm is filtered. The spectrum density for the 20 dB bandwidth is from -27.5 to -7.5 dbm/nm. PMID:22614410

  6. High average/peak power linearly polarized all-fiber picosecond MOPA seeded by mode-locked noise-like pulses

    NASA Astrophysics Data System (ADS)

    Yu, H. L.; Ma, P. F.; Tao, R. M.; Wang, X. L.; Zhou, P.; Chen, J. B.

    2015-06-01

    The characteristics of mode-locked noise-like pulses generated from a passively mode-locked fiber oscillator are experimentally investigated. By carefully adjusting the two polarization controllers, stable mode-locked noise-like pulse emission with a high radio frequency signal/noise ratio of  >55 dB is successfully achieved, ensuring the safety and possibility of high power amplification. To investigate the amplification characteristics of such pulses, one all-fiber master oscillator power amplifier (MOPA) is built to boost the power and energy of such pulses. Amplified noise-like pulses with average output power of 423 W, repetition rate of 18.71 MHz, pulse energy of 22.61 μJ, pulse duration of 72.1 ps and peak power of 314 kW are obtained. Near diffraction-limited beam is also demonstrated with M2 factor measured at full power operation of ~1.2 in the X and Y directions. The polarization extinction ratio at output power of 183 W is measured to be ~13 dB. To the best of our knowledge, this is the first demonstration of high-power amplification of noise-like pulses and the highest peak power ever reported in all-fiber picosecond MOPAs. The temporal self-compression process of such pulses and high peak power when amplified make it an ideal pump source for generation of high-power supercontinuum. Other potential applications, such as material processing and optical coherent tomography, could also be foreseen.

  7. Potential for Non-Contact ACL Injury Between Step-Close-Jump and Hop-Jump Tasks.

    PubMed

    Wang, Li-I; Gu, Chin-Yi; Chen, Wei-Ling; Chang, Mu-San

    2010-01-01

    This study aimed to compare the kinematics and kinetics during the landing of hop-jump and step-close-jump movements in order to provide further inferring that the potential risk of ACL injuries. Eleven elite male volleyball players were recruited to perform hop-jump and step-close-jump tasks. Lower extremity kinematics and ground reaction forces during landing in stop-jump tasks were recorded. Lower extremity kinetics was calculated by using an inverse dynamic process. Step-close-jump tasks demonstrated smaller peak proximal tibia anterior shear forces during the landing phase. In step-close-jump tasks, increasing hip joint angular velocity during initial foot-ground contact decreased peak posterior ground reaction force during the landing phase, which theoretically could reduce the risk of ACL injury. Key pointsThe different landing techniques required for these two stop-jump tasks do not necessarily affect the jump height.Hop-jump decreased the hip joint angular velocity at initial foot contact with ground, which could lead to an increasing peak posterior GRF during the landing phase.Hop-jump decreased hip and knee joint angular flexion displacement during the landing, which could increase the peak vertical loading rate during the landing phase.

  8. 23-kW peak power femtosecond pulses from a mode-locked fiber ring laser at 2.8 μm

    NASA Astrophysics Data System (ADS)

    Duval, Simon; Olivier, Michel; Fortin, Vincent; Bernier, Martin; Piché, Michel; Vallée, Réal

    2016-03-01

    The recent development of soliton femtosecond fiber lasers emitting at 2.8 μm opens a new avenue for the generation of ultrashort pulses in the mid-infrared spectral region. In this paper, we investigate the peak power scalability of such lasers. By optimizing the output coupling ratio and the length of the Er3+: fluoride fiber in the cavity, we demonstrate the generation of 270-fs pulses with an energy of 7 nJ and an estimated peak power of 23 kW. These record performances at 2.8 μm surpass by far those obtained from standard soliton lasers at 1.55 μm. A numerical model of the laser including the effect of the intracavity atmospheric absorption is also presented. Numerical simulations agree well with the experimental results and suggest that the atmospheric propagation in the cavity could prevent the laser from self-starting in a mode-locked regime. This femtosecond laser could be the building block for simple and compact mid-infrared frequency combs and supercontinuum sources.

  9. What are Quantum Jumps?

    NASA Astrophysics Data System (ADS)

    Cook, Richard J.

    1988-01-01

    This paper answers the title question by giving an operational definition of quantum jumps based on measurement theory. This definition forms the basis of a theory of quantum jumps which leads to a number of testable predictions. Experiments are proposed to test the theory. The suggested experiments also test the quantum Zeno paradox, i.e., they test the proposition that frequent observation of a quantum system inhibits quantum jumps in that system.

  10. A cockroach that jumps.

    PubMed

    Picker, Mike; Colville, Jonathan F; Burrows, Malcolm

    2012-06-23

    We report on a newly discovered cockroach (Saltoblattella montistabularis) from South Africa, which jumps and therefore differs from all other extant cockroaches that have a scuttling locomotion. In its natural shrubland habitat, jumping and hopping accounted for 71 per cent of locomotory activity. Jumps are powered by rapid and synchronous extension of the hind legs that are twice the length of the other legs and make up 10 per cent of the body weight. In high-speed images of the best jumps the body was accelerated in 10 ms to a take-off velocity of 2.1 m s(-1) so that the cockroach experienced the equivalent of 23 times gravity while leaping a forward distance of 48 times its body length. Such jumps required 38 µJ of energy, a power output of 3.4 mW and exerted a ground reaction force through both hind legs of 4 mN. The large hind legs have grooved femora into which the tibiae engage fully in advance of a jump, and have resilin, an elastic protein, at the femoro-tibial joint. The extensor tibiae muscles contracted for 224 ms before the hind legs moved, indicating that energy must be stored and then released suddenly in a catapult action to propel a jump. Overall, the jumping mechanisms and anatomical features show remarkable convergence with those of grasshoppers with whom they share their habitat and which they rival in jumping performance.

  11. A Noise Reduction Method for Dual-Mass Micro-Electromechanical Gyroscopes Based on Sample Entropy Empirical Mode Decomposition and Time-Frequency Peak Filtering.

    PubMed

    Shen, Chong; Li, Jie; Zhang, Xiaoming; Shi, Yunbo; Tang, Jun; Cao, Huiliang; Liu, Jun

    2016-01-01

    The different noise components in a dual-mass micro-electromechanical system (MEMS) gyroscope structure is analyzed in this paper, including mechanical-thermal noise (MTN), electronic-thermal noise (ETN), flicker noise (FN) and Coriolis signal in-phase noise (IPN). The structure equivalent electronic model is established, and an improved white Gaussian noise reduction method for dual-mass MEMS gyroscopes is proposed which is based on sample entropy empirical mode decomposition (SEEMD) and time-frequency peak filtering (TFPF). There is a contradiction in TFPS, i.e., selecting a short window length may lead to good preservation of signal amplitude but bad random noise reduction, whereas selecting a long window length may lead to serious attenuation of the signal amplitude but effective random noise reduction. In order to achieve a good tradeoff between valid signal amplitude preservation and random noise reduction, SEEMD is adopted to improve TFPF. Firstly, the original signal is decomposed into intrinsic mode functions (IMFs) by EMD, and the SE of each IMF is calculated in order to classify the numerous IMFs into three different components; then short window TFPF is employed for low frequency component of IMFs, and long window TFPF is employed for high frequency component of IMFs, and the noise component of IMFs is wiped off directly; at last the final signal is obtained after reconstruction. Rotation experimental and temperature experimental are carried out to verify the proposed SEEMD-TFPF algorithm, the verification and comparison results show that the de-noising performance of SEEMD-TFPF is better than that achievable with the traditional wavelet, Kalman filter and fixed window length TFPF methods. PMID:27258276

  12. A Noise Reduction Method for Dual-Mass Micro-Electromechanical Gyroscopes Based on Sample Entropy Empirical Mode Decomposition and Time-Frequency Peak Filtering

    PubMed Central

    Shen, Chong; Li, Jie; Zhang, Xiaoming; Shi, Yunbo; Tang, Jun; Cao, Huiliang; Liu, Jun

    2016-01-01

    The different noise components in a dual-mass micro-electromechanical system (MEMS) gyroscope structure is analyzed in this paper, including mechanical-thermal noise (MTN), electronic-thermal noise (ETN), flicker noise (FN) and Coriolis signal in-phase noise (IPN). The structure equivalent electronic model is established, and an improved white Gaussian noise reduction method for dual-mass MEMS gyroscopes is proposed which is based on sample entropy empirical mode decomposition (SEEMD) and time-frequency peak filtering (TFPF). There is a contradiction in TFPS, i.e., selecting a short window length may lead to good preservation of signal amplitude but bad random noise reduction, whereas selecting a long window length may lead to serious attenuation of the signal amplitude but effective random noise reduction. In order to achieve a good tradeoff between valid signal amplitude preservation and random noise reduction, SEEMD is adopted to improve TFPF. Firstly, the original signal is decomposed into intrinsic mode functions (IMFs) by EMD, and the SE of each IMF is calculated in order to classify the numerous IMFs into three different components; then short window TFPF is employed for low frequency component of IMFs, and long window TFPF is employed for high frequency component of IMFs, and the noise component of IMFs is wiped off directly; at last the final signal is obtained after reconstruction. Rotation experimental and temperature experimental are carried out to verify the proposed SEEMD-TFPF algorithm, the verification and comparison results show that the de-noising performance of SEEMD-TFPF is better than that achievable with the traditional wavelet, Kalman filter and fixed window length TFPF methods. PMID:27258276

  13. Jumping Good Fun

    ERIC Educational Resources Information Center

    Nye, Susan B.

    2010-01-01

    Jumping rope is an activity that can be fun and enjoyable for all students. It requires minimal activity space, can be performed individually or in small groups, and is an inexpensive way to engage students in a lifelong physical activity. Jumping rope is commonly used by coaches and athletes for training purposes to improve aerobic endurance,…

  14. Optimal Ski Jump

    ERIC Educational Resources Information Center

    Rebilas, Krzysztof

    2013-01-01

    Consider a skier who goes down a takeoff ramp, attains a speed "V", and jumps, attempting to land as far as possible down the hill below (Fig. 1). At the moment of takeoff the angle between the skier's velocity and the horizontal is [alpha]. What is the optimal angle [alpha] that makes the jump the longest possible for the fixed magnitude of the…

  15. Biomechanical analysis of the jump shot in basketball.

    PubMed

    Struzik, Artur; Pietraszewski, Bogdan; Zawadzki, Jerzy

    2014-09-29

    Basketball players usually score points during the game using the jump shot. For this reason, the jump shot is considered to be the most important element of technique in basketball and requires a high level of performance. The aim of this study was to compare the biomechanical characteristics of the lower limbs during a jump shot without the ball and a countermovement jump without an arm swing. The differences between variables provide information about the potential that an athlete can utilise during a game when performing a jump shot. The study was conducted among 20 second-league basketball players by means of a Kistler force plate and the BTS SMART system for motion analysis. The variables measured included the take-off time, mean power, peak power, relative mean power, jump height, maximum landing force and calculated impact ratio. Surprisingly, more advantageous variables were found for the jump shot. This finding suggests a very high performance level in the jump shot in the studied group and a maximum utilisation of their motor abilities. Both types of jumps were characterised by high mean and peak power values and average heights. The high forces at landing, which result in considerable impact ratios, may have prompted the studied group to land softly. Use of the countermovement jump without an arm swing is recommended to assess and predict the progression of player's jumping ability.

  16. Manipulation of polystyrene nanoparticles on a silicon wafer in the peak force tapping mode in water: pH-dependent friction and adhesion force

    SciTech Connect

    Schiwek, Simon; Stark, Robert W. E-mail: dietz@csi.tu-darmstadt.de; Dietz, Christian E-mail: dietz@csi.tu-darmstadt.de; Heim, Lars-Oliver

    2015-03-14

    The friction force between nanoparticles and a silicon wafer is a crucial parameter for cleaning processes in the semiconductor industry. However, little is known about the pH-dependency of the friction forces and the shear strength at the interface. Here, we push polystyrene nanoparticles, 100 nm in diameter, with the tip of an atomic force microscope and measure the pH-dependency of the friction, adhesion, and normal forces on a silicon substrate covered with a native silicon dioxide layer. The peak force tapping mode was applied to control the vertical force on these particles. We successively increased the applied load until the particles started to move. The main advantage of this technique over single manipulation processes is the achievement of a large number of manipulation events in short time and in a straightforward manner. Geometrical considerations of the interaction forces at the tip-particle interface allowed us to calculate the friction force and shear strength from the applied normal force depending on the pH of an aqueous solution. The results clearly demonstrated that particle removal should be performed with a basic solution at pH 9 because of the low interaction forces between particle and substrate.

  17. BIOMECHANICS. Jumping on water: Surface tension-dominated jumping of water striders and robotic insects.

    PubMed

    Koh, Je-Sung; Yang, Eunjin; Jung, Gwang-Pil; Jung, Sun-Pill; Son, Jae Hak; Lee, Sang-Im; Jablonski, Piotr G; Wood, Robert J; Kim, Ho-Young; Cho, Kyu-Jin

    2015-07-31

    Jumping on water is a unique locomotion mode found in semi-aquatic arthropods, such as water striders. To reproduce this feat in a surface tension-dominant jumping robot, we elucidated the hydrodynamics involved and applied them to develop a bio-inspired impulsive mechanism that maximizes momentum transfer to water. We found that water striders rotate the curved tips of their legs inward at a relatively low descending velocity with a force just below that required to break the water surface (144 millinewtons/meter). We built a 68-milligram at-scale jumping robotic insect and verified that it jumps on water with maximum momentum transfer. The results suggest an understanding of the hydrodynamic phenomena used by semi-aquatic arthropods during water jumping and prescribe a method for reproducing these capabilities in artificial systems.

  18. Chasing maximal performance: a cautionary tale from the celebrated jumping frogs of Calaveras County.

    PubMed

    Astley, H C; Abbott, E M; Azizi, E; Marsh, R L; Roberts, T J

    2013-11-01

    Maximal performance is an essential metric for understanding many aspects of an organism's biology, but it can be difficult to determine because a measured maximum may reflect only a peak level of effort, not a physiological limit. We used a unique opportunity provided by a frog jumping contest to evaluate the validity of existing laboratory estimates of maximum jumping performance in bullfrogs (Rana catesbeiana). We recorded video of 3124 bullfrog jumps over the course of the 4-day contest at the Calaveras County Jumping Frog Jubilee, and determined jump distance from these images and a calibration of the jump arena. Frogs were divided into two groups: 'rental' frogs collected by fair organizers and jumped by the general public, and frogs collected and jumped by experienced, 'professional' teams. A total of 58% of recorded jumps surpassed the maximum jump distance in the literature (1.295 m), and the longest jump was 2.2 m. Compared with rental frogs, professionally jumped frogs jumped farther, and the distribution of jump distances for this group was skewed towards long jumps. Calculated muscular work, historical records and the skewed distribution of jump distances all suggest that the longest jumps represent the true performance limit for this species. Using resampling, we estimated the probability of observing a given jump distance for various sample sizes, showing that large sample sizes are required to detect rare maximal jumps. These results show the importance of sample size, animal motivation and physiological conditions for accurate maximal performance estimates.

  19. A biomechanical comparison of the vertical jump, power clean, and jump squat.

    PubMed

    MacKenzie, Sasho James; Lavers, Robert J; Wallace, Brendan B

    2014-01-01

    The purpose of this study was to compare the kinetics, kinematics, and muscle activation patterns of the countermovement jump, the power clean, and the jump squat with the expectation of gaining a better understanding of the mechanism of transfer from the power clean to the vertical jump. Ground reaction forces, electromyography, and joint angle data were collected from 20 trained participants while they performed the three movements. Relative to the power clean, the kinematics of the jump squat were more similar to those of the countermovement jump. The order in which the ankle, knee, and hip began extending, as well as the subsequent pattern of extension, was different between the power clean and countermovement jump. The electromyography data demonstrated significant differences in the relative timing of peak activations in all muscles, the maximum activation of the rectus femoris and biceps femoris, and in the activation/deactivation patterns of the vastus medialis and rectus femoris. The greatest rate of force development during the upward phase of these exercises was generated during the power clean (17,254 [Formula: see text]), which was significantly greater than both the countermovement jump (3836 [Formula: see text]) and jump squat (3517 [Formula: see text]) conditions (P < .001, [Formula: see text]).

  20. Jump for the Moon

    NASA Video Gallery

    Increase bone strength and improve heart and other muscle endurance by performing jump training with a rope, both while stationary and moving. The Train Like an Astronaut project uses the excitemen...

  1. How coalescing droplets jump.

    PubMed

    Enright, Ryan; Miljkovic, Nenad; Sprittles, James; Nolan, Kevin; Mitchell, Robert; Wang, Evelyn N

    2014-10-28

    Surface engineering at the nanoscale is a rapidly developing field that promises to impact a range of applications including energy production, water desalination, self-cleaning and anti-icing surfaces, thermal management of electronics, microfluidic platforms, and environmental pollution control. As the area advances, more detailed insights of dynamic wetting interactions on these surfaces are needed. In particular, the coalescence of two or more droplets on ultra-low adhesion surfaces leads to droplet jumping. Here we show, through detailed measurements of jumping droplets during water condensation coupled with numerical simulations of binary droplet coalescence, that this process is fundamentally inefficient with only a small fraction of the available excess surface energy (≲ 6%) convertible into translational kinetic energy. These findings clarify the role of internal fluid dynamics during the jumping droplet coalescence process and underpin the development of systems that can harness jumping droplets for a wide range of applications.

  2. [Calculation of the peak systolic wall stress at the equator of the left ventricle by coupled M mode echo and pressure recordings].

    PubMed

    Drobinski, G; Fechner, J; Eugène, M; Evans, J I; Béjean-Lebuisson, A; Leighton, R F; Grosgogeat, Y

    1983-11-01

    The peak systolic wall stress at the equator of the left ventricle (sigma max) is the maximum load that the myocardial fibres bear during contraction. It is an index of the adaptation of the left ventricle to cardiac disease, and, when elevated, it indicates cardiac decompensation. sigma max was calculated by coupled M mode echo-LV pressure recordings in 51 cases: 11 patients without LV disease, 14 patients with aortic stenosis (AS), 14 patients with aortic incompetence (AI), 7 patients with severe mitral incompetence (MI) and 5 patients with cardiomyopathy with dilatation (CMP). sigma max was calculated from Mirsky's formula, the length of the long axis being deduced from the short axis and the diastolic:systolic ratio of these two axes from ventriculography. The normal value of sigma max by this method is 220 dynes 10(3)/cm2 +/- 30 with an upper limit of normal of 280 dynes 10(3)/cm2. sigma max was normal in patients with AS and AI, and increased in the cases of MI and CMP, in positive correlation with LV volume (r = 0,47) and the shape of the LV (long:short axis ratio). No correlations were found between sigma max and maximum LV pressure. The relatively low values of sigma max compared to the results obtained from coupled echo-angio recordings are partly due to the thick walled LV model and, to a large extent, to the lower values of short axis when measured by echo compared to angiography.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Suicide by jumping.

    PubMed

    Gunnell, D; Nowers, M

    1997-07-01

    This review summarizes the published literature on suicide by jumping, in particular focusing on the social and psychological characteristics of people who have chosen this method of suicide, and the opportunities for prevention. Suicide by jumping accounts for 5% of suicides in England and Wales, and there are marked variations in the use of this method world-wide. A number of locations have gained notoriety as popular places from which to jump. Such sites include The Golden Gate Bridge and Niagara Falls in the USA, and Beachy Head and the Clifton Suspension Bridge in the UK. There is no consistent evidence that those who commit suicide by jumping differ sociodemographically or in their psychopathology from those who use other methods of suicide, although this method is more often used for in-patient suicides, possibly due to lack of access to other means. Survivors of suicidal jumps experience higher subsequent rates of suicide and mental ill health, but the majority do not go on to kill themselves, suggesting that preventive efforts may be worthwhile. This view is supported by other evidence that restricting access to the means of suicide may prevent some would-be suicides. Such measures may also reduce the emotional trauma suffered by those who witness these acts. Health authorities and coroners should consider reviewing local patterns of suicide by jumping, and if necessary institute preventive measures. PMID:9259217

  4. Jump into Action

    ERIC Educational Resources Information Center

    Ball, Stephen; Cohen, Ann; Meyer, Margaret

    2012-01-01

    Jump Into Action (JIA) is a school-based team-taught program to help fifth-grade students make healthy food choices and be more active. The JIA team (physical education teacher, classroom teacher, school nurse, and parent) work together to provide a supportive environment as students set goals to improve food choices and increase activity.…

  5. The Jumping Ring Experiment

    ERIC Educational Resources Information Center

    Baylie, M.; Ford, P. J.; Mathlin, G. P.; Palmer, C.

    2009-01-01

    The jumping ring experiment has become central to liquid nitrogen shows given as part of the outreach and open day activities carried out within the University of Bath. The basic principles of the experiment are described as well as the effect of changing the geometry of the rings and their metallurgical state. In general, aluminium rings are…

  6. Egg Bungee Jump!

    ERIC Educational Resources Information Center

    Fitzgerald, Mike; Brand, Lance

    2004-01-01

    In this article, the authors present an egg bungee jumping activity. This activity introduces students to ways that engineers might apply calculations of failure to meet a challenge. Students are required to use common, everyday materials such as rubber bands, string, plastic bags, and eggs. They will apply technological problem solving, material…

  7. Jumping of water striders on water

    NASA Astrophysics Data System (ADS)

    Yang, Eunjin; Son, Jaehak; Jablonski, Piotr; Kim, Ho-Young

    2012-11-01

    Small insects such as water striders, springtails, fishing spiders freely move on water by adopting various modes of locomotion, such as rowing, galloping, jumping and meniscus-climbing. As the physics of jumping have not yet been fully understood among those ways of semi-aquatic propulsion, here we present the results of a combined experimental and theoretical investigation of the dynamics of water striders leaping off water. We first image and analyze the trajectories of the legs and body of jumping water striders of three different species with a high-speed camera. We then theoretically compute the forces acting on the body by considering the capillary interaction between the flexible legs and deforming water meniscus. Our theory enables us to predict the maximum take-off speed for given leg lengths. The experimental measurements suggest that the water striders drive their legs near the optimal speed to gain the maximum take-off speed.

  8. Correlation between toe flexor strength and ankle dorsiflexion ROM during the countermovement jump

    PubMed Central

    Yun, Sung Joon; Kim, Moon-Hwan; Weon, Jong-Hyuck; Kim, Young; Jung, Sung-Hoon; Kwon, Oh-Yun

    2016-01-01

    [Purpose] This study assessed the relationships between peak toe flexor muscle strength, ankle dorsiflexion range of motion, and countermovement jump height. [Subjects and Methods] Eighteen healthy volunteers participated in the study. Each participant completed tests for peak toe flexor muscle strength, ankle dorsiflexion range of motion, and countermovement jump height. [Results] The results showed (1) a moderate correlation between ankle dorsiflexion range of motion and countermovement jump height and (2) a high correlation between peak first toe flexor muscle strength and countermovement jump height. Peak first toe flexor muscle strength and ankle dorsiflexion range of motion are the main contributors to countermovement jump performance. [Conclusion] These findings indicate that the measurement of peak first toe flexor muscle strength and ankle dorsiflexion range of motion may be useful in clinical practice for improving jump performance in athletes training for sports such as volleyball and basketball. PMID:27630405

  9. Correlation between toe flexor strength and ankle dorsiflexion ROM during the countermovement jump.

    PubMed

    Yun, Sung Joon; Kim, Moon-Hwan; Weon, Jong-Hyuck; Kim, Young; Jung, Sung-Hoon; Kwon, Oh-Yun

    2016-08-01

    [Purpose] This study assessed the relationships between peak toe flexor muscle strength, ankle dorsiflexion range of motion, and countermovement jump height. [Subjects and Methods] Eighteen healthy volunteers participated in the study. Each participant completed tests for peak toe flexor muscle strength, ankle dorsiflexion range of motion, and countermovement jump height. [Results] The results showed (1) a moderate correlation between ankle dorsiflexion range of motion and countermovement jump height and (2) a high correlation between peak first toe flexor muscle strength and countermovement jump height. Peak first toe flexor muscle strength and ankle dorsiflexion range of motion are the main contributors to countermovement jump performance. [Conclusion] These findings indicate that the measurement of peak first toe flexor muscle strength and ankle dorsiflexion range of motion may be useful in clinical practice for improving jump performance in athletes training for sports such as volleyball and basketball. PMID:27630405

  10. Correlation between toe flexor strength and ankle dorsiflexion ROM during the countermovement jump

    PubMed Central

    Yun, Sung Joon; Kim, Moon-Hwan; Weon, Jong-Hyuck; Kim, Young; Jung, Sung-Hoon; Kwon, Oh-Yun

    2016-01-01

    [Purpose] This study assessed the relationships between peak toe flexor muscle strength, ankle dorsiflexion range of motion, and countermovement jump height. [Subjects and Methods] Eighteen healthy volunteers participated in the study. Each participant completed tests for peak toe flexor muscle strength, ankle dorsiflexion range of motion, and countermovement jump height. [Results] The results showed (1) a moderate correlation between ankle dorsiflexion range of motion and countermovement jump height and (2) a high correlation between peak first toe flexor muscle strength and countermovement jump height. Peak first toe flexor muscle strength and ankle dorsiflexion range of motion are the main contributors to countermovement jump performance. [Conclusion] These findings indicate that the measurement of peak first toe flexor muscle strength and ankle dorsiflexion range of motion may be useful in clinical practice for improving jump performance in athletes training for sports such as volleyball and basketball.

  11. Correlation between toe flexor strength and ankle dorsiflexion ROM during the countermovement jump.

    PubMed

    Yun, Sung Joon; Kim, Moon-Hwan; Weon, Jong-Hyuck; Kim, Young; Jung, Sung-Hoon; Kwon, Oh-Yun

    2016-08-01

    [Purpose] This study assessed the relationships between peak toe flexor muscle strength, ankle dorsiflexion range of motion, and countermovement jump height. [Subjects and Methods] Eighteen healthy volunteers participated in the study. Each participant completed tests for peak toe flexor muscle strength, ankle dorsiflexion range of motion, and countermovement jump height. [Results] The results showed (1) a moderate correlation between ankle dorsiflexion range of motion and countermovement jump height and (2) a high correlation between peak first toe flexor muscle strength and countermovement jump height. Peak first toe flexor muscle strength and ankle dorsiflexion range of motion are the main contributors to countermovement jump performance. [Conclusion] These findings indicate that the measurement of peak first toe flexor muscle strength and ankle dorsiflexion range of motion may be useful in clinical practice for improving jump performance in athletes training for sports such as volleyball and basketball.

  12. Appropriate Loads for Peak-Power During Resisted Sprinting on a Non-Motorized Treadmill

    PubMed Central

    Andre, Matthew J.; Fry, Andrew C.; Lane, Michael T.

    2013-01-01

    The purpose of this study was to determine the load which allows the highest peak power for resisted sprinting on a non-motorized treadmill and to determine if other variables are related to individual differences. Thirty college students were tested for vertical jump, vertical jump peak and mean power, 10 m sprint, 20 m sprint, leg press 1 RM, leg press 1 RM relative to body weight, leg press 1 RM relative to lean body mass, leg press 1 RM power, and leg press power at 80% of 1 RM. Participants performed eight resisted sprints on a non-motorized treadmill, with increasing relative loads expressed as percent of body weight. Sprint peak power was measured for each load. Pearson correlations were used to determine if relationships between the sprint peak power load and the other variables were significant. The sprint peak power load had a mode of 35% with 73% of all participants having a relative sprint peak power load between 25–35%. Significant correlations occurred between sprint peak power load and body weight, lean body mass, vertical jump peak and mean power, leg press 1 RM, leg press 1 RM relative to lean body mass, leg press 1 RM power, and leg press power at 80% of 1 RM (r = 0.44, 0.43, 0.39, 0.37, 0.47, 0.39, 0.46, and 0.47, respectively). Larger, stronger, more powerful athletes produced peak power at a higher relative load during resisted sprinting on a non-motorized treadmill. PMID:24233103

  13. Optimal Ski Jump

    NASA Astrophysics Data System (ADS)

    Rebilas, Krzysztof

    2013-02-01

    Consider a skier who goes down a takeoff ramp, attains a speed V, and jumps, attempting to land as far as possible down the hill below (Fig. 1). At the moment of takeoff the angle between the skier's velocity and the horizontal is α. What is the optimal angle α that makes the jump the longest possible for the fixed magnitude of the velocity V? Of course, in practice, this is a very sophisticated problem; the skier's range depends on a variety of complex factors in addition to V and α. However, if we ignore these and assume the jumper is in free fall between the takeoff ramp and the landing point below, the problem becomes an exercise in kinematics that is suitable for introductory-level students. The solution is presented here.

  14. Jump with Jill

    ERIC Educational Resources Information Center

    Henderson, Nancy

    2010-01-01

    This article profiles Jill Jayne, who was working as a registered nutritionist in the New York City public school system when she was assigned to a group of 25 urban students in an after-school program in East Harlem. In the spring of 2006, Jayne took her "Jump With Jill" show to the streets outside Central Park, collected tips in a tin pot and,…

  15. High peak-power picosecond pulse generation at 1.26 µm using a quantum-dot-based external-cavity mode-locked laser and tapered optical amplifier.

    PubMed

    Ding, Y; Aviles-Espinosa, R; Cataluna, M A; Nikitichev, D; Ruiz, M; Tran, M; Robert, Y; Kapsalis, A; Simos, H; Mesaritakis, C; Xu, T; Bardella, P; Rossetti, M; Krestnikov, I; Livshits, D; Montrosset, Ivo; Syvridis, D; Krakowski, M; Loza-Alvarez, P; Rafailov, E

    2012-06-18

    In this paper, we present the generation of high peak-power picosecond optical pulses in the 1.26 μm spectral band from a repetition-rate-tunable quantum-dot external-cavity passively mode-locked laser (QD-ECMLL), amplified by a tapered quantum-dot semiconductor optical amplifier (QD-SOA). The laser emission wavelength was controlled through a chirped volume Bragg grating which was used as an external cavity output coupler. An average power of 208.2 mW, pulse energy of 321 pJ, and peak power of 30.3 W were achieved. Preliminary nonlinear imaging investigations indicate that this system is promising as a high peak-power pulsed light source for nonlinear bio-imaging applications across the 1.0 μm - 1.3 μm spectral range. PMID:22714493

  16. Jumping hoops on water

    NASA Astrophysics Data System (ADS)

    Yang, Eunjin; Kim, Ho-Young

    2015-11-01

    Small aquatic arthropods, such as water striders and fishing spiders, are able to jump off water to a height several times their body length. Inspired by the unique biological motility on water, we study a simple model using a flexible hoop to provide fundamental understanding and a mimicking principle of small jumpers on water. Behavior of a hoop on water, which is coated with superhydrophobic particles and initially bent into an ellipse from an equilibrium circular shape, is visualized with a high speed camera upon launching it into air by releasing its initial elastic strain energy. We observe that jumping of our hoops is dominated by the dynamic pressure of water rather than surface tension, and thus it corresponds to the dynamic condition experienced by fishing spiders. We calculate the reaction forces provided by water adopting the unsteady Bernoulli equation as well as the momentum loss into liquid inertia and viscous friction. Our analysis allows us to predict the jumping efficiency of the hoop on water in comparison to that on ground, and to discuss the evolutionary pressure rendering fishing spiders select such dynamic behavior.

  17. Effect of Instructions on Selected Jump Squat Variables.

    PubMed

    Talpey, Scott W; Young, Warren B; Beseler, Bradley

    2016-09-01

    Talpey, SW, Young, WB, and Beseler, B. Effect of instructions on selected jump squat variables. J Strength Cond Res 30(9): 2508-2513, 2016-The purpose of this study was to compare 2 instructions on the performance of selected variables in a jump squat (JS) exercise. The second purpose was to determine the relationships between JS variables and sprint performance. Eighteen male subjects with resistance training experience performed 2 sets of 4 JS with no extra load with the instructions to concentrate on (a) jumping for maximum height and (b) extending the legs as fast as possible to maximize explosive force. Sprint performance was assessed at 0- to 10-m and 10- to 20-m distances. From the JS jump height, peak power, relative peak power, peak force, peak velocity, and countermovement distance were measured from a force platform and position transducer system. The JS variables under the 2 instructions were compared with paired t-tests, and the relationships between these variables and sprint performance were determined with Pearson's correlations. The jump height instruction produced greater mean jump height and peak velocity (p < 0.05), but the fast leg extension instruction produced greater (p < 0.05) peak force (3.7%). There was a trivial difference between the instructions for peak power output (p > 0.05). Jump height was the variable that correlated most strongly with 10-m time and 10- to 20-m time under both instructions. The height instruction produced a stronger correlation with 10-m time (r = -0.455), but the fast leg extension JS produced a greater correlation with 10-20 time (r = -0.545). The results indicate that instructions have a meaningful influence on JS variables and therefore need to be taken into consideration when assessing or training athletes.

  18. DC-Powered Jumping Ring

    ERIC Educational Resources Information Center

    Jeffery, Rondo N.; Farhang, Amiri

    2016-01-01

    The classroom jumping ring demonstration is nearly always performed using alternating current (AC), in which the ring jumps or flies off the extended iron core when the switch is closed. The ring jumps higher when cooled with liquid nitrogen (LN2). We have performed experiments using DC to power the solenoid and find similarities and significant…

  19. [Vertical jump as a tool in assessment of muscular power and anaerobic performance].

    PubMed

    Ostojić, Sergej M; Stojanović, Marko; Ahmetović, Zlatko

    2010-01-01

    Muscular strength and anaerobic power could be assessed by single and multiple vertical jump testing procedures. Anaerobic capacity measured by vertical jump testing is highly correlative with athletic performance, as compared to other anaerobic testing procedures. The most frequently used protocol with contact mat or force platform consists of single jump (i.e., squat jump, drop jump, countermovement jump) and serial jump testing with different duration. Measured variables include jump height and duration along with absolute and relative peak muscular power. Several investigators have clearly shown superior jump performance variables in elite athletes as compared to non-elite subjects. Differences obtained could be due to genetic factors and acute or prolonged effects of training regimen. with PMID:21186549

  20. Lift-off dynamics in a simple jumping robot

    NASA Astrophysics Data System (ADS)

    Aguilar, Jeffrey; Lesov, Alex; Wiesenfeld, Kurt; Goldman, Daniel I.

    2013-03-01

    Jumping is an important behavior utilized by animals to escape predation, hunt, reach higher ground, and as a primary mode of locomotion. Many mathematical and physical robot models use numerous parameters and multi-link legs to accurately model jumping dynamics. However, a simple robot model can reveal important principles of high performance jumping. We study vertical jumping in a simple robot comprising an actuated mass-spring arrangement. The actuator frequency and phase are systematically varied to find optimal performance. Optimal jumps occur above and below (but not at) the robot's resonant frequency f0. Two distinct jumping modes emerge: a simple jump which is optimal above f0 is achievable with a squat maneuver, and a peculiar stutter jump which is optimal below f0 is generated with a counter-movement. A simple dynamical model reveals how optimal lift-off results from non-resonant transient dynamics. An expanded explanation of this work is provided at http://crablab.gatech.edu/pages/jumpingrobot/index.html This work was supported by the GEM Consortium, Burroughs Wellcome Fund, ARL MAST CTA, and NSF PoLS.

  1. Drop jumping as a training method for jumping ability.

    PubMed

    Bobbert, M F

    1990-01-01

    Vertical jumping ability is of importance for good performance in sports such as basketball and volleyball. Coaches are in need of exercises that consume only little time and still help to improve their players' jumping ability, without involving a high risk of injury. Drop jumping is assumed to satisfy these requirements. This assumption is supported by a review of results of training studies. However, it appears that regular jumping exercises can be just as helpful. The same holds for exercises with weights, provided the subjects have no weight-training history. In fact, for unskilled jumpers who have no weight-training history, the effects of training programmes utilising these different exercises are additive. The most effective, efficient and safe way for a coach to improve the jumping achievement of his athletes may well be to submit them first to a training programme utilising regular jumps, then to a weight-training programme and finally to a drop jump training programme. In drop jump training programmes themselves, the improvement in jumping height varies greatly among studies. This variation cannot be explained satisfactorily with the information available on subjects and training programmes. Given the current state of knowledge, coaches seem to have no other option than to strictly copy a programme which has proved to be very effective. Obviously there is a need for more systematic research of the relationship between design and effect of drop jump training programmes. The most important variable to be controlled is drop jumping technique. From a review of biomechanical studies of drop jumping, it becomes clear that jumping technique strongly affects the mechanical output of muscles. The biomechanics of 2 techniques are discussed. In the bounce drop jump the downward movement after the drop is reversed as soon as possible into an upward push-off, while in the countermovement drop jump this is done more gradually by increasing the amplitude of the

  2. Drop jumping as a training method for jumping ability.

    PubMed

    Bobbert, M F

    1990-01-01

    Vertical jumping ability is of importance for good performance in sports such as basketball and volleyball. Coaches are in need of exercises that consume only little time and still help to improve their players' jumping ability, without involving a high risk of injury. Drop jumping is assumed to satisfy these requirements. This assumption is supported by a review of results of training studies. However, it appears that regular jumping exercises can be just as helpful. The same holds for exercises with weights, provided the subjects have no weight-training history. In fact, for unskilled jumpers who have no weight-training history, the effects of training programmes utilising these different exercises are additive. The most effective, efficient and safe way for a coach to improve the jumping achievement of his athletes may well be to submit them first to a training programme utilising regular jumps, then to a weight-training programme and finally to a drop jump training programme. In drop jump training programmes themselves, the improvement in jumping height varies greatly among studies. This variation cannot be explained satisfactorily with the information available on subjects and training programmes. Given the current state of knowledge, coaches seem to have no other option than to strictly copy a programme which has proved to be very effective. Obviously there is a need for more systematic research of the relationship between design and effect of drop jump training programmes. The most important variable to be controlled is drop jumping technique. From a review of biomechanical studies of drop jumping, it becomes clear that jumping technique strongly affects the mechanical output of muscles. The biomechanics of 2 techniques are discussed. In the bounce drop jump the downward movement after the drop is reversed as soon as possible into an upward push-off, while in the countermovement drop jump this is done more gradually by increasing the amplitude of the

  3. Exploring Lightning Jump Characteristics

    NASA Technical Reports Server (NTRS)

    Chronis, Themis; Carey, Larry D.; Schultz, Christopher J.; Schultz, Elise; Calhoun, Kristin; Goodman, Steven J.

    2014-01-01

    This study is concerned with the characteristics of storms exhibiting an abrupt temporal increase in the total lightning flash rate (i.e., lightning jump, LJ). An automated storm tracking method is used to identify storm "clusters" and total lightning activity from three different lightning detection systems over Oklahoma, northern Alabama and Washington, D.C. On average and for different employed thresholds, the clusters that encompass at least one LJ (LJ1) last longer, relate to higher Maximum Expected Size of Hail, Vertical Integrated Liquid and lightning flash rates (area-normalized) than the clusters that did not exhibit any LJ (LJ0). The respective mean values for LJ1 (LJ0) clusters are 80 min (35 min), 14 mm (8 mm), 25 kg per square meter (18 kg per square meter) and 0.05 flash per min per square kilometer (0.01 flash per min per square kilometer). Furthermore, the LJ1 clusters are also characterized by slower decaying autocorrelation functions, a result that implies a less "random" behavior in the temporal flash rate evolution. In addition, the temporal occurrence of the last LJ provides an estimate of the time remaining to the storm's dissipation. Depending of the LJ strength (i.e., varying thresholds), these values typically range between 20-60 min, with stronger jumps indicating more time until storm decay. This study's results support the hypothesis that the LJ is a proxy for the storm's kinematic and microphysical state rather than a coincidental value.

  4. Are there quantum jumps

    NASA Astrophysics Data System (ADS)

    Ferry, D. K.

    2014-09-01

    Generally, one thinks of a “quantum jump” as the process in which an electron “jumps” between a pair of quantum states, even as the process is treated within perturbation theory. This jump of an electron has remained a key point of conservative (i.e., traditional) quantum mechanics. But, the question of the time dependence of such a transition, e.g. the time for an atom to be ionized by radiation, is somewhat different than this view. A detailed approach in which an incoming wave first polarizes the quantum states and then completes the transition has allowed for a detailed discussion of the smooth transition of the electron from one state to the next. Here, we will discuss the history of the process, and illustrate the approach with the question of “how long does it take for an electron to emit a phonon?” The entire process arises from the proper application of wave mechanics and obviates the need to even consider a discussion of quantum jumps.

  5. Effects of jump training with negative versus positive loading on jumping mechanics.

    PubMed

    Markovic, G; Vuk, S; Jaric, S

    2011-05-01

    We examined the effects of jump training with negative (-30% of the subject's body weight (BW)) VS. positive loading (+30% BW) on the mechanical behaviour of leg extensor muscles. 32 men were divided into control (CG), negative loading (NLG), or positive loading training group (PLG). Both training groups performed maximal effort countermovement jumps (CMJ) over a 7-week training period. The impact of training on the mechanical behaviour of leg extensor muscles was assessed through CMJ performed with external loads ranging from -30% BW to +30% BW. Both training groups showed significant ( P≤0.013) increase in BW CMJ height (NLG: 9%, effect size (ES)=0.85, VS. PLG: 3.4%, ES=0.31), peak jumping velocity ( V(peak); NLG: 4.1%; ES=0.80, P=0.011, VS. PLG: 1.4%, ES=0.24; P=0.017), and depth of the countermovement (Δ H(ecc); NLG: 20%; ES=-1.64, P=0.004, VS. PLG: 11.4%; ES=-0.86, P=0.015). Although the increase in both the V(peak) and Δ H(ecc) were expected to reduce the recorded ground reaction force, the indices of force- and power-production characteristics of CMJ remained unchanged. Finally, NLG (but not PLG) suggested load-specific improvement in the movement kinematic and kinetic patterns. Overall, the observed results revealed a rather novel finding regarding the effectiveness of negative loading in enhancing CMJ performance which could be of potential importance for further development of routine training protocols. Although the involved biomechanical and neuromuscular mechanisms need further exploration, the improved performance could be partly based on an altered jumping pattern that utilizes an enhanced ability of leg extensors to provide kinetic and power output during the concentric jump phase.

  6. Observational signatures of neutron stars in low-mass X-ray binaries climbing a stability peak

    NASA Astrophysics Data System (ADS)

    Kantor, E. M.; Gusakov, M. E.; Chugunov, A. I.

    2016-01-01

    In the recent papers by Gusakov et al., a new scenario describing evolution of rapidly rotating neutron stars (NSs) in low-mass X-ray binaries was proposed. The scenario accounts for a resonant interaction of normal r-modes with superfluid inertial modes at some specific internal stellar temperatures (`resonance temperatures'). This interaction results in an enhanced damping of r-mode and appearance of the `stability peaks' in the temperature - spin frequency plane, which split the r-mode instability window in the vicinity of the resonance temperatures. The scenario suggests that the hot and rapidly rotating NSs spend most of their life climbing up these peaks and, in particular, are observed there at the moment. We analyse in detail possible observational signatures of this suggestion. In particular, we show that these objects may exhibit `anti-glitches' - sudden frequency jumps on a time-scale of hours-months.

  7. Jumping mechanisms and strategies in moths (Lepidoptera).

    PubMed

    Burrows, Malcolm; Dorosenko, Marina

    2015-06-01

    To test whether jumping launches moths into the air, take-off by 58 species, ranging in mass from 0.1 to 220 mg, was captured in videos at 1000 frames s(-1). Three strategies for jumping were identified. First, rapid movements of both middle and hind legs provided propulsion while the wings remained closed. Second, middle and hind legs again provided propulsion but the wings now opened and flapped after take-off. Third, wing and leg movements both began before take-off and led to an earlier transition to powered flight. The middle and hind legs were of similar lengths and were between 10 and 130% longer than the front legs. The rapid depression of the trochantera and extension of the middle tibiae began some 3 ms before similar movements of the hind legs, but their tarsi lost contact with the ground before take-off. Acceleration times ranged from 10 ms in the lightest moths to 25 ms in the heaviest ones. Peak take-off velocities varied from 0.6 to 0.9 m s(-1) in all moths, with the fastest jump achieving a velocity of 1.2 m s(-1). The energy required to generate the fastest jumps was 1.1 µJ in lighter moths but rose to 62.1 µJ in heavier ones. Mean accelerations ranged from 26 to 90 m s(-2) and a maximum force of 9 G: was experienced. The highest power output was within the capability of normal muscle so that jumps were powered by direct contractions of muscles without catapult mechanisms or energy storage.

  8. Gender bias in jumping kinetics in National Collegiate Athletic Association Division I basketball players.

    PubMed

    Walsh, Mark S; Waters, Jeff A; Böhm, Harald; Potteiger, Jeff A

    2007-08-01

    The purposes of this study are to examine gender differences in the contribution of the arm swing to jump height in men and women basketball players and to examine the role of upper-body strength in the contribution of arm swing to jump height. National Collegiate Athletic Association Division I basketball players (men n = 13, women n = 12) performed 4 jumping movements: squat jumps with hands on hips (SNA) and with arm swings (SA) and countermovement jumps with hands on hips and with arm swings (CMA). Differences were found between the jump heights of men and women. Use of the arms increased the jump height of men more than women. Compared with the SNA, the SA allowed an increase of 7 cm (23%) for men and 4 cm (17%) for women. The CMA allowed for an increase of 10 cm (30%) for men and 6 cm (24%) for women. General upper-body strength measures did not correlate strongly with the effect of arms on jumping, but peak power did. As in previous studies, peak power had a high correlation with jumping performance. These results show that the arm swing contributes significantly to jump performance in both men and women basketball players and that strength training for jumping should focus on power production and lifting exercises that are jump specific.

  9. Correlation between ground reaction force and tibial acceleration in vertical jumping.

    PubMed

    Elvin, Niell G; Elvin, Alex A; Arnoczky, Steven P

    2007-08-01

    Modern electronics allow for the unobtrusive measurement of accelerations outside the laboratory using wireless sensor nodes. The ability to accurately measure joint accelerations under unrestricted conditions, and to correlate them with jump height and landing force, could provide important data to better understand joint mechanics subject to real-life conditions. This study investigates the correlation between peak vertical ground reaction forces, as measured by a force plate, and tibial axial accelerations during free vertical jumping. The jump heights calculated from force-plate data and accelerometer measurements are also compared. For six male subjects participating in this study, the average coefficient of determination between peak ground reaction force and peak tibial axial acceleration is found to be 0.81. The coefficient of determination between jump height calculated using force plate and accelerometer data is 0.88. Data show that the landing forces could be as high as 8 body weights of the jumper. The measured peak tibial accelerations ranged up to 42 g. Jump heights calculated from force plate and accelerometer sensors data differed by less than 2.5 cm. It is found that both impact accelerations and landing forces are only weakly correlated with jump height (the average coefficient of determination is 0.12). This study shows that unobtrusive accelerometers can be used to determine the ground reaction forces experienced in a jump landing. Whereas the device also permitted an accurate determination of jump height, there was no correlation between peak ground reaction force and jump height.

  10. Detection of oxygen addition peaks for terpendole E and related indole–diterpene alkaloids in a positive-mode ESI-MS

    PubMed Central

    Hongo, Yayoi; Nakamura, Takemichi; Takahashi, Shunya; Motoyama, Takayuki; Hayashi, Toshiaki; Hirota, Hiroshi; Osada, Hiroyuki; Koshino, Hiroyuki

    2014-01-01

    This report describes that a regular positive electrospray ionization mass spectrometry (MS) analysis of terpendoles often causes unexpected oxygen additions to form [M + H + O]+ and [M + H + 2O]+, which might be a troublesome in the characterization of new natural analogues. The intensities of [M + H + O]+ and [M + H + 2O]+ among terpendoles were unpredictable and fluctuated largely. Simple electrochemical oxidation in electrospray ionization was insufficient to explain the phenomenon. So we studied factors to form [M + H + O]+ and [M + H + 2O]+ using terpendole E and natural terpendoles together with some model indole alkaloids. Similar oxygen addition was observed for 1,2,3,4-tetrahydrocyclopent[b]indole, which is corresponding to the substructure of terpendole E. In tandem MS experiments, a major fragment ion at m/z 130 from protonated terpendole E was assigned to the substructure containing indole. When the [M + H + O]+ was selected as a precursor ion, the ion shifted to m/z 146. The same 16 Da shift of fragments was also observed for 1,2,3,4-tetrahydrocyclopent[b]indole, indicating that the oxygen addition of terpendole E took place at the indole portion. However, the oxygen addition was absent for some terpendoles, even whose structure resembles terpendole E. The breakdown curves characterized the tandem MS features of terpendoles. Preferential dissociation into m/z 130 suggested the protonation tendency at the indole site. Terpendoles that are preferentially protonated at indole tend to form oxygen addition peaks, suggesting that the protonation feature contributes to the oxygen additions in some degrees. © 2014 The Authors. Journal of Mass Spectrometry published by John Wiley & Sons, Ltd. PMID:24913406

  11. Evaluation of peak power prediction equations in male basketball players.

    PubMed

    Duncan, Michael J; Lyons, Mark; Nevill, Alan M

    2008-07-01

    This study compared peak power estimated using 4 commonly used regression equations with actual peak power derived from force platform data in a group of adolescent basketball players. Twenty-five elite junior male basketball players (age, 16.5 +/- 0.5 years; mass, 74.2 +/- 11.8 kg; height, 181.8 +/- 8.1 cm) volunteered to participate in the study. Actual peak power was determined using a countermovement vertical jump on a force platform. Estimated peak power was determined using countermovement jump height and body mass. All 4 prediction equations were significantly related to actual peak power (all p < 0.01). Repeated-measures analysis of variance indicated significant differences between actual peak power and estimate peak power from all 4 prediction equations (p < 0.001). Bonferroni post hoc tests indicated that estimated peak power was significantly lower than actual peak power for all 4 prediction equations. Ratio limits of agreement for actual peak power and estimated peak power were 8% for the Harman et al. and Sayers squat jump prediction equations, 12% for the Canavan and Vescovi equation, and 6% for the Sayers countermovement jump equation. In all cases peak power was underestimated.

  12. Physics and the Vertical Jump

    ERIC Educational Resources Information Center

    Offenbacher, Elmer L.

    1970-01-01

    The physics of vertical jumping is described as an interesting illustration for motivating students in a general physics course to master the kinematics and dynamics of one dimensional motion. The author suggests that mastery of the physical principles of the jump may promote understanding of certain biological phenomena, aspects of physical…

  13. Hydraulic jumps in one dimension

    NASA Astrophysics Data System (ADS)

    Bohr, Tomas; Andersen, Anders; Bonn, Daniel; Bouramrirene, Farid

    2006-11-01

    We present a study of hydraulic jumps in thin fluid layers with flow predominantly in one direction, created either by confining the flow to a narrow channel or by providing an inflow in the form of a narrow sheet. In all cases we find that the (normal) velocity of the flow at the low side of the jump has a particular critical value, larger than the wave speed. In the channel flow we clearly demonstrate the linear height profile predicted by Watson (1964), although turbulent fluctuations change the apparent viscosity. We show how to calculate the flow structure through the jump, where separation occurs. In the sheet case we find that the jump has the shape of a lozenge with sharply defined, oblique shocks. The variation of the angle of the lozenge with flux is determined by the condition that the normal velocity at the jump remains at the critical value.

  14. Validity and reliability of visual ratings of the vertical jump.

    PubMed

    Knudson, D

    1999-10-01

    The validity and reliability of visual estimates of the kinematics of the vertical jump as would be common in qualitative analysis of human movement was studied. Sagittal plane videotapes of 12 females performing vertical jumps were rated on two occasions by three samples of subjects: 6 basketball coaches, 10 kinesiology students, and 5 kinesiology professors. Visual ratings were compared to values quantified by biomechanical analysis using the Peak Performance Technologies system. Assistant collegiate basketball coaches were unable to rate discrete body angles in the vertical jump accurately or consistently. Six of 10 college student raters could accurately and consistently rate over-all range of motion. Since only one of the kinesiology professors could accurately and consistently rate range of motion compared to the majority of the students, professional experience did not affect the ability to rate range of motion in the vertical jump in these subjects.

  15. H∞ filtering for piecewise homogeneous Markovian jump nonlinear systems

    NASA Astrophysics Data System (ADS)

    Zhao, Feng; Zhang, Qingling; Wang, Guoliang

    2016-10-01

    This paper concerns the problem of H∞ filtering for piecewise homogeneous Markovian jump nonlinear systems. Different from the existing studies in the literatures, the existence of variations in transition rates for Markovian jump nonlinear systems is considered. The purpose of the paper is to design mode-dependent and mode-independent filters, such that the dynamics of the filtering errors are stochastic integral input-to-state stable with H∞ performance index. Using the linear matrix inequality method and the Lyapunov functional method, sufficient conditions for the solution to the H∞ filtering problem are derived. Finally, three examples are proposed to illustrate the effectiveness of the given theoretical results.

  16. Enhanced Jumping-Droplet Departure.

    PubMed

    Kim, Moon-Kyung; Cha, Hyeongyun; Birbarah, Patrick; Chavan, Shreyas; Zhong, Chen; Xu, Yuehan; Miljkovic, Nenad

    2015-12-15

    Water vapor condensation on superhydrophobic surfaces has received much attention in recent years because of its ability to shed water droplets at length scales 3 decades smaller than the capillary length (∼1 mm) via coalescence-induced droplet jumping. Jumping-droplet condensation has been demonstrated to enhance heat transfer, anti-icing, and self-cleaning efficiency and is governed by the theoretical inertial-capillary scaled jumping speed (U). When two droplets coalesce, the experimentally measured jumping speed (Uexp) is fundamentally limited by the internal fluid dynamics during the coalescence process (Uexp < 0.23U). Here, we theoretically and experimentally demonstrate multidroplet (>2) coalescence as an avenue to break the two-droplet speed limit. Using side-view and top-view high-speed imaging to study more than 1000 jumping events on a copper oxide nanostructured superhydrophobic surface, we verify that droplet jumping occurs as a result of three fundamentally different mechanisms: (1) coalescence between two droplets, (2) coalescence among more than two droplets (multidroplet), and (3) coalescence between one or more droplets on the surface and a returning droplet that has already departed (multihop). We measured droplet-jumping speeds for a wide range of droplet radii (5-50 μm) and demonstrated that while the two-droplet capillary-to-inertial energy conversion mechanism is not identical to that of multidroplet jumping, speeds above the theoretical two-droplet limit (>0.23U) can be achieved. However, we discovered that multihop coalescence resulted in drastically reduced jumping speeds (≪0.23U) due to adverse momentum contributions from returning droplets. To quantify the impact of enhanced jumping speed on heat-transfer performance, we developed a condensation critical heat flux model to show that modest jumping speed enhancements of 50% using multidroplet jumping can enhance performance by up to 40%. Our results provide a starting point for the

  17. Effects of footwear condition on maximal jumping performance.

    PubMed

    Harry, John R; Paquette, Max R; Caia, Johnpaul; Townsend, Robert J; Weiss, Lawrence W; Schilling, Brian K

    2015-06-01

    The purpose of this investigation was to examine the effects of footwear on kinetics and lower extremity electromyographic (EMG) activity during the vertical jump (VJ) and standing long jump. Fifteen men performed the 2 jump types in 3 footwear conditions: barefoot, minimal shoes, and cross-training shoes. Jump displacement and kinetic data were collected, along with EMG activity of the biceps femoris, medial gastrocnemius, peroneus longus, semitendinosus/semimembranosus, soleus (SOL), tibialis anterior, vastus lateralis, and vastus medialis. Subjective footwear performance and comfort were also assessed with a custom survey. No differences were found in jump displacement, peak ground reaction forces (GRF), countermovement and propulsive phase durations, vertical impulse, peak countermovement, or average propulsive EMG activity. Significant differences in peak propulsive root mean square EMG were found between barefoot and minimal shoes (p = 0.030) and minimal shoes and shod (p = 0.031) conditions for the SOL during the VJ, and for average countermovement EMG of the semitendinosus/semimembranosus during the VJ between barefoot and shod (p = 0.039). Moderate-to-large effect sizes (>0.59) were found between conditions for horizontal GRF, propulsive phase duration, average EMG amplitude, and duration of EMG activity during the countermovement. Participants reported higher comfort ratings when shod compared with barefoot and minimal shoes for both jumps. Participants also perceived better performance when shod compared with barefoot and minimal shoes for the VJ only. No acute differences in displacement were observed between barefoot, minimal shoes, and cross-trainer shoes during vertical and horizontal jumps. Some differences in muscle activation and timing seem to be present, and thus, training effects between footwear conditions should be examined. Footwear familiarization may prove beneficial, as acute increases in comfort seem unrelated to performance improvements.

  18. In-Situ Study of the Tensile Deformation and Fracture Modes in Peak-Aged Cast Mg-11Y-5Gd-2Zn-0.5Zr (Weight Percent)

    NASA Astrophysics Data System (ADS)

    Yin, D. D.; Wang, Q. D.; Boehlert, C. J.; Chen, Z.; Li, H. M.; Mishra, R. K.; Chakkedath, A.

    2016-09-01

    Tensile deformation and fracture modes in peak-aged cast Mg-11Y-5Gd-2Zn-0.5Zr (wt pct) (WGZ1152) samples at temperatures between 298 K [25 °C, room temperature (RT)] and 623 K (350 °C) (0.33 to 0.69T m) were studied in situ inside a scanning electron microscope (SEM) using electron backscatter diffraction (EBSD) and slip trace analysis. The ultimate tensile strength (UTS) (265 MPa) and yield strength (YS) (193 MPa) at 523 K (250 °C) were 91 and 80 pct of those at RT, respectively. The observed dominant slip mode transitioned from basal slip (100 pct) to basal slip (81 pct) combined with prismatic slip (12 pct) from RT to 473 K (200 °C). As the temperature increased to 623 K (350 °C), basal slip (67 pct) and pyramidal slip (25 pct) became the dominant slip modes. The estimated critical resolved shear stress (CRSS) ratio of pyramidal slip/basal slip (7.3) was lower than that of prismatic slip/basal slip (12.7) at temperatures above 573 K (300 °C). Prismatic slip and pyramidal slip were more active at higher strains for moderate temperatures [473 K to 523 K (200 °C to 250 °C)] and at high temperatures [573 K to 623 K (300 °C to 350 °C)], respectively. A transition in the dominant fracture mode occurred from transgranular cracking (40 pct) combined with intergranular cracking (60 pct) to intergranular cracking as temperatures increased from RT to 623 K (350 °C). The intergranular crack nucleation sites tended to be located at grain boundaries and the interface between the Mg matrix and the large intermetallic grain boundary X phase. Slip bands were associated with transgranular crack nucleation.

  19. Jumping mechanisms in jumping plant lice (Hemiptera, Sternorrhyncha, Psyllidae).

    PubMed

    Burrows, M

    2012-10-15

    Jumping mechanisms and performance were analysed in three species of psyllids (Hemiptera, Sternorrhyncha) that ranged from 2 to 4 mm in body length and from 0.7 to 2.8 mg in mass. Jumping was propelled by rapid movements of the short hind legs, which were only 10-20% longer than the other legs and 61-77% of body length. Power was provided by large thoracic muscles that depressed the trochantera so that the two hind legs moved in parallel planes on either side of the body. These movements accelerated the body to take-off in 0.9 ms in the smallest psyllid and 1.7 ms in the largest, but in all species imparted a rapid forward rotation so that at take-off the head pointed downwards, subtending angles of approximately -60 deg relative to the ground. The front legs thus supported the body just before take-off and either lost contact with the ground at the same time as, or even after, the hind legs. In the best jumps from the horizontal, take-off velocity reached 2.7 m s(-1) and the trajectory was steep at 62-80 deg. Once airborne, the body spun rapidly at rates of up to 336 Hz in the pitch plane. In many jumps, the wings did not open to provide stabilisation, but some jumps led directly to sustained flight. In their best jumps, the smallest species experienced a force of 637 g. The largest species had an energy requirement of 13 μJ, a power output of 13 mW and exerted a force of nearly 10 mN. In a rare jumping strategy seen in only two of 211 jumps analysed, the femoro-tibial joints extended further and resulted in the head pointing upwards at take-off and the spin rate being greatly reduced.

  20. Aeromechanics of the Spider Cricket Jump: How to Jump 60+ Times Your Body Length and Still Land on Your Feet

    NASA Astrophysics Data System (ADS)

    Palmer, Emily; Deshler, Nicolas; Gorman, David; Neves, Catarina; Mittal, Rajat

    2015-11-01

    Flapping, gliding, running, crawling and swimming have all been studied extensively in the past and have served as a source of inspiration for engineering designs. In the current project, we explore a mode of locomotion that straddles ground and air: jumping. The subject of our study is among the most proficient of long-jumpers in Nature: the spider cricket of the family Rhaphidophoridae, which can jump more than 60 times its body length. Despite jumping this immense distance, these crickets usually land on their feet, indicating an ability to control their posture during ``flight.'' We employ high-speed videogrammetry, to examine the jumps and to track the crickets' posture and appendage orientation throughout their jumps. Simple aerodynamic models are developed to predict the aerodynamic forces and moment on the crickets during `flight`. The analysis shows that these wingless insects employ carefully controlled and coordinated positioning of the limbs during flight so as to increase jump distance and to stabilize body posture during flight. The principles distilled from this study could serve as an inspiration for small jumping robots that can traverse complex terrains.

  1. Rook Jumping Maze Design Considerations

    NASA Astrophysics Data System (ADS)

    Neller, Todd W.; Fisher, Adrian; Choga, Munyaradzi T.; Lalvani, Samir M.; McCarty, Kyle D.

    We define the Rook Jumping Maze, provide historical perspective, and describe a generation method for such mazes. When applying stochastic local search algorithms to maze design, most creative effort concerns the definition of an objective function that rates maze quality. We define and discuss several maze features to consider in such a function definition. Finally, we share our preferred design choices, make design process observations, and note the applicability of these techniques to variations of the Rook Jumping Maze.

  2. Influence of a Horizontal Approach on the Mechanical Output during Drop Jumps

    ERIC Educational Resources Information Center

    Ruan, Mianfang; Li, Li

    2008-01-01

    This study investigated the influence of a horizontal approach to mechanical output during drop jumps. Participants performed drop jumps from heights of 15, 30, 45, and 60 cm with zero, one, two, and three approach steps. The peak summed power during the push-off phase changed quadratically across heights (6.2 [plus or minus] 0.3, 6.7 [plus or…

  3. Neuromechanical adaptation induced by jumping on an elastic surface.

    PubMed

    Márquez, Gonzalo; Aguado, Xavier; Alegre, Luis M; Férnandez-Del-Olmo, Miguel

    2013-02-01

    Jumping on an elastic surface produces a number of sensory and motor adjustments. This effect caused by jumping on the trampoline has been called "trampoline aftereffect". The objective of the present study was to investigate the neuromuscular response related with this effect. A group of 15 subjects took part in an experimental session, where simultaneous biomechanical and electromyographic (EMG) recordings were performed during the execution of maximal countermovement jumps (CMJs) before and after jumping on an elastic surface. We assessed motor performance (leg stiffness, jump height, peak force, vertical motion of center of mass and stored and returned energy) and EMG activation patterns of the leg muscles. The results showed a significant increase (p ≤ 0.05) of the RMS EMG of knee extensors during the eccentric phase of the jump performed immediately after the exposure phase to the elastic surface (CMJ(1)), and a significant increase (p ≤ 0.05) in the levels of co-activation of the muscles crossing the ankle joint during the concentric phase of the same jump. Results related with motor performance of CMJ(1) showed a significant increase in the leg stiffness (p ≤ 0.01) due to a lower vertical motion of center of mass (CoM) (p ≤ 0.005), a significant decrease in jump height (p ≤ 0.01), and a significantly smaller stored and returned energy (p ≤ 0.01). The changes found during the execution of CMJ(1) may result from a mismatch between sensory feedback and the efferent copy.

