NASA Technical Reports Server (NTRS)
Tyahla, Lori J.; Lopez, Raul E.
1994-01-01
The effect of surface conductivity on the peak magnetic field radiated by the first return stroke in cloud-to-ground lightning was investigated by comparing the peak magnetic fields from return strokes that struck water with those that struck land. The data were obtained from a network of three gated, wideband magnetic direction finders (DFs) at the NASA Kennedy Space Center during the summer of 1985. Two geographical areas that were equidistant from two of the direction finders were compared where the flash distances ranged from approximately 40 to 60 km. An unbiased data set was obtained by correcting site errors, equalizing differences in sensor gain, eliminating directional biases in DF triggering, and keeping differences in signal attenuation over the two surfaces to a minimum. When a statistical analysis was performed on the frequency distributions of the signal amplitudes, there was no statistically significant difference in the peak amplitudes of first return strokes over land (lambda = 8.2 x 10(exp -3) mho/m) and over water (lambda = 4 mho/m). Therefore we infer that the conductivity of the underlying surface does not significantly affect the magnitude of the peak magnetic field, and hence the peak current, in the first return stroke of a cloud-to-ground lightning flash.
Technical Note: Enhancing the surface dose using a weak longitudinal magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlone, Marco, E-mail: marco.carlone@rmp.uhn.on.ca; Keller, Harald; Rezaee, Mohammad
2016-06-15
Purpose: The surface dose in radiotherapy is subject to the physical properties of the radiation beam and collimator. The purpose of this work is to investigate the manipulation of surface dose using magnetic fields produced with a resistive magnet. Better understanding of the feasibility and mechanisms of altered surface dose could have important clinical applications where the surface dose must be increased for therapeutic goals, or reduced to enhance the therapeutic benefit. Methods: A resistive magnet capable of generating a peak magnetic field up to 0.24 T was integrated with a cobalt treatment unit. The magnetic fringe field of themore » magnet was small due to the self-shielding built within the magnet. The magnetic field at the beam collimation jaws of the cobalt irradiator was less than 10 G. The surface dose and depth dose were measured for varying magnetic field strengths. Results: The resistive magnet was able to alter the dose in the buildup region of the {sup 60}Co depth dose significantly, and the magnitude of dose enhancement was directly related to the strength of the longitudinal magnetic field. Peak magnetic fields as low as 0.08 T were able to affect the surface dose. At a peak field of 0.24 T, the authors measured a surface dose enhancement of 2.8-fold. Conclusions: Surface dose enhancement using resistive magnets is feasible. Further experimental study is needed to understand the origin of the scattered electrons that contribute to the increase in surface dose.« less
Tunable surface configuration of skyrmion lattices in cubic helimagnets
NASA Astrophysics Data System (ADS)
Wan, Xuejin; Hu, Yangfan; Wang, Biao
2018-06-01
In bulk helimagnets, the presence of magnetic skyrmion lattices is always accompanied by a periodic stress field due to the intrinsic magnetoelastic coupling. The release of this nontrivial stress field at the surface causes a periodic displacement field, which characterizes a novel particle-like property of skyrmion: its surface configuration. Here, we derive the analytical solution of this displacement field for semi-infinite cubic helimagnet with the skyrmion magnetization approximated by the triple-Q representation. For MnSi, we show that the skyrmion lattices have a bumpy surface configuration characterized by periodically arranged peaks with a characteristic height of about 10‑13 m. The pattern of the peaks can be controlled by varying the strength of the applied magnetic field. Moreover, we prove that the surface configuration varies together with the motion and deformation of the skyrmion lattices. As a result, the surface configuration can be tuned by application of electric current, mechanical loads, as well as any other effective external fields for skyrmion lattices.
Analysis of the medium field Q-slope in superconducting cavities made of bulk niobium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gianluigi Ciovati; J. Halbritter
The quality factor of superconducting radio-frequency cavities made of high purity, bulk niobium increases with rf field in the medium field range (peak surface magnetic field between 20 and about 100 mT). The causes for this effect are not clear yet. The dependence of the surface resistance on the peak surface magnetic field is typically linear and quadratic. This contribution will present an analysis of the medium field Q-slope data measured on cavities treated with buffered chemical polishing (BCP) at Jefferson Lab, as function of different treatments such as post-purification and low-temperature baking. The data have been compared with amore » model involving a combination of heating and of hysteresis losses due to ''strong-links'' formed or weakened at niobium surfaces during oxidation, which correlate to {delta}{Delta}/kT{sub c} changes by baking.« less
Near-field effect in the infrared range through periodic Germanium subwavelength arrays.
Dong, Wei; Hirohata, Toru; Nakajima, Kazutoshi; Wang, Xiaoping
2013-11-04
Using finite-difference-time-domain simulation, we have studied the near-field effect of Germanium (Ge) subwavelength arrays designed in-plane with a normal incidence. Spectra of vertical electric field component normal to the surface show pronounced resonance peaks in an infrared range, which can be applied in a quantum well infrared photodetector. Unlike the near-field optics in metallic systems that are commonly related to surface plasmons, the intense vertical field along the surface of the Ge film can be interpreted as a combination of diffraction and waveguide theory. The existence of the enhanced field is confirmed by measuring the Fourier transform infrared spectra of fabricated samples. The positions of the resonant peaks obtained in experiment are in good agreement with our simulations.
Dutta, Prithwish; Pariari, Arnab; Mandal, Prabhat
2017-07-07
We report semiconductor to metal-like crossover in the temperature dependence of resistivity (ρ) due to the switching of charge transport from bulk to surface channel in three-dimensional topological insulator Bi 1.5 Sb 0.5 Te 1.7 Se 1.3 . Unlike earlier studies, a much sharper drop in ρ(T) is observed below the crossover temperature due to the dominant surface conduction. Remarkably, the resistivity of the conducting surface channel follows a rarely observable T 2 dependence at low temperature, as predicted theoretically for a two-dimensional Fermi liquid system. The field dependence of magnetization shows a cusp-like paramagnetic peak in the susceptibility (χ) at zero field over the diamagnetic background. The peak is found to be robust against temperature and χ decays linearly with the field from its zero-field value. This unique behavior of the χ is associated with the spin-momentum locked topological surface state in Bi 1.5 Sb 0.5 Te 1.7 Se 1.3 . The reconstruction of the surface state with time is clearly reflected through the reduction of the peak height with the age of the sample.
Evaluation of the shape of the specular peak for high glossy surfaces
NASA Astrophysics Data System (ADS)
Obein, Gaël.; Ouarets, Shiraz; Ged, Guillaume
2014-02-01
Gloss is the second most relevant visual attribute of a surface beside its colour. While the colour originates from the wavelength repartition of the reflected light, gloss originates from its angular distribution. When an observer is asked to evaluate the gloss of a surface, he always first orientate his eyes along the specular direction before lightly tilting the examined sample. This means that gloss is located in and around the specular direction, in a peak that is called the specular peak. On the one hand, this peak is flat and broad on matte surfaces on the other hand, it is narrow and sharp on high gloss surfaces. For the late ones, the FWHM of the specular peak is less than 2° which can be quite difficult to measure. We developed a dedicated facility capable of measuring specular peak with a FWHM up to 0,1 °. We measured the evolution of the peak according to the angle of illumination and the specular gloss of the sample in the restricted field of very glossy surface. The facility and peaks measured are presented in the paper. The next step will be to identify the correlations between the peak and the roughness of the sample.
A multi-functional high voltage experiment apparatus for vacuum surface flashover switch research.
Zeng, Bo; Su, Jian-cang; Cheng, Jie; Wu, Xiao-long; Li, Rui; Zhao, Liang; Fang, Jin-peng; Wang, Li-min
2015-04-01
A multifunctional high voltage apparatus for experimental researches on surface flashover switch and high voltage insulation in vacuum has been developed. The apparatus is composed of five parts: pulse generating unit, axial field unit, radial field unit, and two switch units. Microsecond damped ringing pulse with peak-to-peak voltage 800 kV or unipolar pulse with maximum voltage 830 kV is generated, forming transient axial or radial electrical field. Different pulse waveforms and field distributions make up six experimental configurations in all. Based on this apparatus, preliminary experiments on vacuum surface flashover switch with different flashover dielectric materials have been conducted in the axial field unit, and nanosecond pulse is generated in the radial field unit which makes a pulse transmission line in the experiment. Basic work parameters of this kind of switch such as lifetime, breakdown voltage are obtained.
NASA Astrophysics Data System (ADS)
Iadlovska, Olena S.; Maxwell, Graham R.; Babakhanova, Greta; Mehl, Georg H.; Welch, Christopher; Shiyanovskii, Sergij V.; Lavrentovich, Oleg D.
2018-04-01
Selective reflection of light by oblique helicoidal cholesteric (ChOH) can be tuned in a very broad spectral range by an applied electric field. In this work, we demonstrate that the peak wavelength of the selective reflection can be controlled by surface alignment of the director in sandwich cells. The peak wavelength is blue-shifted when the surface alignment is perpendicular to the bounding plates and red-shifted when it is planar. The effect is explained by the electric field redistribution within the cell caused by spatially varying heliconical ChOH structure. The observed phenomenon can be used in sensing applications.
Surface electric fields for North America during historical geomagnetic storms
Wei, Lisa H.; Homeier, Nichole; Gannon, Jennifer L.
2013-01-01
To better understand the impact of geomagnetic disturbances on the electric grid, we recreate surface electric fields from two historical geomagnetic storms—the 1989 “Quebec” storm and the 2003 “Halloween” storms. Using the Spherical Elementary Current Systems method, we interpolate sparsely distributed magnetometer data across North America. We find good agreement between the measured and interpolated data, with larger RMS deviations at higher latitudes corresponding to larger magnetic field variations. The interpolated magnetic field data are combined with surface impedances for 25 unique physiographic regions from the United States Geological Survey and literature to estimate the horizontal, orthogonal surface electric fields in 1 min time steps. The induced horizontal electric field strongly depends on the local surface impedance, resulting in surprisingly strong electric field amplitudes along the Atlantic and Gulf Coast. The relative peak electric field amplitude of each physiographic region, normalized to the value in the Interior Plains region, varies by a factor of 2 for different input magnetic field time series. The order of peak electric field amplitudes (largest to smallest), however, does not depend much on the input. These results suggest that regions at lower magnetic latitudes with high ground resistivities are also at risk from the effect of geomagnetically induced currents. The historical electric field time series are useful for estimating the flow of the induced currents through long transmission lines to study power flow and grid stability during geomagnetic disturbances.
Initial Testing of the Mark-0 X-Band RF Gun at SLAC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vlieks, Arnold; Adolphsen, C.; Dolgashev, V.
A new X-band RF gun (Mark-0) has been assembled, tuned and was tested in the ASTA facility at SLAC. This gun has been improved from an earlier gun used in Compton-scattering experiments at SLAC by the introduction of a racetrack dual-input coupler to reduce quadrupole fields. Waveguide-to-coupler irises were also redesigned to reduce surface magnetic fields and therefore peak pulse surface heating. Tests of this photocathode gun will allow us to gain early operational experience for beam tests of a new gun with further improvements (Mark-1) being prepared for SLAC's X-Band Test Area (XTA) program and the LLNL MEGa-ray program.more » Results of current testing up to {approx} 200 MV/m peak surface Electric fields are presented.« less
NASA Astrophysics Data System (ADS)
Li, Hong; Peng, Wei; Wang, Yanjie; Hu, Lingling; Liang, Yuzhang; Zhang, Xinpu; Yao, Wenjuan; Yu, Qi; Zhou, Xinlei
2011-12-01
Optical sensors based on nanoparticles induced Localized Surface Plasmon Resonance are more sensitive to real-time chemical and biological sensing, which have attracted intensive attentions in many fields. In this paper, we establish a simulation model based on nanoparticles imprinted polymer to increase sensitivity of the LSPR sensor by detecting the changes of Surface Plasmon Resonance signals. Theoretical analysis and numerical simulation of parameters effects to absorption peak and light field distribution are highlighted. Two-dimensional simulated color maps show that LSPR lead to centralization of the light energy around the gold nanoparticles, Transverse Magnetic wave and total reflection become the important factors to enhance the light field in our simulated structure. Fast Fourier Transfer analysis shows that the absorption peak of the surface plasmon resonance signal resulted from gold nanoparticles is sharper while its wavelength is bigger by comparing with silver nanoparticles; a double chain structure make the amplitude of the signals smaller, and make absorption wavelength longer; the absorption peak of enhancement resulted from nanopore arrays has smaller wavelength and weaker amplitude in contrast with nanoparticles. These simulation results of the Localized Surface Plasmon Resonance can be used as an enhanced transduction mechanism for enhancement of sensitivity in recognition and sensing of target analytes in accordance with different requirements.
The statistics of peaks of Gaussian random fields. [cosmological density fluctuations
NASA Technical Reports Server (NTRS)
Bardeen, J. M.; Bond, J. R.; Kaiser, N.; Szalay, A. S.
1986-01-01
A set of new mathematical results on the theory of Gaussian random fields is presented, and the application of such calculations in cosmology to treat questions of structure formation from small-amplitude initial density fluctuations is addressed. The point process equation is discussed, giving the general formula for the average number density of peaks. The problem of the proper conditional probability constraints appropriate to maxima are examined using a one-dimensional illustration. The average density of maxima of a general three-dimensional Gaussian field is calculated as a function of heights of the maxima, and the average density of 'upcrossing' points on density contour surfaces is computed. The number density of peaks subject to the constraint that the large-scale density field be fixed is determined and used to discuss the segregation of high peaks from the underlying mass distribution. The machinery to calculate n-point peak-peak correlation functions is determined, as are the shapes of the profiles about maxima.
NASA Astrophysics Data System (ADS)
Minami, K.; Yamamoto, M.; Nishimura, T.; Nakahara, H.; Shiomi, K.
2013-12-01
Seismic interferometry using vertical borehole arrays is a powerful tool to estimate the shallow subsurface structure and its time lapse changes. However, the wave fields surrounding borehole arrays are non-isotropic due to the existence of ground surface and non-uniform distribution of sources, and do not meet the requirements of the seismic interferometry in a strict sense. In this study, to examine differences between wave fields of coda waves and ambient noise, and to estimate their effects on the results of seismic interferometry, we conducted a temporal seismic experiment using zero-offset and offset vertical arrays. We installed two 3-components seismometers (hereafter called Surface1 and Surface2) at the ground surface in the vicinity of NIED Iwanuma site (Miyagi Pref., Japan). Surface1 is placed just above the Hi-net downhole seismometer whose depth is 101 m, and Surface2 is placed 70 m away from Surface1. To extract the wave propagation between these 3 seismometers, we compute the cross-correlation functions (CCFs) of coda-wave and ambient noise for each pair of the zero-offset vertical (Hi-net-Surface1), finite-offset vertical (Hi-net-Surface2), and horizontal (Surface1-Surface2) arrays. We use the frequency bands of 4-8, 8-16 Hz in the CCF computation. The characteristics of obtained CCFs are summarized as follows; (1) in all frequency bands, the peak lag times of CCFs from coda waves are almost the same between the vertical and offset-vertical arrays irrespective of different inter-station distance, and those for the horizontal array are around 0 s. (2) the peak lag times of CCFs from ambient noise show slight differences, that is, those obtained from the vertical array are earlier than those from the offset-vertical array, and those from the horizontal array are around 0.05 s. (3) the peak lag times of CCFs for the vertical array obtained from ambient noise analyses are earlier than those from the coda-wave analyses. These results indicate that wave fields of coda-wave are mainly composed of vertically propagating waves, while those of ambient noise are composed of both vertically and horizontally propagating waves. To explain these characteristics of the CCFs obtained from different wave fields, we conducted a numerical simulation of interferometry based on the concept of stationary phase. Here, we assume isotropic upward incidence of SV-wave into a homogeneous half-space, and compute CCFs for the zero-offset and finite-offset vertical arrays by taking into account the reflection and conversion of P-SV waves at the free surface. Due to the effectively non-isotropic wave field, the simulated CCF for the zero-offset vertical array shows slight delay in peak lag time and its amplitudes decrease in the acausal part. On the other hand, the simulated CCF for finite-offset vertical array shows amplitude decrease and no peak lag time shift. These results are consistent with the difference in peak lag times obtained from coda-wave and ambient noise analyses. Our observations and theoretical consideration suggest that the careful consideration of wave fields is important in the application of seismic interferometry to borehole array data.
NASA Astrophysics Data System (ADS)
Gold, Ryan; Reitman, Nadine; Briggs, Richard; Barnhart, William; Hayes, Gavin
2015-04-01
The 24 September 2013 Mw7.7 Balochistan, Pakistan earthquake ruptured a ~200 km-long stretch of the 60° ± 15° northwest-dipping Hoshab fault in southern Pakistan. The earthquake is notable because it produced the second-largest lateral surface displacement observed for a continental strike-slip earthquake. Surface displacements and geodetic and teleseismic inversions indicate that peak slip occurred within the upper 0-3 km of the crust. To explore along-strike and fault-perpendicular surface deformation patterns, we remotely mapped the surface trace of the rupture and measured its surface deformation using high-resolution (0.5 m) pre- and post-event satellite imagery. Post-event images were collected 7-114 days following the earthquake, so our analysis captures the sum of both the coseismic and post-seismic (e.g., after slip) deformation. We document peak left-lateral offset of ~15 m using 289 near-field (±10 m from fault) laterally offset piercing points, such as streams, terrace risers, and roads. We characterize off-fault deformation by measuring the medium- (±200 m from fault) and far-field (±10 km from fault) displacement using manual (242 measurements) and automated image cross-correlation methods. Off-fault peak lateral displacement values (medium- and far-field) are ~16 m and commonly exceed the on-fault displacement magnitudes. Our observations suggest that coseismic surface displacement typically increases with distance away from the surface trace of the fault; however, the majority of surface displacement is within 100 m of the primary fault trace and is most localized on sections of the rupture exhibiting narrow (<5 m) zones of observable surface deformation. Furthermore, the near-field displacement measurements account for, on average, only 73% of the total coseismic displacement field and the pattern is highly heterogeneous. This analysis highlights the importance of identifying paleoseismic field study sites (e.g. trenches) that span fault sections with narrow deformation zones in order to capture the full deformation field. Our results imply that hazard analyses based on geologically-determined fault slip rates (e.g., near-field) should consider the significant and heterogeneous mismatch we document between on- and off-fault coseismic deformation.
A novel SOI LDMOS with substrate field plate and variable-k dielectric buried layer
NASA Astrophysics Data System (ADS)
Li, Qi; Wen, Yi; Zhang, Fabi; Li, Haiou; Xiao, Gongli; Chen, Yonghe; Fu, Tao
2018-09-01
A novel silicon-on-insulator (SOI) lateral double-diffused metal-oxide-semiconductor (LDMOS) structure has been proposed. The new structure features a substrate field plate (SFP) and a variable-k dielectric buried layer (VKBL). The SFP and VKBL improve the breakdown voltage by introducing new electric field peaks in the surface electric field distribution. Moreover, the SFP reduces the specific ON-resistance through an enhanced auxiliary depletion effect on the drift region. The simulation results indicate that compared to the conventional SOI LDMOS structure, the breakdown voltage is improved from 118 V to 221 V, the specific ON-resistance is decreased from 7.15 mΩ·cm2 to 3.81 mΩ·cm2, the peak value of surface temperature is declined by 38 K.
Computer programs for predicting supersonic and hypersonic interference flow fields and heating
NASA Technical Reports Server (NTRS)
Morris, D. J.; Keyes, J. W.
1973-01-01
This report describes computer codes which calculate two-dimensional shock interference patterns. These codes compute the six types of interference flows as defined by Edney (Aeronaut. Res. Inst. of Sweden FAA Rep. 115). Results include properties of the inviscid flow field and the inviscid-viscous interaction at the surface along with peak pressure and peak heating at the impingement point.
NASA Astrophysics Data System (ADS)
Ma, Qilin; Liu, Guangqiang; Chen, Yiqing; Zhao, Qian; Guo, Jing; Yang, Shaosong; Cai, Weiping
2018-03-01
Dimer nanoparticles in a sandwich structure exhibit a large electric-field intensity enhancement. The dispersion relation between the surface plasmon resonance (SPR) and particle size has not been reported yet, owing to the effects of the particle size, shape, materials, etc. A sandwich structure, which contains a nano-right-triangle dimer array, SiO2 spacer, and Au film, is proposed, with a significant electric-field intensity enhancement and polarization-changing properties. The dependence of the peak positions of the two localized surface plasmon resonance (LSPR) modes as a function of the triangle thicknesses is discussed; different trends are observed for the different LSPR modes. We introduce a concept on the rule for LSPR peak position change, which can contribute to a better understanding of the LSPR modes. In addition, centrosymmetric but not axisymmetric structures, which like in our study exhibit surface plasmon polaritons typically show different responses to a different polarization of the incident light. Here, we showed that our centrosymmetric but not axisymmetric structure can change the linearly polarized light into a circularly or elliptically polarized wave, by surface plasmon-induced polarization properties. Far-field distribution maps are used to study the properties of the surface plasmons-induced circular or elliptic polarization wave. These findings could be employed to better understand the surface plasmon-induced polarization properties showed in previous reports and near-field of surface plasmons. These findings could be employed to better understand the near-field of surface plasmons and polarization properties.
Distinguishing magnetic blocking and surface spin-glass freezing in nickel ferrite nanoparticles
NASA Astrophysics Data System (ADS)
Nadeem, K.; Krenn, H.; Traussing, T.; Letofsky-Papst, I.
2011-01-01
Nickel ferrite nanoparticles dispersed in SiO2 matrix have been synthesized by sol-gel method. Structural analysis has been performed by using x-ray diffraction and transmission electron microscopy. Magnetic properties have been investigated by using superconducting quantum interference device magnetometry. In addition to the average blocking temperature peak at TB=120 K measured by a zero field cooled temperature scan of the dc susceptibility, an additional hump near 15 K is observed. Temperature dependent out-of-phase ac susceptibility shows the same features: one broad peak at high temperature and a second narrow peak at low temperature. The high temperature peak corresponds to magnetic blocking of individual nanoparticles, while the low temperature peak is attributed to surface spin-glass freezing which becomes dominant for decreasing particle diameter. To prove the dynamics of the spin (dis)order in both regimes of freezing and blocking, the frequency dependent ac susceptibility is investigated under a biasing dc field. The frequency shift in the "frozen" low-temperature ac susceptibility peak is fitted to a dynamic scaling law with a critical exponent zv=7.5, which indicates a spin-glass phase. Exchange bias is turned on at low temperature which signifies the existence of a strong core-shell interaction. Aging and memory effects are further unique fingerprints of a spin-glass freezing on the surface of isolated magnetic nanoparticles.
An Experimntal Investigation of the 30P30N Multi-Element High-Lift Airfoil
NASA Technical Reports Server (NTRS)
Pascioni, Kyle A.; Cattafesta, Louis N.; Choudhari, Meelan M.
2014-01-01
High-lift devices often generate an unsteady flow field producing both broadband and tonal noise which radiates from the aircraft. In particular, the leading edge slat is often a dominant contributor to the noise signature. An experimental study of a simplified unswept high-lift configuration, the 30P30N, has been conducted to understand and identify the various flow-induced noise sources around the slat. Closed-wall wind tunnel tests are performed in the Florida State Aeroacoustic Tunnel (FSAT) to characterize the slat cove flow field using a combination of surface and off-body measurements. Mean surface pressures compare well with numerical predictions for the free-air configuration. Consistent with previous measurements and computations for 2D high-lift configurations, the frequency spectra of unsteady surface pressures on the slat surface display several narrowband peaks that decrease in strength as the angle of attack is increased. At positive angles of attack, there are four prominent peaks. The three higher frequency peaks correspond, approximately, to a harmonic sequence related to a feedback resonance involving unstable disturbances in the slat cove shear layer. The Strouhal numbers associated with these three peaks are nearly insensitive to the range of flow speeds (41-58 m/s) and the angles of attack tested (3-8.5 degrees). The first narrow-band peak has an order of magnitude lower frequency than the remaining peaks and displays noticeable sensitivity to the angle of attack. Stereoscopic particle image velocimetry (SPIV) measurements provide supplementary information about the shear layer characteristics and turbulence statistics that may be used for validating numerical simulations.
NASA Astrophysics Data System (ADS)
Gold, R. D.; Reitman, N. G.; Briggs, R. W.; Barnhart, W. D.; Hayes, G. P.
2014-12-01
The 24 September 2013 Mw7.7 Balochistan, Pakistan earthquake ruptured a ~200 km-long stretch of the Hoshab fault in southern Pakistan. We remotely measured the coseismic surface deformation field using high-resolution (0.5 m) pre- and post-event satellite imagery. We measured ~300 near-field (0-10 m from fault) laterally offset piercing points (streams, terrace risers, roads, etc.) and find peak left-lateral offsets of ~12-15 m. We characterized the far-field (0-10 km from fault) displacement field using manual (~250 measurements) and automated image cross-correlation methods (e.g., pixel tracking) and find peak displacement values of ~16 m, which commonly exceed the on-fault displacement magnitudes. Our preliminary observations suggest the following: (1) coseismic surface displacement typically increases with distance away from the surface trace of the fault (e.g., highest displacement values in the far field), (2) for certain locations along the fault rupture, as little as 50% of the coseismic displacement field occurred in the near-field; and (3) the magnitudes of individual displacements are inversely correlated to the width of the surface rupture zone (e.g., largest displacements where the fault zone is narrowest). This analysis highlights the importance of identifying field study sites spanning fault sections with narrow deformation zones in order to capture the entire deformation field. For regions of distributed deformation, these results would predict that geologic slip rate studies underestimate a fault's complete slip rate.
Microwave transmission through metallic hole arrays: Surface electric field measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou Bo; Hang Zhihong; Wen Weijia
2006-09-25
The authors investigate the enhanced microwave transmission through a metal plate perforated by a square lattice of subwavelength holes, predicted to occur as a structure factor resonance phenomenon [F. J. Gracia de Abajo and J. J. Saenz, Phys. Rev. Lett. 95, 233901 (2005)]. By probing the surface electric field on the metallic plate at the peak transmission frequency, they establish the similarities and differences between the structure factor resonance and surface plasmon.
A New First-Principles Calculation of Field-Dependent RF Surface Impedance of BCS Superconductor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Binping; Reece, Charles E.
2014-02-01
There is a need to understand the intrinsic limit of radiofrequency (RF) surface impedance that determines the performance of superconducting RF cavities in particle accelerators. Here we present a field-dependent derivation of Mattis-Bardeen theory of the RF surface impedance of BCS superconductors based on the shifted density of states resulting from coherently moving Cooper pairs. Our theoretical prediction of the effective BCS RF surface resistance (Rs) of niobium as a function of peak surface magnetic field amplitude agrees well with recently reported record low loss resonant cavity measurements from JLab and FNAL with carefully, yet differently, prepared niobium material. Themore » surprising reduction in resistance with increasing field is explained to be an intrinsic effect.« less
Comparison of three empirical force fields for phonon calculations in CdSe quantum dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelley, Anne Myers
Three empirical interatomic force fields are parametrized using structural, elastic, and phonon dispersion data for bulk CdSe and their predictions are then compared for the structures and phonons of CdSe quantum dots having average diameters of ~2.8 and ~5.2 nm (~410 and ~2630 atoms, respectively). The three force fields include one that contains only two-body interactions (Lennard-Jones plus Coulomb), a Tersoff-type force field that contains both two-body and three-body interactions but no Coulombic terms, and a Stillinger-Weber type force field that contains Coulombic interactions plus two-body and three-body terms. While all three force fields predict nearly identical peak frequencies formore » the strongly Raman-active “longitudinal optical” phonon in the quantum dots, the predictions for the width of the Raman peak, the peak frequency and width of the infrared absorption peak, and the degree of disorder in the structure are very different. The three force fields also give very different predictions for the variation in phonon frequency with radial position (core versus surface). The Stillinger-Weber plus Coulomb type force field gives the best overall agreement with available experimental data.« less
High-gradient, pulsed operation of superconducting niobium cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campisi, I.E.; Farkas, Z.D.
1984-02-01
Tests performed on several Niobium TM/sub 010/ cavities at frequencies of about 2856 MHz using a high-power, pulsed method indicate that, at the end of the charging pulse, peak surface magnetic fields of up to approx. 1300 Oe, corresponding to a peak surface electric field of approx. 68 MV/m, can be reached at 4.2/sup 0/K without appreciable average losses. Further studies of the properties of superconductors under pulsed operation might shed light on fundamental properties of rf superconductivity, as well as lead to the possibility of applying the pulse method to the operation of high-gradient linear colliders. 7 references, 30more » figures, 2 tables.« less
Characteristics of Extreme Geoelectric Fields and Their Possible Causes: Localized Peak Enhancements
NASA Astrophysics Data System (ADS)
Pulkkinen, A. A.; Ngwira, C. M.; Bernabeu, E.; Eichner, J.; Viljanen, A.; Crowley, G.
2015-12-01
One of the major challenges pertaining to extreme geomagnetic storms is to understand the basic processes associated with the development of dynamic magnetosphere-ionosphere currents, which generate large induced surface geoelectric fields. Previous studies point out the existence of localized peak geoelectric field enhancements during extreme storms. We examined induced global geoelectric fields derived from ground-based magnetometer recordings for 12 extreme geomagnetic storms between the years 1982--2005. However for the present study, an in-depth analysis was performed for two important extreme storms, October 29, 2003 and March 13, 1989. The primary purpose of this paper is to provide further evidence on the existence of localized peak geoelectric field enhancements, and to show that the structure of the geoelectric field during these localized extremes at single sites can differ greatly from globally and regionally averaged fields. Although the physical processes that govern the development of these localized extremes are still not clear, we discuss some possible causes.
