Sample records for peak pressure compared

  1. Computerized analysis of plantar pressure variation in flip-flops, athletic shoes, and bare feet.

    PubMed

    Carl, Tanya J; Barrett, Stephen L

    2008-01-01

    High peak plantar pressures predispose to foot problems and may exacerbate existing conditions. For podiatric physicians to make educated recommendations to their patients, it is important and necessary to begin to look at different shoes and how they affect peak plantar pressure. To determine how flip-flops change peak plantar pressure while walking, we compared peak plantar pressures in the same test subjects wearing flip-flops, wearing athletic shoes, and in bare feet. Ten women with size 7 feet and a body mass index less than 25 kg/m2 were tested with an in-shoe pressure-measurement system. These data were collected and analyzed by one-way analysis of variance and computer software. Statistically significant results were obtained for nine of the 18 comparisons. In each of these comparisons, flip-flops always demonstrated higher peak plantar pressures than athletic shoes but lower pressures than bare feet. Although these data demonstrate that flip-flops have a minor protective role as a shock absorber during the gait cycle compared with pressures measured while barefoot, compared with athletic shoes, they increase peak plantar pressures, placing the foot at greater risk for pathologic abnormalities.

  2. Internal combustion engine cylinder-to-cylinder balancing with balanced air-fuel ratios

    DOEpatents

    Harris, Ralph E.; Bourn, Gary D.; Smalley, Anthony J.

    2006-01-03

    A method of balancing combustion among cylinders of an internal combustion engine. For each cylinder, a normalized peak firing pressure is calculated as the ratio of its peak firing pressure to its combustion pressure. Each cylinder's normalized peak firing pressure is compared to a target value for normalized peak firing pressure. The fuel flow is adjusted to any cylinder whose normalized peak firing pressure is not substantially equal to the target value.

  3. Plantar pressure and daily cumulative stress in persons affected by leprosy with current, previous and no previous foot ulceration.

    PubMed

    van Schie, Carine H M; Slim, Frederik J; Keukenkamp, Renske; Faber, William R; Nollet, Frans

    2013-03-01

    Not only plantar pressure but also weight-bearing activity affects accumulated mechanical stress to the foot and may be related to foot ulceration. To date, activity has not been accounted for in leprosy. The purpose was to compare barefoot pressure, in-shoe pressure and daily cumulative stress between persons affected by leprosy with and without previous or current foot ulceration. Nine persons with current plantar ulceration were compared to 15 with previous and 15 without previous ulceration. Barefoot peak pressure (EMED-X), in-shoe peak pressure (Pedar-X) and daily cumulative stress (in-shoe forefoot pressure time integral×mean daily strides (Stepwatch™ Activity Monitor)) were measured. Barefoot peak pressure was increased in persons with current and previous compared to no previous foot ulceration (mean±SD=888±222 and 763±335 vs 465±262kPa, p<0.05). In-shoe peak pressure was only increased in persons with current compared to without previous ulceration (mean±SD=412±145 vs 269±70kPa, p<0.05). Daily cumulative stress was not different between groups, although persons with current and previous foot ulceration were less active. Although barefoot peak pressure was increased in people with current and previous plantar ulceration, it did not discriminate between these groups. While in-shoe peak pressure was increased in persons with current ulceration, they were less active, resulting in no difference in daily cumulative stress. Increased in-shoe peak pressure suggests insufficient pressure reducing footwear in persons with current ulceration, highlighting the importance of pressure reducing qualities of footwear. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Conversion of urodynamic pressures measured simultaneously by air-charged and water-filled catheter systems.

    PubMed

    Awada, Hassan K; Fletter, Paul C; Zaszczurynski, Paul J; Cooper, Mitchell A; Damaser, Margot S

    2015-08-01

    The objective of this study was to compare the simultaneous responses of water-filled (WFC) and air-charged (ACC) catheters during simulated urodynamic pressures and develop an algorithm to convert peak pressures measured using an ACC to those measured by a WFC. Examples of cough leak point pressure and valsalva leak point pressure data (n = 4) were obtained from the literature, digitized, and modified in amplitude and duration to create a set of simulated data that ranged in amplitude from 15 to 220 cm H2 O (n = 25) and duration from 0.1 to 3.0 sec (n = 25) for each original signal. Simulated pressure signals were recorded simultaneously by WFCs, ACCs, and a reference transducer in a specially designed pressure chamber. Peak pressure and time to peak pressure were calculated for each simulated pressure signal and were used to develop an algorithm to convert peak pressures recorded with ACCs to corresponding peak pressures recorded with WFCs. The algorithm was validated with additional simulated urodynamic pressure signals and additional catheters that had not been utilized to develop the algorithm. ACCs significantly underestimated peak pressures of more rapidly changing pressures, as in coughs, compared to those measured by WFCs. The algorithm corrected 90% of peak pressures measured by ACCs to within 5% of those measured by WFCs when simultaneously exposed to the same pressure signals. The developed algorithm can be used to convert rapidly changing urodynamic pressures, such as cough leak point pressure, obtained using ACC systems to corresponding values expected from WFC systems. © 2014 Wiley Periodicals, Inc.

  5. [Forefoot relief with shoe inserts : Effects of different construction strategies].

    PubMed

    Baur, H; Merz, N; Muster, A; Flückiger, G; Hirschmüller, A

    2018-04-01

    Shoe inserts and shoe modifications are used to reduce plantar peak pressure. The effects of different shoe inserts and shoe construction strategies for relief of the forefoot have not yet been sufficiently evaluated. The aim of this study was to analyze the effects of shoe inserts and shoe construction strategies (e.g. metatarsal pad, forefoot cushioning and control) and shoe modifications (e.g. flexible or stiff) on the peak plantar pressure in the forefoot region. In this study 15 healthy subjects were recruited. Plantar pressure distribution was measured using an in-shoe system during walking (3.5km∙h -1 ) on a treadmill and the average plantar peak pressure (kPa) in the forefoot was calculated. The statistics for testing the hypothesis were carried out using 2‑factorial ANOVA with repeat measurements (factors: shoe, insert; α = 0.05). The metatarsal pad and forefoot cushioning led to a reduction of peak pressure, which was statistically significant compared to the control condition (p = 0.009). No differences were observed between both shoe inserts (p > 0.05). A comparison between stiff and flexible shoes revealed a statistically significant pressure reduction in favor of stiff shoes (p = 0.0001). The metatarsal pad led to a peak pressure increase in the midfoot of 12% and by 21% compared to control and forefoot cushioning, respectively. A peak pressure reduction in the forefoot can be achieved with a metatarsal pad or with cushioning; however, the metatarsal pad resulted in a subsequent increase in midfoot pressure. Moreover, shoe construction is crucial because a stiff shoe contributes to a better peak pressure reduction compared to a flexible shoe. Prospective clinical studies should be carried out to prove whether this results in beneficial effects for patients with metatarsalgia.

  6. Measurement and Modeling of Acoustic Fields in a Gel Phantom at High Intensities

    NASA Astrophysics Data System (ADS)

    Canney, Michael S.; Bailey, Michael R.; Khokhlova, Vera A.; Crum, Lawrence A.

    2006-05-01

    The goal of this work was to compare measured and numerically predicted HIFU pressure waveforms in water and a tissue-mimicking phantom. Waveforms were measured at the focus of a 2-MHz HIFU transducer with a fiber optic hydrophone. The transducer was operated with acoustic powers ranging from 2W to 300W. A KZK-type equation was used for modeling the experimental conditions. Strongly asymmetric nonlinear waves with peak positive pressure up to 80 MPa and peak negative pressure up to 20 MPa were measured in water, while waves up to 50 MPa peak positive pressure and 15 MPa peak negative pressure were measured in tissue phantoms. The values of peak negative pressure corresponded well with numerical simulations and were significantly smaller than predicted by linear extrapolation from low-level measurements. The values of peak positive pressures differed only at high levels of excitation where bandwidth limitations of the hydrophone failed to fully capture the predicted sharp shock fronts.

  7. Increased in-shoe lateral plantar pressures with chronic ankle instability.

    PubMed

    Schmidt, Heather; Sauer, Lindsay D; Lee, Sae Yong; Saliba, Susan; Hertel, Jay

    2011-11-01

    Previous plantar pressure research found increased loads and slower loading response on the lateral aspect of the foot during gait with chronic ankle instability compared to healthy controls. The studies had subjects walking barefoot over a pressure mat and results have not been confirmed with an in-shoe plantar pressure system. Our purpose was to report in-shoe plantar pressure measures for chronic ankle instability subjects compared to healthy controls. Forty-nine subjects volunteered (25 healthy controls, 24 chronic ankle instability) for this case-control study. Subjects jogged continuously on a treadmill at 2.68 m/s (6.0 mph) while three trials of ten consecutive steps were recorded. Peak pressure, time-to-peak pressure, pressure-time integral, maximum force, time-to-maximum force, and force-time integral were assessed in nine regions of the foot with the Pedar-x in-shoe plantar pressure system (Novel, Munich, Germany). Chronic ankle instability subjects demonstrated a slower loading response in the lateral rearfoot indicated by a longer time-to-peak pressure (16.5% +/- 10.1, p = 0.001) and time-to-maximum force (16.8% +/- 11.3, p = 0.001) compared to controls (6.5% +/- 3.7 and 6.6% +/- 5.5, respectively). In the lateral midfoot, ankle instability subjects demonstrated significantly greater maximum force (318.8 N +/- 174.5, p = 0.008) and peak pressure (211.4 kPa +/- 57.7, p = 0.008) compared to controls (191.6 N +/- 74.5 and 161.3 kPa +/- 54.7). Additionally, ankle instability subjects demonstrated significantly higher force-time integral (44.1 N/s +/- 27.3, p = 0.005) and pressure-time integral (35.0 kPa/s +/- 12.0, p = 0.005) compared to controls (23.3 N/s +/- 10.9 and 24.5 kPa/s +/- 9.5). In the lateral forefoot, ankle instability subjects demonstrated significantly greater maximum force (239.9N +/- 81.2, p = 0.004), force-time integral (37.0 N/s +/- 14.9, p = 0.003), and time-to-peak pressure (51.1% +/- 10.9, p = 0.007) compared to controls (170.6 N +/- 49.3, 24.3 N/s +/- 7.2 and 43.8% +/- 4.3). Using an in-shoe plantar pressure system, chronic ankle instability subjects had greater plantar pressures and forces in the lateral foot compared to controls during jogging. These findings may have implications in the etiology and treatment of chronic ankle instability.

  8. A Contact Pressure Analysis Comparing an All-Inside and Inside-Out Surgical Repair Technique for Bucket-Handle Medial Meniscus Tears.

    PubMed

    Marchetti, Daniel Cole; Phelps, Brian M; Dahl, Kimi D; Slette, Erik L; Mikula, Jacob D; Dornan, Grant J; Bucci, Gabriella; Turnbull, Travis Lee; Singleton, Steven B

    2017-10-01

    To directly compare effectiveness of the inside-out and all-inside medial meniscal repair techniques in restoring native contact area and contact pressure across the medial tibial plateau at multiple knee flexion angles. Twelve male, nonpaired (n = 12), fresh-frozen human cadaveric knees underwent a series of 5 consecutive states: (1) intact medial meniscus, (2) MCL tear and repair, (3) simulated bucket-handle longitudinal tear of the medial meniscus, (4) inside-out meniscal repair, and (5) all-inside meniscal repair. Knees were loaded with a 1,000-N axial compressive force at 5 knee flexion angles (0°, 30°, 45°, 60°, 90°), and contact area, mean contact pressure, and peak contact pressure were calculated using thin film pressure sensors. No significant differences were observed between the inside-out and all-inside repair techniques at any flexion angle for contact area, mean contact pressure, and peak contact pressure (all P > .791). Compared with the torn meniscus state, inside-out and all-inside repair techniques resulted in increased contact area at all flexion angles (all P < .005 and all P < .037, respectively), decreased mean contact pressure at all flexion angles (all P < .007 and all P < .001, respectively) except for 0° (P = .097 and P = .39, respectively), and decreased peak contact pressure at all flexion angles (all P < .001, all P < .001, respectively) except for 0° (P = .080 and P = .544, respectively). However, there were significant differences in contact area and peak contact pressure between the intact state and inside-out technique at angles ≥45° (all P < .014 and all P < .032, respectively). Additionally, there were significant differences between the intact state and all-inside technique in contact area at 60° and 90° and peak contact pressure at 90° (both P < .005 and P = .004, respectively). Median values of intact contact area, mean contact pressure, and peak contact pressure over the tested flexion angles ranged from 498 to 561 mm 2 , 786 to 997 N/mm 2 , and 1,990 to 2,215 N/mm 2 , respectively. Contact area, mean contact pressure, and peak contact pressure were not significantly different between the all-inside and inside-out repair techniques at any tested flexion angle. Both techniques adequately restored native meniscus biomechanics near an intact level. An all-inside repair technique provided similar, native-state-restoring contact mechanics compared with an inside-out repair technique for the treatment of displaced bucket-handle tears of the medial meniscus. Thus, both techniques may adequately decrease the likelihood of cartilage degeneration. Copyright © 2017 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  9. Estimation of cardiac reserve by peak power: validation and initial application of a simplified index

    NASA Technical Reports Server (NTRS)

    Armstrong, G. P.; Carlier, S. G.; Fukamachi, K.; Thomas, J. D.; Marwick, T. H.

    1999-01-01

    OBJECTIVES: To validate a simplified estimate of peak power (SPP) against true (invasively measured) peak instantaneous power (TPP), to assess the feasibility of measuring SPP during exercise and to correlate this with functional capacity. DESIGN: Development of a simplified method of measurement and observational study. SETTING: Tertiary referral centre for cardiothoracic disease. SUBJECTS: For validation of SPP with TPP, seven normal dogs and four dogs with dilated cardiomyopathy were studied. To assess feasibility and clinical significance in humans, 40 subjects were studied (26 patients; 14 normal controls). METHODS: In the animal validation study, TPP was derived from ascending aortic pressure and flow probe, and from Doppler measurements of flow. SPP, calculated using the different flow measures, was compared with peak instantaneous power under different loading conditions. For the assessment in humans, SPP was measured at rest and during maximum exercise. Peak aortic flow was measured with transthoracic continuous wave Doppler, and systolic and diastolic blood pressures were derived from brachial sphygmomanometry. The difference between exercise and rest simplified peak power (Delta SPP) was compared with maximum oxygen uptake (VO(2)max), measured from expired gas analysis. RESULTS: SPP estimates using peak flow measures correlated well with true peak instantaneous power (r = 0.89 to 0.97), despite marked changes in systemic pressure and flow induced by manipulation of loading conditions. In the human study, VO(2)max correlated with Delta SPP (r = 0.78) better than Delta ejection fraction (r = 0.18) and Delta rate-pressure product (r = 0.59). CONCLUSIONS: The simple product of mean arterial pressure and peak aortic flow (simplified peak power, SPP) correlates with peak instantaneous power over a range of loading conditions in dogs. In humans, it can be estimated during exercise echocardiography, and correlates with maximum oxygen uptake better than ejection fraction or rate-pressure product.

  10. Biomechanical Effects of Prefabricated Foot Orthoses and Rocker‐Sole Footwear in Individuals With First Metatarsophalangeal Joint Osteoarthritis

    PubMed Central

    Auhl, Maria; Tan, Jade M.; Levinger, Pazit; Roddy, Edward; Munteanu, Shannon E.

    2016-01-01

    Objective To evaluate the effects of prefabricated foot orthoses and rocker‐sole footwear on spatiotemporal parameters, hip and knee kinematics, and plantar pressures in people with first metatarsophalangeal (MTP) joint osteoarthritis (OA). Methods. A total of 102 people with first MTP joint OA were randomly allocated to receive prefabricated foot orthoses or rocker‐sole footwear. The immediate biomechanical effects of the interventions (compared to usual footwear) were examined using a wearable sensor motion analysis system and an in‐shoe plantar pressure measurement system. Results Spatiotemporal/kinematic and plantar pressure data were available from 88 and 87 participants, respectively. The orthoses had minimal effect on spatiotemporal or kinematic parameters, while the rocker‐sole footwear resulted in reduced cadence, percentage of the gait cycle spent in stance phase, and sagittal plane hip range of motion. The orthoses increased peak pressure under the midfoot and lesser toes. Both interventions significantly reduced peak pressure under the first MTP joint, and the rocker‐sole shoes also reduced peak pressure under the second through fifth MTP joints and heel. When the effects of the orthoses and rocker‐sole shoes were directly compared, there was no difference in peak pressure under the hallux, first MTP joint, or heel; however, the rocker‐sole shoes exhibited lower peak pressure under the lesser toes, second through fifth MTP joints, and midfoot. Conclusion Prefabricated foot orthoses and rocker‐sole footwear are effective at reducing peak pressure under the first MTP joint in people with first MTP joint OA, but achieve this through different mechanisms. Further research is required to determine whether these biomechanical changes result in improvements in symptoms. PMID:26640157

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pitton, Michael Bernhard, E-mail: pitton@radiologie.klinik.uni-mainz.de; Schmenger, Patrick; Dueber, Christoph

    Purpose: To investigate pressure and maximum rate of rise of systolic pressure (peak dP/dt) in completely excluded aneurysms and endoleaks to determine the hemodynamic impact of endoleaks. Methods: In mongrel dogs (n =36) experimental aneurysms were created by insertion of a patch (portion of rectus abdomen is muscle sheath) into the infrarenalaorta. In group I (n 18), all aortic branches of the aneurysm were ligated and all aneurysms were completely excluded by stent grafts. Group II (n = 18) consisted of aneurysms with patent aortic side branches that represented sources of endoleaks.One week (n = 12), six weeks (n =more » 12),and six months (n = 12) after stent grafting,hemodynamic measurements were obtained in thrombosed aneurysms and proved endoleaks. Systemic blood pressure and intraaneurysmal pressure were simultaneously measured and the respective peak dP/dt were computed. Results: At the six-month follow-up, the systolic-pressure ratio (intraaneurysmatic pressure: systemic pressure)was significantly increased in endoleaks compared to non-perfused areas(0.879 {+-} 0.042 versus 0.438 {+-} 0.176, p <0.01, group II) or completely excluded aneurysms (0.385 {+-}0.221, group I). Peak dP/dt ratio (intraaneurysmal peak dP/dt: systemic peak dP/dt) was 0.922 {+-} 0.154 in endoleaks, compared to 0.084 {+-} 0.080 in non-perfused areas (group II, p <0.01), and was 0.146 {+-} 0.121 in completely excluded aneurysms (group I). The diastolic-pressure ratio was also increased inendoleaks compared to non-perfused areas (0.929 {+-} 0.088 versus 0.655 {+-} 0.231, p < 0.01, group II) or completely excluded aneurysms (0.641 {+-} 0.278, group I). In excluded aneurysms, pressure exposure declined as the length of the follow-up period increased. Conclusion: Type II endoleaks transmit pulsatile pressure of near systemic level and indicate insufficient treatment result. In contrast, complete endovascular exclusion of aneurysms results in significantly reduced pressure exposure.« less

  12. Physiologic effect of repeated adrenaline (epinephrine) doses during cardiopulmonary resuscitation in the cath lab setting: A randomised porcine study.

    PubMed

    Hardig, Bjarne Madsen; Götberg, Michael; Rundgren, Malin; Götberg, Matthias; Zughaft, David; Kopotic, Robert; Wagner, Henrik

    2016-04-01

    This porcine study was designed to explore the effects of repetitive intravenous adrenaline doses on physiologic parameters during CPR. Thirty-six adult pigs were randomised to four injections of: adrenaline 0.02 mg(kgdose)(-1), adrenaline 0.03 mg(kgdose)(-1) or saline control. The effect on systolic, diastolic and mean arterial blood pressure, cerebral perfusion pressure (CePP), end tidal carbon dioxide (ETCO2), arterial oxygen saturation via pulse oximetry (SpO2), cerebral tissue oximetry (SctO2), were analysed immediately prior to each injection and at peak arterial systolic pressure and arterial blood gases were analysed at baseline and after 15 min. In the group given 0.02 mg(kgdose)(-1), there were increases in all arterial blood pressures at all 4 pressure peaks but CePP only increased significantly after peak 1. A decrease in ETCO2 following peak 1 and 2 was observed. SctO2 and SpO2 were lowered following injection 2 and beyond. In the group given a 0.03 mg(kgdose)(-1), all ABP's increased at the first 4 pressure peaks but CePP only following 3 pressure peaks. Lower ETCO2, SctO2 and SpO2 were seen at peak 1 and beyond. In the two adrenaline groups, pH and Base Excess were lower and lactate levels higher compared to baseline as well as compared to the control. Repetitive intravenous adrenaline doses increased ABP's and to some extent also CePP, but significantly decreased organ and brain perfusion. The institutional protocol number: Malmö/Lund Committee for Animal Experiment Ethics, approval reference number: M 192-10. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Girth pressure measurements reveal high peak pressures that can be avoided using an alternative girth design that also results in increased limb protraction and flexion in the swing phase.

    PubMed

    Murray, Rachel; Guire, Russell; Fisher, Mark; Fairfax, Vanessa

    2013-10-01

    Girths are frequently blamed for veterinary and performance problems, but research into girth/horse interaction is sparse. The study objectives were (1) to determine location of peak pressure under a range of girths, and (2) to compare horse gait between the horse's standard girth and a girth designed to avoid detected peak pressure locations. In the first part of the study, and following validation procedures, a calibrated pressure mat placed under the girth of 10 horses was used to determine the location of peak pressures. A girth was designed to avoid peak pressure locations (Girth F). In the second part, 20 elite horses/riders with no lameness or performance problem were ridden in Girth F and their standard girth (Girth S) in a double blind crossover design. Pressure mat data were acquired from under the girths. High speed video was captured and forelimb and hindlimb protraction, maximal carpal and tarsal flexion during flight were determined in trot. In standard girths, peak pressures were located over the musculature behind the elbow. Pressure mat results revealed that the maximum forces with Girth S were 22% (left) and 14% (right) greater than Girth F, and peak pressures were 76% (left) and 98% (right) greater (P<0.01 for all). On gait evaluation, Girth F was associated with 6-11% greater forelimb protraction, 10-20% greater hindlimb protraction, 4% greater carpal flexion, and 3% greater tarsal flexion than Girth S (P<0.01 for all). Peak pressures were located where horses tend to develop pressure sores. Girth F reduced peak pressures under the girth, and improved limb protraction and carpal/ tarsal flexion, which may reflect improved posture and comfort. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Effect of pressure on the α relaxation in glycerol and xylitol

    NASA Astrophysics Data System (ADS)

    Paluch, M.; Casalini, R.; Hensel-Bielowka, S.; Roland, C. M.

    2002-06-01

    The effect of pressure on the dielectric relaxation of two polyhydroxy alcohols is examined by analysis of existing data on glycerol, together with new measurements on xylitol. The fragility, or Tg-normalized temperature dependence, changes with pressure for low pressures, but becomes invariant above 1 GPa. When compared at temperatures for which the α-relaxation times are equal, there is no effect of pressure (<1 GPa) on the shape of the α dispersion at higher temperatures. However, nearer Tg, pressure broadens the α peak, consistent with the expected correlation of fragility with the breadth of the relaxation function. We also observe that the α-relaxation peaks for both glycerol and xylitol show an excess intensity at higher frequencies. For xylitol, unlike for glycerol, at lower temperatures this wing disjoins to form a separate peak. For both glass formers, elevated pressure causes the excess wing to become more separated from the peak maximum; that is, the properties of the primary and excess intensities are not correlated. This implies that the excess wing in glycerol is also a distinct secondary process, although it cannot be resolved from the primary peak.

  15. Remote tire pressure sensing technique

    NASA Technical Reports Server (NTRS)

    Robinson, Howard H. (Inventor); Mcginnis, Timothy A. (Inventor); Daugherty, Robert H. (Inventor)

    1993-01-01

    A remote tire pressure sensing technique is provided which uses vibration frequency to determine tire pressure. A vibration frequency measuring device is attached to the external surface of a tire which is then struck with an object, causing the tire to vibrate. The frequency measuring device measures the vibrations and converts the vibrations into corresponding electrical impulses. The electrical impulses are then fed into the frequency analyzing system which uses the electrical impulses to determine the relative peaks of the vibration frequencies as detected by the frequency measuring device. The measured vibration frequency peaks are then compared to predetermined data describing the location of vibration frequency peaks for a given pressure, thereby determining the air pressure of the tire.

  16. A rapid and non-invasive method for measuring the peak positive pressure of HIFU fields by a laser beam.

    PubMed

    Wang, Hua; Zeng, Deping; Chen, Ziguang; Yang, Zengtao

    2017-04-12

    Based on the acousto-optic interaction, we propose a laser deflection method for rapidly, non-invasively and quantitatively measuring the peak positive pressure of HIFU fields. In the characterization of HIFU fields, the effect of nonlinear propagation is considered. The relation between the laser deflection length and the peak positive pressure is derived. Then the laser deflection method is assessed by comparing it with the hydrophone method. The experimental results show that the peak positive pressure measured by laser deflection method is little higher than that obtained by the hydrophone, confirming that they are in reasonable agreement. Considering that the peak pressure measured by hydrophones is always underestimated, the laser deflection method is assumed to be more accurate than the hydrophone method due to the absence of the errors in hydrophone spatial-averaging measurement and the influence of waveform distortion on hydrophone corrections. Moreover, noting that the Lorentz formula still remains applicable to high-pressure environments, the laser deflection method exhibits a great potential for measuring HIFU field under high-pressure amplitude. Additionally, the laser deflection method provides a rapid way for measuring the peak positive pressure, without the scan time, which is required by the hydrophones.

  17. Oxford Grading Scale vs manometer for assessment of pelvic floor strength in nulliparous sports students.

    PubMed

    Da Roza, T; Mascarenhas, T; Araujo, M; Trindade, V; Jorge, R Natal

    2013-09-01

    To compare pelvic floor muscle strength in nulliparous sports students measured using the modified Oxford Grading Scale and a Peritron manometer; and to compare the manometric measurements between continent and incontinent subjects. Cross-sectional study. All subjects were evaluated twice on the same day; first by vaginal digital examination and subsequently by vaginal pressure using a Peritron manometer. Forty-three nulliparous female sports students [mean age 21 (standard deviation 4) years] from the Sports Faculty of the University of Porto. This study found a significant moderate correlation between the Oxford Grading Scale score and peak pressure on manometry (r=0.646, P=0.002). Mean maximal strength for the entire group was 70.4cmH2O (range 21 to 115cmH2O). Out of 43 subjects, 37% (n=16) demonstrated signs of incontinence. On manometry, no significant differences were found in vaginal resting pressure or peak pressure between the continent and incontinent groups. There was moderate correlation between peak pressure on manometry and the Oxford Grading Scale score. Peritron manometer measurements of pelvic floor muscle contractions showed no significant differences in vaginal resting pressure and peak pressure in continent and incontinent subjects. Copyright © 2012 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.

  18. A comparative study of APLI and APCI in IMS at atmospheric pressure to reveal and explain peak broadening effects by the use of APLI.

    PubMed

    Ihlenborg, Marvin; Raupers, Björn; Gunzer, Frank; Grotemeyer, Jürgen

    2015-11-21

    The details of the ionization mechanism in atmospheric pressure are still not completely known. In order to obtain further insight into the occurring processes in atmospheric pressure laser ionization (APLI) a comparative study of atmospheric pressure chemical ionization (APCI) and APLI is presented in this paper. This study is carried out using similar experimental condition at atmospheric pressure employing a commercial ion mobility spectrometer (IMS). Two different peak broadening mechanisms can then be assigned, one related to a range of different species generated and detected, and furthermore for the first time a power broadening effect on the signals can be identified.

  19. Laryngeal Aerodynamics in Healthy Older Adults and Adults With Parkinson's Disease.

    PubMed

    Matheron, Deborah; Stathopoulos, Elaine T; Huber, Jessica E; Sussman, Joan E

    2017-03-01

    The present study compared laryngeal aerodynamic function of healthy older adults (HOA) to adults with Parkinson's disease (PD) while speaking at a comfortable and increased vocal intensity. Laryngeal aerodynamic measures (subglottal pressure, peak-to-peak flow, minimum flow, and open quotient [OQ]) were compared between HOAs and individuals with PD who had a diagnosis of hypophonia. Increased vocal intensity was elicited via monaurally presented multitalker background noise. At a comfortable speaking intensity, HOAs and individuals with PD produced comparable vocal intensity, rates of vocal fold closure, and minimum flow. HOAs used smaller OQs, higher subglottal pressure, and lower peak-to-peak flow than individuals with PD. Both groups increased speaking intensity when speaking in noise to the same degree. However, HOAs produced increased intensity with greater driving pressure, faster vocal fold closure rates, and smaller OQs than individuals with PD. Monaural background noise elicited equivalent vocal intensity increases in HOAs and individuals with PD. Although both groups used laryngeal mechanisms as expected to increase sound pressure level, they used these mechanisms to different degrees. The HOAs appeared to have better control of the laryngeal mechanism to make changes to their vocal intensity.

  20. Effect of metatarsal pad placement on plantar pressure in people with diabetes mellitus and peripheral neuropathy.

    PubMed

    Hastings, Mary K; Mueller, Michael J; Pilgram, Thomas K; Lott, Donovan J; Commean, Paul K; Johnson, Jeffrey E

    2007-01-01

    Standard prevention and treatment strategies to decrease peak plantar pressure include a total contact insert with a metatarsal pad, but no clear guidelines exist to determine optimal placement of the pad with respect to the metatarsal head. The purpose of this study was to determine the effect of metatarsal pad location on peak plantar pressure in subjects with diabetes mellitus and peripheral neuropathy. Twenty subjects with diabetes mellitus, peripheral neuropathy, and a history of forefoot plantar ulcers were studied (12 men and eight women, mean age=57+/-9 years). CT determined the position of the metatarsal pad relative to metatarsal head and peak plantar pressures were measured on subjects in three footwear conditions: extra-depth shoes and a 1) total contact insert, 2) total contact insert and a proximal metatarsal pad, and 3) total contact insert and a distal metatarsal pad. The change in peak plantar pressure between shoe conditions was plotted and compared to metatarsal pad position relative to the second metatarsal head. Compared to the total contact insert, all metatarsal pad placements between 6.1 mm to 10.6 mm proximal to the metatarsal head line resulted in a pressure reduction (average reduction=32+/-16%). Metatarsal pad placements between 1.8 mm distal and 6.1 mm proximal and between 10.6 mm proximal and 16.8 mm proximal to the metatarsal head line resulted in variable peak plantar pressure reduction (average reduction=16+/-21%). Peak plantar pressure increased when the metatarsal pad was located more than 1.8 mm distal to the metatarsal head line. Consistent peak plantar pressure reduction occurred when the metatarsal pad in this study was located between 6 to 11 mm proximal to the metatarsal head line. Pressure reduction lessened as the metatarsal pad moved outside of this range and actually increased if the pad was located too distal of this range. Computational models are needed to help predict optimal location of metatarsal pad with a variety of sizes, shapes, and material properties.

  1. Effects of different computer typing speeds on acceleration and peak contact pressure of the fingertips during computer typing.

    PubMed

    Yoo, Won-Gyu

    2015-01-01

    [Purpose] This study showed the effects of different computer typing speeds on acceleration and peak contact pressure of the fingertips during computer typing. [Subjects] Twenty-one male computer workers voluntarily consented to participate in this study. They consisted of 7 workers who could type 200-300 characteristics/minute, 7 workers who could type 300-400 characteristics/minute, and 7 workers who could type 400-500 chracteristics/minute. [Methods] This study was used to measure the acceleration and peak contact pressure of the fingertips for different typing speed groups using an accelerometer and CONFORMat system. [Results] The fingertip contact pressure was increased in the high typing speed group compared with the low and medium typing speed groups. The fingertip acceleration was increased in the high typing speed group compared with the low and medium typing speed groups. [Conclusion] The results of the present study indicate that a fast typing speed cause continuous pressure stress to be applied to the fingers, thereby creating pain in the fingers.

  2. Survival of fossilised diatoms and forams in hypervelocity impacts with peak shock pressures in the 1-19 GPa range

    NASA Astrophysics Data System (ADS)

    Burchell, M. J.; Harriss, K. H.; Price, M. C.; Yolland, L.

    2017-07-01

    Previously it has been shown that diatom fossils embedded in ice could survive impacts at speeds of up to 5 km s-1 and peak shock pressures up to 12 GPa. Here we confirm these results using a different technique, with diatoms carried in liquid water suspensions at impact speeds of 2-6 km s-1. These correspond to peak shock pressures of 3.8-19.8 GPa. We also report on the results of similar experiments using forams, at impact speeds of 4.67 km s-1 (when carried in water) and 4.73 km s-1 (when carried in ice), corresponding to peak shock pressures of 11.6 and 13.1 GPa respectively. In all cases we again find survival of recognisable fragments, with mean fragment size of order 20-25 μm. We compare our results to the peak shock pressures that ejecta from giant impacts on the Earth would experience if it subsequently impacted the Moon. We find that 98% of impacts of terrestrial ejecta on the Moon would have experienced peak pressures less than 20 GPa if the ejecta were a soft rock (sandstone). This falls to 82% of meteorites if the ejecta were a hard rock (granite). This assumes impacts on a solid lunar surface. If we approximate the surface as a loose regolith, over 99% of the impacts involve peak shock pressures below 20 GPa. Either way, the results show that a significant fraction of terrestrial meteorites impacting the Moon will do so with peak shock pressures which in our experiments permit the survival of recognisable fossil fragments.

  3. Characterization of a high-pressure diesel fuel injection system as a control technology option to improve engine performance and reduce exhaust emissions

    NASA Technical Reports Server (NTRS)

    Mcfadden, J. J.; Dezelick, R. A.; Barrows, R. R.

    1983-01-01

    Test results from a high pressure electronically controlled fuel injection system are compared with a commercial mechanical injection system on a single cylinder, diesel test engine using an inlet boost pressure of 2.6:1. The electronic fuel injection system achieved high pressure by means of a fluid intensifier with peak injection pressures of 47 to 69 MPa. Reduced exhaust emissions were demonstrated with an increasing rate of injection followed by a fast cutoff of injection. The reduction in emissions is more responsive to the rate of injection and injection timing than to high peak injection pressure.

  4. Inhibition of coronary blood flow by a vascular waterfall mechanism.

    PubMed

    Downey, J M; Kirk, E S

    1975-06-01

    The mechanism whereby systole inhibits coronary blood flow was examined. A branch of the left coronary artery was maximally dilated with an adenosine infusion, and the pressure-flow relationship was obtained for beating and arrested states. The pressure-flow curve for the arrested state was shifted toward higher pressures and in the range of pressures above peak ventricular pressure was linear and parallel to that for the arrested state. Below this range the curve for the beating state converged toward that for the arrested state and was convex to the pressure axis. These results were compared with a model of the coronary vasculature that consisted of numerous parallel channels, each responding to local intramyocardial pressure by forming vascular waterfalls. When intramyocardial pressure in the model was assigned values from zero at the epicardium to peak ventricular pressure at the endocardium, pressure-flow curves similar to the experimental ones resulted. Thus, we conclude that systole inhibits coronary perfusion by the formation of vascular waterfalls and that the intramyocardial pressures responsible for this inhibition do not significantly exceed peak ventricular pressure.

  5. The Locations of Ring Current Pressure Peaks: Comparison of TWINS Measurements and CIMI Simulations for the 7-10 September 2015 CIR Storm

    NASA Astrophysics Data System (ADS)

    Hill, S. C.; Edmond, J. A.; Xu, H.; Perez, J. D.; Fok, M. C. H.; Goldstein, J.; McComas, D. J.; Valek, P. W.

    2017-12-01

    The characteristics of a four day 7-10 September 2015 co-rotating interaction region (CIR) storm (min. SYM/H ≤ -110 nT) are categorized by storm phase. Ion distributions of trapped particles in the ring current as measured by the Two Wide-Angle Imaging Neutral Atom Spectrometers (TWINS) are compared with the simulated ion distributions of the Comprehensive Inner Magnetosphere-Ionosphere Model (CIMI). The energetic neutral atom (ENA) images obtained by TWINS are deconvolved to extract equatorial pitch angle, energy spectra, ion pressure intensity, and ion pressure anisotropy distributions in the inner magnetosphere. CIMI, using either a self-consistent electric field or a semi-empirical electric field, simulates comparable distributions. There is good agreement between the data measured by TWINS and the different distributions produced by the self-consistent electric field and the semi-empirical electric field of CIMI. Throughout the storm the pitch angle distribution (PAD) is mostly perpendicular in both CIMI and TWINS and there is agreement between the anisotropy distributions. The locations of the ion pressure peaks seen by TWINS and by the self-consistent and semi empirical electric field parameters in CIMI are usually between dusk and midnight. On average, the self-consistent electric field in CIMI reveals ion pressure peaks closer to Earth than its semi empirical counterpart, while TWINS reports somewhat larger radial values for the ion pressure peak locations. There are also notable events throughout the storm during which the simulated observations show some characteristics that differ from those measured by TWINS. At times, there are ion pressure peaks with magnetic local time on the dayside and in the midnight to dawn region. We discuss these events in light of substorm injections indicated by fluctuating peaks in the AE index and a positive By component in the solar wind. There are also times in which there are multiple ion pressure peaks. This may imply that there are time dependent and spatially dependent injection events that are influenced by local reconnection regions in the tail of the magnetosphere. Using CIMI simulations, we present paths of particles with various energies to assist in interpreting these notable events.

  6. Quantification aspects of constant pressure (ultra) high pressure liquid chromatography using mass-sensitive detectors with a nebulizing interface.

    PubMed

    Verstraeten, M; Broeckhoven, K; Lynen, F; Choikhet, K; Landt, K; Dittmann, M; Witt, K; Sandra, P; Desmet, G

    2013-01-25

    The present contribution investigates the quantitation aspects of mass-sensitive detectors with nebulizing interface (ESI-MSD, ELSD, CAD) in the constant pressure gradient elution mode. In this operation mode, the pressure is controlled and maintained at a set value and the liquid flow rate will vary according to the inverse mobile phase viscosity. As the pressure is continuously kept at the allowable maximum during the entire gradient run, the average liquid flow rate is higher compared to that in the conventional constant flow rate operation mode, thus shortening the analysis time. The following three mass-sensitive detectors were investigated: mass spectrometry detector (MS), evaporative light scattering detector (ELSD) and charged aerosol detector (CAD) and a wide variety of samples (phenones, polyaromatic hydrocarbons, wine, cocoa butter) has been considered. It was found that the nebulizing efficiency of the LC-interfaces of the three detectors under consideration changes with the increasing liquid flow rate. For the MS, the increasing flow rate leads to a lower peak area whereas for the ELSD the peak area increases compared to the constant flow rate mode. The peak area obtained with a CAD is rather insensitive to the liquid flow rate. The reproducibility of the peak area remains similar in both modes, although variation in system permeability compromises the 'long-term' reproducibility. This problem can however be overcome by running a flow rate program with an optimized flow rate and composition profile obtained from the constant pressure mode. In this case, the quantification remains reproducibile, despite any occuring variations of the system permeability. Furthermore, the same fragmentation pattern (MS) has been found in the constant pressure mode compared to the customary constant flow rate mode. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Custom therapeutic insoles based on both foot shape and plantar pressure measurement provide enhanced pressure relief.

    PubMed

    Owings, Tammy M; Woerner, Julie L; Frampton, Jason D; Cavanagh, Peter R; Botek, Georgeanne

    2008-05-01

    The purpose of this study was to determine whether custom insoles tailored to contours of the barefoot pressure distribution and shape of a patient's foot can reduce plantar pressures in the metatarsal head (MTH) region to a greater extent than conventional custom insoles. Seventy regions of elevated barefoot pressures (mean peak 834 kPa under MTHs) were identified in 20 subjects with diabetes. Foam box impressions of their feet were sent to three different orthotic supply companies for fabrication of custom insoles. One company was also given plantar pressure data, which were incorporated into the insole design. Measurements of in-shoe plantar pressures were recorded during gait for the three custom insoles in a flexible and a rocker-bottom shoe. Peak pressure and force-time integral were extracted for analysis. In 64 of 70 regions, the shape-plus-pressure-based insole in the flexible shoe achieved superior unloading compared with the two shape-based insoles. On average, peak pressure was reduced by 32 and 21% (both P

  8. Focused ultrasound transducer spatial peak intensity estimation: a comparison of methods

    NASA Astrophysics Data System (ADS)

    Civale, John; Rivens, Ian; Shaw, Adam; ter Haar, Gail

    2018-03-01

    Characterisation of the spatial peak intensity at the focus of high intensity focused ultrasound transducers is difficult because of the risk of damage to hydrophone sensors at the high focal pressures generated. Hill et al (1994 Ultrasound Med. Biol. 20 259-69) provided a simple equation for estimating spatial-peak intensity for solid spherical bowl transducers using measured acoustic power and focal beamwidth. This paper demonstrates theoretically and experimentally that this expression is only strictly valid for spherical bowl transducers without a central (imaging) aperture. A hole in the centre of the transducer results in over-estimation of the peak intensity. Improved strategies for determining focal peak intensity from a measurement of total acoustic power are proposed. Four methods are compared: (i) a solid spherical bowl approximation (after Hill et al 1994 Ultrasound Med. Biol. 20 259-69), (ii) a numerical method derived from theory, (iii) a method using measured sidelobe to focal peak pressure ratio, and (iv) a method for measuring the focal power fraction (FPF) experimentally. Spatial-peak intensities were estimated for 8 transducers at three drive powers levels: low (approximately 1 W), moderate (~10 W) and high (20-70 W). The calculated intensities were compared with those derived from focal peak pressure measurements made using a calibrated hydrophone. The FPF measurement method was found to provide focal peak intensity estimates that agreed most closely (within 15%) with the hydrophone measurements, followed by the pressure ratio method (within 20%). The numerical method was found to consistently over-estimate focal peak intensity (+40% on average), however, for transducers with a central hole it was more accurate than using the solid bowl assumption (+70% over-estimation). In conclusion, the ability to make use of an automated beam plotting system, and a hydrophone with good spatial resolution, greatly facilitates characterisation of the FPF, and consequently gives improved confidence in estimating spatial peak intensity from measurement of acoustic power.

  9. Pressure-reduction and preservation in custom-made footwear of patients with diabetes and a history of plantar ulceration.

    PubMed

    Waaijman, R; Arts, M L J; Haspels, R; Busch-Westbroek, T E; Nollet, F; Bus, S A

    2012-12-01

    To assess the value of using in-shoe plantar pressure analysis to improve and preserve the offloading properties of custom-made footwear in patients with diabetes. Dynamic in-shoe plantar pressures were measured in new custom-made footwear of 117 patients with diabetes, neuropathy, and a healed plantar foot ulcer. In 85 of these patients, high peak pressure locations (peak pressure > 200 kPa) were targeted for pressure reduction (goal: > 25% relief or below an absolute level of 200 kPa) by modifying the footwear. After each of a maximum three rounds of modifications, pressures were measured. In a subgroup of 32 patients, pressures were measured and, if needed, footwear was modified at 3-monthly visits for 1 year. Pressures were compared with those measured in 32 control patients who had no footwear modifications based on pressure analysis. At the previous ulcer location and the highest and second highest pressure locations, peak pressures were significantly reduced by 23%, 21% and 15%, respectively, after modification of footwear. These lowered pressures were maintained or further reduced over time and were significantly lower, by 24-28%, compared with pressures in the control group. The offloading capacity of custom-made footwear for high-risk patients can be effectively improved and preserved using in-shoe plantar pressure analysis as guidance tool for footwear modification. This provides a useful approach to obtain better offloading footwear that may reduce the risk for pressure-related diabetic foot ulcers. © 2012 The Authors. Diabetic Medicine © 2012 Diabetes UK.

  10. Effect of a pulsating anti-gravity suit on peak exercise performance in individual with spinal cord injuries.

    PubMed

    Houtman, S; Thielen, J J; Binkhorst, R A; Hopman, M T

    1999-01-01

    The aim of this study was to examine effects of a pulsating pressure anti-gravity suit on the peak values of oxygen uptake (VO2) and power during maximal arm exercise in spinal-cord-injured (SCI) individuals. Five well-trained SCI men (with lesions at levels between T6 and L1) and seven well-trained able-bodied men (ABC) performed two incremental (10 W x min(-1)) arm-cranking tests. During one test the pressure in the anti-G suit pulsated between 4.7 kPa (35 mmHg) and 9.3 kPa (70 mmHg) every 2 s (PPG+), during the other test (PPG-) all the subjects wore the anti-G suit in a deflated state. Tests were performed in a counter-balanced order. Peak VO2 in SCI was 1 ml x kg(-1) x min(-1) lower during PPG+ compared to PPG- (P = 0.05). Peak power and peak heart rate were not significantly different during PPG+ compared to PPG-. These results would suggest that no increase in work capacity can be obtained with a pulsating pressure anti-gravity suit in either SCI or ABC.

  11. An in vitro evaluation of the pressure generated during programmed intermittent epidural bolus injection at varying infusion delivery speeds.

    PubMed

    Klumpner, Thomas T; Lange, Elizabeth M S; Ahmed, Heena S; Fitzgerald, Paul C; Wong, Cynthia A; Toledo, Paloma

    2016-11-01

    Programmed intermittent bolus injection of epidural anesthetic solution results in decreased anesthetic consumption and better patient satisfaction compared with continuous infusion, presumably by better spread of the anesthetic solution in the epidural space. It is not known whether the delivery speed of the bolus injection influences analgesia outcomes. The objective of this in vitro study was to determine the pressure generated by a programmed intermittent bolus pump at 4 infusion delivery speeds through open-ended, single-orifice and closed-end, multiorifice epidural catheters. In vitro observational study. Not applicable. Not applicable. A CADD-Solis Pain Management System v3.0 with Programmed Intermittent Bolus Model 2110 was connected via a 3-way adapter to an epidural catheter and a digital pressure transducer. Pressures generated by delivery speeds of 100, 175, 300, and 400 mL/h of saline solution were tested with 4 epidural catheters (2 single orifice and 2 multiorifice). These runs were replicated on 5 pumps. Analysis of variance was used to compare the mean peak pressures of each delivery speed within each catheter group (single orifice and multiorifice). Thirty runs at each delivery speed were performed with each type of catheter for a total of 240 experimental runs. Peak pressure increased with increasing delivery speeds in both catheter groups (P<.001). Peak pressures were higher with the multiorifice catheter compared with the single-orifice catheter at all delivery speeds (P<.001, for all). Using a pump designed for programmed intermittent infusion boluses, the delivery speed of saline solution through epidural catheters was directly related to the peak pressures. Future work should evaluate whether differences in the delivery speed of anesthetic solution into the epidural space correlate with differences in the duration and quality of analgesia during programmed intermittent epidural bolus delivery. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Effect of repair of radial tears at the root of the posterior horn of the medial meniscus with the pullout suture technique: a biomechanical study using porcine knees.

    PubMed

    Seo, Jeong-Hee; Li, Guoan; Shetty, Gautam M; Kim, Ji-Hoon; Bae, Ji-Hoon; Jo, Myoung-Lae; Kim, Jung-Sung; Lee, Sung-Jae; Nha, Kyung-Wook

    2009-11-01

    Our purpose was to evaluate the result of radial tears at the root of the posterior horn of the medial meniscus (PHMM) in terms of tibiofemoral contact mechanics and the effectiveness of pullout sutures for such tears. Eleven mature pig knees each underwent 15 different testing conditions with an intact, simulated (incised) radial tear at the root of the PHMM and placement of pullout sutures in the radial tears of the medial meniscus at 5 different angles of flexion (0 degrees, 15 degrees, 30 degrees, 60 degrees, and 90 degrees ) under a 1,500-N axial load. A K-Scan pressure sensor (Tekscan, Boston, MA) was used to measure medial tibiofemoral contact area and peak tibiofemoral contact pressure. Data were analyzed to assess the difference in medial contact area and tibiofemoral peak contact pressure among the 3 meniscal conditions at various degrees of knee flexion. The mean contact area was significantly lower, and the peak tibiofemoral contact pressure was significantly high in knees with simulated radial tears at all angles of knee flexion compared with knees with intact menisci (P < .0001). The peak tibiofemoral contact pressure after the pullout suture technique was significantly high at 0 degrees and 15 degrees of flexion (P < .0001) compared with intact knee specimens. Failure of sutures occurred in 45% of the specimens at 0 degrees of flexion. Radial tears at the root of the PHMM in a porcine model significantly increased medial tibiofemoral contact pressure and decreased contact area. Although repair of tears of the PHMM with the pullout suture technique aids in significantly reducing tibiofemoral peak contact pressure between 30 degrees and 90 degrees , it remains significantly high at 0 degrees and 15 degrees of flexion. Pullout sutures for radial tears at the root of the PHMM may lead to an increase in peak medial tibiofemoral contact pressure and may be prone to mechanical failure, especially during the stance (loading) phase of gait (mean, 15 degrees of flexion).

  13. Suction generation in white-spotted bamboo sharks Chiloscyllium plagiosum.

    PubMed

    Wilga, Cheryl D; Sanford, Christopher P

    2008-10-01

    After the divergence of chondrichthyans and teleostomes, the structure of the feeding apparatus also diverged leading to alterations in the suction mechanism. In this study we investigated the mechanism for suction generation during feeding in white-spotted bamboo sharks, Chiloscyllium plagiosum and compared it with that in teleosts. The internal movement of cranial elements and pressure in the buccal, hyoid and pharyngeal cavities that are directly responsible for suction generation was quantified using sonomicrometry and pressure transducers. Backward stepwise multiple linear regressions were used to explore the relationship between expansion and pressure, accounting for 60-96% of the variation in pressure among capture events. The progression of anterior to posterior expansion in the buccal, hyoid and pharyngeal cavities is accompanied by the sequential onset of subambient pressure in these cavities as prey is drawn into the mouth. Gape opening triggers the onset of subambient pressure in the oropharyngeal cavities. Peak gape area coincides with peak subambient buccal pressure. Increased velocity of hyoid area expansion is primarily responsible for generating peak subambient pressure in the buccal and hyoid regions. Pharyngeal expansion appears to function as a sink to receive water influx from the mouth, much like that of compensatory suction in bidirectional aquatic feeders. Interestingly, C. plagiosum generates large suction pressures while paradoxically compressing the buccal cavity laterally, delaying the time to peak pressure. This represents a fundamental difference from the mechanism used to generate suction in teleost fishes. Interestingly, pressure in the three cavities peaks in the posterior to anterior direction. The complex shape changes that the buccal cavity undergoes indicate that, as in teleosts, unsteady flow predominates during suction feeding. Several kinematic variables function together, with great variation over long gape cycles to generate the low subambient pressures used by C. plagiosum to capture prey.

  14. Runners with Patellofemoral Pain Exhibit Greater Peak Patella Cartilage Stress Compared to Pain-Free Runners.

    PubMed

    Liao, Tzu-Chieh; Keyak, Joyce H; Powers, Christopher M

    2018-02-27

    The purpose of this study is to determine whether recreational runners with patellofemoral pain (PFP) exhibit greater peak patella cartilage stress compared to pain-free runners. A secondary purpose was to determine the kinematic and/or kinetic predictors of peak patella cartilage stress during running. Twenty-two female recreational runners participated (12 with PFP and 10 pain-free controls). Patella cartilage stress profiles were quantified using subject-specific finite element models simulating the maximum knee flexion angle during stance phase of running. Input parameters to the finite element model included subject-specific patellofemoral joint geometry, quadriceps muscle forces, and lower extremity kinematics in the frontal and transverse planes. Tibiofemoral joint kinematics and kinetics were quantified to determine the best predictor of stress using stepwise regression analysis. Compared to the pain-free runners, those with PFP exhibited greater peak hydrostatic pressure (PFP vs. control, 21.2 ± 5.6 MPa vs. 16.5 ± 4.6 MPa) and maximum shear stress (11.3 ± 4.6 MPa vs. 8.7 ± 2.3 MPa). Knee external rotation was the best predictor of peak hydrostatic pressure and peak maximum shear stress (38% and 25% of variances, respectively) followed by the knee extensor moment (21% and 25% of variances, respectively). Runners with PFP exhibit greater peak patella cartilage stress during running compared to pain-free individuals. The combination of knee external rotation and a high knee extensor moment best predicted elevated peak stress during running.

  15. Comparison of plantar pressure distribution between three different shoes and three common movements in futsal.

    PubMed

    Teymouri, Meghdad; Halabchi, Farzin; Mirshahi, Maryam; Mansournia, Mohammad Ali; Mousavi Ahranjani, Ali; Sadeghi, Amir

    2017-01-01

    Analysis of in-shoe pressure distribution during sport-specific movements may provide a clue to improve shoe design and prevent injuries. This study compared the mean and the peak pressures over the whole foot and ten separate areas of the foot, wearing different shoes during specific movements. Nine male adult recreational futsal players performed three trials of three sport-specific movements (shuffle, sprint and penalty kick), while they were wearing three brands of futsal shoes (Adidas, Lotto and Tiger). Plantar pressures on dominant feet were collected using the F-SCAN system. Peak and mean pressures for whole foot and each separate area were extracted. For statistical analysis, the mean differences in outcome variables between different shoes and movements were estimated using random-effects regression model using STATA ver.10. In the average calculation of the three movements, the peak pressure on the whole foot in Adidas shoe was less than Lotto [8.8% (CI95%: 4.1-13.6%)] and Tiger shoes [11.8% (CI95%:7-16.7%)], (P<0.001). Also, the recorded peak pressure on the whole foot in penalty kick was 61.1% (CI95%: 56.3-65.9%) and 57.6% (CI95%: 52.8-62.3%) less than Shuffle and Sprint tests, respectively (P<0.001). Areas with the highest peak pressure during all 3 movements were not different between all shoes. This area was medial forefoot in cases of shuffle and sprint movements and medial heel in case of penalty kick.

  16. Measurement of pressure walking in footwear used in leprosy.

    PubMed

    Birke, J A; Foto, J G; Deepak, S; Watson, J

    1994-09-01

    Pressure measurements were made on 10 leprosy patients while walking barefoot and while using 6 sample shoes. The sample shoes, which represented footwear currently used worldwide in leprosy programmes, included: 1, a USA extradepth shoe without insole; 2, a USA extradepth shoe with insole; 3, a Chinese tennis shoe; 4, a Mozambique sandal; 5, a Bombay sandal; 6, a Bombay sandal with rigid sole; and 7, the patients' prescribed footwear. Peak pressure was significantly lower while walking in all footwear, except with the extradepth shoe without an insole, when compared to barefoot walking. Peak pressure was significantly lower walking in the Bombay sandals, the Chinese tennis shoe, the extradepth shoe with an insert and the patients' prescribed shoe when compared to the extradepth shoe without an insert. Regression analysis showed a significant inverse relationship between pressure and insole thickness (P < 0.001, R2 = 0.17).

  17. Experimental investigation and constitutive model for lime mudstone.

    PubMed

    Wang, Junbao; Liu, Xinrong; Zhao, Baoyun; Song, Zhanping; Lai, Jinxing

    2016-01-01

    In order to investigate the mechanical properties of lime mudstone, conventional triaxial compression tests under different confining pressures (0, 5, 15 and 20 MPa) are performed on lime mudstone samples. The test results show that, from the overall perspective of variation law, the axial peak stress, axial peak strain and elastic modulus of lime mudstone tend to gradually increase with increasing confining pressure. In the range of tested confining pressure, the variations in axial peak stress and elastic modulus with confining pressure can be described with linear functions; while the variation in axial peak strain with confining pressure can be reflected with a power function. To describe the axial stress-strain behavior in failure process of lime mudstone, a new constitutive model is proposed, with the model characteristics analyzed and the parameter determination method put forward. Compared with Wang' model, only one parameter n is added to the new model. The comparison of predicted curves from the model and test data indicates that the new model can preferably simulate the strain softening property of lime mudstone and the axial stress-strain response in rock failure process.

  18. Distinct Effect of Impact Rise Times on Immediate and Early Neuropathology After Brain Injury in Juvenile Rats

    PubMed Central

    Jayakumar, Archana; Pfister, Bryan J.; Santhakumar, Vijayalakshmi

    2015-01-01

    Traumatic brain injury (TBI) can occur from physical trauma from a wide spectrum of insults ranging from explosions to falls. The biomechanics of the trauma can vary in key features, including the rate and magnitude of the insult. Although the effect of peak injury pressure on neurological outcome has been examined in the fluid percussion injury (FPI) model, it is unknown whether differences in rate of rise of the injury waveform modify cellular and physiological changes after TBI. Using a programmable FPI device, we examined juvenile rats subjected to a constant peak pressure at two rates of injury: a standard FPI rate of rise and a faster rate of rise to the same peak pressure. Immediate postinjury assessment identified fewer seizures and relatively brief loss of consciousness after fast-rise injuries than after standard-rise injuries at similar peak pressures. Compared with rats injured at standard rise, fewer silver-stained injured neuronal profiles and degenerating hilar neurons were observed 4-6 hr after fast-rise FPI. However, 1 week postinjury, both fast- and standard-rise FPI resulted in hilar cell loss and enhanced perforant path-evoked granule cell field excitability compared with sham controls. Notably, the extent of neuronal loss and increase in dentate excitability were not different between rats injured at fast and standard rates of rise to peak pressure. Our data indicate that reduced cellular damage and improved immediate neurological outcome after fast rising primary concussive injuries mask the severity of the subsequent cellular and neurophysiological pathology and may be unreliable as a predictor of prognosis. PMID:24799156

  19. Laryngeal Aerodynamics in Healthy Older Adults and Adults with Parkinson's Disease

    ERIC Educational Resources Information Center

    Matheron, Deborah; Stathopoulos, Elaine T.; Huber, Jessica E.; Sussman, Joan E.

    2017-01-01

    Purpose: The present study compared laryngeal aerodynamic function of healthy older adults (HOA) to adults with Parkinson's disease (PD) while speaking at a comfortable and increased vocal intensity. Method: Laryngeal aerodynamic measures (subglottal pressure, peak-to-peak flow, minimum flow, and open quotient [OQ]) were compared between HOAs and…

  20. Comparing otoacoustic emissions evoked by chirp transients with constant absorbed sound power and constant incident pressure magnitude.

    PubMed

    Keefe, Douglas H; Feeney, M Patrick; Hunter, Lisa L; Fitzpatrick, Denis F

    2017-01-01

    Human ear-canal properties of transient acoustic stimuli are contrasted that utilize measured ear-canal pressures in conjunction with measured acoustic pressure reflectance and admittance. These data are referenced to the tip of a probe snugly inserted into the ear canal. Promising procedures to calibrate across frequency include stimuli with controlled levels of incident pressure magnitude, absorbed sound power, and forward pressure magnitude. An equivalent pressure at the eardrum is calculated from these measured data using a transmission-line model of ear-canal acoustics parameterized by acoustically estimated ear-canal area at the probe tip and length between the probe tip and eardrum. Chirp stimuli with constant incident pressure magnitude and constant absorbed sound power across frequency were generated to elicit transient-evoked otoacoustic emissions (TEOAEs), which were measured in normal-hearing adult ears from 0.7 to 8 kHz. TEOAE stimuli had similar peak-to-peak equivalent sound pressure levels across calibration conditions. Frequency-domain TEOAEs were compared using signal level, signal-to-noise ratio (SNR), coherence synchrony modulus (CSM), group delay, and group spread. Time-domain TEOAEs were compared using SNR, CSM, instantaneous frequency and instantaneous bandwidth. Stimuli with constant incident pressure magnitude or constant absorbed sound power across frequency produce generally similar TEOAEs up to 8 kHz.

  1. Modified femoral pressuriser generates a longer lasting high pressure during cement pressurisation

    PubMed Central

    2011-01-01

    Background The strength of the cement-bone interface in hip arthroplasty is strongly related to cement penetration into the bone. A modified femoral pressuriser has been investigated, designed for closer fitting into the femoral opening to generate higher and more constant cement pressure compared to a commercial (conventional) design. Methods Femoral cementation was performed in 10 Sawbones® models, five using the modified pressuriser and five using a current commercial pressuriser as a control. Pressure during the cementation was recorded at the proximal and distal regions of the femoral implant. The peak pressure and the pressure-time curves were analysed by student's t-test and Two way ANOVA. Results The modified pressuriser showed significantly and substantially longer durations at higher cementation pressures and slightly, although not statistically, higher peak pressures compared to the conventional pressuriser. The modified pressuriser also produced more controlled cement leakage. Conclusion The modified pressuriser generates longer higher pressure durations in the femoral model. This design modification may enhance cement penetration into cancellous bone and could improve femoral cementation. PMID:22004662

  2. Development and validation of a numerical model of the swine head subjected to open-field blasts

    NASA Astrophysics Data System (ADS)

    Kalra, A.; Zhu, F.; Feng, K.; Saif, T.; Kallakuri, S.; Jin, X.; Yang, K.; King, A.

    2017-11-01

    A finite element model of the head of a 55-kg Yucatan pig was developed to calculate the incident pressure and corresponding intracranial pressure due to the explosion of 8 lb (3.63 kg) of C4 at three different distances. The results from the model were validated by comparing findings with experimentally obtained data from five pigs at three different blast overpressure levels: low (150 kPa), medium (275 kPa), and high (400 kPa). The peak values of intracranial pressures from numerical model at different locations of the brain such as the frontal, central, left temporal, right temporal, parietal, and occipital regions were compared with experimental values. The model was able to predict the peak pressure with reasonable percentage differences. The differences for peak incident and intracranial pressure values between the simulation results and the experimental values were found to be less than 2.2 and 29.3%, respectively, at all locations other than the frontal region. Additionally, a series of parametric studies shows that the intracranial pressure was very sensitive to sensor locations, the presence of air bubbles, and reflections experienced during the experiments. Further efforts will be undertaken to correlate the different biomechanical response parameters, such as the intracranial pressure gradient, stress, and strain results obtained from the validated model with injured brain locations once the histology data become available.

  3. [Effect of atorvastatin on exercise tolerance in patients with diastolic dysfunction and exercise-induced hypertension].

    PubMed

    Ye, Ping-xian; Ye, Ping-zhen; Zhu, Jian-hua; Chen, Wei; Gao, Dan-chen

    2014-05-01

    To investigate the effect of atorvastatin on exercise tolerance in patients with diastolic dysfunction and exercise-induced hypertension. A randomized, double-blind, placebo-controlled prospective study was performed. Sixty patients with diastolic dysfunction (mitral flow velocity E/A <1) and exercise-induced hypertension (SBP>200 mm Hg) treated with atorvastatin (20 mg q.d) or placebo for 1 year. Cardiopulmonary exercise test and exercise blood pressure measurement were performed. Plasma B-natriuretic peptide (BNP) concentration at rest and at peak exercise, plasma high sensitive-C reaction protein (hs-CRP) and endothelin (ET) concentration were determined at baseline and after treatment. After treatment by atorvastatin, the resting SBP, pulse pressure, the peak exercise SBP and BNP were significantly decreased; and the exercise time, metabolic equivalent, maximal oxygen uptake and anaerobic threshold were increased. All of these parameters had significant differences with baseline levels (P<0.05) and the rest pulse pressure, the peak exercise SBP and BNP, and the exercise time had significant differences compared with placebo treatment (P<0.05). Plasma concentrations of hs-CRP and ET were markedly reduced by atorvastatin treatment compared with baseline and placebo (P<0.05). No difference in above parameters was found before and after placebo treatment (P>0.05). In patients with diastolic dysfunction at rest and exercise-induced hypertension, atorvastatin can effectively reduce plasma hs-CRP and ET level, lower blood pressure and peak exercise SBP, decrease peak exercise plasma BNP concentration, and ultimately improve exercise tolerance.

  4. [Effect of ambulatory supervised cardiac training on arterial hypertension in patients with coronary artery disease and arterial hypertension].

    PubMed

    Kałka, Dariusz; Sobieszczańska, Małgorzata; Marciniak, Wojciech; Popielewicz-Kautz, Aleksandra; Markuszewski, Leszek; Chorebała, Arkadiusz; Korzeniowska, Joanna; Janczak, Jacek; Adamus, Jerzy

    2007-01-01

    Arterial hypertension is one of the most common health problems occurring in highly developed countries. It was proved that long-term and regular physical activity results in hypotensive effect. A goal of the present study was to assess an influence of six-month ambulatory cardiac rehabilitation on arterial pressure level in patients with coronary artery disease and hypertension as well as analysis of correlation between pressure values alterations and intensity of cardiac training. A study group comprised 103 patients (mean age: 61.2 +/- 0.8 years) manifesting coronary artery disease accompanied by arterial hypertension. A control group constituted 39 normotensive patients with coronary artery disease (mean age: 59.4 +/- 1.3 years). The both observed groups differ from each other only with values of left ventricle mass index and drug regimen established at least three months prior to the follow-up onset. During the rehabilitation cycle, no treatment corrections were made and no new preparations were added. The all patients were enrolled to the six-month cardiac rehabilitation program. The program comprised 45-minute training with cycle ergometer, three times a week, and generally improving gym exercises, two times a week. The analyses concerned systolic and diastolic pressure values, measured just before each training (resting pressure) and just after peak exercise interval (peak pressure), at the beginning and at the end of the rehabilitation cycle. At the initial stage, the patient group with hypertension demonstrated the higher pressure values (resting and peak), as compared with the control group. Cardiac rehabilitation performed in the examined patients caused a statistically significant reduction of the mean resting pressure, both systolic (p < 0.01) and diastolic (p < 0.01). As to the mean peak pressure in this group, systolic diminished slightly (NS), but diastolic was reduced significantly (p < 0.01). In the control group, after six-month rehabilitation the values appeared to be lowered insignificantly in relation to systolic and diastolic resting pressure, likewise diastolic peak pressure, and contrarily systolic peak pressure increased slightly. Assessing an interrelation between the final outcome of the rehabilitation program, expressed as delta of arterial pressure, and terminal training workload and delta of training workload, only for delta of systolic pressure and final training workload, a positive correlation of statistical significance was found out, which is considered an implication of physiological reaction against an increase of training workload. Long-term and regular cardiac training induced the larger alterations of pressure values in the patients with hypertension, as compared with the normotensive patients. A positive effect of cardiac rehabilitation on arterial pressure level in the hypertensive patients was found to be independent of the training intensity.

  5. Tibiofemoral contact pressures in radial tears of the meniscus treated with all-inside repair, inside-out repair and partial meniscectomy.

    PubMed

    Zhang, Alan L; Miller, Stephanie L; Coughlin, Dezba G; Lotz, Jeffrey C; Feeley, Brian T

    2015-10-01

    To test contact pressures in the knee after treatment of a radial meniscus tear with an all-inside meniscal repair technique and compare the results with inside-out repair and partial meniscectomy. Six non-paired cadaveric knees were analyzed with intra-compartment pressures measured at loads of 250 N, 500 N and 1000 N at 0°, eight degrees, 15°, and 30° of knee flexion. Compartmental contact pressures were measured for the intact medial meniscus, radial tear in the posterior horn, all-inside repair using the NovoStitch suture passer device (Ceterix Orthopaedics Inc., Menlo Park, CA), inside-out repair method, and partial meniscectomy. One-way ANOVA was used for statistical analysis. The greatest differences in peak pressures between treatments were observed under 1000 N load at 30° flexion (0.8± (SD) 0.1 MPa (intact meniscus), 0.8± (SD) 0.1 MPa (all-inside), 0.9± (SD) 0.1 MPa (inside-out) and 1.6± (SD) 0.2 MPa (partial meniscectomy)). Treatment with partial meniscectomy resulted in the highest peak pressures compared to all other states (p<0.0001 at each angle). Repair of the radial tear using the all-inside technique as well as the inside-out technique resulted in significantly decreased compartment pressures compared to partial meniscectomies (p<0.0001 at each angle). There were no significant differences between peak pressures in the intact state and after repair with the all-inside or inside-out techniques. An all-inside repair technique using the NovoStitch suture passer can decrease contact pressures for a radial meniscus tear similarly to the inside-out repair technique when compared to partial meniscectomy. This novel arthroscopic suture passer warrants further analysis in the clinical setting as it may be a reliable method for repair of radial meniscal tears through an arthroscopic all-inside technique. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Temporary shift in masked hearing thresholds in odontocetes after exposure to single underwater impulses from a seismic watergun.

    PubMed

    Finneran, James J; Schlundt, Carolyn E; Dear, Randall; Carder, Donald A; Ridgway, Sam H

    2002-06-01

    A behavioral response paradigm was used to measure masked underwater hearing thresholds in a bottlenose dolphin (Tursiops truncatus) and a white whale (Delphinapterus leucas) before and after exposure to single underwater impulsive sounds produced from a seismic watergun. Pre- and postexposure thresholds were compared to determine if a temporary shift in masked hearing thresholds (MTTS), defined as a 6-dB or larger increase in postexposure thresholds, occurred. Hearing thresholds were measured at 0.4, 4, and 30 kHz. MTTSs of 7 and 6 dB were observed in the white whale at 0.4 and 30 kHz, respectively, approximately 2 min following exposure to single impulses with peak pressures of 160 kPa, peak-to-peak pressures of 226 dB re 1 microPa, and total energy fluxes of 186 dB re 1 microPa2 x s. Thresholds returned to within 2 dB of the preexposure value approximately 4 min after exposure. No MTTS was observed in the dolphin at the highest exposure conditions: 207 kPa peak pressure, 228 dB re 1 microPa peak-to-peak pressure, and 188 dB re 1 microPa2 x s total energy flux.

  7. Comparison of plantar pressure distribution between three different shoes and three common movements in futsal

    PubMed Central

    Teymouri, Meghdad; Mirshahi, Maryam; Mansournia, Mohammad Ali; Mousavi Ahranjani, Ali; Sadeghi, Amir

    2017-01-01

    Introduction Analysis of in-shoe pressure distribution during sport-specific movements may provide a clue to improve shoe design and prevent injuries. This study compared the mean and the peak pressures over the whole foot and ten separate areas of the foot, wearing different shoes during specific movements. Methods Nine male adult recreational futsal players performed three trials of three sport-specific movements (shuffle, sprint and penalty kick), while they were wearing three brands of futsal shoes (Adidas, Lotto and Tiger). Plantar pressures on dominant feet were collected using the F-SCAN system. Peak and mean pressures for whole foot and each separate area were extracted. For statistical analysis, the mean differences in outcome variables between different shoes and movements were estimated using random-effects regression model using STATA ver.10. Results In the average calculation of the three movements, the peak pressure on the whole foot in Adidas shoe was less than Lotto [8.8% (CI95%: 4.1–13.6%)] and Tiger shoes [11.8% (CI95%:7–16.7%)], (P<0.001). Also, the recorded peak pressure on the whole foot in penalty kick was 61.1% (CI95%: 56.3–65.9%) and 57.6% (CI95%: 52.8–62.3%) less than Shuffle and Sprint tests, respectively (P<0.001). Conclusion Areas with the highest peak pressure during all 3 movements were not different between all shoes. This area was medial forefoot in cases of shuffle and sprint movements and medial heel in case of penalty kick. PMID:29088278

  8. Diffraction of a plane wave by a three-dimensional corner

    NASA Technical Reports Server (NTRS)

    Ting, L.; Kung, F.

    1971-01-01

    By the superposition of the conical solution for the diffraction of a plane pulse by a three dimensional corner, the solution for a general incident plane wave is constructed. A numerical program is presented for the computation of the pressure distribution on the surface due to an incident plane wave of any wave form and at any incident angle. Numerical examples are presented to show the pressure signature at several points on the surface due to incident wave with a front shock wave, two shock waves in succession, or a compression wave with same peak pressure. The examples show that when the distance of a point on the surface from the edges or the vertex is comparable to the distance for the front pressure raise to reach the maximum, the peak pressure at that point can be much less than that given by a regular reflection, because the diffracted wave front arrives at that point prior to the arrival of the peak incident wave.

  9. Effect of transcutaneous electrical stimulation amplitude on timing of swallow pressure peaks between healthy young and older adults.

    PubMed

    Barikroo, Ali; Berretin-Felix, Giedré; Carnaby, Giselle; Crary, Michael

    2017-03-01

    This study compared the effect of transcutaneous electrical stimulation (TES) amplitude on timing of lingual-palatal and pharyngeal peak pressures during swallowing in healthy younger and older adults. Transcutaneous electrical stimulation amplitude is one parameter that may have different impacts on the neuromotor system and swallowing physiology. One aspect of swallowing physiology influenced by age is the timing of swallowing events. However, the effect of varying TES amplitudes on timing of swallowing physiology is poorly understood, especially in older adults. Thirty-four adults (20 younger and 14 older) swallowed 10 ml of nectar-thick liquid under three TES conditions: no stimulation, low-amplitude stimulation and high-amplitude stimulation. TES was delivered by surface electrodes on the anterior neck. Timing of pressure peaks for lingual-palatal contacts and pharyngeal pressures were measured under each condition. A significant age × stimulation amplitude interaction was identified for the base of tongue (BOT) [F(2,62) = 5.087, p < 0.009] and the hypopharynx (HYPO) [F(2,62) = 3.277, p < 0.044]. At the BOT, low-amplitude TES resulted in slower swallows in the younger adults compared with no TES. In older adults, low-amplitude TES resulted in faster swallows compared with high-amplitude TES. At the HYPO, no significant differences were identified in pressure timing across the three TES amplitudes in both age groups. In each case, low-amplitude TES resulted in faster swallows in older adults compared with younger adults. Transcutaneous electrical stimulation influences pharyngeal pressure timing differently in young and old people, which questions the appropriateness of using a 'one-size-fits-all' TES amplitude for rehabilitating people with dysphagia. © 2015 John Wiley & Sons A/S and The Gerodontology Association. Published by John Wiley & Sons Ltd.

  10. Estimating Equivalency of Explosives Through A Thermochemical Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maienschein, J L

    2002-07-08

    The Cheetah thermochemical computer code provides an accurate method for estimating the TNT equivalency of any explosive, evaluated either with respect to peak pressure or the quasi-static pressure at long time in a confined volume. Cheetah calculates the detonation energy and heat of combustion for virtually any explosive (pure or formulation). Comparing the detonation energy for an explosive with that of TNT allows estimation of the TNT equivalency with respect to peak pressure, while comparison of the heat of combustion allows estimation of TNT equivalency with respect to quasi-static pressure. We discuss the methodology, present results for many explosives, andmore » show comparisons with equivalency data from other sources.« less

  11. Comparing otoacoustic emissions evoked by chirp transients with constant absorbed sound power and constant incident pressure magnitude

    PubMed Central

    Keefe, Douglas H.; Feeney, M. Patrick; Hunter, Lisa L.; Fitzpatrick, Denis F.

    2017-01-01

    Human ear-canal properties of transient acoustic stimuli are contrasted that utilize measured ear-canal pressures in conjunction with measured acoustic pressure reflectance and admittance. These data are referenced to the tip of a probe snugly inserted into the ear canal. Promising procedures to calibrate across frequency include stimuli with controlled levels of incident pressure magnitude, absorbed sound power, and forward pressure magnitude. An equivalent pressure at the eardrum is calculated from these measured data using a transmission-line model of ear-canal acoustics parameterized by acoustically estimated ear-canal area at the probe tip and length between the probe tip and eardrum. Chirp stimuli with constant incident pressure magnitude and constant absorbed sound power across frequency were generated to elicit transient-evoked otoacoustic emissions (TEOAEs), which were measured in normal-hearing adult ears from 0.7 to 8 kHz. TEOAE stimuli had similar peak-to-peak equivalent sound pressure levels across calibration conditions. Frequency-domain TEOAEs were compared using signal level, signal-to-noise ratio (SNR), coherence synchrony modulus (CSM), group delay, and group spread. Time-domain TEOAEs were compared using SNR, CSM, instantaneous frequency and instantaneous bandwidth. Stimuli with constant incident pressure magnitude or constant absorbed sound power across frequency produce generally similar TEOAEs up to 8 kHz. PMID:28147608

  12. Numerical investigation of the effect of driving voltage pulse shapes on the characteristics of low-pressure argon dielectric barrier discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eslami, E., E-mail: eeslami@iust.ac.ir; Barjasteh, A.; Morshedian, N.

    2015-06-15

    In this work, we numerically compare the effect of a sinusoidal, triangular, and rectangular pulsed voltage profile on the calculated particle production, electric current, and gas voltage in a dielectric barrier discharge. The total argon gas pressure of 400 Pa, the distance between dielectrics of 5 mm, the dielectric thickness of 0.7 mm, and the temperature of T = 300 K were considered as input parameters. The different driving voltage pulse shapes (triangular, rectangular, and sinusoidal) are considered as applied voltage with a frequency of 7 kHz and an amplitude of 700 V peak to peak. It is shown thatmore » applying a rectangular voltage, as compared with a sinusoidal or triangle voltage, increases the current peak, while the peak width is decreased. Higher current density is related to high production of charged particles, which leads to the generation of some highly active species, such as Ar* (4s level), and Ar** (4p level) in the gap.« less

  13. Preoperative gender differences in pulmonary gas exchange in morbidly obese subjects.

    PubMed

    Zavorsky, Gerald S; Christou, Nicolas V; Kim, Do Jun; Carli, Franco; Mayo, Nancy E

    2008-12-01

    Morbidly obese men may have poorer pulmonary gas exchange compared to morbidly obese women (see Zavorsky et al., Chest 131:362-367, 2007). The purpose was to compare pulmonary gas exchange in morbidly obese men and women at rest and throughout exercise. Twenty-five women (age=38+/-10 years, 164+/-7 cm, body mass index or BMI = 51+/-7 kg/m(2), peak oxygen consumption or VO(2peak)=2.0+/-0.4 l/min) and 17 men (age=43+/-9 years, 178+/-7 cm, BMI=50+/-10 kg/m(2), VO(2peak)=2.6+/-0.8 l/min) were recruited to perform a graded exercise test on a cycle ergometer with temperature-corrected arterial blood-gas samples taken at rest and every minute of exercise, including peak exercise. At rest, women were 98% predicted for pulmonary diffusion compared to 88% predicted in men. At rest, women had better pulmonary gas exchange compared to the men which was related to women having a lower waist-to-hip ratio (WHR; p<0.01). Only 20% of the subjects had an excessive alveolar-to-arterial oxygen partial pressure difference (>or=25 mmHg) at peak exercise, but 75% of the subjects showed inadequate compensatory hyperventilation at peak exercise (arterial carbon dioxide pressure >35 mmHg), and both were not different between genders. At rest, morbidly obese men have poorer pulmonary gas exchange and pulmonary diffusion compared to morbidly obese women. The better gas exchange in women is related to the lower WHR in the women. During exercise, few subjects showed disturbances in pulmonary gas exchange despite demonstrating poor compensatory hyperventilation at peak exercise.

  14. Myocardial work during endurance training and resistance training: a daily comparison, from workout session 1 through completion of cardiac rehabilitation

    PubMed Central

    Hubbard, Matthew; McCullough-Shock, Tiffany; Simms, Kay; Cheng, Dunlei; Hartman, Julie; Strauss, Danielle; Anderson, Valerie; Lawrence, Anne; Malorzo, Emily

    2010-01-01

    Patients in cardiac rehabilitation are typically advised to complete a period of supervised endurance training before beginning resistance training. In this study, however, we compared the peak rate-pressure product (RPP, a calculated indicator of myocardial work) of patients during two types of exercise—treadmill walking and chest press—from workout session 1 through completion of cardiac rehabilitation. Twenty-one patients (4 women and 17 men, aged 35 to 70 years) were enrolled in the study; they were referred for cardiac rehabilitation after myocardial infarction, percutaneous coronary intervention, or both. The participants did treadmill walking and chest press exercises during each workout session. Peak values for heart rate (HR) and systolic blood pressure (SBP) were recorded, and the peak RPP was calculated (peak HR ⊠ peak SBP). Paired t tests were used to compare the data collected during the two types of exercise across 19 workout sessions. The mean peak values for HR, SBP, and RPP were lower during resistance training than during endurance training; the differences were statistically significant (P < 0.05), with only one exception (the SBP for session 1). Across all 19 workout sessions, the participants performed more myocardial work, as indicated by the peak RPP, during treadmill walking than during the chest press. PMID:20396420

  15. Changes in Contact Area in Meniscus Horizontal Cleavage Tears Subjected to Repair and Resection.

    PubMed

    Beamer, Brandon S; Walley, Kempland C; Okajima, Stephen; Manoukian, Ohan S; Perez-Viloria, Miguel; DeAngelis, Joseph P; Ramappa, Arun J; Nazarian, Ara

    2017-03-01

    To assess the changes in tibiofemoral contact pressure and contact area in human knees with a horizontal cleavage tear before and after treatment. Ten human cadaveric knees were tested. Pressure sensors were placed under the medial meniscus and the knees were loaded at twice the body weight for 20 cycles at 0°, 10°, and 20° of flexion. Contact area and pressure were recorded for the intact meniscus, the meniscus with a horizontal cleavage tear, after meniscal repair, after partial meniscectomy (single leaflet), and after subtotal meniscectomy (double leaflet). The presence of a horizontal cleavage tear significantly increased average peak contact pressure and reduced effective average tibiofemoral contact area at all flexion angles tested compared with the intact state (P < .03). There was approximately a 70% increase in contact pressure after creation of the horizontal cleavage tear. Repairing the horizontal cleavage tear restored peak contact pressures and areas to within 15% of baseline, statistically similar to the intact state at all angles tested (P < .05). Partial meniscectomy and subtotal meniscectomy significantly increased average peak contact pressure and reduced average contact area at all degrees of flexion compared with the intact state (P < .05). The presence of a horizontal cleavage tear in the medial meniscus causes a significant reduction in contact area and a significant elevation in contact pressure. These changes may accelerate joint degeneration. A suture-based repair of these horizontal cleavage tears returns the contact area and contact pressure to nearly normal, whereas both partial and subtotal meniscectomy lead to significant reductions in contact area and significant elevations in contact pressure within the knee. Repairing horizontal cleavage tears may lead to improved clinical outcomes by preserving meniscal tissue and the meniscal function. Understanding contact area and peak contact pressure resulting from differing strategies for treating horizontal cleavage tears will allow the surgeon to evaluate the best strategy for treating his or her patients who present with this meniscal pathology. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  16. [The effect of positive pressure ventilation combined with diaphragm pacing on respiratory mechanics in patients with respiratory failure].

    PubMed

    Deng, Yi-Jun; Ji, You-Lin; Chen, Lan-Ping; Jin, Qin

    2011-04-01

    To observe the effects of combining positive pressure ventilation with diaphragm pacing on respiratory mechanics in patients with respiratory failure. Twenty patients with central respiratory failure were studied with cohorts. The effects on respiratory mechanics were respectively observed in patients in control group, in whom ventilation by positive pressure only, and patients in experimental group in whom ventilation was instituted by combining positive pressure ventilation with diaphragm pacing. Compared with control group, mean airway pressure (Paw, cm H(2)O, 1 cm H(2)O= 0.098 kPa) and plateau pressure (Pplat, cm H(2)O) were significantly decreased in experimental group (Paw: 6.1±1.3 vs. 7.3±1.8; Pplat: 10.4±2.5 vs. 12.1±2.6, both P<0.05), while the negative value of peak esophageal pressure (P(PEAK ES) , cm H(2)O), the negative value of the difference between peak and basic esophageal pressure (dP(ES), cm H(2)O), transpulmonary pressure at end of inspiration hold (Ptp plat, cm H(2)O ), static compliance (Cst, ml/cm H(2)O) were significantly increased in experimental group (P(PEAK ES): -8.3± 1.9 vs. -3.2±1.4; dP(ES) : -11.2±2.6 vs. -8.2±2.2; Ptp plat: 23.6±3.8 vs. 15.6±3.1; Cst: 52.7±8.2 vs. 48.3±7.2, all P<0.05). No differences were found in airway resistance (Raw, cm H(2)O×L(-1) ×s(-1) ) and lung resistance (R(L), cm H(2)O×L(-1) ×s(-1) ) between experimental group and control group (Raw: 2.1±0.5 vs. 2.3±0.4; R(L): 2.9±0.6 vs. 3.1±0.5, both P>0.05). Work of breath by patient (WOBp, J/L) was significantly increased and work of breath by ventilator (WOBv, J/L) was significantly decreased in experimental group compared with control group (WOBp: 0.18±0.03 vs. 0; WOBv: 0.31±0.07 vs. 0.53±0.11, both P<0.05). Compared with positive pressure ventilation , positive pressure ventilation combined with diaphragm pacing can decrease the Paw, increase intrathoracic negative pressure, transpulmonary pressure, and Cst, and decrease WOBv, while there is no effect on Raw and R(L).

  17. Improving the Sensitivity of Mass Spectrometer using a High-Pressure Electrodynamic Ion Funnel Interface

    PubMed Central

    Ibrahim, Yehia; Tang, Keqi; Tolmachev, Aleksey V.; Shvartsburg, Alexandre A.

    2006-01-01

    We report on a new electrodynamic ion funnel that operates at a pressure of 30 Torr with no loss of ion transmission. The enhanced performance compared to previous ion funnel designs optimized for pressures of <5 Torr was achieved by reducing the ion funnel capacitance and increasing the RF drive frequency (1.7 MHz) and amplitude (100-170 V peak-to-peak). No degradation of ion transmission was observed for pressures from 2 - 30 Torr. The ability to operate at higher pressure enabled a new tandem ion funnel mass spectrometer (MS) interface design that can accommodate a greater gas load. When combined with a multicapillary inlet, the interface provided more efficient introduction of ions, resulting in a significant enhancement in MS sensitivity and detection limits. PMID:16839773

  18. Strength and Deformation of Solid Krypton and Xenon to Mbar Pressures

    NASA Astrophysics Data System (ADS)

    Brugman, B. L.; Lv, M.; Liu, J.; Park, C.; Popov, D.; Prakapenka, V. B.; Dorfman, S.

    2017-12-01

    Studying phase equilibria and deformation of rare gas solids (RGS) under pressure provides insight into their behavior in planetary bodies. Their simple bonding properties make them useful analogs for materials with similar structures and other van der Waals bonded materials. He, Ne, and Ar are useful as pressure-transmitting media in diamond anvil cell (DAC) experiments due to their low strength and inert chemistry, and Xe has been proposed as a pressure medium as well, but relatively little is known about the strength of Kr and Xe. The strength of heavy RGS may be affected by a martensitic transition from fcc to hcp structure, which is observed at lower pressures with higher Z. The pressure ranges of this transition in Kr and Xe in previous experimental and computational studies vary from 5 to 29 GPa for Xe and as high as 130 GPa for Kr. The transition may be further complicated by kinetics and multiple transition mechanisms. Modeling of phase equilibria and evaluation of Kr and Xe as pressure media may be improved by examination of elastic and plastic properties at extreme pressure. We studied phase transitions and deformation of Kr and Xe using synchrotron x-ray diffraction at Advanced Photon Source beamlines 13-ID-D and 16-BM-D in the DAC at pressures up to 118 GPa. The martensitic fcc-hcp phase transition begins as peak asymmetry and weak peaks in both Kr and Xe at pressures as low as 5 GPa. Intensity of hcp peaks in Xe increases continuously to 118 GPa. Weak hcp peaks were evident in Kr alongside fcc peaks from 5 to 94 GPa, contrary to theoretical predictions that the hcp transition does not begin below 110-130 GPa. Strength and plasticity of Kr and Xe were obtained by complementary lattice strain and peak width analysis of diffraction patterns in both axial and radial geometries as well as observation of pressure gradients by ruby fluorescence. Xe is approximately hydrostatic with strength comparable to common pressure media at pressures up to 10-12 GPa. Differential stress in Xe increases quickly above 12 GPa and then levels off above 30-50 GPa. This apparent reduction in strength coincides with dramatic growth of hcp peaks, suggesting that weakening is associated with the fcc-hcp transition. Strength is systematically higher for higher-Z RGS below the fcc-hcp transition, but transformation to the hcp structure modifies this trend.

  19. Accurate green water loads calculation using naval hydro pack

    NASA Astrophysics Data System (ADS)

    Jasak, H.; Gatin, I.; Vukčević, V.

    2017-12-01

    An extensive verification and validation of Finite Volume based CFD software Naval Hydro based on foam-extend is presented in this paper for green water loads. Two-phase numerical model with advanced methods for treating the free surface is employed. Pressure loads on horizontal deck of Floating Production Storage and Offloading vessel (FPSO) model are compared to experimental results from [1] for three incident regular waves. Pressure peaks and integrals of pressure in time are measured on ten different locations on deck for each case. Pressure peaks and integrals are evaluated as average values among the measured incident wave periods, where periodic uncertainty is assessed for both numerical and experimental results. Spatial and temporal discretization refinement study is performed providing numerical discretization uncertainties.

  20. Local plantar pressure relief in therapeutic footwear: design guidelines from finite element models.

    PubMed

    Erdemir, Ahmet; Saucerman, Jeffrey J; Lemmon, David; Loppnow, Bryan; Turso, Brie; Ulbrecht, Jan S; Cavanagh, Peter Re

    2005-09-01

    A major goal of therapeutic footwear in patients with pain or those at risk for skin injury is to relieve focal loading under prominent metatarsal heads. One frequent approach is to place plugs of compliant material into the midsole of the shoe. This study investigated 36 plug designs, a combination of three materials, six geometries, and two placements using a two-dimensional (2D) finite element model. Realistic loading conditions were obtained from plantar pressures (PP) recorded during walking in five subjects who wore control midsoles manufactured using Microcell Puff. Measured peak pressures underneath the second metatarsal head were similar to the results of the control model. PP obtained from simulations with the plugs built into a firm midsole were compared to the simulation results of the control midsole. Large plugs (e.g. 40 mm width), made out of Microcell Puff Lite or Plastazote Medium, placed at peak pressure sites, resulted in highest reductions in peak pressures (18-28%). Smaller plugs benefited from tapering when placed at high pressure areas. Case studies were completed on a healthy male subject and a diabetic female patient to address the efficacy of a plug design favored by our simulations (pressure based placement, 40 x 20 mm, Plastazote Medium). Successful reductions of second metatarsal head pressures were observed with a mediolateral load redistribution that was not represented by our model. 2D computer simulations allowed systematic investigation of plug properties without the need for high volume experimentation on human subjects and established basic guidelines for plug selection. In particular, plugs that are placed based on plantar pressure measurements were proven to be more effective when compared to those positioned according to the projection of the bony landmark on the foot-shoe plantar contact area.

  1. Acoustic field characterization of the Duolith: measurements and modeling of a clinical shock wave therapy device.

    PubMed

    Perez, Camilo; Chen, Hong; Matula, Thomas J; Karzova, Maria; Khokhlova, Vera A

    2013-08-01

    Extracorporeal shock wave therapy (ESWT) uses acoustic pulses to treat certain musculoskeletal disorders. In this paper the acoustic field of a clinical portable ESWT device (Duolith SD1) was characterized. Field mapping was performed in water for two different standoffs of the electromagnetic head (15 or 30 mm) using a fiber optic probe hydrophone. Peak positive pressures at the focus ranged from 2 to 45 MPa, while peak negative pressures ranged from -2 to -11 MPa. Pulse rise times ranged from 8 to 500 ns; shock formation did not occur for any machine settings. The maximum standard deviation in peak pressure at the focus was 1.2%, indicating that the Duolith SD1 generates stable pulses. The results compare qualitatively, but not quantitatively with manufacturer specifications. Simulations were carried out for the short standoff by matching a Khokhlov-Zabolotskaya-Kuznetzov equation to the measured field at a plane near the source, and then propagating the wave outward. The results of modeling agree well with experimental data. The model was used to analyze the spatial structure of the peak pressures. Predictions from the model suggest that a true shock wave could be obtained in water if the initial pressure output of the device were doubled.

  2. Acoustic field characterization of the Duolith: Measurements and modeling of a clinical shock wave therapy device

    PubMed Central

    Perez, Camilo; Chen, Hong; Matula, Thomas J.; Karzova, Maria; Khokhlova, Vera A.

    2013-01-01

    Extracorporeal shock wave therapy (ESWT) uses acoustic pulses to treat certain musculoskeletal disorders. In this paper the acoustic field of a clinical portable ESWT device (Duolith SD1) was characterized. Field mapping was performed in water for two different standoffs of the electromagnetic head (15 or 30 mm) using a fiber optic probe hydrophone. Peak positive pressures at the focus ranged from 2 to 45 MPa, while peak negative pressures ranged from −2 to −11 MPa. Pulse rise times ranged from 8 to 500 ns; shock formation did not occur for any machine settings. The maximum standard deviation in peak pressure at the focus was 1.2%, indicating that the Duolith SD1 generates stable pulses. The results compare qualitatively, but not quantitatively with manufacturer specifications. Simulations were carried out for the short standoff by matching a Khokhlov-Zabolotskaya-Kuznetzov equation to the measured field at a plane near the source, and then propagating the wave outward. The results of modeling agree well with experimental data. The model was used to analyze the spatial structure of the peak pressures. Predictions from the model suggest that a true shock wave could be obtained in water if the initial pressure output of the device were doubled. PMID:23927207

  3. Effects of Near Field Pyroshock on the Performance of a Nitramine Nitrocellulose Propellant

    NASA Technical Reports Server (NTRS)

    Baca, Arcenio B.

    2016-01-01

    The overall purpose of this study is to investigate the effects of a pyroshock environment on the performance characteristics of a propellant used in pyrotechnic devices such as guillotine cutters. Near field pyroshock which is defined by acceleration amplitudes in excess of 10,000g at a frequency of greater than 10,000 Hz is a highly transient environment that has a known potential to cause failure in both structural and electronic components. A heritage pressure cartridge assembly which uses a nitramine nitrocellulose propellant with a known performance baseline will be exposed to a near field pyroshock event. The pressure cartridge will then be fired in an ambient closed bomb firing to collect pressure time history. The two performance characteristics that will be evaluated are the pressure amplitude and time to peak pressure. This data will be compared to the base-lined ambient closed bomb data to evaluate the effects of the shock on the performance of the propellant. It is expected that the pyroshock environment will cause brittle failures of the propellant increasing the surface area of said propellant. This increase of surface area should result in increased combustion rate which should show as an increased pressure peak and decreased time to peak pressure in the pressure time data.