  4. Hydraulic jumps in inhomogeneous strongly coupled toroidal dust flows

    NASA Astrophysics Data System (ADS)

    Piel, Alexander; Wilms, Jochen

    2016-07-01

    The inhomogeneous flow of strongly coupled dust particles in a toroidal particle trap with harmonic radial confinement is analyzed in the incompressible fluid limit. It is shown that the flow can spontaneously generate shock-like events, which are similar to the hydraulic jump in open channel flows. A definition of the Froude number for this model is given and the critical speed is recovered as the group velocity of surface waves. This hydraulic model is compared with molecular-dynamics simulations, which show that a sudden bifurcation of the flow lines and a localized temperature peak appear just at the point where the critical condition for the hydraulic jump is located.

  5. Effect of ankle kinesio taping on vertical jump with run-up and countermovement jump in athletes with ankle functional instability

    PubMed Central

    Ho, Yi-Hung; Lin, Cheng-Feng; Chang, Chih-Han; Wu, Hong-Wen

    2015-01-01

    [Purpose] Limited research has been performed in spite of biomechanical evaluation of jump landing with kinesio taping. Therefore, the main objective of this study was to evaluate the effect of kinesio taping applied to athletes. In this study, the authors wished to investigate the effect of kinesio taping during a vertical jump with run-up and countermovement jump on ankle functional instability. [Subjects and Methods] Ten male athletes with ankle functional instability (FI) were recruited in this study from a college volleyball team. Each participant was requested to perform two tasks, the countermovement jump and vertical jump with run-up. Infrared high-speed cameras and force plates were used to assess the effect of ankle taping. [Results] The results showed that the peak ground reaction force in the sagittal plane during a vertical jump with run-up slowed down after kinesio taping and that the peak ankle plantar flexion moment in both types of jump also decreased. [Conclusion] In conclusion, this study proved the effect of kinesio taping on ankle functional instability, which was evaluated by measuring the vertical ground reaction force and peak plantar flexion moment. Its finding may allow us to provide some recommendations for athletes and trainers. PMID:26311931

  6. How far can Tarzan jump?

    NASA Astrophysics Data System (ADS)

    Shima, Hiroyuki

    2012-11-01

    The tree-based rope swing is a popular recreational facility, often installed in outdoor areas. Hanging from a rope, users drop from a high platform and then swing at great speed like ‘Tarzan’, finally jumping ahead to land on the ground. The question naturally arises, how far can Tarzan jump using the swing? In this paper, I present an introductory analysis of the mechanics of the Tarzan swing, a large pendulum-like swing with Tarzan himself attached as weight. This enables determination of how much further forward Tarzan can jump using a given swing apparatus. The discussion is based on elementary mechanics and is, therefore, expected to provide rich opportunities for investigations using analytic and numerical methods.

  7. The Effect of Depth Jumps and Weight Training on Leg Strength and Vertical Jump.

    ERIC Educational Resources Information Center

    Clutch, David; And Others

    1983-01-01

    Two experiments examined the results of depth jumping programs to determine: (1) whether certain depth jumping routines, when combined with weight training, are better than others; and (2) the effect of depth jumping on athletes already in training. Results indicated that depth jumping is effective, but no more so than regular jumping routines.…

  8. Effects of a Low-Load Gluteal Warm-Up on Explosive Jump Performance

    PubMed Central

    Comyns, Thomas; Kenny, Ian; Scales, Gerard

    2015-01-01

    The purpose of this study was to investigate the effects of a low-load gluteal warm-up protocol on countermovement and squat jump performance. Research by Crow et al. (2012) found that a low-load gluteal warm-up could be effective in enhancing peak power output during a countermovement jump. Eleven subjects performed countermovement and squat jumps before and after the gluteal warm-up protocol. Both jumps were examined in separate testing sessions and performed 30 seconds, and 2, 4, 6 & 8 minutes post warm-up. Height jumped and peak ground reaction force were the dependent variables examined in both jumps, with 6 additional variables related to fast force production being examined in the squat jump only. All jumps were performed on a force platform (AMTI OR6-5). Repeated measures analysis of variance found a number of significant differences (p ≤ 0.05) between baseline and post warm-up scores. Height jumped decreased significantly in both jumps at all rest intervals excluding 8 minutes. Improvement was seen in 7 of the 8 recorded SJ variables at the 8 minute interval. Five of these improvements were deemed statistically significant, namely time to peak GRF (43.0%), and time to the maximum rate of force development (65.7%) significantly decreased, while starting strength (63.4%), change of force in first 100 ms of contraction (49.1%) and speed strength (43.6%) significantly increased. The results indicate that a gluteal warm-up can enhance force production in squat jumps performed after 8 minutes recovery. Future research in this area should include additional warm-up intervention groups for comparative reasons. PMID:26240661

  9. Revival of the Jumping Disc

    ERIC Educational Resources Information Center

    Ucke, C.; Schlichting, H-J.

    2009-01-01

    Snap discs made of bimetal have many technical applications as thermostats. Jumping discs are a toy version of such snap discs. Besides giving technical information, we describe physical investigations. We show especially how, through simple measurements and calculations, you can determine the initial speed ([approximately equal to]3.5 m…

  10. Evaluation of standing vertical jump by ankles acceleration measurement.

    PubMed

    Quagliarella, Livio; Sasanelli, Nicola; Belgiovine, Giuseppe; Moretti, Lorenzo; Moretti, Biagio

    2010-05-01

    The use of accelerometers is discussed to evaluate standing vertical jump. Two accelerometers, mounted on each ankle and connected to a wearable system, were used for signal acquisition, and a piezoelectric platform was used to verify the results. Fifty-one subjects were enrolled, subdivided into a group of healthy subjects and 2 groups who had different surgery for Achilles tendon rupture. Each subject performed 5 countermovement and 5 squat jumps; 11 subjects also performed 5 countermovement jumps with voluntary leg rotations during the flight phase. A training set was used to assess signal processing, and a validation set was used to verify its accuracy. A peak detection algorithm was developed to quantify flight time from the acceleration modulus, and its results were compared with platform data. The Pearson correlation coefficient of ankle accelerations and the integral of each signal were adopted to describe, respectively, the movement coordination and the limbs rotation during the flight time. The flight times obtained from the accelerometers and force plate were highly correlated (Spearman's coefficient >0.95); they were compared, for each jump, and the maximum mean error, for subject, was 4.8%. The movement coordination was in good agreement with subjects' clinical features and with the different jump phases. The signal integral presented significant differences, among jumps, related to leg rotations (p < 0.0005). The method proposed allows the monitoring of standing vertical jump using the fight time and gives information on the legs coordination and on the motor strategies of the lower limbs. Therefore, it can be used to obtain performance reference also outside labs, both in clinical and sport settings.

  11. Portable peak flow meters.

    PubMed

    McNaughton, J P

    1997-02-01

    There are several portable peak flow meters available. These instruments vary in construction and performance. Guidelines are recommended for minimum performance and testing of portable peak flow meters, with the aim of establishing a procedure for standardizing all peak flow meters. Future studies to clarify the usefulness of mechanical test apparatus and clinical trials of peak flow meters are also recommended. PMID:9098706

  12. Mechanical parameters and flight phase characteristics in aquatic plyometric jumping.

    PubMed

    Louder, Talin J; Searle, Cade J; Bressel, Eadric

    2016-09-01

    Plyometric jumping is a commonly prescribed method of training focused on the development of reactive strength and high-velocity concentric power. Literature suggests that aquatic plyometric training may be a low-impact, effective supplement to land-based training. The purpose of the present study was to quantify acute, biomechanical characteristics of the take-off and flight phase for plyometric movements performed in the water. Kinetic force platform data from 12 young, male adults were collected for counter-movement jumps performed on land and in water at two different immersion depths. The specificity of jumps between environmental conditions was assessed using kinetic measures, temporal characteristics, and an assessment of the statistical relationship between take-off velocity and time in the air. Greater peak mechanical power was observed for jumps performed in the water, and was influenced by immersion depth. Additionally, the data suggest that, in the water, the statistical relationship between take-off velocity and time in air is quadratic. Results highlight the potential application of aquatic plyometric training as a cross-training tool for improving mechanical power and suggest that water immersion depth and fluid drag play key roles in the specificity of the take-off phase for jumping movements performed in the water. PMID:27125295

  13. Test-retest reliability of jump execution variables using mechanography: A comparison of jump protocols

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mechanography during the vertical jump test allows for evaluation of force-time variables reflecting jump execution, which may enhance screening for functional deficits that reduce physical performance and determining mechanistic causes underlying performance changes. However, utility of jump mechan...

  14. The Kinematics of Swimming and Relocation Jumps in Copepod Nauplii

    PubMed Central

    Andersen Borg, Christian Marc; Bruno, Eleonora; Kiørboe, Thomas

    2012-01-01

    Copepod nauplii move in a world dominated by viscosity. Their swimming-by-jumping propulsion mode, with alternating power and recovery strokes of three pairs of cephalic appendages, is fundamentally different from the way other microplankters move. Protozoans move using cilia or flagella, and copepodites are equipped with highly specialized swimming legs. In some species the nauplius may also propel itself more slowly through the water by beating and rotating the appendages in a different, more complex pattern. We use high-speed video to describe jumping and swimming in nauplii of three species of pelagic copepods: Temora longicornis, Oithona davisae and Acartia tonsa. The kinematics of jumping is similar between the three species. Jumps result in a very erratic translation with no phase of passive coasting and the nauplii move backwards during recovery strokes. This is due to poorly synchronized recovery strokes and a low beat frequency relative to the coasting time scale. For the same reason, the propulsion efficiency of the nauplii is low. Given the universality of the nauplius body plan, it is surprising that they seem to be inefficient when jumping, which is different from the very efficient larger copepodites. A slow-swimming mode is only displayed by T. longicornis. In this mode, beating of the appendages results in the creation of a strong feeding current that is about 10 times faster than the average translation speed of the nauplius. The nauplius is thus essentially hovering when feeding, which results in a higher feeding efficiency than that of a nauplius cruising through the water. PMID:23115647

  15. The Effects of Caffeine on Vertical Jump Height and Execution in Collegiate Athletes.

    PubMed

    Bloms, Lucas P; Fitzgerald, John S; Short, Martin W; Whitehead, James R

    2016-07-01

    Bloms, LP, Fitzgerald, JS, Short, MW, and Whitehead, JR. The effects of caffeine on vertical jump height and execution in collegiate athletes. J Strength Cond Res 30(7): 1855-1861, 2016-Caffeine ingestion elicits a variety of physiological effects that may be beneficial to maximal-intensity exercise performance, although its effectiveness and physical mechanism of action enhancing ballistic task performance are unclear. The purpose of this study was to examine the effects of caffeine ingestion on vertical jump height and jump execution in Division I collegiate athletes. The study used a single-blind, randomized, crossover design. Athletes (n = 25) consumed either caffeine (5 mg·kg) or placebo. After a 60-minute waiting period, athletes performed 3 squat jumps (SJ) and 3 countermovement jumps (CMJ) while standing on a force platform. Jump height and execution variables were calculated from mechanography data. In comparison with placebo, caffeine increased SJ height (32.8 ± 6.2 vs. 34.5 ± 6.7 cm; p = 0.001) and CMJ height (36.4 ± 6.9 vs. 37.9 ± 7.4 cm; p = 0.001). Peak force (p = 0.032) and average rate of force development (p = 0.037) were increased during the CMJ in the caffeine trail compared with the control. Time to half peak force was the only execution variable improved with caffeine (p = 0.019) during the SJ. It seems that caffeine affects both height and execution of jumping. Our data indicate that the physical mechanism of jump enhancement is increased peak force production or rate of force development during jumping depending on technique. The physical mechanism of jump enhancement suggests that the ergogenic effects of caffeine may transfer to other ballistic tasks involving the lower-body musculature in collegiate athletes. PMID:26626028

  16. Gender bias in the effects of arms and countermovement on jumping performance.

    PubMed

    Walsh, Mark S; Böhm, Harald; Butterfield, Michelle M; Santhosam, Jabakar

    2007-05-01

    The ability to jump high is considered important in a number of sports. It is commonly accepted that the use of the arms and a counter movement increase jump height. In some sport situations (e.g., volley ball block, basketball rebound), athletes may not be able to utilize a counter movement or arm swing. The purpose of this study is to examine gender differences in the contribution of the arm swing and counter movement to vertical jump height. Fifty college students, 25 men (age = 21.4 +/- 1.7 years, height = 182.2 +/- 8 cm, weight = 83.7 +/- 12.4 kg) and 25 women (age = 20.7 +/- 1.6 years, height = 166.7 +/- 6.3 cm, weight = 61.5 +/- 7.0 kg), performed 4 jumping movements: squat jumps with hands on hips (SNA), counter movement jump with hands on hips (CMNA), squat jump with arm swing (SA), and counter movement with arm swing (CMA). Significant differences were found between men's and women's performance, as well as between each type of jump within each gender. A mixed-model analysis of variance detected gender differences with respect to changes in the jumping movement. For both sexes the jumps in order from worst to best were SNA, CMNA, SA, and CMA. Peak power values for men were 4,057, 4,020, 4,644, and 4,747 W, respectively, for the 4 jumps. The female power values were 2,543, 2,445, 2,842, and 2,788 W, respectively, for the 4 jumps. Arms increased jump height more than a counter movement for both genders, with jump heights for men at 29.6, 31, 36, and 38 cm, respectively, and those of women 21, 22, 26, and 27 cm, respectively. Use of the arms was found to increase the jump height of the men significantly more than that of women. Changes in jumping movements affect men and women differently. The greater increase in jump height for the men when using the arm swing could be because of greater upper body strength of men compared with women. This could have applications to training and upper body strength and also to modeling of jumping movements.

  17. Model for polygonal hydraulic jumps.

    PubMed

    Martens, Erik A; Watanabe, Shinya; Bohr, Tomas

    2012-03-01

    We propose a phenomenological model for the polygonal hydraulic jumps discovered by Ellegaard and co-workers [Nature (London) 392, 767 (1998); Nonlinearity 12, 1 (1999); Physica B 228, 1 (1996)], based on the known flow structure for the type-II hydraulic jumps with a "roller" (separation eddy) near the free surface in the jump region. The model consists of mass conservation and radial force balance between hydrostatic pressure and viscous stresses on the roller surface. In addition, we consider the azimuthal force balance, primarily between pressure and viscosity, but also including nonhydrostatic pressure contributions from surface tension in light of recent observations by Bush and co-workers [J. Fluid Mech. 558, 33 (2006); Phys. Fluids 16, S4 (2004)]. The model can be analyzed by linearization around the circular state, resulting in a parameter relationship for nearly circular polygonal states. A truncated but fully nonlinear version of the model can be solved analytically. This simpler model gives rise to polygonal shapes that are very similar to those observed in experiments, even though surface tension is neglected, and the condition for the existence of a polygon with N corners depends only on a single dimensionless number φ. Finally, we include time-dependent terms in the model and study linear stability of the circular state. Instability occurs for sufficiently small Bond number and the most unstable wavelength is expected to be roughly proportional to the width of the roller as in the Rayleigh-Plateau instability.

  18. International Toys in Space: Jump Rope

    NASA Video Gallery

    Cosmonaut Valery Korzun attempts jumping rope in microgravity. He decides to adapt the activity by taking out the "jumping part," but the act of spinning the rope around him still proves difficult....

  19. Non-Markovian jump processes in lasers

    SciTech Connect

    Levine, A.M. ); Kofman, A.G.; Zaibel, R.; Prior, Y. )

    1989-10-20

    A new model for stochastic fluctuations in lasers is introduced where successive phase jumps are correlated to previous jumps. The model is applicable in the generalized phase diffusion limit, the generalized Kubo oscillator limit, and the generalized telegraph noise limit.

  20. Does endurance fatigue increase the risk of injury when performing drop jumps?

    PubMed

    Moran, Kieran A; Clarke, Michelle; Reilly, Frank; Wallace, Eric S; Brabazon, Dermot; Marshall, Brendan

    2009-08-01

    Although from an athletic performance perspective it may be beneficial to undertake drop jump training when fatigued (principle of "specificity" of training), such endurance fatigue may expose the body to a greater risk of injury if it causes an increase in peak impact accelerations. This study aimed to determine if endurance fatigue resulted in an increase in tibial peak impact acceleration and an associated change in knee kinematics when completing plyometric drop jumps. Fifteen females performed drop jumps from 3 heights (15, 30, and 45 cm) when fatigued and nonfatigued. Treadmill running was used to induce endurance fatigue. The following variables were assessed: tibial peak impact acceleration, knee angle at initial ground contact, maximum angle of flexion, range of flexion, and peak knee angular velocity. Fatigue resulted in significantly greater (p < 0.05) tibial peak impact acceleration and knee flexion peak angular velocity in drop jumps from 15 and 30 cm, but not from 45 cm. Fatigue had no effect on any of the knee angles assessed. The neuromuscular system was affected negatively by endurance fatigue at 15 and 30 cm, indicating that coaches should be aware of a potential increased risk of injury in performing drop jumps when fatigued. Because from the greater drop height of 45 cm the neuromuscular system had a reduced capacity to attenuate the impact accelerations per se, whether nonfatigued or fatigued, this would suggest that this height may have been too great for the athletes examined.

  1. The effects of short-term jump training on bone metabolism in females using oral contraceptives.

    PubMed

    Reiger, Jamie; Yingling, Vanessa R

    2016-01-01

    The purpose of this study was to determine the effect of oral contraceptive use on bone serum markers following a 3-week jumping protocol. Twenty-three females (18-25 years) were grouped as oral contraceptive users (OC+) or non-users (OC-). Following a 3-week observation period, participants completed a 3-week (15-day) jump protocol. Jump sessions consisting of ten 42 cm drop jumps with a 30 s rest interval between jumps were completed each day, 5 days per week. Peak vertical ground reaction force and loading rate were measured and the osteogenic index was calculated. Serum markers for bone formation, bone alkaline phosphatase (BAP) and bone resorption, C-terminal telopeptides of type I collagen (CTX) were measured at three time points (pre-, mid-, post-jump). BAP and CTX increased significantly (P = 0.0017, 0.0488) in both groups post-jump; however, bone metabolic markers were not different between the OC+ and OC- groups. Osteogenic index, ground reaction force and vertical jump height were similar between groups. Correlations between markers of bone metabolism and participants' age at menarche, weight, loading rate and years on OC were not significant. A 3-week jumping protocol was found to be effective in stimulating bone metabolism in both OC+ and OC- groups. PMID:26008875

  2. Strawberry Shortcake and Other Jumping Rope Ideas.

    ERIC Educational Resources Information Center

    Adams, Polly K.; Taylor, Michaell K.

    Information, guidelines, and activities for jumping rope are given. A short history of jumping rope explains how it evolved from a spring ritual for men to a play activity involving mostly young girls. Physical and cultural reasons are given as to why jumping rope has been more a sport for girls than for boys. Research studies are noted which show…

  3. The Physics of Equestrian Show Jumping

    ERIC Educational Resources Information Center

    Stinner, Art

    2014-01-01

    This article discusses the kinematics and dynamics of equestrian show jumping. For some time I have attended a series of show jumping events at Spruce Meadows, an international equestrian center near Calgary, Alberta, often referred to as the "Wimbledon of equestrian jumping." I have always had a desire to write an article such as this…

  4. Body acceleration distribution and O2 uptake in humans during running and jumping

    NASA Technical Reports Server (NTRS)

    Bhattacharya, A.; Mccutcheon, E. P.; Shvartz, E.; Greenleaf, J. E.

    1980-01-01

    The distribution of body acceleration and associated oxygen uptake and heart rate responses are investigated in treadmill running and trampoline jumping. Accelerations in the +Gz direction were measured at the lateral ankle, lumbosacral region and forehead of eight young men during level treadmill walking and running at four speeds and trampoline jumping at four heights, together with corresponding oxygen uptake and heart rate. With increasing treadmill speed, peak acceleration at the ankle is found always to exceed that at the back and forehead, and acceleration profiles with higher frequency components than those observed during jumping are observed. Acceleration levels are found to be more uniformly distributed with increasing height in jumping, although comparable oxygen uptake and heat rates are obtained. Results indicate that the magnitude of the biomechanical stimuli is greater in trampoline jumping than in running, which finding could be of use in the design of procedures to avert deconditioning in persons exposed to weightlessness.

  5. Diagnostic studies of ensemble forecast "jumps"

    NASA Astrophysics Data System (ADS)

    Magnusson, Linus; Hewson, Tim; Ferranti, Laura; Rodwell, Mark

    2016-04-01

    During 2015 we saw exceptional consistency in successive seasonal forecasts produced at ECMWF, for the winter period 2015/16, right across the globe. This winter was characterised by a well-predicted and unusually strong El Nino, and some have ascribed the consistency to that. For most of December this consistency was mirrored in the (separate) ECMWF monthly forecast system, which correctly predicted anomalously strong (mild) zonal flow, over the North Atlantic and western Eurasia, even in forecasts for weeks 3 and 4. In monthly forecasts in general these weeks are often devoid of strong signals. However in late December and early January strong signals, even in week 2, proved to be incorrect, most notably over the North Atlantic and Eurasian sectors. Indeed on at least two occasions the outcome was beyond the ensemble forecast range over Scandinavia. In one of these conditions flipped from extreme mild to extreme cold as a high latitude block developed. Temperature prediction is very important to many customers, notably those dealing with renewable energy, because cold weather causes increased demand but also tends to coincide with reduced wind power production. So understandably jumps can cause consternation amongst some customer groups, and are very difficult to handle operationally. This presentation will discuss the results of initial diagnostic investigations into what caused the "ensemble jumps", particularly at the week two lead, though reference will also be made to a related shorter range (day 3) jump that was important for flooding over the UK. Initial results suggest that an inability of the ECMWF model to correctly represent convective outbreaks over North America (that for winter-time were quite extreme) played an important role. Significantly, during this period, an unusually large amount of upper air data over North America was rejected or ascribed low weight. These results bear similarities to previous diagnostic studies at ECMWF, wherein major

  6. Vertical jumping and signaled avoidance

    PubMed Central

    Cándido, Antonio; Maldonado, Antonio; Vila, Jaime

    1988-01-01

    This paper reports an experiment intended to demonstrate that the vertical jumping response can be learned using a signaled-avoidance technique. A photoelectric cell system was used to record the response. Twenty female rats, divided equally into two groups, were exposed to intertrial intervals of either 15 or 40 s. Subjects had to achieve three successive criteria of acquisition: 3, 5, and 10 consecutive avoidance responses. Results showed that both groups learned the avoidance response, requiring increasingly larger numbers of trials as the acquisition criteria increased. No significant effect of intertrial interval was observed. PMID:16812559

  7. Effect of jumping interval training on neuromuscular and physiological parameters: a randomized controlled study.

    PubMed

    Ache-Dias, Jonathan; Dellagrana, Rodolfo A; Teixeira, Anderson S; Dal Pupo, Juliano; Moro, Antônio R P

    2016-01-01

    This study analyzed the effect of 4 weeks of jumping interval training (JIT), included in endurance training, on neuromuscular and physiological parameters. Eighteen recreational runners, randomized in control and experimental groups, performed 40 min of running at 70% of velocity at peak oxygen uptake, for 3 times per week. Additionally, the experimental group performed the JIT twice per week, which consisted of 4 to 6 bouts of continuous vertical jumps (30 s) with 5-min intervals. Three days before and after the training period, the countermovement (CMJ) and continuous jump (CJ30), isokinetic and isometric evaluation of knee extensors/flexors, progressive maximal exercise, and submaximal constant-load exercise were performed. The JIT provoked improvement in neuromuscular performance, indicated by (i) increased jump height (4.7%; effect size (ES) = 0.99) and power output (≈ 3.7%; ES ≈ 0.82) of CMJ and rate of torque development of knee extensors in isometric contraction (29.5%; ES = 1.02); (ii) anaerobic power and capacity, represented by the mean of jump height (7.4%; ES = 0.8), and peak power output (PPO) (5.6%; ES = 0.73) of the first jumps of CJ30 and the mean of jump height (10.2%, ES = 1.04) and PPO (9.5%, ES = 1.1), considering all jumps of CJ30; and (iii) aerobic power and capacity, represented by peak oxygen uptake (9.1%, ES = 1.28), velocity at peak oxygen uptake (2.7%, ES = 1.11), and velocity corresponding to the onset of blood lactate accumulation (9.7%, ES = 1.23). These results suggest that the JIT included in traditional endurance training induces moderate to large effects on neuromuscular and physiological parameters.

  8. Covariant jump conditions in electromagnetism

    NASA Astrophysics Data System (ADS)

    Itin, Yakov

    2012-02-01

    A generally covariant four-dimensional representation of Maxwell's electrodynamics in a generic material medium can be achieved straightforwardly in the metric-free formulation of electromagnetism. In this setup, the electromagnetic phenomena are described by two tensor fields, which satisfy Maxwell's equations. A generic tensorial constitutive relation between these fields is an independent ingredient of the theory. By use of different constitutive relations (local and non-local, linear and non-linear, etc.), a wide area of applications can be covered. In the current paper, we present the jump conditions for the fields and for the energy-momentum tensor on an arbitrarily moving surface between two media. From the differential and integral Maxwell equations, we derive the covariant boundary conditions, which are independent of any metric and connection. These conditions include the covariantly defined surface current and are applicable to an arbitrarily moving smooth curved boundary surface. As an application of the presented jump formulas, we derive a Lorentzian type metric as a condition for existence of the wave front in isotropic media. This result holds for ordinary materials as well as for metamaterials with negative material constants.

  9. Peak Experience Project

    ERIC Educational Resources Information Center

    Scott, Daniel G.; Evans, Jessica

    2010-01-01

    This paper emerges from the continued analysis of data collected in a series of international studies concerning Childhood Peak Experiences (CPEs) based on developments in understanding peak experiences in Maslow's hierarchy of needs initiated by Dr Edward Hoffman. Bridging from the series of studies, Canadian researchers explore collected…

  10. Effect of different knee starting angles on intersegmental coordination and performance in vertical jumps.

    PubMed

    Gheller, Rodrigo G; Dal Pupo, Juliano; Ache-Dias, Jonathan; Detanico, Daniele; Padulo, Johnny; dos Santos, Saray G

    2015-08-01

    This study aimed to analyze the effect of different knee starting angles on jump performance, kinetic parameters, and intersegmental coupling coordination during a squat jump (SJ) and a countermovement jump (CMJ). Twenty male volleyball and basketball players volunteered to participate in this study. The CMJ was performed with knee flexion at the end of the countermovement phase smaller than 90° (CMJ(<90)), greater than 90° (CMJ(>90)), and in a preferred position (CMJ(PREF)), while the SJ was performed from a knee angle of 70° (SJ(70)), 90° (SJ(90)), 110° (SJ(110)), and in a preferred position (SJ(PREF)). The best jump performance was observed in jumps that started from a higher squat depth (CMJ(<90)-SJ(70)) and in the preferred positions (CMJ and SJ), while peak power was observed in the SJ(110) and CMJ(>90). Analysis of continuous relative phase showed that thigh-trunk coupling was more in-phase in the jumps (CMJ and SJ) performed with a higher squat depth, while the leg-thigh coupling was more in-phase in the CMJ(>90) and SJ(PREF). Jumping from a position with knees more flexed seems to be the best strategy to achieve the best performance. Intersegmental coordination and jump performance (CMJ and SJ) were affected by different knee starting angles.

  11. Principal component structure and sport-specific differences in the running one-leg vertical jump.

    PubMed

    Laffaye, G; Bardy, B G; Durey, A

    2007-05-01

    The aim of this study is to identify the kinetic principal components involved in one-leg running vertical jumps, as well as the potential differences between specialists from different sports. The sample was composed of 25 regional skilled athletes who play different jumping sports (volleyball players, handball players, basketball players, high jumpers and novices), who performed a running one-leg jump. A principal component analysis was performed on the data obtained from the 200 tested jumps in order to identify the principal components summarizing the six variables extracted from the force-time curve. Two principal components including six variables accounted for 78 % of the variance in jump height. Running one-leg vertical jump performance was predicted by a temporal component (that brings together impulse time, eccentric time and vertical displacement of the center of mass) and a force component (who brings together relative peak of force and power, and rate of force development). A comparison made among athletes revealed a temporal-prevailing profile for volleyball players, and a force-dominant profile for Fosbury high jumpers. Novices showed an ineffective utilization of the force component, while handball and basketball players showed heterogeneous and neutral component profiles. Participants will use a jumping strategy in which variables related to either the magnitude or timing of force production will be closely coupled; athletes from different sporting backgrounds will use a jumping strategy that reflects the inherent demands of their chosen sport.

  12. Relationship between tibial acceleration and proximal anterior tibia shear force across increasing jump distance.

    PubMed

    Sell, Timothy C; Akins, Jonathan S; Opp, Alexis R; Lephart, Scott M

    2014-02-01

    Proximal anterior tibia shear force is a direct loading mechanism of the anterior cruciate ligament (ACL) and is a contributor to ACL strain during injury. Measurement of this force during competition may provide insight into risk factors for ACL injury. Accelerometers may be capable of measuring tibial acceleration during competition. The purpose of this study was to examine the relationship between acceleration measured by a tibia-mounted accelerometer and proximal anterior tibia shear force as measured through inverse dynamics and peak posterior ground reaction forces during two leg stop-jump tasks. Nineteen healthy male subjects performed stop-jump tasks across increasing jump distances. Correlation coefficients were calculated to determine if a relationship exists between accelerometer data and proximal anterior tibia shear force and peak posterior ground reaction force. An analysis of variance was performed to compare these variables across jump distance. Significant correlations were observed between accelerometer data and peak posterior ground reaction force, but none between accelerometer data and proximal anterior tibia shear force. All variables except peak proximal anterior tibia shear force increased significantly as jump distance increased. Overall, results of this study provide initial, positive support for the use of accelerometers as a useful tool for future injury prevention research.

  13. Relationship between tibial acceleration and proximal anterior tibia shear force across increasing jump distance.

    PubMed

    Sell, Timothy C; Akins, Jonathan S; Opp, Alexis R; Lephart, Scott M

    2014-02-01

    Proximal anterior tibia shear force is a direct loading mechanism of the anterior cruciate ligament (ACL) and is a contributor to ACL strain during injury. Measurement of this force during competition may provide insight into risk factors for ACL injury. Accelerometers may be capable of measuring tibial acceleration during competition. The purpose of this study was to examine the relationship between acceleration measured by a tibia-mounted accelerometer and proximal anterior tibia shear force as measured through inverse dynamics and peak posterior ground reaction forces during two leg stop-jump tasks. Nineteen healthy male subjects performed stop-jump tasks across increasing jump distances. Correlation coefficients were calculated to determine if a relationship exists between accelerometer data and proximal anterior tibia shear force and peak posterior ground reaction force. An analysis of variance was performed to compare these variables across jump distance. Significant correlations were observed between accelerometer data and peak posterior ground reaction force, but none between accelerometer data and proximal anterior tibia shear force. All variables except peak proximal anterior tibia shear force increased significantly as jump distance increased. Overall, results of this study provide initial, positive support for the use of accelerometers as a useful tool for future injury prevention research. PMID:23878269

  14. Pikes Peak, Colorado

    USGS Publications Warehouse

    Brunstein, Craig; Quesenberry, Carol; Davis, John; Jackson, Gene; Scott, Glenn R.; D'Erchia, Terry D.; Swibas, Ed; Carter, Lorna; McKinney, Kevin; Cole, Jim

    2006-01-01

    For 200 years, Pikes Peak has been a symbol of America's Western Frontier--a beacon that drew prospectors during the great 1859-60 Gold Rush to the 'Pikes Peak country,' the scenic destination for hundreds of thousands of visitors each year, and an enduring source of pride for cities in the region, the State of Colorado, and the Nation. November 2006 marks the 200th anniversary of the Zebulon M. Pike expedition's first sighting of what has become one of the world's most famous mountains--Pikes Peak. In the decades following that sighting, Pikes Peak became symbolic of America's Western Frontier, embodying the spirit of Native Americans, early explorers, trappers, and traders who traversed the vast uncharted wilderness of the Western Great Plains and the Southern Rocky Mountains. High-quality printed paper copies of this poster are available at no cost from Information Services, U.S. Geological Survey (1-888-ASK-USGS).

  15. Peak power ratio generator

    DOEpatents

    Moyer, R.D.

    A peak power ratio generator is described for measuring, in combination with a conventional power meter, the peak power level of extremely narrow pulses in the gigahertz radio frequency bands. The present invention in a preferred embodiment utilizes a tunnel diode and a back diode combination in a detector circuit as the only high speed elements. The high speed tunnel diode provides a bistable signal and serves as a memory device of the input pulses for the remaining, slower components. A hybrid digital and analog loop maintains the peak power level of a reference channel at a known amount. Thus, by measuring the average power levels of the reference signal and the source signal, the peak power level of the source signal can be determined.

  16. Peak power ratio generator

    DOEpatents

    Moyer, Robert D.

    1985-01-01

    A peak power ratio generator is described for measuring, in combination with a conventional power meter, the peak power level of extremely narrow pulses in the gigahertz radio frequency bands. The present invention in a preferred embodiment utilizes a tunnel diode and a back diode combination in a detector circuit as the only high speed elements. The high speed tunnel diode provides a bistable signal and serves as a memory device of the input pulses for the remaining, slower components. A hybrid digital and analog loop maintains the peak power level of a reference channel at a known amount. Thus, by measuring the average power levels of the reference signal and the source signal, the peak power level of the source signal can be determined.

  17. Peak Oil, Peak Coal and Climate Change

    NASA Astrophysics Data System (ADS)

    Murray, J. W.

    2009-05-01

    Research on future climate change is driven by the family of scenarios developed for the IPCC assessment reports. These scenarios create projections of future energy demand using different story lines consisting of government policies, population projections, and economic models. None of these scenarios consider resources to be limiting. In many of these scenarios oil production is still increasing to 2100. Resource limitation (in a geological sense) is a real possibility that needs more serious consideration. The concept of 'Peak Oil' has been discussed since M. King Hubbert proposed in 1956 that US oil production would peak in 1970. His prediction was accurate. This concept is about production rate not reserves. For many oil producing countries (and all OPEC countries) reserves are closely guarded state secrets and appear to be overstated. Claims that the reserves are 'proven' cannot be independently verified. Hubbert's Linearization Model can be used to predict when half the ultimate oil will be produced and what the ultimate total cumulative production (Qt) will be. US oil production can be used as an example. This conceptual model shows that 90% of the ultimate US oil production (Qt = 225 billion barrels) will have occurred by 2011. This approach can then be used to suggest that total global production will be about 2200 billion barrels and that the half way point will be reached by about 2010. This amount is about 5 to 7 times less than assumed by the IPCC scenarios. The decline of Non-OPEC oil production appears to have started in 2004. Of the OPEC countries, only Saudi Arabia may have spare capacity, but even that is uncertain, because of lack of data transparency. The concept of 'Peak Coal' is more controversial, but even the US National Academy Report in 2007 concluded only a small fraction of previously estimated reserves in the US are actually minable reserves and that US reserves should be reassessed using modern methods. British coal production can be

  18. Jumping performance in the highly aquatic frog, Xenopus tropicalis: sex-specific relationships between morphology and performance

    PubMed Central

    Vasilopoulou-Kampitsi, Menelia; Bonneaud, Camille

    2014-01-01

    Frogs are characterized by a morphology that has been suggested to be related to their unique jumping specialization. Yet, the functional demands associated with jumping and swimming may not be that different as suggested by studies with semi-aquatic frogs. Here, we explore whether features previously identified as indicative of good burst swimming performance also predict jumping performance in a highly aquatic frog, Xenopus tropicalis. Moreover, we test whether the morphological determinants of jumping performance are similar in the two sexes and whether jumping performance differs in the two sexes. Finally we test whether jumping capacity is positively associated with burst swimming and terrestrial endurance capacity in both sexes. Our results show sex-specific differences in jumping performance when correcting for differences in body size. Moreover, the features determining jumping performance are different in the two sexes. Finally, the relationships between different performance traits are sex-dependent as well with females, but not males, showing a trade-off between peak jumping force and the time jumped to exhaustion. This suggests that different selective pressures operate on the two sexes, with females being subjected to constraints on locomotion due to their greater body mass and investment in reproductive capacity. In contrast, males appear to invest more in locomotor capacity giving them higher performance for a given body size compared to females. PMID:25392760

  19. The effect of assisted jumping on vertical jump height in high-performance volleyball players.

    PubMed

    Sheppard, Jeremy M; Dingley, Andrew A; Janssen, Ina; Spratford, Wayne; Chapman, Dale W; Newton, Robert U

    2011-01-01

    Assisted jumping may be useful in training higher concentric movement speed in jumping, thereby potentially increasing the jumping abilities of athletes. The purpose of this study was to evaluate the effects of assisted jump training on counter-movement vertical jump (CMVJ) and spike jump (SPJ) ability in a group of elite male volleyball players. Seven junior national team volleyball players (18.0±1.0 yrs, 200.4±6.7 cm, and 84.0±7.2 kg) participated in this within-subjects cross-over counter-balanced training study. Assisted training involved 3 sessions per week of CMVJ training with 10 kg of assistance, applied through use of a bungee system, whilst normal jump training involved equated volume of unassisted counter-movement vertical jumps. Training periods were 5 weeks duration, with a 3-week wash-out separating them. Prior to and at the conclusion of each training period jump testing for CMVJ and SPJ height was conducted. Assisted jump training resulted in gains of 2.7±0.7 cm (p<0.01, ES=0.21) and 4.6±2.6 cm (p<0.01, ES=0.32) for the CMVJ and SPJ respectively, whilst normal jump training did not result in significant gains for either CMVJ or SPJ (p=0.09 and p=0.51 respectively). The changes associated with normal jump training and assisted jump training revealed significant differences in both CMVJ and SPJ (p=<0.03) in favour of the assisted jump condition, with large effect (CMVJ, ES=1.22; SPJ, ES=1.31). Assisted jumping may promote the leg extensor musculature to undergo a more rapid rate of shortening, and chronic exposure appears to improve jumping ability.

  20. Effects of different types of jump impact on trabecular bone mass and microarchitecture in growing rats.

    PubMed

    Ju, Yong-In; Sone, Teruki; Ohnaru, Kazuhiro; Tanaka, Kensuke; Yamaguchi, Hidetaka; Fukunaga, Masao

    2014-01-01

    Substantial evidence from animal studies indicates that jumping increases bone mass and strength. However, most studies have focused on the take-off, rather than the landing phase of jumps. Thus, we compared the effects of landing and upward jump impact on trabecular bone mass and microarchitecture. Male Wistar rats aged 10 weeks were randomly assigned to the following groups: sedentary control (CON), 40-cm upward jumps (40UJ); 40-cm drop jumps (40DJ); and 60-cm drop jumps (60DJ) (n = 10 each). The upward jump protocol comprised 10 upward jumps/day, 5 days/week for 8 weeks to a height of 40 cm. The drop jump protocol comprised dropping rats from a height of 40 or 60 cm at the same frequency and time period as the 40UJ group. Trabecular bone mass, architecture, and mineralization at the distal femoral metaphysis were evaluated using microcomputed tomography. Ground reaction force (GRF) was measured using a force platform. Bone mass was significantly higher in the 40UJ group compared with the DJ groups (+49.1% and +28.3%, respectively), although peak GRF (-57.8% and -122.7%, respectively) and unit time force (-21.6% and -36.2%, respectively) were significantly lower in the 40UJ group. These results showed that trabecular bone mass in growing rats is increased more effectively by the take-off than by the landing phases of jumps and suggest that mechanical stress accompanied by muscle contraction would be more important than GRF as an osteogenic stimulus. However, the relevance of these findings to human bone physiology is unclear and requires further study. PMID:25233222

  1. Effects of Different Types of Jump Impact on Trabecular Bone Mass and Microarchitecture in Growing Rats

    PubMed Central

    Ju, Yong-In; Sone, Teruki; Ohnaru, Kazuhiro; Tanaka, Kensuke; Yamaguchi, Hidetaka; Fukunaga, Masao

    2014-01-01

    Substantial evidence from animal studies indicates that jumping increases bone mass and strength. However, most studies have focused on the take-off, rather than the landing phase of jumps. Thus, we compared the effects of landing and upward jump impact on trabecular bone mass and microarchitecture. Male Wistar rats aged 10 weeks were randomly assigned to the following groups: sedentary control (CON), 40-cm upward jumps (40UJ); 40-cm drop jumps (40DJ); and 60-cm drop jumps (60DJ) (n = 10 each). The upward jump protocol comprised 10 upward jumps/day, 5 days/week for 8 weeks to a height of 40 cm. The drop jump protocol comprised dropping rats from a height of 40 or 60 cm at the same frequency and time period as the 40UJ group. Trabecular bone mass, architecture, and mineralization at the distal femoral metaphysis were evaluated using microcomputed tomography. Ground reaction force (GRF) was measured using a force platform. Bone mass was significantly higher in the 40UJ group compared with the DJ groups (+49.1% and +28.3%, respectively), although peak GRF (−57.8% and −122.7%, respectively) and unit time force (−21.6% and −36.2%, respectively) were significantly lower in the 40UJ group. These results showed that trabecular bone mass in growing rats is increased more effectively by the take-off than by the landing phases of jumps and suggest that mechanical stress accompanied by muscle contraction would be more important than GRF as an osteogenic stimulus. However, the relevance of these findings to human bone physiology is unclear and requires further study. PMID:25233222

  2. Kinematics and Kinetics of Squats, Drop Jumps and Imitation Jumps of Ski Jumpers.

    PubMed

    Pauli, Carole A; Keller, Melanie; Ammann, Fabian; Hübner, Klaus; Lindorfer, Julia; Taylor, William R; Lorenzetti, Silvio

    2016-03-01

    Squats, drop jumps, and imitation jumps are commonly used training exercises in ski jumping to enhance maximum force, explosive force, and sport-specific skills. The purpose of this study was to evaluate the kinetics and kinematics of training exercises in ski jumping and to find objective parameters in training exercises that most correlate with the competition performance of ski jumpers. To this end, barbell squats, drop jumps, and imitation jumps were measured in a laboratory environment for 10 elite ski jumpers. Force and motion data were captured, and the influence of maximum vertical force, force difference, vertical take-off velocity, knee moments, knee joint power, and a knee valgus/varus index was evaluated and correlated with their season jump performance. The results indicate that, especially for the imitation jumps, a good correlation exists between the vertical take-off velocity and the personal jump performance on the hill (R = 0.718). Importantly, however, the more the athletes tended toward a valgus knee alignment during the measured movements, the worse their performance (R = 0.729 imitation jumps; R = 0.685 squats). Although an evaluation of the athletes' lower limb alignment during competitive jumping on the hill is still required, these preliminary data suggest that performance training should additionally concentrate on improving knee alignment to increase ski jumping performance. PMID:26418370

  3. Kinematics and Kinetics of Squats, Drop Jumps and Imitation Jumps of Ski Jumpers.

    PubMed

    Pauli, Carole A; Keller, Melanie; Ammann, Fabian; Hübner, Klaus; Lindorfer, Julia; Taylor, William R; Lorenzetti, Silvio

    2016-03-01

    Squats, drop jumps, and imitation jumps are commonly used training exercises in ski jumping to enhance maximum force, explosive force, and sport-specific skills. The purpose of this study was to evaluate the kinetics and kinematics of training exercises in ski jumping and to find objective parameters in training exercises that most correlate with the competition performance of ski jumpers. To this end, barbell squats, drop jumps, and imitation jumps were measured in a laboratory environment for 10 elite ski jumpers. Force and motion data were captured, and the influence of maximum vertical force, force difference, vertical take-off velocity, knee moments, knee joint power, and a knee valgus/varus index was evaluated and correlated with their season jump performance. The results indicate that, especially for the imitation jumps, a good correlation exists between the vertical take-off velocity and the personal jump performance on the hill (R = 0.718). Importantly, however, the more the athletes tended toward a valgus knee alignment during the measured movements, the worse their performance (R = 0.729 imitation jumps; R = 0.685 squats). Although an evaluation of the athletes' lower limb alignment during competitive jumping on the hill is still required, these preliminary data suggest that performance training should additionally concentrate on improving knee alignment to increase ski jumping performance.

  4. Internal hydraulic jumps with large upstream shear

    NASA Astrophysics Data System (ADS)

    Ogden, Kelly; Helfrich, Karl

    2015-11-01

    Internal hydraulic jumps in approximately two-layered flows with large upstream shear are investigated using numerical simulations. The simulations allow continuous density and velocity profiles, and a jump is forced to develop by downstream topography, similar to the experiments conducted by Wilkinson and Wood (1971). High shear jumps are found to exhibit significantly more entrainment than low shear jumps. Furthermore, the downstream structure of the flow has an important effect on the jump properties. Jumps with a slow upper (inactive) layer exhibit a velocity minimum downstream of the jump, resulting in a sub-critical downstream state, while flows with the same upstream vertical shear and a larger barotropic velocity remain super-critical downstream of the jump. A two-layer theory is modified to account for the vertical structure of the downstream density and velocity profiles and entrainment is allowed through a modification of the approach of Holland et al. (2002). The resulting theory can be matched reasonably well with the numerical simulations. However, the results are very sensitive to how the downstream vertical profiles of velocity and density are incorporated into the layered model, highlighting the difficulty of the two layer approximation when the shear is large.

  5. The Phase Shift in the Jumping Ring

    ERIC Educational Resources Information Center

    Jeffery, Rondo N.; Amiri, Farhang

    2008-01-01

    The popular physics demonstration experiment known as Thomson's Jumping Ring (JR) has been variously explained as a simple example of Lenz's law, or as the result of a phase shift of the ring current relative to the induced emf. The failure of the first-quadrant Lenz's law explanation is shown by the time the ring takes to jump and by levitation.…

  6. Orientation Dependence of Jumping Droplet Condensation

    NASA Astrophysics Data System (ADS)

    Berrier, Austin; Boreyko, Jonathan; Nature-Inspired Fluids; Interfaces Team

    2015-11-01

    On nanostructured superhydrophobic surfaces, microscopic condensate exhibits out-of-plane jumping that minimizes the average droplet size for maximal phase-change heat transfer. This jumping-droplet phenomenon occurs independently of gravity and is due to surface energy being partially converted to kinetic energy upon coalescence events. Although the initial departure of the jumping droplets is independent of gravity, the subsequent trajectories exhibit a dependence upon the orientation of the substrate. The drop size distribution of jumping-droplet condensation growing on a superhydrophobic substrate was characterized for both horizontal and vertical surface orientations. With the horizontal orientation, jumping condensate returns to the substrate by gravity. While this can result in chain reactions with other droplets to trigger further jumping events, eventually the rebounding droplets become too large to jump and are stuck on the surface. In contrast, droplets jumping off a vertically oriented surface do not return to the substrate. For this reason, the maximum droplet diameters during condensation growth were found to be significantly larger on the horizontally oriented superhydrophobic surface than on the vertical orientation.

  7. The Locust Jump: An Integrated Laboratory Investigation

    ERIC Educational Resources Information Center

    Scott, Jon

    2005-01-01

    The locust is well known for its ability to jump large distances to avoid predation. This class sets out a series of investigations into the mechanisms underlying the jump enabling students to bring together information from biomechanics, muscle physiology, and anatomy. The nature of the investigation allows it to be undertaken at a number of…

  8. 25 CFR 11.437 - Bail jumping.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Bail jumping. 11.437 Section 11.437 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAW AND ORDER COURTS OF INDIAN OFFENSES AND LAW AND ORDER CODE Criminal Offenses § 11.437 Bail jumping. A person set at liberty by court order, with or without bail,...

  9. 25 CFR 11.437 - Bail jumping.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Bail jumping. 11.437 Section 11.437 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAW AND ORDER COURTS OF INDIAN OFFENSES AND LAW AND ORDER CODE Criminal Offenses § 11.437 Bail jumping. A person set at liberty by court order, with or without bail,...

  10. Jumping to conclusions in schizophrenia

    PubMed Central

    Evans, Simon L; Averbeck, Bruno B; Furl, Nicholas

    2015-01-01

    Schizophrenia is a mental disorder associated with a variety of symptoms, including hallucinations, delusions, social withdrawal, and cognitive dysfunction. Impairments on decision-making tasks are routinely reported: evidence points to a particular deficit in learning from and revising behavior following feedback. In addition, patients tend to make hasty decisions when probabilistic judgments are required. This is known as “jumping to conclusions” (JTC) and has typically been demonstrated by presenting participants with colored beads drawn from one of two “urns” until they claim to be sure which urn the beads are being drawn from (the proportions of colors vary in each urn). Patients tend to make early decisions on this task, and there is evidence to suggest that a hasty decision-making style might be linked to delusion formation and thus be of clinical relevance. Various accounts have been proposed regarding what underlies this behavior. In this review, we briefly introduce the disorder and the decision-making deficits associated with it. We then explore the evidence for each account of JTC in the context of a wider decision-making deficit and then go on to summarize work exploring JTC in healthy controls using pharmacological manipulations and functional imaging. Finally, we assess whether JTC might have a role in therapy. PMID:26170674

  11. The Crown Bite Jumping Herbst.

    PubMed

    Owen, Reuel

    2003-01-01

    The Crown Bite Jumping Herbst Appliance is evaluated and combined with Straight Wire Arch Fixed Orthodontics in treatment of Class II, Division I malocclusions. This article will evaluate a combined orthodontic approach of "straightening teeth" and an orthognathic approach of "moving jaws or making skeletal changes." Orthodontic treatment cannot be accomplished well without establishing a healthy temporomandibular joint. This is defined by Keller as a joint that is "noiseless, painless and has a normal range of motion without deviation and deflection." It is not prudent to separate orthodontic treatment as its own entity without being aware of the changes in the temporomandibular joint before, during and after treatment. In other words, "If you're doing orthodontics you're doing TMJ treatment." One should treat toward a healthy, beautiful face asking, "Will proposed treatment achieve this goal?" Treatment should be able to be carried out in an efficient manner, minimizing treatment time, be comfortable and affordable for the patient, and profitable for the dentist. The finished treatment should meet Andrews' Six Keys of Occlusion, or Loudon's Twelve Commandments. Above all, do no harm to the patient. We think that a specific treatment plan can embrace these tenets. The focus will be to show Class II treatment using a modified Herbst Appliance and fixed straight wire orthodontics.

  12. Mechanical jumping power in athletes.

    PubMed

    Kirkendall, D T; Street, G M

    1986-12-01

    The Wingate cycle ergometer test is a widely used test of sustained muscular power. A limitation of the test is the lack of development and retrieval of stored elastic energy due to a lack of an eccentric phase. To measure mechanical power output of the entire stretch-shortening cycle, the test of Bosco et al (1983) was administered to 119 male athletes in 7 different activities during their pre-participation evaluations. The sports tested were indoor soccer, American football and ballet (professionals), outdoor soccer, basketball and wrestling (collegiate) and amateur bobsled. Results showed the overall average power output to be 20.37 W.kg-1 for the 60s reciprocal jumping test. Ballet dancers generated significantly less mechanical power than indoor soccer, basketball and bobsled athletes, while wrestlers generated significantly less power than indoor soccer and basketball athletes (all p less than 0.05). No other between-sport differences were seen. A subset of indoor soccer players (n = 10) were retested after 4 months of training. Power improved from 20.8 to 24.3 W.kg-1 (p less than 0.05). While between sport differences were limited, training differences in one subset of athletes were readily identified.

  13. Repetitive Hops Induce Postactivation Potentiation in Triceps Surae as well as an Increase in the Jump Height of Subsequent Maximal Drop Jumps

    PubMed Central

    Bergmann, Julian; Kramer, Andreas; Gruber, Markus

    2013-01-01

    Postactivation potentiation (PAP) has been defined as the increase in twitch torque after a conditioning contraction. The present study aimed to investigate the effectiveness of hops as conditioning contractions to induce PAP and increase performance in subsequent maximal drop jumps. In addition, we wanted to test if and how PAP can contribute to increases in drop jump rebound height. Twelve participants performed 10 maximal two-legged hops as conditioning contractions. Twitch peak torques of triceps surae muscles were recorded before and after the conditioning hops. Then, subjects performed drop jumps with and without 10 conditioning hops before each drop jump. Recordings included ground reaction forces, ankle and knee angles and electromyographic activity in five leg muscles. In addition, efferent motoneuronal output during ground contact was estimated with V-wave stimulation. The analyses showed that after the conditioning hops, twitch peak torques of triceps surae muscles were 32% higher compared to baseline values (P < 0.01). Drop jumps performed after conditioning hops were significantly higher (12%, P < 0.05), but V-waves and EMG activity remained unchanged. The amount of PAP and the change in drop jump rebound height were positively correlated (r2 = 0.26, P < 0.05). These results provide evidence for PAP in triceps surae muscles induced by a bout of hops and indicate that PAP can contribute to the observed performance enhancements in subsequent drop jumps. The lack of change in EMG activity and V-wave amplitude suggests that the underlying mechanisms are more likely intramuscular than neural in origin. PMID:24147061

  14. A review on the basketball jump shot.

    PubMed

    Okazaki, Victor H A; Rodacki, André L F; Satern, Miriam N

    2015-06-01

    The ability to shoot an effective jump shot in the sport of basketball is critical to a player's success. In an attempt to better understand the aspects related to expert performance, researchers have investigated successful free throws and jump shots of various basketball players and identified movement variables that contribute to their success. The purpose of this study was to complete a systematic review of the scientific literature on the basketball free throw and jump shot for the purpose of revealing the critical components of shooting that coaches, teachers, and players should focus on when teaching, learning, practising, and performing a jump shot. The results of this review are presented in three sections: (a) variables that affect ball trajectory, (b) phases of the jump shot, and

  15. Correlation-Peak Imaging

    NASA Astrophysics Data System (ADS)

    Ziegler, A.; Metzler, A.; Köckenberger, W.; Izquierdo, M.; Komor, E.; Haase, A.; Décorps, M.; von Kienlin, M.

    1996-08-01

    Identification and quantitation in conventional1H spectroscopic imagingin vivois often hampered by the small chemical-shift range. To improve the spectral resolution of spectroscopic imaging, homonuclear two-dimensional correlation spectroscopy has been combined with phase encoding of the spatial dimensions. From the theoretical description of the coherence-transfer signal in the Fourier-transform domain, a comprehensive acquisition and processing strategy is presented that includes optimization of the width and the position of the acquisition windows, matched filtering of the signal envelope, and graphical presentation of the cross peak of interest. The procedure has been applied to image the spatial distribution of the correlation peaks from specific spin systems in the hypocotyl of castor bean (Ricinus communis) seedlings. Despite the overlap of many resonances, correlation-peak imaging made it possible to observe a number of proton resonances, such as those of sucrose, β-glucose, glutamine/glutamate, lysine, and arginine.

  16. Energy expenditure in maximal jumps on sand.

    PubMed

    Muramatsu, Shigeru; Fukudome, Akinori; Miyama, Motoyoshi; Arimoto, Morio; Kijima, Akira

    2006-01-01

    The purpose of this study was to comparatively investigate the energy expenditure of jumping on sand and on a firm surface. Eight male university volleyball players were recruited in this study and performed 3 sets of 10 repetitive jumps on sand (the S condition), and also on a force platform (the F condition). The subjects jumped every two seconds during a set, and the interval between sets was 20 seconds. The subjects performed each jump on sand with maximal exertion while in the F condition they jumped as high as they did on sand. The oxygen requirement for jumping was defined as the total oxygen uptake consecutively measured between the first set of jumps and the point that oxygen uptake recovers to the resting value, and the energy expenditure was calculated. The jump height in the S condition was equivalent to 64.0 +/- 4.4% of the height in the maximal jump on the firm surface. The oxygen requirement was 7.39 +/- 0.33 liters in S condition and 6.24 +/- 0.69 liters in the F condition, and the energy expenditure was 37.0 +/- 1.64 kcal and 31.2 +/- 3.46 kcal respectively. The differences in the two counter values were both statistically significant (p < 0.01). The energy expenditure of jumping in the S condition was equivalent to 119.4 +/- 10.1% of the one in the F condition, which ratio was less than in walking and close to in running. PMID:16617210

  17. Make peak flow a habit!

    MedlinePlus

    Asthma - make peak flow a habit; Reactive airway disease - peak flow; Bronchial asthma - peak flow ... your airways are narrowed and blocked due to asthma, your peak flow values drop. You can check ...

  18. Four weeks of training in a sledge jump system improved the jump pattern to almost natural reactive jumps.

    PubMed

    Kramer, Andreas; Ritzmann, Ramona; Gruber, Markus; Gollhofer, Albert

    2012-01-01

    In spite of extensive training regimens during long-term space missions with existing training devices, astronauts suffer from muscle and bone loss. It has been suggested that reactive jumps inducing high forces in the muscles-consequently exposing the bones to high strains-help to counteract these degradations. In a previous study, a new sledge jump system (SJS) was found to allow fairly natural reactive jumps. The aim of the present study was to evaluate if training in the SJS would further reduce the differences between jumps in the SJS and normal jumps, particularly with respect to ground reaction forces (GRF) and rate of force development (RFD). Sixteen participants in a training group (TG) and 16 in a control group (CON) were tested before and after the TGs four-week hopping training in the SJS. During the tests, kinetic, kinematic and electromyographic data were compared between hops on the ground and in the SJS. After the training period, the GRF, the RFD and the leg stiffness in the SJS significantly increased for the TG (but not for CON) by 10, 35 and 38%, respectively. The kinematic and electromyographic data showed no significant changes. A short training regimen in the SJS reduced the differences between jumps in the SJS and normal jumps. Considering that a natural movement that exposes the muscles and thus also the bones to high loads is regarded as important for the preservation of muscle and bone, the SJS seems to be a promising countermeasure. PMID:21544569

  19. High-peak-power single-oscillator actively Q-switched mode-locked Tm3+-doped fiber laser and its application for high-average output power mid-IR supercontinuum generation in a ZBLAN fiber.

    PubMed

    Kneis, Christian; Donelan, Brenda; Manek-Hönninger, Inka; Robin, Thierry; Cadier, Benoît; Eichhorn, Marc; Kieleck, Christelle

    2016-06-01

    A single-oscillator actively Q-switched mode-locked (QML) thulium-doped silica fiber laser is presented and used to pump a ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN) fiber for mid-infrared (mid-IR) supercontinuum (SC) generation. The fiber laser provided high-peak-power levels directly from the oscillator delivering single mode-locked pulse energies up to 48 μJ, being 2-4 orders of magnitude higher than conventional continuous wave mode-locked lasers. By pumping a ZBLAN fiber specially designed for high-output-power SC generation, 7.8 W have been achieved in all spectral bands with a spectrum extending to 4.2 μm. PMID:27244410

  20. High-peak-power single-oscillator actively Q-switched mode-locked Tm3+-doped fiber laser and its application for high-average output power mid-IR supercontinuum generation in a ZBLAN fiber.

    PubMed

    Kneis, Christian; Donelan, Brenda; Manek-Hönninger, Inka; Robin, Thierry; Cadier, Benoît; Eichhorn, Marc; Kieleck, Christelle

    2016-06-01

    A single-oscillator actively Q-switched mode-locked (QML) thulium-doped silica fiber laser is presented and used to pump a ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN) fiber for mid-infrared (mid-IR) supercontinuum (SC) generation. The fiber laser provided high-peak-power levels directly from the oscillator delivering single mode-locked pulse energies up to 48 μJ, being 2-4 orders of magnitude higher than conventional continuous wave mode-locked lasers. By pumping a ZBLAN fiber specially designed for high-output-power SC generation, 7.8 W have been achieved in all spectral bands with a spectrum extending to 4.2 μm.

  1. Usefulness of the jump-and-reach test in assessment of vertical jump performance.

    PubMed

    Menzel, Hans-Joachim; Chagas, Mauro H; Szmuchrowski, Leszek A; Araujo, Silvia R; Campos, Carlos E; Giannetti, Marcus R

    2010-02-01

    The objective was to estimate the reliability and criterion-related validity of the Jump-and-Reach Test for the assessment of squat, countermovement, and drop jump performance of 32 male Brazilian professional volleyball players. Performance of squat, countermovement, and drop jumps with different dropping heights was assessed on the Jump-and-Reach Test and the measurement of flight time, then compared across different jump trials. The very high reliability coefficients of both assessment methods and the lower correlation coefficients between scores on the assessments indicate a very high consistency of each method but only moderate covariation, which means that they measure partly different items. As a consequence, the Jump-and-Reach Test has good ecological validity in situations when reaching height during the flight phase is critical for performance (e.g., basketball and volleyball) but only limited accuracy for the assessment of vertical impulse production with different jump techniques and conditions.

  2. Impact Crater with Peak

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 14 June 2002) The Science This THEMIS visible image shows a classic example of a martian impact crater with a central peak. Central peaks are common in large, fresh craters on both Mars and the Moon. This peak formed during the extremely high-energy impact cratering event. In many martian craters the central peak has been either eroded or buried by later sedimentary processes, so the presence of a peak in this crater indicates that the crater is relatively young and has experienced little degradation. Observations of large craters on the Earth and the Moon, as well as computer modeling of the impact process, show that the central peak contains material brought from deep beneath the surface. The material exposed in these peaks will provide an excellent opportunity to study the composition of the martian interior using THEMIS multi-spectral infrared observations. The ejecta material around the crater can is well preserved, again indicating relatively little modification of this landform since its initial creation. The inner walls of this approximately 18 km diameter crater show complex slumping that likely occurred during the impact event. Since that time there has been some downslope movement of material to form the small chutes and gullies that can be seen on the inner crater wall. Small (50-100 m) mega-ripples composed of mobile material can be seen on the floor of the crater. Much of this material may have come from the walls of the crater itself, or may have been blown into the crater by the wind. The Story When a meteor smacked into the surface of Mars with extremely high energy, pow! Not only did it punch an 11-mile-wide crater in the smoother terrain, it created a central peak in the middle of the crater. This peak forms kind of on the 'rebound.' You can see this same effect if you drop a single drop of milk into a glass of milk. With craters, in the heat and fury of the impact, some of the land material can even liquefy. Central peaks like the one

  3. Kinematics and Kinetics of Squats, Drop Jumps and Imitation Jumps of Ski Jumpers

    PubMed Central

    Pauli, Carole A.; Keller, Melanie; Ammann, Fabian; Hübner, Klaus; Lindorfer, Julia; Taylor, William R.