Ishikawa, Michio; Katsura, Makoto; Nakashima, Satoru; Aizawa, Kento; Inoue, Tsutomu; Okamura, Hidekazu; Ikemoto, Yuka
2011-06-20
In order to obtain broadband near-field infrared (IR) spectra, a Fourier-transform IR spectrometer (FT-IR) and a ceramic light source were used with a scattering-type scanning near-field optical microscope (s-SNOM). To suppress the background (far-field) scattering, the distance between the scattering probe and the sample was modulated with frequency Ω by a piezo-electric actuator, and the Ω component was extracted from the signal with a lock-in detection. With Ω=30 kHz, a peak-to-peak modulation amplitude of 198 nm, and a probe with smooth surface near the tip, broadband near-field IR spectra could be obtained in the 1200-2500 cm(-1).
Insights on surface spalling of rock
NASA Astrophysics Data System (ADS)
Tarokh, Ali; Kao, Chu-Shu; Fakhimi, Ali; Labuz, Joseph F.
2016-07-01
Surface spalling is a complex failure phenomenon that features crack propagation and detachment of thin pieces of rock near free surfaces, particularly in brittle rock around underground excavations when large in situ stresses are involved. A surface instability apparatus was used to study failure of rock close to a free surface, and damage evolution was monitored by digital image correlation (DIC). Lateral displacement at the free face was used as the feedback signal to control the post-peak response of the specimen. DIC was implemented in order to obtain the incremental displacement fields during the spalling process. Displacement fields were computed in the early stage of loading as well as close to the peak stress. Fracture from the spalling phenomenon was revealed by incremental lateral displacement contours. The axial and lateral displacements suggested that the displacement gradient was uniform in both directions at early loading stages and as the load increased, the free-face effect started to influence the displacements, especially the lateral displacement field. A numerical approach, based on the discrete element method, was developed and validated from element testing. Damage evolution and localization observed in numerical simulations were similar to those observed in experiments. By performing simulations in two- and three-dimensions, it was revealed that the intermediate principal stress and platen-rock interfaces have important effects on simulation of surface spalling.
Nuclear surface diffuseness revealed in nucleon-nucleus diffraction
NASA Astrophysics Data System (ADS)
Hatakeyama, S.; Horiuchi, W.; Kohama, A.
2018-05-01
The nuclear surface provides useful information on nuclear radius, nuclear structure, as well as properties of nuclear matter. We discuss the relationship between the nuclear surface diffuseness and elastic scattering differential cross section at the first diffraction peak of high-energy nucleon-nucleus scattering as an efficient tool in order to extract the nuclear surface information from limited experimental data involving short-lived unstable nuclei. The high-energy reaction is described by a reliable microscopic reaction theory, the Glauber model. Extending the idea of the black sphere model, we find one-to-one correspondence between the nuclear bulk structure information and proton-nucleus elastic scattering diffraction peak. This implies that we can extract both the nuclear radius and diffuseness simultaneously, using the position of the first diffraction peak and its magnitude of the elastic scattering differential cross section. We confirm the reliability of this approach by using realistic density distributions obtained by a mean-field model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, L. N.; Hu, Z. D.; Zheng, Y.
2014-09-15
Proton acceleration from 4 μm thick aluminum foils irradiated by 30-TW Ti:sapphire laser pulses is investigated using an angle-resolved proton energy spectrometer. We find that a modulated spectral peak at ∼0.82 MeV is presented at 2.5° off the target normal direction. The divergence angle of the modulated zone is 3.8°. Two-dimensional particle-in-cell simulations reveal that self-generated toroidal magnetic field at the rear surface of the target foil is responsible for the modulated spectral feature. The field deflects the low energy protons, resulting in the modulated energy spectrum with certain peaks.
Avilés Lucas, P; Dance, D R; Castellano, I A; Vañó, E
2005-01-01
The purpose of this work was to develop a method for estimating the patient peak entrance surface air kerma from measurements using a pencil ionisation chamber on dosimetry phantoms exposed in a computed tomography (CT) scanner. The method described is especially relevant for CT fluoroscopy and CT perfusion procedures where the peak entrance surface air kerma is the risk-related quantity of primary concern. Pencil ionisation chamber measurements include scattered radiation, which is outside the primary radiation field, and that must be subtracted in order to derive the peak entrance surface air kerma. A Monte Carlo computer model has therefore been used to calculate correction factors, which may be applied to measurements of the CT dose index obtained using a pencil ionisation chamber in order to estimate the peak entrance surface air kerma. The calculations were made for beam widths of 5, 7, 10 and 20 mm, for seven positions of the phantom, and for the geometry of a GE HiSpeed CT/i scanner. The program was validated by comparing measurements and calculations of CTDI for various vertical positions of the phantom and by directly estimating the peak ESAK using the program. Both validations showed agreement within statistical uncertainties (standard deviation of 2.3% or less). For the GE machine, the correction factors vary by approximately 10% with slice width for a fixed phantom position, being largest for the 20 mm beam width, and at that beam width range from 0.87 when the phantom surface is at the isocentre to 1.23 when it is displaced vertically by 24 cm.
ROLE OF LEAF SURFACE WATER IN BI-DIRECTIONAL AMMONIA EXCHANGE
A field experiment was conducted to study the ammonia exchange between plants and the atmosphere in a soybean field in North Carolina during the summer of 2002. In general, ammonia concentrations peak a few hours after sunrise. To investigate the mechanisms that control the exch...
Alonso-González, P; Albella, P; Neubrech, F; Huck, C; Chen, J; Golmar, F; Casanova, F; Hueso, L E; Pucci, A; Aizpurua, J; Hillenbrand, R
2013-05-17
Theory predicts a distinct spectral shift between the near- and far-field optical response of plasmonic antennas. Here we combine near-field optical microscopy and far-field spectroscopy of individual infrared-resonant nanoantennas to verify experimentally this spectral shift. Numerical calculations corroborate our experimental results. We furthermore discuss the implications of this effect in surface-enhanced infrared spectroscopy.
CSEM-Steel hybrid wiggler/undulator magnetic field studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halbach, K.; Hoyer, E.; Marks, S.
1985-06-01
Current design of permanent magnet wiggler/undulators use either pure charge sheet equivalent material (CSEM) or the CSEM-Steel hybrid configuration. Hybrid configurations offer higher field strength at small gaps, field distributions dominated by the pole surfaces and pole tuning. Nominal performance of the hybrid is generally predicted using a 2-D magnetic design code neglecting transverse geometry. Magnetic measurements are presented showing transverse configuration influence on performance, from a combination of models using CSEMs, REC (H/sub c/ = 9.2 KOe) and NdFe (H/sub c/ = 10.7 kOe), different pole widths and end configurations. Results show peak field improvement using NdFe in placemore » of REC in identical models, gap peak field decrease with pole width decrease (all results less than computed 2-D fields), transverse gap field distributions, and importance of CSEM material overhanging the poles in the transverse direction for highest gap fields. 3 refs., 6 figs.« less
NASA Astrophysics Data System (ADS)
Rogers, Robert; Uhlhorn, Eric
2008-11-01
Knowledge of the magnitude and distribution of surface winds, including the structure of azimuthal asymmetries in the wind field, are important factors for tropical cyclone forecasting. With its ability to remotely measure surface wind speeds, the stepped frequency microwave radiometer (SFMR) has assumed a prominent role for the operational tropical cyclone forecasting community. An example of this instrument's utility is presented here, where concurrent measurements of aircraft flight-level and SFMR surface winds are used to document the wind field evolution over three days in Hurricane Rita (2005). The amplitude and azimuthal location (phase) of the wavenumber-1 asymmetry in the storm-relative winds varied at both levels over time. The peak was found to the right of storm track at both levels on the first day. By the third day, the peak in flight-level storm-relative winds remained to the right of storm track, but it shifted to left of storm track at the surface, resulting in a 60-degree shift between the surface and flight-level and azimuthal variations in the ratio of surface to flight-level winds. The asymmetric differences between the surface and flight-level maximum wind radii also varied, indicating a vortex whose tilt was increasing.
Smith, James Evan; Peterchev, Angel V
2018-06-22
Sham TMS coils isolate the ancillary effects of their active counterparts, but typically induce low-strength electric fields (E-fields) in the brain, which could be biologically active. We measured the E-fields induced by two pairs of commonly-used commercial active/sham coils. Approach: E-field distributions of the active and sham configurations of the Magstim 70 mm AFC and MagVenture Cool-B65 A/P coils were measured over a 7-cm-radius, hemispherical grid approximating the cortical surface. Peak E-field strength was recorded over a range of pulse amplitudes. Main results: The Magstim and MagVenture shams induce peak E-fields corresponding to 25.3% and 7.72% of their respective active values. The MagVenture sham has an E-field distribution shaped like its active counterpart. The Magstim sham induces nearly zero E-field under the coil's center, and its peak E-field forms a diffuse oval 3-7 cm from the center. Electrical scalp stimulation paired with the MagVenture sham is estimated to increase the sham E-field in the brain up to 10%. Significance: Different commercial shams induce different E-field strengths and distributions in the brain, which should be considered in interpreting outcomes of sham stimulation. © 2018 IOP Publishing Ltd.
NASA Astrophysics Data System (ADS)
Gonor, Alexander; Hooton, Irene
2006-07-01
Impact of a rigid projectile (impactor), against a metal target and a condensed explosive surface considered as the important process accompanying the normal entry of a rigid projectile into a target, was overlooked in the preceding studies. Within the framework of accurate shock wave theory, the flow-field, behind the shock wave attached to the perimeter of the adjoined surface, was defined. An important result is the peak pressure rises at points along the target surface away from the stagnation point. The maximum values of the peak pressure are 2.2 to 3.2 times higher for the metallic and soft targets (nitromethane, PBX 9502), than peak pressure values at the stagnation point. This effect changes the commonly held notion that the maximum peak pressure is reached at the projectile stagnation point. In the present study the interaction of a spherical decaying blast wave, caused by an underwater explosion, with a piece-wise plane target, having corner configurations, is investigated. The numerical calculation results in the determination of the vulnerable spots on the target, where the maximum peak overpressure surpassed that for the head-on shock wave reflection by a factor of 4.
NASA Astrophysics Data System (ADS)
Ionin, A. A.; Kudryashov, S. I.; Makarov, S. V.; Rudenko, A. A.; Saltuganov, P. N.; Seleznev, L. V.; Sinitsyn, D. V.; Sunchugasheva, E. S.
2014-02-01
Relief ripples with sub-diffraction periods (≈λlas/3, λlas/4) were produced on a aluminum surface immersed in water and irradiated in a multi-filamentation regime by focused 744 nm femtosecond laser pulses with highly supercritical, multi-GW peak powers. For the VUV (8.5 eV) surface plasmon resonance on the wet aluminum surface, such small-scale surface nanogratings can be produced by high - second and third - optical harmonics, coming to the surface from the optical filaments in the water layer. Then, the sub-diffraction surface ripples may appear through interference of their transverse electric fields with the longitudinal electric fields of their counterparts, scattered on the surface roughness and appeared as the corresponding high-energy, high-wavenumber surface polaritons.
The peak electromagnetic power radiated by lightning return strokes
NASA Technical Reports Server (NTRS)
Krider, E. P.; Guo, C.
1983-01-01
Estimates of the peak electromagnetic (EM) power radiated by return strokes have been made by integrating the Poynting vector of measured fields over an imaginary hemispherical surface that is centered on the lightning source, assuming that ground losses are negligible. Values of the peak EM power from first and subsequent strokes have means and standard deviations of 2 + or - 2 x 10 to the 10th and 3 + or - 4 x 10 to the 9th W, respectively. The average EM power that is radiated by subsequent strokes, at the time of the field peak, is about 2 orders of magnitude larger than the optical power that is radiated by these strokes in the wavelength interval from 0.4 to 1.1 micron; hence an upper limit to the radiative efficiency of a subsequent stroke is of the order of 1 percent or less at this time.
Unusual ZFC and FC magnetic behavior in thin Co multi-layered structure
NASA Astrophysics Data System (ADS)
Ben Dor, Oren; Yochelis, Shira; Felner, Israel; Paltiel, Yossi
2017-04-01
The observation of unusual magnetic phenomena in a Ni -based magnetic memory device ([4] O. Ben-Dor et al., 2013) encouraged us to conduct a systematic research on Co based multi-layered structure which contains a α-helix L polyalanine (AHPA-L) organic compound. The constant Co thickness is 7 nm and AHPA-L was also replaced by non-chiral 1-Decanethiol organic molecules. Both organic compounds were chemisorbed on gold by a thiol group. The dc magnetic field (H) was applied parallel and perpendicular to the surface layers. The perpendicular direction is the easy magnetization axis and along this orientation only, the zero-field-cooled (ZFC) plots exhibit a pronounced peak around 55-58 K. This peak is suppressed in the second ZFC and field-cooled (FC) runs performed shortly after the virgin ZFC one. Thus, around the peak position ZFC>FC a phenomenon seldom observed. This peak reappears after measuring the same material six months later. This behavior appears in layers with the non-chiral 1-Decanethiol and it is very similar to that obtained in sulfur doped amorphous carbon. The peak origin and the peculiar ZFC>FC case are qualitatively explained.
NASA Astrophysics Data System (ADS)
de Oliveira, J. F.; Alves, O. C.; Esquivel, D. M. S.; Wajnberg, E.
2008-03-01
The temperature dependence of Ferromagnetic Resonance spectra, from 5 K to 280 K, was used to study the magnetic material present in Neocapritermes opacus termite, the only prey of the Pachycondyla marginata ant. The analysis of the resonant field and peak-to-peak linewidth allowed estimating the particle diameters and the effective anisotropy energy density, KEFF, as a sum of the bulk and surface contributions. It allowed to magnetically distinguish the particles of termites as collected in field from those of termites after 3 days under a cellulose diet, introduced to eliminate ingested/digested material. The data also, suggest the presence of oriented magnetite nanoparticles with diameters of 11.6 ± 0.3 nm in termites as collected in field and (14.0 ± 0.4 nm) in that under a cellulose diet. Differences between their KEFF and its components are also observed. Two transitions are revealed in the resonant field temperature dependence, one at about 50 K that was associated to surface effects and the other at about 100 K attributed to the Verwey transition.
Key, Douglas J
2014-07-01
This study incorporates concurrent thermal camera imaging as a means of both safely extending the length of each treatment session within skin surface temperature tolerances and to demonstrate not only the homogeneous nature of skin surface temperature heating but the distribution of that heating pattern as a reflection of localization of subcutaneous fat distribution. Five subjects were selected because of a desire to reduce abdomen and flank fullness. Full treatment field thermal camera imaging was captured at 15 minute intervals, specifically at 15, 30, and 45 minutes into active treatment with the purpose of monitoring skin temperature and avoiding any patterns of skin temperature excess. Peak areas of heating corresponded anatomically to the patients' areas of greatest fat excess ie, visible "pinchable" fat. Preliminary observation of high-resolution thermal camera imaging used concurrently with focused field RF therapy show peak skin heating patterns overlying the areas of greatest fat excess.
Strong sub-terahertz surface waves generated on a metal wire by high-intensity laser pulses
Tokita, Shigeki; Sakabe, Shuji; Nagashima, Takeshi; Hashida, Masaki; Inoue, Shunsuke
2015-01-01
Terahertz pulses trapped as surface waves on a wire waveguide can be flexibly transmitted and focused to sub-wavelength dimensions by using, for example, a tapered tip. This is particularly useful for applications that require high-field pulses. However, the generation of strong terahertz surface waves on a wire waveguide remains a challenge. Here, ultrafast field propagation along a metal wire driven by a femtosecond laser pulse with an intensity of 1018 W/cm2 is characterized by femtosecond electron deflectometry. From experimental and numerical results, we conclude that the field propagating at the speed of light is a half-cycle transverse-magnetic surface wave excited on the wire and a considerable portion of the kinetic energy of laser-produced fast electrons can be transferred to the sub-surface wave. The peak electric field strength of the surface wave and the pulse duration are estimated to be 200 MV/m and 7 ps, respectively. PMID:25652694
1987-03-01
Simulator was similar to the original rotating disk-type rainfall simulator but had several important design modifications ( Westerdahl and Skogerboe...exist- ing vegetation on the soil surface ( Westerdahl and Skogerboe 1982). A multiple-peaked natural storm event was selected from field data and pro... Westerdahl and Skogerboe 1982) and has been used as a standard storm event for comparison to natural storm events (Laws and Parsons 1943). Similar
Characterization of the Deep Water Surface Wave Variability in the California Current Region
NASA Astrophysics Data System (ADS)
Villas Bôas, Ana B.; Gille, Sarah T.; Mazloff, Matthew R.; Cornuelle, Bruce D.
2017-11-01
Surface waves are crucial for the dynamics of the upper ocean not only because they mediate exchanges of momentum, heat, energy, and gases between the ocean and the atmosphere, but also because they determine the sea state. The surface wave field in a given region is set by the combination of local and remote forcing. The present work characterizes the seasonal variability of the deep water surface wave field in the California Current region, as retrieved from over two decades of satellite altimetry data combined with wave buoys and wave model hindcast (WaveWatch III). In particular, the extent to which the local wind modulates the variability of the significant wave height, peak period, and peak direction is assessed. During spring/summer, regional-scale wind events of up to 10 m/s are the dominant forcing for waves off the California coast, leading to relatively short-period waves (8-10 s) that come predominantly from the north-northwest. The wave climatology throughout the California Current region shows average significant wave heights exceeding 2 m during most of the year, which may have implications for the planning and retrieval methods of the Surface Water and Ocean Topography (SWOT) satellite mission.
Gold, Ryan D.; Reitman, Nadine G.; Briggs, Richard; Barnhart, William; Hayes, Gavin; Wilson, Earl M.
2015-01-01
The 24 September 2013 Mw7.7 Balochistan, Pakistan earthquake ruptured a ~ 200 km-long stretch of the Hoshab fault in southern Pakistan and produced the second-largest lateral surface displacement observed for a continental strike-slip earthquake. We remotely measured surface deformation associated with this event using high-resolution (0.5 m) pre- and post-event satellite optical imagery. We document left lateral, near-field, on-fault offsets (10 m from fault) using 309 laterally offset piercing points, such as streams, terrace risers, and roads. Peak near-field displacement is 13.6 + 2.5/− 3.4 m. We characterize off-fault deformation by measuring medium- (< 350 m from fault) and far-field (> 350 m from fault) displacement using manual (259 measurements) and automated image cross-correlation methods, respectively. Off-fault peak lateral displacement values are ~ 15 m and exceed on-fault displacement magnitudes for ~ 85% of the rupture length. Our observations suggest that for this rupture, coseismic surface displacement typically increases with distance away from the surface trace of the fault; however, nearly 100% of total surface displacement occurs within a few hundred meters of the primary fault trace. Furthermore, off-fault displacement accounts for, on average, 28% of the total displacement but exhibits a highly heterogeneous along-strike pattern. The best agreement between near-field and far-field displacements generally corresponds to the narrowest fault zone widths. Our analysis demonstrates significant and heterogeneous mismatches between on- and off-fault coseismic deformation, and we conclude that this phenomenon should be considered in hazard models based on geologically determined on-fault slip rates.
NASA Astrophysics Data System (ADS)
Gold, Ryan D.; Reitman, Nadine G.; Briggs, Richard W.; Barnhart, William D.; Hayes, Gavin P.; Wilson, Earl
2015-10-01
The 24 September 2013 Mw7.7 Balochistan, Pakistan earthquake ruptured a ~ 200 km-long stretch of the Hoshab fault in southern Pakistan and produced the second-largest lateral surface displacement observed for a continental strike-slip earthquake. We remotely measured surface deformation associated with this event using high-resolution (0.5 m) pre- and post-event satellite optical imagery. We document left lateral, near-field, on-fault offsets (10 m from fault) using 309 laterally offset piercing points, such as streams, terrace risers, and roads. Peak near-field displacement is 13.6 + 2.5/- 3.4 m. We characterize off-fault deformation by measuring medium- (< 350 m from fault) and far-field (> 350 m from fault) displacement using manual (259 measurements) and automated image cross-correlation methods, respectively. Off-fault peak lateral displacement values are ~ 15 m and exceed on-fault displacement magnitudes for ~ 85% of the rupture length. Our observations suggest that for this rupture, coseismic surface displacement typically increases with distance away from the surface trace of the fault; however, nearly 100% of total surface displacement occurs within a few hundred meters of the primary fault trace. Furthermore, off-fault displacement accounts for, on average, 28% of the total displacement but exhibits a highly heterogeneous along-strike pattern. The best agreement between near-field and far-field displacements generally corresponds to the narrowest fault zone widths. Our analysis demonstrates significant and heterogeneous mismatches between on- and off-fault coseismic deformation, and we conclude that this phenomenon should be considered in hazard models based on geologically determined on-fault slip rates.
Effects of Near Field Pyroshock on the Performance of a Nitramine Nitrocellulose Propellant
NASA Technical Reports Server (NTRS)
Baca, Arcenio B.
2016-01-01
The overall purpose of this study is to investigate the effects of a pyroshock environment on the performance characteristics of a propellant used in pyrotechnic devices such as guillotine cutters. Near field pyroshock which is defined by acceleration amplitudes in excess of 10,000g at a frequency of greater than 10,000 Hz is a highly transient environment that has a known potential to cause failure in both structural and electronic components. A heritage pressure cartridge assembly which uses a nitramine nitrocellulose propellant with a known performance baseline will be exposed to a near field pyroshock event. The pressure cartridge will then be fired in an ambient closed bomb firing to collect pressure time history. The two performance characteristics that will be evaluated are the pressure amplitude and time to peak pressure. This data will be compared to the base-lined ambient closed bomb data to evaluate the effects of the shock on the performance of the propellant. It is expected that the pyroshock environment will cause brittle failures of the propellant increasing the surface area of said propellant. This increase of surface area should result in increased combustion rate which should show as an increased pressure peak and decreased time to peak pressure in the pressure time data.
Theoretical study on surface plasmon properties of gold nanostars
NASA Astrophysics Data System (ADS)
Shan, Feng; Zhang, Tong
2018-03-01
With the rapid development of nanotechnology, the surface plasmon properties of metal nanostructures have become the focus of research. In this paper, a multi-tip gold nanostars (GNSs) structure is designed theoretically, and its surface plasmon properties are simulated by using the finite element method (FEM), which is practical and versatile. Compared with the traditional spherical and triangular plate particles, the results show that the tip structure of the GNSs has a stronger hot spots effect, resulting in greater local field enhancement properties. The relationship between the structure parameters of GNSs and their resonance peaks was also studied. The results indicate that the resonance peaks of GNSs depend strongly on the size, spacing between two GNSs, quantity and refractive index of the GNSs.
Surface runoff and tile drainage transport of phosphorus in the midwestern United States.
Smith, Douglas R; King, Kevin W; Johnson, Laura; Francesconi, Wendy; Richards, Pete; Baker, Dave; Sharpley, Andrew N
2015-03-01
The midwestern United States offers some of the most productive agricultural soils in the world. Given the cool humid climate, much of the region would not be able to support agriculture without subsurface (tile) drainage because high water tables may damage crops and prevent machinery usage in fields at critical times. Although drainage is designed to remove excess soil water as quickly as possible, it can also rapidly transport agrochemicals, including phosphorus (P). This paper illustrates the potential importance of tile drainage for P transport throughout the midwestern United States. Surface runoff and tile drainage from fields in the St. Joseph River Watershed in northeastern Indiana have been monitored since 2008. Although the traditional concept of tile drainage has been that it slowly removes soil matrix flow, peak tile discharge occurred at the same time as peak surface runoff, which demonstrates a strong surface connection through macropore flow. On our research fields, 49% of soluble P and 48% of total P losses occurred via tile discharge. Edge-of-field soluble P and total P areal loads often exceeded watershed-scale areal loadings from the Maumee River, the primary source of nutrients to the western basin of Lake Erie, where algal blooms have been a pervasive problem for the last 10 yr. As farmers, researchers, and policymakers search for treatments to reduce P loading to surface waters, the present work demonstrates that treating only surface runoff may not be sufficient to reach the goal of 41% reduction in P loading for the Lake Erie Basin. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Determination of wind from NIMBUS 6 satellite sounding data
NASA Technical Reports Server (NTRS)
Carle, W. E.; Scoggins, J. R.
1981-01-01
Objective methods of computing upper level and surface wind fields from NIMBUS 6 satellite sounding data are developed. These methods are evaluated by comparing satellite derived and rawinsonde wind fields on gridded constant pressure charts in four geographical regions. Satellite-derived and hourly observed surface wind fields are compared. Results indicate that the best satellite-derived wind on constant pressure charts is a geostrophic wind derived from highly smoothed fields of geopotential height. Satellite-derived winds computed in this manner and rawinsonde winds show similar circulation patterns except in areas of small height gradients. Magnitudes of the standard deviation of the differences between satellite derived and rawinsonde wind speeds range from approximately 3 to 12 m/sec on constant pressure charts and peak at the jet stream level. Fields of satellite-derived surface wind computed with the logarithmic wind law agree well with fields of observed surface wind in most regions. Magnitudes of the standard deviation of the differences in surface wind speed range from approximately 2 to 4 m/sec, and satellite derived surface winds are able to depict flow across a cold front and around a low pressure center.
The electric field standing wave effect in infrared transflection spectroscopy
NASA Astrophysics Data System (ADS)
Mayerhöfer, Thomas G.; Popp, Jürgen
2018-02-01
We show that an electric field standing wave effect is responsible for the oscillations and the non-linear dependence of the absorbance on the layer thickness in thin layers on a reflective surface. This effect is connected to the occurrence of interference inside these layers. Consequently, the absorptance undergoes a maximum electric field intensity enhancement at spectral positions close to those where corresponding non-absorbing layers on a metal show minima in the reflectance. The effect leads to changes of peak maxima ratios with layer thickness and shows the same periodicity as oscillations in the peak positions. These peculiarities are fully based on and described by Maxwell's equations but cannot be understood and described if the strongly simplifying model centered on reflectance absorbance is employed.
NASA Astrophysics Data System (ADS)
Liang, Jiran; Guo, Jinbang; Zhao, Yirui; Zhang, Ying; Su, Tianyu
2018-07-01
We design and fabricate a totally encapsulated VO2/Au/VO2 composite structure which is aimed to improve the tunability of the localized surface plasmon resonance (LSPR) peak. In this work, the structure will ensure all the Au NPs’ resonant electric field area is filled with VO2. The modulation range of the totally encapsulated structure is larger than that of the semi-coated structure. To further improve the modulation range, we also explore the VO2 thickness dependence of the structure’s LSPR modulation. With the increase of the top layer VO2 thin film thickness, the modulation range becomes larger. When the thickness is about 80 nm, the absorption peak achieves a largest shift of 112 nm. FDTD solution and equivalent model of series capacitor are used to explain the phenomenon. These results will contribute to the area of metamaterial electromagnetic wave absorber and other fields.
Liang, Jiran; Guo, Jinbang; Zhao, Yirui; Zhang, Ying; Su, Tianyu
2018-07-06
We design and fabricate a totally encapsulated VO 2 /Au/VO 2 composite structure which is aimed to improve the tunability of the localized surface plasmon resonance (LSPR) peak. In this work, the structure will ensure all the Au NPs' resonant electric field area is filled with VO 2 . The modulation range of the totally encapsulated structure is larger than that of the semi-coated structure. To further improve the modulation range, we also explore the VO 2 thickness dependence of the structure's LSPR modulation. With the increase of the top layer VO 2 thin film thickness, the modulation range becomes larger. When the thickness is about 80 nm, the absorption peak achieves a largest shift of 112 nm. FDTD solution and equivalent model of series capacitor are used to explain the phenomenon. These results will contribute to the area of metamaterial electromagnetic wave absorber and other fields.
Direct measurements of meltwater runoff on the Greenland ice sheet surface
NASA Astrophysics Data System (ADS)
Smith, Laurence C.; Yang, Kang; Pitcher, Lincoln H.; Overstreet, Brandon T.; Chu, Vena W.; Rennermalm, Åsa K.; Ryan, Jonathan C.; Cooper, Matthew G.; Gleason, Colin J.; Tedesco, Marco; Jeyaratnam, Jeyavinoth; van As, Dirk; van den Broeke, Michiel R.; van de Berg, Willem Jan; Noël, Brice; Langen, Peter L.; Cullather, Richard I.; Zhao, Bin; Willis, Michael J.; Hubbard, Alun; Box, Jason E.; Jenner, Brittany A.; Behar, Alberto E.
2017-12-01
Meltwater runoff from the Greenland ice sheet surface influences surface mass balance (SMB), ice dynamics, and global sea level rise, but is estimated with climate models and thus difficult to validate. We present a way to measure ice surface runoff directly, from hourly in situ supraglacial river discharge measurements and simultaneous high-resolution satellite/drone remote sensing of upstream fluvial catchment area. A first 72-h trial for a 63.1-km2 moulin-terminating internally drained catchment (IDC) on Greenland's midelevation (1,207–1,381 m above sea level) ablation zone is compared with melt and runoff simulations from HIRHAM5, MAR3.6, RACMO2.3, MERRA-2, and SEB climate/SMB models. Current models cannot reproduce peak discharges or timing of runoff entering moulins but are improved using synthetic unit hydrograph (SUH) theory. Retroactive SUH applications to two older field studies reproduce their findings, signifying that remotely sensed IDC area, shape, and supraglacial river length are useful for predicting delays in peak runoff delivery to moulins. Applying SUH to HIRHAM5, MAR3.6, and RACMO2.3 gridded melt products for 799 surrounding IDCs suggests their terminal moulins receive lower peak discharges, less diurnal variability, and asynchronous runoff timing relative to climate/SMB model output alone. Conversely, large IDCs produce high moulin discharges, even at high elevations where melt rates are low. During this particular field experiment, models overestimated runoff by +21 to +58%, linked to overestimated surface ablation and possible meltwater retention in bare, porous, low-density ice. Direct measurements of ice surface runoff will improve climate/SMB models, and incorporating remotely sensed IDCs will aid coupling of SMB with ice dynamics and subglacial systems.