  4. The Effects of Exercise Intensity vs. Metabolic State on the Variability and Magnitude of Left Ventricular Twist Mechanics during Exercise

    PubMed Central

    Armstrong, Craig; Samuel, Jake; Yarlett, Andrew; Cooper, Stephen-Mark; Stembridge, Mike; Stöhr, Eric J.

    2016-01-01

    Increased left ventricular (LV) twist and untwisting rate (LV twist mechanics) are essential responses of the heart to exercise. However, previously a large variability in LV twist mechanics during exercise has been observed, which complicates the interpretation of results. This study aimed to determine some of the physiological sources of variability in LV twist mechanics during exercise. Sixteen healthy males (age: 22 ± 4 years, V˙O2peak: 45.5 ± 6.9 ml∙kg-1∙min-1, range of individual anaerobic threshold (IAT): 32–69% of V˙O2peak) were assessed at rest and during exercise at: i) the same relative exercise intensity, 40%peak, ii) at 2% above IAT, and, iii) at 40%peak with hypoxia (40%peak+HYP). LV volumes were not significantly different between exercise conditions (P > 0.05). However, the mean margin of error of LV twist was significantly lower (F2,47 = 2.08, P < 0.05) during 40%peak compared with IAT (3.0 vs. 4.1 degrees). Despite the same workload and similar LV volumes, hypoxia increased LV twist and untwisting rate (P < 0.05), but the mean margin of error remained similar to that during 40%peak (3.2 degrees, P > 0.05). Overall, LV twist mechanics were linearly related to rate pressure product. During exercise, the intra-individual variability of LV twist mechanics is smaller at the same relative exercise intensity compared with IAT. However, the absolute magnitude (degrees) of LV twist mechanics appears to be associated with the prevailing rate pressure product. Exercise tests that evaluate LV twist mechanics should be standardised by relative exercise intensity and rate pressure product be taken into account when interpreting results. PMID:27100099

  5. The Effects of Exercise Intensity vs. Metabolic State on the Variability and Magnitude of Left Ventricular Twist Mechanics during Exercise.

    PubMed

    Armstrong, Craig; Samuel, Jake; Yarlett, Andrew; Cooper, Stephen-Mark; Stembridge, Mike; Stöhr, Eric J

    2016-01-01

    Increased left ventricular (LV) twist and untwisting rate (LV twist mechanics) are essential responses of the heart to exercise. However, previously a large variability in LV twist mechanics during exercise has been observed, which complicates the interpretation of results. This study aimed to determine some of the physiological sources of variability in LV twist mechanics during exercise. Sixteen healthy males (age: 22 ± 4 years, [Formula: see text]O2peak: 45.5 ± 6.9 ml∙kg-1∙min-1, range of individual anaerobic threshold (IAT): 32-69% of [Formula: see text]O2peak) were assessed at rest and during exercise at: i) the same relative exercise intensity, 40%peak, ii) at 2% above IAT, and, iii) at 40%peak with hypoxia (40%peak+HYP). LV volumes were not significantly different between exercise conditions (P > 0.05). However, the mean margin of error of LV twist was significantly lower (F2,47 = 2.08, P < 0.05) during 40%peak compared with IAT (3.0 vs. 4.1 degrees). Despite the same workload and similar LV volumes, hypoxia increased LV twist and untwisting rate (P < 0.05), but the mean margin of error remained similar to that during 40%peak (3.2 degrees, P > 0.05). Overall, LV twist mechanics were linearly related to rate pressure product. During exercise, the intra-individual variability of LV twist mechanics is smaller at the same relative exercise intensity compared with IAT. However, the absolute magnitude (degrees) of LV twist mechanics appears to be associated with the prevailing rate pressure product. Exercise tests that evaluate LV twist mechanics should be standardised by relative exercise intensity and rate pressure product be taken into account when interpreting results.

  6. Data-driven directions for effective footwear provision for the high-risk diabetic foot.

    PubMed

    Arts, M L J; de Haart, M; Waaijman, R; Dahmen, R; Berendsen, H; Nollet, F; Bus, S A

    2015-06-01

    Custom-made footwear is used to offload the diabetic foot to prevent plantar foot ulcers. This prospective study evaluates the offloading effects of modifying custom-made footwear and aims to provide data-driven directions for the provision of effectively offloading footwear in clinical practice. Eighty-five people with diabetic neuropathy and a recently healed plantar foot ulcer, who participated in a clinical trial on footwear effectiveness, had their custom-made footwear evaluated with in-shoe plantar pressure measurements at three-monthly intervals. Footwear was modified when peak pressure was ≥ 200 kPa. The effect of single and combined footwear modifications on in-shoe peak pressure at these high-pressure target locations was assessed. All footwear modifications significantly reduced peak pressure at the target locations compared with pre-modification levels (range -6.7% to -24.0%, P < 0.001). The metatarsal heads were most frequently targeted. Repositioning an existing (trans-)metatarsal pad in the shoe insole (-15.9% peak pressure relief), applying local cushioning to the insole (-15.0%) and replacing the insole top cover with Plastazote (-14.2%) were the most effective single modifications. Combining a new Plastazote top cover with a trans-metatarsal bar (-24.0% peak pressure relief) or with local cushioning (-22.0%) were the most effective combined modifications. In people with diabetic neuropathy and a recently healed plantar foot ulcer, significant offloading can be achieved at high-risk foot regions by modifying custom-made footwear. These results provide data-driven directions for the design and evaluation of custom-made footwear for high-risk people with diabetes, and essentially mean that each shoe prescribed should incorporate those design features that effectively offload the foot. © 2015 The Authors. Diabetic Medicine © 2015 Diabetes UK.

  7. Vasoactive neuroendocrine responses associated with tolerance to lower body negative pressure in humans

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Sather, T. M.

    2000-01-01

    The purpose of this investigation was to test the hypothesis that peripheral vasoconstriction and orthostatic tolerance are associated with increased circulating plasma concentrations of noradrenaline, vasopressin and renin-angiotensin. Sixteen men were categorized as having high (HT, n=9) or low (LT, n=7) tolerance to lower body negative pressure (LBNP) based on whether the endpoint of their pre-syncopal-limited LBNP (peak LBNP) exposure exceeded -60 mmHg. The two groups were matched for age, height, weight, leg volume, blood volume and maximal oxygen uptake, as well as baseline blood volume and plasma concentrations of vasoactive hormones. Peak LBNP induced similar reductions in mean arterial pressure in both groups. The reduction in leg arterial pulse volume (measured by impedance rheography), an index of peripheral vascular constriction, from baseline to peak LBNP was greater (P<0.05) in the HT group (-0.041 +/- 0.005 ml 100 ml-1) compared to the reduction in the LT group (-0. 025 +/- 0.003 ml 100 ml-1). Greater peak LBNP in the HT group was associated with higher (P<0.05) average elevations in plasma concentrations of vasopressin (pVP, Delta=+7.2 +/- 2.0 pg ml-1) and plasma renin-angiotensin (PRA, Delta=+2.9 +/- 1.3 ng Ang II ml-1 h-1) compared to average elevations of pVP (+2.2 +/- 1.0 pg ml-1) and PRA (+0.1 +/- 0.1 ng Ang II ml-1 h-1) in the LT group. Plasma noradrenaline concentrations were increased (P<0.05) from baseline to peak LBNP in both HT and LT groups, with no statistically distinguishable difference between groups. These data suggest that the renin-angiotensin and vasopressin systems may contribute to sustaining arterial pressure and orthostatic tolerance by their vasoconstrictive actions.

  8. Underwater Sound Radiation from Large Raindrops

    DTIC Science & Technology

    1991-09-01

    decreasing shape of the impact spectrum, one must pick a reference point rather that a peak value to compare one drop with another. For comparison of...34 1. Type I Bubble Spectral Density and Peak Pressure ............... 34 2. Type II Bubble Average Spectral Densities at 1 m on Axis (20 C...32 Table 4. TYPE II BUBBLE AVERAGE PEAK SPECTRAL DENSITY SU M M A RY ............................................. 39 Table 5. SUMMARY

  9. Ion energy distributions and the density of CH3 radicals in a low pressure inductively coupled CH4/H2 plasma used for nanocrystalline diamond deposition

    NASA Astrophysics Data System (ADS)

    Okada, Katsuyuki; Komatsu, Shojiro; Matsumoto, Seiichiro

    2003-11-01

    Ion energy distributions (IEDs) and the density of CH3 radicals (n) in a 13.56 MHz radio frequency (rf) low pressure inductively coupled CH4/H2 plasma used for nanocrystalline diamond deposition have been investigated with a quadrupole mass spectrometer. The energy distributions of positive ions were measured in a CH4/H2 plasma with 50 mTorr of the gas pressure at 500 W of the plasma input power, and were compared with those of an Ar plasma. We have found that the IEDs of Ar+, CH4+, and C2H5+ have a nearly monoenergetic peak, and a hump due to a small degree of capacitive coupling. The plasma potentials obtained from the peaks are consistent with the previously reported values measured with a Langmuir probe. On the other hand, the IEDs of H+, H2+, and H3+ have a clear asymmetric double peak due to the modulation of rf driven glow discharge. The n monotonously increases with increasing pressure. The n indicates that CH3 radicals are main precursors for the growth of nanocrystalline diamond. The estimated sticking coefficient of the CH3 radical is comparable with the reported value.

  10. The effect of multiple layers of linens on surface interface pressure: results of a laboratory study.

    PubMed

    Williamson, Rachel; Lachenbruch, Charlie; Vangilder, Catherine

    2013-06-01

    Underpads and layers of linens are frequently placed under patients who are incontinent, have other moisture-related issues, and/or are immobile and cannot reposition independently. Many of these patients are also at risk for pressure ulcers and placed on pressure-redistribution surfaces. The purpose of this study was to measure the effects of linens and incontinence pads on interface pressure. Interface sacral pressures were measured (mm Hg) using a mannequinlike pelvic indenter that has pressure transducers integrated into the unit and is covered with a soft flesh-like elastomer. The indenter was loaded to simulate a median-weight male (80 kg/176 lb), and the testing was performed at head-of bed (HOB) angles of 0°, 30°, and 45°. Two different surfaces, a high performance low-air-loss support (LAL) surface and a standard foam support surface, were used and covered with a fitted sheet (FS) only or a combination of the FS and various incontinence pads and transfer sheets. Linen combinations typically used for relatively immobile patients (n = 4), moisture management (n = 4), and moisture management and immobility (n = 1) were tested, as was the heavy use of linens/pads (nine layers, n = 1). All combinations were tested 10 times at HOB angles of 0°, 30°, and 45°. The highest pressure observed was recorded (peak pressure). Ninety five percent (95%) confidence interval (CI) surrounding the mean of the 10 trials for each combination was calculated using the t-distribution; differences between means for all surface combinations were determined using one-way ANOVA with follow-up Fisher Hayter test. Results indicated that each incontinence pad, transfer sheet, or combination of linens significantly increased the mean peak sacral pressure when compared to a single FS on both the low-air-loss surface and the foam surface, regardless of the head-of-bed angle. The magnitude of peak sacral interface pressure increase for the LAL surface at 30° head-of-bed angle was 20% to 64% depending on the linen combination. At 30°, the foam surface showed increases 6% to 29% (P <0.0001) compared with a FS baseline. If linens were wet, peak interface sacral pressures were equivalent to or less than pressures measured on the same pads when measured dry. The presence of linens on both surface types adversely affected the pressure redistribution capabilities of the surfaces; added layers increased pressure proportionally. The effect on interface pressure from the linen layers was more pronounced on the LAL than the foam surface. The study results illustrate that significant increases in peak interface pressure occur in a laboratory setting when linen layers are added to pressure redistribution surfaces. Results also indicated wetting incontinence pads on a support surface did not significantly increase interface pressure. Although additional preclinical and clinical studies are needed to guide practice, excessive linen usage for patients on therapeutic support surfaces should be discouraged.

  11. The unique contribution of manual chest compression-vibrations to airflow during physiotherapy in sedated, fully ventilated children.

    PubMed

    Gregson, Rachael K; Shannon, Harriet; Stocks, Janet; Cole, Tim J; Peters, Mark J; Main, Eleanor

    2012-03-01

    This study aimed to quantify the specific effects of manual lung inflations with chest compression-vibrations, commonly used to assist airway clearance in ventilated patients. The hypothesis was that force applied during the compressions made a significant additional contribution to increases in peak expiratory flow and expiratory to inspiratory flow ratio over and above that resulting from accompanying increases in inflation volume. Prospective observational study. Cardiac and general pediatric intensive care. Sedated, fully ventilated children. Customized force-sensing mats and a commercial respiratory monitor recorded force and respiration during physiotherapy. Percentage changes in peak expiratory flow, peak expiratory to inspiratory flow ratios, inflation volume, and peak inflation pressure between baseline and manual inflations with and without compression-vibrations were calculated. Analysis of covariance determined the relative contribution of changes in pressure, volume, and force to influence changes in peak expiratory flow and peak expiratory to inspiratory flow ratio. Data from 105 children were analyzed (median age, 1.3 yrs; range, 1 wk to 15.9 yrs). Force during compressions ranged from 15 to 179 N (median, 46 N). Peak expiratory flow increased on average by 76% during compressions compared with baseline ventilation. Increases in peak expiratory flow were significantly related to increases in inflation volume, peak inflation pressure, and force with peak expiratory flow increasing by, on average, 4% for every 10% increase in inflation volume (p < .001), 5% for every 10% increase in peak inflation pressure (p = .005), and 3% for each 10 N of applied force (p < .001). By contrast, increase in peak expiratory to inspiratory flow ratio was only related to applied force with a 4% increase for each 10 N of force (p < .001). These results provide evidence of the unique contribution of compression forces in increasing peak expiratory flow and peak expiratory to inspiratory flow ratio bias over and above that related to accompanying changes from manual hyperinflations. Force generated during compression-vibrations was the single significant factor in multivariable analysis to explain the increases in expiratory flow bias. Such increases in the expiratory bias provide theoretically optimal physiological conditions for cephalad mucus movement in fully ventilated children.

  12. Medical-grade footwear: the impact of fit and comfort.

    PubMed

    Hurst, Bessie; Branthwaite, Helen; Greenhalgh, Andrew; Chockalingam, Nachiappan

    2017-01-01

    Pressure-related skin lesions on the digits are a significant cause of discomfort. Most foot pain related to ill-fitting shoes occurs in the forefoot and digital areas. Pain has been associated with poor shoe fit, reduced toe box volume, as well as contour and shape of the shoe Off-the-shelf medical-grade footwear is designed as an intervention for chronic lesions on the digits. These shoes are designed with a flexible neoprene fabric upper that is thought to reduce pressure on the forefoot and reduce discomfort associated with ill-fitting shoes. The aim of this study was to investigate the effect of an off-the-shelf, medical-grade shoe on dorsal digital pressure and perceived comfort when compared to participant's own preferred shoe. Thirty participants (18 females, 12 males) scored their perceived comfort whilst wearing each footwear style using a visual analog comfort scale. Dorsal digital and interdigital pressures were measured in using the WalkinSense® in-shoe pressure system. Sensors were placed on predetermined anatomical landmarks on the digits. Participants were randomly assigned the test shoe and their own shoe. Once wearing the shoe, the participants walked across a 6 m walkway and pressure data from each sensor was collected and processed to obtain peak pressure, time to peak pressure and contact time. Participants scored the test shoe with higher comfort points than their own footwear. Overall peak pressure, pressure time integral and contact time decreased, whilst the time taken to reach peak pressure increased across all anatomical landmarks whilst wearing the test shoe. Statistically significant changes were observed for all of the measured variables relating to pressure on the medial border of the first metatarsophalangeal joint. The test shoe provided greater comfort and reduced the amount of pressure on the forefoot. The medical-grade footwear therefore, is a viable alternative to custom made prescription footwear and is more suitable than a regular everyday shoe when treating digital lesions associated with pressure.

  13. Reflex effects on renal nerve activity characteristics in spontaneously hypertensive rats.

    PubMed

    DiBona, G F; Jones, S Y; Sawin, L L

    1997-11-01

    The effects of arterial and cardiac baroreflex activation on the discharge characteristics of renal sympathetic nerve activity were evaluated in conscious spontaneously hypertensive and Wistar-Kyoto rats. In spontaneously hypertensive rats compared with Wistar-Kyoto rats, (1) arterial baroreflex regulation of renal sympathetic nerve activity was reset to a higher arterial pressure and the gain was decreased and (2) cardiac baroreflex regulation of renal sympathetic nerve activity exhibited a lower gain. With the use of sympathetic peak detection analysis, the inhibition of integrated renal sympathetic nerve activity, which occurred during both increased arterial pressure (arterial baroreflex) and right atrial pressure (cardiac baroreflex), was due to parallel decreases in peak height with little change in peak frequency in both spontaneously hypertensive and Wistar-Kyoto rats. Arterial and cardiac baroreflex inhibition of renal sympathetic nerve activity in Wistar-Kyoto and spontaneously hypertensive rats is due to a parallel reduction in the number of active renal sympathetic nerve fibers.

  14. Cardiovascular Responses to Sexual Activity in Able-Bodied Individuals and Those Living with Spinal Cord Injury.

    PubMed

    Davidson, Ross; Elliott, Stacy; Krassioukov, Andrei

    2016-12-15

    Sexuality is an integral part of the human experience and persists in health and disability. The cardiovascular system is crucial to sexual function and can be affected profoundly by spinal cord injury (SCI). The effects of sexual activity on the cardiovascular system in SCI have not been summarized and compared with sexual activity in able-bodied individuals. A keyword search of Embase, PubMed, and Medline was conducted. From 471 retrieved studies for able-bodied individuals, 11 were included that met the strict criteria of medically uncomplicated participants. In the SCI literature, 117 studies were screened, with 18 meeting criteria. In able-bodied persons, sexual activity resulted in modest increases in systolic blood pressure peaking at orgasm (males of 163 mm Hg and females of 142 mm Hg) and returning to baseline shortly afterward. In persons with SCI, results varied from minimal changes to significant elevations in systolic blood pressure because of episodes of autonomic dysreflexia, especially in those with high thoracic and cervical lesions. Peak systolic blood pressure in these individuals was measured to be as high as 325 mm Hg. In the SCI population, more intense stimuli (including penile vibrostimulation and electroejaculation) tended to result in a greater increase in systolic blood pressure compared with self-stimulation. Studies that used continuous versus intermittent monitoring were more likely to report greater changes in systolic blood pressure. In able-bodied persons, sexual activity results in modest increases in blood pressure. In those with SCI, intense stimulation and higher injury levels result in a higher likelihood of autonomic dysreflexia and elevated blood pressure. Because of rapid changes in blood pressure, continuous monitoring is more advantageous than intermittent measurement, because the latter may miss peak values.

  15. Influence of nitromethane concentration on ignition energy and explosion parameters in gaseous nitromethane/air mixtures.

    PubMed

    Zhang, Qi; Li, Wei; Lin, Da-Chao; He, Ning; Duan, Yun

    2011-01-30

    The aim of this paper is to provide new experimental data of the minimum ignition energy (MIE) of gaseous nitromethane/air mixtures to discuss the explosion pressure and the flame temperature as a function of nitromethane concentration. Observations on the influence of nitromethane concentration on combustion pressure and temperature through the pressure and temperature measure system show that peak temperature (the peak of combustion temperature wave) is always behind peak pressure (the peak of the combustion pressure wave) in arrival time, the peak combustion pressure of nitromethane increases in the range of its volume fraction 10-40% as the concentration of nitromethane increases, and it slightly decreases in the range of 40-50%. The maximum peak pressure is equal to 0.94 MPa and the minimum peak pressure 0.58 MPa. Somewhat similar to the peak pressure, the peak combustion temperature increases with the volume fraction of nitromethane in the range of 10-40%, and slightly decreases in 40-50%. The maximum peak temperature is 1340 °C and the minimum 860 °C. The combustion temperature rise rate increases with the concentration of nitromethane in 10-30%, while decreases in 30-50% and its maximum value of combustion temperature rise rate in 10-50% is 4200 °C/s at the volume fraction of 30%. Influence of the concentration of nitromethane on the combustion pressure rise rate is relatively complicated, and the maximum value of rise rate of combustion pressure wave in 10-50% is 11 MPa/s at the concentration 20%. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Variability and repeatability analysis of plantar pressure during gait in older people.

    PubMed

    Franco, Pedro S; Silva, Caio Borella P da; Rocha, Emmanuel S da; Carpes, Felipe P

    2015-01-01

    Repeatability and variability of the plantar pressure during walking are important components in the clinical assessment of the elderly. However, there is a lack of information on the uniformity of plantar pressure patterns in the elderly. To analyze the repeatability and variability in plantar pressure considering mean, peak and asymmetries during aged gait. Plantar pressure was monitored in four different days for ten elderly subjects (5 female), with mean±standard-deviation age of 73±6 years, walking barefoot at preferred speed. Data were compared between steps for each day and between different days. Mean and peak plantar pressure values were similar between the different days of evaluation. Asymmetry indexes were similar between the different days evaluated. Plantar pressure presented a consistent pattern in the elderly. However, the asymmetry indexes observed suggest that the elderly are exposed to repetitive asymmetric loading during locomotion. Such result requires further investigation, especially concerning the role of these asymmetries for development of articular injuries. Copyright © 2015 Elsevier Editora Ltda. All rights reserved.

  17. In situ study of an oxidation reaction on a Pt/C electrode by ambient pressure hard X-ray photoelectron spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takagi, Yasumasa, E-mail: ytakagi@ims.ac.jp; Uemura, Yohei; Yokoyama, Toshihiko

    2014-09-29

    We have constructed an ambient pressure X-ray photoelectron spectroscopy instrument that uses hard X-ray radiation at the high-performance undulator beamline BL36XU of SPring-8. The dependence of the Au 4f peak intensity from Au foil on the ambient N{sub 2} pressure was measured. At a photon energy of 7.94 keV, the Au 4f peak intensity maintained 40% at 3000 Pa compared with that at high vacuum. We designed a polymer electrolyte fuel cell that allows us to perform X-ray photoelectron spectroscopy measurements of an electrode under working conditions. The oxidized Pt peaks were observed in the Pt 3d{sub 5/2} level of Pt nanoparticlesmore » in the cathode, and the peaks clearly depended on the applied voltage between the anode and cathode. Our apparatus can be applied as a valuable in situ tool for the investigation of the electronic states and adsorbed species of polymer electrolyte fuel cell electrode catalysts under the reaction conditions.« less

  18. Explosion characteristics of flammable organic vapors in nitrous oxide atmosphere.

    PubMed

    Koshiba, Yusuke; Takigawa, Tomihisa; Matsuoka, Yusaku; Ohtani, Hideo

    2010-11-15

    Despite unexpected explosion accidents caused by nitrous oxide have occurred, few systematic studies have been reported on explosion characteristics of flammable gases in nitrous oxide atmosphere compared to those in air or oxygen. The objective of this paper is to characterize explosion properties of mixtures of n-pentane, diethyl ether, diethylamine, or n-butyraldehyde with nitrous oxide and nitrogen using three parameters: explosion limit, peak explosion pressure, and time to the peak explosion pressure. Then, similar mixtures of n-pentane, diethyl ether, diethylamine, or n-butyraldehyde with oxygen and nitrogen were prepared to compare their explosion characteristics with the mixtures containing nitrous oxide. The explosion experiments were performed in a cylindrical vessel at atmospheric pressure and room temperature. The measurements showed that explosion ranges of the mixtures containing nitrous oxide were narrow compared to those of the mixtures containing oxygen. On the other hand, the maximum explosion pressures of the mixtures containing nitrous oxide were higher than those of the mixtures containing oxygen. Moreover, our experiments revealed that these mixtures differed in equivalence ratios at which the maximum explosion pressures were observed: the pressures of the mixtures containing nitrous oxide were observed at stoichiometry; in contrast, those of the mixtures containing oxygen were found at fuel-rich area. Chemical equilibrium calculations confirmed these behaviors. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Effects of Ankle Arthrodesis on Biomechanical Performance of the Entire Foot

    PubMed Central

    Wang, Yan; Li, Zengyong; Wong, Duo Wai-Chi; Zhang, Ming

    2015-01-01

    Background/Methodology Ankle arthrodesis is one popular surgical treatment for ankle arthritis, chronic instability, and degenerative deformity. However, complications such as foot pain, joint arthritis, and bone fracture may cause patients to suffer other problems. Understanding the internal biomechanics of the foot is critical for assessing the effectiveness of ankle arthrodesis and provides a baseline for the surgical plan. This study aimed to understand the biomechanical effects of ankle arthrodesis on the entire foot and ankle using finite element analyses. A three-dimensional finite element model of the foot and ankle, involving 28 bones, 103 ligaments, the plantar fascia, major muscle groups, and encapsulated soft tissue, was developed and validated. The biomechanical performances of a normal foot and a foot with ankle arthrodesis were compared at three gait instants, first-peak, mid-stance, and second-peak. Principal Findings/Conclusions Changes in plantar pressure distribution, joint contact pressure and forces, von Mises stress on bone and foot deformation were predicted. Compared with those in the normal foot, the peak plantar pressure was increased and the center of pressure moved anteriorly in the foot with ankle arthrodesis. The talonavicular joint and joints of the first to third rays in the hind- and mid-foot bore the majority of the loading and sustained substantially increased loading after ankle arthrodesis. An average contact pressure of 2.14 MPa was predicted at the talonavicular joint after surgery and the maximum variation was shown to be 80% in joints of the first ray. The contact force and pressure of the subtalar joint decreased after surgery, indicating that arthritis at this joint was not necessarily a consequence of ankle arthrodesis but rather a progression of pre-existing degenerative changes. Von Mises stress in the second and third metatarsal bones at the second-peak instant increased to 52 MPa and 34 MPa, respectively, after surgery. These variations can provide indications for outcome assessment of ankle arthrodesis surgery. PMID:26222188

  20. Effects of Ankle Arthrodesis on Biomechanical Performance of the Entire Foot.

    PubMed

    Wang, Yan; Li, Zengyong; Wong, Duo Wai-Chi; Zhang, Ming

    2015-01-01

    Ankle arthrodesis is one popular surgical treatment for ankle arthritis, chronic instability, and degenerative deformity. However, complications such as foot pain, joint arthritis, and bone fracture may cause patients to suffer other problems. Understanding the internal biomechanics of the foot is critical for assessing the effectiveness of ankle arthrodesis and provides a baseline for the surgical plan. This study aimed to understand the biomechanical effects of ankle arthrodesis on the entire foot and ankle using finite element analyses. A three-dimensional finite element model of the foot and ankle, involving 28 bones, 103 ligaments, the plantar fascia, major muscle groups, and encapsulated soft tissue, was developed and validated. The biomechanical performances of a normal foot and a foot with ankle arthrodesis were compared at three gait instants, first-peak, mid-stance, and second-peak. Changes in plantar pressure distribution, joint contact pressure and forces, von Mises stress on bone and foot deformation were predicted. Compared with those in the normal foot, the peak plantar pressure was increased and the center of pressure moved anteriorly in the foot with ankle arthrodesis. The talonavicular joint and joints of the first to third rays in the hind- and mid-foot bore the majority of the loading and sustained substantially increased loading after ankle arthrodesis. An average contact pressure of 2.14 MPa was predicted at the talonavicular joint after surgery and the maximum variation was shown to be 80% in joints of the first ray. The contact force and pressure of the subtalar joint decreased after surgery, indicating that arthritis at this joint was not necessarily a consequence of ankle arthrodesis but rather a progression of pre-existing degenerative changes. Von Mises stress in the second and third metatarsal bones at the second-peak instant increased to 52 MPa and 34 MPa, respectively, after surgery. These variations can provide indications for outcome assessment of ankle arthrodesis surgery.

  1. Tracking performance with two breathing oxygen concentrations after high altitude rapid decompression

    NASA Technical Reports Server (NTRS)

    Nesthus, Thomas E.; Schiflett, Samuel G.; Oakley, Carolyn J.

    1992-01-01

    Current military aircraft Liquid Oxygen (LOX) systems supply 99.5 pct. gaseous Aviator's Breathing Oxygen (ABO) to aircrew. Newer Molecular Sieve Oxygen Generation Systems (MSOGS) supply breathing gas concentration of 93 to 95 pct. O2. The margin is compared of hypoxia protection afforded by ABO and MSOGS breathing gas after a 5 psi differential rapid decompression (RD) in a hypobaric research chamber. The barometric pressures equivalent to the altitudes of 46000, 52000, 56000, and 60000 ft were achieved from respective base altitudes in 1 to 1.5 s decompressions. During each exposure, subjects remained at the simulated peak altitude breathing either 100 or 94 pct. O2 with positive pressure for 60 s, followed by a rapid descent to 40000 ft. Subjects used the Tactical Life Support System (TLSS) for high altitude protection. Subcritical tracking task performance on the Performance Evaluation Device (PED) provided psychomotor test measures. Overall tracking task performance results showed no differences between the MSOGS breathing O2 concentration of 94 pct. and ABO. Significance RMS error differences were found between the ground level and base altitude trials compared to peak altitude trials. The high positive breathing pressures occurring at the peak altitudes explained the differences.

  2. Rate of rise in diastolic blood pressure influences vascular sympathetic response to mental stress.

    PubMed

    El Sayed, Khadigeh; Macefield, Vaughan G; Hissen, Sarah L; Joyner, Michael J; Taylor, Chloe E

    2016-12-15

    Research indicates that individuals may experience a rise (positive responders) or fall (negative responders) in muscle sympathetic nerve activity (MSNA) during mental stress. In this study, we examined the early blood pressure responses (including the peak, time of peak and rate of rise in blood pressure) to mental stress in positive and negative responders. Negative MSNA responders to mental stress exhibit a more rapid rise in diastolic pressure at the onset of the stressor, suggesting a baroreflex-mediated suppression of MSNA. In positive responders there is a more sluggish rise in blood pressure during mental stress, which appears to be MSNA-driven. This study suggests that whether MSNA has a role in the pressor response is dependent upon the reactivity of blood pressure early in the task. Research indicates that individuals may experience a rise (positive responders) or fall (negative responders) in muscle sympathetic nerve activity (MSNA) during mental stress. The aim was to examine the early blood pressure response to stress in positive and negative responders and thus its influence on the direction of change in MSNA. Blood pressure and MSNA were recorded continuously in 21 healthy young males during 2 min mental stressors (mental arithmetic, Stroop test) and physical stressors (cold pressor, handgrip exercise, post-exercise ischaemia). Participants were classified as negative or positive responders according to the direction of the mean change in MSNA during the stressor tasks. The peak changes, time of peak and rate of changes in blood pressure were compared between groups. During mental arithmetic negative responders experienced a significantly greater rate of rise in diastolic blood pressure in the first minute of the task (1.3 ± 0.5 mmHg s -1 ) compared with positive responders (0.4 ± 0.1 mmHg s -1 ; P = 0.03). Similar results were found for the Stroop test. Physical tasks elicited robust parallel increases in blood pressure and MSNA across participants. It is concluded that negative MSNA responders to mental stress exhibit a more rapid rise in diastolic pressure at the onset of the stressor, suggesting a baroreflex-mediated suppression of MSNA. In positive responders there is a more sluggish rise in blood pressure during mental stress, which appears to be MSNA-driven. This study suggests that whether MSNA has a role in the pressor response is dependent upon the reactivity of blood pressure early in the task. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  3. Rate of rise in diastolic blood pressure influences vascular sympathetic response to mental stress

    PubMed Central

    El Sayed, Khadigeh; Macefield, Vaughan G.; Hissen, Sarah L.; Joyner, Michael J.

    2016-01-01

    Key points Research indicates that individuals may experience a rise (positive responders) or fall (negative responders) in muscle sympathetic nerve activity (MSNA) during mental stress.In this study, we examined the early blood pressure responses (including the peak, time of peak and rate of rise in blood pressure) to mental stress in positive and negative responders.Negative MSNA responders to mental stress exhibit a more rapid rise in diastolic pressure at the onset of the stressor, suggesting a baroreflex‐mediated suppression of MSNA. In positive responders there is a more sluggish rise in blood pressure during mental stress, which appears to be MSNA‐driven.This study suggests that whether MSNA has a role in the pressor response is dependent upon the reactivity of blood pressure early in the task. Abstract Research indicates that individuals may experience a rise (positive responders) or fall (negative responders) in muscle sympathetic nerve activity (MSNA) during mental stress. The aim was to examine the early blood pressure response to stress in positive and negative responders and thus its influence on the direction of change in MSNA. Blood pressure and MSNA were recorded continuously in 21 healthy young males during 2 min mental stressors (mental arithmetic, Stroop test) and physical stressors (cold pressor, handgrip exercise, post‐exercise ischaemia). Participants were classified as negative or positive responders according to the direction of the mean change in MSNA during the stressor tasks. The peak changes, time of peak and rate of changes in blood pressure were compared between groups. During mental arithmetic negative responders experienced a significantly greater rate of rise in diastolic blood pressure in the first minute of the task (1.3 ± 0.5 mmHg s−1) compared with positive responders (0.4 ± 0.1 mmHg s−1; P = 0.03). Similar results were found for the Stroop test. Physical tasks elicited robust parallel increases in blood pressure and MSNA across participants. It is concluded that negative MSNA responders to mental stress exhibit a more rapid rise in diastolic pressure at the onset of the stressor, suggesting a baroreflex‐mediated suppression of MSNA. In positive responders there is a more sluggish rise in blood pressure during mental stress, which appears to be MSNA‐driven. This study suggests that whether MSNA has a role in the pressor response is dependent upon the reactivity of blood pressure early in the task. PMID:27690366

  4. Effect of variable body mass on plantar foot pressure and off-loading device efficacy.

    PubMed

    Pirozzi, Kelly; McGuire, James; Meyr, Andrew J

    2014-01-01

    An increasing body of evidence has implicated obesity as having a negative effect on the development, treatment, and outcome of lower extremity pathologic entities, including diabetic foot disease. The objective of the present study was to increase the body of knowledge with respect to the effects of obesity on foot function. Specifically, we attempted to (1) describe the relationship between an increasing body mass index (BMI) on plantar foot pressures during gait, and (2) evaluate the efficacy of commonly prescribed off-loading devices with an increasing BMI. A repeated measures design was used to compare the peak plantar foot pressures under multiple test conditions, with the volunteers acting as their own controls. The primary outcome measure was the mean peak plantar pressure in the heel, midfoot, forefoot, and first metatarsal, and the 2 variables were modification of patient weight (from "normal" BMI to "overweight," "obese," and "morbidly obese") and footwear (from an athletic sneaker to a surgical shoe, controlled ankle motion walker, and total contact cast). Statistically significant increases in the peak plantar pressures were observed with increasing volunteer BMI weight class, regardless of the off-loading device used. The present investigation has provided unique and specific data with respect to the changes that occur in the peak plantar pressures with variable BMIs across different anatomic levels and with commonly used off-loading devices. From our results, we have concluded that although the plantar pressures increase with increasing weight, it appears that at least some reduction in pressure can be achieved with an off-loading device, most effectively with the total contact cast, regardless of the patient's BMI. Copyright © 2014 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  5. Effects of low-dye taping on plantar pressure pre and post exercise: an exploratory study.

    PubMed

    Nolan, Damien; Kennedy, Norelee

    2009-04-21

    Low-Dye taping is used for excessive pronation at the subtalar joint of the foot. Previous research has focused on the tape's immediate effect on plantar pressure. Its effectiveness following exercise has not been investigated. Peak plantar pressure distribution provides an indirect representation of subtalar joint kinematics. The objectives of the study were 1) To determine the effects of Low-Dye taping on peak plantar pressure immediately post-application. 2) To determine whether any initial effects are maintained following exercise. 12 asymptomatic subjects participated; each being screened for excessive pronation (navicular drop > 10 mm). Plantar pressure data was recorded, using the F-scan, at four intervals during the testing session: un-taped, baseline-taped, post-exercise session 1, and post-exercise session 2. Each exercise session consisted of a 10-minute walk at a normal pace. The foot was divided into 6 regions during data analysis. Repeated-measures analysis of variance (ANOVA) was used to assess regional pressure variations across the four testing conditions. Reduced lateral forefoot peak plantar pressure was the only significant difference immediately post tape application (p = 0.039). This effect was lost after 10 minutes of exercise (p = 0.036). Each exercise session resulted in significantly higher medial forefoot peak pressure compared to un-taped; (p = 0.015) and (p = 0.014) respectively, and baseline-taped; (p = 0.036) and (p = 0.015) respectively. Medial and lateral rearfoot values had also increased after the second session (p = 0.004), following their non-significant reduction at baseline-taped. A trend towards a medial-to-lateral shift in pressure present in the midfoot immediately following tape application was still present after 20 minutes of exercise. Low-Dye tape's initial effect of reduced lateral forefoot peak plantar pressure was lost after a 10-minute walk. However, the tape continued to have an effect on the medial forefoot after 20 minutes of exercise. Further studies with larger sample sizes are required to examine the important finding of the anti-pronatory trend present in the midfoot.

  6. Interactive effect of body posture on exercise-induced atrial natriuretic peptide release.

    PubMed

    Ray, C A; Delp, M D; Hartle, D K

    1990-05-01

    The purpose of this investigation was to test the hypothesis that supine exercise elicits a greater atrial natriuretic peptide (ANP) response than upright exercise because of higher atrial filling pressure attained in the supine posture. Plasma ANP concentration ([ANP]) was measured during continuous graded supine and upright exercise in eight healthy men at rest after 4 min of cycling exercise at 31, 51, and 79% of posture-specific peak oxygen uptake (VO2 peak), after 2 min of cycling at posture-specific VO2 peak, and 5 and 15 min postexercise. [ANP] was significantly increased (P less than 0.05) above rest by 64, 140, and 228% during supine cycling at 51 and 79% and VO2 peak, respectively. During upright cycling, [ANP] was significantly increased (P less than 0.05) at 79% (60%) and VO2 peak (125%). After 15 min of postexercise rest, [ANP] remained elevated (P less than 0.05) only in the supine subjects. [ANP] was 63, 79, and 75% higher (P less than 0.05) in the supine than in the upright position during cycling at 51 and 79% and VO2 peak. Systolic, diastolic, and mean blood pressures were not significantly (P greater than 0.05) different between positions in all measurement periods. Heart rates were lower (P less than 0.05) in the supine position compared with the upright position. In conclusion, these results suggest that supine exercise elicits greater ANP release independent of blood pressure and heart rate but presumably caused by greater venous return, central blood volume, and concomitant atrial filling pressure and stretch.

  7. MRI-based modeling for radiocarpal joint mechanics: validation criteria and results for four specimen-specific models.

    PubMed

    Fischer, Kenneth J; Johnson, Joshua E; Waller, Alexander J; McIff, Terence E; Toby, E Bruce; Bilgen, Mehmet

    2011-10-01

    The objective of this study was to validate the MRI-based joint contact modeling methodology in the radiocarpal joints by comparison of model results with invasive specimen-specific radiocarpal contact measurements from four cadaver experiments. We used a single validation criterion for multiple outcome measures to characterize the utility and overall validity of the modeling approach. For each experiment, a Pressurex film and a Tekscan sensor were sequentially placed into the radiocarpal joints during simulated grasp. Computer models were constructed based on MRI visualization of the cadaver specimens without load. Images were also acquired during the loaded configuration used with the direct experimental measurements. Geometric surface models of the radius, scaphoid and lunate (including cartilage) were constructed from the images acquired without the load. The carpal bone motions from the unloaded state to the loaded state were determined using a series of 3D image registrations. Cartilage thickness was assumed uniform at 1.0 mm with an effective compressive modulus of 4 MPa. Validation was based on experimental versus model contact area, contact force, average contact pressure and peak contact pressure for the radioscaphoid and radiolunate articulations. Contact area was also measured directly from images acquired under load and compared to the experimental and model data. Qualitatively, there was good correspondence between the MRI-based model data and experimental data, with consistent relative size, shape and location of radioscaphoid and radiolunate contact regions. Quantitative data from the model generally compared well with the experimental data for all specimens. Contact area from the MRI-based model was very similar to the contact area measured directly from the images. For all outcome measures except average and peak pressures, at least two specimen models met the validation criteria with respect to experimental measurements for both articulations. Only the model for one specimen met the validation criteria for average and peak pressure of both articulations; however the experimental measures for peak pressure also exhibited high variability. MRI-based modeling can reliably be used for evaluating the contact area and contact force with similar confidence as in currently available experimental techniques. Average contact pressure, and peak contact pressure were more variable from all measurement techniques, and these measures from MRI-based modeling should be used with some caution.

  8. Reversed aqueductal cerebrospinal fluid net flow in idiopathic normal pressure hydrocephalus.

    PubMed

    Yin, L K; Zheng, J J; Zhao, L; Hao, X Z; Zhang, X X; Tian, J Q; Zheng, K; Yang, Y M

    2017-11-01

    The changes of CSF flow dynamics in idiopathic normal pressure hydrocephalus (iNPH) are not fully elucidated. Most previous studies took the whole cardiac cycle as a unit. In this work, it is divided into systole and diastole phase and compared between iNPH patients and normal elderly and paid special attention to the change of netflow direction. Twenty iNPH patients according to international guideline and twenty healthy volunteers were included in this study and examined by MRI. Three categories of CSF flow parameters were measured: peak velocity (V peak ), stroke volume (SV), and minute flow volume (MinV) covering the whole cycle; peak velocity (V peak-s , V peak-d ) and flow volume (Vol s , Vol d ) of the systole and diastole, respectively; net flow. Evans index (EI) was also measured and compared statistically between the two groups. EI, V peak , SV, MinV, Vol s , Vol d , and V peak-d significantly increased in iNPH group (P<0.05). V peak-s of the two groups were not significantly different (P>0.05). The net flow of 16 iNPH patients (16/20) was in the caudo-cranial direction, while 15 volunteers (15/20) were in the opposite direction, which showed statistically significant differences (P=.001). INPH patients present hyperdynamic flow with increased velocity and volume both in systole and diastole phase. Degree of rising in diastole phase exceeds that of systole phase. The resulting reversal of netflow direction may play a key role in the occurrence of ventriculomegaly in iNPH patients. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Raman spectroscopic characterization of gas mixtures. II. Quantitative composition and pressure determination of the CO2-CH4 system

    USGS Publications Warehouse

    Seitz, J.C.; Pasteris, J.D.; Chou, I.-Ming

    1996-01-01

    Raman spectral parameters were determined for the v1 band of CH4 and the v1 and 2v2 bands (Fermi diad) of CO2 in pure CO2 and CO2-CH4 mixtures at pressures up to 700 bars and room temperature. Peak position, area, height, and width were investigated as functions of pressure and composition. The peak positions of the CH4 and CO2 bands shift to lower relative wavenumbers as fluid pressure is increased. The peak position of the lower-wavenumber member of the Fermi diad for CO2 is sensitive to fluid composition, whereas the peak positions of the CH4 band and the upper Fermi diad member for CO2 are relatively insensitive in the CO2-CH4 system. The magnitude of the shifts in each of the three peak positions (as a function of pressure) is sufficient to be useful as a monitor of fluid pressure. The relative molar proportions in a CO2-CH4 mixture may be determined from the peak areas: the ratio of the peak areas of the CH4 band and the CO2 upper Fermi diad member is very sensitive to composition, whereas above about 100 bars, it is insensitive to pressure. Likewise, the peak height ratio is very sensitive to composition but also to fluid pressure. The individual peak widths of CO2 and CH4, as well as the ratios of the widths of the CH4 peak to the CO2 peaks are a sensitive function of pressure and, to a lesser extent, composition. Thus, upon determination of fluid composition, the peak width ratios may be used as a monitor of fluid pressure. The application of these spectral parameters to a suite of natural CO2-CH4 inclusions has yielded internally-consistent, quantitative determinations of the fluid composition and density.

  10. Development of a multimodal blast sensor for measurement of head impact and over-pressurization exposure.

    PubMed

    Chu, Jeffrey J; Beckwith, Jonathan G; Leonard, Daniel S; Paye, Corey M; Greenwald, Richard M

    2012-01-01

    It is estimated that 10-20% of United States soldiers returning from Operation Iraqi Freedom (OIF) and Operation Enduring Freedom (OEF) have suffered at least one instance of blast-induced traumatic brain injury (bTBI) with many reporting persistent symptomology and long-term effects. This variation in blast response may be related to the complexity of blast waves and the many mechanisms of injury, including over-pressurization due to the shock wave and potential for blunt impacts to the head from shrapnel or from other indirect impacts (e.g., building, ground, and vehicle). To help differentiate the effects of primary, secondary, and tertiary effects of blast, a custom sensor was developed to simultaneously measure over-pressurization and blunt impact. Moreover, a custom, complementary filter was designed to differentiate the measurements of blunt (low-frequency bandwidth) from over-pressurization (high-frequency bandwidth). The custom sensor was evaluated in the laboratory using a shock tube to simulate shock waves and a drop fixture to simulate head impacts. Both bare sensors and sensor embedded within an ACH helmet coupon were compared to laboratory reference transducers under multiple loading conditions (n = 5) and trials at each condition (n = 3). For all comparative measures, peak magnitude, peak impulse, and cross-correlation measures, R (2) values, were greater than 0.900 indicating excellent agreement of peak measurements and time-series comparisons with laboratory measures.

  11. Glottal flow through a two-mass model: comparison of Navier-Stokes solutions with simplified models.

    PubMed

    de Vries, M P; Schutte, H K; Veldman, A E P; Verkerke, G J

    2002-04-01

    A new numerical model of the vocal folds is presented based on the well-known two-mass models of the vocal folds. The two-mass model is coupled to a model of glottal airflow based on the incompressible Navier-Stokes equations. Glottal waves are produced using different initial glottal gaps and different subglottal pressures. Fundamental frequency, glottal peak flow, and closed phase of the glottal waves have been compared with values known from the literature. The phonation threshold pressure was determined for different initial glottal gaps. The phonation threshold pressure obtained using the flow model with Navier-Stokes equations corresponds better to values determined in normal phonation than the phonation threshold pressure obtained using the flow model based on the Bernoulli equation. Using the Navier-Stokes equations, an increase of the subglottal pressure causes the fundamental frequency and the glottal peak flow to increase, whereas the fundamental frequency in the Bernoulli-based model does not change with increasing pressure.

  12. Comfort evaluation of a subject-specific seating interface formed by vibrating grains.

    PubMed

    Liu, Shenghui; Qu, Yunxia; Hou, Shujun; Li, Kai; Li, Xinye; Zhai, Yang; Ji, Yunxiao

    2018-09-01

    Sitting is the most common posture for work in offices, and spinal cord injury (SCI) patients who are wheelchair dependent spend 10.6 h per day seated in wheelchairs. Thus, the comfort of subject-specific interfaces is increasingly important for the well-being of patients and office workers. This paper introduces a new method of forming a subject-specific interface, based on vibrating grains. Twenty subjects (10 females and 10 males) participated in the sitting test. Interface comfort was evaluated using the pressure distribution and subjective rating methods. Five seating interface types were compared. The results showed that compared with a flat interface, the interfaces formed by vibrating grains had a significantly reduced peak contact pressure (PeakCP) (by more than 58.03%), and that PeakCP was highly correlated with the comfort rating (R = -0.533) and discomfort rating(R = -0.603). This new method shows promise for guiding the future development of customized seating interfaces. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Gaussian fitting for carotid and radial artery pressure waveforms: comparison between normal subjects and heart failure patients.

    PubMed

    Liu, Chengyu; Zheng, Dingchang; Zhao, Lina; Liu, Changchun

    2014-01-01

    It has been reported that Gaussian functions could accurately and reliably model both carotid and radial artery pressure waveforms (CAPW and RAPW). However, the physiological relevance of the characteristic features from the modeled Gaussian functions has been little investigated. This study thus aimed to determine characteristic features from the Gaussian functions and to make comparisons of them between normal subjects and heart failure patients. Fifty-six normal subjects and 51 patients with heart failure were studied with the CAPW and RAPW signals recorded simultaneously. The two signals were normalized first and then modeled by three positive Gaussian functions, with their peak amplitude, peak time, and half-width determined. Comparisons of these features were finally made between the two groups. Results indicated that the peak amplitude of the first Gaussian curve was significantly decreased in heart failure patients compared with normal subjects (P<0.001). Significantly increased peak amplitude of the second Gaussian curves (P<0.001) and significantly shortened peak times of the second and third Gaussian curves (both P<0.001) were also presented in heart failure patients. These results were true for both CAPW and RAPW signals, indicating the clinical significance of the Gaussian modeling, which should provide essential tools for further understanding the underlying physiological mechanisms of the artery pressure waveform.

  14. [Effect of walking speed on pressure distribution of orthopedic shoe technology].

    PubMed

    Drerup, B; Hafkemeyer, U; Möller, M; Wetz, H H

    2001-03-01

    Lesions to the diabetic foot have various causes. However, there is broad consensus that excessive plantar pressure plays a major role in the chain of events leading to ulcerations and gangrenes. During walking, on the other hand, peak values of plantar pressure are likely to increase with velocity even in therapeutic shoes. Therefore, the question arises whether a moderate velocity should be recommended to diabetic patients to reduce the risk of foot lesions. In this study, two velocities were compared for different types of therapeutic footwear. The velocities selected were considered moderate (0.7 m/s) and normal (1.3 m/s) for diabetic patients. A specially designed mathematical algorithm (velocity normalization) provided the pressure distributions from a common set of measurements: seven trials at different velocities for each subject and each type of footwear. Ten test subjects with healthy feet were studied. The shoes were ready-made and all had a midfoot rocker. The following four conditions were tested: flexible or rigid outsole respectively in combination with a flat insole or molded foot bed respectively. Pressure distribution measurements were performed with the Pedar in-shoe system, and the Pedar software package was used for analysis. The foot was divided into six regions: first toe, second to fifth toes, metatarsal region, medial midfoot, lateral midfoot, and heel. Only peak pressures were taken into account. Gait velocity was found to have an effect on plantar pressure distribution, mainly in the toes and heel region. Peak pressure in the heels increased significantly by about 20%. In the toe region, the increase was about the same, but was not statistically significant. At a higher velocity, pressure even slightly decreased in the midfoot region. The percentage variation was similar for all four conditions. Thus, walking slowly prevented the foot from high peak pressures, and the combination of rigid outsole and molded foot bed was best suited for both slow and higher velocities.

  15. Investigation of the tone-burst tube for duct lining attenuation measurement

    NASA Technical Reports Server (NTRS)

    Soffel, A. R.; Morrow, P. F.

    1972-01-01

    The tone burst technique makes practical the laboratory evaluation of potential inlet and discharge duct treatments. Tone burst apparatus requires only simple machined parts and standard components. Small, simply made, lining samples are quickly and easily installed in the system. Two small electromagnetric loudspeaker drivers produce peak sound pressure level of over 166 db in the 3-square-inch sample duct. Air pump available in most laboratories can produce air flows of over plus and minus Mach 0.3 in the sample duct. The technique uses short shaped pulses of sound propagated down a progressive wave tube containing the sample duct. The peak pressure level output of the treated duct is compared with the peak pressure level output of a substituted reference duct. The difference between the levels is the attenuation or insertion loss of the treated duct. Evaluations of resonant absorber linings by the tone burst technique check attenuation values predicted by empirical formulas based on full scale ducts.

  16. Structural and functional predictors of regional peak pressures under the foot during walking.

    PubMed

    Morag, E; Cavanagh, P R

    1999-04-01

    The objective of this study was to identify structural and functional factors which are predictors of peak pressure underneath the human foot during walking. Peak plantar pressure during walking and eight data sets of structural and functional measures were collected on 55 asymptomatic subjects between 20 and 70 yr. A best subset regression approach was used to establish models which predicted peak regional pressure under the foot. Potential predictor variables were chosen from physical characteristics, anthropometric data, passive range of motion (PROM), measurements from standardized weight bearing foot radiographs, mechanical properties of the plantar soft tissue, stride parameters, foot motion in 3D, and EMG during walking. Peak pressure values under the rearfoot, midfoot, MTH1, and hallux were measured. Heel pressure was a function of linear kinematics, longitudinal arch structure, thickness of plantar soft tissue, and age. Midfoot pressure prediction was dominated by arch structure, while MTH1 pressure was a function of radiographic measurements, talo-crural joint motion, and gastrocnemius activity. Hallux pressure was a function of structural measures and MTP1 joint motion. Foot structure and function predicted only approximately 50% of the variance in peak pressure, although the relative contributions in different anatomical regions varied dramatically. Structure was dominant in predicting peak pressure under the midfoot and MTH1, while both structure and function were important at the heel and hallux. The predictive models developed in this study give insight into potential etiological factors associated with elevated plantar pressure. They also provide direction for future studies designed to reduce elevated pressure in "at-risk" patients.

  17. Estimation of Pharyngeal Collapsibility During Sleep by Peak Inspiratory Airflow.

    PubMed

    Azarbarzin, Ali; Sands, Scott A; Taranto-Montemurro, Luigi; Oliveira Marques, Melania D; Genta, Pedro R; Edwards, Bradley A; Butler, James; White, David P; Wellman, Andrew

    2017-01-01

    Pharyngeal critical closing pressure (Pcrit) or collapsibility is a major determinant of obstructive sleep apnea (OSA) and may be used to predict the success/failure of non-continuous positive airway pressure (CPAP) therapies. Since its assessment involves overnight manipulation of CPAP, we sought to validate the peak inspiratory flow during natural sleep (without CPAP) as a simple surrogate measurement of collapsibility. Fourteen patients with OSA attended overnight polysomnography with pneumotachograph airflow. The middle third of the night (non-rapid eye movement sleep [NREM]) was dedicated to assessing Pcrit in passive and active states via abrupt and gradual CPAP pressure drops, respectively. Pcrit is the extrapolated CPAP pressure at which flow is zero. Peak and mid-inspiratory flow off CPAP was obtained from all breaths during sleep (excluding arousal) and compared with Pcrit. Active Pcrit, measured during NREM sleep, was strongly correlated with both peak and mid-inspiratory flow during NREM sleep (r = -0.71, p < .005 and r = -0.64, p < .05, respectively), indicating that active pharyngeal collapsibility can be reliably estimated from simple airflow measurements during polysomnography. However, there was no significant relationship between passive Pcrit, measured during NREM sleep, and peak or mid-inspiratory flow obtained from NREM sleep. Flow measurements during REM sleep were not significantly associated with active or passive Pcrit. Our study demonstrates the feasibility of estimating active Pcrit using flow measurements in patients with OSA. This method may enable clinicians to estimate pharyngeal collapsibility without sophisticated equipment and potentially aid in the selection of patients for non- positive airway pressure therapies. © Sleep Research Society 2016. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  18. Effects of Head Rotation and Head Tilt on Pharyngeal Pressure Events Using High Resolution Manometry.

    PubMed

    Kim, Cheol Ki; Ryu, Ju Seok; Song, Sun Hong; Koo, Jung Hoi; Lee, Kyung Duck; Park, Hee Sun; Oh, Yoongul; Min, Kyunghoon

    2015-06-01

    To observe changes in pharyngeal pressure during the swallowing process according to postures in normal individuals using high-resolution manometry (HRM). Ten healthy volunteers drank 5 mL of water twice while sitting in a neutral posture. Thereafter, they drank the same amount of water twice in the head rotation and head tilting postures. The pressure and time during the deglutition process for each posture were measured with HRM. The data obtained for these two postures were compared with those obtained from the neutral posture. The maximum pressure, area, rise time, and duration in velopharynx (VP) and tongue base (TB) were not affected by changes in posture. In comparison, the maximum pressure and the pre-upper esophageal sphincter (UES) maximum pressure of the lower pharynx in the counter-catheter head rotation posture were lower than those in the neutral posture. The lower pharynx pressure in the catheter head tilting posture was higher than that in the counter-catheter head tilting. The changes in the VP peak and epiglottis, VP and TB peaks, and the VP onset and post-UES time intervals were significant in head tilting and head rotation toward the catheter postures, as compared with neutral posture. The pharyngeal pressure and time parameter analysis using HRM determined the availability of head rotation as a compensatory technique for safe swallowing. Tilting the head smoothes the progress of food by increasing the pressure in the pharynx.

  19. Effects of Head Rotation and Head Tilt on Pharyngeal Pressure Events Using High Resolution Manometry

    PubMed Central

    Kim, Cheol Ki; Song, Sun Hong; Koo, Jung Hoi; Lee, Kyung Duck; Park, Hee Sun; Oh, Yoongul; Min, Kyunghoon

    2015-01-01

    Objective To observe changes in pharyngeal pressure during the swallowing process according to postures in normal individuals using high-resolution manometry (HRM). Methods Ten healthy volunteers drank 5 mL of water twice while sitting in a neutral posture. Thereafter, they drank the same amount of water twice in the head rotation and head tilting postures. The pressure and time during the deglutition process for each posture were measured with HRM. The data obtained for these two postures were compared with those obtained from the neutral posture. Results The maximum pressure, area, rise time, and duration in velopharynx (VP) and tongue base (TB) were not affected by changes in posture. In comparison, the maximum pressure and the pre-upper esophageal sphincter (UES) maximum pressure of the lower pharynx in the counter-catheter head rotation posture were lower than those in the neutral posture. The lower pharynx pressure in the catheter head tilting posture was higher than that in the counter-catheter head tilting. The changes in the VP peak and epiglottis, VP and TB peaks, and the VP onset and post-UES time intervals were significant in head tilting and head rotation toward the catheter postures, as compared with neutral posture. Conclusion The pharyngeal pressure and time parameter analysis using HRM determined the availability of head rotation as a compensatory technique for safe swallowing. Tilting the head smoothes the progress of food by increasing the pressure in the pharynx. PMID:26161349

  20. Foot posture is associated with plantar pressure during gait: A comparison of normal, planus and cavus feet.

    PubMed

    Buldt, Andrew K; Forghany, Saeed; Landorf, Karl B; Levinger, Pazit; Murley, George S; Menz, Hylton B

    2018-03-05

    Variations in foot posture, such as pes planus (low medial longitudinal arch) or pes cavus (high medial longitudinal arch) are associated with some lower limb injuries. However, the mechanism that links foot posture to injury is not clear. Research question The aim of this study was to compare plantar pressure between healthy individuals with normal, planus or cavus feet. Ninety-two healthy volunteers (aged 18 to 45) were classified as either normal (n = 35), pes planus (n = 31) or pes cavus (n = 26) based on the Foot Posture Index, Arch Index and normalised navicular height truncated. Barefoot walking trials were conducted using an emed ® -x400 plantar pressure system (Novel GmbH, Munich, Germany). An 11 region mask was used that included the medial heel, lateral heel, midfoot, 1st, 2nd, 3rd, 4th and 5th metatarsophalangeal joints, hallux, 2nd toe, and the 3rd, 4th and 5th toes. Peak pressure, pressure-time integral, maximum force, force-time integral and contact area were calculated for each region. One way analyses of variance and effect sizes were used to compare the three foot posture groups. Overall, the largest differences were between the planus and cavus foot groups in forefoot pressure and force. In particular, peak pressures at the 4th and 5th MTPJs in the planus foot group were lower compared to the normal and cavus foot groups, and displayed the largest effect sizes. Significance This study confirms that foot posture does influence plantar pressures, and that each foot posture classification displays unique plantar pressure characteristics. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Impaired carotid baroreflex control of arterial blood pressure in multiple sclerosis.

    PubMed

    Huang, Mu; Allen, Dustin R; Keller, David M; Fadel, Paul J; Frohman, Elliot M; Davis, Scott L

    2016-07-01

    Multiple sclerosis (MS), a progressive neurological disease, can lead to impairments in the autonomic control of cardiovascular function. We tested the hypothesis that individuals with relapsing-remitting MS (n = 10; 7 females, 3 males; 13 ± 4 yr from diagnosis) exhibit impaired carotid baroreflex control of blood pressure and heart rate compared with sex, age, and body weight-matched healthy individuals (CON: n = 10; 7 females, 3 males). At rest, 5-s trials of neck pressure (NP; +40 Torr) and neck suction (NS; -60 Torr) were applied to simulate carotid hypotension and hypertension, respectively, while mean arterial pressure (MAP; finger photoplethysmography), heart rate (HR), cardiac output (CO; Modelflow), and total vascular conductance (TVC) were continuously measured. In response to NP, there was a blunted increase in peak MAP responses (MS: 5 ± 2 mmHg) in individuals with MS compared with healthy controls (CON: 9 ± 3 mmHg; P = 0.005), whereas peak HR responses were not different between groups. At the peak MAP response to NP, individuals with MS demonstrated an attenuated decrease in TVC (MS, -10 ± 4% baseline vs. CON, -15 ± 4% baseline, P = 0.012), whereas changes in CO were similar between groups. Following NS, all cardiovascular responses (i.e., nadir MAP and HR and percent changes in CO and TVC) were not different between MS and CON groups. These data suggest that individuals with MS have impaired carotid baroreflex control of blood pressure via a blunted vascular conductance response resulting in a diminished ability to increase MAP in response to a hypotensive challenge. Copyright © 2016 the American Physiological Society.

  2. Impaired carotid baroreflex control of arterial blood pressure in multiple sclerosis

    PubMed Central

    Huang, Mu; Allen, Dustin R.; Keller, David M.; Fadel, Paul J.; Frohman, Elliot M.

    2016-01-01

    Multiple sclerosis (MS), a progressive neurological disease, can lead to impairments in the autonomic control of cardiovascular function. We tested the hypothesis that individuals with relapsing-remitting MS (n = 10; 7 females, 3 males; 13 ± 4 yr from diagnosis) exhibit impaired carotid baroreflex control of blood pressure and heart rate compared with sex, age, and body weight-matched healthy individuals (CON: n = 10; 7 females, 3 males). At rest, 5-s trials of neck pressure (NP; +40 Torr) and neck suction (NS; −60 Torr) were applied to simulate carotid hypotension and hypertension, respectively, while mean arterial pressure (MAP; finger photoplethysmography), heart rate (HR), cardiac output (CO; Modelflow), and total vascular conductance (TVC) were continuously measured. In response to NP, there was a blunted increase in peak MAP responses (MS: 5 ± 2 mmHg) in individuals with MS compared with healthy controls (CON: 9 ± 3 mmHg; P = 0.005), whereas peak HR responses were not different between groups. At the peak MAP response to NP, individuals with MS demonstrated an attenuated decrease in TVC (MS, −10 ± 4% baseline vs. CON, −15 ± 4% baseline, P = 0.012), whereas changes in CO were similar between groups. Following NS, all cardiovascular responses (i.e., nadir MAP and HR and percent changes in CO and TVC) were not different between MS and CON groups. These data suggest that individuals with MS have impaired carotid baroreflex control of blood pressure via a blunted vascular conductance response resulting in a diminished ability to increase MAP in response to a hypotensive challenge. PMID:27075533

  3. Effect of turf toe on foot contact pressures in professional American football players.

    PubMed

    Brophy, Robert H; Gamradt, Seth C; Ellis, Scott J; Barnes, Ronnie P; Rodeo, Scott A; Warren, Russell F; Hillstrom, Howard

    2009-05-01

    The relationship between turf toe and plantar foot pressures has not been extensively studied. Two hypotheses were tested in a cohort of professional American football players: first, that a history of turf toe is associated with increased peak hallucal and first metatarsophalangeal (MTP) plantar pressures; second, that decreased range of motion (ROM) of the first MTP correlates with increased peak hallucal and first MTP plantar pressures. Forty-four athletes from one National Football League (NFL) team were screened for a history of turf toe during preseason training. Dorsal passive MTP ROM and dynamic plantar pressures were measured in both feet of each player. Anatomical masking was used to assess peak pressure at the first MTP and hallux. First MTP dorsiflexion was significantly lower in halluces with a history of turf toe (40.6 +/- 15.1 degrees versus 48.4 +/- 12.8 degrees, p = 0.04). Peak hallucal pressures were higher in athletes with turf toe (535 +/- 288 kPa versus 414 +/- 202 kPa, p = 0.05) even after normalizing for athlete body mass index (p = 0.0003). Peak MTP pressure was not significantly different between the two groups tested. First MTP dorsiflexion did not correlate with peak hallucal or first MTP pressures. This study showed that turf toe is associated with decreased MTP motion. In addition, increased peak hallucal pressures were found. Further study is warranted to determine whether these pressures correlate with the severity of symptoms or progression of turf toe to first MTP arthritis.

  4. The effects of respiratory muscle training on peak cough flow in patients with Parkinson's disease: a randomized controlled study.

    PubMed

    Reyes, Alvaro; Castillo, Adrián; Castillo, Javiera; Cornejo, Isabel

    2018-05-01

    To compare the effects of an inspiratory versus and expiratory muscle-training program on voluntary and reflex peak cough flow in patients with Parkinson disease. A randomized controlled study. Home-based training program. In all, 40 participants with diagnosis of Parkinson's disease were initially recruited in the study and randomly allocated to three study groups. Of them, 31 participants completed the study protocol (control group, n = 10; inspiratory training group, n = 11; and expiratory training group, n = 10) Intervention: The inspiratory and expiratory group performed a home-based inspiratory and expiratory muscle-training program, respectively (five sets of five repetitions). Both groups trained six times a week for two months using a progressively increased resistance. The control group performed expiratory muscle training using the same protocol and a fixed resistance. Spirometric indices, maximum inspiratory pressure, maximum expiratory pressure, and peak cough flow during voluntary and reflex cough were assessed before and at two months after training. The magnitude of increase in maximum expiratory pressure ( d = 1.40) and voluntary peak cough flow ( d = 0.89) was greater for the expiratory muscle-training group in comparison to the control group. Reflex peak cough flow had a moderate effect ( d = 0.27) in the expiratory group in comparison to the control group. Slow vital capacity ( d = 0.13) and forced vital capacity ( d = 0.02) had trivial effects in the expiratory versus the control group. Two months of expiratory muscle-training program was more beneficial than inspiratory muscle-training program for improving maximum expiratory pressure and voluntary peak cough flow in patients with Parkinson's disease.

  5. Foot pressure distributions during walking in African elephants (Loxodonta africana)

    PubMed Central

    Pataky, Todd C.; Day, Madeleine; Hensman, Michael C.; Hensman, Sean; Hutchinson, John R.; Clemente, Christofer J.

    2016-01-01

    Elephants, the largest living land mammals, have evolved a specialized foot morphology to help reduce locomotor pressures while supporting their large body mass. Peak pressures that could cause tissue damage are mitigated passively by the anatomy of elephants' feet, yet this mechanism does not seem to work well for some captive animals. This study tests how foot pressures vary among African and Asian elephants from habitats where natural substrates predominate but where foot care protocols differ. Variations in pressure patterns might be related to differences in husbandry, including but not limited to trimming and the substrates that elephants typically stand and move on. Both species' samples exhibited the highest concentration of peak pressures on the lateral digits of their feet (which tend to develop more disease in elephants) and lower pressures around the heel. The trajectories of the foot's centre of pressure were also similar, confirming that when walking at similar speeds, both species load their feet laterally at impact and then shift their weight medially throughout the step until toe-off. Overall, we found evidence of variations in foot pressure patterns that might be attributable to husbandry and other causes, deserving further examination using broader, more comparable samples. PMID:27853539

  6. Effects of lung protective mechanical ventilation associated with permissive respiratory acidosis on regional extra-pulmonary blood flow in experimental ARDS.

    PubMed

    Hering, Rudolf; Kreyer, Stefan; Putensen, Christian

    2017-10-27

    Lung protective mechanical ventilation with limited peak inspiratory pressure has been shown to affect cardiac output in patients with ARDS. However, little is known about the impact of lung protective mechanical ventilation on regional perfusion, especially when associated with moderate permissive respiratory acidosis. We hypothesized that lung protective mechanical ventilation with limited peak inspiratory pressure and moderate respiratory acidosis results in an increased cardiac output but unequal distribution of blood flow to the different organs of pigs with oleic-acid induced ARDS. Twelve pigs were enrolled, 3 died during instrumentation and induction of lung injury. Thus, 9 animals received pressure controlled mechanical ventilation with a PEEP of 5 cmH 2 O and limited peak inspiratory pressure (17 ± 4 cmH 2 O) versus increased peak inspiratory pressure (23 ± 6 cmH 2 O) in a crossover-randomized design and were analyzed. The sequence of limited versus increased peak inspiratory pressure was randomized using sealed envelopes. Systemic and regional hemodynamics were determined by double indicator dilution technique and colored microspheres, respectively. The paired student t-test and the Wilcoxon test were used to compare normally and not normally distributed data, respectively. Mechanical ventilation with limited inspiratory pressure resulted in moderate hypercapnia and respiratory acidosis (PaCO 2 71 ± 12 vs. 46 ± 9 mmHg, and pH 7.27 ± 0.05 vs. 7.38 ± 0.04, p < 0.001, respectively), increased cardiac output (140 ± 32 vs. 110 ± 22 ml/min/kg, p<0.05) and regional blood flow in the myocardium, brain and spinal cord, adrenal and thyroid glands, the mucosal layers of the esophagus and jejunum, the muscularis layers of the esophagus and duodenum, and the gall and urinary bladders. Perfusion of kidneys, pancreas, spleen, hepatic arterial bed, and the mucosal and muscularis blood flow to the other evaluated intestinal regions remained unchanged. In this porcine model of ARDS mechanical ventilation with limited peak inspiratory pressure resulting in moderate respiratory acidosis was associated with an increase in cardiac output. However, the better systemic blood flow was not uniformly directed to the different organs. This observation may be of clinical interest in patients, e.g. with cardiac, renal and cerebral pathologies.

  7. Lower-extremity dynamics of walking in neuropathic diabetic patients who wear a forefoot-offloading shoe.

    PubMed

    Bus, Sicco A; Maas, Josina C; Otterman, Nicoline M

    2017-12-01

    A forefoot-offloading shoes has a negative-heel rocker outsole and is used to treat diabetic plantar forefoot ulcers, but its mechanisms of action and their association with offloading and gait stability are not sufficiently clear. Ten neuropathic diabetic patients were tested in a forefoot-offloading shoe and subsequently in a control shoe with no specific offloading construction, both worn on the right foot (control shoe on left), while walking at 1.2m/s. 3D-instrumented gait analysis and simultaneous in-shoe plantar pressure measurements were used to explain the shoe's offloading efficacy and to define centre-of-pressure profiles and left-to-right symmetry in ankle joint dynamics (0-1, 1:maximum symmetry), as indicators for gait stability. Compared to the control shoe, peak forefoot pressures, vertical ground reaction force, plantar flexion angle, and ankle joint moment, all in terminal stance, and the proximal-to-distal centre-of-pressure trajectory were significantly reduced in the forefoot-offloading shoe (P<0.01). Peak ankle joint power was 51% lower in the forefoot-offloading shoe compared to the control shoe: 1.61 (0.35) versus 3.30 (0.84) W/kg (mean (SD), P<0.001), and was significantly associated with forefoot peak pressure (R 2 =0.72, P<0.001). Left-to-right symmetry in the forefoot-offloading shoe was 0.39 for peak ankle joint power. By virtue to their negative-heel rocker-outsole design, forefoot-offloading shoes significantly alter a neuropathic diabetic patient's gait towards a reduced push-off power that explains the shoe's offloading efficacy. However, gait symmetry and stability are compromised, and may be factors in the low perceived walking discomfort and limited use of these shoes in clinical practice. Shoe modifications (e.g. less negative heel, a more cushioning insole) may resolve this trade-off between efficacy and usability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Effectiveness of Total Contact Orthosis for Plantar Pressure Redistribution in Neuropathic Diabetic Patients During Different Walking Activities.

    PubMed

    Nouman, Muhammad; Leelasamran, Wipawan; Chatpun, Surapong

    2017-08-01

    Using a total contact orthosis (TCO) is an effective method to offload in diabetic patients with foot neuropathy. However, the redistribution of peak plantar pressure is mostly observed during level walking, which may differ from other walking activities. The aim of this study was to investigate the plantar pressure from 4 regions of the foot during different walking activities (level walking, ramp ascending, ramp descending, stair ascending, and stair descending) in neuropathic diabetic patients with and without a TCO. Sixteen neuropathic diabetic patients aged 40 to 60 years with calluses and hallux valgus were included in this study and were provided with TCOs made up of multifoam, Plastazote, and microcellular rubber. The plantar pressure and contact area with the TCO and without the TCO were recorded using the Pedar X system during different walking activities. A significant reduction of plantar pressure during different walking activities at the toes and forefoot regions was observed while walking with the TCO compared with walking without the TCO (control condition). Plantar pressure increased at the midfoot region when walking with the TCO, and no significant difference was observed at the hindfoot region between the control and TCO conditions. Furthermore, maximum contact area was observed during level walking with the TCO compared with other walking activities. The TCO significantly reduced and redistributed the peak plantar pressure from the sites where the ulceration rate is higher at the toes and forefoot compared with the other regions of the foot. Therapeutic level II, lesser quality randomized controlled trial.

  9. Comparison between two physiotherapy protocols for patients with chronic kidney disease on dialysis

    PubMed Central

    Neto, José Roberto Sostena; Figueiredo e Castro, Letícia Magalhães; Santos de Oliveira, Fernanda; Silva, Andréia Maria; Maria dos Reis, Luciana; Quirino, Ana Paula Assunção; Dragosavac, Desanka; Kosour, Carolina

    2016-01-01

    [Purpose] To compare the effects of two physiotherapy protocols for chronic kidney disease patients on dialysis. [Subjects and Methods] This is a prospective, randomized study, in chronic kidney disease patients 18 years of age or older on dialysis. Sessions for each group (were conducted three times per week for a total of 10 sessions), during hemodialysis. Respiratory muscle strength (maximal inspiratory and expiratory pressure), peak expiratory flow, and peripheral muscle strength were evaluated. The study group received motor and respiratory physiotherapy, and the control group received motor physiotherapy alone. [Results] We observed a significant increase in the maximal inspiratory pressure in the study group in the 5th and 10th sessions and in the maximal expiratory pressure in the 1st session, peak flow in the 1st and 10th sessions, and dynamometry in the 10th session. In the control group, there was a significant decrease in maximal inspiratory pressure in the 5th and 10th sessions, and in maximal expiratory pressure in the 10th session, peak flow in the 5th and 10th sessions, and dynamometry in the 5th session. [Conclusion] Implementation of motor physiotherapy combined with respiratory physiotherapy may have contributed to the improvement of the variables analyzed in the study group. PMID:27313390

  10. Impact of continuous positive airway pressure (CPAP) on the respiratory capacity of chronic kidney disease patients under hemodialysis treatment.

    PubMed

    Xavier, Vivian Bertoni; Roxo, Renata Spósito; Miorin, Luiz Antônio; Dos Santos Alves, Vera Lúcia; Dos Santos Sens, Yvoty Alves

    2015-06-01

    Chronic kidney disease (CKD) patients on long-term dialysis present changes in pulmonary function and respiratory muscle strength, negatively influencing physical capacity. To analyze the impact of a continuous positive airway pressure (CPAP) protocol on the respiratory capacity of CKD patients under hemodialysis. A randomized clinical trial was conducted involving 40 CKD patients 19-83 years old divided into two groups: control (n = 20) and CPAP (n = 20). Subjects were assessed on the respiratory muscle function test, maximal respiratory pressures, peak flow and 6-min walk test, at baseline and again at the 2-month follow-up. CPAP group patients were submitted to CPAP protocol (PEEP: 5 cm H2O, flow: 15 L/min, FiO2: 33 %) three times per week during hemodialysis sessions. The CPAP group showed higher forced vital capacity, forced expiratory volume in one second, peak expiratory flow, maximal inspiratory pressure, peak flow, as well as lower systolic blood pressure, heart rate, respiratory rate and Borg scale, in addition to a longer distance travelled on the 6-min walk test, compared with the control group. The introduction of a CPAP protocol during hemodialysis sessions had a positive impact on pulmonary function and physical capacity in CKD patients.

  11. The Influence of Body Mass Index, Sex, & Muscle Activation on Pressure Distribution During Lateral Falls on the Hip.

    PubMed

    Pretty, Steven P; Martel, Daniel R; Laing, Andrew C

    2017-12-01

    Hip fracture incidence rates are influenced by body mass index (BMI) and sex, likely through mechanistic pathways that influence dynamics of the pelvis-femur system during fall-related impacts. The goal of this study was to extend our understanding of these impact dynamics by investigating the effects of BMI, sex, and local muscle activation on pressure distribution over the hip region during lateral impacts. Twenty participants underwent "pelvis-release experiments" (which simulate a lateral fall onto the hip), including muscle-'relaxed' and 'contracted' trials. Males and low-BMI individuals exhibited 44 and 55% greater peak pressure, as well as 66 and 56% lower peripheral hip force, compared to females and high-BMI individuals, respectively. Local muscle activation increased peak force by 10%, contact area by 17%, and peripheral hip force by 11% compared to relaxed trials. In summary, males and low-BMI individuals exhibited more concentrated loading over the greater trochanter. Muscle activation increased peak force, but this force was distributed over a larger area, preventing increased localized loading over the greater trochanter. These findings suggest potential value in incorporating sex, gender, and muscle activation-specific force distributions as inputs into computational tissue-level models, and have implications for the design of personalized protective devices including wearable hip protectors.

  12. North Atlantic Basin Tropical Cyclone Activity in Relation to Temperature and Decadal- Length Oscillation Patterns

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2009-01-01

    Yearly frequencies of North Atlantic basin tropical cyclones, their locations of origin, peak wind speeds, average peak wind speeds, lowest pressures, and average lowest pressures for the interval 1950-2008 are examined. The effects of El Nino and La Nina on the tropical cyclone parametric values are investigated. Yearly and 10-year moving average (10-yma) values of tropical cyclone parameters are compared against those of temperature and decadal-length oscillation, employing both linear and bi-variate analysis, and first differences in the 10-yma are determined. Discussion of the 2009 North Atlantic basin hurricane season, updating earlier results, is given.

  13. Evaluating the impact of WaterCell® Technology on pressure redistribution and comfort/discomfort of adults with limited mobility.

    PubMed

    Bartley, Carol; Stephens, Melanie

    2017-05-01

    The aim of the study was to evaluate the effect of WaterCell ® Technology on pressure redistribution and self-reported comfort and discomfort scores of adults with mobility problems who remain seated for extended periods of time. Twelve participants, were recruited and ranged in gender, age, height, weight, and body mass index. Five were male, seven were female, and five were permanent wheelchair users. Each participant was randomly allocated a chair, whose seat comprised of visco-elastic memory foam, high-elastic reflex foam, and watercells, to trial for a week. Data collected at day one and day seven included: interface pressure measurements taken across the gluteal region (peak and average); physiological observations of respiratory rate, pulse rate, and blood pressure; skin inspection and comfort and discomfort scores. Watercell ® technology was found to offer lower average pressures than those reported to cause potential skin injury. Peak pressure index findings were comparative to other studies. No correlation was found between discomfort intensity rating and pressure redistribution. Discomfort intensity rating was low for all participants and general discomfort ranged from very low to medium. Physiological observations decreased for 50% of participants over the seven days. From our study we have found that WaterCell ® technology offers comparable pressure redistribution for people with a disability who need to sit for prolonged periods of time and the chairs were found to be comfortable. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  14. Biomechanical consequences of a tear of the posterior root of the medial meniscus. Surgical technique.

    PubMed

    Harner, Christopher D; Mauro, Craig S; Lesniak, Bryson P; Romanowski, James R

    2009-10-01

    Tears of the posterior root of the medial meniscus are becoming increasingly recognized. They can cause rapidly progressive arthritis, yet their biomechanical effects are not understood. The goal of this study was to determine the effects of posterior root tears of the medial meniscus and their repairs on tibiofemoral joint contact pressure and kinematics. Nine fresh-frozen cadaver knees were used. An axial load of 1000 N was applied with a custom testing jig at each of four knee-flexion angles: 0 degrees , 30 degrees , 60 degrees , and 90 degrees . The knees were otherwise unconstrained. Four conditions were tested: (1) intact, (2) a posterior root tear of the medial meniscus, (3) a repaired posterior root tear, and (4) a total medial meniscectomy. Fuji pressure-sensitive film was used to record the contact pressure and area for each testing condition. Kinematic data were obtained by using a robotic arm to record the position of the knees for each loading condition. Three-dimensional knee kinematics were analyzed with custom programs with use of previously described transformations. The measured variables were axial rotation, varus angulation, lateral translation, and anterior translation. In the medial compartment, a posterior root tear of the medial meniscus caused a 25% increase in peak contact pressure compared with that found in the intact condition (p < 0.001). Repair restored the peak contact pressure to normal. No difference was detected between the peak contact pressure after the total medial meniscectomy and that associated with the root tear. The peak contact pressure in the lateral compartment after the total medial meniscectomy was up to 13% greater than that for all other conditions (p = 0.026). Significant increases in external rotation and lateral tibial translation, compared with the values in the intact knee, were observed in association with the posterior root tear (2.98 degrees and 0.84 mm, respectively) and the meniscectomy (4.45 degrees and 0.80 mm, respectively), and these increases were corrected by the repair. This study demonstrated significant changes in contact pressure and knee joint kinematics due to a posterior root tear of the medial meniscus. Root repair was successful in restoring joint biomechanics to within normal conditions.

  15. Biomechanical consequences of a tear of the posterior root of the medial meniscus. Similar to total meniscectomy.

    PubMed

    Allaire, Robert; Muriuki, Muturi; Gilbertson, Lars; Harner, Christopher D

    2008-09-01

    Tears of the posterior root of the medial meniscus are becoming increasingly recognized. They can cause rapidly progressive arthritis, yet their biomechanical effects are not understood. The goal of this study was to determine the effects of posterior root tears of the medial meniscus and their repairs on tibiofemoral joint contact pressure and kinematics. Nine fresh-frozen cadaver knees were used. An axial load of 1000 N was applied with a custom testing jig at each of four knee-flexion angles: 0 degrees, 30 degrees, 60 degrees, and 90 degrees. The knees were otherwise unconstrained. Four conditions were tested: (1) intact, (2) a posterior root tear of the medial meniscus, (3) a repaired posterior root tear, and (4) a total medial meniscectomy. Fuji pressure-sensitive film was used to record the contact pressure and area for each testing condition. Kinematic data were obtained by using a robotic arm to record the position of the knees for each loading condition. Three-dimensional knee kinematics were analyzed with custom programs with use of previously described transformations. The measured variables were axial rotation, varus angulation, lateral translation, and anterior translation. In the medial compartment, a posterior root tear of the medial meniscus caused a 25% increase in peak contact pressure compared with that found in the intact condition (p < 0.001). Repair restored the peak contact pressure to normal. No difference was detected between the peak contact pressure after the total medial meniscectomy and that associated with the root tear. The peak contact pressure in the lateral compartment after the total medial meniscectomy was up to 13% greater than that for all other conditions (p = 0.026). Significant increases in external rotation and lateral tibial translation, compared with the values in the intact knee, were observed in association with the posterior root tear (2.98 degrees and 0.84 mm, respectively) and the meniscectomy (4.45 degrees and 0.80 mm, respectively), and these increases were corrected by the repair. This study demonstrated significant changes in contact pressure and knee joint kinematics due to a posterior root tear of the medial meniscus. Root repair was successful in restoring joint biomechanics to within normal conditions.

  16. Investigation of peak pressure index parameters for people with spinal cord injury using wheelchair tilt-in-space and recline: methodology and preliminary report.

    PubMed

    Lung, Chi-Wen; Yang, Tim D; Crane, Barbara A; Elliott, Jeannette; Dicianno, Brad E; Jan, Yih-Kuen

    2014-01-01

    The purpose of this study was to determine the effect of the sensel window's location and size when calculating the peak pressure index (PPI) of pressure mapping with varying degrees of wheelchair tilt-in-space (tilt) and recline in people with spinal cord injury (SCI). Thirteen power wheelchair users were recruited into this study. Six combinations of wheelchair tilt (15°, 25°, and 35°) and recline (10° and 30°) were used by the participants in random order. Displacements of peak pressure and center of pressure were extracted from the left side of the mapping system. Normalized PPI was computed for three sensel window dimensions (3 sensels × 3 sensels, 5 × 5, and 7 × 7). At least 3.33 cm of Euclidean displacement of peak pressures was observed in the tilt and recline. For every tilt angle, peak pressure displacement was not significantly different between 10° and 30° recline, while center of pressure displacement was significantly different (P < .05). For each recline angle, peak pressure displacement was not significantly different between pairs of 15°, 25°, and 35° tilt, while center of pressure displacement was significantly different between 15° versus 35° and 25° versus 35°. Our study showed that peak pressure displacement occurs in response to wheelchair tilt and recline, suggesting that the selected sensel window locations used to calculate PPI should be adjusted during changes in wheelchair configuration.

  17. Biomechanical consequences of a nonanatomic posterior medial meniscal root repair.

    PubMed

    LaPrade, Christopher M; Foad, Abdullah; Smith, Sean D; Turnbull, Travis Lee; Dornan, Grant J; Engebretsen, Lars; Wijdicks, Coen A; LaPrade, Robert F

    2015-04-01

    Posterior medial meniscal root tears have been reported to extrude with the meniscus becoming adhered posteromedially along the posterior capsule. While anatomic repair has been reported to restore tibiofemoral contact mechanics, it is unknown whether nonanatomic positioning of a meniscal root repair to a posteromedial location would restore the loading profile of the knee joint. The purpose of this study was to compare the tibiofemoral contact mechanics of a nonanatomic posterior medial meniscal tear with that of the intact knee or anatomic repair. It was hypothesized that a nonanatomic root repair would not restore the tibiofemoral contact pressures and areas to that of the intact or anatomic repair state. Controlled laboratory study. Tibiofemoral contact mechanics were recorded in 6 male human cadaveric knee specimens (average age, 45.8 years) using pressure sensors. Each knee underwent 5 testing conditions for the posterior medial meniscal root: (1) intact knee; (2) root tear; (3) anatomic transtibial pull-out repair; (4) nonanatomic transtibial pull-out repair, placed 5 mm posteromedially along the edge of the articular cartilage; and (5) root tear concomitant with an ACL tear. Knees were loaded with a 1000-N axial compressive force at 4 flexion angles (0°, 30°, 60°, 90°), and contact area, mean contact pressure, and peak contact pressure were calculated. Contact area was significantly lower after nonanatomic repair than for the intact knee at all flexion angles (mean = 44% reduction) and significantly higher for anatomic versus nonanatomic repair at all flexion angles (mean = 27% increase). At 0° and 90°, and when averaged across flexion angles, the nonanatomic repair significantly increased mean contact pressures in comparison to the intact knee or anatomic repair. When averaged across flexion angles, the peak contact pressures after nonanatomic repair were significantly higher than the intact knee but not the anatomic repair. In contrast, when averaged across all flexion angles, the anatomic repair resulted in a 17% reduction in contact area and corresponding increases in mean and peak contact pressures of 13% and 26%, respectively, compared with the intact knee. For most testing conditions, the nonanatomic repair did not restore the contact area or mean contact pressures to that of the intact knee or anatomic repair. However, the anatomic repair produced near-intact contact area and resulted in relatively minimal increases in mean and peak contact pressures compared with the intact knee. Results emphasize the importance of ensuring an anatomic posterior medial meniscal root repair by releasing the extruded menisci from adhesions and the posteromedial capsule. Similar caution toward preventing displacement of the meniscal root repair construct should be emphasized. © 2015 The Author(s).

  18. High pressure effects in high-field asymmetric waveform ion mobility spectrometry.

    PubMed

    Wang, Yonghuan; Wang, Xiaozhi; Li, Lingfen; Chen, Chilai; Xu, Tianbai; Wang, Tao; Luo, Jikui

    2016-08-30

    High-Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) is an analytical technique based on the principle of non-linear electric field dependence of coefficient of mobility of ions for separation that was originally conceived in the Soviet Union in the early 1980s. Being well developed over the past decades, FAIMS has become an efficient method for the separation and characterization of gas-phase ions at ambient pressure, often in air, to detect trace amounts of chemical species including explosives, toxic chemicals, chemical warfare agents and other compounds. However the resolution of FAIMS and ion separation capability need to be improved for more applications of the technique. The effects of above-ambient pressure varying from 1 to 3 atm on peak position, resolving power, peak width, and peak intensity are investigated theoretically and experimentally using micro-fabricated planar FAIMS in purified air. Peak positions, varying with pressure in a way as a function of dispersion voltage, could be simplified by expressing both compensation and dispersion fields in Townsend units for E/N, the ratio of electric field intensity (E) to the gas number density (N). It is demonstrated that ion Townsend-scale peak positions remain unchanged for a range of pressures investigated, implying that the higher the pressure is, stronger compensation and separation fields are needed within limits of air breakdown field. Increase in pressure is found to separate ions that could not be distinguished in ambient pressure, which could be interpreted as the differentials of ions' peak compensation voltage expanded wider than the dilation of peak widths leading to resolving power enhancement with pressure. Increase in pressure can also result in an increase in peak intensity. Copyright © 2016 John Wiley & Sons, Ltd.

  19. A description of intraoperative ventilator management in patients with acute lung injury and the use of lung protective ventilation strategies.

    PubMed

    Blum, James M; Maile, Michael; Park, Pauline K; Morris, Michelle; Jewell, Elizabeth; Dechert, Ronald; Rosenberg, Andrew L

    2011-07-01

    The incidence of acute lung injury (ALI) in hypoxic patients undergoing surgery is currently unknown. Previous studies have identified lung protective ventilation strategies that are beneficial in the treatment of ALI. The authors sought to determine the incidence and examine the use of lung protective ventilation strategies in patients receiving anesthetics with a known history of ALI. The ventilation parameters that were used in all patients were reviewed, with an average preoperative PaO₂/Fio₂ [corrected] ratio of ≤ 300 between January 1, 2005 and July 1, 2009. This dataset was then merged with a dataset of patients screened for ALI. The median tidal volume, positive end-expiratory pressure, peak inspiratory pressures, fraction inhaled oxygen, oxygen saturation, and tidal volumes were compared between groups. A total of 1,286 patients met criteria for inclusion; 242 had a diagnosis of ALI preoperatively. Comparison of patients with ALI versus those without ALI found statistically yet clinically insignificant differences between the ventilation strategies between the groups in peak inspiratory pressures and positive end-expiratory pressure but no other category. The tidal volumes in cc/kg predicted body weight were approximately 8.7 in both groups. Peak inspiratory pressures were found to be 27.87 cm H₂O on average in the non-ALI group and 29.2 in the ALI group. Similar ventilation strategies are used between patients with ALI and those without ALI. These findings suggest that anesthesiologists are not using lung protective ventilation strategies when ventilating patients with low PaO₂/Fio₂ [corrected] ratios and ALI, and instead are treating hypoxia and ALI with higher concentrations of oxygen and peak pressures.

  20. [Analysis of plantar pressure patterns among obese population].

    PubMed

    Leidecker, Eleonóra; Kellermann, Péter; Galambosné Tiszberger, Mónika; Molics, Bálint; Bohner-Beke, Aliz; Nyárády, József; Kránicz, János

    2016-11-01

    Although the role of body weight on foot health and load has been widely documented in research, the effect of the extra load due to body weight on plantar pressure characteristics is not well known. The aim of this study was to evaluate the impact of obesity on plantar pressure patterns among the working-age population. 180 participants were involved. Two groups were evaluated according to body mass index categories regarding eight regions of the plantar area, focusing on the following parameters: contact area, maximum pressure and peak pressure. Compared with non-obese subjects, the peak pressure was the highest on the midfoot (p<0.001) and the forefoot (p<0.001). Regarding the maximum force, significant statistical difference was detected on the toes (p<0.001), with a value lower among the obese group. The contact area on the total foot and the midfoot was lower among the non-obese subjects (p<0.001). Loading is greatly increasing on the whole plantar area, especially at the midfoot and the forefoot region. Orv. Hetil., 2016, 157(48), 1919-1925.

  1. A calculation and uncertainty evaluation method for the effective area of a piston rod used in quasi-static pressure calibration

    NASA Astrophysics Data System (ADS)

    Gu, Tingwei; Kong, Deren; Shang, Fei; Chen, Jing

    2018-04-01

    This paper describes the merits and demerits of different sensors for measuring propellant gas pressure, the applicable range of the frequently used dynamic pressure calibration methods, and the working principle of absolute quasi-static pressure calibration based on the drop-weight device. The main factors affecting the accuracy of pressure calibration are analyzed from two aspects of the force sensor and the piston area. To calculate the effective area of the piston rod and evaluate the uncertainty between the force sensor and the corresponding peak pressure in the absolute quasi-static pressure calibration process, a method for solving these problems based on the least squares principle is proposed. According to the relevant quasi-static pressure calibration experimental data, the least squares fitting model between the peak force and the peak pressure, and the effective area of the piston rod and its measurement uncertainty, are obtained. The fitting model is tested by an additional group of experiments, and the peak pressure obtained by the existing high-precision comparison calibration method is taken as the reference value. The test results show that the peak pressure obtained by the least squares fitting model is closer to the reference value than the one directly calculated by the cross-sectional area of the piston rod. When the peak pressure is higher than 150 MPa, the percentage difference is less than 0.71%, which can meet the requirements of practical application.

  2. Plantar pressures are higher in cases with diabetic foot ulcers compared to controls despite a longer stance phase duration.