    2016-01-01

    Abstract Pauli, CA, Keller, M, Ammann, F, Hübner, K, Lindorfer, J, Taylor, WR, and Lorenzetti, S. Kinematics and kinetics of squats, drop jumps and imitation jumps of ski jumpers. J Strength Cond Res 30(3): 643–652, 2016—Squats, drop jumps, and imitation jumps are commonly used training exercises in ski jumping to enhance maximum force, explosive force, and sport-specific skills. The purpose of this study was to evaluate the kinetics and kinematics of training exercises in ski jumping and to find objective parameters in training exercises that most correlate with the competition performance of ski jumpers. To this end, barbell squats, drop jumps, and imitation jumps were measured in a laboratory environment for 10 elite ski jumpers. Force and motion data were captured, and the influence of maximum vertical force, force difference, vertical take-off velocity, knee moments, knee joint power, and a knee valgus/varus index was evaluated and correlated with their season jump performance. The results indicate that, especially for the imitation jumps, a good correlation exists between the vertical take-off velocity and the personal jump performance on the hill (R = 0.718). Importantly, however, the more the athletes tended toward a valgus knee alignment during the measured movements, the worse their performance (R = 0.729 imitation jumps; R = 0.685 squats). Although an evaluation of the athletes' lower limb alignment during competitive jumping on the hill is still required, these preliminary data suggest that performance training should additionally concentrate on improving knee alignment to increase ski jumping performance. PMID:26418370

  4. Relationship between traditional and ballistic squat exercise with vertical jumping and maximal sprinting.

    PubMed

    Requena, Bernardo; García, Inmaculada; Requena, Francisco; de Villarreal, Eduardo Sáez-Sáez; Cronin, John B

    2011-08-01

    The purpose of this study was to quantify the magnitude of the relationship between vertical jumping and maximal sprinting at different distances with performance in the traditional and ballistic concentric squat exercise in well-trained sprinters. Twenty-one men performed 2 types of barbell squats (ballistic and traditional) across different loads with the aim of determining the maximal peak and average power outputs and 1 repetition maximum (1RM) values. Moreover, vertical jumping (countermovement jump test [CMJ]) and maximal sprints over 10, 20, 30, 40, 60, and 80 m were also assessed. In respect to 1RM in traditional squat, (a) no significant correlation was found with CMJ performance; (b) positive strong relationships (p < 0.01) were obtained with all the power measures obtained during both ballistic and traditional squat exercises (r = 0.53-0.90); (c) negative significant correlations (r = -0.49 to -0.59, p < 0.05) were found with sprint times in all the sprint distances measured when squat strength was expressed as a relative value; however, in the absolute mode, no significant relationships were observed with 10- and 20-m sprint times. No significant relationship was found between 10-m sprint time and relative or absolute power outputs using either ballistic or traditional squat exercises. Sprint time at 20 m was only related to ballistic and traditional squat performance when power values were expressed in relative terms. Moderate significant correlations (r = -0.39 to -0.56, p < 0.05) were observed between sprint times at 30 and 40 m and the absolute/relative power measures attained in both ballistic and traditional squat exercises. Sprint times at 60 and 80 m were mainly related to ballistic squat power outputs. Although correlations can only give insights into associations and not into cause and effect, from this investigation, it can be seen that traditional squat strength has little in common with CMJ performance and that relative 1RM and power

  5. Condensation-induced jumping water drops.

    PubMed

    Narhe, R D; Khandkar, M D; Shelke, P B; Limaye, A V; Beysens, D A

    2009-09-01

    Water droplets can jump during vapor condensation on solid benzene near its melting point. This phenomenon, which can be viewed as a kind of micro scale steam engine, is studied experimentally and numerically. The latent heat of condensation transferred at the drop three phase contact line melts the substrate during a time proportional to R (the drop radius). The wetting conditions change and a spontaneous jump of the drop results in random direction over length approximately 1.5R , a phenomenon that increases the coalescence events and accelerates the growth. Once properly rescaled by the jump length scale, the growth dynamics is, however, similar to that on a solid surface. PMID:19905120

  6. Condensation-induced jumping water drops

    NASA Astrophysics Data System (ADS)

    Narhe, R. D.; Khandkar, M. D.; Shelke, P. B.; Limaye, A. V.; Beysens, D. A.

    2009-09-01

    Water droplets can jump during vapor condensation on solid benzene near its melting point. This phenomenon, which can be viewed as a kind of micro scale steam engine, is studied experimentally and numerically. The latent heat of condensation transferred at the drop three phase contact line melts the substrate during a time proportional to R (the drop radius). The wetting conditions change and a spontaneous jump of the drop results in random direction over length ˜1.5R , a phenomenon that increases the coalescence events and accelerates the growth. Once properly rescaled by the jump length scale, the growth dynamics is, however, similar to that on a solid surface.

  7. Condensation-induced jumping water drops.

    PubMed

    Narhe, R D; Khandkar, M D; Shelke, P B; Limaye, A V; Beysens, D A

    2009-09-01

    Water droplets can jump during vapor condensation on solid benzene near its melting point. This phenomenon, which can be viewed as a kind of micro scale steam engine, is studied experimentally and numerically. The latent heat of condensation transferred at the drop three phase contact line melts the substrate during a time proportional to R (the drop radius). The wetting conditions change and a spontaneous jump of the drop results in random direction over length approximately 1.5R , a phenomenon that increases the coalescence events and accelerates the growth. Once properly rescaled by the jump length scale, the growth dynamics is, however, similar to that on a solid surface.

  8. Predicting Vertical Jump Height from Bar Velocity

    PubMed Central

    García-Ramos, Amador; Štirn, Igor; Padial, Paulino; Argüelles-Cienfuegos, Javier; De la Fuente, Blanca; Strojnik, Vojko; Feriche, Belén

    2015-01-01

    The objective of the study was to assess the use of maximum (Vmax) and final propulsive phase (FPV) bar velocity to predict jump height in the weighted jump squat. FPV was defined as the velocity reached just before bar acceleration was lower than gravity (-9.81 m·s-2). Vertical jump height was calculated from the take-off velocity (Vtake-off) provided by a force platform. Thirty swimmers belonging to the National Slovenian swimming team performed a jump squat incremental loading test, lifting 25%, 50%, 75% and 100% of body weight in a Smith machine. Jump performance was simultaneously monitored using an AMTI portable force platform and a linear velocity transducer attached to the barbell. Simple linear regression was used to estimate jump height from the Vmax and FPV recorded by the linear velocity transducer. Vmax (y = 16.577x - 16.384) was able to explain 93% of jump height variance with a standard error of the estimate of 1.47 cm. FPV (y = 12.828x - 6.504) was able to explain 91% of jump height variance with a standard error of the estimate of 1.66 cm. Despite that both variables resulted to be good predictors, heteroscedasticity in the differences between FPV and Vtake-off was observed (r2 = 0.307), while the differences between Vmax and Vtake-off were homogenously distributed (r2 = 0.071). These results suggest that Vmax is a valid tool for estimating vertical jump height in a loaded jump squat test performed in a Smith machine. Key points Vertical jump height in the loaded jump squat can be estimated with acceptable precision from the maximum bar velocity recorded by a linear velocity transducer. The relationship between the point at which bar acceleration is less than -9.81 m·s-2 and the real take-off is affected by the velocity of movement. Mean propulsive velocity recorded by a linear velocity transducer does not appear to be optimal to monitor ballistic exercise performance. PMID:25983572

  9. Predicting vertical jump height from bar velocity.

    PubMed

    García-Ramos, Amador; Štirn, Igor; Padial, Paulino; Argüelles-Cienfuegos, Javier; De la Fuente, Blanca; Strojnik, Vojko; Feriche, Belén

    2015-06-01

    The objective of the study was to assess the use of maximum (Vmax) and final propulsive phase (FPV) bar velocity to predict jump height in the weighted jump squat. FPV was defined as the velocity reached just before bar acceleration was lower than gravity (-9.81 m·s(-2)). Vertical jump height was calculated from the take-off velocity (Vtake-off) provided by a force platform. Thirty swimmers belonging to the National Slovenian swimming team performed a jump squat incremental loading test, lifting 25%, 50%, 75% and 100% of body weight in a Smith machine. Jump performance was simultaneously monitored using an AMTI portable force platform and a linear velocity transducer attached to the barbell. Simple linear regression was used to estimate jump height from the Vmax and FPV recorded by the linear velocity transducer. Vmax (y = 16.577x - 16.384) was able to explain 93% of jump height variance with a standard error of the estimate of 1.47 cm. FPV (y = 12.828x - 6.504) was able to explain 91% of jump height variance with a standard error of the estimate of 1.66 cm. Despite that both variables resulted to be good predictors, heteroscedasticity in the differences between FPV and Vtake-off was observed (r(2) = 0.307), while the differences between Vmax and Vtake-off were homogenously distributed (r(2) = 0.071). These results suggest that Vmax is a valid tool for estimating vertical jump height in a loaded jump squat test performed in a Smith machine. Key pointsVertical jump height in the loaded jump squat can be estimated with acceptable precision from the maximum bar velocity recorded by a linear velocity transducer.The relationship between the point at which bar acceleration is less than -9.81 m·s(-2) and the real take-off is affected by the velocity of movement.Mean propulsive velocity recorded by a linear velocity transducer does not appear to be optimal to monitor ballistic exercise performance.

  10. Picosecond pulse amplification up to a peak power of 42  W by a quantum-dot tapered optical amplifier and a mode-locked laser emitting at 1.26 µm.

    PubMed

    Weber, Christoph; Drzewietzki, Lukas; Rossetti, Mattia; Xu, Tianhong; Bardella, Paolo; Simos, Hercules; Mesaritakis, Charis; Ruiz, Mike; Krestnikov, Igor; Livshits, Daniil; Krakowski, Michel; Syvridis, Dimitris; Montrosset, Ivo; Rafailov, Edik U; Elsäßer, Wolfgang; Breuer, Stefan

    2015-02-01

    We experimentally study the generation and amplification of stable picosecond-short optical pulses by a master oscillator power-amplifier configuration consisting of a monolithic quantum-dot-based gain-guided tapered laser and amplifier emitting at 1.26 µm without pulse compression, external cavity, gain- or Q-switched operation. We report a peak power of 42 W and a figure-of-merit for second-order nonlinear imaging of 38.5  W2 at a repetition rate of 16 GHz and an associated pulse width of 1.37 ps. PMID:25680056

  11. Motor Control of Landing from a Jump in Simulated Hypergravity

    PubMed Central

    Gambelli, Clément N.; Theisen, Daniel; Willems, Patrick A.; Schepens, Bénédicte

    2015-01-01

    On Earth, when landing from a counter-movement jump, muscles contract before touchdown to anticipate imminent collision with the ground and place the limbs in a proper position. This study assesses how the control of landing is modified when gravity is increased above 1 g. Hypergravity was simulated in two different ways: (1) by generating centrifugal forces during turns of an aircraft (A300) and (2) by pulling the subject downwards in the laboratory with a Subject Loading System (SLS). Eight subjects were asked to perform counter-movement jumps at 1 g on Earth and at 3 hypergravity levels (1.2, 1.4 and 1.6 g) both in A300 and with SLS. External forces applied to the body, movements of the lower limb segments and muscular activity of 6 lower limb muscles were recorded. Our results show that both in A300 and with SLS, as in 1 g: (1) the anticipation phase is present; (2) during the loading phase (from touchdown until the peak of vertical ground reaction force), lower limb muscles act like a stiff spring, whereas during the second part (from the peak of vertical ground reaction force until the return to the standing position), they act like a compliant spring associated with a damper. (3) With increasing gravity, the preparatory adjustments and the loading phase are modified whereas the second part does not change drastically. (4) The modifications are similar in A300 and with SLS, however the effect of hypergravity is accentuated in A300, probably due to altered sensory inputs. This observation suggests that otolithic information plays an important role in the control of the landing from a jump. PMID:26505472

  12. Motor Control of Landing from a Jump in Simulated Hypergravity.

    PubMed

    Gambelli, Clément N; Theisen, Daniel; Willems, Patrick A; Schepens, Bénédicte

    2015-01-01

    On Earth, when landing from a counter-movement jump, muscles contract before touchdown to anticipate imminent collision with the ground and place the limbs in a proper position. This study assesses how the control of landing is modified when gravity is increased above 1 g. Hypergravity was simulated in two different ways: (1) by generating centrifugal forces during turns of an aircraft (A300) and (2) by pulling the subject downwards in the laboratory with a Subject Loading System (SLS). Eight subjects were asked to perform counter-movement jumps at 1 g on Earth and at 3 hypergravity levels (1.2, 1.4 and 1.6 g) both in A300 and with SLS. External forces applied to the body, movements of the lower limb segments and muscular activity of 6 lower limb muscles were recorded. Our results show that both in A300 and with SLS, as in 1 g: (1) the anticipation phase is present; (2) during the loading phase (from touchdown until the peak of vertical ground reaction force), lower limb muscles act like a stiff spring, whereas during the second part (from the peak of vertical ground reaction force until the return to the standing position), they act like a compliant spring associated with a damper. (3) With increasing gravity, the preparatory adjustments and the loading phase are modified whereas the second part does not change drastically. (4) The modifications are similar in A300 and with SLS, however the effect of hypergravity is accentuated in A300, probably due to altered sensory inputs. This observation suggests that otolithic information plays an important role in the control of the landing from a jump. PMID:26505472

  13. PEAK READING VOLTMETER

    DOEpatents

    Dyer, A.L.

    1958-07-29

    An improvement in peak reading voltmeters is described, which provides for storing an electrical charge representative of the magnitude of a transient voltage pulse and thereafter measuring the stored charge, drawing oniy negligible energy from the storage element. The incoming voltage is rectified and stored in a condenser. The voltage of the capacitor is applied across a piezoelectric crystal between two parallel plates. Amy change in the voltage of the capacitor is reflected in a change in the dielectric constant of the crystal and the capacitance between a second pair of plates affixed to the crystal is altered. The latter capacitor forms part of the frequency determlning circuit of an oscillator and means is provided for indicating the frequency deviation which is a measure of the peak voltage applied to the voltmeter.

  14. Peak of Desire

    PubMed Central

    Huang, Julie Y.; Bargh, John A.

    2008-01-01

    In three studies, we explore the existence of an evolved sensitivity to the peak as consistent with the evolutionary origins of many of our basic preferences. Activating the evolved motive of mating activates related adaptive mechanisms, including a general sensitivity to cues of growth and decay associated with determining mate value in human courtship. We establish that priming the mating goal also activates as well an evaluative bias that influences how people evaluate cues of growth. Specifically, living kinds that are immature or past their prime are devalued, whereas living kinds at their peak become increasingly valued. Study 1 establishes this goal-driven effect for human stimuli indirectly related to the mating goal. Studies 2 and 3 establish that the evaluative bias produced by the active mating goal extends to living kinds but not artifacts. PMID:18578847

  15. PEAK LIMITING AMPLIFIER

    DOEpatents

    Goldsworthy, W.W.; Robinson, J.B.

    1959-03-31

    A peak voltage amplitude limiting system adapted for use with a cascade type amplifier is described. In its detailed aspects, the invention includes an amplifier having at least a first triode tube and a second triode tube, the cathode of the second tube being connected to the anode of the first tube. A peak limiter triode tube has its control grid coupled to thc anode of the second tube and its anode connected to the cathode of the second tube. The operation of the limiter is controlled by a bias voltage source connected to the control grid of the limiter tube and the output of the system is taken from the anode of the second tube.

  16. Effects of Short-Term Isokinetic Training on Standing Long-Jump Performance in Untrained Men.

    ERIC Educational Resources Information Center

    Morriss, Calvin J.; Tolfrey, Keith; Coppack, Russell J.

    2001-01-01

    Evaluated the effects of a brief isokinetic training program on quadriceps and hamstring peak torque (PT) and standing long-jump performance. Tests on 12 untrained men indicated that the brief training program was at least as effective in improving quadriceps isokinetic (but not hamstring) PT. PT gains subsequent to isokinetic resistance training…

  17. A Peak of Interest

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This approximate true-color rendering of an image taken by the panoramic camera on NASA's Mars Exploration Rover Spirit shows a view of the peak-like outcrop atop 'West Spur.' Spirit will attempt to drive up the north slope of the 'Columbia Hills' to reach similar rock outcrops and investigate the composition of the hills. The image was taken on sol 178 (July 4, 2004) using the camera's 750-, 530- and 430-nanometer filters.

  18. DIAMOND PEAK WILDERNESS, OREGON.

    USGS Publications Warehouse

    Sherrod, David R.; Moyle, Phillip R.

    1984-01-01

    No metallic mineral resources were identified during a mineral survey of the Diamond Peak Wilderness in Oregon. Cinder cones within the wilderness contain substantial cinder resources, but similar deposits that are more accessible occur outside the wilderness. The area could have geothermal resources, but available data are insufficient to evaluate their potential. Several deep holes could be drilled in areas of the High Cascades outside the wilderness, from which extrapolations of the geothermal potential of the several Cascade wilderness could be made.

  19. Random matrix definition of the boson peak

    NASA Astrophysics Data System (ADS)

    Manning, M. Lisa; Liu, Andrea J.

    2014-03-01

    The density of vibrational states for glasses and jammed solids exhibits universal features, including an excess of modes above the Debye prediction known as the boson peak, located at a frequency ω*. We show that the eigenvector statistics for modes in the boson peak are universal and emerge from the interplay of disorder and global translation invariance in the dynamical matrix. We demonstrate that a very large class of random matrices contains a band of modes with this same universal structure, and conjecture the existence of a new universality class. We characterize the eigenvector statistics as a function of coordination number, and find that one member of this new class reproduces the scaling of ω* with coordination number that is observed near the jamming transition.

  20. Instruction and Jump-Landing Kinematics in College-Aged Female Athletes Over Time

    PubMed Central

    Etnoyer, Jena; Cortes, Nelson; Ringleb, Stacie I.; Van Lunen, Bonnie L.; Onate, James A.

    2013-01-01

    Context: Instruction can be used to alter the biomechanical movement patterns associated with anterior cruciate ligament (ACL) injuries. Objective: To determine the effects of instruction through combination (self and expert) feedback or self-feedback on lower extremity kinematics during the box–drop-jump task, running–stop-jump task, and sidestep-cutting maneuver over time in college-aged female athletes. Design: Randomized controlled clinical trial. Setting: Laboratory. Patients or Other Participants: Forty-three physically active women (age = 21.47 ± 1.55 years, height = 1.65 ± 0.08 m, mass = 63.78 ± 12.00 kg) with no history of ACL or lower extremity injuries or surgery in the 2 months before the study were assigned randomly to 3 groups: self-feedback (SE), combination feedback (CB), or control (CT). Intervention(s): Participants performed a box–drop-jump task for the pretest and then received feedback about their landing mechanics. After the intervention, they performed an immediate posttest of the box–drop-jump task and a running–stop-jump transfer test. Participants returned 1 month later for a retention test of each task and a sidestep-cutting maneuver. Kinematic data were collected with an 8-camera system sampled at 500 Hz. Main Outcome Measure(s): The independent variables were feedback group (3), test time (3), and task (3). The dependent variables were knee- and hip-flexion, knee-valgus, and hip- abduction kinematics at initial contact and at peak knee flexion. Results: For the box–drop-jump task, knee- and hip-flexion angles at initial contact were greater at the posttest than at the retention test (P < .001). At peak knee flexion, hip flexion was greater at the posttest than at the pretest (P = .003) and was greater at the retention test than at the pretest (P = .04); knee valgus was greater at the retention test than at the pretest (P = .03) and posttest (P = .02). Peak knee flexion was greater for the CB than the SE group (P = .03

  1. Alterations of Vertical Jump Mechanics after a Half-Marathon Mountain Running Race.

    PubMed

    Rousanoglou, Elissavet N; Noutsos, Konstantinos; Pappas, Achilleas; Bogdanis, Gregory; Vagenas, Georgios; Bayios, Ioannis A; Boudolos, Konstantinos D

    2016-06-01

    The fatiguing effect of long-distance running has been examined in the context of a variety of parameters. However, there is scarcity of data regarding its effect on the vertical jump mechanics. The purpose of this study was to investigate the alterations of countermovement jump (CMJ) mechanics after a half-marathon mountain race. Twenty-seven runners performed CMJs before the race (Pre), immediately after the race (Post 1) and five minutes after Post 1 (Post 2). Instantaneous and ensemble-average analysis focused on jump height and, the maximum peaks and time-to-maximum peaks of: Displacement, vertical force (Fz), anterior-posterior force (Fx), Velocity and Power, in the eccentric (tECC) and concentric (tCON) phase of the jump, respectively. Repeated measures ANOVAs were used for statistical analysis (p ≤ 0.05). The jump height decrease was significant in Post 2 (-7.9%) but not in Post 1 (-4.1%). Fx and Velocity decreased significantly in both Post 1 (only in tECC) and Post 2 (both tECC and tCON). Α timing shift of the Fz peaks (earlier during tECC and later during tCON) and altered relative peak times (only in tECC) were also observed. Ensemble-average analysis revealed several time intervals of significant post-race alterations and a timing shift in the Fz-Velocity loop. An overall trend of lowered post-race jump output and mechanics was characterised by altered jump timing, restricted anterior-posterior movement and altered force-velocity relations. The specificity of mountain running fatigue to eccentric muscle work, appears to be reflected in the different time order of the post-race reductions, with the eccentric phase reductions preceding those of the concentric one. Thus, those who engage in mountain running should particularly consider downhill training to optimise eccentric muscular action. Key pointsThe 4.1% reduction of jump height immediately after the race is not statistically significantThe eccentric phase alterations of jump mechanics precede

  2. Alterations of Vertical Jump Mechanics after a Half-Marathon Mountain Running Race.

    PubMed

    Rousanoglou, Elissavet N; Noutsos, Konstantinos; Pappas, Achilleas; Bogdanis, Gregory; Vagenas, Georgios; Bayios, Ioannis A; Boudolos, Konstantinos D

    2016-06-01

    The fatiguing effect of long-distance running has been examined in the context of a variety of parameters. However, there is scarcity of data regarding its effect on the vertical jump mechanics. The purpose of this study was to investigate the alterations of countermovement jump (CMJ) mechanics after a half-marathon mountain race. Twenty-seven runners performed CMJs before the race (Pre), immediately after the race (Post 1) and five minutes after Post 1 (Post 2). Instantaneous and ensemble-average analysis focused on jump height and, the maximum peaks and time-to-maximum peaks of: Displacement, vertical force (Fz), anterior-posterior force (Fx), Velocity and Power, in the eccentric (tECC) and concentric (tCON) phase of the jump, respectively. Repeated measures ANOVAs were used for statistical analysis (p ≤ 0.05). The jump height decrease was significant in Post 2 (-7.9%) but not in Post 1 (-4.1%). Fx and Velocity decreased significantly in both Post 1 (only in tECC) and Post 2 (both tECC and tCON). Α timing shift of the Fz peaks (earlier during tECC and later during tCON) and altered relative peak times (only in tECC) were also observed. Ensemble-average analysis revealed several time intervals of significant post-race alterations and a timing shift in the Fz-Velocity loop. An overall trend of lowered post-race jump output and mechanics was characterised by altered jump timing, restricted anterior-posterior movement and altered force-velocity relations. The specificity of mountain running fatigue to eccentric muscle work, appears to be reflected in the different time order of the post-race reductions, with the eccentric phase reductions preceding those of the concentric one. Thus, those who engage in mountain running should particularly consider downhill training to optimise eccentric muscular action. Key pointsThe 4.1% reduction of jump height immediately after the race is not statistically significantThe eccentric phase alterations of jump mechanics precede

  3. Alterations of Vertical Jump Mechanics after a Half-Marathon Mountain Running Race

    PubMed Central

    Rousanoglou, Elissavet N.; Noutsos, Konstantinos; Pappas, Achilleas; Bogdanis, Gregory; Vagenas, Georgios; Bayios, Ioannis A.; Boudolos, Konstantinos D.

    2016-01-01

    The fatiguing effect of long-distance running has been examined in the context of a variety of parameters. However, there is scarcity of data regarding its effect on the vertical jump mechanics. The purpose of this study was to investigate the alterations of countermovement jump (CMJ) mechanics after a half-marathon mountain race. Twenty-seven runners performed CMJs before the race (Pre), immediately after the race (Post 1) and five minutes after Post 1 (Post 2). Instantaneous and ensemble-average analysis focused on jump height and, the maximum peaks and time-to-maximum peaks of: Displacement, vertical force (Fz), anterior-posterior force (Fx), Velocity and Power, in the eccentric (tECC) and concentric (tCON) phase of the jump, respectively. Repeated measures ANOVAs were used for statistical analysis (p ≤ 0.05). The jump height decrease was significant in Post 2 (-7.9%) but not in Post 1 (-4.1%). Fx and Velocity decreased significantly in both Post 1 (only in tECC) and Post 2 (both tECC and tCON). Α timing shift of the Fz peaks (earlier during tECC and later during tCON) and altered relative peak times (only in tECC) were also observed. Ensemble-average analysis revealed several time intervals of significant post-race alterations and a timing shift in the Fz-Velocity loop. An overall trend of lowered post-race jump output and mechanics was characterised by altered jump timing, restricted anterior-posterior movement and altered force-velocity relations. The specificity of mountain running fatigue to eccentric muscle work, appears to be reflected in the different time order of the post-race reductions, with the eccentric phase reductions preceding those of the concentric one. Thus, those who engage in mountain running should particularly consider downhill training to optimise eccentric muscular action. Key points The 4.1% reduction of jump height immediately after the race is not statistically significant The eccentric phase alterations of jump mechanics precede

  4. Injuries At Indoor Trampoline Parks Jump

    MedlinePlus

    Skip navigation U.S. National Library of Medicine Menu ... at Indoor Trampoline Parks Jump Researchers say finding shows need for safety standards To use the sharing features on this page, please enable ...

  5. Pulmonary hemorrhage resulting from bungee jumping.

    PubMed

    Manos, Daria; Hamer, Okka; Müller, Nestor L

    2007-11-01

    Pulmonary hemorrhage is a relatively common complication of blunt chest trauma. Occasionally, it may result from pulmonary barotrauma after scuba diving or from sports activities not associated with barotrauma such as long breath-hold diving. We report a case of symmetric diffuse upper lobe hemorrhage resulting from a bungee jump in a previously healthy man. Bungee jumping is an increasingly popular sport with relatively few reported injuries. To our knowledge pulmonary hemorrhage in this setting has not yet been described.

  6. Jumping mechanisms in dictyopharid planthoppers (Hemiptera, Dicytyopharidae).

    PubMed

    Burrows, Malcolm

    2014-02-01

    The jumping performance of four species of hemipterans belonging to the family Dictyopharidae, from Europe, South Africa and Australia, were analysed from high-speed images. The body shape in all was characterised by an elongated and tapering head that gave a streamlined appearance. The body size ranged from 6 to 9 mm in length and from 6 to 23 mg in mass. The hind legs were 80-90% of body length and 30-50% longer than the front legs, except in one species in which the front legs were particularly large so that all legs were of similar length. Jumping was propelled by rapid and simultaneous depression of the trochantera of both hind legs, powered by large muscles in the thorax, and was accompanied by extension of the tibiae. In the best jumps, defined as those with the fastest take-off velocity, Engela minuta accelerated in 1.2 ms to a take-off velocity of 5.8 m s(-1), which is the fastest achieved by any insect described to date. During such a jump, E. minuta experienced an acceleration of 4830 m s(-2) or 490 g, while other species in the same family experienced 225-375 g. The best jumps in all species required an energy expenditure of 76-225 μJ, a power output of 12-80 mW and exerted a force of 12-29 mN. The required power output per mass of jumping muscle ranged from 28,000 to 140,200 W kg(-1) muscle and thus greatly exceeded the maximum active contractile limit of normal muscle. To achieve such a jumping performance, these insects must be using a power amplification mechanism in a catapult-like action. It is suggested that their streamlined body shape improves jumping performance by reducing drag, which, for a small insect, can substantially affect forward momentum.

  7. Frontal plane comparison between drop jump and vertical jump: implications for the assessment of ACL risk of injury.

    PubMed

    Cesar, Guilherme M; Tomasevicz, Curtis L; Burnfield, Judith M

    2016-11-01

    The potential to use the vertical jump (VJ) to assess both athletic performance and risk of anterior cruciate ligament (ACL) injury could have widespread clinical implications since VJ is broadly used in high school, university, and professional sport settings. Although drop jump (DJ) and VJ observationally exhibit similar lower extremity mechanics, the extent to which VJ can also be used as screening tool for ACL injury risk has not been assessed. This study evaluated whether individuals exhibit similar knee joint frontal plane kinematic and kinetic patterns when performing VJs compared with DJs. Twenty-eight female collegiate athletes performed DJs and VJs. Paired t-tests indicated that peak knee valgus angles did not differ significantly between tasks (p = 0.419); however, peak knee internal adductor moments were significantly larger during the DJ vs. VJ (p < 0.001). Pearson correlations between the DJ and VJ revealed strong correlations for knee valgus angles (r = 0.93, p < 0.001) and for internal knee adductor moments (r = 0.82, p < 0.001). Our results provide grounds for investigating whether frontal plane knee mechanics during VJ can predict ACL injuries and thus can be used as an effective tool for the assessment of risk of ACL injury in female athletes. PMID:27240279

  8. Kitt Peak speckle camera

    NASA Technical Reports Server (NTRS)

    Breckinridge, J. B.; Mcalister, H. A.; Robinson, W. G.

    1979-01-01

    The speckle camera in regular use at Kitt Peak National Observatory since 1974 is described in detail. The design of the atmospheric dispersion compensation prisms, the use of film as a recording medium, the accuracy of double star measurements, and the next generation speckle camera are discussed. Photographs of double star speckle patterns with separations from 1.4 sec of arc to 4.7 sec of arc are shown to illustrate the quality of image formation with this camera, the effects of seeing on the patterns, and to illustrate the isoplanatic patch of the atmosphere.

  9. Altered astronaut lower limb and mass center kinematics in downward jumping following space flight

    NASA Technical Reports Server (NTRS)

    Newman, D. J.; Jackson, D. K.; Bloomberg, J. J.

    1997-01-01

    Astronauts exposed to the microgravity conditions encountered during space flight exhibit postural and gait instabilities upon return to earth that could impair critical postflight performance. The aim of the present study was to determine the effects of microgravity exposure on astronauts' performance of two-footed jump landings. Nine astronauts from several Space Shuttle missions were tested both preflight and postflight with a series of voluntary, two-footed downward hops from a 30-cm-high step. A video-based, three-dimensional motion-analysis system permitted calculation of body segment positions and joint angular displacements. Phase-plane plots of knee, hip, and ankle angular velocities compared with the corresponding joint angles were used to describe the lower limb kinematics during jump landings. The position of the whole-body center of mass (COM) was also estimated in the sagittal plane using an eight-segment body model. Four of nine subjects exhibited expanded phase-plane portraits postflight, with significant increases in peak joint flexion angles and flexion rates following space flight. In contrast, two subjects showed significant contractions of their phase-plane portraits postflight and three subjects showed insignificant overall changes after space flight. Analysis of the vertical COM motion generally supported the joint angle results. Subjects with expanded joint angle phase-plane portraits postflight exhibited larger downward deviations of the COM and longer times from impact to peak deflection, as well as lower upward recovery velocities. Subjects with postflight joint angle phase-plane contraction demonstrated opposite effects in the COM motion. The joint kinematics results indicated the existence of two contrasting response modes due to microgravity exposure. Most subjects exhibited "compliant" impact absorption postflight, consistent with decreased limb stiffness and damping, and a reduction in the bandwidth of the postural control system

  10. Knee Control and Jump-Landing Technique in Young Basketball and Floorball Players.

    PubMed

    Leppänen, M; Pasanen, K; Kulmala, J-P; Kujala, U M; Krosshaug, T; Kannus, P; Perttunen, J; Vasankari, T; Parkkari, J

    2016-04-01

    Poor knee alignment is associated with increased loading of the joints, ligaments and tendons, and may increase the risk of injury. The study purpose was to compare differences in knee kinematics between basketball and floorball players during a vertical drop jump (VDJ) task. We wanted to investigate whether basketball players, whose sport includes frequent jump-landings, exhibited better knee control compared with floorball players, whose sport involves less jumping. Complete data was obtained from 173 basketball and 141 floorball players. Peak knee valgus and flexion angles during the VDJ were analyzed by 3D motion analysis.Larger knee valgus angles were observed among basketball players (- 3.2°, 95%CI -4.5 to - 2.0) compared with floorball players (- 0.9°, 95%CI -2.3 to 0.6) (P=0.022). Basketball players landed with a decreased peak knee flexion angle (83.1°, 95%CI 81.4 to 84.8) compared with floorball players (86.5°, 95%CI 84.6 to 88.4) (P=0.016). There were no significant differences in height, weight or BMI between basketball and floorball players. Female athletes exhibited significantly greater valgus angles than males. This study revealed that proper knee control during jump-landing does not seem to develop in young athletes simply by playing the sport, despite the fact that jump-landings occur frequently in practice and games. PMID:26701826

  11. Vertical jumping in Galago senegalensis: the quest for an obligate mechanical power amplifier

    PubMed Central

    Aerts, P.

    1998-01-01

    Bushbabies (Galago senegalensis) are renowned for their phenomenal jumping capacity. It was postulated that mechanical power amplification must be involved. Dynamic analysis of the vertical jumps performed by two bushbabies confirms the need for a power amplifier. Inverse dynamics coupled to a geometric musculo-skeletal model were used to elucidate the precise nature of the mechanism powering maximal vertical jumps. Most of the power required for jumping is delivered by the vastus muscle-tendon systems (knee extensor). Comparison with the external joint-powers revealed, however, an important power transport from this extensor (about 65%) to the ankle and the midfoot via the bi-articular calf muscles. Peak power output likely implies elastic recoil of the complex aponeurotic system of the vastus muscle. Patterns of changes in length and tension of the muscle-tendon complex during different phases of the jump were found which provide strong evidence for substantial power amplification (times 15). It is argued here that the multiple internal connective tissue sheets and attachment structures of the well-developed bundles of the vastus muscle become increasingly stretched during preparatory crouching and throughout the extension phase, except for the last 13 ms of the push-off (i.e. when power requirements peak). Then, tension in the knee extensors abruptly falls from its maximum, allowing the necessary fast recoil of the tensed tendon structures to occur.

  12. Knee Control and Jump-Landing Technique in Young Basketball and Floorball Players.

    PubMed

    Leppänen, M; Pasanen, K; Kulmala, J-P; Kujala, U M; Krosshaug, T; Kannus, P; Perttunen, J; Vasankari, T; Parkkari, J

    2016-04-01

    Poor knee alignment is associated with increased loading of the joints, ligaments and tendons, and may increase the risk of injury. The study purpose was to compare differences in knee kinematics between basketball and floorball players during a vertical drop jump (VDJ) task. We wanted to investigate whether basketball players, whose sport includes frequent jump-landings, exhibited better knee control compared with floorball players, whose sport involves less jumping. Complete data was obtained from 173 basketball and 141 floorball players. Peak knee valgus and flexion angles during the VDJ were analyzed by 3D motion analysis.Larger knee valgus angles were observed among basketball players (- 3.2°, 95%CI -4.5 to - 2.0) compared with floorball players (- 0.9°, 95%CI -2.3 to 0.6) (P=0.022). Basketball players landed with a decreased peak knee flexion angle (83.1°, 95%CI 81.4 to 84.8) compared with floorball players (86.5°, 95%CI 84.6 to 88.4) (P=0.016). There were no significant differences in height, weight or BMI between basketball and floorball players. Female athletes exhibited significantly greater valgus angles than males. This study revealed that proper knee control during jump-landing does not seem to develop in young athletes simply by playing the sport, despite the fact that jump-landings occur frequently in practice and games.

  13. Determination of LIII subshell absorption jump ratio and jump factor of wolfram

    NASA Astrophysics Data System (ADS)

    Cengiz, Erhan; Saritas, Nuriye

    2014-04-01

    The LIII subshell absorption jump ratio and jump factor of wolfram have been measured by two different methods. In the first method the mass attenuation coefficients have been obtained by narrow beam transmission geometry to calculate the LIII subshell absorption jump ratio and jump factor. In the latter these parameters have been derived from the LIII subshell X-ray production and the photoionization cross sections of the LIII subshell and higher subshells determined by Energy Dispersive X-ray Fluorescence technique and narrow beam transmission geometry, respectively. The results obtained by both methods have been compared with theoretical and experimental values. They are in good agreement with each other.

  14. Vertical jumping performance of bonobo (Pan paniscus) suggests superior muscle properties.

    PubMed

    Scholz, Melanie N; D'Août, Kristiaan; Bobbert, Maarten F; Aerts, Peter

    2006-09-01

    Vertical jumping was used to assess muscle mechanical output in bonobos and comparisons were drawn to human jumping. Jump height, defined as the vertical displacement of the body centre of mass during the airborne phase, was determined for three bonobos of varying age and sex. All bonobos reached jump heights above 0.7 m, which greatly exceeds typical human maximal performance (0.3-0.4m). Jumps by one male bonobo (34 kg) and one human male (61.5 kg) were analysed using an inverse dynamics approach. Despite the difference in size, the mechanical output delivered by the bonobo and the human jumper during the push-off was similar: about 450 J, with a peak power output close to 3000 W. In the bonobo, most of the mechanical output was generated at the hips. To account for the mechanical output, the muscles actuating the bonobo's hips (directly and indirectly) must deliver muscle-mass-specific power and work output of 615 Wkg-1 and 92 Jkg-1, respectively. This was twice the output expected on the basis of muscle mass specific work and power in other jumping animals but seems physiologically possible. We suggest that the difference is due to a higher specific force (force per unit of cross-sectional area) in the bonobo.

  15. Vertical jumping performance of bonobo (Pan paniscus) suggests superior muscle properties

    PubMed Central

    Scholz, Melanie N; D'Août, Kristiaan; Bobbert, Maarten F; Aerts, Peter

    2006-01-01

    Vertical jumping was used to assess muscle mechanical output in bonobos and comparisons were drawn to human jumping. Jump height, defined as the vertical displacement of the body centre of mass during the airborne phase, was determined for three bonobos of varying age and sex. All bonobos reached jump heights above 0.7 m, which greatly exceeds typical human maximal performance (0.3–0.4 m). Jumps by one male bonobo (34 kg) and one human male (61.5 kg) were analysed using an inverse dynamics approach. Despite the difference in size, the mechanical output delivered by the bonobo and the human jumper during the push-off was similar: about 450 J, with a peak power output close to 3000 W. In the bonobo, most of the mechanical output was generated at the hips. To account for the mechanical output, the muscles actuating the bonobo's hips (directly and indirectly) must deliver muscle-mass-specific power and work output of 615 W kg−1 and 92 J kg−1, respectively. This was twice the output expected on the basis of muscle mass specific work and power in other jumping animals but seems physiologically possible. We suggest that the difference is due to a higher specific force (force per unit of cross-sectional area) in the bonobo. PMID:16901837

  16. Breast Support Garments are Ineffective at Reducing Breast Motion During an Aqua Aerobics Jumping Exercise

    PubMed Central

    Mills, Chris; Ayres, Bessie; Scurr, Joanna

    2015-01-01

    The buoyant forces of water during aquatic exercise may provide a form of ‘natural’ breast support and help to minimise breast motion and alleviate exercise induced breast pain. Six larger-breasted females performed standing vertical land and water-based jumps, whilst wearing three breast support conditions. Underwater video cameras recorded the motion of the trunk and right breast. Trunk and relative breast kinematics were calculated as well as exercised induced breast pain scores. Key results showed that the swimsuit and sports bra were able to significantly reduce the superioinferior breast range of motion by 0.04 and 0.05 m, respectively, and peak velocity by 0.23 and 0.33 m/s, respectively, during land-based jumping when compared to the bare-breasted condition, but were ineffective at reducing breast kinematics during water-based jumping. Furthermore, the magnitude of the swimsuit superioinferior breast range of motion during water-based jumping was significantly greater than land-based jumping (0.13 m and 0.06 m), yet there were no significant differences in exercise induced breast pain, thus contradicting previously published relationships between these parameters on land. Furthermore, the addition of an external breast support garment was able to reduce breast kinematics on land but not in water, suggesting the swimsuit and sports bras were ineffective and improvements in swimwear breast support garments may help to reduce excessive breast motion during aqua aerobic jumping exercises. PMID:26240648

  17. Breast Support Garments are Ineffective at Reducing Breast Motion During an Aqua Aerobics Jumping Exercise.

    PubMed

    Mills, Chris; Ayres, Bessie; Scurr, Joanna

    2015-06-27

    The buoyant forces of water during aquatic exercise may provide a form of 'natural' breast support and help to minimise breast motion and alleviate exercise induced breast pain. Six larger-breasted females performed standing vertical land and water-based jumps, whilst wearing three breast support conditions. Underwater video cameras recorded the motion of the trunk and right breast. Trunk and relative breast kinematics were calculated as well as exercised induced breast pain scores. Key results showed that the swimsuit and sports bra were able to significantly reduce the superioinferior breast range of motion by 0.04 and 0.05 m, respectively, and peak velocity by 0.23 and 0.33 m/s, respectively, during land-based jumping when compared to the bare-breasted condition, but were ineffective at reducing breast kinematics during water-based jumping. Furthermore, the magnitude of the swimsuit superioinferior breast range of motion during water-based jumping was significantly greater than land-based jumping (0.13 m and 0.06 m), yet there were no significant differences in exercise induced breast pain, thus contradicting previously published relationships between these parameters on land. Furthermore, the addition of an external breast support garment was able to reduce breast kinematics on land but not in water, suggesting the swimsuit and sports bras were ineffective and improvements in swimwear breast support garments may help to reduce excessive breast motion during aqua aerobic jumping exercises.

  18. The Application of Nonstandard Analysis to the Study of Inviscid Shock Wave Jump Conditions

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Baty, R. S.

    1998-01-01

    The use of conservation laws in nonconservative form for deriving shock jump conditions by Schwartz distribution theory leads to ambiguous products of generalized functions. Nonstandard analysis is used to define a class of Heaviside functions where the jump from zero to one occurs on an infinitesimal interval. These Heaviside functions differ by their microstructure near x = 0, i.e., by the nature of the rise within the infinitesimal interval it is shown that the conservation laws in nonconservative form can relate the different Heaviside functions used to define jumps in different flow parameters. There are no mathematical or logical ambiguities in the derivation of the jump conditions. An important result is that the microstructure of the Heaviside function of the jump in entropy has a positive peak greater than one within the infinitesimal interval where the jump occurs. This phenomena is known from more sophisticated studies of the structure of shock waves using viscous fluid assumption. However, the present analysis is simpler and more direct.

  19. Dynamic control of muscle stiffness and H reflex modulation during hopping and jumping in man.

    PubMed Central

    Dyhre-Poulsen, P; Simonsen, E B; Voigt, M

    1991-01-01

    1. The objective of the study was to evaluate the functional effects of reflexes on muscle mechanics during natural voluntary movements. The excitability of the H (Hoffmann) reflex was used as a measure of the excitability of the central component of the stretch reflex. 2. We recorded EMG, ground reaction forces and the H reflex in the soleus muscle in humans while landing from a downward jump, during drop jumping and during hopping. The movements were also recorded by high-speed cinematography. 3. The EMG pattern was adapted to the motor task. When landing the EMG in the soleus muscle and in the anterior tibial muscle showed preinnervation and alternating activity after touch down. When hopping there was little preinnervation in the soleus muscle, and the activity was initiated about 45 ms after touch down by a peak and continued unbroken until lift off. In the drop jumps the EMG pattern depended on the jumping style used by the subject. 4. The H reflex in the soleus muscle was strongly modulated in a manner appropriate to the requirements of the motor task. During landing from a downward jump the H reflex was low at touch down whereas while hopping it was high at touch down. During drop jumping it was variable and influenced by the jumping technique. 5. Muscle stiffness in the ankle joint was negative after touch down when landing, but always positive when hopping. 6. It is suggested that during landing the alternating EMG pattern after touch down was programmed and little influenced by reflexes. During hopping reflexes could contribute to the initial peak and the EMG during lift off. 7. The programmed EMG activity and the suppression of the H reflex while landing probably contribute to the development of the negative stiffness and change the muscles from a spring to a damping unit. PMID:1890636

  20. Understanding Vertical Jump Potentiation: A Deterministic Model.

    PubMed

    Suchomel, Timothy J; Lamont, Hugh S; Moir, Gavin L

    2016-06-01

    This review article discusses previous postactivation potentiation (PAP) literature and provides a deterministic model for vertical jump (i.e., squat jump, countermovement jump, and drop/depth jump) potentiation. There are a number of factors that must be considered when designing an effective strength-power potentiation complex (SPPC) focused on vertical jump potentiation. Sport scientists and practitioners must consider the characteristics of the subject being tested and the design of the SPPC itself. Subject characteristics that must be considered when designing an SPPC focused on vertical jump potentiation include the individual's relative strength, sex, muscle characteristics, neuromuscular characteristics, current fatigue state, and training background. Aspects of the SPPC that must be considered for vertical jump potentiation include the potentiating exercise, level and rate of muscle activation, volume load completed, the ballistic or non-ballistic nature of the potentiating exercise, and the rest interval(s) used following the potentiating exercise. Sport scientists and practitioners should design and seek SPPCs that are practical in nature regarding the equipment needed and the rest interval required for a potentiated performance. If practitioners would like to incorporate PAP as a training tool, they must take the athlete training time restrictions into account as a number of previous SPPCs have been shown to require long rest periods before potentiation can be realized. Thus, practitioners should seek SPPCs that may be effectively implemented in training and that do not require excessive rest intervals that may take away from valuable training time. Practitioners may decrease the necessary time needed to realize potentiation by improving their subject's relative strength. PMID:26712510

  1. Quantum jumps and spin dynamics of interacting atoms in a strongly coupled atom-cavity system.

    PubMed

    Khudaverdyan, M; Alt, W; Kampschulte, T; Reick, S; Thobe, A; Widera, A; Meschede, D

    2009-09-18

    We experimentally investigate the spin dynamics of one and two neutral atoms strongly coupled to a high finesse optical cavity. We observe quantum jumps between hyperfine ground states of a single atom. The interaction-induced normal-mode splitting of the atom-cavity system is measured via the atomic excitation. Moreover, we observe the mutual influence of two atoms simultaneously coupled to the cavity mode.

  2. Jump Horse Safety: Reconciling Public Debate and Australian Thoroughbred Jump Racing Data, 2012–2014

    PubMed Central

    Ruse, Karen; Davison, Aidan; Bridle, Kerry

    2015-01-01

    Simple Summary This paper documents the dynamics of Australian thoroughbred jump racing in the 2012, 2013, and 2014 seasons with the aim of informing debate about risks to horses and the future of this activity. We conclude that the safety of Australian jump racing has improved in recent years but that steeplechases are considerably riskier for horses than hurdle races. Abstract Thoroughbred jump racing sits in the spotlight of contemporary welfare and ethical debates about horse racing. In Australia, jump racing comprises hurdle and steeplechase races and has ceased in all but two states, Victoria and South Australia. This paper documents the size, geography, composition, and dynamics of Australian jump racing for the 2012, 2013, and 2014 seasons with a focus on debate about risks to horses. We found that the majority of Australian jump racing is regional, based in Victoria, and involves a small group of experienced trainers and jockeys. Australian jump horses are on average 6.4 years of age. The jump career of the majority of horses involves participating in three or less hurdle races and over one season. Almost one quarter of Australian jump horses race only once. There were ten horse fatalities in races over the study period, with an overall fatality rate of 5.1 fatalities per 1000 horses starting in a jump race (0.51%). There was significant disparity between the fatality rate for hurdles, 0.75 fatalities per 1000 starts (0.075%) and steeplechases, 14 fatalities per 1000 starts (1.4%). Safety initiatives introduced by regulators in 2010 appear to have significantly decreased risks to horses in hurdles but have had little or no effect in steeplechases. Our discussion considers these data in light of public controversy, political debate, and industry regulation related to jump horse safety. PMID:26506396

  3. The effect of static, ballistic, and proprioceptive neuromuscular facilitation stretching on vertical jump performance.

    PubMed

    Bradley, Paul S; Olsen, Peter D; Portas, Matthew D

    2007-02-01

    The purpose of this study was to compare the acute effects of different modes of stretching on vertical jump performance. Eighteen male university students (age, 24.3 +/- 3.2 years; height, 181.5 +/- 11.4 cm; body mass, 78.1 +/- 6.4 kg; mean +/- SD) completed 4 different conditions in a randomized order, on different days, interspersed by a minimum of 72 hours of rest. Each session consisted of a standard 5-minute cycle warm-up, accompanied by one of the subsequent conditions: (a) control, (b) 10-minute static stretching, (c) 10-minute ballistic stretching, or (d) 10-minute proprioceptive neuromuscular facilitation (PNF) stretching. The subjects performed 3 trials of static and countermovement jumps prior to stretching and poststretching at 5, 15, 30, 45, and 60 minutes. Vertical jump height decreased after static and PNF stretching (4.0% and 5.1%, p < 0.05) and there was a smaller decrease after ballistic stretching (2.7%, p > 0.05). However, jumping performance had fully recovered 15 minutes after all stretching conditions. In conclusion, vertical jump performance is diminished for 15 minutes if performed after static or PNF stretching, whereas ballistic stretching has little effect on jumping performance. Consequently, PNF or static stretching should not be performed immediately prior to an explosive athletic movement.

  4. Fatal falls and jumps from motor vehicles.

    PubMed Central

    Williams, A F; Goins, S E

    1981-01-01

    In 1978, 345 persons were killed in the United States in jumps and falls from non-crashing motor vehicles: 64 per cent fell; 15 per cent jumped; and it was not known whether the other 21 per cent jumped or fell. Two hundred and one people had been traveling on the exterior of vehicles, especially truck beds, and almost all of these people fell from their vehicles. The other 144 fatalities involved people in passenger compartments. Many of the falls from compartments occurred when occupants opened doors, or when vehicles changed direction. Seventy-seven per cent of those who fell from passenger compartments were males, and 44 per cent were less than five years old. Among those who jumped from vehicle compartments, 62 per cent were women and all were older than 14 years. Fatal falls and jumps from vehicles could be reduced in a variety of ways. These include legislation to prohibit travel on vehicle exteriors, designing vehicles so that doors cannot be opened when in motion, improving door designs, installing signals that provide warning if doors are not closed completely, and using occupant restraints. PMID:7468860

  5. A locust-inspired miniature jumping robot.

    PubMed

    Zaitsev, Valentin; Gvirsman, Omer; Ben Hanan, Uri; Weiss, Avi; Ayali, Amir; Kosa, Gabor

    2015-12-01

    Unmanned ground vehicles are mostly wheeled, tracked, or legged. These locomotion mechanisms have a limited ability to traverse rough terrain and obstacles that are higher than the robot's center of mass. In order to improve the mobility of small robots it is necessary to expand the variety of their motion gaits. Jumping is one of nature's solutions to the challenge of mobility in difficult terrain. The desert locust is the model for the presented bio-inspired design of a jumping mechanism for a small mobile robot. The basic mechanism is similar to that of the semilunar process in the hind legs of the locust, and is based on the cocking of a torsional spring by wrapping a tendon-like wire around the shaft of a miniature motor. In this study we present the jumping mechanism design, and the manufacturing and performance analysis of two demonstrator prototypes. The most advanced jumping robot demonstrator is power autonomous, weighs 23 gr, and is capable of jumping to a height of 3.35 m, covering a distance of 1.37 m. PMID:26602094

  6. The Physics of Equestrian Show Jumping

    NASA Astrophysics Data System (ADS)

    Stinner, Art

    2014-04-01

    This article discusses the kinematics and dynamics of equestrian show jumping. For some time I have attended a series of show jumping events at Spruce Meadows, an international equestrian center near Calgary, Alberta, often referred to as the "Wimbledon of equestrian jumping." I have always had a desire to write an article such as this one, but when I searched the Internet for information and looked at YouTube presentations, I could only find simplistic references to Newton's laws and the conservation of mechanical energy principle. Nowhere could I find detailed calculations. On the other hand, there were several biomechanical articles with empirical reports of the results of kinetic and dynamic investigations of show jumping using high-speed digital cameras and force plates. They summarize their results in tables that give information about the motion of a horse jumping over high fences (1.40 m) and the magnitudes of the forces encountered when landing. However, they do not describe the physics of these results.

  7. A locust-inspired miniature jumping robot.

    PubMed

    Zaitsev, Valentin; Gvirsman, Omer; Ben Hanan, Uri; Weiss, Avi; Ayali, Amir; Kosa, Gabor

    2015-11-25

    Unmanned ground vehicles are mostly wheeled, tracked, or legged. These locomotion mechanisms have a limited ability to traverse rough terrain and obstacles that are higher than the robot's center of mass. In order to improve the mobility of small robots it is necessary to expand the variety of their motion gaits. Jumping is one of nature's solutions to the challenge of mobility in difficult terrain. The desert locust is the model for the presented bio-inspired design of a jumping mechanism for a small mobile robot. The basic mechanism is similar to that of the semilunar process in the hind legs of the locust, and is based on the cocking of a torsional spring by wrapping a tendon-like wire around the shaft of a miniature motor. In this study we present the jumping mechanism design, and the manufacturing and performance analysis of two demonstrator prototypes. The most advanced jumping robot demonstrator is power autonomous, weighs 23 gr, and is capable of jumping to a height of 3.35 m, covering a distance of 1.37 m.

  8. Charmonium's K2 Peak

    SciTech Connect

    Llanes-Estrada, Felipe J.; /Madrid U.

    2005-07-11

    The newly reported Y(4260) becomes the second most massive state in the charmonium family. We argue that it displaces the {psi}(4415) as the (largely) 4s vector charmonium state, recall s-d wave interference to explain the lack of a signal in e{sup -}e{sup +} {yields} hadrons and suggest some further study avenues that can exclude exotic meson assignments. The absence of a J/{psi} KK mode can be understood, beyond phase space suppression, to be a consequence of chiral symmetry. We also provide a model calculation in this sector showing that, although forcing the fit somewhat (which suggests a small sea quark wavefunction component), the state can be incorporated in a standard scheme.

  9. The effect of wind on jumping distance in ski jumping--fairness assessed.

    PubMed

    Virmavirta, Mikko; Kivekäs, Juha

    2012-09-01

    The special wind compensation system recently adopted by Fédération Internationale de Ski (FIS; International Ski Federation) to consider the effects of changing wind conditions has caused some controversy. Here, the effect of wind on jumping distance in ski jumping was studied by means of computer simulation and compared with the wind compensation factors used by FIS during the World Cup season 2009/2010. The results showed clearly that the effect of increasing head/tail wind on jumping distance is not linear: +17.4 m/-29.1 m, respectively, for a wind speed of 3 m/s. The linear formula used in the trial period of the wind compensation system was found to be appropriate only for a limited range of jumping distances as the gradient of the landing slope slows down the rate of distance change in long jumps.

  10. Popcorn: critical temperature, jump and sound

    PubMed Central

    Virot, Emmanuel; Ponomarenko, Alexandre

    2015-01-01

    Popcorn bursts open, jumps and emits a ‘pop’ sound in some hundredths of a second. The physical origin of these three observations remains unclear in the literature. We show that the critical temperature 180°C at which almost all of popcorn pops is consistent with an elementary pressure vessel scenario. We observe that popcorn jumps with a ‘leg’ of starch which is compressed on the ground. As a result, popcorn is midway between two categories of moving systems: explosive plants using fracture mechanisms and jumping animals using muscles. By synchronizing video recordings with acoustic recordings, we propose that the familiar ‘pop’ sound of the popcorn is caused by the release of water vapour. PMID:25673298

  11. Popcorn: critical temperature, jump and sound.

    PubMed

    Virot, Emmanuel; Ponomarenko, Alexandre

    2015-03-01

    Popcorn bursts open, jumps and emits a 'pop' sound in some hundredths of a second. The physical origin of these three observations remains unclear in the literature. We show that the critical temperature 180°C at which almost all of popcorn pops is consistent with an elementary pressure vessel scenario. We observe that popcorn jumps with a 'leg' of starch which is compressed on the ground. As a result, popcorn is midway between two categories of moving systems: explosive plants using fracture mechanisms and jumping animals using muscles. By synchronizing video recordings with acoustic recordings, we propose that the familiar 'pop' sound of the popcorn is caused by the release of water vapour. PMID:25673298

  12. Stochastic approach to modelling of near-periodic jumping loads

    NASA Astrophysics Data System (ADS)

    Racic, V.; Pavic, A.

    2010-11-01

    A mathematical model has been developed to generate stochastic synthetic vertical force signals induced by a single person jumping. The model is based on a unique database of experimentally measured individual jumping loads which has the most extensive range of possible jumping frequencies. The ability to replicate many of the temporal and spectral features of real jumping loads gives this model a definite advantage over the conventional half-sine models coupled with Fourier series analysis. This includes modelling of the omnipresent lack of symmetry of individual jumping pulses and jump-by-jump variations in amplitudes and timing. The model therefore belongs to a new generation of synthetic narrow band jumping loads which simulate reality better. The proposed mathematical concept for characterisation of near-periodic jumping pulses may be utilised in vibration serviceability assessment of civil engineering assembly structures, such as grandstands, spectator galleries, footbridges and concert or gym floors, to estimate more realistically dynamic structural response due to people jumping.

  13. Sunset over Twin Peaks

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image was taken by the Imager for Mars Pathfinder (IMP) about one minute after sunset on Mars on Sol 21. The prominent hills dubbed 'Twin Peaks' form a dark silhouette at the horizon, while the setting sun casts a pink glow over the darkening sky. The image was taken as part of a twilight study which indicates how the brightness of the sky fades with time after sunset. Scientists found that the sky stays bright for up to two hours after sunset, indicating that Martian dust extends very high into the atmosphere.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  14. Recent Advancements in Lightning Jump Algorithm Work

    NASA Technical Reports Server (NTRS)

    Schultz, Christopher J.; Petersen, Walter A.; Carey, Lawrence D.

    2010-01-01

    In the past year, the primary objectives were to show the usefulness of total lightning as compared to traditional cloud-to-ground (CG) networks, test the lightning jump algorithm configurations in other regions of the country, increase the number of thunderstorms within our thunderstorm database, and to pinpoint environments that could prove difficult for any lightning jump configuration. A total of 561 thunderstorms have been examined in the past year (409 non-severe, 152 severe) from four regions of the country (North Alabama, Washington D.C., High Plains of CO/KS, and Oklahoma). Results continue to indicate that the 2 lightning jump algorithm configuration holds the most promise in terms of prospective operational lightning jump algorithms, with a probability of detection (POD) at 81%, a false alarm rate (FAR) of 45%, a critical success index (CSI) of 49% and a Heidke Skill Score (HSS) of 0.66. The second best performing algorithm configuration was the Threshold 4 algorithm, which had a POD of 72%, FAR of 51%, a CSI of 41% and an HSS of 0.58. Because a more complex algorithm configuration shows the most promise in terms of prospective operational lightning jump algorithms, accurate thunderstorm cell tracking work must be undertaken to track lightning trends on an individual thunderstorm basis over time. While these numbers for the 2 configuration are impressive, the algorithm does have its weaknesses. Specifically, low-topped and tropical cyclone thunderstorm environments are present issues for the 2 lightning jump algorithm, because of the suppressed vertical depth impact on overall flash counts (i.e., a relative dearth in lightning). For example, in a sample of 120 thunderstorms from northern Alabama that contained 72 missed events by the 2 algorithm 36% of the misses were associated with these two environments (17 storms).

  15. Spectral sensitivity in jumping spiders (Araneae, Salticidae).

    PubMed

    Peaslee, A G; Wilson, G

    1989-01-01

    1. We report here a psychophysical technique for studying the spectral sensitivity of jumping spiders (family Salticidae), based on a newly discovered oculomotor reflex. 2. Our results, obtained from Maevia inclemens (Salticidae), are compatible with electrophysiological findings of retinal cells maximally sensitive in the green and ultraviolet regions of the spectrum. 3. Sensitivity to longer wavelengths (greater than 650 nm) has been controversial. In our study jumping spiders are shown to have a broad spectral sensitivity function extending from the ultraviolet (330 nm) to the deep red (700 nm).

  16. Performance analysis of jump-gliding locomotion for miniature robotics.

    PubMed

    Vidyasagar, A; Zufferey, Jean-Christohphe; Floreano, Dario; Kovač, M

    2015-04-01

    Recent work suggests that jumping locomotion in combination with a gliding phase can be used as an effective mobility principle in robotics. Compared to pure jumping without a gliding phase, the potential benefits of hybrid jump-gliding locomotion includes the ability to extend the distance travelled and reduce the potentially damaging impact forces upon landing. This publication evaluates the performance of jump-gliding locomotion and provides models for the analysis of the relevant dynamics of flight. It also defines a jump-gliding envelope that encompasses the range that can be achieved with jump-gliding robots and that can be used to evaluate the performance and improvement potential of jump-gliding robots. We present first a planar dynamic model and then a simplified closed form model, which allow for quantification of the distance travelled and the impact energy on landing. In order to validate the prediction of these models, we validate the model with experiments using a novel jump-gliding robot, named the 'EPFL jump-glider'. It has a mass of 16.5 g and is able to perform jumps from elevated positions, perform steered gliding flight, land safely and traverse on the ground by repetitive jumping. The experiments indicate that the developed jump-gliding model fits very well with the measured flight data using the EPFL jump-glider, confirming the benefits of jump-gliding locomotion to mobile robotics. The jump-glide envelope considerations indicate that the EPFL jump-glider, when traversing from a 2 m height, reaches 74.3% of optimal jump-gliding distance compared to pure jumping without a gliding phase which only reaches 33.4% of the optimal jump-gliding distance. Methods of further improving flight performance based on the models and inspiration from biological systems are presented providing mechanical design pathways to future jump-gliding robot designs. PMID:25811417

  17. Performance analysis of jump-gliding locomotion for miniature robotics.

    PubMed

    Vidyasagar, A; Zufferey, Jean-Christohphe; Floreano, Dario; Kovač, M

    2015-03-26

    Recent work suggests that jumping locomotion in combination with a gliding phase can be used as an effective mobility principle in robotics. Compared to pure jumping without a gliding phase, the potential benefits of hybrid jump-gliding locomotion includes the ability to extend the distance travelled and reduce the potentially damaging impact forces upon landing. This publication evaluates the performance of jump-gliding locomotion and provides models for the analysis of the relevant dynamics of flight. It also defines a jump-gliding envelope that encompasses the range that can be achieved with jump-gliding robots and that can be used to evaluate the performance and improvement potential of jump-gliding robots. We present first a planar dynamic model and then a simplified closed form model, which allow for quantification of the distance travelled and the impact energy on landing. In order to validate the prediction of these models, we validate the model with experiments using a novel jump-gliding robot, named the 'EPFL jump-glider'. It has a mass of 16.5 g and is able to perform jumps from elevated positions, perform steered gliding flight, land safely and traverse on the ground by repetitive jumping. The experiments indicate that the developed jump-gliding model fits very well with the measured flight data using the EPFL jump-glider, confirming the benefits of jump-gliding locomotion to mobile robotics. The jump-glide envelope considerations indicate that the EPFL jump-glider, when traversing from a 2 m height, reaches 74.3% of optimal jump-gliding distance compared to pure jumping without a gliding phase which only reaches 33.4% of the optimal jump-gliding distance. Methods of further improving flight performance based on the models and inspiration from biological systems are presented providing mechanical design pathways to future jump-gliding robot designs.