Direct measurements of meltwater runoff on the Greenland ice sheet surface.
Smith, Laurence C; Yang, Kang; Pitcher, Lincoln H; Overstreet, Brandon T; Chu, Vena W; Rennermalm, Åsa K; Ryan, Jonathan C; Cooper, Matthew G; Gleason, Colin J; Tedesco, Marco; Jeyaratnam, Jeyavinoth; van As, Dirk; van den Broeke, Michiel R; van de Berg, Willem Jan; Noël, Brice; Langen, Peter L; Cullather, Richard I; Zhao, Bin; Willis, Michael J; Hubbard, Alun; Box, Jason E; Jenner, Brittany A; Behar, Alberto E
2017-12-12
Meltwater runoff from the Greenland ice sheet surface influences surface mass balance (SMB), ice dynamics, and global sea level rise, but is estimated with climate models and thus difficult to validate. We present a way to measure ice surface runoff directly, from hourly in situ supraglacial river discharge measurements and simultaneous high-resolution satellite/drone remote sensing of upstream fluvial catchment area. A first 72-h trial for a 63.1-km 2 moulin-terminating internally drained catchment (IDC) on Greenland's midelevation (1,207-1,381 m above sea level) ablation zone is compared with melt and runoff simulations from HIRHAM5, MAR3.6, RACMO2.3, MERRA-2, and SEB climate/SMB models. Current models cannot reproduce peak discharges or timing of runoff entering moulins but are improved using synthetic unit hydrograph (SUH) theory. Retroactive SUH applications to two older field studies reproduce their findings, signifying that remotely sensed IDC area, shape, and supraglacial river length are useful for predicting delays in peak runoff delivery to moulins. Applying SUH to HIRHAM5, MAR3.6, and RACMO2.3 gridded melt products for 799 surrounding IDCs suggests their terminal moulins receive lower peak discharges, less diurnal variability, and asynchronous runoff timing relative to climate/SMB model output alone. Conversely, large IDCs produce high moulin discharges, even at high elevations where melt rates are low. During this particular field experiment, models overestimated runoff by +21 to +58%, linked to overestimated surface ablation and possible meltwater retention in bare, porous, low-density ice. Direct measurements of ice surface runoff will improve climate/SMB models, and incorporating remotely sensed IDCs will aid coupling of SMB with ice dynamics and subglacial systems. Copyright © 2017 the Author(s). Published by PNAS.
Direct measurements of meltwater runoff on the Greenland ice sheet surface
Smith, Laurence C.; Yang, Kang; Pitcher, Lincoln H; Overstreet, Brandon T.; Chu, Vena W.; Rennermalm, Åsa K.; Ryan, Jonathan C.; Cooper, Matthew G.; Gleason, Colin J.; Tedesco, Marco; Jeyaratnam, Jeyavinoth; van As, Dirk; van den Broeke, Michiel R.; van de Berg, Willem Jan; Noël, Brice; Langen, Peter L.; Cullather, Richard I.; Zhao, Bin; Hubbard, Alun; Box, Jason E.; Jenner, Brittany A.; Behar, Alberto E.
2017-01-01
Meltwater runoff from the Greenland ice sheet surface influences surface mass balance (SMB), ice dynamics, and global sea level rise, but is estimated with climate models and thus difficult to validate. We present a way to measure ice surface runoff directly, from hourly in situ supraglacial river discharge measurements and simultaneous high-resolution satellite/drone remote sensing of upstream fluvial catchment area. A first 72-h trial for a 63.1-km2 moulin-terminating internally drained catchment (IDC) on Greenland’s midelevation (1,207–1,381 m above sea level) ablation zone is compared with melt and runoff simulations from HIRHAM5, MAR3.6, RACMO2.3, MERRA-2, and SEB climate/SMB models. Current models cannot reproduce peak discharges or timing of runoff entering moulins but are improved using synthetic unit hydrograph (SUH) theory. Retroactive SUH applications to two older field studies reproduce their findings, signifying that remotely sensed IDC area, shape, and supraglacial river length are useful for predicting delays in peak runoff delivery to moulins. Applying SUH to HIRHAM5, MAR3.6, and RACMO2.3 gridded melt products for 799 surrounding IDCs suggests their terminal moulins receive lower peak discharges, less diurnal variability, and asynchronous runoff timing relative to climate/SMB model output alone. Conversely, large IDCs produce high moulin discharges, even at high elevations where melt rates are low. During this particular field experiment, models overestimated runoff by +21 to +58%, linked to overestimated surface ablation and possible meltwater retention in bare, porous, low-density ice. Direct measurements of ice surface runoff will improve climate/SMB models, and incorporating remotely sensed IDCs will aid coupling of SMB with ice dynamics and subglacial systems. PMID:29208716
NASA Astrophysics Data System (ADS)
Reitman, N. G.; Briggs, R.; Gold, R. D.; DuRoss, C. B.
2015-12-01
Post-earthquake, field-based assessments of surface displacement commonly underestimate offsets observed with remote sensing techniques (e.g., InSAR, image cross-correlation) because they fail to capture the total deformation field. Modern earthquakes are readily characterized by comparing pre- and post-event remote sensing data, but historical earthquakes often lack pre-event data. To overcome this challenge, we use historical aerial photographs to derive pre-event digital surface models (DSMs), which we compare to modern, post-event DSMs. Our case study focuses on resolving on- and off-fault deformation along the Lost River fault that accompanied the 1983 M6.9 Borah Peak, Idaho, normal-faulting earthquake. We use 343 aerial images from 1952-1966 and vertical control points selected from National Geodetic Survey benchmarks measured prior to 1983 to construct a pre-event point cloud (average ~ 0.25 pts/m2) and corresponding DSM. The post-event point cloud (average ~ 1 pt/m2) and corresponding DSM are derived from WorldView 1 and 2 scenes processed with NASA's Ames Stereo Pipeline. The point clouds and DSMs are coregistered using vertical control points, an iterative closest point algorithm, and a DSM coregistration algorithm. Preliminary results of differencing the coregistered DSMs reveal a signal spanning the surface rupture that is consistent with tectonic displacement. Ongoing work is focused on quantifying the significance of this signal and error analysis. We expect this technique to yield a more complete understanding of on- and off-fault deformation patterns associated with the Borah Peak earthquake along the Lost River fault and to help improve assessments of surface deformation for other historical ruptures.
NASA Astrophysics Data System (ADS)
van Dokkum, Pieter
2016-10-01
We are obtaining deep, wide field images of nearby galaxies with the Dragonfly Telephoto Array. This telescope is optimized for low surface brightness imaging, and we are finding many low surface brightness objects in the Dragonfly fields. In Cycle 22 we obtained ACS imaging for 7 galaxies that we had discovered in a Dragonfly image of the galaxy M101. Unexpectedly, the ACS data show that only 3 of the galaxies are members of the M101 group, and the other 4 are very large Ultra Diffuse Galaxies (UDGs) at much greater distance. Building on our Cycle 22 program, here we request ACS imaging for 23 newly discovered low surface brightness objects in four Dragonfly fields centered on the galaxies NGC 1052, NGC 1084, NGC 3384, and NGC 4258. The immediate goals are to construct the satellite luminosity functions in these four fields and to constrain the number density of UDGs that are not in rich clusters. More generally, this complete sample of extremely low surface brightness objects provides the first systematic insight into galaxies whose brightness peaks at >25 mag/arcsec^2.
MAGNETIC FLUX TRANSPORT AND THE LONG-TERM EVOLUTION OF SOLAR ACTIVE REGIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ugarte-Urra, Ignacio; Upton, Lisa; Warren, Harry P.
2015-12-20
With multiple vantage points around the Sun, Solar Terrestrial Relations Observatory (STEREO) and Solar Dynamics Observatory imaging observations provide a unique opportunity to view the solar surface continuously. We use He ii 304 Å data from these observatories to isolate and track ten active regions and study their long-term evolution. We find that active regions typically follow a standard pattern of emergence over several days followed by a slower decay that is proportional in time to the peak intensity in the region. Since STEREO does not make direct observations of the magnetic field, we employ a flux-luminosity relationship to infermore » the total unsigned magnetic flux evolution. To investigate this magnetic flux decay over several rotations we use a surface flux transport model, the Advective Flux Transport model, that simulates convective flows using a time-varying velocity field and find that the model provides realistic predictions when information about the active region's magnetic field strength and distribution at peak flux is available. Finally, we illustrate how 304 Å images can be used as a proxy for magnetic flux measurements when magnetic field data is not accessible.« less
NASA Astrophysics Data System (ADS)
Tanabe, Hiroshi; Koike, Hideya; Hatano, Hironori; Hayashi, Takumi; Cao, Qinghong; Himeno, Shunichi; Kaneda, Taishi; Akimitsu, Moe; Sawada, Asuka; Ono, Yasushi
2017-10-01
A new type of high-throughput/high-resolution 96CH ion Doppler tomography diagnostics has been developed using ``multi-slit'' spectroscopy technique for detailed investigation of fine structure formation during high guide field magnetic reconnection. In the last three years, high field merging experiment in MAST pioneered new frontiers of reconnection heating: formation of highly peaked structure around X-point in high guide field condition (Bt > 0.3 T), outflow dissipation under the influence of better plasma confinement to form high temperature ring structure which aligns with closed flux surface of toroidal plasma, and interaction between ion and electron temperature profile during transport/confinement phase to form triple peak structure (τeiE 4 ms). To investigate more detailed mechanism with in-situ magnetic measurement, the university of Tokyo starts the upgrade of plasma parameters and spatial resolution of optical diagnostics as in MAST. Now, a new type of high-throughput/high-resolution 96CH ion Doppler tomography diagnostics system construction has been completed and it successfully resolved fine structure of ion heating downstream, aligned with closed flux surface formed by reconnected field. This work was supported by JSPS KAKENHI Grant Numbers 15H05750, 15K14279 and 17H04863.
High quality optically polished aluminum mirror and process for producing
NASA Technical Reports Server (NTRS)
Lyons, III, James J. (Inventor); Zaniewski, John J. (Inventor)
2005-01-01
A new technical advancement in the field of precision aluminum optics permits high quality optical polishing of aluminum monolith, which, in the field of optics, offers numerous benefits because of its machinability, lightweight, and low cost. This invention combines diamond turning and conventional polishing along with india ink, a newly adopted material, for the polishing to accomplish a significant improvement in surface precision of aluminum monolith for optical purposes. This invention guarantees the precise optical polishing of typical bare aluminum monolith to surface roughness of less than about 30 angstroms rms and preferably about 5 angstroms rms while maintaining a surface figure accuracy in terms of surface figure error of not more than one-fifteenth of wave peak-to-valley.
High quality optically polished aluminum mirror and process for producing
NASA Technical Reports Server (NTRS)
Lyons, III, James J. (Inventor); Zaniewski, John J. (Inventor)
2002-01-01
A new technical advancement in the field of precision aluminum optics permits high quality optical polishing of aluminum monolith, which, in the field of optics, offers numerous benefits because of its machinability, lightweight, and low cost. This invention combines diamond turning and conventional polishing along with india ink, a newly adopted material, for the polishing to accomplish a significant improvement in surface precision of aluminum monolith for optical purposes. This invention guarantees the precise optical polishing of typical bare aluminum monolith to surface roughness of less than about 30 angstroms rms and preferably about 5 angstroms rms while maintaining a surface figure accuracy in terms of surface figure error of not more than one-fifteenth of wave peak-to-valley.
Large magnetoresistance and Fermi surface study of Sb2Se2Te single crystal
NASA Astrophysics Data System (ADS)
Shrestha, K.; Marinova, V.; Graf, D.; Lorenz, B.; Chu, C. W.
2017-09-01
We have studied the magnetotransport properties of a Sb2Se2Te single crystal. Magnetoresistance (MR) is maximum when the magnetic field is perpendicular to the sample surface and reaches a value of 1100% at B = 31 T with no sign of saturation. MR shows Shubnikov de Haas (SdH) oscillations above B = 15 T. The frequency spectrum of SdH oscillations consists of three distinct peaks at α = 32 T, β = 80 T, and γ = 117 T indicating the presence of three Fermi surface pockets. Among these frequencies, β is the prominent peak in the frequency spectrum of SdH oscillations measured at different tilt angles of the sample with respect to the magnetic field. From the angle dependence β and Berry phase calculations, we have confirmed the trivial topology of the β-pocket. The cyclotron masses of charge carriers, obtained by using the Lifshitz-Kosevich formula, are found to be mβ*=0.16mo and
Mount Everest region as seen from the STS-66 orbiter Atlantis
1994-11-14
STS066-124-059 (3-14 Nov. 1994) --- Mount Everest region, Nepal and China. Low morning Sun highlights Mount Everest (the highest mountain in the world at 8,848 meters), Cho Oyu (8,153 meters) to the northwest, and other peaks of "The Roof of the World". New snow seems to be confined to the highest peaks. Abundant details of glacier surfaces, including moraines, crevasse fields, and ice falls are displayed for study.
HIGH FIELD Q-SLOPE AND THE BAKING EFFECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciovati, Gianluigi
The performance of SRF cavities made of bulk Nb at high fields (peak surface magnetic field greater than about 90 mT) is characterized by exponentially increasing RF losses (high-field Q-slope), in the absence of field emission, which are often mitigated by a low temperature (100-140 °C, 12-48h) baking. In this contribution, recent experimental results and phenomenological models to explain this effect will be briefly reviewed. New experimental results on the high-field Q-slope will be presented for cavities that had been heat treated at high temperature in the presence of a small partial pressure of nitrogen. Improvement of the cavity performancesmore » have been obtained, while surface analysis measurements on Nb samples treated with the cavities revealed significantly lower hydrogen concentration than for samples that followed standard cavity treatments.« less
Magnetic Field-Dependent Magneto-Optical Kerr Effect in [(GeTe)2(Sb2Te3)1]8 Topological Superlattice
NASA Astrophysics Data System (ADS)
Bang, Do; Awano, Hiroyuki; Saito, Yuta; Tominaga, Junji
2016-05-01
We studied the magnetic field dependence of magneto-optical Kerr rotation of the [(GeTe)2/(Sb2Te3)1]8 topological superlattice at different temperatures (from 300 K to 440 K). At low temperatures (less than 360 K), the Kerr signal was within noise level. However, large Kerr rotation peaks with a mirror symmetric loop were at high temperatures (higher than 360 K). The temperature dependence of the observed Kerr signal can be attributed to the breaking of spatial inversion symmetry, which induces a narrow gap in surface state bands due to the Ge atomic layer movement-induced phase transition in the superlattice. We found that the resonant field of each Kerr peak gradually decreases with increasing temperature. On the other hand, the phase transition from a high temperature phase to a low temperature one could be controlled by external magnetic fields.
Östlund, Karl; Samuelsson, Christer; Mattsson, Sören; Rääf, Christopher L
2017-02-01
The peak-to-valley (PTV) method was investigated experimentally comparing PTV ratios for three HPGe detectors, with complementary Monte Carlo simulations of scatter in air for larger source-detector distances. The measured PTV ratios for 137Cs in air were similar for three different detectors for incident angles between 0 and 90°. The study indicated that the PTV method can differentiate between surface and shallow depth sources if the detector field of view is limited to a radius of less than 3.5m. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
From, Milton; Cheng, Li; Altounian, Zaven
2001-03-01
We have measured the Brillouin Light Scattering (BLS) spectra of [Fe/Ag] x N sputtered multilayers as a function of N, the number of bilayers in the multilayer. The thickness of the Fe and Ag layers was 1.5 nm and data was collected for samples with N = 5, 10, 25, and 40.The BLS instrument used was a 4-pass Fabry-Perot interferometer operated in the back-scattering geometry with 514.5 nm laser light. The number of peaks seen in the BLS spectra are seen to increase with N. Two peaks are seen for N=5, and four peaks are seen for N=10 and 25. For N = 40, we see two broad manifold peaks and a sharp surface mode peak. This N dependence and the detailed dependence of peak frequency on applied magnetic field are in good agreement with theoretical calculations.
Laser and sunlight-induced fluorescence from chlorophyll pigments
NASA Technical Reports Server (NTRS)
Kim, H. H.; Brown, K. S.
1986-01-01
Fluorescence properties of chlorophyll pigment bearing plant foliage utilizing a 337 nm nitrogen laser and integrating sphere were studied. Measured yields, in terms of number of photons emitted per 100 photons absorbed, range from 1.5 to 0.1 for the 685 nm peak, and from 4.2 to 0.2 for the 730 nm peak. Decreasing order of magnitude puts herbaceous leaves ahead of all others followed by broad leaves of hardwoods and coniferous needles. Meaningful quantization for the fluorescence peaks at 430 and 530 nm could not be attained. Passive monitoring of these fluorescence peaks is successful only for the 685 nm from the ocean surface. Field data show the reflectance changes at 685 nm due to the algae presence amounts to 1% at most.
NASA Astrophysics Data System (ADS)
Takata, J.; Yang, H.; Cheng, K. S.
2017-12-01
AR Scorpii is an intermediate polar binary system composed of a magnetic white dwarf (WD) and an M-type star and shows nonthermal, pulsed, and highly linearly polarized emission. The radio/optical emission modulates with the WD’s spin and shows the double-peak structure in the light curves. In this paper, we discuss a possible scenario for the radiation mechanism of AR Scorpii. The magnetic interaction on the surface of the companion star produces an outflow from the companion star, the heating of the companion star surface, and the acceleration of electrons to a relativistic energy. The accelerated electrons, whose typical Lorentz factor is ∼50–100, from the companion star move along the magnetic field lines toward the WD surface. The electrons injected with the pitch angle of \\sin {θ }p,0> 0.05 are subject to the magnetic mirror effect and are trapped in the closed magnetic field line region. We find that the emission from the first magnetic mirror points mainly contributes to the observed pulsed emission and the formation of the double-peak structure in the light curve. For the inclined rotator, the pulse peak in the calculated light curve shifts the position in the spin phase, and a Fourier analysis exhibits a beat frequency feature, which are consistent with the optical/UV observations. The pulse profile also evolves with the orbital phase owing to the effect of the viewing geometry. The model also interprets the global features of the observed spectral energy distribution in radio to X-ray energy bands. We also discuss the curvature radiation and the inverse-Compton scattering process in the outer gap accelerator of the WD in AR Scorpii and the possibility of the detection by future high-energy missions.
USB flow characteristics related to noise generation
NASA Technical Reports Server (NTRS)
Brown, W. H.; Reddy, N. N.
1976-01-01
The effects of nozzle and flap geometry on upper surface blown flow field characteristics related to noise generation were examined experimentally using static models. Flow attachment and spreading characteristics were observed using flow visualization techniques. Velocity and turbulence profiles in the trailing edge wake were measured using hot-wire anemometry, and the effects of the geometric variables on peak velocity and turbulence intensity were determined. It is shown that peak trailing edge velocity is a function of the ratio of flow length to modified hydraulic diameter.
Interference patterns of a horizontal electric dipole over layered dielectric media.
NASA Technical Reports Server (NTRS)
Tsang, L.; Kong, J. A.; Simmons, G.
1973-01-01
Interference patterns for electromagnetic fields due to a subsurface reflector below a layered lossy dielectric are calculated with the geometrical optics approximation for use in interpreting data to be collected on the moon by Apollo 17 as well as data currently being obtained on terrestrial glaciers. The radiating antenna lies on the surface. All six field components are calculated and studied. For the endfire solutions, the peak of the first reflected wave is found to be different from that of the broadside ones. To facilitate a physical discussion, we plotted the radiation patterns due to the antenna on the surface.
NASA Astrophysics Data System (ADS)
Yoshihara, Akira; Maeda, Toshiteru; Kawamura, Satoshi; Nakamura, Shintaro; Nojima, Tsutomu; Takeda, Yoshihiko; Ohnuma, Shigehiro
2018-04-01
A systematic study of Brillouin light scattering (BLS) from superparamagnetic (SPM) and ferromagnetic (FM) Co-Al-O granular films was performed under magnetic fields of up to 4.6 kOe in the standard backscattering geometry at room temperature. The SPM and FM boundary, defined as the Co composition at which the exchange field vanishes, was found to be located at xC(Co) = 59.3 ± 1.3 at. %. From FM films we observed a pair of bulk spin-wave peaks on both the positive- and negative-frequency sides and a surface localized Damon-Eshbach peak only on the positive-frequency side under the present scattering conditions. From SPM films, a pair of broader but propagative excitation peaks with asymmetric intensity were observed on both frequency sides in a spectrum. We performed a numerical analysis of the BLS spectrum by employing the theory developed by Camley and Mills (CM) while retaining dipole and exchange couplings for FM films and only dipole coupling for SPM films. The CM theory successfully reproduced the observed spectrum for both SPM and FM films. The SPM spectrum exhibits a singlet-doublet peak structure similarly to an FM SW spectrum. The SPM peak stems from the dipole-coupled larger-amplitude precession motion of the granule magnetic moment around the external-field-induced magnetization.
Improvements of high-power diode laser line generators open up new application fields
NASA Astrophysics Data System (ADS)
Meinschien, J.; Bayer, A.; Bruns, P.; Aschke, L.; Lissotschenko, V. N.
2009-02-01
Beam shaping improvements of line generators based on high power diode lasers lead to new application fields as hardening, annealing or cutting of various materials. Of special interest is the laser treatment of silicon. An overview of the wide variety of applications is presented with special emphasis of the relevance of unique laser beam parameters like power density and beam uniformity. Complementary to vision application and plastic processing, these new application markets become more and more important and can now be addressed by high power diode laser line generators. Herewith, a family of high power diode laser line generators is presented that covers this wide spectrum of application fields with very different requirements, including new applications as cutting of silicon or glass, as well as the beam shaping concepts behind it. A laser that generates a 5m long and 4mm wide homogeneous laser line is shown with peak intensities of 0.2W/cm2 for inspection of railway catenaries as well as a laser that generates a homogeneous intensity distribution of 60mm x 2mm size with peak intensities of 225W/cm2 for plastic processing. For the annealing of silicon surfaces, a laser was designed that generates an extraordinary uniform intensity distribution with residual inhomogeneities (contrast ratio) of less than 3% over a line length of 11mm and peak intensities of up to 75kW/cm2. Ultimately, a laser line is shown with a peak intensity of 250kW/cm2 used for cutting applications. Results of various application tests performed with the above mentioned lasers are discussed, particularly the surface treatment of silicon and the cutting of glass.
Wang, Luojia; Gu, Ying; Chen, Hongyi; Zhang, Jia-Yu; Cui, Yiping; Gerardot, Brian D.; Gong, Qihuang
2013-01-01
Surface plasmons with ultrasmall optical mode volume and strong near field enhancement can be used to realize nanoscale light-matter interaction. Combining surface plasmons with the quantum system provides the possibility of nanoscale realization of important quantum optical phenomena, including the electromagnetically induced transparency (EIT), which has many applications in nonlinear quantum optics and quantum information processing. Here, using a custom-designed resonant plasmon nanocavity, we demonstrate polarized position-dependent linewidth-controllable EIT spectra at the nanoscale. We analytically obtain the double coherent population trapping conditions in a double-Λ quantum system with crossing damping, which give two transparent points in the EIT spectra. The linewidths of the three peaks are extremely sensitive to the level spacing of the excited states, the Rabi frequencies and detunings of pump fields, and the Purcell factors. In particular the linewidth of the central peak is exceptionally narrow. The hybrid system may have potential applications in ultra-compact plasmon-quantum devices. PMID:24096943
NASA Astrophysics Data System (ADS)
Ivanov, O. A.; Kuzikov, S. V.; Vikharev, A. A.; Vikharev, A. L.; Lobaev, M. A.
2017-10-01
We propose a novel design of the barrier window for the output of microwave radiation at high peak and average power levels. A window based on a plate of polycrystalline CVD diamond with thin (nanometer-thick) boron-doped layers with increased conductivity is considered. Such a window, which retains the low radiation loss due to the small total thickness of the conductive layers and the high thermal conductivity inherent in diamond, prevents accumulation of a static charge on its surface, on the one hand, and allows one to produce a static electric field on the surface of the doped layer, which impedes the development of a multipactor discharge, on the other hand. In this case, a high level of the power of the transmitted radiation and a large passband width are ensured by choosing the configuration of the field in the form of a traveling wave inside the window.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seyidov, MirHasan Yu., E-mail: smirhasan@gyte.edu.tr; Suleymanov, Rauf A.; Institute of Physics Azerbaijan National Academy of Sciences, AZ-1143 Baku
2014-12-07
The strong enhancement, by several orders of magnitude, of the excitonic peak within the photoconductivity spectrum of TlGaSe{sub 2} semiconductor was observed. The samples were polarized in external dc electric field, which was applied prior to the measurements. Due to the accumulation of charges near the surface, an internal electric field was formed. Electron-hole pairs that were created after the absorption of light are fallen in and then separated by the built-in electric field, which prevents radiative recombination process.
Attraction of swimming microorganisms by solid surfaces
NASA Astrophysics Data System (ADS)
Lauga, Eric; Berke, Allison; Turner, Linda; Berg, Howard
2007-11-01
Swimming microorganisms such as spermatozoa or bacteria are usually observed to accumulate near surfaces. Here, we report on an experiment aiming at measuring the distribution of smooth-swimming E. coli when moving in a density-matched fluid and between two glass plates. The distribution for the bacteria concentration is found to peak near the glass plates, in agreement with a simple physical model based on the far-field hydrodynamics of swimming cells.
Tuning the surface anisotropy in Fe-doped NiO nanoparticles.
Moura, K O; Lima, R J S; Coelho, A A; Souza-Junior, E A; Duque, J G S; Meneses, C T
2014-01-07
Ni(1-x)FexO nanoparticles have been obtained by the co-precipitation chemical route. X-ray diffraction analyses using Rietveld refinement have shown a slight decrease in the microstrain and mean particle size as a function of the Fe content. The zero-field-cooling (ZFC) and field-cooling (FC) magnetization curves show superparamagnetic behavior at high temperatures and a low temperature peak (at T = 11 K), which is enhanced with increasing Fe concentration. Unusual behavior of the coercive field in the low temperature region and an exchange bias behavior were also observed. A decrease in the Fe concentration induces an increase in the exchange bias field. We argue that these behaviors can be linked with the strengthening of surface anisotropy caused by the incorporation of Fe ions.
Low-Cost Methodology for Skin Strain Measurement of a Flexed Biological Limb.
Lin, Bevin; Moerman, Kevin M; McMahan, Connor G; Pasch, Kenneth A; Herr, Hugh M
2017-12-01
The purpose of this manuscript is to compute skin strain data from a flexed biological limb, using portable, inexpensive, and easily available resources. We apply and evaluate this approach on a person with bilateral transtibial amputations, imaging left and right residual limbs in extended and flexed knee postures. We map 3-D deformations to a flexed biological limb using freeware and a simple point-and-shoot camera. Mean principal strain, maximum shear strain, as well as lines of maximum, minimum, and nonextension are computed from 3-D digital models to inform directional mappings of the strain field for an unloaded residual limb. Peak tensile strains are ∼0.3 on the anterior surface of the knee in the proximal region of the patella, whereas peak compressive strains are ∼ -0.5 on the posterior surface of the knee. Peak maximum shear strains are ∼0.3 on the posterior surface of the knee. The accuracy and precision of this methodology are assessed for a ground-truth model. The mean point location distance is found to be 0.08 cm, and the overall standard deviation for point location difference vectors is 0.05 cm. This low-cost and mobile methodology may prove critical for applications such as the prosthetic socket interface where whole-limb skin strain data are required from patients in the field outside of traditional, large-scale clinical centers. Such data may inform the design of wearable technologies that directly interface with human skin.
NASA Astrophysics Data System (ADS)
Casagrande, D.; Buzzi, O.; Giacomini, A.; Lambert, C.; Fenton, G.
2018-01-01
Natural discontinuities are known to play a key role in the stability of rock masses. However, it is a non-trivial task to estimate the shear strength of large discontinuities. Because of the inherent complexity to access to the full surface of the large in situ discontinuities, researchers or engineers tend to work on small-scale specimens. As a consequence, the results are often plagued by the well-known scale effect. A new approach is here proposed to predict shear strength of discontinuities. This approach has the potential to avoid the scale effect. The rationale of the approach is as follows: a major parameter that governs the shear strength of a discontinuity within a rock mass is roughness, which can be accounted for by surveying the discontinuity surface. However, this is typically not possible for discontinuities contained within the rock mass where only traces are visible. For natural surfaces, it can be assumed that traces are, to some extent, representative of the surface. It is here proposed to use the available 2D information (from a visible trace, referred to as a seed trace) and a random field model to create a large number of synthetic surfaces (3D data sets). The shear strength of each synthetic surface can then be estimated using a semi-analytical model. By using a large number of synthetic surfaces and a Monte Carlo strategy, a meaningful shear strength distribution can be obtained. This paper presents the validation of the semi-analytical mechanistic model required to support the new approach for prediction of discontinuity shear strength. The model can predict both peak and residual shear strength. The second part of the paper lays the foundation of a random field model to support the creation of synthetic surfaces having statistical properties in line with those of the data of the seed trace. The paper concludes that it is possible to obtain a reasonable estimate of peak and residual shear strength of the discontinuities tested from the information from a single trace, without having access to the whole surface.
Vortices and gate-tunable bound states in a topological insulator coupled to superconducting leads
NASA Astrophysics Data System (ADS)
Finck, Aaron; Kurter, C.; Hor, Y. S.; van Harlingen, D. J.