    PubMed

    Fernando, Malindu E; Crowther, Robert G; Lazzarini, Peter A; Sangla, Kunwarjit S; Wearing, Scott; Buttner, Petra; Golledge, Jonathan

    2016-09-15

    Current international guidelines advocate achieving at least a 30 % reduction in maximum plantar pressure to reduce the risk of foot ulcers in people with diabetes. However, whether plantar pressures differ in cases with foot ulcers to controls without ulcers is not clear. The aim of this study was to assess if plantar pressures were higher in patients with active plantar diabetic foot ulcers (cases) compared to patients with diabetes without a foot ulcer history (diabetes controls) and people without diabetes or a foot ulcer history (healthy controls). Twenty-one cases with diabetic foot ulcers, 69 diabetes controls and 56 healthy controls were recruited for this case-control study. Plantar pressures at ten sites on both feet and stance phase duration were measured using a pre-established protocol. Primary outcomes were mean peak plantar pressure, pressure-time integral and stance phase duration. Non-parametric analyses were used with Holm's correction to correct for multiple testing. Binary logistic regression models were used to adjust outcomes for age, sex and body mass index. Median differences with 95 % confidence intervals and Cohen's d values (standardised mean difference) were reported for all significant outcomes. The majority of ulcers were located on the plantar surface of the hallux and toes. When adjusted for age, sex and body mass index, the mean peak plantar pressure and pressure-time integral of toes and the mid-foot were significantly higher in cases compared to diabetes and healthy controls (p < 0.05). The stance phase duration was also significantly higher in cases compared to both control groups (p < 0.05). The main limitations of the study were the small number of cases studied and the inability to adjust analyses for multiple factors. This study shows that plantar pressures are higher in cases with active diabetic foot ulcers despite having a longer stance phase duration which would be expected to lower plantar pressure. Whether plantar pressure changes can predict ulcer healing should be the focus of future research. These results highlight the importance of offloading feet during active ulceration in addition to before ulceration.

  3. Reduction of plantar pressures in leprosy patients by using custom made shoes and total contact insoles.

    PubMed

    Tang, Simon Fuk-Tan; Chen, Carl P C; Lin, Shih-Cherng; Wu, Chih-Kuan; Chen, Chih-Kuang; Cheng, Shun-Ping

    2015-02-01

    The purpose of this study was to observe whether our custom made shoes and total contact insoles can effectively increase the plantar contact areas and reduce peak pressures in patients with leprosy. In the rehabilitation laboratory of a tertiary medical center. Six male and two female leprosy patients were recruited in this study. In this study, parameters related to foot pressures were compared between these patients wearing commercial available soft-lining kung-fu shoes and our custom made shoes with total contact insoles. The custom made shoes were made with larger toe box and were able to accommodate both the foot and the insoles. Custom made total contact insoles were made with the subtalar joints under neutral and non-weight-bearing positions. The insole force measurement system of Novel Pedar-X (Novel, Munich, Germany) was used to measure the plantar forces. The parameters of contact area (cm(2)), peak plantar pressures (kPa), contact time (s), and pressure time integral (kPa s) were measured. There were significant contact area increases in the right and left foot heel areas, left medial arch, and second to fifth toes after wearing the custom made shoes and insoles. There were significant decreases in peak plantar pressures in bilateral heels, left lateral midfoot, bilateral second to fourth metatarsal areas, and left fifth metatarsal head after wearing the custom made shoes and insoles (p<0.05). Plantar ulceration is a common serious disability in leprosy patients. As a result, footwear and measures able to reduce plantar pressures may be beneficial in preventing plantar ulcers from occurring in these patients. Our custom made shoes and total contact insoles were proven to be effective in increasing contact areas and decreasing peak pressures in plantar surfaces, and may therefore be a feasible treatment option in preventing leprosy patients from developing plantar ulcers. © 2015 Elsevier B.V. All rights reserved.

  4. Safety and effectiveness of alveolar recruitment maneuvers and positive end-expiratory pressure during general anesthesia for cesarean section: a prospective, randomized trial.

    PubMed

    Aretha, D; Fligou, F; Kiekkas, P; Messini, C; Panteli, E; Zintzaras, E; Karanikolas, M

    2017-05-01

    During cesarean section, the supine position reduces functional residual capacity and worsens lung compliance. We tested the hypothesis that alveolar recruitment maneuvers and positive end-expiratory pressure improve lung compliance in women undergoing general anesthesia for cesarean section. Ninety women undergoing cesarean section were randomly assigned to one of two groups in a prospective, double-blind trial. In the alveolar recruitment maneuver group, pressure-control ventilation was used and inspiratory time was increased to 50% after delivery; positive end-expiratory pressure was increased to 20cmH 2 O and peak airway inspiratory pressure gradually increased to 45-50cmH 2 O. Volume-control ventilation was then used with low tidal volumes (6mL/kg) and positive end-expiratory pressure was reduced stepwise to 8cmH 2 O. In the control group, alveolar recruitment maneuvers were not used. Data were collected before and 3, 10 and 20min after the alveolar recruitment maneuver, before extubation and postoperatively at 10 and 20min. Dynamic compliance, peak airway inspiratory pressure, PaO 2 and PaO 2 /FiO 2 were significantly different in the alveolar recruitment maneuver group compared to controls at all time points during surgery except at baseline. Oxygen saturation was significantly greater in the alveolar recruitment maneuver group at 10 and 20min and before extubation. Dynamic compliance was 29.7-42.5% higher and peak airway inspiratory pressure 3.6-10.2% lower in the alveolar recruitment maneuver group compared to controls. The PaO 2 , PaO 2 /FiO 2 and oxygen saturation were higher (9.4-12%, 10.3-11.9% and 0.4-1.3%, respectively) in the alveolar recruitment maneuver group. Postoperatively, PaO 2 and oxygen saturation were significantly higher in the alveolar recruitment maneuver group compared to controls (PaO 2 9.2% at 10min and 8.4% at 20min, oxygen saturation 0.8% at 10min and 1.1% at 20min). There were no significant differences in hemodynamic stability or adverse events between groups. Compared to standard care, the alveolar recruitment maneuver with positive end-expiratory pressure and low tidal volumes appears safe and effective in improving lung compliance and both intraoperative and postoperative oxygenation in women undergoing general anesthesia for elective cesarean section. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Effects of blood pressure and sex on the change of wave reflection: evidence from Gaussian fitting method for radial artery pressure waveform.

    PubMed

    Liu, Chengyu; Zhao, Lina; Liu, Changchun

    2014-01-01

    An early return of the reflected component in the arterial pulse has been recognized as an important indicator of cardiovascular risk. This study aimed to determine the effects of blood pressure and sex factor on the change of wave reflection using Gaussian fitting method. One hundred and ninety subjects were enrolled. They were classified into four blood pressure categories based on the systolic blood pressures (i.e., ≤ 110, 111-120, 121-130 and ≥ 131 mmHg). Each blood pressure category was also stratified for sex factor. Electrocardiogram (ECG) and radial artery pressure waveforms (RAPW) signals were recorded for each subject. Ten consecutive pulse episodes from the RAPW signal were extracted and normalized. Each normalized pulse episode was fitted by three Gaussian functions. Both the peak position and peak height of the first and second Gaussian functions, as well as the peak position interval and peak height ratio, were used as the evaluation indices of wave reflection. Two-way ANOVA results showed that with the increased blood pressure, the peak position of the second Gaussian significantly shorten (P < 0.01), the peak height of the first Gaussian significantly decreased (P < 0.01) and the peak height of the second Gaussian significantly increased (P < 0.01), inducing the significantly decreased peak position interval and significantly increased peak height ratio (both P < 0.01). Sex factor had no significant effect on all evaluation indices (all P > 0.05). Moreover, the interaction between sex and blood pressure factors also had no significant effect on all evaluation indices (all P > 0.05). These results showed that blood pressure has significant effect on the change of wave reflection when using the recently developed Gaussian fitting method, whereas sex has no significant effect. The results also suggested that the Gaussian fitting method could be used as a new approach for assessing the arterial wave reflection.

  6. Review and evaluation of recent developments in melic inlet dynamic flow distortion prediction and computer program documentation and user's manual estimating maximum instantaneous inlet flow distortion from steady-state total pressure measurements with full, limited, or no dynamic data

    NASA Technical Reports Server (NTRS)

    Schweikhard, W. G.; Dennon, S. R.

    1986-01-01

    A review of the Melick method of inlet flow dynamic distortion prediction by statistical means is provided. These developments include the general Melick approach with full dynamic measurements, a limited dynamic measurement approach, and a turbulence modelling approach which requires no dynamic rms pressure fluctuation measurements. These modifications are evaluated by comparing predicted and measured peak instantaneous distortion levels from provisional inlet data sets. A nonlinear mean-line following vortex model is proposed and evaluated as a potential criterion for improving the peak instantaneous distortion map generated from the conventional linear vortex of the Melick method. The model is simplified to a series of linear vortex segments which lay along the mean line. Maps generated with this new approach are compared with conventionally generated maps, as well as measured peak instantaneous maps. Inlet data sets include subsonic, transonic, and supersonic inlets under various flight conditions.

  7. Work of breathing during lung-protective ventilation in patients with acute lung injury and acute respiratory distress syndrome: a comparison between volume and pressure-regulated breathing modes.

    PubMed

    Kallet, Richard H; Campbell, Andre R; Dicker, Rochelle A; Katz, Jeffrey A; Mackersie, Robert C

    2005-12-01

    Pressure-control ventilation (PCV) and pressure-regulated volume-control (PRVC) ventilation are used during lung-protective ventilation because the high, variable, peak inspiratory flow rate (V (I)) may reduce patient work of breathing (WOB) more than the fixed V (I) of volume-control ventilation (VCV). Patient-triggered breaths during PCV and PRVC may result in excessive tidal volume (V(T)) delivery unless the inspiratory pressure is reduced, which in turn may decrease the peak V (I). We tested whether PCV and PRVC reduce WOB better than VCV with a high, fixed peak V (I) (75 L/min) while also maintaining a low V(T) target. Fourteen nonconsecutive patients with acute lung injury or acute respiratory distress syndrome were studied prospectively, using a random presentation of ventilator modes in a crossover, repeated-measures design. A target V(T) of 6.4 + 0.5 mL/kg was set during VCV and PRVC. During PCV the inspiratory pressure was set to achieve the same V(T). WOB and other variables were measured with a pulmonary mechanics monitor (Bicore CP-100). There was a nonsignificant trend toward higher WOB (in J/L) during PCV (1.27 + 0.58 J/L) and PRVC (1.35 + 0.60 J/L), compared to VCV (1.09 + 0.59 J/L). While mean V(T) was not statistically different between modes, in 40% of patients, V(T) markedly exceeded the lung-protective ventilation target during PRVC and PCV. During lung-protective ventilation, PCV and PRVC offer no advantage in reducing WOB, compared to VCV with a high flow rate, and in some patients did not allow control of V(T) to be as precise.

  8. Development of dynamic calibration methods for POGO pressure transducers. [for space shuttle

    NASA Technical Reports Server (NTRS)

    Hilten, J. S.; Lederer, P. S.; Vezzetti, C. F.; Mayo-Wells, J. F.

    1976-01-01

    Two dynamic pressure sources are described for the calibration of pogo pressure transducers used to measure oscillatory pressures generated in the propulsion system of the space shuttle. Rotation of a mercury-filled tube in a vertical plane at frequencies below 5 Hz generates sinusoidal pressures up to 48 kPa, peak-to-peak; vibrating the same mercury-filled tube sinusoidally in the vertical plane extends the frequency response from 5 Hz to 100 Hz at pressures up to 140 kPa, peak-to-peak. The sinusoidal pressure fluctuations can be generated by both methods in the presence of high pressures (bias) up to 55 MPa. Calibration procedures are given in detail for the use of both sources. The dynamic performance of selected transducers was evaluated using these procedures; the results of these calibrations are presented. Calibrations made with the two sources near 5 Hz agree to within 3% of each other.

  9. The measurement of intracranial pressure and brain displacement due to short-duration dynamic overpressure loading

    NASA Astrophysics Data System (ADS)

    Iwaskiw, A. S.; Ott, K. A.; Armiger, R. S.; Wickwire, A. C.; Alphonse, V. D.; Voo, L. M.; Carneal, C. M.; Merkle, A. C.

    2018-01-01

    The experimental measurement of biomechanical responses that correlate with blast-induced traumatic brain injury (bTBI) has proven challenging. These data are critical for both the development and validation of computational and physical head models, which are used to quantify the biomechanical response to blast as well as to assess fidelity of injury mitigation strategies, such as personal protective equipment. Therefore, foundational postmortem human surrogate (PMHS) experimental data capturing the biomechanical response are necessary for human model development. Prior studies have measured short-duration pressure transmission to the brain (Kinetic phase), but have failed to reproduce and measure the longer-duration inertial loading that can occur (Kinematic phase). Four fully instrumented PMHS were subjected to short-duration dynamic overpressure in front-facing and rear-facing orientations, where intracranial pressure (ICP), global head kinematics, and brain motion (as measured by high-speed X-ray) with respect to the skull were recorded. Peak ICP results generally increased with increased dose, and a mirrored pressure response was seen when comparing the polarity of frontal bone versus occipital bone ICP sensors. The head kinematics were delayed when compared to the pressure response and showed higher peak angles for front-facing tests as compared to rear-facing. Brain displacements were approximately 2-6 mm, and magnitudes did not change appreciably between front- and rear-facing tests. These data will be used to inform and validate models used to assess bTBI.

  10. Ankle joint pressure changes in a pes cavovarus model: supramalleolar valgus osteotomy versus lateralizing calcaneal osteotomy.

    PubMed

    Schmid, Timo; Zurbriggen, Sebastian; Zderic, Ivan; Gueorguiev, Boyko; Weber, Martin; Krause, Fabian G

    2013-09-01

    A fixed cavovarus foot deformity can be associated with anteromedial ankle arthrosis due to elevated medial joint contact stresses. Supramalleolar valgus osteotomies (SMOT) and lateralizing calcaneal osteotomies (LCOT) are commonly used to treat symptoms by redistributing joint contact forces. In a cavovarus model, the effects of SMOT and LCOT on the lateralization of the center of force (COF) and reduction of the peak pressure in the ankle joint were compared. A previously published cavovarus model with fixed hindfoot varus was simulated in 10 cadaver specimens. Closing wedge supramalleolar valgus osteotomies 3 cm above the ankle joint level (6 and 11 degrees) and lateral sliding calcaneal osteotomies (5 and 10 mm displacement) were analyzed at 300 N axial static load (half body weight). The COF migration and peak pressure decrease in the ankle were recorded using high-resolution TekScan pressure sensors. A significant lateral COF shift was observed for each osteotomy: 2.1 mm for the 6 degrees (P = .014) and 2.3 mm for the 11 degrees SMOT (P = .010). The 5 mm LCOT led to a lateral shift of 2.0 mm (P = .042) and the 10 mm LCOT to a shift of 3.0 mm (P = .006). Comparing the different osteotomies among themselves no significant differences were recorded. No significant anteroposterior COF shift was seen. A significant peak pressure reduction was recorded for each osteotomy: The SMOT led to a reduction of 29% (P = .033) for the 6 degrees and 47% (P = .003) for the 11 degrees osteotomy, and the LCOT to a reduction of 41% (P = .003) for the 5 mm and 49% (P = .002) for the 10 mm osteotomy. Similar to the COF lateralization no significant differences between the osteotomies were seen. LCOT and SMOT significantly reduced anteromedial ankle joint contact stresses in this cavovarus model. The unloading effects of both osteotomies were equivalent. More correction did not lead to significantly more lateralization of the COF or more reduction of peak pressure but a trend was seen. In patients with fixed cavovarus feet, both SMOT and LCOT provided equally good redistribution of elevated ankle joint contact forces. Increasing the amount of displacement did not seem to equally improve the joint pressures. The site of osteotomy could therefore be chosen on the basis of surgeon's preference, simplicity, or local factors in case of more complex reconstructions.

  11. MERGING GALAXY CLUSTERS: OFFSET BETWEEN THE SUNYAEV-ZEL'DOVICH EFFECT AND X-RAY PEAKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molnar, Sandor M.; Hearn, Nathan C.; Stadel, Joachim G., E-mail: sandor@phys.ntu.edu.tw

    2012-03-20

    Galaxy clusters, the most massive collapsed structures, have been routinely used to determine cosmological parameters. When using clusters for cosmology, the crucial assumption is that they are relaxed. However, subarcminute resolution Sunyaev-Zel'dovich (SZ) effect images compared with high-resolution X-ray images of some clusters show significant offsets between the two peaks. We have carried out self-consistent N-body/hydrodynamical simulations of merging galaxy clusters using FLASH to study these offsets quantitatively. We have found that significant displacements result between the SZ and X-ray peaks for large relative velocities for all masses used in our simulations as long as the impact parameters were aboutmore » 100-250 kpc. Our results suggest that the SZ peak coincides with the peak in the pressure times the line-of-sight characteristic length and not the pressure maximum (as it would for clusters in equilibrium). The peak in the X-ray emission, as expected, coincides with the density maximum of the main cluster. As a consequence, the morphology of the SZ signal, and therefore the offset between the SZ and X-ray peaks, change with viewing angle. As an application, we compare the morphologies of our simulated images to observed SZ and X-ray images and mass surface densities derived from weak-lensing observations of the merging galaxy cluster CL0152-1357, we find that a large relative velocity of 4800 km s{sup -1} is necessary to explain the observations. We conclude that an analysis of the morphologies of multi-frequency observations of merging clusters can be used to put meaningful constraints on the initial parameters of the progenitors.« less

  12. Pulmonary arterial pressure detects functional mitral stenosis after annuloplasty for primary mitral regurgitation: An exercise stress echocardiographic study.

    PubMed

    Samiei, Niloufar; Tajmirriahi, Marzieh; Rafati, Ali; Pasebani, Yeganeh; Rezaei, Yousef; Hosseini, Saeid

    2018-02-01

    The restrictive mitral valve annuloplasty (RMA) is the treatment of choice for degenerative mitral regurgitation (MR), but postoperative functional mitral stenosis remains a matter of debate. In this study, we sought to determine the impact of mitral stenosis on the functional capacity of patients. In a cross-sectional study, 32 patients with degenerative MR who underwent RMA using a complete ring were evaluated. All participants performed treadmill exercise test and underwent echocardiographic examinations before and after exercise. The patients' mean age was 50.1 ± 12.5 years. After a mean follow-up of 14.1 ± 5.9 months (6-32 months), the number of patients with a mitral valve peak gradient >7.5 mm Hg, a mitral valve mean gradient >3 mm Hg, and a pulmonary arterial pressure (PAP) ≥25 mm Hg at rest were 50%, 40.6%, and 62.5%, respectively. 13 patients (40.6%) had incomplete treadmill exercise test. All hemodynamic parameters were higher at peak exercise compared with at rest levels (all P < .05). The PAP at rest and at peak exercise as well as peak transmitral gradient at peak exercise were higher in patients with incomplete exercise compared with complete exercise test (all P < .05). The PAP at rest (a sensitivity and a specificity of 84.6% and 52.6%, respectively; area under the curve [AUC] = .755) and at peak exercise (a sensitivity and a specificity of 100% and 47.4%, respectively; AUC = .755) discriminated incomplete exercise test. The RMA for degenerative MR was associated with a functional stenosis and the PAP at rest and at peak exercise discriminated low exercise capacity. © 2017, Wiley Periodicals, Inc.

  13. Exercise-induced hypertension among healthy firefighters-a comparison between two different definitions.

    PubMed

    Leiba, Adi; Baur, Dorothee M; Kales, Stefanos N

    2013-01-01

    Different studies have yielded conflicting results regarding the association of hypertensive response to exercise and cardiovascular morbidity. We compared two different definitions of exaggerated hypertensive response to exercise and their association with cardio-respiratory fitness in a population of healthy firefighters. We examined blood pressure response to exercise in 720 normotensive male career firefighters. Fitness was measured as peak metabolic equivalent tasks (METs) achieved during maximal exercise treadmill tests. Abnormal hypertensive response was defined either as systolic blood pressure ≥ 200 mm Hg; or alternatively, as responses falling in the upper tertile of blood pressure change from rest to exertion, divided by the maximal workload achieved. Using the simple definition of a 200 mm Hg cutoff at peak exercise less fit individuals (METs ≤ 12) were protected from an exaggerated hypertensive response (OR 0.45, 95%CI 0.30-0.67). However, using the definition of exercise-induced hypertension that corrects for maximal workload, less fit firefighters had almost twice the risk (OR 1.8, 95%CI 1.3-2.47). Blood pressure change corrected for maximal workload is better correlated with cardiorespiratory fitness. Systolic blood pressure elevation during peak exercise likely represents an adaptive response, whereas elevation out of proportion to the maximal workload may indicate insufficient vasodilation and a maladaptive response. Prospective studies are needed to best define exaggerated blood pressure response to exercise. Copyright © 2013 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.

  14. Head-to-head comparison of peak supine bicycle exercise echocardiography and treadmill exercise echocardiography at peak and at post-exercise for the detection of coronary artery disease.

    PubMed

    Peteiro, Jesús; Bouzas-Mosquera, Alberto; Estevez, Rodrigo; Pazos, Pablo; Piñeiro, Miriam; Castro-Beiras, Alfonso

    2012-03-01

    Supine bicycle exercise (SBE) echocardiography and treadmill exercise (TME) echocardiography have been used for evaluation of coronary artery disease (CAD). Although peak imaging acquisition has been considered unfeasible with TME, higher sensitivity for the detection of CAD has been recently found with this method compared with post-TME echocardiography. However, peak TME echocardiography has not been previously compared with the more standardized peak SBE echocardiography. The aim of this study was to compare peak TME echocardiography, peak SBE echocardiography, and post-TME echocardiography for the detection of CAD. A series of 116 patients (mean age, 61 ± 10 years) referred for evaluation of CAD underwent SBE (starting at 25 W, with 25-W increments every 2-3 min) and TME with peak and postexercise imaging acquisition, in a random sequence. Digitized images at baseline, at peak TME, after TME, and at peak SBE were interpreted in a random and blinded fashion. All patients underwent coronary angiography. Maximal heart rate was higher during TME, whereas systolic blood pressure was higher during SBE, resulting in similar rate-pressure products. On quantitative angiography, 75 patients had coronary stenosis (≥50%). In these patients, wall motion score indexes at maximal exercise were higher at peak TME (median, 1.45; interquartile range [IQR], 1.13-1.75) than at peak SBE (median, 1.25; IQR, 1.0-1.56) or after TME (median, 1.13; IQR, 1.0-1.38) (P = .002 between peak TME and peak SBE imaging, P < .001 between post-TME imaging and the other modalities). The extent of myocardial ischemia (number of ischemic segments) was also higher during peak TME (median, 5; IQR, 2-12) compared with peak SBE (median, 3; IQR, 0-8) or after TME (median, 2; IQR, 0-4) (P < .001 between peak TME and peak SBE imaging, P < .001 between post-TME imaging and the other modalities). ST-segment changes in patients with CAD and normal baseline ST segments were higher during TME (median, 1 mm [IQR, 0-1.9 mm] vs 0 mm [IQR, 0-1.5 mm]; P = .006). The sensitivity of peak TME, peak SBE, and post-TME echocardiography for CAD was 84%, 75%, and 60% (P = .001 between post-TME and peak TME echocardiography, P = .055 between post-TME and peak SBE echocardiography), with specificity of 63%, 80%, and 78%, respectively (P = NS) and accuracy of 77%, 77%, and 66%, respectively (P = NS). Peak TME echocardiography diagnosed multivessel disease in 27 of the 40 patients with stenoses in more than one coronary artery, in contrast to 17 patients with peak SBE imaging and 12 with post-TME imaging (P < .05 between peak TME imaging and the other modalities). Image quality was similar with the three techniques. The duration of the test was longer with SBE echocardiography (9.5 ± 3.8 vs 7.6 ± 2.5 min, P < .001). During TME and SBE, patients achieve similar double products. Ischemia is more extensive and frequent with peak TME, which makes peak TME a more valuable exercise echocardiographic modality to increase sensitivity. However, peak SBE should be preferred to TME if the latter is performed with postexercise imaging acquisition. Copyright © 2012 American Society of Echocardiography. Published by Mosby, Inc. All rights reserved.

  15. First-Principle Simulation of Blast Barrier Effectiveness for the Development of Simplified Design Tools

    DTIC Science & Technology

    2010-12-01

    Simulation of Free -Field Blast ........................................................................45 27. (a) Peak Incident Pressure and (b...several types of problems involving blast propagation. Mastin et al. (1995) compared CTH simulations to free -field incident pressure as predicted by...a measure of accuracy and efficiency. To provide this direct comparison, a series of 2D-axisymmetric free -field air blast simulations were

  16. CO2 non-LTE limb emissions in Mars' atmosphere as observed by OMEGA/Mars Express

    NASA Astrophysics Data System (ADS)

    Piccialli, A.; López-Valverde, M. A.; Määttänen, A.; González-Galindo, F.; Audouard, J.; Altieri, F.; Forget, F.; Drossart, P.; Gondet, B.; Bibring, J. P.

    2016-06-01

    We report on daytime limb observations of Mars upper atmosphere acquired by the OMEGA instrument on board the European spacecraft Mars Express. The strong emission observed at 4.3 μm is interpreted as due to CO2 fluorescence of solar radiation and is detected at a tangent altitude in between 60 and 110 km. The main value of OMEGA observations is that they provide simultaneously spectral information and good spatial sampling of the CO2 emission. In this study we analyzed 98 dayside limb observations spanning over more than 3 Martian years, with a very good latitudinal and longitudinal coverage. Thanks to the precise altitude sounding capabilities of OMEGA, we extracted vertical profiles of the non-local thermodynamic equilibrium (non-LTE) emission at each wavelength and we studied their dependence on several geophysical parameters, such as the solar illumination and the tangent altitude. The dependence of the non-LTE emission on solar zenith angle and altitude follows a similar behavior to that predicted by the non-LTE model. According to our non-LTE model, the tangent altitude of the peak of the CO2 emission varies with the thermal structure, but the pressure level where the peak of the emission is found remains constant at ˜0.03 ± 0.01 Pa, . This non-LTE model prediction has been corroborated by comparing SPICAM and OMEGA observations. We have shown that the seasonal variations of the altitude of constant pressure levels in SPICAM stellar occultation retrievals correlate well with the variations of the OMEGA peak emission altitudes, although the exact pressure level cannot be defined with the spectroscopy for the investigation of the characteristics of the atmosphere of Venus (SPICAM) nighttime data. Thus, observed changes in the altitude of the peak emission provide us information on the altitude of the 0.03 Pa pressure level. Since the pressure at a given altitude is dictated by the thermal structure below, the tangent altitude of the peak emission represents then an important piece of information of the atmosphere, of great value for validating general circulation models. We thus compared the altitude of OMEGA peak emission with the altitude of the 0.03 Pa level predicted by the Laboratoire de météorologie dynamique (LMD)-Mars global circulation model and found that the peak emission altitudes from OMEGA present a much larger variability than the tangent altitude of the 0.03 Pa level predicted by the general circulation model. This variability could be possibly due to unresolved atmospheric waves. Further studies using this strong CO2 limb emission data are proposed.

  17. More complicated than it looks: The vagaries of calculating intra-abdominal pressure

    PubMed Central

    Hamad, Nadia M.; Shaw, Janet M.; Nygaard, Ingrid E.; Coleman, Tanner J.; Hsu, Yvonne; Egger, Marlene; Hitchcock, Robert W.

    2013-01-01

    Activities thought to induce high intra-abdominal pressure (IAP), such as lifting weights, are restricted in women with pelvic floor disorders. Standardized procedures to assess IAP during activity are lacking and typically only focus on maximal IAP, variably defined. Our intent in this methods paper is to establish the best strategies for calculating maximal IAP and to add area under the curve and first moment of the area as potentially useful measures in understanding biologic effects of IAP. Thirteen women completed a range of activities while wearing an intra-vaginal pressure transducer. We first analyzed various strategies heuristically using data from 3 women. The measure that appeared to best represent maximal IAP was an average of the three, five or ten highest values, depending on activity, determined using a top down approach, with peaks at least 1 second apart using algorithms written for Matlab computer software, we then compared this strategy with others commonly reported in the literature quantitatively using data from 10 additional volunteers. Maximal IAP calculated using the top down approach differed for some, but not all, activities compared to the single highest peak or to averaging all peaks. We also calculated area under the curve, which allows for a time component, and first moment of the area, which maintains the time component while weighting pressure amplitude. We validated methods of assessing IAP using computer-generated sine waves. We offer standardized methods for assessing maximal, area under the curve and first moment of the area for IAP to improve future reporting and application of this clinically relevant measure in exercise science. PMID:23439349

  18. Dielectric relaxation of 1,2,6-hexanetriol at frequencies from 1 mHz to 10 MHz and at pressures to 1 GPa

    NASA Astrophysics Data System (ADS)

    Forsman, Hans

    The complex permittivity of supercooled 1,2,6-hexanetriol has been studied at frequencies from 1 mHz to 10 MHz at pressures up to 1 GPa and at the temperatures 238 K, 248 K and 258 K. The dielectric loss peak is significantly broadened with increasing pressure. A numerical fitting routine has been developed to analyse the results in terms of the Dissado and Hill (DH) cooperative cluster model for relaxation. The peak broadening is explicitly expressed by the shape parameters of the DH theory which are associated with a change in correlation between neighbouring molecules. The relaxation results are also analysed using the Davidson and Cole function. The results of 1,2,6-hexanetriol at high pressure are compared with corresponding data for glycerol. It is found that 1,2,6-hexanetriol exhibits a higher degree of cooperative relaxation according to the DH theory, has a lower static dielectric susceptibility and has a longer characteristic relaxation time than glycerol.

  19. Reduced pressure for fewer pressure ulcers: can real-time feedback of interface pressure optimise repositioning in bed?

    PubMed

    Gunningberg, Lena; Carli, Cheryl

    2016-10-01

    The aim of this study was to (i) describe registered nurses' and assistant nurses' repositioning skills with regard to their existing attitudes to and theoretical knowledge of pressure ulcer (PU) prevention, and (ii) evaluate if the continuous bedside pressure mapping (CBPM) system provides staff with a pedagogic tool to optimise repositioning. A quantitative study was performed using a descriptive, comparative design. Registered nurses (n = 19) and assistant nurses (n = 33) worked in pairs, and were instructed to place two volunteers (aged over 70 years) in the best pressure-reducing position (lateral and supine), first without viewing the CBPM monitor and then again after feedback. In total, 240 positionings were conducted. The results show that for the same person with the same available pressure-reducing equipment, the peak pressure varied considerably between nursing pairs. Reducing pressure in the lateral position appeared to be the most challenging. Peak pressures were significantly reduced, based on visual feedback from the CBPM monitor. The number of preventive interventions also increased, as well as patients' comfort. For the nurses as a group, the knowledge score was 59·7% and the attitude score was 88·8%. Real-time visual feedback of pressure points appears to provide another dimension to complement decision making with respect to PU prevention. © 2014 The Authors. International Wound Journal © 2014 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  20. Magnetic Resonance Measurement of Turbulent Kinetic Energy for the Estimation of Irreversible Pressure Loss in Aortic Stenosis

    PubMed Central

    Dyverfeldt, Petter; Hope, Michael D.; Tseng, Elaine E.; Saloner, David

    2013-01-01

    OBJECTIVES The authors sought to measure the turbulent kinetic energy (TKE) in the ascending aorta of patients with aortic stenosis and to assess its relationship to irreversible pressure loss. BACKGROUND Irreversible pressure loss caused by energy dissipation in post-stenotic flow is an important determinant of the hemodynamic significance of aortic stenosis. The simplified Bernoulli equation used to estimate pressure gradients often misclassifies the ventricular overload caused by aortic stenosis. The current gold standard for estimation of irreversible pressure loss is catheterization, but this method is rarely used due to its invasiveness. Post-stenotic pressure loss is largely caused by dissipation of turbulent kinetic energy into heat. Recent developments in magnetic resonance flow imaging permit noninvasive estimation of TKE. METHODS The study was approved by the local ethics review board and all subjects gave written informed consent. Three-dimensional cine magnetic resonance flow imaging was used to measure TKE in 18 subjects (4 normal volunteers, 14 patients with aortic stenosis with and without dilation). For each subject, the peak total TKE in the ascending aorta was compared with a pressure loss index. The pressure loss index was based on a previously validated theory relating pressure loss to measures obtainable by echocardiography. RESULTS The total TKE did not appear to be related to global flow patterns visualized based on magnetic resonance–measured velocity fields. The TKE was significantly higher in patients with aortic stenosis than in normal volunteers (p < 0.001). The peak total TKE in the ascending aorta was strongly correlated to index pressure loss (R2 = 0.91). CONCLUSIONS Peak total TKE in the ascending aorta correlated strongly with irreversible pressure loss estimated by a well-established method. Direct measurement of TKE by magnetic resonance flow imaging may, with further validation, be used to estimate irreversible pressure loss in aortic stenosis. PMID:23328563

  1. Magnetic resonance measurement of turbulent kinetic energy for the estimation of irreversible pressure loss in aortic stenosis.

    PubMed

    Dyverfeldt, Petter; Hope, Michael D; Tseng, Elaine E; Saloner, David

    2013-01-01

    The authors sought to measure the turbulent kinetic energy (TKE) in the ascending aorta of patients with aortic stenosis and to assess its relationship to irreversible pressure loss. Irreversible pressure loss caused by energy dissipation in post-stenotic flow is an important determinant of the hemodynamic significance of aortic stenosis. The simplified Bernoulli equation used to estimate pressure gradients often misclassifies the ventricular overload caused by aortic stenosis. The current gold standard for estimation of irreversible pressure loss is catheterization, but this method is rarely used due to its invasiveness. Post-stenotic pressure loss is largely caused by dissipation of turbulent kinetic energy into heat. Recent developments in magnetic resonance flow imaging permit noninvasive estimation of TKE. The study was approved by the local ethics review board and all subjects gave written informed consent. Three-dimensional cine magnetic resonance flow imaging was used to measure TKE in 18 subjects (4 normal volunteers, 14 patients with aortic stenosis with and without dilation). For each subject, the peak total TKE in the ascending aorta was compared with a pressure loss index. The pressure loss index was based on a previously validated theory relating pressure loss to measures obtainable by echocardiography. The total TKE did not appear to be related to global flow patterns visualized based on magnetic resonance-measured velocity fields. The TKE was significantly higher in patients with aortic stenosis than in normal volunteers (p < 0.001). The peak total TKE in the ascending aorta was strongly correlated to index pressure loss (R(2) = 0.91). Peak total TKE in the ascending aorta correlated strongly with irreversible pressure loss estimated by a well-established method. Direct measurement of TKE by magnetic resonance flow imaging may, with further validation, be used to estimate irreversible pressure loss in aortic stenosis. Copyright © 2013 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  2. Sacral Peak Pressure in Healthy Volunteers and Patients With Spinal Cord Injury: With and Without Liquid-Based Pad.

    PubMed

    Duetzmann, Stephan; Forsey, Lynn M; Senft, Christian; Seifert, Volker; Ratliff, John; Park, Jon

    2015-01-01

    The prevalence of sacral pressure ulcers in patients with spinal cord injuries is high. The sacral area is vulnerable to compressive pressure because of immobility and because the sacrum and posterior superior iliac prominence lie closely under the skin with no muscle layer in between. The aim of this study was to assess peak sacral pressure before and after use of PURAP, a liquid-based pad that covers only the sacral area and can be applied on any bed surface. Healthy volunteers (n = 12) and patients with spinal cord injuries (n = 10) took part; the patients had undergone spine surgery within 7 days before data collection. Participants were in bed, pretest pressure maps were generated, PURAP was placed for 15 minutes, and then posttest pressure maps were generated. Peak pressure was obtained every second and averaged over the entire period. Patients rated whether their comfort had improved when PURAP was in use. For healthy volunteers, mean pretest peak sacral pressure was 74.7 (SD = 16.2) mmHg; the posttest mean was 49.1 (SD = 7.5) mmHg (p < .001, Wilcoxon signed-rank test). For patients with spinal cord injuries, mean pretest peak sacral pressure was 105.7 (SD = 22.4) mmHg; the posttest mean was 81.4 (SD = 18.3) mmHg (p < .001, Wilcoxon signed-rank test). The pad reduced the peak sacral pressure in the patient group by 23% (range = 11%-42%) and in the volunteers by 32% (range = 19%-46%). Overall, 70% of the patients reported increased comfort with PURAP. Peak sacral pressure was reduced when PURAP was used. It covers only the sacral area but could help many patients with spinal cord injury because the prevalence of sacral pressure ulcers is high in this group. PURAP may be economically advantageous in countries and hospitals with limited financial resources needed for more expensive mattresses and cushions.

  3. Characterization of ultrafast laser-ablation plasma plumes at various Ar ambient pressures

    DOE PAGES

    Diwakar, P. K.; Harilal, S. S.; Phillips, M. C.; ...

    2015-07-30

    Expansion dynamics and internal plume structures of fs laser ablated brass plasma in Ar at various pressure levels ranging from vacuum to atmospheric were studied using multitude of diagnostic tools including time resolved and time integrated 2-dimensional imaging, optical time of flight measurements and visible emission spectroscopy. Temporal evolution of excited Cu and Zn species in the plume were imaged using band pass interference filters and compared its hydrodynamic expansion features with spectrally integrated images of the plume. 2D imaging coupled with monochromatic line selection showed several interesting features at various pressure levels which include velocity differences among the plumemore » species, emission intensity distribution, plasma temperature, electron density etc. Plume confinement, enhanced signal intensity, and dual peak structures in time-of-flight profiles were observed at intermediate pressure range of ~10 Torr. Optimum signal to background ratio was also observed in this pressure range. As a result, possible mechanisms for observed changes in plume shape, optical emission intensity and dual peak structures in time-of-flight profiles were discussed.« less

  4. Labral reconstruction with iliotibial band autografts and semitendinosus allografts improves hip joint contact area and contact pressure: an in vitro analysis.

    PubMed

    Lee, Simon; Wuerz, Thomas H; Shewman, Elizabeth; McCormick, Frank M; Salata, Michael J; Philippon, Marc J; Nho, Shane J

    2015-01-01

    Labral reconstruction using iliotibial band (ITB) autografts and semitendinosus (Semi-T) allografts has recently been described in cases of labral deficiency. To characterize the joint biomechanics with a labrum-intact, labrum-deficient, and labrum-reconstructed acetabulum in a hip cadaveric model. The hypothesis was that labral resection would decrease contact area, increase contact pressure, and increase peak force, while subsequent labral reconstruction with ITB autografts or Semi-T allografts would restore these values toward the native intact labral state. Controlled laboratory study. Ten fresh-frozen human cadaveric hips were analyzed utilizing thin-film piezoresistive load sensors to measure contact area, contact pressure, and peak force (1) with the native intact labrum, (2) after segmental labral resection, and (3) after graft labral reconstruction with either ITB autografts or Semi-T allografts. Each specimen was examined at 20° of extension and 60° of flexion. Statistical analysis was conducted through 1-way analysis of variance with post hoc Games-Howell tests. For the ITB group, labral resection significantly decreased contact area (at 20°: 73.2%±5.38%, P=.0010; at 60°: 78.5%±6.93%, P=.0063) and increased contact pressure (at 20°: 106.7%±4.15%, P=.0387; at 60°: 103.9%±1.15%, P=.0428). In addition, ITB reconstruction improved contact area (at 20°: 87.2%±12.3%, P=.0130; at 60°: 90.5%±8.81%, P=.0079) and contact pressure (at 20°: 98.5%±5.71%, P=.0476; at 60°: 96.6%±1.13%, P=.0056) from the resected state. Contact pressure at 60° of flexion was significantly lower compared with the native labrum (P=.0420). For the Semi-T group, labral resection significantly decreased contact area (at 20°: 68.1%±12.57%, P=.0002; at 60°: 67.5%±6.70%, P=.0002) and increased contact pressure (at 20°: 105.3%±3.73%, P=.0304; at 60°: 106.8%±4.04%, P=.0231). Semi-T reconstruction improved contact area (at 20°: 87.9%±7.95%, P=.0087; at 60°: 92.9%±13.2%, P=.0014) and contact pressure (at 20°: 97.1%±3.18%, P=.0017; at 60°: 97.4%±4.39%, P=.0027) from the resected state. Comparative analysis demonstrated no statistically significant differences between either graft reconstruction in relation to contact area, contact pressure, or peak force. Segmental anterosuperior labral resection results in significantly decreased contact areas and increased contact pressures, while labral reconstruction partially restores time-zero acetabular contact areas and pressures as compared with the resected state. Although labral reconstruction improved the measured biomechanical properties as compared with the resected state, some of these properties remained significantly different compared with the native intact labrum. Labral reconstruction appears to improve femoroacetabular joint biomechanics as compared with the labrum-resected state; these improved biomechanics may translate into increased joint function clinically. © 2014 The Author(s).

  5. The pressure field of imploding lightbulbs

    NASA Astrophysics Data System (ADS)

    Czechanowski, M.; Ikeda, C.; Duncan, J. H.

    2015-03-01

    The implosion of A19 incandescent lightbulbs in a high-pressure water environment is studied in a 1.77-m-diameter steel tank. Underwater blast sensors are used to measure the dynamic pressure field near the lightbulbs and the implosions are photographed with a high-speed movie camera at a frame rate of 24,000 pps. The movie camera and the pressure signal recording system are synchronized to enable correlation of features in the movie frames with those in the pressure records. It is found that the gross dimensions and weight of the bulbs are very similar from one bulb to another, but the ambient water pressure at which a given bulb implodes (, called the implosion pressure) varies from 6.29 to 11.98 atmospheres, probably due to inconsistencies in the glass wall thickness and perhaps other detailed characteristics of the bulbs. The dynamic pressures (the local pressure minus , as measured by the sensors) first drop during the implosion and then reach a strong positive peak at about the time that the bulb reaches minimum volume. The peak dynamic pressure varies from 3.61 to 28.66 atmospheres. In order to explore the physics of the implosion process, the dynamic pressure signals are compared to calculations of the pressure field generated by the collapse of a spherical bubble in a weakly compressible liquid. The wide range of implosion pressures is used in combination with the calculations to explore the effect of the relative liquid compressibility and the bulb itself on the dynamic pressure field.

  6. Center of Pressure Displacement of Standing Posture during Rapid Movements Is Reorganised Due to Experimental Lower Extremity Muscle Pain.

    PubMed

    Shiozawa, Shinichiro; Hirata, Rogerio Pessoto; Graven-Nielsen, Thomas

    2015-01-01

    Postural control during rapid movements may be impaired due to musculoskeletal pain. The purpose of this study was to investigate the effect of experimental knee-related muscle pain on the center of pressure (CoP) displacement in a reaction time task condition. Nine healthy males performed two reaction time tasks (dominant side shoulder flexion and bilateral heel lift) before, during, and after experimental pain induced in the dominant side vastus medialis or the tibialis anterior muscles by hypertonic saline injections. The CoP displacement was extracted from the ipsilateral and contralateral side by two force plates and the net CoP displacement was calculated. Compared with non-painful sessions, tibialis anterior muscle pain during the peak and peak-to-peak displacement for the CoP during anticipatory postural adjustments (APAs) of the shoulder task reduced the peak-to-peak displacement of the net CoP in the medial-lateral direction (P<0.05). Tibialis anterior and vastus medialis muscle pain during shoulder flexion task reduced the anterior-posterior peak-to-peak displacement in the ipsilateral side (P<0.05). The central nervous system in healthy individuals was sufficiently robust in maintaining the APA characteristics during pain, although the displacement of net and ipsilateral CoP in the medial-lateral and anterior-posterior directions during unilateral fast shoulder movement was altered.

  7. Inspiratory High Frequency Airway Oscillation Attenuates Resistive Loaded Dyspnea and Modulates Respiratory Function in Young Healthy Individuals

    PubMed Central

    Morris, Theresa; Sumners, David Paul; Green, David Andrew

    2014-01-01

    Direct chest-wall percussion can reduce breathlessness in Chronic Obstructive Pulmonary Disease and respiratory function may be improved, in health and disease, by respiratory muscle training (RMT). We tested whether high-frequency airway oscillation (HFAO), a novel form of airflow oscillation generation can modulate induced dyspnoea and respiratory strength and/or patterns following 5 weeks of HFAO training (n = 20) compared to a SHAM-RMT (conventional flow-resistive RMT) device (n = 15) in healthy volunteers (13 males; aged 20–36 yrs). HFAO causes oscillations with peak-to-peak amplitude of 1 cm H2O, whereas the SHAM-RMT device was identical but created no pressure oscillation. Respiratory function, dyspnoea and ventilation during 3 minutes of spontaneous resting ventilation, 1 minute of maximal voluntary hyperventilation and 1 minute breathing against a moderate inspiratory resistance, were compared PRE and POST 5-weeks of training (2×30 breaths at 70% peak flow, 5 days a week). Training significantly reduced NRS dyspnoea scores during resistive loaded ventilation, both in the HFAO (p = 0.003) and SHAM-RMT (p = 0.005) groups. Maximum inspiratory static pressure (cm H2O) was significantly increased by HFAO training (vs. PRE; p<0.001). Maximum inspiratory dynamic pressure was increased by training in both the HFAO (vs. PRE; p<0.001) and SHAM-RMT (vs. PRE; p = 0.021) groups. Peak inspiratory flow rate (L.s−1) achieved during the maximum inspiratory dynamic pressure manoeuvre increased significantly POST (vs. PRE; p = 0.001) in the HFAO group only. HFAO reduced inspiratory resistive loading–induced dyspnoea and augments static and dynamic maximal respiratory manoeuvre performance in excess of flow-resistive IMT (SHAM-RMT) in healthy individuals without the respiratory discomfort associated with RMT. PMID:24651392

  8. Medial stabilized and posterior stabilized TKA affect patellofemoral kinematics and retropatellar pressure distribution differently.

    PubMed

    Glogaza, Alexander; Schröder, Christian; Woiczinski, Matthias; Müller, Peter; Jansson, Volkmar; Steinbrück, Arnd

    2018-06-01

    Patellofemoral kinematics and retropatellar pressure distribution change after total knee arthroplasty (TKA). It was hypothesized that different TKA designs will show altered retropatellar pressure distribution patterns and different patellofemoral kinematics according to their design characteristics. Twelve fresh-frozen knee specimens were tested dynamically in a knee rig. Each specimen was measured native, after TKA with a posterior stabilized design (PS) and after TKA with a medial stabilized design (MS). Retropatellar pressure distribution was measured using a pressure sensitive foil which was subdivided into three areas (lateral and medial facet and patellar ridge). Patellofemoral kinematics were measured by an ultrasonic-based three-dimensional motion system (Zebris CMS20, Isny Germany). Significant changes in patellofemoral kinematics and retropatellar pressure distribution were found in both TKA types when compared to the native situation. Mean retropatellar contact areas were significantly smaller after TKA (native: 241.1 ± 75.6 mm 2 , MS: 197.7 ± 74.5 mm 2 , PS: 181.2 ± 56.7 mm 2 , native vs. MS p < 0.001; native vs. PS p < 0.001). The mean peak pressures were significantly higher after TKA. The increased peak pressures were however seen in different areas: medial and lateral facet in the PS-design (p < 0.001), ridge in the MS design (p < 0.001). Different patellofemoral kinematics were found in both TKA designs when compared to the native knee during flexion and extension with a more medial patella tracking. Patellofemoral kinematics and retropatellar pressure change after TKA in different manner depending on the type of TKA used. Surgeons should be aware of influencing the risks of patellofermoral complications by the choice of the prosthesis design.

  9. An observational study: Effects of tenting of the abdominal wall on peak airway pressure in robotic radical prostatectomy surgery

    PubMed Central

    Kakde, Avinash Sahebarav; Wagh, Harshal D.

    2017-01-01

    Background: Robotic radical prostatectomy (RRP) is associated with various anesthetic challenges due to pneumoperitoneum and deep Trendelenburg position. Tenting of the abdominal wall done in RRP surgery causes decrease in peak airway pressure leading to better ventilation. Herein, we aimed to describe the effects of tenting of the abdominal wall on peak airway pressure in RRP surgery performed in deep Trendelenburg position. Methods: One hundred patients admitted for RRP in Kokilaben Dhirubhai Ambani Hospital of American Society of Anesthesiologists 1 and 2 physical status were included in the study. After undergoing preanesthesia work-up, patients received general anesthesia. Peak airway pressures were recorded after induction of general anesthesia, after insufflation of CO2, after giving Trendelenburg position, and after tenting of the abdominal wall with robotic arms. Results: Mean peak airway pressure recording after induction in supine position was 19.5 ± 2.3 cm of H2O, after insufflation of CO2 in supine position was 26.3 ± 2.6 cm of H2O, after giving steep head low was 34.1 ± 3.4 cm of H2O, and after tenting of the abdominal wall with robotic arms was 29.5 ± 2.5 cm of H2O. P value is highly statistically significant (P = 0.001). Conclusion: Tenting of the abdominal wall during RRP is beneficial as it decreases peak airway pressure and helps in better ventilation and thus reduces the ill effects of raised peak airway pressure and intra-abdominal pressures. PMID:28757826

  10. Noninvasive intracranial pressure measurement using infrasonic emissions from the tympanic membrane.

    PubMed

    Stettin, Eduard; Paulat, Klaus; Schulz, Chris; Kunz, Ulrich; Mauer, Uwe Max

    2011-06-01

    We investigated whether ICP can be assessed by measuring infrasonic emissions from the tympanic membrane. An increase in ICP was induced in 22 patients with implanted ICP pressure sensors. ICP waveforms that were obtained invasively and continuously were compared with infrasonic emission waveforms. In addition, the noninvasive method was used in a control group of 14 healthy subjects. In a total of 83 measurements, the changes in ICP that were observed in response to different types of stimulation were detected in the waveforms obtained noninvasively as well as in those acquired invasively. Low ICP was associated with an initial high peak and further peaks with smaller amplitudes. High ICP was associated with a marked decrease in the number of peaks and in the difference between the amplitudes of the initial and last peaks. The assessment of infrasonic emissions, however, does not yet enable us to provide exact figures. It is conceivable that the assessment of infrasonic emissions will become suitable both as a screening tool and for the continuous monitoring of ICP in an intensive care environment.

  11. Characterization of laser-driven shock waves in solids using a fiber optic pressure probe.

    PubMed

    Cranch, Geoffrey A; Lunsford, Robert; Grün, Jacob; Weaver, James; Compton, Steve; May, Mark; Kostinski, Natalie

    2013-11-10

    Measurement of laser-driven shock wave pressure in solid blocks of polymethyl methacrylate is demonstrated using fiber optic pressure probes. Three probes based on a fiber Fabry-Perot, fiber Bragg grating, and interferometric fiber tip sensor are tested and compared. Shock waves are generated using a high-power laser focused onto a thin foil target placed in close proximity to the test blocks. The fiber Fabry-Perot sensor appears capable of resolving the shock front with a rise time of 91 ns. The peak pressure is estimated, using a separate shadowgraphy measurement, to be 3.4 GPa.

  12. Method transfer from high-pressure liquid chromatography to ultra-high-pressure liquid chromatography. II. Temperature and pressure effects.

    PubMed

    Åsberg, Dennis; Samuelsson, Jörgen; Leśko, Marek; Cavazzini, Alberto; Kaczmarski, Krzysztof; Fornstedt, Torgny

    2015-07-03

    The importance of the generated temperature and pressure gradients in ultra-high-pressure liquid chromatography (UHPLC) are investigated and compared to high-pressure liquid chromatography (HPLC). The drug Omeprazole, together with three other model compounds (with different chemical characteristics, namely uncharged, positively and negatively charged) were used. Calculations of the complete temperature profile in the column at UHPLC conditions showed, in our experiments, a temperature difference between the inlet and outlet of 16 °C and a difference of 2 °C between the column center and the wall. Through van't Hoff plots, this information was used to single out the decrease in retention factor (k) solely due to the temperature gradient. The uncharged solute was least affected by temperature with a decrease in k of about 5% while for charged solutes the effect was more pronounced, with k decreases up to 14%. A pressure increase of 500 bar gave roughly 5% increase in k for the uncharged solute, while omeprazole and the other two charged solutes gave about 25, 20 and 15% increases in k, respectively. The stochastic model of chromatography was applied to estimate the dependence of the average number of adsorption/desorption events (n) and the average time spent by a molecule in the stationary phase (τs) on temperature and pressure on peak shape for the tailing, basic solute. Increasing the temperature yielded an increase in n and decrease in τs which resulted in less skew at high temperatures. With increasing pressure, the stochastic modeling gave interesting results for the basic solute showing that the skew of the peak increased with pressure. The conclusion is that pressure effects are more pronounced for both retention and peak shape than the temperature effects for the polar or charged compounds in our study. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Virtually optimized insoles for offloading the diabetic foot: A randomized crossover study.

    PubMed

    Telfer, S; Woodburn, J; Collier, A; Cavanagh, P R

    2017-07-26

    Integration of objective biomechanical measures of foot function into the design process for insoles has been shown to provide enhanced plantar tissue protection for individuals at-risk of plantar ulceration. The use of virtual simulations utilizing numerical modeling techniques offers a potential approach to further optimize these devices. In a patient population at-risk of foot ulceration, we aimed to compare the pressure offloading performance of insoles that were optimized via numerical simulation techniques against shape-based devices. Twenty participants with diabetes and at-risk feet were enrolled in this study. Three pairs of personalized insoles: one based on shape data and subsequently manufactured via direct milling; and two were based on a design derived from shape, pressure, and ultrasound data which underwent a finite element analysis-based virtual optimization procedure. For the latter set of insole designs, one pair was manufactured via direct milling, and a second pair was manufactured through 3D printing. The offloading performance of the insoles was analyzed for forefoot regions identified as having elevated plantar pressures. In 88% of the regions of interest, the use of virtually optimized insoles resulted in lower peak plantar pressures compared to the shape-based devices. Overall, the virtually optimized insoles significantly reduced peak pressures by a mean of 41.3kPa (p<0.001, 95% CI [31.1, 51.5]) for milled and 40.5kPa (p<0.001, 95% CI [26.4, 54.5]) for printed devices compared to shape-based insoles. The integration of virtual optimization into the insole design process resulted in improved offloading performance compared to standard, shape-based devices. ISRCTN19805071, www.ISRCTN.org. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Does the Hertz solution estimate pressures correctly in diamond indentor experiments?

    NASA Astrophysics Data System (ADS)

    Bruno, M. S.; Dunn, K. J.

    1986-05-01

    The Hertz solution has been widely used to estimate pressures in a spherical indentor against flat matrix type high pressure experiments. It is usually assumed that the pressure generated when compressing a sample between the indentor and substrate is the same as that generated when compressing an indentor against a flat surface with no sample present. A non-linear finite element analysis of this problem has shown that the situation is far more complex. The actual peak pressure in the sample is highly dependent on plastic deformation and the change in material properties due to hydrostatic pressure. An analysis with two material models is presented and compared with the Hertz solution.

  15. Right Ventricular Longitudinal Strain Is Depressed in a Bovine Model of Pulmonary Hypertension.

    PubMed

    Bartels, Karsten; Brown, R Dale; Fox, Daniel L; Bull, Todd M; Neary, Joseph M; Dorosz, Jennifer L; Fonseca, Brian M; Stenmark, Kurt R

    2016-05-01

    Pulmonary hypertension and resulting right ventricular (RV) dysfunction are associated with significant perioperative morbidity and mortality. Although echocardiography permits real-time, noninvasive assessment of RV function, objective and comparative measures are underdeveloped, and appropriate animal models to study their utility are lacking. Longitudinal strain analysis is a novel echocardiographic method to quantify RV performance. Herein, we hypothesized that peak RV longitudinal strain would worsen in a bovine model of pulmonary hypertension compared with control animals. Newborn Holstein calves were randomly chosen for induction of pulmonary hypertension versus control conditions. Pulmonary hypertension was induced by exposing animals to 14 days of hypoxia (equivalent to 4570 m above sea level or 430 mm Hg barometric pressure). Control animals were kept at ambient pressure/normoxia. At the end of the intervention, transthoracic echocardiography was performed in awake calves. Longitudinal wall strain was analyzed from modified apical 4-chamber views focused on the RV. Comparisons between measurements in hypoxic versus nonhypoxic conditions were performed using Student t test for independent samples and unequal variances. After 14 days at normoxic versus hypoxic conditions, 15 calves were examined with echocardiography. Pulmonary hypertension was confirmed by right heart catheterization and associated with reduced RV systolic function. Mean systolic strain measurements were compared in normoxia-exposed animals (n = 8) and hypoxia-exposed animals (n = 7). Peak global systolic longitudinal RV strain after hypoxia worsened compared to normoxia (-10.5% vs -16.1%, P = 0.0031). Peak RV free wall strain also worsened after hypoxia compared to normoxia (-9.6% vs -17.3%, P = 0.0031). Findings from strain analysis were confirmed by measurement of tricuspid annular peak systolic excursion. Peak longitudinal RV strain detected worsened RV function in animals with hypoxia-induced pulmonary hypertension compared with control animals. This relationship was demonstrated in the transthoracic echocardiographic 4-chamber view independently for the RV free wall and for the combination of the free and septal walls. This innovative model of bovine pulmonary hypertension may prove useful to compare different monitoring technologies for the assessment of early events of RV dysfunction. Further studies linking novel RV imaging applications with mechanistic and therapeutic approaches are needed.

  16. Hemodynamic and metabolic characteristics associated with development of a right ventricular outflow tract pressure gradient during upright exercise

    PubMed Central

    van Riel, Annelieke C. M. J.; Systrom, David M.; Oliveira, Rudolf K. F.; Landzberg, Michael J.; Mulder, Barbara J. M.; Bouma, Berto J.; Maron, Bradley A.; Shah, Amil M.; Waxman, Aaron B.

    2017-01-01

    Background We recently reported a novel observation that many patients with equal resting supine right ventricular(RV) and pulmonary artery(PA) systolic pressures develop an RV outflow tract(RVOT) pressure gradient during upright exercise. The current work details the characteristics of patients who develop such an RVOT gradient. Methods We studied 294 patients (59.7±15.5 years-old, 49% male) referred for clinical invasive cardiopulmonary exercise testing, who did not have a resting RVOT pressure gradient defined by the simultaneously measured peak-to-peak difference between RV and PA systolic pressures. Results The magnitude of RVOT gradient did not correspond to clinical or hemodynamic findings suggestive of right heart failure; rather, higher gradients were associated with favorable exercise findings. The presence of a high peak RVOT gradient (90th percentile, ≥33mmHg) was associated with male sex (70 vs. 46%, p = 0.01), younger age (43.6±17.7 vs. 61.8±13.9 years, p<0.001), lower peak right atrial pressure (5 [3–7] vs. 8 [4–12]mmHg, p<0.001), higher peak heart rate (159±19 vs. 124±26 beats per minute, p<0.001), and higher peak cardiac index (8.3±2.3 vs. 5.7±1.9 L/min/m2, p<0.001). These associations persisted when treating peak RVOT as a continuous variable and after age and sex adjustment. At peak exercise, patients with a high exercise RVOT gradient had both higher RV systolic pressure (78±11 vs. 66±17 mmHg, p<0.001) and lower PA systolic pressure (34±8 vs. 50±19 mmHg, p<0.001). Conclusions Development of a systolic RV-PA pressure gradient during upright exercise is not associated with an adverse hemodynamic exercise response and may represent a normal physiologic finding in aerobically fit young people. PMID:28636647

  17. Inspiratory capacity at inflation hold in ventilated newborns: a surrogate measure for static compliance of the respiratory system.

    PubMed

    Hentschel, Roland; Semar, Nicole; Guttmann, Josef

    2012-09-01

    To study appropriateness of respiratory system compliance calculation using an inflation hold and compare it with ventilator readouts of pressure and tidal volume as well as with measurement of compliance of the respiratory system with the single-breath-single-occlusion technique gained with a standard lung function measurement. Prospective clinical trial. Level III neonatal unit of a university hospital. Sixty-seven newborns, born prematurely or at term, ventilated for a variety of pathologic conditions. A standardized sigh maneuver with a predefined peak inspiratory pressure of 30 cm H2O, termed inspiratory capacity at inflation hold, was applied. Using tidal volume, exhaled from inspiratory pause down to ambient pressure, as displayed by the ventilator, and predefined peak inspiratory pressure, compliance at inspiratory capacity at inflation hold conditions could be calculated as well as ratio of tidal volume and ventilator pressure using tidal volume and differential pressure at baseline ventilator settings: peak inspiratory pressure minus positive end-expiratory pressure. For the whole cohort, the equation for the regression between tidal volume at inspiratory capacity at inflation hold and compliance of the respiratory system was: compliance of the respiratory system = 0.052 * tidal volume at inspiratory capacity at inflation hold - 0.113, and compliance at inspiratory capacity at inflation hold conditions was closely related to the standard lung function measurement method of compliance of the respiratory system (R = 0.958). In contrast, ratio of tidal volume and ventilator pressure per kilogram calculated from the ventilator readouts and displayed against compliance of the respiratory system per kilogram yielded a broad scatter throughout the whole range of compliance; both were only weakly correlated (R = 0.309) and also the regression line was significantly different from the line of identity (p < .05). Peak inspiratory pressure at study entry did not affect the correlation between compliance at inspiratory capacity at inflation hold conditions and compliance of the respiratory system. After a standard sigh maneuver, inspiratory capacity at inflation hold and the derived quantity compliance at inspiratory capacity at inflation hold conditions can be regarded as a valid, accurate, and reliable surrogate measure for standard compliance of the respiratory system in contrast to ratio of tidal volume and ventilator pressure calculated from the ventilator readouts during ongoing mechanical ventilation at respective ventilator settings.

  18. Characteristics of patients with a relatively greater minimum VE/VCO2 against peak VO2% and impaired exercise tolerance.

    PubMed

    Nakade, Taisuke; Adachi, Hitoshi; Murata, Makoto; Oshima, Shigeru

    2018-05-14

    Cardiopulmonary exercise testing (CPX) is used to evaluate functional capacity and assess prognosis in cardiac patients. Ventilatory efficiency (VE/VCO 2 ) reflects ventilation-perfusion mismatch; the minimum VE/VCO 2 value (minVE/VCO 2 ) is representative of pulmonary arterial blood flow in individuals without pulmonary disease. Usually, minVE/VCO 2 has a strong relationship with the peak oxygen uptake (VO 2 ), but dissociation can occur. Therefore, we investigated the relationship between minVE/VCO 2 and predicted peak VO 2 (peak VO 2 %) and evaluated the parameters associated with a discrepancy between these two parameters. A total of 289 Japanese patients underwent CPX using a cycle ergometer with ramp protocols between 2013 and 2014. Among these, 174 patients with a peak VO 2 % lower than 70% were enrolled. Patients were divided into groups based on their minVE/VCO 2 [Low group: minVE/VCO 2  < mean - SD (38.8-5.6); High group: minVE/VCO 2  > mean + SD (38.8 + 5.6)]. The characteristics and cardiac function at rest, evaluated using echocardiography, were compared between groups. The High group had a significantly lower ejection fraction, stroke volume, and cardiac output, and higher brain natriuretic peptide, tricuspid regurgitation pressure gradient, right ventricular systolic pressure, and peak early diastolic LV filling velocity/peak atrial filling velocity ratio compared with the Low group (p's < 0.01). In addition, the Low group had a significantly higher prevalence of pleural effusion than did the High group (26 vs 11%, p < 0.01). Patients with a relatively greater minVE/VCO 2 in comparison with peak VO 2 had impaired cardiac output as well as restricted pulmonary blood flow increase during exercise, partly due to accumulated pleural effusion.

  19. Effect of dynamic exercise on human carotid-cardiac baroreflex latency

    NASA Technical Reports Server (NTRS)

    Potts, J. T.; Raven, P. B.

    1995-01-01

    We compared the beat-to-beat responses of heart rate (HR) after brief activation of carotid baroreceptors in resting humans with the responses obtained during mild-to-moderate levels of dynamic exercise [25 and 50% of peak O2 uptake (VO2peak)] to investigate the effect of exercise on baroreflex latency. Carotid baroreceptors were activated by a pressure pulse (5 s) of neck suction (NS, -80 Torr) and neck pressure (NP, +40 Torr) during held expiration. At rest the peak change in HR to NS/NP occurred during the first several heartbeats (1st-3rd beat), whereas during mild and moderate exercise peak HR responses occurred near the end of the NS/NP pulse (6th-8th beat). In contrast, time (s) to the peak change in HR was not different between rest and exercise (P > 0.05). Reflex tachycadia to NP progressively decreased during exercise (17 +/- 3, 10 +/- 1, and 4 +/- 1% of control, rest vs. 25% VO2peak, vs. 50% VO2peak, respectively, P < 0.05), and a strong positive correlation was found between the magnitude of the reflex tachycardia and a measure of HR variability (cardiac vagal tone index, r = 0.74, P < 0.0001). Reflex bradycardia to NS gradually increased during exercise (13 +/- 2, 17 +/- 2, and 18 +/- 2% of control, rest vs. 25% VO2peak, vs. 50% VO2peak, respectively, P = 0.10) and was negatively correlated with cardiac vagal tone (r = 0.42, P < 0.06).(ABSTRACT TRUNCATED AT 250 WORDS).

  20. Increased pulmonary artery pressures during exercise are related to persistent tricuspid regurgitation after atrial septal defect closure.

    PubMed

    De Meester, Pieter; Van De Bruaene, Alexander; Herijgers, Paul; Voigt, Jens-Uwe; Vanhees, Luc; Budts, Werner

    2013-08-01

    Although closure of an atrial septal defect type secundum often normalizes right heart dimensions and pressures, mild tricuspid insufficiency might persist. This study aimed at (1) identification of determinants explaining the persistence of tricuspid insufficiency after atrial septal defect closure, and (2) evaluation of functional capacity of patients with persistent mild tricuspid insufficiency. Twenty-five consecutive patients (age 42+17 y) were included from the outpatient clinic of congenital heart disease at the University Hospitals of Leuven. All underwent transthoracic echocardiography, semi-supine bicycle stress echocardiography and cardio-pulmonary exercise testing. Six patients (24%) had mild tricuspid insufficiency (2/4) compared to 19 patients (76%) with no or minimal tricuspid insufficiency ( 1/4) as assessed by semi-quantitative colour Doppler echocardiography. Mann-Whitney U and Fisher's exact tests were performed where applicable. Patients with persistent mild tricuspid insufficiency were significantly older than those with no or minimal tricuspid insufficiency (P = 0.042). At rest, no differences in right heart configuration, mean pulmonary artery pressure or right ventricular function were found. At peak exercise, mean pulmonary artery pressure was significantly higher in patients with mild persistent tricuspid insufficiency (P = 0.026). Peak oxygen uptake was significantly lower in patients with mild persistent tricuspid insufficiency (P = 0.019). Mild tricuspid insufficiency after atrial septal defect repair occurs more frequently in older patients and in patients with higher mean pulmonary artery pressure at peak exercise. In patients with mild tricuspid insufficiency, functional capacity was more reduced. Mild tricuspid insufficiency could be a marker of subclinical persistent pressure load on the right ventricle.

  1. Terrane-Scale Metastability in Subducted Himalayan Continental Crust as Revealed by Integrated Petrological and Geodynamic Modeling

    NASA Astrophysics Data System (ADS)

    Palin, R. M.; Reuber, G. S.; White, R. W.; Kaus, B. J. P.; Weller, O. M.

    2017-12-01

    The Tso Morari massif, northwest India, is one of only two regions in the Himalayan Range that exposes subduction-related ultrahigh-pressure (UHP) metamorphic rocks. The tectonic evolution of the massif is strongly debated, however, as reported pressure estimates for peak metamorphism range between 2.4 GPa and 4.8 GPa. Such ambiguity hinders effective lithospheric-scale modeling of the early stages of the orogen's evolution. We present the results of integrated petrological and geodynamic modeling (Palin et al., 2017, EPSL) that provide new quantitative constraints on the prograde-to-peak pressure-temperature-time (P-T-t) path, and predict the parageneses that felsic and mafic components of the massif crust should have formed under equilibrium conditions. Our model shows that peak P-T conditions of 2.6-2.8 GPa and 600-620 °C, representative of subduction to 90-100 km depth (assuming lithostatic pressure), were reached just 3 Myr after the onset of collision. These P-T-t constraints correlate well with those reported for similar UHP eclogite in the along-strike Kaghan Valley, Pakistan, suggesting that the northwest Himalaya contains dismembered remnants of a 400-km long UHP terrane comparable in size to the Western Gneiss Region, Norway, and the Dabie-Sulu belt, China. The extremely high pressures (up to 4.8 GPa) for peak metamorphism reported by some workers are likely to be unreliable due to thermobarometry having been performed on minerals that did not represent equilibrium assemblages. Furthermore, key high-P minerals predicted to form in subducted Tso Morari continental crust (e.g. jadeite, Mg-rich garnet) are absent from natural samples in the region, reflecting the widespread metastable preservation of lower-pressure protolith assemblages during subduction and exhumation. This result questions the reliability of geodynamic simulations of orogenesis that are commonly predicated on equilibrium metamorphism operating continuously throughout tectonic cycles.

  2. Patellofemoral Pressure Changes After Static and Dynamic Medial Patellofemoral Ligament Reconstructions.

    PubMed

    Rood, Akkie; Hannink, Gerjon; Lenting, Anke; Groenen, Karlijn; Koëter, Sander; Verdonschot, Nico; van Kampen, Albert

    2015-10-01

    Reconstructing the medial patellofemoral ligament (MPFL) has become a key procedure for stabilizing the patella. Different techniques to reconstruct the MPFL have been described: static techniques in which the graft is fixed rigidly to the bone or dynamic techniques with soft tissue fixation. Static MPFL reconstruction is most commonly used. However, dynamic reconstruction deforms more easily and presumably functions more like the native MPFL. The aim of the study was to evaluate the effect of the different MPFL fixation techniques on patellofemoral pressures compared with the native situation. The hypothesis was that dynamic reconstruction would result in patellofemoral pressures closer to those generated in an intact knee. Controlled laboratory study. Seven fresh-frozen knee specimens were tested in an in vitro knee joint loading apparatus. Tekscan pressure-sensitive films fixed to the retropatellar cartilage measured mean patellofemoral and peak pressures, contact area, and location of the center of force (COF) at fixed flexion angles from 0° to 110°. Four different conditions were tested: intact, dynamic, partial dynamic, and static MPFL reconstruction. Data were analyzed using linear mixed models. Static MPFL reconstruction resulted in higher peak and mean pressures from 60° to 110° of flexion (P < .001). There were no differences in pressure between the 2 different dynamic reconstructions and the intact situation (P > .05). The COF in the static reconstruction group moved more medially on the patella from 50° to 110° of flexion compared with the other conditions. The contact area showed no significant differences between the test conditions. After static MPFL reconstruction, the patellofemoral pressures in flexion angles from 60° to 110° were 3 to 5 times higher than those in the intact situation. The pressures after dynamic MPFL reconstruction were similar as compared with those in the intact situation, and therefore, dynamic MPFL reconstruction could be a safer option than static reconstruction for stabilizing the patella. This study showed that static MPFL reconstruction results in higher patellofemoral pressures and thus enhances the chance of osteoarthritis in the long term, while dynamic reconstruction results in more normal pressures. © 2015 The Author(s).

  3. Randomized trial of low versus high carbon dioxide insufflation pressures in posterior retroperitoneoscopic adrenalectomy.

    PubMed

    Fraser, Sheila; Norlén, Olov; Bender, Kyle; Davidson, Joanne; Bajenov, Sonya; Fahey, David; Li, Shawn; Sidhu, Stan; Sywak, Mark

    2018-05-01

    Posterior retroperitoneoscopic adrenalectomy has gained widespread acceptance for the removal of benign adrenal tumors. Higher insufflation pressures using carbon dioxide (CO 2 ) are required, although the ideal starting pressure is unclear. This prospective, randomized, single-blinded, study aims to compare physiologic differences with 2 different CO 2 insufflation pressures during posterior retroperitoneoscopic adrenalectomy. Participants were randomly assigned to a starting insufflation pressure of 20 mm Hg (low pressure) or 25 mm Hg (high pressure). The primary outcome measure was partial pressure of arterial CO 2 at 60 minutes. Secondary outcomes included end-tidal CO 2 , arterial pH, blood pressure, and peak airway pressure. Breaches of protocol to change insufflation pressure were permitted if required and were recorded. A prospective randomized trial including 31 patients (low pressure: n = 16; high pressure: n = 15) was undertaken. At 60 minutes, the high pressure group had greater mean partial pressure of arterial CO 2 (64 vs 50 mm Hg, P = .003) and end-tidal CO 2 (54 vs 45 mm Hg, P = .008) and a lesser pH (7.21 vs 7.29, P = .0005). There were no significant differences in base excess, peak airway pressure, operative time, or duration of hospital stay. Clinically indicated protocol breaches were more common in the low pressure than the high pressure group (8 vs 3, P = .03). In posterior retroperitoneoscopic adrenalectomy, greater insufflation pressures are associated with greater partial pressure of arterial CO 2 and end-tidal CO 2 and lesser pH at 60 minutes, be significant. Commencing with lesser CO 2 insufflation pressures decreases intraoperative acidosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Differences in plantar loading between training shoes and racing flats at a self-selected running speed.

    PubMed

    Wiegerinck, Johannes I; Boyd, Jennifer; Yoder, Jordan C; Abbey, Alicia N; Nunley, James A; Queen, Robin M

    2009-04-01

    The purpose of this study was to examine the difference in plantar loading between two different running shoe types. We hypothesized that a higher maximum force, peak pressure, and contact area would exist beneath the entire foot while running in a racing flat when compared to a training shoe. 37 athletes (17 male and 20 female) were recruited for this study. Subjects had no history of lower extremity injuries in the past six months, no history of foot or ankle surgery within the past 3 years, and no history of metatarsal stress fractures. Subjects had to be physically active and run at least 10 miles per week. Each subject ran on a 10m runway 7 times wearing two different running shoe types, the Nike Air Pegasus (training shoe) and the Nike Air Zoom Katana IV (racing flat). A Pedar-X in-shoe pressure measurement system sampling at 50Hz was used to collect plantar pressure data. Peak pressure, maximum force, and contact area beneath eight different anatomical regions of the foot as well as beneath the total foot were obtained. The results of this study demonstrated a significant difference between training shoes and racing flats in terms of peak pressure, maximum force, and contact area. The significant differences measured between the two shoes can be of importance when examining the influence of shoe type on the occurrence of stress fractures in runners.

  5. LIF measurements and chemical kinetic analysis of methylidyne formation in high-pressure counter-flow partially premixed and non-premixed flames

    NASA Astrophysics Data System (ADS)

    Naik, S. V.; Laurendeau, N. M.

    2004-11-01

    We report quantitative, spatially resolved, linear laser-induced fluorescence (LIF) measurements of methylidyne concentration ([CH]) in laminar, methane air, counter-flow partially premixed and non-premixed flames using excitation near 431.5 nm in the A X (0,0) band. For partially premixed flames, fuel-side equivalence ratios (ϕB) of 1.45, 1.6 and 2.0 are studied at pressures of 1, 3, 6, 9 and 12 atm. For non-premixed flames, the fuel-side mixture consists of 25% CH4 and 75% N2; measurements are obtained at pressures of 1, 2, 3, 4, 5, 6, 9 and 12 atm. The quantitative CH measurements are compared with predictions from an opposed-flow flame code utilizing two GRI chemical kinetic mechanisms (versions 2.11 and 3.0). LIF measurements of [CH] are corrected for variations in the quenching rate coefficient by using major species concentrations and temperatures generated by the code along with suitable quenching cross sections for CH available from the literature. A pathway analysis provides relative contributions from important elementary reactions to the total amount of CH produced at various pressures. Key reactions controlling peak CH concentrations are also identified by using a sensitivity analysis. For the partially premixed flames, measured CH profiles are reproduced reasonably well by GRI 3.0, although some quantitative disagreement exists at all pressures. Two CH radical peaks are observed for ϕB=1.45 and ϕB=1.6 at pressures above 3 atm. Peak CH concentrations for the non-premixed flames are significantly underpredicted by GRI 3.0. The latter agrees with previously reported NO concentrations, which are also underpredicted in these same high-pressure counter-flow diffusion flames.

  6. System Mass Variation and Entropy Generation in 100k We Closed-Brayton-Cycle Space Power Systems

    NASA Technical Reports Server (NTRS)

    Barrett, Michael J.; Reid, Bryan M.

    2004-01-01

    State-of-the-art closed-Brayton-cycle (CBC) space power systems were modeled to study performance trends in a trade space characteristic of interplanetary orbiters. For working-fluid molar masses of 48.6, 39.9, and 11.9 kg/kmol, peak system pressures of 1.38 and 3.0 MPa and compressor pressure ratios ranging from 1.6 to 2.4, total system masses were estimated. System mass increased as peak operating pressure increased for all compressor pressure ratios and molar mass values examined. Minimum mass point comparison between 72 percent He at 1.38 MPa peak and 94 percent He at 3.0 MPa peak showed an increase in system mass of 14 percent. Converter flow loop entropy generation rates were calculated for 1.38 and 3.0 MPa peak pressure cases. Physical system behavior was approximated using a pedigreed NASA Glenn modeling code, Closed Cycle Engine Program (CCEP), which included realistic performance prediction for heat exchangers, radiators and turbomachinery.

  7. System Mass Variation and Entropy Generation in 100-kWe Closed-Brayton-Cycle Space Power Systems

    NASA Technical Reports Server (NTRS)

    Barrett, Michael J.; Reid, Bryan M.

    2004-01-01

    State-of-the-art closed-Brayton-cycle (CBC) space power systems were modeled to study performance trends in a trade space characteristic of interplanetary orbiters. For working-fluid molar masses of 48.6, 39.9, and 11.9 kg/kmol, peak system pressures of 1.38 and 3.0 MPa and compressor pressure ratios ranging from 1.6 to 2.4, total system masses were estimated. System mass increased as peak operating pressure increased for all compressor pressure ratios and molar mass values examined. Minimum mass point comparison between 72 percent He at 1.38 MPa peak and 94 percent He at 3.0 MPa peak showed an increase in system mass of 14 percent. Converter flow loop entropy generation rates were calculated for 1.38 and 3.0 MPa peak pressure cases. Physical system behavior was approximated using a pedigreed NASA Glenn modeling code, Closed Cycle Engine Program (CCEP), which included realistic performance prediction for heat exchangers, radiators and turbomachinery.

  8. Choked flow of fluid nitrogen with emphasis on the thermodynamic critical region

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Simoneau, R. J.; Ehlers, R. C.

    1972-01-01

    Experimental measurements of critical flow rate and pressure ratio for nitrogen flowing through a nozzle are presented. Data for selected stagnation isotherms from 87.5 to 234 K with pressures to 9.3 MN/m2 are compared to an equilibrium model with real fluid properties and also a nonequilibrium model. Critical flow pressure ratio along an isotherm tends to peak while the flow rate indicates an inflection. The point is closely associated with the transposed critical temperature and represents a change in the fluid structure.

  9. Articular contact pressures of meniscal repair techniques at various knee flexion angles.

    PubMed

    Flanigan, David C; Lin, Fang; Koh, Jason L; Zhang, Li-Qun

    2010-07-13

    Articular cartilage injury can occur after meniscal repair with biodegradable implants. Previous contact pressure analyses of the knee have been based on the tibial side of the meniscus at limited knee flexion angles. We investigated articular contact pressures on the posterior femoral condyle with different knee flexion angles and surgical repair techniques. Medial meniscus tears were repaired in 30 fresh bovine knees. Knees were mounted on a 6-degrees-of-freedom jig and statically loaded to 200 N at 45 degrees, 70 degrees, 90 degrees, and 110 degrees of knee flexion under 3 conditions: intact meniscus, torn meniscus, and meniscus after repair. For each repair, 3 sutures or biodegradable implants were used. A pressure sensor was used to determine the contact area and peak pressure. Peak pressures over each implant position were measured. Peak pressure increased significantly as knee flexion increased in normal, injured, and repaired knees. The change in peak pressure in knees with implant repairs was significantly higher than suture repairs at all knee flexion angles. Articular contact pressure on the posterior femoral condyle increased with knee flexion. Avoidance of deep knee flexion angles postoperatively may limit increases in articular contact pressures and potential chondral injury. Copyright 2010, SLACK Incorporated.

  10. Blast from pressurized carbon dioxide released into a vented atmospheric chamber

    NASA Astrophysics Data System (ADS)

    Hansen, P. M.; Gaathaug, A. V.; Bjerketvedt, D.; Vaagsaether, K.

    2018-03-01

    This study describes the blast from pressurized carbon dioxide (CO2) released from a high-pressure reservoir into an openly vented atmospheric chamber. Small-scale experiments with pure vapor and liquid/vapor mixtures were conducted and compared with simulations. A motivation was to investigate the effects of vent size and liquid content on the peak overpressure and impulse response in the atmospheric chamber. The comparison of vapor-phase CO2 test results with simulations showed good agreement. This numerical code described single-phase gas dynamics inside a closed chamber, but did not model any phase transitions. Hence, the simulations described a vapor-only test into an unvented chamber. Nevertheless, the simulations reproduced the incident shock wave, the shock reflections, and the jet release inside the atmospheric chamber. The rapid phase transition did not contribute to the initial shock strength in the current test geometry. The evaporation rate was too low to contribute to the measured peak overpressure that was in the range of 15-20 kPa. The simulation results produced a calculated peak overpressure of 12 kPa. The liquid tests showed a significantly higher impulse compared to tests with pure vapor. Reducing the vent opening from 0.1 to 0.01 m2 resulted in a slightly higher impulse calculated at 100 ms. The influence of the vent area on the calculated impulse was significant in the vapor-phase tests, but not so clear in the liquid/vapor mixture tests.

  11. The effect of ignition location on explosion venting of hydrogen-air mixtures

    NASA Astrophysics Data System (ADS)

    Cao, Y.; Guo, J.; Hu, K.; Xie, L.; Li, B.

    2017-07-01

    The effect of ignition location and vent burst pressure on the internal pressure-time history and external flame propagation was investigated for vented explosions of hydrogen-air mixtures in a small cylindrical vessel. A high-speed camera was used to record videos of the external flame while pressure transducers were used to record pressure-time histories. It was found that central ignition always leads to the maximum internal peak overpressure, and front ignition resulted in the lowest value of internal peak overpressure. The internal peak overpressures are increased corresponding to the increase in the vent burst pressure in the cases of central and rear ignition. Because of the effect of acoustic oscillations, the phenomenon of oscillations is observed in the internal pressure profile for the case of front ignition. The pressure oscillations for the cases of rear and central ignition are triggered by external explosions. The behavior of flames outside the chamber is significantly associated with the internal pressure of the chamber so that the velocity of the jet flame is closely related to the internal overpressure peak.

  12. Application of the Extreme Value Distribution to Estimate the Uncertainty of Peak Sound Pressure Levels at the Workplace.

    PubMed

    Lenzuni, Paolo

    2015-07-01

    The purpose of this article is to develop a method for the statistical inference of the maximum peak sound pressure level and of the associated uncertainty. Both quantities are requested by the EU directive 2003/10/EC for a complete and solid assessment of the noise exposure at the workplace. Based on the characteristics of the sound pressure waveform, it is hypothesized that the distribution of the measured peak sound pressure levels follows the extreme value distribution. The maximum peak level is estimated as the largest member of a finite population following this probability distribution. The associated uncertainty is also discussed, taking into account not only the contribution due to the incomplete sampling but also the contribution due to the finite precision of the instrumentation. The largest of the set of measured peak levels underestimates the maximum peak sound pressure level. The underestimate can be as large as 4 dB if the number of measurements is limited to 3-4, which is common practice in occupational noise assessment. The extended uncertainty is also quite large (~2.5 dB), with a weak dependence on the sampling details. Following the procedure outlined in this article, a reliable comparison between the peak sound pressure levels measured in a workplace and the EU directive action limits is possible. Non-compliance can occur even when the largest of the set of measured peak levels is several dB below such limits. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  13. Responses of intra-abdominal pressure and abdominal muscle activity during dynamic trunk loading in man.

    PubMed

    Cresswell, A G

    1993-01-01

    The purpose of this study was to determine and compare interactions between the abdominal musculature and intra-abdominal pressure (IAP) during controlled dynamic and static trunk muscle loading. Myoelectric activity was recorded in six subjects from the rectus abdominis, obliquus externus, obliquus internus, transversus abdominis and erector spinae muscles using surface and intra-muscular fine-wire electrodes. The IAP was recorded intra-gastrically. Trunk flexions and extensions were performed lying on one side on a swivel table. An adjustable brake provided different friction loading conditions, while adding weights to an unbraked swivel table afforded various levels of inertial loading. During trunk extensions at all friction loads, IAP was elevated (1.8-7.2 kPa) with concomitant activity in transversus abdominis and obliquus internus muscles--little or no activity was seen from rectus abdominis and obliquus externus muscles. For inertia loading during trunk extension, IAP levels were somewhat lower (1.8-5.6 kPa) and displayed a second peak when abdominal muscle activity occurred in the course of decelerating the movement. For single trunk flexions with friction loading, IAP was higher than that seen in extension conditions and increased with added resistance. For inertial loading during trunk flexion, IAP showed two peaks, the larger first peak matched peak forward acceleration and general abdominal muscle activation, while the second corresponded to peak deceleration and was accompanied by activity in transversus abdominis and erector spinae muscles. It was apparent that different loading strategies produced markedly different patterns of response in both trunk musculature and intra-abdominal pressure.

  14. Plantar pressures are elevated in people with longstanding diabetes-related foot ulcers during follow-up

    PubMed Central

    Fernando, Malindu E.; Crowther, Robert G.; Lazzarini, Peter A.; Yogakanthi, Saiumaeswar; Sangla, Kunwarjit S.; Buttner, Petra; Jones, Rhondda; Golledge, Jonathan

    2017-01-01

    Objective High plantar pressures are implicated in the development of diabetes-related foot ulcers. Whether plantar pressures remain high in patients with chronic diabetes-related foot ulcers over time is uncertain. The primary aim of this study was to compare plantar pressures at baseline and three and six months later in participants with chronic diabetes-related foot ulcers (cases) to participants without foot ulcers (controls). Methods Standardised protocols were used to measure mean peak plantar pressure and pressure-time integral at 10 plantar foot sites (the hallux, toes, metatarsals 1 to 5, mid-foot, medial heel and lateral heel) during barefoot walking. Measurements were performed at three study visits: baseline, three and six months. Linear mixed effects random-intercept models were utilised to assess whether plantar pressures differed between cases and controls after adjusting for age, sex, body mass index, neuropathy status and follow-up time. Standardised mean differences (Cohen’s d) were used to measure effect size. Results Twenty-one cases and 69 controls started the study and 16 cases and 63 controls completed the study. Cases had a higher mean peak plantar pressure at several foot sites including the toes (p = 0.005, Cohen’s d = 0.36) and mid-foot (p = 0.01, d = 0.36) and a higher pressure-time integral at the hallux (p<0.001, d = 0.42), metatarsal 1 (p = 0.02, d = 0.33) and mid-foot (p = 0.04, d = 0.64) compared to controls throughout follow-up. A reduction in pressure-time integral at multiple plantar sites over time was detected in all participants (p<0.05, respectively). Conclusions Plantar pressures assessed during gait are higher in diabetes patients with chronic foot ulcers than controls at several plantar sites throughout prolonged follow-up. Long term offloading is needed in diabetes patients with diabetes-related foot ulcers to facilitate ulcer healing. PMID:28859075

  15. Movement of Landslide Triggered by Bedrock Exfiltration with Nonuniform Pore Pressure Distribution

    NASA Astrophysics Data System (ADS)

    Jan, C. D.; Jian, Z. K.

    2014-12-01

    Landslides are common phenomena of sediment movement in mountain areas and usually pose severe risks to people and infrastructure around those areas. The occurrence of landslides is influenced by groundwater dynamics and bedrock characteristics as well as by rainfall and soil-mass properties. The bedrock may drain or contribute to groundwater in the overlying soil mass, depending on the hydraulic conductivity, degree of fracturing, saturation, and hydraulic head. Our study here is based on the model proposed by Iverson (2005). The model describes the relation between landslide displacement and the shear-zone dilation/contraction of pore water pressure. To study landslide initiation and movement, a block soil mass sliding down an inclined beck-rock plane is governed by Newton's equation of motion, while both the bedrock exfiltration and excess pore pressure induced by dilatation or contraction of basal shear zone are described by diffusion equations. The Chebyshev collocation method was used to transform the governing equations to a system of first-order ordinary differential equations, without the need of iteration. Then a fourth-order Runge-Kutta scheme was used to solve these ordinary differential equations. The effects of nonuniform bedrock exfiltration pressure distributions, such as the delayed peak, central peak, and advanced peak distributions, on the time of landslide initiation and the speed of landslide movement were compared and discussed.

  16. Gas Chromatograph Method Optimization Trade Study for RESOLVE: 20-meter Column v. 8-meter Column

    NASA Technical Reports Server (NTRS)

    Huz, Kateryna

    2014-01-01

    RESOLVE is the payload on a Class D mission, Resource Prospector, which will prospect for water and other volatile resources at a lunar pole. The RESOLVE payload's primary scientific purpose includes determining the presence of water on the moon in the lunar regolith. In order to detect the water, a gas chromatograph (GC) will be used in conjunction with a mass spectrometer (MS). The goal of the experiment was to compare two GC column lengths and recommend which would be best for RESOLVE's purposes. Throughout the experiment, an Inficon Fusion GC and an Inficon Micro GC 3000 were used. The Fusion had a 20m long column with 0.25mm internal diameter (Id). The Micro GC 3000 had an 8m long column with a 0.32mm Id. By varying the column temperature and column pressure while holding all other parameters constant, the ideal conditions for testing with each column length in their individual instrument configurations were determined. The criteria used for determining the optimal method parameters included (in no particular order) (1) quickest run time, (2) peak sharpness, and (3) peak separation. After testing numerous combinations of temperature and pressure, the parameters for each column length that resulted in the most optimal data given my three criteria were selected. The ideal temperature and pressure for the 20m column were 95 C and 50psig. At this temperature and pressure, the peaks were separated and the retention times were shorter compared to other combinations. The Inficon Micro GC 3000 operated better at lower temperature mainly due to the shorter 8m column. The optimal column temperature and pressure were 70 C and 30psig. The Inficon Micro GC 3000 8m column had worse separation than the Inficon Fusion 20m column, but was able to separate water within a shorter run time. Therefore, the most significant tradeoff between the two column lengths was peak separation of the sample versus run time. After performing several tests, it was concluded that better detection via good peak separation with a longer run time is a better asset than moderate peak separation with a shorter run time. Even given that RESOLVE is highly interested in water and that mission timeline is of significant importance given the short seven-to-ten-day mission timeline, worse detection with an 8m column may lead to overlooking other substances existing on the moon that could advance planetary science. Thus, I recommend the 20m column. However, if mission timeline and water separation are deemed the highest priority, the 8m column should be selected due to its ability to separate water within a shorter run time than the 20m column.

  17. Noise from aerial bursts of fireworks

    NASA Technical Reports Server (NTRS)

    Maglieri, D. J.; Henderson, H. R.

    1973-01-01

    A study was made recording the pressure time histories of the aerial bursts of mortars of various sizes launched during an actual fireworks display. The peak overpressure and duration of blast noise as well as the energy spectral density are compared with the characteristics of a blasting cap and of an F-104 aircraft at a Mach number of 1.4 and an altitude of 42,000 ft. Noise levels of the fireworks aerial bursts peaked 15 decibels below levels deemed damaging to hearing.

  18. Predicted Hemodynamic Benefits Of Counterpulsation Therapy Using A Superficial Surgical Approach

    PubMed Central

    Giridharan, Guruprasad A.; Pantalos, George M.; Litwak, Kenneth N.; Spence, Paul A.; Koenig, Steven C.

    2010-01-01

    A volume-displacement counterpulsation device (CPD) intended for chronic implantation via a superficial surgical approach is proposed. The CPD is a pneumatically driven sac that fills during native heart systole and empties during diastole through a single, valveless cannula anastomosed to the subclavian artery. Computer simulation was performed to predict and compare the physiological responses of the CPD to the intraaortic balloon pump (IABP) in a clinically relevant model of early stage heart failure. The effect of device stroke volume (0–50 ml) and control modes (timing, duration, morphology) on landmark hemodynamic parameters and the LV pressure–volume relationship were investigated. Simulation results predicted that the CPD would provide hemodynamic benefits comparable to an IABP as evidenced by up to 25% augmentation of peak diastolic aortic pressure, which increases diastolic coronary perfusion by up to 34%. The CPD may also provide up to 34% reduction in LV end-diastolic pressure and 12% reduction in peak systolic aortic pressure, lowering LV workload by up to 26% and increasing cardiac output by up to 10%. This study demonstrated that the superficial CPD technique may be used acutely to achieve similar improvements in hemodynamic function as the IABP in early stage heart failure patients. PMID:16436889

  19. Characterization of laser-driven shock waves in solids using a fiber optic pressure probe

    DOE PAGES

    Cranch, Geoffrey A.; Lunsford, Robert; Grun, Jacob; ...

    2013-11-08

    Measurement of laser-driven shock wave pressure in solid blocks of polymethyl methacrylate is demonstrated using fiber optic pressure probes. Three probes based on a fiber Fabry–Perot, fiber Bragg grating, and interferometric fiber tip sensor are tested and compared. Shock waves are generated using a high-power laser focused onto a thin foil target placed in close proximity to the test blocks. The fiber Fabry–Perot sensor appears capable of resolving the shock front with a rise time of 91 ns. As a result, the peak pressure is estimated, using a separate shadowgraphy measurement, to be 3.4 GPa.