  18. The effects of passive leg press training on jumping performance, speed, and muscle power.

    PubMed

    Liu, Chiang; Chen, Chuan-Shou; Ho, Wei-Hua; Füle, Róbert János; Chung, Pao-Hung; Shiang, Tzyy-Yuang

    2013-06-01

    Passive leg press (PLP) training was developed based on the concepts of the stretch-shortening cycle (SSC) and the benefits of high muscle contraction velocity. Passive leg press training enables lower limb muscle groups to apply a maximum downward force against a platform moved up and down at high frequency by an electric motor. Thus, these muscle groups accomplished both concentric and eccentric isokinetic contractions in a passive, rapid, and repetitive manner. This study investigates the effects of 10 weeks of PLP training at high and low movement frequencies have on jumping performance, speed, and muscle power. The authors selected 30 college students who had not performed systematic resistance training in the previous 6 months, including traditional resistance training at a squat frequency of 0.5 Hz, PLP training at a low frequency of 0.5 Hz, and PLP training at a high frequency of 2.5 Hz, and randomly divided them into 3 groups (n = 10). The participants' vertical jump, drop jump, 30-m sprint performance, explosive force, and SSC efficiency were tested under the same experimental procedures at pre- and post-training. Results reveal that high-frequency PLP training significantly increased participants' vertical jump, drop jump, 30-m sprint performance, instantaneous force, peak power, and SSC efficiency (p < 0.05). Additionally, their change rate abilities were substantially superior to those of the traditional resistance training (p < 0.05). The low-frequency PLP training significantly increased participants' vertical jump, 30-m sprint performance, instantaneous force, and peak power (p < 0.05). However, traditional resistance training only increased participants' 30-m sprint performance and peak power (p < 0.05). The findings suggest that jump performance, speed, and muscle power significantly improved after 10 weeks of PLP training at high movement frequency. A PLP training machine powered by an electrical motor enables muscles of the lower extremities to

  19. The epidemiology of injury in bungee jumping, BASE jumping, and skydiving.

    PubMed

    Søreide, Kjetil

    2012-01-01

    Knowledge regarding epidemiology of injury is of benefit to injury prevention of activities associated with high risk. As relatively 'young' activities, the investigation of injuries and deaths related in extreme sports such as bungee jumping and BASE jumping is relatively sparse. Studies evaluating risk in civilian and military skydiving activities have been reported over the past decades, but technique and equipment has changed. Risk with bungee jumping is only sporadically reported in the literature, most often in connection with eye injuries, but also rare events of serious, life-threatening injuries and even death. BASE is an acronym for Building, Antenna, Span, Earth, which represents the fixed objects from which jumps are made. Estimated risk in BASE jumping for any injury (independent of severity grade) is 0.4-0.5%, which as 5- to 8-fold higher than skydiving. Typically, men outnumber women in a ratio of 10:1 in both injuries and case fatality rates. Age is frequently reported to range from 30 to 40 years. Notably, differences in training and environmental locations exist between recreational skydiving and BASE jumping. As BASE jumps are made from lower altitudes than skydives, jumpers generally fall at lower speeds, have far less aerodynamic control, and may lose flying stability. Yet, typical injuries include a bruised or sprained ankle during landing. Protective gear including helmet and pads may help to prevent such injuries, while more complex knowledge of human factors, environment and training are needed to prevent fatal injuries. PMID:22824842

  20. Ten minutes of dynamic stretching is sufficient to potentiate vertical jump performance characteristics.

    PubMed

    Turki, Olfa; Chaouachi, Anis; Drinkwater, Eric J; Chtara, Moktar; Chamari, Karim; Amri, Mohamed; Behm, David G

    2011-09-01

    The current literature recommends dynamic rather than static stretching for the athletic warm-up. Dynamic stretching and various conditioning stimuli are used to induce potentiation in subsequent athletic performance. However, it is unknown as to which type of activity in conjunction with dynamic stretching within a warm-up provides the optimal potentiation of vertical jump performance. It was the objective of the study to examine the possible potentiating effect of various types of conditioning stimuli with dynamic stretching. Twenty athletes participated in 6 protocols. All the experimental protocols included 10 minutes of dynamic stretching. After the dynamic stretching, the subjects performed a (a) concentric (DS/CON): 3 sets of 3 repetition maximum deadlift exercise; (b) isometric (DS/ISOM): 3 sets of 3-second maximum voluntary contraction back squats; (c) plyometric (DS/PLYO): 3 sets of 3 tuck jumps; (d) eccentric (DS/ECC): 3 modified drop jumps; (e) dynamic stretching only (DS), and (f) control protocol (CON). Before the intervention and at recovery periods of 15 seconds, 4, 8, 12, 16, and 20 minutes, the participants performed 1-2 maximal countermovement jumps. The DS and DS/CON protocols generally had a 95-99% likelihood of exceeding the smallest worthwhile change for vertical jump height, peak power, velocity and force. However, the addition of the deadlift to the DS did not augment the potentiating effect. Time-to-peak potentiation was variable between individuals but was most consistent between 3 and 5 minutes. Thus, the volume and the intensity associated with 10 minutes of dynamic stretching were sufficient to provide the potentiation of vertical jump characteristics. Additional conditioning activities may promote fatigue processes, which do not permit further potentiation. PMID:21792071

  1. Kinematic, Dynamic and EMG Analysis of Drop Jumps in Female Elite Triple Jump Athletes.

    PubMed

    Čoh, Milan; Matjačić, Zlatko; Peharec, Stanislav; Bačić, Petar; Rausavjević, Nikola; Maćkala, Krzysztof

    2015-07-01

    The purpose of the study was a biodynamic analysis of the kinematic, dynamic and EMG parameters of two types of drop jumps (heights of 25 cm and 45 cm). The sample of measured subjects included four female elite triple jump athletes, with their best results varying from 13.33 to 15.06 meters. The kinematic and dynamic parameters were calculated with the use of a bipedal tensiometric force plate, which was synchronized with nine CCD cameras. A 16-channel electromyography (BTS Pocket, Myolab) was used to analyze the EMG activation of the following muscles: m. erector spinae, m. gluteus, m. rectus femoris, m. vastus medialis, m. vastus lateralis, m. biceps femoris, m. soleus and m. gastrocnemius medialis. In the drop jump from a 25 cm height, the measured subjects achieved the following results: height of jump 43.37 ± 5.39 cm and ground reaction force 2770 ± 411 N. In comparison, results for the drop jump from a 45 cm height were: height of jump 45.22 ± 4.65 cm and ground reaction force 2947 ± 366 N. Vertical velocity of the take-off in the 25 cm drop jump was 2.77 ± 0.19 ms(-1) and in the 45 cm drop jump it was 2.86 ± 0.15 ms(-1). Observation of the EMG activation revealed the proximal to distal principle of muscle activation at work in both types of drop jumps. In the first phase of the concentric phase the most active muscles were m. gluteus maximus and m. rectus femoris. The greatest activity of m. gastrocnemius medialis and m. soleus was noticed in the last third of the take-off action. Significantly high EMG activation of m. vastus medialis and m. vastus lateralis was already shown in the flight phase prior to the feet making contact with the ground. PMID:26434025

  2. The walk and jump of Equisetum spores.

    PubMed

    Marmottant, Philippe; Ponomarenko, Alexandre; Bienaimé, Diane

    2013-11-01

    Equisetum plants (horsetails) reproduce by producing tiny spherical spores that are typically 50 µm in diameter. The spores have four elaters, which are flexible ribbon-like appendages that are initially wrapped around the main spore body and that deploy upon drying or fold back in humid air. If elaters are believed to help dispersal, the exact mechanism for spore motion remains unclear in the literature. In this manuscript, we present observations of the 'walks' and 'jumps' of Equisetum spores, which are novel types of spore locomotion mechanisms compared to the ones of other spores. Walks are driven by humidity cycles, each cycle inducing a small step in a random direction. The dispersal range from the walk is limited, but the walk provides key steps to either exit the sporangium or to reorient and refold. Jumps occur when the spores suddenly thrust themselves after being tightly folded. They result in a very efficient dispersal: even spores jumping from the ground can catch the wind again, whereas non-jumping spores stay on the ground. The understanding of these movements, which are solely driven by humidity variations, conveys biomimetic inspiration for a new class of self-propelled objects. PMID:24026816

  3. Jumping Genes: The Transposable DNAs of Bacteria.

    ERIC Educational Resources Information Center

    Berg, Claire M.; Berg, Douglas E.

    1984-01-01

    Transposons are transposable elements that carry genes for antibiotic resistance. Provides background information on the structure and organization of these "jumping genes" in bacteria. Also describes the use of transposons in tagging genes and lists pertinent references and resource materials. (DH)

  4. Safety assessment of jumps in ski racing.

    PubMed

    Schindelwig, K; Reichl, W; Kaps, P; Mössner, M; Nachbauer, W

    2015-12-01

    The influence of important parameters on the flight trajectory for jumps in downhill World Cup races was investigated. To quantify the impact injury risk at landing, the parameter equivalent landing height (ELH) was introduced, which considered a variable slope inclination during the landing movement. Altogether, 145 runs at four different jumps in World Cup races and trainings were recorded and analyzed. A simulation model was developed to predict the flight phase of the skier. Drag and lift areas were selected by parameter identification to fit the simulation trajectory to the two-dimensional data from the video analysis. The maximum values of the ELH which can be absorbed with muscle force was taken from the study of Minetti et al. for elite female and male ski racers. A sensitivity analysis based on the four jumps showed that ELH is mainly influenced by takeoff angle, takeoff speed, and the steepness of the landing surface. With the help of the developed simulation software, it should be possible to predict the ELH for jumps in advance. In case of an excessive ELH, improvements can be made by changing the takeoff inclination or the approach speed. PMID:25123506

  5. Jumping on the Social Media Bandwagon

    ERIC Educational Resources Information Center

    Blakeslee, Lori

    2012-01-01

    Should a school district jump on the social media bandwagon? Yes! Social media provide a low-cost way to communicate school district priorities, influence decision makers, and tell its story without filters. Equally important, social media are where constituents are spending a lot of their time. With more than 800 million members, Facebook is an…

  6. Jumping the Alligators in the Ditch.

    ERIC Educational Resources Information Center

    Barber, Rims

    Poor black young people in rural Mississippi contemplate their schooling with the same feelings as their friends who dare to jump the local ditches filled with alligators: the odds are against escaping the alligators, and the advantages of getting to the far side are not very apparent. Living in conditions of extreme poverty, these young people…

  7. Neurobiology: jumping spiders getting on board.

    PubMed

    Heinze, Stanley

    2014-11-01

    A new technique has overcome decades of failure to allow, for the first time, electrophysiological access to the brains of jumping spiders, a group of animals renowned for generating highly complex, seemingly vertebrate-like behavior from their tiny arthropod brains. PMID:25517367

  8. Understanding the Physics of Bungee Jumping

    ERIC Educational Resources Information Center

    Heck, Andre; Uylings, Peter; Kedzierska, Ewa

    2010-01-01

    Changing mass phenomena like the motion of a falling chain, the behaviour of a falling elastic bar or spring, and the motion of a bungee jumper surprise many a physicist. In this article we discuss the first phase of bungee jumping, when the bungee jumper falls, but the bungee rope is still slack. In instructional material this phase is often…

  9. Jump rates for surface diffusion of large molecules from first principles

    SciTech Connect

    Shea, Patrick Kreuzer, Hans Jürgen

    2015-04-21

    We apply a recently developed stochastic model for the surface diffusion of large molecules to calculate jump rates for 9,10-dithioanthracene on a Cu(111) surface. The necessary input parameters for the stochastic model are calculated from first principles using density functional theory (DFT). We find that the inclusion of van der Waals corrections to the DFT energies is critical to obtain good agreement with experimental results for the adsorption geometry and energy barrier for diffusion. The predictions for jump rates in our model are in excellent agreement with measured values and show a marked improvement over transition state theory (TST). We find that the jump rate prefactor is reduced by an order of magnitude from the TST estimate due to frictional damping resulting from energy exchange with surface phonons, as well as a rotational mode of the diffusing molecule.

  10. Network-based event-triggered filtering for Markovian jump systems

    NASA Astrophysics Data System (ADS)

    Wang, Huijiao; Shi, Peng; Agarwal, Ramesh K.

    2016-06-01

    The problem of event-triggered H∞ filtering for networked Markovian jump system is studied in this paper. A dynamic discrete event-triggered scheme is designed to choose the transmitted data for different Markovian jumping modes. The time-delay modelling method is employed to describe the event-triggered scheme and the network-related behaviour, such as transmission delay, data package dropout and disorder, into a networked Markovian time-delay jump system. Furthermore, a sufficient condition is derived to guarantee that the resulting filtering error system is stochastically stable with a prescribed performance index. A co-design method for the H∞ filter and the event-triggered scheme is then proposed. The effectiveness and potential of the theoretic results obtained are illustrated by a simulation example.

  11. Jumping Jupiter Can Explain Mercury’s Orbit

    NASA Astrophysics Data System (ADS)

    Roig, Fernando; Nesvorný, David; DeSouza, Sandro Ricardo

    2016-04-01

    The orbit of Mercury has large values of eccentricity and inclination that cannot be easily explained if this planet formed on a circular and coplanar orbit. Here, we study the evolution of Mercury’s orbit during the instability related to the migration of the giant planets in the framework of the jumping-Jupiter model. We found that some instability models are able to produce the correct values of Mercury’s eccentricity and inclination, provided that relativistic effects are included in the precession of Mercury’s perihelion. The orbital excitation is driven by the fast change of the normal oscillation modes of the system corresponding to the perihelion precession of Jupiter (for the eccentricity) and the nodal regression of Uranus (for the inclination).

  12. Mantises exchange angular momentum between three rotating body parts to jump precisely to targets.

    PubMed

    Burrows, Malcolm; Cullen, Darron A; Dorosenko, Marina; Sutton, Gregory P

    2015-03-16

    Flightless animals have evolved diverse mechanisms to control their movements in air, whether falling with gravity or propelling against it. Many insects jump as a primary mode of locomotion and must therefore precisely control the large torques generated during takeoff. For example, to minimize spin (angular momentum of the body) at takeoff, plant-sucking bugs apply large equal and opposite torques from two propulsive legs [1]. Interacting gear wheels have evolved in some to give precise synchronization of these legs [2, 3]. Once airborne, as a result of either jumping or falling, further adjustments may be needed to control trajectory and orient the body for landing. Tails are used by geckos to control pitch [4, 5] and by Anolis lizards to alter direction [6, 7]. When falling, cats rotate their body [8], while aphids [9] and ants [10, 11] manipulate wind resistance against their legs and thorax. Falling is always downward, but targeted jumping must achieve many possible desired trajectories. We show that when making targeted jumps, juvenile wingless mantises first rotated their abdomen about the thorax to adjust the center of mass and thus regulate spin at takeoff. Once airborne, they then smoothly and sequentially transferred angular momentum in four stages between the jointed abdomen, the two raptorial front legs, and the two propulsive hind legs to produce a controlled jump with a precise landing. Experimentally impairing abdominal movements reduced the overall rotation so that the mantis either failed to grasp the target or crashed into it head first. PMID:25754643

  13. Mantises exchange angular momentum between three rotating body parts to jump precisely to targets.

    PubMed

    Burrows, Malcolm; Cullen, Darron A; Dorosenko, Marina; Sutton, Gregory P

    2015-03-16

    Flightless animals have evolved diverse mechanisms to control their movements in air, whether falling with gravity or propelling against it. Many insects jump as a primary mode of locomotion and must therefore precisely control the large torques generated during takeoff. For example, to minimize spin (angular momentum of the body) at takeoff, plant-sucking bugs apply large equal and opposite torques from two propulsive legs [1]. Interacting gear wheels have evolved in some to give precise synchronization of these legs [2, 3]. Once airborne, as a result of either jumping or falling, further adjustments may be needed to control trajectory and orient the body for landing. Tails are used by geckos to control pitch [4, 5] and by Anolis lizards to alter direction [6, 7]. When falling, cats rotate their body [8], while aphids [9] and ants [10, 11] manipulate wind resistance against their legs and thorax. Falling is always downward, but targeted jumping must achieve many possible desired trajectories. We show that when making targeted jumps, juvenile wingless mantises first rotated their abdomen about the thorax to adjust the center of mass and thus regulate spin at takeoff. Once airborne, they then smoothly and sequentially transferred angular momentum in four stages between the jointed abdomen, the two raptorial front legs, and the two propulsive hind legs to produce a controlled jump with a precise landing. Experimentally impairing abdominal movements reduced the overall rotation so that the mantis either failed to grasp the target or crashed into it head first.

  14. Correlations between sagittal plane kinematics and landing impact force during single-leg lateral jump-landings

    PubMed Central

    Aizawa, Junya; Ohji, Shunsuke; Koga, Hideyuki; Masuda, Tadashi; Yagishita, Kazuyoshi

    2016-01-01

    [Purpose] The correlations of peak vertical ground reaction force and sagittal angles during single-leg lateral jump-landing with noncontact anterior cruciate ligament injury remain unknown. This study aimed to clarify the correlations between kinematics and impact force during lateral jump-landing. [Subjects and Methods] Twenty active males were included in the analysis. A sagittal-view movie camera and force plate were time synchronized. Trunk and lower extremity sagittal angles were measured 100 ms before initial contact and at peak vertical ground reaction force. Peak vertical ground reaction force, time between initial contact and peak vertical ground reaction force, and loading rate were calculated. [Results] The mean sagittal angle was 40.7° ± 7.7° for knee flexion during the flight phase and 16.4° ± 6.3° for pelvic anterior inclination during the landing phase. The mean peak vertical ground reaction force was four times the body weight. The median time to peak vertical ground reaction force was 63.8 ms. The knee flexion during the flight phase and pelvic anterior inclination angles during the landing phase were related to the peak vertical ground reaction force. [Conclusion] Increasing knee flexion and decreasing pelvic anterior inclination might reduce the impact during single-leg lateral jump-landing.

  15. Correlations between sagittal plane kinematics and landing impact force during single-leg lateral jump-landings.

    PubMed

    Aizawa, Junya; Ohji, Shunsuke; Koga, Hideyuki; Masuda, Tadashi; Yagishita, Kazuyoshi

    2016-08-01

    [Purpose] The correlations of peak vertical ground reaction force and sagittal angles during single-leg lateral jump-landing with noncontact anterior cruciate ligament injury remain unknown. This study aimed to clarify the correlations between kinematics and impact force during lateral jump-landing. [Subjects and Methods] Twenty active males were included in the analysis. A sagittal-view movie camera and force plate were time synchronized. Trunk and lower extremity sagittal angles were measured 100 ms before initial contact and at peak vertical ground reaction force. Peak vertical ground reaction force, time between initial contact and peak vertical ground reaction force, and loading rate were calculated. [Results] The mean sagittal angle was 40.7° ± 7.7° for knee flexion during the flight phase and 16.4° ± 6.3° for pelvic anterior inclination during the landing phase. The mean peak vertical ground reaction force was four times the body weight. The median time to peak vertical ground reaction force was 63.8 ms. The knee flexion during the flight phase and pelvic anterior inclination angles during the landing phase were related to the peak vertical ground reaction force. [Conclusion] Increasing knee flexion and decreasing pelvic anterior inclination might reduce the impact during single-leg lateral jump-landing.

  16. Correlations between sagittal plane kinematics and landing impact force during single-leg lateral jump-landings.

    PubMed

    Aizawa, Junya; Ohji, Shunsuke; Koga, Hideyuki; Masuda, Tadashi; Yagishita, Kazuyoshi

    2016-08-01

    [Purpose] The correlations of peak vertical ground reaction force and sagittal angles during single-leg lateral jump-landing with noncontact anterior cruciate ligament injury remain unknown. This study aimed to clarify the correlations between kinematics and impact force during lateral jump-landing. [Subjects and Methods] Twenty active males were included in the analysis. A sagittal-view movie camera and force plate were time synchronized. Trunk and lower extremity sagittal angles were measured 100 ms before initial contact and at peak vertical ground reaction force. Peak vertical ground reaction force, time between initial contact and peak vertical ground reaction force, and loading rate were calculated. [Results] The mean sagittal angle was 40.7° ± 7.7° for knee flexion during the flight phase and 16.4° ± 6.3° for pelvic anterior inclination during the landing phase. The mean peak vertical ground reaction force was four times the body weight. The median time to peak vertical ground reaction force was 63.8 ms. The knee flexion during the flight phase and pelvic anterior inclination angles during the landing phase were related to the peak vertical ground reaction force. [Conclusion] Increasing knee flexion and decreasing pelvic anterior inclination might reduce the impact during single-leg lateral jump-landing. PMID:27630422

  17. Correlations between sagittal plane kinematics and landing impact force during single-leg lateral jump-landings

    PubMed Central

    Aizawa, Junya; Ohji, Shunsuke; Koga, Hideyuki; Masuda, Tadashi; Yagishita, Kazuyoshi

    2016-01-01

    [Purpose] The correlations of peak vertical ground reaction force and sagittal angles during single-leg lateral jump-landing with noncontact anterior cruciate ligament injury remain unknown. This study aimed to clarify the correlations between kinematics and impact force during lateral jump-landing. [Subjects and Methods] Twenty active males were included in the analysis. A sagittal-view movie camera and force plate were time synchronized. Trunk and lower extremity sagittal angles were measured 100 ms before initial contact and at peak vertical ground reaction force. Peak vertical ground reaction force, time between initial contact and peak vertical ground reaction force, and loading rate were calculated. [Results] The mean sagittal angle was 40.7° ± 7.7° for knee flexion during the flight phase and 16.4° ± 6.3° for pelvic anterior inclination during the landing phase. The mean peak vertical ground reaction force was four times the body weight. The median time to peak vertical ground reaction force was 63.8 ms. The knee flexion during the flight phase and pelvic anterior inclination angles during the landing phase were related to the peak vertical ground reaction force. [Conclusion] Increasing knee flexion and decreasing pelvic anterior inclination might reduce the impact during single-leg lateral jump-landing. PMID:27630422

  18. Decoupling approximation design using the peak to peak gain

    NASA Astrophysics Data System (ADS)

    Sultan, Cornel

    2013-04-01

    Linear system design for accurate decoupling approximation is examined using the peak to peak gain of the error system. The design problem consists in finding values of system parameters to ensure that this gain is small. For this purpose a computationally inexpensive upper bound on the peak to peak gain, namely the star norm, is minimized using a stochastic method. Examples of the methodology's application to tensegrity structures design are presented. Connections between the accuracy of the approximation, the damping matrix, and the natural frequencies of the system are examined, as well as decoupling in the context of open and closed loop control.

  19. The ingestion of a caffeinated energy drink improves jump performance and activity patterns in elite badminton players.

    PubMed

    Abian, Pablo; Del Coso, Juan; Salinero, Juan José; Gallo-Salazar, Cesar; Areces, Francisco; Ruiz-Vicente, Diana; Lara, Beatriz; Soriano, Lidon; Muñoz, Victor; Abian-Vicen, Javier

    2015-01-01

    The aim of this study was to investigate the effectiveness of a caffeine-containing energy drink to enhance physical and match performance in elite badminton players. Sixteen male and elite badminton players (25.4 ± 7.3 year; 71.8 ± 7.9 kg) participated in a double-blind, placebo-controlled and randomised experiment. On two different sessions, badminton players ingested 3 mg of caffeine per kg of body mass in the form of an energy drink or the same drink without caffeine (placebo). After 60 min, participants performed the following tests: handgrip maximal force production, smash jump without and with shuttlecock, squat jump, countermovement jump and the agility T-test. Later, a 45-min simulated badminton match was played. Players' number of impacts and heart rate was measured during the match. The ingestion of the caffeinated energy drink increased squat jump height (34.5 ± 4.7 vs. 36.4 ± 4.3 cm; P < 0.05), squat jump peak power (P < 0.05), countermovement jump height (37.7 ± 4.5 vs. 39.5 ± 5.1 cm; P < 0.05) and countermovement jump peak power (P < 0.05). In addition, an increased number of total impacts was found during the badminton match (7395 ± 1594 vs. 7707 ± 2033 impacts; P < 0.05). In conclusion, the results show that the use of caffeine-containing energy drink may be an effective nutritional aid to increase jump performance and activity patterns during game in elite badminton players. PMID:25530454

  20. The ingestion of a caffeinated energy drink improves jump performance and activity patterns in elite badminton players.

    PubMed

    Abian, Pablo; Del Coso, Juan; Salinero, Juan José; Gallo-Salazar, Cesar; Areces, Francisco; Ruiz-Vicente, Diana; Lara, Beatriz; Soriano, Lidon; Muñoz, Victor; Abian-Vicen, Javier

    2015-01-01

    The aim of this study was to investigate the effectiveness of a caffeine-containing energy drink to enhance physical and match performance in elite badminton players. Sixteen male and elite badminton players (25.4 ± 7.3 year; 71.8 ± 7.9 kg) participated in a double-blind, placebo-controlled and randomised experiment. On two different sessions, badminton players ingested 3 mg of caffeine per kg of body mass in the form of an energy drink or the same drink without caffeine (placebo). After 60 min, participants performed the following tests: handgrip maximal force production, smash jump without and with shuttlecock, squat jump, countermovement jump and the agility T-test. Later, a 45-min simulated badminton match was played. Players' number of impacts and heart rate was measured during the match. The ingestion of the caffeinated energy drink increased squat jump height (34.5 ± 4.7 vs. 36.4 ± 4.3 cm; P < 0.05), squat jump peak power (P < 0.05), countermovement jump height (37.7 ± 4.5 vs. 39.5 ± 5.1 cm; P < 0.05) and countermovement jump peak power (P < 0.05). In addition, an increased number of total impacts was found during the badminton match (7395 ± 1594 vs. 7707 ± 2033 impacts; P < 0.05). In conclusion, the results show that the use of caffeine-containing energy drink may be an effective nutritional aid to increase jump performance and activity patterns during game in elite badminton players.

  1. Planar Jumping-Drop Thermal Diodes

    NASA Astrophysics Data System (ADS)

    Boreyko, Jonathan; Zhao, Yuejun; Chen, Chuan-Hua

    2011-11-01

    Phase-change thermal diodes transport heat asymmetrically with a large rectification coefficient unmatched by their solid-state counterparts, but are limited by either the gravitational orientation or one-dimensional configuration. We report a planar phase-change diode scalable to large areas with an orientation-independent diodicity of up to 100, in which water/vapor is enclosed by parallel superhydrophobic and superhydrophilic plates. The thermal rectification is enabled by spontaneously jumping dropwise condensate which only occurs when the superhydrophobic surface is colder than the superhydrophilic surface. Our jumping-drop thermal diode is expected to be particularly useful for the thermal protection of planar electronic components and the thermal regulation of large-area energy harvesting systems.

  2. Testing jumps via false discovery rate control.

    PubMed

    Yen, Yu-Min

    2013-01-01

    Many recently developed nonparametric jump tests can be viewed as multiple hypothesis testing problems. For such multiple hypothesis tests, it is well known that controlling type I error often makes a large proportion of erroneous rejections, and such situation becomes even worse when the jump occurrence is a rare event. To obtain more reliable results, we aim to control the false discovery rate (FDR), an efficient compound error measure for erroneous rejections in multiple testing problems. We perform the test via the Barndorff-Nielsen and Shephard (BNS) test statistic, and control the FDR with the Benjamini and Hochberg (BH) procedure. We provide asymptotic results for the FDR control. From simulations, we examine relevant theoretical results and demonstrate the advantages of controlling the FDR. The hybrid approach is then applied to empirical analysis on two benchmark stock indices with high frequency data.

  3. The role of human ankle plantar flexor muscle-tendon interaction and architecture in maximal vertical jumping examined in vivo.

    PubMed

    Farris, Dominic James; Lichtwark, Glen A; Brown, Nicholas A T; Cresswell, Andrew G

    2016-02-01

    Humans utilise elastic tendons of lower limb muscles to store and return energy during walking, running and jumping. Anuran and insect species use skeletal structures and/or dynamics in conjunction with similarly compliant structures to amplify muscle power output during jumping. We sought to examine whether human jumpers use similar mechanisms to aid elastic energy usage in the plantar flexor muscles during maximal vertical jumping. Ten male athletes performed maximal vertical squat jumps. Three-dimensional motion capture and a musculoskeletal model were used to determine lower limb kinematics that were combined with ground reaction force data in an inverse dynamics analysis. B-mode ultrasound imaging of the lateral gastrocnemius (GAS) and soleus (SOL) muscles was used to measure muscle fascicle lengths and pennation angles during jumping. Our results highlighted that both GAS and SOL utilised stretch and recoil of their series elastic elements (SEEs) in a catapult-like fashion, which likely serves to maximise ankle joint power. The resistance of supporting of body weight allowed initial stretch of both GAS and SOL SEEs. A proximal-to-distal sequence of joint moments and decreasing effective mechanical advantage early in the extension phase of the jumping movement were observed. This facilitated a further stretch of the SEE of the biarticular GAS and delayed recoil of the SOL SEE. However, effective mechanical advantage did not increase late in the jump to aid recoil of elastic tissues.

  4. Entropy jump across an inviscid shock wave

    NASA Technical Reports Server (NTRS)

    Salas, Manuel D.; Iollo, Angelo

    1995-01-01

    The shock jump conditions for the Euler equations in their primitive form are derived by using generalized functions. The shock profiles for specific volume, speed, and pressure are shown to be the same, however density has a different shock profile. Careful study of the equations that govern the entropy shows that the inviscid entropy profile has a local maximum within the shock layer. We demonstrate that because of this phenomenon, the entropy, propagation equation cannot be used as a conservation law.

  5. Field measurements in unwadeable natural hydraulic jumps

    NASA Astrophysics Data System (ADS)

    Valle, B.; Pasternack, G.

    2003-04-01

    Recent research in fluvial geomorphology has emphasized the development and application of digital terrain models to better understand process-form relations. However, field measurements in mountain channels have largely been restricted to low velocity or ephemeral flow conditions. To address this problem, a new high-resolution mechanical surveying system was developed at UC Davis and used to measure the 3D bed and water surface topographies of an unwadeable plunging hydraulic jump in the Cache Creek basin, CA. Labeled as the River Truss, the system is capable of making high-resolution form and process measurements over a 30 to 115 m2 area. Bed and water surface DTMs were derived from the field data using AutoCAD. River Truss precision was assessed by DTM differencing the hydraulic jump bed surface topography with a DTM developed from tacheometric survey at low base flows. Bed surface DTMs indicate significant spatial complexity of the underlying bed step in the supercritical flow region and significant downstream bed scour. Water surface DTMs indicate 3D complexity of the plunging flow surface and divergence from 1D free-fall theory. Further study will emphasize the development and deployment of process-based instrumentation such that the complex turbulent air-water flow dynamics associated with natural hydraulic jumps may be better understood. Also, a second generation River Truss that has a larger coverage area and automated data collection has been designed and is now being built.

  6. Biphasic activity of a jumping spider.

    PubMed

    Okuyama, Toshinori

    2011-01-01

    Individual variation is a ubiquitous and important factor that affects ecological dynamics. This study examined individual variation in the nest-use pattern of the jumping spider Phidippus audax. Although the jumping spider is a diurnal species, field observations in this study revealed that the majority of individuals remained in their nests during the day. An accompanying examination of the hunger level of the spiders revealed that spiders that remained in nests were more starved than those observed outside nests. If spiders actively forage when they are starved, as has been suggested by previous studies, one would expect to see the opposite trend (i.e., spiders that remained in nests are more satiated). Thus, the pattern observed in the field contradicts the known behavioral pattern of the spiders. An individual-based model was used to investigate the behavioral mechanism of the spider and the discrepancy found in the observations. A basic assumption of the model is that spiders possess distinct inactive and active phases (biphasic activity pattern), and transitions between the two phases are regulated by the hunger level of the spider. Data from a laboratory experiment were used to examine the assumptions of the model partially. The model was able to capture patterns observed in the data, suggesting that the pattern of transitions in biphasic activity is an important trait of the foraging behavior of the jumping spider. PMID:21085925

  7. Biphasic activity of a jumping spider

    NASA Astrophysics Data System (ADS)

    Okuyama, Toshinori

    2011-01-01

    Individual variation is a ubiquitous and important factor that affects ecological dynamics. This study examined individual variation in the nest-use pattern of the jumping spider Phidippus audax. Although the jumping spider is a diurnal species, field observations in this study revealed that the majority of individuals remained in their nests during the day. An accompanying examination of the hunger level of the spiders revealed that spiders that remained in nests were more starved than those observed outside nests. If spiders actively forage when they are starved, as has been suggested by previous studies, one would expect to see the opposite trend (i.e., spiders that remained in nests are more satiated). Thus, the pattern observed in the field contradicts the known behavioral pattern of the spiders. An individual-based model was used to investigate the behavioral mechanism of the spider and the discrepancy found in the observations. A basic assumption of the model is that spiders possess distinct inactive and active phases (biphasic activity pattern), and transitions between the two phases are regulated by the hunger level of the spider. Data from a laboratory experiment were used to examine the assumptions of the model partially. The model was able to capture patterns observed in the data, suggesting that the pattern of transitions in biphasic activity is an important trait of the foraging behavior of the jumping spider.

  8. Hydraulic jumps in 'viscous' accretion disks

    NASA Astrophysics Data System (ADS)

    Michel, F. C.

    1984-04-01

    It is proposed that the dissipative process necessary for rapid accretion disk evolution is driven by hydraulic jump waves on the surface of the disk. These waves are excited by the asymmetric nature of the central rotator (e.g., neutron star magnetosphere) and spiral out into the disk to form a pattern corotating with the central object. Disk matter in turn is slowed slightly at each encounter with the jump and spirals inward. In this process, the disk is heated by true turbulence produced in the jumps. Additional effects, such as a systematic misalignment of the magnetic moment of the neutron star until it is nearly orthogonal, and systematic distortion of the magnetosphere in such a way as to form an even more asymmetric central 'paddle wheel', may enhance the interaction with inflowing matter. The application to X-ray sources corresponds to the 'slow' solutions of Ghosh and Lamb, and therefore to rms magnetic fields of about 4 x 10 to the 10th gauss. Analogous phenomena have been proposed to act in the formation of galactic spiral structure.

  9. The walk and jump of Equisetum spores

    PubMed Central

    Marmottant, Philippe; Ponomarenko, Alexandre; Bienaimé, Diane

    2013-01-01

    Equisetum plants (horsetails) reproduce by producing tiny spherical spores that are typically 50 µm in diameter. The spores have four elaters, which are flexible ribbon-like appendages that are initially wrapped around the main spore body and that deploy upon drying or fold back in humid air. If elaters are believed to help dispersal, the exact mechanism for spore motion remains unclear in the literature. In this manuscript, we present observations of the ‘walks’ and ‘jumps’ of Equisetum spores, which are novel types of spore locomotion mechanisms compared to the ones of other spores. Walks are driven by humidity cycles, each cycle inducing a small step in a random direction. The dispersal range from the walk is limited, but the walk provides key steps to either exit the sporangium or to reorient and refold. Jumps occur when the spores suddenly thrust themselves after being tightly folded. They result in a very efficient dispersal: even spores jumping from the ground can catch the wind again, whereas non-jumping spores stay on the ground. The understanding of these movements, which are solely driven by humidity variations, conveys biomimetic inspiration for a new class of self-propelled objects. PMID:24026816

  10. Determinants of the abilities to jump higher and shorten the contact time in a running 1-legged vertical jump in basketball.

    PubMed

    Miura, Ken; Yamamoto, Masayoshi; Tamaki, Hiroyuki; Zushi, Koji

    2010-01-01

    This study was conducted to obtain useful information for developing training techniques for the running 1-legged vertical jump in basketball (lay-up shot jump). The ability to perform the lay-up shot jump and various basic jumps was measured by testing 19 male basketball players. The basic jumps consisted of the 1-legged repeated rebound jump, the 2-legged repeated rebound jump, and the countermovement jump. Jumping height, contact time, and jumping index (jumping height/contact time) were measured and calculated using a contact mat/computer system that recorded the contact and air times. The jumping index indicates power. No significant correlation existed between the jumping height and contact time of the lay-up shot jump, the 2 components of the lay-up shot jump index. As a result, jumping height and contact time were found to be mutually independent abilities. The relationships in contact time between the lay-up shot jump to the 1-legged repeated rebound jump and the 2-legged repeated rebound jump were correlated on the same significance levels (p < 0.05). A significant correlation for jumping height existed between the 1-legged repeated rebound jump and the lay-up shot jump (p < 0.05), although none existed for jumping height between the lay-up shot jump and both the 2-legged repeated rebound jump and countermovement jump. The lay-up shot index correlated more strongly to the 1-legged repeated rebound jump index (p < 0.01) when compared to the 2-legged repeated rebound jump index (p < 0.05). These results suggest that the 1-legged repeated rebound jump is effective in improving both contact time and jumping height in the lay-up shot jump.

  11. Biomechanical Factors Associated With Jump Height: A Comparison of Cross-Sectional and Pre-to-Posttraining Change Findings.

    PubMed

    Marshall, Brendan M; Moran, Kieran A

    2015-12-01

    Previous studies investigating the biomechanical factors associated with maximal countermovement jump height have typically used cross-sectional data. An alternative but less common approach is to use pre-to-posttraining change data, where the relationship between an improvement in jump height and a change in a factor is examined more directly. Our study compared the findings of these approaches. Such an evaluation is necessary because cross-sectional studies are currently a primary source of information for coaches when examining what factors to train to enhance performance. The countermovement jump of 44 males was analyzed before and after an 8-week training intervention. Correlations with jump height were calculated using both cross-sectional (pretraining data only) and pre-to-posttraining change data. Eight factors identified in the cross-sectional analysis were not significantly correlated with a change in jump height in the pre-to-post analysis. Additionally, only 6 of 11 factors identified in the pre-to-post analysis were identified in the cross-sectional analysis. These findings imply that (a) not all factors identified in a cross-sectional analysis may be critical to jump height improvement and (b) cross-sectional analyses alone may not provide an insight into all of the potential factors to train to enhance jump height. Coaches must be aware of these limitations when examining cross-sectional studies to identify factors to train to enhance jump ability. Additional findings highlight that although exercises prescribed to improve jump height should aim to enhance concentric power production at all joints, a particular emphasis on enhancing hip joint peak power may be warranted.

  12. Costs and benefits of larval jumping behaviour of Bathyplectes anurus.

    PubMed

    Saeki, Yoriko; Tani, Soichiro; Fukuda, Katsuto; Iwase, Shun-ichiro; Sugawara, Yuma; Tuda, Midori; Takagi, Masami

    2016-02-01

    Bathyplectes anurus, a parasitoid of the alfalfa weevils, forms a cocoon in the late larval stage and exhibits jumping behaviour. Adaptive significance and costs of the cocoon jumping have not been thoroughly studied. We hypothesised that jumping has the fitness benefits of enabling habitat selection by avoiding unfavourable environments. We conducted laboratory experiments, which demonstrated that jumping frequencies increased in the presence of light, with greater magnitudes of temperature increase and at lower relative humidity. In addition, when B. anurus individuals were allowed to freely jump in an arena with a light gradient, more cocoons were found in the shady area, suggesting microhabitat selection. In a field experiment, mortality of cocoons placed in the sun was significantly higher than for cocoons placed in the shade. B. anurus cocoons respond to environmental stress by jumping, resulting in habitat selection. In the presence of potential predators (ants), jumping frequencies were higher than in the control (no ant) arenas, though jumping frequencies decreased after direct contact with the predators. Body mass of B. anurus cocoons induced to jump significantly decreased over time than cocoons that did not jump, suggesting a cost to jumping. We discuss the benefits and costs of jumping behaviour and potential evolutionary advantages of this peculiar trait, which is present in a limited number of species. PMID:26687130

  13. Costs and benefits of larval jumping behaviour of Bathyplectes anurus

    NASA Astrophysics Data System (ADS)

    Saeki, Yoriko; Tani, Soichiro; Fukuda, Katsuto; Iwase, Shun-ichiro; Sugawara, Yuma; Tuda, Midori; Takagi, Masami

    2016-02-01

    Bathyplectes anurus, a parasitoid of the alfalfa weevils, forms a cocoon in the late larval stage and exhibits jumping behaviour. Adaptive significance and costs of the cocoon jumping have not been thoroughly studied. We hypothesised that jumping has the fitness benefits of enabling habitat selection by avoiding unfavourable environments. We conducted laboratory experiments, which demonstrated that jumping frequencies increased in the presence of light, with greater magnitudes of temperature increase and at lower relative humidity. In addition, when B. anurus individuals were allowed to freely jump in an arena with a light gradient, more cocoons were found in the shady area, suggesting microhabitat selection. In a field experiment, mortality of cocoons placed in the sun was significantly higher than for cocoons placed in the shade. B. anurus cocoons respond to environmental stress by jumping, resulting in habitat selection. In the presence of potential predators (ants), jumping frequencies were higher than in the control (no ant) arenas, though jumping frequencies decreased after direct contact with the predators. Body mass of B. anurus cocoons induced to jump significantly decreased over time than cocoons that did not jump, suggesting a cost to jumping. We discuss the benefits and costs of jumping behaviour and potential evolutionary advantages of this peculiar trait, which is present in a limited number of species.

  14. The Effect of Patellar Taping on Some Landing Characteristics During Counter Movement Jumps in Healthy Subjects

    PubMed Central

    Cámara, Jesús; Díaz, Francisco; Anza, María Soledad; Mejuto, Gaizka; Puente, Asier; Iturriaga, Gorka; Fernández, Juan-Ramón

    2011-01-01

    The aim of the present study was to determine the effect of patellar taping (PT) on landing characteristics of the vertical ground reaction force (VGRF) and on flight time during a counter movement jump (CMJ). Eleven healthy male subjects (age: 31.1 ± 4.2 years) volunteered for the study. Each subject performed six CMJs under two different jumping conditions: with PT and without PT (WPT). The order of the two conditions was randomized. All of the measured variables had fair-to-good reliability (intra-class correlation coefficient > 0.75). When we compared the PT and WPT groups, we did not find a significant difference in the magnitude of the first (F1) and second (F2) peaks of the VGRF. We also did not find a significant difference in the time to production of these peaks (T1 and T2), and the time to stabilization (TTS) (p < 0. 05). Furthermore, the flight time was similar in the two groups (0.475 ± 0.046 and 0.474 ± 0.056 s, respectively, for PT and WPT). These results suggest that PT does not jeopardize performance during CMJ. Furthermore, it also does not soften the VGRF generated during the landing, indicating that PT may be of limited utility in preventing injuries associated with this type of movement. Key points We investigated whether patellar taping interferes with athletic performance, as has been suggested by previous studies. We also explored the effect of patellar taping on the forces generated during the landing phase of counter movement jumps. Patellar taping had no effect on the flight time during counter movement jumps. Patellar taping also had no effect on the vertical ground reaction force variables measured during the landing phase of counter movement jumps. This information may be relevant to athletes and trainers who are concerned about the effects of patellar taping on performance. PMID:24149562

  15. Parachute Jumping Induces More Sympathetic Activation Than Cortisol Secretion in First-Time Parachutists

    PubMed Central

    Messina, Giovanni; Chieffi, Sergio; Viggiano, Andrea; Tafuri, Domenico; Cibelli, Giuseppe; Valenzano, Anna; Triggiani, Antonio Ivano; Messina, Antonietta; De Luca, Vincenzo; Monda, Marcellino

    2016-01-01

    Background: The word “stress” describes the status of the body affected by external or internal forces, or “stressors”, threatening to alter its dynamic balance or homeostasis. The adaptive changes which occur in reply to stressors are either behavioral or physical. Once a given threshold is surpassed, a systemic reaction takes place involving the “stress system” in the brain together with its peripheral components, the hypothalamic-pituitary-adrenal axis and autonomic sympathetic. Objectives: Stress induces an activation of the sympathetic nervous system (SNS) and the hypothalamic-pituitary-adrenal (HPA) axis. The purpose of this study was to investigate whether the SNS and the HPA axis would show parallel or divergent stress response patterns in a session of first parachute jump. Patients and Methods: Activation of the SNS was evaluated by dosage of salivary alpha-amylase, galvanic skin responses, and heart rate in seven male novice parachutists. Activation of HPA axis was tested by dosage of cortisol. These variables were measured before and 1 minute and 90 minute after the jump. Results: All variables reached a peak at 1 minute post-jump. Salivary alpha-amylase, galvanic skin responses and heart rate did not return to basal value at 90 minutes post-jump, while cortisol returned to basal value at 90 minutes post-jump. Conclusions: This evidence indicates that parachute jumping is accompanied by a dissociation of SNS and HPA response patterns in novice parachutists, showing a slower recovery in sympathetic activity than in cortisol secretion. PMID:27217924

  16. An efficient interpolation technique for jump proposals in reversible-jump Markov chain Monte Carlo calculations.

    PubMed

    Farr, W M; Mandel, I; Stevens, D

    2015-06-01

    Selection among alternative theoretical models given an observed dataset is an important challenge in many areas of physics and astronomy. Reversible-jump Markov chain Monte Carlo (RJMCMC) is an extremely powerful technique for performing Bayesian model selection, but it suffers from a fundamental difficulty and it requires jumps between model parameter spaces, but cannot efficiently explore both parameter spaces at once. Thus, a naive jump between parameter spaces is unlikely to be accepted in the Markov chain Monte Carlo (MCMC) algorithm and convergence is correspondingly slow. Here, we demonstrate an interpolation technique that uses samples from single-model MCMCs to propose intermodel jumps from an approximation to the single-model posterior of the target parameter space. The interpolation technique, based on a kD-tree data structure, is adaptive and efficient in modest dimensionality. We show that our technique leads to improved convergence over naive jumps in an RJMCMC, and compare it to other proposals in the literature to improve the convergence of RJMCMCs. We also demonstrate the use of the same interpolation technique as a way to construct efficient 'global' proposal distributions for single-model MCMCs without prior knowledge of the structure of the posterior distribution, and discuss improvements that permit the method to be used in higher dimensional spaces efficiently. PMID:26543580

  17. An efficient interpolation technique for jump proposals in reversible-jump Markov chain Monte Carlo calculations.

    PubMed

    Farr, W M; Mandel, I; Stevens, D

    2015-06-01

    Selection among alternative theoretical models given an observed dataset is an important challenge in many areas of physics and astronomy. Reversible-jump Markov chain Monte Carlo (RJMCMC) is an extremely powerful technique for performing Bayesian model selection, but it suffers from a fundamental difficulty and it requires jumps between model parameter spaces, but cannot efficiently explore both parameter spaces at once. Thus, a naive jump between parameter spaces is unlikely to be accepted in the Markov chain Monte Carlo (MCMC) algorithm and convergence is correspondingly slow. Here, we demonstrate an interpolation technique that uses samples from single-model MCMCs to propose intermodel jumps from an approximation to the single-model posterior of the target parameter space. The interpolation technique, based on a kD-tree data structure, is adaptive and efficient in modest dimensionality. We show that our technique leads to improved convergence over naive jumps in an RJMCMC, and compare it to other proposals in the literature to improve the convergence of RJMCMCs. We also demonstrate the use of the same interpolation technique as a way to construct efficient 'global' proposal distributions for single-model MCMCs without prior knowledge of the structure of the posterior distribution, and discuss improvements that permit the method to be used in higher dimensional spaces efficiently.

  18. An efficient interpolation technique for jump proposals in reversible-jump Markov chain Monte Carlo calculations

    PubMed Central

    Farr, W. M.; Mandel, I.; Stevens, D.

    2015-01-01

    Selection among alternative theoretical models given an observed dataset is an important challenge in many areas of physics and astronomy. Reversible-jump Markov chain Monte Carlo (RJMCMC) is an extremely powerful technique for performing Bayesian model selection, but it suffers from a fundamental difficulty and it requires jumps between model parameter spaces, but cannot efficiently explore both parameter spaces at once. Thus, a naive jump between parameter spaces is unlikely to be accepted in the Markov chain Monte Carlo (MCMC) algorithm and convergence is correspondingly slow. Here, we demonstrate an interpolation technique that uses samples from single-model MCMCs to propose intermodel jumps from an approximation to the single-model posterior of the target parameter space. The interpolation technique, based on a kD-tree data structure, is adaptive and efficient in modest dimensionality. We show that our technique leads to improved convergence over naive jumps in an RJMCMC, and compare it to other proposals in the literature to improve the convergence of RJMCMCs. We also demonstrate the use of the same interpolation technique as a way to construct efficient ‘global’ proposal distributions for single-model MCMCs without prior knowledge of the structure of the posterior distribution, and discuss improvements that permit the method to be used in higher dimensional spaces efficiently. PMID:26543580

  19. Engineering steady three-atom singlet states via quantum-jump-based feedback

    NASA Astrophysics Data System (ADS)

    Shao, Xiao-Qiang; Zheng, Tai-Yu; Zhang, Shou

    2012-04-01

    A scheme is presented for generating steady three-atom singlet states via three V-type atoms interacting with a strongly dissipative two-mode cavity. The local quantum feedback control is applied based on quantum-jump detection to make the target state fidelity as high as possible. This scheme is insensitive to detection inefficiencies since it only delays the time at which stationarity is achieved. Nevertheless, the spontaneous emission plays a negative role in the current system.

  20. Simple jumping process with memory: Transport equation and diffusion

    NASA Astrophysics Data System (ADS)

    Kamińska, A.; Srokowski, T.

    2004-06-01

    We present a stochastic jumping process, defined in terms of jump-size probability density and jumping rate, which is a generalization of the well-known kangaroo process. The definition takes into account two process values: after and before the jump. Therefore, the process is able to preserve memory about its previous values. It possesses a simple stationary limit. Its master equation is interpreted as the kinetic equation with variable collision rate. The process can be easily applied to model systems which relax to distributions other than Maxwellian. The case of a constant jumping rate corresponds to the diffusion process, either normal or ballistic.

  1. Fatigue Alters Landing Shock Attenuation During a Single-Leg Vertical Drop Jump

    PubMed Central

    Tamura, Akihiro; Akasaka, Kiyokazu; Otsudo, Takahiro; Sawada, Yutaka; Okubo, Yu; Shiozawa, Jyunya; Toda, Yuka; Yamada, Kaori

    2016-01-01

    Background: Landings in fatigue conditions are considered to be one of the factors that cause noncontact anterior cruciate ligament (ACL) injury. Additionally, it is known that fatigue alters lower extremity landing strategies and decreases the ability to attenuate shock during landing. Purpose: To determine characteristics of knee kinematics and shock attenuation during the landing phase of a single-leg vertical drop jump in a fatigued condition. The hypothesis was that knee kinematics during the landing phase of a single-leg vertical drop jump would demonstrate a significant difference between before and after fatigue. Study Design: Controlled laboratory study. Methods: Thirty-four college females participated in this experiment. They were randomly assigned to either the fatigue (n = 17) or control group (n = 17). The fatigue group performed the single-leg vertical drop jump before and after the fatigue protocol, which was performed on a bike ergometer. Knee kinematics data were obtained from the 3-dimensional motion analysis system. The ratio of each variable (%) was calculated, comparing the pre- to postfatigue protocol. Unpaired t tests were used to compare changes in kinematic variables between the fatigue-induced group and control group. Results: Peak knee flexion angular velocity increased significantly in the fatigue group (106.1% ± 8.0%) in comparison with the control group (100.7% ± 6.6%) (P < .05). However, peak knee flexion angle and acceleration had no differences between each group. Peak knee adduction/abduction angle, velocity, and acceleration also had no differences between each group. Conclusion: Fatigue decreased the ability to attenuate shock by increasing angular velocity in the direction of knee flexion during single-leg drop jump landing. These findings indicate the need to evaluate the ability to attenuate shock by measuring knee flexion angular velocity when fatigue is considered. Clinical Relevance: Measuring knee angular velocity

  2. How to use your peak flow meter

    MedlinePlus

    Peak flow meter - how to use; Asthma - peak flow meter; Reactive airway disease - peak flow meter; Bronchial asthma - peak flow meter ... your airways are narrowed and blocked due to asthma, your peak flow values drop. You can check ...

  3. CO and H2O vibrational emission toward Orion Peak 1 and Peak 2

    NASA Astrophysics Data System (ADS)

    González-Alfonso, E.; Wright, C. M.; Cernicharo, J.; Rosenthal, D.; Boonman, A. M. S.; van Dishoeck, E. F.

    2002-05-01

    ISO/SWS observations of Orion Peak 1 and Peak 2 show strong emission in the ro-vibrational lines of CO v=1-0 at 4.45-4.95 μm and of H2O ν2=1-0 at 6.3-7.0 μm. Toward Peak 1 the total flux in both bands is, assuming isotropic emission, ≈2.4 and ≈0.53 Lsun, respectively. This corresponds to ≈14 and ≈3% of the total H2 luminosity in the same beam. Two temperature components are found to contribute to the CO emission from Peak 1/2: a warm component, with TK=200-400 K, and a hot component with Tk~3×103 K. At Peak 2 the CO flux from the warm component is similar to that observed at Peak 1, but the hot component is a factor of ≈2 weaker. The H2O band is ≈25% stronger toward Peak 2, and seems to arise only in the warm component. The P-branch emission of both bands from the warm component is significantly stronger than the R-branch, indicating that the line emission is optically thick. Neither thermal collisions with H2 nor with H I seem capable of explaining the strong emission from the warm component. Although the emission arises in the postshock gas, radiation from the most prominent mid-infrared sources in Orion BN/KL is most likely pumping the excited vibrational states of CO and H2O. CO column densities along the line of sight of N{(CO)}=5-10×1018 cm-2 are required to explain the band shape, the flux, and the P-R-asymmetry, and beam-filling is invoked to reconcile this high N(CO) with the upper limit inferred from the H2 emission. CO is more abundant than H2O by a factor of at least 2. The density of the warm component is estimated from the H2O emission to be ~ 2×107 cm-3. The CO emission from the hot component is neither satisfactorily explained in terms of non-thermal (streaming) collisions, nor by resonant scattering. Vibrational excitation through collisions with H2 for densities of ~3×108 cm-3 or, alternatively, with atomic hydrogen, with a density of at least 107 cm-3, are invoked to explain simultaneously the emission from the hot component

  4. Association between traditional standing vertical jumps and a soccer-specific vertical jump.

    PubMed

    Requena, Bernardo; Garcia, Inmaculada; Requena, Francisco; Bressel, Eadric; Saez-Saez de Villarreal, Eduardo; Cronin, John

    2014-01-01

    The present study aimed to determine the relationships between a soccer-specific vertical jump (ssVJ) test, that included common elements of a soccer VJ (e.g. run-up and intention to head), and three traditional VJ tests using elite soccer players. A secondary purpose of this study was to determine the reliability of the VJs used in the analysis. A randomised order and counterbalanced design was used to assess the relationships between these VJs [countermovement jump (CMJ), drop jump for height (DJh), drop jump for maximum height and minimum ground contact time (DJh/t) and the ssVJ]. Take-off velocity, contact time and flight time were the dependent variables of interest and compared between jumps. Intra-class correlation coefficient (ICC) and coefficient of variation (CV) were used as measures of inter-session reliability. All VJ tests were found to have high ICCs (0.89-0.99) and acceptable within-subject CVs (<7.5%). All the ssVJ dependent variables were not significantly related (r<0.44) with similar variables from the CMJ and DJh tests and only moderately related (r=~0.49) with the DJh/t test variables. In addition, the DJh/t variables were not significantly correlated (r<0.47) with DJh and CMJ test variables. In conclusion, it would seem that the proposed ssVJ test and CMJ or DJh tests assess different leg qualities and thought should be given before using them interchangeably to assess or develop the same performance measures (i.e. velocity at take-off or jump height). PMID:24444234

  5. Functional evolution of jumping in frogs: Interspecific differences in take-off and landing.

    PubMed

    Reilly, Stephen M; Montuelle, Stephane J; Schmidt, André; Krause, Cornelia; Naylor, Emily; Essner, Richard L

    2016-03-01

    Ancestral frogs underwent anatomical shifts including elongation of the hindlimbs and pelvis and reduction of the tail and vertebral column that heralded the transition to jumping as a primary mode of locomotion. Jumping has been hypothesized to have evolved in a step-wise fashion with basal frogs taking-off with synchronous hindlimb extension and crash-landing on their bodies, and then their limbs move forward. Subsequently, frogs began to recycle the forelimbs forward earlier in the jump to control landing. Frogs with forelimb landing radiated into many forms, locomotor modes, habitats, and niches with controlled landing thought to improve escape behavior. While the biology of take-off behavior has seen considerable study, interspecific comparisons of take-off and landing behavior are limited. In order to understand the evolution of jumping and controlled landing in frogs, data are needed on the movements of the limbs and body across an array of taxa. Here, we present the first description and comparison of kinematics of the hindlimbs, forelimbs and body during take-off and landing in relation to ground reaction forces in four frog species spanning the frog phylogeny. The goal of this study is to understand what interspecific differences reveal about the evolution of take-off and controlled landing in frogs. We provide the first comparative description of the entire process of jumping in frogs. Statistical comparisons identify both homologous behaviors and significant differences among species that are used to map patterns of trait evolution and generate hypotheses regarding the functional evolution of take-off and landing in frogs.

  6. Planar jumping-drop thermal diodes

    NASA Astrophysics Data System (ADS)

    Boreyko, Jonathan B.; Zhao, Yuejun; Chen, Chuan-Hua

    2011-12-01

    Phase-change thermal diodes rectify heat transport much more effectively than solid-state ones, but are limited by either the gravitational orientation or one-dimensional configuration. Here, we report a planar phase-change diode scalable to large areas with an orientation-independent diodicity of over 100, in which water/vapor is enclosed by parallel superhydrophobic and superhydrophilic plates. The thermal rectification is enabled by spontaneously jumping dropwise condensate which only occurs when the superhydrophobic surface is colder than the superhydrophilic surface.

  7. Katabatic jumps over Martian polar terrains

    NASA Astrophysics Data System (ADS)

    Spiga, Aymeric; Smith, Isaac; Holt, Jack

    2015-04-01

    Recent observational and modeling studies have shed light on the key role of mesoscale phenomena in driving the Martian climate and giving rise to remarkable signatures in the temperature, wind, pressure, and aerosol fields of the Martian atmosphere. At the mesoscale, Mars appears as an intense and exotic counterpart to the Earth, mainly as a result of pronounced diurnal and regional contrasts of surface temperature, and the much thinner atmosphere. While observations of clear-cut katabatic events are difficult on Earth, except over vast ice sheets, those intense downslope circulations are widespread on Mars owing to near-surface radiative cooling and uneven topography. Their intensity and regularity can be witnessed through numerous aeolian signatures on the surface, and distinctive thermal signatures in the steepest craters and volcanoes. Several observations (radar observations, frost streaks, spectral analysis of ices, ...) concur to show that aeolian processes play a key role in glacial processes in Martian polar regions over geological timescales. A spectacular manifestation of this resides in elongated clouds that forms at the bottom of polar spiral troughs, which dominates the polar landscape both in the North and South. An analogy with the terrestrial "wall-of-snow" over e.g. Antarctica slopes or coastlines posits that those clouds are caused by local katabatic jumps, also named Loewe phenomena, which can be deemed similar to first order to hydraulic jumps in open channel flow. With mesoscale modeling in polar regions using 5 nested domains operating a model downscaling from horizontal resolutions of about twenty kilometers to 200 meters, we were able 1. to predict the near-surface wind structure over the whole Martian polar caps, with interactions between katabatic acceleration, Coriolis deflection, transient phenomena, and thermally-forced circulations by the ice / bare soil contrast and 2. to show that katabatic jumps form at the bottom of polar troughs

  8. The Effect of an Altitude Training Camp on Swimming Start Time and Loaded Squat Jump Performance.

    PubMed

    García-Ramos, Amador; Štirn, Igor; Padial, Paulino; Argüelles-Cienfuegos, Javier; De la Fuente, Blanca; Calderón, Carmen; Bonitch-Góngora, Juan; Tomazin, Katja; Strumbelj, Boro; Strojnik, Vojko; Feriche, Belén

    2016-01-01

    This study evaluated the influence of an altitude training (AT) camp on swimming start time and loaded squat jump performance. To accomplish this goal, 13 international swimmers (8 women, 5 men) were allocated to both the control (Sea Level Training, SLT) and experimental conditions (AT, 2320 m above sea level) that were separated by a one year period. All tests (15 m freestyle swimming start and loaded squat jumps with additional loads of 25%, 50%, 75%, and 100% of swimmers' body weight) were performed before and after a concurrent 3-week strength and endurance training program prescribed by the national coach. Following the SLT camp, significant impairments in swimming start times to 10 (+3.1%) and 15 m (+4.0%) were observed (P < 0.05), whereas no significant changes for the same distances were detected following the AT camp (-0.89%; P > 0.05). Trivial changes in peak velocity were obtained during the loaded squat jump after both training periods (effect sizes: < 0.20). Based on these results we can conclude that a traditional training high-living high strategy concurrent training of 3 weeks does not adversely affect swimming start time and loaded squat jump performance in high level swimmers, but further studies are necessary to assess the effectiveness of power-oriented resistance training in the development of explosive actions. PMID:27467760

  9. The Effect of an Altitude Training Camp on Swimming Start Time and Loaded Squat Jump Performance.

    PubMed

    García-Ramos, Amador; Štirn, Igor; Padial, Paulino; Argüelles-Cienfuegos, Javier; De la Fuente, Blanca; Calderón, Carmen; Bonitch-Góngora, Juan; Tomazin, Katja; Strumbelj, Boro; Strojnik, Vojko; Feriche, Belén

    2016-01-01

    This study evaluated the influence of an altitude training (AT) camp on swimming start time and loaded squat jump performance. To accomplish this goal, 13 international swimmers (8 women, 5 men) were allocated to both the control (Sea Level Training, SLT) and experimental conditions (AT, 2320 m above sea level) that were separated by a one year period. All tests (15 m freestyle swimming start and loaded squat jumps with additional loads of 25%, 50%, 75%, and 100% of swimmers' body weight) were performed before and after a concurrent 3-week strength and endurance training program prescribed by the national coach. Following the SLT camp, significant impairments in swimming start times to 10 (+3.1%) and 15 m (+4.0%) were observed (P < 0.05), whereas no significant changes for the same distances were detected following the AT camp (-0.89%; P > 0.05). Trivial changes in peak velocity were obtained during the loaded squat jump after both training periods (effect sizes: < 0.20). Based on these results we can conclude that a traditional training high-living high strategy concurrent training of 3 weeks does not adversely affect swimming start time and loaded squat jump performance in high level swimmers, but further studies are necessary to assess the effectiveness of power-oriented resistance training in the development of explosive actions.

  10. The Effect of an Altitude Training Camp on Swimming Start Time and Loaded Squat Jump Performance

    PubMed Central

    Štirn, Igor; Padial, Paulino; Argüelles-Cienfuegos, Javier; De la Fuente, Blanca; Calderón, Carmen; Bonitch-Góngora, Juan; Tomazin, Katja; Strumbelj, Boro; Strojnik, Vojko; Feriche, Belén

    2016-01-01

    This study evaluated the influence of an altitude training (AT) camp on swimming start time and loaded squat jump performance. To accomplish this goal, 13 international swimmers (8 women, 5 men) were allocated to both the control (Sea Level Training, SLT) and experimental conditions (AT, 2320 m above sea level) that were separated by a one year period. All tests (15 m freestyle swimming start and loaded squat jumps with additional loads of 25%, 50%, 75%, and 100% of swimmers’ body weight) were performed before and after a concurrent 3-week strength and endurance training program prescribed by the national coach. Following the SLT camp, significant impairments in swimming start times to 10 (+3.1%) and 15 m (+4.0%) were observed (P < 0.05), whereas no significant changes for the same distances were detected following the AT camp (-0.89%; P > 0.05). Trivial changes in peak velocity were obtained during the loaded squat jump after both training periods (effect sizes: < 0.20). Based on these results we can conclude that a traditional training high—living high strategy concurrent training of 3 weeks does not adversely affect swimming start time and loaded squat jump performance in high level swimmers, but further studies are necessary to assess the effectiveness of power-oriented resistance training in the development of explosive actions. PMID:27467760

  11. The relationship between running speed and measures of vertical jump in professional basketball players: a field-test approach.