2014-03-01
It has been predicted that zero energy Majorana bound states can be found in the core of vortices within topological superconductors. Here, we report on Andreev spectroscopy measurements of the topological insulator Bi2Se3 with a normal metal lead and one or more niobium leads. The niobium induces superconductivity in the Bi2Se3 through the proximity effect, leading to both signatures of Andreev reflection and a prominent re-entrant resistance effect. When a large magnetic field is applied perpendicular to the surface of the Bi2Se3, we observe multiple abrupt changes in the subgap conductance that are accompanied by sharp peaks in the dynamical resistance. These peaks are very sensitive to changes in magnetic field and disappear at temperatures associated with the critical temperature of the induced superconductivity. The appearance of the transitions and peaks can be tuned by a top gate. At high magnetic fields, we also find evidence of gate-tunable states, which can lead to stable zero-bias conductance peaks. We interpret our results in terms of a transition occurring within the proximity effect region of the topological insulator, likely due to the formation of vortices. We acknowledge support from Microsoft Project Q.
Instability and sound emission from a flow over a curved surface
NASA Technical Reports Server (NTRS)
Maestrello, L.; Parikh, P.; Bayliss, A.
1988-01-01
The growth and decay of a wavepacket convecting in a boundary layer over a concave-convex surface is studied numerically using direct computations of the Navier-Stokes equations. The resulting sound radiation is computed using the linearized Euler equations with the pressure from the Navier-Stokes solution as a time-dependent boundary condition. It is shown that on the concave portion the amplitude of the wavepacket increases and its bandwidth broadens while on the convex portion some of the components in the packet are stabilized. The pressure field decays exponentially away from the surface and then algebraically exhibits a decay characteristic of acoustic waves in two dimensions. The far-field acoustic pressure exhibits a peak at a frequency corresponding to the inflow instability frequency.
AC-electric field dependent electroformation of giant lipid vesicles.
Politano, Timothy J; Froude, Victoria E; Jing, Benxin; Zhu, Yingxi
2010-08-01
Giant vesicles of larger than 5 microm, which have been of intense interest for their potential as drug delivery vehicles and as a model system for cell membranes, can be rapidly formed from a spin-coated lipid thin film under an electric field. In this work, we explore the AC-field dependent electroformation of giant lipid vesicles in aqueous media over a wide range of AC-frequency from 1 Hz to 1 MHz and peak-to-peak field strength from 0.212 V/mm to 40 V/mm between two parallel conducting electrode surfaces. By using fluorescence microscopy, we perform in-situ microscopic observations of the structural evolution of giant vesicles formed from spin-coated lipid films under varied uniform AC-electric fields. The real-time observation of bilayer bulging from the lipid film, vesicle growth and fusing further examine the critical role of AC-induced electroosmotic flow of surrounding fluids for giant vesicle formation. A rich AC-frequency and field strength phase diagram is obtained experimentally to predict the AC-electroformation of giant unilamellar vesicles (GUVs) of l-alpha-phosphatidylcholine, where a weak dependence of vesicle size on AC-frequency is observed at low AC-field voltages, showing decreased vesicle size with a narrowed size distribution with increased AC-frequency. Formation of vesicles was shown to be constrained by an upper field strength of 10 V/mm and an upper AC-frequency of 10 kHz. Within these parameters, giant lipid vesicles were formed predominantly unilamellar and prevalent across the entire electrode surfaces. Copyright 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Cetinkaya, Caglar; Mutlu, Selman; Donmez, Omer; Erol, Ayse
2017-11-01
We report room temperature operation of light emitters based on Al0.08Ga0.92As Gunn devices fabricated in a simple bar geometry with wedged-shaped electrodes. High-speed I-V measurements reveal that, at the threshold of negative differential resistance region at around 3.8 kV/cm, current instabilities, i.e., Gunn oscillations, are created with a 3.8 ns period. Both edge and surface light emission are observed when the device is biased at an electric field of onset of the negative differential resistance (NDR) region at around 3.8 kV/cm and the intensity of the light exponentially increases at applied fields just above NDR threshold likewise in a conventional laser. The origin of the light emission, which has peak wavelength is around 816 nm corresponds to the band-gap energy of Al0.08Ga0.92As, is recombination of electrons and holes generated by impact ionisation process in travelling space charge domains, i.e., Gunn domains. We demonstrate that, with increasing applied field, the amplitude of Gunn domains increases which is a result of the enhanced generation of electrons and holes via impact ionisation. The intensity of the emitted light is observed to be dependent on applied electric field. At low electric fields, light intensity increases linearly then, when applied electric field reaches the onset of NDR region, increases exponentially. Besides, as applied field is increased, full width at half maximum (FWHM) of emitted light decreases to 56.5 nm from 62 nm, evolving into higher selective emission line in wavelength. The light emission from the device is determined to be independent of the polarity of the applied voltage. A comparison of surface emission and edge emission characteristics of the waveguided device are different from each other. Edge emission has higher electroluminescence intensity and better spectral purity than surface emission with well-defined longitudinal modes of Fabry-Pérot cavity, which indicates that, in such a device, lasing action arises from the recombination of excess carriers generated via impact ionisation in travelling Gunn domains. Besides, the edge emission peak of waveguided Al0.08Ga0.92As Gunn device at 4.1 kV/cm is split into two peaks with FWHM of 8 and 6 nm as well as neighbouring sharper minor peaks due to stimulated emission dominates by building-up photons in the cavity. Our results reveal that the proposed Gunn device can be a promising alternative to conventional diode lasers with its simpler design, only one type doped active region and voltage polarity-independent operation, but the duty cycle has to be chosen small enough to make the device operate at room temperature.
Influence of pitting defects on quality of high power laser light field
NASA Astrophysics Data System (ADS)
Ren, Huan; Zhang, Lin; Yang, Yi; Shi, Zhendong; Ma, Hua; Jiang, Hongzhen; Chen, Bo; Yang, XiaoYu; Zheng, Wanguo; Zhu, Rihong
2018-01-01
With the split-step-Fourier-transform method for solving the nonlinear paraxial wave equation, the intensity distribution of the light field when the pits diameter or depth change is obtained by using numerical simulation, include the intensity distribution inside optical element, the beam near-field, the different distances behind the element and the beam far-field. Results show that with the increase of pits diameter or depth, the light field peak intensity and the contrast inside of element corresponding enhancement. The contrast of the intensity distribution of the rear surface of the element will increase slightly. The peak intensity produced by a specific location element downstream of thermal effect will continue to increase, the damage probability in optics placed here is greatly increased. For the intensity distribution of the far-field, increase the pitting diameter or depth will cause the focal spot intensity distribution changes, and the energy of the spectrum center region increase constantly. This work provide a basis for quantitative design and inspection for pitting defects, which provides a reference for the design of optical path arrangement.
General field and office procedures for indirect discharge measurements
Benson, M.A.; Dalrymple, Tate
2001-04-01
The discharge of streams is usually measured by the current-meter method. During flood periods, however, it is frequently impossible or impractical to measure the discharges by this method when they occur. Consequently, many peak discharges must be determined after the passage of the flood by indirect methods, such as slope-area, contracted-opening, flow-over-dam, and flow-through-culvert, rather than by direct current-meter measurement. Indirect methods of determining peak discharge are based on hydraulic equations which relate the discharge to the water-surface profile and the geometry of the channel. A field survey is made after the flood to determine the location and elevation of high-water marks and the characteristics of the channel. Detailed descriptions of the general procedures used in collecting the field data and in computing the discharge are given in this report. Each of the methods requires special procedures described in subsequent chapters.
Anim-Danso, Emmanuel; Zhang, Yu; Dhinojwala, Ali
2013-06-12
Understanding the freezing of salt solutions near solid surfaces is important in many scientific fields. Here we use sum frequency generation (SFG) spectroscopy to study the freezing of a NaCl solution next to a sapphire substrate. During cooling we observe two transitions. The first corresponds to segregation of concentrated brine next to the sapphire surface as we cool the system down to the region where ice and brine phases coexist. At this transition, the intensity of the ice-like peak decreases, suggesting the disruption of hydrogen-bonding by sodium ions. The second transition corresponds to the formation of NaCl hydrates with abrupt changes in both the SFG intensity and the sharpness of spectral peaks. The similarity in the position of the SFG peaks with those observed using IR and Raman spectroscopy indicates the formation of NaCl·2H2O crystals next to the sapphire substrate. The melting temperatures of the hydrates are very similar to those reported for bulk NaCl·2H2O. This study enhances our understanding of nucleation and freezing of salt solutions on solid surfaces and the effects of salt ions on the structure of interfacial ice.
Modulation of electromagnetic local density of states by coupling of surface phonon-polariton
NASA Astrophysics Data System (ADS)
Li, Yao; Zhang, Chao-Jie; Wang, Tong-Biao; Liu, Jiang-Tao; Yu, Tian-Bao; Liao, Qing-Hua; Liu, Nian-Hua
2017-02-01
We studied the electromagnetic local density of state (EM-LDOS) near the surface of a one-dimensional multilayer structure (1DMS) alternately stacked by SiC and Si. EM-LDOS of a semi-infinite bulk appears two intrinsic peaks due to the resonance of surface phonon-polariton (SPhP) in SiC. In contrast with that of SiC bulk, SPhP can exist at the interface of SiC and Si for the 1DMS. The SPhPs from different interfaces can couple together, which can lead to a significant modulation of EM-LDOS. When the component widths of 1DMS are large, the spectrum of EM-LDOS exhibits oscillation behavior in the frequency regime larger than the resonance frequency of SPhP. While the component widths are small, due to the strong coupling of SPhPs, another peak appears in the EM-LDOS spectrum besides the two intrinsic ones. And the position of the new peak move toward high frequency when the width ratio of SiC and Si increases. The influences of distance from the surfaces and period of 1DMS on EM-LDOS have also been studied in detail. The results are helpful in studying the near-field radiative heat transfer and spontaneous emission.
Inelastic Strain and Damage in Surface Instability Tests
NASA Astrophysics Data System (ADS)
Kao, Chu-Shu; Tarokh, Ali; Biolzi, Luigi; Labuz, Joseph F.
2016-02-01
Spalling near a free surface in laboratory experiments on two sandstones was characterized using acoustic emission and digital image correlation. A surface instability apparatus was used to reproduce a state of plane strain near a free surface in a modeled semi-infinite medium subjected to far-field compressive stress. Comparison between AE locations and crack trajectory mapped after the test showed good consistency. Digital image correlation was used to find the displacements in directions parallel (axial direction) and perpendicular (lateral direction) to the free surface at various stages of loading. At a load ratio, LR = current load/peak load, of approximately 30 %, elastic deformation was measured. At 70-80 % LR, the free-face effect started to appear in the displacement contours, especially for the lateral displacement measurements. As the axial compressive stress increased close to peak, extensional lateral strain started to show concentrations associated with localized damage. Continuum damage mechanics was used to describe damage evolution in the surface instability test, and it was shown that a critical value of extensional inelastic strain, on the order of -10-3 for the virgin sandstones, may provide an indicator for determining the onset of surface spalling.
Magnetic-flutter-induced pedestal plasma transport
NASA Astrophysics Data System (ADS)
Callen, J. D.; Hegna, C. C.; Cole, A. J.
2013-11-01
Plasma toroidal rotation can limit reconnection of externally applied resonant magnetic perturbation (RMP) fields δB on rational magnetic flux surfaces. Hence it causes the induced radial perturbations δBρ to be small there, thereby inhibiting magnetic island formation and stochasticity at the top of pedestals in high (H-mode) confinement tokamak plasmas. However, the δBρs induced by RMPs increase away from rational surfaces and are shown to induce significant sinusoidal radial motion (flutter) of magnetic field lines with a radial extent that varies linearly with δBρ and inversely with distance from the rational surface because of the magnetic shear. This produces a radial electron thermal diffusivity that is (1/2)(δBρ/B0)2 times a kinetically derived, electron-collision-induced, magnetic-shear-reduced, effective parallel electron thermal diffusivity in the absence of magnetic stochasticity. These low collisionality flutter-induced transport processes and thin magnetic island effects are shown to be highly peaked in the vicinity of rational surfaces at the top of low collisionality pedestals. However, the smaller but finite level of magnetic-flutter-induced electron heat transport midway between rational surfaces is the primary factor that determines the electron temperature difference between rational surfaces at the pedestal top. The magnetic-flutter-induced non-ambipolar electron density transport can be large enough to push the plasma toward an electron density transport root. Requiring ambipolar density transport is shown to determine the radial electric field, the plasma toroidal rotation (via radial force balance), a reduced electron thermal diffusivity and increased ambipolar density transport in the pedestal. At high collisionality the various flutter effects are less strongly peaked at rational surfaces and generally less significant. They are thus less likely to exhibit flutter-induced resonant behaviour and transition toward an electron transport root. Magnetic-flutter-induced plasma transport processes provide a new paradigm for developing an understanding of how RMPs modify the pedestal structure to stabilize peeling-ballooning modes and thereby suppress edge localized modes in low collisionality tokamak H-mode plasmas.
NASA Technical Reports Server (NTRS)
Hollis, Brian R.; Hollingsworth, Kevin E.
2017-01-01
A wind tunnel test program was conducted to obtain aeroheating environment data on Hypersonic Inflatable Aerodynamic Decelerator aeroshells with flexible thermal protection systems. Data were obtained on a set of rigid wind tunnel models with surface deflection patterns of various heights that simulated a range of potential in-flight aeroshell deformations. Wind tunnel testing was conducted at Mach 6 at unit Reynolds numbers from 2.1 × 10(exp 6)/ft to 8.3 × 10(exp 6)/ft and angles of attack from 0 deg to 18 deg. Boundary-layer transition onset and global surface heating distribution measurements were performed using phosphor thermography and flow field images were obtained through schlieren photography. Surface deflections were found to both promote early transition of the boundary layer and to augment heating levels for both laminar and turbulent flows. A complimentary computational flow field study was also performed to provide heating predictions for comparison with the measurements as well as boundary layer flow field properties for use in correlating the data. Correlations of the wind tunnel data were developed to predict deflection effects on boundary layer transition and surface heating and were applied to both the wind tunnel test conditions and to the trajectory of NASA's successful IRVE-3 flight test. In general, the correlations produced at least qualitative agreement with the wind tunnel data, although the heating levels were underpredicted for some of the larger surface deflections. For the flight conditions, the correlations suggested that peak heating levels on the leeward side conical flank of the IRVE-3 vehicle may have exceeded those at nose for times late in the trajectory after the peak heating time point. However, the flight estimates were based on a conservative assumption of surface deflection magnitude (i.e., larger) than likely was produced in flight.
Tomographic reconstruction of circularly polarized high-harmonic fields: 3D attosecond metrology
Chen, Cong; Tao, Zhensheng; Hernández-García, Carlos; Matyba, Piotr; Carr, Adra; Knut, Ronny; Kfir, Ofer; Zusin, Dimitry; Gentry, Christian; Grychtol, Patrik; Cohen, Oren; Plaja, Luis; Becker, Andreas; Jaron-Becker, Agnieszka; Kapteyn, Henry; Murnane, Margaret
2016-01-01
Bright, circularly polarized, extreme ultraviolet (EUV) and soft x-ray high-harmonic beams can now be produced using counter-rotating circularly polarized driving laser fields. Although the resulting circularly polarized harmonics consist of relatively simple pairs of peaks in the spectral domain, in the time domain, the field is predicted to emerge as a complex series of rotating linearly polarized bursts, varying rapidly in amplitude, frequency, and polarization. We extend attosecond metrology techniques to circularly polarized light by simultaneously irradiating a copper surface with circularly polarized high-harmonic and linearly polarized infrared laser fields. The resulting temporal modulation of the photoelectron spectra carries essential phase information about the EUV field. Utilizing the polarization selectivity of the solid surface and by rotating the circularly polarized EUV field in space, we fully retrieve the amplitude and phase of the circularly polarized harmonics, allowing us to reconstruct one of the most complex coherent light fields produced to date. PMID:26989782
DOE Office of Scientific and Technical Information (OSTI.GOV)
G. Ciovati, G. Myneni, F. Stevie, P. Maheshwari, D. Griffis
The performance of superconducting radio-frequency (SRF) cavities made of bulk Nb at high fields (peak surface magnetic field greater than about 90 mT) is characterized by exponentially increasing rf losses (high-field Q slope), in the absence of field emission, which are often mitigated by low-temperature (100–140°C, 12–48 h) baking. In this contribution, recent experimental results and phenomenological models to explain this effect will be briefly reviewed. New experimental results on the high-field Q slope will be presented for cavities that had been heat treated in a vacuum furnace at high temperature without subsequent chemical etching. These studies are aimed atmore » understanding the role of hydrogen on the high-field Q slope and at the passivation of the Nb surface during heat treatment. Improvement of the cavity performances, particularly of the cavities’ quality factor, have been obtained following the high-temperature heat treatments, while secondary ion mass spectroscopy surface analysis measurements on Nb samples treated with the cavities revealed significantly lower hydrogen concentration than for samples that followed standard cavity treatments.« less
G. Ciovati; Myneni, G.; Stevie, F.; ...
2010-02-22
Here, the performance of superconducting radio-frequency (SRF) cavities made of bulk Nb at high fields (peak surface magnetic field greater than about 90 mT) is characterized by exponentially increasing rf losses (high-field Q-slope), in the absence of field emission, which are often mitigated by low temperature (100-140 °C, 12-48 h) baking. In this contribution, recent experimental results and phenomenological models to explain this effect will be briefly reviewed. New experimental results on the high-field Q-slope will be presented for cavities that had been heat treated in a vacuum furnace at high temperature without subsequent chemical etching. These studies are aimedmore » at understanding the role of hydrogen on the high-field Q-slope and at the passivation of the Nb surface during heat treatment. Improvement of the cavity performances, particularly of the cavities’ quality factor, have been obtained following the high temperature heat-treatments, while SIMS surface analysis measurements on Nb samples treated with the cavities revealed significantly lower hydrogen concentration than for samples that followed standard cavity treatments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
G. Ciovati; Myneni, G.; Stevie, F.
Here, the performance of superconducting radio-frequency (SRF) cavities made of bulk Nb at high fields (peak surface magnetic field greater than about 90 mT) is characterized by exponentially increasing rf losses (high-field Q-slope), in the absence of field emission, which are often mitigated by low temperature (100-140 °C, 12-48 h) baking. In this contribution, recent experimental results and phenomenological models to explain this effect will be briefly reviewed. New experimental results on the high-field Q-slope will be presented for cavities that had been heat treated in a vacuum furnace at high temperature without subsequent chemical etching. These studies are aimedmore » at understanding the role of hydrogen on the high-field Q-slope and at the passivation of the Nb surface during heat treatment. Improvement of the cavity performances, particularly of the cavities’ quality factor, have been obtained following the high temperature heat-treatments, while SIMS surface analysis measurements on Nb samples treated with the cavities revealed significantly lower hydrogen concentration than for samples that followed standard cavity treatments.« less
Broad ion energy distributions in helicon wave-coupled helium plasma
NASA Astrophysics Data System (ADS)
Woller, K. B.; Whyte, D. G.; Wright, G. M.
2017-05-01
Helium ion energy distributions were measured in helicon wave-coupled plasmas of the dynamics of ion implantation and sputtering of surface experiment using a retarding field energy analyzer. The shape of the energy distribution is a double-peak, characteristic of radiofrequency plasma potential modulation. The broad distribution is located within a radius of 0.8 cm, while the quartz tube of the plasma source has an inner radius of 2.2 cm. The ion energy distribution rapidly changes from a double-peak to a single peak in the radius range of 0.7-0.9 cm. The average ion energy is approximately uniform across the plasma column including the double-peak and single peak regions. The widths of the broad distribution, ΔE , in the wave-coupled mode are large compared to the time-averaged ion energy, ⟨E ⟩. On the axis (r = 0), ΔE / ⟨E ⟩ ≲ 3.4, and at a radius near the edge of the plasma column (r = 2.2 cm), ΔE / ⟨E ⟩ ˜ 1.2. The discharge parameter space is scanned to investigate the effects of the magnetic field, input power, and chamber fill pressure on the wave-coupled mode that exhibits the sharp radial variation in the ion energy distribution.
Resonances in the Field-Angle-Resolved Thermal Conductivity of CeCoIn 5
Kim, Duk Y.; Lin, Shi -Zeng; Weickert, Franziska; ...
2017-05-12
Here, the thermal conductivity measurement in a rotating magnetic field is a powerful probe of the structure of the superconducting energy gap. We present high-precision measurements of the low-temperature thermal conductivity in the unconventional heavy-fermion superconductor CeCoIn 5, with the heat current J along the nodal [110] direction of its d x2–y2 order parameter and the magnetic field up to 7 T rotating in the ab plane. In contrast to the smooth oscillations found previously for J∥[100], we observe a sharp resonancelike peak in the thermal conductivity when the magnetic field is also in the [110] direction, parallel to themore » heat current. We explain this peak qualitatively via a model of the heat transport in a d-wave superconductor. In addition, we observe two smaller but also very sharp peaks in the thermal conductivity for the field directions at angles Θ≈±33° with respect to J. The origin of the observed resonances at Θ≈±33° at present defies theoretical explanation. The challenge of uncovering their source will dictate exploring theoretically more complex models, which might include, e.g., fine details of the Fermi surface, Andreev bound vortex core states, a secondary superconducting order parameter, and the existence of gaps in spin and charge excitations.« less
Resonances in the Field-Angle-Resolved Thermal Conductivity of CeCoIn 5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Duk Y.; Lin, Shi -Zeng; Weickert, Franziska
Here, the thermal conductivity measurement in a rotating magnetic field is a powerful probe of the structure of the superconducting energy gap. We present high-precision measurements of the low-temperature thermal conductivity in the unconventional heavy-fermion superconductor CeCoIn 5, with the heat current J along the nodal [110] direction of its d x2–y2 order parameter and the magnetic field up to 7 T rotating in the ab plane. In contrast to the smooth oscillations found previously for J∥[100], we observe a sharp resonancelike peak in the thermal conductivity when the magnetic field is also in the [110] direction, parallel to themore » heat current. We explain this peak qualitatively via a model of the heat transport in a d-wave superconductor. In addition, we observe two smaller but also very sharp peaks in the thermal conductivity for the field directions at angles Θ≈±33° with respect to J. The origin of the observed resonances at Θ≈±33° at present defies theoretical explanation. The challenge of uncovering their source will dictate exploring theoretically more complex models, which might include, e.g., fine details of the Fermi surface, Andreev bound vortex core states, a secondary superconducting order parameter, and the existence of gaps in spin and charge excitations.« less
The Influence of Forward Flight on Propeller Noise
NASA Technical Reports Server (NTRS)
Magliozzi, B.
1977-01-01
The effect of flight on blade surface pressures and propeller noise was reported. There were significant differences in blade surface pressures and far-field noise between static and flight conditions. The static data showed many high-intensity, tone-like peaks whereas the flight data was generally free from tones. The turbulence ingested by the propeller operating statically was dominated by long, thin eddies. In flight the scale of the turbulence was greately reduced from that observed statically.
Forward Scattering from Fetch-Limited and Swell-Contaminated Sea Surfaces
1992-10-01
limited wind fields, and the global/re- Hasselman 5 et al. have proposed that a constant value for y gional deep water wave model7 ( DWAVE ) for surfaces gen...where it is difficult to define the Pierson-Moskowitz or JONSWAP descriptions, DWAVE fetch, the peak frequency of the observed spectrum can be...generating winds, the DWAVE model dependence of the spectrum on azimuthal variation, it is ex- has been employed. This model numerically calculates the
Dynamic temperature fields under Mars landing sites and implications for supporting microbial life.
Ulrich, Richard; Kral, Tim; Chevrier, Vincent; Pilgrim, Robert; Roe, Larry
2010-01-01
While average temperatures on Mars may be too low to support terrestrial life-forms or aqueous liquids, diurnal peak temperatures over most of the planet can be high enough to provide for both, down to a few centimeters beneath the surface for some fraction of the time. A thermal model was applied to the Viking 1, Viking 2, Pathfinder, Spirit, and Opportunity landing sites to demonstrate the dynamic temperature fields under the surface at these well-characterized locations. A benchmark temperature of 253 K was used as a lower limit for possible metabolic activity, which corresponds to the minimum found for specific terrestrial microorganisms. Aqueous solutions of salts known to exist on Mars can provide liquid solutions well below this temperature. Thermal modeling has shown that 253 K is reached beneath the surface at diurnal peak heating for at least some parts of the year at each of these landing sites. Within 40 degrees of the equator, 253 K beneath the surface should occur for at least some fraction of the year; and, within 20 degrees , it will be seen for most of the year. However, any life-form that requires this temperature to thrive must also endure daily excursions to far colder temperatures as well as periods of the year where 253 K is never reached at all.
Model Prediction Results for 2007 Ultrasonic Benchmark Problems
NASA Astrophysics Data System (ADS)
Kim, Hak-Joon; Song, Sung-Jin
2008-02-01
The World Federation of NDE Centers (WFNDEC) has addressed two types of problems for the 2007 ultrasonic benchmark problems: prediction of side-drilled hole responses with 45° and 60° refracted shear waves, and effects of surface curvatures on the ultrasonic responses of flat-bottomed hole. To solve this year's ultrasonic benchmark problems, we applied multi-Gaussian beam models for calculation of ultrasonic beam fields and the Kirchhoff approximation and the separation of variables method for calculation of far-field scattering amplitudes of flat-bottomed holes and side-drilled holes respectively In this paper, we present comparison results of model predictions to experiments for side-drilled holes and discuss effect of interface curvatures on ultrasonic responses by comparison of peak-to-peak amplitudes of flat-bottomed hole responses with different sizes and interface curvatures.
Unsteady characteristics of a slat-cove flow field
NASA Astrophysics Data System (ADS)
Pascioni, Kyle A.; Cattafesta, Louis N.
2018-03-01
The leading-edge slat of a multielement wing is a significant contributor to the acoustic signature of an aircraft during the approach phase of the flight path. An experimental study of the two-dimensional 30P30N geometry is undertaken to further understand the flow physics and specific noise source mechanisms. The mean statistics from particle image velocimetry (PIV) shows the differences in the flow field with angle of attack, including the interaction between the cove and trailing-edge flow. Phase-locked PIV successfully links narrow-band peaks found in the surface pressure spectrum to shear layer instabilities and also reveals that a bulk cove oscillation at a Strouhal number based on a slat chord of 0.15 exists, indicative of shear layer flapping. Unsteady surface pressure measurements are documented and used to estimate spanwise coherence length scales. A narrow-band frequency prediction scheme is also tested and found to agree well with the data. Furthermore, higher-order spectral analysis suggests that nonlinear effects cause additional peaks to arise in the power spectrum, particularly at low angles of attack.
Potential fields on the ventricular surface of the exposed dog heart during normal excitation.
Arisi, G; Macchi, E; Baruffi, S; Spaggiari, S; Taccardi, B
1983-06-01
We studied the normal spread of excitation on the anterior and posterior ventricular surface of open-chest dogs by recording unipolar electrograms from an array of 1124 electrodes spaced 2 mm apart. The array had the shape of the ventricular surface of the heart. The electrograms were processed by a computer and displayed as epicardial equipotential maps at 1-msec intervals. Isochrone maps also were drawn. Several new features of epicardial potential fields were identified: (1) a high number of breakthrough points; (2) the topography, apparent widths, velocities of the wavefronts and the related potential drop; (3) the topography of positive potential peaks in relation to the wavefronts. Fifteen to 24 breakthrough points were located on the anterior, and 10 to 13 on the posterior ventricular surface. Some were in previously described locations and many others in new locations. Specifically, 3 to 5 breakthrough points appeared close to the atrioventricular groove on the anterior right ventricle and 2 to 4 on the posterior heart aspect; these basal breakthrough points appeared when a large portion of ventricular surface was still unexcited. Due to the presence of numerous breakthrough points on the anterior and posterior aspect of the heart which had not previously been described, the spread of excitation on the ventricular surface was "mosaic-like," with activation wavefronts spreading in all directions, rather than radially from the two breakthrough points, as traditionally described. The positive potential peaks which lay ahead of the expanding wavefronts moved along preferential directions which were probably related to the myocardial fiber direction.
Role of ion hydration for the differential capacitance of an electric double layer.
Caetano, Daniel L Z; Bossa, Guilherme V; de Oliveira, Vinicius M; Brown, Matthew A; de Carvalho, Sidney J; May, Sylvio
2016-10-12
The influence of soft, hydration-mediated ion-ion and ion-surface interactions on the differential capacitance of an electric double layer is investigated using Monte Carlo simulations and compared to various mean-field models. We focus on a planar electrode surface at physiological concentration of monovalent ions in a uniform dielectric background. Hydration-mediated interactions are modeled on the basis of Yukawa potentials that add to the Coulomb and excluded volume interactions between ions. We present a mean-field model that includes hydration-mediated anion-anion, anion-cation, and cation-cation interactions of arbitrary strengths. In addition, finite ion sizes are accounted for through excluded volume interactions, described either on the basis of the Carnahan-Starling equation of state or using a lattice gas model. Both our Monte Carlo simulations and mean-field approaches predict a characteristic double-peak (the so-called camel shape) of the differential capacitance; its decrease reflects the packing of the counterions near the electrode surface. The presence of hydration-mediated ion-surface repulsion causes a thin charge-depleted region close to the surface, which is reminiscent of a Stern layer. We analyze the interplay between excluded volume and hydration-mediated interactions on the differential capacitance and demonstrate that for small surface charge density our mean-field model based on the Carnahan-Starling equation is able to capture the Monte Carlo simulation results. In contrast, for large surface charge density the mean-field approach based on the lattice gas model is preferable.
NASA Technical Reports Server (NTRS)
Rustan, Pedro L., Jr.