  20. Reproducibility of intraocular pressure peak and fluctuation of the water-drinking test.

    PubMed

    Hatanaka, Marcelo; Alencar, Luciana M; De Moraes, Carlos G; Susanna, Remo

    2013-01-01

    The water-drinking test has been used as a stress test to evaluate the drainage system of the eye. However, in order to be clinically applicable,a test must provide reproducible results with consistent measurements. This study was performed to verify the reproducibility of intraocular pressure peaks and fluctuation detected during the water-drinking test in patients with ocular hypertension and open-angle glaucoma. A prospective analysis of patients in a tertiary care unit for glaucoma treatment. Twenty-four ocular hypertension and 64 open-angle glaucoma patients not under treatment. The water-drinking test was performed in 2 consecutive days by the same examiners in patients not under treatment. Reproducibility was assessed using the intraclass correlation coefficient. Peak and fluctuation of intraocular pressure obtained with the water-drinking test were analysed for reproducibility. Eighty-eight eyes from 24 ocular hypertension and 64 open-angle glaucoma patients not under treatment were evaluated. Test and retest intraocular pressure peak values were 28.38 ± 4.64 and 28.38 ± 4.56 mmHg, respectively (P = 1.00). Test and retest intraocular pressure fluctuation values were 5.75 ± 3.9 and 4.99 ± 2.7 mmHg, respectively (P = 0.06). Based on intraclass coefficient, reproducibility was excellent for peak intraocular pressure (intraclass correlation coefficient = 0.79) and fair for intraocular pressure fluctuation (intraclass correlation coefficient = 0.37). Intraocular pressure peaks detected during the water-drinking test presented excellent reproducibility, whereas the reproducibility of fluctuation was considered fair. © 2012 The Authors. Clinical and Experimental Ophthalmology © 2012 Royal Australian and New Zealand College of Ophthalmologists.

  1. Spatiotemporal and plantar pressure patterns of 1000 healthy individuals aged 3-101 years.

    PubMed

    McKay, Marnee J; Baldwin, Jennifer N; Ferreira, Paulo; Simic, Milena; Vanicek, Natalie; Wojciechowski, Elizabeth; Mudge, Anita; Burns, Joshua

    2017-10-01

    The purpose of this study was to establish normative reference values for spatiotemporal and plantar pressure parameters, and to investigate the influence of demographic, anthropometric and physical characteristics. In 1000 healthy males and females aged 3-101 years, spatiotemporal and plantar pressure data were collected barefoot with the Zeno™ walkway and Emed ® platform. Correlograms were developed to visualise the relationships between widely reported spatiotemporal and pressure variables with demographic (age, gender), anthropometric (height, mass, waist circumference) and physical characteristics (ankle strength, ankle range of motion, vibration perception) in children aged 3-9 years, adolescents aged 10-19 years, adults aged 20-59 years and older adults aged over 60 years. A comprehensive catalogue of 31 spatiotemporal and pressure variables were generated from 1000 healthy individuals. The key findings were that gait velocity was stable during adolescence and adulthood, while children and older adults walked at a comparable slower speed. Peak pressures increased during childhood to older adulthood. Children demonstrated highest peak pressures beneath the rearfoot whilst adolescents, adults and older adults demonstrated highest pressures at the forefoot. Main factors influencing spatiotemporal and pressure parameters were: increased age, height, body mass and waist circumference, as well as ankle dorsiflexion and plantarflexion strength. This study has established whole of life normative reference values of widely used spatiotemporal and plantar pressure parameters, and revealed changes to be expected across the lifespan. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Effect of body repositioning after venous air embolism. An echocardiographic study

    NASA Technical Reports Server (NTRS)

    Geissler, H. J.; Allen, S. J.; Mehlhorn, U.; Davis, K. L.; Morris, W. P.; Butler, B. D.

    1997-01-01

    BACKGROUND: Current therapy for massive venous air embolism (VAE) may include the use of the left lateral recumbent (LLR) position, although its effectiveness has been questioned. This study used transesophageal echocardiography to evaluate the effect of body repositioning on intracardiac air and acute cardiac dimension changes. METHODS: Eighteen anesthetized dogs in the supine position received a venous air injection of 2.5 ml/kg at a rate of 5 ml/ s. After 1 min the dogs were repositioned into either the LLR, LLR 10 degrees head down (LLR-10 degrees), right lateral recumbence, or remained in the supine position. RESULTS: Repositioning after VAE resulted in relocation of intracardiac air to nondependent areas of the right heart. Peak right ventricular (RV) diameter increase and mean arterial pressure decrease were greater in the repositioned animals compared with those in the supine position (P < 0.05). Right ventricular diameter and mean arterial pressure showed an inverse correlation (r = 0.81). Peak left atrial diameter decrease was greater in the LLR and LLR-10 degrees positions compared with the supine position (P < 0.05). Repositioning did not influence peak pulmonary artery pressure increase, and no correlation was found between RV diameter and pulmonary artery pressure. All animals showed electrocardiogram and echocardiographic changes reconcilable with myocardial ischemia. CONCLUSIONS: In dogs, body repositioning after VAE provided no benefit in hemodynamic performance or cardiac dimension changes, although relocation of intracardiac air was demonstrated. Right ventricular air did not appear to result in significant RV outflow obstruction, as pulmonary artery pressure increased uniformly in all groups and was not influenced by the relocation of intracardiac air. The combination of increased RV afterload and arterial hypotension, possibly with subsequent RV ischemia rather than RV outflow obstruction by an airlock appeared to be the primary mechanism for cardiac dysfunction after VAE.

  3. Parametric design of pressure-relieving foot orthosis using statistics-based finite element method.

    PubMed

    Cheung, Jason Tak-Man; Zhang, Ming

    2008-04-01

    Custom-molded foot orthoses are frequently prescribed in routine clinical practice to prevent or treat plantar ulcers in diabetes by reducing the peak plantar pressure. However, the design and fabrication of foot orthosis vary among clinical practitioners and manufacturers. Moreover, little information about the parametric effect of different combinations of design factors is available. As an alternative to the experimental approach, therefore, computational models of the foot and footwear can provide efficient evaluations of different combinations of structural and material design factors on plantar pressure distribution. In this study, a combined finite element and Taguchi method was used to identify the sensitivity of five design factors (arch type, insole and midsole thickness, insole and midsole stiffness) of foot orthosis on peak plantar pressure relief. From the FE predictions, the custom-molded shape was found to be the most important design factor in reducing peak plantar pressure. Besides the use of an arch-conforming foot orthosis, the insole stiffness was found to be the second most important factor for peak pressure reduction. Other design factors, such as insole thickness, midsole stiffness and midsole thickness, contributed to less important roles in peak pressure reduction in the given order. The statistics-based FE method was found to be an effective approach in evaluating and optimizing the design of foot orthosis.

  4. Resection of Grade III cranial horn tears of the equine medial meniscus alter the contact forces on medial tibial condyle at full extension: an in-vitro cadaveric study.

    PubMed

    Fowlie, Jennifer; Arnoczky, Steven; Lavagnino, Michael; Maerz, Tristan; Stick, John

    2011-12-01

    To evaluate the magnitude and distribution of joint contact pressure on the medial tibial condyle after grade III cranial horn tears of the medial meniscus. Experimental study. Cadaveric equine stifles (n = 6). Cadaveric stifles were mounted in a materials testing system and electronic pressure sensors were placed between the medial tibial condyle and medial meniscus. Specimens were loaded parallel to the longitudinal axis of the tibia to 1800 N at 130°, 140°, 150°, and 160° stifle angle. Peak pressure and contact area were recorded from the contact maps. Testing was repeated after surgical creation of a grade III cranial horn tear of the medial meniscus, and after resection of the simulated tear. In the intact specimens, a significantly smaller contact area was observed at 160° compared with the other angles (P < .05). Creation of a grade III cranial horn tear in the medial meniscus did not significantly alter the pressure or contact area measurements at any stifle angle compared with intact specimens (P > .05). Resection of the tear resulted in significantly higher peak pressures in the central region of the medial tibial condyle at a stifle angle of 160° relative to the intact (P = .026) and torn (P = .012) specimens. Resection of grade III cranial horn tears in the medial meniscus resulted in a central focal region of increased pressure on the medial tibial condyle at 160° stifle angle. © Copyright 2011 by The American College of Veterinary Surgeons.

  5. Particle in cell simulation of peaking switch for breakdown evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Umbarkar, Sachin B.; Bindu, S.; Mangalvedekar, H.A.

    2014-07-01

    Marx generator connected to peaking capacitor and peaking switch can generate Ultra-Wideband (UWB) radiation. A new peaking switch is designed for converting the existing nanosecond Marx generator to a UWB source. The paper explains the particle in cell (PIC) simulation for this peaking switch, using MAGIC 3D software. This peaking switch electrode is made up of copper tungsten material and is fixed inside the hermitically sealed derlin material. The switch can withstand a gas pressure up to 13.5 kg/cm{sup 2}. The lower electrode of the switch is connected to the last stage of the Marx generator. Initially Marx generator (withoutmore » peaking stage) in air; gives the output pulse with peak amplitude of 113.75 kV and pulse rise time of 25 ns. Thus, we design a new peaking switch to improve the rise time of output pulse and to pressurize this peaking switch separately (i.e. Marx and peaking switch is at different pressure). The PIC simulation gives the particle charge density, current density, E counter plot, emitted electron current, and particle energy along the axis of gap between electrodes. The charge injection and electric field dependence on ionic dissociation phenomenon are briefly analyzed using this simulation. The model is simulated with different gases (N{sub 2}, H{sub 2}, and Air) under different pressure (2 kg/cm{sup 2}, 5 kg/cm{sup 2}, 10 kg/cm{sup 2}). (author)« less

  6. Automated impedance-manometry analysis detects esophageal motor dysfunction in patients who have non-obstructive dysphagia with normal manometry.

    PubMed

    Nguyen, N Q; Holloway, R H; Smout, A J; Omari, T I

    2013-03-01

    Automated integrated analysis of impedance and pressure signals has been reported to identify patients at risk of developing dysphagia post fundoplication. This study aimed to investigate this analysis in the evaluation of patients with non-obstructive dysphagia (NOD) and normal manometry (NOD/NM). Combined impedance-manometry was performed in 42 patients (27F : 15M; 56.2 ± 5.1 years) and compared with that of 24 healthy subjects (8F : 16M; 48.2 ± 2.9 years). Both liquid and viscous boluses were tested. MATLAB-based algorithms defined the median intrabolus pressure (IBP), IBP slope, peak pressure (PP), and timing of bolus flow relative to peak pressure (TNadImp-PP). An index of pressure and flow (PFI) in the distal esophagus was derived from these variables. Diagnoses based on conventional manometric assessment: diffuse spasm (n = 5), non-specific motor disorders (n = 19), and normal (n = 11). Patients with achalasia (n = 7) were excluded from automated impedance-manometry (AIM) analysis. Only 2/11 (18%) patients with NOD/NM had evidence of flow abnormality on conventional impedance analysis. Several variables derived by integrated impedance-pressure analysis were significantly different in patients as compared with healthy: higher PNadImp (P < 0.01), IBP (P < 0.01) and IBP slope (P < 0.05), and shorter TNadImp_PP (P = 0.01). The PFI of NOD/NM patients was significantly higher than that in healthy (liquid: 6.7 vs 1.2, P = 0.02; viscous: 27.1 vs 5.7, P < 0.001) and 9/11 NOD/NM patients had abnormal PFI. Overall, the addition of AIM analysis provided diagnoses and/or a plausible explanation in 95% (40/42) of patients who presented with NOD. Compared with conventional pressure-impedance assessment, integrated analysis is more sensitive in detecting subtle abnormalities in esophageal function in patients with NOD and normal manometry. © 2012 Blackwell Publishing Ltd.

  7. The effective forces transmitted by high-speed, low-amplitude thoracic manipulation.

    PubMed

    Herzog, W; Kats, M; Symons, B

    2001-10-01

    Twenty asymptomatic volunteers each received three spinal manipulative treatments to the thoracic spine. The treatments consisted of a straight posterior-to-anterior high-speed, low-amplitude thrust to the transverse process of T3-T10 using a reinforced hypothenar contact. All treatments were given by a full-time practicing clinician with 3 years of experience. The primary objective of this study was to quantify local measures of loading applied by the clinician on the volunteers during spinal manipulative treatments and to compare these local measures of loading with previously described global measures. The sparse information on the mechanics of spinal manipulative treatments deals exclusively with global force or pressure measurements. On the basis of these global data, incorrect conclusions may be drawn about the beneficial effects of spinal manipulative therapy, the loading of internal structures, and the risks associated with these treatments. Twenty asymptomatic subjects each received three posterior-to-anterior, high-speed, low-amplitude spinal manipulative treatments to the transverse process of the thoracic spine. Total force, local force, contact area, peak pressure, and average pressure at the contact interface between clinician and subject were measured continuously by use of a thin, flexible pressure pad. Local and global measures of loading were compared and analyzed by use of nonparametric statistics (alpha = 0.01). The average peak total force was 238.2 N. The average peak local force over a target area of 25 mm2 was 5 N, indicating that global measures of loading vastly overestimate the local effective forces at the target site. The peak pressure point moved, on average, 9.8 mm during the course of the manipulation. To the authors' best knowledge, this is the first study to quantify local, effective measures of loading and compare them with the global measures typically used. The conclusions are limited because the study used a single clinician. The effective loading of specific target sites is much smaller than the global measures might suggest. This result occurs because as the forces during spinal manipulative treatment increase, so does the contact area; therefore, much of the total treatment force is taken up by non-target-specific tissues. Because of the vast discrepancy between the global and local measures of loading, it is suggested that risk-benefit assessments of high-speed, low-amplitude spinal manipulative treatments should be made, including local measures of loading. Finally, because theoretical approaches and the inverse dynamics approach can provide only global measures of loading, the results of such studies should be interpreted with caution.

  8. Plantar Pressures During Long Distance Running: An Investigation of 10 Marathon Runners

    PubMed Central

    Hohmann, Erik; Reaburn, Peter; Tetsworth, Kevin; Imhoff, Andreas

    2016-01-01

    The objective of this study was to record plantar pressures using an in-shoe measuring system before, during, and after a marathon run in ten experienced long-distance runners with a mean age of 37.7 ± 11.5 years. Peak and mean plantar pressures were recorded before, after, and every three km during a marathon race. There were no significant changes over time in peak and mean plantar pressures for either the dominant or non-dominant foot. There were significant between foot peak and mean plantar pressure differences for the total foot (p = 0.0001), forefoot (p = 0.0001), midfoot (p = 0.02 resp. p = 0.006), hindfoot (p = 0.0001), first ray (p = 0.01 resp. p = 0.0001) and MTP (p = 0.05 resp. p = 0.0001). Long-distance runners do not demonstrate significant changes in mean or peak plantar foot pressures over the distance of a marathon race. However, athletes consistently favoured their dominant extremity, applying significantly higher plantar pressures through their dominant foot over the entire marathon distance. Key points Fatigue does not increase foot pressures Every runner has a dominant foot where pressures are higher and that he/she favours Foot pressures do not increase over the distance of a marathon run PMID:27274662

  9. Rapid identification of Clostridium species by high-pressure liquid chromatography.

    PubMed Central

    Harpold, D J; Wasilauskas, B L; O'Connor, M L

    1985-01-01

    High-pressure liquid chromatography was evaluated as a rapid means of identifying various species of clostridia. Isolates were inoculated into a defined medium and incubated aerobically for 1 h at 35 degrees C. The organisms were removed, and the supernatants were derivatized for 1 min at room temperature by the addition of o-phthalaldehyde. The total time required to run each chromatogram was approximately 50 min. Standardized peak heights for each medium component and any new peaks formed were calculated for each isolate and compared with those for uninoculated control medium. Multiple isolates of various Clostridium species gave consistent patterns of medium utilization that could be used for identification. This rapid method can easily be adapted for laboratory use and has the potential for automation. PMID:3905852

  10. Development of a dynamic pressure calibration technique

    NASA Technical Reports Server (NTRS)

    Vezzetti, C. F.; Hilten, J. S.; Lederer, P. S.

    1975-01-01

    The report deals with work continuing on the development of a method of producing sinusoidally varying pressures of at least 34 kPa zero-to-peak with amplitude variations within plus or minus 5% up to 2 kHz for the dynamic calibration of pressure transducers. Sinusoidally varying pressures of 34 kPa zero-to-peak were produced between 40 Hz and 750 Hz by vibrating a 10-cm column of a dimethyl siloxane liquid at 36gn zero-to-peak. Damping of the liquid column was accomplished by packing the fixture tube with a number of smaller diameter tubes.

  11. Is vacuum ultraviolet detector a concentration or a mass dependent detector?

    PubMed

    Liu, Huian; Raffin, Guy; Trutt, Guillaume; Randon, Jérôme

    2017-12-29

    The vacuum ultraviolet detector (VUV) is a very effective tool for chromatogram deconvolution and peak identification, and can also be used for quantification. To avoid quantitative issues in relation to time drift, such as variation of peak area or peak height, the detector response type has to be well defined. Due to the make-up flow and pressure regulation of make-up, the detector response (height of the peak) and peak area appeared to be dependent on experimental conditions such as inlet pressure and make-up pressure. Even if for some experimental conditions, VUV looks like mass-flow sensitive detector, it has been demonstrated that VUV is a concentration sensitive detector. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Effects of Caffeine on Countermovement-Jump Performance Variables in Elite Male Volleyball Players.

    PubMed

    Zbinden-Foncea, Hermann; Rada, Isabel; Gomez, Jesus; Kokaly, Marco; Stellingwerff, Trent; Deldicque, Louise; Peñailillo, Luis

    2018-02-01

    To examine the effects of a moderate dose of caffeine in elite male volleyball players on countermovement-jump (CMJ) performance, as well as temporal concentric- and eccentric-phase effects. Ten elite male volleyball players took part in 2 experimental days via a randomized crossover trial 1 wk apart in which they ingested either 5 mg/kg of caffeine or a placebo in double-blind fashion. Heart rate and blood pressure were measured at rest and 60 min postingestion. Afterward, subjects also performed 3 CMJ trials 60 min postingestion, of which the average was used for further analysis. They filled out a questionnaire on possible side effects 24 h posttrial. Caffeine intake, compared with placebo, increased CMJ peak concentric force (6.5% ± 6.4%; P = .01), peak power (16.2% ± 8.3%; P < .01), flight time (5.3% ± 3.4%; P < .01), velocity at peak power (10.6% ± 8.0%; P < .01), peak displacement (10.8% ± 6.5%; P < .01), peak velocity (12.6% ± 7.4%; P < .01), peak acceleration (13.5% ± 8.5%; P < .01), and the force developed at peak power (6.0% ± 4.0%; P < .01) and reduced the time between peak power and peak force (16.7% ± 21.6%, P = .04). Caffeine increased diastolic blood pressure by 13.0% ± 8.9% (P < .05), whereas no adverse side effects were found. The ingestion of 5 mg/kg of anhydrous caffeine improves overall CMJ performance without inducing side effects.

  13. Blast biology: a study of the primary and tertiary effects of blast in open underground protective shelters. Project 33. 1 of Operation Plumbbob

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ricmond, D.R.; Taborelli, R.V.; Bowen, I.G.

    1959-02-01

    Dogs, pigs, rabbits, guinea pigs, and mice were exposed to nuclear detonations in two open underground partitioned shelters. The shelters were of similar construction, and each was exposed to separate detonations. Each inner chamber filled through its own orifice; thus four separate pressure environments were obtained. An aerodynamic mound was placed over the escape hatch of each structure to determine its effect on the pressure-curve shape inside the chamber. In one test a sieve plate bolted across the top of the mound was evaluated. Wind protective baffles of solid plate and of heavy wire screen were installed in the sheltersmore » to compare primary and tertiary blast effects on dogs. The shelters also contained static and dynamic pressure gages, radiation detectors, telemetering devices, and, in one test, air-temperature measuring instruments, dust-collecting trays, and eight pigs for the biological assessment of thermal effects. One dog was severely injured from tertiary blast effects associated with a maximal dynamic pressure (Q) of 10.5 psi, and one was undamaged with a maximal Q of 2 psi. Primary blast effects resulting from peak overpressures of 30.3, 25.5, 9.5, and 4.1 psi were minimal. The mortality was 19% of the mice exposed to a peak pressure of 30.3 psi and 5 and 3% of the guinea pigs and mice exposed to a peak pressure of 25.5 psi. Many of the rabbits, guinea pigs, and mice sustained slight lung hemorrhages at maximum pressues of 25.5 and 30.3 psi. Eardrum perforation data for all species, except mice, were recorded. Following shot 2, thermal effects were noted. Animals of the groups saved for observation have died from ionizing-radiation effects.« less

  14. BLAST BIOLOGY--A STUDY OF THE PRIMARY AND TERTIARY EFFECTS OF BLAST IN OPEN UNDERGROUND PROTECTIVE SHELTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ricmond, D.R.; Taborelli, R.V.; Bowen, I.G.

    1959-02-01

    Dogs, pigs, rabbits, guinea pigs, and mice were exposed to nuclear detonatiors in two open underground pantitioned shelters. The shelters were of similar constructions and each was exposed to separate detonations. Each inner chamber filled through its own orifice; thus four separate pressure enviromments were obtained. An aerodynamic mound was placed over the escape hatch of each structure to determine its effect on the pressurecurve shape inside the chamber. In one test a sieve plate bolted across the top of the mound was evaluated. Wind protective baffles of solid plate and of heavy wire screen were installed in the sheltersmore » to compare primary and tertiary blast effects on dogs. The shelters also contained static and dynamic pressure gages, radiation detectors, telemetering devices, and, in one test, air-temperature measuring instruments, dustcollecting trays, and eight pigs for the biological assessment of thermal effects. One dog was severely injured from tertiary blast effects associated with a maximal dynamic pressure (Q) of 10.5 psi, and one was undamaged with a maximal Q of 2 psi. Primary blast effects resulting from peak overpressures of 30.3, 25.5, 9.5. and 4.1 psi were minimal. The mortality was 19 per cent of the mice exposed to a peak pressure of 30.3 psi and 5 and 3 per cent of the guinea pigs and mice exposed to a peak pressure of 25.5 psi. Many of the rabbits, guinea pigs, and mice sustained slight lung hemorrhages at maximum pressures of 25.5 and 30.3 psi. Eardrum perforation data for all species, except mice, were recorded. Following shot 2, thermal effects were noted. Animals of the groups saved for observation have died from ionizing-radiation effects. (auth)« less

  15. Implications of persistent prehypertension for ageing-related changes in left ventricular geometry and function: the MONICA/KORA Augsburg study.

    PubMed

    Markus, Marcello Ricardo Paulista; Stritzke, Jan; Lieb, Wolfgang; Mayer, Björn; Luchner, Andreas; Döring, Angela; Keil, Ulrich; Hense, Hans-Werner; Schunkert, Heribert

    2008-10-01

    It is unclear whether persistent prehypertension causes structural or functional alterations of the heart. We examined echocardiographic data of 1005 adults from a population-based survey at baseline in 1994/1995 and at follow-up in 2004/2005. We compared individuals who had either persistently normal (<120 mmHg systolic and <80 mmHg diastolic, n = 142) or prehypertensive blood pressure (120-139 mmHg or 80-89 mmHg, n = 119) at both examinations using multivariate regression modeling. Over 10 years, left ventricular end-diastolic diameters were stable and did not differ between the two groups. However, the prehypertensive blood pressure group displayed more pronounced ageing-related increases of left ventricular wall thickness (+4.7 versus +11.9%, P < 0.001) and left ventricular mass (+8.6 versus +15.7%, P = 0.006). Prehypertension was associated with a raised incidence of left ventricular concentric remodeling (adjusted odds ratio 10.7, 95% confidence interval 2.82-40.4) and left ventricular hypertrophy (adjusted odds ratio 5.33, 1.58-17.9). The ratio of early and late diastolic peak transmitral flow velocities (E/A) decreased by 7.7% in the normal blood pressure versus 15.7% in the prehypertensive blood pressure group (P = 0.003) and at follow-up the ratio of early diastolic peak transmitral flow and early diastolic peak myocardial relaxation velocities (E/EM) was higher (9.1 versus 8.5, P = 0.031) and left atrial size was larger (36.5 versus 35.3 mm, P = 0.024) in the prehypertensive blood pressure group. Finally, the adjusted odds ratio for incident diastolic dysfunction was 2.52 (1.01-6.31) for the prehypertensive blood pressure group. Persistent prehypertension accelerates the development of hypertrophy and diastolic dysfunction of the heart.

  16. Age, Sex, and Blood Pressure-Related Influences on Reference Values of Left Atrial Deformation and Mechanics From a Large-Scale Asian Population.

    PubMed

    Liao, Jo-Nan; Chao, Tze-Fan; Kuo, Jen-Yuan; Sung, Kuo-Tzu; Tsai, Jui-Peng; Lo, Chi-In; Lai, Yau-Huei; Su, Cheng-Huang; Hung, Chung-Lieh; Yeh, Hung-I; Chen, Shih-Ann

    2017-10-01

    Left atrial (LA) function is tightly linked to several cardiovascular diseases and confers key prognostic information. Speckle tracking-based deformation as a feasible and sensitive LA mechanical assessment has proven its clinical significance beyond volume measures; however, the reference values remain largely unknown. We studied 4042 participants undergoing annual cardiovascular survey. Among them, 2812 healthy participants (65% men; mean age, 47.4±9.9 years) were eligible for speckle tracking analysis. Peak atrial longitudinal systolic strain and strain rate (SR) at systolic (SRs), early diastolic (SRe), and late diastolic atrial contraction phases (SRa) were analyzed by dedicated software (EchoPAC, GE) and compared in terms of age, sex, and blood pressure. Overall, women demonstrated higher peak atrial longitudinal systolic strain (39.34±7.99% versus 37.95±7.96%; P<0.001) and showed age-dependent more pronounced peak atrial longitudinal systolic strain functional decay than those of men (P value for interaction, <0.05), with men showing higher SRs and SRa, although lower SRe (all P<0.001). Both increasing age and higher blood pressure were independently associated with deteriorated peak atrial longitudinal systolic strain, SRs, and SRe, although augmented LA SRa, even after accounting for baseline clinical covariates in multivariable models that incorporated LA volume, NT-proBNP (N-terminal pro-B-type natriuretic peptide), or left ventricular E/e' (all P<0.001). Our findings suggest LA mechanical functional decays in association with increasing age and higher blood pressure, which seem to be compensated for by augmentation of atrial pump function. We have also provided age- and sex-stratified reference values for strain and SR based on a large-scale Asian population. © 2017 American Heart Association, Inc.

  17. Walking performance in people with diabetic neuropathy: benefits and threats.

    PubMed

    Kanade, R V; van Deursen, R W M; Harding, K; Price, P

    2006-08-01

    Walking is recommended as an adjunct therapy to diet and medication in diabetic patients, with the aim of improving physical fitness, glycaemic control and body weight reduction. Therefore we evaluated walking activity on the basis of capacity, performance and potential risk of plantar injury in the diabetic population before it can be prescribed safely. Twenty-three subjects with diabetic neuropathy (DMPN) were compared with 23 patients with current diabetic foot ulcers, 16 patients with partial foot amputations and 22 patients with trans-tibial amputations. The capacity for walking was measured using a total heart beat index (THBI). Gait velocity and average daily strides were measured to assess the performance of walking, and its impact on weight-bearing was studied using maximum peak pressure. THBI increased (p<0.01) and gait velocity and daily stride count fell (p<0.001 for both) with progression of foot complications. The maximum peak pressures over the affected foot of patients with diabetic foot ulcers (p<0.05) and partial foot amputations (p<0.01) were higher than in the group with DMPN. On the contralateral side, the diabetic foot ulcer group showed higher maximum peak pressure over the total foot (p<0.05), and patients with partial foot amputations (p<0.01) and trans-tibial amputations (p<0.05) showed higher maximum peak pressure over the heel. Walking capacity and performance decrease with progression of foot complications. Although walking is recommended to improve fitness, it cannot be prescribed in isolation, considering the increased risk of plantar injury. For essential walking we therefore recommend the use of protective footwear. Walking exercise should be supplemented by partial or non-weight-bearing exercises to improve physical fitness in diabetic populations.

  18. Increased resistance of hygroscopic condenser humidifiers when using a closed circuit suction system.

    PubMed

    Martinez, F J; Pietchel, S; Wise, C; Walek, J; Beamis, J F

    1994-10-01

    To examine a hygroscopic condenser after clinical use and to describe the interaction of a hygroscopic condenser and a closed circuit suction system used simultaneously. Prospective evaluation of hygroscopic condensers used clinically, and laboratory investigation of a hygroscopic condenser used with a closed circuit suction system. Tertiary referral centers. The hygroscopic condenser used during mechanical ventilation was removed and peak inflation pressure was measured by delivering a standard tidal volume and inspiratory flow across the isolated hygroscopic condenser while recording the peak inflation pressure. In the laboratory, four 10-mL aliquots of saline were instilled via closed circuit suction system into a test lung with fresh hygroscopic condensers (n = 15) inline. At baseline and after each instillation, the hygroscopic condenser was weighed and the peak inflation pressure was measured while in five condensers, peak expiratory flow rate was also measured. In these five devices, hygroscopic condenser resistance was measured with 100 L/min of constant gas flow while measuring the pressure drop across the hygroscopic condenser. In 11 hygroscopic condensers used for 27.5 +/- 11.9 hrs with no closed circuit suction system, the peak inflation pressure was 3.74 +/- 0.58 cm H2O. In the laboratory, instillation of saline via closed circuit suction system was associated with an increase in hygroscopic condenser weight. Peak inflation pressure increased in a quadratic fashion with the increase in hygroscopic condenser weight, while peak expiratory flow rate decreased in a linear fashion. After four saline instillations, hygroscopic condenser resistance increased from 5.66 +/- 0.31 to 13.9 +/- 2.42 cm H2O/L/sec. Clinical use of a hygroscopic condenser alone is not associated with a significant increase in peak inflation pressure. We caution the use of a hygroscopic condenser and a closed circuit suction system simultaneously, as an increase in hygroscopic condenser resistance may develop and may be poorly tolerated in patients with marginal ventilatory reserve.

  19. Characterization of peak capacity of microbore liquid chromatography columns using gradient kinetic plots.

    PubMed

    Hetzel, Terence; Blaesing, Christina; Jaeger, Martin; Teutenberg, Thorsten; Schmidt, Torsten C

    2017-02-17

    The performance of micro-liquid chromatography columns with an inner diameter of 0.3mm was investigated on a dedicated micro-LC system for gradient elution. Core-shell as well as fully porous particle packed columns were compared on the basis of peak capacity and gradient kinetic plot limits. The results for peak capacity showed the superior performance of columns packed with sub-2μm fully porous particles compared to 3.0μm fully porous and 2.7μm core-shell particles within a range of different gradient time to column void time ratios. For ultra-fast chromatography a maximum peak capacity of 16 can be obtained using a 30s gradient for the sub-2μm fully porous particle packed column. A maximum peak capacity of 121 can be achieved using a 5min gradient. In addition, the influence of an alternative detector cell on the basis of optical waveguide technology and contributing less to system variance was investigated showing an increased peak capacity for all applied gradient time/column void time ratios. Finally, the influence of pressure was evaluated indicating increased peak capacity for maximum performance whereas a limited benefit for ultra-fast chromatography with gradient times below 30s was observed. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Quantitative measurements of acoustic emissions from cavitation at the surface of a stone in response to a lithotripter shock wave.

    PubMed

    Chitnis, Parag V; Cleveland, Robin O

    2006-04-01

    Measurements are presented of acoustic emissions from cavitation collapses on the surface of a synthetic kidney stone in response to shock waves (SWs) from an electrohydraulic lithotripter. A fiber optic probe hydrophone was used for pressure measurements, and passive cavitation detection was used to identify acoustic emissions from bubble collapse. At a lithotripter charging voltage of 20 kV, the focused SW incident on the stone surface resulted in a peak pressure of 43 +/- 6 MPa compared to 23 +/- 4 MPa in the free field. The focused SW incident upon the stone appeared to be enhanced due to the acoustic emissions from the forced cavitation collapse of the preexisting bubbles. The peak pressure of the acoustic emission from a bubble collapse was 34 +/- 15 MPa, that is, the same magnitude as the SWs incident on the stone. These data indicate that stresses induced by focused SWs and cavitation collapses are similar in magnitude thus likely play a similar role in stone fragmentation.

  1. Ram-pressure scaling and non-uniformity characterization of a spherically imploding liner formed by hypervelocity plasma jets

    NASA Astrophysics Data System (ADS)

    Cassibry, Jason; Dougherty, Jesse; Thompson, Seth; Hsu, Scott; Witherspoon, F. D.; University of AL in Huntsville Team; Los Alamos National Laboratory Team; HyperV Technologies Corp. Team

    2014-10-01

    Three-dimensional modeling of plasma liner formation and implosion is performed using the Smoothed Particle Hydrodynamics Code (SPHC) with radiation, thermal transport, and tabular equations of state (EOS), accounting for ionization, in support of a proposed 60-gun plasma liner formation experiment for plasma-jet driven magneto-inertial fusion (PJMIF). Previous SPHC modeling showed that ideal gas law scaling of peak stagnation pressure increased linearly with density and number of jets, quadratically with jet radius and velocity, and inversely with the initial jet length, while results with tabular EOS, thermal transport, and radiation have greater sensitivity to the initial jet distribution. A series of simulations are conducted to study the effects of initial jet conditions on peak ram pressure and liner non-uniformity during plasma liner implosion. The growth rate of large-amplitude density perturbations introduced by the discrete jets are computed and compared with predictions by the Bell-Plesset equation.

  2. A comparison of gait biomechanics of flip-flops, sandals, barefoot and shoes.

    PubMed

    Zhang, Xiuli; Paquette, Max R; Zhang, Songning

    2013-11-06

    Flip-flops and sandals are popular choices of footwear due to their convenience. However, the effects of these types of footwear on lower extremity biomechanics are still poorly understood. Therefore, the objective of this study was to investigate differences in ground reaction force (GRF), center of pressure (COP) and lower extremity joint kinematic and kinetic variables during level-walking in flip-flops, sandals and barefoot compared to running shoes. Ten healthy males performed five walking trials in the four footwear conditions at 1.3 m/s. Three-dimensional GRF and kinematic data were simultaneously collected. A smaller loading rate of the 1st peak vertical GRF and peak propulsive GRF and greater peak dorsiflexion moment in early stance were found in shoes compared to barefoot, flip-flops and sandals. Barefoot walking yielded greater mediolateral COP displacement, flatter foot contact angle, increased ankle plantarflexion contact angle, and smaller knee flexion contact angle and range of motion compared to all other footwear. The results from this study indicate that barefoot, flip-flops and sandals produced different peak GRF variables and ankle moment compared to shoes while all footwear yield different COP and ankle and knee kinematics compared to barefoot. The findings may be helpful to researchers and clinicians in understanding lower extremity mechanics of open-toe footwear.

  3. Effect of bolus volume and viscosity on pharyngeal automated impedance manometry variables derived for broad Dysphagia patients.

    PubMed

    Omari, Taher I; Dejaeger, Eddy; Tack, Jan; Van Beckevoort, Dirk; Rommel, Nathalie

    2013-06-01

    Automated impedance manometry (AIM) analysis measures swallow variables defining bolus timing, pressure, contractile vigour, and bolus presence, which are combined to derive a swallow risk index (SRI) correlating with aspiration. In a heterogeneous cohort of dysphagia patients, we assessed the impact of bolus volume and viscosity on AIM variables. We studied 40 patients (average age = 46 years). Swallowing of boluses was recorded with manometry, impedance, and videofluoroscopy. AIMplot software was used to derive functional variables: peak pressure (PeakP), pressure at nadir impedance (PNadImp), time from nadir impedance to peak pressure (TNadImp-PeakP), the interval of impedance drop in the distal pharynx (flow interval, FI), upper oesophageal sphincter (UES) relaxation interval (UES RI), nadir UES pressure (Nad UESP), UES intrabolus pressure (UES IBP), and UES resistance. The SRI was derived using the formula SRI = (FI * PNadImp)/(PeakP * (TNadImp-PeakP + 1)) * 100. A total of 173 liquid, 44 semisolid, and 33 solid boluses were analysed. The SRI was elevated in relation to aspiration. PeakP increased with volume. SRI was not significantly altered by bolus volume. PNadImp, UES IBP, and UES resistance increased with viscosity. SRI was lower with increased viscosity. In patients with dysphagia, the SRI is elevated in relation to aspiration, reduced by bolus viscosity, and not affected by bolus volume. These data provide evidence that pharyngeal AIM analysis may have clinical utility for assessing deglutitive aspiration risk to liquid boluses.

  4. Attenuation of Exaggerated Exercise Blood Pressure Response in African-American Women by Regular Aerobic Physical Activity

    PubMed Central

    Bond, Vernon; Millis, Richard M.; Adams, R. George; Oke, Luc M.; Enweze, Larry; Blakely, Raymond; Banks, Marshall; Thompson, Terry; Obisesan, Thomas; Sween, Jennifer C.

    2011-01-01

    Introduction A hyperreactive blood pressure response to exercise is a predictor of developing hypertension. The present study determined the influence of physical activity on an exaggerated exercise blood pressure response (EEBPR) in normotensive African-American women. Methods We screened 36 women 18–26 years of age for EEBPR defined as a ≥50 mm Hg difference in systolic blood pressure at rest and during exercise at 50% peak oxygen uptake (VO2peak). Seven subjects demonstrated an EEBPR and participated in the study. Study participants trained for eight weeks on a bicycle ergometer at a work intensity of 70% VO2peak. Blood pressure, heart rate, cardiac output (CO), stroke volume (SV), and total peripheral vascular resistance (TPR) were determined at baseline and during submaximal exercise at power outputs of 30 W and 50% VO2peak. Subjects served as their own controls, and data were evaluated by using a paired t test at P<.05. Results Effectiveness of the intervention was shown by a significantly greater VO2peak associated with significant decrements in systolic and mean arterial pressures at power outputs of 30 W and 50% VO2peak. A significant decrement in heart rate was observed during exercise at 30 W. Significant increments in CO and SV and decrement in TPR were found during exercise at 50% VO2peak. Conclusion The reduction in TPR associated with regular aerobic physical activity may attenuate the EEBPR and decrease the risk for hypertension in normotensive, young-adult, African-American women. PMID:16315376

  5. Multi-modal anatomical optical coherence tomography and CT for in vivo dynamic upper airway imaging

    NASA Astrophysics Data System (ADS)

    Balakrishnan, Santosh; Bu, Ruofei; Price, Hillel; Zdanski, Carlton; Oldenburg, Amy L.

    2017-02-01

    We describe a novel, multi-modal imaging protocol for validating quantitative dynamic airway imaging performed using anatomical Optical Coherence Tomography (aOCT). The aOCT system consists of a catheter-based aOCT probe that is deployed via a bronchoscope, while a programmable ventilator is used to control airway pressure. This setup is employed on the bed of a Siemens Biograph CT system capable of performing respiratory-gated acquisitions. In this arrangement the position of the aOCT catheter may be visualized with CT to aid in co-registration. Utilizing this setup we investigate multiple respiratory pressure parameters with aOCT, and respiratory-gated CT, on both ex vivo porcine trachea and live, anesthetized pigs. This acquisition protocol has enabled real-time measurement of airway deformation with simultaneous measurement of pressure under physiologically relevant static and dynamic conditions- inspiratory peak or peak positive airway pressures of 10-40 cm H2O, and 20-30 breaths per minute for dynamic studies. We subsequently compare the airway cross sectional areas (CSA) obtained from aOCT and CT, including the change in CSA at different stages of the breathing cycle for dynamic studies, and the CSA at different peak positive airway pressures for static studies. This approach has allowed us to improve our acquisition methodology and to validate aOCT measurements of the dynamic airway for the first time. We believe that this protocol will prove invaluable for aOCT system development and greatly facilitate translation of OCT systems for airway imaging into the clinical setting.

  6. Suprapubic track pressure and force--deformation measurements in a (live) human subject and in animal models post-mortem.

    PubMed

    Coveney, V A; Gepi-Attee, S; Gröver, D; Painter, D

    2001-01-01

    Tests have been performed on animal models shortly post-mortem and on a healthy human subject in order to obtain estimates of the forces which act on suprapubic urinary catheters and similar devices and to develop an abdominal wall simulator. Such data and test methods are required for the systematic design of suprapubic devices because of the dual need to maintain the functionality of devices and to avoid excessive pressure on soft body tissue which could lead to ischaemia and in turn necrosis. In the post-mortem animal models, electrical excitation was applied to the abdominal wall in order to stimulate muscle activity. Two types of transducers were used: a soft membrane transducer (SMT) for pressure measurement and novel instrumented 'tongs' to determine indentation stiffness characteristics in the suprapubic track or artificial pathway created for a device. The SMT has been extensively used in the urethras and bladders of human subjects while the tongs were built specifically for these tests. Only the well-established SMT was used with the human subject; a peak pressure of 22 kPa was obtained. In the animal models the pressure profile given by the SMT had a peak whose position corresponded well with the estimated location of the rectus muscle measured on the fixed tissue section. The peak value was 5.5 kPa, comparable with values likely to cause necrosis if maintained for more than 1 day. Remarkably consistent indentation stiffness values were obtained with the instrumented tongs; all values were close to 0.45 N/mm (33 kPa/mm).

  7. Effect of cranial cruciate ligament deficiency, tibial plateau leveling osteotomy, and tibial tuberosity advancement on contact mechanics and alignment of the stifle in flexion.

    PubMed

    Kim, Stanley E; Pozzi, Antonio; Banks, Scott A; Conrad, Bryan P; Lewis, Daniel D

    2010-04-01

    To assess contact mechanics and 3-dimensional (3-D) joint alignment in cranial cruciate ligament (CCL)-deficient stifles before and after tibial plateau leveling osteotomy (TPLO) and tibial tuberosity advancement (TTA) with the stifle in 90 degrees of flexion. In vitro biomechanical study. Cadaveric pelvic limb pairs (n=8) from dogs weighing 28-35 kg. Contralateral limbs were assigned to receive TPLO or TTA. Digital pressure sensors were used to measure femorotibial contact area, peak and mean contact pressure, and peak pressure location with the limb under a load of 30% body weight and stifle flexion angle of 90 degrees . 3-D poses were obtained using a Microscribe digitizer. Specimens were tested under normal, CCL deficient, and treatment conditions. Significant disturbances in alignment were not observed after CCL transection, although medial contact area was 10% smaller than normal (P=.003). There were no significant differences in contact mechanics or alignment between normal and TTA conditions; TPLO induced 6 degrees varus angulation (P<.001), 26% decrease in lateral peak pressure (P=.027), and 18% increase in medial mean pressure (P=.008) when compared with normal. Cranial tibial subluxation is nominal in CCL-deficient stifles loaded in flexion. Stifle alignment and contact mechanics are not altered by TTA, whereas TPLO causes mild varus and a subsequent increase in medial compartment loading. Cranial tibial subluxation of CCL-deficient stifles may not occur during postures that load the stifle in flexion. The significance of minor changes in loading patterns after TPLO is unknown.

  8. The influence of sprint interval training on body composition, physical and metabolic fitness in adolescents and young adults with intellectual disability: a randomized controlled trial.

    PubMed

    Boer, Pieter-Henk; Meeus, Mira; Terblanche, Elmarie; Rombaut, Lies; Wandele, Inge De; Hermans, Linda; Gysel, Tineke; Ruige, Johannes; Calders, Patrick

    2014-03-01

    In this study we evaluated the effect of sprint interval training on metabolic and physical fitness in adolescents and young adults with intellectual disabilities when compared with continuous aerobic training and no training (control). Fifty-four persons with intellectual disabilities (age: 17 (3.0), body mass index: 27.7 (3.7), intelligence quotient: 59 (8.6)) were matched based on age, gender and intelligence quotient between sprint interval training (n = 17), continuous aerobic training (n = 15) and control (n = 14). Sprint interval training was composed of three blocks of 10 minutes at ventilatory threshold (blocks 1 and 3: 10 sprint bouts of 15 seconds, followed by 45 seconds relative rest; block 2: continuous training) twice a week for 15 weeks. Continuous aerobic training was composed of three blocks of 10 minutes continuous training. After eight weeks, intensity was increased to 110% of ventilatory threshold. The control group did not participate in supervised exercise training. Before and after the training period, body composition, physical and metabolic fitness were evaluated. Sprint interval training showed a significant positive evolution for waist circumference, fat%, systolic blood pressure, lipid profile, fasting insulin, homeostasis model assessment of insulin resistance, peak VO2, peak Watt, ventilatory threshold, 6-minute walk distance and muscle fatigue resistance when compared with no training (P < 0.01). The sprint interval training group demonstrated significant improvements for fat%, systolic blood pressure, low-density lipoprotein, fasting insulin, peak VO2 and peak power and ventilatory threshold (P < 0.01) when compared with continuous aerobic training. In this study we could observe that sprint interval training has stronger beneficial effects on body composition, physical fitness and metabolic fitness compared with control. Compared with continuous aerobic training, sprint interval training seems to result in better outcome.

  9. Effects of high combustion chamber pressure on rocket noise environment

    NASA Technical Reports Server (NTRS)

    Pao, S. P.

    1972-01-01

    The acoustical environment for a high combustion chamber pressure engine was examined in detail, using both conventional and advanced theoretical analysis. The influence of elevated chamber pressure on the rocket noise environment was established, based on increase in exit velocity and flame temperature, and changes in basic engine dimensions. Compared to large rocket engines, the overall sound power level is found to be 1.5 dB higher, if the thrust is the same. The peak Strouhal number shifted about one octave lower to a value near 0.01. Data on apparent sound source location and directivity patterns are also presented.

  10. On the Origin of a Maximum Peak Pressure on the Target Outside of the Stagnation Point upon Normal Impact of a Blunt Projectile and with Underwater Explosion

    NASA Astrophysics Data System (ADS)

    Gonor, Alexander; Hooton, Irene

    2006-07-01

    Impact of a rigid projectile (impactor), against a metal target and a condensed explosive surface considered as the important process accompanying the normal entry of a rigid projectile into a target, was overlooked in the preceding studies. Within the framework of accurate shock wave theory, the flow-field, behind the shock wave attached to the perimeter of the adjoined surface, was defined. An important result is the peak pressure rises at points along the target surface away from the stagnation point. The maximum values of the peak pressure are 2.2 to 3.2 times higher for the metallic and soft targets (nitromethane, PBX 9502), than peak pressure values at the stagnation point. This effect changes the commonly held notion that the maximum peak pressure is reached at the projectile stagnation point. In the present study the interaction of a spherical decaying blast wave, caused by an underwater explosion, with a piece-wise plane target, having corner configurations, is investigated. The numerical calculation results in the determination of the vulnerable spots on the target, where the maximum peak overpressure surpassed that for the head-on shock wave reflection by a factor of 4.

  11. Time course of pressure and flow in ascending aorta during ejection.

    PubMed

    Perlini, S; Soldà, P L; Piepoli, M; Calciati, A; Paro, M; Marchetti, G; Meno, F; Finardi, G; Bernardi, L

    1991-02-01

    To analyze aortic flow and pressure relationships, 10 closed-chest anaesthetised dogs were instrumented with electromagnetic aortic flow probes and micromanometers in the left ventricle and ascending aorta. Left ventricular ejection time was divided into: time to peak flow (T1) (both pressure and flow rising), peak flow to peak pressure time (T2) (pressure rising, flow decreasing), and peak pressure to dicrotic notch time (T3) (pressure and flow both decreasing). These time intervals were expressed as percent of total ejection time. Load-active interventions rose markedly T2 (from 4.2 +/- 5.5 to 19.4 +/- 3.5 after phenylephrine (p less than 0.02); from 4.2 +/- 6.5 to 21.2 +/- 5.3 after dextran (p less than 0.02)). Conversely, dobutamine reduced T2 from 4.4 +/- 5.9 to -2.5 +/- 6.5 (p less than 0.05). Thus, during load-active interventions aortic pressure increases for a longer T2 time although forward flow is decreasing, as a result of higher aortic elastic recoil during ejection. Conversely, beta 1-adrenergic stimulation significantly shortens T2. Dynamic pressure-flow relationship is thus continuously changing during ejection. T2 seems to be inversely related to the efficiency of left ventricular ejection dynamics.

  12. Comparison of usefulness of each of five predictors of mortality and urgent transplantation in patients with advanced heart failure.

    PubMed

    Sachdeva, Amit; Horwich, Tamara B; Fonarow, Gregg C

    2010-09-15

    B-type natriuretic peptide (BNP), peak oxygen consumption (VO(2)), blood urea nitrogen (BUN), systolic blood pressure (SBP), and pulmonary capillary wedge pressure are all established predictors of mortality or urgent transplantation in patients with advanced heart failure (HF). However, their comparative predictive ability in estimating prognosis has not been well studied. We analyzed 1,215 patients with advanced systolic HF referred to a university center from 1999 to 2009. BUN, BNP, VO(2), SBP, and pulmonary capillary wedge pressure were measured as a part of the initial evaluation. The patients were divided into groups according to the best cutoffs for predicting both 1- and 2-year mortality from the analysis of the receiver operating characteristic curves (BNP > or =579 pg/ml, peak VO(2) <14 ml/kg/min, BUN > or =53 mg/dl, SBP <118 mm Hg, and pulmonary capillary wedge pressure > or =21 mm Hg). During a 2-year follow-up, 234 patients (19%) died, and 208 (17%) required urgent transplantation. BNP (odds ratio 4.3, 95% confidence interval 3.3 to 5.5) and peak VO(2) (odds ratio 4.5, 95% confidence interval 2.6 to 7.8) were the strongest predictors for death or urgent transplantation. On multivariate analyses, BNP and peak VO(2) were the strongest predictors for both death or urgent transplantation and all-cause mortality. The c-statistic was 0.756 for BNP, 0.701 for VO(2), 0.659 for BUN, 0.638 for SBP, and 0.650 for pulmonary capillary wedge pressure. In conclusion, of the 5 established predictors of outcomes in advanced HF, BNP was the most robust discriminator of risk and thus could be useful, along with other more traditional prognostic variables, in patient counseling regarding prognosis and determining the timing for heart transplantation. Copyright 2010 Elsevier Inc. All rights reserved.

  13. Pump out the volume--The effect of tracheal and subelytral pressure pulses on convective gas exchange in a dung beetle, Circellium bacchus (Fabricus).

    PubMed

    Duncan, Frances D; Förster, Thomas D; Hetz, Stefan K

    2010-05-01

    Many flightless beetles like the large apterous dung beetle Circellium bacchus, possess a subelytral cavity (SEC) providing an extra air space below the elytra which connects to the tracheal system (TS) via metathoracic and abdominal spiracles. By measuring subelytral and intratracheal pressure as well as body movements and gas exchange simultaneously in a flow-through setup, we investigated the contribution of convection on Circellium respiratory gas exchange. No constriction phase was observed. TS and SEC pressures were always around atmospheric values. During interburst phase open abdominal spiracles and a leaky SEC led to small CO(2)-peaks on a continuous CO(2) baseline, driven by intermittent positive tracheal pressure peaks in anti-phase with small negative subelytral pressure peaks caused by dorso-ventral tergite action. Spiracle opening was accompanied by two types of body movements. Higher frequency telescoping body movements at the beginning of opening resulted in high amplitude SEC and TS pressure peaks. High frequency tergite movements caused subelytral pressure peaks and led to a saw tooth like CO(2) release pattern in a burst. We propose that during the burst open mesothoracic spiracles increase the compliance of the subelytral cavity allowing big volumes of tracheal air being pulled out by convection. Copyright 2009 Elsevier Ltd. All rights reserved.

  14. Beyond Bernoulli

    PubMed Central

    Donati, Fabrizio; Myerson, Saul; Bissell, Malenka M.; Smith, Nicolas P.; Neubauer, Stefan; Monaghan, Mark J.; Nordsletten, David A.

    2017-01-01

    Background— Transvalvular peak pressure drops are routinely assessed noninvasively by echocardiography using the Bernoulli principle. However, the Bernoulli principle relies on several approximations that may not be appropriate, including that the majority of the pressure drop is because of the spatial acceleration of the blood flow, and the ejection jet is a single streamline (single peak velocity value). Methods and Results— We assessed the accuracy of the Bernoulli principle to estimate the peak pressure drop at the aortic valve using 3-dimensional cardiovascular magnetic resonance flow data in 32 subjects. Reference pressure drops were computed from the flow field, accounting for the principles of physics (ie, the Navier–Stokes equations). Analysis of the pressure components confirmed that the spatial acceleration of the blood jet through the valve is most significant (accounting for 99% of the total drop in stenotic subjects). However, the Bernoulli formulation demonstrated a consistent overestimation of the transvalvular pressure (average of 54%, range 5%–136%) resulting from the use of a single peak velocity value, which neglects the velocity distribution across the aortic valve plane. This assumption was a source of uncontrolled variability. Conclusions— The application of the Bernoulli formulation results in a clinically significant overestimation of peak pressure drops because of approximation of blood flow as a single streamline. A corrected formulation that accounts for the cross-sectional profile of the blood flow is proposed and adapted to both cardiovascular magnetic resonance and echocardiographic data. PMID:28093412

  15. The Roles of Magnetosphere-Ionosphere Coupling on Ring Current development: Comparison of TWINS Measurements and CIMI Simulations for the 7-10 September 2015 Geomagnetic Storm

    NASA Astrophysics Data System (ADS)

    Edmond, J. A.; Hill, S. C.; Xu, H.; Perez, J. D.; Fok, M. C. H.; Goldstein, J.; McComas, D. J.; Valek, P. W.

    2017-12-01

    The Two Wide-Angle Imaging Neutral-Atom Spectrometers (TWINS) mission obtained energetic neutral atom (ENA) images during a 4 day storm on 7-10 September 2015. The storm has two separate SYM/H minima, so we divide the storm into four intervals: first main phase, first recovery phase, second main phase, and second recovery phase. Simulations with the Comprehensive Inner Magnetosphere-Ionosphere Model (CIMI) are compared and contrasted with the TWINS observations. We find good agreement in most aspects of the storm. E. G. (1) the location of the ion pressure peaks are most often in the dusk-midnight sector, (2) the pitch angle distributions at the pressure peaks most often display perpendicular anisotropy, and (3) the energy spectra at the pressure peaks have similar maximum energies. There are, however, some exceptions to these general features. We describe and interpret these notable events. We also have examined particle paths determined from the CIMI model simulations to assist in the interpretation of the notable events.In this poster, we focus upon the features of the CIMI simulations with a self-consistent electric field and with the semi-empirical Weimer electric potential in relationship to the TWINS observations.

  16. Doppler echocardiographic analysis of left ventricular filling in treated hypertensive patients.

    PubMed

    Phillips, R A; Coplan, N L; Krakoff, L R; Yeager, K; Ross, R S; Gorlin, R; Goldman, M E

    1987-02-01

    Early detection and prevention of cardiac dysfunction is an important goal in the management of hypertensive patients. In this study, Doppler echocardiography was used to evaluate the pattern of left ventricular diastolic filling in 38 subjects: 18 treated hypertensive patients (blood pressure 141 +/- 17/83 +/- 10 mm Hg, mean +/- SD) without other coronary risk factors and 20 risk-free normotensive subjects of similar age (47 +/- 10 and 49 +/- 13 years, respectively). Peak velocity of late left ventricular filling due to the atrial contraction was greater in hypertensive compared with normotensive subjects (69 +/- 14 versus 52 +/- 13 cm/s; p less than 0.001). Peak velocity of late filling was significantly greater in hypertensive versus normotensive subjects in those aged 50 years or younger and those older than age 50 (65 +/- 12 versus 50 +/- 11; p less than 0.01 and 75 +/- 15 versus 56 +/- 15 cm/s; p less than 0.05, respectively). In hypertensive subjects, peak velocity of late filling did not correlate with routine indexes of hypertensive heart disease (including posterior wall thickness and left ventricular mass), systolic and diastolic blood pressure or duration of hypertension. These results indicate that increased velocity of late left ventricular filling may be independent of left ventricular hypertrophy and persist despite effective blood pressure control.

  17. Pressure Effect on the Boson Peak in Deeply Cooled Confined Water: Evidence of a Liquid-Liquid Transition.

    PubMed

    Wang, Zhe; Kolesnikov, Alexander I; Ito, Kanae; Podlesnyak, Andrey; Chen, Sow-Hsin

    2015-12-04

    The boson peak in deeply cooled water confined in nanopores is studied to examine the liquid-liquid transition (LLT). Below ∼180  K, the boson peaks at pressures P higher than ∼3.5  kbar are evidently distinct from those at low pressures by higher mean frequencies and lower heights. Moreover, the higher-P boson peaks can be rescaled to a master curve while the lower-P boson peaks can be rescaled to a different one. These phenomena agree with the existence of two liquid phases with different densities and local structures and the associated LLT in the measured (P, T) region. In addition, the P dependence of the librational band also agrees with the above conclusion.

  18. Pressure Effect on the Boson Peak in Deeply Cooled Confined Water: Evidence of a Liquid-Liquid Transition

    DOE PAGES

    Wang, Zhe; Kolesnikov, Alexander I.; Ito, Kanae; ...

    2015-12-03

    We studied the boson peak in deeply cooled water confined in nanopores in order to examine the liquid-liquid transition (LLT). Below ~180 K, the boson peaks at pressures P higher than ~3.5 kbar are evidently distinct from those at low pressures by higher mean frequencies and lower heights. Moreover, the higher-P boson peaks can be rescaled to a master curve while the lower-P boson peaks can be rescaled to a different one. Moreover, these phenomena agree with the existence of two liquid phases with different densities and local structures and the associated LLT in the measured (P, T) region. Additionally,more » the P dependence of the librational band also agrees with the above conclusion.« less

  19. Evaluation of Transmitral Pressure Gradients in the Intraoperative Echocardiographic Diagnosis of Mitral Stenosis after Mitral Valve Repair

    PubMed Central

    Segal, Scott; Fox, John A.; Eltzschig, Holger K.; Shernan, Stanton K.

    2011-01-01

    Objective Acute mitral stenosis (MS) following mitral valve (MV) repair is a rare but severe complication. We hypothesize that intraoperative echocardiography can be utilized to diagnose iatrogenic MS immediately after MV repair. Methods The medical records of 552 consecutive patients undergoing MV repair at a single institution were reviewed. Post-cardiopulmonary bypass peak and mean transmitral pressure gradients (TMPG), and pressure half time (PHT) were obtained from intraoperative transesophageal echocardiographic (TEE) examinations in each patient. Results Nine patients (9/552 = 1.6%) received a reoperation for primary MS, prior to hospital discharge. Interestingly, all of these patients already showed intraoperative post-CPB mean and peak TMPGs that were significantly higher compared to values for those who did not: 10.7±4.8 mmHg vs 2.9±1.6 mmHg; p<0.0001 and 22.9±7.9 mmHg vs 7.6±3.7 mmHg; p<0.0001, respectively. However, PHT varied considerably (87±37 ms; range: 20–439 ms) within the entire population, and only weakly predicted the requirement for reoperation (113±56 vs. 87±37 ms, p = 0.034). Receiver operating characteristic curves showed strong discriminating ability for mean gradients (AUC = 0.993) and peak gradients (area under the curve, AUC = 0.996), but poor performance for PHT (AUC = 0.640). A value of ≥7 mmHg for mean, and ≥17 mmHg for peak TMPG, best separated patients who required reoperation for MS from those who did not. Conclusions Intraoperative TEE diagnosis of a peak TMPG ≥17 mmHg or mean TMPG ≥7 mmHg immediately following CPB are suggestive of clinically relevant MS after MV repair. PMID:22087230

  20. Doppler-derived myocardial systolic strain rate is a strong index of left ventricular contractility

    NASA Technical Reports Server (NTRS)

    Greenberg, Neil L.; Firstenberg, Michael S.; Castro, Peter L.; Main, Michael; Travaglini, Agnese; Odabashian, Jill A.; Drinko, Jeanne K.; Rodriguez, L. Leonardo; Thomas, James D.; Garcia, Mario J.

    2002-01-01

    BACKGROUND: Myocardial fiber strain is directly related to left ventricular (LV) contractility. Strain rate can be estimated as the spatial derivative of velocities (dV/ds) obtained by tissue Doppler echocardiography (TDE). The purposes of the study were (1) to determine whether TDE-derived strain rate may be used as a noninvasive, quantitative index of contractility and (2) to compare the relative accuracy of systolic strain rate against TDE velocities alone. METHODS AND RESULTS: TDE color M-mode images of the interventricular septum were recorded from the apical 4-chamber view in 7 closed-chest anesthetized mongrel dogs during 5 different inotropic stages. Simultaneous LV volume and pressure were obtained with a combined conductance-high-fidelity pressure catheter. Peak elastance (Emax) was determined as the slope of end-systolic pressure-volume relationships during caval occlusion and was used as the gold standard of LV contractility. Peak systolic TDE myocardial velocities (Sm) and peak (epsilon'(p)) and mean (epsilon'(m)) strain rates obtained at the basal septum were compared against Emax by linear regression. Emax as well as TDE systolic indices increased during inotropic stimulation with dobutamine and decreased with the infusion of esmolol. A stronger association was found between Emax and epsilon'(p) (r=0.94, P<0.01, y=0.29x+0.46) and epsilon'(m) (r=0.88, P<0.01) than for Sm (r=0.75, P<0.01). CONCLUSIONS: TDE-derived epsilon'(p) and epsilon'(m) are strong noninvasive indices of LV contractility. These indices appear to be more reliable than S(m), perhaps by eliminating translational artifact.

  1. Accurate and consistent automatic seismocardiogram annotation without concurrent ECG.

    PubMed

    Laurin, A; Khosrow-Khavar, F; Blaber, A P; Tavakolian, Kouhyar

    2016-09-01

    Seismocardiography (SCG) is the measurement of vibrations in the sternum caused by the beating of the heart. Precise cardiac mechanical timings that are easily obtained from SCG are critically dependent on accurate identification of fiducial points. So far, SCG annotation has relied on concurrent ECG measurements. An algorithm capable of annotating SCG without the use any other concurrent measurement was designed. We subjected 18 participants to graded lower body negative pressure. We collected ECG and SCG, obtained R peaks from the former, and annotated the latter by hand, using these identified peaks. We also annotated the SCG automatically. We compared the isovolumic moment timings obtained by hand to those obtained using our algorithm. Mean  ±  confidence interval of the percentage of accurately annotated cardiac cycles were [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] for levels of negative pressure 0, -20, -30, -40, and  -50 mmHg. LF/HF ratios, the relative power of low-frequency variations to high-frequency variations in heart beat intervals, obtained from isovolumic moments were also compared to those obtained from R peaks. The mean differences  ±  confidence interval were [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] for increasing levels of negative pressure. The accuracy and consistency of the algorithm enables the use of SCG as a stand-alone heart monitoring tool in healthy individuals at rest, and could serve as a basis for an eventual application in pathological cases.

  2. Regadenoson pharmacologic stress for myocardial perfusion imaging: a three-way comparison between regadenoson administered at peak exercise, during walk recovery, or no-exercise.

    PubMed

    Thompson, Randall C; Patil, Harshal; Thompson, Elaine C; Thomas, Gregory S; Al-Amoodi, Mohammed; Kennedy, Kevin F; Bybee, Kevin A; Iain McGhie, A; O'Keefe, James H; Oakes, Lisa; Bateman, Timothy M

    2013-04-01

    Regadenoson (Reg) is being administered with increasing frequency either at peak exercise (ExPeak-Reg) or during a slow-down/walking recovery state (ExRec-Reg) rather than at rest (Rest-Reg). The aim of this study was to compare the clinical response of ExPeak-Reg, ExRec-Reg, and Rest-Reg. We compared 531 patients divided equally between Rest-Reg, ExPeak-Reg, and ExRec-Reg matched for age, sex, and BMI. The average systolic blood pressure (SBP) rise following Reg was modest, but there was considerable heterogeneity and the ExPeak-Reg group had a higher percentage of patients who had a SBP rise of 40 mm Hg or a fall of 20 mm Hg than either the ExRec-Reg or the Rest-Reg groups (≥40 mm Hg rise 6.8%, 1.7%, and 1.7%, respectively) (P < .02) (≥20 mm Hg fall 15.8%, 13.0%, and 7.3%, respectively) (P < .05). Chest discomfort, nausea, dizziness, and interfering abdominal radiotracer activity were less common in both exercise Reg groups compared to Rest-Reg (P < .05). Regadenoson injected at peak of symptom-limited exercise was generally well tolerated, but some patients had a significant rise or drop in SBP. There is no apparent advantage of administering regadenoson at peak exercise rather than during walk recovery, and the latter approach may have a greater safety margin.

  3. Rocker bottom soles alter the postural response to backward translation during stance.

    PubMed

    Albright, Bruce C; Woodhull-Smith, Whitney M

    2009-07-01

    Shoes with rocker bottom soles are utilized by persons with diabetic peripheral neuropathy to reduce plantar pressures during gait. This population also has a high risk for falls. This study analyzed the effects of shoes with rocker bottom soles on the postural response during perturbed stance. Participants were 20 healthy subjects (16 women, 4 men) ages 22-25 years. Canvas shoes were modified by the addition of crepe sole material to represent two forms of rocker bottom shoes and a control shoe. Subjects stood on a dynamic force plate programmed to move backward at a velocity that produced an automatic postural response without stepping. Force plate data were collected for five trials per shoe type. Sway variables for center of pressure (COP) and center of mass (COM) included: mean sway amplitude, sway variance, time to peak, anterior and posterior peak velocities, functional stability margin, and peak duration time. Compared to control, both the experimental shoes had significantly larger COP and COM values for mean sway amplitude, sway variance and peak duration. The functional stability margins were significantly smaller for the experimental shoes while their anterior and posterior peak velocities were slower and time to peaks were significantly longer. In young healthy adults, shoes with rocker bottom soles had a destabilizing effect to perturbed stance, thereby increasing the potential for imbalance. These results raise concerns that footwear with rocker bottom sole modifications to accommodate an insensate foot may increase the risk of falls.

  4. Noninvasive estimation of left atrial pressure in patients with congestive heart failure and mitral regurgitation by Doppler echocardiography.

    PubMed

    Gorcsan, J; Snow, F R; Paulsen, W; Nixon, J V

    1991-03-01

    A completely noninvasive method for estimating left atrial pressure in patients with congestive heart failure and mitral regurgitation has been devised with the use of continuous-wave Doppler echocardiography and brachial sphygmomanometry. Of 46 patients studied with mitral regurgitation, 35 (76%) had jets with distinct Doppler spectral envelopes recorded. The peak ventriculoatrial gradient was obtained by measuring peak mitral regurgitant velocity in systole and using the modified Bernoulli equation. This gradient was then subtracted from peak brachial systolic blood pressure, an estimate of left ventricular systolic pressure, to yield left atrial pressure (left atrial pressure = systolic blood pressure - mitral regurgitant pressure gradient). Noninvasive estimates of left atrial pressure from 35 patients were plotted against simultaneous recordings of mean pulmonary capillary wedge pressure resulting in the correlation y = 0.88x + 3.3, r = 0.88, standard error of estimate = +/- 4 mm Hg (p less than 0.001). Therefore, continuous-wave Doppler echocardiography and sphygmomanometry may be used in selected patients with congestive heart failure and mitral regurgitation for noninvasive estimation of left atrial pressure.

  5. Involvement of hypoglossal and recurrent laryngeal nerves on swallowing pressure.

    PubMed

    Tsujimura, Takanori; Suzuki, Taku; Yoshihara, Midori; Sakai, Shogo; Koshi, Naomi; Ashiga, Hirokazu; Shiraishi, Naru; Tsuji, Kojun; Magara, Jin; Inoue, Makoto

    2018-05-01

    Swallowing pressure generation is important to ensure safe transport of an ingested bolus without aspiration or leaving residue in the pharynx. To clarify the mechanism, we measured swallowing pressure at the oropharynx (OP), upper esophageal sphincter (UES), and cervical esophagus (CE) using a specially designed manometric catheter in anesthetized rats. A swallow, evoked by punctate mechanical stimulation to the larynx, was identified by recording activation of the suprahyoid and thyrohyoid muscles using electromyography (EMG). Areas under the curve of the swallowing pressure at the OP, UES, and CE from two trials indicated high intrasubject reproducibility. Effects of transecting the hypoglossal nerve (12N) and recurrent laryngeal nerve (RLN) on swallowing were investigated. Following bilateral hypoglossal nerve transection (Bi-12Nx), OP pressure was significantly decreased, and time intervals between peaks of thyrohyoid EMG bursts and OP pressure were significantly shorter. Decreased OP pressure and shortened times between peaks of thyrohyoid EMG bursts and OP pressure following Bi-12Nx were significantly increased and longer, respectively, after covering the hard and soft palates with acrylic material. UES pressure was significantly decreased after bilateral RLN transection compared with that before transection. These results suggest that the 12N and RLN play crucial roles in OP and UES pressure during swallowing, respectively. We speculate that covering the palates with a palatal augmentation prosthesis may reverse the reduced swallowing pressure in patients with 12N or tongue damage by the changes of the sensory information and of the contact between the tongue and a palates. NEW & NOTEWORTHY Hypoglossal nerve transection reduced swallowing pressure at the oropharynx. Covering the hard and soft palates with acrylic material may reverse the reduced swallowing function caused by hypoglossal nerve damage. Recurrent laryngeal nerve transection reduced upper esophageal sphincter negative pressure during swallowing.

  6. Numerical study of a confocal ultrasonic setup for creation of cavitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lafond, Maxime, E-mail: maxime.lafond@inserm.fr; Chavrier, Françoise; Prieur, Fabrice

    2015-10-28

    Acoustic cavitation is used for various therapeutic applications such as local enhancement of drug delivery, histotripsy or hyperthermia. One of the utmost important parameter for cavitation creation is the rarefaction pressure. The typical magnitude of the rarefaction pressure required to initiate cavitation from gas dissolved in tissue is beyond the range of the megapascal. Because nonlinear effects need to be taken into account, a numerical simulator based on the Westervelt equation was used to study the pressure waveform and the acoustic field generated by a setup for creation of cavitation consisting of two high intensity focused ultrasound transducers mounted confocally.more » At constant acoustic power, simulations with only one and both transducers from the confocal setup showed that the distortion of the pressure waveform due to the combined effects of nonlinearity and diffraction is less pronounced when both confocal transducers are used. Consequently, the confocal setup generates a greater peak negative pressure at focus which is more favorable for cavitation initiation. Comparison between the confocal setup and a single transducer with the same total emitting surface puts in evidence the role of the spatial separation of the two beams. Furthermore, it has been previously shown that the location of the peak negative pressure created by a single transducer shifts from focus towards the transducers in the presence of nonlinear effects. The simulator was used to study a configuration where the acoustical axes of transducers intersect on the peak negative pressure instead of the geometrical focus. For a representative confocal setup, namely moderate nonlinear effects, a 2% increase of the peak negative pressure and 8% decrease of the peak positive pressure resulted from this configuration. These differences tend to increase by increasing nonlinear effects. Although the optimal position of the transducers varies with the nonlinear regimen, the intersection point remains the location of the peak negative pressure in any case. Thus, unlike the location of the peak negative pressure for a single transducer can shift by a few millimeters, the focal point of a confocal device is independent of the power. This point is particularly important for therapeutic applications, frequently requiring high spatial accuracy. An experiment conducted shows that cavitation creation can be achieved easier with confocal ultrasound.« less

  7. An Assessment of Combustion Dynamics in a Low-Nox, Second-Generation Swirl-Venturi Lean Direct Injection Combustion Concept

    NASA Technical Reports Server (NTRS)

    Tacina, K. M.; Chang, C. T.; Lee, P.; Mongia, H.; Podboy, D. P.; Dam, B.

    2015-01-01

    Dynamic pressure measurements were taken during flame-tube emissions testing of three second-generation swirl-venturi lean direct injection (SV-LDI) combustor configurations. These measurements show that combustion dynamics were typically small. However, a small number of points showed high combustion dynamics, with peak-to-peak dynamic pressure fluctuations above 0.5 psi. High combustion dynamics occurred at low inlet temperatures in all three SV-LDI configurations, so combustion dynamics were explored further at low temperature conditions. A point with greater than 1.5 psi peak-to-peak dynamic pressure fluctuations was identified at an inlet temperature of 450!F, a pressure of 100 psia, an air pressure drop of 3%, and an overall equivalence ratio of 0.35. This is an off design condition: the temperature and pressure are typical of 7% power conditions, but the equivalence ratio is high. At this condition, the combustion dynamics depended strongly on the fuel staging. Combustion dynamics could be reduced significantly without changing the overall equivalence ratio by shifting the fuel distribution between stages. Shifting the fuel distribution also decreased NOx emissions.

  8. Physiological and perceptual responses to incremental exercise testing in healthy men: effect of exercise test modality.

    PubMed

    Muscat, Kristina M; Kotrach, Houssam G; Wilkinson-Maitland, Courtney A; Schaeffer, Michele R; Mendonca, Cassandra T; Jensen, Dennis

    2015-11-01

    In a randomized cross-over study of 15 healthy men aged 20-30 years, we compared physiological and perceptual responses during treadmill and cycle exercise test protocols matched for increments in work rate - the source of increased locomotor muscle metabolic and contractile demands. The rates of O2 consumption and CO2 production were higher at the peak of treadmill versus cycle testing (p ≤ 0.05). Nevertheless, work rate, minute ventilation, tidal volume (VT), breathing frequency (fR), inspiratory capacity (IC), inspiratory reserve volume (IRV), tidal esophageal (Pes,tidal) and transdiaphragmatic pressure swings (Pdi,tidal), peak expiratory gastric pressures (Pga,peak), the root mean square of the diaphragm electromyogram (EMGdi,rms) expressed as a percentage of maximum EMGdi,rms (EMGdi,rms%max), and dyspnea ratings were similar at the peak of treadmill versus cycle testing (p > 0.05). Ratings of leg discomfort were higher at the peak of cycle versus treadmill exercise (p ≤ 0.05), even though peak O2 consumption was lower during cycling. Oxygen consumption, CO2 production, minute ventilation, fR, Pes,tidal, Pdi,tidal and Pga,peak were higher (p ≤ 0.05), while VT, IC, IRV, EMGdi,rms%max, and ratings of dyspnea and leg discomfort were similar (p > 0.05) at all or most submaximal work rates during treadmill versus cycle exercise. Our findings highlight important differences (and similarities) in physiological and perceptual responses at maximal and submaximal work rates during incremental treadmill and cycle exercise testing protocols. The lack of effect of exercise test modality on peak work rate advocates for the use of this readily available parameter to optimize training intensity determination, regardless of exercise training mode.

  9. The effects of range-of-motion therapy on the plantar pressures of patients with diabetes mellitus.

    PubMed

    Goldsmith, Jon R; Lidtke, Roy H; Shott, Susan

    2002-10-01

    A randomized controlled study of 19 patients with diabetes mellitus (10 men, 9 women) was undertaken to determine the effects of home exercise therapy on joint mobility and plantar pressures. Of the 19 subjects, 9 subjects performed unsupervised active and passive range-of-motion exercises of the joints in their feet. Each subject was evaluated for joint stiffness and peak plantar pressures at the beginning and conclusion of the study. After only 1 month of therapy, a statistically significant average decrease of 4.2% in peak plantar pressures was noted in the subjects performing the range-of-motion exercises. In the control group, an average increase of 4.4% in peak plantar pressures was noted. Although the joint mobility data revealed no statistically significant differences between the groups, there was a trend for a decrease in joint stiffness in the treatment group. The results of this study demonstrate that an unsupervised range-of-motion exercise program can reduce peak plantar pressures in the diabetic foot. Given that high plantar pressures have been linked to diabetic neuropathic ulceration, it may be possible to reduce the risk of such ulceration with this therapy.

  10. Subduction metamorphism in the Himalayan ultrahigh-pressure Tso Morari massif: An integrated geodynamic and petrological modelling approach

    NASA Astrophysics Data System (ADS)

    Palin, Richard M.; Reuber, Georg S.; White, Richard W.; Kaus, Boris J. P.; Weller, Owen M.

    2017-06-01

    The Tso Morari massif is one of only two regions where ultrahigh-pressure (UHP) metamorphism of subducted crust has been documented in the Himalayan Range. The tectonic evolution of the massif is enigmatic, as reported pressure estimates for peak metamorphism vary from ∼2.4 GPa to ∼4.8 GPa. This uncertainty is problematic for constructing large-scale numerical models of the early stages of India-Asia collision. To address this, we provide new constraints on the tectonothermal evolution of the massif via a combined geodynamic and petrological forward-modelling approach. A prograde-to-peak pressure-temperature-time (P-T-t) path has been derived from thermomechanical simulations tailored for Eocene subduction in the northwestern Himalaya. Phase equilibrium modelling performed along this P-T path has described the petrological evolution of felsic and mafic components of the massif crust, and shows that differences in their fluid contents would have controlled the degree of metamorphic phase transformation in each during subduction. Our model predicts that peak P-T conditions of ∼2.6-2.8 GPa and ∼600-620 ∘C, representative of 90-100 km depth (assuming lithostatic pressure), could have been reached just ∼3 Myr after the onset of subduction of continental crust. This P-T path and subduction duration correlate well with constraints reported for similar UHP eclogite in the Kaghan Valley, Pakistan Himalaya, suggesting that the northwest Himalaya contains dismembered remnants of what may have been a ∼400-km-long UHP terrane comparable in size to the Western Gneiss Region, Norway, and the Dabie-Sulu belt, China. A maximum overpressure of ∼0.5 GPa was calculated in our simulations for a homogeneous crust, although small-scale mechanical heterogeneities may produce overpressures that are larger in magnitude. Nonetheless, the extremely high pressures for peak metamorphism reported by some workers (up to 4.8 GPa) are unreliable owing to conventional thermobarometry having been performed on minerals that were likely not in equilibrium. Furthermore, diagnostic high-P mineral assemblages predicted to form in Tso Morari orthogneiss at peak metamorphism are absent from natural samples, which may reflect the widespread metastable preservation of lower-pressure assemblages in the felsic component of the crust during subduction. If common in such subducted continental terranes, this metastability calls into question the reliability of geodynamic simulations of orogenesis that are predicated on equilibrium metamorphism operating continuously throughout tectonic cycles.

  11. Desorption and Transformation of Nitroaromatic (TNT) and Nitramine (RDX and HMX) Explosive Residues on Detonated Pure Mineral Phases

    DTIC Science & Technology

    2011-11-01

    surface area measurements were used to compare the pristine and detonated mineral surfaces and to determine if the extreme heat and/or pressures of...gas (N2) in a liquid nitrogen atmosphere (−194.8°C). Results from six relative pressure points were reduced to surface area values applying BET theory...include the minerals quartz, calcite, and dolomite . However, in some detonated Ottawa sand samples the highest intensity peak for calcite at 29° 2Θ

  12. Cratering mechanics on Venus - Pressure enhancement by the atmospheric 'ocean'

    NASA Technical Reports Server (NTRS)

    Brackett, Robert A.; Mckinnon, William B.

    1992-01-01

    The impedance match technique and EOSs of equations of state (EOSs) of geologically relevant materials are used to investigate cratering mechanics on Venus, specifically, the coupling of impactor kinetic energy and momentum into the target surface. These EOSs are modified to account for multiple shocks. Peak impact pressures from both first reflection and later reverberations are determined. These are compared to values obtained using an atmosphereless model, and the differences between and implications for atmosphere-affected and atmosphereless impacts are discussed.

  13. A novel method to detect ignition angle of diesel

    NASA Astrophysics Data System (ADS)

    Li, Baofu; Peng, Yong; Huang, Hongzhong

    2018-04-01

    This paper is based on the combustion signal collected by the combustion sensor of piezomagnetic type, taking how to get the diesel fuel to start the combustion as the starting point. It analyzes the operating principle and pressure change of the combustion sensor, the compression peak signal of the diesel engine in the process of compression, and several common methods. The author puts forward a new idea that ignition angle timing can be determined more accurately by the compression peak decomposition method. Then, the method is compared with several common methods.

  14. Forefoot plantar pressure reduction of off-the-shelf rocker bottom provisional footwear.

    PubMed

    Kavros, Steven J; Van Straaten, Meegan G; Coleman Wood, Krista A; Kaufman, Kenton R

    2011-08-01

    Increased plantar pressures have been shown to be a risk factor in ulceration of the neuropathic foot. Prescriptive footwear is a common medical treatment, yet evidence regarding the efficacy of these prescriptions is underdeveloped. The purpose of this study is to determine the off-loading properties of four provisional shoes; a rocker sole compared to a flat sole shoe with and without the addition of a 1.25 cm plastizote insert. Fifteen subjects with peripheral neuropathy and a normal longitudinal arch were recruited to compare four types of provisional (post-operative) footwear. Plantar surface foot pressures were measured while wearing a rocker sole shoe or a flat stiff sole shoe. Both shoes were worn with and without a 1.25 cm plastizote insert. Peak plantar pressures were recorded for the hallux, metatarsal heads (1-5), midfoot, and heel. The rocker sole shoe with plastizote had the best off-loading properties. While wearing this footwear, mean peak plantar pressure was 2.8 kg/cm(2) (range: 1.7 to 4.5 kg/cm(2), 50% mean reduction from flat sole shoe without plastizote) and 1.9 kg/cm(2) (range: 0.7 to 3.6 kg/cm(2), 35% mean reduction) at the five metatarsal heads and hallux, respectively. For patients with a normal longitudinal arch and forefeet, either at risk of developing an ulcer or are healing a forefoot ulcer, a provisional shoe with a rocker sole and plastizote insole provides plantar pressure reduction of the forefoot. However, when results were analyzed for the subjects individually the amount of off-loading varied. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Analysis of various descent trajectories for a hypersonic-cruise, cold-wall research airplane

    NASA Technical Reports Server (NTRS)

    Lawing, P. L.

    1975-01-01

    The probable descent operating conditions for a hypersonic air-breathing research airplane were examined. Descents selected were cruise angle of attack, high dynamic pressure, high lift coefficient, turns, and descents with drag brakes. The descents were parametrically exercised and compared from the standpoint of cold-wall (367 K) aircraft heat load. The descent parameters compared were total heat load, peak heating rate, time to landing, time to end of heat pulse, and range. Trends in total heat load as a function of cruise Mach number, cruise dynamic pressure, angle-of-attack limitation, pull-up g-load, heading angle, and drag-brake size are presented.

  16. Relationship Between Respiratory Dynamics and Body Mass Index in Patients Undergoing General Anesthesia with Laryngeal Mask Airway (LMA) and Comparison Between Lithotomy and Supine Positions

    PubMed Central

    Zhao, Xiao; Huang, Shiwei; Wang, Zhaomin; Chen, Lianhua; Li, Shitong

    2016-01-01

    Background This study aimed to compare respiratory dynamics in patients undergoing general anesthesia with a laryngeal mask airway (LMA) in lithotomy and supine positions and to validate the impact of operational position on effectiveness of LMA ventilation. Material/Methods A total of 90 patients (age range, 18–65 years) who underwent general anesthesia were selected and divided into supine position (SP group) and lithotomy position groups (LP group). Vital signs and respiratory dynamic parameters of the 2 groups were measured at different time points and after implantation of an LMA. The arterial blood gas was monitored at 15 min after induction. The intraoperative changes of hemodynamic indexes and postoperative adverse reactions of LMA were recorded. The possible correlation between body mass index (BMI) and respiratory dynamic indexes was analyzed. Results With prolonged duration of the operation, the inspiratory plateau pressure (Pplat), inspiratory resistance (RI), and work of breathing (WOB) gradually increased, while chest-lung compliance (Compl) and partial pressure of carbon dioxide in end-expiratory gas (PetCO2) gradually decreased (all P value <0.05). The mean airway pressure (Pmean), Pplat, and expiratory resistance (Re) in the LP group were significantly higher than in the SP group (P<0.05), while the peak inspiratory flow (FImax), peak expiratory flow (FEmax), WOB, and Compl in the LP group were significantly lower than in the SP group (P<0.05). BMI was positively correlated with peak airway pressure (PIP/Ppeak), Pplat, and airway resistance (Raw) and was negatively correlated with Compl; the differences among patients in lithotomy position were more remarkable (P<0.05). Conclusions The inspiratory plateau pressure and airway resistance increased with prolonged duration of the operation, accompanied by decreased chest-lung compliance. Peak airway pressure and airway resistance were positively correlated with BMI, and chest-lung compliance was negatively correlated with BMI. Changes among patients in lithotomy position were more remarkable than those in supine position. PMID:27476762

  17. A Turbine-Driven Ventilator Improves Adherence to Advanced Cardiac Life Support Guidelines During a Cardiopulmonary Resuscitation Simulation.

    PubMed

    Allen, Scott G; Brewer, Lara; Gillis, Erik S; Pace, Nathan L; Sakata, Derek J; Orr, Joseph A

    2017-09-01

    Research has shown that increased breathing frequency during cardiopulmonary resuscitation is inversely correlated with systolic blood pressure. Rescuers often hyperventilate during cardiopulmonary resuscitation (CPR). Current American Heart Association advanced cardiac life support recommends a ventilation rate of 8-10 breaths/min. We hypothesized that a small, turbine-driven ventilator would allow rescuers to adhere more closely to advanced cardiac life support (ACLS) guidelines. Twenty-four ACLS-certified health-care professionals were paired into groups of 2. Each team performed 4 randomized rounds of 2-min cycles of CPR on an intubated mannikin, with individuals altering between compressions and breaths. Two rounds of CPR were performed with a self-inflating bag, and 2 rounds were with the ventilator. The ventilator was set to deliver 8 breaths/min, pressure limit 22 cm H 2 O. Frequency, tidal volume (V T ), peak inspiratory pressure, and compression interruptions (hands-off time) were recorded. Data were analyzed with a linear mixed model and Welch 2-sample t test. The median (interquartile range [IQR]) frequency with the ventilator was 7.98 (7.98-7.99) breaths/min. Median (IQR) frequency with the self-inflating bag was 9.5 (8.2-10.7) breaths/min. Median (IQR) ventilator V T was 0.5 (0.5-0.5) L. Median (IQR) self-inflating bag V T was 0.6 (0.5-0.7) L. Median (IQR) ventilator peak inspiratory pressure was 22 (22-22) cm H 2 O. Median (IQR) self-inflating bag peak inspiratory pressure was 30 (27-35) cm H 2 O. Mean ± SD hands-off times for ventilator and self-inflating bag were 5.25 ± 2.11 and 6.41 ± 1.45 s, respectively. When compared with a ventilator, volunteers ventilated with a self-inflating bag within ACLS guidelines. However, volunteers ventilated with increased variation, at higher V T levels, and at higher peak pressures with the self-inflating bag. Hands-off time was also significantly lower with the ventilator. (ClinicalTrials.gov registration NCT02743299.). Copyright © 2017 by Daedalus Enterprises.

  18. On the Health Risk of the Lumbar Spine due to Whole-Body VIBRATION—THEORETICAL Approach, Experimental Data and Evaluation of Whole-Body Vibration

    NASA Astrophysics Data System (ADS)

    Seidel, H.; Blüthner, R.; Hinz, B.; Schust, M.

    1998-08-01

    The guidance on the effects of vibration on health in standards for whole-body vibration (WBV) does not provide quantitative relationships between WBV and health risk. The paper aims at the elucidation of exposure-response relationships. An analysis of published data on the static and dynamic strength of vertebrae and bone, loaded with various frequencies under different conditions, provided the basis for a theoretical approach to evaluate repetitive loads on the lumbar spine (“internal loads”). The approach enabled the calculation of “equivalent”—with respect to cumulative fatigue failure—combinations of amplitudes and numbers of internal cyclic stress. In order to discover the relation between external peak accelerations at the seat and internal peak loads, biodynamic data of experiments (36 subjects, three somatotypes, two different postures—relaxed and bent forward; random WBV,aw, r.m.s. 1·4 ms-2, containing high transients) were used as input to a biomechanical model. Internal pressure changes were calculated using individual areas of vertebral endplates. The assessment of WBV was based on the quantitative relations between peak accelerations at the seat and pressures predicted for the disk L5/S1. For identical exposures clearly higher rates of pressure rise in the bent forward compared to the relaxed posture were predicted. The risk assessment for internal forces considered the combined internal static and dynamic loads, in relation to the predicted individual strength, and Miner's hypothesis. For exposure durations between 1 min and 8 h, energy equivalent vibration magnitudes (formula B.1, ISO 2631-1, 1997) and equivalent vibration magnitudes according to formula B.2 (time dependence over-energetic) were compared with equivalent combinations of upward peak accelerations and exposure durations according to predicted cumulative fatigue failures of lumbar vertebrae. Formula B.1 seems to underestimate the health risk caused by high magnitudes, formula B.2 is recommended for the evaluation of such conditions.

  19. Fat-Free Mass Index for Evaluating the Nutritional Status and Disease Severity in COPD.

    PubMed

    Luo, Yuwen; Zhou, Luqian; Li, Yun; Guo, Songwen; Li, Xiuxia; Zheng, Jingjing; Zhu, Zhe; Chen, Yitai; Huang, Yuxia; Chen, Rui; Chen, Xin

    2016-05-01

    Despite the high prevalence of weight loss in subjects with COPD, the 2011 COPD management guidelines do not include an index measuring nutritional status. Fat-free mass index (FFMI) can accurately determine the nutritional status of subjects and may be closely correlated with COPD severity. We aimed to determine the nutritional status evaluated by FFMI according to the 2011 Global Initiative for Chronic Obstructive Lung Disease (GOLD) levels in stable subjects with COPD and the association between nutritional status and respiratory symptoms, exercise capacity, and respiratory muscle function. We included 235 stable subjects with COPD in this cross-sectional study. All of the subjects were divided into the 2011 GOLD Groups A, B, C, and D. FFMI (measured by bioelectrical impedance), spirometry (FEV1, percent-of-predicted FEV1, and FEV1/FVC), respiratory muscle function (peak inspiratory and peak expiratory pressures), exercise capacity (6-min walk distance), and dyspnea severity (Modified Medical Research Council dyspnea scale) were measured and compared between the GOLD groups. Malnutrition was identified in 48.5% of subjects and most prevalent in Group D (Group A: 41%, Group B: 41%, Group C: 31%, and Group D: 62%). FFMI was significantly lower in Group D (P < .001), with both sexes considered malnourished. Low FFMI significantly correlated with frequent exacerbation, older age, decreased pulmonary function, 6-min walk distance, peak inspiratory pressure, and worsened dyspnea. FFMI was significantly lower in the emphysema-dominant phenotype and mixed phenotype compared with the normal phenotype and airway-dominant phenotype. A stepwise multiple linear regression analysis identified peak inspiratory pressures and older age as independent predictors of FFMI. Malnutrition is highly prevalent in all COPD groups, particularly in Group D subjects, who warrant special attention for nutritional intervention and pulmonary rehabilitation. FFMI significantly correlated with exercise capacity, dyspnea, respiratory muscle function, and pulmonary function and may be a useful predictor of COPD severity. Copyright © 2016 by Daedalus Enterprises.

  20. Evidence for increased cardiac compliance during exposure to simulated microgravity

    NASA Technical Reports Server (NTRS)

    Koenig, S. C.; Convertino, V. A.; Fanton, J. W.; Reister, C. A.; Gaffney, F. A.; Ludwig, D. A.; Krotov, V. P.; Trambovetsky, E. V.; Latham, R. D.

    1998-01-01

    We measured hemodynamic responses during 4 days of head-down tilt (HDT) and during graded lower body negative pressure (LBNP) in invasively instrumented rhesus monkeys to test the hypotheses that exposure to simulated microgravity increases cardiac compliance and that decreased stroke volume, cardiac output, and orthostatic tolerance are associated with reduced left ventricular peak dP/dt. Six monkeys underwent two 4-day (96 h) experimental conditions separated by 9 days of ambulatory activities in a crossover counterbalance design: 1) continuous exposure to 10 degrees HDT and 2) approximately 12-14 h per day of 80 degrees head-up tilt and 10-12 h supine (control condition). Each animal underwent measurements of central venous pressure (CVP), left ventricular and aortic pressures, stroke volume, esophageal pressure (EsP), plasma volume, alpha1- and beta1-adrenergic responsiveness, and tolerance to LBNP. HDT induced a hypovolemic and hypoadrenergic state with reduced LBNP tolerance compared with the control condition. Decreased LBNP tolerance with HDT was associated with reduced stroke volume, cardiac output, and peak dP/dt. Compared with the control condition, a 34% reduction in CVP (P = 0.010) and no change in left ventricular end-diastolic area during HDT was associated with increased ventricular compliance (P = 0.0053). Increased cardiac compliance could not be explained by reduced intrathoracic pressure since EsP was unaltered by HDT. Our data provide the first direct evidence that increased cardiac compliance was associated with headward fluid shifts similar to those induced by exposure to spaceflight and that reduced orthostatic tolerance was associated with lower cardiac contractility.

  1. A pressure plate study on fore and hindlimb loading and the association with hoof contact area in sound ponies at the walk and trot.

    PubMed

    Oosterlinck, M; Pille, F; Back, W; Dewulf, J; Gasthuys, F

    2011-10-01

    The aim of this study was to evaluate the association between fore- and hind-hoof contact area and limb loading. Data from a previous study on forelimb loading and symmetry were compared with data on hindlimb kinetics, and the fore- and hind-hoof contact area at the walk and trot was evaluated. Five sound ponies, selected for symmetrical feet, were walked and trotted over a pressure plate embedded in a custom-made runway. The hindlimb peak vertical force (PVF) and vertical impulse (VI) were found to be significantly lower than in the forelimb, whereas their high symmetry ratios (>95%) did not show a significant difference from forelimb data. Hindlimb PVF in ponies was found to be slightly higher when compared to data reported for horses even though the ponies moved at a similar or lower relative velocity. The contact area had low intra-individual variability and was significantly smaller in the hind- than in the fore-hooves. A larger contact area was significantly associated with lower peak vertical pressure (PVP) but higher PVF and VI. No significant differences between left and right sides were found for contact area or loading variables. Pressure plate measurements demonstrated a significant association between hoof contact area and limb loading, in addition to intrinsic differences between fore and hindlimb locomotor function. The pressure plate provides the clinician with a tool to quantify simultaneously contralateral differences in hoof contact area and limb loading. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Forces and pressures beneath the saddle during mounting from the ground and from a raised mounting platform.