    PubMed

    Shalfawi, Shaher A I; Sabbah, Ammar; Kailani, Ghazi; Tønnessen, Espen; Enoksen, Eystein

    2011-11-01

    The purpose of this study was to examine the relationship between vertical jump measures and sprint speed over 10, 20, and 40 m in professional basketball players. Thirty-three professional basketball players aged (±SD) (27.4 ± 3.3 years), body mass (89.8 ± 11.1 kg), and stature (192 ± 8.2 cm) volunteered to participate in this study. All participants were tested on squat jump, countermovement jump, and 40-m running speed. The results show that all jump measures in absolute terms were correlated significantly to running performance over 10-, 20-, and 40-m sprint times. None of the jumping performance peak powers and reactive strength were found to have a correlation to running speed times in absolute term. Furthermore, all jump height measures relative to body mass except reactive strength had a marked and significant relationship with all sprint performance times. The results of this study indicate that while there is a strong and marked relationship between 10-, 20-, and 40-m sprint, there is also a considerable variation within the factors that contribute to performance over these distances. This may indicate that, separate training strategies could be implemented to improve running speed over these distances.

  12. Contribution of the lower extremity joints to mechanical energy in running vertical jumps and running long jumps.

    PubMed

    Stefanyshyn, D J; Nigg, B M

    1998-02-01

    The energy contribution of the lower extremity joints to vertical jumping and long jumping from a standing position has previously been investigated. However, the resultant joint moment contributions to vertical and long jumps performed with a running approach are unknown. Also, the contribution of the metatarsophalangeal joint to these activities has not been investigated. The objective of this study was to determine the mechanical energy contributions of the hip, knee, ankle and metatarsophalangeal joints to running long jumps and running vertical jumps. A sagittal plane analysis was performed on five male university basketball players while performing running vertical jumps and four male long jumpers while performing running long jumps. The resultant joint moment and power patterns at the ankle, knee and hip were similar to those reported in the literature for standing jumps. It appears that the movement pattern of the jumps is not influenced by an increase in horizontal velocity before take-off. The metatarsophalangeal joint was a large energy absorber and generated only a minimal amount of energy at take-off. The ankle joint was the largest energy generator and absorber for both jumps; however, it played a smaller relative role during long jumping as the energy contribution of the hip increased.

  13. CAPTURE OF TROJANS BY JUMPING JUPITER

    SciTech Connect

    Nesvorny, David; Vokrouhlicky, David; Morbidelli, Alessandro

    2013-05-01

    Jupiter Trojans are thought to be survivors of a much larger population of planetesimals that existed in the planetary region when planets formed. They can provide important constraints on the mass and properties of the planetesimal disk, and its dispersal during planet migration. Here, we tested a possibility that the Trojans were captured during the early dynamical instability among the outer planets (aka the Nice model), when the semimajor axis of Jupiter was changing as a result of scattering encounters with an ice giant. The capture occurs in this model when Jupiter's orbit and its Lagrange points become radially displaced in a scattering event and fall into a region populated by planetesimals (that previously evolved from their natal transplanetary disk to {approx}5 AU during the instability). Our numerical simulations of the new capture model, hereafter jump capture, satisfactorily reproduce the orbital distribution of the Trojans and their total mass. The jump capture is potentially capable of explaining the observed asymmetry in the number of leading and trailing Trojans. We find that the capture probability is (6-8) Multiplication-Sign 10{sup -7} for each particle in the original transplanetary disk, implying that the disk contained (3-4) Multiplication-Sign 10{sup 7} planetesimals with absolute magnitude H < 9 (corresponding to diameter D = 80 km for a 7% albedo). The disk mass inferred from this work, M{sub disk} {approx} 14-28 M{sub Earth}, is consistent with the mass deduced from recent dynamical simulations of the planetary instability.

  14. Understanding the physics of bungee jumping

    NASA Astrophysics Data System (ADS)

    Heck, André; Uylings, Peter; Kędzierska, Ewa

    2010-01-01

    Changing mass phenomena like the motion of a falling chain, the behaviour of a falling elastic bar or spring, and the motion of a bungee jumper surprise many a physicist. In this article we discuss the first phase of bungee jumping, when the bungee jumper falls, but the bungee rope is still slack. In instructional material this phase is often considered a free fall, but when the mass of the bungee rope is taken into account, the bungee jumper reaches acceleration greater than g. This result is contrary to the usual experience with free falling objects and therefore hard to believe for many a person, even an experienced physicist. It is often a starting point for heated discussions about the quality of the experiments and the physics knowledge of the experimentalist, or it may even prompt complaints about the quality of current physics education. But experiments do reveal the truth and students can do them supported by information and communication technology (ICT) tools. We report on a research project done by secondary school students and use their work to discuss how measurements with sensors, video analysis of self-recorded high-speed video clips and computer modelling allow study of the physics of bungee jumping.

  15. A jumping cylinder on an inclined plane

    NASA Astrophysics Data System (ADS)

    Gómez, R. W.; Hernández-Gómez, J. J.; Marquina, V.

    2012-09-01

    The problem of a cylinder of mass m and radius r, with its centre of mass out of the cylinder’s axis, rolling on an inclined plane that makes an angle α with respect to the horizontal, is analysed. The equation of motion is partially solved to obtain the site where the cylinder loses contact with the inclined plane (jumps). Several simplifications are made: the analysed system consists of an homogeneous disc with a one-dimensional straight line mass parallel to the disc axis at a distance y < r of the centre of the cylinder. To compare our results with experimental data, we use a styrofoam cylinder to which a long brass rod is embedded parallel to the disc axis at a distance y < r from it, so the centre of mass lies at a distance d from the centre of the cylinder. Then the disc rolls without slipping on a long wooden ramp inclined at 15°, 30° and 45° with respect to the horizontal. To determine the jumping site, the movements are recorded with a high-speed video camera (Casio EX ZR100) at 240 and 480 frames per second. The experimental results agree well with the theoretical predictions.

  16. A jumping cylinder in an incline

    NASA Astrophysics Data System (ADS)

    Gomez, Raul W.; Hernandez, Jorge; Marquina, Vivianne

    2012-02-01

    The problem of a cylinder of mass m and radius r, with its center of mass out of the cylinder axis, rolling in an incline that makes an angle α respect to the horizontal is analyzed. The equation of motion is solved to obtain the site where the cylinder loses contact with the incline (jumps). Several simplifications are made: the analyzed system consists of an homogeneous disc with a one dimensional straight line of mass parallel to the disc axis at a distance d < r of the center of the cylinder. To compare our results with experimental data, we use a Styrofoam cylinder of radius r = 10.0 ± 0.05 cm, high h = 5.55 ± 0.05 cm and a mass m1 = 24.45 ± 0.05 g, to which a 9.50 ± 0.01 mm diameter and 5.10 ± 0.001 cm long brass road of mass m2 = 30.75 ± 0.05 g was imbibed parallel to the disc axis at a distance of 5.40 ± 0.05 cm from it. Then the disc rolls on a 3.20 m long wooden ramp inclined at 30 and 45 respect to the horizontal. To determine the jumping site, the movements were recorded with a high-speed video camera (Casio EX ZR100) at 400 frames per second. The experimental results agree well with the theoretical predictions.

  17. Fatigue effects on knee joint stability during two jump tasks in women.

    PubMed

    Ortiz, Alexis; Olson, Sharon L; Etnyre, Bruce; Trudelle-Jackson, Elaine E; Bartlett, William; Venegas-Rios, Heidi L

    2010-04-01

    Dynamic knee joint stability may be affected by the onset of metabolic fatigue during sports participation that could increase the risk for knee injury. The purpose of this investigation was to determine the effects of metabolic fatigue on knee muscle activation, peak knee joint angles, and peak knee internal moments in young women during 2 jumping tasks. Fifteen women (mean age: 24.6 +/- 2.6 years) participated in one nonfatigued session and one fatigued session. During both sessions, peak knee landing flexion and valgus joint angles, peak knee extension and varus/valgus internal moments, electromyographic (EMG) muscle activity of the quadriceps and hamstrings, and quadriceps/hamstring EMG cocontraction ratio were measured. The tasks consisted of a single-legged drop jump from a 40-cm box and a 20-cm, up-down, repeated hop task. The fatigued session included a Wingate anaerobic protocol followed by performance of the 2 tasks. Although participants exhibited greater knee injury-predisposing factors during the fatigued session, such as lesser knee flexion joint angles, greater knee valgus joint angles, and greater varus/valgus internal joint moments for both tasks, only knee flexion during the up-down task was statistically significant (p = 0.028). Metabolic fatigue may perhaps predispose young women to knee injuries by impairing dynamic knee joint stability. Training strength-endurance components and the ability to maintain control of body movements in either rested or fatigued situations might help reduce injuries in young women athletes. PMID:20300024

  18. Influences of Patellofemoral Pain and Fatigue in Female Dancers during Ballet Jump-Landing.

    PubMed

    Peng, H-T; Chen, W C; Kernozek, T W; Kim, K; Song, C-Y

    2015-08-01

    This study investigated the influence of patellofemoral pain (PFP) and fatigue on lower-extremity joint biomechanics in female dancers during consecutive simple ground échappé. 3-dimensional joint mechanics were analyzed from the no-fatigue to fatigue conditions. 2-way mixed ANOVAs were used to compare the differences of the kinematic and kinetic variables between groups and conditions. Group main effects were seen in increased jump height (p=0.03), peak vertical ground reaction force (p=0.01), knee joint power absorption (p=0.04), and patellofemoral joint stress (PFJS, p=0.04) for PFP group. Fatigue main effects were found for decreased jump height (p<0.01), decreased ankle plantarflexion at initial foot-ground contact (p=0.01), and decreased ankle displacement (p<0.01). Hip external rotation impulse and hip joint stiffness increased (both p<0.01) while knee extension and external rotation moment, and ankle joint power absorption decreased (p<0.01, p=0.02, p<0.01, respectively) after fatigue. The peak PFJS also decreased after fatigue (p<0.01). Female ballet dancers with PFP sustained great ground impact and loads on the knee probably due to higher jump height compared to the controls. All dancers presented diminished knee joint loading for the protective mechanism and endurance of ankle joint musculature required for the dissipation of loads and displayed a distal-to-proximal dissipation strategy after fatigue. PMID:25806586

  19. Real-time measurement of rectus femoris muscle kinematics during drop jump using ultrasound imaging: a preliminary study.

    PubMed

    Eranki, Avinash; Cortes, Nelson; Ferencek Gregurić, Zrinka; Kim, John J; Sikdar, Siddhartha

    2012-01-01

    We have developed an office based vector tissue Doppler imaging (vTDI) that can be used to quantitatively measure muscle kinematics using ultrasound. The goal of this preliminary study was to investigate if vTDI measures are repeatable and can be used robustly to measure and understand the kinematics of the rectus femoris muscle during a drop jump task. Data were collected from 8 healthy volunteers. Vector TDI along with a high speed camera video was used to better understand the dynamics of the drop jump. Our results indicate that the peak resultant vector velocity of the rectus femoris immediately following landing was repeatable across trials (intraclass correlation coefficient=0.9).The peak velocity had a relatively narrow range in 6 out of 8 subjects (48-62 cm/s), while in the remaining two subjects it exceeded 70 cm/s. The entire drop jump lasted for 1.45 0.27 seconds. The waveform of muscle velocity could be used to identify different phases of the jump. Also, the movement of the ultrasound transducer holder was minimal with peak deflection of 0.91 0.54 degrees over all trials. Vector TDI can be implemented in a clinical setting using an ultrasound system with a research interface to better understand the muscle kinematics in patients with ACL injuries.

  20. Jumping robots: a biomimetic solution to locomotion across rough terrain.

    PubMed

    Armour, Rhodri; Paskins, Keith; Bowyer, Adrian; Vincent, Julian; Megill, William; Bomphrey, Richard

    2007-09-01

    This paper introduces jumping robots as a means to traverse rough terrain; such terrain can pose problems for traditional wheeled, tracked and legged designs. The diversity of jumping mechanisms found in nature is explored to support the theory that jumping is a desirable ability for a robot locomotion system to incorporate, and then the size-related constraints are determined from first principles. A series of existing jumping robots are presented and their performance summarized. The authors present two new biologically inspired jumping robots, Jollbot and Glumper, both of which incorporate additional locomotion techniques of rolling and gliding respectively. Jollbot consists of metal hoop springs forming a 300 mm diameter sphere, and when jumping it raises its centre of gravity by 0.22 m and clears a height of 0.18 m. Glumper is of octahedral shape, with four 'legs' that each comprise two 500 mm lengths of CFRP tube articulating around torsion spring 'knees'. It is able to raise its centre of gravity by 1.60 m and clears a height of 1.17 m. The jumping performance of the jumping robot designs presented is discussed and compared against some specialized jumping animals. Specific power output is thought to be the performance-limiting factor for a jumping robot, which requires the maximization of the amount of energy that can be stored together with a minimization of mass. It is demonstrated that this can be achieved through optimization and careful materials selection. PMID:17848786

  1. Jumping kinematics in the wandering spider Cupiennius salei.

    PubMed

    Weihmann, Tom; Karner, Michael; Full, Robert J; Blickhan, Reinhard

    2010-06-01

    Spiders use hemolymph pressure to extend their legs. This mechanism should be challenged when required to rapidly generate forces during jumping, particularly in large spiders. However, effective use of leg muscles could facilitate rapid jumping. To quantify the contributions of different legs and leg joints, we investigated jumping kinematics by high-speed video recording. We observed two different types of jumps following a disturbance: prepared and unprepared jumps. In unprepared jumps, the animals could jump in any direction away from the disturbance. The remarkable directional flexibility was achieved by flexing the legs on the leading side and extending them on the trailing side. This behaviour is only possible for approximately radial-symmetric leg postures, where each leg can fulfil similar functions. In prepared jumps, the spiders showed characteristic leg positioning and the jumps were directed anteriorly. Immediately after a preliminary countermovement in which the centre of mass was moved backwards and downwards, the jump was executed by extending first the fourth and then the second leg pair. This sequence provided effective acceleration to the centre of mass. At least in the fourth legs, the hydraulic and the muscular mechanism seem to interact to generate ground reaction forces. PMID:20405130

  2. Jumping robots: a biomimetic solution to locomotion across rough terrain.

    PubMed

    Armour, Rhodri; Paskins, Keith; Bowyer, Adrian; Vincent, Julian; Megill, William; Bomphrey, Richard

    2007-09-01

    This paper introduces jumping robots as a means to traverse rough terrain; such terrain can pose problems for traditional wheeled, tracked and legged designs. The diversity of jumping mechanisms found in nature is explored to support the theory that jumping is a desirable ability for a robot locomotion system to incorporate, and then the size-related constraints are determined from first principles. A series of existing jumping robots are presented and their performance summarized. The authors present two new biologically inspired jumping robots, Jollbot and Glumper, both of which incorporate additional locomotion techniques of rolling and gliding respectively. Jollbot consists of metal hoop springs forming a 300 mm diameter sphere, and when jumping it raises its centre of gravity by 0.22 m and clears a height of 0.18 m. Glumper is of octahedral shape, with four 'legs' that each comprise two 500 mm lengths of CFRP tube articulating around torsion spring 'knees'. It is able to raise its centre of gravity by 1.60 m and clears a height of 1.17 m. The jumping performance of the jumping robot designs presented is discussed and compared against some specialized jumping animals. Specific power output is thought to be the performance-limiting factor for a jumping robot, which requires the maximization of the amount of energy that can be stored together with a minimization of mass. It is demonstrated that this can be achieved through optimization and careful materials selection.

  3. Long memory behavior of returns after intraday financial jumps

    NASA Astrophysics Data System (ADS)

    Behfar, Stefan Kambiz

    2016-11-01

    In this paper, characterization of intraday financial jumps and time dynamics of returns after jumps is investigated, and will be analytically and empirically shown that intraday jumps are power-law distributed with the exponent 1 < μ < 2; in addition, returns after jumps show long-memory behavior. In the theory of finance, it is important to be able to distinguish between jumps and continuous sample path price movements, and this can be achieved by introducing a statistical test via calculating sums of products of returns over small period of time. In the case of having jump, the null hypothesis for normality test is rejected; this is based on the idea that returns are composed of mixture of normally-distributed and power-law distributed data (∼ 1 /r 1 + μ). Probability of rejection of null hypothesis is a function of μ, which is equal to one for 1 < μ < 2 within large intraday sample size M. To test this idea empirically, we downloaded S&P500 index data for both periods of 1997-1998 and 2014-2015, and showed that the Complementary Cumulative Distribution Function of jump return is power-law distributed with the exponent 1 < μ < 2. There are far more jumps in 1997-1998 as compared to 2015-2016; and it represents a power law exponent in 2015-2016 greater than one in 1997-1998. Assuming that i.i.d returns generally follow Poisson distribution, if the jump is a causal factor, high returns after jumps are the effect; we show that returns caused by jump decay as power-law distribution. To test this idea empirically, we average over the time dynamics of all days; therefore the superposed time dynamics after jump represent a power-law, which indicates that there is a long memory with a power-law distribution of return after jump.

  4. Four weeks of optimal load ballistic resistance training at the end of season attenuates declining jump performance of women volleyball players.

    PubMed

    Newton, Robert U; Rogers, Ryan A; Volek, Jeff S; Häkkinen, Keijo; Kraemer, William J

    2006-11-01

    Anecdotal and research evidence is that vertical jump performance declines over the competitive volleyball season. The purpose of this study was to evaluate whether a short period of ballistic resistance training would attenuate this loss. Fourteen collegiate women volleyball players were trained for 11 weeks with periodized traditional and ballistic resistance training. There was a 5.4% decrease (p < 0.05) in approach jump and reach height during the traditional training period (start of season to midseason), and a 5.3% increase (p < 0.05) during the ballistic training period (midseason to end of season), but values were not different from start to end of season. These changes in overall jump performance were reflective of changes in underlying neuromuscular performance variables: in particular, power output and peak velocity during loaded jump squats, countermovement jumps, and drop jumps. During the first 7 weeks of traditional heavy resistance training, it appears that the neuromuscular system is depressed, perhaps by the combination of training, game play, and skills practice precluding adequate recovery. Introduction of a novel training stimulus in the form of ballistic jump squats and reduction of heavy resistance training of the leg extensors stimulated a rebound in performance, in some cases to exceed the athlete's ability at the start of the season. Periodization of in-season training programs similar to that used in this study may provide volleyball players with good vertical jump performance for the crucial end-of-season games.

  5. Changes in Indirect Markers of Muscle Damage and Tendons After Daily Drop Jumping Exercise with Rapid Load Increase.

    PubMed

    Paleckis, Vidas; Mickevičius, Mantas; Snieckus, Audrius; Streckis, Vytautas; Pääsuke, Mati; Rutkauskas, Saulius; Steponavičiūtė, Rasa; Skurvydas, Albertas; Kamandulis, Sigitas

    2015-12-01

    The aim of this study was to assess changes in indirect markers of muscle damage and type I collagen degradation, as well as, patellar and Achilles tendon morphological differences during nine daily drop-jumps sessions with constant load alternated with rapid increases in load to test the hypothesis that frequent drop-jump training results in negative muscular and tendon adaptation. Young men (n = 9) performed daily drop jump workouts with progression every 3 days in terms of number of jumps, platform height and squat amplitude. Voluntary and electrically evoked knee extensor torque, muscle soreness, blood plasma creatine kinase (CK) activity and carboxyterminal cross-linked telopeptide (ICTP), patellar and Achilles tendon thickness and cross-sectional area (CSA) were assessed at different time points during the training period and again on days 1, 3, 10 and 17 after the training. The findings were as follows: (1) steady decline in maximal muscle strength with major recovery within 24 hours after the first six daily training sessions; (2) larger decline in electrically induced muscle torque and prolonged recovery during last three training sessions; (3) increase in patellar and Achilles tendons CSA without change in thickness towards the end of training period; (4) increase in jump height but not in muscle strength after whole training period. Our findings suggest that frequent drop-jump sessions with constant load alternated with rapid increases in load do not induce severe muscle damage or major changes in tendons, nonetheless, this type of loading is not advisable for muscle strength improvement. Key pointsFrequent drop jump training induces activation mode dependent muscle torque depression late in the training period.No significant changes in the thickness of patellar and Achilles tendons are observed during frequent training, while CSA increases towards the end of training period.Longitudinal effect for jump height but not for muscle strength is evident after

  6. Hubbert's Peak: A Physicist's View

    NASA Astrophysics Data System (ADS)

    McDonald, Richard

    2011-11-01

    Oil and its by-products, as used in manufacturing, agriculture, and transportation, are the lifeblood of today's 7 billion-person population and our 65T world economy. Despite this importance, estimates of future oil production seem dominated by wishful thinking rather than quantitative analysis. Better studies are needed. In 1956, Dr. M.King Hubbert proposed a theory of resource production and applied it successfully to predict peak U.S. oil production in 1970. Thus, the peak of oil production is referred to as ``Hubbert's Peak.'' Prof. Al Bartlett extended this work in publications and lectures on population and oil. Both Hubbert and Bartlett place peak world oil production at a similar time, essentially now. This paper extends this line of work to include analyses of individual countries, inclusion of multiple Gaussian peaks, and analysis of reserves data. While this is not strictly a predictive theory, we will demonstrate a ``closed'' story connecting production, oil-in-place, and reserves. This gives us the ``most likely'' estimate of future oil availability. Finally, we will comment on synthetic oil and the possibility of carbon-neutral synthetic oil for a sustainable future.

  7. Two classes of speculative peaks

    NASA Astrophysics Data System (ADS)

    Roehner, Bertrand M.

    2001-10-01

    Speculation not only occurs in financial markets but also in numerous other markets, e.g. commodities, real estate, collectibles, and so on. Such speculative movements result in price peaks which share many common characteristics: same order of magnitude of duration with respect to amplitude, same shape (the so-called sharp-peak pattern). Such similarities suggest (at least as a first approximation) a common speculative behavior. However, a closer examination shows that in fact there are (at least) two distinct classes of speculative peaks. For the first, referred to as class U, (i) the amplitude of the peak is negatively correlated with the price at the start of the peak (ii) the ensemble coefficient of variation exhibits a trough. Opposite results are observed for the second class that we refer to as class S. Once these empirical observations have been made we try to understand how they should be interpreted. First, we show that the two properties are in fact related in the sense that the second is a consequence of the first. Secondly, by listing a number of cases belonging to each class we observe that the markets in the S-class offer collection of items from which investors can select those they prefer. On the contrary, U-markets consist of undifferentiated products for which a selection cannot be made in the same way. All prices considered in the paper are real (i.e., deflated) prices.

  8. Predator Mimicry: Metalmark Moths Mimic Their Jumping Spider Predators

    PubMed Central

    Rota, Jadranka; Wagner, David L.

    2006-01-01

    Cases of mimicry provide many of the nature's most convincing examples of natural selection. Here we report evidence for a case of predator mimicry in which metalmark moths in the genus Brenthia mimic jumping spiders, one of their predators. In controlled trials, Brenthia had higher survival rates than other similarly sized moths in the presence of jumping spiders and jumping spiders responded to Brenthia with territorial displays, indicating that Brenthia were sometimes mistaken for jumping spiders, and not recognized as prey. Our experimental results and a review of wing patterns of other insects indicate that jumping spider mimicry is more widespread than heretofore appreciated, and that jumping spiders are probably an important selective pressure shaping the evolution of diurnal insects that perch on vegetation. PMID:17183674

  9. Promoting balance and jumping skills in children with Down syndrome.

    PubMed

    Wang, Wai-Yi; Ju, Yun-Huei

    2002-04-01

    The purpose of this study was to investigate the changes in balance and qualitative and quantitative jumping performances by 20 children with Down syndrome (3 to 6 years) on jumping lessons. 30 typical children ages 3 to 6 years were recruited as a comparison group. Before the jumping lesson, a pretest was given subjects for balance and jumping skill measures based on the Motor Proficiency and Motor Skill Inventory, respectively. Subjects with Down syndrome received 3 sessions on jumping per week for 6 weeks but not the typical children. Then, a posttest was administered to all subjects. Analysis of covariance showed the pre- and posttest differences on scores for floor walk, beam walk, and horizontal and vertical jumping by subjects with Down syndrome were significantly greater than those for the typical children.

  10. Optimal estimation for discrete time jump processes

    NASA Technical Reports Server (NTRS)

    Vaca, M. V.; Tretter, S. A.

    1977-01-01

    Optimum estimates of nonobservable random variables or random processes which influence the rate functions of a discrete time jump process (DTJP) are obtained. The approach is based on the a posteriori probability of a nonobservable event expressed in terms of the a priori probability of that event and of the sample function probability of the DTJP. A general representation for optimum estimates and recursive equations for minimum mean squared error (MMSE) estimates are obtained. MMSE estimates are nonlinear functions of the observations. The problem of estimating the rate of a DTJP when the rate is a random variable with a probability density function of the form cx super K (l-x) super m and show that the MMSE estimates are linear in this case. This class of density functions explains why there are insignificant differences between optimum unconstrained and linear MMSE estimates in a variety of problems.

  11. Generator estimation of Markov jump processes

    NASA Astrophysics Data System (ADS)

    Metzner, P.; Dittmer, E.; Jahnke, T.; Schütte, Ch.

    2007-11-01

    Estimating the generator of a continuous-time Markov jump process based on incomplete data is a problem which arises in various applications ranging from machine learning to molecular dynamics. Several methods have been devised for this purpose: a quadratic programming approach (cf. [D.T. Crommelin, E. Vanden-Eijnden, Fitting timeseries by continuous-time Markov chains: a quadratic programming approach, J. Comp. Phys. 217 (2006) 782-805]), a resolvent method (cf. [T. Müller, Modellierung von Proteinevolution, PhD thesis, Heidelberg, 2001]), and various implementations of an expectation-maximization algorithm ([S. Asmussen, O. Nerman, M. Olsson, Fitting phase-type distributions via the EM algorithm, Scand. J. Stat. 23 (1996) 419-441; I. Holmes, G.M. Rubin, An expectation maximization algorithm for training hidden substitution models, J. Mol. Biol. 317 (2002) 753-764; U. Nodelman, C.R. Shelton, D. Koller, Expectation maximization and complex duration distributions for continuous time Bayesian networks, in: Proceedings of the twenty-first conference on uncertainty in AI (UAI), 2005, pp. 421-430; M. Bladt, M. Sørensen, Statistical inference for discretely observed Markov jump processes, J.R. Statist. Soc. B 67 (2005) 395-410]). Some of these methods, however, seem to be known only in a particular research community, and have later been reinvented in a different context. The purpose of this paper is to compile a catalogue of existing approaches, to compare the strengths and weaknesses, and to test their performance in a series of numerical examples. These examples include carefully chosen model problems and an application to a time series from molecular dynamics.

  12. Neurons controlling jumping in froghopper insects.

    PubMed

    Bräunig, Peter; Burrows, Malcolm

    2008-03-01

    The neurons innervating muscles that deliver the enormous power enabling froghopper insects to excel at jumping were revealed by backfilling the nerves from those muscles. The huge trochanteral depressor muscle (M133) of a hind leg consists of four parts. The two largest parts (M133b,c) occupy most of the metathorax and are innervated by the same two motor neurons that have small, laterally placed somata in the metathoracic ganglion and axons in nerve N3C(2). They are also supplied by three dorsal unpaired median (DUM) neurons with the largest diameter somata in the central nervous system. A small metathoracic part of the muscle (M133d) is supplied by two motor neurons with lateral somata and by common inhibitory motor neuron CI(1), all with axons in nerve N3C(3) The motor neuron with the larger soma has a thick primary neurite that projects across the midline of the ganglion so that its branches overlap those of its symmetrical counterpart,innervating the same muscle of the other hind leg. The fourth coxal part of the muscle (M133a) is innervated by two motor neurons (one with a ventral and the other with a dorsal and lateral soma), by CI(1), and by a DUM neuron with a small soma. All have axons in nerve N5A. The two trochanteral levator muscles of a hind leg are contained within the coxa and are separately innervated by nerves N3B and N4, respectively. The properties of the different motor neurons are discussed in the context of the neural patterns that generate jumping. PMID:18095320

  13. Pivot task increases knee frontal plane loading compared with sidestep and drop-jump

    PubMed Central

    CORTES, NELSON; ONATE, JAMES; LUNEN, BONNIE VAN

    2013-01-01

    The purpose of this study was to assess kinematic and kinetic differences between three tasks (drop-jump, sidestep cutting, and pivot tasks) commonly used to evaluate anterior cruciate ligament risk factors. Nineteen female collegiate soccer athletes from a Division I institution participated in this study. Participants performed a drop-jump task, and two unanticipated tasks, sidestep cutting and pivot. Repeated-measures analyses of variance were conducted to assess differences in the kinematic and kinetic parameters between tasks. The pivot task had lower knee flexion (−41.2 ± 8.8°) and a higher valgus angle (−7.6 ± 10.1°) than the sidestep (−53.9 ± 9.4° and −2.9 ± 10.0°, respectively) at maximum vertical ground reaction force. The pivot task (0.8 ± 0.3 multiples of body weight) had higher peak posterior ground reaction force than the drop-jump (0.3 ± 0.06 multiples of body weight) and sidestep cutting (0.3 ± 0.1 multiples of body weight), as well as higher internal varus moments (0.72 ± 0.3 N · m/kg · m) than the drop-jump (0.14 ± 0.07 N · m/kg · m) and sidestep (0.17 ± 0.5 N · m/kg · m) at peak stance. During the pivot task, the athletes presented a more erect posture and adopted strategies that may place higher loads on the knee joint and increase the strain on the anterior cruciate ligament. PMID:21086213

  14. Pricing turbo warrants under mixed-exponential jump diffusion model

    NASA Astrophysics Data System (ADS)

    Yu, Jianfeng; Xu, Weidong

    2016-06-01

    Turbo warrant is a special type of barrier options in which the rebate is calculated as another exotic option. In this paper, using Laplace transforms we obtain the valuation of turbo warrant under the mixed-exponential jump diffusion model, which is able to approximate any jump size distribution. The numerical Laplace inversion examples verify that the analytical solutions are accurate. The results of simulation confirm the argument that jump risk should not be ignored in the valuation of turbo warrants.

  15. The influence of resting period length on jumping performance.

    PubMed

    Pereira, Gleber; Almeida, Alexandre G; Rodacki, André L F; Ugrinowitsch, Carlos; Fowler, Neil E; Kokubun, Eduardo

    2008-07-01

    The purpose of this study was to determine a resting interval between countermovement jumps (i.e., volleyball spikes) that allows the maintenance of maximal jumping performance. Ten male volleyball players (1.85 +/- 0.05 m, 77.2 +/- 10.6 kg, 21.6 +/- 5.3 years) performed 6 experimental jumping sessions. In the first and sixth sessions, maximal countermovement jump height was measured, followed by submaximal countermovement jumps to the point of volitional fatigue. The number of countermovement jumps was used as a reference to test the effect of rest period between volleyball spikes. From the second to fifth experimental sessions, 30 maximal volleyball spikes were performed with different resting periods (i.e., 8, 14, 17, and 20 seconds) followed by countermovement jumps. Between the 15th and 30th spikes, the blood lactate concentration and heart rate were measured. Because the performance on the first and sixth sessions was the same, no training effects were noticed. During the 8-second resting interval set, the lactate concentration increased significantly between the 15th and 30th spikes (i.e., from 3.37 +/- 1.16 mmol to 4.94 +/- 1.49 mmol); the number of countermovement jumps decreased significantly after spikes compared to those performed without a previous effort (i.e., from 23 +/- 7 jumps to 17 +/- 9 jumps); and these variables were significantly correlated (r = -0.7). On the other hand, the lactate concentration and number of countermovement jumps were stable across the other resting intervals, without a heart rate steady state. The results indicate that an adequate resting period between spikes allowed participants to achieve a lactate steady state in which the performance was maintained during the exercise. These findings show that resting intervals between 14 and 17 seconds, typical during volleyball matches, are indicated to use in volleyball spike drills due to their capacity to maintain maximal jumping performance. PMID:18545180

  16. Jump kinetic determinants of sprint acceleration performance from starting blocks in male sprinters.

    PubMed

    Maulder, Peter S; Bradshaw, Elizabeth J; Keogh, Justin

    2006-01-01

    The purpose of this research was to identify the jump kinetic determinants of sprint acceleration performance from a block start. Ten male (mean ± SD: age 20 ± 3 years; height 1.82 ± 0.06 m; weight 76.7 ± 7.9 kg; 100 m personal best: 10.87 + 0.36 s {10.37 - 11.42}) track sprinters at a national and regional competitive level performed 10 m sprints from a block start. Anthropometric dimensions along with squat jump (SJ), countermovement jump (CMJ), continuous straight legged jump (SLJ), single leg hop for distance, and single leg triple hop for distance measures of power were also tested. Stepwise multiple regression analysis identified CMJ average power (W/kg) as a predictor of 10 m sprint performance from a block start (r = 0.79, r(2) = 0.63, p<0.01, SEE = 0.04 (s), %SEE = 2.0). Pearson correlation analysis revealed CMJ force and power (r = -0.70 to -0.79; p = 0.011 - 0.035) and SJ power (r = -0.72 to -0.73; p = 0.026 - 0.028) generating capabilities to be strongly related to sprint performance. Further linear regression analysis predicted an increase in CMJ average and peak take-off power of 1 W/kg (3% & 1.5% respectively) to both result in a decrease of 0.01 s (0.5%) in 10 m sprint performance. Further, an increase in SJ average and peak take-off power of 1 W/kg (3.5% & 1.5% respectively) was predicted to result in a 0.01 s (0.5%) reduction in 10 m sprint time. The results of this study seem to suggest that the ability to generate power both elastically during a CMJ and concentrically during a SJ to be good indicators of predicting sprint performance over 10 m from a block start. Key PointsThe relative explosive ability of the hip and knee extensors during a countermovement jump can predict 10 m sprint performance from a block start.The relative power outputs of male competitive sprinters during a squat jump can predict 10 m sprint performance from a block start.

  17. Jumping improves hip and lumbar spine bone mass in prepubescent children: a randomized controlled trial.

    PubMed

    Fuchs, R K; Bauer, J J; Snow, C M

    2001-01-01

    Physical activity during childhood is advocated as one strategy for enhancing peak bone mass (bone mineral content [BMC]) as a means to reduce osteoporosis-related fractures. Thus, we investigated the effects of high-intensity jumping on hip and lumbar spine bone mass in children. Eighty-nine prepubescent children between the ages of 5.9 and 9.8 years were randomized into a jumping (n = 25 boys and n = 20 girls) or control group (n = 26 boys and n = 18 girls). Both groups participated in the 7-month exercise intervention during the school day three times per week. The jumping group performed 100, two-footed jumps off 61-cm boxes each session, while the control group performed nonimpact stretching exercises. BMC (g), bone area (BA; cm2), and bone mineral density (BMD; g/cm2) of the left proximal femoral neck and lumbar spine (L1-L4) were assessed by dual-energy X-ray absorptiometry (DXA; Hologic QDR/4500-A). Peak ground reaction forces were calculated across 100, two-footed jumps from a 61-cm box. In addition, anthropometric characteristics (height, weight, and body fat), physical activity, and dietary calcium intake were assessed. At baseline there were no differences between groups for anthropometric characteristics, dietary calcium intake, or bone variables. After 7 months, jumpers and controls had similar increases in height, weight, and body fat. Using repeated measures analysis of covariance (ANCOVA; covariates, initial age and bone values, and changes in height and weight) for BMC, the primary outcome variable, jumpers had significantly greater 7-month changes at the femoral neck and lumbar spine than controls (4.5% and 3.1%, respectively). In repeated measures ANCOVA of secondary outcomes (BMD and BA), BMD at the lumbar spine was significantly greater in jumpers than in controls (2.0%) and approached statistical significance at the femoral neck (1.4%; p = 0.085). For BA, jumpers had significantly greater increases at the femoral neck area than controls (2

  18. Association of Jumping Mechanography-Derived Indices of Muscle Function with Tibial Cortical Bone Geometry.

    PubMed

    Verroken, Charlotte; Zmierczak, Hans-Georg; Goemaere, Stefan; Kaufman, Jean-Marc; Lapauw, Bruno

    2016-05-01

    Jumping mechanography has been developed to estimate maximum voluntary muscle forces. This study assessed associations of jumping mechanography-derived force and power measurements with tibial cortical bone geometry, compared to other estimates of muscle mass, size, and function. Healthy men (n = 181; 25-45 years) were recruited in a cross-sectional, population-based sibling-pair study. Muscle parameters include isokinetic peak torque of the quadriceps, DXA-derived leg lean mass, mechanography-derived peak jump force and power, and pQCT-derived mid-tibial (66 %) muscle cross-sectional area (CSA). Mid-tibial cortical bone parameters were assessed by pQCT. In age, height, and weight-adjusted analyses, jump force and power correlated positively with cortical bone area, cortical thickness, and polar strength-strain index (SSIp) (β = 0.23-0.34, p ≤ 0.001 for force; β = 0.25-0.30, p ≤ 0.007 for power) and inversely with endosteal circumference adjusted for periosteal circumference (ECPC) (β = -0.16, p < 0.001 for force; β = -0.13, p = 0.007 for power). Force but not power correlated with cortical over total bone area ratio (β = 0.25, p = 0.002). Whereas leg lean mass correlated with all cortical parameters except cortical over total bone area ratio (β = 0.25-0.62, p ≤ 0.004), muscle CSA only correlated with cortical bone area, periosteal circumference, and SSIp (β = 0.21-0.26, p ≤ 0.001), and quadriceps torque showed no significant correlations with the bone parameters. Multivariate models indicated that leg lean mass was independently associated with overall bone size and strength reflected by periosteal and endosteal circumference and SSIp (β = 0.32-0.55, p ≤ 0.004), whereas jump force was independently associated with cortical bone size reflected by ECPC, cortical thickness, and cortical over total bone area ratio (β = 0.13-0.28; p ≤ 0.002). These data indicate that jumping mechanography provides relevant

  19. Upper limb static-stretching protocol decreases maximal concentric jump performance.

    PubMed

    Marchetti, Paulo H; Silva, Fernando H D de Oliveira; Soares, Enrico G; Serpa, Erica P; Nardi, Priscyla S M; Vilela, Guanis de B; Behm, David G

    2014-12-01

    The purpose of the present study was to evaluate the acute effects of an upper limb static-stretching (SS) protocol on the maximal concentric jump performance. We recruited 25 young healthy, male, resistance trained individuals (stretched group, n = 15 and control group, n = 10) in this study. The randomized between group experimental protocol consisted of a three trials of maximal concentric jump task, before and after a SS of the upper limb. Vertical ground reaction forces (vGRF) and surface electromyography (sEMG) of both gastrocnemius lateralis (GL) and vastus lateralis (VL) were acquired. An extensive SS was employed consisting of ten stretches of 30 seconds, with 15 seconds of rest, and 70-90% of the point of discomfort (POD). ANOVA (2x2) (group x condition) was used for shoulder joint range of motion (ROM), vGRF and sEMG. A significant interaction for passive ROM of the shoulder joint revealed significant increases between pre- and post-SS protocol (p < 0.001). A significant interaction demonstrated decreased peak force and an increased peak propulsion duration between pre- and post-stretching only for stretch group (p = 0.021, and p = 0.024, respectively. There was a significant main effect between groups (stretch and control) for peak force for control group (p = 0.045). Regarding sEMG variables, there were no significant differences between groups (control versus stretched) or condition (pre-stretching versus post-stretching) for the peak amplitude of RMS and IEMG for both muscles (VL and GL). In conclusion, an acute extensive SS can increase the shoulder ROM, and negatively affect both the propulsion duration and peak force of the maximal concentric jump, without providing significant changes in muscle activation. Key pointsThe jump performance can be affected negatively by an intense extensive static-stretching protocol.An intense acute extensive SS protocol can affect positively the shoulder ROM.The intense acute extensive SS protocol does not change

  20. Upper Limb Static-Stretching Protocol Decreases Maximal Concentric Jump Performance

    PubMed Central

    Marchetti, Paulo H.; Silva, Fernando H. D. de Oliveira; Soares, Enrico G.; Serpa, Érica P.; Nardi, Priscyla S. M.; Vilela, Guanis de B.; Behm, David G.

    2014-01-01

    The purpose of the present study was to evaluate the acute effects of an upper limb static-stretching (SS) protocol on the maximal concentric jump performance. We recruited 25 young healthy, male, resistance trained individuals (stretched group, n = 15 and control group, n = 10) in this study. The randomized between group experimental protocol consisted of a three trials of maximal concentric jump task, before and after a SS of the upper limb. Vertical ground reaction forces (vGRF) and surface electromyography (sEMG) of both gastrocnemius lateralis (GL) and vastus lateralis (VL) were acquired. An extensive SS was employed consisting of ten stretches of 30 seconds, with 15 seconds of rest, and 70-90% of the point of discomfort (POD). ANOVA (2x2) (group x condition) was used for shoulder joint range of motion (ROM), vGRF and sEMG. A significant interaction for passive ROM of the shoulder joint revealed significant increases between pre- and post-SS protocol (p < 0.001). A significant interaction demonstrated decreased peak force and an increased peak propulsion duration between pre- and post-stretching only for stretch group (p = 0.021, and p = 0.024, respectively. There was a significant main effect between groups (stretch and control) for peak force for control group (p = 0.045). Regarding sEMG variables, there were no significant differences between groups (control versus stretched) or condition (pre-stretching versus post-stretching) for the peak amplitude of RMS and IEMG for both muscles (VL and GL). In conclusion, an acute extensive SS can increase the shoulder ROM, and negatively affect both the propulsion duration and peak force of the maximal concentric jump, without providing significant changes in muscle activation. Key points The jump performance can be affected negatively by an intense extensive static-stretching protocol. An intense acute extensive SS protocol can affect positively the shoulder ROM. The intense acute extensive SS protocol does not

  1. Peak finding using biorthogonal wavelets

    SciTech Connect

    Tan, C.Y.

    2000-02-01

    The authors show in this paper how they can find the peaks in the input data if the underlying signal is a sum of Lorentzians. In order to project the data into a space of Lorentzian like functions, they show explicitly the construction of scaling functions which look like Lorentzians. From this construction, they can calculate the biorthogonal filter coefficients for both the analysis and synthesis functions. They then compare their biorthogonal wavelets to the FBI (Federal Bureau of Investigations) wavelets when used for peak finding in noisy data. They will show that in this instance, their filters perform much better than the FBI wavelets.

  2. Tracking Multi-State Quantum Jumps in a Superconducting Circuit

    NASA Astrophysics Data System (ADS)

    Forouzani, Neda; Tan, Dian; Naghiloo, Mahdi; Murch, Kater

    Quantum measurements are known to be crucial for quantum error-correction and state initialization. Continuous measurements can be used for state tracking and real-time quantum feedback. If the measurements are strong, the state dynamics are described by quantum jumps between states. Using continuous measurements, we track the quantum state of a transmon circuit initially in its lowest energy state. We observe spurious jumps between five observable states of the circuit and use a Bayesian update formalism to estimate state occupation probabilities as well as transition rates over time. Our analysis reveals switching between different quantum jump statistics. Resolving the energy distribution of spurious jumps will help characterize this decoherence process.

  3. Biomechanics research in ski jumping, 1991-2006.

    PubMed

    Schwameder, Hermann

    2008-01-01

    In this paper, I review biomechanics research in ski jumping with a specific focus on publications presented between 1991 and 2006 on performance enhancement, limiting factors of the take-off, specific training and conditioning, aerodynamics, and safety. The first section presents a brief description of ski jumping phases (in-run, take-off, early flight, stable flight, and landing) regarding the biomechanical and functional fundamentals. The most important and frequently used biomechanical methods in ski jumping (kinematics, ground reaction force analyses, muscle activation patterns, aerodynamics) are summarized in the second section. The third section focuses on ski jumping articles and research findings published after the establishment of the V-technique in 1991, as the introduction of this technique has had a major influence on performance enhancement, ski jumping regulations, and the construction of hill profiles. The final section proposes topics for future research in the biomechanics of ski jumping, including: take-off and early flight and the relative roles of vertical velocity and forward somersaulting angular momentum; optimal jumping patterns utilizing the capabilities of individual athletes; development of kinematic and kinetic feedback systems for hill jumps; comparisons of simulated and hill jumps; effect of equipment modifications on performance and safety enhancement.

  4. Autonomous stair-climbing with miniature jumping robots.

    PubMed

    Stoeter, Sascha A; Papanikolopoulos, Nikolaos

    2005-04-01

    The problem of vision-guided control of miniature mobile robots is investigated. Untethered mobile robots with small physical dimensions of around 10 cm or less do not permit powerful onboard computers because of size and power constraints. These challenges have, in the past, reduced the functionality of such devices to that of a complex remote control vehicle with fancy sensors. With the help of a computationally more powerful entity such as a larger companion robot, the control loop can be closed. Using the miniature robot's video transmission or that of an observer to localize it in the world, control commands can be computed and relayed to the inept robot. The result is a system that exhibits autonomous capabilities. The framework presented here solves the problem of climbing stairs with the miniature Scout robot. The robot's unique locomotion mode, the jump, is employed to hop one step at a time. Methods for externally tracking the Scout are developed. A large number of real-world experiments are conducted and the results discussed. PMID:15828659

  5. Autonomous stair-climbing with miniature jumping robots.

    PubMed

    Stoeter, Sascha A; Papanikolopoulos, Nikolaos

    2005-04-01

    The problem of vision-guided control of miniature mobile robots is investigated. Untethered mobile robots with small physical dimensions of around 10 cm or less do not permit powerful onboard computers because of size and power constraints. These challenges have, in the past, reduced the functionality of such devices to that of a complex remote control vehicle with fancy sensors. With the help of a computationally more powerful entity such as a larger companion robot, the control loop can be closed. Using the miniature robot's video transmission or that of an observer to localize it in the world, control commands can be computed and relayed to the inept robot. The result is a system that exhibits autonomous capabilities. The framework presented here solves the problem of climbing stairs with the miniature Scout robot. The robot's unique locomotion mode, the jump, is employed to hop one step at a time. Methods for externally tracking the Scout are developed. A large number of real-world experiments are conducted and the results discussed.

  6. Analysis of the Vertical Ground Reaction Forces and Temporal Factors in the Landing Phase of a Countermovement Jump

    PubMed Central

    Ortega, Daniel Rojano; Rodríguez Bíes, Elisabeth C.; Berral de la Rosa, Francisco J.

    2010-01-01

    In most common bilateral landings of vertical jumps, there are two peak forces (F1 and F2) in the force-time curve. The combination of these peak forces and the high frequency of jumps during sports produce a large amount of stress in the joints of the lower limbs which can be determinant of injury. The aim of this study was to find possible relationships between the jump height and F1 and F2, between F1 and F2 themselves, and between F1, F2, the time they appear (T1 and T2, respectively) and the length of the impact absorption phase (T). Thirty semi-professional football players made five countermovement jumps and the highest jump of each player was analyzed. They were instructed to perform the jumps with maximum effort and to land first with the balls of their feet and then with their heels. All the data were collected using a Kistler Quattro Jump force plate with a sample rate of 500 Hz. Quattro Jump Software, v.1.0.9.0., was used. There was neither significant correlation between T1 and F1 nor between T1 and F2. There was a significant positive correlation between flight height (FH) and F1 (r = 0.584, p = 0.01) but no significant correlation between FH and F2. A significant positive correlation between F1 and T2 (r = 0.418, p < 0.05) and a significant negative correlation between F2 and T2 (r = -0.406, p < 0.05) were also found. There is a significant negative correlation between T2 and T (r = -0. 443, p < 0.05). T1 has a little effect in the impact absorption process. F1 increases with increasing T2 but F2 decreases with increasing T2. Besides, increasing T2, with the objective of decreasing F2, makes the whole impact absorption shorter and the jump landing faster. Key points In the landing phase of a jump there are always sev-eral peak forces. The combination of these peaks forces and the high frequency of jumps during sports produces a large amount of stress in the joints of the lower limbs which can be determinant of injury. In the most common two

  7. Exploiting knowledge of jump-up and jump-down frequencies to determine the parameters of a Duffing oscillator

    NASA Astrophysics Data System (ADS)

    Ramlan, Roszaidi; Brennan, Michael J.; Kovacic, Ivana; Mace, Brian R.; Burrow, Stephen G.

    2016-08-01

    This work concerns the application of certain non-linear phenomena - jump frequencies in a base-excited Duffing oscillator - to the estimation of the parameters of the system. First, approximate analytical expressions are derived for the relationships between the jump-up and jump-down frequencies, the damping ratio and the cubic stiffness coefficient. Then, experimental results, together with the results of numerical simulations, are presented to show how knowledge of these frequencies can be exploited.

  8. Hubbert's Peak -- A Physicist's View

    NASA Astrophysics Data System (ADS)

    McDonald, Richard

    2011-04-01

    Oil, as used in agriculture and transportation, is the lifeblood of modern society. It is finite in quantity and will someday be exhausted. In 1956, Hubbert proposed a theory of resource production and applied it successfully to predict peak U.S. oil production in 1970. Bartlett extended this work in publications and lectures on the finite nature of oil and its production peak and depletion. Both Hubbert and Bartlett place peak world oil production at a similar time, essentially now. Central to these analyses are estimates of total ``oil in place'' obtained from engineering studies of oil reservoirs as this quantity determines the area under the Hubbert's Peak. Knowing the production history and the total oil in place allows us to make estimates of reserves, and therefore future oil availability. We will then examine reserves data for various countries, in particular OPEC countries, and see if these data tell us anything about the future availability of oil. Finally, we will comment on synthetic oil and the possibility of carbon-neutral synthetic oil for a sustainable future.

  9. Peak Stress Testing Protocol Framework

    EPA Science Inventory

    Treatment of peak flows during wet weather is a common challenge across the country for municipal wastewater utilities with separate and/or combined sewer systems. Increases in wastewater flow resulting from infiltration and inflow (I/I) during wet weather events can result in op...

  10. Measuring Your Peak Flow Rate

    MedlinePlus

    ... meter. Proper cleaning with mild detergent in hot water will keep your peak flow meter working accurately and may keep you healthier. Related Content News: American Lung Association Applauds EPA’s Update to Cross-State Air Pollution Rule News: American Lung Association Invests More Than $ ...

  11. The effect of 8-week plyometric training on leg power, jump and sprint performance in female soccer players.

    PubMed

    Ozbar, Nurper; Ates, Seda; Agopyan, Ani

    2014-10-01

    The aim of this study was to determine the effect of 8-week plyometric training (PT) on the leg power and jump and sprint performance in female soccer players. Eighteen female soccer players from Women Second League (age = 18.2 ± 2.3 years, height = 161.3 ± 5.4 cm, body mass = 56.6 ± 7.2 kg) were randomly assigned to control (n = 9) and plyometric (n = 9) groups. Both groups continued together with regular technical and tactical soccer training for 4 days a week. Additionally, the plyometric group underwent PT for 8 weeks, 1 day per week, 60-minute session duration. During the 8-week period, the control group was hindered from any additional conditioning training. All players' jumps (triple hop, countermovement jump, and standing broad jump), running speed (20 m), and peak power were evaluated before and after 8 weeks. No significant difference was found between the groups at pretest variables (p > 0.05). Significant improvements were found in the posttest of both the groups (p ≤ 0.05), except for 20-m sprint test in the control group (p > 0.05). Triple hop distance, countermovement jump, standing broad jump, peak power, and 20-m sprint test values were all significantly improved in the plyometric group, compared with the control group (p ≤ 0.05). We concluded that short duration PT is an improved important component of athletic performance in female soccer players. The results indicate that safe, effective, and alternative PT can be useful to strength and conditioning coaches, especially during competition season where less time is available for training.

  12. Jump dynamics due to jump datum of compressible viscous Navier-Stokes flows in a bounded plane domain

    NASA Astrophysics Data System (ADS)

    Kweon, Jae Ryong

    2016-09-01

    In this paper, when the initial density has a jump across an interior curve in a bounded domain, we show unique existence, piecewise regularity and jump discontinuity dynamics for the density and the velocity vector governed by the Navier-Stokes equations of compressible viscous barotropic flows. A critical difficulty is in controlling the gradient of the pressure across the jump curve. This is resolved by constructing a vector function associated with the pressure jump value on the convecting curve and extending it to the whole domain.

  13. Preliminary Development and Evaluation of Lightning Jump Algorithms for the Real-Time Detection of Severe Weather

    NASA Technical Reports Server (NTRS)

    Schultz, Christopher J.; Petersen, Walter A.; Carey, Lawrence D.

    2009-01-01

    Previous studies have demonstrated that rapid increases in total lightning activity (intracloud + cloud-to-ground) are often observed tens of minutes in advance of the occurrence of severe weather at the ground. These rapid increases in lightning activity have been termed "lightning jumps." Herein, we document a positive correlation between lightning jumps and the manifestation of severe weather in thunderstorms occurring across the Tennessee Valley and Washington D.C. A total of 107 thunderstorms were examined in this study, with 69 of the 107 thunderstorms falling into the category of non-severe, and 38 into the category of severe. From the dataset of 69 isolated non-severe thunderstorms, an average peak 1 minute flash rate of 10 flashes/min was determined. A variety of severe thunderstorm types were examined for this study including an MCS, MCV, tornadic outer rainbands of tropical remnants, supercells, and pulse severe thunderstorms. Of the 107 thunderstorms, 85 thunderstorms (47 non-severe, 38 severe) from the Tennessee Valley and Washington D.C tested 6 lightning jump algorithm configurations (Gatlin, Gatlin 45, 2(sigma), 3(sigma), Threshold 10, and Threshold 8). Performance metrics for each algorithm were then calculated, yielding encouraging results from the limited sample of 85 thunderstorms. The 2(sigma) lightning jump algorithm had a high probability of detection (POD; 87%), a modest false alarm rate (FAR; 33%), and a solid Heidke Skill Score (HSS; 0.75). A second and more simplistic lightning jump algorithm named the Threshold 8 lightning jump algorithm also shows promise, with a POD of 81% and a FAR of 41%. Average lead times to severe weather occurrence for these two algorithms were 23 minutes and 20 minutes, respectively. The overall goal of this study is to advance the development of an operationally-applicable jump algorithm that can be used with either total lightning observations made from the ground, or in the near future from space using the

  14. Anisotropic Peak Effect due to Structural Phase Transition in the Vortex Lattice

    NASA Astrophysics Data System (ADS)

    Rosenstein, Baruch; Knigavko, Anton

    1999-07-01

    It is shown that the recently observed new peak effect in YBCO could be explained by the softening of the vortex lattice due to a structural phase transition in the vortex lattice. At this transition square lattice transforms into a distorted hexagonal one. While conventional peak effect is associated with the softening of shear modes (elastic modulus c66 vanishes) at melting, in this case the relevant mode is ``squash'' mode ( c11+c22-2c12 vanishes).

  15. Anisotropic peak effect due to structural phase transition in the vortex lattice

    NASA Astrophysics Data System (ADS)

    Rosenstein, Baruch; Knigavko, Anton

    2000-05-01

    The recently observed new peak effect in YBCO is explained by softening of the vortex lattice (VL) due to a structural phase transition in the VL. At this transition, square lattice transforms into a distorted hexagonal one. While conventional peak effect is associated with softening of shear modes at melting, in this case the relevant mode is the point. The squash mode is highly anisotropic and we point out some peculiar effects associated with this feature.

  16. Knee Muscular Control During Jump Landing in Multidirections

    PubMed Central

    Sinsurin, Komsak; Vachalathiti, Roongtiwa; Jalayondeja, Wattana; Limroongreungrat, Weerawat

    2016-01-01

    Background Jump landing is a complex movement in sports. While competing and practicing, athletes frequently perform multi-planar jump landing. Anticipatory muscle activity could influence the amount of knee flexion and prepare the knee for dynamic weight bearing such as landing tasks. Objectives The aim of the present study was to examine knee muscle function and knee flexion excursion as athletes naturally performed multi-direction jump landing. Materials and Methods Eighteen male athletes performed the jump-landing test in four directions: forward (0°), 30° diagonal, 60° diagonal, and lateral (90°). Muscles tested were vastus medialis (VM), vastus lateralis (VL), rectus femoris (RF), semitendinosus (ST), and biceps femoris (BF). A ViconTM 612 workstation collected the kinematic data. An electromyography was synchronized with the ViconTM Motion system to quantify dynamic muscle function. Repeated measure ANOVA was used to analyze the data. Results Jump-landing direction significantly influenced (P < 0.05) muscle activities of VL, RF, and ST and knee flexion excursion. Jumpers landed with a trend of decreasing knee flexion excursion and ST muscle activity 100 ms before foot contact progressively from forward to lateral directions of jump landing. Conclusions A higher risk of knee injury might occur during lateral jump landing than forward and diagonal directions. Athletes should have more practice in jump landing in lateral direction to avoid injury. Landing technique with high knee flexion in multi-directions should be taught to jumpers for knee injury prevention. PMID:27625758

  17. How Can We Tell if Frogs Jump Further?

    ERIC Educational Resources Information Center

    Drummond, Gordon B.; Tom, Brian D. M.

    2011-01-01

    How effective is training frogs to jump? This is perhaps the most frequent question in biology that is subjected to statistical analysis: does a treatment make a difference? One can examine whether there is indeed a training effect, by first assuming the opposite. That is, the authors assume that training has no effect on the mean distance jumped.…

  18. Could the deep squat jump predict weightlifting performance?

    PubMed

    Vizcaya, Francisco J; Viana, Oscar; del Olmo, Miguel Fernandez; Acero, Rafael Martin

    2009-05-01

    This research was carried out with the aim of describing the deep squat jump (DSJ) and comparing it with the squat (SJ) and countermovement (CMJ) jumps, to introduce it as a strength testing tool in the monitoring and control of training in strength and power sports. Forty-eight male subjects (21 weightlifters, 12 triathletes, and 15 physical education students) performed 3 trials of DSJ, SJ, and CMJ with a 1-minute rest among them. For the weightlifters, snatch and clean and jerk results during the Spanish Championship 2004 and the 35th EU Championships 2007 were collected to study the relationship among vertical jumps and weightlifters' performance. A 1-way analysis of variance (ANOVA) showed significant differences between groups in the vertical jumps, with the highest jumps for the weightlifters and the lowest for the triathletes. An ANOVA for repeated measures (type of jump) showed better results for DSJ and CMJ than SJ in all groups. A linear regression analysis was performed to determine the association between weightlifting and vertical jump performances. Correlations among the weightlifting performance and the vertical jumps were also calculated and determined using Pearson r. Results have shown that both CMJ and DSJ are strongly correlated with weightlifting ability. Therefore, both measures can be useful for coaches as a strength testing tool in the monitoring and control of training in weightlifting.

  19. Immediate Effects of Different Trunk Exercise Programs on Jump Performance.

    PubMed

    Imai, A; Kaneoka, K; Okubo, Y; Shiraki, H

    2016-03-01

    The aim of this study was to investigate the immediate effects of trunk stabilization exercise (SE) and conventional trunk exercise (CE) programs on jump performance. 13 adolescent male soccer players performed 2 kinds of jump testing before and immediate after 3 experimental conditions: SE, CE, and non-exercise (NE). The SE program consisted of the elbow-toe, hand-knee, and back bridge, and the CE program consisted of the sit-up, sit-up with trunk rotation and back extension. Testing of a countermovement jump (CMJ) and rebound jump (RJ) were performed to assess jump performance. Jump height of the CMJ and RJ-index, contact time, and jump height of the RJ were analyzed. The RJ index was improved significantly only after SE (p=0.017). However, contact time and jump height did not improve significantly in the SE condition. Moreover, no significant interaction or main effects of time or group were observed in the CMJ. Consequently, this study showed the different immediate effect on the RJ between the SE and CE, and suggested the possibility that the SE used in this study is useful as a warm-up program to improve the explosive movements. PMID:26667924

  20. A Safe and Effective Modification of Thomson's Jumping Ring Experiment

    ERIC Educational Resources Information Center

    Waschke, Felix; Strunz, Andreas; Meyn, Jan-Peter

    2012-01-01

    The electrical circuit of the jumping ring experiment based on discharging a capacitor is optimized. The setup is scoop proof at 46 V and yet the ring jumps more than 9 m high. The setup is suitable for both lectures and student laboratory work in higher education. (Contains 1 table, 8 figures and 3 footnotes.)

  1. Knee Muscular Control During Jump Landing in Multidirections

    PubMed Central

    Sinsurin, Komsak; Vachalathiti, Roongtiwa; Jalayondeja, Wattana; Limroongreungrat, Weerawat

    2016-01-01

    Background Jump landing is a complex movement in sports. While competing and practicing, athletes frequently perform multi-planar jump landing. Anticipatory muscle activity could influence the amount of knee flexion and prepare the knee for dynamic weight bearing such as landing tasks. Objectives The aim of the present study was to examine knee muscle function and knee flexion excursion as athletes naturally performed multi-direction jump landing. Materials and Methods Eighteen male athletes performed the jump-landing test in four directions: forward (0°), 30° diagonal, 60° diagonal, and lateral (90°). Muscles tested were vastus medialis (VM), vastus lateralis (VL), rectus femoris (RF), semitendinosus (ST), and biceps femoris (BF). A ViconTM 612 workstation collected the kinematic data. An electromyography was synchronized with the ViconTM Motion system to quantify dynamic muscle function. Repeated measure ANOVA was used to analyze the data. Results Jump-landing direction significantly influenced (P < 0.05) muscle activities of VL, RF, and ST and knee flexion excursion. Jumpers landed with a trend of decreasing knee flexion excursion and ST muscle activity 100 ms before foot contact progressively from forward to lateral directions of jump landing. Conclusions A higher risk of knee injury might occur during lateral jump landing than forward and diagonal directions. Athletes should have more practice in jump landing in lateral direction to avoid injury. Landing technique with high knee flexion in multi-directions should be taught to jumpers for knee injury prevention.

  2. METHOD OF PEAK CURRENT MEASUREMENT

    DOEpatents

    Baker, G.E.

    1959-01-20

    The measurement and recording of peak electrical currents are described, and a method for utilizing the magnetic field of the current to erase a portion of an alternating constant frequency and amplitude signal from a magnetic mediums such as a magnetic tapes is presented. A portion of the flux from the current carrying conductor is concentrated into a magnetic path of defined area on the tape. After the current has been recorded, the tape is played back. The amplitude of the signal from the portion of the tape immediately adjacent the defined flux area and the amplitude of the signal from the portion of the tape within the area are compared with the amplitude of the signal from an unerased portion of the tape to determine the percentage of signal erasure, and thereby obtain the peak value of currents flowing in the conductor.

  3. Ethics in radiology: wait lists queue jumping.

    PubMed

    Cunningham, Natalie; Reid, Lynette; MacSwain, Sarah; Clarke, James R

    2013-08-01

    Education in ethics is a requirement for all Royal College residency training programs as laid out in the General Standards of Accreditation for residency programs in Canada. The ethical challenges that face radiologists in clinical practice are often different from those that face other physicians, because the nature of the physician-patient interaction is unlike that of many other specialties. Ethics education for radiologists and radiology residents will benefit from the development of teaching materials and resources that focus on the issues that are specific to the specialty. This article is intended to serve as an educational resource for radiology training programs to facilitate teaching ethics to residents and also as a continuing medical education resource for practicing radiologists. In an environment of limited health care resources, radiologists are frequently asked to expedite imaging studies for patients and, in some respects, act as gatekeepers for specialty care. The issues of wait lists, queue jumping, and balancing the needs of individuals and society are explored from the perspective of a radiologist.