1987-01-01
Lightning data obtained by measuring the surface electromagnetic fields on a CV-580 research aircraft during 48 lightning strikes between 1500 and 18,000 feet in central Florida during the summers of 1984 and 1985, and nuclear electromagnetic pulse (NEMP) data obtained by surface electromagnetic field measurements using a 1:74 CV-580 scale model, are presented. From one lightning event, maximum values of 3750 T/s for the time rate of change of the surface magnetic flux density, and 4.7 kA for the peak current, were obtained. From the simulated NEMP test, maximum values of 40,000 T/s for the time rate of change of the surface magnetic flux density, and 90 A/sq m for the total normal current density, were found. The data have application to the development of a military aircraft lightning/NEMP standard.
Grain Size Measurements of Eolian Ripples in Gale Crater, Mars
NASA Astrophysics Data System (ADS)
Weitz, C. M.; Sullivan, R. J., Jr.; Lapotre, M. G. A.; Rowland, S. K.; Edgett, K. S.; Grant, J. A., III; Yingst, R. A.
2017-12-01
The Curiosity rover team has explored several different eolian sand targets in Gale crater, including dunes and ripples. Using Curiosity's Mars Hand Lens Imager (MAHLI), we measured the size of grains on or near ripple crests within dunes, ripple fields, and in isolated ripples. The Barby target (Sol 1184) is on the crest of a ripple on the lower stoss slope of the barchan High dune. Flume Ridge (Sol 1604) and Avery Peak (Sol 1651) are smaller ripples on the Nathan Bridges and Mount Desert Island linear dunes. Schoolhouse Ledge (Sol 1688) is an isolated megaripple not associated with either a dune or ripple field. Enchanted Island (Sol 1751) is a ripple contained within a larger ripple field near the Vera Rubin Ridge. Our results show the grains of the Avery Peak and Flume Ridge targets are mostly 75-150 µm in size and grain motion was observed during each MAHLI imaging sequence. Barby is dominated by 250-450 µm grains assumed to be active based upon the lack of a dust coating, though grain motion was not observed. The Enchanted Island target has slightly larger grains than Barby, with most between 300-500 µm. The grains have some dust aggregates on their surfaces, suggesting they have been less active in recent months or years relative to the ripples examined within the Bagnold dune field. Finally, grains along the crest of Schoolhouse Ledge are the largest, 400-600 µm, and all of the grain surfaces have a thin dust coating, indicating the ripple is not currently active. Some of the ripple crests have similar grain sizes on both the stoss and lee sides (Schoolhouse Ledge, Barby) whereas other ripples showed larger grains concentrated on the stoss side (Enchanted Island, Avery Peak, Flume Ridge). Scuffing by the rover's front wheel revealed both Schoolhouse Ledge and Enchanted Island had coarser grains dominating the ripple surface with finer grains within the ripple interior. In general, the surfaces of active sand ripples have smaller grains compared to the inactive ripples which exhibit an armor of larger grains. Our results indicate grain sizes vary widely depending upon such factors as ripple activity, location along the ripple, ripple size, dune type, and orientation relative to the wind direction.
Optical absorption of carbon-gold core-shell nanoparticles
NASA Astrophysics Data System (ADS)
Wang, Zhaolong; Quan, Xiaojun; Zhang, Zhuomin; Cheng, Ping
2018-01-01
In order to enhance the solar thermal energy conversion efficiency, we propose to use carbon-gold core-shell nanoparticles dispersed in liquid water. This work demonstrates theoretically that an absorbing carbon (C) core enclosed in a plasmonic gold (Au) nanoshell can enhance the absorption peak while broadening the absorption band; giving rise to a much higher solar absorption than most previously studied core-shell combinations. The exact Mie solution is used to evaluate the absorption efficiency factor of spherical nanoparticles in the wavelength region from 300 nm to 1100 nm as well as the electric field and power dissipation profiles inside the nanoparticles at specified wavelengths (mostly at the localized surface plasmon resonance wavelength). The field enhancement by the localized plasmons at the gold surfaces boosts the absorption of the carbon particle, resulting in a redshift of the absorption peak with increased peak height and bandwidth. In addition to spherical nanoparticles, we use the finite-difference time-domain method to calculate the absorption of cubic core-shell nanoparticles. Even stronger enhancement can be achieved with cubic C-Au core-shell structures due to the localized plasmonic resonances at the sharp edges of the Au shell. The solar absorption efficiency factor can exceed 1.5 in the spherical case and reach 2.3 in the cubic case with a shell thickness of 10 nm. Such broadband absorption enhancement is in great demand for solar thermal applications including steam generation.
A 1-MHz 2-D CMUT array for HIFU thermal ablation
NASA Astrophysics Data System (ADS)
Yoon, Hyo-Seon; Vaithilingam, Srikant; Park, Kwan Kyu; Nikoozadeh, Amin; Firouzi, Kamyar; Choe, Jung Woo; Watkins, Ronald D.; Oguz, Huseyin Kagan; Kupnik, Mario; Pauly, Kim Butts; Khuri-Yakub, Pierre
2017-03-01
We developed a fully-populated 2-D capacitive micromachined ultrasonic transducer (CMUT) array for high intensity focused ultrasound (HIFU) treatment. The 2-D CMUT array, which consists of 20 × 20 square CMUT elements with an element-to-element pitch of 1 mm, was designed and fabricated using the thick-buried-oxide (BOX) fabrication process. It was then assembled on a custom interface board that can provide various array configurations depending on the desired applications. In this study, the interface board groups the CMUT array elements into eight channels, based on the phase delay from the element to the targeted focal point at a 20-mm distance from the array surface, which corresponds to an F-number of 1. An 8-channel phase generating system supplies continuous waves with eight different phases to the eight channels of the CMUT array through bias-tees and amplifiers. This array aperture, grouped into eight channels, gives a focusing gain of 6.09 according to field simulation using Field II. Assuming a peak-to-peak pressure of 1 MPa at the surface of the array, our custom temperature simulator predicts successful tissue ablation at the focus. During the measurements, each channel was tuned with a series inductor for an operational frequency of 1 MHz. With a CMUT DC bias of 100 V and a 1-MHz AC input voltage of 55 V, we achieved peak-to-peak output pressures of 173.9 kPa and 568.7 kPa at the array surface and at the focus, respectively. The focusing gain calculated from this measurement is 3.27, which is lower than the simulated gain of 6.09 because of the mutual radiation impedance among the CMUT cells. Further optimization of the operating condition of this array and design improvements for reducing the effect of mutual radiation impedance are currently on-going.
NASA Technical Reports Server (NTRS)
Ray, Terrill W.; Farr, Tom G.; Vanzyl, Jakob J.
1991-01-01
Polarimetric signatures from abandoned circular alfalfa fields in the Manix Basin area of the Mojave desert show systematic changes with length of abandonment. The obliteration of circular planting rows by surface processes could account for the disappearance of bright 'spokes', which seems to be reflection patterns from remnants of the planting rows, with increasing length of abandonment. An observed shift in the location of the maximum L-band copolarization return away from VV, as well as an increase in surface roughness, both occurring with increasing age of abandonment, seems to be attributable to the formation of wind ripple on the relatively vegetationless fields. A Late Pleistocene/Holocene sand bar deposit, which can be identified in the radar images, is probably responsible for the failure of three fields to match the age sequence patterns in roughness and peak shift.
High aperture efficiency symmetric reflector antennas with up to 60 deg field of view
NASA Astrophysics Data System (ADS)
Rappaport, Carey M.; Craig, William P.
1991-03-01
A microwave single-reflector scanning antenna derived from an ellipse (rather than the usual parabola) which gives a much greater field of view is presented. This reflector combines reasonable scanning in one plane with good focusing in the other, and its scanning ability is superior to the torus and other single reflectors because it has much greater aperture efficiency and is thus smaller while having the same performance. The reflector surface is derived in two steps: a fourth-order even polynomial profile curve in the scan plane is found using least squares to minimize the scanned ray errors; then even polynomial terms in x and y that minimize astigmatism for both the unscanned and maximally scanned beams are added to form the three-dimensional surface. Numerical simulations of radiation patterns for a variety of antenna diameter and field-of-view cases give excellent results. The 60 deg scan case with 30-lambda-diameter aperture has only 0.2-dB peak gain deviation from ideal and first sidelobe levels below 14 dB down from peak gain. The 17 deg, 500-lambda case has only 0.8-dB gain variation and -14 to -11 dB sidelobe levels for approximately +/-68 beamwidths of scan, with focal length to aperture diameter ratio equal to about one.
One-Dimensional Analysis of Hall Thruster Operating Modes
2001-08-01
Hall thruster structure with no screens or other control surfaces makes it difficult to understand the interrelationships which, in the end, localize and shape the various plasma regions existing in the accelerating channel. Since the radial magnetic field is usually shaped with a peak near the channel exit, the plasma structure has often been explained as simply a reflection of the magnetic field distribution. However, this is inadequate to explain the plasma dynamics inside the accelerating channel. We develop a macroscopic model gathering reliability and clarity.
Simulated molecular-scale interaction of supercritical fluid mobile and stationary phases.
Siders, Paul D
2017-12-08
In supercritical fluid chromatography, molecules from the mobile phase adsorb on the stationary phase. Stationary-phase alkylsilane-terminated silica surfaces might adsorb molecules at the silica, among the silanes, on a silane layer, or in pore space between surfaces. Mobile phases of carbon dioxide, pure and modified with methanol, and stationary phases were simulated at the molecular scale. Classical atomistic force fields were used in Gibbs-ensemble hybrid Monte Carlo calculations. Excess adsorption of pure carbon dioxide mobile phase peaked at fluid densities of 0.002-0.003Å -3 . Mobile phase adsorption from 7% methanol in carbon dioxide peaked at lower fluid density. Methanol was preferentially adsorbed from the mixed fluid. Surface silanes prevented direct interaction of fluid-phase molecules with silica. Some adsorbed molecules mixed with tails of bonded silanes; some formed layers above the silanes. Much adsorption occurred by filling the space between surfaces in the stationary-phase model. The distribution in the stationary phase of methanol molecules from a modified fluid phase varied with pressure. Copyright © 2017 Elsevier B.V. All rights reserved.
Experimental study of surface plasmon-phonon polaritons in GaAs-based microstructures
NASA Astrophysics Data System (ADS)
Galimov, A. I.; Shalygin, V. A.; Moldavskaya, M. D.; Panevin, V. Yu; Melentyev, G. A.; Artemyev, A. A.; Firsov, D. A.; Vorobjev, L. E.; Klimko, G. V.; Usikova, A. A.; Komissarova, T. A.; Sedova, I. V.; Ivanov, S. V.
2018-03-01
Optical properties of a heavily-doped GaAs epitaxial layer with a regular grating at its surface have been experimentally investigated in the terahertz spectral range. Reflectivity spectra for the layer with a profiled surface drastically differ from those for the as-grown epilayer with a planar surface. For s-polarized radiation, this difference is totally caused by the electromagnetic wave diffraction at the grating. For p-polarized radiation, additional resonant dips arise due to excitation of surface plasmon-phonon polaritons. Terahertz radiation emission under significant electron heating in an applied pulsed electric field has also been studied. Polarization measurements revealed pronounced peaks related to surface plasmon-phonon polariton resonances of the first and second order in the emission spectra.
Chitnis, Parag V; Cleveland, Robin O
2006-04-01
Measurements are presented of acoustic emissions from cavitation collapses on the surface of a synthetic kidney stone in response to shock waves (SWs) from an electrohydraulic lithotripter. A fiber optic probe hydrophone was used for pressure measurements, and passive cavitation detection was used to identify acoustic emissions from bubble collapse. At a lithotripter charging voltage of 20 kV, the focused SW incident on the stone surface resulted in a peak pressure of 43 +/- 6 MPa compared to 23 +/- 4 MPa in the free field. The focused SW incident upon the stone appeared to be enhanced due to the acoustic emissions from the forced cavitation collapse of the preexisting bubbles. The peak pressure of the acoustic emission from a bubble collapse was 34 +/- 15 MPa, that is, the same magnitude as the SWs incident on the stone. These data indicate that stresses induced by focused SWs and cavitation collapses are similar in magnitude thus likely play a similar role in stone fragmentation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McNesby, Kevin L.; Homan, Barrie E.; Benjamin, Richard A.
Here, the techniques presented in this paper allow for mapping of temperature, pressure, chemical species, and energy deposition during and following detonations of explosives, using high speed cameras as the main diagnostic tool. Additionally, this work provides measurement in the explosive near to far-field (0-500 charge diameters) of surface temperatures, peak air-shock pressures, some chemical species signatures, shock energy deposition, and air shock formation.
Football helmet drop tests on different fields using an instrumented Hybrid III head.
Viano, David C; Withnall, Chris; Wonnacott, Michael
2012-01-01
An instrumented Hybrid III head was placed in a Schutt ION 4D football helmet and dropped on different turfs to study field types and temperature on head responses. The head was dropped 0.91 and 1.83 m giving impacts of 4.2 and 6.0 m/s on nine different football fields (natural, Astroplay, Fieldturf, or Gameday turfs) at turf temperatures of -2.7 to 23.9 °C. Six repeat tests were conducted for each surface at 0.3 m (1') intervals. The Hybrid III was instrumented with triaxial accelerometers to determine head responses for the different playing surfaces. For the 0.91-m drops, peak head acceleration varied from 63.3 to 117.1 g and HIC(15) from 195 to 478 with the different playing surfaces. The lowest response was with Astroplay, followed by the engineered natural turf. Gameday and Fieldturf involved higher responses. The differences between surfaces decreased in the 1.83 m tests. The cold weather testing involved higher accelerations, HIC(15) and delta V for each surface. The helmet drop test used in this study provides a simple and convenient means of evaluating the compliance and energy absorption of football playing surfaces. The type and temperature of the playing surface influence head responses.
Two-Wavelength Multi-Gigahertz Frequency Comb-Based Interferometry for Full-Field Profilometry
NASA Astrophysics Data System (ADS)
Choi, Samuel; Kashiwagi, Ken; Kojima, Shuto; Kasuya, Yosuke; Kurokawa, Takashi
2013-10-01
The multi-gigahertz frequency comb-based interferometer exhibits only the interference amplitude peak without the phase fringes, which can produce a rapid axial scan for full-field profilometry and tomography. Despite huge technical advantages, there remain problems that the interference intensity undulations occurred depending on the interference phase. To avoid such problems, we propose a compensation technique of the interference signals using two frequency combs with slightly varied center wavelengths. The compensated full-field surface profile measurements of cover glass and onion skin were demonstrated experimentally to verify the advantages of the proposed method.
Tomkins, Matthew Robert; Liao, David Shiqi; Docoslis, Aristides
2015-01-08
A detection method that combines electric field-assisted virus capture on antibody-decorated surfaces with the "fingerprinting" capabilities of micro-Raman spectroscopy is demonstrated for the case of M13 virus in water. The proof-of-principle surface mapping of model bioparticles (protein coated polystyrene spheres) captured by an AC electric field between planar microelectrodes is presented with a methodology for analyzing the resulting spectra by comparing relative peak intensities. The same principle is applied to dielectrophoretically captured M13 phage particles whose presence is indirectly confirmed with micro-Raman spectroscopy using NeutrAvidin-Cy3 as a labeling molecule. It is concluded that the combination of electrokinetically driven virus sampling and micro-Raman based signal transduction provides a promising approach for time-efficient and in situ detection of viruses.
Tomkins, Matthew Robert; Liao, David Shiqi; Docoslis, Aristides
2015-01-01
A detection method that combines electric field-assisted virus capture on antibody-decorated surfaces with the “fingerprinting” capabilities of micro-Raman spectroscopy is demonstrated for the case of M13 virus in water. The proof-of-principle surface mapping of model bioparticles (protein coated polystyrene spheres) captured by an AC electric field between planar microelectrodes is presented with a methodology for analyzing the resulting spectra by comparing relative peak intensities. The same principle is applied to dielectrophoretically captured M13 phage particles whose presence is indirectly confirmed with micro-Raman spectroscopy using NeutrAvidin-Cy3 as a labeling molecule. It is concluded that the combination of electrokinetically driven virus sampling and micro-Raman based signal transduction provides a promising approach for time-efficient and in situ detection of viruses. PMID:25580902
Spatiotemporal noise characterization for chirped-pulse amplification systems
Ma, Jingui; Yuan, Peng; Wang, Jing; Wang, Yongzhi; Xie, Guoqiang; Zhu, Heyuan; Qian, Liejia
2015-01-01
Optical noise, the core of the pulse-contrast challenge for ultra-high peak power femtosecond lasers, exhibits spatiotemporal (ST) coupling induced by angular dispersion. Full characterization of such ST noise requires two-dimensional measurements in the ST domain. Thus far, all noise measurements have been made only in the temporal domain. Here we report the experimental characterization of the ST noise, which is made feasible by extending cross-correlation from the temporal domain to the ST domain. We experimentally demonstrate that the ST noise originates from the optical surface imperfections in the pulse stretcher/compressor and exhibits a linear ST coupling in the far-field plane. The contrast on the far-field axis, underestimated in the conventional measurements, is further improved by avoiding the far-field optics in the stretcher. These results enhance our understanding of the pulse contrast with respect to its ST-coupling nature and pave the way toward the design of high-contrast ultra-high peak power lasers. PMID:25648187
Investigating Mars: Moreux Crater
2017-11-23
This image of Moreux Crater shows the eastern side of the central peak, as well as the nearby sand dunes. In this false color image sand dunes are "blue". Smaller patches of blue are located on the central peak materials and indicate where surface winds have moved fine materials on/off the peak deposits. The pitted and curvilinear morphology of the central peak deposits have been interpreted to have formed by glacial activity. Moreux Crater is located in northern Arabia Terra and has a diameter of 138 kilometers. The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. These false color images may reveal subtle variations of the surface not easily identified in a single band image. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 12518 Latitude: 41.8223 Longitude: 44.7638 Instrument: VIS Captured: 2004-10-10 02:55 https://photojournal.jpl.nasa.gov/catalog/PIA22126
Investigating Mars: Moreux Crater
2017-11-24
This image of Moreux Crater shows the highest elevations of the central peak, as well as the nearby sand dunes. In this false color image sand dunes are "blue". Smaller patches of blue are located on the central peak materials and indicate where surface winds have moved fine materials on/off the peak deposits. The pitted and curvilinear morphology of the central peak deposits have been interpreted to have formed by glacial activity. Moreux Crater is located in northern Arabia Terra and has a diameter of 138 kilometers. The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. These false color images may reveal subtle variations of the surface not easily identified in a single band image. The Odyssey spacecraft has spent over 15 years in orbit around Mars, circling the planet more than 69000 times. It holds the record for longest working spacecraft at Mars. THEMIS, the IR/VIS camera system, has collected data for the entire mission and provides images covering all seasons and lighting conditions. Over the years many features of interest have received repeated imaging, building up a suite of images covering the entire feature. From the deepest chasma to the tallest volcano, individual dunes inside craters and dune fields that encircle the north pole, channels carved by water and lava, and a variety of other feature, THEMIS has imaged them all. For the next several months the image of the day will focus on the Tharsis volcanoes, the various chasmata of Valles Marineris, and the major dunes fields. We hope you enjoy these images! Orbit Number: 46786 Latitude: 41.7667 Longitude: 44.3482 Instrument: VIS Captured: 2012-07-01 13:41 https://photojournal.jpl.nasa.gov/catalog/PIA22127
Correlations of Surface Deformation and 3D Flow Field in a Compliant Wall Turbulent Channel Flow.
NASA Astrophysics Data System (ADS)
Wang, Jin; Zhang, Cao; Katz, Joseph
2015-11-01
This study focuses on the correlations between surface deformation and flow features, including velocity, vorticity and pressure, in a turbulent channel flow over a flat, compliant Polydimethylsiloxane (PDMS) wall. The channel centerline velocity is 2.5 m/s, and the friction Reynolds number is 2.3x103. Analysis is based on simultaneous measurements of the time resolved 3D velocity and surface deformation using tomographic PIV and Mach-Zehnder Interferometry. The volumetric pressure distribution is calculated plane by plane by spatially integrating the material acceleration using virtual boundary, omni-directional method. Conditional sampling based on local high/low pressure and deformation events reveals the primary flow structures causing the deformation. High pressure peaks appear at the interface between sweep and ejection, whereas the negative deformations peaks (dent) appear upstream, under the sweeps. The persistent phase lag between flow and deformations are presumably caused by internal damping within the PDMS. Some of the low pressure peaks and strong ejections are located under the head of hairpin vortices, and accordingly, are associated with positive deformation (bump). Others bumps and dents are correlated with some spanwise offset large inclined quasi-streamwise vortices that are not necessarily associated with hairpins. Sponsored by ONR.
Characterization of Graphene-based FET Fabricated using a Shadow Mask
Tien, Dung Hoang; Park, Jun-Young; Kim, Ki Buem; Lee, Naesung; Seo, Yongho
2016-01-01
To pattern electrical metal contacts, electron beam lithography or photolithography are commonly utilized, and these processes require polymer resists with solvents. During the patterning process the graphene surface is exposed to chemicals, and the residue on the graphene surface was unable to be completely removed by any method, causing the graphene layer to be contaminated. A lithography free method can overcome these residue problems. In this study, we use a micro-grid as a shadow mask to fabricate a graphene based field-effect-transistor (FET). Electrical measurements of the graphene based FET samples are carried out in air and vacuum. It is found that the Dirac peaks of the graphene devices on SiO2 or on hexagonal boron nitride (hBN) shift from a positive gate voltage region to a negative region as air pressure decreases. In particular, the Dirac peaks shift very rapidly when the pressure decreases from ~2 × 10−3 Torr to ~5 × 10−5 Torr within 5 minutes. These Dirac peak shifts are known as adsorption and desorption of environmental gases, but the shift amounts are considerably different depending on the fabrication process. The high gas sensitivity of the device fabricated by shadow mask is attributed to adsorption on the clean graphene surface. PMID:27169620
Propagating Waves Transverse to the Magnetic Field in a Solar Prominence
NASA Astrophysics Data System (ADS)
Kucera, Therese A.; Knizhnik, K.; Lopez Ariste, A.; Luna Bennasar, M.; Schmieder, B.; Toot, D.
2013-07-01
We have observed a quiescent prominence with the Hinode Solar Optical Telescope (SOT, in Ca II and H-alpha lines), Sacramento Peak Observatory (in H-alpha, H-beta and Sodium-D lines), and THEMIS/MTR (Télescope Héliographique pour l'Étude du Magnétisme et des Instabilités Solaires/MulTi Raies, providing vector magnetograms), and SDO/AIA (Solar Dynamics Observatory Atmospheric Imaging Assembly, in EUV) over a 4 hour period on 2012 October 10. The small fields of view of SOT, Sac Peak and THEMIS are centered on a large pillar-like prominence footpoint extending towards the surface. This feature appears in the larger field of view of the 304 Å band, as a large, quasi-vertical column with material flowing horizontally on each side. The THEMIS/MTR data indicate that the magnetic field in the pillar is essentially horizontal and the observations in the optical wavelengths show a large number of horizontally aligned features on a much smaller scale than the pillar as a whole. The data are consistent with a model of cool prominence plasma trapped in the dips of horizontal field lines. The SOT and Sac Peak data show what appear to be moving wave pulses. These pulses, which include a Doppler signature, move vertically, perpendicular to the field direction, along quasi-vertical columns. The pulses have a velocity of propagation of about 10 km/s, a period about 260 sec, and a wavelength around 2000 km. We interpret these waves in terms of fast magneto-sonic waves and discuss possible wave drivers.
Solar Dynamo Driven by Periodic Flow Oscillation
NASA Technical Reports Server (NTRS)
Mayr, Hans G.; Hartle, Richard E.; Einaudi, Franco (Technical Monitor)
2001-01-01
We have proposed that the periodicity of the solar magnetic cycle is determined by wave mean flow interactions analogous to those driving the Quasi Biennial Oscillation in the Earth's atmosphere. Upward propagating gravity waves would produce oscillating flows near the top of the radiation zone that in turn would drive a kinematic dynamo to generate the 22-year solar magnetic cycle. The dynamo we propose is built on a given time independent magnetic field B, which allows us to estimate the time dependent, oscillating components of the magnetic field, (Delta)B. The toroidal magnetic field (Delta)B(sub phi) is directly driven by zonal flow and is relatively large in the source region, (Delta)(sub phi)/B(sub Theta) much greater than 1. Consistent with observations, this field peaks at low latitudes and has opposite polarities in both hemispheres. The oscillating poloidal magnetic field component, (Delta)B(sub Theta), is driven by the meridional circulation, which is difficult to assess without a numerical model that properly accounts for the solar atmosphere dynamics. Scale-analysis suggests that (Delta)B(sub Theta) is small compared to B(sub Theta) in the dynamo region. Relative to B(sub Theta), however, the oscillating magnetic field perturbations are expected to be transported more rapidly upwards in the convection zone to the solar surface. As a result, (Delta)B(sub Theta) (and (Delta)B(sub phi)) should grow relative to B(sub Theta), so that the magnetic fields reverse at the surface as observed. Since the meridional and zonai flow oscillations are out of phase, the poloidal magnetic field peaks during times when the toroidal field reverses direction, which is observed. With the proposed wave driven flow oscillation, the magnitude of the oscillating poloidal magnetic field increases with the mean rotation rate of the fluid. This is consistent with the Bode-Blackett empirical scaling law, which reveals that in massive astrophysical bodies the magnetic moment tends to increase with the angular momentum of the fluid.
NASA Astrophysics Data System (ADS)
Pan, A. F.; Wang, W. J.; Mei, X. S.; Zheng, B. X.; Yan, Z. X.
2016-11-01
This study reported on the formation of sub-5-μm microstructures covered on titanium by cracks growth under 10-ns laser radiation at the wavelength of 532 nm and its induced light modification for production of nanostructures. The electric field intensity and laser power density absorbed by commercial pure titanium were computed to investigate the self-trapping introduced by cracks and the effect of surface morphology on laser propagation characteristics. It is found that nanostructures can form at the surface with the curvature radius below 20 μm. Meanwhile, variable laser fluences were applied to explore the evolution of cracks on commercial pure titanium with or without melt as spot overlap number increased. Experimental study was first performed at the peak laser fluence of 1.063 J/cm2 to investigate the microstructures induced only by cracks growth. The results demonstrated that angular microstructures with size between 1.68 μm and 4.74 μm was obtained and no nanostructure covered. Then, at the peak laser fluence of 2.126 J/cm2, there were some nanostructures covered on the melt-induced curved microstructured surface. However, surface molten material submerged in the most of cracks at the spot overlap number of 744, where the old cracks disappeared. The results indicated that there was too much molten material and melting time at the peak laser fluence of 2.126 J/cm2, which was not suitable for obtainment of perfect micro-nano structures. On this basis, peak laser fluence was reduced down to 1.595 J/cm2 and the sharp sub-5 μm microstructures with nanostructures covered was obtained at spot overlap number of 3720.
Huang, Danhong; Iurov, Andrii; Gumbs, Godfrey
2018-05-23
In this paper, we deal with the electromagnetic coupling between an incident surface-plasmon-polariton wave and relativistic electrons in two graphene layers. Our previous investigation was limited to single-layer graphene (Iurov et al 2017 Phys. Rev. B 96 081408). However, the present work, is both an expanded and extended version of this previous Phys. Rev. B paper after having included very detailed theoretical formalisms and extensive comparisons of results from either one or two graphene layers embedded in a dielectric medium. The additional retarded Coulomb interaction between two graphene layers will compete with the coupling between the single graphene layer and the surface of a conductor. Consequently, some distinctive features, such as triply-hybridized absorption peaks and a new acoustic-like graphene plasmon mode within the anticrossing region, have been found for the double-layer graphene system. Physically, our theory is self-consistent, in comparison with a commonly adopted perturbative theory, for studying hybrid light-plasmon modes and the electron back action on photons. Instead of usual radiation or grating-deflection field coupling, a surface-plasmon-polariton localized field coupling is introduced with completely different dispersion relations for radiative (small wave numbers) and evanescent (large wave numbers) field modes. Technically, the exactly calculated effective scattering matrix for this theory can be employed to construct an effective-medium theory in order to improve the accuracy of the well-known finite-difference time-domain method for solving Maxwell's equations numerically. Practically, the predicted triply-hybridized absorption peaks can excite polaritons only, giving rise to a possible polariton-condensation based laser.
NASA Astrophysics Data System (ADS)
Huang, Danhong; Iurov, Andrii; Gumbs, Godfrey
2018-05-01
In this paper, we deal with the electromagnetic coupling between an incident surface-plasmon-polariton wave and relativistic electrons in two graphene layers. Our previous investigation was limited to single-layer graphene (Iurov et al 2017 Phys. Rev. B 96 081408). However, the present work, is both an expanded and extended version of this previous Phys. Rev. B paper after having included very detailed theoretical formalisms and extensive comparisons of results from either one or two graphene layers embedded in a dielectric medium. The additional retarded Coulomb interaction between two graphene layers will compete with the coupling between the single graphene layer and the surface of a conductor. Consequently, some distinctive features, such as triply-hybridized absorption peaks and a new acoustic-like graphene plasmon mode within the anticrossing region, have been found for the double-layer graphene system. Physically, our theory is self-consistent, in comparison with a commonly adopted perturbative theory, for studying hybrid light-plasmon modes and the electron back action on photons. Instead of usual radiation or grating-deflection field coupling, a surface-plasmon-polariton localized field coupling is introduced with completely different dispersion relations for radiative (small wave numbers) and evanescent (large wave numbers) field modes. Technically, the exactly calculated effective scattering matrix for this theory can be employed to construct an effective-medium theory in order to improve the accuracy of the well-known finite-difference time-domain method for solving Maxwell’s equations numerically. Practically, the predicted triply-hybridized absorption peaks can excite polaritons only, giving rise to a possible polariton-condensation based laser.