    PubMed

    Geutjens, C A; Clayton, H M; Kaiser, L J

    2008-03-01

    The objective was to use an electronic pressure mat to measure and compare forces and pressures of the saddle on a horse's back when riders mounted from the ground and with the aid of a mounting platform. Ten riders mounted a horse three times each from the ground and from a 35 cm high mounting platform in random order. Total force (summation of forces over all 256 sensors) was measured and compared at specific points on the force-time curve. Total force was usually highest as the rider's right leg was swinging upwards and was correlated with rider mass. When normalized to rider mass, total force and peak pressure were significantly higher when mounting from the ground than from a raised platform (P<0.05). The area of highest pressure was on the right side of the withers in 97% of mounting efforts, confirming the importance of the withers in stabilizing the saddle during mounting.

  3. Energy evolution mechanism in process of Sandstone failure and energy strength criterion

    NASA Astrophysics Data System (ADS)

    Wang, Yunfei; Cui, Fang

    2018-07-01

    To reveal the inherent relation between energy change and confining pressure during the process of sandstone damage, and its characteristics of energy storage and energy dissipation in different deformation stage. Obtaining the mechanical parameters by testing the Sandstone of two1 coal seam roof under uniaxial compression in Zhaogu coalmine, using Particle Flow Code (PFC) and fish program to get the meso-mechanical parameters, studying Sandstone energy evolution mechanism under different confining pressures, and deducing energy strength criterion based on energy principle of rock failure, some main researching results are reached as follows: with the increasing of confining pressure, the Sandstone yield stage and ductility increases, but brittleness decreases; Under higher confining pressure, the elastic strain energy of Sandstone before peak approximately keeps constant in a certain strain range, and rock absorbs all the energy which converts into surface energy required for internal damage development; Under lower confining pressure, Sandstone no longer absorbs energy with increasing strain after peak under lower confining pressure, while it sequentially absorbs energy under higher confining pressure; Under lower confining pressure, the energy Sandstone before peak absorbed mainly converts into elastic strain energy, while under higher confining pressure, dissipation energy significantly increases before peak, which indicates that the degree rock strength loss is higher under higher confining pressure; with the increasing of confining pressure, the limit of elastic strain energy increases and there exists a favourable linear variation relationship; At the peak point, the ratio of elastic strain energy to total energy of Sandstone nonlinearly decreases, while the ratio of dissipation energy to total energy nonlinearly increases with the increasing of confining pressure; According to energy evolution mechanism of rock failure, an energy strength criterion is derived. The criterion equation includes lithology constants and three principal stresses, and its physical meaning is clear. This criterion has an evident advantage than Hoek-Brown and Drucker-Prager criterion in calculation accuracy and can commendably describe rock failure characteristics.

  4. F-15 inlet/engine test techniques and distortion methodologies studies. Volume 1: Technical discussion

    NASA Technical Reports Server (NTRS)

    Stevens, C. H.; Spong, E. D.; Hammock, M. S.

    1978-01-01

    Peak distortion data taken from a subscale inlet model were studied to determine if the data can be used to predict peak distortion levels for a full scale flight test vehicle, and to provide a better understanding of the time variant total pressure distortion and the attendant effects of Reynolds number/scale and frequency content. The data base used to accomplish this goal covered a range from Mach 0.4 to 2.5 and an angle of attack range from -10 degrees to +12 degrees. Data are presented which show that: (1) increasing the Reynolds number increases total pressure recovery, decreases peak distortion, and decreases turbulence, (2) increasing the filter cutoff frequency increases both peak distortion and turbulence, and (3) the effect of engine presence on total pressure recovery, peak distortion, and turbulence is small but favorable.

  5. Postabsorption concentration peaks with brand-name and generic verapamil: a double-blind, crossover study in elderly hypertensive patients.

    PubMed

    Saseen, J J; Porter, J A; Barnette, D J; Bauman, J L; Zajac, E J; Carter, B L

    1997-06-01

    The pharmacokinetic actions, bioequivalence, and cardiovascular effects of two verapamil products were studied in a randomized, double-blind, crossover study in eight elderly hypertensive patients (median age, 69.5 years; range, 60-79 years) given brand-name or generic immediate-release verapamil in 120-mg twice-daily doses for 14 days. Blood pressures, heart rates, P-R intervals; and serum concentrations of R-/S-verapamil and norverapamil were measured multiple times in patients during the last day of each therapy. Median blood pressure decreased more with generic verapamil than with the brand-name drug, with the largest difference occurring at 0.5 hours (137/74 mmHg versus 144.5/80.5 mmHg; P = 0.05 and 0.091, respectively). Pharmacokinetic parameters were not different for the two products (P < 0.01). However, the generic product, compared with the brand-name drug, had mean area under the concentration-time curve (time 0 to 12 hours) ratios (90% CI) of 1.09 (0.78-1.52), 1.16 (0.87-1.55) and 1.11 (0.81-1.52) for R-, S-, and total verapamil. Seventy concentration peaks (31 with the brand-name drug, 39 with the generic drug) appeared between 8 and 24 hours. Median percentages of increase of these peaks, compared with those of previous concentrations, were 48.3% and 36.3% for brand-name and generic drugs, respectively. Fifty of the 70 peaks (71%) were associated with a stereospecific concentration peak of norverapamil and, temporally, with meals. Our findings suggest that whereas the two verapamil products may not be bioequivalent by Food and Drug Administration criteria, the observed differences in effects were not clinically significant in this elderly population. Multiple concentration peaks after absorption were observed in all patients with both verapamil products and were perhaps related to enterohepatic recirculation.

  6. Tibiofemoral loss of contact area but no changes in peak pressures after meniscectomy in a Lapine in vivo quadriceps force transfer model.

    PubMed

    Leumann, Andre; Fortuna, Rafael; Leonard, Tim; Valderrabano, Victor; Herzog, Walter

    2015-01-01

    The menisci are thought to modulate load transfer and to absorb shocks in the knee joint. No study has experimentally measured the meniscal functions in the intact, in vivo joint loaded by physiologically relevant muscular contractions. Right knee joints of seven New Zealand white rabbits were loaded using isometric contractions of the quadriceps femoris muscles controlled by femoral nerve stimulation. Isometric knee extensor torques at the maximal and two submaximal force levels were performed at knee angles of 70°, 90°, 110°, and 130°. Patellofemoral and tibiofemoral contact areas and pressure distributions were measured using Fuji Presensor film inserted above and below the menisci and also with the menisci removed. Meniscectomy was associated with a decrease in tibiofemoral contact area ranging from 30 to 70% and a corresponding increase in average contact pressures. Contact areas measured below the menisci were consistently larger than those measured on top of the menisci. Contact areas in the patellofemoral joint (PFJ), and peak pressures in tibiofemoral and PFJs, were not affected by meniscectomy. Contact areas and peak pressures in all joints depended crucially on knee joint angle and quadriceps force: The more flexed the knee joint was, the larger were the contact areas and the higher were the peak pressures. In agreement with the literature, removal of the menisci was associated with significant decreases in tibiofemoral contact area and corresponding increases in average contact pressures, but surprisingly, peak pressures remained unaffected, indicating that the function of the menisci is to distribute loads across a greater contact area.

  7. Women’s bike seats: a pressing matter for competitive female cyclists

    PubMed Central

    Guess, Marsha K.; Partin, Sarah N.; Schrader, Steven; Lowe, Brian; LaCombe, Julie; Reutman, Susan; Wang, Andrea; Toennis, Christine; Melman, Arnold; Mikhail, Madgy; Connell, Kathleen A.

    2011-01-01

    Introduction There are numerous genital complaints in women cyclists, including pain, numbness and edema of pelvic floor structures. Debate ensues about the best saddle design for protection of the pelvic floor. Aim To investigate the relationships between saddle design, seat pressures and genital nerve function in female, competitive cyclists. Methods We previously compared genital sensation in healthy, premenopausal, competitive women bicyclists and runners. The 48 cyclists from our original study comprise the study group in this sub-analysis. Main Outcome Measures (1) Genital vibratory thresholds (VT) were determined using the Medoc Vibratory Sensation Analyzer 3000. (2) Saddle pressures as determined using a specially designed map sensor. Results More than half of the participants (54.8%) used traditional saddles and the remainder (45.2%), rode with cut-out saddles. On bivariate analysis, use of traditional saddles was associated with lower mean perineal saddle pressures (MPSP) than riding on cut-out saddles. Peak perineal saddle pressures (PPSP) were also lower; however, the difference did not reach statistical significance. Saddle design did not affect mean or peak total saddle pressures (MTSP, PTSP). Saddle width was significantly associated with PPSP, MTSP and PTSP, but not with MPSP. Women riding cut-out saddles had, on average, a 4 and 11 kPa increase in MPSP and PPSP, respectively, compared to women using traditional saddles (p= 0.008 and p= 0.010), after adjustment for other variables. Use of wider saddles was associated with lower PPSP and MTSP after adjustment. Although an inverse correlation was seen between saddle pressures and VTs on bivariate analysis, these differences were not significant after adjusting for age. Conclusion Cut-out and narrower saddles negatively affect saddle pressures in female cyclists. Effects of saddle design on pudendal nerve sensory function were not apparent in this cross-sectional analysis. Longitudinal studies evaluating the long-term effects of saddle pressure on the integrity of the pudendal nerve, pelvic floor and sexual function are warranted. PMID:21834869

  8. Women's bike seats: a pressing matter for competitive female cyclists.

    PubMed

    Guess, Marsha K; Partin, Sarah N; Schrader, Steven; Lowe, Brian; LaCombe, Julie; Reutman, Susan; Wang, Andrea; Toennis, Christine; Melman, Arnold; Mikhail, Madgy; Connell, Kathleen A

    2011-11-01

    There are numerous genital complaints in women cyclists, including pain, numbness, and edema of pelvic floor structures. Debate ensues about the best saddle design for protection of the pelvic floor. To investigate the relationships between saddle design, seat pressures, and genital nerve function in female, competitive cyclists. We previously compared genital sensation in healthy, premenopausal, competitive women bicyclists and runners. The 48 cyclists from our original study comprise the study group in this subanalysis. Main outcome measures were: (i) genital vibratory thresholds (VTs) determined using the Medoc Vibratory Sensation Analyzer 3000 and (ii) saddle pressures as determined using a specially designed map sensor. More than half of the participants (54.8%) used traditional saddles, and the remainder (45.2%) rode with cut-out saddles. On bivariate analysis, use of traditional saddles was associated with lower mean perineal saddle pressures (MPSP) than riding on cut-out saddles. Peak perineal saddle pressures (PPSP) were also lower; however, the difference did not reach statistical significance. Saddle design did not affect mean or peak total saddle pressures (MTSP, PTSP). Saddle width was significantly associated with PPSP, MTSP, and PTSP but not with MPSP. Women riding cut-out saddles had, on average, a 4 and 11 kPa increase in MPSP and PPSP, respectively, compared with women using traditional saddles (P = 0.008 and P = 0.010), after adjustment for other variables. Use of wider saddles was associated with lower PPSP and MTSP after adjustment. Although an inverse correlation was seen between saddle pressures and VTs on bivariate analysis, these differences were not significant after adjusting for age. Cut-out and narrower saddles negatively affect saddle pressures in female cyclists. Effects of saddle design on pudendal nerve sensory function were not apparent in this cross-sectional analysis. Longitudinal studies evaluating the long-term effects of saddle pressure on the integrity of the pudendal nerve, pelvic floor, and sexual function are warranted. © 2011 International Society for Sexual Medicine.

  9. High speed demodulation systems for fiber optic grating sensors

    NASA Technical Reports Server (NTRS)

    Udd, Eric (Inventor); Weisshaar, Andreas (Inventor)

    2002-01-01

    Fiber optic grating sensor demodulation systems are described that offer high speed and multiplexing options for both single and multiple parameter fiber optic grating sensors. To attain very high speeds for single parameter fiber grating sensors ratio techniques are used that allow a series of sensors to be placed in a single fiber while retaining high speed capability. These methods can be extended to multiparameter fiber grating sensors. Optimization of speeds can be obtained by minimizing the number of spectral peaks that must be processed and it is shown that two or three spectral peak measurements may in specific multiparameter applications offer comparable or better performance than processing four spectral peaks. Combining the ratio methods with minimization of peak measurements allows very high speed measurement of such important environmental effects as transverse strain and pressure.

  10. Therapeutic footwear can reduce plantar pressures in patients with diabetes and transmetatarsal amputation.

    PubMed

    Mueller, M J; Strube, M J; Allen, B T

    1997-04-01

    To compare how footwear (full-length shoe or short shoe), a total contact insert, a rigid rocker-bottom (RRB) sole, and an ankle-foot orthosis (AFO) affect peak plantar pressure (PPP) on the distal residuum and contralateral extremity of patients with diabetes and transmetatarsal amputation (TMA). Thirty patients with diabetes and TMA participated (mean age 62 +/- 4 years). In-shoe plantar pressures during walking were measured in six types of footwear. Each measurement occurred after a 1-month adjustment period. Repeated measure analysis of variance (ANOVA) was used to compare treatments. All five types of therapeutic footwear reduced plantar pressures compared with regular shoes with a toe-filler (P < 0.05). A full-length shoe, total contact insert, and RRB sole resulted in lower pressures on the distal residuum (222 vs. 284 kPa) and forefoot of the contralateral extremity (197 vs. 239 kPa), compared with a regular shoe and toe-filler. Footwear with an AFO showed reduced PPP on the residuum, but most patients complained of reduced ankle motion during walking. A short shoe reduced pressures on the residuum, but not on the contralateral extremity, and many patients had complaints regarding cosmesis of the shoe. The full-length shoe, total contact insert, and an RRB sole provided the best pressure reduction for the residuum and contralateral foot, with the optimal compromise for cosmetic acceptance and function.

  11. Calculation and analysis of velocity and viscous drag in an artery with a periodic pressure gradient

    NASA Astrophysics Data System (ADS)

    Alizadeh, M.; Seyedpour, S. M.; Mozafari, V.; Babazadeh, Shayan S.

    2012-07-01

    Blood as a fluid that human and other living creatures are dependent on has been always considered by scientists and researchers. Any changes in blood pressure and its normal velocity can be a sign of a disease. Whatever significant in blood fluid's mechanics is Constitutive equations and finding some relations for analysis and description of drag, velocity and periodic blood pressure in vessels. In this paper, by considering available experimental quantities, for blood pressure and velocity in periodic time of a thigh artery of a living dog, at first it is written into Fourier series, then by solving Navier-Stokes equations, a relation for curve drawing of vessel blood pressure with rigid wall is obtained. Likewise in another part of this paper, vessel wall is taken in to consideration that vessel wall is elastic and its pressure and velocity are written into complex Fourier series. In this case, by solving Navier-Stokes equations, some relations for blood velocity, viscous drag on vessel wall and blood pressure are obtained. In this study by noting that vessel diameter is almost is large (3.7 mm), and blood is considered as a Newtonian fluid. Finally, available experimental quantities of pressure with obtained curve of solving Navier-Stokes equations are compared. In blood analysis in rigid vessel, existence of 48% variance in pressure curve systole peak caused vessel blood flow analysis with elastic wall, results in new relations for blood flow description. The Resultant curve is obtained from new relations holding 10% variance in systole peak.

  12. Palmar pressure distribution during push-up exercise.

    PubMed

    Chuckpaiwong, B; Harnroongroj, T

    2009-07-01

    Doing repetitive push-ups is among the most common exercise for the upper body and shoulder stabiliser muscle strength training. However, adverse effects such as neck pain, back pain, palmar pain and wrist pain have been reported. To date, to our knowledge, palmar pressure when performing push-ups has not been previously reported. We hypothesised that various hand positions during push-ups may provide different palmar pressures. Bilateral palmar pressures were recorded in ten individual volunteers. All the subjects were set up for doing push-ups in five positions of the hand. Peak palmar pressure was recorded by Emed pressure platform system (Novel GmBH, Munich, Germany). The palm was divided into the following five anatomic regions, viz. thenar, lunate, hypothenar, metacarpals and fingers. Statistical comparison between the five positions of the hand was analysed using the analysis of variance test. A distribution of the mean peak pressure of the lunate and hypothenar areas were relatively higher than the other areas in both standby and full-elbow flexion positions. At the palmar position 30 cm wider than the shoulder width, the palmar pressure revealed significantly higher peak pressure in the lunate area in the standby and fully-flexed elbow positions (p-value is less than 0.05). At the palmar position 10 cm narrower than the shoulder width, palmar pressure showed significantly higher peak pressure in the hypothenar area only in the fully-flexed elbow position. The information regarding palmar pressures while performing push-ups in different hand positions may be used as a guideline for exercise modification, especially in injured athletes.

  13. Increasing preferred step rate during running reduces plantar pressures.

    PubMed

    Gerrard, James M; Bonanno, Daniel R

    2018-01-01

    Increasing preferred step rate during running is a commonly used strategy in the management of running-related injuries. This study investigated the effect of different step rates on plantar pressures during running. Thirty-two healthy runners ran at a comfortable speed on a treadmill at five step rates (preferred, ±5%, and ±10%). For each step rate, plantar pressure data were collected using the pedar-X in-shoe system. Compared to running with a preferred step rate, a 10% increase in step rate significantly reduced peak pressure (144.5±46.5 vs 129.3±51 kPa; P=.033) and maximum force (382.3±157.6 vs 334.0±159.8 N; P=.021) at the rearfoot, and reduced maximum force (426.4±130.4 vs 400.0±116.6 N; P=.001) at the midfoot. In contrast, a 10% decrease in step rate significantly increased peak pressure (144.5±46.5 vs 161.5±49.3 kPa; P=.011) and maximum force (382.3±157.6 vs 425.4±155.3 N; P=.032) at the rearfoot. Changing step rate by 5% provided no effect on plantar pressures, and no differences in plantar pressures were observed at the medial forefoot, lateral forefoot or hallux between the step rates. This study's findings indicate that increasing preferred step rate by 10% during running will reduce plantar pressures at the rearfoot and midfoot, while decreasing step rate by 10% will increase plantar pressures at the rearfoot. However, changing preferred step rate by 5% will provide no effect on plantar pressures, and forefoot pressures are unaffected by changes in step rate. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Quantifying Dynamic Changes in Plantar Pressure Gradient in Diabetics with Peripheral Neuropathy.

    PubMed

    Lung, Chi-Wen; Hsiao-Wecksler, Elizabeth T; Burns, Stephanie; Lin, Fang; Jan, Yih-Kuen

    2016-01-01

    Diabetic foot ulcers remain one of the most serious complications of diabetes. Peak plantar pressure (PPP) and peak pressure gradient (PPG) during walking have been shown to be associated with the development of diabetic foot ulcers. To gain further insight into the mechanical etiology of diabetic foot ulcers, examination of the pressure gradient angle (PGA) has been recently proposed. The PGA quantifies directional variation or orientation of the pressure gradient during walking and provides a measure of whether pressure gradient patterns are concentrated or dispersed along the plantar surface. We hypothesized that diabetics at risk of foot ulceration would have smaller PGA in key plantar regions, suggesting less movement of the pressure gradient over time. A total of 27 participants were studied, including 19 diabetics with peripheral neuropathy and 8 non-diabetic control subjects. A foot pressure measurement system was used to measure plantar pressures during walking. PPP, PPG, and PGA were calculated for four foot regions - first toe (T1), first metatarsal head (M1), second metatarsal head (M2), and heel (HL). Consistent with prior studies, PPP and PPG were significantly larger in the diabetic group compared with non-diabetic controls in the T1 and M1 regions, but not M2 or HL. For example, PPP was 165% (P = 0.02) and PPG was 214% (P < 0.001) larger in T1. PGA was found to be significantly smaller in the diabetic group in T1 (46%, P = 0.04), suggesting a more concentrated pressure gradient pattern under the toe. The proposed PGA may improve our understanding of the role of pressure gradient on the risk of diabetic foot ulcers.

  15. A methodology for combustion detection in diesel engines through in-cylinder pressure derivative signal

    NASA Astrophysics Data System (ADS)

    Luján, José M.; Bermúdez, Vicente; Guardiola, Carlos; Abbad, Ali

    2010-10-01

    In-cylinder pressure measurement has historically been used for off-line combustion diagnosis, but online application for real-time combustion control has become of great interest. This work considers low computing-cost methods for analysing the instant variation of the chamber pressure, directly obtained from the electric signal provided by a traditional piezoelectric sensor. Presented methods are based on the detection of sudden changes in the chamber pressure, which are amplified by the pressure derivative, and which are due to thermodynamic phenomena within the cylinder. Signal analysis tools both in time and in time-frequency domains are used for detecting the start of combustion, the end of combustion and the heat release peak. Results are compared with classical thermodynamic analysis and validated in several turbocharged diesel engines.

  16. The biomechanical characteristics of wearing FitFlop™ sandals highlight significant alterations in gait pattern: a comparative study.

    PubMed

    James, Darren C; Farmer, Laura J; Sayers, Jason B; Cook, David P; Mileva, Katya N

    2015-05-01

    The net contribution of all muscles that act about a joint can be represented as an internal joint moment profile. This approach may be advantageous when studying footwear-induced perturbations during walking since the contribution of the smaller deeper muscles that cross the ankle joint cannot be evaluated with surface electromyography. Therefore, the present study aimed to advance the understanding of FitFlop™ footwear interaction by investigating lower extremity joint moment, and kinematic and centre of pressure profiles during gait. 28 healthy participants performed 5 walking trials in 3 conditions: a FitFlop™ sandal, a conventional sandal and an athletic trainer. Three-dimensional ankle joint, and sagittal plane knee and hip joint moments, as well as corresponding kinematics and centre of pressure trajectories were evaluated. FitFlop™ differed significantly to both the conventional sandal and athletic trainer in: average anterior position of centre of pressure trajectory (P<0.0001) and peak hip extensor moment (P=0.001) during early stance; average medial position of centre of pressure trajectory during late stance; peak ankle dorsiflexion and corresponding range of motion; peak plantarflexor moment and total negative work performed at the ankle (all P<0.0001). The present findings demonstrate that FitFlop™ footwear significantly alters the gait pattern of wearers. An anterior displacement of the centre of pressure trajectory during early stance is the primary response to the destabilising effect of the mid-sole technology, and this leads to reductions in sagittal plane ankle joint range of motion and corresponding kinetics. Future investigations should consider the clinical implications of these findings. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Internal flow characteristics of a multistage compressor with inlet pressure distortion. [J85-13 turbojet engine studies

    NASA Technical Reports Server (NTRS)

    Debogdan, C. E.; Moss, J. E., Jr.; Braithwaite, W. M.

    1977-01-01

    The measured distribution of compressor interstage pressures and temperatures resulting from a 180 deg inlet-total-pressure distortion for a J85-13 turbojet engine is reported. Extensive inner stage instrumentation combined with stepwise rotation of the inlet distortion gave data of high circumferential resolution. The steady-state pressures and temperatures along with the amplitude, extent, and location of the distorted areas are given. Data for 80, 90, and 100 percent of rotor design speed are compared with clean (undistorted) inlet flow conditions to show pressure and temperature behavior within the compressor. Both overall and stagewise compressor performances vary only slightly when clean and distorted inlet conditions are compared. Total and static pressure distortions increase in amplitude in the first few stages of the compressor and then attenuate fairly uniformly to zero at the discharge. Total-temperature distortion induced by the pressure distortion reached a maximum amplitude by the first two stages and decayed only a little through the rest of the compressor. Distortion amplitude tended to peak in line with the screen edges, and, except for total and static pressure in the tip zone, there was little swirl in the axial direction.

  18. Is MRI-based CFD able to improve clinical treatment of coarctations of aorta?

    PubMed

    Goubergrits, L; Riesenkampff, E; Yevtushenko, P; Schaller, J; Kertzscher, U; Berger, F; Kuehne, T

    2015-01-01

    Pressure drop associated with coarctation of the aorta (CoA) can be successfully treated surgically or by stent placement. However, a decreased life expectancy associated with altered aortic hemodynamics was found in long-term studies. Image-based computational fluid dynamics (CFD) is intended to support particular diagnoses, to help in choosing between treatment options, and to improve performance of treatment procedures. This study aimed to prove the ability of CFD to improve aortic hemodynamics in CoA patients. In 13 patients (6 males, 7 females; mean age 25 ± 14 years), we compared pre- and post-treatment peak systole hemodynamics [pressure drops and wall shear stress (WSS)] vs. virtual treatment as proposed by biomedical engineers. Anatomy and flow data for CFD were based on MRI and angiography. Segmentation, geometry reconstruction and virtual treatment geometry were performed using the software ZIBAmira, whereas peak systole flow conditions were simulated with the software ANSYS(®) Fluent(®). Virtual treatment significantly reduced pressure drop compared to post-treatment values by a mean of 2.8 ± 3.15 mmHg, which significantly reduced mean WSS by 3.8 Pa. Thus, CFD has the potential to improve post-treatment hemodynamics associated with poor long-term prognosis of patients with coarctation of the aorta. MRI-based CFD has a huge potential to allow the slight reduction of post-treatment pressure drop, which causes significant improvement (reduction) of the WSS at the stenosis segment.

  19. Significantly Reduced Blood Pressure Measurement Variability for Both Normotensive and Hypertensive Subjects: Effect of Polynomial Curve Fitting of Oscillometric Pulses

    PubMed Central

    Zhu, Mingping; Chen, Aiqing

    2017-01-01

    This study aimed to compare within-subject blood pressure (BP) variabilities from different measurement techniques. Cuff pressures from three repeated BP measurements were obtained from 30 normotensive and 30 hypertensive subjects. Automatic BPs were determined from the pulses with normalised peak amplitude larger than a threshold (0.5 for SBP, 0.7 for DBP, and 1.0 for MAP). They were also determined from cuff pressures associated with the above thresholds on a fitted curve polynomial curve of the oscillometric pulse peaks. Finally, the standard deviation (SD) of three repeats and its coefficient of variability (CV) were compared between the two automatic techniques. For the normotensive group, polynomial curve fitting significantly reduced SD of repeats from 3.6 to 2.5 mmHg for SBP and from 3.7 to 2.1 mmHg for MAP and reduced CV from 3.0% to 2.2% for SBP and from 4.3% to 2.4% for MAP (all P < 0.01). For the hypertensive group, SD of repeats decreased from 6.5 to 5.5 mmHg for SBP and from 6.7 to 4.2 mmHg for MAP, and CV decreased from 4.2% to 3.6% for SBP and from 5.8% to 3.8% for MAP (all P < 0.05). In conclusion, polynomial curve fitting of oscillometric pulses had the ability to reduce automatic BP measurement variability. PMID:28785580

  20. Noninvasive estimation of cardiac systolic function using continuous-wave Doppler echocardiography in dogs with experimental mitral regurgitation.

    PubMed

    Asano, K; Masui, Y; Masuda, K; Fujinaga, T

    2002-01-01

    To evaluate the feasibility of noninvasive estimation of cardiac systolic function using transthoracic continuous-wave Doppler echocardiography in dogs with mitral regurgitation. Seven mongrel dogs with experimental mitral regurgitation were used. Left ventriculography and measurement of pulmonary capillary wedge pressure were performed under inhalational anaesthesia. A micromanometer-tipped catheter was placed into the left ventricle and transthoracic echocardiography was carried out. The peak rate of left ventricular pressure rise (peak dP/dt) was derived simultaneously by continuous-wave Doppler and manometer measurements. The Doppler-derived dP/dt was compared with the catheter-measured peak dP/dt in the dogs. Classification of the severity of mitral regurgitation in the dogs was as follows: 1+, 2 dogs; 2+, 1 dog; 3+, 2 dogs; 4+, 1 dog; and not examined, 1 dog. We were able to derive dP/dt from the transthoracic continuous-wave Doppler echocardiography in all dogs. Doppler-derived dP/dt had a significant correlation with the catheter-measured peak dP/dt (r = 0.90, P < 0.0001). It was demonstrated that transthoracic continuous-wave Doppler echocardiography is a feasible method of noninvasive estimation of cardiac systolic function in dogs with experimental mitral regurgitation and may have clinical usefulness in canine patients with spontaneous mitral regurgitation.

  1. An in-situ Raman study on pristane at high pressure and ambient temperature

    NASA Astrophysics Data System (ADS)

    Wu, Jia; Ni, Zhiyong; Wang, Shixia; Zheng, Haifei

    2018-01-01

    The Csbnd H Raman spectroscopic band (2800-3000 cm-1) of pristane was measured in a diamond anvil cell at 1.1-1532 MPa and ambient temperature. Three models are used for the peak-fitting of this Csbnd H Raman band, and the linear correlations between pressure and corresponding peak positions are calculated as well. The results demonstrate that 1) the number of peaks that one chooses to fit the spectrum affects the results, which indicates that the application of the spectroscopic barometry with a function group of organic matters suffers significant limitations; and 2) the linear correlation between pressure and fitted peak positions from one-peak model is more superior than that from multiple-peak model, meanwhile the standard error of the latter is much higher than that of the former. It indicates that the Raman shift of Csbnd H band fitted with one-peak model, which could be treated as a spectroscopic barometry, is more realistic in mixture systems than the traditional strategy which uses the Raman characteristic shift of one function group.

  2. Global Images of Trapped Ring Current Ions During Main Phase of 17 March 2015 Geomagnetic Storm as Observed by TWINS

    NASA Technical Reports Server (NTRS)

    Perez, J. D.; Goldstein, J.; McComas, D. J.; Valek, P.; Fok, Mei-Ching; Hwang, Kyoung-Joo

    2016-01-01

    A unique view of the trapped particles in the inner magnetosphere provided by energetic neutral atom (ENA) imaging is used to observe the dynamics of the spatial structure and the pitch angle anisotropy on a global scale during the last 6 h of the main phase of a large geomagnetic storm (minimum SYM-H 230 nT) that began on 17 March 2015. Ion flux and pressure anisotropy obtained from Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) ENA images are shown. The ion flux shows two peaks, an inner one at approximately radii 34 RE in the dusk-to-midnight sector and an outer peak at radii 89 RE prior to midnight. The inner peak is relatively stationary during the entire period with some intensification during the final steep decline in SYM-H to its minimum. The outer peak shows the significant temporal variation brightening and dimming and finally disappearing at the end of the main phase. The pressure anisotropy shows the expected perpendicular pitch angles inside of L 6 but shows parallel pitch angles at greater L values. This is interpreted as consistent with pitch angle-dependent drift as modeled in the Tsy05 magnetic field and Comprehensive Inner Magnetosphere-Ionosphere simulations. The TWINS results are compared directly with Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE)-A measurements. Using 15 min snapshots of flux and pressure anisotropy from TWINS along the path of RBSPICE-A during the 6 h focused upon in this study, the essential features displayed in the TWINS global images are supported.

  3. Abnormal early diastolic intraventricular flow 'kinetic energy index' assessed by vector flow mapping in patients with elevated filling pressure.

    PubMed

    Nogami, Yoshie; Ishizu, Tomoko; Atsumi, Akiko; Yamamoto, Masayoshi; Kawamura, Ryo; Seo, Yoshihiro; Aonuma, Kazutaka

    2013-03-01

    Recently developed vector flow mapping (VFM) enables evaluation of local flow dynamics without angle dependency. This study used VFM to evaluate quantitatively the index of intraventricular haemodynamic kinetic energy in patients with left ventricular (LV) diastolic dysfunction and to compare those with normal subjects. We studied 25 patients with estimated high left atrial (LA) pressure (pseudonormal: PN group) and 36 normal subjects (control group). Left ventricle was divided into basal, mid, and apical segments. Intraventricular haemodynamic energy was evaluated in the dimension of speed, and it was defined as the kinetic energy index. We calculated this index and created time-energy index curves. The time interval from electrocardiogram (ECG) R wave to peak index was measured, and time differences of the peak index between basal and other segments were defined as ΔT-mid and ΔT-apex. In both groups, early diastolic peak kinetic energy index in mid and apical segments was significantly lower than that in the basal segment. Time to peak index did not differ in apex, mid, and basal segments in the control group but was significantly longer in the apex than that in the basal segment in the PN group. ΔT-mid and ΔT-apex were significantly larger in the PN group than the control group. Multiple regression analysis showed sphericity index, E/E' to be significant independent variables determining ΔT apex. Retarded apical kinetic energy fluid dynamics were detected using VFM and were closely associated with LV spherical remodelling in patients with high LA pressure.

  4. A comparison of gait biomechanics of flip-flops, sandals, barefoot and shoes

    PubMed Central

    2013-01-01

    Background Flip-flops and sandals are popular choices of footwear due to their convenience. However, the effects of these types of footwear on lower extremity biomechanics are still poorly understood. Therefore, the objective of this study was to investigate differences in ground reaction force (GRF), center of pressure (COP) and lower extremity joint kinematic and kinetic variables during level-walking in flip-flops, sandals and barefoot compared to running shoes. Methods Ten healthy males performed five walking trials in the four footwear conditions at 1.3 m/s. Three-dimensional GRF and kinematic data were simultaneously collected. Results A smaller loading rate of the 1st peak vertical GRF and peak propulsive GRF and greater peak dorsiflexion moment in early stance were found in shoes compared to barefoot, flip-flops and sandals. Barefoot walking yielded greater mediolateral COP displacement, flatter foot contact angle, increased ankle plantarflexion contact angle, and smaller knee flexion contact angle and range of motion compared to all other footwear. Conclusions The results from this study indicate that barefoot, flip-flops and sandals produced different peak GRF variables and ankle moment compared to shoes while all footwear yield different COP and ankle and knee kinematics compared to barefoot. The findings may be helpful to researchers and clinicians in understanding lower extremity mechanics of open-toe footwear. PMID:24196492

  5. A comparison of peak power in the shoulder press and shoulder throw.

    PubMed

    Dalziel, W M; Neal, R J; Watts, M C

    2002-09-01

    The ability to generate peak power is central for performance in many sports. Currently two distinct resistance training methods are used to develop peak power, the heavy weight/slow velocity and light weight/fast velocity regimes. When using the light weight/fast velocity power training method it was proposed that peak power would be greater in a shoulder throw exercise compared with a normal shoulder press. Nine males performed three lifts in the shoulder press and shoulder throw at 30% and 40% of their one repetition maximum (1RM). These lifts were performed identically, except for the release of the bar in the throw condition. A potentiometer attached to the bar measured displacement and duration of the lifts. The time of bar release in the shoulder throw was determined with a pressure switch. ANOVA was used to examine statistically significant differences where the level of acceptance was set at p < 0.05. Peak power was found to be significantly greater in the shoulder throw at 30% of 1 RM condition [F, (1, 23) = 2.325 p < 0.051 and at 40% of 1 RM [F, (1, 23) = 2.905 p < 0.05] compared to values recorded for the respective shoulder presses. Peak power was also greater in the 30% of 1 RM shoulder throw (510 +/- 103W) than in the 40% of 1 RM shoulder press (471 +/- 96W). Peak power was produced significantly later in the shoulder throw versus the shoulder press. This differing power reflected a greater bar velocity of the shoulder throw at both assigned weights compared with the shoulder press.

  6. A preliminary objective evaluation of leprosy footwear using in-shoe pressure measurement.

    PubMed

    Linge, K

    1996-01-01

    The primary function of leprosy shoes, insoles and podiatric orthoses is to provide an underfoot environment capable of distributing the inevitable vertical forces, so reducing areas of peak pressure and ideally the period through which they are applied. Many patients with Hansen's disease have both skeletal deformity and anesthetised feet and the presence of high plantar pressures is the key reason for foot ulceration. This objective investigation using in-shoe dynamic pressure measurements showed that the addition of a shank to control insole rigidity reduced the overall peak pressures under the foot. When a deep canvas shoe was used to test single- and double-thickness insoles of two different types of material it was found in each case that the double-thickness mode was advantageous overall. Microcellular rubber insoles in two types of leprosy shoe were replaced by the polymer Poron. The Poron proved to be superior to both microcellular rubbers. The peak pressure and pressure-time integral should be considered as complimentary variables when determining the efficacy of footwear.

  7. [Experimental study of Raman spectra of magnesite at 297 K and at the pressure of 0.13-1 GPa].

    PubMed

    Wang, Yu; Zheng, Hai-fei

    2005-09-01

    The experimental study of Raman spectra of magnesite has been conducted at the pressure of 967 MPa and at the temperatureof 297 K using a cubic zirconia-anvil cell. The result shows that neither phase transition nor organic substances were observed during compression, and the Raman peak of magnesite shifted to higher frequency with increasing pressure. The relation between the pressure and the Raman peak position of magnesite (1094 cm(-1)) was obtained as follows: v (cm(-1)) = 0.007 44 x P(MPa) + 1 093.3. The value of dv/dP of magnesite is greater than the previous data obtained by Gillet, which was mostly taken under the mantle pressure. And at the ambient temperature, magnesite can be used as a pressure gauge, and the relation between the pressure and Raman shift of 1 094 cm(-1) peak position is given as following: P(MPa) = 125.8 x (deltavp) 1094 + 124.7 (1094 cm(-1) < vp < 1101 cm(-1)).

  8. Effects of running-induced fatigue on plantar pressure distribution in novice runners with different foot types.

    PubMed

    Anbarian, Mehrdad; Esmaeili, Hamed

    2016-07-01

    This study aimed to assess the effects of running-induced fatigue on plantar pressure parameters in novice runners with low and high medial longitudinal arch. Plantar pressure data from 42 novice runners (21 with high, and 21 with low arch) were collected before and after running-induced fatigue protocol during running at 3.3m/s along the Footscan(®) platform. Peak plantar pressure, peak force and force-time integral (impulse) were measured in ten anatomical zones. Relative time for foot roll-over phases and medio-lateral force ratio were calculated before and after the fatigue protocol. After the fatigue protocol, increases in the peak pressure under the first-third metatarsal zones and reduction under the fourth-fifth metatarsal regions were observed in the low arch individuals. In the high arch group, increases in peak pressure under the fourth-fifth metatarsal zones after the running-induced fatigue was observed. It could be concluded that running-induced fatigue had different effects on plantar pressure distribution pattern among novice runners with low and high medial longitudinal foot arch. These findings could provide some information related to several running injuries among individuals with different foot types. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Comparing CT perfusion with oxygen partial pressure in a rabbit VX2 soft-tissue tumor model.

    PubMed

    Sun, Chang-Jin; Li, Chao; Lv, Hai-Bo; Zhao, Cong; Yu, Jin-Ming; Wang, Guang-Hui; Luo, Yun-Xiu; Li, Yan; Xiao, Mingyong; Yin, Jun; Lang, Jin-Yi

    2014-01-01

    The aim of this study was to evaluate the oxygen partial pressure of the rabbit model of the VX2 tumor using a 64-slice perfusion CT and to compare the results with that obtained using the oxygen microelectrode method. Perfusion CT was performed for 45 successfully constructed rabbit models of a VX2 brain tumor. The perfusion values of the brain tumor region of interest, the blood volume (BV), the time to peak (TTP) and the peak enhancement intensity (PEI) were measured. The results were compared with the partial pressure of oxygen (PO2) of that region of interest obtained using the oxygen microelectrode method. The perfusion values of the brain tumor region of interest in 45 successfully constructed rabbit models of a VX2 brain tumor ranged from 1.3-127.0 (average, 21.1 ± 26.7 ml/min/ml); BV ranged from 1.2-53.5 ml/100g (average, 22.2 ± 13.7 ml/100g); PEI ranged from 8.7-124.6 HU (average, 43.5 ± 28.7 HU); and TTP ranged from 8.2-62.3 s (average, 38.8 ± 14.8 s). The PO2 in the corresponding region ranged from 0.14-47 mmHg (average, 16 ± 14.8 mmHg). The perfusion CT positively correlated with the tumor PO2, which can be used for evaluating the tumor hypoxia in clinical practice.

  10. Renal tissue damage induced by focused shock waves

    NASA Astrophysics Data System (ADS)

    Ioritani, N.; Kuwahara, M.; Kambe, K.; Taguchi, K.; Saitoh, T.; Shirai, S.; Orikasa, S.; Takayama, K.; Lush, P. A.

    1990-07-01

    Biological evidence of renal arterial wall damage induced by the microjet due to shock wave-cavitation bubble interaction was demonstrated in living dog kidneys. We also intended to clarify the mechanism of renal tissue damage and the effects of different conditions of shock wave exposure (peak pressure of focused area, number of shots, exposure rate) on the renal tissue damage in comparison to stone disintegration. Disruption of arterial wall was the most remarkable histological change in the focused area of the kidneys. This lesion appeared as if the wall had been punctured by a needle. Large hematoma formation in the renal parenchym, and interstitial hemorrhage seemed to be the results of the arterial lesion. This arterial disorder also led to ischemic necrosis of the tubules surrounding the hematoma. Micro-angiographic examination of extracted kidneys also proved such arterial puncture lesions and ischemic lesions. The number of shots required for model stone disintegration was not inversely proportional to peak pressure. It decreased markedly when peak pressure was above 700 bar. Similarly thenumber of shots for hematoma formation was not inversely proportional to peak pressure, however, this decreased markedly above 500 bar. These results suggested that a hematoma could be formed under a lower peak pressure than that required for stone disintegration.

  11. Novel dynamic peak and distribution plantar pressure measures on diabetic patients during walking.

    PubMed

    Al-Angari, Haitham M; Khandoker, Ahsan H; Lee, Sungmun; Almahmeed, Wael; Al Safar, Habiba S; Jelinek, Herbert F; Khalaf, Kinda

    2017-01-01

    Diabetic peripheral neuropathy (DPN) is a common complication leading to foot ulceration and amputation. Several kinematic, kinetic and plantar pressure measures have been proposed for DPN detection, however findings have been inconsistent. In this work, we present new shape features that capture variations in the plantar pressure using shape and entropy measures to the study of patients with retinopathy, DPN and nephropathy, and a control diabetic group with no complications. The change in the peak plantar pressure (PPP) position with each step for both feet was represented as a convex polygon, asymmetry index, area of the convex polygon, 2nd wavelet moment (WM2) and sample entropy (SamEn). WM2 and the SamEn were more sensitive in capturing variations due to presence of complications than the area and asymmetry measures. WM2 of the left heel (median: 1st IQ, 3rd IQ): 8.27 (4.6,14.8) and left forefoot: 9.2 (2.4,16) were significantly lower for the DPN group compared to the control (CONT) group (heel 11.9 (5.0,16.4); forefoot: 10.3 (4.4,21.3), p < 0.05). SamEn for the DPN group was significantly lower in the right foot compared to the left foot (1.3 (1.26, 1.37) and 1.33 (1.26,1.4), p < 0.01) compared to CONT (right foot: 1.37 (1.24,1.45) and left foot: 1.34 (1.25,1.42), P < 0.05). These new shape and regularity features have shown promising results in detecting diabetic peripheral neuropathy and warrant further investigation. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Biomechanical Effects of Acromioplasty on Superior Capsule Reconstruction for Irreparable Supraspinatus Tendon Tears.

    PubMed

    Mihata, Teruhisa; McGarry, Michelle H; Kahn, Timothy; Goldberg, Iliya; Neo, Masashi; Lee, Thay Q

    2016-01-01

    Acromioplasty is increasingly being performed for both reparable and irreparable rotator cuff tears. However, acromioplasty may destroy the coracoacromial arch, including the coracoacromial ligament, consequently causing a deterioration in superior stability even after superior capsule reconstruction. The purpose of this study was to investigate the effects of acromioplasty on shoulder biomechanics after superior capsule reconstruction for irreparable supraspinatus tendon tears. The hypothesis was that acromioplasty with superior capsule reconstruction would decrease the area of subacromial impingement without increasing superior translation and subacromial contact pressure. Controlled laboratory study. Seven fresh-frozen cadaveric shoulders were evaluated using a custom shoulder testing system. Glenohumeral superior translation, the location of the humeral head relative to the glenoid, and subacromial contact pressure and area were compared among 4 conditions: (1) intact shoulder, (2) irreparable supraspinatus tendon tear, (3) superior capsule reconstruction without acromioplasty, and (4) superior capsule reconstruction with acromioplasty. Superior capsule reconstruction was performed using the fascia lata. Compared with the intact shoulder, the creation of an irreparable supraspinatus tear significantly shifted the humeral head superiorly in the balanced muscle loading condition (without superior force applied) (0° of abduction: 2.8-mm superior shift [P = .0005]; 30° of abduction: 1.9-mm superior shift [P = .003]) and increased both superior translation (0° of abduction: 239% of intact [P = .04]; 30° of abduction: 199% of intact [P = .02]) and subacromial peak contact pressure (0° of abduction: 308% of intact [P = .0002]; 30° of abduction: 252% of intact [P = .001]) by applying superior force. Superior capsule reconstruction without acromioplasty significantly decreased superior translation (0° of abduction: 86% of intact [P = .02]; 30° of abduction: 75% of intact [P = .002]) and subacromial peak contact pressure (0° of abduction: 47% of intact [P = .0002]; 30° of abduction: 83% of intact [P = .0005]; 60° of abduction: 38% of intact [P = .04]) compared with after the creation of a supraspinatus tear. Adding acromioplasty significantly decreased the subacromial contact area compared with superior capsule reconstruction without acromioplasty (0° of abduction: 26% decrease [P = .01]; 30° of abduction: 21% decrease [P = .009]; 60° of abduction: 61% decrease [P = .003]) and did not alter humeral head position, superior translation, or subacromial peak contact pressure. Superior capsule reconstruction repositioned the superiorly migrated humeral head and restored superior stability in the shoulder joint. Adding acromioplasty decreased the subacromial contact area without increasing the subacromial contact pressure. When superior capsule reconstruction is performed for irreparable rotator cuff tears, acromioplasty may help to decrease the postoperative risk of abrasion and tearing of the graft beneath the acromion. © 2015 The Author(s).

  13. Usefulness of cardiopulmonary exercise testing to predict the development of arterial hypertension in adult patients with repaired isolated coarctation of the aorta.

    PubMed

    Buys, Roselien; Van De Bruaene, Alexander; Müller, Jan; Hager, Alfred; Khambadkone, Sachin; Giardini, Alessandro; Cornelissen, Véronique; Budts, Werner; Vanhees, Luc

    2013-10-03

    Patients who underwent surgery for aortic coarctation (COA) have an increased risk of arterial hypertension. We aimed at evaluating (1) differences between hypertensive and non-hypertensive patients and (2) the value of cardiopulmonary exercise testing (CPET) to predict the development or progression of hypertension. Between 1999 and 2010, CPET was performed in 223 COA-patients of whom 122 had resting blood pressures of <140/90 mmHg without medication, and 101 were considered hypertensive. Comparative statistics were performed. Cox regression analysis was used to assess the relation between demographic, clinical and exercise variables and the development/progression of hypertension. At baseline, hypertensive patients were older (p=0.007), were more often male (p=0.004) and had repair at later age (p=0.008) when compared to normotensive patients. After 3.6 ± 1.2 years, 29/120 (25%) normotensive patients developed hypertension. In normotensives, VE/VCO2-slope (p=0.0016) and peak systolic blood pressure (SBP; p=0.049) were significantly related to the development of hypertension during follow-up. Cut-off points related to higher risk for hypertension, based on best sensitivity and specificity, were defined as VE/VCO2-slope ≥ 27 and peak SBP ≥ 220 mmHg. In the hypertensive group, antihypertensive medication was started/extended in 48/101 (48%) patients. Only age was associated with the need to start/extend antihypertensive therapy in this group (p=0.042). Higher VE/VCO2-slope and higher peak SBP are risk factors for the development of hypertension in adults with COA. Cardiopulmonary exercise testing may guide clinical decision making regarding close blood pressure control and preventive lifestyle recommendations. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. An Experimntal Investigation of the 30P30N Multi-Element High-Lift Airfoil

    NASA Technical Reports Server (NTRS)

    Pascioni, Kyle A.; Cattafesta, Louis N.; Choudhari, Meelan M.

    2014-01-01

    High-lift devices often generate an unsteady flow field producing both broadband and tonal noise which radiates from the aircraft. In particular, the leading edge slat is often a dominant contributor to the noise signature. An experimental study of a simplified unswept high-lift configuration, the 30P30N, has been conducted to understand and identify the various flow-induced noise sources around the slat. Closed-wall wind tunnel tests are performed in the Florida State Aeroacoustic Tunnel (FSAT) to characterize the slat cove flow field using a combination of surface and off-body measurements. Mean surface pressures compare well with numerical predictions for the free-air configuration. Consistent with previous measurements and computations for 2D high-lift configurations, the frequency spectra of unsteady surface pressures on the slat surface display several narrowband peaks that decrease in strength as the angle of attack is increased. At positive angles of attack, there are four prominent peaks. The three higher frequency peaks correspond, approximately, to a harmonic sequence related to a feedback resonance involving unstable disturbances in the slat cove shear layer. The Strouhal numbers associated with these three peaks are nearly insensitive to the range of flow speeds (41-58 m/s) and the angles of attack tested (3-8.5 degrees). The first narrow-band peak has an order of magnitude lower frequency than the remaining peaks and displays noticeable sensitivity to the angle of attack. Stereoscopic particle image velocimetry (SPIV) measurements provide supplementary information about the shear layer characteristics and turbulence statistics that may be used for validating numerical simulations.

  15. Evaluation of the shock-wave pattern for endoscopic electrohydraulic lithotripsy.

    PubMed

    Vorreuther, R; Engelmann, Y

    1995-01-01

    We evaluated the electrical events and the resulting shock waves of the spark discharge for electrohydraulic lithotripsy at the tip of a 3.3F probe. Spark generation was achieved by variable combinations of voltage and capacity. The effective electrical output was determined by means of a high-voltage probe, a current coil, and a digital oscilloscope. Peak pressures, rise times, and pulse width of the pressure profiles were recorded using a polyvinylidene difluoride needle hydrophone in 0.9% NaCl solution at a distance of 10 mm. The peak pressure and the slope of the shock front depend solely on the voltage, while the pulse width was correlated with the capacity. Pulses of less than 1-microsecond duration can be obtained when low capacity is applied and the inductivity of the cables and plugs is kept at a low level. Using chalk as a stone model it was proven that short pulses of high peak pressure provided by a low capacity and a high voltage have a greater impact on fragmentation than the corresponding broader shock waves of lower peak pressure carrying the same energy.

  16. Surface electromyography and plantar pressure changes with novel gait training device in participants with chronic ankle instability.

    PubMed

    Feger, Mark A; Hertel, Jay

    2016-08-01

    Rehabilitation is ineffective at restoring normal gait in chronic ankle instability patients. Our purpose was to determine if a novel gait-training device could decrease plantar pressure on the lateral column of the foot in chronic ankle instability patients. Ten chronic ankle instability patients completed 30s trials of baseline and gait-training walking at a self-selected pace while in-shoe plantar pressure and surface electromyography were recorded from their anterior tibialis, peroneus longus, medial gastrocnemius, and gluteus medius. The gait-training device applied a medially-directed force to the lower leg via elastic bands during the entire gait cycle. Plantar pressure measures of the entire foot and 9 specific regions of the foot as well as surface electromyography root mean square areas were compared between the baseline and gait-training conditions using paired t-tests with a priori level of significance of p≤0.05. The gait-training device decreased pressure time integrals and peak pressures in the lateral midfoot (p=0.003 and p=0.003) and lateral forefoot (p=0.023 and p=0.005), and increased pressure time integrals and peak pressures for the total foot (p=0.030 and p=0.017) and hallux (p=0.005 and p=0.002). The center of pressure was shifted medially during the entire stance phase (p<0.003 for all comparisons) due to increased peroneus longus activity prior to (p=0.002) and following initial contact (p=0.002). The gait-training device decreased pressure on the lateral column of the foot and increased peroneus longus muscle activity. Future research should analyze the efficacy of the gait-training device during gait retraining for chronic ankle instability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Space Vehicle Valve System

    NASA Technical Reports Server (NTRS)

    Kelley, Anthony R. (Inventor); Lindner, Jeffrey L. (Inventor)

    2014-01-01

    The present invention is a space vehicle valve system which controls the internal pressure of a space vehicle and the flow rate of purged gases at a given internal pressure and aperture site. A plurality of quasi-unique variable dimension peaked valve structures cover the purge apertures on a space vehicle. Interchangeable sheet guards configured to cover valve apertures on the peaked valve structure contain a pressure-activated surface on the inner surface. Sheet guards move outwardly from the peaked valve structure when in structural contact with a purge gas stream flowing through the apertures on the space vehicle. Changing the properties of the sheet guards changes the response of the sheet guards at a given internal pressure, providing control of the flow rate at a given aperture site.

  18. ELM suppression in helium plasmas with 3D magnetic fields

    DOE PAGES

    Evans, T. E.; Loarte, A.; Orlov, D. M.; ...

    2017-06-21

    Experiments in DIII-D, using non-axisymmetric magnetic perturbation fields in high-purity low toroidal rotation, 4He plasmas have resulted in Type-I edge localized mode (ELM) suppression and mitigation. Suppression is obtained in plasmas with zero net input torque near the L–H power threshold using either electron cyclotron resonant heating (ECRH) or balanced co- and counter-I p neutral beam injection (NBI) resulting in conditions equivalent to those expected in ITER's non-active operating phase. In low-power ECRH H-modes, periods with uncontrolled density and impurity radiation excursions are prevented by applying n = 3 non-axisymmetric magnetic perturbation fields. ELM suppression results from a reduction andmore » an outward shift of the electron pressure gradient peak compared to that in the high-power ELMing phase. Here, the change in the electron pressure gradient peak is primarily due to a drop in the pedestal temperature rather than the pedestal density.« less

  19. ELM suppression in helium plasmas with 3D magnetic fields

    NASA Astrophysics Data System (ADS)

    Evans, T. E.; Loarte, A.; Orlov, D. M.; Grierson, B. A.; Knölker, M. M.; Lyons, B. C.; Cui, L.; Gohil, P.; Groebner, R. J.; Moyer, R. A.; Nazikian, R.; Osborne, T. H.; Unterberg, E. A.

    2017-08-01

    Experiments in DIII-D, using non-axisymmetric magnetic perturbation fields in high-purity low toroidal rotation, 4He plasmas have resulted in Type-I edge localized mode (ELM) suppression and mitigation. Suppression is obtained in plasmas with zero net input torque near the L-H power threshold using either electron cyclotron resonant heating (ECRH) or balanced co- and counter-I p neutral beam injection (NBI) resulting in conditions equivalent to those expected in ITER’s non-active operating phase. In low-power ECRH H-modes, periods with uncontrolled density and impurity radiation excursions are prevented by applying n  =  3 non-axisymmetric magnetic perturbation fields. ELM suppression results from a reduction and an outward shift of the electron pressure gradient peak compared to that in the high-power ELMing phase. The change in the electron pressure gradient peak is primarily due to a drop in the pedestal temperature rather than the pedestal density.

  20. On the violation of gradient wind balance at the top of tropical cyclones

    NASA Astrophysics Data System (ADS)

    Cohen, Yair; Harnik, Nili; Heifetz, Eyal; Nolan, David S.; Tao, Dandan; Zhang, Fuqing

    2017-08-01

    The existence of physical solutions for the gradient wind balance is examined at the top of 12 simulated tropical cyclones. The pressure field at the top of these storms, which depends on the vertically integrated effect of the warm core and the near surface low, is found to violate the gradient wind balance—termed here as a state of nonbalance. Using a toy model, it is shown that slight changes in the relative location and relative widths of the warm core drastically increase the isobaric curvature at the upper level pressure maps leading to nonbalance. While idealized storms return to balance within several days, simulations of real-world tropical cyclones retain a considerable degree of nonbalance throughout the model integration. Comparing mean and maximum values of different storms shows that peak nonbalance correlates with either peak intensity or intensification, implying the possible importance of nonbalance at upper levels for the near surface winds.

  1. Assessment of noise exposure for basketball sports referees.

    PubMed

    Masullo, Massimiliano; Lenzuni, Paolo; Maffei, Luigi; Nataletti, Pietro; Ciaburro, Giuseppe; Annesi, Diego; Moschetto, Antonio

    2016-01-01

    Dosimetric measurements carried out on basketball referees have shown that whistles not only generate very high peak sound pressure levels, but also play a relevant role in determining the overall exposure to noise of the exposed subjects. Because of the peculiar geometry determined by the mutual positions of the whistle, the microphone, and the ear, experimental data cannot be directly compared with existing occupational noise exposure and/or action limits. In this article, an original methodology, which allows experimental results to be reliably compared with the aforementioned limits, is presented. The methodology is based on the use of two correction factors to compensate the effects of the position of the dosimeter microphone (fR) and of the sound source (fS). Correction factors were calculated by means of laboratory measurements for two models of whistles (Fox 40 Classic and Fox 40 Sonik) and for two head orientations (frontal and oblique).Results sho w that for peak sound pressure levels the values of fR and fS, are in the range -8.3 to -4.6 dB and -6.0 to -1.7 dB, respectively. If one considers the Sound Exposure Levels (SEL) of whistle events, the same correction factors are in the range of -8.9 to -5.3 dB and -5.4 to -1.5 dB, respectively. The application of these correction factors shows that the corrected weekly noise exposure level for referees is 80.6 dB(A), which is slightly in excess of the lower action limit of the 2003/10/EC directive, and a few dB below the Recommended Exposure Limit (REL) proposed by the National Institute for Occupational Safety and Health (NIOSH). The corrected largest peak sound pressure level is 134.7 dB(C) which is comparable to the lower action limit of the 2003/10/EC directive, but again substantially lower than the ceiling limit of 140 dB(A) set by NIOSH.

  2. Design of HIFU transducers for generating specified nonlinear ultrasound fields

    PubMed Central

    Rosnitskiy, Pavel B.; Yuldashev, Petr V.; Sapozhnikov, Oleg A.; Maxwell, Adam; Kreider, Wayne; Bailey, Michael R.; Khokhlova, Vera A.

    2016-01-01

    Various clinical applications of high intensity focused ultrasound (HIFU) have different requirements for the pressure levels and degree of nonlinear waveform distortion at the focus. The goal of this work was to determine transducer design parameters that produce either a specified shock amplitude in the focal waveform or specified peak pressures while still maintaining quasilinear conditions at the focus. Multi-parametric nonlinear modeling based on the KZK equation with an equivalent source boundary condition was employed. Peak pressures, shock amplitudes at the focus, and corresponding source outputs were determined for different transducer geometries and levels of nonlinear distortion. Results are presented in terms of the parameters of an equivalent single-element, spherically shaped transducer. The accuracy of the method and its applicability to cases of strongly focused transducers were validated by comparing the KZK modeling data with measurements and nonlinear full-diffraction simulations for a single-element source and arrays with 7 and 256 elements. The results provide look-up data for evaluating nonlinear distortions at the focus of existing therapeutic systems as well as for guiding the design of new transducers that generate specified nonlinear fields. PMID:27775904

  3. Complex crater formation: Insights from combining observations of shock pressure distribution with numerical models at the West Clearwater Lake impact structure

    NASA Astrophysics Data System (ADS)

    Rae, A. S. P.; Collins, G. S.; Grieve, R. A. F.; Osinski, G. R.; Morgan, J. V.

    2017-07-01

    Large impact structures have complex morphologies, with zones of structural uplift that can be expressed topographically as central peaks and/or peak rings internal to the crater rim. The formation of these structures requires transient strength reduction in the target material and one of the proposed mechanisms to explain this behavior is acoustic fluidization. Here, samples of shock-metamorphosed quartz-bearing lithologies at the West Clearwater Lake impact structure, Canada, are used to estimate the maximum recorded shock pressures in three dimensions across the crater. These measurements demonstrate that the currently observed distribution of shock metamorphism is strongly controlled by the formation of the structural uplift. The distribution of peak shock pressures, together with apparent crater morphology and geological observations, is compared with numerical impact simulations to constrain parameters used in the block-model implementation of acoustic fluidization. The numerical simulations produce craters that are consistent with morphological and geological observations. The results show that the regeneration of acoustic energy must be an important feature of acoustic fluidization in crater collapse, and should be included in future implementations. Based on the comparison between observational data and impact simulations, we conclude that the West Clearwater Lake structure had an original rim (final crater) diameter of 35-40 km and has since experienced up to 2 km of differential erosion.

  4. Biomechanical study of tarsometatarsal joint fusion using finite element analysis.

    PubMed

    Wang, Yan; Li, Zengyong; Zhang, Ming

    2014-11-01

    Complications of surgeries in foot and ankle bring patients with severe sufferings. Sufficient understanding of the internal biomechanical information such as stress distribution, contact pressure, and deformation is critical to estimate the effectiveness of surgical treatments and avoid complications. Foot and ankle is an intricate and synergetic system, and localized intervention may alter the functions to the adjacent components. The aim of this study was to estimate biomechanical effects of the TMT joint fusion using comprehensive finite element (FE) analysis. A foot and ankle model consists of 28 bones, 72 ligaments, and plantar fascia with soft tissues embracing all the segments. Kinematic information and ground reaction force during gait were obtained from motion analysis. Three gait instants namely the first peak, second peak and mid-stance were simulated in a normal foot and a foot with TMT joint fusion. It was found that contact pressure on plantar foot increased by 0.42%, 19% and 37%, respectively after TMT fusion compared with normal foot walking. Navico-cuneiform and fifth meta-cuboid joints sustained 27% and 40% increase in contact pressure at second peak, implying potential risk of joint problems such as arthritis. Von Mises stress in the second metatarsal bone increased by 22% at midstance, making it susceptible to stress fracture. This study provides biomechanical information for understanding the possible consequences of TMT joint fusion. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  5. Effect of dietary nitrate supplementation on conduit artery blood flow, muscle oxygenation, and metabolic rate during handgrip exercise.

    PubMed

    Craig, Jesse C; Broxterman, Ryan M; Smith, Joshua R; Allen, Jason David; Barstow, Thomas J

    2018-05-03

    Dietary nitrate supplementation has positive effects on mitochondrial and muscle contractile efficiency during large muscle mass exercise in humans, and on skeletal muscle blood flow (Q̇) in rats. However, concurrent measurement of these effects has not been performed in humans. Therefore, we assessed the influence of nitrate supplementation on Q̇ and muscle oxygenation characteristics during moderate (40%peak) and severe (85%peak) intensity handgrip exercise in a randomized, double-blind, crossover-design. Nine healthy men (age: 25{plus minus}2 yrs) completed four constant-power exercise tests (two per intensity) randomly assigned to condition (nitrate-rich (Nitrate) or nitrate-poor (Placebo) beetroot supplementation) and intensity (40%peak or 85%peak). Resting mean arterial pressure was lower after Nitrate compared to Placebo (84{plus minus}4 vs 89{plus minus}4 mmHg; p<0.01). All subjects were able to sustain 10 min of exercise at 40%peak in both conditions. Nitrate had no effect on exercise tolerance during 85%peak (Nitrate: 358{plus minus}29, Placebo: 341{plus minus}34 s; p=0.3). Brachial artery Q̇ was not different after Nitrate at rest or any time during exercise. Deoxygenated-[hemoglobin+myoglobin] was not different for 40%peak (p>0.05), but was elevated throughout 85%peak (p<0.05) after Nitrate. The metabolic cost (V̇O2) was not different at end exercise, however, the V̇O 2 primary amplitude at the onset of exercise was elevated after Nitrate for the 85%peak work rate (96{plus minus}20 vs 72{plus minus}12 ml/min; p<0.05) and had a faster response. These findings suggest that an acute dose of Nitrate reduces resting blood pressure and speeds V̇O 2 kinetics in young adults, but does not augment Q̇ or reduce steady-state V̇O 2 during small muscle mass handgrip exercise.

  6. High Voltage, Low Inductance Hydrogen Thyratron Study Program.

    DTIC Science & Technology

    1981-01-01

    E-E Electrode Spacing Ef Cathode Heater Voltage egy Peak Forward Grid Voltage epy Peak Forward Anode Voltage epx Peak Inverse Anode Voltage Eres... electrodes . ........... 68 30 Marx generator used for sample testing. ........... 68 31 Waveforms showing sample holdoff and sample breakdown 73 32...capability (a function of gas pressure and electrode spacing) could be related to its current rise time capability (a function of gas pressure and inductance

  7. Passive continuous positive airway pressure ventilation during cardiopulmonary resuscitation: a randomized cross-over manikin simulation study.

    PubMed

    Winkler, Bernd E; Muellenbach, Ralf M; Wurmb, Thomas; Struck, Manuel F; Roewer, Norbert; Kranke, Peter

    2017-02-01

    While controlled ventilation is most frequently used during cardiopulmonary resuscitation (CPR), the application of continuous positive airway pressure (CPAP) and passive ventilation of the lung synchronously with chest compressions and decompressions might represent a promising alternative approach. One benefit of CPAP during CPR is the reduction of peak airway pressures and therefore a potential enhancement in haemodynamics. We therefore evaluated the tidal volumes and airway pressures achieved during CPAP-CPR. During CPR with the LUCAS™ 2 compression device, a manikin model was passively ventilated at CPAP levels of 5, 10, 20 and 30 hPa with the Boussignac tracheal tube and the ventilators Evita ® V500, Medumat ® Transport, Oxylator ® EMX, Oxylog ® 2000, Oxylog ® 3000, Primus ® and Servo ® -i as well as the Wenoll ® diver rescue system. Tidal volumes and airway pressures during CPAP-CPR were recorded and analyzed. Tidal volumes during CPAP-CPR were higher than during compression-only CPR without positive airway pressure. The passively generated tidal volumes increased with increasing CPAP levels and were significantly influenced by the ventilators used. During ventilation at 20 hPa CPAP via a tracheal tube, the mean tidal volumes ranged from 125 ml (Medumat ® ) to 309 ml (Wenoll ® ) and the peak airway pressures from 23 hPa (Primus ® ) to 49 hPa (Oxylog ® 3000). Transport ventilators generated lower tidal volumes than intensive care ventilators or closed-circuit systems. Peak airway pressures during CPAP-CPR were lower than those during controlled ventilation CPR reported in literature. High peak airway pressures are known to limit the applicability of ventilation via facemask or via supraglottic airway devices and may adversely affect haemodynamics. Hence, the application of ventilators generating high tidal volumes with low peak airway pressures appears desirable during CPAP-CPR. The limited CPAP-CPR capabilities of transport ventilators in our study might be prerequisite for future developments of transport ventilators.

  8. Effect of tibial plateau leveling osteotomy on femorotibial contact mechanics and stifle kinematics.

    PubMed

    Kim, Stanley E; Pozzi, Antonio; Banks, Scott A; Conrad, Bryan P; Lewis, Daniel D

    2009-01-01

    To evaluate the effects of tibial plateau leveling osteotomy (TPLO) on femorotibial contact mechanics and 3-dimensional (3D) kinematics in cranial cruciate ligament (CrCL)-deficient stifles of dogs. In vitro biomechanical study. Unpaired pelvic limbs from 8 dogs, weighing 28-35 kg. Digital pressure sensors placed subjacent to the menisci were used to measure femorotibial contact force, contact area, peak and mean contact pressure, and peak pressure location with the limb under an axial load of 30% body weight and a stifle angle of 135 degrees. Three-dimensional static poses of the stifle were obtained using a Microscribe digitizing arm. Each specimen was tested under normal, CrCL-deficient, and TPLO-treated conditions. Repeated measures analysis of variance with a Tukey post hoc test (P<.05) was used for statistical comparison. Significant disturbances to all measured contact mechanical variables were evident after CrCL transection, which corresponded to marked cranial tibial subluxation and increased internal tibial rotation in the CrCL-deficient stifle. No significant differences in 3D femorotibial alignment were observed between normal and TPLO-treated stifles; however, femorotibial contact area remained significantly smaller and peak contact pressures in both medial and lateral stifle compartments were positioned more caudally on the tibial plateau, when compared with normal. Whereas TPLO eliminates craniocaudal stifle instability during simulated weight bearing, the procedure fails to concurrently restore femorotibial contact mechanics to normal. Progression of stifle osteoarthritis in dogs treated with TPLO may be partly the result of abnormal stifle contact mechanics induced by altering the orientation of the proximal tibial articulating surface.

  9. Shock Wave Propagation in Layered Planetary Interiors: Revisited

    NASA Astrophysics Data System (ADS)

    Arkani-Hamed, J.; Monteux, J.

    2017-12-01

    The end of the terrestrial planet accretion is characterized by numerous large impacts. About 90% of the mass of a large planet is accreted while the core mantle separation is occurring, because of the accretionary and the short-lived radio-isotope heating. The characteristics of the shockwave propagation, hence the existing scaling laws are poorly known within the layered planets. Here, we use iSALE-2D hydrocode simulations to calculate shock pressure in a differentiated Mars type body for impact velocities of 5-20 km/s, and impactor sizes of 100-400 km. We use two different rheologies for the target interior, an inviscid model ("no-stress model") and a pressure and damage-dependent strength model ("elaborated model"). To better characterize the shock pressure within the whole mantle as a function of distance from the impact site, we propose the following distribution: (1) a near field zone larger than the isobaric core that extends to 7-15 times the projectile radius into the target, where the peak shock pressure decays exponentially with increasing distance, (2) a far field zone where the pressure decays with distance following a power law. The shock pressure decreases more rapidly with distance in the near field for the elaborated model than for the no-stress model because of the influence of acoustic fluidization and damage. However to better illustrate the influence of the rheology on the shock propagation, we use the same expressions to fit the shock pressure with distance for both models. At the core-mantle boundary, CMB, the peak shock pressure jumps as the shock wave enters the core. We derived the boundary condition at CMB for the peak shock pressure. It is less sensitive to the impact velocity or the impactor size, but strongly depends on the rheology of the planet's mantle. Because of the lower shock wave velocity in the core compared to that in the mantle, the refracted shockwave propagates toward the symmetry axis of the planet, and the shock pressure in the core decreases following a second power law. In this study, we express the output obtained from iSALE hydrocodes by scaling laws to illustrate the influence of the ray angle relative to the axis of symmetry, the target rheology, the impactor size and the impact velocity. We use these shock-pressure scaling laws to determine the impact heating of terrestrial planets.

  10. A comparison of the experimental subsonic pressure distributions about several bodies of revolution with pressure distributions computed by means of the linearized theory

    NASA Technical Reports Server (NTRS)

    Matthews, Clarence W

    1953-01-01

    An analysis is made of the effects of compressibility on the pressure coefficients about several bodies of revolution by comparing experimentally determined pressure coefficients with corresponding pressure coefficients calculated by the use of the linearized equations of compressible flow. The results show that the theoretical methods predict the subsonic pressure-coefficient changes over the central part of the body but do not predict the pressure-coefficient changes near the nose. Extrapolation of the linearized subsonic theory into the mixed subsonic-supersonic flow region fails to predict a rearward movement of the negative pressure-coefficient peak which occurs after the critical stream Mach number has been attained. Two equations developed from a consideration of the subsonic compressible flow about a prolate spheroid are shown to predict, approximately, the change with Mach number of the subsonic pressure coefficients for regular bodies of revolution of fineness ratio 6 or greater.

  11. Cerebral Hemodynamics During Exercise and Recovery in Heart Transplant Recipients.

    PubMed

    Gayda, Mathieu; Desjardins, Audrey; Lapierre, Gabriel; Dupuy, Olivier; Fraser, Sarah; Bherer, Louis; Juneau, Martin; White, Michel; Gremeaux, Vincent; Labelle, Véronique; Nigam, Anil

    2016-04-01

    The aims of this work were (1) to compare cerebral oxygenation-perfusion (COP), central hemodynamics, and peak oxygen uptake (V˙o2peak) in heart transplant recipients (HTRs) vs age-matched healthy controls (AMHCs) during exercise and recovery and (2) to study the relationships between COP, central hemodynamics, and V˙o2peak in HTRs and AMHCs. Twenty-six HTRs (3 women) and 27 AMHCs (5 women) were recruited. Maximal cardiopulmonary function (gas exchange analysis), cardiac hemodynamics (impedance cardiography), and left frontal COP (near-infrared spectroscopy) were measured continuously during and after a maximal ergocycle (Ergoline 800S, Bitz, Germany) test. Compared with AMHCs, HTRs had lower V˙o2peak, maximal cardiac index (CImax), and maximal ventilatory variables (P < 0.05). COP was lower during exercise (oxyhemoglobin [ΔO2Hb], 50% and 75% of V˙O2peak, total hemoglobin [ΔtHb], 100% of V˙O2peak; P < 0.05), and recovery in HTRs (ΔO2Hb, minutes 2-5; ΔtHb, minutes 1-5; P < 0.05) compared with AMHCs. End-tidal pressure of CO2 was lower during exercise compared with that in AMHCs (P < 0.0001). In HTRs, CImax was positively correlated with exercise cerebral hemodynamics (R = 0.54-0.60; P < 0.01). In HTRs, COP was reduced during exercise and recovery compared with that in AMHCs, potentially because of a combination of blunted cerebral vasodilation by CO2, cerebrovascular dysfunction, reduced cardiac function, and medication. The impaired V˙O2peak observed in HTRs was mainly caused by reduced maximal ventilation and CI. In HTRs, COP is impaired and is correlated with cardiac function, potentially impacting cognitive function. Therefore, we need to study which interventions (eg, exercise training) are most effective for improving or normalizing (or both) COP during and after exercise in HTRs. Copyright © 2016 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  12. A study on the physical fitness index, heart rate and blood pressure in different phases of lunar month on male human subjects

    NASA Astrophysics Data System (ADS)

    Chakraborty, Ujjwal; Ghosh, Tusharkanti

    2013-09-01

    The gravitational pull of the moon on the earth is not the same in all phases of the lunar month, i.e. new moon (NM), first quarter (FQ), full moon (FM) and third quarter (TQ), and as a result the amplitude of tide differs in different phases. The gravitational pull of the moon may have effects on the fluid compartments of the human body and hence the cardiovascular system may be affected differentially in the different phases of the lunar month. In the present study resting heart rate (HR) and blood pressure (BP), physical fitness index (PFI), peak HR and BP immediately after step test, and recovery HR and BP after step test were measured during different phases of the lunar month in 76 male university students (age 23.7 ± 1.7 years). At rest, both systolic and mean arterial BP were ˜5 mmHg lower in NM and FM compared to FQ and TQ, but resting HR was not significantly different between phases. Further, peak HR and peak systolic BP after step test were lower (˜4 beat/min and ˜5 mmHg, respectively) in NM and FM compared to FQ and TQ. PFI was also higher (˜5) in NM and FM compared to FQ and TQ. Recovery of HR after step test was quicker in NM and FM compared to that of FQ and TQ. It appears from this study that gravitational pull of the moon may affect the cardiovascular functions of the human body. Moreover, the physical efficiency of humans is increased in NM and FM due to these altered cardiovascular regulations.

  13. Effects of medial meniscus posterior horn avulsion and repair on tibiofemoral contact area and peak contact pressure with clinical implications.

    PubMed

    Marzo, John M; Gurske-DePerio, Jennifer

    2009-01-01

    Avulsion of the posterior horn attachment of the medial meniscus can compromise load-bearing ability, produce meniscus extrusion, and result in tibiofemoral joint-space narrowing, articular cartilage damage, and osteoarthritis. Avulsion of the posterior horn of the medial meniscus will increase peak contact pressure and decrease contact area in the medial compartment of the knee, and posterior horn repair will restore contact area and peak contact pressures to values of the control knee. Controlled laboratory study. Eight fresh-frozen human cadaveric knees had tibiofemoral peak contact pressures and contact area measured in the control state. The posterior horn of the medial meniscus was avulsed from its insertion and knees were retested. The meniscal avulsion was repaired by suture through a transosseous tunnel and the knees were tested a third time. Avulsion of the posterior horn attachment of the medial meniscus resulted in a significant increase in medial joint peak contact pressure (from 3841 kPa to 5084 kPa) and a significant decrease in contact area (from 594 mm(2) to 474 mm(2)). Repair of the avulsion resulted in restoration of the loading profiles to values equal to the control knee, with values of 3551 kPa for peak pressure and 592 mm(2) for contact area. Posterior horn medial meniscal root avulsion leads to deleterious alteration of the loading profiles of the medial joint compartment and results in loss of hoop stress resistance, meniscus extrusion, abnormal loading of the joint, and early knee medial-compartment degenerative changes. The repair technique described restores the ability of the medial meniscus to absorb hoop stress and eliminate joint-space narrowing, possibly decreasing the risk of degenerative disease.

  14. The effect of scapular position on subacromial contact behavior: a cadaver study.

    PubMed

    Muraki, Takayuki; Yamamoto, Nobuyuki; Sperling, John W; Steinmann, Scott P; Cofield, Robert H; An, Kai-Nan

    2017-05-01

    Patients with subacromial impingement were reported to show abnormal scapular positions during shoulder elevation. However, the relationship between the scapular positions and subacromial impingement is unclear. The purpose of this study was to biomechanically determine the effect of scapular position on subacromial contact behavior by using fresh frozen cadavers. The peak contact pressure on the coracoacromial arch was measured with a flexible tactile force sensor in 9 fresh frozen cadaver shoulders. The measurement was performed during passive glenohumeral elevation in the scapular plane ranging from 30° to 75°. The scapular downward and internal rotations and anterior tilt were simulated by tilting the scapula in 5° increments up to 20°. The measurement was also performed with combination of scapular downward and internal rotations and anterior tilt positions. The peak contact pressure decreased linearly with anterior tilt, and a significant difference between neutral scapular position (1.06 ± 0.89 MPa) and anterior tilt by 20° (0.46 ± 0.18 MPa) was observed (P < .05). However, the scapular positioning in the other directions did not change the peak contact pressure significantly. Furthermore, any combination of abnormal scapular positions did not affect peak contact pressure significantly. Scapular anterior tilt decreased peak contact pressure during passive shoulder elevation. In addition, scapular downward and internal rotations had little effect on peak contact pressure. The abnormal scapular motion reported in previous studies might not be directly related to symptoms caused by subacromial impingement. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  15. Gas compression in lungs decreases peak expiratory flow depending on resistance of peak flowmeter.

    PubMed

    Pedersen, O F; Pedersen, T F; Miller, M R

    1997-11-01

    It has recently been shown (O. F. Pedersen T. R. Rasmussen, O. Omland, T. Sigsgaard, P. H. Quanjer. and M. R. Miller. Eur. Respir. J. 9: 828-833, 1996) that the added resistance of a mini-Wright peak flowmeter decreases peak expiratory flow (PEF) by approximately 8% compared with PEF measured by a pneumotachograph. To explore the reason for this, 10 healthy men (mean age 43 yr, range 33-58 yr) were examined in a body plethysmograph with facilities to measure mouth flow vs. expired volume as well as the change in thoracic gas volume (Vb) and alveolar pressure (PA). The subjects performed forced vital capacity maneuvers through orifices of different sizes and also a mini-Wright peak flowmeter. PEF with the meter and other added resistances were achieved when flow reached the perimeter of the flow-Vb curves. The mini-Wright PEF meter decreased PEF from 11.4 +/- 1.5 to 10.3 +/- 1.4 (SD) l/s (P < 0.001), PA increased from 6.7 +/- 1.9 to 9.3 +/- 2.7 kPa (P < 0.001), an increase equal to the pressure drop across the meter, and caused Vb at PEF to decrease by 0.24 +/- 0.09 liter (P < 0.001). We conclude that PEF obtained with an added resistance like a mini-Wright PEF meter is a wave-speed-determined maximal flow, but the added resistance causes gas compression because of increased PA at PEF. Therefore, Vb at PEF and, accordingly, PEF decrease.

  16. A comparison with theory of peak to peak sound level for a model helicopter rotor generating blade slap at low tip speeds

    NASA Technical Reports Server (NTRS)

    Fontana, R. R.; Hubbard, J. E., Jr.

    1983-01-01

    Mini-tuft and smoke flow visualization techniques have been developed for the investigation of model helicopter rotor blade vortex interaction noise at low tip speeds. These techniques allow the parameters required for calculation of the blade vortex interaction noise using the Widnall/Wolf model to be determined. The measured acoustics are compared with the predicted acoustics for each test condition. Under the conditions tested it is determined that the dominating acoustic pulse results from the interaction of the blade with a vortex 1-1/4 revolutions old at an interaction angle of less than 8 deg. The Widnall/Wolf model predicts the peak sound pressure level within 3 dB for blade vortex separation distances greater than 1 semichord, but it generally over predicts the peak S.P.L. by over 10 dB for blade vortex separation distances of less than 1/4 semichord.

  17. Normative wideband reflectance, equivalent admittance at the tympanic membrane, and acoustic stapedius reflex threshold in adults

    PubMed Central

    Feeney, M. Patrick; Keefe, Douglas H.; Hunter, Lisa L.; Fitzpatrick, Denis F.; Garinis, Angela C.; Putterman, Daniel B.; McMillan, Garnett P.

    2016-01-01

    Objectives Wideband acoustic immittance (WAI) measures such as pressure reflectance, parameterized by absorbance and group delay, equivalent admittance at the tympanic membrane (TM), and acoustic stapedius reflex threshold (ASRT) describe middle-ear function across a wide frequency range, compared to traditional tests employing a single frequency. The objective of this study was to obtain normative data using these tests for a group of normal hearing adults and investigate test-retest reliability using a longitudinal design. Design A longitudinal prospective design was used to obtain normative test and retest data on clinical and WAI measures. Subjects were 13 males and 20 females (mean age = 25 y). Inclusion criteria included normal audiometry and clinical immittance. Subjects were tested on two separate visits approximately one month apart. Reflectance and equivalent admittance at the TM were measured from 0.25 to 8.0 kHz under three conditions: at ambient pressure in the ear canal and with pressure sweeps from positive to negative pressure (downswept) and negative to positive pressure (upswept). Equivalent admittance at the TM was calculated using admittance measurements at the probe tip which were adjusted using a model of sound transmission in the ear canal and acoustic estimates of ear-canal area and length. Wideband ASRTs were measured at tympanometric peak pressure (TPP) derived from the average TPP of downswept and upswept tympanograms. Descriptive statistics were obtained for all WAI responses, and wideband and clinical ASRTs were compared. Results Mean absorbance at ambient pressure and TPP demonstrated a broad band-pass pattern typical of previous studies. Test-retest differences were lower for absorbance at TPP for the downswept method compared to ambient pressure at frequencies between 1.0 and 1.26 kHz. Mean tympanometric peak-to-tail differences for absorbance were greatest around 1.0 to 2.0 kHz and similar for positive and negative tails. Mean group delay at ambient pressure and at TPP were greatest between 0.32 and 0.6 kHz at 200 to 300 μs, reduced at frequencies between 0.8 and 1.5 kHz, and increased above 1.5 kHz to around 150 μs. Mean equivalent admittance at the TM had a lower level for the ambient method than at TPP for both sweep directions below 1.2 kHz, but the difference between methods was only statistically significant for the comparison between the ambient method and TPP for the upswept tympanogram. Mean equivalent admittance phase was positive at all frequencies. Test-retest reliability of the equivalent admittance level ranged from 1 to 3 dB at frequencies below 1.0 kHz, but increased to 8 to 9 dB at higher frequencies. The mean wideband ASRT for an ipsilateral broadband noise activator was 12 dB lower than the clinical ASRT, but had poorer reliability. Conclusions Normative data for the WAI test battery revealed minor differences for results at ambient pressure compared to tympanometric methods at TPP for reflectance, group delay, and equivalent admittance level at the TM for subjects with middle-ear pressure within ±100 daPa. Test-retest reliability was better for absorbance at TPP for the downswept tympanogram compared to ambient pressure at frequencies around 1.0 kHz. Large peak-to-tail differences in absorbance combined with good reliability at frequencies between about 0.7 and 3.0 kHz suggest that this may be a sensitive frequency range for interpreting absorbance at TPP. The mean wideband ipsilateral ASRT was lower than the clinical ASRT, consistent with previous studies. Results are promising for the use of a wideband test battery to evaluate middle-ear function. PMID:28045835

  18. Large-eddy simulations of adverse pressure gradient turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Bobke, Alexandra; Vinuesa, Ricardo; Örlü, Ramis; Schlatter, Philipp

    2016-04-01

    Adverse pressure-gradient (APG) turbulent boundary layers (TBL) are studied by performing well-resolved large-eddy simulations. The pressure gradient is imposed by defining the free-stream velocity distribution with the description of a power law. Different inflow conditions, box sizes and upper boundary conditions are tested in order to determine the final set-up. The statistics of turbulent boundary layers with two different power-law coefficients and thus magnitudes of adverse pressure gradients are then compared to zero pressure-gradient (ZPG) data. The effect of the APG on TBLs is manifested in the mean flow through a much more prominent wake region and in the Reynolds stresses through the existence of an outer peak. The pre-multiplied energy budgets show that more energy is transported from the near-wall region to farther away from the wall.

  19. PREPARATIVE ISOLATION AND PURIFICATION OF CHEMICAL CONSTITUENTS OF BELAMCANDA BY MPLC, HSCCC AND PREP-HPLC

    PubMed Central

    Wang, Xiaohong; Liang, Yong; Peng, Cuilin; Xie, Huichun; Pan, Man; Zhang, Tianyou; Ito, Yoichiro

    2010-01-01

    Combined with medium-pressure liquid chromatography (MPLC) and preparative high-pressure liquid chromatography (Prep-HPLC), high-speed countercurrent chromatography (HSCCC) was successfully applied for separation and purification of isoflavonoids from the extract of belamcanda. HSCCC separation was performed on a two-phase solvent system composed of methyl tert-butyl ether -ethyl acetate - n-butyl alcohol – acetonitrile −0.1% aqueous trifluoroacetic acid at a volume radio of 1:2:1:1:5. Semi-purified peak fractions from HSCCC separation were further purified by Prep-HPLC. Nine well-separated fractions were analyzed by HPLC-UV absorption spectrometry to determine their purities and characterized with ESI-MSn. Except for peaksland VII (unknown) seven compounds were identified as apocynin (peak II), mangiferin (peak III), 7-O-methylmangiferin (peak IV), hispidulin (peak V), 3′-hydroxyltectoridin (peak VI), iristectorin B (peak VII), isoiridin (peak IX). PMID:21552369

  20. Association between Infancy BMI Peak and Body Composition and Blood Pressure at Age 5–6 Years

    PubMed Central

    Hof, Michel H. P.; Vrijkotte, Tanja G. M.; de Hoog, Marieke L. A.; van Eijsden, Manon; Zwinderman, Aeilko H.

    2013-01-01

    Introduction The development of overweight is often measured with the body mass index (BMI). During childhood the BMI curve has two characteristic points: the adiposity rebound at 6 years and the BMI peak at 9 months of age. In this study, the associations between the BMI peak and body composition measures and blood pressure at age 5–6 years were investigated. Methods Measurements from the Amsterdam Born Children and their Development (ABCD) study were available for this study. Blood pressure (systolic and diastolic) and body composition measures (BMI, waist-to-height ratio, fat percentage) were gathered during a health check at about 6 years of age (n = 2822). All children had multiple BMI measurements between the 0–4 years of age. For boys and girls separately, child-specific BMI peaks were extracted from mixed effect models. Associations between the estimated BMI peak and the health check measurements were analysed with linear models. In addition, we investigated the potential use of the BMI at 9 months as a surrogate measure for the magnitude of the BMI peak. Results After correction for the confounding effect of fetal growth, both timing and magnitude of the BMI peak were significantly and positively associated (p<0.001) with all body composition measures at the age of 5–6 years. The BMI peak showed no direct association with blood pressure at the age 5–6 year, but was mediated by the current BMI. The correlation between the magnitude of the BMI peak and BMI at 9 months was approximately 0.93 and similar associations with the measures at 5–6 years were found. Conclusion The magnitude of the BMI peak was associated with body composition measures at 5–6 years of age. Moreover, the BMI at 9 months could be used as surrogate measure for the magnitude of the BMI peak. PMID:24324605

  1. Comparison of Tibiofemoral Contact Mechanics After Various Transtibial and All-Inside Fixation Techniques for Medial Meniscus Posterior Root Radial Tears in a Porcine Model.

    PubMed

    Chung, Kyu Sung; Choi, Choong Hyeok; Bae, Tae Soo; Ha, Jeong Ku; Jun, Dal Jae; Wang, Joon Ho; Kim, Jin Goo

    2018-04-01

    To compare tibiofemoral contact mechanics after fixation for medial meniscus posterior root radial tears (MMPRTs). Seven fresh knees from mature pigs were used. Each knee was tested under 5 conditions: normal knee, MMPRT, pullout fixation with simple sutures, fixation with modified Mason-Allen sutures, and all-inside fixation using Fastfix 360. The peak contact pressure and contact surface area were evaluated using a capacitive sensor positioned between the meniscus and tibial plateau, under a 1,000-N compression force, at different flexion angles (0°, 30°, 60°, and 90°). The peak contact pressure was significantly higher in MMPRTs than in normal knees (P = .018). Although the peak contact pressure decreased significantly after fixation at all flexion angles (P = .031), it never recovered to the values noted in the normal meniscus. No difference was observed among fixation groups (P = .054). The contact surface area was significantly lower in MMPRTs than in the normal meniscus (P = .018) and increased significantly after fixation at all flexion angles (P = .018) but did not recover to within normal limits. For all flexion angles except 60°, the contact surface area was significantly higher for fixation with Mason-Allen sutures than for fixation with simple sutures or all-inside fixation (P = .027). At 90° of flexion, the contact surface area was significantly better for fixation with simple sutures than for all-inside fixation (P = .031). The peak contact pressure and contact surface area improved significantly after fixation, regardless of the fixation method, but did not recover to the levels noted in the normal meniscus after any type of fixation. Among the fixation methods evaluated in this time 0 study, fixation using modified Mason-Allen sutures provided a superior contact surface area compared with that noted after fixation using simple sutures or all-inside fixation, except at 60° of flexion. However, this study had insufficient power to accurately detect the differences between the outcomes of various fixation methods. Our results in a porcine model suggest that fixation can restore tibiofemoral contact mechanics in MMPRT and that fixation with a locking mechanism leads to superior biomechanical properties. Copyright © 2017 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  2. Continuous ambulatory right heart pressure measurements with an implantable hemodynamic monitor: a multicenter, 12-month follow-up study of patients with chronic heart failure.

    PubMed

    Magalski, Anthony; Adamson, Philip; Gadler, Frederick; Böehm, Michael; Steinhaus, David; Reynolds, Dwight; Vlach, Kathryn; Linde, Cecilia; Cremers, Bodo; Sparks, Brandon; Bennett, Tom

    2002-04-01

    We describe the performance of an implantable hemodynamic monitor (IHM) that allows continuous recording of heart rate, patient activity levels, and right ventricular systolic, right ventricular diastolic, and estimated pulmonary artery diastolic pressures. Pressure parameters derived from the implantable monitor were correlated to measurements made with a balloon-tipped catheter to establish accuracy and reproducibility over time in patients with chronic heart failure (CHF). IHM devices were implanted in 32 patients with CHF (left ventricular ejection fraction, 29% +/- 11%; range, 14%-62%) and were tested with right heart catheterization at implantation and 3, 6, and 12 months later. Hemodynamic variables were digitally recorded simultaneously from the IHM and catheter. Values were recorded during supine rest, peak response of Valsalva maneuver, sitting, peak of a 2-stage (25-50 W) bicycle exercise test, and final rest period. The median of 21 paired beat-to-beat cardiac cycles was analyzed for each intervention. A total of 217 paired data values from all maneuvers were analyzed for 32 patients at implantation and 129 paired data values for 20 patients at 1 year. The IHM and catheter values were not different at baseline or at 1 year (P >.05). Combining all interventions, correlation coefficients were 0.96 and 0.94 for right ventricular systolic pressure, 0.96 and 0.83 for right ventricular diastolic pressure, and 0.87 and 0.87 for estimated pulmonary artery diastolic pressure at implantation and 1 year, respectively. The IHM and a standard reference pressure system recorded comparable right heart pressure values in patients with CHF. This implantable pressure transducer is accurate over time and provides a means to precisely monitor the hemodynamic condition of patients with CHF in a continuous fashion.

  3. Acoustic pressure waves induced in human heads by RF pulses from high-field MRI scanners.

    PubMed

    Lin, James C; Wang, Zhangwei

    2010-04-01

    The current evolution toward greater image resolution from magnetic resonance image (MRI) scanners has prompted the exploration of higher strength magnetic fields and use of higher levels of radio frequencies (RFs). Auditory perception of RF pulses by humans has been reported during MRI with head coils. It has shown that the mechanism of interaction for the auditory effect is caused by an RF pulse-induced thermoelastic pressure wave inside the head. We report a computational study of the intensity and frequency of thermoelastic pressure waves generated by RF pulses in the human head inside high-field MRI and clinical scanners. The U.S. Food and Drug Administration (U.S. FDA) guides limit the local specific absorption rate (SAR) in the body-including the head-to 8 W kg(-1). We present results as functions of SAR and show that for a given SAR the peak acoustic pressures generated in the anatomic head model were essentially the same at 64, 300, and 400 MHz (1.5, 7.0, and 9.4 T). Pressures generated in the anatomic head are comparable to the threshold pressure of 20 mPa for sound perception by humans at the cochlea for 4 W kg(-1). Moreover, results indicate that the peak acoustic pressure in the brain is only 2 to 3 times the auditory threshold at the U.S. FDA guideline of 8 W kg(-1). Even at a high SAR of 20 W kg(-1), where the acoustic pressure in the brain could be more than 7 times the auditory threshold, the sound pressure levels would not be more than 17 db above threshold of perception at the cochlea.

  4. The effects of temperature, hydrostatic pressure and size on optical gain for GaAs spherical quantum dot laser with hydrogen impurity

    NASA Astrophysics Data System (ADS)

    Owji, Erfan; Keshavarz, Alireza; Mokhtari, Hosein

    2016-10-01

    In this paper, the effects of temperature, hydrostatic pressure and size on optical gain for GaAs spherical quantum dot laser with hydrogen impurity are investigated. For this purpose, the effects of temperature, pressure and quantum dot size on the band gap energy, effective mass, and dielectric constant are studied. The eigenenergies and eigenstates for valence and conduction band are calculated by using Runge-Kutta numerical method. Results show that changes in the temperature, pressure and size lead to the alteration of the band gap energy and effective mass. Also, increasing the temperature redshifts the optical gain peak and at special temperature ranges lead to increasing or decreasing of it. Further, by reducing the size, temperature-dependent of optical gain is decreased. Additionally, enhancing of the hydrostatic pressure blueshifts the peak of optical gain, and its behavior as a function of pressure which depends on the size. Finally, increasing the radius rises the redshifts of the peak of optical gain.