  4. A jumping shape memory alloy under heat.

    PubMed

    Yang, Shuiyuan; Omori, Toshihiro; Wang, Cuiping; Liu, Yong; Nagasako, Makoto; Ruan, Jingjing; Kainuma, Ryosuke; Ishida, Kiyohito; Liu, Xingjun

    2016-02-16

    Shape memory alloys are typical temperature-sensitive metallic functional materials due to superelasticity and shape recovery characteristics. The conventional shape memory effect involves the formation and deformation of thermally induced martensite and its reverse transformation. The shape recovery process usually takes place over a temperature range, showing relatively low temperature-sensitivity. Here we report novel Cu-Al-Fe-Mn shape memory alloys. Their stress-strain and shape recovery behaviors are clearly different from the conventional shape memory alloys. In this study, although the Cu-12.2Al-4.3Fe-6.6Mn and Cu-12.9Al-3.8Fe-5.6Mn alloys possess predominantly L2(1) parent before deformation, the 2H martensite stress-induced from L2(1) parent could be retained after unloading. Furthermore, their shape recovery response is extremely temperature-sensitive, in which a giant residual strain of about 9% recovers instantly and completely during heating. At the same time, the phenomenon of the jumping of the sample occurs. It is originated from the instantaneous completion of the reverse transformation of the stabilized 2H martensite. This novel Cu-Al-Fe-Mn shape memory alloys have great potentials as new temperature-sensitive functional materials.

  5. A jumping shape memory alloy under heat

    PubMed Central

    Yang, Shuiyuan; Omori, Toshihiro; Wang, Cuiping; Liu, Yong; Nagasako, Makoto; Ruan, Jingjing; Kainuma, Ryosuke; Ishida, Kiyohito; Liu, Xingjun

    2016-01-01

    Shape memory alloys are typical temperature-sensitive metallic functional materials due to superelasticity and shape recovery characteristics. The conventional shape memory effect involves the formation and deformation of thermally induced martensite and its reverse transformation. The shape recovery process usually takes place over a temperature range, showing relatively low temperature-sensitivity. Here we report novel Cu-Al-Fe-Mn shape memory alloys. Their stress-strain and shape recovery behaviors are clearly different from the conventional shape memory alloys. In this study, although the Cu-12.2Al-4.3Fe-6.6Mn and Cu-12.9Al-3.8Fe-5.6Mn alloys possess predominantly L21 parent before deformation, the 2H martensite stress-induced from L21 parent could be retained after unloading. Furthermore, their shape recovery response is extremely temperature-sensitive, in which a giant residual strain of about 9% recovers instantly and completely during heating. At the same time, the phenomenon of the jumping of the sample occurs. It is originated from the instantaneous completion of the reverse transformation of the stabilized 2H martensite. This novel Cu-Al-Fe-Mn shape memory alloys have great potentials as new temperature-sensitive functional materials. PMID:26880700

  6. A jumping shape memory alloy under heat

    NASA Astrophysics Data System (ADS)

    Yang, Shuiyuan; Omori, Toshihiro; Wang, Cuiping; Liu, Yong; Nagasako, Makoto; Ruan, Jingjing; Kainuma, Ryosuke; Ishida, Kiyohito; Liu, Xingjun

    2016-02-01

    Shape memory alloys are typical temperature-sensitive metallic functional materials due to superelasticity and shape recovery characteristics. The conventional shape memory effect involves the formation and deformation of thermally induced martensite and its reverse transformation. The shape recovery process usually takes place over a temperature range, showing relatively low temperature-sensitivity. Here we report novel Cu-Al-Fe-Mn shape memory alloys. Their stress-strain and shape recovery behaviors are clearly different from the conventional shape memory alloys. In this study, although the Cu-12.2Al-4.3Fe-6.6Mn and Cu-12.9Al-3.8Fe-5.6Mn alloys possess predominantly L21 parent before deformation, the 2H martensite stress-induced from L21 parent could be retained after unloading. Furthermore, their shape recovery response is extremely temperature-sensitive, in which a giant residual strain of about 9% recovers instantly and completely during heating. At the same time, the phenomenon of the jumping of the sample occurs. It is originated from the instantaneous completion of the reverse transformation of the stabilized 2H martensite. This novel Cu-Al-Fe-Mn shape memory alloys have great potentials as new temperature-sensitive functional materials.

  7. Triple jump examinations for dental student assessment.

    PubMed

    Navazesh, Mahvash; Rich, Sandra K; Chopiuk, Nasrin Bahari; Keim, Robert G

    2013-10-01

    The triple jump examination (TJE) attempts to assess a higher level of learning with demand for analysis, critical thinking, and resolution of problems presented by written scenarios based on patient care situations. The purpose of this study was to examine the internal consistency, scale reliability, and interrater reliability of the TJE used at the Ostrow School of Dentistry, University of Southern California. On the sample of 2,227 examinations administered by seventy-seven raters across a three-year time period, the Cronbach's coefficient alpha for internal consistency of the overall TJE was found to be good (a=0.869). The internal consistency of the three subscales was found to be acceptable (a=0.731), good (a=0.820), and good (a=0.820). Average and single measures intraclass correlation coefficients (ICC) for scale reliability were significant at p<0.001, indicating strong interrater reliability. There were no statistically significant differences (p≤0.05) in the mean scores assigned on the TJE between rater groups defined by rater experience level with the TJE. A very high level of agreement among rater pairs was also observed. Across the entire three-year study period, with over 19,152 ratings, the seventy-seven raters were in general agreement 99.5 percent of the time and in exact agreement 77.2 percent of the time.

  8. SPANISH PEAKS PRIMITIVE AREA, MONTANA.

    USGS Publications Warehouse

    Calkins, James A.; Pattee, Eldon C.

    1984-01-01

    A mineral survey of the Spanish Peaks Primitive Area, Montana, disclosed a small low-grade deposit of demonstrated chromite and asbestos resources. The chances for discovery of additional chrome resources are uncertain and the area has little promise for the occurrence of other mineral or energy resources. A reevaluation, sampling at depth, and testing for possible extensions of the Table Mountain asbestos and chromium deposit should be undertaken in the light of recent interpretations regarding its geologic setting.

  9. Implementation of jump-diffusion algorithms for understanding FLIR scenes

    NASA Astrophysics Data System (ADS)

    Lanterman, Aaron D.; Miller, Michael I.; Snyder, Donald L.

    1995-07-01

    Our pattern theoretic approach to the automated understanding of forward-looking infrared (FLIR) images brings the traditionally separate endeavors of detection, tracking, and recognition together into a unified jump-diffusion process. New objects are detected and object types are recognized through discrete jump moves. Between jumps, the location and orientation of objects are estimated via continuous diffusions. An hypothesized scene, simulated from the emissive characteristics of the hypothesized scene elements, is compared with the collected data by a likelihood function based on sensor statistics. This likelihood is combined with a prior distribution defined over the set of possible scenes to form a posterior distribution. The jump-diffusion process empirically generates the posterior distribution. Both the diffusion and jump operations involve the simulation of a scene produced by a hypothesized configuration. Scene simulation is most effectively accomplished by pipelined rendering engines such as silicon graphics. We demonstrate the execution of our algorithm on a silicon graphics onyx/reality engine.

  10. Nonstandard jump functions for radially symmetric shock waves

    SciTech Connect

    Baty, Roy S.; Tucker, Don H.; Stanescu, Dan

    2008-10-01

    Nonstandard analysis is applied to derive generalized jump functions for radially symmetric, one-dimensional, magnetogasdynamic shock waves. It is assumed that the shock wave jumps occur on infinitesimal intervals, and the jump functions for the physical parameters occur smoothly across these intervals. Locally integrable predistributions of the Heaviside function are used to model the flow variables across a shock wave. The equations of motion expressed in nonconservative form are then applied to derive unambiguous relationships between the jump functions for the physical parameters for two families of self-similar flows. It is shown that the microstructures for these families of radially symmetric, magnetogasdynamic shock waves coincide in a nonstandard sense for a specified density jump function

  11. Nonstandard jump functions for radically symmetric shock waves

    SciTech Connect

    Baty, Roy S; Tucker, Don H; Stanescu, Dan

    2008-01-01

    Nonstandard analysis is applied to derive generalized jump functions for radially symmetric, one-dimensional, magnetogasdynamic shock waves. It is assumed that the shock wave jumps occur on infinitesimal intervals and the jump functions for the physical parameters occur smoothly across these intervals. Locally integrable predistributions of the Heaviside function are used to model the flow variables across a shock wave. The equations of motion expressed in nonconservative form are then applied to derive unambiguous relationships between the jump functions for the physical parameters for two families of self-similar flows. It is shown that the microstructures for these families of radially symmetric, magnetogasdynamic shock waves coincide in a nonstandard sense for a specified density jump function.

  12. Observation of low magnetic field density peaks in helicon plasma

    SciTech Connect

    Barada, Kshitish K.; Chattopadhyay, P. K.; Ghosh, J.; Kumar, Sunil; Saxena, Y. C.

    2013-04-15

    Single density peak has been commonly observed in low magnetic field (<100 G) helicon discharges. In this paper, we report the observations of multiple density peaks in low magnetic field (<100 G) helicon discharges produced in the linear helicon plasma device [Barada et al., Rev. Sci. Instrum. 83, 063501 (2012)]. Experiments are carried out using argon gas with m = +1 right helical antenna operating at 13.56 MHz by varying the magnetic field from 0 G to 100 G. The plasma density varies with varying the magnetic field at constant input power and gas pressure and reaches to its peak value at a magnetic field value of {approx}25 G. Another peak of smaller magnitude in density has been observed near 50 G. Measurement of amplitude and phase of the axial component of the wave using magnetic probes for two magnetic field values corresponding to the observed density peaks indicated the existence of radial modes. Measured parallel wave number together with the estimated perpendicular wave number suggests oblique mode propagation of helicon waves along the resonance cone boundary for these magnetic field values. Further, the observations of larger floating potential fluctuations measured with Langmuir probes at those magnetic field values indicate that near resonance cone boundary; these electrostatic fluctuations take energy from helicon wave and dump power to the plasma causing density peaks.

  13. Effects of Isometric Scaling on Vertical Jumping Performance

    PubMed Central

    Bobbert, Maarten F.

    2013-01-01

    Jump height, defined as vertical displacement in the airborne phase, depends on vertical takeoff velocity. For centuries, researchers have speculated on how jump height is affected by body size and many have adhered to what has come to be known as Borelli’s law, which states that jump height does not depend on body size per se. The underlying assumption is that the amount of work produced per kg body mass during the push-off is independent of size. However, if a big body is isometrically downscaled to a small body, the latter requires higher joint angular velocities to achieve a given takeoff velocity and work production will be more impaired by the force-velocity relationship of muscle. In the present study, the effects of pure isometric scaling on vertical jumping performance were investigated using a biologically realistic model of the human musculoskeletal system. The input of the model, muscle stimulation over time, was optimized using jump height as criterion. It was found that when the human model was miniaturized to the size of a mouse lemur, with a mass of about one-thousandth that of a human, jump height dropped from 40 cm to only 6 cm, mainly because of the force-velocity relationship. In reality, mouse lemurs achieve jump heights of about 33 cm. By implication, the unfavourable effects of the small body size of mouse lemurs on jumping performance must be counteracted by favourable effects of morphological and physiological adaptations. The same holds true for other small jumping animals. The simulations for the first time expose and explain the sheer magnitude of the isolated effects of isometric downscaling on jumping performance, to be counteracted by morphological and physiological adaptations. PMID:23936494

  14. Orientational Jumps in (Acetamide + Electrolyte) Deep Eutectics: Anion Dependence.

    PubMed

    Das, Suman; Biswas, Ranjit; Mukherjee, Biswaroop

    2015-08-27

    All-atom molecular dynamics simulations have been carried out to investigate orientation jumps of acetamide molecules in three different ionic deep eutectics made of acetamide (CH3CONH2) and lithium salts of bromide (Br(–)), nitrate (NO3(–)) and perchlorate (ClO4(–)) at approximately 80:20 mole ratio and 303 K. Orientational jumps have been dissected into acetamide–acetamide and acetamide–ion catagories. Simulated jump characteristics register a considerable dependence on the anion identity. For example, large angle jumps are relatively less frequent in the presence of NO3(–) than in the presence of the other two anions. Distribution of jump angles for rotation of acetamide molecules hydrogen bonded (H-bonded) to anions has been found to be bimodal in the presence of Br(–) and is qualitatively different from the other two cases. Estimated energy barrier for orientation jumps of these acetamide molecules (H-bonded to anions) differ by a factor of ∼2 between NO3(–) and ClO4(–), the barrier height for the latter being lower and ∼0.5kBT. Relative radial and angular displacements during jumps describe the sequence ClO(4)– > NO3(–) > Br(–) and follow a reverse viscosity trend. Jump barrier for acetamide–acetamide pairs reflects weak dependence on anion identity and remains closer to the magnitude (∼0.7kBT) found for orientation jumps in molten acetamide. Jump time distributions exhibit a power law dependence of the type, P(tjump) ∝ A(tjump/τ)(−β), with both β and τ showing substantial anion dependence. The latter suggests the presence of dynamic heterogeneity in these systems and supports earlier conclusions from time-resolved fluorescence measurements. PMID:26131593

  15. Dynamics and stability of directional jumps in the desert locust

    PubMed Central

    Gvirsman, Omer

    2016-01-01

    Locusts are known for their ability to jump large distances to avoid predation. The jump also serves to launch the adult locust into the air in order to initiate flight. Various aspects of this important behavior have been studied extensively, from muscle physiology and biomechanics, to the energy storage systems involved in powering the jump, and more. Less well understood are the mechanisms participating in control of the jump trajectory. Here we utilise video monitoring and careful analysis of experimental directional jumps by adult desert locusts, together with dynamic computer simulation, in order to understand how the locusts control the direction and elevation of the jump, the residual angular velocities resulting from the jump and the timing of flapping-flight initiation. Our study confirms and expands early findings regarding the instrumental role of the initial body position and orientation. Both real-jump video analysis and simulations based on our expanded dynamical model demonstrate that the initial body coordinates of position (relative to the hind-legs ground-contact points) are dominant in predicting the jumps’ azimuth and elevation angles. We also report a strong linear correlation between the jumps’ pitch-angular-velocity and flight initiation timing, such that head downwards rotations lead to earlier wing opening. In addition to offering important insights into the bio-mechanical principles of locust jumping and flight initiation, the findings from this study will be used in designing future prototypes of a bio-inspired miniature jumping robot that will be employed in animal behaviour studies and environmental monitoring applications. PMID:27703846

  16. Jump Distance Increases while Carrying Handheld Weights: Impulse, History, and Jump Performance in a Simple Lab Exercise

    ERIC Educational Resources Information Center

    Butcher, Michael T.; Bertram, John E. A.

    2004-01-01

    This laboratory exercise is designed to provide an understanding of the mechanical concept of impulse as it applies to human movement and athletic performance. Students compare jumps performed with and without handheld weights. Contrary to initial expectation, jump distance is increased with moderate additional weights. This was familiar to…

  17. Jump-landing differences between varsity, club, and intramural athletes: the Jump-ACL Study.

    PubMed

    Theiss, Justin L; Gerber, J Parry; Cameron, Kenneth L; Beutler, Anthony I; Marshall, Stephen W; Distefano, Lindsay J; Padua, Darin A; de la Motte, Sarah J; Miller, Joseph M; Yunker, Craig A

    2014-04-01

    Abnormal movement patterns have been identified as important prospective risk factors for lower extremity injury, including anterior cruciate ligament injury. Specifically, poor neuromuscular control during the early landing phase has been associated with increased injury risk. Although it is commonly assumed that higher division collegiate athletes generally exhibit better movement patterns than lower division athletes, few studies compare the biomechanical differences on basic tasks such as jump landing between various levels of athletic groups. The objective of this study was to evaluate jump-landing and fitness differences among college-aged Intramural, Competitive Club, and National Collegiate Athletic Association (NCAA) Division I level athletes. Two hundred seventy-seven student-athletes (222 men, 55 women; age 19.3 ± 0.8 years) categorized as NCAA Division I, Competitive Club, or Intramural level athletes were evaluated during a jump-landing task using the Landing Error Scoring System (LESS), a validated qualitative movement assessment. Fitness was measured using the Army Physical Fitness Test (APFT). Results showed no significant differences in landing errors between the levels of athletic group (F(2,267) = 0.36, p = 0.70). There was a significant difference in landing errors between genders (F(1,268) = 3.99, p = 0.05). Significant differences in APFT scores were observed between level of athletic group (F(2,267) = 11.14, p < 0.001) and gender (F(1,268) = 9.27, p = 0.003). There was no significant correlation between the APFT and LESS scores (p = 0.26). In conclusion, higher level athletes had better physical fitness as measured by the APFT but did not as a group exhibit better landing technique. The implications of this research suggest that "high-risk" movement patterns are prevalent in all levels of athletes. PMID:23820560

  18. Jump-landing differences between varsity, club, and intramural athletes: the Jump-ACL Study.

    PubMed

    Theiss, Justin L; Gerber, J Parry; Cameron, Kenneth L; Beutler, Anthony I; Marshall, Stephen W; Distefano, Lindsay J; Padua, Darin A; de la Motte, Sarah J; Miller, Joseph M; Yunker, Craig A

    2014-04-01

    Abnormal movement patterns have been identified as important prospective risk factors for lower extremity injury, including anterior cruciate ligament injury. Specifically, poor neuromuscular control during the early landing phase has been associated with increased injury risk. Although it is commonly assumed that higher division collegiate athletes generally exhibit better movement patterns than lower division athletes, few studies compare the biomechanical differences on basic tasks such as jump landing between various levels of athletic groups. The objective of this study was to evaluate jump-landing and fitness differences among college-aged Intramural, Competitive Club, and National Collegiate Athletic Association (NCAA) Division I level athletes. Two hundred seventy-seven student-athletes (222 men, 55 women; age 19.3 ± 0.8 years) categorized as NCAA Division I, Competitive Club, or Intramural level athletes were evaluated during a jump-landing task using the Landing Error Scoring System (LESS), a validated qualitative movement assessment. Fitness was measured using the Army Physical Fitness Test (APFT). Results showed no significant differences in landing errors between the levels of athletic group (F(2,267) = 0.36, p = 0.70). There was a significant difference in landing errors between genders (F(1,268) = 3.99, p = 0.05). Significant differences in APFT scores were observed between level of athletic group (F(2,267) = 11.14, p < 0.001) and gender (F(1,268) = 9.27, p = 0.003). There was no significant correlation between the APFT and LESS scores (p = 0.26). In conclusion, higher level athletes had better physical fitness as measured by the APFT but did not as a group exhibit better landing technique. The implications of this research suggest that "high-risk" movement patterns are prevalent in all levels of athletes.

  19. Kinematic description of elite vs. Low level players in team-handball jump throw.

    PubMed

    Wagner, Herbert; Buchecker, Michael; von Duvillard, Serge P; Müller, Erich

    2010-01-01

    The jump throw is the most applied throwing technique in team- handball (Wagner et al., 2008); however, a comprehensive analysis of 3D-kinematics of the team-handball jump throw is lacking. Therefore, the purpose of our study was: 1) to measure differences in ball release speed in team- handball jump throw and anthropometric parameters between groups of different levels of performance and (2) to analyze upper body 3D-kinematics (flexion/extension and rotation) to determine significant differences between these groups. Three-dimensional kinematic data was analyzed via the Vicon MX 13 motion capturing system (Vicon Peak, Oxford, UK) from 26 male team-handball players of different performance levels (mean age: 21.2 ± 5.0 years). The participants were instructed to throw the ball (IHF Size 3) onto a target at 8 m distance, and to hit the center of a square of 1 × 1 m at about eye level (1.75 m), with maximum ball release speed. Significant differences between elite vs. low level players were found in the ball release speed (p < 0.001), body height (p < 0.05), body weight (p < 0.05), maximal trunk internal rotation (p < 0.05), trunk flexion (p < 0.01) and forearm pronation (p < 0.05) as well as trunk flexion (p < 0.05) and shoulder internal rotation (p < 0.001) angular velocity at ball release. Results of our study suggest that team-handball players who were taller and of greater body weight have the ability to achieve a higher ball release speed in the jump throw, and that an increase in trunk flexion and rotation angular velocity improve the performance in team-handball jump throw that should result in an increase of ball release speed. Key pointsTeam-handball players who were taller and of greater body weight have the ability to achieve a higher ball release speed.An increase in trunk flexion, trunk rotation and shoulder internal rotation angular velocity should result in an increase of ball release speed.Trunk movements are normally well observable for experienced

  20. The Circular Hydraulic Jump in Microgravity

    NASA Technical Reports Server (NTRS)

    Avedisian, C. Thomas

    1996-01-01

    This report summarizes the key experimental results and observations that were obtained under NASA grant NAG 3-1627 from the Fluid Physics Program. The Principle Investigator was Thomas Avedisian. In addition a half-time post-doctoral associate, Ziqun Zhao, was funded for half year. The project monitor was David Chao of the NASA-Lewis Research Center in Cleveland, Ohio. The grant period was originally for one year at $34K and a no-cost extension was applied for and granted for an additional year. The research consisted of an experimental study of the circular hydraulic jump (CHJ) in microgravity using water as the working fluid. The evolution of the CHJ radius was measured during a sudden transition from normal to microgravity in a drop tower. The downstream height of the CHJ was controlled by submerging the target plate in a tank filled with water to the desired depth, and the measurements are compared with an existing theory for the location of the CHJ. Results show that the CHJ diameter is larger in microgravity than normal gravity. The adjustment of the CHJ diameter to a sudden change in gravity occurs over a period of about 200ms for the conditions of the present study, and remains constant thereafter for most of the flow conditions examined. For flow conditions that a CHJ was not first established at normal gravity but which later appeared during the transition tb microgravity, the CHJ diameter was not constant during the period of microgravity but continually changed. Good agreement between measured and predicted CHJ radii is found for normal gravity CHJ radii, but comparatively poorer agreement is observed for the CHJ radii measurements in microgravity.

  1. Annealed Importance Sampling Reversible Jump MCMC algorithms

    SciTech Connect

    Karagiannis, Georgios; Andrieu, Christophe

    2013-03-20

    It will soon be 20 years since reversible jump Markov chain Monte Carlo (RJ-MCMC) algorithms have been proposed. They have significantly extended the scope of Markov chain Monte Carlo simulation methods, offering the promise to be able to routinely tackle transdimensional sampling problems, as encountered in Bayesian model selection problems for example, in a principled and flexible fashion. Their practical efficient implementation, however, still remains a challenge. A particular difficulty encountered in practice is in the choice of the dimension matching variables (both their nature and their distribution) and the reversible transformations which allow one to define the one-to-one mappings underpinning the design of these algorithms. Indeed, even seemingly sensible choices can lead to algorithms with very poor performance. The focus of this paper is the development and performance evaluation of a method, annealed importance sampling RJ-MCMC (aisRJ), which addresses this problem by mitigating the sensitivity of RJ-MCMC algorithms to the aforementioned poor design. As we shall see the algorithm can be understood as being an “exact approximation” of an idealized MCMC algorithm that would sample from the model probabilities directly in a model selection set-up. Such an idealized algorithm may have good theoretical convergence properties, but typically cannot be implemented, and our algorithms can approximate the performance of such idealized algorithms to an arbitrary degree while not introducing any bias for any degree of approximation. Our approach combines the dimension matching ideas of RJ-MCMC with annealed importance sampling and its Markov chain Monte Carlo implementation. We illustrate the performance of the algorithm with numerical simulations which indicate that, although the approach may at first appear computationally involved, it is in fact competitive.

  2. Coronavirus diversity, phylogeny and interspecies jumping.

    PubMed

    Woo, Patrick C Y; Lau, Susanna K P; Huang, Yi; Yuen, Kwok-Yung

    2009-10-01

    The SARS epidemic has boosted interest in research on coronavirus biodiversity and genomics. Before 2003, there were only 10 coronaviruses with complete genomes available. After the SARS epidemic, up to December 2008, there was an addition of 16 coronaviruses with complete genomes sequenced. These include two human coronaviruses (human coronavirus NL63 and human coronavirus HKU1), 10 other mammalian coronaviruses [bat SARS coronavirus, bat coronavirus (bat-CoV) HKU2, bat-CoV HKU4, bat-CoV HKU5, bat-CoV HKU8, bat-CoV HKU9, bat-CoV 512/2005, bat-CoV 1A, equine coronavirus, and beluga whale coronavirus] and four avian coronaviruses (turkey coronavirus, bulbul coronavirus HKU11, thrush coronavirus HKU12, and munia coronavirus HKU13). Two novel subgroups in group 2 coronavirus (groups 2c and 2d) and two novel subgroups in group 3 coronavirus (groups 3b and 3c) have been proposed. The diversity of coronaviruses is a result of the infidelity of RNA-dependent RNA polymerase, high frequency of homologous RNA recombination, and the large genomes of coronaviruses. Among all hosts, the diversity of coronaviruses is most evidenced in bats and birds, which may be a result of their species diversity, ability to fly, environmental pressures, and habits of roosting and flocking. The present evidence supports that bat coronaviruses are the gene pools of group 1 and 2 coronaviruses, whereas bird coronaviruses are the gene pools of group 3 coronaviruses. With the increasing number of coronaviruses, more and more closely related coronaviruses from distantly related animals have been observed, which were results of recent interspecies jumping and may be the cause of disastrous outbreaks of zoonotic diseases. PMID:19546349

  3. Patterns of spread in biological invasions dominated by long-distance jump dispersal: Insights from Argentine ants

    PubMed Central

    Suarez, Andrew V.; Holway, David A.; Case, Ted J.

    2001-01-01

    Invading organisms may spread through local movements (giving rise to a diffusion-like process) and by long-distance jumps, which are often human-mediated. The local spread of invading organisms has been fit with varying success to models that couple local population growth with diffusive spread, but to date no quantitative estimates exist for the relative importance of local dispersal relative to human-mediated long-distance jumps. Using a combination of literature review, museum records, and personal surveys, we reconstruct the invasion history of the Argentine ant (Linepithema humile), a widespread invasive species, at three spatial scales. Although the inherent dispersal abilities of Argentine ants are limited, in the last century, human-mediated dispersal has resulted in the establishment of this species on six continents and on many oceanic islands. Human-mediated jump dispersal has also been the primary mode of spread at a continental scale within the United States. The spread of the Argentine ant involves two discrete modes. Maximum distances spread by colonies undergoing budding reproduction averaged 150 m/year, whereas annual jump-dispersal distances averaged three orders of magnitude higher. Invasions that involve multiple dispersal processes, such as those documented here, are undoubtedly common. Detailed data on invasion dynamics are necessary to improve the predictive power of future modeling efforts. PMID:11158600

  4. Peak power prediction in junior basketballers: comparing linear and allometric models.

    PubMed

    Duncan, Michael J; Hankey, Joanne; Lyons, Mark; James, Rob S; Nevill, Alan M

    2013-03-01

    Equations, commonly used to predict peak power from jump height, have relied on linear additive models that are biologically unsound beyond the range of observations because of high negative intercept values. This study explored the utility of allometric multiplicative modeling to better predict peak power in adolescent basketball players. Seventy-seven elite junior basketball players (62 adolescent boys, 15 adolescent girls, age = 16.8 ± 0.8 years) performed 3 counter movement jumps (CMJs) on a force platform. Both linear and multiplicative models were then used to determine their efficacy. Four previously published linear equations were significantly associated with actual peak power (all p < 0.01), although here were significant differences between actual and estimated peak power using the SJ and CMJ equations by Sayers (both p < 0.001). Allometric modeling was used to determine an alternative biologically sound equation which was more strongly associated with (r = 0.886, p < 0.001), and not significantly different to (p > 0.05), actual peak power and predicted 77.9% of the variance in actual peak power (adjusted R = 0.779, p < 0.001). Exponents close to 1 for body mass and CMJ height indicated that peak power could also be determined from the product of body mass and CMJ height. This equation was significantly associated (r = 0.871, p < 0.001) with, and not significantly different to, actual peak power (adjusted R = 0.756, p > 0.05) and offered a more accurate estimation of peak power than previously validated linear additive models examined in this study. The allometric model determined from this study or the multiplicative model (body mass × CMJ height) provides biologically sound models to accurately estimate peak power in elite adolescent basketballers that are more accurate than equations based on linear additive models.

  5. GRANITE PEAK ROADLESS AREA, CALIFORNIA.

    USGS Publications Warehouse

    Huber, Donald F.; Thurber, Horace K.

    1984-01-01

    The Granite Peak Roadless Area occupies an area of about 5 sq mi in the southern part of the Trinity Alps of the Klamath Mountains, about 12 mi north-northeast of Weaverville, California. Rock and stream-sediment samples were analyzed. All streams draining the roadless area were sampled and representative samples of the rock types in the area were collected. Background values were established for each element and anomalous values were examined within their geologic settings and evaluated for their significance. On the basis of mineral surveys there seems little likelihood for the occurrence of mineral or energy resources.

  6. Maxometers (peak wind speed anemometers)

    NASA Technical Reports Server (NTRS)

    Kaufman, J. W.; Camp, D. W.; Turner, R. E. (Inventor)

    1973-01-01

    An instrument for measuring peak wind speeds under severe environmental conditions is described, comprising an elongated cylinder housed in an outer casing. The cylinder contains a piston attached to a longitudinally movable guided rod having a pressure disk mounted on one projecting end. Wind pressure against the pressure disk depresses the movable rod. When the wind reaches its maximum speed, the rod is locked by a ball clutch mechanism in the position of maximum inward movement. Thereafter maximum wind speed or pressure readings may be taken from calibrated indexing means.

  7. L1/ℓ1-Gain analysis and synthesis of Markovian jump positive systems with time delay.

    PubMed

    Zhang, Junfeng; Zhao, Xudong; Zhu, Fubo; Han, Zhengzhi

    2016-07-01

    This paper is concerned with stability analysis and control synthesis of Markovian jump positive systems with time delay. The notions of stochastic stability with L1- and ℓ1-gain performances are introduced for continuous- and discrete-time contexts, respectively. Using a stochastic copositive Lyapunov function, sufficient conditions for the stability with L1/ℓ1-gain performance of the systems are established. Furthermore, mode-dependent controllers are designed to achieve the stabilization with L1/ℓ1-gain of the resulting closed-loop systems. All proposed conditions are formulated in terms of linear programming. Numerical examples are provided to verify the effectiveness of the findings of theory.

  8. L1/ℓ1-Gain analysis and synthesis of Markovian jump positive systems with time delay.

    PubMed

    Zhang, Junfeng; Zhao, Xudong; Zhu, Fubo; Han, Zhengzhi

    2016-07-01

    This paper is concerned with stability analysis and control synthesis of Markovian jump positive systems with time delay. The notions of stochastic stability with L1- and ℓ1-gain performances are introduced for continuous- and discrete-time contexts, respectively. Using a stochastic copositive Lyapunov function, sufficient conditions for the stability with L1/ℓ1-gain performance of the systems are established. Furthermore, mode-dependent controllers are designed to achieve the stabilization with L1/ℓ1-gain of the resulting closed-loop systems. All proposed conditions are formulated in terms of linear programming. Numerical examples are provided to verify the effectiveness of the findings of theory. PMID:27062020

  9. Aerial Jumping in the Trinidadian Guppy (Poecilia reticulata)

    PubMed Central

    Soares, Daphne; Bierman, Hilary S.

    2013-01-01

    Many fishes are able to jump out of the water and launch themselves into the air. Such behavior has been connected with prey capture, migration and predator avoidance. We found that jumping behavior of the guppy Poecilia reticulata is not associated with any of the above. The fish jump spontaneously, without being triggered by overt sensory cues, is not migratory and does not attempt to capture aerial food items. Here, we use high speed video imaging to analyze the kinematics of the jumping behavior P. reticulata. Fish jump from a still position by slowly backing up while using its pectoral fins, followed by strong body trusts which lead to launching into the air several body lengths. The liftoff phase of the jump is fast and fish will continue with whole body thrusts and tail beats, even when out of the water. This behavior occurs when fish are in a group or in isolation. Geography has had substantial effects on guppy evolution, with waterfalls reducing gene flow and constraining dispersal. We suggest that jumping has evolved in guppies as a behavioral phenotype for dispersal. PMID:23613883

  10. Aerial jumping in the Trinidadian guppy (Poecilia reticulata).

    PubMed

    Soares, Daphne; Bierman, Hilary S

    2013-01-01

    Many fishes are able to jump out of the water and launch themselves into the air. Such behavior has been connected with prey capture, migration and predator avoidance. We found that jumping behavior of the guppy Poecilia reticulata is not associated with any of the above. The fish jump spontaneously, without being triggered by overt sensory cues, is not migratory and does not attempt to capture aerial food items. Here, we use high speed video imaging to analyze the kinematics of the jumping behavior P. reticulata. Fish jump from a still position by slowly backing up while using its pectoral fins, followed by strong body trusts which lead to launching into the air several body lengths. The liftoff phase of the jump is fast and fish will continue with whole body thrusts and tail beats, even when out of the water. This behavior occurs when fish are in a group or in isolation. Geography has had substantial effects on guppy evolution, with waterfalls reducing gene flow and constraining dispersal. We suggest that jumping has evolved in guppies as a behavioral phenotype for dispersal. PMID:23613883

  11. Aerial jumping in the Trinidadian guppy (Poecilia reticulata).

    PubMed

    Soares, Daphne; Bierman, Hilary S

    2013-01-01

    Many fishes are able to jump out of the water and launch themselves into the air. Such behavior has been connected with prey capture, migration and predator avoidance. We found that jumping behavior of the guppy Poecilia reticulata is not associated with any of the above. The fish jump spontaneously, without being triggered by overt sensory cues, is not migratory and does not attempt to capture aerial food items. Here, we use high speed video imaging to analyze the kinematics of the jumping behavior P. reticulata. Fish jump from a still position by slowly backing up while using its pectoral fins, followed by strong body trusts which lead to launching into the air several body lengths. The liftoff phase of the jump is fast and fish will continue with whole body thrusts and tail beats, even when out of the water. This behavior occurs when fish are in a group or in isolation. Geography has had substantial effects on guppy evolution, with waterfalls reducing gene flow and constraining dispersal. We suggest that jumping has evolved in guppies as a behavioral phenotype for dispersal.

  12. Barbell deadlift training increases the rate of torque development and vertical jump performance in novices.

    PubMed

    Thompson, Brennan J; Stock, Matt S; Shields, JoCarol E; Luera, Micheal J; Munayer, Ibrahim K; Mota, Jacob A; Carrillo, Elias C; Olinghouse, Kendra D

    2015-01-01

    The primary purpose of this study was to examine the effects of 10 weeks of barbell deadlift training on rapid torque characteristics of the knee extensors and flexors. A secondary aim was to analyze the relationships between training-induced changes in rapid torque and vertical jump performance. Fifty-four subjects (age, mean ± SD = 23 ± 3 years) were randomly assigned to a control (n = 20) or training group (n = 34). Subjects in the training group performed supervised deadlift training twice per week for 10 weeks. All subjects performed isometric strength testing of the knee extensors and flexors and vertical jumps before and after the intervention. Torque-time curves were used to calculate rate of torque development (RTD) values at peak and at 50 and 200 milliseconds from torque onset. Barbell deadlift training induced significant pre- to post-increases of 18.8-49.0% for all rapid torque variables (p < 0.01). Vertical jump height increased from 46.0 ± 11.3 to 49.4 ± 11.3 cm (7.4%; p < 0.01), and these changes were positively correlated with improvements in RTD for the knee flexors (r = 0.30-0.37, p < 0.01-0.03). These findings showed that a 10-week barbell deadlift training program was effective at enhancing rapid torque capacities in both the knee extensors and flexors. Changes in rapid torque were associated with improvements in vertical jump height, suggesting a transfer of adaptations from deadlift training to an explosive, performance-based task. Professionals may use these findings when attempting to design effective, time-efficient resistance training programs to improve explosive strength capacities in novices.

  13. Barbell deadlift training increases the rate of torque development and vertical jump performance in novices.

    PubMed

    Thompson, Brennan J; Stock, Matt S; Shields, JoCarol E; Luera, Micheal J; Munayer, Ibrahim K; Mota, Jacob A; Carrillo, Elias C; Olinghouse, Kendra D

    2015-01-01

    The primary purpose of this study was to examine the effects of 10 weeks of barbell deadlift training on rapid torque characteristics of the knee extensors and flexors. A secondary aim was to analyze the relationships between training-induced changes in rapid torque and vertical jump performance. Fifty-four subjects (age, mean ± SD = 23 ± 3 years) were randomly assigned to a control (n = 20) or training group (n = 34). Subjects in the training group performed supervised deadlift training twice per week for 10 weeks. All subjects performed isometric strength testing of the knee extensors and flexors and vertical jumps before and after the intervention. Torque-time curves were used to calculate rate of torque development (RTD) values at peak and at 50 and 200 milliseconds from torque onset. Barbell deadlift training induced significant pre- to post-increases of 18.8-49.0% for all rapid torque variables (p < 0.01). Vertical jump height increased from 46.0 ± 11.3 to 49.4 ± 11.3 cm (7.4%; p < 0.01), and these changes were positively correlated with improvements in RTD for the knee flexors (r = 0.30-0.37, p < 0.01-0.03). These findings showed that a 10-week barbell deadlift training program was effective at enhancing rapid torque capacities in both the knee extensors and flexors. Changes in rapid torque were associated with improvements in vertical jump height, suggesting a transfer of adaptations from deadlift training to an explosive, performance-based task. Professionals may use these findings when attempting to design effective, time-efficient resistance training programs to improve explosive strength capacities in novices. PMID:25226322

  14. The effect of local cryotherapy on subjective and objective recovery characteristics following an exhaustive jump protocol

    PubMed Central

    Hohenauer, Erich; Clarys, Peter; Baeyens, Jean-Pierre; Clijsen, Ron

    2016-01-01

    The purpose of this controlled trial was to investigate the effects of a single local cryotherapy session on the recovery characteristics over a period of 72 hours. Twenty-two young and healthy female (n=17; mean age: 21.9±1.1 years) and male (n=5;mean age: 25.4±2.8 years) adults participated in this study. Following an exhaustive jump protocol (3×30 countermovement jumps), half of the participants received either a single local cryotherapy application (+8°C) or a single local thermoneutral application (+32°C) of 20-minute duration using two thigh cuffs. Subjective measures of recovery (delayed-onset muscle soreness and ratings of perceived exertion) and objective measures of recovery (vertical jump performance and peak power output) were assessed immediately following the postexercise applications (0 hours) and at 24 hours, 48 hours, and 72 hours after the jump protocol. Local cryotherapy failed to significantly affect any subjective recovery variable during the 72-hour recovery period (P>0.05). After 72 hours, the ratings of perceived exertion were significantly lower in the thermoneutral group compared to that in the cryotherapy group (P=0.002). No significant differences were observed between the cryotherapy and the thermoneutral groups with respect to any of the objective recovery variables. In this experimental study, a 20-minute cryotherapy cuff application failed to demonstrate a positive effect on any objective measures of recovery. The effects of local thermoneutral application on subjective recovery characteristics were superior when compared to the effects of local cryotherapy application at 72 hours postapplication. PMID:27579000

  15. The effect of local cryotherapy on subjective and objective recovery characteristics following an exhaustive jump protocol.

    PubMed

    Hohenauer, Erich; Clarys, Peter; Baeyens, Jean-Pierre; Clijsen, Ron

    2016-01-01

    The purpose of this controlled trial was to investigate the effects of a single local cryotherapy session on the recovery characteristics over a period of 72 hours. Twenty-two young and healthy female (n=17; mean age: 21.9±1.1 years) and male (n=5;mean age: 25.4±2.8 years) adults participated in this study. Following an exhaustive jump protocol (3×30 countermovement jumps), half of the participants received either a single local cryotherapy application (+8°C) or a single local thermoneutral application (+32°C) of 20-minute duration using two thigh cuffs. Subjective measures of recovery (delayed-onset muscle soreness and ratings of perceived exertion) and objective measures of recovery (vertical jump performance and peak power output) were assessed immediately following the postexercise applications (0 hours) and at 24 hours, 48 hours, and 72 hours after the jump protocol. Local cryotherapy failed to significantly affect any subjective recovery variable during the 72-hour recovery period (P>0.05). After 72 hours, the ratings of perceived exertion were significantly lower in the thermoneutral group compared to that in the cryotherapy group (P=0.002). No significant differences were observed between the cryotherapy and the thermoneutral groups with respect to any of the objective recovery variables. In this experimental study, a 20-minute cryotherapy cuff application failed to demonstrate a positive effect on any objective measures of recovery. The effects of local thermoneutral application on subjective recovery characteristics were superior when compared to the effects of local cryotherapy application at 72 hours postapplication. PMID:27579000

  16. Optimizing the Distribution of Leg Muscles for Vertical Jumping.

    PubMed

    Wong, Jeremy D; Bobbert, Maarten F; van Soest, Arthur J; Gribble, Paul L; Kistemaker, Dinant A

    2016-01-01

    A goal of biomechanics and motor control is to understand the design of the human musculoskeletal system. Here we investigated human functional morphology by making predictions about the muscle volume distribution that is optimal for a specific motor task. We examined a well-studied and relatively simple human movement, vertical jumping. We investigated how high a human could jump if muscle volume were optimized for jumping, and determined how the optimal parameters improve performance. We used a four-link inverted pendulum model of human vertical jumping actuated by Hill-type muscles, that well-approximates skilled human performance. We optimized muscle volume by allowing the cross-sectional area and muscle fiber optimum length to be changed for each muscle, while maintaining constant total muscle volume. We observed, perhaps surprisingly, that the reference model, based on human anthropometric data, is relatively good for vertical jumping; it achieves 90% of the jump height predicted by a model with muscles designed specifically for jumping. Alteration of cross-sectional areas-which determine the maximum force deliverable by the muscles-constitutes the majority of improvement to jump height. The optimal distribution results in large vastus, gastrocnemius and hamstrings muscles that deliver more work, while producing a kinematic pattern essentially identical to the reference model. Work output is increased by removing muscle from rectus femoris, which cannot do work on the skeleton given its moment arm at the hip and the joint excursions during push-off. The gluteus composes a disproportionate amount of muscle volume and jump height is improved by moving it to other muscles. This approach represents a way to test hypotheses about optimal human functional morphology. Future studies may extend this approach to address other morphological questions in ethological tasks such as locomotion, and feature other sets of parameters such as properties of the skeletal

  17. Optimizing the Distribution of Leg Muscles for Vertical Jumping

    PubMed Central

    Wong, Jeremy D.; Bobbert, Maarten F.; van Soest, Arthur J.; Gribble, Paul L.; Kistemaker, Dinant A.

    2016-01-01

    A goal of biomechanics and motor control is to understand the design of the human musculoskeletal system. Here we investigated human functional morphology by making predictions about the muscle volume distribution that is optimal for a specific motor task. We examined a well-studied and relatively simple human movement, vertical jumping. We investigated how high a human could jump if muscle volume were optimized for jumping, and determined how the optimal parameters improve performance. We used a four-link inverted pendulum model of human vertical jumping actuated by Hill-type muscles, that well-approximates skilled human performance. We optimized muscle volume by allowing the cross-sectional area and muscle fiber optimum length to be changed for each muscle, while maintaining constant total muscle volume. We observed, perhaps surprisingly, that the reference model, based on human anthropometric data, is relatively good for vertical jumping; it achieves 90% of the jump height predicted by a model with muscles designed specifically for jumping. Alteration of cross-sectional areas—which determine the maximum force deliverable by the muscles—constitutes the majority of improvement to jump height. The optimal distribution results in large vastus, gastrocnemius and hamstrings muscles that deliver more work, while producing a kinematic pattern essentially identical to the reference model. Work output is increased by removing muscle from rectus femoris, which cannot do work on the skeleton given its moment arm at the hip and the joint excursions during push-off. The gluteus composes a disproportionate amount of muscle volume and jump height is improved by moving it to other muscles. This approach represents a way to test hypotheses about optimal human functional morphology. Future studies may extend this approach to address other morphological questions in ethological tasks such as locomotion, and feature other sets of parameters such as properties of the skeletal

  18. Optimizing the Distribution of Leg Muscles for Vertical Jumping.

    PubMed

    Wong, Jeremy D; Bobbert, Maarten F; van Soest, Arthur J; Gribble, Paul L; Kistemaker, Dinant A

    2016-01-01

    A goal of biomechanics and motor control is to understand the design of the human musculoskeletal system. Here we investigated human functional morphology by making predictions about the muscle volume distribution that is optimal for a specific motor task. We examined a well-studied and relatively simple human movement, vertical jumping. We investigated how high a human could jump if muscle volume were optimized for jumping, and determined how the optimal parameters improve performance. We used a four-link inverted pendulum model of human vertical jumping actuated by Hill-type muscles, that well-approximates skilled human performance. We optimized muscle volume by allowing the cross-sectional area and muscle fiber optimum length to be changed for each muscle, while maintaining constant total muscle volume. We observed, perhaps surprisingly, that the reference model, based on human anthropometric data, is relatively good for vertical jumping; it achieves 90% of the jump height predicted by a model with muscles designed specifically for jumping. Alteration of cross-sectional areas-which determine the maximum force deliverable by the muscles-constitutes the majority of improvement to jump height. The optimal distribution results in large vastus, gastrocnemius and hamstrings muscles that deliver more work, while producing a kinematic pattern essentially identical to the reference model. Work output is increased by removing muscle from rectus femoris, which cannot do work on the skeleton given its moment arm at the hip and the joint excursions during push-off. The gluteus composes a disproportionate amount of muscle volume and jump height is improved by moving it to other muscles. This approach represents a way to test hypotheses about optimal human functional morphology. Future studies may extend this approach to address other morphological questions in ethological tasks such as locomotion, and feature other sets of parameters such as properties of the skeletal

  19. Detection of weak frequency jumps for GNSS onboard clocks.

    PubMed

    Huang, Xinming; Gong, Hang; Ou, Gang

    2014-05-01

    In this paper, a weak frequency jump detection method is developed for onboard clocks in global navigation satellite systems (GNSS). A Kalman filter is employed to facilitate the onboard real-time processing of atomic clock measurements, whose N-step prediction residuals are used to construct the weak frequency jump detector. Numerical simulations show that the method can successfully detect weak frequency jumps. The detection method proposed in this paper is helpful for autonomous integrity monitoring of GNSS satellite clocks, and can also be applied to other frequency anomalies with an appropriately modified detector.

  20. Detection of weak frequency jumps for GNSS onboard clocks.

    PubMed

    Huang, Xinming; Gong, Hang; Ou, Gang

    2014-05-01

    In this paper, a weak frequency jump detection method is developed for onboard clocks in global navigation satellite systems (GNSS). A Kalman filter is employed to facilitate the onboard real-time processing of atomic clock measurements, whose N-step prediction residuals are used to construct the weak frequency jump detector. Numerical simulations show that the method can successfully detect weak frequency jumps. The detection method proposed in this paper is helpful for autonomous integrity monitoring of GNSS satellite clocks, and can also be applied to other frequency anomalies with an appropriately modified detector. PMID:24802723

  1. Peculiarities of jumping electroconductivity in bismuth oxide films

    NASA Astrophysics Data System (ADS)

    Vidadi, Yu. A.; Guseinov, Ya. Yu.; Bagiev, V. E.; Rafiev, T. Yu.

    1991-11-01

    The electrical properties of bismuth oxide films with direct and alternating current have been studied. A charge carrier transfer is shown to be dominant in these films both at low temperatures and at high frequencies due to the carrier jumps between the localized states with the energy near the Fermi level N( EF). The value of N( EF) at the localization radius α -1 = 8Å, the angular coefficient in Mott's law for jumping conductivity B = 93 K {1}/{4} and the average length of jumping at 230 K, R = 70 Å, have been calculated by two independent methods for τ-Bi 2O 3 films.

  2. Jump-Down Performance Alterations after Space Flight

    NASA Technical Reports Server (NTRS)

    Reschke, M. F.; Kofman, I. S.; Cerisano, J. M.; Fisher, E. A.; Peters, B. T.; Miller, C. A.; Harm, D. L.; Bloomberg, J. J.

    2011-01-01

    INTRODUCTION: Successful jump performance requires functional coordination of visual, vestibular, and somatosensory systems, which are affected by prolonged exposure to microgravity. Astronauts returning from space flight exhibit impaired ability to coordinate effective landing strategies when jumping from a platform to the ground. This study compares jump strategies used by astronauts before and after flight, changes to those strategies within a test session, and recoveries in jump-down performance parameters across several postflight test sessions. These data were obtained as part of an ongoing interdisciplinary study (Functional Task Test, FTT) designed to evaluate both astronaut postflight functional performance and related physiological changes. METHODS: Seven astronauts from short-duration (Shuttle) and three from long-duration (International Space Station) flights performed 3 two-footed jumps from a platform 30 cm high onto a force plate that measured the ground reaction forces and center-of-pressure displacement from the landings. Neuromuscular activation data were collected from the medial gastrocnemius and anterior tibialis of both legs using surface electromyography electrodes. Two load cells in the platform measured the load exerted by each foot during the takeoff phase of the jump. Data were collected in 2 preflight sessions, on landing day (Shuttle only), and 1, 6, and 30 days after flight. RESULTS: Postural settling time was significantly increased on the first postflight test session and many of the astronauts tested were unable to maintain balance on their first jump landing but recovered by the third jump, showing a learning progression in which performance improvements could be attributed to adjustments in takeoff or landing strategy. Jump strategy changes were evident in reduced air time (time between takeoff and landing) and also in increased asymmetry in foot latencies on takeoff. CONCLUSIONS: The test results revealed significant decrements

  3. Nonstandard Analysis and Jump Conditions for Converging Shock Waves

    NASA Technical Reports Server (NTRS)

    Baty, Roy S.; Farassat, Fereidoun; Tucker, Don H.

    2008-01-01

    Nonstandard analysis is an area of modern mathematics which studies abstract number systems containing both infinitesimal and infinite numbers. This article applies nonstandard analysis to derive jump conditions for one-dimensional, converging shock waves in a compressible, inviscid, perfect gas. It is assumed that the shock thickness occurs on an infinitesimal interval and the jump functions in the thermodynamic and fluid dynamic parameters occur smoothly across this interval. Predistributions of the Heaviside function and the Dirac delta measure are introduced to model the flow parameters across a shock wave. The equations of motion expressed in nonconservative form are then applied to derive unambiguous relationships between the jump functions for the flow parameters.

  4. Two density peaks in low magnetic field helicon plasma

    SciTech Connect

    Wang, Y.; Zhao, G.; Ouyang, J. T. E-mail: lppmchenqiang@hotmail.com; Liu, Z. W.; Chen, Q. E-mail: lppmchenqiang@hotmail.com

    2015-09-15

    In this paper, we report two density peaks in argon helicon plasma under an axial magnetic field from 0 G to 250 G with Boswell-type antenna driven by radio frequency (RF) power of 13.56 MHz. The first peak locates at 40–55 G and the second one at 110–165 G, as the RF power is sustainably increased from 100 W to 250 W at Ar pressure of 0.35 Pa. The absorbed power of two peaks shows a linear relationship with the magnetic field. End views of the discharge taken by intensified charge coupled device reveal that, when the first peak appeared, the discharge luminance moves to the edge of the tube as the magnetic field increases. For the second peak, the strong discharge area is centered at the two antenna legs after the magnetic field reaches a threshold value. Comparing with the simulation, we suggest that the efficient power absorption of two peaks at which the efficient power absorption mainly appears in the near-antenna region is due to the mode conversion in bounded non-uniform helicon plasma. The two low-field peaks are caused, to some extent, by the excitation of Trivelpiece-Gould wave through non-resonance conversion.

  5. Neuromuscular Changes in Female Collegiate Athletes Resulting From a Plyometric Jump-Training Program.

    PubMed

    Wilkerson, Gary B.; Colston, Marisa A.; Short, Nancy I.; Neal, Kristina L.; Hoewischer, Paul E.; Pixley, Jennifer J.

    2004-03-01

    OBJECTIVE: To assess performance changes induced by a 6- week plyometric jump-training program. DESIGN AND SETTING: We used a quasiexperimental design to compare groups formed on the basis of team membership. Testing was conducted in an athletic training research laboratory, both before and after a 6-week period of preseason basketball conditioning. SUBJECTS: Nineteen female collegiate basketball players from a National Collegiate Athletic Association Division I program (8 subjects) and a National Association of Intercollegiate Athletics Division II program (11 subjects) who had no history of anterior cruciate ligament injury and who had no history of any lower extremity injury during the preceding 6 months. MEASUREMENTS: The variables of primary interest were hamstrings and quadriceps isokinetic peak torque. Of secondary interest were 5 variables derived from step-down and lunging maneuvers performed on a computerized forceplate system and 4 variables derived from tracking the position of the body core during performance of a T-pattern agility drill with a computerized infrared tracking system. RESULTS: A significant group x trial interaction was found for hamstrings peak torque at 60 degrees.s(-1) (F(1,17) = 9.16, P =.008.), and the proportion of total variance attributable to the treatment effect produced by the jump-training program was relatively large (eta(2) =.35, omega(2) =.30). None of the other variables demonstrated statistically significant changes. CONCLUSIONS: Our primary results support plyometric jump training as a strategy for improving neuromuscular attributes that are believed to reduce the risk of anterior cruciate ligament injury in female college basketball players. They also provide the basis for reasonable isokinetic strength goals.

  6. The effects of a unilateral gluteal activation protocol on single leg drop jump performance.

    PubMed

    Healy, Robin; Harrison, Andrew J

    2014-03-01

    Warm-up protocols are commonly used to acutely enhance the performance of dynamic activities. This study examined the acute effect of low-load gluteal exercises on the biomechanics of single-leg drop jumps. Eight men and seven women (18-22 years old) performed 10 single-leg drop jumps on three separate days. The gluteal exercises were performed within the warm-up on day 2. Contact time, flight time, peak vertical ground reaction force (GRF), rate of force development, vertical leg-spring stiffness, and reactive strength index were determined. A repeated measures analysis of variance was used to examine differences on all variables across days. Significant differences were found for contact time, peak GRF, and flight time between days 1 and 2 and for flight time between days 1 and 3 (p < or = 0.05) with no significant difference in any variables between days 2 and 3. This suggested that the improvements in day 2 were due to practice effects rather than the gluteal activation exercises. In addition, a typical error analysis was used to determine individual responses to the gluteal exercises. The results using this analysis showed no discernible response pattern of enhancement or fatigue for any participant. PMID:24968509

  7. Fracture toughness of quaternary Al-Li-Cu-Mg alloy under mode I, mode II, and mode III loading conditions

    SciTech Connect

    Prasad, N.E.; Kamat, S.V.; Malakondaiah, G. ); Kutumbarao, V.V. . Dept. of Metallurgical Engineering)

    1994-11-01

    The fracture toughness under mode I, mode II, and mode III loading conditions was evaluated for a quaternary 8090 Al-Li-Cu-Mg alloy in underaged and peak-aged conditions. The effect of aging was found to be significantly different for different loading conditions. The alloy in the underaged (T3) condition exhibited minimum fracture toughness under mode II loading, whereas mode I fracture toughness was the lowest in the case of the peak-aged (T8E51) condition. Significant anisotropy in the fracture resistance is observed only in case of the peak-aged alloy under mode I loading, whereas in all other cases, the fracture resistance is found to be isotropic. The fracture mode was transgranular shear in all three modes of loading in the underaged condition as well as under mode II and mode III loading in the peak-aged condition. The alloy exhibited ductile intergranular fracture under mode I loading in the peak-aged condition. The results obtained are explained on the basis of these dominant fracture mechanisms prevalent under different loading conditions.

  8. Spontaneous Jumping of Coalescing Drops on a Superhydrophobic Surface

    NASA Astrophysics Data System (ADS)

    Boreyko, Jonathan; Chen, Chuan-Hua

    2009-11-01

    When micrometric drops coalesce in-plane on a superhydrophobic surface, a surprising out-of-plane jumping motion was observed. Such jumping motion triggered by drop coalescence was reproduced on a Leidenfrost surface. High-speed imaging revealed that this jumping motion results from the elastic interaction of the bridged drops with the superhydrophobic/Leidenfrost surface. Experiments on both the superhydrophobic and Leidenfrost surfaces compare favorably to a simple scaling model relating the kinetic energy of the merged drop to the surface energy released upon coalescence. The spontaneous jumping motion on water repellent surfaces enables the autonomous removal of water condensate independently of gravity; this process is highly desirable for sustained dropwise condensation.

  9. Analysis and Model Tests of Autogiro Jump Take-off

    NASA Technical Reports Server (NTRS)

    Wheatley, John B; Bioletti, Carlton

    1936-01-01

    An analysis is made of the autogiro jump take-off, in which the kinetic energy of the rotor turning at excess speed is used to effect a vertical take-off. By the use of suitable approximations, the differential equation of motion of the rotor during this maneuver is reduced to a form that can be solved. Only the vertical jump was studied; the effect of a forward motion during the jump is discussed briefly. The results of model tests of the jump take-off have been incorporated in the paper and used to establish the relative accuracy of the results predicted from the analysis. Good agreement between calculation and experiment was obtained by making justifiable allowances.

  10. Dynamic criteria of plankton jumping out of water.

    PubMed

    Kim, Seong Jin; Hasanyan, Jalil; Gemmell, Brad J; Lee, Sungyon; Jung, Sunghwan

    2015-10-01

    In nature, jumping out of water is a behaviour commonly observed in aquatic species to either escape from predators or hunt prey. However, not all aquatic species are capable of jumping out, especially small organisms whose length scales are comparable to the capillary length (approx. 2.7 mm for water). Some aquatic animals smaller than the capillary length are able to jump out while others are not, as observed in some marine copepods. To understand the dynamics of jumping out of the water-air interface, we perform physical experiments by shooting a spherical particle towards the liquid-air interface from below. Experimental results show that the particle either penetrates or bounces back from the interface, depending on the particle and fluid properties, and the impact velocity. The transition from bouncing to penetration regimes, which is theoretically predicted based on a particle force balance, is in good agreement with both physical experiments and plankton behavioural data.

  11. Dynamic criteria of plankton jumping out of water

    PubMed Central

    Kim, Seong Jin; Hasanyan, Jalil; Gemmell, Brad J.; Lee, Sungyon; Jung, Sunghwan

    2015-01-01

    In nature, jumping out of water is a behaviour commonly observed in aquatic species to either escape from predators or hunt prey. However, not all aquatic species are capable of jumping out, especially small organisms whose length scales are comparable to the capillary length (approx. 2.7 mm for water). Some aquatic animals smaller than the capillary length are able to jump out while others are not, as observed in some marine copepods. To understand the dynamics of jumping out of the water–air interface, we perform physical experiments by shooting a spherical particle towards the liquid–air interface from below. Experimental results show that the particle either penetrates or bounces back from the interface, depending on the particle and fluid properties, and the impact velocity. The transition from bouncing to penetration regimes, which is theoretically predicted based on a particle force balance, is in good agreement with both physical experiments and plankton behavioural data. PMID:26468066

  12. Relative power of the lower limbs in drop jump.

    PubMed

    Pietraszewski, Bogdan; Rutkowska-Kucharska, Alicja

    2011-01-01

    The purpose of this paper was to determine the power produced by the lower limbs in the take-off phase in drop jumps (DJ) and the correlation between the power and load measured by dropping height after take-off. The research group (N = 17) contained students practicing football, volleyball, basketball, athletics, high jump, swimming and fencing. The individual characteristics 'power-load' of the players and the observation of the changes during the training process enable the coaches to choose precise loads and at the same time to improve the training. The criterion of choosing loads in the plyometric training may be relative power output of lower limbs referred to the DJ height. While the condition allowing player to perform this type of training may depend on obtaining greater power in drop jump than in counter movement jump.

  13. Electric-Field-Enhanced Jumping-Droplet Condensation

    NASA Astrophysics Data System (ADS)

    Miljkovic, Nenad; Preston, Daniel; Enright, Ryan; Limia, Alexander; Wang, Evelyn

    2013-11-01

    When condensed droplets coalesce on a superhydrophobic surface, the resulting droplet can jump due to the conversion of surface energy into kinetic energy. This frequent out-of-plane droplet jumping has the potential to enhance condensation heat and mass transfer. In this work, we demonstrated that these jumping droplets accumulate positive charge that can be used to further increase condensation heat transfer via electric fields. We studied droplet jumping dynamics on silanized nanostructured copper oxide surfaces. By characterizing the droplet trajectories under various applied external electric fields (0 - 50 V/cm), we show that condensation on superhydrophobic surfaces results in a buildup of negative surface charge (OH-) due to dissociated water ion adsorption on the superhydrophobic coating. Consequently, the opposite charge (H3O +) accumulates on the coalesced jumping droplet. Using this knowledge, we demonstrate electric-field-enhanced jumping droplet condensation whereby an external electric field opposes the droplet vapor flow entrainment towards the condensing surface to increase the droplet removal rate and overall surface heat transfer by 100% when compared to state-of-the-art dropwise condensing surfaces. This work not only shows significant condensation heat transfer enhancement through the passive charging of condensed droplets, but promises a low cost approach to increase efficiency for applications such as atmospheric water harvesting and dehumidification.

  14. Bifurcation and chaotic threshold of Duffing system with jump discontinuities

    NASA Astrophysics Data System (ADS)

    Tian, Ruilan; Zhou, Yufeng; Wang, Qiubao; Zhang, Lili

    2016-01-01

    Like for the smooth system, it is important to determine a criteria for bifurcation of the non-smooth system with jump discontinuities. Previously, the criteria have been constructed in some non-smooth systems with jump discontinuities which are the endpoints of interval. The research on bifurcation for non-smooth system with jump discontinuities, which are the interior points of interval, seems to be a new area. We construct the Duffing system with jump discontinuities in open interval. Bifurcation diagram of the unperturbed system is detected and Hamilton phase diagrams are simulated using Matlab. The jump discontinuities for the non-smooth Homoclinic orbit lead to a barrier for conventional nonlinear techniques to obtain the criteria for chaotic motion. Traditionally, these non-smooth factors were considered term by term. We will give a reasonable compromise based on all of characteristics of the non-smooth homoclinic orbits with the jump discontinuities. The extended Melnikov function is explicitly detected to judge the stable and unstable manifolds whether intersect transversally at any position of trajectory under the perturbation of damping and external forcing. It is worthwhile noting that the result reveals the effects of the non-smooth restoring force on the behaviors of nonlinear dynamical systems. The efficiency of the theoretical results is verified by the phase portraits, Poincaré surface of section, Largest Lyapnnov exponents diagram and bifurcation diagram.

  15. Bifilm Defect Formation in Hydraulic Jump of Liquid Aluminum

    NASA Astrophysics Data System (ADS)

    Hsu, Fu-Yuan

    2016-06-01

    In aluminum gravity casting, as liquid aluminum fell through a vertical sprue and impacted on the horizontal flat surface, a phenomenon known as hydraulic jump ( i.e., flow transition from super-critical to sub-critical flows) was observed. As the jump was transformed, a reverse eddy motion on the surface of the jump was created. This motion entrained aluminum oxide film from the surface into aluminum melt. This folded film (so-called "bifilm" defect) was engulfed by the melt and caused its quality to deteriorate. To understand this phenomenon, aluminum casting experiments and computational modeling were conducted. In the casting experiment, a radius ( R j) to the point where the circular hydraulic jump occurred was measured. This is the circular region of `irregular surface feature', a rough oxidized surface texture near the center area of the castings. To quantify contents of the bifilm defects in the outer region of the jump, the samples in this region were sectioned and re-melted for doing re-melted reduced pressure test (re-melt RPT). An "area-normalized" bifilm index map was plotted to analyze bifilms' population in the samples. The flow transition in the hydraulic jump of liquid aluminum depended on three pressure heads: inertial, gravitational, and surface-tension pressures. A new theoretical equation containing surface tension for describing the flow transition of liquid metal was proposed.