Unsteady loads due to propulsive lift configurations. Part A: Investigation of scaling laws
NASA Technical Reports Server (NTRS)
Morton, J. B.; Haviland, J. K.
1978-01-01
This study covered scaling laws, and pressure measurements made to determine details of the large scale jet structure and to verify scaling laws by direct comparison. The basis of comparison was a test facility at NASA Langley in which a JT-15D exhausted over a boilerplater airfoil surface to reproduce upper surface blowing conditions. A quarter scale model was built of this facility, using cold jets. A comparison between full scale and model pressure coefficient spectra, presented as functions of Strouhal numbers, showed fair agreement, however, a shift of spectral peaks was noted. This was not believed to be due to Mach number or Reynolds number effects, but did appear to be traceable to discrepancies in jet temperatures. A correction for jet temperature was then tried, similar to one used for far field noise prediction. This was found to correct the spectral peak discrepancy.
On the violation of gradient wind balance at the top of tropical cyclones
NASA Astrophysics Data System (ADS)
Cohen, Yair; Harnik, Nili; Heifetz, Eyal; Nolan, David S.; Tao, Dandan; Zhang, Fuqing
2017-08-01
The existence of physical solutions for the gradient wind balance is examined at the top of 12 simulated tropical cyclones. The pressure field at the top of these storms, which depends on the vertically integrated effect of the warm core and the near surface low, is found to violate the gradient wind balance—termed here as a state of nonbalance. Using a toy model, it is shown that slight changes in the relative location and relative widths of the warm core drastically increase the isobaric curvature at the upper level pressure maps leading to nonbalance. While idealized storms return to balance within several days, simulations of real-world tropical cyclones retain a considerable degree of nonbalance throughout the model integration. Comparing mean and maximum values of different storms shows that peak nonbalance correlates with either peak intensity or intensification, implying the possible importance of nonbalance at upper levels for the near surface winds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciovati, Gianluigi
Radio-frequency (RF) superconducting cavities made of high purity niobium are widely used to accelerate charged particle beams in particle accelerators. The major limitation to achieve RF field values approaching the theoretical limit for niobium is represented by ''anomalous'' losses which degrade the quality factor of the cavities starting at peak surface magnetic fields of about 100 mT, in absence of field emission. These high field losses are often referred to as ''Q-drop''. It has been observed that the Q-drop is drastically reduced by baking the cavities at 120 C for about 48 h under ultrahigh vacuum. An improved oxygen diffusionmore » model for the niobium-oxide system is proposed to explain the benefit of the low-temperature baking on the Q-drop in niobium superconducting rf cavities. The model shows that baking at 120 C for 48 h allows oxygen to diffuse away from the surface, and therefore increasing the lower critical field towards the value for pure niobium.« less
Lee, Elaine; Xia, Yu; Ferrier, Jr., Robert C.; ...
2016-02-08
Unprecedented, reversible, and dynamic control over an assembly of gold nanorods dispersed in liquid crystals (LC) is demonstrated. The LC director field is dynamically tuned at the nanoscale using microscale ring confinement through the interplay of elastic energy at different temperatures, thus fine-tuning its core replacement energy to reversibly sequester nanoscale inclusions at the microscale. As a result, this leads to shifts of 100 nm or more in the surface plasmon resonance peak, an order of magnitude greater than any previous work with AuNR composites.
Comparison of cardiac and 60 Hz magnetically induced electric fields measured in anesthetized rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, D.L.; Creim, J.A.
1997-06-01
Extremely low frequency magnetic fields interact with an animal by inducing internal electric fields, which are in addition to the normal endogenous fields present in living animals. Male rats weighing about 560 g each were anesthetized with ketamine and xylazine. Small incisions were made in the ventral body wall at the chest and upper abdomen to position a miniature probe for measuring internal electric fields. The calibration constant for the probe size was 5.7 mm, with a flat response from at least 12 Hz to 20 kHz. A cardiac signal, similar to the normal electrocardiogram with a heart rate ofmore » about 250 bpm, was readily obtained at the chest. Upon analysis of its spectrum, the cardiac field detected by the probe had a broad maximum at 32--95 Hz. When the rates were exposed to a 1 mT, 60 Hz magnetic field, a spike appeared in the spectrum at 60 Hz. The peak-to-peak magnitudes of electric fields associated with normal heart function were comparable to fields induced by a 1 mT magnetic field at 60 Hz for those positions measured on the body surface. Within the body, or in different directions relative to the applied field, the induced fields were reduced. The cardiac field increased near the heart, becoming much larger than the induced field. Thus, the cardiac electric field, together with the other endogenous fields, combine with induced electric fields and help to provide reference levels for the induced-field dosimetry of ELF magnetic field exposures of living animals.« less
Unsteady jet flow computation towards noise prediction
NASA Technical Reports Server (NTRS)
Soh, Woo-Yung
1994-01-01
An attempt has been made to combine a wave solution method and an unsteady flow computation to produce an integrated aeroacoustic code to predict far-field jet noise. An axisymmetric subsonic jet is considered for this purpose. A fourth order space accurate Pade compact scheme is used for the unsteady Navier-Stokes solution. A Kirchhoff surface integral for the wave equation is employed through the use of an imaginary surface which is a circular cylinder enclosing the jet at a distance. Information such as pressure and its time and normal derivatives is provided on the surface. The sound prediction is performed side by side with the jet flow computation. Retarded time is also taken into consideration since the cylinder body is not acoustically compact. The far-field sound pressure has the directivity and spectra show that low frequency peaks shift toward higher frequency region as the observation angle increases from the jet flow axis.
Potential Active Processes in Porter Crater
2015-07-15
The extended-mission status of the Mars Reconnaissance Orbiter and the HiRISE camera has greatly increased our understanding of numerous active processes occurring on Mars. By taking carefully planned repeat images of surface, we now have an important record of how the surface evolves for a maximum of 5 Mars years. This image shows the central peak in Porter Crater. Although there are no repeat images here we can infer several active geologic processes, based on morphologic evidence and lessons learned from past well-monitored sites. Shallow gullies are located on the south and east facing slopes of the central peak. These features might have been carved by volatiles, such as carbon dioxide frost, sometime in the recent geologic past. Meanwhile on the northern slopes are several smaller slope features that have a morphology hinting at recurring slope lineae (RSL). Alternatively, these features could be the remnants of past active gullies. Several more HiRISE images would be needed to characterize their behavior and confirm their status as RSL (see "Recurring Slope Lineae in Equatorial Regions of Mars"). Southward on the slopes below the peak is a large dune field. Dunes show sharp crests with prominent ripples, both signs of actively migrating dunes. Also, we can see dust devil tracks crossing the nearby dusty surfaces and clear evidence for ongoing modification by swirling winds that persistently remove surface dust. Ongoing operations by HiRISE are dedicated to studying all of the active surface and atmospheric processes operating on Mars. http://photojournal.jpl.nasa.gov/catalog/PIA19853
NASA Astrophysics Data System (ADS)
Cortie, D. L.; Lewis, R. A.
2011-10-01
The discovery that short pulses of near-infrared radiation striking a semiconductor may lead to emission of radiation at terahertz frequencies paved the way for terahertz time-domain spectroscopy. Previous modeling has allowed the physical mechanisms to be understood in general terms but it has not fully explored the role of key physical parameters of the emitter material nor has it fully revealed the competing nature of the surface-field and photo-Dember effects. In this context, our purpose has been to more fully explicate the mechanisms of terahertz emission from transient currents at semiconductor surfaces and to determine the criteria for efficient emission. To achieve this purpose we employ an ensemble Monte Carlo simulation in three dimensions. To ground the calculations, we focus on a specific emitter, InAs. We separately vary distinct physical parameters to determine their specific contribution. We find that scattering as a whole has relatively little impact on the terahertz emission. The emission is found to be remarkably resistant to alterations of the dark surface potential. Decreasing the band gap leads to a strong increase in terahertz emission, as does decreasing the electron mass. Increasing the absorption dramatically influences the peak-peak intensity and peak shape. We conclude that increasing absorption is the most direct path to improve surface-current semiconductor terahertz emitters. We find for longer pump pulses that the emission is limited by a newly identified vanguard counter-potential mechanism: Electrons at the leading edge of longer laser pulses repel subsequent electrons. This discovery is the main result of our work.
Efficient, Decentralized Detection of Qualitative Spatial Events in a Dynamic Scalar Field
Jeong, Myeong-Hun; Duckham, Matt
2015-01-01
This paper describes an efficient, decentralized algorithm to monitor qualitative spatial events in a dynamic scalar field. The events of interest involve changes to the critical points (i.e., peak, pits and passes) and edges of the surface network derived from the field. Four fundamental types of event (appearance, disappearance, movement and switch) are defined. Our algorithm is designed to rely purely on qualitative information about the neighborhoods of nodes in the sensor network and does not require information about nodes’ coordinate positions. Experimental investigations confirm that our algorithm is efficient, with O(n) overall communication complexity (where n is the number of nodes in the sensor network), an even load balance and low operational latency. The accuracy of event detection is comparable to established centralized algorithms for the identification of critical points of a surface network. Our algorithm is relevant to a broad range of environmental monitoring applications of sensor networks. PMID:26343672
Enhanced proton acceleration by intense laser interaction with an inverse cone target
NASA Astrophysics Data System (ADS)
Bake, Muhammad Ali; Aimidula, Aimierding; Xiaerding, Fuerkaiti; Rashidin, Reyima
2016-08-01
The generation and control of high-quality proton bunches using focused intense laser pulse on an inverse cone target is investigated with a set of particle-in-cell simulations. The inverse cone is a high atomic number conical frustum with a thin solid top and open base, where the laser impinges onto the top surface directly, not down the open end of the cone. Results are compared with a simple planar target, where the proton angular distribution is very broad because of transverse divergence of the electromagnetic fields behind the target. For a conical target, hot electrons along the cone wall surface induce a transverse focusing sheath field. This field can effectively suppress the spatial spreading of the protons, resulting in a high-quality small-emittance, low-divergence proton beam. A slightly lower proton beam peak energy than that of a conventional planar target was also found.
Enhanced proton acceleration by intense laser interaction with an inverse cone target
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bake, Muhammad Ali; Aimidula, Aimierding, E-mail: amir@mail.bnu.edu.cn; Xiaerding, Fuerkaiti
The generation and control of high-quality proton bunches using focused intense laser pulse on an inverse cone target is investigated with a set of particle-in-cell simulations. The inverse cone is a high atomic number conical frustum with a thin solid top and open base, where the laser impinges onto the top surface directly, not down the open end of the cone. Results are compared with a simple planar target, where the proton angular distribution is very broad because of transverse divergence of the electromagnetic fields behind the target. For a conical target, hot electrons along the cone wall surface inducemore » a transverse focusing sheath field. This field can effectively suppress the spatial spreading of the protons, resulting in a high-quality small-emittance, low-divergence proton beam. A slightly lower proton beam peak energy than that of a conventional planar target was also found.« less
Efficient, Decentralized Detection of Qualitative Spatial Events in a Dynamic Scalar Field.
Jeong, Myeong-Hun; Duckham, Matt
2015-08-28
This paper describes an efficient, decentralized algorithm to monitor qualitative spatial events in a dynamic scalar field. The events of interest involve changes to the critical points (i.e., peak, pits and passes) and edges of the surface network derived from the field. Four fundamental types of event (appearance, disappearance, movement and switch) are defined. Our algorithm is designed to rely purely on qualitative information about the neighborhoods of nodes in the sensor network and does not require information about nodes' coordinate positions. Experimental investigations confirm that our algorithm is efficient, with O(n) overall communication complexity (where n is the number of nodes in the sensor network), an even load balance and low operational latency. The accuracy of event detection is comparable to established centralized algorithms for the identification of critical points of a surface network. Our algorithm is relevant to a broad range of environmental monitoring applications of sensor networks.
A nanoscale vacuum-tube diode triggered by few-cycle laser pulses
NASA Astrophysics Data System (ADS)
Higuchi, Takuya; Maisenbacher, Lothar; Liehl, Andreas; Dombi, Péter; Hommelhoff, Peter
2015-02-01
We propose and demonstrate a nanoscale vacuum-tube diode triggered by few-cycle near-infrared laser pulses. It represents an ultrafast electronic device based on light fields, exploiting near-field optical enhancement at surfaces of two metal nanotips. The sharper of the two tips displays a stronger field-enhancement, resulting in larger photoemission yields at its surface. One laser pulse with a peak intensity of 4.7 × 1011 W/cm2 triggers photoemission of ˜16 electrons from the sharper cathode tip, while emission from the blunter anode tip is suppressed by 19 dB to ˜0.2 electrons per pulse. Thus, the laser-triggered current between two tips exhibit a rectifying behavior, in analogy to classical vacuum-tube diodes. According to the kinetic energy of the emitted electrons and the distance between the tips, the total operation time of this laser-triggered nanoscale diode is estimated to be below 1 ps.
Surface-enhanced Raman spectroscopy using 2D plasmons of InN nanostructures
NASA Astrophysics Data System (ADS)
Madapu, Kishore K.; Dhara, Sandip
2018-06-01
We explored the surface-enhanced Raman scattering (SERS) activity of the InN nanostructures, possessing surface electron accumulation (SEA), using the Rhodamine 6G (R6G) molecules. SERS enhancement is observed for the InN nanostructures which possess SEA. In case of high-temperature grown InN samples, a peak is observed in the low wave number (THz region) of Raman spectra of InN nanostructures originating from excitation of the two-dimensional (2D) plasmons of the SEA. The enhancement factor of four orders was calculated with the assumption of monolayer coverage of analyte molecule. SERS enhancement of InN nanostructures is attributed to the 2D plasmonic nature of InN nanostructures invoking SEA, rather than the contributions from 3D surface plasmon resonance and chemical interaction. The role of 2D plasmon excitation in SERS enhancement is corroborated by the near-field light-matter interaction studies using near-field scanning optical microscopy.
NASA Technical Reports Server (NTRS)
Uhlhorn, Eric; Atlas, Robert; Black, Peter; Buckley, Courtney; Chen, Shuyi; El-Nimri, Salem; Hood, Robbie; Johnson, James; Jones, Linwood; Miller, Timothy;
2009-01-01
The Hurricane Imaging Radiometer (HIRAD) is a new airborne microwave remote sensor currently under development to enhance real-time hurricane ocean surface wind observations. HIRAD builds on the capabilities of the Stepped Frequency Microwave Radiometer (SFMR), which now operates on NOAA P-3, G-4, and AFRC C-130 aircraft. Unlike the SFMR, which measures wind speed and rain rate along the ground track directly beneath the aircraft, HIRAD will provide images of the surface wind and rain field over a wide swath (approximately 3 times the aircraft altitude). To demonstrate potential improvement in the measurement of peak hurricane winds, we present a set of Observing System Simulation Experiments (OSSEs) in which measurements from the new instrument as well as those from existing platforms (air, surface, and space-based) are simulated from the output of a high-resolution (approximately 1.7 km) numerical model. Simulated retrieval errors due to both instrument noise as well as model function accuracy are considered over the expected range of incidence angles, wind speeds and rain rates. Based on numerous simulated flight patterns and data source combinations, statistics are developed to describe relationships between the observed and true (from the model s perspective) peak wind speed. These results have implications for improving the estimation of hurricane intensity (as defined by the peak sustained wind anywhere in the storm), which may often go un-observed due to sampling limitations.
Formation and transport of deethylatrazine and deisopropylatrazine in surface water
Thurman, E.M.; Meyer, M.T.; Mills, M.S.; Zimmerman, L.R.; Perry, C.A.; Goolsby, D.A.
1994-01-01
Field disappearance studies and a regional study of nine rivers in the Midwest Corn Belt show that deethylatrazine (DEA; 2-amino-4-chloro-6-isopropylamino-s-triazine) and deisopropylatrazine (DIA; 2-amino-4-chloro-6-ethylaminos-triazine) occur frequently in surface water that has received runoff from two parent triazine herbicides, atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) and cyanazine (2-chloro-4-ethylamino-6-methylpropionitrileamino-s-triazine). The concentration of DEA and DIA in surface water varies with the hydrologic conditions of the basin and the timing of runoff, with maximum concentrations reaching 5 ??g/L (DEA + DIA). Early rainfall followed by a dry summer will result in an early peak concentration of metabolites in surface water. A wet summer will delay the maximum concentrations of metabolites and increase their runoff into surface water, occasionally resulting in a slight separation of the parent atrazine maximum concentrations from the metabolite maximum concentrations, giving a "second flush?? of triazine metabolites to surface water. Replicated field dissipation studies of atrazine and cyanazine indicate that DIA/DEA ratios will vary from 0.4 ?? 0.1 when atrazine is the major triazine present to 0.6 ?? 0.1 when significant amounts of cyanazine are present. A comparison of transport time of DEA and DIA from field plots to their appearance in surface water indicates that storage and dilution are occurring in the alluvial aquifers of the basin.
Resonance dependence of gravitropicreactionof cress roots in weak combined magnetic fields.
NASA Astrophysics Data System (ADS)
Bogatina, N. I.; Sheykina, N. V.; Kordyum, E. L.
The gravitropic reaction of cress was studied in combined magnetic fields, that is the static magnetic field of the order of Earth's one and parallel to it alternating magnetic field. The frequency region for alternating magnetic field was varied in wide diapason ( from 1 Hz up to 45 Hz). The magnitude of alternating magnetic field was equal to 6 microT. The magnetic field conditions were well reproducible. For this purpose the external magnetic field was shielded in the work volume and artificial magnetic field was created in the volume. Both ferromagnetic metal shield and superconductive one with warm volume for work were used. The magnetic noises inside both of ferromagnetic metal and superconductive shields were measured to provide the well reproducible characteristics of artificial field created in the work volume. The objects of investigation were the roots of cress after 2-3-days germination. They were located in the closed humid room, that was located inside the shield in the artificially created magnetic field. All roots were in the darkness. For control we used the analogous roots located in the analogous volume but only in the static magnetic field of the Earth. We measured the divergence angle of the root from its primary direction of growing. We obtained the following results. The curve of dependence of measured angles on the frequency of alternating component of magnetic field had series of sharp peaks. These peaks were well reproducible and their location depended on the magnitude of the static component of magnetic field. The frequency of peak location is in direct proportion with its magnitude. The analysis showed that the location of peaks coincided very well with the cyclotron frequencies of the following ions: Ca+2, Cu+1 , K+1: Fe+3: Ag+1: and with the cyclotron frequencies of ions of phytohormons such as ions of indolile-acetic acid, abscise acid and gibberellins. Some quantitive analogies between the gravitropic process and the effect of combined magnetic field are discussed at the molecular level. In particularly it was shown that in the gravity field the pressure difference between the upper and down parts of the root was of the order of the pressure difference created by the Lorenz force. The displacement of the point where the pressure approached the maximum value on membrane surface could lead to the changes in the ion transport direction and so to the changes of the gravitropic reaction direction. The possibilities of the method for the studying the gravitropic reaction were discussed.
Seasonal Variability in Vadose zone biodegradation at a crude oil pipeline rupture site
Sihota, Natasha J.; Trost, Jared J.; Bekins, Barbara; Berg, Andrew M.; Delin, Geoffrey N.; Mason, Brent E.; Warren, Ean; Mayer, K. Ulrich
2016-01-01
Understanding seasonal changes in natural attenuation processes is critical for evaluating source-zone longevity and informing management decisions. The seasonal variations of natural attenuation were investigated through measurements of surficial CO2 effluxes, shallow soil CO2 radiocarbon contents, subsurface gas concentrations, soil temperature, and volumetric water contents during a 2-yr period. Surficial CO2 effluxes varied seasonally, with peak values of total soil respiration (TSR) occurring in the late spring and summer. Efflux and radiocarbon data indicated that the fractional contributions of natural soil respiration (NSR) and contaminant soil respiration (CSR) to TSR varied seasonally. The NSR dominated in the spring and summer, and CSR dominated in the fall and winter. Subsurface gas concentrations also varied seasonally, with peak values of CO2 and CH4 occurring in the fall and winter. Vadose zone temperatures and subsurface CO2 concentrations revealed a correlation between contaminant respiration and temperature. A time lag of 5 to 7 mo between peak subsurface CO2 concentrations and peak surface efflux is consistent with travel-time estimates for subsurface gas migration. Periods of frozen soils coincided with depressed surface CO2 effluxes and elevated CO2 concentrations, pointing to the temporary presence of an ice layer that inhibited gas transport. Quantitative reactive transport simulations demonstrated aspects of the conceptual model developed from field measurements. Overall, results indicated that source-zone natural attenuation (SZNA) rates and gas transport processes varied seasonally and that the average annual SZNA rate estimated from periodic surface efflux measurements is 60% lower than rates determined from measurements during the summer.
The basin and range viewed from Borah Peak, Idaho.
Stein, R.S.; Bucknam, R.C.
1985-01-01
Today, more than a hundred years later, Borah Peak has proved to be among those mountains still rising. During the 28 October 1983 M=7 Borah Peak, Idaho, earthquake, the Lost River Range that Borah Peak caps was lifted 20-30 cm relative to distant points, and was tilted downward away from the range-bounding Lost River fault. The downthrown side of the fault, which subsided as much as 120 cm, was also tilted down toward the fault. The similarity between the earthquake deformation and the cumulative deformation preserved by the dip of strata is striking; it tends to confirm Gilbert's notion that Basin-and-Range topography is built by repeated slip events on normal faults that bound the range. The U.S Geological Survey had just published a preliminary volume of 40 research papers on the Borah Peak earthquake, focusing on the surface faulting, seismology, geodesy, hydrology, and geology of the earthquake and tis setting (Stein and Bucknam 1985). Also included is a field guide to the spectacular earthquake landforms, such as sruface rupture, exploratory trench excavations, sand blows, and landslides.
Control of average spacing of OMCVD grown gold nanoparticles
NASA Astrophysics Data System (ADS)
Rezaee, Asad
Metallic nanostructures and their applications is a rapidly expanding field. Nobel metals such as silver and gold have historically been used to demonstrate plasmon effects due to their strong resonances, which occur in the visible part of the electromagnetic spectrum. Localized surface plasmon resonance (LSPR) produces an enhanced electromagnetic field at the interface between a gold nanoparticle (Au NP) and the surrounding dielectric. This enhanced field can be used for metal-dielectric interfacesensitive optical interactions that form a powerful basis for optical sensing. In addition to the surrounding material, the LSPR spectral position and width depend on the size, shape, and average spacing between these particles. Au NP LSPR based sensors depict their highest sensitivity with optimized parameters and usually operate by investigating absorption peak: shifts. The absorption peak: of randomly deposited Au NPs on surfaces is mostly broad. As a result, the absorption peak: shifts, upon binding of a material onto Au NPs might not be very clear for further analysis. Therefore, novel methods based on three well-known techniques, self-assembly, ion irradiation, and organo-meta1lic chemical vapour deposition (OMCVD) are introduced to control the average-spacing between Au NPs. In addition to covalently binding and other advantages of OMCVD grown Au NPs, interesting optical features due to their non-spherical shapes are presented. The first step towards the average-spacing control is to uniformly form self-assembled monolayers (SAMs) of octadecyltrichlorosilane (OTS) as resists for OMCVD Au NPs. The formation and optimization of the OTS SAMs are extensively studied. The optimized resist SAMs are ion-irradiated by a focused ion beam (Fill) and ions generated by a Tandem accelerator. The irradiated areas are refilled with 3-mercaptopropyl-trimethoxysilane (MPTS) to provide nucleation sites for the OMCVD Au NP growth. Each step during sample preparation is monitored by using surface characterization methods such as contact angle measurements, ellipsometry, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), Rutherford backscattering spectroscopy (RBS), UV-Visible spectroscopy, and time-of-flight secondary ion mass spectroscopy (ToF-SIMS). Keywords: Absorption, Array, Average Spacing, Binary Mixture, Density, Deposition, Dose, Fm, Gold Nanoparticle, Growth, Ion Irradiation, LSPR, Nanolithography, Nearest Neighbour Distance, OMCVD, Optical Response, OTS, Polarization, Refilling, Resist, SAM, Self-assembly, SEM Image Analysis, Sensing, Surface, Thin Film, Transparent Substrate.
Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging.
Cang, Hu; Labno, Anna; Lu, Changgui; Yin, Xiaobo; Liu, Ming; Gladden, Christopher; Liu, Yongmin; Zhang, Xiang
2011-01-20
When light illuminates a rough metallic surface, hotspots can appear, where the light is concentrated on the nanometre scale, producing an intense electromagnetic field. This phenomenon, called the surface enhancement effect, has a broad range of potential applications, such as the detection of weak chemical signals. Hotspots are believed to be associated with localized electromagnetic modes, caused by the randomness of the surface texture. Probing the electromagnetic field of the hotspots would offer much insight towards uncovering the mechanism generating the enhancement; however, it requires a spatial resolution of 1-2 nm, which has been a long-standing challenge in optics. The resolution of an optical microscope is limited to about half the wavelength of the incident light, approximately 200-300 nm. Although current state-of-the-art techniques, including near-field scanning optical microscopy, electron energy-loss spectroscopy, cathode luminescence imaging and two-photon photoemission imaging have subwavelength resolution, they either introduce a non-negligible amount of perturbation, complicating interpretation of the data, or operate only in a vacuum. As a result, after more than 30 years since the discovery of the surface enhancement effect, how the local field is distributed remains unknown. Here we present a technique that uses Brownian motion of single molecules to probe the local field. It enables two-dimensional imaging of the fluorescence enhancement profile of single hotspots on the surfaces of aluminium thin films and silver nanoparticle clusters, with accuracy down to 1.2 nm. Strong fluorescence enhancements, up to 54 and 136 times respectively, are observed in those two systems. This strong enhancement indicates that the local field, which decays exponentially from the peak of a hotspot, dominates the fluorescence enhancement profile.
Field emission study of carbon nanostructures
NASA Astrophysics Data System (ADS)
Zhao, Xin
Recently, carbon nanosheets (CNS), a novel nanostructure, were developed in our laboratory as a field emission source for high emission current. To characterize, understand and improve the field emission properties of CNS, a ultra-high vacuum surface analysis system was customized to conduct relevant experimental research in four distinct areas. The system includes Auger electron spectroscopy (AES), field emission energy spectroscopy (FEES), field emission I-V testing, and thermal desorption spectroscopy (TDS). Firstly, commercial Mo single tips were studied to calibrate the customized system. AES and FEES experiments indicate that a pyramidal nanotip of Ca and O elements formed on the Mo tip surface by field induced surface diffusion. Secondly, field emission I-V testing on CNS indicates that the field emission properties of pristine nanosheets are impacted by adsorbates. For instance, in pristine samples, field emission sources can be built up instantaneously and be characterized by prominent noise levels and significant current variations. However, when CNS are processed via conditioning (run at high current), their emission properties are greatly improved and stabilized. Furthermore, only H2 desorbed from the conditioned CNS, which indicates that only H adsorbates affect emission. Thirdly, the TDS study on nanosheets revealed that the predominant locations of H residing in CNS are sp2 hybridized C on surface and bulk. Fourthly, a fabricating process was developed to coat low work function ZrC on nanosheets for field emission enhancement. The carbide triple-peak in the AES spectra indicated that Zr carbide formed, but oxygen was not completely removed. The Zr(CxOy) coating was dispersed as nanobeads on the CNS surface. Although the work function was reduced, the coated CNS emission properties were not improved due to an increased beta factor. Further analysis suggest that for low emission current (<1 uA), the H adsorbates affect emission by altering the work function. In high emission current (>10 uA), thermal, ionic or electronic transition effects may occur, which differently affect the field emission process.
Geomagnetic spikes on the core-mantle boundary
NASA Astrophysics Data System (ADS)
Davies, C. J.; Constable, C.
2017-12-01
Extreme variations of Earth's magnetic field occurred in the Levantine region around 1000 BC, where the field intensity rose and fell by a factor of 2-3 over a short time and confined spatial region. There is presently no coherent link between this intensity spike and the generating processes in Earth's liquid core. Here we test the attribution of a surface spike to a flux patch visible on the core-mantle boundary (CMB), calculating geometric and energetic bounds on resulting surface geomagnetic features. We show that the Levantine intensity high must span at least 60 degrees in longitude. Models providing the best trade-off between matching surface spike intensity, minimizing L1 and L2 misfit to the available data and satisfying core energy constraints produce CMB spikes 8-22 degrees wide with peak values of O(100) mT. We propose that the Levantine spike grew in place before migrating northward and westward, contributing to the growth of the axial dipole field seen in Holocene field models. Estimates of Ohmic dissipation suggest that diffusive processes, which are often neglected, likely govern the ultimate decay of geomagnetic spikes. Using these results, we search for the presence of spike-like features in geodynamo simulations.
Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator.
Doylend, J K; Heck, M J R; Bovington, J T; Peters, J D; Coldren, L A; Bowers, J E
2011-10-24
We demonstrate a 16-channel, independently tuned waveguide surface grating optical phased array in silicon for two dimensional beam steering with a total field of view of 20° x 14°, beam width of 0.6° x 1.6°, and full-window background peak suppression of 10 dB. © 2011 Optical Society of America
NASA Astrophysics Data System (ADS)
Loughner, C.; Follette-Cook, M. B.; Fried, A.; Pickering, K. E.
2015-12-01
The highest observed surface ozone concentrations in the Houston metropolitan area in 2013 occurred on September 25, which coincided with the Texas DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) field campaign. Surface ozone was elevated throughout the Houston metropolitan area with maximum 8-hour average ozone peaking along the western shore of Galveston Bay, reaching 124 ppbv, almost 50 ppbv above the current EPA standard of 75 ppbv. The NASA P-3B aircraft observed plumes from refinery flares west and northwest of Galveston Bay that were transported over the water. Continental air pollution from the north was transported into the Houston metropolitan area where it mixed with locally generated emissions. A bay breeze circulation formed causing pollutants that were transported out over the water in the morning to recirculate back inland where they mixed with freshly emitted pollution near the bay breeze convergence zone. The highest surface ozone concentrations were reported near the bay breeze front. This ozone episode will be presented using measurements made during the DISCOVER-AQ field campaign and a CMAQ model simulation with integrated source apportionment, which tracks the contribution of emissions source groups and regions on ozone concentrations.