  5. Volume-based characterization of postocclusion surge.

    PubMed

    Zacharias, Jaime; Zacharias, Sergio

    2005-10-01

    To propose an alternative method to characterize postocclusion surge using a collapsible artificial anterior chamber to replace the currently used rigid anterior chamber model. Fundación Oftamológica Los Andes, Santiago, Chile. The distal end of a phacoemulsification handpiece was placed inside a compliant artificial anterior chamber. Digital recordings of chamber pressure, chamber volume, inflow, and outflow were performed during occlusion break of the phacoemulsification tip. The occlusion break profile of 2 different consoles was compared. Occlusion break while using a rigid anterior chamber model produced a simultaneous increase of chamber inflow and outflow. In the rigid chamber model, pressure decreased sharply, reaching negative pressure values. Alternatively, with the collapsible chamber model, a delay was observed in the inflow that occurs to compensate the outflow surge. Also, the chamber pressure drop was smaller in magnitude, never undershooting below atmospheric pressure into negative values. Using 500 mm Hg as vacuum limit, the Infiniti System (Alcon) performed better that the Legacy (Alcon), showing an 18% reduction in peak volume variation. The collapsible anterior chamber model provides a more realistic representation of the postocclusion surge events that occur in the real eye during cataract surgery. Peak volume fluctuation (mL), half volume recovery time(s), and volume fluctuation integral value (mL x s) are proposed as realistic indicators to characterize the postocclusion surge performance. These indicators show that the Infiniti System has a better postocclusion surge behavior than the Legacy System.

  6. Lower Thoracic Spinal Cord Stimulation to Restore Cough in Patients with Spinal Cord Injury: Results of a National Institutes of Health-Sponsored Clinical Trial Part I: Methodology and Effectiveness of Expiratory Muscle Activation

    PubMed Central

    DiMarco, Anthony F.; Kowalski, Krzysztof E.; Geertman, Robert T.; Hromyak, Dana R.

    2009-01-01

    Objective Evaluation of the capacity of lower thoracic spinal cord stimulation (SCS) to activate the expiratory muscles and generate large airway pressures and high peak airflows characteristic of cough, in subjects with tetraplegia. Design Clinical trial. Setting In-patient hospital setting for electrode insertion; out-patient setting for measurement of respiratory pressures; home setting for application of SCS. Participants Subjects (N = 9; 8 men, 1 woman) with cervical spinal cord injury and weak cough. Intervention(s) A fully implantable electrical stimulation system was surgically placed in each subject. Partial hemilaminectomies were made to place single-disc electrodes in the epidural space at the T9, T11 and L1 spinal levels. A radiofrequency receiver was placed in the subcutaneous pocket over the anterior portion of the chest wall. Electrode wires were tunneled subcutaneously and connected to the receiver. Stimulation was applied by activating a small portable external stimulus controller box powered by a rechargeable battery to each electrode lead alone and in combination. Main Outcome Measure(s) Airway pressure and peak airflow generation achieved with SCS. Results Supramaximal SCS resulted in large airway pressures and high peak airflow rates during stimulation at each electrode lead. Maximum airway pressures and peak airflow rates were achieved with combined stimulation of any 2 leads. At total lung capacity, mean maximum airway pressure generation and peak airflow rates were 137 ± 30 cmH2O (mean ± SE) and 8.6 ± 1.8 (mean ± SE) L/s, respectively. Conclusions Lower thoracic SCS results in near maximum activation of the expiratory muscles and the generation of high positive airway pressures and peak airflow rates in the range of those observed with maximum cough efforts in normal individuals. PMID:19406289

  7. New Raman-peak at 1850 cm(-1) observed in multiwalled carbon nanotubes produced by hydrogen arc discharge.

    PubMed

    Chen, B; Kadowaki, Y; Inoue, S; Ohkohchi, M; Zhao, X; Ando, Y

    2010-06-01

    The new peak (near 1850 cm(-1)) assigned to carbon linear chain included in the centre of very thin innermost multiwalled carbon nanotubes (MWNTs) has been verified by Raman spectroscopy. These MWNTs were produced by dc arc discharge of pure graphite rods in pure hydrogen gas and existed in the cathode deposit. In this paper, we clarified that the new Raman-peaks could also be observed in the cathode deposit including MWNTs produced by hydrogen dc arc discharge using graphite electrode with added Y or La. By changing the quantity of addition (Y or La), dc arc current and pressure of ambient hydrogen gas, the optimum condition to get maximum intensity of the new Raman-peaks was obtained. For the case of 1 wt% La, dc 50 A, H2 pressure of 50 Torr was found to be optimum, and the intensity of new Raman-peak was even higher than the G-band peak. For the case of 1 wt% Y, dc 50 A, H2 pressure of 50 Torr was optimum, but the intensity of new Raman-peak was weaker than the G-band peak. Transmission electron microscopy observation revealed that the crystallinity of MWNTs produced with pure graphite rod was better than those produced with added Y or La.

  8. Determinants and Options in the Development of Higher Education in Poland.

    ERIC Educational Resources Information Center

    Jozefowicz, Adam; Kluczynski, Jan

    Trends affecting the future development of higher education in Poland are considered. It is projected that the demographic pool of higher education enrollment will in 1995-2000 return to a level roughly comparable with the peak pressures for college entry in the years 1971-75. It is suggested that demographic changes alone can explain but a…

  9. Empirical prediction of peak pressure levels in anthropogenic impulsive noise. Part I: Airgun arrays signals.

    PubMed

    Galindo-Romero, Marta; Lippert, Tristan; Gavrilov, Alexander

    2015-12-01

    This paper presents an empirical linear equation to predict peak pressure level of anthropogenic impulsive signals based on its correlation with the sound exposure level. The regression coefficients are shown to be weakly dependent on the environmental characteristics but governed by the source type and parameters. The equation can be applied to values of the sound exposure level predicted with a numerical model, which provides a significant improvement in the prediction of the peak pressure level. Part I presents the analysis for airgun arrays signals, and Part II considers the application of the empirical equation to offshore impact piling noise.

  10. Experimental and analytical dynamic flow characteristics of an axial-flow fan from an air cushion landing system model

    NASA Technical Reports Server (NTRS)

    Thompson, W. C.; Boghani, A. B.; Leland, T. J. W.

    1977-01-01

    An investigation was conducted to compare the steady-state and dynamic flow characteristics of an axial-flow fan which had been used previously as the air supply fan for some model air cushion landing system studies. Steady-state flow characteristics were determined in the standard manner by using differential orifice pressures for the flow regime from free flow to zero flow. In this same regime, a correlative technique was established so that fan inlet and outlet pressures could be used to measure dynamic flow as created by a rotating damper. Dynamic tests at damper frequencies up to 5 Hz showed very different flow characteristics when compared with steady-state flow, particularly with respect to peak pressures and the pressure-flow relationship at fan stall and unstall. A generalized, rational mathematical fan model was developed based on physical fan parameters and a steady-state flow characteristic. The model showed good correlation with experimental tests at damper frequencies up to 5 Hz.

  11. Interference heating from interactions of shock waves with turbulent boundary layers at Mach 6

    NASA Technical Reports Server (NTRS)

    Johnson, C. B.; Kaufman, L. G., II

    1974-01-01

    An experimental investigation of interference heating resulting from interactions of shock waves and turbulent boundary layers was conducted. Pressure and heat-transfer distributions were measured on a flat plate in the free stream and on the wall of the test section of the Langley Mach 6 high Reynolds number tunnel for Reynolds numbers ranging from 2 million to 400 million. Various incident shock strengths were obtained by varying a wedge-shock generator angle (from 10 deg to 15 deg) and by placing a spherical-shock generator at different vertical positions above the instrumented flat plate and tunnel wall. The largest heating-rate amplification factors obtained for completely turbulent boundary layers were 22.1 for the flat plate and 11.6 for the tunnel wall experiments. Maximum heating correlated with peak pressures using a power law with a 0.85 exponent. Measured pressure distributions were compared with those calculated using turbulent free-interaction pressure rise theories, and separation lengths were compared with values calculated by using different methods.

  12. Far-infrared spectra of CO2 clathrate hydrate frosts

    NASA Technical Reports Server (NTRS)

    Landry, J. C.; England, A. W.

    1993-01-01

    As a product of our interest in remote sensing of planetary ices, frost samples of CO2 clathrate hydrate were grown by depositing water vapor on a cooled surface and pressurizing the resulting water frost with CO2 gas. At pressures above the dissociation pressure of the clathrate, the samples exhibit an absorption peak at 75 cm (sup -1). At pressures below the dissociation pressure, the peak disappears. Since the free CO2 molecule does not have rotational or vibrational absorption in this region, the absorption is attributed to a CO2 rattling mode within a clathrate cage.

  13. Cuff-Free Blood Pressure Estimation Using Pulse Transit Time and Heart Rate.

    PubMed

    Wang, Ruiping; Jia, Wenyan; Mao, Zhi-Hong; Sclabassi, Robert J; Sun, Mingui

    2014-10-01

    It has been reported that the pulse transit time (PTT), the interval between the peak of the R-wave in electrocardiogram (ECG) and the fingertip photoplethysmogram (PPG), is related to arterial stiffness, and can be used to estimate the systolic blood pressure (SBP) and diastolic blood pressure (DBP). This phenomenon has been used as the basis to design portable systems for continuously cuff-less blood pressure measurement, benefiting numerous people with heart conditions. However, the PTT-based blood pressure estimation may not be sufficiently accurate because the regulation of blood pressure within the human body is a complex, multivariate physiological process. Considering the negative feedback mechanism in the blood pressure control, we introduce the heart rate (HR) and the blood pressure estimate in the previous step to obtain the current estimate. We validate this method using a clinical database. Our results show that the PTT, HR and previous estimate reduce the estimated error significantly when compared to the conventional PTT estimation approach (p<0.05).

  14. Three-dimensional dynamic hip contact area and pressure distribution during activities of daily living.

    PubMed

    Yoshida, H; Faust, A; Wilckens, J; Kitagawa, M; Fetto, J; Chao, Edmund Y-S

    2006-01-01

    Estimation of the hip joint contact area and pressure distribution during activities of daily living is important in predicting joint degeneration mechanism, prosthetic implant wear, providing biomechanical rationales for preoperative planning and postoperative rehabilitation. These biomechanical data were estimated utilizing a generic hip model, the Discrete Element Analysis technique, and the in vivo hip joint contact force data. The three-dimensional joint potential contact area was obtained from the anteroposterior radiograph of a subject and the actual joint contact area and pressure distribution in eight activities of daily living were calculated. During fast, normal, and slow walking, the peak pressure of moderate magnitude was located at the lateral roof of the acetabulum during mid-stance. In standing up and sitting down, and during knee bending, the peak pressures were located at the edge of the posterior horn and the magnitude of the peak pressure during sitting down was 2.8 times that of normal walking. The peak pressure was found at the lateral roof in climbing up stairs which was higher than that in going down stairs. These results can be used to rationalize rehabilitation protocols, functional restrictions after complex acetabular reconstructions, and prosthetic component wear and fatigue test set up. The same model and analysis can provide further insight to soft tissue loading and pathology such as labral injury. When the pressure distribution on the acetabulum is inverted onto the femoral head, prediction of subchondral bone collapse associated with avascular necrosis can be achieved with improved accuracy.

  15. Effects of shoe sole hardness on plantar pressure and comfort in older people with forefoot pain.

    PubMed

    Lane, Tamara J; Landorf, Karl B; Bonanno, Daniel R; Raspovic, Anita; Menz, Hylton B

    2014-01-01

    Plantar forefoot pain is common in older people and is related to increased peak pressures under the foot during gait. Variations in the hardness of the shoe sole may therefore influence both the magnitude of loading under the foot and the perceived comfort of the shoe in this population. The aim of this investigation was to determine the effect of varying shoe sole hardness on plantar pressures and comfort in older people with forefoot pain. In-shoe plantar pressures under the forefoot, midfoot and rearfoot were recorded from 35 older people (mean age 73.2, SD 4.5 years) with current or previous forefoot pain using the pedar-X(®) system. Participants walked at their normal comfortable speed along an 8m walkway in shoes with three different levels of sole hardness: soft (Shore A25), medium (Shore A40) and hard (Shore A58). Shoe comfort was measured on a 100mm visual analogue scale. There were statistically significant differences in peak pressure of between 5% and 23% across the forefoot, midfoot and rearfoot (p<0.01). The hard-soled shoe registered the highest peak pressures and the soft-soled shoe the lowest peak pressures. However, no differences in comfort scores across the three shoe conditions were observed. These findings demonstrate that as shoe sole hardness increases, plantar pressure increases, however this does not appear to have a significant effect on shoe comfort. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  16. An Experimental Investigation of the Risk of Triggering Geological Disasters by Injection under Shear Stress

    PubMed Central

    Liu, Yixin; Xu, Jiang; Peng, Shoujian

    2016-01-01

    Fluid injection has been applied in many fields, such as hazardous waste deep well injection, forced circulation in geothermal fields, hydraulic fracturing, and CO2 geological storage. However, current research mainly focuses on geological data statistics and the dominating effects of pore pressure. There are only a few laboratory-conditioned studies on the role of drilling boreholes and the effect of injection pressure on the borehole wall. Through experimental phenomenology, this study examines the risk of triggering geological disasters by fluid injection under shear stress. We developed a new direct shear test apparatus, coupled Hydro-Mechanical (HM), to investigate mechanical property variations when an intact rock experienced step drilling borehole, fluid injection, and fluid pressure acting on the borehole and fracture wall. We tested the peak shear stress of sandstone under different experimental conditions, which showed that drilling borehole, water injection, and increased pore pressure led to the decrease in peak shear stress. Furthermore, as pore pressure increased, peak shear stress dispersion increased due to crack propagation irregularity. Because the peak shear stress changed during the fluid injection steps, we suggest that the risk of triggering geological disaster with injection under shear stress, pore, borehole, and fluid pressure should be considered. PMID:27929142

  17. An Experimental Investigation of the Risk of Triggering Geological Disasters by Injection under Shear Stress.

    PubMed

    Liu, Yixin; Xu, Jiang; Peng, Shoujian

    2016-12-08

    Fluid injection has been applied in many fields, such as hazardous waste deep well injection, forced circulation in geothermal fields, hydraulic fracturing, and CO 2 geological storage. However, current research mainly focuses on geological data statistics and the dominating effects of pore pressure. There are only a few laboratory-conditioned studies on the role of drilling boreholes and the effect of injection pressure on the borehole wall. Through experimental phenomenology, this study examines the risk of triggering geological disasters by fluid injection under shear stress. We developed a new direct shear test apparatus, coupled Hydro-Mechanical (HM), to investigate mechanical property variations when an intact rock experienced step drilling borehole, fluid injection, and fluid pressure acting on the borehole and fracture wall. We tested the peak shear stress of sandstone under different experimental conditions, which showed that drilling borehole, water injection, and increased pore pressure led to the decrease in peak shear stress. Furthermore, as pore pressure increased, peak shear stress dispersion increased due to crack propagation irregularity. Because the peak shear stress changed during the fluid injection steps, we suggest that the risk of triggering geological disaster with injection under shear stress, pore, borehole, and fluid pressure should be considered.

  18. The influence of tennis court surfaces on player perceptions and biomechanical response.

    PubMed

    Starbuck, Chelsea; Damm, Loïc; Clarke, James; Carré, Matt; Capel-Davis, Jamie; Miller, Stuart; Stiles, Victoria; Dixon, Sharon

    2016-09-01

    This study aimed to examine player perceptions and biomechanical responses to tennis surfaces and to evaluate the influence of prior clay court experience. Two groups with different clay experiences (experience group, n = 5 and low-experience group, n = 5) performed a 180° turning movement. Three-dimensional ankle and knee movements (50 Hz), plantar pressure of the turning step (100 Hz) and perception data (visual analogue scale questionnaire) were collected for two tennis courts (acrylic and clay). Greater initial knee flexion (acrylic 20. 8 ± 11.2° and clay 32.5 ± 9.4°) and a more upright position were reported on the clay compared to the acrylic court (P < 0.05). This suggests adaptations to increase player stability on clay. Greater hallux pressures and lower midfoot pressures were observed on the clay court, allowing for sliding whilst providing grip at the forefoot. Players with prior clay court experience exhibited later peak knee flexion compared to those with low experience. All participants perceived the differences in surface properties between courts and thus responded appropriately to these differences. The level of previous clay court experience did not influence players' perceptions of the surfaces; however, those with greater clay court experience may reduce injury risk as a result of reduced loading through later peak knee flexion.

  19. Plantar Pressure Anomalies After Open Reduction With Internal Fixation of High-Grade Calcaneal Fractures.

    PubMed

    Hetsroni, Iftach; Ben-Sira, David; Nyska, Meir; Ayalon, Moshe

    2014-07-01

    Plantar pressure abnormalities after open reduction with internal fixation (ORIF) of intra-articular calcaneal fractures have been observed previously, but high-grade fractures were not selectively investigated and follow-up times were shorter than 2 years. The purpose of this study was to characterize plantar pressure anomalies in patients with exclusively high-grade calcaneal fractures after ORIF with a minimum 2 years of follow-up, and to test the association between plantar pressure distribution and the clinical outcome. The orthopaedic registry was reviewed to identify patients with isolated high-grade calcaneal fractures (Sanders types III-IV) who were operated on and had a minimum 2 years of follow-up. Sixteen patients were evaluated. Mean age was 47 years and follow-up was between 2 and 6 years. The Pedar-Mobile system was used to measure 3 loading and 3 temporal variables and compare these between the operated and the uninjured limbs. Mean American Orthopaedic Foot and Ankle Society (AOFAS) score was 76 ± 7 at latest follow-up. Bohler's angle was 5 ± 8 degrees before surgery and 25 ± 7 degrees at latest follow-up. Stance was shorter in operated limbs (P = .001). Timing of the peak of pressure was delayed in operated limbs under the hallux and the second toe (P ≤ .03). Peak pressure, force time integral, and pressure time integral were increased under the lateral midfoot (P ≤ .03) and decreased under the second metatarsal (P ≤ .03). Force time integral was decreased under the first metatarsal (P = .02) and under the hallux and the lateral toes (P ≤ .05). Increased loading under the lateral midfoot and decreased loading under the lateral toes were correlated with poorer clinical outcome (r = -.53, P < .05, and r = .63, P < .01, respectively). Side-to-side plantar pressure mismatch persisted at more than 2 years after ORIF of high-grade calcaneal fractures performed via lateral approach, despite improvement of Bohler's angle. This was characterized by shortened stance phase, delayed timing of peak of pressure under the hallux and second toe, lateral load shift at the midfoot, and decreased toe pressures in operated limbs. Since loading abnormalities were correlated with the clinical outcome, modifications in treatment strategy that can improve foot loading may be desirable in these cases. Level III, case control. © The Author(s) 2014.

  20. Altitude exposures during commercial flight: a reappraisal.

    PubMed

    Hampson, Neil B; Kregenow, David A; Mahoney, Anne M; Kirtland, Steven H; Horan, Kathleen L; Holm, James R; Gerbino, Anthony J

    2013-01-01

    Hypobaric hypoxia during commercial air travel has the potential to cause or worsen hypoxemia in individuals with pre-existing cardiopulmonary compromise. Knowledge of cabin altitude pressures aboard contemporary flights is essential to counseling patients accurately about flying safety. The objective of the study was to measure peak cabin altitudes during U.S. domestic commercial flights on a variety of aircraft. A handheld mountaineering altimeter was carried by the investigators in the plane cabin during commercial air travel and peak cabin altitude measured. The values were then compared between aircraft models, aircraft classes, and distances flown. The average peak cabin altitude on 207 flights aboard 17 different aircraft was 6341 +/- 1813 ft (1933 m +/- 553 m), significantly higher than when measured in a similar fashion in 1988. Peak cabin altitude was significantly higher for flights longer than 750 mi (7085 +/- 801 ft) compared to shorter flights (5160 +/- 2290 ft/1573 +/- 698 m). Cabin altitude increased linearly with flight distance for flights up to 750 mi in length, but was independent of flight distance for flights exceeding 750 mi. Peak cabin altitude was less than 5000 ft (1524 m) in 70% of flights shorter than 500 mi. Peak cabin altitudes greater than 8000 ft (2438 m) were measured on approximately 10% of the total flights. Peak cabin altitude on commercial aircraft flights has risen over time. Cabin altitude is lower with flights of shorter distance. Physicians should take these factors into account when determining an individual's need for supplemental oxygen during commercial air travel.

  1. Foot loading characteristics during three fencing-specific movements.

    PubMed

    Trautmann, Caroline; Martinelli, Nicolo; Rosenbaum, Dieter

    2011-12-01

    Plantar pressure characteristics during fencing movements may provide more specific information about the influence of foot loading on overload injury patterns. Twenty-nine experienced fencers participated in the study. Three fencing-specific movements (lunge, advance, retreat) and normal running were performed with three different shoe models: Ballestra (Nike, USA), Adistar Fencing Lo (Adidas, Germany), and the fencers' own shoes. The Pedar system (Novel, Munich, Germany) was used to collect plantar pressures at 50 Hz. Peak pressures, force-time integrals and contact times for five foot regions were compared between four athletic tasks in the lunge leg and supporting leg. Plantar pressure analysis revealed characteristic pressure distribution patterns for the fencing movements. For the lunge leg, during the lunge and advance movements the heel is predominantly loaded; during retreat, it is the hallux. For the supporting leg, during the lunge and advance movements the forefoot is predominantly loaded; during retreat, it is the hallux. Fencing-specific movements load the plantar surface in a distinct way compared with running. An effective cushioning in the heel and hallux region would help to minimize foot loading during fencing-specific movements.

  2. CALIBRATION AND TESTING OF SONIC STIMULATION TECHNOLOGIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roger Turpening; Wayne Pennington; Christopher Schmidt

    2005-03-01

    In conjunction with Baker Atlas Inc. Michigan Technological University devised a system capable of recording the earth motion and pressure due to downhole and surface seismic sources. The essential elements of the system are (1) a borehole test site that will remain constant and is available all the time and for any length of time, (2) a downhole sonde that will itself remain constant and, because of its downhole digitization feature, does not require the wireline or surface recording components to remain constant, and (3) a set of procedures that ensures that the amplitude and frequency parameters of a widemore » range of sources can be compared with confidence. This system was used to record four seismic sources, three downhole sources and one surface source. A single activation of each of the downhole sources was not seen on time traces above the ambient noise, however, one sweep of the surface source, a small vertical vibrator, was easily seen in a time trace. One of the downhole sources was seen by means of a spike in its spectrum and a second downhole source was clearly seen after correlation and stacking. The surface vibrator produced a peak to peak particle motion signal of approximately 4.5 x 10{sup -5} cm/sec and a peak to peak pressure of approx. 2.5 x 10{sup -7} microPascals at a depth of 1,485 ft. Theoretical advances were made with our partner, Dr. Igor Beresnev at Iowa State University. A theory has been developed to account for the behavior of oil ganglia trapped in pore throats, and their ultimate release through the additional incremental pressure associated with sonic stimulation.« less

  3. High-peak-power microwave pulses: effects on heart rate and blood pressure in unanesthetized rats.

    PubMed

    Jauchem, J R; Frei, M R

    1995-10-01

    Exposure sources capable of generating high-peak-power microwave pulses, with relatively short pulse widths, have recently been developed. Studies of the effect of these sources on the cardiovascular systems of animals have not been reported previously. We exposed 14 unanesthetized male Sprague-Dawley rats to 10 high-peak-power microwave pulses generated by a transformer-energized megawatt pulsed output (TEMPO) microwave source, at frequencies ranging from 1.2-1.8 GHz. Peak power densities were as high as 51.6 kW/cm2. At 14 d prior to irradiation, the animals were implanted with chronic aortic cannulae. With appropriate shielding of the transducer, blood pressure recordings were obtained during microwave pulsing. In a preliminary series of exposures at 1.7-1.8 GHz (peak power density 3.3-6.5 kW/cm2), an immediate but transient increase in mean arterial blood pressure (significant) and decrease in heart rate (non-significant) were observed. A loud noise was associated with each pulse produced by the TEMPO; this factor was subsequently attenuated. In a second series of exposures at 1.2-1.4 GHz (peak power density 14.6-51.6 kW/cm2), there were no significant changes in mean arterial blood pressure or heart rate during microwave exposure. The earlier significant increase in blood pressure that occurred during microwave exposure appeared to be related to the sharp noise produced by the TEMPO source. After appropriate sound attenuation, there were no significant effects of exposure to the microwave pulses.

  4. The molecular dynamics simulation on the mechanical properties of Ni glass with external pressure

    NASA Astrophysics Data System (ADS)

    Zhang, Chuan-Hui; Wang, Ying; Sun, Dong-Bai

    2017-08-01

    In this paper, rapid quenching of Ni from crystal to metallic glass (MG) at different external pressures is simulated by molecular dynamics. The pair distribution functions (PDFs), mean-square displacement, glass transition temperature (Tg) and elastic property are calculated and compared with each other. The split of the second PDF peak means the liquid’s transition to glass state starts as previously reported for other MGs. And the Ri/R1 ratio rule is found to hold very well in Ni MG and reveals the SPO structural feature in the configurations. Moreover, with high external pressure, Tg values are more approximated by density-temperature and enthalpy-temperature curves. At last, the elastic modulus and mechanics modulus of quenching models produced a monotonous effect with increasing external pressure and temperature.

  5. Investigating the anticipatory postural adjustment phase of gait initiation in different directions in chronic ankle instability patients.

    PubMed

    Ebrahimabadi, Zahra; Naimi, Sedigheh Sadat; Rahimi, Abbas; Sadeghi, Heydar; Hosseini, Seyed Majid; Baghban, Alireza Akbarzadeh; Arslan, Syed Asadullah

    2018-01-01

    The main objective of the present study was to analyze how supra spinal motor control mechanisms are altered in different directions during anticipatory postural phase of gait initiation in chronic ankle instability patients. It seems that supra spinal pathways modulate anticipatory postural adjustment phase of gait initiation. Yet, there is a dearth of research on the effect of chronic ankle instability on the anticipatory postural adjustment phase of gait initiation in different directions. A total of 20 chronic ankle instability participants and 20 healthy individuals initiated gait on a force plate in forward, 30° lateral, and 30° medial directions. According to the results of the present study, the peak lateral center of pressure shift decreased in forward direction compared to that in other directions in both groups. Also, it was found that the peak lateral center of pressure shift and the vertical center of mass velocity decreased significantly in chronic ankle instability patients, as compared with those of the healthy individuals. According to the results of the present study, it seems that chronic ankle instability patients modulate the anticipatory postural adjustment phase of gait initiation, compared with healthy control group, in order to maintain postural stability. These changes were observed in different directions, too. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Gender differences in left ventricular function in patients with isolated aortic stenosis.

    PubMed

    Favero, Luca; Giordan, Massimo; Tarantini, Giuseppe; Ramondo, Angelo Bruno; Cardaioli, Paolo; Isabella, Giambattista; Chioin, Raffaello; Lupia, Mario; Razzolini, Renato

    2003-05-01

    Hypertrophic response of the left ventricle to systolic overload in aortic stenosis appears to be gender-dependent. To examine gender-related differences in left ventricular (LV) function in patients with isolated severe aortic stenosis, 145 patients (65 women, 80 men; mean age 66 +/- 8 years; range: 50 to 89 years) with aortic valve area <0.8 cm2 who underwent cardiac catheterization were studied. No patient had associated myocardial, coronary or other valve disease; patients with diabetes mellitus and systemic hypertension were excluded. No significant differences were seen in aortic valve area between men and women. Neither were there any significant gender-related differences in LV end-systolic and end-diastolic volumes, LV end-diastolic pressure, LV mass indexed by body surface area, LV mass:volume ratio, LV mass:height ratio, elastic stiffness constant, ejection fraction, pulmonary wedge pressure, pulmonary arteriolar resistance and preload. Women showed significantly higher mean transaortic gradient, LV peak systolic pressure and peak systolic stress, end-systolic stress:end-systolic volume ratio, heart rate and cardiac index. In the subgroup of patients with LV pressure >199 mmHg, the mass:volume ratio was increased in men compared with women; of note, the mass:volume ratio in women was not increased in this subgroup compared with the general population. LV pump function in this subgroup was normal and did not differ between men and women. Although no clear-cut difference in hemodynamic parameters was seen, there was a trend towards a less compensatory increase in LV mass in females.

  7. Effect of injection pressure on performance, emission, and combustion characteristics of diesel-acetylene-fuelled single cylinder stationary CI engine.

    PubMed

    Srivastava, Anmesh Kumar; Soni, Shyam Lal; Sharma, Dilip; Jain, Narayan Lal

    2018-03-01

    In this paper, the effect of injection pressure on the performance, emission, and combustion characteristics of a diesel-acetylene fuelled single cylinder, four-stroke, direct injection (DI) diesel engine with a rated power of 3.5 kW at a rated speed of 1500 rpm was studied. Experiments were performed in dual-fuel mode at four different injection pressures of 180, 190, 200, and 210 bar with a flow rate of 120 LPH of acetylene and results were compared with that of baseline diesel operation. Experimental results showed that highest brake thermal efficiency of 27.57% was achieved at injection pressure of 200 bar for diesel-acetylene dual-fuel mode which was much higher than 23.32% obtained for baseline diesel. Carbon monoxide, hydrocarbon, and smoke emissions were also measured and found to be lower, while the NO x emissions were higher at 200 bar in dual fuel mode as compared to those in other injection pressures in dual fuel mode and also for baseline diesel mode. Peak cylinder pressure, net heat release rate, and rate of pressure rise were also calculated and were higher at 200 bar injection pressure in dual fuel mode.

  8. 77 FR 14167 - Approval Tests and Standards for Closed-Circuit Escape Respirators

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-08

    ... Dioxide 3. Oxygen 4. Peak Breathing Pressures 5. Wet-Bulb Temperature L. Section 84.304 Capacity Test... oxygen storage or chemical carbon dioxide scrubber can be altered by impact or any other effect must... inhaled carbon dioxide, average inhaled oxygen, peak breathing pressures, and wet-bulb temperature...

  9. Combustion Noise at Elevated Pressures in a Liquid-Fueled Premixed Combustor

    NASA Technical Reports Server (NTRS)

    Darling, Douglas; Radhakrishnan, Krishnan; Oyediran, Ayo

    1997-01-01

    Noise generated in gas turbine combustors can exist in several forms-broadband noise, sharp resonant peaks, and regular or intermittent nonlinear pulsing. In the present study, dynamic pressure measurements were made in several JP-5-fueled combustor configurations, at various mean pressures and temperatures. The fluctuating pressure was measured at mean pressures from 6 to 14 atm and inlet temperatures from 550 K to 850 K. The goal of the present work was to study the effect of changes in mean flow conditions on combustor noise: both broadband noise and sharp tones were considered. In general, the shape of the broadband noise spectrum was consistent from one configuration to another. The shape of the spectrum was influenced by the acoustic filtering of the combustion zone. This filtering ensured the basic consistency of the spectra. In general, the trends in broadband noise observed at low mean pressures were also seen at high mean pressures; that is, the total sound level decreased with both increasing equivalence ratio and increasing inlet temperature. The combustor configurations without a central pilot experienced higher broadband noise levels and were more susceptible to narrow peak resonances than configurations with a central pilot. The sharp peaks were more sensitive to the mean flow than was the broadband noise, and the effects were not always the same. In some situations, increasing the equivalence ratio made the sharp peaks grow, while at other conditions, increasing the equivalence ratio made the sharp peaks shrink. Thus, it was difficult to predict when resonances would occur; however, they were reproducible. Acoustic coupling between the upstream and downstream regions of the combustor may play a role in the sharp-peaked oscillations. Noise was also observed near lean blow out. As with other types of noise, lean blow out noise was affected by the combustion chamber acoustics, which apparently maintains the fluctuations at a uniform frequency. However, the actual conditions when this type of noise was experienced appeared to simply follow the lean blow out limit as it varied with mean temperature and pressure.

  10. Reappraisal of quantitative evaluation of pulmonary regurgitation and estimation of pulmonary artery pressure by continuous wave Doppler echocardiography.

    PubMed

    Lei, M H; Chen, J J; Ko, Y L; Cheng, J J; Kuan, P; Lien, W P

    1995-01-01

    This study assessed the usefulness of continuous wave Doppler echocardiography and color flow mapping in evaluating pulmonary regurgitation (PR) and estimating pulmonary artery (PA) pressure. Forty-three patients were examined, and high quality Doppler spectral recordings of PR were obtained in 32. All patients underwent cardiac catheterization, and simultaneous PA and right ventricular (RV) pressures were recorded in 17. Four Doppler regurgitant flow velocity patterns were observed: pandiastolic plateau, biphasic, peak and plateau, and early diastolic triangular types. The peak diastolic and end-diastolic PA-to-RV pressure gradients derived from the Doppler flow profiles correlated well with the catheter measurements (r = 0.95 and r = 0.95, respectively). As PA pressure increased, the PR flow velocity became higher; a linear relationship between either systolic or mean PA pressure and Doppler-derived peak diastolic pressure gradient was noted (r = 0.90 and 0.94, respectively). Based on peak diastolic gradients of < 15, 15-30 or > 30 mm Hg, patients could be separated as those with mild, moderate or severe pulmonary hypertension, respectively (p < 0.05). A correlation was also observed between PA diastolic pressure and Doppler-derived end-diastolic pressure gradient (r = 0.91). Moreover, the Doppler velocity decay slope of PR closely correlated with that derived from the catheter method (r = 0.98). The decay slope tended to be steeper with the increment in regurgitant jet area and length obtained from color flow mapping. In conclusion, continuous wave Doppler evaluation of PR is a useful means for noninvasive estimation of PA pressure, and the Doppler velocity decay slope seems to reflect the severity of PR.

  11. The Effect of Increased Intracranial Pressure on Vestibular Evoked Myogenic Potentials in Superior Canal Dehiscence Syndrome

    PubMed Central

    Janky, Kristen L.; Zuniga, M. Geraldine; Schubert, Michael C; Carey, John P

    2014-01-01

    Objective To determine if vestibular evoked myogenic potential (VEMP) responses change during inversion in patients with superior canal dehiscence syndrome (SCDS) compared to controls. Methods Sixteen subjects with SCDS (mean: 43, range 30–57 years) and 15 age-matched, healthy subjects (mean: 41, range 22–57 years) completed cervical VEMP (cVEMP) in response to air conduction click stimuli and ocular VEMP (oVEMP) in response to air conduction 500 Hz tone burst stimuli and midline tap stimulation. All VEMP testing was completed in semi-recumbent and inverted conditions. Results SCDS ears demonstrated significantly larger oVEMP peak-to-peak amplitudes in comparison to normal ears in semi-recumbency. While corrected cVEMP peak-to-peak amplitudes were larger in SCDS ears; this did not reach significance in our sample. Overall, there was not a differential change in o- or cVEMP amplitude with inversion between SCDS and normal subjects. Conclusions Postural-induced changes in o- and cVEMP responses were measured in the steady state regardless of whether the labyrinth was intact or dehiscent. Significance VEMP responses are blunted during inversion. Although steady-state measurements of VEMPs during inversion do not increase diagnostic accuracy for SCDS, the findings suggest that inversion may provide more general insights into the equilibration of pressures between intracranial and intralabyrinthine fluids. PMID:25103787

  12. The Cardiovascular Function Profile and Physical Fitness in Overweight Subjects

    NASA Astrophysics Data System (ADS)

    Megawati, E. R.; Lubis, L. D.; Harahap, F. Y.

    2017-03-01

    Obesity in children and young adult is associated with cardiovascular risk in short term and long term. The aim of this study was to describe the profile of the cardiovascular functions parameters and physical fitness in overweight. This is an analytical observational study with cross sectional approach. The samples of this study were 85 randomly selected subjects aged 18 to 24 years with normoweight and body mass index <40. The parameters measures were body mass index (BMI), waist circumference (WC), waist-hip ratio (WHR), cardiovascular function parameters (resting pulse, blood pressure, and peak flow meter) and physical fitness parameters (VO2max dengan McArdle step test). The mean BMI was 24,53±4,929. The WC and WHR mean were 86,7±14,10 cms and 0,89±0,073 cm respectively. The mean of resting pulses were higher in normoweight subject (p=0,0209). The mean systole were lower in normoweight subject (p=0,0026). No differences VO2 max between groups (p=0,3888). The peak flow meter was higher in normoweight (p=0,0274). The result of this study indicate that heart rate, systole and peak flow meter are signifantly different between groups. The heart rate and the peak flow meter in the overweight subjects were lower meanwhile the systole blood pressure was higher compared to normoweight subjects.

  13. Comparison of water and air charged transducer catheter pressures in the evaluation of cystometrogram and voiding pressure studies.

    PubMed

    McKinney, Timothy B; Babin, Elizabeth A; Ciolfi, Veronica; McKinney, Cynthia R; Shah, Nima

    2018-04-01

    Air-charged (AC) and water-perfused (WP) catheters have been evaluated for differences in measuring pressures for voiding dysfunction. Typically, a two-catheter system was used. We believe that simultaneous pressure measurements with AC and WP in a single catheter will provide analogous pressures for coughs, Valsalvas, and maximum pressures in voiding pressure studies (VPS). This IRB approved prospective study included 50 women over age 21. AC dual TDOC catheters were utilized. The water-filling channel served as the bladder filler and the water pressure readings. Patients were evaluated with empty bladders and at volumes of 50-100 mL, 200 mL, and maximum capacity with cough and Valsalva maneuvers. Comparative analysis was performed on maximum stress peak pressures. At maximum bladder capacity, VPS was done and maximum voiding pressure was recorded. Comparing coughs and Valsalva maneuvers pressures, there was significant increase in variability between AC and WP measurements with less than 50 mL volume (P < 0.001). Significant correlations were observed between AC and WP measurements for coughs and Valsalvas with bladder volume over 50 mL. Visual impression showed virtually identical tracings. Cough measurements had an average difference of 0.25 cmH 2 O (±8.81) and Valsalva measurements had an average difference of 3.15 cmH 2 O (±4.72). Thirty-eight women had usable maximum voiding pressure measurements and had a strong correlation. Cystometrogram and maximum voiding pressure measurements done with either water or air charged catheters will yield similarly accurate results and are comparable. Results suggest more variability at low bladder volumes <50 mL. © 2018 Wiley Periodicals, Inc.

  14. Relationship of planter pressure and glycemic control in type 2 diabetic patients with and without neuropathy.

    PubMed

    Halawa, Mohammed R; Eid, Yara M; El-Hilaly, Rana A; Abdelsalam, Mona M; Amer, Amr H

    Foot disease is a common complication of type 2 diabetes that can have tragic consequences. Abnormal plantar pressures are considered to play a major role in the pathologies of neuropathic ulcers in the diabetic foot. To examine Relationship of Planter Pressure and Glycemic Control in Type 2 Diabetic Patients with and without Neuropathy. The study was conducted on 50 type 2 diabetic patients and 30 healthy volunteers. BMI calculation, disease duration, Hemoglobin A1c and presence of neuropathy (by history, foot examination and DN4 questionnaire) were recorded. Plantar pressure was recorded for all patients using the Mat-scan (Tekscan, Inc.vers. 6.34 Boston USA) in static conditions (standing) and dynamic conditions (taking a step on the Mat-scan). Plantar pressures (kPa) were determined at the five metatarsal areas, mid foot area, medial and lateral heel areas and medial three toes. Static and dynamic plantar pressures in both right and left feet were significantly higher in diabetic with neuropathy group than in control group in measured areas (P<0.05). Static and dynamic pressures in right and left feet were significantly higher in diabetic with neuropathy group than in diabetic without neuropathy group in measured areas (P<0.05). On comparison between controls and diabetic without neuropathy group there was a significant difference in plantar pressures especially in metatarsal areas (P<0.05). No significant correlations were present between the studied variables age, disease duration, BMI and HbA1c and plantar pressures in all studied areas. Persons with diabetic neuropathy have elevated peak plantar pressure (PPP) compared to patients without neuropathy and control group. HbA1c% as a surrogate for glycemic control had no direct impact on peak planter pressure, yet it indirectly impacts neuropathy evolution through out disease duration eventually leading to the drastic planter pressure and gait biomechanics changes. Copyright © 2017 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  15. Variability of computational fluid dynamics solutions for pressure and flow in a giant aneurysm: the ASME 2012 Summer Bioengineering Conference CFD Challenge.

    PubMed

    Steinman, David A; Hoi, Yiemeng; Fahy, Paul; Morris, Liam; Walsh, Michael T; Aristokleous, Nicolas; Anayiotos, Andreas S; Papaharilaou, Yannis; Arzani, Amirhossein; Shadden, Shawn C; Berg, Philipp; Janiga, Gábor; Bols, Joris; Segers, Patrick; Bressloff, Neil W; Cibis, Merih; Gijsen, Frank H; Cito, Salvatore; Pallarés, Jordi; Browne, Leonard D; Costelloe, Jennifer A; Lynch, Adrian G; Degroote, Joris; Vierendeels, Jan; Fu, Wenyu; Qiao, Aike; Hodis, Simona; Kallmes, David F; Kalsi, Hardeep; Long, Quan; Kheyfets, Vitaly O; Finol, Ender A; Kono, Kenichi; Malek, Adel M; Lauric, Alexandra; Menon, Prahlad G; Pekkan, Kerem; Esmaily Moghadam, Mahdi; Marsden, Alison L; Oshima, Marie; Katagiri, Kengo; Peiffer, Véronique; Mohamied, Yumnah; Sherwin, Spencer J; Schaller, Jens; Goubergrits, Leonid; Usera, Gabriel; Mendina, Mariana; Valen-Sendstad, Kristian; Habets, Damiaan F; Xiang, Jianping; Meng, Hui; Yu, Yue; Karniadakis, George E; Shaffer, Nicholas; Loth, Francis

    2013-02-01

    Stimulated by a recent controversy regarding pressure drops predicted in a giant aneurysm with a proximal stenosis, the present study sought to assess variability in the prediction of pressures and flow by a wide variety of research groups. In phase I, lumen geometry, flow rates, and fluid properties were specified, leaving each research group to choose their solver, discretization, and solution strategies. Variability was assessed by having each group interpolate their results onto a standardized mesh and centerline. For phase II, a physical model of the geometry was constructed, from which pressure and flow rates were measured. Groups repeated their simulations using a geometry reconstructed from a micro-computed tomography (CT) scan of the physical model with the measured flow rates and fluid properties. Phase I results from 25 groups demonstrated remarkable consistency in the pressure patterns, with the majority predicting peak systolic pressure drops within 8% of each other. Aneurysm sac flow patterns were more variable with only a few groups reporting peak systolic flow instabilities owing to their use of high temporal resolutions. Variability for phase II was comparable, and the median predicted pressure drops were within a few millimeters of mercury of the measured values but only after accounting for submillimeter errors in the reconstruction of the life-sized flow model from micro-CT. In summary, pressure can be predicted with consistency by CFD across a wide range of solvers and solution strategies, but this may not hold true for specific flow patterns or derived quantities. Future challenges are needed and should focus on hemodynamic quantities thought to be of clinical interest.

  16. The effect of pressure on spontaneous Rayleigh-Brillouin scattering spectrum in nitrogen

    NASA Astrophysics Data System (ADS)

    Yang, Chuanyin; Wu, Tao; Shang, Jingcheng; Zhang, Xinyi; Hu, Rongjing; He, XingDao

    2018-05-01

    In order to study the effect of gas pressure on spontaneous Rayleigh-Brillouin scattering spectrum and verify the validity of Tenti S6 model at pressures up to 8 atm, the spontaneous Rayleigh-Brillouin scattering experiment in nitrogen was performed for a wavelength of 532 nm at the constant room temperature of 296 K and a 90° scattering angle. By comparing the experimental spectrum with the theoretical spectrum, the normalized root mean square deviation was calculated and found less than 2.2%. It is verified that Tenti S6 model can be applied to the spontaneous Rayleigh-Brillion scattering of nitrogen under higher pressures. The results of the experimental data analysis demonstrate that pressure has more effect on Brillouin peak intensity and has negligible effect on Brillouin frequency shift, and pressure retrieval based on spontaneous Rayleigh-Brillouin scattering profile is a promising method for remote of pressure, such as harsh environment applications. Some factors that caused experiment deviations are also discussed.

  17. Comparison of hybrid and baseline ELMy H-mode confinement in JET with the carbon wall

    NASA Astrophysics Data System (ADS)

    Beurskens, M. N. A.; Frassinetti, L.; Challis, C.; Osborne, T.; Snyder, P. B.; Alper, B.; Angioni, C.; Bourdelle, C.; Buratti, P.; Crisanti, F.; Giovannozzi, E.; Giroud, C.; Groebner, R.; Hobirk, J.; Jenkins, I.; Joffrin, E.; Leyland, M. J.; Lomas, P.; Mantica, P.; McDonald, D.; Nunes, I.; Rimini, F.; Saarelma, S.; Voitsekhovitch, I.; de Vries, P.; Zarzoso, D.; Contributors, JET-EFDA

    2013-01-01

    The confinement in JET baseline type I ELMy H-mode plasmas is compared to that in so-called hybrid H-modes in a database study of 112 plasmas in JET with the carbon fibre composite (CFC) wall. The baseline plasmas typically have βN ˜ 1.5-2, H98 ˜ 1, whereas the hybrid plasmas have βN ˜ 2.5-3, H98 < 1.5. The database study contains both low- (δ ˜ 0.2-0.25) and high-triangularity (δ ˜ 0.4) hybrid and baseline H-mode plasmas from the last JET operational campaigns in the CFC wall from the period 2008-2009. Based on a detailed confinement study of the global as well as the pedestal and core confinement, there is no evidence that the hybrid and baseline plasmas form separate confinement groups; it emerges that the transition between the two scenarios is of a gradual kind rather than demonstrating a bifurcation in the confinement. The elevated confinement enhancement factor H98 in the hybrid plasmas may possibly be explained by the density dependence in the τ98 scaling as n0.41 and the fact that the hybrid plasmas operate at low plasma density compared to the baseline ELMy H-mode plasmas. A separate regression on the confinement data in this study shows a reduction in the density dependence as n0.09±0.08. Furthermore, inclusion of the plasma toroidal rotation in the confinement regression provides a scaling with the toroidal Alfvén Mach number as Mach_A^{0.41+/- 0.07} and again a reduced density dependence as n0.15±0.08. The differences in pedestal confinement can be explained on the basis of linear MHD stability through a coupling of the total and pedestal poloidal pressure and the pedestal performance can be improved through plasma shaping as well as high β operation. This has been confirmed in a comparison with the EPED1 predictive pedestal code which shows a good agreement between the predicted and measured pedestal pressure within 20-30% for a wide range of βN ˜ 1.5-3.5. The core profiles show a strong degree of pressure profile consistency. No beneficial effect of core density peaking on confinement could be identified for the majority of the plasmas presented here as the density peaking is compensated by a temperature de-peaking resulting in no or only a weak variation in the pressure peaking. The core confinement could only be optimized in case the ions and electrons are decoupled, in which case the ion temperature profile peaking can be enhanced, which benefits confinement. In this study, the latter has only been achieved in the low-triangularity hybrid plasmas, and can be attributed to low-density operation. Plasma rotation has been found to reduce core profile stiffness, and can explain an increase in profile peaking at small radius ρtor = 0.3.

  18. Air ejector augmented compressed air energy storage system

    DOEpatents

    Ahrens, Frederick W.; Kartsounes, George T.

    1980-01-01

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air pressure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  19. Electronic structure and the van Hove singularity scenario in high-T(sub c)H(g)Ba2CuO(4+delta) superconductors

    NASA Technical Reports Server (NTRS)

    Agrawal, Bal K.; Agrawal, Savitri

    1995-01-01

    The electronic structure and the hole concentrations in the high Tc superconductor HgBa2CuO(4+delta) (delta = O, 1) has been investigated by employing a first principles full potential self-consistent LMTO method with the local density functional theory. The scalar relativistic effects have been considered. The hole concentrations of the Cu-d and O-p(x,y) orbitals are seen to be larger for the HgBaCuO5 system than those of the HgBaCuO4 solid. However, the van Hove singularity (vHs) induced Cu-d and O-p peak which is seen to lie comparatively away and above the Fermi level in the delta = 1 system shifts towards the Fermi level in the delta = 0 system. Thus, the superconducting behavior appears to originate from the occurrence of the vHs peak at the Fermi level. The Fermi surface nesting area in the delta = 0 compound is seen to be larger than in the delta = 1 compound. The calculation reveals that the increase in pressure on the crystal enhances the hole concentrations but without showing any optimum value, On the other hand, the vHs peak approaches to-wards the Fermi level with pressure and crosses the Fermi surface near V/Vo approximately equals 0.625 (V and Vo are the crystal volumes at high and normal pressures, respectively). Our calculated value of the bulk modulus equal to 0.626 Mbar predicts the occurrence of this crossover at about 24 GPa which is in complete agreement with the experimental value. At this pressure the compound has maximum nesting area and self-doped behavior.

  20. In-shoe plantar tri-axial stress profiles during maximum-effort cutting maneuvers.

    PubMed

    Cong, Yan; Lam, Wing Kai; Cheung, Jason Tak-Man; Zhang, Ming

    2014-12-18

    Soft tissue injuries, such as anterior cruciate ligament rupture, ankle sprain and foot skin problems, frequently occur during cutting maneuvers. These injuries are often regarded as associated with abnormal joint torque and interfacial friction caused by excessive external and in-shoe shear forces. This study simultaneously investigated the dynamic in-shoe localized plantar pressure and shear stress during lateral shuffling and 45° sidestep cutting maneuvers. Tri-axial force transducers were affixed at the first and second metatarsal heads, lateral forefoot, and heel regions in the midsole of a basketball shoe. Seventeen basketball players executed both cutting maneuvers with maximum efforts. Lateral shuffling cutting had a larger mediolateral braking force than 45° sidestep cutting. This large braking force was concentrated at the first metatarsal head, as indicated by its maximum medial shear stress (312.2 ± 157.0 kPa). During propulsion phase, peak shear stress occurred at the second metatarsal head (271.3 ± 124.3 kPa). Compared with lateral shuffling cutting, 45° sidestep cutting produced larger peak propulsion shear stress (463.0 ± 272.6 kPa) but smaller peak braking shear stress (184.8 ± 181.7 kPa), of which both were found at the first metatarsal head. During both cutting maneuvers, maximum medial and posterior shear stress occurred at the first metatarsal head, whereas maximum pressure occurred at the second metatarsal head. The first and second metatarsal heads sustained relatively high pressure and shear stress and were expected to be susceptible to plantar tissue discomfort or injury. Due to different stress distribution, distinct pressure and shear cushioning mechanisms in basketball footwear might be considered over different foot regions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Effects of coil closure of patent ductus arteriosus on left anterior descending coronary artery blood flow using transthoracic Doppler echocardiography.

    PubMed

    Harada, Kenji; Toyono, Manotomo; Tamura, Masamichi

    2004-06-01

    Transthoracic Doppler echocardiography provides noninvasive measurements of coronary blood flow in the left anterior descending coronary artery (LAD). This method has the potential to show the effects of acute changes in loading conditions on blood flow. Coil closure of patent ductus arteriosus (PDA) is a model of acute changes in blood pressure and left ventricular (LV) preload that influences coronary blood flow. We applied this technique to assess the coronary blood flow changes for patients with PDA before and immediately after PDA coil closure. We examined 9 patients (1.8 +/- 1.1 years) with simple PDA and 8 age-matched healthy children. LV dimensions and LV mass were measured. Maximum peak flow velocity and flow volume in the LAD were measured. Pulmonary to systemic flow ratios (Qp/Qs) were obtained by cardiac catheterization. After PDA coil closure, LV end-diastolic dimension decreased, and systolic and diastolic blood pressures increased significantly. The maximum peak flow velocity, LAD flow volume, and the ratio of LAD flow volume to LV mass increased significantly. The changes in maximum peak flow velocity and the ratio of LAD flow volume to LV mass (F/M) correlated positively with the changes in diastolic pressure and Qp/Qs. In 5 patients who had Qp/Qs > 1.5, the mean F/M was significantly lower compared with control subjects, but they increased to normal values after coil closure of PDA. PDA coil closure increases diastolic pressure and decreases Qp/Qs, resulting in improvement of myocardial perfusion. These findings provide new insights into the relationship between cardiac function and coronary circulation in pediatric patients with heart diseases associated with PDA.

  2. The Effects of Aspiration Status, Liquid Type, and Bolus Volume on Pharyngeal Peak Pressure in Healthy Older Adults

    PubMed Central

    Stuart, Andrew; Wilhelm, Erika; Rees, Catherine; Williamson, Jeff; Kritchevsky, Stephen

    2015-01-01

    The reasons for aspiration in healthy adults remain unknown. Given that the pharyngeal phase of swallowing is a key component of the safe swallow, it was hypothesized that healthy older adults who aspirate are likely to generate less pharyngeal peak pressures when swallowing. Accordingly, pharyngeal and upper esophageal sphincter pressures were examined as a function of aspiration status (i.e., nonaspirator vs. aspirator), sensor location (upper vs. lower pharynx), liquid type (i.e., water vs. milk), and volume (i.e., 5 vs. 10 ml) in healthy older adults. Manometric measurements were acquired with a 2.1-mm catheter during flexible endoscopic evaluation. Participants (N = 19, mean age = 79.2 years) contributed 28 swallows; during 8 swallows, simultaneous manometric measurements of upper and lower pharyngeal and upper esophageal pressures were obtained. Pharyngeal manometric peak pressure was significantly less for aspirators (mean = 82, SD = 31 mmHg) than for nonaspirators (mean = 112, SD = 20 mmHg), and upper pharyngeal pressures (mean = 85, SD = 32 mmHg) generated less pressure than lower pharyngeal pressures (mean = 116, SD = 38 mmHg). Manometric measurements vary with respect to aspiration status and sensor location. Lower pharyngeal pressures in healthy older adults may predispose them to aspiration. PMID:20623303

  3. The acute effects of lower limb intermittent negative pressure on foot macro- and microcirculation in patients with peripheral arterial disease.

    PubMed

    Sundby, Øyvind Heiberg; Høiseth, Lars Øivind; Mathiesen, Iacob; Weedon-Fekjær, Harald; Sundhagen, Jon O; Hisdal, Jonny

    2017-01-01

    Intermittent negative pressure (INP) applied to the lower leg and foot increases foot perfusion in healthy volunteers. The aim of the present study was to describe the effects of INP to the lower leg and foot on foot macro- and microcirculation in patients with lower extremity peripheral arterial disease (PAD). In this experimental study, we analyzed foot circulation during INP in 20 patients [median (range): 75 (63-84yrs)] with PAD. One leg was placed inside an air-tight vacuum chamber connected to an INP-generator. During application of INP (alternating 10s of -40mmHg/7s of atmospheric pressure), we continuously recorded blood flow velocity in a distal foot artery (ultrasound Doppler), skin blood flow on the pulp of the first toes (laser Doppler), heart rate (ECG), and systemic blood pressure (Finometer). After a 5-min baseline sequence (no pressure), a 10-min INP sequence was applied, followed by 5-min post-INP (no pressure). To compare and quantify blood flow fluctuations between sequences, we calculated cumulative up-and-down fluctuations in arterial blood flow velocity per minute. Onset of INP induced an increase in arterial flow velocity and skin blood flow. Peak blood flow velocity was reached 3s after the onset of negative pressure, and increased 46% [(95% CI 36-57), P<0.001] above baseline. Peak skin blood flow was reached 2s after the onset of negative pressure, and increased 89% (95% CI 48-130), P<0.001) above baseline. Cumulative fluctuations per minute were significantly higher during INP-sequences compared to baseline [21 (95% CI 12-30)cm/s/min to 41 (95% CI 32-51)cm/s/min, P<0.001]. Mean INP blood flow velocity increased significantly ~12% above mean baseline blood flow velocity [(6.7 (95% CI 5.2-8.3)cm/s to 7.5 (95% CI 5.9-9.1)cm/s, P = 0.03)]. INP increases foot macro- and microcirculatory flow pulsatility in patients with PAD. Additionally, application of INP resulted in increased mean arterial blood flow velocity.

  4. The acute effects of lower limb intermittent negative pressure on foot macro- and microcirculation in patients with peripheral arterial disease

    PubMed Central

    Høiseth, Lars Øivind; Mathiesen, Iacob; Weedon-Fekjær, Harald; Sundhagen, Jon O.; Hisdal, Jonny

    2017-01-01

    Background Intermittent negative pressure (INP) applied to the lower leg and foot increases foot perfusion in healthy volunteers. The aim of the present study was to describe the effects of INP to the lower leg and foot on foot macro- and microcirculation in patients with lower extremity peripheral arterial disease (PAD). Methods In this experimental study, we analyzed foot circulation during INP in 20 patients [median (range): 75 (63-84yrs)] with PAD. One leg was placed inside an air-tight vacuum chamber connected to an INP-generator. During application of INP (alternating 10s of -40mmHg/7s of atmospheric pressure), we continuously recorded blood flow velocity in a distal foot artery (ultrasound Doppler), skin blood flow on the pulp of the first toes (laser Doppler), heart rate (ECG), and systemic blood pressure (Finometer). After a 5-min baseline sequence (no pressure), a 10-min INP sequence was applied, followed by 5-min post-INP (no pressure). To compare and quantify blood flow fluctuations between sequences, we calculated cumulative up-and-down fluctuations in arterial blood flow velocity per minute. Results Onset of INP induced an increase in arterial flow velocity and skin blood flow. Peak blood flow velocity was reached 3s after the onset of negative pressure, and increased 46% [(95% CI 36–57), P<0.001] above baseline. Peak skin blood flow was reached 2s after the onset of negative pressure, and increased 89% (95% CI 48–130), P<0.001) above baseline. Cumulative fluctuations per minute were significantly higher during INP-sequences compared to baseline [21 (95% CI 12–30)cm/s/min to 41 (95% CI 32–51)cm/s/min, P<0.001]. Mean INP blood flow velocity increased significantly ~12% above mean baseline blood flow velocity [(6.7 (95% CI 5.2–8.3)cm/s to 7.5 (95% CI 5.9–9.1)cm/s, P = 0.03)]. Conclusion INP increases foot macro- and microcirculatory flow pulsatility in patients with PAD. Additionally, application of INP resulted in increased mean arterial blood flow velocity. PMID:28591174

  5. Pressure redistribution by molded inserts in diabetic footwear: a pilot study.

    PubMed

    Lord, M; Hosein, R

    1994-08-01

    A small-scale trial is described to demonstrate and evaluate the redistribution of plantar pressure resulting from the use of custom-molded inserts in the orthopedic shoes of diabetic patients at risk of plantar ulceration. A pressure-measuring insole based on force-sensitive resistor technology enabled the load distribution to be compared using molded inserts and flat inserts fitted into the same shoes. An analysis of the 12 peaks of pressure that could be identified under a discrete metatarsal head of six subjects in the trial showed that the pressure was significantly reduced with the use of molded inserts (flat inserts: 305 +/- 79 kPa; molded inserts: 216 +/- 70 kPa; n = 6 p < 0.005). Technical limitations of the equipment and the difficult choice of match of flat insert to molded for comparison suggest that further studies are required for a definitive result.

  6. The Effect of Pressure-Controlled Ventilation and Volume-Controlled Ventilation in Prone Position on Pulmonary Mechanics and Inflammatory Markers.

    PubMed

    Şenay, Hasan; Sıvacı, Remziye; Kokulu, Serdar; Koca, Buğra; Bakı, Elif Doğan; Ela, Yüksel

    2016-08-01

    The aim of this present study is to compare the effect of pressure-controlled ventilation and volume-controlled ventilation on pulmonary mechanics and inflammatory markers in prone position. The study included 41 patients undergoing to vertebrae surgery. The patients were randomized into two groups: Group 1 received volume-controlled ventilation, while group 2 received pressure-controlled ventilation. The demographic data, pulmonary mechanics, the inflammatory marker levels just after the induction of anesthetics, at the 6th and 12th hours, and gas analysis from arterial blood samples taken at the beginning and the 30th minute were recorded. The inflammatory marker levels increased in both groups, without any significant difference among groups. Peak inspiratory pressure level was higher in the volume-controlled ventilation group. This study revealed that there is no difference regarding inflammatory marker levels between volume- and pressure-controlled ventilation.

  7. Impaired micturition reflex caused by acute selective dorsal or ventral root(s) rhizotomy in anesthetized rats.

    PubMed

    Liao, Jiuan-Miaw; Cheng, Chen-Li; Lee, Shin-Da; Chen, Gin-Den; Chen, Kuo-Jung; Yang, Chao-Hsun; Pan, Shwu-Fen; Chen, Mei-Jung; Huang, Pei-Chen; Lin, Tzer-Bin

    2006-01-01

    To clarify the contributions of parasympathetic inputs and outputs to the micturition reflex. Intra-vesical pressure (IVP), external urethral sphincter electromyogram (EMG), pelvic afferent nerve activities (PANA), and pelvic efferent nerve activities (PENA) as well as the time-derived IVP (dIVP, an index of bladder contractility) were evaluated in intact and acute dorsal or ventral root(s) rhizotomized (DRX and VRX, respectively) rats. In DRX rats, when compared with that in intact stage, the voiding frequency was decreased (75 +/- 15% of intact, P < 0.05, n = 8), while the threshold pressure to trigger voiding contractions was significantly increased (187 +/- 75% of intact, P < 0.05, n = 8). In addition, several insufficient contractions (5.3 +/- 3.5 contractions/voiding, P < 0.05, n = 8) occurred in ahead of each voiding contraction. On the other hand, in VRX rats, the peak and rebound IVP were significantly decreased (90 +/- 3.5% and 75 +/- 11.3% of intact, P < 0.01, n = 8), while the threshold pressure was not affected (102 +/- 11% of intact, P = NS, n = 8). The time-derived parameters were significantly decreased in VRX (peak dIVP, 78 +/- 10.2%, rebound dIVP, 75 +/- 15.6%, minimal dIVP, 68 +/- 14% of intact, P < 0.01, n = 8) but only peak dIVP was decreased (85 +/- 11% of intact, P < 0.01, n = 8) in DRX rats. Acute selective DRX and VRX rat can be an animal model to investigate peripheral neural control in micturition functions.

  8. An analysis of Super typhoon Rammasun's(2014) peak intensity

    NASA Astrophysics Data System (ADS)

    Cai, Qinbo; Xu, Yinglong

    2016-04-01

    Super typhoon Rammasun (2014) made landfall over Hainan Island, China, at 0730UTC 18 July 2014. Due to the damage of the anemometers, the Automatic Weather Stations (AWS) and the bouy which by Rammasun passed, failed to obtain its peak wind. Lack of the direct evident, in real-time monitoring, its peak intensities were given by 110kts (.i.e. 60m/s)/910hPa,135kts/922hPa , and 90kts/935hPa based on Dvorak technique , which were made by China Meteorological Administration (CMA),Joint Typhoon Warning Center(JTWC), and Japan Meteorological Agency (JMA) respectively. However, a minimum pressure of 881.2hPa recorded by a barometer which located at Qixhou island (19.982︒N,111.269︒E) while Rammasun approaching, indicates that its intensity was under estimated. By using observation data such as AWS, satellite, Doppler radar and wind tower near the ground, this study performs a detail evaluation to obtain its actual intensity. At 0521UTC, Qizhou Island station recorded 881.2hPa of the minimum station pressure and 899.2hPa of minimum sea level pressure (MSLP) while the anemometer had been destroyed. These are the lowest records in Chinese history and also are ones of the global lowest pressures obtained directly by barometer. It is evident that Rammasun's eyewall did not pass across Qizhou Island directly, so the actual MSLP should be lower than 899.2hPa. By applying wind-pressure relationship, it is reckoned that the reasonable MSLP and peak wind of Rammasun should be 888hPa and 70-76m/s, which makes Rammasun the strongest typhoon ever made landfall in China's history. In order to intuitively investigate the real intensity of Ramasun, eyewall structures are compared with some historical extreme typhoons (hurricanes) such as Saomai(2006), Haiyan(2013) and Katrina(2005). Satellite images show that the dense overcast convection strength of Rammasun is stronger than those when Saomai and Katrina were in their peak intensities and before landing, but weaker than Haiyan. The advanced Dvorak Technique (ADT), which was developed by Cooperative Institute for Meteorological Satellite Studies (CIMSS) of University of Wisconsin, is used to estimate their intensities. The results show that Rammasun is significantly stronger than Saomai and Katrina in peak and before landing, but weaker than that of Haiyan. Moreover, the 891.7hPa of MSLP given by ADT is approximately the same as the estimated value of 888hPa. The study demonstrates that there the pure Dvorak technique has still limitations in operational monitoring, and presents significant insights for validation and improvement of satellite-based intensity estimates.

  9. Pressure load on specific body areas of gestating sows lying on rubber mats with different softness.

    PubMed

    Schubbert, A; Hartung, E; Schrader, L

    2014-08-01

    Rubber mats offer a possibility to increase lying comfort for sows with positive effects on sow lying behavior and health. However, until now, no information has been reported about the relationship between the softness of rubber mats and the pressure load on certain body areas of sows. We used a total of 68 (40 multiparous, 28 primiparous) German Landrace × German Landrace sows with a BW within the range of 90 to 330 kg (divided in 3 weight classes) to measure peak force and distribution of pressure during lying in the sternal and half recumbent position. Measures were done in an experimental pen that was equipped with a pressure sensor map system (5400 NTL; Tekscan Inc., Boston, MA). Three rubber mats differing in softness (penetration depth: hard mat, 4.0 mm [HM]; soft mat, 14.6 mm [SM]; very soft mat, 43.0 mm [VSM]) were tested and compared to concrete floor (CF) as a reference. Pressure load was analyzed in the sternal position for the sternum, belly, and ham body regions and also in the half recumbent position for the shoulder. For each lying position we determined the body region with the highest pressure load and analyzed the peak force (PF) and the contact area (CA) using a mixed model ANOVA (MIXED procedure of SAS Enterprise, version 4.3., SAS Inst. Inc., Cary, NC) with floor type, weight class of sows, and their interaction as fixed factors. Overall, the highest values for PF in the sternal position were found on the sternum (median: 1.62 N/cm(2)) and in the half recumbent position on the shoulder (median: 2.72 N/cm(2)). In the sternal position PF on the sternum was lower on VSM compared to CF (P = 0.001). In the half-recumbent position PF on the shoulder was lower on VSM compared to CF (P = 0.013) and compared to HM (P = 0.011). The weight of the sows affected PF on the sternum in the sternal position, with lower values in weight class 1 compared to weight class 2 (P = 0.001) and weight class 3 (P = 0.002). Contact area under the sternum was larger on SM (P = 0.016) and VSM (P = 0.008) compared to CF in the sternal position, and this was affected by weight class (P = 0.0002). In the half-recumbent position floor type did not affect CA under the shoulder, but CA was larger in weight classes 2 and 3 compared to weight class 1 (all P < 0.05). Assuming that a reduced PF in combination with pressure distributed over a larger area will increase lying comfort, hard rubber mats do not seem to offer a high lying comfort with regard to pressure load on debited body regions such as the sternum or shoulder.

  10. Characterization of hsp27 kinases activated by elevated aortic pressure in heart

    PubMed Central

    Boivin, Benoit; Khairallah, Maya; Cartier, Raymond; Allen, Bruce G.

    2013-01-01

    Chronic hemodynamic overload results in left ventricular hypertrophy, fibroblast proliferation, and interstitial fibrosis. The small heat shock protein hsp27 has been shown to be cardioprotective and this requires a phosphorylatable form of this protein. To further understand the regulation of hsp27 in heart in response to stress, we investigated the ability of elevated aortic pressure to activate hsp27-kinase activities. Isolated hearts were subjected to retrograde perfusion and then snap-frozen. Hsp27-kinase activity was measured in vitro as hsp27 phosphorylation. Immune complex assays revealed that MK2 activity was low in non-perfused hearts and increased following crystalline perfusion at 60 or 120 mmHg. Hsp27-kinase activities were further studied following ion-exchange chromatography. Anion exchange chromatography on Mono Q revealed 2 peaks (‘b’ and ‘c’) of hsp27-kinase activity. A third peak ‘a’ was detected upon chromatography of the Mono Q flow-through fractions on the cation exchange resin, Mono S. The hsp27-kinase activity underlying peaks ‘a’ and ‘c’ increased as perfusion pressure was increased from 40 to 120 mmHg. In contrast, peak ‘b’ increased over pressures 60–100 mmHg but was decreased at 120 mmHg. Peaks ‘a’, ‘b’, and ‘c’ contained MK2 immunoreactivity, whereas MK3 and MK5 immunoreactivity was detected in peak ‘a’. p38 MAPK and phospho-p38 MAPK were also detected in peaks ‘b’ and ‘c’ but absent from peak ‘a’. Hsp27-kinase activity in peaks ‘b’ and ‘c’ (120 mmHg) eluted from a Superose 12 gel filtration column with an apparent molecular mass of 50-kDa. Hence, peaks ‘b’ and ‘c’ were not a result of MK2 forming complexes. In-gel hsp27-kinase assays revealed a single 49-kDa renaturable hsp27-kinase activity in peaks ‘b’ and ‘c’ at 60 mmHg, whereas several hsp27-kinases (p43, p49, p54, p66) were detected in peaks ‘b’ and ‘c’ from hearts perfused at 120 mmHg. Thus, multiple hsp27-kinases were activated in response to elevated aortic pressure in isolated, perfused rat hearts and hence may be implicated in regulating the cardioprotective effects of hsp27 and thus may represent targets for cardioprotective therapy. PMID:22878564

  11. Probability Analysis of the Wave-Slamming Pressure Values of the Horizontal Deck with Elastic Support

    NASA Astrophysics Data System (ADS)

    Zuo, Weiguang; Liu, Ming; Fan, Tianhui; Wang, Pengtao

    2018-06-01

    This paper presents the probability distribution of the slamming pressure from an experimental study of regular wave slamming on an elastically supported horizontal deck. The time series of the slamming pressure during the wave impact were first obtained through statistical analyses on experimental data. The exceeding probability distribution of the maximum slamming pressure peak and distribution parameters were analyzed, and the results show that the exceeding probability distribution of the maximum slamming pressure peak accords with the three-parameter Weibull distribution. Furthermore, the range and relationships of the distribution parameters were studied. The sum of the location parameter D and the scale parameter L was approximately equal to 1.0, and the exceeding probability was more than 36.79% when the random peak was equal to the sample average during the wave impact. The variation of the distribution parameters and slamming pressure under different model conditions were comprehensively presented, and the parameter values of the Weibull distribution of wave-slamming pressure peaks were different due to different test models. The parameter values were found to decrease due to the increased stiffness of the elastic support. The damage criterion of the structure model caused by the wave impact was initially discussed, and the structure model was destroyed when the average slamming time was greater than a certain value during the duration of the wave impact. The conclusions of the experimental study were then described.

  12. Statistical parametric mapping of the regional distribution and ontogenetic scaling of foot pressures during walking in Asian elephants (Elephas maximus).

    PubMed

    Panagiotopoulou, Olga; Pataky, Todd C; Hill, Zoe; Hutchinson, John R

    2012-05-01

    Foot pressure distributions during locomotion have causal links with the anatomical and structural configurations of the foot tissues and the mechanics of locomotion. Elephant feet have five toes bound in a flexible pad of fibrous tissue (digital cushion). Does this specialized foot design control peak foot pressures in such giant animals? And how does body size, such as during ontogenetic growth, influence foot pressures? We addressed these questions by studying foot pressure distributions in elephant feet and their correlation with body mass and centre of pressure trajectories, using statistical parametric mapping (SPM), a neuro-imaging technology. Our results show a positive correlation between body mass and peak pressures, with the highest pressures dominated by the distal ends of the lateral toes (digits 3, 4 and 5). We also demonstrate that pressure reduction in the elephant digital cushion is a complex interaction of its viscoelastic tissue structure and its centre of pressure trajectories, because there is a tendency to avoid rear 'heel' contact as an elephant grows. Using SPM, we present a complete map of pressure distributions in elephant feet during ontogeny by performing statistical analysis at the pixel level across the entire plantar/palmar surface. We hope that our study will build confidence in the potential clinical and scaling applications of mammalian foot pressures, given our findings in support of a link between regional peak pressures and pathogenesis in elephant feet.

  13. Pressure Mapping in Elderly Care: A Tool to Increase Pressure Injury Knowledge and Awareness Among Staff.

    PubMed

    Hultin, Lisa; Olsson, Estrid; Carli, Cheryl; Gunningberg, Lena

    The purpose of this study was to evaluate the use of a pressure mapping system with real-time feedback of pressure points in elderly care, with specific focus on pressure injury (PI) knowledge/attitudes (staff), interface pressure, and PI prevention activities (residents). Descriptive, 1-group pretest/posttest study. A convenience sample of 40 assistant nurses and aides participated in the study; staff members were recruited at daytime, and 1 nighttime meeting was held at the facility. A convenience sample of 12 residents with risk for PI were recruited, 4 from each ward. Inclusion criteria were participants older than 65 years, Modified Norton Scale score 20 or less, and in need of help with turning in order to prevent PI. The study setting was a care facility for the elderly in Uppsala, Sweden. A descriptive, comparative pretest/posttest study design was used. The intervention consisted of the use of a pressure mapping system, combined with theoretical and practical teaching. Theoretical and practical information related to PI prevention and the pressure mapping system was presented to the staff. The staff (n = 40) completed the Pressure Ulcer Knowledge and Assessment Tool (PUKAT) and Attitudes towards Pressure Ulcer (APuP) before and following study intervention. Residents' beds were equipped with a pressure mapping system during 7 consecutive days. Peak pressures and preventive interventions were registered 3 times a day by trained study nurses, assistant nurses, and aides. Staff members' PUKAT scores increased significantly (P = .002), while their attitude scores, which were high pretest, remained unchanged. Peak interface pressures were significantly reduced (P = .016), and more preventive interventions (n = 0.012) were implemented when the staff repositioned residents after feedback from the pressure mapping system. A limited educational intervention, combined with the use of a pressure mapping system, was successful as it improved staff members' knowledge about PI prevention, reduced interface pressure, and increased PI prevention activities. As many of the staff members lacked formal education in PI prevention and management, opportunities for teaching sessions and reflection upon PI prevention should be incorporated into the workplace. More research is needed to evaluate the effect of continuous pressure mapping on the incidence of PI.

  14. A piezo-bar pressure probe

    NASA Technical Reports Server (NTRS)

    Friend, W. H.; Murphy, C. L.; Shanfield, I.

    1967-01-01

    Piezo-bar pressure type probe measures the impact velocity or pressure of a moving debris cloud. It measures pressures up to 200,000 psi and peak pressures may be recorded with a total pulse duration between 5 and 65 musec.

  15. Two density peaks in low magnetic field helicon plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Y.; Zhao, G.; Ouyang, J. T., E-mail: jtouyang@bit.edu.cn, E-mail: lppmchenqiang@hotmail.com

    2015-09-15

    In this paper, we report two density peaks in argon helicon plasma under an axial magnetic field from 0 G to 250 G with Boswell-type antenna driven by radio frequency (RF) power of 13.56 MHz. The first peak locates at 40–55 G and the second one at 110–165 G, as the RF power is sustainably increased from 100 W to 250 W at Ar pressure of 0.35 Pa. The absorbed power of two peaks shows a linear relationship with the magnetic field. End views of the discharge taken by intensified charge coupled device reveal that, when the first peak appeared, the discharge luminance moves to the edge ofmore » the tube as the magnetic field increases. For the second peak, the strong discharge area is centered at the two antenna legs after the magnetic field reaches a threshold value. Comparing with the simulation, we suggest that the efficient power absorption of two peaks at which the efficient power absorption mainly appears in the near-antenna region is due to the mode conversion in bounded non-uniform helicon plasma. The two low-field peaks are caused, to some extent, by the excitation of Trivelpiece-Gould wave through non-resonance conversion.« less

  16. Cadence, age, and weight as determinants of forefoot plantar pressures using the Biofoot in-shoe system.

    PubMed

    Martínez-Nova, Alfonso; Pascual Huerta, Javier; Sánchez-Rodríguez, Raquel

    2008-01-01

    We evaluated normal plantar pressures and studied the effect of weight, cadence, and age on forefoot plantar pressures in healthy subjects by using the Biofoot (Instituto de Biomecánica de Valencia, Valencia, Spain) in-shoe measurement system. The feet of 45 healthy subjects with no evident foot or lower-limb diseases were measured with the Biofoot in-shoe system. The forefoot was divided into seven areas: the first through fifth metatarsal heads, the hallux, and the second through fifth lesser toes. Three trials of 8 sec each were recorded twice in each subject, and the mean was used to analyze peak and mean plantar pressures. A multiple regression model including weight, age, and cadence was run for each metatarsal head, the hallux, and the lesser toes. Intraclass correlation coefficients and coefficients of variation were also calculated to assess reliability. The second metatarsal head had the greatest peak (960 kPa) and mean (585.1 kPa) pressures, followed by the third metatarsal head. Weight and cadence combined explained 18% and 23% of peak plantar pressure at the second and third metatarsal heads, respectively (P < .001). The intraclass correlation coefficient varied from 0.76 to 0.96 for all variables. The coefficient of variation between sessions ranged from 5.8% to 9.0%. The highest peak and mean plantar pressures were found at the second and third metatarsal heads in healthy subjects. Weight, cadence, and age explained a low variability of this pressure pattern. The Biofoot in-shoe system has good reliability to measure plantar pressures. These data will have implications for the understanding of normal foot biomechanics and its determinants.

  17. A comparison of types and thicknesses of adhesive felt padding in the reduction of peak plantar pressure of the foot: a case report.

    PubMed

    Curran, Michael J; Ratcliffe, Connor; Campbell, Jackie

    2015-09-24

    This case report will have implications for any area of medicine that aims to redistribute plantar pressure away from a particular area of the foot. This could be for example in the short-term care of people with diabetes, people who have insensate feet and people with poor blood supply to the foot coupled with plantar ulceration. The aim of the study was to investigate which type and thickness of Hapla felt padding is the most effective at redistributing plantar pressure of the foot. This case report is the first of its kind. The participant was a healthy 50-year-old white man with a high peak plantar pressure over the second metatarsal head of both feet; he required removal of a plantar callus on a periodic basis. The reader should note that different types of Hapla felt padding provide different forms of redistribution of plantar pressure on the foot. In the clinic it may be useful to measure peak plantar pressure using F-Scan before deciding on the most appropriate type of felt padding.

  18. Estimated right ventricular systolic pressure during exercise stress echocardiography in patients with suspected coronary artery disease.

    PubMed

    Armstrong, David W J; Matangi, Murray F

    2010-02-01

    To determine the normal range of estimated right ventricular systolic pressure (RVSP) at peak exercise during exercise stress echocardiography (ExECHO) in a series of consecutive patients referred for the investigation of coronary artery disease. Of 1057 ExECHO examinations over a span of 11 months, 807 met the study criteria. A total of 250 patients were excluded, 188 for missing rest or peak RVSP measurements, 16 for a resting RVSP above 50 mmHg, 16 for nondiagnostic echocardiographic images and the remaining 30 for missing data. The maximal tricuspid regurgitant jet was recorded at rest and following acquisition of the stress images (mean [+/- SD] time 103.1+/-35.2 s). A mean right atrial pressure of 10 mmHg was used in the calculation of RVSP. All data were entered into a cardiology database (CARDIOfile; Registered trademark, Kingston Heart Clinic) for later retrieval and analysis. There were 206 male (58.9+/-12.0 years of age) and 601 female patients (57.4+/-12.0 years of age). Patient age ranged from 18 to 90 years. The mean resting and peak exercise RVSP was 27.8+/-7.8 mmHg and 34.8+/-11.3 mmHg in men, and 27.8+/-7.7 mmHg and 34.6+/-11.7 mmHg in women, respectively. The mean increase in RVSP was 7.0+/-8.8 mmHg in men and 6.7+/-8.9 mmHg in women. The 95% CI for peak RVSP was 12.2 mmHg to 57.4 mmHg in men, and 11.2 mmHg to 58.0 mmHg in women. There was no significant difference in peak RVSP for a normal ExECHO compared with an abnormal ExECHO. RVSP at rest and at peak exercise increased with both age and left atrial size. In individual patients, the RVSP should not increase above the resting value by more than 24.6 mmHg in men and 24.5 mmHg in women. This value was calculated as the increase in RVSP plus 2xSD of the RVSP. Peak RVSP should not exceed 57.4 mmHg in men and 58.0 mmHg in women. If either of these criteria is exceeded, the response of RVSP to exercise should be considered abnormal.

  19. Foot loading with an ankle-foot orthosis: the accuracy of an integrated physical strain trainer.

    PubMed

    Pauser, Johannes; Jendrissek, Andreas; Brem, Matthias; Gelse, Kolja; Swoboda, Bernd; Carl, Hans-Dieter

    2012-07-01

    To investigate the value of a built-in physical strain trainer for the monitoring of partial weight bearing with an ankle-foot orthosis. 12 healthy volunteers were asked to perform three trials. Plantar peak pressure values from normal gait (trial one) were defined as 100% (baseline). The following trials were performed with the Vacoped® dynamic vacuum ankle orthosis worn in a neutral position with full weight bearing (trial two) and a restriction to 10% body weight (BW) (trial three), as monitored with an integrated physical strain trainer. Peak plantar pressure values were obtained using the pedar® X system. Peak pressure values were statistically significantly reduced wearing the Vacoped® shoe with full weight bearing for the hindfoot to 68% of the baseline (normal gait) and for the midfoot and forefoot to 83% and 60%, respectively. Limited weight bearing with 10% BW as controlled by physical strain trainer further reduced plantar peak pressure values for the hindfoot to 19%, for the midfoot to 43% of the baseline and the forefoot to 22% of the baseline. The Vacoped® vacuum ankle orthosis significantly reduces plantar peak pressure. The integrated physical strain trainer seems unsuitable to monitor a limitation to 10% BW adequately for the total foot. The concept of controlling partial weight bearing with the hindfoot-addressing device within the orthosis seems debatable but may be useful when the hindfoot in particular must be off-loaded.

  20. A biomechanical investigation of right-forward lunging step among badminton players.

    PubMed

    Mei, Qichang; Gu, Yaodong; Fu, Fengqin; Fernandez, Justin

    2017-03-01

    This study presents the kinematics and plantar pressure characteristics of eight elite national-level badminton athletes and eight recreational college-level badminton players while performing a right-forward lunge movement in a laboratory-simulated badminton court. The hypothesis was that recreational players would be significantly different from elite players in kinematics and plantar pressure measures. Vicon ® motion capture and Novel ® insole plantar pressure measurement were simultaneously taken to record the lower extremity kinematics and foot loading during stance. Recreational players showed significantly higher peak pressure in the lateral forefoot (P = 0.002) and force time integral in the lateral forefoot (P = 0.013) and other toes (P = 0.005). Elite athletes showed higher peak pressure in the medial forefoot (P = 0.003), hallux (P = 0.037) and force time integral in the medial forefoot (P = 0.009). The difference in landing techniques for the lunge step between elite athletes and recreational players was observed with peak ankle eversion (-38.2°±2.4° for athletes and -11.1°±3.9° for players, P = 0.015); smaller knee range of motion in the coronal and transverse planes, with differences in peak knee adduction (28.9°±6.8° for athletes and 15.7°±6.2° for players, P = 0.031); peak knee internal rotation (20.3°±1.3° for athletes and 11.8°±3.2° for players, P = 0.029) and peak hip flexion (77.3°±4.1° for athletes and 91.3°±9.3° for players, P = 0.037).

  1. Prediction of plantar shear stress distribution by artificial intelligence methods.

    PubMed

    Yavuz, Metin; Ocak, Hasan; Hetherington, Vincent J; Davis, Brian L

    2009-09-01

    Shear forces under the human foot are thought to be responsible for various foot pathologies such as diabetic plantar ulcers and athletic blisters. Frictional shear forces might also play a role in the metatarsalgia observed among hallux valgus (HaV) and rheumatoid arthritis (RA) patients. Due to the absence of commercial devices capable of measuring shear stress distribution, a number of linear models were developed. All of these have met with limited success. This study used nonlinear methods, specifically neural network and fuzzy logic schemes, to predict the distribution of plantar shear forces based on vertical loading parameters. In total, 73 subjects were recruited; 17 had diabetic neuropathy, 14 had HaV, 9 had RA, 11 had frequent foot blisters, and 22 were healthy. A feed-forward neural network (NN) and adaptive neurofuzzy inference system (NFIS) were built. These systems were then applied to a custom-built platform, which collected plantar pressure and shear stress data as subjects walked over the device. The inputs to both models were peak pressure, peak pressure-time integral, and time to peak pressure, and the output was peak resultant shear. Root-mean-square error (RMSE) values were calculated to test the models' accuracy. RMSE/actual shear ratio varied between 0.27 and 0.40 for NN predictions. Similarly, NFIS estimations resulted in a 0.28-0.37 ratio for local peak values in all subject groups. On the other hand, error percentages for global peak shear values were found to be in the range 11.4-44.1. These results indicate that there is no direct relationship between pressure and shear magnitudes. Future research should aim to decrease error levels by introducing shear stress dependent variables into the models.

  2. Design of a Collapse-Mode CMUT With an Embossed Membrane for Improving Output Pressure.

    PubMed

    Yu, Yuanyu; Pun, Sio Hang; Mak, Peng Un; Cheng, Ching-Hsiang; Wang, Jiujiang; Mak, Pui-In; Vai, Mang I

    2016-06-01

    Capacitive micromachined ultrasonic transducers (CMUTs) have emerged as a competitive alternative to piezoelectric ultrasonic transducers, especially in medical ultrasound imaging and therapeutic ultrasound applications, which require high output pressure. However, as compared with piezoelectric ultrasonic transducers, the output pressure capability of CMUTs remains to be improved. In this paper, a novel structure is proposed by forming an embossed vibrating membrane on a CMUT cell operating in the collapse mode to increase the maximum output pressure. By using a beam model in undamped conditions and finite-element analysis simulations, the proposed embossed structure showed improvement on the maximum output pressure of the CMUT cell when the embossed pattern was placed on the estimated location of the peak deflection. As compared with a uniform membrane CMUT cell worked in the collapse mode, the proposed CMUT cell can yield the maximum output pressure by 51.1% and 88.1% enhancement with a single embossed pattern made of Si3N4 and nickel, respectively. The maximum output pressures were improved by 34.9% (a single Si3N4 embossed pattern) and 46.7% (a single nickel embossed pattern) with the uniform membrane when the center frequencies of both original and embossed CMUT designs were similar.

  3. Reliability of computer-assisted periacetabular osteotomy using a minimally invasive approach.

    PubMed

    De Raedt, Sepp; Mechlenburg, Inger; Stilling, Maiken; Rømer, Lone; Murphy, Ryan J; Armand, Mehran; Lepistö, Jyri; de Bruijne, Marleen; Søballe, Kjeld

    2018-06-06

    Periacetabular osteotomy (PAO) is the treatment of choice for younger patients with developmental hip dysplasia. The procedure aims to normalize the joint configuration, reduce the peak-pressure, and delay the development of osteoarthritis. The procedure is technically demanding and no previous study has validated the use of computer navigation with a minimally invasive transsartorial approach. Computer-assisted PAO was performed on ten patients. Patients underwent pre- and postoperative computed tomography (CT) scanning with a standardized protocol. Preoperative preparation consisted of outlining the lunate surface and segmenting the pelvis and femur from CT data. The Biomechanical Guidance System was used intra-operatively to automatically calculate diagnostic angles and peak-pressure measurements. Manual diagnostic angle measurements were performed based on pre- and postoperative CT. Differences in angle measurements were investigated with summary statistics, intraclass correlation coefficient, and Bland-Altman plots. The percentage postoperative change in peak-pressure was calculated. Intra-operative reported angle measurements show a good agreement with manual angle measurements with intraclass correlation coefficient between 0.94 and 0.98. Computer navigation reported angle measurements were significantly higher for the posterior sector angle ([Formula: see text], [Formula: see text]) and the acetabular anteversion angle ([Formula: see text], [Formula: see text]). No significant difference was found for the center-edge ([Formula: see text]), acetabular index ([Formula: see text]), and anterior sector angle ([Formula: see text]). Peak-pressure after PAO decreased by a mean of 13% and was significantly different ([Formula: see text]). We found that computer navigation can reliably be used with a minimally invasive transsartorial approach PAO. Angle measurements generally agree with manual measurements and peak-pressure was shown to decrease postoperatively. With further development, the system will become a valuable tool in the operating room for both experienced and less experienced surgeons performing PAO. Further studies with a larger cohort and follow-up will allow us to investigate the association with peak-pressure and postoperative outcome and pave the way to clinical introduction.

  4. Catastrophic global-avalanche of a hollow pressure filament

    NASA Astrophysics Data System (ADS)

    van Compernolle, B.; Poulos, M. J.; Morales, G. J.

    2017-10-01

    New results are presented of a basic heat transport experiment performed in the Large Plasma Device at UCLA. A ring-shaped electron beam source injects low energy electrons along a strong magnetic field into a preexisting, large and cold plasma. The injected electrons are thermalized by Coulomb collisions within a short distance and provide an off-axis heat source that results in a long, hollow, cylindrical region of elevated plasma pressure. The off-axis source is active for a period long compared to the density decay time, i.e., as time progresses the power per particle increases. Two distinct regimes are observed to take place, an early regime dominated by multiple avalanches, identified as a sudden intermittent rearrangement of the pressure profile that repeats under sustained heating, and a second regime dominated by broadband drift-Alfvén fluctuations. The transition between the two regimes is sudden and global, both radially and axially. The initial regime is characterized by peaked density and temperature profiles, while only the peaked temperature profile survives in the second regime. Recent measurements at multiple axial locations provide new insight into the axial dynamics of the global avalanche. Sponsored by NSF Grant 1619505 and by DOE/NSF at BaPSF.

  5. Central venous pulse pressure analysis using an R-synchronized pressure measurement system.

    PubMed

    Fujita, Yoshihisa; Hayashi, Daisuke; Wada, Shinya; Yoshioka, Naoki; Yasukawa, Takeshi; Pestel, Gunther

    2006-12-01

    The information derived from central venous catheters is underused. We developed an EKG-R synchronization and averaging system to obtained distinct CVP waveforms and analyzed components of these. Twenty-five paralyzed surgical patients undergoing CVP monitoring under mechanical ventilation were studied. CVP and EKG signals were analyzed employing our system, the mean CVP and CVP at end-diastole during expiration were compared, and CVP waveform components were measured using this system. CVP waveforms were clearly visualized in all patients. They showed the a peak to be 1.8+/- 0.7 mmHg, which was the highest of three peaks, and the x trough to be lower than the y trough (-1.6+/- 0.7 mmHg and -0.9+/- 0.5 mmHg, respectively), with a mean pulse pressure of 3.4 mmHg. The difference between the mean CVP and CVP at end-diastole during expiration was 0.58+/- 0.81 mmHg. The mean CVP can be used as an index of right ventricular preload in patients under mechanical ventilation with regular sinus rhythm. Our newly developed system is useful for clinical monitoring and for education in circulatory physiology.

  6. Design of HIFU Transducers for Generating Specified Nonlinear Ultrasound Fields.

    PubMed

    Rosnitskiy, Pavel B; Yuldashev, Petr V; Sapozhnikov, Oleg A; Maxwell, Adam D; Kreider, Wayne; Bailey, Michael R; Khokhlova, Vera A

    2017-02-01

    Various clinical applications of high-intensity focused ultrasound have different requirements for the pressure levels and degree of nonlinear waveform distortion at the focus. The goal of this paper is to determine transducer design parameters that produce either a specified shock amplitude in the focal waveform or specified peak pressures while still maintaining quasi-linear conditions at the focus. Multiparametric nonlinear modeling based on the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation with an equivalent source boundary condition was employed. Peak pressures, shock amplitudes at the focus, and corresponding source outputs were determined for different transducer geometries and levels of nonlinear distortion. The results are presented in terms of the parameters of an equivalent single-element spherically shaped transducer. The accuracy of the method and its applicability to cases of strongly focused transducers were validated by comparing the KZK modeling data with measurements and nonlinear full diffraction simulations for a single-element source and arrays with 7 and 256 elements. The results provide look-up data for evaluating nonlinear distortions at the focus of existing therapeutic systems as well as for guiding the design of new transducers that generate specified nonlinear fields.

  7. The effects of non-Newtonian blood flow on curved stenotic coronary artery

    NASA Astrophysics Data System (ADS)

    Li, Shuang; Chin, Cheng; Monty, Jason; Barlis, Peter; Ooi, Andrew

    2017-11-01

    Direct numerical simulations (DNS) are carried out using both Newtonian and non-Newtonian viscosity models under a pulsatile physiological flow condition to study the influences of the non-Newtonian blood property on the flow fields in the idealised curved stenotic artery model. Quemada model is adopted to simulate the non-Newtonian blood in the simulations. Both time-averaged and selected instantaneous velocity, vorticity and pressure data are examined and the differences between the Newtonian and non-Newtonian flows are examined. The non-Newtonian simulations tend to have blunted axial velocity profile compared to the Newtonian cases. In the proximal of post-stenotic region, smaller recirculation bubbles are observed because of the non-Newtonian effects. Decreased secondary flow strengths are observed upstream of stenosis while higher magnitudes of secondary flows are found out downstream of stenosis. The deviation of mean cross-sectionally axial vorticity is minimal except at the peak systole, where an additional vortice appears near the centre of the 90 degrees plane that is more pronounced in the Newtonian case. The influence of blood-analog viscosity increases the mean pressure drops. However, lower instantaneous pressure losses at peak systole are observed in contrast to the Newtonian blood analog fluid.