  16. An investigation into the recovery process of a maximum stretch-shortening cycle fatigue protocol on drop and rebound jumps.

    PubMed

    Comyns, Thomas M; Harrison, Andrew J; Hennessy, Liam K

    2011-08-01

    The aim of this study was to investigate the recovery process of a maximal stretch-shortening cycle (SSC) fatigue workout on the biomechanical performance of drop jump (DJ) and rebound jump (RBJ) on a force sledge apparatus. Thirteen elite level rugby players performed sledge DJs and RBJs before and 15, 45, 120, and 300 seconds after a maximum SSC fatigue workout. Flight time, ground contact time (CT), peak force, reactive strength index (RSI), and leg-spring stiffness were the dependent variables. The DJ results showed that after 15 seconds recovery, there was a significant reduction in flight time (FT) (p < 0.01), RSI (p < 0.001), peak force (p < 0.01), and leg stiffness (p < 0.001). Similarly, the results for the RBJ indicated that the fatigue workout significantly reduced FT (p < 0.001), peak force (p < 0.01), RSI (p < 0.01), and significantly increased CT (p < 0.05) at the 15-second interval. The results also indicated a potentiation effect at the 300-second interval because of significant increases in RSI, peak force, and leg stiffness (p < 0.05) for the RBJ and significant increases in RSI (p < 0.05), peak force, and leg stiffness (p < 0.01) and a significant decrease in ground CT (p < 0.05) for the DJ. A maximal SSC fatigue workout had both an inhibiting and potentiating effect on DJ and RBJ performance depending on the recovery interval. The efficiency of the SSC function was reduced immediately after the cessation of the fatigue workout. A potentiation effect was evident for both jumps 300 seconds postfatigue. PMID:21572355

  17. An investigation into the recovery process of a maximum stretch-shortening cycle fatigue protocol on drop and rebound jumps.

    PubMed

    Comyns, Thomas M; Harrison, Andrew J; Hennessy, Liam K

    2011-08-01

    The aim of this study was to investigate the recovery process of a maximal stretch-shortening cycle (SSC) fatigue workout on the biomechanical performance of drop jump (DJ) and rebound jump (RBJ) on a force sledge apparatus. Thirteen elite level rugby players performed sledge DJs and RBJs before and 15, 45, 120, and 300 seconds after a maximum SSC fatigue workout. Flight time, ground contact time (CT), peak force, reactive strength index (RSI), and leg-spring stiffness were the dependent variables. The DJ results showed that after 15 seconds recovery, there was a significant reduction in flight time (FT) (p < 0.01), RSI (p < 0.001), peak force (p < 0.01), and leg stiffness (p < 0.001). Similarly, the results for the RBJ indicated that the fatigue workout significantly reduced FT (p < 0.001), peak force (p < 0.01), RSI (p < 0.01), and significantly increased CT (p < 0.05) at the 15-second interval. The results also indicated a potentiation effect at the 300-second interval because of significant increases in RSI, peak force, and leg stiffness (p < 0.05) for the RBJ and significant increases in RSI (p < 0.05), peak force, and leg stiffness (p < 0.01) and a significant decrease in ground CT (p < 0.05) for the DJ. A maximal SSC fatigue workout had both an inhibiting and potentiating effect on DJ and RBJ performance depending on the recovery interval. The efficiency of the SSC function was reduced immediately after the cessation of the fatigue workout. A potentiation effect was evident for both jumps 300 seconds postfatigue.

  18. Making sense of peak load cost allocations

    SciTech Connect

    Power, T.M.

    1995-03-15

    When it comes to cost allocation, common wisdom assigns costs in proportion to class contributions to peak loads, The justification is simple: Since the equipment had to be sized to meet peak day loads, those costs should be allocated on the same basis. Many different peak allocators have been developed on this assumption: single coincident peak contribution, sum of coincident peaks, noncoincident peak, average and excess demand, peak and average demand, base and extra capacity, and so on. Such pure peak-load allocators may not be politically acceptable, but conceptually, at least, they appear to offer the only defensible approach. Nevertheless, where capacity can be added with significant economies of scale, making cost allocations in proportion to peak loads violates well-known relationships between economics and engineering. What is missing is any tracing of the way in which the peak-load design criteria actually influence the cost incurred.

  19. Jump start: The new automotive revolution

    SciTech Connect

    Flavin, C.

    1993-08-01

    For half a century, automotive technology has been subservient to the demands of performance and style. Now,the first generation of environmentally responsible cars is on the way. Experimental low-emission cars that run on methane, hydrogen, or electricity and have exceptional fuel economy are being build by more than a dozen companies. Growing numbers of automobiles in recent year have offset cars made cleaner by air pollution laws, and small modifications have not met the needs to have a major technology change. The plan to reduce air pollution in the Los Angeles basin has engineering minds beginning to take up the challenge. This article discusses new automobile technology as it is evolving: solar cars; light-electric vehicles; manufacturing of electric vehicles; light weight composites for vehicle bodies; hybrid gasoline-electric cars; other transportation modes. The critical role of governments and financial incentives in encouraging the development of new auto technologies is also discussed.

  20. Guaranteed cost control for discrete-time Markovian jump linear system with time delay

    NASA Astrophysics Data System (ADS)

    Li, Zhicheng; Sun, Guanghui; Gao, Huijun

    2013-07-01

    The scaled small gain theorem is used to investigate the problem of guaranteed cost control for discrete-time Markovian jump systems with mode-dependent and time-varying delay in this article. For obtaining the results in this article, first a stochastic scaled small gain condition for discrete-time Markovian jump systems is introduced. Then, the original system is transformed into an input-output form. The robust stability criterion of the original system is proposed through the Lyapunov-Krasovskii functional approach combined with the utilisation of the stochastic small gain condition. The merit of the proposed criterion lies in its reduced conservatism, which is made possible by a precise approximation of the mode-dependent and time-varying delay. Furthermore, the guaranteed cost controller existence criterion is proposed by the robust stability criterion, which guarantees the robust stochastic stability of the closed-loop system and the existence of the upper bound for the cost function. Finally, two illustrative examples are provided to demonstrate the advantage and the effectiveness of the obtained results.

  1. Peak load management: Potential options

    SciTech Connect

    Englin, J.E.; De Steese, J.G.; Schultz, R.W.; Kellogg, M.A.

    1989-10-01

    This report reviews options that may be alternatives to transmission construction (ATT) applicable both generally and at specific locations in the service area of the Bonneville Power Administration (BPA). Some of these options have potential as specific alternatives to the Shelton-Fairmount 230-kV Reinforcement Project, which is the focus of this study. A listing of 31 peak load management (PLM) options is included. Estimated costs and normalized hourly load shapes, corresponding to the respective base load and controlled load cases, are considered for 15 of the above options. A summary page is presented for each of these options, grouped with respect to its applicability in the residential, commercial, industrial, and agricultural sectors. The report contains comments on PLM measures for which load shape management characteristics are not yet available. These comments address the potential relevance of the options and the possible difficulty that may be encountered in characterizing their value should be of interest in this investigation. The report also identifies options that could improve the efficiency of the three customer utility distribution systems supplied by the Shelton-Fairmount Reinforcement Project. Potential cogeneration options in the Olympic Peninsula are also discussed. These discussions focus on the options that appear to be most promising on the Olympic Peninsula. Finally, a short list of options is recommended for investigation in the next phase of this study. 9 refs., 24 tabs.

  2. Establishment of peak bone mass.

    PubMed

    Mora, Stefano; Gilsanz, Vicente

    2003-03-01

    Among the main areas of progress in osteoporosis research during the last decade or so are the general recognition that this condition, which is the cause of so much pain in the elderly population, has its antecedents in childhood and the identification of the structural basis accounting for much of the differences in bone strength among humans. Nevertheless, current understanding of the bone mineral accrual process is far from complete. The search for genes that regulate bone mass acquisition is ongoing, and current results are not sufficient to identify subjects at risk. However, there is solid evidence that BMD measurements can be helpful for the selection of subjects that presumably would benefit from preventive interventions. The questions regarding the type of preventive interventions, their magnitude, and duration remain unanswered. Carefully designed controlled trials are needed. Nevertheless, previous experience indicates that weight-bearing activity and possibly calcium supplements are beneficial if they are begun during childhood and preferably before the onset of puberty. Modification of unhealthy lifestyles and increments in exercise or calcium assumption are logical interventions that should be implemented to improve bone mass gains in all children and adolescents who are at risk of failing to achieve an optimal peak bone mass. PMID:12699292

  3. Mid-ocean ridge jumps associated with hotspot magmatism

    NASA Astrophysics Data System (ADS)

    Mittelstaedt, Eric; Ito, Garrett; Behn, Mark D.

    2008-02-01

    Hotspot-ridge interaction produces a wide range of phenomena including excess crustal thickness, geochemical anomalies, off-axis volcanic ridges and ridge relocations or jumps. Ridges are recorded to have jumped toward many hotspots including, Iceland, Discovery, Galápagos, Kerguelen and Tristan de Cuhna. The causes of ridge jumps likely involve a number of interacting processes related to hotspots. One such process is reheating of the lithosphere as magma penetrates it to feed near-axis volcanism. We study this effect by using the hybrid, finite-element code, FLAC, to simulate two-dimensional (2-D, cross-section) viscous mantle flow, elasto-plastic deformation of the lithosphere and heat transport in a ridge setting near an off-axis hotspot. Heating due to magma transport through the lithosphere is implemented within a hotspot region of fixed width. To determine the conditions necessary to initiate a ridge jump, we vary four parameters: hotspot magmatic heating rate, spreading rate, seafloor age at the location of the hotspot and ridge migration rate. Our results indicate that the hotspot magmatic heating rate required to initiate a ridge jump increases non-linearly with increasing spreading rate and seafloor age. Models predict that magmatic heating, itself, is most likely to cause jumps at slow spreading rates such as at the Mid-Atlantic Ridge on Iceland. In contrast, despite the higher magma flux at the Galápagos hotspot, magmatic heating alone is probably insufficient to induce a ridge jump at the present-day due to the intermediate ridge spreading rate of the Galápagos Spreading Center. The time required to achieve a ridge jump, for fixed or migrating ridges, is found to be on the order of 10 5-10 6 years. Simulations that incorporate ridge migration predict that after a ridge jump occurs the hotspot and ridge migrate together for time periods that increase with magma flux. Model results also suggest a mechanism for ridge reorganizations not related to

  4. Influence of Gender and Muscle Architecture Asymmetry on Jump and Sprint Performance

    PubMed Central

    Mangine, Gerald T.; Fukuda, David H.; LaMonica, Michael B.; Gonzalez, Adam M.; Wells, Adam J.; Townsend, Jeremy R.; Jajtner, Adam R.; Fragala, Maren S.; Stout, Jeffrey R.; Hoffman, Jay R.

    2014-01-01

    Muscle architecture is a determinant for sprinting speed and jumping power, which may be related to anaerobic sports performance. In the present investigation, the relationships between peak (PVJP) and mean (MVJP) vertical jump power, 30m maximal sprinting speed (30M), and muscle architecture were examined in 28 college-aged, recreationally-active men (n = 14; 24.3 ± 2.2y; 89.1 ± 9.3kg; 1.80 ± 0.07 m) and women (n = 14; 21.5 ± 1.7y; 65.2 ± 12.4kg; 1.63 ± 0.08 m). Ultrasound measures of muscle thickness (MT), pennation angle (PNG), cross-sectional area (CSA), and echo intensity (ECHO) were collected from the rectus femoris (RF) and vastus lateralis (VL) of both legs; fascicle length (FL) was estimated from MT and PNG. Men possessed lower ECHO, greater muscle size (MT & CSA), were faster, and were more powerful (PVJP & MVJP) than women. Stepwise regression indicated that muscle size and quality influenced speed and power in men. In women, vastus lateralis asymmetry negatively affected PVJP (MT: r = –0.73; FL: r = –0.60) and MVJP (MT: r = –0.76; FL: r = –0.64), while asymmetrical ECHO (VL) and FL (RF) positively influenced MVJP (r = 0.55) and 30M (r = 0.57), respectively. Thigh muscle architecture appears to influence jumping power and sprinting speed, though the effect may vary by gender in recreationally-active adults. Appropriate assessment of these ultrasound variables in men and women prior to training may provide a more specific exercise prescription. Key points The manner in which thigh muscle architecture affects jumping power and sprinting speed varies by gender. In men, performance is influenced by the magnitude of muscle size and architecture. In women, asymmetrical muscle size and architectural asymmetry significantly influence performance. To develop effective and precise exercise prescription for the improvement of jumping power and/or sprinting speed, muscle architecture assessment prior to the onset of a training program is advised. PMID

  5. Influence of gender and muscle architecture asymmetry on jump and sprint performance.

    PubMed

    Mangine, Gerald T; Fukuda, David H; LaMonica, Michael B; Gonzalez, Adam M; Wells, Adam J; Townsend, Jeremy R; Jajtner, Adam R; Fragala, Maren S; Stout, Jeffrey R; Hoffman, Jay R

    2014-12-01

    Muscle architecture is a determinant for sprinting speed and jumping power, which may be related to anaerobic sports performance. In the present investigation, the relationships between peak (PVJP) and mean (MVJP) vertical jump power, 30m maximal sprinting speed (30M), and muscle architecture were examined in 28 college-aged, recreationally-active men (n = 14; 24.3 ± 2.2y; 89.1 ± 9.3kg; 1.80 ± 0.07 m) and women (n = 14; 21.5 ± 1.7y; 65.2 ± 12.4kg; 1.63 ± 0.08 m). Ultrasound measures of muscle thickness (MT), pennation angle (PNG), cross-sectional area (CSA), and echo intensity (ECHO) were collected from the rectus femoris (RF) and vastus lateralis (VL) of both legs; fascicle length (FL) was estimated from MT and PNG. Men possessed lower ECHO, greater muscle size (MT & CSA), were faster, and were more powerful (PVJP & MVJP) than women. Stepwise regression indicated that muscle size and quality influenced speed and power in men. In women, vastus lateralis asymmetry negatively affected PVJP (MT: r = -0.73; FL: r = -0.60) and MVJP (MT: r = -0.76; FL: r = -0.64), while asymmetrical ECHO (VL) and FL (RF) positively influenced MVJP (r = 0.55) and 30M (r = 0.57), respectively. Thigh muscle architecture appears to influence jumping power and sprinting speed, though the effect may vary by gender in recreationally-active adults. Appropriate assessment of these ultrasound variables in men and women prior to training may provide a more specific exercise prescription. Key pointsThe manner in which thigh muscle architecture affects jumping power and sprinting speed varies by gender.In men, performance is influenced by the magnitude of muscle size and architecture.In women, asymmetrical muscle size and architectural asymmetry significantly influence performance.To develop effective and precise exercise prescription for the improvement of jumping power and/or sprinting speed, muscle architecture assessment prior to the onset of a training program is advised.

  6. Perform kicking with or without jumping: joint coordination and kinetic differences between Taekwondo back kicks and jumping back kicks.

    PubMed

    Cheng, Kuangyou B; Wang, Ying-Hsun; Kuo, Shih-Yu; Wang, Kuan-Mao; Huang, Yi-Chang

    2015-01-01

    We investigated joint coordination differences between Taekwondo back kicks and jumping back kicks, and how jumping (in performing the latter) would alter engaging ground reaction forces (GRF) in executing kicking. Ten skilful athletes volunteered to perform both kinds of kicking within the shortest time for three successful trials. Three high-speed cameras and two force platforms were used for data collection, and the trial with the shortest execution time was selected for analysis. Movements were divided into the rotation and attack phases. With comparable execution time and maximum joint linear/angular speeds, back kicks and jumping back kicks differ mainly in larger GRF in the latter, and in greater target acceleration in the former probably because the support leg prevented athletes' rebounding after impact. In addition, more prominent antiphase and in-phase coordination between the shoulder segment and knee joint, and elongated rotation phase were found in jumping back kicks. Larger GRF values in jumping back kicks were generated for jump take-off rather than for a more powerful attack. In back kicks although the support leg remained ground contact, greatly decreased GRF in the attack phase suggested that the support leg mainly served as a rotation axis. PMID:25599144

  7. Density peaking and turbulent pinch in DIII-D discharges

    SciTech Connect

    Estrada-Mila, C.; Candy, J.; Waltz, R. E.

    2006-07-15

    A study of density peaking and particle flow in low confinement (L-mode) DIII-D discharges [G. R. McKee, C. C. Petty, R. E. Waltz et al., Nucl. Fusion 41, 1235 (2001)], using global gyrokinetic simulations, is presented. It is found that under experimental conditions, in particular when realistic collisionality is included, a turbulent pinch driven by electron temperature and density gradients can occur.

  8. Microwave excitation of Josephson plasma mode and Swihart waves in vortex state of YBa 2Cu 3O 6.9 ceramics

    NASA Astrophysics Data System (ADS)

    Bukhan'ko, F. N.

    The narrow peak of microwave absorption and a jump of reactive component of surface impedance were observed in YBa 2 Cu 3 O 6.9 ceramics near critical temperature T KT =88-89 K in zero magnetic field and were interpreted as the Kosterlitz-Thouless phase transition. In higher fields a wide step of the strong absorption is formed, which is transformed with increasing H into the wide absorption peak near 85 K at the resonance field H o=3,5 kOe . The temperature oscillations of Z(T) below T c were observed. It is supposed that these peculiarities of microwave surface impedance are connected with resonance excitation of the Josephson plasma mode and Swihart waves.

  9. A numerical simulation approach to studying anterior cruciate ligament strains and internal forces among young recreational women performing valgus inducing stop-jump activities.

    PubMed

    Kar, Julia; Quesada, Peter M

    2012-08-01

    Anterior cruciate ligament (ACL) injuries are commonly incurred by recreational and professional women athletes during non-contact jumping maneuvers in sports like basketball and volleyball, where incidences of ACL injury is more frequent to females compared to males. What remains a numerical challenge is in vivo calculation of ACL strain and internal force. This study investigated effects of increasing stop-jump height on neuromuscular and bio-mechanical properties of knee and ACL, when performed by young female recreational athletes. The underlying hypothesis is increasing stop-jump (platform) height increases knee valgus angles and external moments which also increases ACL strain and internal force. Using numerical analysis tools comprised of Inverse Kinematics, Computed Muscle Control and Forward Dynamics, a novel approach is presented for computing ACL strain and internal force based on (1) knee joint kinematics and (2) optimization of muscle activation, with ACL insertion into musculoskeletal model. Results showed increases in knee valgus external moments and angles with increasing stop-jump height. Increase in stop-jump height from 30 to 50 cm lead to increase in average peak valgus external moment from 40.5 ± 3.2 to 43.2 ± 3.7 Nm which was co-incidental with increase in average peak ACL strain, from 9.3 ± 3.1 to 13.7 ± 1.1%, and average peak ACL internal force, from 1056.1 ± 71.4 to 1165.4 ± 123.8 N for the right side with comparable increases in the left. In effect this study demonstrates a technique for estimating dynamic changes to knee and ACL variables by conducting musculoskeletal simulation on motion analysis data, collected from actual stop-jump tasks performed by young recreational women athletes.

  10. Spinal shrinkage in unloaded and loaded drop-jumping.

    PubMed

    Fowler, N E; Lees, A; Reilly, T

    1994-01-01

    Plyometric activities, engaging the muscle in a stretch-shortening cycle, are widely used in athletic training. One such plyometric exercise is drop-jumping, where the athlete drops from a raised platform and immediately on landing performs a maximal vertical jump. These actions are also performed with the athlete externally loaded by the addition of weights to provide greater resistance. Exercises which involve repeated impacts have been shown to give rise to a loss of stature (shrinkage) which can be measured by means of a sensitive stadiometer. This study examined the shrinkage induced by unloaded and loaded drop-jumping from a height of 26 cm. Eight male subjects, aged 20-24 years, performed the test protocol three times, at the same time of day on each occasion. Fifty drop-jumps from a height of 26 cm were performed with no additional load and with a load of 8.5 kg carried in a weighted vest. The third condition was a standing trial where the subject stood for 10 min (the time taken to perform the jumps) wearing the weighted vest. Stature was measured before exercise, immediately after exercise and after a 20 min standing recovery. On a separate occasion the regimen was performed and the vertical reaction force was measured using a Kistler force platform. The mean change in stature for the two jump conditions showed shrinkages of 0.62 (+/- 0.43) mm for unloaded and 2.14 (+/- 1.56) mm for the loaded (p < 0.05). The variance in shrinkage was greater in the loaded case compared to the unloaded condition (p < 0.05) indicating a wider range of jumping strategies.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8112268

  11. Scaling and jumping: gravity loses grip on small jumpers.

    PubMed

    Scholz, Melanie N; Bobbert, Maarten F; Knoek van Soest, A J

    2006-06-21

    There are several ways to quantify jumping performance, a common definition being the height gained by the body's centre of mass (CM) in the airborne phase. Under this definition, jump height is determined by take-off velocity. According to the existing literature on jumping and scaling, take-off velocity, and hence jumping performance is independent of size because the energy that differently sized geometrically scaled jumpers can generate with their muscles is proportional to their mass. In this article it is shown, based on a simple energy balance, that it is incorrect to presume that jump height does not depend on size. Contrary to common belief, size as such has does have an effect on take-off velocity, putting small jumpers at a mechanical advantage, as is shown analytically. To quantify the effect of size on take-off velocity, a generic jumper model was scaled geometrically and evaluated numerically. While a 70-kg jumper took off at 2.65 m/s and raised its CM by 0.36 m after take-off, a perfectly geometrically similar jumper of 0.7 g reached a take-off velocity of 3.46 m/s and raised its CM by 0.61 m. The reason for the better performance of small jumpers is their higher efficacy in transforming the energy generated by the actuators into energy due to vertical velocity of the CM. Considering the ecological and evolutionary relevance of different definitions of jump height, size-dependent efficacy might explain why habitual jumping is especially prominent among small animals such as insects.

  12. Effects of footwear on impact forces and soft tissue vibrations during drop jumps and unanticipated drop landings.

    PubMed

    Fu, W; Liu, Y; Zhang, S

    2013-06-01

    The purpose of this study was to explore the footwear effects on impact forces and soft-tissue vibrations during landing. 12 male basketball players were instructed to perform drop jumps and unanticipated drop landings from 30 cm, 45 cm, and 60 cm heights in basketball shoes (BS) and control shoes (CS). 3D kinematics, ground reaction force (GRF), and soft-tissue vibrations of the leg, and acceleration of the shoe heel counter were measured simultaneously. The results showed no significant shoe effect on the characteristics of the impact force nor on the resonance frequency and peak transmissibility of soft-tissue vibrations during the impact phase of the drop jump. For the unanticipated drop landings, however, the magnitude of both peak GRF and peak loading rate were significantly lower with BS compared to CS across all 3 heights (p<0.05); meanwhile BS showed a significant decrease in GRF frequency compared to CS at 45 cm (p<0.05) and 60 cm (p<0.01) heights. Furthermore, the peak transmissibility in BS was significantly lower than that in CS for both the quadriceps and hamstrings during the 60 cm unanticipated drop landing (p<0.05). These findings provide preliminary evidence suggesting that if the neuromuscular system fails to prepare properly for an impact during landing, a shoe intervention may be an effective method for minimizing impact force and reducing soft tissue resonance.

  13. On correlation between zero bias conductance peaks and topological invariants in semiconductor Rashba nanowires

    NASA Astrophysics Data System (ADS)

    Nag, Amit; Sau, Jay

    The observed zero bias peak in tunneling conductance experiments on semiconductor Rashba nanowire is a signature of presence of Majorana zero modes. Characteristics of zero bias conductance peak (ZBCP) namely, height, width and peak splitting, are a function of microscopic parameters. Zero modes have finite splitting as a result of finiteness of the nanowire rendering the ground state only approximately topological i.e. zero modes are only approximately Majoranas. We calculate the scattering matrix topological invariant to quantify the quality of approximate Majorana modes and study its relation to observed characteristics of ZBCP. Furthermore we study the effect of dephasing on the topological invariant. Finally, we draw connection between the characteristics of the ZBCP and probability of observing non-Abelian statistics in proposed future experiments involving braiding of Majorana modes. Work is done in collaboration with Sankar Das Sarma and supported by LPS-MPO-CMTC, Microsoft Q, Univ. of Maryland startup grants and JQI-NSF-PFC.

  14. Jump point detection for real estate investment success

    NASA Astrophysics Data System (ADS)

    Hui, Eddie C. M.; Yu, Carisa K. W.; Ip, Wai-Cheung

    2010-03-01

    In the literature, studies on real estate market were mainly concentrating on the relation between property price and some key factors. The trend of the real estate market is a major concern. It is believed that changes in trend are signified by some jump points in the property price series. Identifying such jump points reveals important findings that enable policy-makers to look forward. However, not all jump points are observable from the plot of the series. This paper looks into the trend and introduces a new approach to the framework for real estate investment success. The main purpose of this paper is to detect jump points in the time series of some housing price indices and stock price index in Hong Kong by applying the wavelet analysis. The detected jump points reflect to some significant political issues and economic collapse. Moreover, the relations among properties of different classes and between stocks and properties are examined. It can be shown from the empirical result that a lead-lag effect happened between the prices of large-size property and those of small/medium-size property. However, there is no apparent relation or consistent lead in terms of change point measure between property price and stock price. This may be due to the fact that globalization effect has more impact on the stock price than the property price.

  15. The mechanics of elevation control in locust jumping.

    PubMed

    Sutton, G P; Burrows, M

    2008-06-01

    How do animals control the trajectory of ballistic motions like jumping? Targeted jumps by a locust, which are powered by a rapid extension of the tibiae of both hind legs, require control of the take-off angle and speed. To determine how the locust controls these parameters, we used high speed images of jumps and mechanical analysis to reach three conclusions: (1) the extensor tibiae muscle applies equal and opposite torques to the femur and tibia, which ensures that tibial extension accelerates the centre of mass of the body along a straight line; (2) this line is parallel to a line drawn from the distal end of the tibia through the proximal end of the femur; (3) the slope of this line (the angle of elevation) is not affected if the two hind legs extend asynchronously. The mechanics thus uncouple the control of elevation and speed, allowing simplified and independent control mechanisms. Jump elevation is controlled mechanically by the initial positions of the hind legs and jump speed is determined by the energy stored within their elastic processes, which allows us to then propose which proprioceptors are involved in controlling these quantities.

  16. Bayesian inference for Markov jump processes with informative observations.

    PubMed

    Golightly, Andrew; Wilkinson, Darren J

    2015-04-01

    In this paper we consider the problem of parameter inference for Markov jump process (MJP) representations of stochastic kinetic models. Since transition probabilities are intractable for most processes of interest yet forward simulation is straightforward, Bayesian inference typically proceeds through computationally intensive methods such as (particle) MCMC. Such methods ostensibly require the ability to simulate trajectories from the conditioned jump process. When observations are highly informative, use of the forward simulator is likely to be inefficient and may even preclude an exact (simulation based) analysis. We therefore propose three methods for improving the efficiency of simulating conditioned jump processes. A conditioned hazard is derived based on an approximation to the jump process, and used to generate end-point conditioned trajectories for use inside an importance sampling algorithm. We also adapt a recently proposed sequential Monte Carlo scheme to our problem. Essentially, trajectories are reweighted at a set of intermediate time points, with more weight assigned to trajectories that are consistent with the next observation. We consider two implementations of this approach, based on two continuous approximations of the MJP. We compare these constructs for a simple tractable jump process before using them to perform inference for a Lotka-Volterra system. The best performing construct is used to infer the parameters governing a simple model of motility regulation in Bacillus subtilis. PMID:25720091

  17. The effect of strength training, recreational soccer and running exercise on stretch-shortening cycle muscle performance during countermovement jumping.

    PubMed

    Jakobsen, Markus Due; Sundstrup, Emil; Randers, Morten Bredsgaard; Kjær, Michael; Andersen, Lars L; Krustrup, Peter; Aagaard, Per

    2012-08-01

    The purpose of the present study was to evaluate the effect of contrasting training modalities on mechanical muscle performance and neuromuscular activity during maximal SSC (stretch-shortening cycle) countermovement jumps (CMJ). Bilateral countermovement jumping, surface electromyography (EMG) and muscle fiber size (CSA) were studied in untrained individuals (n=49, 21-45 yrs) pre and post 12 weeks of progressive heavy-resistance strength training (ST, n=8), recreational soccer training (SOC, n=15), high-intensity interval running (INT, n=7), continuous running (RUN, n=9) or continuation of an inactive life-style (CON, n=10). ST displayed shortened CMJ take-off time (p<.05) and increased (p<.05) maximal CMJ jump height, peak down- and upward velocity of center of mass (COM), rate of vertical force development (RFD: ΔF(Z)/Δt), peak power production, rate of power development (RPD), mean plantar flexor EMG and peak hamstring rate of EMG rise (RER). Peak quadriceps EMG rate of rise increased in SOC (p<.05). Moreover, ST and SOC demonstrated increased quadriceps muscle fiber CSA and lean leg mass. Positive relationships (r>.70) were observed following ST between training-induced changes in CMJ SSC muscle performance, neuromuscular activity and muscle fiber CSA, respectively. ST induced a more rapid CMJ take-off phase and elevated muscle power production, indicating a more explosive-type SSC muscle performance. No effects were detected in CMJ performance after continuous running, high-intensity interval running and recreational soccer, despite an increased muscle fiber CSA and quadriceps muscle activity in SOC. Enhanced neuromuscular activity in the hip extensors (hamstrings) and plantar flexors, and increased myofiber fiber size were responsible for the enhanced CMJ SSC muscle performance with ST.

  18. The evolution of jumping in frogs: morphological evidence for the basal anuran locomotor condition and the radiation of locomotor systems in crown group anurans.

    PubMed

    Reilly, Stephen M; Jorgensen, Michael E

    2011-02-01

    Our understanding of the evolution of frog locomotion follows from the work of Emerson in which anurans are proposed to possess one of three different iliosacral configurations: 1) a lateral-bending system found in walking and hopping frogs; 2) a fore-aft sliding mechanism found in several locomotor modes; and 3) a sagittal-hinge-type pelvis posited to be related to long-distance jumping performance. The most basal living (Ascaphus) and fossil (Prosalirus) frogs are described as sagittal-hinge pelvic types, and it has been proposed that long-distance jumping with a sagittal-hinge pelvis arose early in frog evolution. We revisited osteological traits of the pelvic region to conduct a phylogenetic analysis of the relationships between pelvic systems and locomotor modes in frogs. Using two of Emerson's diagnostic traits from the sacrum and ilium and two new traits from the urostyle, we resampled the taxa originally studied by Emerson and key paleotaxa and conducted an analysis of ancestral-character state evolution in relation to locomotor mode. We present a new pattern for the evolution of pelvic systems and locomotor modes in frogs. Character analysis shows that the lateral-bender, walker/hopper condition is both basal and generally conserved across the Anura. Long-distance jumping frogs do not appear until well within the Neobatrachia. The sagittal-hinge morphology is correlated with long-distance jumping in terrestrial frogs; however, it evolved convergently multiple times in crown group anurans with the same four pelvic traits described herein. Arboreal jumping has appeared in multiple crown lineages as well, but with divergent patterns of evolution involving each of the three pelvic types. The fore-aft slider morph appears independently in three different locomotor modes and, thus, is a more complex system than previously thought. Finally, it appears that the advent of a bicondylar sacro-urostylic articulation was originally related to providing axial rigidity

  19. Effect of sharp jumps at the edges of phase response curves on synchronization of electrically coupled neuronal oscillators.

    PubMed

    Dodla, Ramana; Wilson, Charles J

    2013-01-01

    We study synchronization phenomenon of coupled neuronal oscillators using the theory of weakly coupled oscillators. The role of sudden jumps in the phase response curve profiles found in some experimental recordings and models on the ability of coupled neurons to exhibit synchronous and antisynchronous behavior is investigated, when the coupling between the neurons is electrical. The level of jumps in the phase response curve at either end, spike width and frequency of voltage time course of the coupled neurons are parameterized using piecewise linear functional forms, and the conditions for stable synchrony and stable antisynchrony in terms of those parameters are computed analytically. The role of the peak position of the phase response curve on phase-locking is also investigated.

  20. Discourse Peak as Zone of Turbulence.

    ERIC Educational Resources Information Center

    Longacre, Robert E.

    Defining peak as the climax of discourse, this paper argues that it is important to identify peak in order to get at the overall grammar of a given discourse. The paper presents case studies in which four instances of peak in narrative discourses occur in languages from four different parts of the world. It also illustrates the occurrence of a…

  1. Peak-flow characteristics of Virginia streams

    USGS Publications Warehouse

    Austin, Samuel H.; Krstolic, Jennifer L.; Wiegand, Ute

    2011-01-01

    Peak-flow annual exceedance probabilities, also called probability-percent chance flow estimates, and regional regression equations are provided describing the peak-flow characteristics of Virginia streams. Statistical methods are used to evaluate peak-flow data. Analysis of Virginia peak-flow data collected from 1895 through 2007 is summarized. Methods are provided for estimating unregulated peak flow of gaged and ungaged streams. Station peak-flow characteristics identified by fitting the logarithms of annual peak flows to a Log Pearson Type III frequency distribution yield annual exceedance probabilities of 0.5, 0.4292, 0.2, 0.1, 0.04, 0.02, 0.01, 0.005, and 0.002 for 476 streamgaging stations. Stream basin characteristics computed using spatial data and a geographic information system are used as explanatory variables in regional regression model equations for six physiographic regions to estimate regional annual exceedance probabilities at gaged and ungaged sites. Weighted peak-flow values that combine annual exceedance probabilities computed from gaging station data and from regional regression equations provide improved peak-flow estimates. Text, figures, and lists are provided summarizing selected peak-flow sites, delineated physiographic regions, peak-flow estimates, basin characteristics, regional regression model equations, error estimates, definitions, data sources, and candidate regression model equations. This study supersedes previous studies of peak flows in Virginia.

  2. 27 CFR 9.140 - Atlas Peak.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Atlas Peak. 9.140 Section... THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.140 Atlas Peak. (a) Name. The name of the viticultural area described in this section is “Atlas Peak.”...

  3. Probing Thin Films and Monolayers on Gold with Large Amplitude Temperature Jumps

    NASA Astrophysics Data System (ADS)

    Sun, Yuxiao; Berg, Christopher M.; Dlott, Dana

    2014-06-01

    A methodology to probe localized vibrational transitions of self-assembled monolayers (SAMs) adsorbed on gold films using vibrational sum-frequency generation (SFG) is described. The gold film is subjected to heating from a 400nm pump laser, exposing the adsorbed molecules to a temperature jump in the 30-175° K range, calibrated using ultrafast reflectance measurements of the gold compared to steady state oven heating . SAMs of alkyl thiols as well as nitro functionalized aryl thiols were deposited and temperature jumped while be observed with SFG, monitoring the symmetric and asymmetric methyl vibrations as well as nitro vibrations. The amplitude, center, and width of the transitions were measured and provide information about delay and orientation of the molecules, as well as providing an indicator of the overall monolayer state. All transitions probed exhibited overshoot decay plateau patterns, attributed to a fast hot electron process directly exciting the probed transitions, followed by a slower bulk heating process causing monolayer disordering. This leads to a shift in the average angle of the terminal methyl, manifesting itself as a change in the amplitude of the vibration. These techniques will be applied to thin films of energetic materials to study reactions to temperature jumps. HMX is known to have a peak in sensitivity as δ-HMX transitions to β-HMX at high temperatures, but fairly little information about the reason for this is known. This technique should be able to probe that process and provide data that can be used with computational models to gain some understanding of the process.

  4. Condensation and jumping relay of droplets on lotus leaf

    NASA Astrophysics Data System (ADS)

    Lv, Cunjing; Hao, Pengfei; Yao, Zhaohui; Song, Yu; Zhang, Xiwen; He, Feng

    2013-07-01

    Dynamic behavior of micro water droplet condensed on a lotus leaf with two-tier roughness is studied. Under laboratory environment, the contact angle of the micro droplet on single micro papilla increases smoothly from 80° to 160° during the growth of condensed water. The best-known "self-cleaning" phenomenon will be lost. A striking observation is the out-of-plane jumping relay of condensed droplets triggered by falling droplets, as well as its sustained speed obtained in continuous jumping relays. The underlying mechanism can be used to enhance the automatic removal of dropwise condensation without the help from any external force. The surface tension energy dissipation is the main reason controlling the critical size of jumping droplet and its onset velocity of rebounding.

  5. AGS tune jump power supply design and test

    SciTech Connect

    Mi, J.; Glenn, J.W.; Huang, H.; Marneris, I.; Rosas, P.; Sandberg, J.; Tan, Y.; Zhang, W.

    2011-03-28

    A horizontal tune jump system has been installed to overcome the horizontal intrinsic spin resonances, which requires jumping the horizontal tune 0.04 units 82 times, 41 up and 41 down. Two quadruple magnets have been installed in AGS ring to perform this. The pulsed magnet current ranges from about 140A near injection to about 1400A later. The current pulse rise and fall time are around 100uS and flat tops time is around 4mS. These quadruples have separated supplies. This tune jump pulse power supply employees all semiconductor parts as well as the main switches. During dummy load and magnet testing, the test results showed that the power supply could meet the specification. This article will describe some details of power supply simulation, design and testing. Some test waveforms and pictures are presented in this paper.

  6. Rates of diffusion in dynamical systems with random jumps

    NASA Astrophysics Data System (ADS)

    Kobre, Elisha J.

    2005-12-01

    This dissertation explores the diffusion properties of a large class of measures under a dynamical system on bigcup i=0infinity S1i with randomly occurring jumps that behave according to a particular probability distribution. The drift rate for the center of mass of the system is then defined and is shown to be well defined Lebesgue almost everywhere. Properties of the drift rate are then explored. In particular the drift rate is shown to be continuous as a function of the probability "jump" distribution and, in a special case, it is shown that the drift rate increases with the probability of jumping. Finally, a central limit theorem for fluctuations about the drift rate is proved. The results are obtained by modeling the system as a random map on a compact space, and using the ergodic properties of the random map.

  7. Multiple Tune Jumps to Overcome Horizontal Depolarizing Resonances

    NASA Astrophysics Data System (ADS)

    Huang, H.; Ahrens, L. A.; Bai, M.; Brown, K. A.; Dutheil, Y.; Gardner, C.; Glenn, J. W.; Lin, F.; Mackay, W. W.; Meot, F.; Poblaguev, A.; Ranjbar, V.; Roser, T.; Schoefer, V.; Tepikian, S.; Tsoupas, N.; Yip, K.; Zelenski, A.; Zeno, K.

    2016-02-01

    Imperfection and vertical intrinsic depolarizing resonances have been overcome by the two partial Siberian snakes in the Alternative Gradient Synchrotron(AGS). The relatively weak but numerous horizontal resonances are the main source of polarization loss in the AGS. A pair of horizontal tune jump quads have been used to overcome these weak resonances. The locations of the two quads have to be chosen such that the disturbance to the beam optics is minimum. The emittance growth has to be mitigated for this method to work. In addition, this technique needs very accurate jump timing. Using two partial Siberian snakes, with vertical tune inside the spin tune gap and 80% polarization at AGS injection, polarized proton beam had reached 1.5 × 1011 proton per bunch with 65% polarization. With the tune jump timing optimized and emittance preserved, more than 70% polarization with 2 × 1011 protons per bunch has been achieved.

  8. Birth-jump processes and application to forest fire spotting.

    PubMed

    Hillen, T; Greese, B; Martin, J; de Vries, G

    2015-01-01

    Birth-jump models are designed to describe population models for which growth and spatial spread cannot be decoupled. A birth-jump model is a nonlinear integro-differential equation. We present two different derivations of this equation, one based on a random walk approach and the other based on a two-compartmental reaction-diffusion model. In the case that the redistribution kernels are highly concentrated, we show that the integro-differential equation can be approximated by a reaction-diffusion equation, in which the proliferation rate contributes to both the diffusion term and the reaction term. We completely solve the corresponding critical domain size problem and the minimal wave speed problem. Birth-jump models can be applied in many areas in mathematical biology. We highlight an application of our results in the context of forest fire spread through spotting. We show that spotting increases the invasion speed of a forest fire front.

  9. Basketball jump shooting is controlled online by vision.

    PubMed

    de Oliveira, R Ferraz; Huys, R; Oudejans, R R D; van de Langenberg, R; Beek, P J

    2007-01-01

    An experiment was conducted to examine whether basketball jump shooting relies on online visual (i.e., dorsal stream-mediated) control rather than motor preprogramming. Seventeen expert basketball players (eight males and nine females) performed jump shots under normal vision and in three conditions in which movement initiation was delayed by zero, one, or two seconds relative to viewing the basket. Shots were evaluated in terms of both outcome and execution measures. Even though most shots still landed near the basket in the absence of vision, end-point accuracy was significantly better under normal visual conditions than under the delay conditions, where players tended to undershoot the basket. In addition, an overall decrease of inter-joint coordination strength and stability was found as a function of visual condition. Although these results do not exclude a role of motor preprogramming, they demonstrate that visual sensory information plays an important role in the continuous guidance of the basketball jump shot.

  10. The acute effects of different stretching exercises on jump performance.

    PubMed

    Pacheco, Laura; Balius, Ramon; Aliste, Luisa; Pujol, Montse; Pedret, Carles

    2011-11-01

    The purpose of this study was to demonstrate the short-term effects of different stretching exercises during the warm-up period on the lower limbs. A controlled, crossover clinical study involving 49 volunteers (14 women and 35 men; mean age: 20.4 years) enrolled in a "physical and sporting activities monitor" program. The explosive force was assessed using the Bosco test. The protocol was as follows: The test involved a (pre) jump test, general warm-up, intervention and (post) jump test. Each volunteer was subjected to each of the 5 interventions (no stretching [NS] and stretching: static passive stretching [P]; proprioceptive neuromuscular facilitation [PNF] techniques; static active stretching in passive tension [PT]; static active stretching in active tension [AT]) in a random order. The jump test was used to assess the squat jump, countermovement jump (CMJ), elasticity index (EI), and drop jump. An intragroup statistical analysis was performed before and after each intervention to compare the differences between the different stretching exercises. An intergroup analysis was also performed. Significant differences (p < 0.05) were found between all variables for the interventions "P," "PNF," and "TA" in the intragroup analysis, with each value being higher in the postjump test. Only the "P" intervention showed a significant difference (p = 0.046) for "EI," with the postvalue being lower. Likewise, significant differences (p < 0.05) were observed for the "CMJ" measurements during the intergroup analysis, especially between "NS" and the interventions "P," "PNF," "AT," and "PT," with each value, particularly that for "AT," being higher after stretching. The results of this study suggest that static active stretching in AT can be recommended during the warm-up for explosive force disciplines. PMID:21993032

  11. AirJump: Using Interfaces to Instantly Perform Simultaneous Extractions.

    PubMed

    Berry, Scott M; Pezzi, Hannah M; LaVanway, Alex J; Guckenberger, David J; Anderson, Meghan A; Beebe, David J

    2016-06-22

    Analyte isolation is an important process that spans a range of biomedical disciplines, including diagnostics, research, and forensics. While downstream analytical techniques have advanced in terms of both capability and throughput, analyte isolation technology has lagged behind, increasingly becoming the bottleneck in these processes. Thus, there exists a need for simple, fast, and easy to integrate analyte separation protocols to alleviate this bottleneck. Recently, a new class of technologies has emerged that leverages the movement of paramagnetic particle (PMP)-bound analytes through phase barriers to achieve a high efficiency separation in a single or a few steps. Specifically, the passage of a PMP/analyte aggregate through a phase interface (aqueous/air in this case) acts to efficiently "exclude" unbound (contaminant) material from PMP-bound analytes with higher efficiency than traditional washing-based solid-phase extraction (SPE) protocols (i.e., bind, wash several times, elute). Here, we describe for the first time a new type of "exclusion-based" sample preparation, which we term "AirJump". Upon realizing that much of the contaminant carryover stems from interactions with the sample vessel surface (e.g., pipetting residue, wetting), we aim to eliminate the influence of that factor. Thus, AirJump isolates PMP-bound analyte by "jumping" analyte directly out of a free liquid/air interface. Through careful characterization, we have demonstrated the validity of AirJump isolation through comparison to traditional washing-based isolations. Additionally, we have confirmed the suitability of AirJump in three important independent biological isolations, including protein immunoprecipitation, viral RNA isolation, and cell culture gene expression analysis. Taken together, these data sets demonstrate that AirJump performs efficiently, with high analyte yield, high purity, no cross contamination, rapid time-to-isolation, and excellent reproducibility. PMID:27249333

  12. The mechanics of elastic loading and recoil in anuran jumping.

    PubMed

    Astley, Henry C; Roberts, Thomas J

    2014-12-15

    Many animals use catapult mechanisms to produce extremely rapid movements for escape or prey capture, resulting in power outputs far beyond the limits of muscle. In these catapults, muscle contraction loads elastic structures, which then recoil to release the stored energy extremely rapidly. Many arthropods employ anatomical 'catch mechanisms' to lock the joint in place during the loading period, which can then be released to allow joint motion via elastic recoil. Jumping vertebrates lack a clear anatomical catch, yet face the same requirement to load the elastic structure prior to movement. There are several potential mechanisms to allow loading of vertebrate elastic structures, including the gravitational load of the body, a variable mechanical advantage, and moments generated by the musculature of proximal joints. To test these hypothesized mechanisms, we collected simultaneous 3D kinematics via X-ray Reconstruction of Moving Morphology (XROMM) and single-foot forces during the jumps of three Rana pipiens. We calculated joint mechanical advantage, moment and power using inverse dynamics at the ankle, knee, hip and ilio-sacral joints. We found that the increasing proximal joint moments early in the jump allowed for high ankle muscle forces and elastic pre-loading, and the subsequent reduction in these moments allowed the ankle to extend using elastic recoil. Mechanical advantage also changed throughout the jump, with the muscle contracting against a poor mechanical advantage early in the jump during loading and a higher mechanical advantage late in the jump during recoil. These 'dynamic catch mechanisms' serve to resist joint motion during elastic loading, then allow it during elastic recoil, functioning as a catch mechanism based on the balance and orientation of forces throughout the limb rather than an anatomical catch. PMID:25520385

  13. The mechanics of elastic loading and recoil in anuran jumping.

    PubMed

    Astley, Henry C; Roberts, Thomas J

    2014-12-15

    Many animals use catapult mechanisms to produce extremely rapid movements for escape or prey capture, resulting in power outputs far beyond the limits of muscle. In these catapults, muscle contraction loads elastic structures, which then recoil to release the stored energy extremely rapidly. Many arthropods employ anatomical 'catch mechanisms' to lock the joint in place during the loading period, which can then be released to allow joint motion via elastic recoil. Jumping vertebrates lack a clear anatomical catch, yet face the same requirement to load the elastic structure prior to movement. There are several potential mechanisms to allow loading of vertebrate elastic structures, including the gravitational load of the body, a variable mechanical advantage, and moments generated by the musculature of proximal joints. To test these hypothesized mechanisms, we collected simultaneous 3D kinematics via X-ray Reconstruction of Moving Morphology (XROMM) and single-foot forces during the jumps of three Rana pipiens. We calculated joint mechanical advantage, moment and power using inverse dynamics at the ankle, knee, hip and ilio-sacral joints. We found that the increasing proximal joint moments early in the jump allowed for high ankle muscle forces and elastic pre-loading, and the subsequent reduction in these moments allowed the ankle to extend using elastic recoil. Mechanical advantage also changed throughout the jump, with the muscle contracting against a poor mechanical advantage early in the jump during loading and a higher mechanical advantage late in the jump during recoil. These 'dynamic catch mechanisms' serve to resist joint motion during elastic loading, then allow it during elastic recoil, functioning as a catch mechanism based on the balance and orientation of forces throughout the limb rather than an anatomical catch.

  14. AirJump: Using Interfaces to Instantly Perform Simultaneous Extractions.

    PubMed

    Berry, Scott M; Pezzi, Hannah M; LaVanway, Alex J; Guckenberger, David J; Anderson, Meghan A; Beebe, David J

    2016-06-22

    Analyte isolation is an important process that spans a range of biomedical disciplines, including diagnostics, research, and forensics. While downstream analytical techniques have advanced in terms of both capability and throughput, analyte isolation technology has lagged behind, increasingly becoming the bottleneck in these processes. Thus, there exists a need for simple, fast, and easy to integrate analyte separation protocols to alleviate this bottleneck. Recently, a new class of technologies has emerged that leverages the movement of paramagnetic particle (PMP)-bound analytes through phase barriers to achieve a high efficiency separation in a single or a few steps. Specifically, the passage of a PMP/analyte aggregate through a phase interface (aqueous/air in this case) acts to efficiently "exclude" unbound (contaminant) material from PMP-bound analytes with higher efficiency than traditional washing-based solid-phase extraction (SPE) protocols (i.e., bind, wash several times, elute). Here, we describe for the first time a new type of "exclusion-based" sample preparation, which we term "AirJump". Upon realizing that much of the contaminant carryover stems from interactions with the sample vessel surface (e.g., pipetting residue, wetting), we aim to eliminate the influence of that factor. Thus, AirJump isolates PMP-bound analyte by "jumping" analyte directly out of a free liquid/air interface. Through careful characterization, we have demonstrated the validity of AirJump isolation through comparison to traditional washing-based isolations. Additionally, we have confirmed the suitability of AirJump in three important independent biological isolations, including protein immunoprecipitation, viral RNA isolation, and cell culture gene expression analysis. Taken together, these data sets demonstrate that AirJump performs efficiently, with high analyte yield, high purity, no cross contamination, rapid time-to-isolation, and excellent reproducibility.

  15. Knee and Hip Joint Kinematics Predict Quadriceps and Hamstrings Neuromuscular Activation Patterns in Drop Jump Landings

    PubMed Central

    Malfait, Bart; Dingenen, Bart; Smeets, Annemie; Staes, Filip; Pataky, Todd; Robinson, Mark A.; Vanrenterghem, Jos; Verschueren, Sabine

    2016-01-01

    Purpose The purpose was to assess if variation in sagittal plane landing kinematics is associated with variation in neuromuscular activation patterns of the quadriceps-hamstrings muscle groups during drop vertical jumps (DVJ). Methods Fifty female athletes performed three DVJ. The relationship between peak knee and hip flexion angles and the amplitude of four EMG vectors was investigated with trajectory-level canonical correlation analyses over the entire time period of the landing phase. EMG vectors consisted of the {vastus medialis(VM),vastus lateralis(VL)}, {vastus medialis(VM),hamstring medialis(HM)}, {hamstring medialis(HM),hamstring lateralis(HL)} and the {vastus lateralis(VL),hamstring lateralis(HL)}. To estimate the contribution of each individual muscle, linear regressions were also conducted using one-dimensional statistical parametric mapping. Results The peak knee flexion angle was significantly positively associated with the amplitudes of the {VM,HM} and {HM,HL} during the preparatory and initial contact phase and with the {VL,HL} vector during the peak loading phase (p<0.05). Small peak knee flexion angles were significantly associated with higher HM amplitudes during the preparatory and initial contact phase (p<0.001). The amplitudes of the {VM,VL} and {VL,HL} were significantly positively associated with the peak hip flexion angle during the peak loading phase (p<0.05). Small peak hip flexion angles were significantly associated with higher VL amplitudes during the peak loading phase (p = 0.001). Higher external knee abduction and flexion moments were found in participants landing with less flexed knee and hip joints (p<0.001). Conclusion This study demonstrated clear associations between neuromuscular activation patterns and landing kinematics in the sagittal plane during specific parts of the landing. These findings have indicated that an erect landing pattern, characterized by less hip and knee flexion, was significantly associated with an

  16. Detection of atomic clock frequency jumps with the Kalman filter.

    PubMed

    Galleani, Lorenzo; Tavella, Patrizia

    2012-03-01

    Frequency jumps are common anomalies in atomic clocks aboard navigation system satellites. These anomalous behaviors must be detected quickly and accurately to minimize the impact on user positioning. We develop a detector for frequency jumps based on the Kalman filter. Numerical simulations show that the detector is fast, with high probability of detection and low probability of false alarms. It also has a low computational cost because it takes advantage of the recursive nature of the Kalman filter. Therefore, it can be used in applications in which little computational power is available, such as aboard navigation system satellites.

  17. Detection of atomic clock frequency jumps with the Kalman filter.

    PubMed

    Galleani, Lorenzo; Tavella, Patrizia

    2012-03-01

    Frequency jumps are common anomalies in atomic clocks aboard navigation system satellites. These anomalous behaviors must be detected quickly and accurately to minimize the impact on user positioning. We develop a detector for frequency jumps based on the Kalman filter. Numerical simulations show that the detector is fast, with high probability of detection and low probability of false alarms. It also has a low computational cost because it takes advantage of the recursive nature of the Kalman filter. Therefore, it can be used in applications in which little computational power is available, such as aboard navigation system satellites. PMID:22481785

  18. Incorporating compliant elastomers for jumping locomotion in microrobots

    NASA Astrophysics Data System (ADS)

    Gerratt, Aaron P.; Bergbreiter, Sarah

    2013-01-01

    Small insects and other animals use a multitude of materials to realize specific functions, including locomotion. This paper demonstrates application of the first microfabrication process to incorporate high aspect ratio compliant elastomer structures in-plane with traditional silicon microelectromechanical systems (MEMS). By incorporating these new materials, compact energy storage systems based on elastomer springs for small jumping robots have been demonstrated. Results include a 4 mm×4 mm jumping mechanism that has reached heights of 32 cm, × 80 its own height, and an on-chip actuated mechanism that has been used to propel a 1.4 mg projectile over 7 cm.

  19. Jumping mechanisms in gum treehopper insects (Hemiptera, Eurymelinae).

    PubMed

    Burrows, Malcolm

    2013-07-15

    Jumping in a species of Australian gum treehopper was analysed from high-speed images. Pauroeurymela amplicincta adults and nymphs lived together in groups that were tended by ants, but only adults jumped. The winged adults with a body mass of 23 mg and a body length of 7 mm had some morphological characteristics intermediate between those of their close relatives the leafhoppers (Cicadellidae) and the treehoppers (Membracidae). They, like leafhoppers, lacked the prominent prothoracic helmets of membracid treehoppers, and their large hind coxae were linked by press studs (poppers), that are present in leafhoppers but not treehoppers. The hindlegs were only 30-40% longer than the other legs and 67% of body length. They are thus of similar proportion to the hindlegs of treehoppers but much shorter than those of most leafhoppers. Jumping was propelled by the hindlegs, which moved in the same plane as each other beneath and almost parallel to the longitudinal axis of the body. A jump was preceded by full levation of the coxo-trochanteral joints of the hindlegs. In its best jumps, the rapid depression of these joints then accelerated the insect in 1.4 ms to a take-off velocity of 3.8 m s(-1) so that it experienced a force of almost 280 g. In 22% of jumps, the wings opened before take-off but did not flap until the gum treehopper was airborne, when the body rotated little in any plane. The energy expended was 170 μJ, the power output was 122 mW and the force exerted was 64 mN. Such jumps are predicted to propel the insect forwards 1450 mm (200 times body length) and to a height of 430 mm if there is no effect of wind resistance. The power output per mass of jumping muscle far exceeded the maximum active contractile limit of muscle and indicates that a catapult-like action must be used. This eurymelid therefore out-performs both leafhoppers and treehoppers in i ts faster acceleration and in its higher take-off velocity.

  20. Gait and jump analysis in healthy cats using a pressure mat system.

    PubMed

    Stadig, Sarah M; Bergh, Anna K

    2015-06-01

    Physical orthopaedic examination in cats does not always reveal signs of lameness and no objective gait analysis method has yet been standardised for use in cats. The aims of the present study were to define appropriate parameters for pressure mat analyses during walk and jump, and to define reference values for gait parameters of healthy cats. Further, the distribution of the vertical force within the paws and the influence of a non-centred head position were investigated. The hypothesis was that cats have a symmetrical gait, a front/hindlimb asymmetry similar to dogs, and that peak vertical force (PVF) and vertical impulse (VI) have high intraclass correlation coefficients, confirming the reliability of these parameters. Data for walking (n = 46) showed gait symmetry indices of close to 1.0, besides PVF front/hind (1.3 ± 0.2). The PVF front/hind for jumping cats (n = 16) was 1.7 ± 0.6. Results from the distribution of the vertical force within the paw (n = 39) showed that the main weight during a strike is transferred from the caudal towards the craniomedial part of the paw. The findings support the hypothesis that healthy cats have similar gait symmetry to healthy dogs and that PVF and VI are reliable gait parameters. In conclusion, the present study provides a reference interval for healthy cats. Further studies are needed to investigate gait parameters in cats with orthopaedic disease.

  1. Reliability of knee biomechanics during a vertical drop jump in elite female athletes.

    PubMed

    Mok, Kam-Ming; Petushek, Erich; Krosshaug, Tron

    2016-05-01

    The purpose of the study was to assess the within-session and between-session reliability of knee kinematics and kinetics in a vertical drop jump task among elite female handball and football athletes. Specifically, we aimed to quantify the within-session waveform consistency and between-session consistency of the subject ranking for a variety of knee kinematics and kinetics. Forty-one elite female handball and football (soccer) athletes were tested in two sessions. The reliability of three-dimensional knee biomechanical measurements was quantified by the intra-class correlation, Spearman's rank correlation, and typical error. All the selected discrete variables achieved excellent within-session reliability (ICC>0.87). The typical error of valgus angles, internal rotation angles, and internal rotation moment was constant throughout the whole stance phase. For between-session reliability, the selected discrete variables achieved good to excellent reliability (ICC>0.69), except peak internal rotation moment (ICC=0.40). All between-session rank correlation coefficients ranged from 0.56 to 0.90. Most of the discrete variables achieved good to excellent reliability in both within-session and between-session analysis. Moreover, moderate to strong between-session consistency of subject rankings was found, implying that the measurements assessed during the vertical drop jump demonstrate sufficient reliability to be used in both single-session and multiple-session studies. PMID:27131197

  2. Whole Body Vibration Immediately Decreases Lower Extremity Loading During the Drop Jump.

    PubMed

    Chen, Zong-Rong; Peng, Hsien-Te; Siao, Sheng-Wun; Hou, Yan-Ting; Wang, Li-I

    2016-09-01

    Chen, Z-R, Peng, H-T, Siao, S-W, Hou, Y-T, and Wang, L-I. Whole body vibration immediately decreases lower extremity loading during the drop jump. J Strength Cond Res 30(9): 2476-2481, 2016-The purpose of this study was to evaluate the acute effect of whole body vibration (WBV) on lower extremity loading during the drop jump (DJ). Fifteen male collegiate physical education students randomly completed 3 experimental sessions on 3 separate days with 4 days interval between sessions (performing 3 trials of DJ from 30-, 40-, and 50-cm drop heights before WBV and 4 minutes after WBV). Eight cameras and 2 force platforms were used to record kinematic and kinetic data, respectively. Peak impact force and loading rate significantly decreased after WBV during DJ from 40 and 50 cm. Knee angular displacements significantly increased after WBV during DJ from 30, 40, and 50 cm. Whole body vibration may help immediately reduce lower extremity loading. PMID:26849793

  3. Load-dependent movement regulation of lateral stretch shortening cycle jumps.

    PubMed

    Fleischmann, Jana; Gehring, Dominic; Mornieux, Guillaume; Gollhofer, Albert

    2010-09-01

    The classical stretch shortening cycle (SSC) describes sagittal joint flexion-extensions in motions like running or hopping. However, lateral movements are integral components of team sports and are associated with frontal plane joint displacements. The purpose of this study is to identify neuromuscular and kinematical mechanisms determining motor control and performance of reactive laterally conducted SSCs. Lateral jumps were performed from four distances in order to investigate the influence of lateral stretch loads on the lower extremity. Electromyographic (EMG) data of nine lower extremity muscles were collected. Foot, ankle, knee, and hip kinematics were recorded by 3-D motion analysis. High stretch loads were characterized by a greater foot exorotation during the initial phase of contact. In the sagittal plane knee and hip joint, displacements increased, whereas in the frontal plane only the hip joint displacement was significantly raised. In particular, frontal peak joint moments increased with stretch load. Thigh muscles' mean pre-activity amplitude was enhanced. It was possible to detect stretch reflexes in the thigh muscles, whereas in particular the short-latency reflex (SLR) was stretch load-dependently modulated. The results of the present study suggest that the foot exorotation seems to play a decisive role in the movement control of lateral jumps. The association between exorotation and increased sagittal joint displacements may be seen as a compensation strategy to shift load from the frontal to the sagittal plane. Lateral load compensation seems to strongly depend on upper leg's kinematic and neuromuscular adjustments, rather than on the ankle joint complex.

  4. The effects of whole-body vibration exercise on isokinetic muscular function of the knee and jump performance depending on squatting position

    PubMed Central

    Kim, Jaeyuong; Park, Yunjin; Seo, Yonggon; Kang, Gyumin; Park, Sangseo; Cho, Hyeyoung; Moon, Hyunghoon; Kim, Myungki; Yu, Jaeho

    2016-01-01

    [Purpose] The purpose of this study was to investigate the effects of whole-body vibration exercise (WBVE) on isokinetic muscular function of the knee and jump performance depending on different squatting positions. [Subjects] The subjects were 12 healthy adult men who did not exercise regularly between the ages of 27 and 34. [Methods] WBVE was performed with high squat position (SP), middle SP, and low SP. Before and after the intervention, isokinetic muscular function of the knees and jump performance were measured. [Results] Knee flexion peak torque at 60°/s and total work at 180°/s were significantly increased after implementing WBVE. Jump height also significantly increased after completing the exercise at all positions in comparison with the pre-exercise programs. [Conclusion] The results of this study suggest that SP during WBVE is an important factor stimulating positive effects on muscular function. PMID:26957749

  5. The shock attenuation role of the ankle during landing from a vertical jump.

    PubMed

    Gross, T S; Nelson, R C

    1988-10-01

    Three landing surfaces were used to examine a hypothesized increased shock attenuation role of the ankle with increased damping demands. Eleven male recreational basketball players performed three symmetric barefoot countermovement vertical jumps on each surface. Two externally mounted low mass accelerometers (medial calcaneus and distal anterio-medial tibia), a piezoelectric force platform, and high speed cinematography recorded the landing. Accelerometer signal distortion was corrected through the application of a linear spring/damper model of the accelerometer attachment. The model indicated that raw acceleration data were overestimated 68% at the calcaneal attachment and 8% at the tibial attachment. Peak corrected acceleration at metatarsal contact varied little across landing surfaces, and, across surfaces, mean (SD) peak accelerations of 20.8 (9.3) and 14.3 (3.6) g's were recorded at the calcaneus and tibia, respectively. Peak vertical force and ankle joint motion varied little across the surfaces, suggesting that the entrenched kinematics of landing surpassed the introduced range of surface cushioning. Separation of the data by post-metatarsal contact landing style indicated that seven subjects landed with heel contact, with the remaining four attenuating the impact without heel contact. By avoiding the transient associated with the cessation of downward heel motion, the nonheel contact landers effectively reduced exposure to transients by nearly 50%. PMID:3193868

  6. The shock attenuation role of the ankle during landing from a vertical jump.

    PubMed

    Gross, T S; Nelson, R C

    1988-10-01

    Three landing surfaces were used to examine a hypothesized increased shock attenuation role of the ankle with increased damping demands. Eleven male recreational basketball players performed three symmetric barefoot countermovement vertical jumps on each surface. Two externally mounted low mass accelerometers (medial calcaneus and distal anterio-medial tibia), a piezoelectric force platform, and high speed cinematography recorded the landing. Accelerometer signal distortion was corrected through the application of a linear spring/damper model of the accelerometer attachment. The model indicated that raw acceleration data were overestimated 68% at the calcaneal attachment and 8% at the tibial attachment. Peak corrected acceleration at metatarsal contact varied little across landing surfaces, and, across surfaces, mean (SD) peak accelerations of 20.8 (9.3) and 14.3 (3.6) g's were recorded at the calcaneus and tibia, respectively. Peak vertical force and ankle joint motion varied little across the surfaces, suggesting that the entrenched kinematics of landing surpassed the introduced range of surface cushioning. Separation of the data by post-metatarsal contact landing style indicated that seven subjects landed with heel contact, with the remaining four attenuating the impact without heel contact. By avoiding the transient associated with the cessation of downward heel motion, the nonheel contact landers effectively reduced exposure to transients by nearly 50%.