Measuring a Truncated Disk in Aquila X-1
NASA Technical Reports Server (NTRS)
King, Ashley L.; Tomsick, John A.; Miller, Jon M.; Chenevez, Jerome; Barret, Didier; Boggs, Steven E.; Chakrabarty, Deepto; Christensen, Finn E.; Craig, William W.; Feurst, Felix;
2016-01-01
We present NuSTAR and Swift observations of the neutron star Aquila X-1 during the peak of its 2014 July outburst. The spectrum is soft with strong evidence for a broad Fe K(alpha) line. Modeled with a relativistically broadened reflection model, we find that the inner disk is truncated with an inner radius of 15 +/- 3RG. The disk is likely truncated by either the boundary layer and/or a magnetic field. Associating the truncated inner disk with pressure from a magnetic field gives an upper limit of B < 5+/- 2x10(exp 8) G. Although the radius is truncated far from the stellar surface, material is still reaching the neutron star surface as evidenced by the X-ray burst present in the NuSTAR observation.
Development of a GNSS Buoy for Monitoring Water Surface Elevations in Estuaries and Coastal Areas.
Lin, Yen-Pin; Huang, Ching-Jer; Chen, Sheng-Hsueh; Doong, Dong-Jiing; Kao, Chia Chuen
2017-01-18
In this work, a Global Navigation Satellite System (GNSS) buoy that utilizes a Virtual Base Station (VBS) combined with the Real-Time Kinematic (RTK) positioning technology was developed to monitor water surface elevations in estuaries and coastal areas. The GNSS buoy includes a buoy hull, a RTK GNSS receiver, data-transmission devices, a data logger, and General Purpose Radio Service (GPRS) modems for transmitting data to the desired land locations. Laboratory and field tests were conducted to test the capability of the buoy and verify the accuracy of the monitored water surface elevations. For the field tests, the GNSS buoy was deployed in the waters of Suao (northeastern part of Taiwan). Tide data obtained from the GNSS buoy were consistent with those obtained from the neighboring tide station. Significant wave heights, zero-crossing periods, and peak wave directions obtained from the GNSS buoy were generally consistent with those obtained from an accelerometer-tilt-compass (ATC) sensor. The field tests demonstrate that the developed GNSS buoy can be used to obtain accurate real-time tide and wave data in estuaries and coastal areas.
Development of a GNSS Buoy for Monitoring Water Surface Elevations in Estuaries and Coastal Areas
Lin, Yen-Pin; Huang, Ching-Jer; Chen, Sheng-Hsueh; Doong, Dong-Jiing; Kao, Chia Chuen
2017-01-01
In this work, a Global Navigation Satellite System (GNSS) buoy that utilizes a Virtual Base Station (VBS) combined with the Real-Time Kinematic (RTK) positioning technology was developed to monitor water surface elevations in estuaries and coastal areas. The GNSS buoy includes a buoy hull, a RTK GNSS receiver, data-transmission devices, a data logger, and General Purpose Radio Service (GPRS) modems for transmitting data to the desired land locations. Laboratory and field tests were conducted to test the capability of the buoy and verify the accuracy of the monitored water surface elevations. For the field tests, the GNSS buoy was deployed in the waters of Suao (northeastern part of Taiwan). Tide data obtained from the GNSS buoy were consistent with those obtained from the neighboring tide station. Significant wave heights, zero-crossing periods, and peak wave directions obtained from the GNSS buoy were generally consistent with those obtained from an accelerometer-tilt-compass (ATC) sensor. The field tests demonstrate that the developed GNSS buoy can be used to obtain accurate real-time tide and wave data in estuaries and coastal areas. PMID:28106763
NASA Astrophysics Data System (ADS)
Hertkorn, N.; Harir, M.; Koch, B. P.; Michalke, B.; Grill, P.; Schmitt-Kopplin, P.
2012-04-01
High-field NMR and FTMS of SPE-derived marine dissolved organic matter (SPE-DOM) from the South Atlantic Ocean provided molecular level information of complex unknowns with unprecedented coverage of carbon and resolution. SPE-DOM represented major oceanic regimes of general significance: 5 m (near surface photic zone), 48 m (fluorescence maximum), 200 m (upper mesopelagic zone) and 5446 m (30 m above ground). 1H NMR spectra showed rather smooth bulk NMR envelopes with a few percent of visibly resolved signatures. 1H NMR spectra of SPE-DOM indicated considerable variance in abundance for all major chemical environments. Two-dimensional NMR spectra of SPE-DOM displayed exceptional resolution. JRES (sensitive but limited resolution), COSY (highly resolved) and HMBC NMR (informative but limited S/N ratio) spectra depicted resolved molecular signatures in excess of a certain minimum abundance. COSY cross peaks were most diverse for sample FMAX and conformed to >1,500 molecules present. Classical methyl groups terminating aliphatic chains represented only ~ 15 % of total methyl in all marine DOM investigated; 2 % of methyl was bound to olefinic carbon. Methyl ethers were abundant in surface marine DOM, and the chemical diversity of carbohydrates was larger than that of freshwater and soil DOM. TOCSY and HSQC cross peaks enabled unprecedented depiction of sp2-hybridized carbon chemical environments in marine SPE-DOM with discrimination of isolated and conjugated olefins as well as ?,?-unsaturated double bonds. Olefinic protons were more abundant than aromatic protons; relative HSQC cross peak integrals indicated more abundant olefinic carbon than aromatic carbon in all marine DOM as well. Furan, pyrrol and thiophene derivatives were marginal. Benzene derivatives and phenols as well as six-membered nitrogen heterocycles were prominent. Various key polycyclic aromatic hydrocarbon substructures suggested the presence of thermogenic organic matter (TMOC) in marine DOM at all water depths. Eventually, olefinic unsaturation in marine DOM will be more directly traceable to ultimate biogenic precursors than aromatic unsaturation. The conformity of key NMR signatures suggests the presence of a numerous set of identical molecules throughout the entire ocean column even if the investigated water masses belonged to different oceanic regimes and currents. High field (12 T) negative electrospray ionization FTICR mass spectra showed abundant CHO, CHNO, CHOS and CHNOS molecular series with slightly increasing numbers of mass peaks and average mass from surface to bottom SPE-DOM. The proportion of CHO and CHNO molecular series increased from surface to depth whereas CHOS and especially CHNOS molecular series markedly declined. The exhaustive characterization of complex unknowns in marine DOM will enable a meaningful assessment of individual marine biogeosignatures which carry the holistic memory of the oceanic water masses.
NASA Astrophysics Data System (ADS)
Yoshihara, Akira; Ohnuma, Shigehiro; Fujimori, Hiroyasu; Nakamura, Shintaro; Nojima, Tsutomu
2008-09-01
A systematic Brillouin light scattering (BLS) study on long-wavelength spin waves (SWs) in ferromagnetic TM-Al-O (TM=Co, Fe) nano-granular films with thickness of >1 μm was performed under magnetic fields of up to 4 kOe at room temperature. BLS spectra consist of a pair of bulk SW peaks on both frequency sides and a surface localized SW peak only on the positive frequency side in this study. These SW frequencies as a function of the magnetic field can be fully reproduced by the magnetostatic frequency formula developed for a semi-infinite uniform ferromagnetic medium with an exchange coupling and an in-plane uniaxial magnetic anisotropy. We determined a set of the magnetic constants including the exchange field HE for each film. Combining the exchange field HE with the electrical resistivity ρ for each film at room temperature, we found an inverse-square law given by ρ=a(HE)-2 for both the Co and Fe granular films with aFe=30.3 μΩ\\cdotcm\\cdot(kOe)2 and aCo=22.1 μΩ\\cdotcm\\cdot(kOe)2, respectively.
Observations of Energetic High Magnetic Field Pulsars with the Fermi Large Area Telescope
NASA Technical Reports Server (NTRS)
Parent, D.; Kerr, M.; DenHartog, P. R.; Baring, M. G.; DeCesar, M. E.; Espinoza, C. M.; Harding, A. K.; Romani, R. W.; Stappers, B. W.; Watters, K.;
2011-01-01
We report the detection of gamma-ray pulsations from the high-magnetic-field rotation-powered pulsar PSR J1119.6127 using data from the Fermi Large Area Telescope. The gamma-ray light curve of PSR J1119.6127 shows a single, wide peak offset from the radio peak by 0.43 +/- 0.02 in phase. Spectral analysis suggests a power law of index 1.0 +/- 0.3(+0.4 -0.2) with an energy cut-off at 0.8 +/- 0.2(+2.0 -0.5) GeV. The first uncertainty is statistical and the second is systematic. We discuss the emission models of PSR J1119.6127 and demonstrate that despite the object's high surface magnetic field--near that of magnetars -- the field strength and structure in the gamma-ray emitting zone are apparently similar to those of typical young pulsars. Additionally, we present upper limits on the gamma-ray pulsed emission for the magnetically active PSR J1846.0258 in the supernova remnant Kesteven 75 and two other energetic high-Beta pulsars, PSRs J1718.3718 and J1734.3333. We explore possible explanations for the non-detection of these three objects, including peculiarities in their emission geometry.
Rattler model of the boson peak at silica surfaces.
Steurer, Wolfram; Tosatti, Erio
2012-10-28
Recent experiments unveiled two new aspects of the low-energy excitation spectrum of silica glass--commonly termed as the "boson peak" region. The first is that at low temperature the silica surface exhibits a different, softer boson peak than the bulk. The second is a giant thermal blueshift of the surface boson peak frequency causing it to cross and overcome the bulk peak with increasing temperature. Here we present a simple lattice model that reproduces this behavior in all its aspects. Each site consists of rigid tetrahedral units softly connected so as to be able to rotate anharmonically as "rattlers" in their cages. As shown by simulations, the model dynamics exhibits a boson-like peak, which has lower frequency at the surface where rattlers have a weaker restoring force. Upon heating however the larger angular freedom of surface units allows them to rattle more than in the bulk, leading to a steeper frequency increase similar to experiment.
Scattering of electromagnetic waves from a body over a random rough surface
NASA Astrophysics Data System (ADS)
Ripoll, J.; Madrazo, A.; Nieto-Vesperinas, M.
1997-02-01
A numerical study is made of the effect on the angular distribution of mean far field intensity due to the presence of an arbitrary body located over a random rough surface. It is found that the presence of the body decreases the coherent backscattering peak produced by the surface roughness. Also, for low dielectric constants, the reflected intensity is practically equal to the sum of the individual reflected intensities of the body and the surface respectively, namely, interaction between both bodies is almost negligible. The full interaction between object and surface only appears when both bodies are highly reflective. Results are compared with the case when the body is buried beneath the surface, and are illustrated with a 2-D calculation of a cylinder either partially immersed or above a 2-D rough profile.
NASA Astrophysics Data System (ADS)
Birhanu, Yelebe; Wilks, Matthew; Biggs, Juliet; Kendall, J.-Michael; Ayele, Atalay; Lewi, Elias
2018-05-01
Seasonal variations in the seismicity of volcanic and geothermal reservoirs are usually attributed to the hydrological cycle. Here, we focus on the Aluto-Langano geothermal system, Ethiopia, where the climate is monsoonal and there is abundant shallow seismicity. We deployed temporary networks of seismometers and GPS receivers to understand the drivers of unrest. First, we show that a statistically significant peak in seismicity occurred 2-3 months after the main rainy season, with a second, smaller peak of variable timing. Seasonal seismicity is commonly attributed to variations in either surface loading or reservoir pore pressure. As loading will cause subsidence and overpressure will cause uplift, comparing seismicity rates with continuous GPS, enables us to distinguish between mechanisms. At Aluto, the major peak in seismicity is coincident with the high stand of nearby lakes and maximum subsidence, indicating that it is driven by surface loading. The magnitude of loading is insufficient to trigger widespread crustal seismicity but the geothermal reservoir at Aluto is likely sensitive to small perturbations in the stress field. Thus we demonstrate that monsoonal loading can produce seismicity in geothermal reservoirs, and the likelihood of both triggered and induced seismicity varies seasonally.
Fang, F; Markwitz, A
2009-05-01
Silicon nanostructures, called Si nanowhiskers, are successfully synthesized on Si(100) substrate by high vacuum electron beam annealing. The onset temperature and duration needed for the Si nanowhiskers to grow was investigated. It was found that the onset and growth morphology of Si nanowhiskers strongly depend on the annealing temperature and duration applied in the annealing cycle. The onset temperature for nanowhisker growth was determined as 680 degrees C using an annealing duration of 90 min and temperature ramps of +5 degrees C s(-1) for heating and -100 degrees C s(-1) for cooling. Decreasing the annealing time at peak temperature to 5 min required an increase in peak temperature to 800 degrees C to initiate the nanowhisker growth. At 900 degrees C the duration for annealing at peak temperature can be set to 0 s to grow silicon nanowhiskers. A correlation was found between the variation in annealing temperature and duration and the nanowhisker height and density. Annealing at 900 degrees C for 0 s, only 2-3 nanowhiskers (average height 2.4 nm) grow on a surface area of 5 x 5 microm, whereas more than 500 nanowhiskers with an important average height of 4.6 nm for field emission applications grow on the same surface area for a sample annealed at 970 degrees C for 0 s. Selected results are presented showing the possibility of controlling the density and height of Si nanowhisker growth for field emission applications by applying different annealing temperature and duration.
Intrawave sand suspension in the shoaling and surf zone of a field-scale laboratory beach
NASA Astrophysics Data System (ADS)
Brinkkemper, J. A.; de Bakker, A. T. M.; Ruessink, B. G.
2017-01-01
Short-wave sand transport in morphodynamic models is often based solely on the near-bed wave-orbital motion, thereby neglecting the effect of ripple-induced and surface-induced turbulence on sand transport processes. Here sand stirring was studied using measurements of the wave-orbital motion, turbulence, ripple characteristics, and sand concentration collected on a field-scale laboratory beach under conditions ranging from irregular nonbreaking waves above vortex ripples to plunging waves and bores above subdued bed forms. Turbulence and sand concentration were analyzed as individual events and in a wave phase-averaged sense. The fraction of turbulence events related to suspension events is relatively high (˜50%), especially beneath plunging waves. Beneath nonbreaking waves with vortex ripples, the sand concentration close to the bed peaks right after the maximum positive wave-orbital motion and shows a marked phase lag in the vertical, although the peak in concentration at higher elevations does not shift to beyond the positive to negative flow reversal. Under plunging waves, concentration peaks beneath the wavefront without any notable phase lags in the vertical. In the inner-surf zone (bores), the sand concentration remains phase coupled to positive wave-orbital motion, but the concentration decreases with distance toward the shoreline. On the whole, our observations demonstrate that the wave-driven suspended load transport is onshore and largest beneath plunging waves, while it is small and can also be offshore beneath shoaling waves. To accurately predict wave-driven sand transport in morphodynamic models, the effect of surface-induced turbulence beneath plunging waves should thus be included.
Natural convection in a cubical cavity with a coaxial heated cylinder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aithal, S. M.
High-resolution three-dimensional simulations were conducted to investigate the velocity and temperature fields in a cold cubical cavity due to natural convection induced by a centrally placed hot cylinder. Unsteady, incompressible Navier-Stokes equations were solved by using a spectral- element method for Rayleigh numbers ranging from 103 to 109. The effect of spanwise thermal boundary conditions, aspect ratio (radius of the cylinder to the side of the cavity), and spanwise temperature distribution of the inner cylinder on the velocity and thermal fields were investigated for each Rayleigh number. Results from two-dimensional calculations were compared with three-dimensional simulations. The 3D results indicatemore » a complex flow structure in the vicinity of the spanwise walls. The results also show that the imposed thermal wall boundary condition impacts the flow and temperature fields strongly near the spanwise walls. The variation of the local Nusselt number on the cylinder surface and enclosure walls at various spanwise locations was also investigated. The local Nusselt number on the cylinder surface and enclosure walls at the cavity mid-plane (Z = 0) is close to 2D simulations for 103 ≤ Ra ≤ 108. Simulations also show a variation in the local Nusselt number, on both the cylinder surface and the enclosure walls, in the spanwise direction, for all Rayleigh numbers studied in this work. The results also indicate that if the enclosure walls are insulated in the spanwise direction (as opposed to a constant temperature), the peak Nusselt number on the enclosure surface occurs near the spanwise walls and is about 20% higher than the peak Nusselt number at the cavity mid-plane. The temporal characteristics of 3D flows are also different from 2D results for Ra > 108. These results suggest that 3D simulations would be more appropriate for flows with Ra > 108.« less
NASA Technical Reports Server (NTRS)
Safaeinili, Ali; Kofman, Wlodek; Mouginot, Jeremie; Gim, Yonggyu; Herique, Alain; Ivanov, Anton B.; Plaut, Jeffrey J.; Picardi, Giovanni
2007-01-01
The Martian ionosphere's local total electron content (TEC) and the neutral atmosphere scale height can be derived from radar echoes reflected from the surface of the planet. We report the global distribution of the TEC by analyzing more than 750,000 echoes of the Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS). This is the first direct measurement of the TEC of the Martian ionosphere. The technique used in this paper is a novel 'transmission-mode' sounding of the ionosphere of Mars in contrast to the Active Ionospheric Sounding experiment (AIS) on MARSIS, which generally operates in the reflection mode. This technique yields a global map of the TEC for the Martian ionosphere. The radar transmits a wideband chirp signal that travels through the ionosphere before and after being reflected from the surface. The received waves are attenuated, delayed and dispersed, depending on the electron density in the column directly below the spacecraft. In the process of correcting the radar signal, we are able to estimate the TEC and its global distribution with an unprecedented resolution of about 0.1 deg in latitude (5 km footprint). The mapping of the relative geographical variations in the estimated nightside TEC data reveals an intricate web of high electron density regions that correspond to regions where crustal magnetic field lines are connected to the solar wind. Our data demonstrates that these regions are generally but not exclusively associated with areas that have magnetic field lines perpendicular to the surface of Mars. As a result, the global TEC map provides a high-resolution view of where the Martian crustal magnetic field is connected to the solar wind. We also provide an estimate of the neutral atmospheric scale height near the ionospheric peak and observe temporal fluctuations in peak electron density related to solar activity.
Characteristic analysis of surface waves in a sensitive plasma absorption probe
NASA Astrophysics Data System (ADS)
You, Wei; Li, Hong; Tan, Mingsheng; Liu, Wandong
2018-01-01
With features that are simple to construct and a symmetric configuration, the sensitive plasma absorption probe (SPAP) is a dependable probe for industry plasma diagnosis. The minimum peak in the characteristic curve of the coefficient of reflection stems from the surface wave resonance in plasma. We use numerical simulation methods to analyse the details of the excitation and propagation of these surface waves. With this method, the electromagnetic field structure and the resonance and propagation characteristics of the surface wave were analyzed simultaneously using the simulation method. For this SPAP structure, there are three different propagation paths for the propagating plasma surface wave. The propagation characteristic of the surface wave along each path is presented. Its dispersion relation is also calculated. The objective is to complete the relevant theory of the SPAP as well as the propagation process of the plasma surface wave.
High-yield, ultrafast, surface plasmon-enhanced, Au nanorod optical field electron emitter arrays.
Hobbs, Richard G; Yang, Yujia; Fallahi, Arya; Keathley, Philip D; De Leo, Eva; Kärtner, Franz X; Graves, William S; Berggren, Karl K
2014-11-25
Here we demonstrate the design, fabrication, and characterization of ultrafast, surface-plasmon enhanced Au nanorod optical field emitter arrays. We present a quantitative study of electron emission from Au nanorod arrays fabricated by high-resolution electron-beam lithography and excited by 35 fs pulses of 800 nm light. We present accurate models for both the optical field enhancement of Au nanorods within high-density arrays, and electron emission from those nanorods. We have also studied the effects of surface plasmon damping induced by metallic interface layers at the substrate/nanorod interface on near-field enhancement and electron emission. We have identified the peak optical field at which the electron emission mechanism transitions from a 3-photon absorption mechanism to strong-field tunneling emission. Moreover, we have investigated the effects of nanorod array density on nanorod charge yield, including measurement of space-charge effects. The Au nanorod photocathodes presented in this work display 100-1000 times higher conversion efficiency relative to previously reported UV triggered emission from planar Au photocathodes. Consequently, the Au nanorod arrays triggered by ultrafast pulses of 800 nm light in this work may outperform equivalent UV-triggered Au photocathodes, while also offering nanostructuring of the electron pulse produced from such a cathode, which is of interest for X-ray free-electron laser (XFEL) development where nanostructured electron pulses may facilitate more efficient and brighter XFEL radiation.
Dynamo generation of magnetic field in the white dwarf GD 358
NASA Technical Reports Server (NTRS)
Markiel, J. Andrew; Thomas, John H.; Van Horn, H. M.
1994-01-01
On the basis of Whole Earth Telescope observations of the g-mode oscillation spectrum of the white dwarf GD 358, Winget et al. find evidence for significant differential rotation and for a time-varying magnetic field concentrated in the surface layers of this star. Here we argue on theoretical grounds that this magnetic field is produced by an alpha omega dynamo operating in the lower part of a surface convection zone in GD 358. Our argument is based on numerical solutions of the nonlinear, local dynamo equations of Robinson & Durney, with specific parameters based on our detailed models of white-dwarf convective envelopes, and universal constants determined by a calibration with the the Sun's dynamo. The calculations suggest a dynamo cycle period of about 6 years for the fundamental mode, and periods as short as 1 year for the higher-order modes that are expected to dominate in view of the large dynamo number we estimate for GD 358. These dynamo periods are consistent with the changes in the magnetic field of GD 358 over the span of 1 month inferred by Winget et. al. from their observations. Our calculations also suggest a peak dynamo magnetic field strength at the base of the surface convection zone of about 1800 G, which is consistent with the field strength inferred from the observations.
Near-Field Spectroscopy and Imaging of Subwavelength Plasmonic Terahertz Resonators
Mitrofanov, Oleg; Khromova, Irina; Siday, Thomas; ...
2016-04-22
We describe the temporal evolution of the terahertz (THz) field leading to the excitation of plasmonic resonances in carbon microfibers. The field evolution is mapped in space and time for the 3/2 wavelength resonance using a subwavelength aperture THz near-field probe with an embedded THz photoconductive detector. The excitation of surface waves at the fiber tips leads to the formation of a standing wave along the fiber. Local THz time-domain spectroscopy at one of the standing wave crests shows a clear third-order resonance peak at 1.65 THz, well described by the Lorentz model. Lastly, this application of the subwavelength aperturemore » THz near-field microscopy for mode mapping and local spectroscopy demonstrates the potential of near-field methods for studies of subwavelength plasmonic THz resonators.« less
Structural and emission characteristics of ion-irradiated Reticulated Vitreous Carbon
NASA Astrophysics Data System (ADS)
Chacon, Judith Rebecca
Cathodes formed from Reticulated Vitreous Carbon (RVC) were treated under varying conditions of Argon-ion beam current, beam voltage and irradiation duration. Surface structures, such as balls, cones, nanowires, and nanowhiskers were formed in the RVC network through a series of ion-impact sputtering and self-diffusion reactions. Raman shifts to the D and E2g' peak suggest C=C bonding within the original RVC structure was converted to the lesser-bound C-C bonding structure. Cathodes demonstrating the most stable electronic configuration exhibited significant vertical growth to graphitic domains as determined by calculations based on XRD measurements. Carbon nanotubes at the surface were observed at the surface through micro-Raman techniques. The surface structures formed by argon-bombardment, are responsible for cathodes exhibiting lower field-emission extraction fields. The electric field required for the onset of electron emission was measured to change from 6.03 V/micron in non-irradiated RVC to 1.62V/micron for RVC irradiated for 15 minutes at a beam voltage of 1200V and beam current of 200mA (ion-beam current density 2.24mA/cm2). Treated surfaces were also responsible for increased stability in emission over time. For untreated RVC, the field required for emission dropped 25% over a 48 hour training period, whilst modestly treated RVC (15min, 1200V, 100mA, or 1.52mA/cm2) rose as little as 3%. Field-emissive RVC, is an inexpensively produced, mechanically robust cathode with potential applications in lighting, displays and microwave sources.
NASA Astrophysics Data System (ADS)
Wei, En-Bo
2011-10-01
The microwave vector radiative transfer (VRT) equation of a coated spherical bubble layer is derived by means of the second-order Rayleigh approximation field when the microwave wavelength is larger than the coated spherical particle diameter. Meanwhile, the perturbation method is developed to solve the second-order Rayleigh VRT equation for the small ratio of the volume scattering coefficient to the extinction coefficient. As an example, the emissive properties of a sea surface foam layer, which consists of seawater coated bubbles, are investigated. The extinction, absorption, and scattering coefficients of sea foam are obtained by the second-order Rayleigh approximation fields and discussed for the different microwave frequencies and the ratio of inner radius to outer radius of a coated bubble. Our results show that in the dilute limit, the volume scattering coefficient decreases with increasing the ratio of inner radius to outer radius and decreasing the frequencies. It is also found that the microwave emissivity and the extinction coefficient have a peak at very thin seawater coating and its peak value decreases with frequency decrease. Furthermore, with the VRT equation and effective medium approximation of densely coated bubbles, the mechanism of sea foam enhancing the emissivity of a sea surface is disclosed. In addition, excellent agreement is obtained by comparing our VRT results with the experimental data of microwave emissivities of sea surface covered by a sea foam layer at L-band (1.4 GHz) and the Camps' model.
Peak-Seeking Optimization of Spanwise Lift Distribution for Wings in Formation Flight
NASA Technical Reports Server (NTRS)
Hanson, Curtis E.; Ryan, Jack
2012-01-01
A method is presented for the in-flight optimization of the lift distribution across the wing for minimum drag of an aircraft in formation flight. The usual elliptical distribution that is optimal for a given wing with a given span is no longer optimal for the trailing wing in a formation due to the asymmetric nature of the encountered flow field. Control surfaces along the trailing edge of the wing can be configured to obtain a non-elliptical profile that is more optimal in terms of minimum combined induced and profile drag. Due to the difficult-to-predict nature of formation flight aerodynamics, a Newton-Raphson peak-seeking controller is used to identify in real time the best aileron and flap deployment scheme for minimum total drag. Simulation results show that the peak-seeking controller correctly identifies an optimal trim configuration that provides additional drag savings above those achieved with conventional anti-symmetric aileron trim.
Laser-photofield emission from needle cathodes for low-emittance electron beams.
Ganter, R; Bakker, R; Gough, C; Leemann, S C; Paraliev, M; Pedrozzi, M; Le Pimpec, F; Schlott, V; Rivkin, L; Wrulich, A
2008-02-15
Illumination of a ZrC needle with short laser pulses (16 ps, 266 nm) while high voltage pulses (-60 kV, 2 ns, 30 Hz) are applied, produces photo-field emitted electron bunches. The electric field is high and varies rapidly over the needle surface so that quantum efficiency (QE) near the apex can be much higher than for a flat photocathode due to the Schottky effect. Up to 150 pC (2.9 A peak current) have been extracted by photo-field emission from a ZrC needle. The effective emitting area has an estimated radius below 50 microm leading to a theoretical intrinsic emittance below 0.05 mm mrad.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grassellino, A.; Romanenko, A.; Trenikhina, Y.
We report the finding of new surface treatments that permit to manipulate the niobium resonator nitrogen content in the first few nanometers in a controlled way, and the resonator fundamental Mattis-Bardeen surface resistance and residual resistance accordingly. In particular, we find surface infusion conditions that systematically a) increase the quality factor of these 1.3 GHz superconducting radio frequency (SRF) bulk niobium resonators, up to very high gradients; b) increase the achievable accelerating gradient of the cavity compared to its own baseline with state-of-the-art surface processing. Cavities subject to the new surface process have larger than two times the state ofmore » the art Q at 2K for accelerating fields > 35 MV/m. Moreover, very high accelerating gradients ~ 45 MV/m are repeatedly reached, which correspond to peak magnetic surface fields of 190 mT, among the highest measured for bulk niobium cavities. These findings open the opportunity to tailor the surface impurity content distribution to maximize performance in Q and gradients, and have therefore very important implications on future performance and cost of SRF based accelerators. They also help deepen the understanding of the physics of the RF niobium cavity surface.« less
NASA Astrophysics Data System (ADS)
Grassellino, A.; Romanenko, A.; Trenikhina, Y.; Checchin, M.; Martinello, M.; Melnychuk, O. S.; Chandrasekaran, S.; Sergatskov, D. A.; Posen, S.; Crawford, A. C.; Aderhold, S.; Bice, D.
2017-09-01
We report the finding of new surface treatments that permits one to manipulate the niobium resonator nitrogen content in the first few nanometers in a controlled way, and the resonator fundamental Mattis-Bardeen surface resistance and residual resistance accordingly. In particular, we find surface ‘infusion’ conditions that systematically (a) increase the quality factor of these 1.3 GHz superconducting radio frequency (SRF) bulk niobium resonators, up to very high gradients; (b) increase the achievable accelerating gradient of the cavity compared to its own baseline with state-of-the-art surface processing. Cavities subject to the new surface process have more than two times the state-of-the-art Q at 2 K for accelerating fields >35 MVm-1. Moreover, very high accelerating gradients ˜45 MVm-1 are repeatedly reached, which correspond to peak magnetic surface fields of 190 mT, among the highest measured for bulk niobium cavities. These findings open the opportunity to tailor the surface impurity content distribution to maximize performance in Q and gradients, and have therefore very important implications on future performance and cost of SRF based accelerators. They also help deepen the understanding of the physics of the RF niobium cavity surface.