  8. Respiratory Mechanical and Cardiorespiratory Consequences of Cycling with Aerobars.

    PubMed

    Charlton, Jesse M; Ramsook, Andrew H; Mitchell, Reid A; Hunt, Michael A; Puyat, Joseph H; Guenette, Jordan A

    2017-12-01

    Aerobars place a cyclist in a position where the trunk is flexed forward and the elbows are close to the midline of the body. This position is known to improve cycling aerodynamics and time trial race performance compared with upright cycling positions. However, the aggressive nature of this position may have important cardiorespiratory and metabolic consequences. The purpose of this investigation was to examine the respiratory mechanical, ventilatory, metabolic, and sensory consequences of cycling while using aerobars during laboratory-based cycling. Eleven endurance-trained male cyclists (age, 26 ± 9 yr; V˙O2peak, 55 ± 5 mL·kg·min) were recruited. Visit 1 consisted of an incremental cycling test to determine peak power output. Visit 2 consisted of 6-min bouts of constant load cycling at 70% of peak incremental power output in the aerobar position, drop position, and upright position while grasping the brake hoods. Metabolic and ventilatory responses were measured using a commercially available metabolic cart, and respiratory pressures were measured using an esophageal catheter. Cycling in the aerobar position significantly increased the work of breathing (Wb), power of breathing (Pb), minute ventilation, ventilatory equivalent for oxygen and carbon dioxide, and transdiaphragmatic pressure compared with the upright position. Increases in the Wb and Pb in the aerobars relative to the upright position were strongly correlated with the degree of thoracic restriction, measured as the shoulder-to-aerobar width ratio (Wb: r = 0.80, P = 0.01; Pb: r = 0.69, P = 0.04). Aerobars significantly increase the mechanical cost of breathing and leads to greater ventilatory inefficiency compared with upright cycling. Future work is needed to optimize aerobar width to minimize the respiratory mechanical consequences while optimizing aerodynamics.

  9. High precision optical fiber Fabry-Perot sensor for gas pressure detection

    NASA Astrophysics Data System (ADS)

    Mao, Yan; Tong, Xing-lin

    2013-09-01

    An optical fiber Fabry-Perot (F-P) sensor with quartz diaphragm for gas pressure testing was designed and fabricated. It consisted of single-mode fiber, hollow glass tube and quartz diaphragm. It uses the double peak demodulation to obtain the initialized cavity length. The variety of cavity length can be calcultated by the single peak demodulation after changing the gas pressure. The results show that the sensor is small in size, whose sensitivity is 19 pm/kPa in the range of the 10 ~ 260 kPa gas pressure. And it has good linearity and repeatability.

  10. Short-bearing approximation for full journal bearings

    NASA Technical Reports Server (NTRS)

    Ocvirk, F W

    1952-01-01

    A short-bearing approximation of pressure distribution in the oil film is presented which is an extension of the pressure-distribution function of Michell and Cardullo and includes end-leakage effects. Equations giving applied load, attitude angle, location and magnitude of peak film pressure, friction, and required oil flow rate as functions of the eccentricity ratio are also given. The capacity number, a basic non dimensional quantity resulting from this analysis is the product of the Sommerfeld number and the square of the length-diameter ratio. Curves determined by this analysis are compared with previously published experimental data and theoretical curves of Sommerfeld and Cameron and Wood. Conclusions reached indicate that this approximation is of practical value for analysis of short bearings.

  11. Normal shock wave reflection on porous compressible material

    NASA Astrophysics Data System (ADS)

    Gvozdeva, L. G.; Faresov, Iu. M.; Brossard, J.; Charpentier, N.

    The present experimental investigation of the interaction of plane shock waves in air and a rigid wall coated with flat layers of expanded polymers was conducted in a standard shock tube and a diaphragm with an initial test section pressure of 100,000 Pa. The Mach number of the incident shock wave was varied from 1.1 to 2.7; the peak pressures measured on the wall behind polyurethane at various incident wave Mach numbers are compared with calculated values, with the ideal model of propagation, and with the reflection of shock waves in a porous material that is understood as a homogeneous mixture. The effect of elasticity and permeability of the porous material structure on the rigid wall's pressure pulse parameters is qualitatively studied.

  12. Time domain simulation of the response of geometrically nonlinear panels subjected to random loading

    NASA Technical Reports Server (NTRS)

    Moyer, E. Thomas, Jr.

    1988-01-01

    The response of composite panels subjected to random pressure loads large enough to cause geometrically nonlinear responses is studied. A time domain simulation is employed to solve the equations of motion. An adaptive time stepping algorithm is employed to minimize intermittent transients. A modified algorithm for the prediction of response spectral density is presented which predicts smooth spectral peaks for discrete time histories. Results are presented for a number of input pressure levels and damping coefficients. Response distributions are calculated and compared with the analytical solution of the Fokker-Planck equations. RMS response is reported as a function of input pressure level and damping coefficient. Spectral densities are calculated for a number of examples.

  13. The effect of resuscitation position on cerebral and coronary perfusion pressure during mechanical cardiopulmonary resuscitation in porcine cardiac arrest model.

    PubMed

    Kim, Taeyun; Shin, Sang Do; Song, Kyoung Jun; Park, Yong Joo; Ryu, Hyun Ho; Debaty, Guillaume; Lurie, Keith; Hong, Ki Jeong

    2017-04-01

    It is unknown whether patient position is associated with the optimal cerebral (CePP) and coronary (CoPP) perfusion pressure. This study utilized a randomized experimental design and anesthetized, intubated and paralyzed female pigs (n=12) (mean 42, SD 3kg). After 6min of untreated ventricular fibrillation, mechanical CPR with was performed for 3min in 0° supine position. The CPR was then performed for 5min in a position randomly assigned to either 1) head-up tilt (HUT) by three angles (30°, 45°, or 60°) or 2) head-down tilt (HDT) by three angles (30°, 45°, or 60°) and at 3) supine position between HUT and HDT positions. 4 Pigs were assigned to each angle of HUT or HDT position and 12 pigs were assigned to supine position. CePPs and CoPPs were measured and compared using MIXED procedure with pig as a random effect among angles and compared between angles with Tukey post-hoc analysis. With 60°, 45°, 30° head-down, 0° (supine), and 30°, 45°, 60° head-up positioning, mean(SD) CePPs increased consistently as follows: 2.4(0.4), 9.3(1.6), 16.5(1.6), 27.0(1.5), 35.1(0.4), 39.4(0.6), and 39.9(0.3) mmHg, respectively. CoPPs were followings according to same angle: 12.9(2.5), 13.3(2.5), 12.8(0.4), 18.1(0.7), 30.3(0.4), 24.1(0.6), and 26.5(0.9) mmHg, respectively. The CePPs were peak at HUT(45°) and HUT(60°), but CoPP was peak in HUT(30°) and higher than HUT(45°) and HUT(60°). Cerebral perfusion pressure during mechanical CPR were similar and highest in the HUT(45° and 60°) positions whereas the peak coronary perfusion pressure was observed with HUT(30°). Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Right ventricular pressure response to exercise in adults with isolated ventricular septal defect closed in early childhood.

    PubMed

    Moller, Thomas; Lindberg, Harald; Lund, May Brit; Holmstrom, Henrik; Dohlen, Gaute; Thaulow, Erik

    2018-06-01

    We previously demonstrated an abnormally high right ventricular systolic pressure response to exercise in 50% of adolescents operated on for isolated ventricular septal defect. The present study investigated the prevalence of abnormal right ventricular systolic pressure response in 20 adult (age 30-45 years) patients who underwent surgery for early ventricular septal defect closure and its association with impaired ventricular function, pulmonary function, or exercise capacity. The patients underwent cardiopulmonary tests, including exercise stress echocardiography. Five of 19 patients (26%) presented an abnormal right ventricular systolic pressure response to exercise ⩾ 52 mmHg. Right ventricular systolic function was mixed, with normal tricuspid annular plane systolic excursion and fractional area change, but abnormal tricuspid annular systolic motion velocity (median 6.7 cm/second) and isovolumetric acceleration (median 0.8 m/second2). Left ventricular systolic and diastolic function was normal at rest as measured by the peak systolic velocity of the lateral wall and isovolumic acceleration, early diastolic velocity, and ratio of early diastolic flow to tissue velocity, except for ejection fraction (median 53%). The myocardial performance index was abnormal for both the left and right ventricle. Peak oxygen uptake was normal (mean z score -0.4, 95% CI -2.8-0.3). There was no association between an abnormal right ventricular systolic pressure response during exercise and right or left ventricular function, pulmonary function, or exercise capacity. Abnormal right ventricular pressure response is not more frequent in adult patients compared with adolescents. This does not support the theory of progressive pulmonary vascular disease following closure of left-to-right shunts.

  15. Prototype Development of an Implantable Compliance Chamber for a Total Artificial Heart.

    PubMed

    Schmitz, Stephanie; Unthan, Kristin; Sedlaczek, Marc; Wald, Felix; Finocchiaro, Thomas; Spiliopoulos, Sotirios; Koerfer, Reiner; Steinseifer, Ulrich

    2017-02-01

    At our institute a total artificial heart is being developed. It is directly actuated by a linear drive in between two ventricles, which comprise membranes to separate the drive and blood flow. A compliance chamber (CC) is needed to reduce pressure peaks in the ventricles and to increase the pump capacity. Therefore, the movement of the membrane is supported by applying a negative pressure to the air volume inside the drive unit. This study presents the development of the implantable CC which is connected to the drive unit of the total artificial hearts (TAH). The anatomical fit of the CC is optimized by analyzing CT data and adapting the outer shape to ensure a proper fit. The pressure peaks are reduced by the additional volume and the flexible membrane of the CC. The validation measurements of change in pressure peaks and flow are performed using the complete TAH system connected to a custom mock circulation loop. Using the CC, the pressure peaks could be damped below 5 mm Hg in the operational range. The flow output was increased by up to 14.8% on the systemic side and 18.2% on the pulmonary side. The described implantable device can be used for upcoming chronic animal trials. © 2016 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  16. Benchmarking of Improved DPAC Transient Deflagration Analysis Code

    DOE PAGES

    Laurinat, James E.; Hensel, Steve J.

    2017-09-27

    The deflagration pressure analysis code (DPAC) has been upgraded for use in modeling hydrogen deflagration transients. The upgraded code is benchmarked using data from vented hydrogen deflagration tests conducted at the HYDRO-SC Test Facility at the University of Pisa. DPAC originally was written to calculate peak pressures for deflagrations in radioactive waste storage tanks and process facilities at the Savannah River Site. Upgrades include the addition of a laminar flame speed correlation for hydrogen deflagrations and a mechanistic model for turbulent flame propagation, incorporation of inertial effects during venting, and inclusion of the effect of water vapor condensation on vesselmore » walls. In addition, DPAC has been coupled with chemical equilibrium with applications (CEA), a NASA combustion chemistry code. The deflagration tests are modeled as end-to-end deflagrations. As a result, the improved DPAC code successfully predicts both the peak pressures during the deflagration tests and the times at which the pressure peaks.« less

  17. Benchmarking of Improved DPAC Transient Deflagration Analysis Code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurinat, James E.; Hensel, Steve J.

    The deflagration pressure analysis code (DPAC) has been upgraded for use in modeling hydrogen deflagration transients. The upgraded code is benchmarked using data from vented hydrogen deflagration tests conducted at the HYDRO-SC Test Facility at the University of Pisa. DPAC originally was written to calculate peak pressures for deflagrations in radioactive waste storage tanks and process facilities at the Savannah River Site. Upgrades include the addition of a laminar flame speed correlation for hydrogen deflagrations and a mechanistic model for turbulent flame propagation, incorporation of inertial effects during venting, and inclusion of the effect of water vapor condensation on vesselmore » walls. In addition, DPAC has been coupled with chemical equilibrium with applications (CEA), a NASA combustion chemistry code. The deflagration tests are modeled as end-to-end deflagrations. As a result, the improved DPAC code successfully predicts both the peak pressures during the deflagration tests and the times at which the pressure peaks.« less

  18. Peak pressure data and pressure-time integral in the contralateral limb in patients with diabetes and a trans-tibial prosthesis.

    PubMed

    Borg, Jael; Mizzi, Stephen; Formosa, Cynthia

    2018-05-19

    Clinicians currently rely on observational clinical data pertaining to the biomechanics of the diabetic foot. However, advances in technology can objectively describe this. A thorough understanding of the functional and mechanical consequences following trans-tibial amputations is lacking. Does a trans-tibial prostheses significantly increase peak plantar pressures and pressure time integrals in the intact foot of patients with type-2 diabetes and neuropathy? A prospective quantitative matched-subject design was employed. Twenty participants living with diabetes and peripheral sensory neuropathy were recruited. Ten participants presented with a trans-tibial amputation and 10 had intact feet. Participants were matched for gender, age, foot type and BMI. Peak plantar pressure and pressure time integral data were recorded using the Tekscan HR™ pressure mat system, using the two-step gait protocol. The Shapiro-Wilk test was used to determine normality of data. The Independent Samples t-test and the Mann Whitney U test were carried out to reject the null hypothesis. Although no significant differences (p < 0.05) in mean peak plantar pressures were observed in all the foot masks analysed between the amputee and the control group, a significant difference (p = 0.002) in mean pressure time integrals was recorded with highest pressure time integral (PTI) values under the 2nd-4th metatarsophalangeal joint (MTP joint) for the trans-tibial amputee group. Cumulative exposure of both pressure and time can lead to tissue damage. PTI could be considered as an important contributory factor in determining ulcer formation. Elevated PTI under the 2nd-4th MTP joints sustained in the intact contralateral limb in patients using below knee prosthesis could possibly be due to gait alterations in this population. The preservation of the contralateral limb is of great concern and importance as this might impact patient's mobility and quality of life. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. F-18 high alpha research vehicle surface pressures: Initial in-flight results and correlation with flow visualization and wind-tunnel data

    NASA Technical Reports Server (NTRS)

    Fisher, David F.; Banks, Daniel W.; Richwine, David M.

    1990-01-01

    Pressure distributions measured on the forebody and the leading-edge extensions (LEX's) of the NASA F-18 high alpha research vehicle (HARV) were reported at 10 and 50 degree angles of attack and at Mach 0.20 to 0.60. The results were correlated with HARV flow visualization and 6-percent scale F-18 wind-tunnel-model test results. The general trend in the data from the forebody was for the maximum suction pressure peaks to first appear at an angle of attack (alpha) of approximately 19 degrees and increase in magnitude with angle of attack. The LEX pressure distribution general trend was the inward progression and increase in magnitude of the maximum suction peaks up to vortex core breakdown and then the decrease and general flattening of the pressure distribution beyond that. No significant effect of Mach number was noted for the forebody results. However, a substantial compressibility effect on the LEX's resulted in a significant reduction in vortex-induced suction pressure as Mach number increased. The forebody primary and the LEX secondary vortex separation lines, from surface flow visualization, correlated well with the end of pressure recovery, leeward and windward, respectively, of maximum suction pressure peaks. The flight to wind-tunnel correlations were generally good with some exceptions.

  20. Design and Analysis of a Continuous Split Typed Needle-Free Injection System for Animal Vaccination.

    PubMed

    Chen, Kai; Pan, Min; Liu, Tingting

    2017-01-01

    Liquid needle-free injection devices (NFIDs) employ a high-velocity liquid jet to deliver drugs and vaccine through transdermal injection. NFIDs for animal vaccination are more complicated than those used for human beings for their much larger and more flexible power sources, as well as rapid, repetitive and continuous injection features. In the paper, spring-powered NFID is designed for animal vaccine injection. For convenience, the device is a split into a power source and handheld injector. A mathematical model is proposed to calculate the injection pressure, taking into the account pressure loss and the strain energy loss in the bendable tube due to elastic deformation. An experimental apparatus was build to verify the calculation results. Under the same system conditions, the calculation results of the dynamic injection pressure match the experimental results. It is found that the bendable tube of the split typed NFID has significant impact on the profile of the injection pressure. The initial peak pressure is less than the initial peak pressure of NFID without bendable tube, and there is occurrence time lag of the peak pressure. The mathematical model is the first attempt to reveal the relationship between the injection pressure and the system variables of split typed NFID.

  1. Aerodynamic performance of a 1.25-pressure-ratio axial-flow fan stage

    NASA Technical Reports Server (NTRS)

    Moore, R. D.; Steinke, R. J.

    1974-01-01

    Aerodynamic design parameters and overall and blade-element performances of a 1.25-pressure-ratio fan stage are reported. Detailed radial surveys were made over the stable operating flow range at rotative speeds from 70 to 120 percent of design speed. At design speed, the measured stage peak efficiency of 0.872 occurred at a weight flow of 34.92 kilograms per second and a pressure ratio of 1.242. Stage stall margin is about 20 percent based on the peak efficiency and stall conditions. The overall peak efficiency for the rotor was 0.911. The overall stage performance showed no significant change when the stators were positioned at 1, 2, or 4 chords downstream of the rotor.

  2. Multi-plug insole design to reduce peak plantar pressure on the diabetic foot during walking

    PubMed Central

    Actis, Ricardo L.; Ventura, Liliana B.; Lott, Donovan J.; Smith, Kirk E.; Commean, Paul K.; Hastings, Mary K.; Mueller, Michael J.

    2009-01-01

    There is evidence that appropriate footwear is an important factor in the prevention of foot pain in otherwise healthy people or foot ulcers in people with diabetes and peripheral neuropathy. A standard care for reducing forefoot plantar pressure is the utilization of orthotic devices such as total contact inserts (TCI) with therapeutic footwear. Most neuropathic ulcers occur under the metatarsal heads, and foot deformity combined with high localized plantar pressure, appear to be the most significant factors contributing to these ulcers. In this study, patient-specific finite element models of the second ray of the foot were developed to study the influence of TCI design on peak plantar pressure (PPP) under the metatarsal heads. A typical full contact insert was modified based on the results of finite element analyses, by inserting 4 mm diameter cylindrical plugs of softer material in the regions of high pressure. Validation of the numerical model was addressed by comparing the numerical results obtained by the finite element method with measured pressure distribution in the region of the metatarsal heads for a shoe and TCI condition. Two subjects, one with a history of forefoot pain and one with diabetes and peripheral neuropathy, were tested in the laboratory while wearing therapeutic shoes and customized inserts. The study showed that customized inserts with softer plugs distributed throughout the regions of high plantar pressure reduced the PPP over that of the TCI alone. This supports the outcome as predicted by the numerical model, without causing edge effects as reported by other investigators using different plug designs, and provides a greater degree of flexibility for customizing orthotic devices than current practice allows. PMID:18266017

  3. Multi-plug insole design to reduce peak plantar pressure on the diabetic foot during walking.

    PubMed

    Actis, Ricardo L; Ventura, Liliana B; Lott, Donovan J; Smith, Kirk E; Commean, Paul K; Hastings, Mary K; Mueller, Michael J

    2008-04-01

    There is evidence that appropriate footwear is an important factor in the prevention of foot pain in otherwise healthy people or foot ulcers in people with diabetes and peripheral neuropathy. A standard care for reducing forefoot plantar pressure is the utilization of orthotic devices such as total contact inserts (TCI) with therapeutic footwear. Most neuropathic ulcers occur under the metatarsal heads, and foot deformity combined with high localized plantar pressure, appear to be the most significant factors contributing to these ulcers. In this study, patient-specific finite element models of the second ray of the foot were developed to study the influence of TCI design on peak plantar pressure (PPP) under the metatarsal heads. A typical full contact insert was modified based on the results of finite element analyses, by inserting 4 mm diameter cylindrical plugs of softer material in the regions of high pressure. Validation of the numerical model was addressed by comparing the numerical results obtained by the finite element method with measured pressure distribution in the region of the metatarsal heads for a shoe and TCI condition. Two subjects, one with a history of forefoot pain and one with diabetes and peripheral neuropathy, were tested in the laboratory while wearing therapeutic shoes and customized inserts. The study showed that customized inserts with softer plugs distributed throughout the regions of high plantar pressure reduced the PPP over that of the TCI alone. This supports the outcome as predicted by the numerical model, without causing edge effects as reported by other investigators using different plug designs, and provides a greater degree of flexibility for customizing orthotic devices than current practice allows.

  4. Attenuation of foot pressure during running on four different surfaces: asphalt, concrete, rubber, and natural grass.

    PubMed

    Tessutti, Vitor; Ribeiro, Ana Paula; Trombini-Souza, Francis; Sacco, Isabel C N

    2012-01-01

    The practice of running has consistently increased worldwide, and with it, related lower limb injuries. The type of running surface has been associated with running injury etiology, in addition other factors, such as the relationship between the amount and intensity of training. There is still controversy in the literature regarding the biomechanical effects of different types of running surfaces on foot-floor interaction. The aim of this study was to investigate the influence of running on asphalt, concrete, natural grass, and rubber on in-shoe pressure patterns in adult recreational runners. Forty-seven adult recreational runners ran twice for 40 m on all four different surfaces at 12 ± 5% km · h(-1). Peak pressure, pressure-time integral, and contact time were recorded by Pedar X insoles. Asphalt and concrete were similar for all plantar variables and pressure zones. Running on grass produced peak pressures 9.3% to 16.6% lower (P < 0.001) than the other surfaces in the rearfoot and 4.7% to 12.3% (P < 0.05) lower in the forefoot. The contact time on rubber was greater than on concrete for the rearfoot and midfoot. The behaviour of rubber was similar to that obtained for the rigid surfaces - concrete and asphalt - possibly because of its time of usage (five years). Running on natural grass attenuates in-shoe plantar pressures in recreational runners. If a runner controls the amount and intensity of practice, running on grass may reduce the total stress on the musculoskeletal system compared with the total musculoskeletal stress when running on more rigid surfaces, such as asphalt and concrete.

  5. Stress concentration factors for circular, reinforced penetrations in pressurized cylindrical shells. Ph.D. Thesis - Virginia Univ.

    NASA Technical Reports Server (NTRS)

    Ramsey, J. W., Jr.

    1975-01-01

    The effect on stresses in a cylindrical shell with a circular penetration subject to internal pressure was investigated in thin, shallow linearly, elastic cylindrical shells. Results provide numerical predictions of peak stress concentration factors around nonreinforced and reinforced penetrations in pressurized cylindrical shells. Analytical results were correlated with published formulas, as well as theoretical and experimental results. An accuracy study was made of the finite element program for each of the configurations considered important in pressure vessel technology. A formula is developed to predict the peak stress concentration factor for analysis and/or design in conjunction with the ASME Boiler and Pressure Vessel Code.

  6. Comparison of exercise blood pressure measured by technician and an automated system.

    PubMed

    Garcia-Gregory, J A; Jackson, A S; Studeville, J; Squires, W G; Owen, C A

    1984-05-01

    We evaluated the automated system Blood Pressure Measuring System (BPMS) developed by NASA on 277 adult males who elected to have a treadmill test as part of their annual physical. The BPMS uses acoustic transduction with a computer-assisted ECG gating to detect nonsynchronous noise. The BPMS readings were compared to pressures simultaneously measured by trained technicians. For all stages of work, BPMS readings were higher for systolic and lower for diastolic than technician readings. At peak stages of work, BPMS systolic pressures were about 20 mmHg higher than technician readings. Within each 3-min workstage, BPMS readings were found to be more inconsistent than technician readings. The standard errors of measurement for BPMS were from two to three times higher than technician values. These data showed automated blood pressure readings were significantly different than technician values and subject to more random fluctuations. These findings demonstrate the need to view exercise blood pressure measured by automated systems with caution.

  7. Modulation of plantar pressure and gastrocnemius activity during gait using electrical stimulation of the tibialis anterior in healthy adults

    PubMed Central

    Ueno, Mizuki; Yoshikawa, Yoshiyuki; Terashi, Hiroto; Fujino, Hidemi

    2018-01-01

    High plantar flexor moment during the stance phase is known to cause high plantar pressure under the forefoot; however, the effects on plantar pressure due to a change of gastrocnemius medialis (GM) activity during gait, have not been investigated to date. Reciprocal inhibition is one of the effects of electrical stimulation (ES), and is the automatic antagonist alpha motor neuron inhibition which is evoked by excitation of the agonist muscle. The aim of this study was to investigate the influences of ES of the tibialis anterior (TA) on plantar pressure and the GM activity during gait in healthy adults. ES was applied to the TAs of twenty healthy male adults for 30 minutes at the level of intensity that causes a full range of dorsiflexion in the ankle (frequency; 50 Hz, on-time; 10 sec, off-time; 10 sec). Subjects walked 10 meters before and after ES, and we measured the peak plantar pressure (PP), pressure time integral (PTI), and gait parameters by using an F-scan system. The percentage of integrated electromyogram (%IEMG), active time, onset time, peak time, and cessation time of TA and GM were calculated. PP and PTI under the forefoot, rear foot, and total plantar surface significantly decreased after the application of ES. Meanwhile, changes of gait parameters were not observed. %IEMG and the active time of both muscles did not change; however, onset time and peak time of GM became significantly delayed. ES application to the TA delayed the timing of onset and peak in the GM, and caused the decrease of plantar pressure during gait. The present results suggest that ES to the TA could become a new method for the control of plantar pressure via modulation of GM activity during gait. PMID:29746498

  8. Doppler indexes of left ventricular systolic and diastolic flow and central pulse pressure in relation to renal resistive index.

    PubMed

    Kuznetsova, Tatiana; Cauwenberghs, Nicholas; Knez, Judita; Thijs, Lutgarde; Liu, Yan-Ping; Gu, Yu-Mei; Staessen, Jan A

    2015-04-01

    The cardio-renal interaction occurs via hemodynamic and humoral factors. Noninvasive assessment of renal hemodynamics is currently possible by assessment of renal resistive index (RRI) derived from intrarenal Doppler arterial waveforms as ((peak systolic velocity - end-diastolic velocity)/peak systolic velocity). Limited information is available regarding the relationship between RRI and cardiac hemodynamics. We investigated these associations in randomly recruited subjects from a general population. In 171 participants (48.5% women; mean age, 52.2 years), using pulsed wave Doppler, we measured RRI (mean, 0.60) and left ventricular outflow tract (LVOT) and transmitral (E and A) blood flow peak velocities and its velocity time integrals (VTI). Using carotid applanation tonometry, we measured central pulse pressure and arterial stiffness indexes such as augmentation pressure and carotid-femoral pulse wave velocity. In stepwise regression analysis, RRI independently and significantly increased with female sex, age, body weight, brachial pulse pressure, and use of β-blockers, whereas it decreased with body height and mean arterial pressure. In multivariable-adjusted models with central pulse pressure and arterial stiffness indexes as the explanatory variables, we observed a significant and positive correlation of RRI only with central pulse pressure (P < 0.0001). Among the Doppler indexes of left ventricular blood flow, RRI was significantly and positively associated with LVOT and E peak velocities (P ≤ 0.012) and VTIs (P ≤ 0.010). We demonstrated that in unselected subjects RRI was significantly associated with central pulse pressure and left ventricular systolic and diastolic Doppler blood flow indexes. Our findings imply that in addition to the anthropometric characteristics, cardiac hemodynamic factors influence the intrarenal arterial Doppler waveform patterns. © American Journal of Hypertension, Ltd 2014. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Bootstrap current in a tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kessel, C.E.

    1994-03-01

    The bootstrap current in a tokamak is examined by implementing the Hirshman-Sigmar model and comparing the predicted current profiles with those from two popular approximations. The dependences of the bootstrap current profile on the plasma properties are illustrated. The implications for steady state tokamaks are presented through two constraints; the pressure profile must be peaked and {beta}{sub p} must be kept below a critical value.

  10. Haemodynamics, dyspnoea, and pulmonary reserve in heart failure with preserved ejection fraction.

    PubMed

    Obokata, Masaru; Olson, Thomas P; Reddy, Yogesh N V; Melenovsky, Vojtech; Kane, Garvan C; Borlaug, Barry A

    2018-05-19

    Increases in left ventricular filling pressure are a fundamental haemodynamic abnormality in heart failure with preserved ejection fraction (HFpEF). However, very little is known regarding how elevated filling pressures cause pulmonary abnormalities or symptoms of dyspnoea. We sought to determine the relationships between simultaneously measured central haemodynamics, symptoms, and lung ventilatory and gas exchange abnormalities during exercise in HFpEF. Subjects with invasively-proven HFpEF (n = 50) and non-cardiac causes of dyspnoea (controls, n = 24) underwent cardiac catheterization at rest and during exercise with simultaneous expired gas analysis. During submaximal (20 W) exercise, subjects with HFpEF displayed higher pulmonary capillary wedge pressures (PCWP) and pulmonary artery pressures, higher Borg perceived dyspnoea scores, and increased ventilatory drive and respiratory rate. At peak exercise, ventilation reserve was reduced in HFpEF compared with controls, with greater dead space ventilation (higher VD/VT). Increasing exercise PCWP was directly correlated with higher perceived dyspnoea scores, lower peak exercise capacity, greater ventilatory drive, worse New York Heart Association (NYHA) functional class, and impaired pulmonary ventilation reserve. This study provides the first evidence linking altered exercise haemodynamics to pulmonary abnormalities and symptoms of dyspnoea in patients with HFpEF. Further study is required to identify the mechanisms by which haemodynamic derangements affect lung function and symptoms and to test novel therapies targeting exercise haemodynamics in HFpEF.

  11. Effects of Pressure on Optically Active Deep Levels in Phosphorus Doped ZnSe

    NASA Astrophysics Data System (ADS)

    Weinstein, B. A.; Iota, V.

    1998-03-01

    We report high pressure photoluminescence (PL) and PL-excitation (PLE) studies at 8K of the 'midgap' emission in P-doped ZnSe using a diamond-cell with He medium. The dominant emission at low pressure is due to donor-acceptor-pair (DAP) transitions between shallow donors and deep trigonally relaxed P_Se acceptors.(J. Davies, et al., J. Luminescence 18/19, 322 (1979)) Its PL and PLE peaks shift by 8.2meV/kbar and 5.9meV/kbar, respectively -- Stokes shift decreasing with pressure. At 35kbar a new PL band, shifting to lower energy (-5.4meV/kbar), emerges from above the absorption edge, and concurrently the original DAP PL quenches. This shows that a resonant level, a deep donor or possibly a P_Se antibonding state,(R. Watts, et al., Phys. Rev. B3), 404 (1971) crosses the conduction edge into the gap. A third PL band is seen only with internse UV excitation. It occurs initially as a high energy shoulder of the original DAP peak, but shifts more rapidly upward (9.4meV/kbar) until it crosses the edge and quenches at 40kbar. We discuss candidates for this band, including donor-P_Se complexes, and we compare our results to similar work on the Zn vacancy in ZnSe. (figures)

  12. Assessment of Early Diastolic Strain-Velocity Temporal Relationships Using SPAMM-PAV (SPAtial Modulation of Magnetization with Polarity Alternating Velocity encoding)

    PubMed Central

    Zhang, Ziheng; Dione, Donald P.; Brown, Peter B.; Shapiro, Erik M.; Sinusas, Albert J.; Sampath, Smita

    2011-01-01

    A novel MR imaging technique, spatial modulation of magnetization with polarity alternating velocity encoding (SPAMM-PAV), is presented to simultaneously examine the left ventricular early diastolic temporal relationships between myocardial deformation and intra-cavity hemodynamics with a high temporal resolution of 14 ms. This approach is initially evaluated in a dynamic flow and tissue mimicking phantom. A comparison of regional longitudinal strains and intra-cavity pressure differences (integration of computed in-plane pressure gradients within a selected region) in relation to mitral valve inflow velocities is performed in eight normal volunteers. Our results demonstrate that apical regions have higher strain rates (0.145 ± 0.005 %/ms) during the acceleration period of rapid filling compared to mid-ventricular (0.114 ± 0.007 %/ms) and basal regions (0.088 ± 0.009 %/ms), and apical strain curves plateau at peak mitral inflow velocity. This pattern is reversed during the deceleration period, when the strain-rates in the basal regions are the highest (0.027 ± 0.003 %/ms) due to ongoing basal stretching. A positive base-to-apex gradient in peak pressure difference is observed during acceleration, followed by a negative base-to apex gradient during deceleration. These studies shed insight into the regional volumetric and pressure difference changes in the left ventricle during early diastolic filling. PMID:21630348

  13. Timing of population peaks of Norway lemming in relation to atmospheric pressure: A hypothesis to explain the spatial synchrony.

    PubMed

    Selås, Vidar

    2016-06-01

    Herbivore cycles are often synchronized over larger areas than what could be explained by dispersal. In Norway, the 3-4 year lemming cycle usually show no more than a one-year time lag between different regions, despite distances of up to 1000 km. If important food plants are forced to reallocate defensive proteins in years with high seed production, spatially synchronized herbivore outbreaks may be due to climate-synchronized peaks in flowering. Because lemming peaks are expected to occur one year after a flowering peak, and the formation of flower buds is induced in the year before flowering, a two-year time lag between flower-inducing climate events and lemming peaks is predicted. At Hardangervidda, South Norway, the probability that a year was a population peak year of lemming during 1920-2014 increased with increasing midsummer atmospheric pressure two years earlier, even when the number of years since the previous peak was accounted for.

  14. On the Unsteadiness of a Transitional Shock Wave-Boundary Layer Interaction Using Fast-Response Pressure-Sensitive Paint

    NASA Astrophysics Data System (ADS)

    Lash, E. Lara; Schmisseur, John

    2017-11-01

    Pressure-sensitive paint has been used to evaluate the unsteady dynamics of transitional and turbulent shock wave-boundary layer interactions generated by a vertical cylinder on a flat plate in a Mach 2 freestream. The resulting shock structure consists of an inviscid bow shock that bifurcates into a separation shock and trailing shock. The primary features of interest are the separation shock and an upstream influence shock that is intermittently present in transitional boundary layer interactions, but not observed in turbulent interactions. The power spectral densities, frequency peaks, and normalized wall pressures are analyzed as the incoming boundary layer state changes from transitional to fully turbulent, comparing both centerline and outboard regions of the interaction. The present study compares the scales and frequencies of the dynamics of the separation shock structure in different boundary layer regimes. Synchronized high-speed Schlieren imaging provides quantitative statistical analyses as well as qualitative comparisons to the fast-response pressure sensitive paint measurements. Materials based on research supported by the U.S. Office of Naval Research under Award Number N00014-15-1-2269.

  15. Measurement of Cough Aerodynamics in Healthy Adults.

    PubMed

    Feinstein, Aaron J; Zhang, Zhaoyan; Chhetri, Dinesh K; Long, Jennifer

    2017-05-01

    Cough is a critical human reflex and also among the most frequent symptoms in medicine. Despite the prevalence of disordered cough in laryngeal pathologies, comprehensive and quantitative evaluation of cough in these patients is lacking. Herein we seek to establish normative values for cough aerodynamics to provide a population standard for reference in future studies. Healthy subjects were recruited from an outpatient clinic to perform voluntary cough. Subjects were instructed on the technique for maximal voluntary cough production with measurements recorded on pneumotachograph. Fifty-two subjects were studied, including 29 women and 23 men with a mean age of 51.6 and 52.3 years, respectively. Main Outcomes and Measures: Cough peak airflow, peak pressure, and expiratory rise time. Results were stratified by age, gender, and height. Peak airflow demonstrated significant differences across age, gender, and height, with flow increasing according to increasing height. Peak cough pressure also increased with height and was significantly greater in males versus females. Expiratory rise time, the time from glottal opening to peak airflow, did not vary with age or height but was statistically significantly longer in women. Cough aerodynamics can be readily measured objectively in the outpatient setting. Expiratory rise time, peak flow, and peak pressure are important aspects of each cough epoch. Normative data provided herein can be used for future studies of patients with laryngotracheal disorders, and these cough parameters may prove to be simple, accessible, and repeatable outcome measures.

  16. Abdominal insufflation for laparoscopy increases intracranial and intrathoracic pressure in human subjects.

    PubMed

    Kamine, Tovy Haber; Elmadhun, Nassrene Y; Kasper, Ekkehard M; Papavassiliou, Efstathios; Schneider, Benjamin E

    2016-09-01

    Laparoscopy has emerged as an alternative to laparotomy in select trauma patients. In animal models, increasing abdominal pressure is associated with an increase in intrathoracic and intracranial pressures. We conducted a prospective trial of human subjects who underwent laparoscopic-assisted ventriculoperitoneal shunt placement (lap VPS) with intraoperative measurement of intrathoracic, intracranial and cerebral perfusion pressures. Ten patients undergoing lap VPS were recruited. Abdominal insufflation was performed using CO2 to 0, 8, 10, 12 and 15 mmHg. ICP was measured through the ventricular catheter simultaneously with insufflation and with desufflation using a manometer. Peak inspiratory pressures (PIP) were measured through the endotracheal tube. Blood pressure was measured using a noninvasive blood pressure cuff. End-tidal CO2 (ETCO2) was measured for each set of abdominal pressure level. Pressure measurements from all points of insufflation were compared using a two-way ANOVA with a post hoc Bonferroni test. Mean changes in pressures were compared using t test. ICP and PIP increased significantly with increasing abdominal pressure (both p < 0.01), whereas cerebral perfusion pressure (CPP) and mean arterial pressure did not significantly change with increasing abdominal pressure over the range tested. Higher abdominal pressure values were associated with decreased ETCO2 values. Increased ICP and PIP appear to be a direct result of increasing abdominal pressure, since ETCO2 did not increase. Though CPP did not change over the range tested, the ICP in some patients with 15 mmHg abdominal insufflation reached values as high as 32 cmH2O, which is considered above tolerance, regardless of the CPP. Laparoscopy should be used cautiously, in patients who present with baseline elevated ICP or head trauma as abdominal insufflation affects intracranial pressure.

  17. A comparison of customised and prefabricated insoles to reduce risk factors for neuropathic diabetic foot ulceration: a participant-blinded randomised controlled trial

    PubMed Central

    2012-01-01

    Background Neuropathic diabetic foot ulceration may be prevented if the mechanical stress transmitted to the plantar tissues is reduced. Insole therapy is one practical method commonly used to reduce plantar loads and ulceration risk. The type of insole best suited to achieve this is unknown. This trial compared custom-made functional insoles with prefabricated insoles to reduce risk factors for ulceration of neuropathic diabetic feet. Method A participant-blinded randomised controlled trial recruited 119 neuropathic participants with diabetes who were randomly allocated to custom-made functional or prefabricated insoles. Data were collected at issue and six month follow-up using the F-scan in-shoe pressure measurement system. Primary outcomes were: peak pressure, forefoot pressure time integral, total contact area, forefoot rate of load, duration of load as a percentage of stance. Secondary outcomes were patient perceived foot health (Bristol Foot Score), quality of life (Audit of Diabetes Dependent Quality of Life). We also assessed cost of supply and fitting. Analysis was by intention-to-treat. Results There were no differences between insoles in peak pressure, or three of the other four kinetic measures. The custom-made functional insole was slightly more effective than the prefabricated insole in reducing forefoot pressure time integral at issue (27% vs. 22%), remained more effective at six month follow-up (30% vs. 24%, p=0.001), but was more expensive (UK £656 vs. £554, p<0.001). Full compliance (minimum wear 7 hours a day 7 days per week) was reported by 40% of participants and 76% of participants reported a minimum wear of 5 hours a day 5 days per week. There was no difference in patient perception between insoles. Conclusion The custom-made insoles are more expensive than prefabricated insoles evaluated in this trial and no better in reducing peak pressure. We recommend that where clinically appropriate, the more cost effective prefabricated insole should be considered for use by patients with diabetes and neuropathy. Trial registration Clinical trials.gov (NCT00999635). Note: this trial was registered on completion. PMID:23216959

  18. Energy Evolution Mechanism and Confining Pressure Effect of Granite under Triaxial Loading-Unloading Cycles

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Miao, Sheng-jun

    2018-05-01

    Rock mass undergoes some deformational failure under the action of external loads, a process known to be associated with energy dissipation and release. A triaxial loading-unloading cycle test was conducted on granite in order to investigate the energy evolution pattern of rock mass under the action of external loads. The study results demonstrated: (1) The stress peaks increased by 50% and 22% respectively and the pre-peak weakening became more apparent in the ascending process of the confining pressure from 10MPa to 30MPa; the area enclosed by the hysteresis loop corresponding to 30MPa diminished by nearly 60% than that corresponding to 10MPa, indicating a higher confining pressure prohibits rock mass from plastic deformation and shifts strain toward elastic deformation. (2) In the vicinity of the strength limit, the slope of dissipation energy increased to 1.6 from the original 0.7 and the dissipation energy grew at an accelerating rate, demonstrating stronger propagation and convergence of internal cracks. (3) At a pressure of 70% of the stress peak, the elastic energy of the granite accounted for 88% of its peak value, suggesting the rock mechanical energy from the outside mostly changes into the elastic energy inside the rock, with little energy loss.(4) Prior to test specimen failure, the axial bearing capacity dropped with a decreasing confining pressure in an essentially linear way, and the existence of confirming pressure played a role in stabilizing the axial bearing capacity.

  19. Dynamic void behavior in polymerizing polymethyl methacrylate cement.

    PubMed

    Muller, Scott D; McCaskie, Andrew W

    2006-02-01

    Cement mantle voids remain controversial with respect to survival of total hip arthroplasty. Void evolution is poorly understood, and attempts at void manipulation can only be empirical. We induced voids in a cement model simulating the constraints of the proximal femur. Intravoid pressure and temperature were recorded throughout polymerization, and the initial and final void volumes were measured. Temperature-dependent peak intravoid pressures and void volume increases were observed. After solidification, subatmospheric intravoid pressures were observed. The magnitude of these observations could not be explained by the ideal gas law. Partial pressures of the void gas at peak pressures demonstrated a dominant effect of gaseous monomer, thereby suggesting that void growth is a pressure-driven phenomenon resulting from temperature-dependent evaporation of monomer into existing trapped air voids.

  20. Explosion characteristics of LPG-air mixtures in closed vessels.

    PubMed

    Razus, Domnina; Brinzea, Venera; Mitu, Maria; Oancea, D

    2009-06-15

    The experimental study of explosive combustion of LPG (liquefied petroleum gas)-air mixtures at ambient initial temperature was performed in two closed vessels with central ignition, at various total initial pressures within 0.3-1.3bar and various fuel/air ratios, within the flammability limits. The transient pressure-time records were used to determine several explosion characteristics of LPG-air: the peak explosion pressure, the explosion time (the time necessary to reach the peak pressure), the maximum rate of pressure rise and the severity factor. All explosion parameters are strongly dependent on initial pressure of fuel-air mixture and on fuel/air ratio. The explosion characteristics of LPG-air mixtures are discussed in comparison with data referring to the main components of LPG: propane and butane, obtained in identical conditions.

  1. Modeling of Turbulent Boundary Layer Surface Pressure Fluctuation Auto and Cross Spectra - Verification and Adjustments Based on TU-144LL Data

    NASA Technical Reports Server (NTRS)

    Rackl, Robert; Weston, Adam

    2005-01-01

    The literature on turbulent boundary layer pressure fluctuations provides several empirical models which were compared to the measured TU-144 data. The Efimtsov model showed the best agreement. Adjustments were made to improve its agreement further, consisting of the addition of a broad band peak in the mid frequencies, and a minor modification to the high frequency rolloff. The adjusted Efimtsov predicted and measured results are compared for both subsonic and supersonic flight conditions. Measurements in the forward and middle portions of the fuselage have better agreement with the model than those from the aft portion. For High Speed Civil Transport supersonic cruise, interior levels predicted by use of this model are expected to increase by 1-3 dB due to the adjustments to the Efimtsov model. The space-time cross-correlations and cross-spectra of the fluctuating surface pressure were also investigated. This analysis is an important ingredient in structural acoustic models of aircraft interior noise. Once again the measured data were compared to the predicted levels from the Efimtsov model.

  2. Peak Sound Pressure Levels and Associated Auditory Risk from an H[subscript 2]-Air "Egg-Splosion"

    ERIC Educational Resources Information Center

    Dolhun, John J.

    2016-01-01

    The noise level from exploding chemical demonstrations and the effect they could have on audiences, especially young children, needs attention. Auditory risk from H[subscript 2]- O2 balloon explosions have been studied, but no studies have been done on H[subscript 2]-air "eggsplosions." The peak sound pressure level (SPL) was measured…

  3. The Effect of Short-Term Auditory Deprivation on the Control of Intraoral Pressure in Pediatric Cochlear Implant Users.

    ERIC Educational Resources Information Center

    Jones, David L.; Gao, Sujuan; Svirsky, Mario A.

    2003-01-01

    A study investigated whether two speech measures (peak intraoral air pressure (IOP) and IOP duration) obtained during production of intervocalic stops would be altered by the presence or absence of a cochlear implant in five children (ages 7-10). The auditory condition affected peak IOP more than IOP duration. (Contains references.) (Author/CR)

  4. Home-exercise Childhood Obesity Intervention: A Randomized Clinical Trial Comparing Print Versus Web-based (Move It) Platforms.

    PubMed

    Bruñó, Alejandro; Escobar, Patricia; Cebolla, Ausias; Álvarez-Pitti, Julio; Guixeres, Jaime; Lurbe, Empar; Baños, Rosa; Lisón, Juan F

    2018-05-07

    To compare the impact of adhering to a Mediterranean diet plus mixed physical exercise program (Move-It) implemented by means of printed instructions or via a web-platform (with or without e-mail support) on body composition, physical fitness, and blood pressure. Randomized clinical trial. Fifty-two overweight or obese Spanish children and adolescents were randomly assigned to the print-based (n = 18), Move-It (n = 18), or Move-It plus support (n = 16) intervention groups. Two-way mixed ANOVA tests were used to compare any changes between the groups in terms of percentage body fat, physical fitness (VO 2 peak), handgrip strength, and systolic and diastolic blood pressure. The measurements were taken before and after a three-month mixed-exercise (aerobic and resistance) and Mediterranean-diet program which was either implemented by means of printed instructions or via a web-platform (with or without e-mail support). No statistical differences were found between groups. However, the results highlighted significant improvements in body fat percentage metrics over time for all three groups (print-based: -1.8%, 95%CI -3.3% to -0.3%; Move-It: -1.8%, 95%CI -3.3% to -0.3%; Move-It plus support: -2.0%, 95%CI -3.7% to -0.4%, P < 0.05). We also observed a tendency towards improvement in the VO 2 peak, handgrip strength, and blood pressure variable values 10 min after the exercise-stress test in these three groups. The program improved the body composition, regardless of the way it is implemented. A mixed physical exercise program lasting for three months, combined with a Mediterranean diet, improves the body composition of children and adolescents with overweight/obesity. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Analysis of scale effect in compressive ice failure and implications for design

    NASA Astrophysics Data System (ADS)

    Taylor, Rocky Scott

    The main focus of the study was the analysis of scale effect in local ice pressure resulting from probabilistic (spalling) fracture and the relationship between local and global loads due to the averaging of pressures across the width of a structure. A review of fundamental theory, relevant ice mechanics and a critical analysis of data and theory related to the scale dependent pressure behavior of ice were completed. To study high pressure zones (hpzs), data from small-scale indentation tests carried out at the NRC-IOT were analyzed, including small-scale ice block and ice sheet tests. Finite element analysis was used to model a sample ice block indentation event using a damaging, viscoelastic material model and element removal techniques (for spalling). Medium scale tactile sensor data from the Japan Ocean Industries Association (JOIA) program were analyzed to study details of hpz behavior. The averaging of non-simultaneous hpz loads during an ice-structure interaction was examined using local panel pressure data. Probabilistic averaging methodology for extrapolating full-scale pressures from local panel pressures was studied and an improved correlation model was formulated. Panel correlations for high speed events were observed to be lower than panel correlations for low speed events. Global pressure estimates based on probabilistic averaging were found to give substantially lower average errors in estimation of load compared with methods based on linear extrapolation (no averaging). Panel correlations were analyzed for Molikpaq and compared with JOIA results. From this analysis, it was shown that averaging does result in decreasing pressure for increasing structure width. The relationship between local pressure and ice thickness for a panel of unit width was studied in detail using full-scale data from the STRICE, Molikpaq, Cook Inlet and Japan Ocean Industries Association (JOIA) data sets. A distinct trend of decreasing pressure with increasing ice thickness was observed. The pressure-thickness behavior was found to be well modeled by the power law relationships Pavg = 0.278 h-0.408 MPa and Pstd = 0.172h-0.273 MPa for the mean and standard deviation of pressure, respectively. To study theoretical aspects of spalling fracture and the pressure-thickness scale effect, probabilistic failure models have been developed. A probabilistic model based on Weibull theory (tensile stresses only) was first developed. Estimates of failure pressure obtained with this model were orders of magnitude higher than the pressures observed from benchmark data due to the assumption of only tensile failure. A probabilistic fracture mechanics (PFM) model including both tensile and compressive (shear) cracks was developed. Criteria for unstable fracture in tensile and compressive (shear) zones were given. From these results a clear theoretical scale effect in peak (spalling) pressure was observed. This scale effect followed the relationship Pp,th = 0.15h-0.50 MPa which agreed well with the benchmark data. The PFM model was applied to study the effect of ice edge shape (taper angle) and hpz eccentricity. Results indicated that specimens with flat edges spall at lower pressures while those with more tapered edges spall less readily. The mean peak (failure) pressure was also observed to decrease with increased eccentricity. It was concluded that hpzs centered about the middle of the ice thickness are the zones most likely to create the peak pressures that are of interest in design. Promising results were obtained using the PFM model, which provides strong support for continued research in the development and application of probabilistic fracture mechanics to the study of scale effects in compressive ice failure and to guide the development of methods for the estimation of design ice pressures.

  6. Application of plantar pressure assessment in footwear and insert design.

    PubMed

    Mueller, M J

    1999-12-01

    This clinical perspective describes the application of plantar pressure assessment in footwear and insert design. First, the rationale and evidence for using pressure assessment to assist in the design of footwear for patients with diabetes is described. I discuss 2 important measures obtained from pressure assessment: peak pressure, because it represents the magnitude of potential mechanical stresses that can contribute to skin breakdown, and contact area, because this identifies the treatment areas. Using measures obtained from pressure assessment, guidelines are presented to maximize contact area of the insert to the foot and reduce highest peak pressures on the skin, with the goal of preventing skin breakdown. Second, a rationale and guidelines are presented for the application of plantar pressure assessment in the evaluation and design of footwear for people without impairments (i.e., the general public). Finally, future applications of pressure assessment to improve the design and fit of shoes are discussed. Benefits and limitations of using pressure assessment to assist in footwear design are addressed throughout.

  7. Air ejector augmented compressed air energy storage system

    DOEpatents

    Ahrens, F.W.; Kartsounes, G.T.

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air presure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  8. Shock pressure estimation in basement rocks of the Chicxulub impact crater using cathodoluminescence spectroscopy of quartz

    NASA Astrophysics Data System (ADS)

    Tomioka, N.; Tani, R.; Kayama, M.; Chang, Y.; Nishido, H.; Kaushik, D.; Rae, A.; Ferrière, L.; Gulick, S. P. S.; Morgan, J. V.

    2017-12-01

    The Chicxulub impact structure, located in the northern Yucatan Peninsula, Mexico, was drilled by the joint IODP-ICDP Expedition 364 in April-May 2016. This expedition is the first attempt to obtain materials from the topographic peak ring within the crater previously identified by seismic imaging. A continuous core was successfully recovered from the peak ring at depths between 505.7 and 1334.7 mbsf. Uplifted, fractured, and shocked granitic basement rocks forming the peak ring were found below, in the impact breccia and impact melt rock unit (747.0-1334.7 mbsf; Morgan et al. 2016). In order to constrain impact crater formation, we investigated shock pressure distribution in the peak-ring basement rocks. Thin sections of the granitic rocks were prepared at intervals of 60 m. All the samples contains shocked minerals, with quartz grains frequently showing planar deformation features (PDFs). We determined shock pressures based on the cathodoluminescence (CL) spectroscopy of quartz. The strong advantage of the CL method is its applicability to shock pressure estimation for individual grains for both quartz and diaplectic SiO2 glass with high-spatial resolution ( 1 μm) (Chang et al. 2016). CL spectra of quartz shows a blue emission band caused by shock-induced defect centers, where its intensity increases with shock pressure. A total of 108 quartz grains in ten thin sections were analyzed using a scanning electron microscope with a CL spectrometer attached (an acceleration voltage of 15 kV and a beam current of 2 nA were used). Natural quartz single crystals, which were experimentally shocked at 0-30 GPa, were used for pressure calibration. CL spectra of all the quartz grains in the basement rocks showed broad blue emission band at the wavelength range of 300-500 nm and estimated shock pressures were in the range of 15-20 GPa. The result is consistent with values obtained from PDFs analysis in quartz using the universal stage (Ferrière et al. 2017; Rae et al. 2017). Although shock pressure gradient in the drilled section is small, the pressure slightly increases at depths of 1113.7 and 1167.0 m. The shock pressure variation could be due to dynamic perturbation of the basement rock during peak ring formation.

  9. Responses of aortic depressor nerve-evoked neurones in rat nucleus of the solitary tract to changes in blood pressure

    PubMed Central

    Zhang, Jing; Mifflin, Steven W

    2000-01-01

    Using electrophysiological techniques, the discharge of neurones in the nucleus of the solitary tract (NTS) receiving aortic depressor nerve (ADN) inputs was examined during blood pressure changes induced by I.V. phenylephrine or nitroprusside in anaesthetized, paralysed and artificially ventilated rats. Various changes in discharge rate were observed during phenylephrine-induced blood pressure elevations: an increase (n = 38), a decrease (n = 5), an increase followed by a decrease (n = 4) and no response (n = 11). In cells receiving a monosynaptic ADN input (MSNs), the peak discharge frequency response was correlated to the rate of increase in mean arterial pressure (P < 0.01) but was not correlated to the absolute increase in blood pressure. The peak discharge frequency response of cells receiving a polysynaptic ADN input (PSNs) was correlated to neither the absolute increase in blood pressure nor the rate of increase in mean arterial pressure. Diverse changes in discharge rate were observed during nitroprusside-induced reductions in blood pressure: an increase (n = 3), a decrease (n = 10), an increase followed by a decrease (n = 3) and no response (n = 6). Reductions in pressure of 64 ± 2 mmHg produced weak reductions in spontaneous discharge of 1.3 ± 0.9 Hz and only totally abolished spontaneous discharge in one neurone. These response patterns of NTS neurones during changes in arterial pressure suggest that baroreceptor inputs are integrated differently in MSNs compared to PSNs. The sensitivity of MSNs to the rate of change of pressure provides a mechanism for the rapid regulation of cardiovascular function. The lack of sensitivity to the mean level of a pressure increase in both MSNs and PSNs suggests that steady-state changes in pressure are encoded by the number of active neurones and not graded changes in the discharge of individual neurones. Both MSNs and PSNs receive tonic excitatory inputs from the arterial baroreceptors; however, these tonic inputs appear to be insufficient to totally account for their spontaneous discharge. PMID:11101652

  10. Correlation of forebody pressures and aircraft yawing moments on the X-29A aircraft at high angles of attack

    NASA Technical Reports Server (NTRS)

    Fisher, David F.; Richwine, David M.; Landers, Stephen

    1992-01-01

    In-flight pressure distributions at four fuselage stations on the forebody of the X-29A aircraft have been reported at angles of attack from 15 to 66 deg and at Mach numbers from 0.22 to 0.60. At angles of attack of 20 deg and higher, vortices shed from the nose strake caused suction peaks in the pressure distributions that generally increased in magnitude with angle of attack. Above 30 deg-angle of attack, the forebody pressure distributions became asymmetrical at the most forward station, while they remained nearly symmetrical until 50 to 55 deg-angle of attack for the aft stations. Between 59 to 66 deg-angle of attack, the asymmetry of the pressure distributions changed direction. Yawing moments for the forebody alone were obtained by integrating the forebody pressure distributions. At 45 deg-angle of attack, the aircraft yaws to the right and at 50 deg and higher, the aircraft yaws to the left. The forebody yawing moments correlated well with the aircraft left yawing moment at an angle of attack of 50 deg or higher. At a 45 deg-angle of attack, the forebody yawing moments did not correlate well with the aircraft yawing moment, but it is suggested that this was due to asymmetric pressures on the cockpit region of the fuselage which was not instrumented. The forebody was also shown to provide a positive component of directional stability of the aircraft at angles of attack of 25 deg or higher. A Mach number effect was noted at angles of attack of 30 deg or higher at the station where the nose strake was present. At this station, the suction peaks in the pressure distributions at the highest Mach number were reduced and much more symmetrical as compared to the lower Mach number pressure distributions.

  11. Evaluation and Optimization of Therapeutic Footwear for Neuropathic Diabetic Foot Patients Using In-Shoe Plantar Pressure Analysis

    PubMed Central

    Bus, Sicco A.; Haspels, Rob; Busch-Westbroek, Tessa E.

    2011-01-01

    OBJECTIVE Therapeutic footwear for diabetic foot patients aims to reduce the risk of ulceration by relieving mechanical pressure on the foot. However, footwear efficacy is generally not assessed in clinical practice. The purpose of this study was to assess the value of in-shoe plantar pressure analysis to evaluate and optimize the pressure-reducing effects of diabetic therapeutic footwear. RESEARCH DESIGN AND METHODS Dynamic in-shoe plantar pressure distribution was measured in 23 neuropathic diabetic foot patients wearing fully customized footwear. Regions of interest (with peak pressure >200 kPa) were selected and targeted for pressure optimization by modifying the shoe or insole. After each of a maximum of three rounds of modifications, the effect on in-shoe plantar pressure was measured. Successful optimization was achieved with a peak pressure reduction of >25% (criterion A) or below an absolute level of 200 kPa (criterion B). RESULTS In 35 defined regions, mean peak pressure was significantly reduced from 303 (SD 77) to 208 (46) kPa after an average 1.6 rounds of footwear modifications (P < 0.001). This result constitutes a 30.2% pressure relief (range 18–50% across regions). All regions were successfully optimized: 16 according to criterion A, 7 to criterion B, and 12 to criterion A and B. Footwear optimization lasted on average 53 min. CONCLUSIONS These findings suggest that in-shoe plantar pressure analysis is an effective and efficient tool to evaluate and guide footwear modifications that significantly reduce pressure in the neuropathic diabetic foot. This result provides an objective approach to instantly improve footwear quality, which should reduce the risk for pressure-related plantar foot ulcers. PMID:21610125

  12. Nuclear fuel management optimization using genetic algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeChaine, M.D.; Feltus, M.A.

    1995-07-01

    The code independent genetic algorithm reactor optimization (CIGARO) system has been developed to optimize nuclear reactor loading patterns. It uses genetic algorithms (GAs) and a code-independent interface, so any reactor physics code (e.g., CASMO-3/SIMULATE-3) can be used to evaluate the loading patterns. The system is compared to other GA-based loading pattern optimizers. Tests were carried out to maximize the beginning of cycle k{sub eff} for a pressurized water reactor core loading with a penalty function to limit power peaking. The CIGARO system performed well, increasing the k{sub eff} after lowering the peak power. Tests of a prototype parallel evaluation methodmore » showed the potential for a significant speedup.« less

  13. Elemental Water Impact Test: Phase 2 36-Inch Aluminum Tank Head

    NASA Technical Reports Server (NTRS)

    Vassilakos, Gregory J.

    2014-01-01

    Spacecraft are being designed based on LS-DYNA simulations of water landing impacts. The Elemental Water Impact Test (EWIT) series was undertaken to assess the accuracy of LS-DYNA water impact simulations. EWIT Phase 2 featured a 36-inch aluminum tank head. The tank head was outfitted with one accelerometer, twelve pressure transducers, three string potentiometers, and four strain gages. The tank head was dropped from heights of 1 foot and 2 feet. The focus of this report is the correlation of analytical models against test data. As a measure of prediction accuracy, peak responses from the baseline LS-DYNA model were compared to peak responses from the tests.

  14. Applications of the water drinking test in glaucoma management.

    PubMed

    Susanna, Remo; Clement, Colin; Goldberg, Ivan; Hatanaka, Marcelo

    2017-08-01

    Intraocular pressure (IOP) peaks and means have been considered important factors for glaucoma onset and progression. However, peak IOP detection depends only on appropriated IOP checks at office visits, whereas the mean IOP requires longitudinal IOP data collection and may be affected by the interval between visits. Also, IOP peak assessment is necessary to verify if the peak pressure of a given patient is in target range, to evaluate glaucoma suspect risk, the efficacy of hypotensive drugs and to detect early loss of IOP control. The water-drinking test has gained significant attention in recent years as an important tool to evaluate IOP peaks and instability. The main objective of this review was to present new findings and to discuss the applicability of the water-drinking test in glaucoma management. © 2017 Royal Australian and New Zealand College of Ophthalmologists.

  15. Moderate acoustic changes can disrupt the sleep of very preterm infants in their incubators.

    PubMed

    Kuhn, Pierre; Zores, Claire; Langlet, Claire; Escande, Benoît; Astruc, Dominique; Dufour, André

    2013-10-01

    To evaluate the impact of moderate noise on the sleep of very early preterm infants (VPI). Observational study of 26 VPI of 26-31 weeks' gestation, with prospective measurements of sound pressure level and concomitant video records. Sound peaks were identified and classified according to their signal-to-noise ratio (SNR) above background noise. Prechtl's arousal states during sound peaks were assessed by two observers blinded to the purpose of the study. Changes in sleep/arousal states following sound peaks were compared with spontaneous changes during randomly selected periods without sound peaks. We identified 598 isolated sound peaks (5 ≤ SNR < 10 decibel slow response A (dBA), n = 518; 10 ≤ SNR < 15 dBA, n = 80) during sleep. Awakenings were observed during 33.8% (95% CI, 24-43.7%) of exposures to sound peaks of 5-10 dBA SNR and 39.7% (95% CI, 26-53.3%) of exposures to sound peaks of SNR 10-15 dBA, but only 11.7% (95% CI, 6.2-17.1%) of control periods. The proportions of awakenings following sound peaks were higher than the proportions of arousals during control periods (p < 0.005). Moderate acoustic changes can disrupt the sleep of VPI, and efficient sound abatement measures are needed. ©2013 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  16. An Evaluation of Surgical Functional Reconstruction of the Foot Using Kinetic and Kinematic Systems: A Case Report.

    PubMed

    Jordán-Palomar, Elena Irene; Javierre, Etelvina; Rey-Vasalo, José; Alfaro-Santafé, Víctor; Gómez-Benito, María José

    Most pedobarographic studies of microsurgical foot reconstruction have been retrospective. In the present study, we report the results from a prospective pedobarographic study of a patient after microsurgical reconstruction of her foot with a latissimus dorsi flap and a cutaneous paddle, with a 42-month follow-up period. We describe the foot reconstruction plan and the pedobarographic measurements and analyzed its functional outcome. The goal of the present study was to demonstrate that pedobarography could have a role in the treatment of foot reconstruction from a quantitative perspective. The pedobarographic measurements were recorded after the initial coverage surgery and 2 subsequent foot remodeling procedures. A total of 4 pedobarographic measurements and 2 gait analyses were recorded and compared for both the noninvolved foot and the injured foot. Furthermore, the progress of the reconstructed foot was critically evaluated using this method. Both static and dynamic patterns were compared at subsequent follow-up visits after the foot reconstruction. The values and progression of the foot shape, peak foot pressure (kPa), average foot pressure (kPa), total contact surface (cm 2 ), loading time (%), and step time (ms) were recorded. Initially, the pressure distribution of the reconstructed foot showed higher peak values at nonanatomic locations, revealing a greater ulceration risk. Over time, we found an improvement in the shape and values of these factors in the involved foot. To homogenize the pressure distribution and correct the imbalance between the 2 feet, patient-specific insoles were designed and fabricated. In our patient, pedobarography provided an objective, repeatable, and recordable method for the evaluation of the reconstructed foot. Pedobarography can therefore provide valuable insights into the prevention of pressure ulcers and optimization of rehabilitation. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  17. Signal Processing Methods for Liquid Rocket Engine Combustion Stability Assessments

    NASA Technical Reports Server (NTRS)

    Kenny, R. Jeremy; Lee, Erik; Hulka, James R.; Casiano, Matthew

    2011-01-01

    The J2X Gas Generator engine design specifications include dynamic, spontaneous, and broadband combustion stability requirements. These requirements are verified empirically based high frequency chamber pressure measurements and analyses. Dynamic stability is determined with the dynamic pressure response due to an artificial perturbation of the combustion chamber pressure (bomb testing), and spontaneous and broadband stability are determined from the dynamic pressure responses during steady operation starting at specified power levels. J2X Workhorse Gas Generator testing included bomb tests with multiple hardware configurations and operating conditions, including a configuration used explicitly for engine verification test series. This work covers signal processing techniques developed at Marshall Space Flight Center (MSFC) to help assess engine design stability requirements. Dynamic stability assessments were performed following both the CPIA 655 guidelines and a MSFC in-house developed statistical-based approach. The statistical approach was developed to better verify when the dynamic pressure amplitudes corresponding to a particular frequency returned back to pre-bomb characteristics. This was accomplished by first determining the statistical characteristics of the pre-bomb dynamic levels. The pre-bomb statistical characterization provided 95% coverage bounds; these bounds were used as a quantitative measure to determine when the post-bomb signal returned to pre-bomb conditions. The time for post-bomb levels to acceptably return to pre-bomb levels was compared to the dominant frequency-dependent time recommended by CPIA 655. Results for multiple test configurations, including stable and unstable configurations, were reviewed. Spontaneous stability was assessed using two processes: 1) characterization of the ratio of the peak response amplitudes to the excited chamber acoustic mode amplitudes and 2) characterization of the variability of the peak response's frequency over the test duration. This characterization process assists in evaluating the discreteness of a signal as well as the stability of the chamber response. Broadband stability was assessed using a running root-mean-square evaluation. These techniques were also employed, in a comparative analysis, on available Fastrac data, and these results are presented here.

  18. Exploring energy loss by vector flow mapping in children with ventricular septal defect: Pathophysiologic significance.

    PubMed

    Honda, Takashi; Itatani, Keiichi; Takanashi, Manabu; Kitagawa, Atsushi; Ando, Hisashi; Kimura, Sumito; Oka, Norihiko; Miyaji, Kagami; Ishii, Masahiro

    2017-10-01

    Vector flow mapping is a novel echocardiographic flow visualization method, and it has enabled us to quantitatively evaluate the energy loss in the left ventricle (intraventricular energy loss). Although intraventricular energy loss is assumed to be a part of left ventricular workload itself, it is unclear what this parameter actually represents. The aim of the present study was to elucidate the characteristics of intraventricular energy loss. We enrolled 26 consecutive children with ventricular septal defect (VSD). On echocardiography vector flow mapping, intraventricular energy loss was measured in the apical 3-chamber view. We measured peak energy loss and averaged energy loss in the diastolic and systolic phases, and subsequently compared these parameters with catheterization parameters and serum brain natrium peptide (BNP) level. Diastolic, peak, and systolic energy loss were strongly and positively correlated with right ventricular systolic pressure (r=0.76, 0.68, and 0.56, p<0.0001, = 0.0001, and 0.0029, respectively) and right ventricular end diastolic pressure (r=0.55, 0.49, and 0.49, p=0.0038, 0.0120, and 0.0111, respectively). In addition, diastolic, peak, and systolic energy loss were significantly correlated with BNP (r=0.75, 0.69 and 0.49, p<0.0001, < 0.0001, and=0.0116, respectively). In children with VSD, elevated right ventricular pressure is one of the factors that increase energy loss in the left ventricle. The results of the present study encourage further studies in other study populations to elucidate the characteristics of intraventricular energy loss for its possible clinical application. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Multi-view approach for the diagnosis of pulmonary hypertension using transthoracic echocardiography.

    PubMed

    Schneider, Matthias; Pistritto, Anna Maria; Gerges, Christian; Gerges, Mario; Binder, Christina; Lang, Irene; Maurer, Gerald; Binder, Thomas; Goliasch, Georg

    2018-05-01

    Pulmonary hypertension (PH) is a disease with severe morbidity and mortality. Echocardiography plays an essential role in the screening of PH. The quality of the acquired continuous wave Doppler signal is the major limitation of the method and can greatly affect the accuracy of estimated pulmonary pressures. The aim of this study was to evaluate the clinical need to image from multiple ultrasound windows in patients with suspected pulmonary hypertension. We prospectively evaluated 65 patients (43% male, mean age 67.2 years) with echocardiography and right heart catheterization. 17% had invasively normal pulmonary pressures, 83% had pulmonary hypertension. Peak tricuspid regurgitation (TR) velocity was imaged in five echocardiographic views. Sufficient Doppler signal was recorded in 94% of the patients. Correlation for overall peak TR velocity with invasively measured systolic pulmonary artery pressure was r = 0.83 (p < 0.001). Considering all five imaging windows resulted in a sensitivity of 87%, and a specificity of 91% for correct diagnosis of PH with an AUC of 0.89, which was significantly better as compared to sole imaging from the right ventricular modified apical four-chamber view (AUC 0.85, p = 0.0395). Additional imaging from atypical views changed the overall peak TR velocity in 32% of the patients. A multiple-view approach changed the echocardiographic diagnosis of PH in 11% of the patients as opposed to sole imaging from an apical four-chamber view. This study comprehensively assessed the impact on clinical decision making when evaluating patients with an echocardiographic multiplane approach for suspected PH. This approach substantially increased sensitivity without a decrease in specificity.

  20. Qualification of CASMO5 / SIMULATE-3K against the SPERT-III E-core cold start-up experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grandi, G.; Moberg, L.

    SIMULATE-3K is a three-dimensional kinetic code applicable to LWR Reactivity Initiated Accidents. S3K has been used to calculate several international recognized benchmarks. However, the feedback models in the benchmark exercises are different from the feedback models that SIMULATE-3K uses for LWR reactors. For this reason, it is worth comparing the SIMULATE-3K capabilities for Reactivity Initiated Accidents against kinetic experiments. The Special Power Excursion Reactor Test III was a pressurized-water, nuclear-research facility constructed to analyze the reactor kinetic behavior under initial conditions similar to those of commercial LWRs. The SPERT III E-core resembles a PWR in terms of fuel type, moderator,more » coolant flow rate, and system pressure. The initial test conditions (power, core flow, system pressure, core inlet temperature) are representative of cold start-up, hot start-up, hot standby, and hot full power. The qualification of S3K against the SPERT III E-core measurements is an ongoing work at Studsvik. In this paper, the results for the 30 cold start-up tests are presented. The results show good agreement with the experiments for the reactivity initiated accident main parameters: peak power, energy release and compensated reactivity. Predicted and measured peak powers differ at most by 13%. Measured and predicted reactivity compensations at the time of the peak power differ less than 0.01 $. Predicted and measured energy release differ at most by 13%. All differences are within the experimental uncertainty. (authors)« less

  1. The effects of pulse pressure from seismic water gun technology on Northern Pike

    USGS Publications Warehouse

    Gross, Jackson A.; Irvine, Kathryn M.; Wilmoth, Siri K.; Wagner, Tristany L.; Shields, Patrick A; Fox, Jeffrey R.

    2013-01-01

    We examined the efficacy of sound pressure pulses generated from a water gun for controlling invasive Northern Pike Esox lucius. Pulse pressures from two sizes of water guns were evaluated for their effects on individual fish placed at a predetermined random distance. Fish mortality from a 5,620.8-cm3 water gun (peak pressure source level = 252 dB referenced to 1 μP at 1 m) was assessed every 24 h for 168 h, and damage (intact, hematoma, or rupture) to the gas bladder, kidney, and liver was recorded. The experiment was replicated with a 1,966.4-cm3 water gun (peak pressure source level = 244 dB referenced to 1 μP at 1 m), but fish were euthanized immediately. The peak sound pressure level (SPLpeak), peak-to-peak sound pressure level (SPLp-p), and frequency spectrums were recorded, and the cumulative sound exposure level (SELcum) was subsequently calculated. The SPLpeak, SPLp-p, and SELcum were correlated, and values varied significantly by treatment group for both guns. Mortality increased and organ damage was greater with decreasing distance to the water gun. Mortality (31%) by 168 h was only observed for Northern Pike exhibiting the highest degree of organ damage. Mortality at 72 h and 168 h postexposure was associated with increasing SELcum above 195 dB. The minimum SELcum calculated for gas bladder rupture was 199 dB recorded at 9 m from the 5,620.8-cm3 water gun and 194 dB recorded at 6 m from the 1,966.4-cm3water gun. Among Northern Pike that were exposed to the large water gun, 100% of fish exposed at 3 and 6 m had ruptured gas bladders, and 86% exposed at 9 m had ruptured gas bladders. Among fish that were exposed to pulse pressures from the smaller water gun, 78% exhibited gas bladder rupture. Results from these initial controlled experiments underscore the potential of water guns as a tool for controlling Northern Pike.

  2. A novel fast phase correlation algorithm for peak wavelength detection of Fiber Bragg Grating sensors.

    PubMed

    Lamberti, A; Vanlanduit, S; De Pauw, B; Berghmans, F

    2014-03-24

    Fiber Bragg Gratings (FBGs) can be used as sensors for strain, temperature and pressure measurements. For this purpose, the ability to determine the Bragg peak wavelength with adequate wavelength resolution and accuracy is essential. However, conventional peak detection techniques, such as the maximum detection algorithm, can yield inaccurate and imprecise results, especially when the Signal to Noise Ratio (SNR) and the wavelength resolution are poor. Other techniques, such as the cross-correlation demodulation algorithm are more precise and accurate but require a considerable higher computational effort. To overcome these problems, we developed a novel fast phase correlation (FPC) peak detection algorithm, which computes the wavelength shift in the reflected spectrum of a FBG sensor. This paper analyzes the performance of the FPC algorithm for different values of the SNR and wavelength resolution. Using simulations and experiments, we compared the FPC with the maximum detection and cross-correlation algorithms. The FPC method demonstrated a detection precision and accuracy comparable with those of cross-correlation demodulation and considerably higher than those obtained with the maximum detection technique. Additionally, FPC showed to be about 50 times faster than the cross-correlation. It is therefore a promising tool for future implementation in real-time systems or in embedded hardware intended for FBG sensor interrogation.

  3. Reproducibility of the water drinking test.

    PubMed

    Muñoz, C R; Macias, J H; Hartleben, C

    2015-11-01

    To investigate the reproducibility of the water drinking test in determining intraocular pressure peaks and fluctuation. It has been suggested that there is limited agreement between the water drinking test and diurnal tension curve. This may be because it has only been compared with a 10-hour modified diurnal tension curve, missing 70% of IOP peaks that occurred during night. This was a prospective, analytical and comparative study that assesses the correlation, agreement, sensitivity and specificity of the water drinking test. The correlation between the water drinking test and diurnal tension curve was significant and strong (r=0.93, Confidence interval 95% between 0.79 and 0.96, p<01). A moderate agreement was observed between these measurements (pc=0.93, Confidence interval 95% between 0.87 and 0.95, p<.01). The agreement was within±2mmHg in 89% of the tests. Our study found a moderate agreement between the water drinking test and diurnal tension curve, in contrast with the poor agreement found in other studies, possibly due to the absence of nocturnal IOP peaks. These findings suggest that the water drinking test could be used to determine IOP peaks, as well as for determining baseline IOP. Copyright © 2014 Sociedad Española de Oftalmología. Published by Elsevier España, S.L.U. All rights reserved.

  4. Focusing of shock waves induced by optical breakdown in water

    PubMed Central

    Sankin, Georgy N.; Zhou, Yufeng; Zhong, Pei

    2008-01-01

    The focusing of laser-generated shock waves by a truncated ellipsoidal reflector was experimentally and numerically investigated. Pressure waveform and distribution around the first (F1) and second foci (F2) of the ellipsoidal reflector were measured. A neodymium doped yttrium aluminum garnet laser of 1046 nm wavelength and 5 ns pulse duration was used to create an optical breakdown at F1, which generates a spherically diverging shock wave with a peak pressure of 2.1–5.9 MPa at 1.1 mm stand-off distance and a pulse width at half maximum of 36–65 ns. Upon reflection, a converging shock wave is produced which, upon arriving at F2, has a leading compressive wave with a peak pressure of 26 MPa and a zero-crossing pulse duration of 0.1 μs, followed by a trailing tensile wave of −3.3 MPa peak pressure and 0.2 μs pulse duration. The −6 dB beam size of the focused shock wave field is 1.6×0.2 mm2 along and transverse to the shock wave propagation direction. Formation of elongated plasmas at high laser energy levels limits the increase in the peak pressure at F2. General features in the waveform profile of the converging shock wave are in qualitative agreement with numerical simulations based on the Hamilton model. PMID:18537359

  5. Model helicopter rotor high-speed impulsive noise: Measured acoustics and blade pressures

    NASA Technical Reports Server (NTRS)

    Boxwell, D. A.; Schmitz, F. H.; Splettstoesser, W. R.; Schultz, K. J.

    1983-01-01

    A 1/17-scale research model of the AH-1 series helicopter main rotor was tested. Model-rotor acoustic and simultaneous blade pressure data were recorded at high speeds where full-scale helicopter high-speed impulsive noise levels are known to be dominant. Model-rotor measurements of the peak acoustic pressure levels, waveform shapes, and directively patterns are directly compared with full-scale investigations, using an equivalent in-flight technique. Model acoustic data are shown to scale remarkably well in shape and in amplitude with full-scale results. Model rotor-blade pressures are presented for rotor operating conditions both with and without shock-like discontinuities in the radiated acoustic waveform. Acoustically, both model and full-scale measurements support current evidence that above certain high subsonic advancing-tip Mach numbers, local shock waves that exist on the rotor blades ""delocalize'' and radiate to the acoustic far-field.

  6. Pressure dependence of thermal conductivity and specific heat in CeRh2Si2 measured by an extended thermal relaxation method

    NASA Astrophysics Data System (ADS)

    Nishigori, Shijo; Seida, Osamu

    2018-05-01

    We have developed a new technique for measuring thermal conductivity and specific heat under pressure by improving a thermal relaxation method. In this technique, a cylindrical sample with a small disc heater is embedded in the pressure-transmitting medium, then temperature variations of the sample and heater were directly measured by thermocouples during a heating and cooling process. Thermal conductivity and specific heat are estimated by comparing the experimental data with temperature variations simulated by a finite element method. The obtained thermal conductivity and specific heat of the test sample CeRh2Si2 exhibit a small enhancement and a clear peak arising from antiferromagnetic transition, respectively. The observation of these typical behaviors for magnetic compounds indicate that the technique is valid for the study on thermal properties under pressure.

  7. Comparison of field-enhanced and pressure-assisted field-enhanced sample injection techniques for the analysis of water-soluble vitamins using CZE.

    PubMed

    Liu, Qingqing; Liu, Yaling; Guan, Yu; Jia, Li

    2009-04-01

    A new online concentration method, namely pressure-assisted field-enhanced sample injection (PA-FESI), was developed and compared with FESI for the analysis of water-soluble vitamins by CZE with UV detection. In PA-FESI, negative voltage and positive pressure were simultaneously applied to initialize PA-FESI. PA-FESI uses the hydrodynamic flow generated by the positive pressure to counterbalance the reverse EOF in the capillary column during electrokinetic sample injection, which allowed a longer injection time than usual FESI mode without compromising the separation efficiency. Using the PA-FESI method, the LODs of the vitamins were at ng/mL level based on the S/N of 3 and the RSDs of migration time and peak area for each vitamin (1 microg/mL) were less than 5.1%. The developed method was applied to the analysis of water-soluble vitamins in corns.

  8. Regional foot pressure during running, cutting, jumping, and landing.

    PubMed

    Orendurff, Michael S; Rohr, Eric S; Segal, Ava D; Medley, Jonathan W; Green, John R; Kadel, Nancy J

    2008-03-01

    Evaluating shoes during sport-related movements may provide a better assessment of plantar loads associated with repetitive injury and provide more specific data for comparing shoe cushioning characteristics. Accelerating, cutting, and jumping pressures will be higher than in straight running, differentiating regional shoe cushioning performance in sport-specific movements. Controlled laboratory study. Peak pressures on seven anatomic regions of the foot were assessed in 10 male college athletes during running straight ahead, accelerating, cutting left, cutting right, jump take-off, and jump landing wearing Speed TD and Air Pro Turf Low shoes (Nike, Beaverton, Ore). Pedar insoles (Novel, Munich, Germany) were sampled at 99 Hz during the 6 movements. Cutting and jumping movements demonstrated more than double the pressure at the heel compared with running straight, regardless of shoe type. The Air Pro Turf showed overall lower pressure for all movement types (P<.0377). Cutting to the left, the Air Pro Turf shoe had lower heel pressures (36.6 +/- 12.5 N/cm(2)) than the Speed TD (50.3 +/- 11.2 N/cm(2)) (P<.0001), and the Air Pro Turf had lower great toe pressures than the Speed TD (44.8 +/- 8.1 N/cm(2) vs 54.4 +/- 8.4 N/cm(2); P= .0002). The Air Pro Turf also had significantly lower pressures than the Speed TD at the central forefoot during acceleration (38.2 +/- 8.3 N/cm(2) vs 50.8 +/- 7.4 N/cm(2); P<.0001). Sport-related movements load the plantar surface of the foot more than running straight. Shoe cushioning characteristics were more robustly assessed during sport-related movements (4 significant results detected) compared with running straight (1 significant result detected). There is an interaction between shoe cushioning characteristics and sport-related movements that may influence plantar pressure and repetitive stress injuries.

  9. Investigating the role of backward walking therapy in alleviating plantar pressure of patients with diabetic peripheral neuropathy.

    PubMed

    Zhang, Xingguang; Zhang, Yanqi; Gao, Xiaoxiao; Wu, Jinxiao; Jiao, Xiumin; Zhao, Jing; Lv, Xiaofeng

    2014-05-01

    To investigate the effect of combination therapy of backward walking training and alpha-lipoic acid (ALA) treatment on the distribution of plantar pressure in patients with diabetic peripheral neuropathy (DPN). This study is a double-blinded, randomized controlled trial. The test group was treated with combination therapy of backward walking exercise and ALA (ALA for 2wk, backward walking exercise for 12wk), and the control group only received ALA treatment. Clinical and laboratory setting. Patients with DPN (N=60) were divided into the test group (n=30) or control group (n=30). Backward walking exercise with ALA treatment for the test group; lipoic acid treatment for the control group. Plantar pressure before and after treatment was tested and analyzed with the flatbed plantar pressure measurement system. After treatment, peak plantar pressure in the forefoot dropped for both the test and control groups; peak plantar pressure for the test group dropped significantly. Peak plantar pressure in the medial foot slightly increased for the test group, suggesting a more even distribution of plantar pressure in the test group after treatment. The combination therapy of ALA and backward walking proved to be more effective than ALA monotherapy. Backward walking also proved to have an ameliorating effect on balance ability and muscle strength of patients with DPN. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  10. Performance of a tandem-rotor/tandem-stator conical-flow compressor designed for a pressure ratio of 3

    NASA Technical Reports Server (NTRS)

    Wood, J. R.; Owen, A. K.; Schumann, L. F.

    1982-01-01

    A conical-flow compressor stage with a large radius change through the rotor was tested at three values of rotor tip clearance. The stage had a tandem rotor and a tandem stator. Peak efficiency at design speed was 0.774 at a pressure ratio of 2.613. The rotor was tested without the stator, and detailed survey data were obtained for each rotor blade row. Overall peak rotor efficiency was 0.871 at a pressure ratio of 2.952.

  11. Optimizing cerebral perfusion pressure during fiberoptic bronchoscopy in severe head injury: effect of hyperventilation.

    PubMed

    Previgliano, I J; Ripoll, P I; Chiappero, G; Galíndez, F; Germani, L; González, D H; Ferrari, N; Hlavnicka, A; Purvis, C

    2002-01-01

    The aim of this study was to evaluate if Hyperventilation (HV) could avoid the Intracranial Pressure (ICP) peak that occurs during Fiberoptic Bronchoscopy (FB) in severely head injured patients. A Cerebral Perfusion Pressure (CPP) > 75 mmHg was maintained in 34 patients, with a subgroup randomized to receive controlled HV during FB. Measurements were done before the procedure, during maximum ICP values and 30 minutes after FB. The HV group had minor ICP values after FB, without differences in CPP and ICP peak values.

  12. Raman and infrared studies of nucleosides at high pressures: II. Cytidine.

    PubMed

    Li, J; Lee, S A; Pinnick, D A; Anderson, A; Smith, W; Griffey, R H; Mohan, V

    2002-06-01

    Raman and mid-infrared (MIR) spectra have been recorded for crystalline cytidine at pressures up to 10 GPa at room temperature. Broadening and positive wavenumber shifts are observed for most of the Raman and MIR peaks with increasing pressure. However, some of the MIR peaks associated with hydrogen-stretching modes display a negative wavenumber shift as a result of charge transfer effects. Evidence of a phase transition near 4 GPa is presented and attributed to a change in the conformation of the five membered sugar ring.

  13. Comparison of flow and gas washout characteristics between pressure control and high-frequency percussive ventilation using a test lung

    PubMed Central

    Dutta, Rabijit; Xing, Tao; Swanson, Craig; Heltborg, Jeff; Murdoch, Gordon K

    2018-01-01

    Objective A comparison between flow and gas washout data for high-frequency percussive ventilation (HFPV) and pressure control ventilation (PCV) under similar conditions is currently not available. This bench study aims to compare and describe the flow and gas washout behavior of HFPV and PCV in a newly designed experimental setup and establish a framework for future clinical and animal studies. Approach We studied gas washout behavior using a newly designed experimental setup that is motivated by the multi-breath nitrogen washout measurements. In this procedure, a test lung was filled with nitrogen gas before it was connected to a ventilator. Pressure, volume, and oxygen concentrations were recorded under different compliance and resistance conditions. PCV was compared with two settings of HFPV, namely, HFPV-High and HFPV-Low, to simulate the different variations in its clinical application. In the HFPV-Low mode, the peak pressures and drive pressures of HFPV and PCV are matched, whereas in the HFPV-High mode, the mean airway pressures (MAP) are matched. Main results HFPV-Low mode delivers smaller tidal volume (VT) as compared to PCV under all lung conditions, whereas HFPV-High delivers a larger VT. HFPV-High provides rapid washout as compared to PCV under all lung conditions. HFPV-Low takes a longer time to wash out nitrogen except at a low compliance, where it expedites washout at a smaller VT and MAP compared to PCV washout. Significance Various flow parameters for HFPV and PCV are mathematically defined. A shorter washout time at a small VT in low compliant test lungs for HFPV could be regarded as a hypothesis for lung protective ventilation for animal or human lungs. PMID:29369819

  14. Comparison of flow and gas washout characteristics between pressure control and high-frequency percussive ventilation using a test lung.

    PubMed

    Dutta, Rabijit; Xing, Tao; Swanson, Craig; Heltborg, Jeff; Murdoch, Gordon K

    2018-03-15

    A comparison between flow and gas washout data for high-frequency percussive ventilation (HFPV) and pressure control ventilation (PCV) under similar conditions is currently not available. This bench study aims to compare and describe the flow and gas washout behavior of HFPV and PCV in a newly designed experimental setup and establish a framework for future clinical and animal studies. We studied gas washout behavior using a newly designed experimental setup that is motivated by the multi-breath nitrogen washout measurements. In this procedure, a test lung was filled with nitrogen gas before it was connected to a ventilator. Pressure, volume, and oxygen concentrations were recorded under different compliance and resistance conditions. PCV was compared with two settings of HFPV, namely, HFPV-High and HFPV-Low, to simulate the different variations in its clinical application. In the HFPV-Low mode, the peak pressures and drive pressures of HFPV and PCV are matched, whereas in the HFPV-High mode, the mean airway pressures (MAP) are matched. HFPV-Low mode delivers smaller tidal volume (V T ) as compared to PCV under all lung conditions, whereas HFPV-High delivers a larger V T . HFPV-High provides rapid washout as compared to PCV under all lung conditions. HFPV-Low takes a longer time to wash out nitrogen except at a low compliance, where it expedites washout at a smaller V T and MAP compared to PCV washout. Various flow parameters for HFPV and PCV are mathematically defined. A shorter washout time at a small V T in low compliant test lungs for HFPV could be regarded as a hypothesis for lung protective ventilation for animal or human lungs.

  15. Cathodoluminescence microscopy and spectroscopy of micro- and nanodiamonds: an implication for laboratory astrophysics.

    PubMed

    Gucsik, Arnold; Nishido, Hirotsugu; Ninagawa, Kiyotaka; Ott, Ulrich; Tsuchiyama, Akira; Kayama, Masahiro; Simonia, Irakli; Boudou, Jean-Paul

    2012-12-01

    Color centers in selected micro- and nanodiamond samples were investigated by cathodoluminescence (CL) microscopy and spectroscopy at 298 K [room temperature (RT)] and 77 K [liquid-nitrogen temperature (LNT)] to assess the value of the technique for astrophysics. Nanodiamonds from meteorites were compared with synthetic diamonds made with different processes involving distinct synthesis mechanisms (chemical vapor deposition, static high pressure high temperature, detonation). A CL emission peak centered at around 540 nm at 77 K was observed in almost all of the selected diamond samples and is assigned to the dislocation defect with nitrogen atoms. Additional peaks were identified at 387 and 452 nm, which are related to the vacancy defect. In general, peak intensity at LNT at the samples was increased in comparison to RT. The results indicate a clear temperature-dependence of the spectroscopic properties of diamond. This suggests the method is a useful tool in laboratory astrophysics.

  16. Distribution of internal pressure around bony prominences: implications to deep tissue injury and effectiveness of intermittent electrical stimulation.

    PubMed

    Solis, Leandro R; Liggins, Adrian; Uwiera, Richard R E; Poppe, Niek; Pehowich, Enid; Seres, Peter; Thompson, Richard B; Mushahwar, Vivian K

    2012-08-01

    The overall goal of this project is to develop interventions for the prevention of deep tissue injury (DTI), a form of pressure ulcers that originates in deep tissue around bony prominences. The present study focused on: (1) obtaining detailed measures of the distribution of pressure experienced by tissue around the ischial tuberosities, and (2) investigating the effectiveness of intermittent electrical stimulation (IES), a novel strategy for the prevention of DTI, in alleviating pressure in regions at risk of breakdown due to sustained loading. The experiments were conducted in adult pigs. Five animals had intact spinal cords and healthy muscles and one had a spinal cord injury that led to substantial muscle atrophy at the time of the experiment. A force-controlled servomotor was used to load the region of the buttocks to levels corresponding to 25%, 50% or 75% of each animal's body weight. A pressure transducer embedded in a catheter was advanced into the tissue to measure pressure along a three dimensional grid around the ischial tuberosity of one hind leg. For all levels of external loading in intact animals, average peak internal pressure was 2.01 ± 0.08 times larger than the maximal interfacial pressure measured at the level of the skin. In the animal with spinal cord injury, similar absolute values of internal pressure as that in intact animals were recorded, but the substantial muscle atrophy produced larger maximal interfacial pressures. Average peak internal pressure in this animal was 1.43 ± 0.055 times larger than the maximal interfacial pressure. Peak internal pressure was localized within a ±2 cm region medio-laterally and dorso-ventrally from the bone in intact animals and ±1 cm in the animal with spinal cord injury. IES significantly redistributed internal pressure, shifting the peak values away from the bone in spinally intact and injured animals. These findings provide critical information regarding the relationship between internal and interfacial pressure around the ischial tuberosities during loading levels equivalent to those experienced while sitting. The information could guide future computer models investigating the etiology of DTI, as well as inform the design and prescription of seating cushions for people with reduced mobility. The findings also suggest that IES may be an effective strategy for the prevention of DTI.

  17. Running with a minimalist shoe increases plantar pressure in the forefoot region of healthy female runners.

    PubMed

    Bergstra, S A; Kluitenberg, B; Dekker, R; Bredeweg, S W; Postema, K; Van den Heuvel, E R; Hijmans, J M; Sobhani, S

    2015-07-01

    Minimalist running shoes have been proposed as an alternative to barefoot running. However, several studies have reported cases of forefoot stress fractures after switching from standard to minimalist shoes. Therefore, the aim of the current study was to investigate the differences in plantar pressure in the forefoot region between running with a minimalist shoe and running with a standard shoe in healthy female runners during overground running. Randomized crossover design. In-shoe plantar pressure measurements were recorded from eighteen healthy female runners. Peak pressure, maximum mean pressure, pressure time integral and instant of peak pressure were assessed for seven foot areas. Force time integral, stride time, stance time, swing time, shoe comfort and landing type were assessed for both shoe types. A linear mixed model was used to analyze the data. Peak pressure and maximum mean pressure were higher in the medial forefoot (respectively 13.5% and 7.46%), central forefoot (respectively 37.5% and 29.2%) and lateral forefoot (respectively 37.9% and 20.4%) for the minimalist shoe condition. Stance time was reduced with 3.81%. No relevant differences in shoe comfort or landing strategy were found. Running with a minimalist shoe increased plantar pressure without a change in landing pattern. This increased pressure in the forefoot region might play a role in the occurrence of metatarsal stress fractures in runners who switched to minimalist shoes and warrants a cautious approach to transitioning to minimalist shoe use. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  18. Compressibility effects on rotor forces in the leakage path between a shrouded pump impeller and its housing

    NASA Technical Reports Server (NTRS)

    Cao, Nhai The

    1993-01-01

    A modified approach to Childs' previous work on fluid-structure interaction forces in the leakage path between an impeller shroud and its housing is presented in this paper. Three governing equations consisting of continuity, path-momentum, and circumferential-momentum equations were developed to describe the leakage path inside a pump impeller. Radial displacement perturbations were used to solve for radial and circumferential force coefficients. In addition, impeller-discharge pressure disturbances were used to obtain pressure oscillation responses due to precessing impeller pressure wave pattern. Childs' model was modified from an incompressible model to a compressible barotropic-fluid model (the density of the working fluid is a function of the pressure and a constant temperature only). Results obtained from this model yielded interaction forces for radial and circumferential force coefficients. Radial and circumferential forces define reaction forces within the impeller leakage path. An acoustic model for the same leakage path was also developed. The convective, Coriolis, and centrifugal acceleration terms are removed from the compressible model to obtain the acoustics model. A solution due to impeller discharge pressure disturbances model was also developed for the compressible and acoustics models. The results from these modifications are used to determine what effects additional perturbation terms in the compressible model have on the acoustic model. The results show that the additional fluid mechanics terms in the compressible model cause resonances (peaks) in the force coefficient response curves. However, these peaks only occurred at high values of inlet circumferential velocity ratios greater than 0.7. The peak pressure oscillation was shown to occur at the wearing ring seal. Introduction of impeller discharge disturbances with n = 11 diametral nodes showed that maximum peak pressure oscillations occurred at nondimensional precession frequencies of f = 6.4 and f = 7.8 for this particular pump. Bolleter's results suggest that for peak pressure oscillations to occur at the wearing ring seal, the nondimensional excitation frequency should be on the order of f = 2.182 for n = 11. The resonances found in this research do not match the excitation frequencies predicted by Bolleter. At the predicted peak excitation frequencies given by Bolleter, the compressible model shows an attenuation of the pressure oscillations at the seal exit. The compressibility of the fluid does not have a significant influence on the model at low values of nondimensional excitation frequency. At high values of nondimensional frequency, the effects of compressibility become more significant. For the acoustic analysis, the convective, Coriolis, and centrifugal acceleration terms do affect the results to a limited extent for precession excitation and to a large extent for a pressure excitation when the fluid operates at relatively high Mach numbers.