  7. On the trail of double peak hydrographs

    NASA Astrophysics Data System (ADS)

    Martínez-Carreras, Núria; Hissler, Christophe; Gourdol, Laurent; Klaus, Julian; Juilleret, Jérôme; François Iffly, Jean; McDonnell, Jeffrey J.; Pfister, Laurent

    2016-04-01

    A double peak hydrograph features two peaks as a response to a unique rainfall pulse. The first peak occurs at the same time or shortly after the precipitation has started and it corresponds to a fast catchment response to precipitation. The delayed peak normally starts during the recession of the first peak, when the precipitation has already ceased. Double peak hydrographs may occur for various reasons. They can occur (i) in large catchments when lag times in tributary responses are large, (ii) in urban catchments where the first peak is often caused by direct surface runoff on impervious land cover, and the delayed peak to slower subsurface flow, and (iii) in non-urban catchments, where the first and the delayed discharge peaks are explained by different runoff mechanisms (e.g. overland flow, subsurface flow and/or deep groundwater flow) that have different response times. Here we focus on the third case, as a formal description of the different hydrological mechanisms explaining these complex hydrological dynamics across catchments with diverse physiographic characteristics is still needed. Based on a review of studies documenting double peak events we have established a formal classification of catchments presenting double peak events based on their regolith structure (geological substratum and/or its weathered products). We describe the different hydrological mechanisms that trigger these complex hydrological dynamics across each catchment type. We then use hydrometric time series of precipitation, runoff, soil moisture and groundwater levels collected in the Weierbach (0.46 km2) headwater catchment (Luxembourg) to better understand double peak hydrograph generation. Specifically, we aim to find out (1) if the generation of a double peak hydrograph is a threshold process, (2) if the hysteretic relationships between storage and discharge are consistent during single and double peak hydrographs, and (3) if different functional landscape units (the hillslopes

  8. Two kinds of peaked solitary waves of the KdV, BBM and Boussinesq equations

    NASA Astrophysics Data System (ADS)

    Liao, ShiJun

    2012-12-01

    It is well-known that the celebrated Camassa-Holm equation has the peaked solitary waves, which have been not reported for other mainstream models of shallow water waves. In this letter, the closed-form solutions of peaked solitary waves of the KdV equation, the BBM equation and the Boussinesq equation are given for the first time. All of them have either a peakon or an anti-peakon. Each of them exactly satisfies the corresponding Rankine-Hogoniot jump condition and could be understood as weak solution. Therefore, the peaked solitary waves might be common for most of shallow water wave models, no matter whether or not they are integrable and/or admit breaking-wave solutions.

  9. Acute Improvement of Vertical Jump Performance After Isometric Squats Depends on Knee Angle and Vertical Jumping Ability.

    PubMed

    Tsoukos, Athanasios; Bogdanis, Gregory C; Terzis, Gerasimos; Veligekas, Panagiotis

    2016-08-01

    Tsoukos, A, Bogdanis, GC, Terzis, G, and Veligekas, P. Acute improvement of vertical jump performance after isometric squats depends on knee angle and vertical jumping ability. J Strength Cond Res 30(8): 2250-2257, 2016-This study examined the acute effects of maximum isometric squats at 2 different knee angles (90 or 140°) on countermovement jump (CMJ) performance in power athletes. Fourteen national-level male track and field power athletes completed 3 main trials (2 experimental and 1 control) in a randomized and counterbalanced order 1 week apart. Countermovement jump performance was evaluated using a force-plate before and 15 seconds, 3, 6, 9, and 12 minutes after 3 sets of 3 seconds maximum isometric contractions with 1-minute rest in between, from a squat position with knee angle set at 90 or 140°. Countermovement jump performance was improved compared with baseline only in the 140° condition by 3.8 ± 1.2% on the 12th minute of recovery (p = 0.027), whereas there was no change in CMJ height in the 90° condition. In the control condition, there was a decrease in CMJ performance over time, reaching -3.6 ± 1.2% (p = 0.049) after 12 minutes of recovery. To determine the possible effects of baseline jump performance on subsequent CMJ performance, subjects were divided into 2 groups ("high jumpers" and "low jumpers"). The baseline CMJ values of "high jumpers" and "low jumpers" differed significantly (CMJ: 45.1 ± 2.2 vs. 37.1 ± 3.9 cm, respectively, p = 0.001). Countermovement jump was increased only in the "high jumpers" group by 5.4 ± 1.4% (p = 0.001) and 7.4 ± 1.2% (p = 0.001) at the knee angles of 90 and 140°, respectively. This improvement was larger at the 140° angle (p = 0.049). Knee angle during isometric squats and vertical jumping ability are important determinants of the acute CMJ performance increase observed after a conditioning activity. PMID:26808841

  10. REPORTING PEAK EXPIRATORY FLOW IN OLDER PERSONS

    PubMed Central

    Vaz Fragoso, Carlos A.; Gahbauer, Evelyne A.; Van Ness, Peter H.; Gill, Thomas M.

    2009-01-01

    Background Peak expiratory flow (“peak flow”) predicts important outcomes in older persons. Nevertheless, its clinical application is uncertain because prior strategies for reporting peak flow may not be valid. We thus determined the frequency distribution of peak flow by the conventional strategy of percent predicted (%predicted) and by an alternative method termed standardized residual (SR) percentile, and evaluated how these two metrics relate to health status in older persons. Methods Participants included 754 community-living persons aged ≥ 70 years. Data included chronic conditions, frailty indicators, and peak flow. Results Mean age was 78.4 years, with 63.7% reporting a smoking history, 17.4% chronic lung disease, and 77.1% having one or more frailty indicators. Peak flow ≥ 80 %predicted was recorded in 67.5% of participants, whereas peak flow ≥ 80th SR-percentile was only noted in 15.9%. A graded relationship was observed between peak flow and health status, but %predicted yielded health risk at peak flows currently considered normal (80–100 %predicted), whereas SR-percentile conferred health risk only at severely reduced peak flows (< 50th SR-percentile). Conclusions Peak flow expressed as SR-percentile attains a frequency distribution more consistent with the characteristics of our elderly cohort, and establishes health risk at more appropriate levels of reduced peak flow. These findings establish the need for longitudinal studies based on SR-percentile to further evaluate the use of peak flow as a risk assessment tool in older persons, and to determine if pulmonary function, in general, is better reported in older persons as SR-percentile, rather than as %predicted. PMID:17921429

  11. Direct Evidence of Catalytic Heterogeneity in Lactate Dehydrogenase by Temperature Jump Infrared Spectroscopy

    PubMed Central

    2015-01-01

    Protein conformational heterogeneity and dynamics are known to play an important role in enzyme catalysis, but their influence has been difficult to observe directly. We have studied the effects of heterogeneity in the catalytic reaction of pig heart lactate dehydrogenase using isotope edited infrared spectroscopy, laser-induced temperature jump relaxation, and kinetic modeling. The isotope edited infrared spectrum reveals the presence of multiple reactive conformations of pyruvate bound to the enzyme, with three major reactive populations having substrate C2 carbonyl stretches at 1686, 1679, and 1674 cm–1, respectively. The temperature jump relaxation measurements and kinetic modeling indicate that these substates form a heterogeneous branched reaction pathway, and each substate catalyzes the conversion of pyruvate to lactate with a different rate. Furthermore, the rate of hydride transfer is inversely correlated with the frequency of the C2 carbonyl stretch (the rate increases as the frequency decreases), consistent with the relationship between the frequency of this mode and the polarization of the bond, which determines its reactivity toward hydride transfer. The enzyme does not appear to be optimized to use the fastest pathway preferentially but rather accesses multiple pathways in a search process that often selects slower ones. These results provide further support for a dynamic view of enzyme catalysis where the role of the enzyme is not just to bring reactants together but also to guide the conformational search for chemically competent interactions. PMID:25149276

  12. Effects of an electrostimulation training program on strength, jumping, and kicking capacities in soccer players.

    PubMed

    Billot, Maxime; Martin, Alain; Paizis, Christos; Cometti, Carole; Babault, Nicolas

    2010-05-01

    The present study investigated the influence of a 5-week electrostimulation (EMS) training program on muscular strength, kicking velocity, sprint, and vertical jump performance in soccer players. Twenty amateur soccer players participated in the study, 10 in the electrostimulated group and the remaining 10 in a control group. Electrostimulation was applied on the quadriceps muscles over 5 weeks. Subjects were tested before, during (wk-3), and after (wk-5) the EMS training program. Maximal voluntary contraction using different contraction mode (i.e., eccentric, concentric, and isometric), vertical jump height, sprint running for 10 m, and ball speed were examined. We observed an increase in isometric and eccentric maximal knee extension torques and also a gain in ball speed performance without run up at wk-3. After 5 weeks of EMS training, eccentric, isometric, and concentric torques and ball speed had significantly improved. It appeared appropriate to conduct EMS training during at least 3 weeks to observe beneficial effects in specific soccer skills such as ball speed.

  13. Delayed frost growth on jumping-drop superhydrophobic surfaces.

    PubMed

    Boreyko, Jonathan B; Collier, C Patrick

    2013-02-26

    Self-propelled jumping drops are continuously removed from a condensing superhydrophobic surface to enable a micrometric steady-state drop size. Here, we report that subcooled condensate on a chilled superhydrophobic surface are able to repeatedly jump off the surface before heterogeneous ice nucleation occurs. Frost still forms on the superhydrophobic surface due to ice nucleation at neighboring edge defects, which eventually spreads over the entire surface via an interdrop frost wave. The growth of this interdrop frost front is shown to be up to 3 times slower on the superhydrophobic surface compared to a control hydrophobic surface, due to the jumping-drop effect dynamically minimizing the average drop size and surface coverage of the condensate. A simple scaling model is developed to relate the success and speed of interdrop ice bridging to the drop size distribution. While other reports of condensation frosting on superhydrophobic surfaces have focused exclusively on liquid-solid ice nucleation for isolated drops, these findings reveal that the growth of frost is an interdrop phenomenon that is strongly coupled to the wettability and drop size distribution of the surface. A jumping-drop superhydrophobic condenser minimized frost formation relative to a conventional dropwise condenser in two respects: preventing heterogeneous ice nucleation by continuously removing subcooled condensate, and delaying frost growth by limiting the success of interdrop ice bridge formation.

  14. Flux jumps in Y-123 and La-214.

    SciTech Connect

    Xu, M.; Zhang, K.; Jaeger, H. M.; Hinks, D. G.; Crabtree, G. W.; Goretta, K. C.; Zhao, Y.; Choi, C. H.; Energy Technology; Univ. of Chicago; Univ. of New South Wales

    1997-01-01

    The magnetization of melt-textured Y-123 and single crystal La-214 has been measured in magnetic field up to 5.5 T using a SQUID magnetometer. Partial and nearly complete flux jumps were observed at about 10 K in Y-123 and 5 K in La-214 single crystals, respectively.

  15. Unbiased Black-Box Complexities of Jump Functions.

    PubMed

    Doerr, Benjamin; Doerr, Carola; Kötzing, Timo

    2015-01-01

    We analyze the unbiased black-box complexities of jump functions with small, medium, and large sizes of the fitness plateau surrounding the optimal solution. Among other results, we show that when the jump size is (1/2 - ε), that is, when only a small constant fraction of the fitness values is visible, then the unbiased black-box complexities for arities 3 and higher are of the same order as those for the simple OneMax function. Even for the extreme jump function, in which all but the two fitness values n/2 and n are blanked out, polynomial time mutation-based (i.e., unary unbiased) black-box optimization algorithms exist. This is quite surprising given that for the extreme jump function almost the whole search space (all but a Θ(n(-1/2)) fraction) is a plateau of constant fitness. To prove these results, we introduce new tools for the analysis of unbiased black-box complexities, for example, selecting the new parent individual not only by comparing the fitnesses of the competing search points but also by taking into account the (empirical) expected fitnesses of their offspring.

  16. Jump Back in Time: A Living History Resource

    ERIC Educational Resources Information Center

    Peterson, Carol

    2004-01-01

    Gather students and jump back in time to experience what life was like "back then." Through this book, during each day of immersion, students rotate through 14-18 stations of math and vocabulary activities, games, crafts, costumes, and food. Explore legends, songs, maps, and historical events along the way to understand specific times and places…

  17. Considering Jumping Ship? A Pirate Looks at Retirement

    ERIC Educational Resources Information Center

    Kilpatrick, Bob G.

    2011-01-01

    If you're like me, a "senior" faculty member at a public state university facing significant budget cuts, recently you've probably thought about leaving your current position for another faculty position in a different state. A possible reason for considering jumping ship is envisioning a clearer picture of your retirement as it nears on…

  18. A jump persistent turning walker to model zebrafish locomotion

    PubMed Central

    Mwaffo, Violet; Anderson, Ross P.; Butail, Sachit; Porfiri, Maurizio

    2015-01-01

    Zebrafish are gaining momentum as a laboratory animal species for the investigation of several functional and dysfunctional biological processes. Mathematical models of zebrafish behaviour are expected to considerably aid in the design of hypothesis-driven studies by enabling preliminary in silico tests that can be used to infer possible experimental outcomes without the use of zebrafish. This study is motivated by observations of sudden, drastic changes in zebrafish locomotion in the form of large deviations in turn rate. We demonstrate that such deviations can be captured through a stochastic mean reverting jump diffusion model, a process that is commonly used in financial engineering to describe large changes in the price of an asset. The jump process-based model is validated on trajectory data of adult subjects swimming in a shallow circular tank obtained from an overhead camera. Through statistical comparison of the empirical distribution of the turn rate against theoretical predictions, we demonstrate the feasibility of describing zebrafish as a jump persistent turning walker. The critical role of the jump term is assessed through comparison with a simplified mean reversion diffusion model, which does not allow for describing the heavy-tailed distributions observed in the fish turn rate. PMID:25392396

  19. Solving the Chapman-Kolmogorov equation for a jumping process

    NASA Astrophysics Data System (ADS)

    Kamińska, A.; Srokowski, T.

    2003-06-01

    A general solution to the Chapman-Kolmogorov equation for a jumping process called the “kangaroo process” is derived. A special case of algebraic dependences is discussed in detail. In particular, simple asymptotic formulas for probability distribution are presented. It is demonstrated that there are two different classes of limiting stationary distributions. An expression for the covariance is also derived.

  20. The Hydraulic Jump: Finding Complexity in Turbulent Water

    ERIC Educational Resources Information Center

    Vondracek, Mark

    2013-01-01

    Students who do not progress to more advanced science disciplines in college generally do not realize that seemingly simple physical systems are--when studied in detail--more complex than one might imagine. This article presents one such phenomenon--the hydraulic jump--as a way to help students see the complexity behind the seemingly simple, and…

  1. Clustering vertical ground reaction force curves produced during countermovement jumps.

    PubMed

    Richter, Chris; O'Connor, Noel E; Marshall, Brendan; Moran, Kieran

    2014-07-18

    The aim of this study is to assess and compare the performance of commonly used hierarchical, partitional (k-means) and Gaussian model-based (Expectation-Maximization algorithm) clustering techniques to appropriately identify subgroup patterns within vertical ground reaction force data, using a continuous waveform analysis. In addition, we also compared the performance across each technique using normalized and non-normalization input scores. Both generated and real data (one hundred and twenty two vertical jumps) were analyzed. The performance of each cluster technique was measured by assessing the ability to explain variances in jump height using a stepwise regression analysis. Only k-means (normalized scores; 82%) and hierarchical clustering (normalized scores; 85%) were able to extend the ability to describe variances in jump height beyond that achieved using the group analysis (i.e. one cluster; 78%). Further, our findings strongly indicate the need to normalize the input data (similarity measure) when clustering. In contrast to the group analysis, the subgroup analysis was able to identify cluster specific phases of variance, which improved the ability to explain variances in jump height, due to the identification of cluster specific predictor variables. Our findings therefore highlight the benefit of performing a subgroup analysis and may explain, at least in part, the contrasting findings between previous studies that used a single group level of analysis.

  2. Observations of ''granular jump'' in the pneumatic conveying system

    SciTech Connect

    Jaworski, Artur J.; Dyakowski, Tomasz

    2007-08-15

    This paper presents a preliminary study of a previously unreported phenomenon of the ''gas driven granular jump'', observed in the gas-solids flow within the pneumatic conveying system. From the phenomenological point of view, it resembles the already known processes such as hydraulic jumps in shallow water or granular jumps in granular flows in chutes or avalanches (although it seems most appropriate to explain it by analogy to a propagating granular bore). Clearly, unlike in classical phenomena of this type, the flow itself is driven by the aerodynamic forces related to the gas flow and the behaviour of the front of the ''jump'' is modified significantly by their presence. A series of high-speed camera visualisations are presented, which focus on this unusual behaviour of the flow on the border-line between cluster and stratified flow regimes in a horizontal pipe. Some similarities are drawn between the observed phenomenon and the broader class of problems exhibiting transition between super- and sub-critical flows. The fluid dynamical aspects and possible mechanisms behind the new phenomenon are discussed and the results obtained are compared quantitatively with simple theoretical models. (author)

  3. The Landing Phase of a Jump Strategies to Minimize Injuries

    ERIC Educational Resources Information Center

    Bressel, Eadric; Cronin, John

    2005-01-01

    Most people probably do not remember being coached to jump, or--more important--to land. Research on landing concentrates on the impact forces associated with landing, the consequential effect on the legs, and the subsequent injury potential. There is an abundance of literature on how to create stronger and more powerful muscles, which may be…

  4. The Jumping Ring and Lenz's Law--An Analysis

    ERIC Educational Resources Information Center

    Bostock-Smith, J. M.

    2008-01-01

    Lenz's law is sometimes invoked to explain the behaviour of the jumping, or levitating, ring. This is shown to be incomplete, and an alternative explanation using Faraday's laws and circuit analysis is offered. This leads to the choice of optimum material and dimensions for the ring. (Contains 1 table and 4 figures.)

  5. Jump Patterns: Percussive Dance and the Path to Math

    ERIC Educational Resources Information Center

    Rosenfeld, Malke

    2011-01-01

    In this article, the author describes an innovative collaboration with an elementary school math teacher that leads to original student choreography and engaging mathematical thinking. Using a tool the author created called Jump Patterns, students at Fox Hill Elementary School in Indianapolis, Indiana, engage in a robust, creative, choreographic…

  6. Delayed Frost Growth on Jumping-Drop Superhydrophobic Surfaces

    SciTech Connect

    Boreyko, Jonathan B; Collier, Pat

    2013-01-01

    Self-propelled jumping drops are continuously removed from a condensing superhydrophobic surface to enable a micrometric steady-state drop size. Here, we report that subcooled condensate on a chilled superhydrophobic surface are able to repeatedly jump off the surface before heterogeneous ice nucleation occurs. Frost still forms on the superhydrophobic surface due to ice nucleation at neighboring edge defects, which eventually spreads over the entire surface via an inter-drop frost wave. The growth of this inter-drop frost front is shown to be up to three times slower on the superhydrophobic surface compared to a control hydrophobic surface, due to the jumping-drop effect dynamically minimizing the average drop size and surface coverage of the condensate. A simple scaling model is developed to relate the success and speed of inter-drop ice bridging to the drop size distribution. While other reports of condensation frosting on superhydrophobic surfaces have focused exclusively on liquid-solid ice nucleation for isolated drops, these findings reveal that the growth of frost is an inter-drop phenomenon that is strongly coupled to the wettability and drop size distribution of the surface. A jumping-drop superhydrophobic condenser was found to be superior to a conventional dropwise condenser in two respects: preventing heterogeneous ice nucleation by continuously removing subcooled condensate, and delaying frost growth by minimizing the success of interdrop ice bridge formation.

  7. Performance changes and relationship between vertical jump measures and actual sprint performance in elite sprinters with visual impairment throughout a Parapan American games training season

    PubMed Central

    Loturco, Irineu; Winckler, Ciro; Kobal, Ronaldo; Cal Abad, Cesar C.; Kitamura, Katia; Veríssimo, Amaury W.; Pereira, Lucas A.; Nakamura, Fábio Y.

    2015-01-01

    The aims of this study were to estimate the magnitude of variability and progression in actual competitive and field vertical jump test performances in elite Paralympic sprinters with visual impairment in the year leading up to the 2015 Parapan American Games, and to investigate the relationships between loaded and unloaded vertical jumping test results and actual competitive sprinting performance. Fifteen Brazilian Paralympic sprinters with visual impairment attended seven official competitions (four national, two international and the Parapan American Games 2015) between April 2014 and August 2015, in the 100- and 200-m dash. In addition, they were tested in five different periods using loaded (mean propulsive power [MPP] in jump squat [JS] exercise) and unloaded (squat jump [SJ] height) vertical jumps within the 3 weeks immediately prior to the main competitions. The smallest important effect on performances was calculated as half of the within-athlete race-to-race (or test-to-test) variability and a multiple regression analysis was performed to predict the 100- and 200-m dash performances using the vertical jump test results. Competitive performance was enhanced during the Parapan American Games in comparison to the previous competition averages, overcoming the smallest worthwhile enhancement in both the 100- (0.9%) and 200-m dash (1.43%). In addition, The SJ and JS explained 66% of the performance variance in the competitive results. This study showed that vertical jump tests, in loaded and unloaded conditions, could be good predictors of the athletes' sprinting performance, and that during the Parapan American Games the Brazilian team reached its peak competitive performance. PMID:26594181

  8. AGS tune jump system to cross horizontal depolarization resonances overview

    SciTech Connect

    Glenn, J.W.; Ahrens, L.; Fu, W.; Mi, J.L.; Rosas, P.; Schoefer, V.; Theisen, C.; Altinbas, Z.

    2011-03-28

    Two partial snakes overcome the vertical depolarizing resonances in the AGS. But a new type of depolarizing intrinsic resonance from horizontal motion appeared. We reduce these using horizontal tune jumps timed to these resonances. We gain a factor of six in crossing rate with a tune jump of 0.05 in 100 {micro}s. Two quadrapoles, we described in 2009, pulse 42 times, the current matching beam energy. The power supplies for these quads are described in detail elsewhere in this conference. The controls for the Jump Quad system is based on a BNL designed Quad Function Generator. Two modules are used; one for timing, and one to supply reference voltages. Synchronization is provided by a proprietary serial bus, the Event Link. The AgsTuneJump application predicts the times of the resonances during the AGS cycle and calculates the power supply trigger times from externally collected tune and energy versus time data and the Low and High PS voltage functions from a voltage to current model of the power supply. The system was commissioned during runs 09 & 10 and is operational. Many beam effects are described elsewhere. The TuneJump system has worked well and has caused little trouble save for the perturbations in the lattice having such a large effect due to our need to run with the vertical tune within a few thousandths of the integer tune. As these problems were mostly sorted out by correcting the 6th harmonic orbit distortions which caused a large 18 theta beta wave. Also running with minimal chromaticity reduces emittance growth. There are still small beta waves which are being addressed. The timing of the pulses is still being investigated, but as each crossing causes minimal polarization loss, this is a lengthy process.

  9. Effects of Strength Training Combined with Specific Plyometric exercises on body composition, vertical jump height and lower limb strength development in elite male handball players: a case study

    PubMed Central

    Carvalho, Alberto; Mourão, Paulo; Abade, Eduardo

    2014-01-01

    The purpose of the present study was to identify the effects of a strength training program combined with specific plyometric exercises on body composition, vertical jump (VJ) height and strength development of lower limbs in elite male handball players. A 12-week program with combined strength and specific plyometric exercises was carried out for 7 weeks. Twelve elite male handball players (age: 21.6 ± 1.73) competing in the Portuguese Major League participated in the study. Besides the anthropometric measurements, several standardized jump tests were applied to assess VJ performance together with the strength development of the lower limbs in an isokinetic setting. No significant changes were found in body circumferences and diameters. Body fat content and fat mass decreased by 16.4 and 15.7% respectively, while lean body mass increased by 2.1%. Despite small significance, there was in fact an increase in squat jump (SJ), counter movement jump (CMJ) and 40 consecutive jumps after the training period (6.1, 3.8 and 6.8%, respectively). After the applied protocol, peak torque increased in lower limb extension and flexion in the majority of the movements assessed at 90ºs-1. Consequently, it is possible to conclude that combining general strength-training with plyometric exercises can not only increase lower limb strength and improve VJ performance but also reduce body fat content. PMID:25114739

  10. Effects of Strength Training Combined with Specific Plyometric exercises on body composition, vertical jump height and lower limb strength development in elite male handball players: a case study.

    PubMed

    Carvalho, Alberto; Mourão, Paulo; Abade, Eduardo

    2014-06-28

    The purpose of the present study was to identify the effects of a strength training program combined with specific plyometric exercises on body composition, vertical jump (VJ) height and strength development of lower limbs in elite male handball players. A 12-week program with combined strength and specific plyometric exercises was carried out for 7 weeks. Twelve elite male handball players (age: 21.6 ± 1.73) competing in the Portuguese Major League participated in the study. Besides the anthropometric measurements, several standardized jump tests were applied to assess VJ performance together with the strength development of the lower limbs in an isokinetic setting. No significant changes were found in body circumferences and diameters. Body fat content and fat mass decreased by 16.4 and 15.7% respectively, while lean body mass increased by 2.1%. Despite small significance, there was in fact an increase in squat jump (SJ), counter movement jump (CMJ) and 40 consecutive jumps after the training period (6.1, 3.8 and 6.8%, respectively). After the applied protocol, peak torque increased in lower limb extension and flexion in the majority of the movements assessed at 90ºs-1. Consequently, it is possible to conclude that combining general strength-training with plyometric exercises can not only increase lower limb strength and improve VJ performance but also reduce body fat content.

  11. Passive radio frequency peak power multiplier

    DOEpatents

    Farkas, Zoltan D.; Wilson, Perry B.

    1977-01-01

    Peak power multiplication of a radio frequency source by simultaneous charging of two high-Q resonant microwave cavities by applying the source output through a directional coupler to the cavities and then reversing the phase of the source power to the coupler, thereby permitting the power in the cavities to simultaneously discharge through the coupler to the load in combination with power from the source to apply a peak power to the load that is a multiplication of the source peak power.

  12. Origin of weak lensing convergence peaks

    NASA Astrophysics Data System (ADS)

    Liu, Jia; Haiman, Zoltán

    2016-08-01

    Weak lensing convergence peaks are a promising tool to probe nonlinear structure evolution at late times, providing additional cosmological information beyond second-order statistics. Previous theoretical and observational studies have shown that the cosmological constraints on Ωm and σ8 are improved by a factor of up to ≈2 when peak counts and second-order statistics are combined, compared to using the latter alone. We study the origin of lensing peaks using observational data from the 154 deg2 Canada-France-Hawaii Telescope Lensing Survey. We found that while high peaks (with height κ >3.5 σκ , where σκ is the rms of the convergence κ ) are typically due to one single massive halo of ≈1 015M⊙ , low peaks (κ ≲σκ ) are associated with constellations of 2-8 smaller halos (≲1 013M⊙ ). In addition, halos responsible for forming low peaks are found to be significantly offset from the line of sight towards the peak center (impact parameter ≳ their virial radii), compared with ≈0.25 virial radii for halos linked with high peaks, hinting that low peaks are more immune to baryonic processes whose impact is confined to the inner regions of the dark matter halos. Our findings are in good agreement with results from the simulation work by Yang et al. [Phys. Rev. D 84, 043529 (2011)].

  13. Effect of Patterned Electrical Neuromuscular Stimulation on Vertical Jump in Collegiate Athletes

    PubMed Central

    Gulick, Dawn T.; Castel, John C.; Palermo, Francis X.; Draper, David O.

    2011-01-01

    Background: Patterned electrical neuromuscular stimulation (PENS) uses the electrical stimulation of sensory and motor nerves to achieve a skeletal muscle contraction using an electromyogram-derived functional pattern. PENS is used extensively for neuromuscular reeducation and treatment of muscle disuse atrophy. Purpose: To explore the effectiveness of PENS as applied to the quadriceps muscles on the vertical jump of an athletic population. Study Design: Experimental with control and repeated measures over time. Methods: Healthy college athletes (54 women, 75 men) were divided into 3 groups (control, n = 30; jump, n = 33; and jump with PENS, n = 63). There was no difference among groups’ height and weight. Athletes performed a baseline standing vertical jump using a vertical jump system. The control group continued its normal daily activities with no jumping tasks included. The jump groups performed 3 sets of 12 repetitions with a 2-minute rest between sets at a frequency of 3 times per week. The PENS group did the jumping with the coordination of an electrical stimulation system. Vertical jump was retested after 6 weeks of intervention and 2 weeks after cessation. Results: A 3-way repeated measures analysis of variance for time (control, jump alone, jump with PENS) revealed a significant difference (P < 0.05) for time and an interaction between time and treatment, as well as a significant difference for the PENS group from baseline to posttest and for the jump group from posttest to follow-up jump. There was no significant difference between groups for the baseline vertical jump. Conclusions: This study demonstrated that 6 weeks of vertical jump training coordinated with PENS resulted in a greater increase than jumping only or control. This pattern of stimulation with PENS in combination with jump training may positively affect jumping. PMID:23016002

  14. Muscle contractile properties as an explanation of the higher mean power output in marmosets than humans during jumping.

    PubMed

    Plas, Rogier L C; Degens, Hans; Meijer, J Peter; de Wit, Gerard M J; Philippens, Ingrid H C H M; Bobbert, Maarten F; Jaspers, Richard T

    2015-07-01

    The muscle mass-specific mean power output (PMMS,mean) during push-off in jumping in marmosets (Callithrix jacchus) is more than twice that in humans. In the present study it was tested whether this is attributable to differences in muscle contractile properties. In biopsies of marmoset m. vastus lateralis (VL) and m. gastrocnemius medialis (GM) (N=4), fibre-type distribution was assessed using fluorescent immunohistochemistry. In single fibres from four marmoset and nine human VL biopsies, the force-velocity characteristics were determined. Marmoset VL contained almost exclusively fast muscle fibres (>99.0%), of which 63% were type IIB and 37% were hybrid fibres, fibres containing multiple myosin heavy chains. GM contained 9% type I fibres, 44% type IIB and 47% hybrid muscle fibres. The proportions of fast muscle fibres in marmoset VL and GM were substantially larger than those reported in the corresponding human muscles. The curvature of the force-velocity relationships of marmoset type IIB and hybrid fibres was substantially flatter than that of human type I, IIA, IIX and hybrid fibres, resulting in substantially higher muscle fibre mass-specific peak power (PFMS,peak). Muscle mass-specific peak power output (PMMS,peak) values of marmoset whole VL and GM, estimated from their fibre-type distributions and force-velocity characteristics, were more than twice the estimates for the corresponding human muscles. As the relative difference in estimated PMMS,peak between marmosets and humans is similar to that of PMMS,mean during push-off in jumping, it is likely that the difference in in vivo mechanical output between humans and marmosets is attributable to differences in muscle contractile properties.

  15. Plasma Modes

    NASA Astrophysics Data System (ADS)

    Dubin, D. H. E.

    This chapter explores several aspects of the linear electrostatic normal modes of oscillation for a single-species non-neutral plasma in a Penning trap. Linearized fluid equations of motion are developed, assuming the plasma is cold but collisionless, which allow derivation of the cold plasma dielectric tensor and the electrostatic wave equation. Upper hybrid and magnetized plasma waves in an infinite uniform plasma are described. The effect of the plasma surface in a bounded plasma system is considered, and the properties of surface plasma waves are characterized. The normal modes of a cylindrical plasma column are discussed, and finally, modes of spheroidal plasmas, and finite temperature effects on the modes, are briefly described.

  16. PeakForce Tapping resolves individual microvilli on living cells†

    PubMed Central

    Medalsy, Izhar; Hu, Shuiqing; Slade, Andrea L.; Shaw, James E.

    2015-01-01

    Microvilli are a common structure found on epithelial cells that increase the apical surface thus enhancing the transmembrane transport capacity and also serve as one of the cell's mechanosensors. These structures are composed of microfilaments and cytoplasm, covered by plasma membrane. Epithelial cell function is usually coupled to the density of microvilli and its individual size illustrated by diseases, in which microvilli degradation causes malabsorption and diarrhea. Atomic force microscopy (AFM) has been widely used to study the topography and morphology of living cells. Visualizing soft and flexible structures such as microvilli on the apical surface of a live cell has been very challenging because the native microvilli structures are displaced and deformed by the interaction with the probe. PeakForce Tapping® is an AFM imaging mode, which allows reducing tip–sample interactions in time (microseconds) and controlling force in the low pico‐Newton range. Data acquisition of this mode was optimized by using a newly developed PeakForce QNM‐Live Cell probe, having a short cantilever with a 17‐µm‐long tip that minimizes hydrodynamic effects between the cantilever and the sample surface. In this paper, we have demonstrated for the first time the visualization of the microvilli on living kidney cells with AFM using PeakForce Tapping. The structures observed display a force dependence representing either the whole microvilli or just the tips of the microvilli layer. Together, PeakForce Tapping allows force control in the low pico‐Newton range and enables the visualization of very soft and flexible structures on living cells under physiological conditions. © 2015 The Authors Journal of Molecular Recognition Published by John Wiley & Sons Ltd. PMID:26414320

  17. The Relationship Between Muscle Strength, Anaerobic Performance, Agility, Sprint Ability and Vertical Jump Performance in Professional Basketball Players

    PubMed Central

    Alemdaroğlu, Utku

    2012-01-01

    The purpose of this study was to investigate the relationship between isokinetic knee strength, anaerobic performance, sprinting ability, agility and vertical jump performance in first division basketball players. Twelve male first division basketball players participated in this study. The mean age was 25.1 ± 1.7 yrs; mean body height 194.8 ± 5.7 cm; mean body mass 92.3± 9.8 kg; mean PBF 10.1± 5.1; and mean VO2max 50.55 ± 6.7 ml/kg/min Quadriceps and hamstrings were measured at 60° and 180°/s, anaerobic performance was evaluated using the Wingate anaerobic power test, sprint ability was determined by single sprint performance (10–30 m), jump performance was evaluated by countermovement (CMJ) and squat jump (SJ) tests and agility performance was measured using the T drill agility test. Quadriceps strength was significantly correlated with peak power at all contraction velocities. However, for mean power, significant correlation was only found between the 60° left and 180° right knee quadriceps measurements. No measure of strength was significantly related to the measurements from/results of field tests. Moreover, strong relations were found between the performance of athletes in different field tests (p< 0.05). The use of correlation analysis is the limitation of the this study. PMID:23486566

  18. Effects of Fatigue on Running Mechanics: Spring-Mass Behavior in Recreational Runners After 60 Seconds of Countermovement Jumps.

    PubMed

    Fischer, Gabriela; Storniolo J, L L; Eyré-Tartaruga, Leonardo A P

    2015-12-01

    The purpose of this study was to investigate the effects of acute fatigue on spring-mass model (SMM) parameters among recreational runners at different speeds. Eleven participants (5 males and 6 females) performed running trials at slower, self-selected, and faster speeds on an indoor track before and after performing a fatigue protocol (60 s of countermovement jumps). Maximal vertical force (Fmax), impact peak force (Fpeak), loading rate (LR), contact time (Tc), aerial time (Ta), step frequency (SF), step length (SL), maximal vertical displacement of the center of mass (Z), vertical stiffness (Kvert), and leg work (Wleg) were measured using a force plate integrated into the track. A significant reduction (-43.1 ± 8.6%; P < .05) in mechanical power during jumps indicated that the subjects became fatigued. The results showed that under fatigue conditions, the runners adjusted their running mechanics at slower (2.7 ms-1; Z -12% and SF +3.9%; P < .05), self-selected (3.3 ms-1; SF +3%, SL -6.8%, Ta -16%, and Fmax -3.3%; P < .05), and faster (3.6 ms-1 SL -6.9%, Ta -14% and Fpeak -9.8%; P < .05) speeds without significantly altering Kvert (P > .05). During constant running, the previous 60 s of maximal vertical jumps induced mechanical adjustments in the spatiotemporal parameters without altering Kvert.

  19. Effects of Fatigue on Running Mechanics: Spring-Mass Behavior in Recreational Runners After 60 Seconds of Countermovement Jumps.

    PubMed

    Fischer, Gabriela; Storniolo J, L L; Peyré-Tartaruga, Leonardo A

    2015-12-01

    The purpose of this study was to investigate the effects of acute fatigue on spring-mass model (SMM) parameters among recreational runners at different speeds. Eleven participants (5 males and 6 females) performed running trials at slower, self-selected, and faster speeds on an indoor track before and after performing a fatigue protocol (60 s of countermovement jumps). Maximal vertical force (Fmax), impact peak force (Fpeak), loading rate (LR), contact time (Tc), aerial time (Ta), step frequency (SF), step length (SL), maximal vertical displacement of the center of mass (ΔZ), vertical stiffness (Kvert), and leg work (Wleg) were measured using a force plate integrated into the track. A significant reduction (-43.1 ± 8.6%; P < .05) in mechanical power during jumps indicated that the subjects became fatigued. The results showed that under fatigue conditions, the runners adjusted their running mechanics at slower (≈2.7 ms-1; ΔZ -12% and SF +3.9%; P < .05), self-selected (≈3.3 ms-1; SF +3%, SL -6.8%, Ta -16%, and Fmax -3.3%; P < .05), and faster (≈3.6 ms-1 SL -6.9%, Ta -14% and Fpeak -9.8%; P < .05) speeds without significantly altering Kvert (P > .05). During constant running, the previous 60 s of maximal vertical jumps induced mechanical adjustments in the spatiotemporal parameters without altering Kvert.

  20. Effects of Fatigue on Running Mechanics: Spring-Mass Behavior in Recreational Runners After 60 Seconds of Countermovement Jumps.

    PubMed

    Fischer, Gabriela; Storniolo J, L L; Eyré-Tartaruga, Leonardo A P

    2015-12-01

    The purpose of this study was to investigate the effects of acute fatigue on spring-mass model (SMM) parameters among recreational runners at different speeds. Eleven participants (5 males and 6 females) performed running trials at slower, self-selected, and faster speeds on an indoor track before and after performing a fatigue protocol (60 s of countermovement jumps). Maximal vertical force (Fmax), impact peak force (Fpeak), loading rate (LR), contact time (Tc), aerial time (Ta), step frequency (SF), step length (SL), maximal vertical displacement of the center of mass (Z), vertical stiffness (Kvert), and leg work (Wleg) were measured using a force plate integrated into the track. A significant reduction (-43.1 ± 8.6%; P < .05) in mechanical power during jumps indicated that the subjects became fatigued. The results showed that under fatigue conditions, the runners adjusted their running mechanics at slower (2.7 ms-1; Z -12% and SF +3.9%; P < .05), self-selected (3.3 ms-1; SF +3%, SL -6.8%, Ta -16%, and Fmax -3.3%; P < .05), and faster (3.6 ms-1 SL -6.9%, Ta -14% and Fpeak -9.8%; P < .05) speeds without significantly altering Kvert (P > .05). During constant running, the previous 60 s of maximal vertical jumps induced mechanical adjustments in the spatiotemporal parameters without altering Kvert. PMID:26658955

  1. Effects of Fatigue on Running Mechanics: Spring-Mass Behavior in Recreational Runners After 60 Seconds of Countermovement Jumps.

    PubMed

    Fischer, Gabriela; Storniolo J, L L; Peyré-Tartaruga, Leonardo A

    2015-12-01

    The purpose of this study was to investigate the effects of acute fatigue on spring-mass model (SMM) parameters among recreational runners at different speeds. Eleven participants (5 males and 6 females) performed running trials at slower, self-selected, and faster speeds on an indoor track before and after performing a fatigue protocol (60 s of countermovement jumps). Maximal vertical force (Fmax), impact peak force (Fpeak), loading rate (LR), contact time (Tc), aerial time (Ta), step frequency (SF), step length (SL), maximal vertical displacement of the center of mass (ΔZ), vertical stiffness (Kvert), and leg work (Wleg) were measured using a force plate integrated into the track. A significant reduction (-43.1 ± 8.6%; P < .05) in mechanical power during jumps indicated that the subjects became fatigued. The results showed that under fatigue conditions, the runners adjusted their running mechanics at slower (≈2.7 ms-1; ΔZ -12% and SF +3.9%; P < .05), self-selected (≈3.3 ms-1; SF +3%, SL -6.8%, Ta -16%, and Fmax -3.3%; P < .05), and faster (≈3.6 ms-1 SL -6.9%, Ta -14% and Fpeak -9.8%; P < .05) speeds without significantly altering Kvert (P > .05). During constant running, the previous 60 s of maximal vertical jumps induced mechanical adjustments in the spatiotemporal parameters without altering Kvert. PMID:26214838

  2. The relationship between muscle strength, anaerobic performance, agility, sprint ability and vertical jump performance in professional basketball players.

    PubMed

    Alemdaroğlu, Utku

    2012-03-01

    The purpose of this study was to investigate the relationship between isokinetic knee strength, anaerobic performance, sprinting ability, agility and vertical jump performance in first division basketball players. Twelve male first division basketball players participated in this study. The mean age was 25.1 ± 1.7 yrs; mean body height 194.8 ± 5.7 cm; mean body mass 92.3± 9.8 kg; mean PBF 10.1± 5.1; and mean VO2max 50.55 ± 6.7 ml/kg/min Quadriceps and hamstrings were measured at 60° and 180°/s, anaerobic performance was evaluated using the Wingate anaerobic power test, sprint ability was determined by single sprint performance (10-30 m), jump performance was evaluated by countermovement (CMJ) and squat jump (SJ) tests and agility performance was measured using the T drill agility test. Quadriceps strength was significantly correlated with peak power at all contraction velocities. However, for mean power, significant correlation was only found between the 60° left and 180° right knee quadriceps measurements. No measure of strength was significantly related to the measurements from/results of field tests. Moreover, strong relations were found between the performance of athletes in different field tests (p< 0.05). The use of correlation analysis is the limitation of the this study.

  3. Class D spectral peak in Majorana quantum wires.

    PubMed

    Bagrets, Dmitry; Altland, Alexander

    2012-11-30

    Proximity coupled spin-orbit quantum wires purportedly support midgap Majorana states at critical points. We show that, in the presence of disorder, these systems generate a second band center anomaly, which is of different physical origin but shares key characteristics with the Majorana state: it is narrow in width, insensitive to magnetic fields, carries unit spectral weight, and is rigidly tied to the band center. Depending on the parity of the number of subgap quasiparticle states, a Majorana mode does or does not coexist with the impurity peak. The strong "entanglement" between the two phenomena may hinder an unambiguous detection of the Majorana by spectroscopic techniques.

  4. Effect of cluster sets on plyometric jump power.

    PubMed

    Moreno, Steven D; Brown, Lee E; Coburn, Jared W; Judelson, Daniel A

    2014-09-01

    Cluster sets may lead to enhanced power (PW) production by allowing for partial recovery. The purpose of this study was to determine the effects of cluster sets vs. traditional sets on plyometric jump PW, ground reaction force, take-off velocity (TOV), and jump height (JH). Twenty-six recreationally trained college men completed 3 testing sessions, which involved performing repeated body-weight (BW) plyometric squat jumps across 3 different set configurations: traditional (2 sets of 10 with 90-second rest between sets), cluster 1 (4 sets of 5 with 30-second rest between sets), and cluster 2 (10 sets of 2 with 10-second rest between sets). Ground reaction force results demonstrated no interaction or main effect for condition, but there was a significant (p ≤ 0.05) main effect for repetition, where repetition 1 was significantly less than repetitions 3-5, 7-10, 12-15, and 17-20. For TOV, PW, and JH, there were significant interactions. Take-off velocity resulted in the following: Traditional, repetition 1 was significantly greater than repetitions 7-10 and 17-20, but was significantly less than repetition 13; cluster 1, repetition 1 was significantly less than repetitions 2-5; and cluster 2, there were no significant differences. Power resulted in the following: Traditional, repetition 1 was significantly greater than repetitions 4-10 and 14-20; cluster 1, repetition 1 was significantly greater than repetitions 7-10 and 12-20; and cluster 2, repetition 1 was significantly greater than repetitions 3, 6-18, and 20. Jump height resulted in the following: Traditional, repetition 1 was significantly greater than repetitions 18-20, but was significantly less than repetitions 3 and 13. For cluster 1 and cluster 2, there were no significant differences. These results demonstrate that cluster sets, specifically 10 sets of 2, allow for a greater maintenance of PW, TOV, and JH compared with a traditional 2 sets of 10 when performing repeated BW plyometric squat jumps. A lack

  5. Training Lessons Learned from Peak Performance Episodes.

    ERIC Educational Resources Information Center

    Fobes, James L.

    A major challenge confronting the United States Army is to obtain optimal performance from both its human and machine resources. This study examines episodes of peak performance in soldiers and athletes. Three cognitive components were found to enable episodes of peak performance: psychological readiness (activating optimal arousal and emotion…

  6. Do dark matter halos explain lensing peaks?

    NASA Astrophysics Data System (ADS)

    Zorrilla Matilla, José Manuel; Haiman, Zoltán; Hsu, Daniel; Gupta, Arushi; Petri, Andrea

    2016-10-01

    We have investigated a recently proposed halo-based model, Camelus, for predicting weak-lensing peak counts, and compared its results over a collection of 162 cosmologies with those from N-body simulations. While counts from both models agree for peaks with S /N >1 (where S /N is the ratio of the peak height to the r.m.s. shape noise), we find ≈50 % fewer counts for peaks near S /N =0 and significantly higher counts in the negative S /N tail. Adding shape noise reduces the differences to within 20% for all cosmologies. We also found larger covariances that are more sensitive to cosmological parameters. As a result, credibility regions in the {Ωm,σ8} are ≈30 % larger. Even though the credible contours are commensurate, each model draws its predictive power from different types of peaks. Low peaks, especially those with 2 peaks (S /N >3 ). Our results confirm the importance of using a cosmology-dependent covariance with at least a 14% improvement in parameter constraints. We identified the covariance estimation as the main driver behind differences in inference, and suggest possible ways to make Camelus even more useful as a highly accurate peak count emulator.

  7. Bifurcation behaviours of peak current controlled PFC boost converter

    NASA Astrophysics Data System (ADS)

    Ren, Hai-Peng; Liu, Ding

    2005-07-01

    Bifurcation behaviours of the peak current controlled power-factor-correction (PFC) boost converter, including fast-scale instability and low-frequency bifurcation, are investigated in this paper. Conventionally, the PFC converter is analysed in continuous conduction mode (CCM). This prevents us from recognizing the overall dynamics of the converter. It has been pointed out that the discontinuous conduction mode (DCM) can occur in the PFC boost converter, especially in the light load condition. Therefore, the DCM model is employed to analyse the PFC converter to cover the possible DCM operation. By this way, the low-frequency bifurcation diagram is derived, which makes the route from period-double bifurcation to chaos clear. The bifurcation diagrams versus the load resistance and the output capacitance also indicate the stable operation boundary of the converter, which is useful for converter design.

  8. Weld peaking on heavy aluminum structures

    NASA Technical Reports Server (NTRS)

    Bayless, E.; Poorman, R.; Sexton, J.

    1978-01-01

    Weld peaking is usually undesirable in any welded structure. In heavy structures, the forces involved in the welding process become very large and difficult to handle. With the shuttle's solid rocket booster, the weld peaking resulted in two major problems: (1) reduced mechanical properties across the weld joint, and (2) fit-up difficulties in subsequent assembly operation. Peaking from the weld shrinkage forces can be fairly well predicted in simple structures; however, in welding complicated assemblies, the amount of peaking is unpredictable because of unknown stresses from machining and forming, stresses induced by the fixturing, and stresses from welds in other parts of the assembly. When excessive peaking is encountered, it can be corrected using the shrinkage forces resulting from the welding process. Application of these forces is discussed in this report.

  9. Multiscale peak detection in wavelet space.

    PubMed

    Zhang, Zhi-Min; Tong, Xia; Peng, Ying; Ma, Pan; Zhang, Ming-Jin; Lu, Hong-Mei; Chen, Xiao-Qing; Liang, Yi-Zeng

    2015-12-01

    Accurate peak detection is essential for analyzing high-throughput datasets generated by analytical instruments. Derivatives with noise reduction and matched filtration are frequently used, but they are sensitive to baseline variations, random noise and deviations in the peak shape. A continuous wavelet transform (CWT)-based method is more practical and popular in this situation, which can increase the accuracy and reliability by identifying peaks across scales in wavelet space and implicitly removing noise as well as the baseline. However, its computational load is relatively high and the estimated features of peaks may not be accurate in the case of peaks that are overlapping, dense or weak. In this study, we present multi-scale peak detection (MSPD) by taking full advantage of additional information in wavelet space including ridges, valleys, and zero-crossings. It can achieve a high accuracy by thresholding each detected peak with the maximum of its ridge. It has been comprehensively evaluated with MALDI-TOF spectra in proteomics, the CAMDA 2006 SELDI dataset as well as the Romanian database of Raman spectra, which is particularly suitable for detecting peaks in high-throughput analytical signals. Receiver operating characteristic (ROC) curves show that MSPD can detect more true peaks while keeping the false discovery rate lower than MassSpecWavelet and MALDIquant methods. Superior results in Raman spectra suggest that MSPD seems to be a more universal method for peak detection. MSPD has been designed and implemented efficiently in Python and Cython. It is available as an open source package at .

  10. Froghopper-inspired direction-changing concept for miniature jumping robots.

    PubMed

    Jung, Gwang-Pil; Cho, Kyu-Jin

    2016-09-14

    To improve the maneuverability and agility of jumping robots, several researchers have studied steerable jumping mechanisms. This steering ability enables robots to reach a particular target by controlling their jumping direction. To this end, we propose a novel direction-changing concept for miniature jumping robots. The proposed concept allows robots to be steerable while exerting minimal effects on jumping performance. The key design principles were adopted from the froghopper's power-producing hind legs and the moment cancellation accomplished by synchronized leg operation. These principles were applied via a pair of symmetrically positioned legs and conventional gears, which were modeled on the froghopper's anatomy. Each leg has its own thrusting energy, which improves jumping performance by allowing the mechanism to thrust itself with both power-producing legs. Conventional gears were utilized to simultaneously operate the legs and cancel out the moments that they induce, which minimizes body spin. A prototype to verify the concept was built and tested by varying the initial jumping posture. Three jumping postures (synchronous, asynchronous, and single-legged) were tested to investigate how synchronization and moment cancelling affect jumping performance. The results show that synchronous jumping allows the mechanism to change direction from -40° to 40°, with an improved take-off speed. The proposed concept can only be steered in a limited range of directions, but it has potential for use in miniature jumping robots that can change jumping direction with a minimal drop in jumping performance.

  11. Does gymnastics practice improve vertical jump reliability from the age of 8 to 10 years?

    PubMed

    Marina, Michel; Torrado, Priscila

    2013-01-01

    The objective of this study was to confirm whether gymnastics practice from a young age can induce greater vertical jump reliability. Fifty young female gymnasts (8.84 ± 0.62 years) and 42 females in the control group (8.58 ± 0.92 years) performed the following jump tests on a contact mat: squat jump, countermovement jump, countermovement jump with arm swing and drop jump from heights of 40 and 60 cm. The two testing sessions had three trials each and were separated by one week. A 2 (groups) × 2 (sessions) × 3 (trials) repeated measures analysis of variance (ANOVA) and a test-retest correlation analysis were used to study the reliability. There was no systematic source of error in either group for non-plyometric jumps such as squat jump, countermovement jump, and countermovement jump with arm swing. A significant group per trial interaction revealed a learning effect in gymnasts' drop jumps from 40 cm height. Additionally, the test-retest correlation analysis and the higher minimum detectable error suggest that the quick drop jump technique was not fully consolidated in either group. At an introductory level of gymnastics and between the ages of 8-10 years, the condition of being a gymnast did not lead to conclusively higher reliability, aside from better overall vertical jump performance. PMID:23414426

  12. Froghopper-inspired direction-changing concept for miniature jumping robots.

    PubMed

    Jung, Gwang-Pil; Cho, Kyu-Jin

    2016-01-01

    To improve the maneuverability and agility of jumping robots, several researchers have studied steerable jumping mechanisms. This steering ability enables robots to reach a particular target by controlling their jumping direction. To this end, we propose a novel direction-changing concept for miniature jumping robots. The proposed concept allows robots to be steerable while exerting minimal effects on jumping performance. The key design principles were adopted from the froghopper's power-producing hind legs and the moment cancellation accomplished by synchronized leg operation. These principles were applied via a pair of symmetrically positioned legs and conventional gears, which were modeled on the froghopper's anatomy. Each leg has its own thrusting energy, which improves jumping performance by allowing the mechanism to thrust itself with both power-producing legs. Conventional gears were utilized to simultaneously operate the legs and cancel out the moments that they induce, which minimizes body spin. A prototype to verify the concept was built and tested by varying the initial jumping posture. Three jumping postures (synchronous, asynchronous, and single-legged) were tested to investigate how synchronization and moment cancelling affect jumping performance. The results show that synchronous jumping allows the mechanism to change direction from -40° to 40°, with an improved take-off speed. The proposed concept can only be steered in a limited range of directions, but it has potential for use in miniature jumping robots that can change jumping direction with a minimal drop in jumping performance. PMID:27625411

  13. Peak tree: a new tool for multiscale hierarchical representation and peak detection of mass spectrometry data.

    PubMed

    Zhang, Peng; Li, Houqiang; Wang, Honghui; Wong, Stephen T C; Zhou, Xiaobo

    2011-01-01

    Peak detection is one of the most important steps in mass spectrometry (MS) analysis. However, the detection result is greatly affected by severe spectrum variations. Unfortunately, most current peak detection methods are neither flexible enough to revise false detection results nor robust enough to resist spectrum variations. To improve flexibility, we introduce peak tree to represent the peak information in MS spectra. Each tree node is a peak judgment on a range of scales, and each tree decomposition, as a set of nodes, is a candidate peak detection result. To improve robustness, we combine peak detection and common peak alignment into a closed-loop framework, which finds the optimal decomposition via both peak intensity and common peak information. The common peak information is derived and loopily refined from the density clustering of the latest peak detection result. Finally, we present an improved ant colony optimization biomarker selection method to build a whole MS analysis system. Experiment shows that our peak detection method can better resist spectrum variations and provide higher sensitivity and lower false detection rates than conventional methods. The benefits from our peak-tree-based system for MS disease analysis are also proved on real SELDI data.

  14. Hotspot Cooling with Self-Propelled Jumping Condensate

    NASA Astrophysics Data System (ADS)

    Qu, Xiaopeng; Boreyko, Jonathan B.; Liu, Fangjie; Chen, Chuan-Hua

    2012-11-01

    Dynamic hotspots are prevalent in electronic systems including microprocessors and power electronics with constantly changing computing tasks or payloads. Here, we report a new adaptive hotspot cooling technique that rapidly responds to moving hotspots in a passive manner independent of external forces. The hotspot cooling is based upon the self-propelled jumping of dropwise condensate, which directly returns the working fluid from a superhydrophobic condenser to an opposing superhydrophilic evaporator. The adaptive thermal management is accomplished by the preferential evaporation of water at the hotspots and the rapid jumping return of the condensate across the very short inter-plate distance. The proof-of-concept for this hotspot cooling technique will be demonstrated by the adaptive response to hotspots at increasing heat fluxes. Corresponding author.

  15. AGS Fast spin resonance jump, magnets and power supplies

    SciTech Connect

    Glenn,J.W.; Huang, H.; Liaw, C. J.; Marneris, I.; Meng, W.; Mi, J. L.; Rosas, P.; Sandberg, J.; Tuozzolo, J.; Zhang, A.

    2009-05-04

    In order to cross more rapidly the 82 weak spin resonances caused by the horizontal tune and the partial snakes, we plan to jump the horizontal tune 82 times during the acceleration of polarized protons. The current in the magnets creating this tune jump will rise in 100 {micro}s, hold flat for about 4 ms and fan to zero in 100 {micro}s. Laminated beam transport quadrupole magnets have been recycled by installing new two turn coils and longitudinal laminated pole tip shims that reduce inductance and power supply current. The power supply uses a high voltage capacitor discharge to raise the magnet current, which is then switched to a low voltage supply, and then the current is switched back to the high voltage capacitor to zero the current. The current in each of the magnet pulses must match the order of magnitude change in proton momentum during the acceleration cycle. The magnet, power supply and operational experience are described.

  16. Jerzego, a new hisponine jumping spider from Borneo (Araneae: Salticidae).

    PubMed

    Maddison, Wayne P; Piascik, Edyta K

    2014-01-01

    A new genus and species of hisponine jumping spider from Sarawak, Jerzego corticicola Maddison sp. nov. are described, representing one of the few hisponine jumping spiders known from Asia, and the only whose male is known. Although similar to the primarily-Madagascan genus Hispo in having an elongate and flat body, sequences of 28s and 16sND1 genes indicate that Jerzego is most closely related to Massagris and Tomomingi, a result consistent with morphology. Females of Jerzego and other genera of Hisponinae were found to have an unusual double copulatory duct, which appears to be a synapomorphy of the subfamily. Two species are transferred from Hispo, Jerzego bipartitus (Simon) comb. nov. and Jerzego alboguttatus (Simon) comb. nov. Diagnostic illustrations and photographs of living spiders are provided.  PMID:25284419

  17. Frequency jumps in single chip microwave LC oscillators

    NASA Astrophysics Data System (ADS)

    Gualco, Gabriele; Grisi, Marco; Boero, Giovanni

    2014-12-01

    We report on the experimental observation of oscillation frequency jumps in microwave LC oscillators fabricated using standard complementary metal-oxide-semiconductor technologies. The LC oscillators, operating at a frequency of about 20 GHz, consist of a single turn planar coil, a metal-oxide-metal capacitor, and two cross-coupled metal-oxide-semiconductor field effect transistors used as negative resistance network. At 300 K as well as at 77 K, the oscillation frequency is a continuous function of the oscillator bias voltage. At 4 K, frequency jumps as large as 30 MHz are experimentally observed. This behavior is tentatively attributed to the emission and capture of single electrons from defects and dopant atoms.

  18. Frequency jumps in single chip microwave LC oscillators

    SciTech Connect

    Gualco, Gabriele; Grisi, Marco; Boero, Giovanni

    2014-12-15

    We report on the experimental observation of oscillation frequency jumps in microwave LC oscillators fabricated using standard complementary metal-oxide-semiconductor technologies. The LC oscillators, operating at a frequency of about 20 GHz, consist of a single turn planar coil, a metal-oxide-metal capacitor, and two cross-coupled metal-oxide-semiconductor field effect transistors used as negative resistance network. At 300 K as well as at 77 K, the oscillation frequency is a continuous function of the oscillator bias voltage. At 4 K, frequency jumps as large as 30 MHz are experimentally observed. This behavior is tentatively attributed to the emission and capture of single electrons from defects and dopant atoms.

  19. AirJump: Using Interfaces to Instantly Perform Simultaneous Extractions

    PubMed Central

    2016-01-01

    Analyte isolation is an important process that spans a range of biomedical disciplines, including diagnostics, research, and forensics. While downstream analytical techniques have advanced in terms of both capability and throughput, analyte isolation technology has lagged behind, increasingly becoming the bottleneck in these processes. Thus, there exists a need for simple, fast, and easy to integrate analyte separation protocols to alleviate this bottleneck. Recently, a new class of technologies has emerged that leverages the movement of paramagnetic particle (PMP)-bound analytes through phase barriers to achieve a high efficiency separation in a single or a few steps. Specifically, the passage of a PMP/analyte aggregate through a phase interface (aqueous/air in this case) acts to efficiently “exclude” unbound (contaminant) material from PMP-bound analytes with higher efficiency than traditional washing-based solid-phase extraction (SPE) protocols (i.e., bind, wash several times, elute). Here, we describe for the first time a new type of “exclusion-based” sample preparation, which we term “AirJump”. Upon realizing that much of the contaminant carryover stems from interactions with the sample vessel surface (e.g., pipetting residue, wetting), we aim to eliminate the influence of that factor. Thus, AirJump isolates PMP-bound analyte by “jumping” analyte directly out of a free liquid/air interface. Through careful characterization, we have demonstrated the validity of AirJump isolation through comparison to traditional washing-based isolations. Additionally, we have confirmed the suitability of AirJump in three important independent biological isolations, including protein immunoprecipitation, viral RNA isolation, and cell culture gene expression analysis. Taken together, these data sets demonstrate that AirJump performs efficiently, with high analyte yield, high purity, no cross contamination, rapid time-to-isolation, and excellent reproducibility

  20. Magnetohydrodynamic Jump Conditions for Oblique Relativistic Shocks with Gyrotropic Pressure

    NASA Technical Reports Server (NTRS)

    Double, Glen P.; Baring, Matthew G.; Jones, Frank C.; Ellison, Donald C.

    2003-01-01

    Shock jump conditions, i.e., the specification of the downstream parameters of the gas in terms of the upstream parameters, are obtained for steady-state, plane shocks with oblique magnetic fields and arbitrary flow speeds. This is done by combining the continuity of particle number flux and the electromagnetic boundary conditions at the shock with the magnetohydrodynamic conservation laws derived from the stress-energy tensor. For ultrarelativistic and nonrelativistic shocks, the jump conditions may be solved analytically. For mildly relativistic shocks, analytic solutions are obtained for isotropic pressure using an approximation for the adiabatic index that is valid in high sonic Mach number cases. Examples assuming isotropic pressure illustrate how the shock compression ratio depends on the shock speed and obliquity. In the more general case of gyrotropic pressure, the jump conditions cannot be solved analytically with- out additional assumptions, and the effects of gyrotropic pressure are investigated by parameterizing the distribution of pressure parallel and perpendicular to the magnetic field. Our numerical solutions reveal that relatively small departures from isotropy (e.g., approximately 20%) produce significant changes in the shock compression ratio, r , at all shock Lorentz factors, including ultrarelativistic ones, where an analytic solution with gyrotropic pressure is obtained. In particular, either dynamically important fields or significant pressure anisotropies can incur marked departures from the canonical gas dynamic value of r = 3 for a shocked ultrarelativistic flow and this may impact models of particle acceleration in gamma-ray bursts and other environments where relativistic shocks are inferred. The jump conditions presented apply directly to test-particle acceleration, and will facilitate future self-consistent numerical modeling of particle acceleration at oblique, relativistic shocks; such models include the modification of the fluid