  19. Plantar pressure in diabetic peripheral neuropathy patients with active foot ulceration, previous ulceration and no history of ulceration: a meta-analysis of observational studies.

    PubMed

    Fernando, Malindu Eranga; Crowther, Robert George; Pappas, Elise; Lazzarini, Peter Anthony; Cunningham, Margaret; Sangla, Kunwarjit Singh; Buttner, Petra; Golledge, Jonathan

    2014-01-01

    Elevated dynamic plantar pressures are a consistent finding in diabetes patients with peripheral neuropathy with implications for plantar foot ulceration. This meta-analysis aimed to compare the plantar pressures of diabetes patients that had peripheral neuropathy and those with neuropathy with active or previous foot ulcers. Published articles were identified from Medline via OVID, CINAHL, SCOPUS, INFORMIT, Cochrane Central EMBASE via OVID and Web of Science via ISI Web of Knowledge bibliographic databases. Observational studies reporting barefoot dynamic plantar pressure in adults with diabetic peripheral neuropathy, where at least one group had a history of plantar foot ulcers were included. Interventional studies, shod plantar pressure studies and studies not published in English were excluded. Overall mean peak plantar pressure (MPP) and pressure time integral (PTI) were primary outcomes. The six secondary outcomes were MPP and PTI at the rear foot, mid foot and fore foot. The protocol of the meta-analysis was published with PROPSERO, (registration number CRD42013004310). Eight observational studies were included. Overall MPP and PTI were greater in diabetic peripheral neuropathy patients with foot ulceration compared to those without ulceration (standardised mean difference 0.551, 95% CI 0.290-0.811, p<0.001; and 0.762, 95% CI 0.303-1.221, p = 0.001, respectively). Sub-group analyses demonstrated no significant difference in MPP for those with neuropathy with active ulceration compared to those without ulcers. A significant difference in MPP was found for those with neuropathy with a past history of ulceration compared to those without ulcers; (0.467, 95% CI 0.181- 0.753, p = 0.001). Statistical heterogeneity between studies was moderate. Plantar pressures appear to be significantly higher in patients with diabetic peripheral neuropathy with a history of foot ulceration compared to those with diabetic neuropathy without a history of ulceration. More homogenous data is needed to confirm these findings.

  20. Froude number fractions to increase walking pattern dynamic similarities: application to plantar pressure study in healthy subjects.

    PubMed

    Moretto, P; Bisiaux, M; Lafortune, M A

    2007-01-01

    The purpose of this study was to determine if using similar walking velocities obtained from fractions of the Froude number (N(Fr)) and leg length can lead to kinematic and kinetic similarities and lower variability. Fifteen male subjects walked on a treadmill at 0.83 (VS(1)) and 1.16ms(-1) (VS(2)) and then at two similar velocities (V(Sim27) and V(Sim37)) determined from two fractions of the N(Fr) (0.27 and 0.37) so that the average group velocity remained unchanged in both conditions (VS(1)=V (Sim27)andVS(2)=V (Sim37)). N(Fr) can theoretically be used to determine walking velocities proportional to leg lengths and to establish dynamic similarities between subjects. This study represents the first attempt at using this approach to examine plantar pressure. The ankle and knee joint angles were studied in the sagittal plane and the plantar pressure distribution was assessed with an in-shoe measurement device. The similarity ratios were computed from anthropometric parameters and plantar pressure peaks. Dynamically similar conditions caused a 25% reduction in leg joint angles variation and a 10% significant decrease in dimensionless pressure peak variability on average of five footprint locations. It also lead to heel and under-midfoot pressure peaks proportional to body mass and to an increase in the number of under-forefoot plantar pressure peaks proportional to body mass and/or leg length. The use of walking velocities derived from N(Fr) allows kinematic and plantar pressure similarities between subjects to be observed and leads to a lower inter-subject variability. In-shoe pressure measurements have proven to be valuable for the understanding of lower extremity function. Set walking velocities used for clinical assessment mask the effects of body size and individual gait mechanics. The anthropometric scaling of walking velocities (fraction of N(Fr)) should improve identification of unique walking strategies and pathological foot functions.

  1. [Treatment of acute respiratory distress syndrome using pressure and volume controlled ventilation with lung protective strategy].

    PubMed

    Ge, Ying; Wan, Yong; Wang, Da-qing; Su, Xiao-lin; Li, Jun-ying; Chen, Jing

    2004-07-01

    To investigate the significance and effect of pressure controlled ventilation (PCV) as well as volume controlled ventilation (VCV) by lung protective strategy on respiratory mechanics, blood gas analysis and hemodynamics in patients with acute respiratory distress syndrome (ARDS). Fifty patients with ARDS were randomly divided into PCV and VCV groups with permissive hypercapnia and open lung strategy. Changes in respiratory mechanics, blood gas analysis and hemodynamics were compared between two groups. Peak inspiration pressure (PIP) in PCV group was significantly lower than that in VCV group, while mean pressure of airway (MPaw) was significantly higher than that in VCV after 24 hours mechanical ventilation. After 24 hours mechanical ventilation, there were higher central venous pressure (CVP) and slower heart rate (HR) in two groups, CVP was significantly higher in VCV compared with PCV, and PCV group had slower HR than VCV group, the two groups had no differences in mean blood pressure (MBP) at various intervals. All patients showed no ventilator-induced lung injury. Arterial blood oxygenations were obviously improved in two groups after 24 hours mechanical ventilation, PCV group had better partial pressure of oxygen in artery (PaO2) than VCV group. Both PCV and VCV can improve arterial blood oxygenations, prevent ventilator-induced lung injury, and have less disturbance in hemodynamic parameters. PCV with lung protective ventilatory strategy should be early use for patients with ARDS.

  2. Performance Assessment of Passive Hearing Protection Devices

    DTIC Science & Technology

    2014-10-24

    ear ................................................ 9 Figure 11. Schematic of the set-up of the explosive charge for the creation of a shock wave...10 Table 1: Type and mass of explosive and distance between ATF and explosive for different peak pressure levels and A-durations...OF TABLES Table 1: Type and mass of explosive and distance between ATF and explosive for different peak pressure levels and A-durations

  3. Effect of pillow height on the biomechanics of the head-neck complex: investigation of the cranio-cervical pressure and cervical spine alignment

    PubMed Central

    Yang, Hui; Zhou, Yan; Lin, Jin

    2016-01-01

    Background While appropriate pillow height is crucial to maintaining the quality of sleep and overall health, there are no universal, evidence-based guidelines for pillow design or selection. We aimed to evaluate the effect of pillow height on cranio-cervical pressure and cervical spine alignment. Methods Ten healthy subjects (five males) aged 26 ± 3.6 years were recruited. The average height, weight, and neck length were 167 ± 9.3 cm, 59.6 ± 11.9 kg, and 12.9 ± 1.2 cm respectively. The subjects lay on pillows of four different heights (H0, 110 mm; H1, 130 mm; H2, 150 mm; and H3, 170 mm). The cranio-cervical pressure distribution over the pillow was recorded; the peak and average pressures for each pillow height were compared by one-way ANOVA with repeated measures. Cervical spine alignment was studied using a finite element model constructed based on data from the Visible Human Project. The coordinate of the center of each cervical vertebra were predicted for each pillow height. Three spine alignment parameters (cervical angle, lordosis distance and kyphosis distance) were identified. Results The average cranial pressure at pillow height H3 was approximately 30% higher than that at H0, and significantly different from those at H1 and H2 (p < 0.05). The average cervical pressure at pillow height H0 was 65% lower than that at H3, and significantly different from those at H1 and H2 (p < 0.05). The peak cervical pressures at pillow heights H2 and H3 were significantly different from that at H0 (p < 0.05). With respect to cervical spine alignment, raising pillow height from H0 to H3 caused an increase of 66.4% and 25.1% in cervical angle and lordosis distance, respectively, and a reduction of 43.4% in kyphosis distance. Discussion Pillow height elevation significantly increased the average and peak pressures of the cranial and cervical regions, and increased the extension and lordosis of the cervical spine. The cranio-cervical pressures and cervical spine alignment were height-specific, and they were believed to reflect quality of sleep. Our results provide a quantitative and objective evaluation of the effect of pillow height on the biomechanics of the head-neck complex, and have application in pillow design and selection. PMID:27635354

  4. Interior noise and vibration measurements on operational military helicopters and comparisons with various ride quality criteria

    NASA Technical Reports Server (NTRS)

    Clevenson, S. A.; Leatherwood, J. D.; Hollenbaugh, D. D.

    1983-01-01

    The results of physical measurements of the interior noise and vibration obtained within eight operational military helicopters are presented. The data were extensively analyzed and are presented in the following forms: noise and vibration spectra, overall root-mean-square acceleration levels in three linear axes, peak accelerations at dominant blade passage frequencies, acceleration exceedance data, and overall and ""A'' weighted sound pressure levels. Peak acceleration levels were compared to the ISO 1-hr reduced comfort and fatigue decreased proficiency boundaries and the NASA discomfort criteria. The ""A'' weighted noise levels were compared to the NASA annoyance criteria, and the overall noise spectra were compared to MIL-STD-1294 (""Acoustical Noise Limits in Helicopters''). Specific vibration components at blade passage frequencies for several aircraft exceeded both the ISO reduced comfort boundary and the NASA passenger discomfort criteria. The ""A'' weighted noise levels, corrected for SPH-4 helmet attenuation characteristics, exceeded the NASA annoyance threshold for several aircraft.

  5. Aging blunts hyperventilation-induced hypocapnia and reduction in cerebral blood flow velocity during maximal exercise.

    PubMed

    Marsden, K R; Haykowsky, M J; Smirl, J D; Jones, H; Nelson, M D; Altamirano-Diaz, Luis A; Gelinas, J C; Tzeng, Y C; Smith, K J; Willie, C K; Bailey, D M; Ainslie, P N

    2012-06-01

    Cerebral blood flow (CBF) increases from rest to ∼60% of peak oxygen uptake (VO(2peak)) and thereafter decreases towards baseline due to hyperventilation-induced hypocapnia and subsequent cerebral vasoconstriction. It is unknown what happens to CBF in older adults (OA), who experience a decline in CBF at rest coupled with a blunted ventilatory response during VO(2peak). In 14 OA (71 ± 10 year) and 21 young controls (YA; 23 ± 4 years), we hypothesized that OA would experience less hyperventilation-induced cerebral vasoconstriction and therefore an attenuated reduction in CBF at VO(2peak). Incremental exercise was performed on a cycle ergometer, whilst bilateral middle cerebral artery blood flow velocity (MCA V (mean); transcranial Doppler ultrasound), heart rate (HR; ECG) and end-tidal PCO(2) (P(ET)CO(2)) were monitored continuously. Blood pressure (BP) was monitored intermittently. From rest to 50% of VO(2peak), despite greater elevations in BP in OA, the change in MCA V(mean) was greater in YA compared to OA (28% vs. 15%, respectively; P < 0.0005). In the YA, at intensities >70% of VO(2peak), the hyperventilation-induced declines in both P(ET)CO(2) (14 mmHg (YA) vs. 4 mmHg (OA); P < 0.05) and MCA V(mean) (-21% (YA) vs. -7% (OA); P < 0.0005) were greater in YA compared to OA. Our findings show (1), from rest-to-mild intensity exercise (50% VO(2peak)), elevations in CBF are reduced in OA and (2) age-related declines in hyperventilation during maximal exercise result in less hypocapnic-induced cerebral vasoconstriction.

  6. Muscle blood flow at onset of dynamic exercise in humans.

    PubMed

    Rådegran, G; Saltin, B

    1998-01-01

    To evaluate the temporal relationship between blood flow, blood pressure, and muscle contractions, we continuously measured femoral arterial inflow with ultrasound Doppler at onset of passive exercise and voluntary, one-legged, dynamic knee-extensor exercise in humans. Blood velocity and inflow increased (P < 0.006) with the first relaxation of passive and voluntary exercise, whereas the arterial-venous pressure difference was unaltered [P = not significant (NS)]. During steady-state exercise, and with arterial pressure as a superimposed influence, blood velocity was affected by the muscle pump, peaking (P < 0.001) at approximately 2.5 +/- 0.3 m/s as the relaxation coincided with peak systolic arterial blood pressure; blood velocity decreased (P < 0.001) to 44.2 +/- 8.6 and 28.5 +/- 5.5% of peak velocity at the second dicrotic and diastolic blood pressure notches, respectively. Mechanical hindrance occurred (P < 0.001) during the contraction phase at blood pressures less than or equal to that at the second dicrotic notch. The increase in blood flow (Q) was characterized by a one-component (approximately 15% of peak power output), two-component (approximately 40-70% of peak power output), or three-component exponential model (> or = 75% of peak power output), where Q(t) = Qpassive + delta Q1.[1 - e-(t - TD1/tau 1)]+ delta Q2.[1 - e-(t - TD2/tau 2)]+ delta Q3.[1 - e-(t - TD3/tau 3)]; Qpassive, the blood flow during passive leg movement, equals 1.17 +/- 0.11 l/min; TD is the onset latency; tau is the time constant; delta Q is the magnitude of blood flow rise; and subscripts 1-3 refer to the first, second, and third components of the exponential model, respectively. The time to reach 50% of the difference between passive and voluntary asymptotic blood flow was approximately 2.2-8.9 s. The blood flow leveled off after approximately 10-150 s, related to the power outputs. It is concluded that the elevation in blood flow with the first duty cycle(s) is due to muscle mechanical factors, but vasodilators initiate a more potent amplification within the second to fourth contraction.

  7. Improving flexibility characteristics of 200 MW unit

    NASA Astrophysics Data System (ADS)

    Taler, Jan; Trojan, Marcin; Taler, Dawid; Dzierwa, Piotr; Kaczmarski, Karol

    2017-03-01

    Calculations were performed of the thermal system of a power plant with installed water pressure tanks. The maximum rise in the block electric power resulting from the shut-off of low-pressure regenerative heaters is determined. At that time, the boiler is fed with hot water from water pressure tanks acting as heat accumulators. Accumulation of hot water in water tanks is also proposed in the periods of the power unit small load. In order to lower the plant electric power in the off-peak night hours, water heated in low-pressure regenerative heaters and feed water tank to the nominal temperature is directed to water pressure tanks. The water accumulated during the night is used to feed the boiler during the period of peak demand for electricity. Drops in the power block electric power were determined for different capacities of the tanks and periods when they are charged. A financial and economic profitability analysis (of costs and benefits) is made of the use of tanks for a 200 MW power unit. Operating in the automatic system of frequency and power control, the tanks may also be used to ensure a sudden increase in the electric power of the unit. The results of the performed calculations and analyses indicate that installation of water pressure tanks is well justified. The investment is profitable. Water pressure tanks may not only be used to reduce the power unit power during the off-peak night hours and raise it in the periods of peak demand, but also to increase the power capacity fast at any time. They may also be used to fill the boiler evaporator with hot water during the power unit start-up from the cold state.

  8. Aerobic Exercise Training and Arterial Changes in African-Americans versus Caucasians

    PubMed Central

    Ranadive, Sushant M.; Yan, Huimin; Lane, Abbi D.; Kappus, Rebecca M.; Cook, Marc D.; Sun, Peng; Harvey, Idethia; Ploutz-Synder, Robert; Woods, Jeffrey A.; Wilund, Kenneth R.; Fernhall, Bo

    2015-01-01

    African-Americans (AA) have increased carotid artery intima-media thickness and decreased vascular function compared to their Caucasian (CA) peers. Aerobic exercise prevents and potentially reverses arterial dysfunction. Purpose The purpose of this study was to examine the effect of 8 weeks of moderate-high intensity aerobic training in young healthy sedentary AA and CA men and women. Methods Sixty-four healthy volunteers (men = 28, women = 36) with mean age = 24 underwent measures of arterial structure, function and blood pressure variables at baseline, post-4 week control period and 8 weeks post-training. Results There was a significant increase in VO2peak amongst both groups post exercise training. Brachial systolic blood pressure decreased significantly following control period in both groups but not following exercise training. Carotid pulse pressure decreased significantly in both groups post exercise training as compared to baseline. There was no change in any of the other blood pressure variables. AAs had a higher intima-media thickness at baseline and post-control period, but significantly decreased following exercise training compared to CAs. AAs had significantly lower baseline forearm blood flow and RH compared to CAs, but exercise training had no effect on these variables. There was no significant difference in arterial stiffness (cPWV) and wave-reflection (AIx) between the two groups at any time point. Conclusions This is the first study to show that, 8 weeks of aerobic exercise training causes significant improvement in the arterial structure in young, healthy AAs, making it comparable to the CAs and with minimal effects on blood pressure variables. PMID:26225767

  9. Variations in plantar pressure variables across five cardiovascular exercises.

    PubMed

    Burnfield, Judith M; Jorde, Amy G; Augustin, Tanner R; Augustin, Tate A; Bashford, Gregory R

    2007-11-01

    To quantify variations in plantar pressure variables in healthy adults across five cardiovascular exercises. Ten young (19-35 yr old) and 10 middle-aged (45-60 yr old) individuals participated. After equipment familiarization, plantar pressure data were recorded during walking, running, elliptical training, stair climbing, and recumbent biking. Separate one-way analyses of variance with repeated measures identified significant differences in pressure variables across exercises and between age groups under the forefoot, arch, and heel. Forefoot: Peak pressures were higher during walking (253 kPa), running (251 kPa), and elliptical training (213 kPa) than stair climbing (130 kPa) and recumbent biking (41 kPa; P < or = 0.001). Biking pressures were lower than all other conditions (P < 0.001). Arch: Pressures were higher during running (144 kPa) compared with all other conditions (P < or = 0.001). Intermediate-level pressures during walking (119 kPa) and elliptical training (102 kPa) exceeded those during stair climbing (80 kPa; P < or = 0.002). Pressures were lowest during recumbent biking (33 kPa; P < 0.001). Heel: Pressures were highest during walking (215 kPa) and running (188 kPa), exceeding those recorded during all other activities (P < 0.001). Moderate elliptical training pressures (94 kPa) surpassed stair climbing values (66 kPa; P = 0.014). Pressures were lowest during recumbent biking (25 kPa; P < 0.001). The only significant difference identified between age groups was a larger arch contact area in the young compared with middle-aged, when averaged across exercises (P = 0.011). When protection of the forefoot is important (e.g., diabetic foot neuropathies), biking and stair climbing offer optimal pressure reductions. If protecting the heel from high pressures and forces is warranted, recumbent biking, stair climbing, and elliptical training provide greater relief.

  10. Pediatric Endotracheal Tube Cuff Pressures During Aeromedical Transport.

    PubMed

    Orsborn, Jonathan; Graham, James; Moss, Michele; Melguizo, Maria; Nick, Todd; Stroud, Michael

    2016-01-01

    Cuffed endotracheal tubes (ETTs) are frequently used in children, allowing fewer air leaks and helping prevent ventilator-associated pneumonia. Tracheal mucosal perfusion is compromised at an ETT cuff pressure (ETTCP) of 30 cm H2O with blood flow completely absent above 50 cm H2O. Our objective was to compare multiple pediatric-sized ETTCPs at ground level and various altitudes during aeromedical transport. Simulating the transport environment, 4 pediatric-sized mannequin heads were intubated with appropriately sized cuffed ETTs (3.0, 4.0, 5.0, 6.0) and transported by helicopter or nonpressurized fixed-wing aircraft 20 times each. The ETTCP was set to 10 cm H2O before transport, and the pressure was measured with a standard manometer at 1000-ft intervals until reaching peak altitude or CP greater than 60 cm H2O. Ground elevation ranged from 400-650 ft mean sea level (MSL) and peak altitude from 3500 to 5000 ft MSL. Increased altitude caused a significant increase in ETTCP of all ETT sizes (P < 0.001). However, there is no statistical difference in pressures between ETT sizes (P = 0.28). On average, ETTCP in 3.0, 4.0, and 6.0 ETTs surpassed 30 cm H2O at approximately 1500 ft MSL and 50 cm H2O at approximately 2800 ft MSL. In the 5.0 ETT, the CP reached 30 cm H2O at 2000 ft MSL and 50 cm H2O at 3700 ft MSL. The ETTCP in pediatric-sized ETTs regularly exceed recommended pressure limits at relatively low altitudes. There is no additional pressure increase related to ETT size. This has the potential to decrease mucosal blood flow, possibly increasing risk of subsequent tracheal stenosis, rupture, and other complications.

  11. Effective testing of personal protective equipment in blast loading conditions in shock tube: Comparison of three different testing locations

    PubMed Central

    Alay, Eren; Zheng, James Q.; Chandra, Namas

    2018-01-01

    We exposed a headform instrumented with 10 pressure sensors mounted flush with the surface to a shock wave with three nominal intensities: 70, 140 and 210 kPa. The headform was mounted on a Hybrid III neck, in a rigid configuration to eliminate motion and associated pressure variations. We evaluated the effect of the test location by placing the headform inside, at the end and outside of the shock tube. The shock wave intensity gradually decreases the further it travels in the shock tube and the end effect degrades shock wave characteristics, which makes comparison of the results obtained at three locations a difficult task. To resolve these issues, we developed a simple strategy of data reduction: the respective pressure parameters recorded by headform sensors were divided by their equivalents associated with the incident shock wave. As a result, we obtained a comprehensive set of non-dimensional parameters. These non-dimensional parameters (or amplification factors) allow for direct comparison of pressure waveform characteristic parameters generated by a range of incident shock waves differing in intensity and for the headform located in different locations. Using this approach, we found a correlation function which allows prediction of the peak pressure on the headform that depends only on the peak pressure of the incident shock wave (for specific sensor location on the headform), and itis independent on the headform location. We also found a similar relationship for the rise time. However, for the duration and impulse, comparable correlation functions do not exist. These findings using a headform with simplified geometry are baseline values and address a need for the development of standardized parameters for the evaluation of personal protective equipment (PPE) under shock wave loading. PMID:29894521

  12. Nonlinear propagation of phase-conjugate focused sound beams in water

    NASA Astrophysics Data System (ADS)

    Brysev, A. P.; Krutyansky, L. M.; Preobrazhensky, V. L.; Pyl'nov, Yu. V.; Cunningham, K. B.; Hamilton, M. F.

    2000-07-01

    Nonlinear propagation of phase-conjugate, focused, ultrasound beams is studied. Measurements are presented of harmonic amplitudes along the axis and in the focal plane of the conjugate beam, and of the waveform and spectrum at the focus. A maximum peak pressure of 3.9 MPa was recorded in the conjugate beam. The measurements are compared with simulations based on the KZK equation, and satisfactory agreement is obtained.

  13. Influence of atmospheric pressure on infrarenal abdominal aortic aneurysm rupture.

    PubMed

    Robert, Nicolas; Frank, Michael; Avenin, Laure; Hemery, Francois; Becquemin, Jean Pierre

    2014-04-01

    Meteorologic conditions have a significant impact on the occurrence of cardiovascular events. Previous studies have shown that abdominal aortic aneurysm rupture (AAAR) may be associated with atmospheric pressure, with conflicting results. Therefore, we aimed to further investigate the nature of the correlation between atmospheric pressure variations and AAAR. Hospital admissions related to AAAR between 2005-2009 were assessed in 19 districts of metropolitan France and correlated with geographically and date-matched mean atmospheric pressures. In parallel and from 2005-2009, all fatal AAARs as reported by death certificates were assessed nationwide and correlated to local atmospheric pressures at the time of aortic rupture. Four hundred ninety-four hospital admissions related to AAAR and 6,358 deaths nationwide by AAAR were identified between 2005-2009. Both in-hospital ruptures and aneurysm-related mortality had seasonal variations, with peak/trough incidences in January and June, respectively. Atmospheric pressure peaks occurred during winter. Univariate analysis revealed a significant association (P < 0.001) of high mean atmospheric pressure values and AAAR. After multivariate analysis, mean maximum 1-month prerupture atmospheric pressure had a persistent correlation with both in-hospital relative risk (1.05 [95% confidence interval: 1.03-1.06]; P < 0.0001) and aneurysm rupture-related mortality relative risk (1.02 [95% confidence interval: 1.01-1.03]; P < 0.0001). The annual incidence of AAAR is nonhomogeneous with a peak incidence in winter, and is independently associated with mean maximum 1-month prerupture atmospheric pressure. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. A study on reducing the absorption of lidocaine from the airway in cats.

    PubMed

    Chen, Yunfeng; Zeng, Yiming; Zhang, Yin

    2017-08-01

    To determine if the combination of lidocaine with epinephrine or gamma globulin would decrease the rate or reduce the amount of local absorption of lidocaine through the airway. Twenty adult male cats were randomly and evenly distributed into four groups: 1) Group LG: lidocaine administered with gamma globulin; 2) Group LS: lidocaine administered with physiological saline); 3) Group LE: lidocaine administered with epinephrine; 4) Group C: control group. Invasive blood pressure, heart rate, and concentration of lidocaine were recorded before and after administration. The peak of plasma concentrations appeared difference (Group LG: 1.39 ± 0.23 mg/L; Group LS: 1.47 ± 0.29 mg/L and Group LE: 0.99 ± 0.08 mg/L). Compared to Group C, there were significant differences in the average heart rate of Groups LG, LS, and LE (P < 0.05). The average systolic blood pressures were significantly different when each group was compared to Group C (P < 0.05). The biological half-life, AUC0-120, peak time, and half-life of absorption among the three groups have not presented statistically significant differences (P > 0.05). Administering lidocaine in combination with gamma globulin through airway causes significant decrease the rate and reduce the amount of local absorption of lidocaine in cats.

  15. Wind tunnel tests for wind pressure distribution on gable roof buildings.

    PubMed

    Jing, Xiao-kun; Li, Yuan-qi

    2013-01-01

    Gable roof buildings are widely used in industrial buildings. Based on wind tunnel tests with rigid models, wind pressure distributions on gable roof buildings with different aspect ratios were measured simultaneously. Some characteristics of the measured wind pressure field on the surfaces of the models were analyzed, including mean wind pressure, fluctuating wind pressure, peak negative wind pressure, and characteristics of proper orthogonal decomposition results of the measured wind pressure field. The results show that extremely high local suctions often occur in the leading edges of longitudinal wall and windward roof, roof corner, and roof ridge which are the severe damaged locations under strong wind. The aspect ratio of building has a certain effect on the mean wind pressure coefficients, and the effect relates to wind attack angle. Compared with experimental results, the region division of roof corner and roof ridge from AIJ2004 is more reasonable than those from CECS102:2002 and MBMA2006.The contributions of the first several eigenvectors to the overall wind pressure distributions become much bigger. The investigation can offer some basic understanding for estimating wind load distribution on gable roof buildings and facilitate wind-resistant design of cladding components and their connections considering wind load path.

  16. Experimental Investigation of Unsteady Shock Wave Turbulent Boundary Layer Interactions About a Blunt Fin

    NASA Technical Reports Server (NTRS)

    Barnhart, Paul J.; Greber, Isaac

    1997-01-01

    A series of experiments were performed to investigate the effects of Mach number variation on the characteristics of the unsteady shock wave/turbulent boundary layer interaction generated by a blunt fin. A single blunt fin hemicylindrical leading edge diameter size was used in all of the experiments which covered the Mach number range from 2.0 to 5.0. The measurements in this investigation included surface flow visualization, static and dynamic pressure measurements, both on centerline and off-centerline of the blunt fin axis. Surface flow visualization and static pressure measurements showed that the spatial extent of the shock wave/turbulent boundary layer interaction increased with increasing Mach number. The maximum static pressure, normalized by the incoming static pressure, measured at the peak location in the separated flow region ahead of the blunt fin was found to increase with increasing Mach number. The mean and standard deviations of the fluctuating pressure signals from the dynamic pressure transducers were found to collapse to self-similar distributions as a function of the distance perpendicular to the separation line. The standard deviation of the pressure signals showed initial peaked distribution, with the maximum standard deviation point corresponding to the location of the separation line at Mach number 3.0 to 5.0. At Mach 2.0 the maximum standard deviation point was found to occur significantly upstream of the separation line. The intermittency distributions of the separation shock wave motion were found to be self-similar profiles for all Mach numbers. The intermittent region length was found to increase with Mach number and decrease with interaction sweepback angle. For Mach numbers 3.0 to 5.0 the separation line was found to correspond to high intermittencies or equivalently to the downstream locus of the separation shock wave motion. The Mach 2.0 tests, however, showed that the intermittent region occurs significantly upstream of the separation line. Power spectral densities measured in the intermittent regions were found to have self-similar frequency distributions when compared as functions of a Strouhal number for all Mach numbers and interaction sweepback angles. The maximum zero-crossing frequencies were found to correspond with the peak frequencies in the power spectra measured in the intermittent region.

  17. Temporal relationship between instantaneous pressure gradients and peak-to-peak systolic ejection gradient in congenital aortic stenosis.

    PubMed

    Boe, Brian A; Norris, Mark D; Zampi, Jeffrey D; Rocchini, Albert P; Ensing, Gregory J

    2017-12-01

    We sought to identify a time during cardiac ejection when the instantaneous pressure gradient (IPG) correlated best, and near unity, with peak-to-peak systolic ejection gradient (PPSG) in patients with congenital aortic stenosis. Noninvasive echocardiographic measurement of IPG has limited correlation with cardiac catheterization measured PPSG across the spectrum of disease severity of congenital aortic stenosis. A major contributor is the observation that these measures are inherently different with a variable relationship dependent on the degree of stenosis. Hemodynamic data from cardiac catheterizations utilizing simultaneous pressure measurements from the left ventricle (LV) and ascending aorta (AAo) in patients with congenital valvar aortic stenosis was retrospectively reviewed over the past 5 years. The cardiac cycle was standardized for all patients using the percentage of total LV ejection time (ET). Instantaneous gradient at 5% intervals of ET were compared to PPSG using linear regression and Bland-Altman analysis. A total of 22 patients underwent catheterization at a median age of 13.7 years (interquartile range [IQR] 10.3-18.0) and median weight of 51.1 kg (IQR 34.2-71.6). The PPSG was 46.5 ± 12.6 mm Hg (mean ± SD) and correlated suboptimally with the maximum and mean IPG. The midsystolic IPG (occurring at 50% of ET) had the strongest correlation with the PPSG ( PPSG = 0.97(IPG50%)-1.12, R 2  = 0.88), while the IPG at 55% of ET was closest to unity ( PPSG = 0.997(IPG55%)-1.17, R 2  = 0.87). The commonly measured maximum and mean IPG are suboptimal estimates of the PPSG in congenital aortic stenosis. Using catheter-based data, IPG at 50%-55% of ejection correlates well with PPSG. This may allow for a more accurate estimation of PPSG via noninvasive assessment of IPG. © 2017 Wiley Periodicals, Inc.

  18. Influence of shoe midsole hardness on plantar pressure distribution in four basketball-related movements.

    PubMed

    Lam, Wing-Kai; Ng, Wei Xuan; Kong, Pui Wah

    2017-01-01

    This study examined how shoe midsole hardness influenced plantar pressure in basketball-related movements. Twenty male university basketball players wore customized shoes with hard and soft midsoles (60 and 50 Shore C) to perform four movements: running, maximal forward sprinting, maximal 45° cutting and lay-up. Plantar loading was recorded using an in-shoe pressure measuring system, with peak pressure (PP) and pressure time integral (PTI) extracted from 10 plantar regions. Compared with hard shoes, subjects exhibited lower PP in one or more plantar regions when wearing the soft shoes across all tested movements (Ps < 0.05). Lower PTI was also observed in the hallux for 45° cutting, and the toes and forefoot regions during the first step of lay-up in the soft shoe condition (Ps < 0.05). In conclusion, using a softer midsole in the forefoot region may be a plausible remedy to reduce the high plantar loading experienced by basketball players.

  19. Foot Loading Characteristics of Chinese Bound Feet Women: A Comparative Analysis

    PubMed Central

    Gu, Yaodong; Mei, Qichang; Fernandez, Justin; Li, Jianshe; Ren, Xuejun; Feng, Neng

    2015-01-01

    The custom of bound feet among Chinese women has existed for almost a century. This practice has influenced the daily life of Chinese women, especially during everyday locomotion. The primary aim of this study is to analyze the loading patterns of bound feet. Specifically, the plantar pressure and center of pressure were analyzed for peak pressure, contact area, force time integral, center of pressure displacement velocity and trajectory in the anterior-posterior direction via a comparison with normal feet. The key outcomes from this work were that the forefoot and rearfoot of bound feet bear the whole loading during stance phase. The center of pressure displacement velocity of bound feet was also greatly reduced with the shortening of trajectories. This suggests that the proprioceptive system adjusts motor function to adapt to new loading patterns while maintaining locomotive stability. A biomechanical understanding of bound feet may assist with prevention, treatment and rehabilitation of bound feet disorders. PMID:25884982

  20. Acoustic performance of low pressure axial fan rotors with different blade chord length and radial load distribution

    NASA Astrophysics Data System (ADS)

    Carolus, Thomas

    The paper examines the acoustic and aerodynamic performance of low-pressure axial fan rotors with a hub/tip ratio of 0.45. Six rotors were designed for the same working point by means of the well-known airfoil theory. The condition of an equilibrium between the static pressure gradient and the centrifugal forces is maintained. All rotors have unequally spaced blades to diminish tonal noise. The rotors are tested in a short cylindrical housing without guide vanes. All rotors show very similar flux-pressure difference characteristics. The peak efficiency and the noise performance is considerably influenced by the chosen blade design. The aerodynamically and acoustically optimal rotor is the one with the reduced load at the hub and increased load in the tip region under satisfied equilibrium conditions. It runs at the highest aerodynamic efficiency, and its noise spectrum is fairly smooth. The overall sound pressure level of this rotor is up to 8 dB (A) lower compared to the other rotors under consideration.

  1. Properties of lotus seed starch-glycerin monostearin complexes formed by high pressure homogenization.

    PubMed

    Chen, Bingyan; Zeng, Shaoxiao; Zeng, Hongliang; Guo, Zebin; Zhang, Yi; Zheng, Baodong

    2017-07-01

    Starch-lipid complexes were prepared using lotus seed starch (LS) and glycerin monostearate (GMS) via a high pressure homogenization (HPH) process, and the effect of HPH on the physicochemical properties of LS-GMS complexes was investigated. The results of Fourier transform infrared spectroscopy and complex index analysis showed that LS-GMS complexes were formed at 40MPa by HPH and the complex index increased with the increase of homogenization pressure. Scanning electron microscopy displayed LS-GMS complexes present more nest-shape structure with increasing homogenization pressure. X-ray diffraction and differential scanning calorimetry results revealed that V-type crystalline polymorph was formed between LS and GMS, with higher homogenization pressure producing an increasingly stable complex. LS-GMS complex inhibited starch granules swelling, solubility and pasting development, which further reduced peak and breakdown viscosity. During storage, LS-GMS complexes prepared by 70-100MPa had higher Avrami exponent values and lower recrystallization rates compared with native starch, which suggested a lower retrogradation trendency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Evaluating and modeling the effects of surface sampling factors on the recovery of organic chemical attribution signatures using the accelerated diffusion sampler and solvent extraction.

    PubMed

    Mo, Kai-For; Heredia-Langner, Alejandro; Fraga, Carlos G

    2017-03-01

    In this study, an experimental design matrix was created and executed to test the effects of various real-world factors on the ability of (1) the accelerated diffusion sampler with solid phase micro-extraction (ADS-SPME) and (2) solvent extraction to capture organic chemical attribution signatures (CAS) from dimethyl methylphosphonate (DMMP) spiked onto painted wall board (PWB) surfaces. The DMMP CAS organic impurities sampled by ADS-SPME and solvent extraction were analyzed by gas chromatography/mass spectrometry (GC/MS). The number of detected DMMP CAS impurities and their respective GC/MS peak areas were determined as a function of DMMP stock, DMMP spiked volume, exposure time, SPME sampling time, and ADS headspace pressure. Based on the statistical analysis of experimental results, several general conclusions are made: (1) the amount of CAS impurity detected using ADS-SPME and GC/MS was most influenced by spiked volume, stock, and ADS headspace pressure, (2) reduced ADS headspace pressure increased the amount of detected CAS impurity, as measured by GC/MS peak area, by up to a factor of 1.7-1.9 compared to ADS at ambient headspace pressure, (3) the ADS had no measurable effect on the number of detected DMMP impurities, that is, ADS (with and without reduced pressure) had no practical effect on the DMMP impurity profile collected from spiked PWB, and (4) solvent extraction out performed ADS-SPME in terms of consistently capturing all or most of the targeted DMMP impurities from spiked PWB. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. A fluid--structure interaction finite element analysis of pulsatile blood flow through a compliant stenotic artery

    NASA Technical Reports Server (NTRS)

    Bathe, M.; Kamm, R. D.

    1999-01-01

    A new model is used to analyze the fully coupled problem of pulsatile blood flow through a compliant, axisymmetric stenotic artery using the finite element method. The model uses large displacement and large strain theory for the solid, and the full Navier-Stokes equations for the fluid. The effect of increasing area reduction on fluid dynamic and structural stresses is presented. Results show that pressure drop, peak wall shear stress, and maximum principal stress in the lesion all increase dramatically as the area reduction in the stenosis is increased from 51 to 89 percent. Further reductions in stenosis cross-sectional area, however, produce relatively little additional change in these parameters due to a concomitant reduction in flow rate caused by the losses in the constriction. Inner wall hoop stretch amplitude just distal to the stenosis also increases with increasing stenosis severity, as downstream pressures are reduced to a physiological minimum. The contraction of the artery distal to the stenosis generates a significant compressive stress on the downstream shoulder of the lesion. Dynamic narrowing of the stenosis is also seen, further augmenting area constriction at times of peak flow. Pressure drop results are found to compare well to an experimentally based theoretical curve, despite the assumption of laminar flow.

  4. Performance Evaluation of Reduced-Chord Rotor Blading as Applied to J73 Two-Stage Turbine

    NASA Technical Reports Server (NTRS)

    Schurn, Harold J.

    1957-01-01

    The multistage turbine from the J73 turbojet engine has previously been investigated with standard and with reduced-chord rotor blading in order to determine the individual performance characteristics of each configuration over a range of over-all pressure ratio and speed. Because both turbine configurations exhibited peak efficiencies of over 90 percent, and because both units had relatively wide efficient operating ranges, it was considered of interest to determine the performance of the first stage of the turbine as a separate component. Accordingly, the standard-bladed multistage turbine was modified by removing the second-stage rotor disk and stator and altering the flow passage so that the first stage of the unit could be operated independently. The modified single-stage turbine was then operated over a range of stage pressure ratio and speed. The single-stage turbine operated at a peak brake internal efficiency of over 90 percent at an over-all stage pressure ratio of 1.4 and at 90 percent of design equivalent speed. Furthermore, the unit operated at high efficiencies over a relatively wide operating range. When the single-stage results were compared with the multistage results at the design operating point, it was found that the first stage produced approximately half the total multistage-turbine work output.

  5. Validation of radiocarpal joint contact models based on images from a clinical MRI scanner.

    PubMed

    Johnson, Joshua E; McIff, Terence E; Lee, Phil; Toby, E Bruce; Fischer, Kenneth J

    2014-01-01

    This study was undertaken to assess magnetic resonance imaging (MRI)-based radiocarpal surface contact models of functional loading in a clinical MRI scanner for future in vivo studies, by comparison with experimental measures from three cadaver forearm specimens. Experimental data were acquired using a Tekscan sensor during simulated light grasp. Magnetic resonance (MR) images were used to obtain model geometry and kinematics (image registration). Peak contact pressures (PPs) and average contact pressures (APs), contact forces and contact areas were determined in the radiolunate and radioscaphoid joints. Contact area was also measured directly from MR images acquired with load and compared with model data. Based on the validation criteria (within 25% of experimental data), out of the six articulations (three specimens with two articulations each), two met the criterion for AP (0%, 14%); one for peak pressure (20%); one for contact force (5%); four for contact area with respect to experiment (8%, 13%, 19% and 23%), and three contact areas met the criterion with respect to direct measurements (14%, 21% and 21%). Absolute differences between model and experimental PPs were reasonably low (within 2.5 MPa). Overall, the results indicate that MRI-based models generated from 3T clinical MR scanner appear sufficient to obtain clinically relevant data.

  6. Wearable Sensing of In-Ear Pressure for Heart Rate Monitoring with a Piezoelectric Sensor

    PubMed Central

    Park, Jang-Ho; Jang, Dae-Geun; Park, Jung Wook; Youm, Se-Kyoung

    2015-01-01

    In this study, we developed a novel heart rate (HR) monitoring approach in which we measure the pressure variance of the surface of the ear canal. A scissor-shaped apparatus equipped with a piezoelectric film sensor and a hardware circuit module was designed for high wearability and to obtain stable measurement. In the proposed device, the film sensor converts in-ear pulse waves (EPW) into electrical current, and the circuit module enhances the EPW and suppresses noise. A real-time algorithm embedded in the circuit module performs morphological conversions to make the EPW more distinct and knowledge-based rules are used to detect EPW peaks. In a clinical experiment conducted using a reference electrocardiogram (ECG) device, EPW and ECG were concurrently recorded from 58 healthy subjects. The EPW intervals between successive peaks and their corresponding ECG intervals were then compared to each other. Promising results were obtained from the samples, specifically, a sensitivity of 97.25%, positive predictive value of 97.17%, and mean absolute difference of 0.62. Thus, highly accurate HR was obtained from in-ear pressure variance. Consequently, we believe that our proposed approach could be used to monitor vital signs and also utilized in diverse applications in the near future. PMID:26389912

  7. Exaggerated Exercise Blood Pressure Response and Future Cardiovascular Disease.

    PubMed

    Tzemos, Nikolaos; Lim, Pitt O; Mackenzie, Isla S; MacDonald, Thomas M

    2015-11-01

    Exaggerated blood pressure (BP) response to exercise predicts future hypertension. However, there is considerable lack of understanding regarding the mechanism of how this abnormal response is generated, and how it relates to the future establishment of cardiovascular disease. The authors studied 82 healthy male volunteers without cardiovascular risk factors. The participants were categorized into two age-matched groups depending on their exercise systolic BP (ExSBP) rise after 3 minutes of exercise using a submaximal step test: exaggerated ExSBP group (hyper-responders [peak SBP ≥ 180 mm Hg]) and low ExSBP responder group (hypo-responders [peak SBP <180 mm Hg]). Forearm venous occlusion plethysmography and intra-arterial infusions of acetylcholine (ACh), N(G)-monomethyl-L-arginine (L-NMMA), sodium nitroprusside (SNP), and norepinephrine (NE) were used to assess vascular reactivity. Proximal aortic compliance was assessed with ultrasound, and neurohormonal blood sampling was performed at rest and during peak exercise. The hyper-responder group exhibited a significantly lower increase in forearm blood flow (FBF) with ACh compared with the hypo-responder group (ΔFBF 215% [14] vs 332.3% [28], mean [standard error of the mean]; P<.001), as well as decreased proximal aortic compliance. The vasoconstrictive response to L-NMMA was significantly impaired in the hyper-responder group in comparison to the hypo-responder group (ΔFBF -40.2% [1.6] vs -50.2% [2.6]; P<.05). In contrast, the vascular response to SNP and NE were comparable in both groups. Peak exercise plasma angiotensin II levels were significantly higher in the hyper-responder group (31 [1] vs 23 [2] pg/mL, P=.01). An exaggerated BP response to exercise is related to endothelial dysfunction, decreased proximal aortic compliance, and increased exercise-related neurohormonal activation, the constellation of which may explain future cardiovascular disease. © 2015 Wiley Periodicals, Inc.

  8. Abnormal end-tidal PO(2) and PCO(2) at the anaerobic threshold correlate well with impaired exercise gas exchange in patients with left ventricular dysfunction.

    PubMed

    Kano, Hiroto; Koike, Akira; Hoshimoto-Iwamoto, Masayo; Nagayama, Osamu; Sakurada, Koji; Suzuki, Takeya; Tsuneoka, Hidekazu; Sawada, Hitoshi; Aizawa, Tadanori; Wasserman, Karlman

    2012-01-01

    The aim of the present study was to compare the end-tidal O(2) pressure (PETO(2)) to end-tidal CO(2) pressure (PETCO(2)) in cardiac patients during rest and during 2 states of exercise: at anaerobic threshold (AT) and at peak. The purpose was to see which metabolic state, PETO(2) or PETCO(2), best correlated with exercise limitation. Thirty-eight patients with left ventricular (LV) ejection fraction <40% underwent cardiopulmonary exercise testing (CPX). PETO(2) and PETCO(2) were measured during CPX, along with peak O(2) uptake (VO(2)), AT, slope of the increase in ventilation (VE) relative to the increase in CO(2) output (VCO(2)) (VE vs. VCO(2) slope), and the ratio of the increase in VO(2) to the increase in work rate (ΔVO(2)/ΔWR). Both PETO(2) and PETCO(2) measured at AT were best correlated with peakVO(2), AT, ΔVO(2)/ΔWR and VE vs. VCO(2) slope. PETO(2) at AT correlated with reduced peak VO(2) (r=-0.60), reduced AT (r=-0.52), reduced ΔVO(2)/ΔWR (r=-0.55) and increased VE vs. VCO(2) slope (r=0.74). PETCO(2) at AT correlated with reduced peak VO(2) (r=0.67), reduced AT (r=0.61), reduced ΔVO(2)/ΔWR (r=0.58) and increased VE vs. VCO(2) slope (r=-0.80). PETCO(2) and PETO(2) at AT correlated with peak VO(2), AT and ΔVO(2)/ΔWR, but best correlated with increased VE vs. VCO(2) slope. PETO(2) and PETCO(2) at AT can be used as a prime index of impaired cardiopulmonary function during exercise in patients with LV failure.

  9. Measuring the effects of massage on exercise performance and cardiopulmonary response in children with and without heart disease: a pilot study.

    PubMed

    Beider, Shay; Boulanger, Karen T; Joshi, Milind; Pan, Yann Ping; Chang, Ruey-Kang R

    2010-09-28

    Congenital heart disease, a common and serious birth defect, affects 8 per 1000 live-born infants. Decreased exercise capacity and development of obesity is common in this population. These children may benefit from therapies, such as massage therapy, that could enhance cardiovascular and skeletal muscle function when they exercise. A pilot study conducted at the pediatric cardiology clinic of the Mattel Children's Hospital of the University of California-Los Angeles examined the safety and feasibility of measuring the effects of pre-exercise massage on exercise performance and cardiopulmonary response in children with and without heart disease. SIXTEEN CHILDREN (MEAN AGE: 9.2 ± 2.2 years) participated in the study. Ten participants had various forms of heart disease, and six children were healthy. A female certified massage therapist with specialized training in pediatric massage provided a 30-minute massage to the participants. Using a standard protocol, each participant underwent two exercise tests: one test with and one without pre-exercise massage. Heart rate, blood pressure, and oxygen uptake (VO(2)) were measured in the participants. All recruited participants completed the study. No adverse events occurred during any of the exercise tests or massage sessions. Measurements during exercise with or without a preceding massage were compared, and the pre-exercise massage condition yielded a significantly higher heart rate and higher minute ventilation. Measurements during exercise in children with heart disease and in healthy participants showed no significant differences in peak heart rate, blood pressure, peak VO(2), peak work rate, minute ventilation, or respiratory quotient. In this study, peak heart rate, peak VO(2), and peak minute ventilation were higher when children received a massage before exercise testing. Larger studies will be needed to investigate the strength of this finding. Future studies should include measurements of anxiety and psychological factors in addition to cardiopulmonary measures.

  10. Can Pillow Height Effect the Body Pressure Distribution and Sleep Comfort: a Study of Quinquagenarian Women

    NASA Astrophysics Data System (ADS)

    Li, Xinzhu; Hu, Huimin; Liao, Su

    2018-03-01

    A proper sleeping pillow can relax the neck muscles during sleep, yet does not impose stress on the spine or other tissues. By analyzing the different body pressure and subjective comfort evaluation of quinquagenarian women with different pillow heights (3cm, 7cm, 11cm and 15cm), this paper found that as the pillow height increased, the neck contact pressure, contact area and force increased at the same time, as well as the peak force and peak contact pressure gradually shifted from the head to the hip area. It was shown that the pillow with a height of 7cm was the most comfortable for supine positions.

  11. High pressure single-crystal micro X-ray diffraction analysis with GSE_ADA/RSV software

    NASA Astrophysics Data System (ADS)

    Dera, Przemyslaw; Zhuravlev, Kirill; Prakapenka, Vitali; Rivers, Mark L.; Finkelstein, Gregory J.; Grubor-Urosevic, Ognjen; Tschauner, Oliver; Clark, Simon M.; Downs, Robert T.

    2013-08-01

    GSE_ADA/RSV is a free software package for custom analysis of single-crystal micro X-ray diffraction (SCμXRD) data, developed with particular emphasis on data from samples enclosed in diamond anvil cells and subject to high pressure conditions. The package has been in extensive use at the high pressure beamlines of Advanced Photon Source (APS), Argonne National Laboratory and Advanced Light Source (ALS), Lawrence Berkeley National Laboratory. The software is optimized for processing of wide-rotation images and includes a variety of peak intensity corrections and peak filtering features, which are custom-designed to make processing of high pressure SCμXRD easier and more reliable.

  12. Preparative Isolation and Purification of Flavone C-Glycosides from the Leaves of Ficus microcarpa L. f by Medium-Pressure Liquid Chromatography, High-Speed Countercurrent Chromatography, and Preparative Liquid Chromatography

    PubMed Central

    Wang, Xiaohong; Liang, Yong; Zhu, Licai; Xie, Huichun; Li, Hang; He, Junting; Pan, Man; Zhang, Tianyou; Ito, Yoichiro

    2009-01-01

    Combined with medium-pressure liquid chromatography (MPLC) and preparative high-performance liquid chromatography (perp-HPLC), high-speed countercurrent chromatography (HSCCC) was applied for separation and purification of flavone C-glycosides from the crude extract of leaves of Ficus microcarpae L. f. HSCCC separation was performed on a two-phase solvent system composed of methyl tert- butyl ether - ethyl acetate – 1-butanol – acetonitrile – 0.1% aqueous trifluoroacetic acid at a volume ratio of 1:3:1:1:5. Partially resolved peak fractions from HSCCC separation were further purified by preparative HPLC. Four well-separated compounds were obtained and their purities were determined by HPLC. The purities of these peaks were 97.28%, 97.20%, 92.23%, and 98.40%.. These peaks were characterized by ESI-MSn. According to the reference, they were identified as orientin (peak I), isovitexin-3″-O-glucopyranoside (peak II), isovitexin (peak III), and vitexin (peak IV), yielded 1.2 mg, 4.5 mg, 3.3 mg, and 1.8 mg, respectively. PMID:20190866

  13. Impact of high pressure treatment on functional, rheological, pasting, and structural properties of lentil starch dispersions.

    PubMed

    Ahmed, Jasim; Thomas, Linu; Taher, Ayoub; Joseph, Antony

    2016-11-05

    Lentil starch (LS) dispersions (flour to water 1:4w/w) were subjected to high pressure (HP) treatment at 0.1, 400, 500 and 600MPa for 10min, followed by evaluation on the functional, particle size, rheological, pasting, and structural properties of post-process samples. Water holding capacity of pressurized starch increased with the pressure intensity due to increase in damaged starch. The amount of resistant starch increased from 5 to 6.8% after pressure treatment at 600MPa. An increase in starch granule particle size (196-207μm) was obvious after HP treatment. The lentil starch was completely gelatinized after pressure treatment at 600MPa for 10min as evidenced from differential scanning calorimetry, rheometry, X-ray diffraction (XRD) and scanning electron microscopy observation. The elastic modulus, G' of lentil starch gel was less frequency dependent, and higher in magnitude at high pressure (>500MPa) than at lower pressure range (≤400MPa). XRD analysis revealed the disappearance of two diffraction peak intensities at 14.86° and 22.82° at 600MPa for 10min, which confirms the transformation of crystalline to amorphous region of lentil starch. Pasting properties were significantly influenced by the pressure treatment especially at 600MPa, resulting in a considerable decrease in peak viscosity, breakdown and final viscosity, and an increase in peak time. It can be inferred that the functional properties of pressure-treated LS are mainly based on the structural destruction of granules. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. [Atrio-ventricular pressure difference associated with mitral valve motion].

    PubMed

    Wang, L M; Mori, H; Minezaki, K; Shinozaki, Y; Okino, H

    1990-05-01

    Pressure difference (PD) across the mitral valve was analyzed by a computer-aided catheter system in dogs. Positive PD (PPD) was consistently traced in the initial phase of rapid filling. While heart rate (HR) was below 100 beat/min, a negative PD (NPD) followed the above PPD. In the period between the NPD and the 2nd PPD due to atrial contraction, PD was kept at zero, while LA and LV pressures were gradually elevated by pulmonary venous return. As HR exceeded 100, 2 positive peaks of PD merged into M-shaped or mono-peaked PD. Through higher inflow resistance produced by artificial mitral stenosis, PPD peak decayed without NPD. In mitral regurgitation with an acute volume overload, all of the PD amplitudes were exaggerated. Thus the quick reversal of PD suggested the effect in blood filling process across the mitral valve.

  15. Botulinum toxin effects on gasatrocnemius strength and plantar pressure in diabetics with peripheral neuropathy and forefoot ulceration.

    PubMed

    Hastings, Mary K; Mueller, Michael J; Sinacore, David R; Strube, Michael J; Crowner, Beth E; Johnson, Jeffrey E; Racette, Brad R

    2012-05-01

    High forefoot plantar pressure is associated with plantar ulcers in people with diabetes and peripheral neuropathy. The purpose of this pilot study was to determine the safety and efficacy of botulinum toxin A injected into the gastrocnemius-soleus muscles to reduce muscle strength and plantar pressure. This double blind, randomized clinical trial studied 17 people with diabetes mellitus, peripheral neuropathy and a forefoot plantar ulcer. Subjects were randomized into one of three groups receiving gastrocnemius-soleus muscle injections on the involved side with; 1) Saline (n = 5, weight =99± 21 kg), 2) 200-units of Botox® (n = 7, weight = 101± 5 kg), or 3) 300-units of Botox® (n = 5, weight = 129± 22 kg). Botox® dose was converted to units/kg, the majority received between 1.9 and 2.4 units/kg (n = 11) and one 3.2 units/kg. Plantarflexor peak torque and forefoot peak plantar pressure were quantified prior and 2 weeks post-injection. There were no complications from the injections. Plantarflexor peak torque on the involved side increased in the placebo and 300 groups (3± 4 Nm and 6± 10 Nm, respectively) and decreased -8± 11 Nm in the 200 group. There was no relationship between units/kg of Botox® for each subject and change in plantarflexor peak torque. Forefoot peak plantar pressure did not change in the placebo and 300 groups (0± 11 and 0± 5 N/cm(2), respectively) and decreased -4± 16 N/cm2 (4%) for the 200 group. There were no adverse events associated with the Botox® injections. This study was unable to determine the dose to consistently reduce plantarflexor strength and forefoot plantar pressure. Additional research is needed to investigate diabetes mellitus specific physiological changes and their impact of BoNT-A effectiveness in order to guide appropriate dosing.

  16. Measurement of peak CSF flow velocity at cerebral aqueduct, before and after lumbar CSF drainage, by use of phase-contrast MRI: utility in the management of idiopathic normal pressure hydrocephalus.

    PubMed

    Sharma, Ashwani Kumar; Gaikwad, Shailesh; Gupta, Vipul; Garg, Ajay; Mishra, Nalini K

    2008-04-01

    Since it was first described, normal pressure hydrocephalus (NPH) and its treatment by means of cerebrospinal fluid (CSF) shunting have been the focus of much investigation. Whatever be the cause of NPH, it has been hypothesized that in this disease there occurs decreased arterial expansion and an increased brain expansion leading to increased transmantle pressure. We cannot measure the latter, but fortunately the effect of these changes (increased peak flow velocity through the aqueduct) can be quantified with cine phase-contrast magnetic resonance imaging (MRI). This investigation was thus undertaken to characterize and measure CSF peak flow velocity at the level of the aqueduct, before and after lumbar CSF drainage, by means of a phase-contrast cine MRI and determine its role in selecting cases for shunt surgery. 37 patients with clinically suspected NPH were included in the study. Changes in the hyperdynamic peak CSF flow velocity with 50 ml lumbar CSF drainage (mimicking shunt) were evaluated in them for considering shunt surgery. 14 out of 15 patients who were recommended for shunt surgery, based on changes peak flow velocity after lumbar CSF drainage, improved after shunt surgery. None of the cases which were not recommended for shunt surgery, based on changes in CSF peak flow velocity after lumbar CSF drainage, improved after shunt surgery (2 out of 22 cases). The study concluded that the phase-contrast MR imaging, done before and after CSF drainage, is a sensitive method to support the clinical diagnosis of normal pressure hydrocephalus, selecting patients of NPH who are likely to benefit from shunt surgery, and to select patients of NPH who are not likely to benefit from shunt surgery.

  17. A pilot study comparing custom contoured and planar support surfaces for pressure ulcer risk over the heels for night time postural management using interface pressure mapping and discomfort scores.

    PubMed

    Hosking, J

    2017-08-01

    Custom contouring techniques are effective for reducing pressure ulcer risk in wheelchair seating. These techniques may assist the management of pressure ulcer risk during sleep for night time postural management. To investigate the effectiveness of custom contoured night time postural management components against planar support surfaces for pressure ulcer risk measures over the heels. Supine posture was captured from five healthy participants using vacuum consolidation and 3-dimensional laser scanning. Custom contoured abduction wedges were carved from polyurethane and chipped foams. Pressure mapping and the visual analog scale were used to evaluate the effectiveness of the contoured foams in reducing pressure and discomfort under the posterior heel against standard planar support surfaces. Custom contoured shapes significantly reduced interface pressures (p < 0.05) and discomfort scores (p < 0.05) when compared to planar support surfaces. Polyurethane foam was the most effective material but it did not differ significantly from chipped foam. Linear regression revealed a significant relationship between the Peak Pressure Index and discomfort scores (r = 0.997, p = 0.003). The findings of this pilot study suggested that custom contoured shapes were more effective than planar surfaces at reducing pressure ulcer risk surrogate measures over the posterior heels with polyurethane foam being the most effective material investigated. It is recommended that Evazote foam should not be used as a support surface material for night time postural management. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  18. Brachial artery vasomotion and transducer pressure effect on measurements by active contour segmentation on ultrasound

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cary, Theodore W.; Sultan, Laith R.; Sehgal, Chandra M., E-mail: sehgalc@uphs.upenn.edu

    Purpose: To use feed-forward active contours (snakes) to track and measure brachial artery vasomotion on ultrasound images recorded in both transverse and longitudinal views; and to compare the algorithm's performance in each view. Methods: Longitudinal and transverse view ultrasound image sequences of 45 brachial arteries were segmented by feed-forward active contour (FFAC). The segmented regions were used to measure vasomotion artery diameter, cross-sectional area, and distention both as peak-to-peak diameter and as area. ECG waveforms were also simultaneously extracted frame-by-frame by thresholding a running finite-difference image between consecutive images. The arterial and ECG waveforms were compared as they traced eachmore » phase of the cardiac cycle. Results: FFAC successfully segmented arteries in longitudinal and transverse views in all 45 cases. The automated analysis took significantly less time than manual tracing, but produced superior, well-behaved arterial waveforms. Automated arterial measurements also had lower interobserver variability as measured by correlation, difference in mean values, and coefficient of variation. Although FFAC successfully segmented both the longitudinal and transverse images, transverse measurements were less variable. The cross-sectional area computed from the longitudinal images was 27% lower than the area measured from transverse images, possibly due to the compression of the artery along the image depth by transducer pressure. Conclusions: FFAC is a robust and sensitive vasomotion segmentation algorithm in both transverse and longitudinal views. Transverse imaging may offer advantages over longitudinal imaging: transverse measurements are more consistent, possibly because the method is less sensitive to variations in transducer pressure during imaging.« less

  19. High-speed water impacts of flat plates in different ditching configuration through a Riemann-ALE SPH model

    NASA Astrophysics Data System (ADS)

    Marrone, S.; Colagrossi, A.; Chiron, L.; De Leffe, M.; Le Touzé, D.

    2018-02-01

    The violent water entry of flat plates is investigated using a Riemann-arbitrary Eulerian-Lagrangian (ALE) smoothed particle hydrodynamics (SPH) model. The test conditions are of interest for problems related to aircraft and helicopter emergency landing in water. Three main parameters are considered: the horizontal velocity, the approach angle (i.e., vertical to horizontal velocity ratio) and the pitch angle, α. Regarding the latter, small angles are considered in this study. As described in the theoretical work by Zhao and Faltinsen (1993), for small α a very thin, high-speed jet of water is formed, and the time-spatial gradients of the pressure field are extremely high. These test conditions are very challenging for numerical solvers. In the present study an enhanced SPH model is firstly tested on a purely vertical impact with deadrise angle α = 4°. An in-depth validation against analytical solutions and experimental results is carried out, highlighting the several critical aspects of the numerical modelling of this kind of flow, especially when pressure peaks are to be captured. A discussion on the main difficulties when comparing to model scale experiments is also provided. Then, the more realistic case of a plate with both horizontal and vertical velocity components is discussed and compared to ditching experiments recently carried out at CNR-INSEAN. In the latter case both 2-D and 3-D simulations are considered and the importance of 3-D effects on the pressure peak is discussed for α = 4° and α = 10°.

  20. Brachial artery vasomotion and transducer pressure effect on measurements by active contour segmentation on ultrasound.

    PubMed

    Cary, Theodore W; Reamer, Courtney B; Sultan, Laith R; Mohler, Emile R; Sehgal, Chandra M

    2014-02-01

    To use feed-forward active contours (snakes) to track and measure brachial artery vasomotion on ultrasound images recorded in both transverse and longitudinal views; and to compare the algorithm's performance in each view. Longitudinal and transverse view ultrasound image sequences of 45 brachial arteries were segmented by feed-forward active contour (FFAC). The segmented regions were used to measure vasomotion artery diameter, cross-sectional area, and distention both as peak-to-peak diameter and as area. ECG waveforms were also simultaneously extracted frame-by-frame by thresholding a running finite-difference image between consecutive images. The arterial and ECG waveforms were compared as they traced each phase of the cardiac cycle. FFAC successfully segmented arteries in longitudinal and transverse views in all 45 cases. The automated analysis took significantly less time than manual tracing, but produced superior, well-behaved arterial waveforms. Automated arterial measurements also had lower interobserver variability as measured by correlation, difference in mean values, and coefficient of variation. Although FFAC successfully segmented both the longitudinal and transverse images, transverse measurements were less variable. The cross-sectional area computed from the longitudinal images was 27% lower than the area measured from transverse images, possibly due to the compression of the artery along the image depth by transducer pressure. FFAC is a robust and sensitive vasomotion segmentation algorithm in both transverse and longitudinal views. Transverse imaging may offer advantages over longitudinal imaging: transverse measurements are more consistent, possibly because the method is less sensitive to variations in transducer pressure during imaging.

  1. Brachial artery vasomotion and transducer pressure effect on measurements by active contour segmentation on ultrasound

    PubMed Central

    Cary, Theodore W.; Reamer, Courtney B.; Sultan, Laith R.; Mohler, Emile R.; Sehgal, Chandra M.

    2014-01-01

    Purpose: To use feed-forward active contours (snakes) to track and measure brachial artery vasomotion on ultrasound images recorded in both transverse and longitudinal views; and to compare the algorithm's performance in each view. Methods: Longitudinal and transverse view ultrasound image sequences of 45 brachial arteries were segmented by feed-forward active contour (FFAC). The segmented regions were used to measure vasomotion artery diameter, cross-sectional area, and distention both as peak-to-peak diameter and as area. ECG waveforms were also simultaneously extracted frame-by-frame by thresholding a running finite-difference image between consecutive images. The arterial and ECG waveforms were compared as they traced each phase of the cardiac cycle. Results: FFAC successfully segmented arteries in longitudinal and transverse views in all 45 cases. The automated analysis took significantly less time than manual tracing, but produced superior, well-behaved arterial waveforms. Automated arterial measurements also had lower interobserver variability as measured by correlation, difference in mean values, and coefficient of variation. Although FFAC successfully segmented both the longitudinal and transverse images, transverse measurements were less variable. The cross-sectional area computed from the longitudinal images was 27% lower than the area measured from transverse images, possibly due to the compression of the artery along the image depth by transducer pressure. Conclusions: FFAC is a robust and sensitive vasomotion segmentation algorithm in both transverse and longitudinal views. Transverse imaging may offer advantages over longitudinal imaging: transverse measurements are more consistent, possibly because the method is less sensitive to variations in transducer pressure during imaging. PMID:24506648

  2. Synoptic-scale fire weather conditions in Alaska

    NASA Astrophysics Data System (ADS)

    Hayasaka, Hiroshi; Tanaka, Hiroshi L.; Bieniek, Peter A.

    2016-09-01

    Recent concurrent widespread fires in Alaska are evaluated to assess their associated synoptic-scale weather conditions. Several periods of high fire activity from 2003 to 2015 were identified using Moderate Resolution Imaging Spectroradiometer (MODIS) hotspot data by considering the number of daily hotspots and their continuity. Fire weather conditions during the top six periods of high fire activity in the fire years of 2004, 2005, 2009, and 2015 were analyzed using upper level (500 hPa) and near surface level (1000 hPa) atmospheric reanalysis data. The top four fire-periods occurred under similar unique high-pressure fire weather conditions related to Rossby wave breaking (RWB). Following the ignition of wildfires, fire weather conditions related to RWB events typically result in two hotspot peaks occurring before and after high-pressure systems move from south to north across Alaska. A ridge in the Gulf of Alaska resulted in southwesterly wind during the first hotspot peak. After the high-pressure system moved north under RWB conditions, the Beaufort Sea High developed and resulted in relatively strong easterly wind in Interior Alaska and a second (largest) hotspot peak during each fire period. Low-pressure-related fire weather conditions occurring under cyclogenesis in the Arctic also resulted in high fire activity under southwesterly wind with a single large hot-spot peak.

  3. Nonlinear and diffraction effects in propagation of N-waves in randomly inhomogeneous moving media.

    PubMed

    Averiyanov, Mikhail; Blanc-Benon, Philippe; Cleveland, Robin O; Khokhlova, Vera

    2011-04-01

    Finite amplitude acoustic wave propagation through atmospheric turbulence is modeled using a Khokhlov-Zabolotskaya-Kuznetsov (KZK)-type equation. The equation accounts for the combined effects of nonlinearity, diffraction, absorption, and vectorial inhomogeneities of the medium. A numerical algorithm is developed which uses a shock capturing scheme to reduce the number of temporal grid points. The inhomogeneous medium is modeled using random Fourier modes technique. Propagation of N-waves through the medium produces regions of focusing and defocusing that is consistent with geometrical ray theory. However, differences up to ten wavelengths are observed in the locations of fist foci. Nonlinear effects are shown to enhance local focusing, increase the maximum peak pressure (up to 60%), and decrease the shock rise time (about 30 times). Although the peak pressure increases and the rise time decreases in focal regions, statistical analysis across the entire wavefront at a distance 120 wavelengths from the source indicates that turbulence: decreases the mean time-of-flight by 15% of a pulse duration, decreases the mean peak pressure by 6%, and increases the mean rise time by almost 100%. The peak pressure and the arrival time are primarily governed by large scale inhomogeneities, while the rise time is also sensitive to small scales.

  4. Tibiofemoral contact mechanics following a horizontal cleavage lesion in the posterior horn of the medial meniscus.

    PubMed

    Arno, Sally; Bell, Christopher P; Uquillas, Carlos; Borukhov, Ilya; Walker, Peter S

    2015-04-01

    The purpose of this study was to determine if a horizontal cleavage lesion (HCL) of the posterior horn of the medial meniscus would result in changes to tibiofemoral contact mechanics, as measured by peak contact pressure and contact area, which can lead to cartilage degeneration. To study this, 10 cadaveric knees were tested in a rig where forces were applied (500 N Compression, 100 N shear, 2.5 Nm Torque) and the knee dynamically flexed from -5° to 135°, as peak contact pressure and contact area were recorded. After testing of the intact knee, a horizontal cleavage lesion was created arthroscopically and testing repeated. The Wilcoxon signed-rank test was used to determine if there were differences in peak contact pressure and contact area between the intact knee and that with the HCL. A statistically significant increase in peak contact pressure of 13%, on average, and a decrease in contact area of 6%, on average, was noted following the HCL. This suggests that a horizontal cleavage lesion will result in small but statistically significant changes in tibiofemoral contact mechanics which may lead to cartilage degeneration. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  5. Advanced Spectral Analysis Program (ASAP) for High-Pressure X-ray Diffraction

    NASA Astrophysics Data System (ADS)

    Montgomery, Jeffrey

    A program for analyzing large powder diffraction data sets has been developed. This tool enables the user to fit any type of crystal structure by indexing peaks in multiple files simultaneously by manually selecting them from a 2D plot of peak positions. The program has tools for automatic peak fitting and pressure determination using various equations of state. The interface is useful for correlating information from various types of spectral data, and so tools have been added for analyzing common fluorescence markers such as ruby, strontium tetraborate, and diamond. The program operation is demonstrated by the analysis of high-pressure powder x-ray diffraction data taken on a sample of vanadium metal at the Advanced Photon Source 16-BMD beamline. Samples were compressed in three runs to a pressure of 70 GPa in an attempt to measure the phase transition from bcc to orthorhombic in hydrostatic and non-hydrostatic conditions. Using ASAP to analyze this data provides a fast and accurate tool for observation of such a subtle transition, which is characterized primarily by a narrow splitting of the bcc 110 and 112 peaks. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  6. Effects of pressure characteristics on transfection efficiency in laser-induced stress wave-mediated gene delivery

    NASA Astrophysics Data System (ADS)

    Ando, Takahiro; Sato, Shunichi; Ashida, Hiroshi; Obara, Minoru

    2013-07-01

    Laser-induced stress waves (LISWs) generated by irradiating a light-absorbing medium with a pulsed laser can transiently increase the permeability of cell membranes for gene delivery. In this study, we investigated the effects of pressure characteristics of LISWs upon gene transfection efficiency using lasers with different pulse durations: a 6-ns pulsed Nd:YAG laser and 20-ns and 200-µs pulsed ruby lasers. LISWs were generated by irradiating a black rubber disk, on which a transparent plastic sheet was adhered for confinement of the laser-produced plasma. Rat dorsal skin was injected with plasmid DNA coding for luciferase, to which LISWs were applied. With nanosecond laser pulses, transfection efficiency increased linearly with increasing positive peak pressure in the range of 35 to 145 MPa, the corresponding impulse ranging from 10 to 40 Paṡs. With 200-µs laser pulses, on the other hand, efficient gene expression was observed by the application of LISWs even with a 10-fold-lower peak pressure (˜5 MPa), the corresponding impulse being as large as 430 Paṡs. These results indicate that even at low peak pressures, efficient transfection can be achieved by extending the pressure duration and hence by increasing the impulse of LISWs, while the averaged expression efficiencies were relatively low.

  7. A Study of the Response of the Human Cadaver Head to Impact

    PubMed Central

    Hardy, Warren N.; Mason, Matthew J.; Foster, Craig D.; Shah, Chirag S.; Kopacz, James M.; Yang, King H.; King, Albert I.; Bishop, Jennifer; Bey, Michael; Anderst, William; Tashman, Scott

    2008-01-01

    High-speed biplane x-ray and neutral density targets were used to examine brain displacement and deformation during impact. Relative motion, maximum principal strain, maximum shear strain, and intracranial pressure were measured in thirty-five impacts using eight human cadaver head and neck specimens. The effect of a helmet was evaluated. During impact, local brain tissue tends to keep its position and shape with respect to the inertial frame, resulting in relative motion between the brain and skull and deformation of the brain. The local brain motions tend to follow looping patterns. Similar patterns are observed for impact in different planes, with some degree of posterior-anterior and right-left symmetry. Peak coup pressure and pressure rate increase with increasing linear acceleration, but coup pressure pulse duration decreases. Peak average maximum principal strain and maximum shear are on the order of 0.09 for CFC 60 Hz data for these tests. Peak average maximum principal strain and maximum shear increase with increasing linear acceleration, coup pressure, and coup pressure rate. Linear and angular acceleration of the head are reduced with use of a helmet, but strain increases. These results can be used for the validation of finite element models of the human head. PMID:18278591

  8. Experimental study of pressure and heating rate on a swept cylindrical leading edge resulting from swept shock wave interference. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Glass, Christopher E.

    1989-01-01

    The effects of cylindrical leading edge sweep on surface pressure and heat transfer rate for swept shock wave interference were investigated. Experimental tests were conducted in the Calspan 48-inch Hypersonic Shock Tunnel at a nominal Mach number of 8, nominal unit Reynolds number of 1.5 x 10 to the 6th power per foot, leading edge and incident shock generator sweep angles of 0, 15, and 30 deg, and incident shock generator angle-of-attack fixed at 12.5 deg. Detailed surface pressure and heat transfer rate on the cylindircal leading edge of a swept shock wave interference model were measured at the region of the maximum surface pressure and heat transfer rate. Results show that pressure and heat transfer rate on the cylindrical leading edge of the shock wave interference model were reduced as the sweep was increased over the range of tested parameters. Peak surface pressure and heat transfer rate on the cylinder were about 10 and 30 times the undisturbed flow stagnation point value, respectively, for the 0 deg sweep test. A comparison of the 15 and 30 deg swept results with the 0 deg swept results showed that peak pressure was reduced about 13 percent and 44 percent, respectively, and peak heat transfer rate was reduced about 7 percent and 27 percent, respectively.

  9. Pressure profiles of plasmas confined in the field of a dipole magnet

    NASA Astrophysics Data System (ADS)

    Davis, Matthew Stiles

    Understanding the maintenance and stability of plasma pressure confined by a strong magnetic field is a fundamental challenge in both laboratory and space plasma physics. Using magnetic and X-ray measurements on the Levitated Dipole Experiment (LDX), the equilibrium plasma pressure has been reconstructed, and variations of the plasma pressure for different plasma conditions have been examined. The relationship of these profiles to the magnetohydrodynamic (MHD) stability limit, and to the enhanced stability limit that results from a fraction of energetic trapped electrons, has been analyzed. In each case, the measured pressure profiles and the estimated fractional densities of energetic electrons were qualitatively consistent with expectations of plasma stability. LDX confines high temperature and high pressure plasma in the field of a superconducting dipole magnet. The strong dipole magnet can be either mechanically supported or magnetically levitated. When the dipole was mechanically supported, the plasma density profile was generally uniform while the plasma pressure was highly peaked. The uniform density was attributed to the thermal plasma being rapidly lost along the field to the mechanical supports. In contrast, the strongly peaked plasma pressure resulted from a fraction of energetic, mirror trapped electrons created by microwave heating at the electron cyclotron resonance (ECRH). These hot electrons are known to be gyrokinetically stabilized by the background plasma and can adopt pressure profiles steeper than the MHD limit. X-ray measurements indicated that this hot electron population could be described by an energy distribution in the range 50-100 keV. Combining information from the magnetic reconstruction of the pressure profile, multi-chord interferometer measurements of the electron density profile, and X-ray measurements of the hot electron energy distribution, the fraction of energetic electrons at the pressure peak was estimated to be ˜ 35% of the total electron population. When the dipole was magnetically levitated the plasma density increased substantially because particle losses to the mechanical supports were eliminated so particles could only be lost via slower cross-field transport processes. The pressure profile was observed to be broader during levitated operation than it was during supported operation, and the pressure appeared to be contained in both a thermal population and an energetic electron population. X-ray spectra indicated that the X-rays came from a similar hot electron population during levitated and supported operation; however, the hot electron fraction was an order of magnitude smaller during levitated operation (<3% of the total electron population). Pressure gradients for both supported and levitated plasmas were compared to the MHD limit. Levitated plasmas had pressure profiles that were (i) steeper than, (ii) shallower than, or (iii) near the MHD limit dependent on plasma conditions. However, those profiles that exceeded the MHD limit were observed to have larger fractions of energetic electrons. When the dipole magnet was supported, high pressure plasmas always had profiles that exceeded the MHD interchange stability limit, but the high pressure in these plasmas appeared to arise entirely from a population of energetic trapped electrons.

  10. Effect of arch type and Body Mass Index on plantar pressure distribution during stance phase of gait.

    PubMed

    O'Brien, Davida Louise; Tyndyk, Magdalena

    2014-01-01

    Several factors have been associated with the presence of abnormally high plantar foot pressure including: (i) increased body weight, (ii) foot structure and (iii) walking strategy. It is predicted that the biomechanics of the foot is influenced by the structure of the foot, primarily the Medial Longitudinal Arch. The objective of this study was to examine if Body Mass Index and the foot arch have a direct effect on dynamic peak plantar pressure for healthy subjects. Following a clinical lower limb examination, the Tekscan HR mat was utilised for this study, plantar pressure was profiled at specific events during stance phase of gait including heel strike, midstance and toe off. Results indicated to the preferable normal arch as this produced a low plantar pressure distribution in all cases. The 2nd and 3rd metatarsal head region recorded the highest pressure for all arch types during dynamic analysis. The lowest pressure for the normal and overweight BMI was at toe-off. While the obese BMI group showed highest pressure during toe-off. The obese BMI flat arch subcategory indicated to functional ambulation differences. Future work involves comparing this healthy database to a demographically matched diabetic group.

  11. Characteristics of time-varying intracranial pressure on blood flow through cerebral artery: A fluid-structure interaction approach.

    PubMed

    Syed, Hasson; Unnikrishnan, Vinu U; Olcmen, Semih

    2016-02-01

    Elevated intracranial pressure is a major contributor to morbidity and mortality in severe head injuries. Wall shear stresses in the artery can be affected by increased intracranial pressures and may lead to the formation of cerebral aneurysms. Earlier research on cerebral arteries and aneurysms involves using constant mean intracranial pressure values. Recent advancements in intracranial pressure monitoring techniques have led to measurement of the intracranial pressure waveform. By incorporating a time-varying intracranial pressure waveform in place of constant intracranial pressures in the analysis of cerebral arteries helps in understanding their effects on arterial deformation and wall shear stress. To date, such a robust computational study on the effect of increasing intracranial pressures on the cerebral arterial wall has not been attempted to the best of our knowledge. In this work, fully coupled fluid-structure interaction simulations are carried out to investigate the effect of the variation in intracranial pressure waveforms on the cerebral arterial wall. Three different time-varying intracranial pressure waveforms and three constant intracranial pressure profiles acting on the cerebral arterial wall are analyzed and compared with specified inlet velocity and outlet pressure conditions. It has been found that the arterial wall experiences deformation depending on the time-varying intracranial pressure waveforms, while the wall shear stress changes at peak systole for all the intracranial pressure profiles. © IMechE 2015.

  12. Interactions between cilazapril and propranolol in man; plasma drug concentrations, hormone and enzyme responses, haemodynamics, agonist dose-effect curves and baroreceptor reflex.

    PubMed Central

    Belz, G G; Essig, J; Kleinbloesem, C H; Hoogkamer, J F; Wiegand, U W; Wellstein, A

    1988-01-01

    1. The pharmacokinetics, hormonal and haemodynamic responses at rest and during challenges with angiotensin I (blood pressure), isoprenaline (heart rate), and noradrenaline (blood pressure) were investigated in six healthy male volunteers following a 1 week treatment with placebo, propranolol (120 mg day-1), cilazapril (2, 5 mg day-1), and a combination of both in a double-blind cross-over design. 2. Both drugs reduced systolic and diastolic blood pressure by about 7 mm Hg as compared with placebo. After coadministration, this drop in blood pressure was doubled and lasted longer than after the administration of the individual components. 3. Following cilazapril, a pronounced increase in plasma renin activity (PRA) was found (factor approximately 10 at drug peak concentrations). Coadministration of both drugs resulted only in a moderate increase in the PRA (factor approximately 3). Significant changes in plasma catecholamines were not observed. 4. Propranolol shifted the isoprenaline dose-effect curve to the right, and cilazapril that of angiotensin I, irrespective of the presence of the other drug. Cilazapril tended to shift the noradrenaline dose-effect curve somewhat to the right. 5. The gain of the baroreceptor reflex (angiotensin-stimulation) was not influenced by cilazapril but was lowered by propranolol, irrespective of the presence of the ACE inhibitor. 6. Except for a statistically not significant decrease in the peak concentrations of each drug during the combined therapy, a pharmacokinetic interaction between the two drugs was not found. PMID:2974715

  13. Acoustic Full Waveform Inversion to Characterize Near-surface Chemical Explosions

    NASA Astrophysics Data System (ADS)

    Kim, K.; Rodgers, A. J.

    2015-12-01

    Recent high-quality, atmospheric overpressure data from chemical high-explosive experiments provide a unique opportunity to characterize near-surface explosions, specifically estimating yield and source time function. Typically, yield is estimated from measured signal features, such as peak pressure, impulse, duration and/or arrival time of acoustic signals. However, the application of full waveform inversion to acoustic signals for yield estimation has not been fully explored. In this study, we apply a full waveform inversion method to local overpressure data to extract accurate pressure-time histories of acoustics sources during chemical explosions. A robust and accurate inversion technique for acoustic source is investigated using numerical Green's functions that take into account atmospheric and topographic propagation effects. The inverted pressure-time history represents the pressure fluctuation at the source region associated with the explosion, and thus, provides a valuable information about acoustic source mechanisms and characteristics in greater detail. We compare acoustic source properties (i.e., peak overpressure, duration, and non-isotropic shape) of a series of explosions having different emplacement conditions and investigate the relationship of the acoustic sources to the yields of explosions. The time histories of acoustic sources may refine our knowledge of sound-generation mechanisms of shallow explosions, and thereby allow for accurate yield estimation based on acoustic measurements. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  14. Neopuff T-piece resuscitator mask ventilation: Does mask leak vary with different peak inspiratory pressures in a manikin model?

    PubMed

    Maheshwari, Rajesh; Tracy, Mark; Hinder, Murray; Wright, Audrey

    2017-08-01

    The aim of this study was to compare mask leak with three different peak inspiratory pressure (PIP) settings during T-piece resuscitator (TPR; Neopuff) mask ventilation on a neonatal manikin model. Participants were neonatal unit staff members. They were instructed to provide mask ventilation with a TPR with three PIP settings (20, 30, 40 cm H 2 O) chosen in a random order. Each episode was for 2 min with 2-min rest period. Flow rate and positive end-expiratory pressure (PEEP) were kept constant. Airway pressure, inspiratory and expiratory tidal volumes, mask leak, respiratory rate and inspiratory time were recorded. Repeated measures analysis of variance was used for statistical analysis. A total of 12 749 inflations delivered by 40 participants were analysed. There were no statistically significant differences (P > 0.05) in the mask leak with the three PIP settings. No statistically significant differences were seen in respiratory rate and inspiratory time with the three PIP settings. There was a significant rise in PEEP as the PIP increased. Failure to achieve the desired PIP was observed especially at the higher settings. In a neonatal manikin model, the mask leak does not vary as a function of the PIP when the flow rate is constant. With a fixed rate and inspiratory time, there seems to be a rise in PEEP with increasing PIP. © 2017 Paediatrics and Child Health Division (The Royal Australasian College of Physicians).

  15. A Comparison of Combustion Dynamics for Multiple 7-Point Lean Direct Injection Combustor Configurations

    NASA Technical Reports Server (NTRS)

    Tacina, Kathleen M.; Hicks, Yolanda R.

    2017-01-01

    The combustion dynamics of two 7-point lean direct injection (LDI) combustor configurations are compared. This 7-point LDI configuration has a circular cross section, with a center ("pilot") fuel-air mixer surrounded by six outer ("main") fuel-air mixers. Each fuel-air mixer consists of an axial air swirler followed by a converging-diverging venturi. A simplex fuel injector is inserted through the center of the air swirler, with the fuel injector tip located near the venturi throat. All 7 fuel-air mixers are identical except for the swirler blade angle. In the 'all-60' configuration, the swirler blade angle was 60 deg for all fuel-air mixers. In the '45-60' configuration, the swirler blade angle was 60 deg on the center and 45 deg on the outer fuel-air mixers. Testing was done in a 5-atm flame tube with inlet air temperatures from 630 to 830 F and equivalence ratios from 0.2 to 0.7. Combustion dynamics were measured using a cooled PCB pressure transducer flush-mounted in the wall of the combustor test section. Both configurations had large pressure fluctuations (greater than 2 psi peak-peak) near 730 Hz, the quarter-wave frequency. The all-60 configuration also had large pressure fluctuations near 1170 Hz; the 45-60 configuration did not. The 45-60 configuration had large pressure fluctuations near 480 Hz; the all-60 configuration did not.

  16. Titanium-scaffolded organic-monolithic stationary phases for ultra-high-pressure liquid chromatography.

    PubMed

    Vonk, Rudy J; Vaast, Axel; Eeltink, Sebastiaan; Schoenmakers, Peter J

    2014-09-12

    Organic-polymer monoliths with overall dimensions larger than one millimetre are prone to rupture - either within the monolith itself or between the monoliths and the containing wall - due to the inevitable shrinkage accompanying the formation of a cross-linked polymeric network. This problem has been addressed by creating titanium-scaffolded poly(styrene-co-divinylbenzene) (S-co-DVB) monoliths. Titanium-scaffolded monoliths were successfully used in liquid chromatography at very high pressures (up to 80MPa) and using gradients spanning the full range of water-acetonitrile compositions (0 to 100%). The kinetic-performance of (50-mm long) titanium-scaffolded monoliths was compared to that of similar monolith created in 1-mm i.d. glass-lined tubing at pressures up to 50MPa. The peak capacities obtained with the titanium-scaffolded column was about 30% lower. An increased Eddy-diffusion, due to the pillar-structure, and a decreased permeability are thought to be the main reasons for this reduced kinetic-performance. No decrease in performance was observed when the titanium-scaffolded columns were operated at pressures of 80MPa for up to 12h. The column-to-column repeatability (n=5) was acceptable in terms of observed peak widths at half heights (RSD ca. 10%) The run-to-run repeatability (n=135) in terms of retention times and peak widths at half height were found to be good. Titanium-scaffolded columns coupled in series up to a combined length of (200mm) were used for the analyses of a complex Escherichia coli protein sample. Our experiments demonstrate that columns based on titanium-scaffolded organic-polymer monolith can be operated under strenuous conditions without loss in performance. The titanium-scaffolded approach makes it feasible to create organic-polymer monoliths in wide-bore columns with accurate temperature control. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Interrogating Seyferts with NebulaBayes: Spatially Probing the Narrow-line Region Radiation Fields and Chemical Abundances

    NASA Astrophysics Data System (ADS)

    Thomas, Adam D.; Dopita, Michael A.; Kewley, Lisa J.; Groves, Brent A.; Sutherland, Ralph S.; Hopkins, Andrew M.; Blanc, Guillermo A.

    2018-04-01

    NebulaBayes is a new Bayesian code that implements a general method of comparing observed emission-line fluxes to photoionization model grids. The code enables us to extract robust, spatially resolved measurements of abundances in the extended narrow-line regions (ENLRs) produced by Active Galactic Nuclei (AGN). We observe near-constant ionization parameters but steeply radially declining pressures, which together imply that radiation pressure regulates the ENLR density structure on large scales. Our sample includes four “pure Seyfert” galaxies from the S7 survey that have extensive ENLRs. NGC 2992 shows steep metallicity gradients from the nucleus into the ionization cones. An inverse metallicity gradient is observed in ESO 138-G01, which we attribute to a recent gas inflow or minor merger. A uniformly high metallicity and hard ionizing continuum are inferred across the ENLR of Mrk 573. Our analysis of IC 5063 is likely affected by contamination from shock excitation, which appears to soften the inferred ionizing spectrum. The peak of the ionizing continuum E peak is determined by the nuclear spectrum and the absorbing column between the nucleus and the ionized nebula. We cannot separate variation in this intrinsic E peak from the effects of shock or H II region contamination, but E peak measurements nevertheless give insights into ENLR excitation. We demonstrate the general applicability of NebulaBayes by analyzing a nuclear spectrum from the non-active galaxy NGC 4691 using a H II region grid. The NLR and H II region model grids are provided with NebulaBayes for use by the astronomical community.

  18. The influence of cadence and power output on force application and in-shoe pressure distribution during cycling by competitive and recreational cyclists.

    PubMed

    Sanderson, D J; Hennig, E M; Black, A H

    2000-03-01

    The aim of this study was to determine the response of cyclists to manipulations of cadence and power output in terms of force application and plantar pressure distribution. Two groups of cyclists, 17 recreational and 12 competitive, rode at three nominal cadences (60, 80, 100 rev x min(-1)) and four power outputs (100, 200, 300, 400 W) while simultaneous force and in-shoe pressure data were collected. Two piezoelectric triaxial force transducers mounted in the right pedal measured components of the pedal force and orientation, and a discrete transducer system with 12 transducers recorded the in-shoe pressures. Force application was characterized by calculating peak resultant and peak effective pedal forces and positive and negative impulses. In-shoe pressures were analysed as peak pressures and as the percent relative load. The force data showed no significant group effect but there was a cadence and power main effect. The impulse data showed a significant three-way interaction. Increased cadence resulted in a decreased positive impulse, while increased power output resulted in an increased impulse. The competitive group produced less positive impulse but the difference became less at higher cadences. Few between-group differences were found in pressure, notable only in the pressure under the first metatarsal region. This showed a consistent pattern of in-shoe pressure distribution, where the primary loading structures were the first metatarsal and hallux. There was no indication that pressure at specific sites influenced the pedal force application. The absence of group differences indicated that pressure distribution was not the result of training, but reflected the intrinsic relationship between the foot, the shoe and the pedal.

  19. Interaction of Highly Underexpanded Jets with Simulated Lunar Surfaces

    NASA Technical Reports Server (NTRS)

    Stitt, Leonard E.

    1961-01-01

    Pressure distributions and erosion patterns on simulated lunar surfaces (hard and soft) and interference effects between the surface and two representative lunar vehicles (cylindrical and spherical) were obtained with cold-air jets at various descent heights and nozzle total-pressure ratios up to 288,000. Surface pressure distributions were dependent on both nozzle area ratio and, nozzle contour. Peak pressures obtained with a sonic nozzle agreed closely with those predicted theoretically for a near-sonic jet expanding into a vacuum. Short bell-shaped nozzles gave annular pressure distributions; the low center pressure resulted from the coalescence of shocks that originated within the nozzle. The high surface pressures were contained within a circle whose diameter was about 16 throat diameters, regardless of nozzle area ratio or contour. The peak pressure increased rapidly as the vehicle approached the surface; for example, at a descent height of 40 throat diameters the peak pressure was 0.4 percent of the chamber pressure, but increased to 6 percent at 13 throat diameters. The exhaust jet eroded a circular concave hole in white sand at descent heights from about 200 to 600 throat diameters. The hole diameter was about 225 throat diameters, while the depth was approximately 60 throat diameters. The sand particles, which formed a conical sheet at a semivertex angle of 50 deg, appeared to follow a ballistic trajectory and at no time struck the vehicle. An increase in pressure was measured on the base of the cylindrical lunar vehicle when it approached to within 14 throat diameters of the hard, flat surface. No interference effects were noted between the spherical model and the surface to descent heights as low as 8 throat diameters.

  20. High Pressure Raman Spectroscopic Studies on CuInTe2 Quantum Dots

    NASA Astrophysics Data System (ADS)

    Yanxon, Howard; Kumar, Ravhi; HiPSEC-University of Nevada Las Vegas Team

    High pressure Raman spectroscopy studies were performed on CuInTe2 Quantum Dots (QD) up to 7.7 GPa. At ambient conditions, the Raman modes of the QD loaded into a high-pressure diamond anvil cell (DAC) were observed at 125.1 cm-1 (A1 mode) and 142.8 cm-1 (B2 or E mode). As the pressure increases, the A1 mode starts to split above 2 GPa and shifts to the left as indication of a structural change. A pressure-induced phase transition was observed around 2.9 GPa due to the collapse of the modes with the appearance of a new Raman peaks. The phase transition observed in our experiments compare well with the characteristics of bulk and larger nanoparticles. Further, it could be concluded that the phase transition pressure observed mainly depends on the particle size. H.Y. thanks McNair foundation for fellowship award. He also acknowledges Melanie White, Jason Baker and Phuc Tran for help in the experiments. He thanks Michael Pravica for using the Raman facility.

Top