Wireless actuation with functional acoustic surfaces
NASA Astrophysics Data System (ADS)
Qiu, T.; Palagi, S.; Mark, A. G.; Melde, K.; Adams, F.; Fischer, P.
2016-11-01
Miniaturization calls for micro-actuators that can be powered wirelessly and addressed individually. Here, we develop functional surfaces consisting of arrays of acoustically resonant micro-cavities, and we demonstrate their application as two-dimensional wireless actuators. When remotely powered by an acoustic field, the surfaces provide highly directional propulsive forces in fluids through acoustic streaming. A maximal force of ˜0.45 mN is measured on a 4 × 4 mm2 functional surface. The response of the surfaces with bubbles of different sizes is characterized experimentally. This shows a marked peak around the micro-bubbles' resonance frequency, as estimated by both an analytical model and numerical simulations. The strong frequency dependence can be exploited to address different surfaces with different acoustic frequencies, thus achieving wireless actuation with multiple degrees of freedom. The use of the functional surfaces as wireless ready-to-attach actuators is demonstrated by implementing a wireless and bidirectional miniaturized rotary motor, which is 2.6 × 2.6 × 5 mm3 in size and generates a stall torque of ˜0.5 mN.mm. The adoption of micro-structured surfaces as wireless actuators opens new possibilities in the development of miniaturized devices and tools for fluidic environments that are accessible by low intensity ultrasound fields.
Observation of radiative surface plasmons in metal-oxide-metal tunnel junctions
NASA Technical Reports Server (NTRS)
Donohue, J. F.; Yang, E. Y.
1986-01-01
A peak in the UV region of the spectrum of light emitted from metal-oxide-metal (MOM) tunnel junctions has been observed at room temperature. Both the amplitude and wavelength of the peak are sensitive to applied junction bias. The UV peak corresponds to the normal or radiative surface plasmon mode while a visible peak, also present in the present spectra and reported in past MOM literature, is due to the tangential or nonradiative mode. The radiative mode requires no surface roughness or gratings for photon coupling. The results show that it is possible to obtain radiative surface plasmon production followed by a direct decay into photons with MOM tunnel diodes. A MOM diode with a double anode structure is found to emit light associated only with the nonradiative mode. The thickness dependence of the UV peak, along with the experimental results of the double anode MOM diode and the ratio of the UV peak to visible peak, support the contention that the UV light emission is indeed due to the radiative surface plasmon.
Invited Article: Quantitative imaging of explosions with high-speed cameras
McNesby, Kevin L.; Homan, Barrie E.; Benjamin, Richard A.; ...
2016-05-31
Here, the techniques presented in this paper allow for mapping of temperature, pressure, chemical species, and energy deposition during and following detonations of explosives, using high speed cameras as the main diagnostic tool. Additionally, this work provides measurement in the explosive near to far-field (0-500 charge diameters) of surface temperatures, peak air-shock pressures, some chemical species signatures, shock energy deposition, and air shock formation.
EUV/soft x-ray spectra for low B neutron stars
NASA Technical Reports Server (NTRS)
Romani, Roger W.; Rajagopal, Mohan; Rogers, Forrest J.; Iglesias, Carlos A.
1995-01-01
Recent ROSAT and EUVE detections of spin-powered neutron stars suggest that many emit 'thermal' radiation, peaking in the EUV/soft X-ray band. These data constrain the neutron stars' thermal history, but interpretation requires comparison with model atmosphere computations, since emergent spectra depend strongly on the surface composition and magnetic field. As recent opacity computations show substantial change to absorption cross sections at neutron star photospheric conditions, we report here on new model atmosphere computations employing such data. The results are compared with magnetic atmosphere models and applied to PSR J0437-4715, a low field neutron star.
NASA Astrophysics Data System (ADS)
Wang, Zhi-shan; Zhao, Yue-jin; Li, Zhuo; Dong, Liquan; Chu, Xuhong; Li, Ping
2010-11-01
The comparison goniometer is widely used to measure and inspect small angle, angle difference, and parallelism of two surfaces. However, the common manner to read a comparison goniometer is to inspect the ocular of the goniometer by one eye of the operator. To read an old goniometer that just equips with one adjustable ocular is a difficult work. In the fabrication of an IR reflecting mirrors assembly, a common comparison goniometer is used to measure the angle errors between two neighbor assembled mirrors. In this paper, a quick reading technique image-based for the comparison goniometer used to inspect the parallelism of mirrors in a mirrors assembly is proposed. One digital camera, one comparison goniometer and one set of computer are used to construct a reading system, the image of the sight field in the comparison goniometer will be extracted and recognized to get the angle positions of the reflection surfaces to be measured. In order to obtain the interval distance between the scale lines, a particular technique, left peak first method, based on the local peak values of intensity in the true color image is proposed. A program written in VC++6.0 has been developed to perform the color digital image processing.
NASA Astrophysics Data System (ADS)
Johnson, Andrew C.; Besien, Tim J.; Bhardwaj, C. Lal; Dixon, Andy; Gooddy, Daren C.; Haria, Atul H.; White, Craig
2001-12-01
The persistence and penetration of the herbicides isoproturon and chlorotoluron in an unconfined chalk aquifer has been monitored over a 4-year period through soil sampling, shallow coring and groundwater monitoring. Chlorotoluron was applied on plots as a marker compound, having never been used previously on that, or surrounding fields. The fieldsite had a 5° slope with soil depths of 0.5 to 1.5 m and a water table between 20 and 5 m from the soil surface. Where the water table was deepest (9-20 m below surface (mbs)) little or no positive herbicide detections were made. However, where the water table was at only 4-5 mbs, a regular pesticide signal of around 0.1 μg/l for isoproturon and chlorotoluron could be distinguished. Over the winter recharge period automatic borehole samplers revealed a series of short-lived peaks of isoproturon and chlorotoluron reaching up to 0.8 μg/l. This is consistent with a preferential flow mechanism operating at this particular part of the field. Such peaks were occurring over 2 years after the last application of these compounds. Shallow coring failed to uncover any significant pesticide pulse moving through the deep unsaturated zone matrix at the fieldsite.
Optical absorption of zigzag single walled boron nitride nanotubes in axial magnetic field
NASA Astrophysics Data System (ADS)
Chegel, Raad; Behzad, Somayeh
2013-11-01
We have investigated the effect of axial magnetic field on the band structure, dipole matrix elements and absorption spectrum in different energy ranges, using tight binding approximation. It is found that magnetic field breaks the degeneracy in the band structure and creates new allowed transitions in the dipole matrix which leads to creation of new peaks in the absorption spectrum. It is found that, unlike to CNTs which show metallic-semiconductor transition, the BNNTs remain semiconductor in any magnetic field strength. By calculation the diameter dependence of peak positions, we found that the positions of three first peaks in the lower energy region (E <5.3 eV) are proportional to n-2. In the middle energy region (7 < E < 7.5 eV) all (n, 0) zigzag BNNTs, with even and odd nanotube index, have two distinct peaks in the absence of magnetic field which these peaks may be used to identify zigzag BNNTs from other tube chiralities. For odd (even) tubes, in the middle energy region, applying the magnetic field leads to splitting of these two peaks into three (five) distinct peaks.
The effect of surface grain reversal on the AC losses of sintered Nd-Fe-B permanent magnets
NASA Astrophysics Data System (ADS)
Moore, Martina; Roth, Stefan; Gebert, Annett; Schultz, Ludwig; Gutfleisch, Oliver
2015-02-01
Sintered Nd-Fe-B magnets are exposed to AC magnetic fields in many applications, e.g. in permanent magnet electric motors. We have measured the AC losses of sintered Nd-Fe-B magnets in a closed circuit arrangement using AC fields with root mean square-values up to 80 mT (peak amplitude 113 mT) over the frequency range 50 to 1000 Hz. Two magnet grades with different dysprosium content were investigated. Around the remanence point the low grade material (1.7 wt% Dy) showed significant hysteresis losses; whereas the losses in the high grade material (8.9 wt% Dy) were dominated by classical eddy currents. Kerr microscopy images revealed that the hysteresis losses measured for the low grade magnet can be mainly ascribed to grains at the sample surface with multiple domains. This was further confirmed when the high grade material was subsequently exposed to DC and AC magnetic fields. Here a larger number of surface grains with multiple domains are also present once the step in the demagnetization curve attributed to the surface grain reversal is reached and a rise in the measured hysteresis losses is evident. If in the low grade material the operating point is slightly offset from the remanence point, such that zero field is not bypassed, its AC losses can also be fairly well described with classical eddy current theory.
NASA Astrophysics Data System (ADS)
Dubovyk, Olena; Landmann, Tobias; Erasmus, Barend F. N.; Tewes, Andreas; Schellberg, Jürgen
2015-06-01
Currently there is a lack of knowledge on spatio-temporal patterns of land surface dynamics at medium spatial scale in southern Africa, even though this information is essential for better understanding of ecosystem response to climatic variability and human-induced land transformations. In this study, we analysed vegetation dynamics across a large area in southern Africa using the 14-years (2000-2013) of medium spatial resolution (250 m) MODIS-EVI time-series data. Specifically, we investigated temporal changes in the time series of key phenometrics including overall greenness, peak and timing of annual greenness over the monitoring period and study region. In order to specifically capture spatial and per pixel vegetation changes over time, we calculated trends in these phenometrics using a robust trend analysis method. The results showed that interannual vegetation dynamics followed precipitation patterns with clearly differentiated seasonality. The earliest peak greenness during 2000-2013 occurred at the end of January in the year 2000 and the latest peak greenness was observed at the mid of March in 2012. Specifically spatial patterns of long-term vegetation trends allowed mapping areas of (i) decrease or increase in overall greenness, (ii) decrease or increase of peak greenness, and (iii) shifts in timing of occurrence of peak greenness over the 14-year monitoring period. The observed vegetation decline in the study area was mainly attributed to human-induced factors. The obtained information is useful to guide selection of field sites for detailed vegetation studies and land rehabilitation interventions and serve as an input for a range of land surface models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garimella, Sandilya V. B.; Ibrahim, Yehia M.; Tang, Keqi
A novel concept for ion spatial peak compression is described, and discussed primarily in the context of ion mobility spectrometry (IMS). Using theoretical and numerical methods, the effects of using non-constant (e.g., linearly varying) electric fields on ion distributions (e.g., an ion mobility peak) is evaluated both in the physical and temporal domains. The application of linearly decreasing electric field in conjunction with conventional drift field arrangements is shown to lead to a reduction in IMS physical peak width. When multiple ion packets in a selected mobility window are simultaneously subjected to such fields, there is ion packet compression, i.e.,more » a reduction in peak widths of all species. This peak compression occurs with a modest reduction of resolution, but which can be quickly recovered as ions drift in a constant field after the compression event. Compression also yields a significant increase in peak intensities. In addition, approaches for peak compression in traveling wave IMS are also discussed. Ion mobility peak compression can be particularly useful for mitigating diffusion driven peak spreading over very long path length separations (e.g., in cyclic multi-pass arrangements), and for achieving higher S/N and IMS resolution over a selected mobility range.« less
Yang, Chih-Wen; Lu, Yi-Hsien; Hwang, Ing-Shouh
2013-05-08
We have imaged nanobubbles on highly ordered pyrolytic graphite (HOPG) surfaces in pure water with different atomic force microscopy (AFM) modes, including the frequency-modulation, the tapping, and the PeakForce techniques. We have compared the performance of these modes in obtaining the surface profiles of nanobubbles. The frequency-modulation mode yields a larger height value than the other two modes and can provide more accurate measurement of the surface profiles of nanobubbles. Imaging with PeakForce mode shows that a nanobubble appears smaller and shorter with increasing peak force and disappears above a certain peak force, but the size returns to the original value when the peak force is reduced. This indicates that imaging with high peak forces does not cause gas removal from the nanobubbles. Based on the presented findings and previous AFM observations, the existing models for nanobubbles are reviewed and discussed. The model of gas aggregate inside nanobubbles provides a better explanation for the puzzles of the high stability and the contact angle of surface nanobubbles.
NFIRAOS beamsplitters subsystems optomechanical design
NASA Astrophysics Data System (ADS)
Lamontagne, Frédéric; Desnoyers, Nichola; Nash, Reston; Boucher, Marc-André; Martin, Olivier; Buteau-Vaillancourt, Louis; Châteauneuf, François; Atwood, Jenny; Hill, Alexis; Byrnes, Peter W. G.; Herriot, Glen; Véran, Jean-Pierre
2016-07-01
The early-light facility adaptive optics system for the Thirty Meter Telescope (TMT) is the Narrow-Field InfraRed Adaptive Optics System (NFIRAOS). The science beam splitter changer mechanism and the visible light beam splitter are subsystems of NFIRAOS. This paper presents the opto-mechanical design of the NFIRAOS beam splitters subsystems (NBS). In addition to the modal and the structural analyses, the beam splitters surface deformations are computed considering the environmental constraints during operation. Surface deformations are fit to Zernike polynomials using SigFit software. Rigid body motion as well as residual RMS and peak-to-valley surface deformations are calculated. Finally, deformed surfaces are exported to Zemax to evaluate the transmitted and reflected wave front error. The simulation results of this integrated opto-mechanical analysis have shown compliance with all optical requirements.
Byvank, T.; Banasek, J. T.; Potter, W. M.; ...
2017-12-07
We experimentally measure the effects of an applied axial magnetic field (B z) on laboratory plasma jets and compare experimental results with numerical simulations using an extended magnetohydrodynamics code. A 1 MA peak current, 100 ns rise time pulse power machine is used to generate the plasma jet. On application of the axial field, we observe on-axis density hollowing and a conical formation of the jet using interferometry, compression of the applied B z using magnetic B-dot probes, and azimuthal rotation of the jet using Thomson scattering. Experimentally, we find densities ≤ 5×10 17 cm -3 on-axis relative to jetmore » densities of ≥ 3×10 18 cm -3. For aluminum jets, 6.5 ± 0.5 mm above the foil, we find on-axis compression of the applied 1.0 ± 0.1 T B z to a total 2.4 ± 0.3 T, while simulations predict a peak compression to a total 3.4 T at the same location. On the aluminum jet boundary, we find ion azimuthal rotation velocities of 15-20 km/s, while simulations predict 14 km/s at the density peak. We discuss possible sources of discrepancy between the experiments and simulations, including: surface plasma on B-dot probes, optical fiber spatial resolution, simulation density floors, and 2D vs. 3D simulation effects. Lastly, this quantitative comparison between experiments and numerical simulations helps elucidate the underlying physics that determine the plasma dynamics of magnetized plasma jets.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Byvank, T.; Banasek, J. T.; Potter, W. M.
We experimentally measure the effects of an applied axial magnetic field (B z) on laboratory plasma jets and compare experimental results with numerical simulations using an extended magnetohydrodynamics code. A 1 MA peak current, 100 ns rise time pulse power machine is used to generate the plasma jet. On application of the axial field, we observe on-axis density hollowing and a conical formation of the jet using interferometry, compression of the applied B z using magnetic B-dot probes, and azimuthal rotation of the jet using Thomson scattering. Experimentally, we find densities ≤ 5×10 17 cm -3 on-axis relative to jetmore » densities of ≥ 3×10 18 cm -3. For aluminum jets, 6.5 ± 0.5 mm above the foil, we find on-axis compression of the applied 1.0 ± 0.1 T B z to a total 2.4 ± 0.3 T, while simulations predict a peak compression to a total 3.4 T at the same location. On the aluminum jet boundary, we find ion azimuthal rotation velocities of 15-20 km/s, while simulations predict 14 km/s at the density peak. We discuss possible sources of discrepancy between the experiments and simulations, including: surface plasma on B-dot probes, optical fiber spatial resolution, simulation density floors, and 2D vs. 3D simulation effects. Lastly, this quantitative comparison between experiments and numerical simulations helps elucidate the underlying physics that determine the plasma dynamics of magnetized plasma jets.« less
NASA Astrophysics Data System (ADS)
Wu, Yuchi; Dong, Kegong; Yan, Yonghong; Zhu, Bin; Zhang, Tiankui; Chen, Jia; Yu, Minghai; Tan, Fang; Wang, Shaoyi; Han, Dan; Lu, Feng; Gu, Yuqiu
2017-06-01
An experiment for pair production by high intensity laser irradiating thick solid targets is present. The experiment used picosecond beam of the XingGuangIII laser facility, with intensities up to several 1019 W/cm2, pulse durations about 0.8 ps and laser energies around 120 J. Pairs were generated from 1 mm-thick tantalum disk targets with different diameters from 1 mm to 10 mm. Energy spectra of hot electron from targetrear surface represent a Maxwellian distribution and obey a scaling of ∼(Iλ2)0.5. Large quantity of positrons were observed at the target rear normal direction with a yield up to 2.8 × 109 e+/sr. Owing to the target rear surface sheath field, the positrons behave as a quasi-monoenergetic beam with peak energy of several MeV. Our experiment shows that the peak energy of positron beam is inversely proportional to the target diameter.
Lu, Zhou; Hebert, Vincent R; Miller, Glenn C
2017-02-01
Temperature is a major environmental factor influencing land surface volatilization at the time of agricultural field fumigation. Cooler fumigation soil temperatures relevant to Pacific Northwest (PNW) application practices with metam sodium/potassium should result in appreciably reduced methyl isothiocyanate (MITC) emission rates, thus minimizing off target movement and bystander inhalation exposure. Herein, a series of laboratory controlled flow-through soil column assessments were performed evaluating MITC emissions over the range of cooler temperatures (2-13°C). Assessments were also conducted at the maximum allowed label application temperature of 32°C. All assessments were conducted at registration label-specified field moisture capacity, and no more than 50% cumulative MITC loss was observed over the 2-day post-fumigation timeframe. Three-fold reductions in MITC peak fluxes at cooler PNW application temperatures were observed compared to the label maximum temperature. This study supports current EPA metam sodium/potassium label language that indicates surface fumigations during warmer soil conditions should be discouraged.
Origin of the quasiparticle peak in the spectral density of Cr(001) surfaces
NASA Astrophysics Data System (ADS)
Peters, L.; Jacob, D.; Karolak, M.; Lichtenstein, A. I.; Katsnelson, M. I.
2017-12-01
In the spectral density of Cr(001) surfaces, a sharp resonance close to the Fermi level is observed in both experiment and theory. For the physical origin of this peak, two mechanisms were proposed: a single-particle dz2 surface state renormalized by electron-phonon coupling and an orbital Kondo effect due to the degenerate dx z/dy z states. Despite several experimental and theoretical investigations, the origin is still under debate. In this work, we address this problem by two different approaches of the dynamical mean-field theory: first, by the spin-polarized T -matrix fluctuation exchange approximation suitable for weakly and moderately correlated systems; second, by the noncrossing approximation derived in the limit of weak hybridization (i.e., for strongly correlated systems) capturing Kondo-type processes. By using recent continuous-time quantum Monte Carlo calculations as a benchmark, we find that the high-energy features, everything except the resonance, of the spectrum are captured within the spin-polarized T -matrix fluctuation exchange approximation. More precisely, the particle-particle processes provide the main contribution. For the noncrossing approximation, it appears that spin-polarized calculations suffer from spurious behavior at the Fermi level. Then, we turned to non-spin-polarized calculations to avoid this unphysical behavior. By employing two plausible starting hybridization functions, it is observed that the characteristics of the resonance are crucially dependent on the starting point. It appears that only one of these starting hybridizations could result in an orbital Kondo resonance in the presence of a strong magnetic field like in the Cr(001) surface. It is for a future investigation to first resolve the unphysical behavior within the spin-polarized noncrossing approximation and then check for an orbital Kondo resonance.
NASA Astrophysics Data System (ADS)
Lyons, B. C.; Ferraro, N. M.; Paz-Soldan, C.; Nazikian, R.; Wingen, A.
2017-04-01
In order to understand the effect of rotation on the response of a plasma to three-dimensional magnetic perturbations, we perform a systematic scan of the zero-crossing of the rotation profile in a DIII-D ITER-similar shape equilibrium using linear, time-independent modeling with the M3D-C1 extended magnetohydrodynamics code. We confirm that the local resonant magnetic field generally increases as the rotation decreases at a rational surface. Multiple peaks in the resonant field are observed near rational surfaces, however, and the maximum resonant field does not always correspond to zero rotation at the surface. Furthermore, we show that non-resonant current can be driven at zero-crossings not aligned with rational surfaces if there is sufficient shear in the rotation profile there, leading to amplification of near-resonant Fourier harmonics of the perturbed magnetic field and a decrease in the far-off-resonant harmonics. The quasilinear electromagnetic torque induced by this non-resonant plasma response provides drive to flatten the rotation, possibly allowing for increased transport in the pedestal by the destabilization of turbulent modes. In addition, this torque acts to drive the rotation zero-crossing to dynamically stable points near rational surfaces, which would allow for increased resonant penetration. By one or both of these mechanisms, this torque may play an important role in bifurcations into suppression of edge-localized modes. Finally, we discuss how these changes to the plasma response could be detected by tokamak diagnostics. In particular, we show that the changes to the resonant field discussed here have a significant impact on the external perturbed magnetic field, which should be observable by magnetic sensors on the high-field side of tokamaks but not on the low-field side. In addition, TRIP3D-MAFOT simulations show that none of the changes to the plasma response described here substantially affects the divertor footprint structure.
Lyons, Brendan C.; Ferraro, Nathaniel M.; Paz-Soldan, Carlos A.; ...
2017-02-14
In order to understand the effect of rotation on the plasma's response to three-dimensional magnetic perturbations, we perform a systematic scan of the zero-crossing of the rotation profile in a DIII-D ITER-similar shape equilibrium using linear, time-independent modeling with the M3D-C1 extended magnetohydrodynamics code. We confirm that the local resonant magnetic field generally increases as the rotation decreases at a rational surface. Multiple peaks in the resonant field are observed near rational surfaces, however, and the maximum resonant field does not always correspond to zero rotation at the surface. Furthermore, we show that non-resonant current can be driven at zero-more » crossings not aligned with rational surfaces if there is sufficient shear in the rotation profile there, leading to an amplification of near-resonant Fourier harmonics of the perturbed magnetic field and a decrease in the far-off -resonant harmonics. The quasilinear electromagnetic torque induced by this non-resonant plasma response provides drive to flatten the rotation, possibly allowing for increased transport in the pedestal by the destabilization of turbulent modes. In addition, this torque acts to drive the rotation zero-crossing to dynamically stable points near rational surfaces, which would allow for increased resonant penetration. By one or both of these mechanisms, this torque may play an important role in bifurcations into ELM suppression. Finally, we discuss how these changes to the plasma response could be detected by tokamak diagnostics. In particular, we show that the changes to the resonant field discussed here have a significant impact on the external perturbed magnetic field, which should be observable by magnetic sensors on the high-field side of tokamaks, but not on the low-field side. In addition, TRIP3D-MAFOT simulations show that none of the changes to the plasma response described here substantially affects the divertor footprint structure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyons, Brendan C.; Ferraro, Nathaniel M.; Paz-Soldan, Carlos A.
In order to understand the effect of rotation on the plasma's response to three-dimensional magnetic perturbations, we perform a systematic scan of the zero-crossing of the rotation profile in a DIII-D ITER-similar shape equilibrium using linear, time-independent modeling with the M3D-C1 extended magnetohydrodynamics code. We confirm that the local resonant magnetic field generally increases as the rotation decreases at a rational surface. Multiple peaks in the resonant field are observed near rational surfaces, however, and the maximum resonant field does not always correspond to zero rotation at the surface. Furthermore, we show that non-resonant current can be driven at zero-more » crossings not aligned with rational surfaces if there is sufficient shear in the rotation profile there, leading to an amplification of near-resonant Fourier harmonics of the perturbed magnetic field and a decrease in the far-off -resonant harmonics. The quasilinear electromagnetic torque induced by this non-resonant plasma response provides drive to flatten the rotation, possibly allowing for increased transport in the pedestal by the destabilization of turbulent modes. In addition, this torque acts to drive the rotation zero-crossing to dynamically stable points near rational surfaces, which would allow for increased resonant penetration. By one or both of these mechanisms, this torque may play an important role in bifurcations into ELM suppression. Finally, we discuss how these changes to the plasma response could be detected by tokamak diagnostics. In particular, we show that the changes to the resonant field discussed here have a significant impact on the external perturbed magnetic field, which should be observable by magnetic sensors on the high-field side of tokamaks, but not on the low-field side. In addition, TRIP3D-MAFOT simulations show that none of the changes to the plasma response described here substantially affects the divertor footprint structure.« less
Two density peaks in low magnetic field helicon plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Y.; Zhao, G.; Ouyang, J. T., E-mail: jtouyang@bit.edu.cn, E-mail: lppmchenqiang@hotmail.com
2015-09-15
In this paper, we report two density peaks in argon helicon plasma under an axial magnetic field from 0 G to 250 G with Boswell-type antenna driven by radio frequency (RF) power of 13.56 MHz. The first peak locates at 40–55 G and the second one at 110–165 G, as the RF power is sustainably increased from 100 W to 250 W at Ar pressure of 0.35 Pa. The absorbed power of two peaks shows a linear relationship with the magnetic field. End views of the discharge taken by intensified charge coupled device reveal that, when the first peak appeared, the discharge luminance moves to the edge ofmore » the tube as the magnetic field increases. For the second peak, the strong discharge area is centered at the two antenna legs after the magnetic field reaches a threshold value. Comparing with the simulation, we suggest that the efficient power absorption of two peaks at which the efficient power absorption mainly appears in the near-antenna region is due to the mode conversion in bounded non-uniform helicon plasma. The two low-field peaks are caused, to some extent, by the excitation of Trivelpiece-Gould wave through non-resonance conversion.« less
Straub, David E.; Ebner, Andrew D.
2011-01-01
The USGS, in cooperation with the Chippewa Subdistrict of the Muskingum Watershed Conservancy District, performed hydrologic and hydraulic analyses for selected reaches of three streams in Medina, Wayne, Stark, and Summit Counties in northeast Ohio: Chippewa Creek, Little Chippewa Creek, and River Styx. This study was done to facilitate assessment of various alternatives for mitigating flood hazards in the Chippewa Creek basin. StreamStats regional regression equations were used to estimate instantaneous peak discharges approximately corresponding to bankfull flows. Explanatory variables used in the regression equations were drainage area, main-channel slope, and storage area. Hydraulic models were developed to determine water-surface profiles along the three stream reaches studied for the bankfull discharges established in the hydrologic analyses. The HEC-RAS step-backwater hydraulic analysis model was used to determine water-surface profiles for the three streams. Starting water-surface elevations for all streams were established using normal depth computations in the HEC-RAS models. Cross-sectional elevation data, hydraulic-structure geometries, and roughness coefficients were collected in the field and (along with peak-discharge estimates) used as input for the models. Reach-averaged reductions in water-surface elevations ranged from 0.11 to 1.29 feet over the four roughness coefficient reduction scenarios.
Toward large-scale solar energy systems with peak concentrations of 20,000 suns
NASA Astrophysics Data System (ADS)
Kribus, Abraham
1997-10-01
The heliostat field plays a crucial role in defining the achievable limits for central receiver system efficiency and cost. Increasing system efficiency, thus reducing the reflective area and system cost, can be achieved by increasing the concentration and the receiver temperature. The concentration achievable in central receiver plants, however, is constrained by current heliostat technology and design practices. The factors affecting field performance are surface and tracking errors, astigmatism, shadowing, blocking and dilution. These are geometric factors that can be systematically treated and reduced. We present improvements in collection optics and technology that may boost concentration (up to 20,000 peak), achievable temperature (2,000 K), and efficiency in solar central receiver plants. The increased performance may significantly reduce the cost of solar energy in existing applications, and enable solar access to new ultra-high-temperature applications, such as: future gas turbines approaching 60% combined cycle efficiency; high-temperature thermo-chemical processes; and gas-dynamic processes.
NASA Astrophysics Data System (ADS)
Yeshchenko, Oleg A.; Kozachenko, Viktor V.; Naumenko, Antonina P.; Berezovska, Nataliya I.; Kutsevol, Nataliya V.; Chumachenko, Vasyl A.; Haftel, Michael; Pinchuk, Anatoliy O.
2018-05-01
We study the effects of coupling between plasmonic metal nanoparticles and a thin metal film by using light extinction spectroscopy. A planar monolayer of gold nanoparticles located near an aluminum thin film (thicknesses within the range of 0-62 nm) was used to analyze the coupling between the monolayer and the thin metal film. SPR peak area increase for polymer coated Au NPs, non-monotonical behavior of the peak area for bare Au NPs, as well as red shift and broadening of SPR at the increase of the Al film thickness have been observed. These effects are rationalized as a result of coupling of the layer of Au NPs with Al film through the field of localized surface plasmons in Au NPs that causes the excitation of collective plasmonic gap mode in the nanostructure. An additional mechanism for bare Au NPs is the non-radiative damping of SPR that is caused by the electrical contact between metal NPs and film.
Holographic non-Fermi liquid in a background magnetic field
NASA Astrophysics Data System (ADS)
Basu, Pallab; He, Jianyang; Mukherjee, Anindya; Shieh, Hsien-Hang
2010-08-01
We study the effects of a nonzero magnetic field on a class of 2+1 dimensional non-Fermi liquids, recently found in [Hong Liu, John McGreevy, and David Vegh, arXiv:0903.2477.] by considering properties of a Fermionic probe in an extremal AdS4 black hole background. Introducing a similar fermionic probe in a dyonic AdS4 black hole geometry, we find that the effect of a magnetic field could be incorporated in a rescaling of the probe fermion’s charge. From this simple fact, we observe interesting effects like gradual disappearance of the Fermi surface and quasiparticle peaks at large magnetic fields and changes in other properties of the system. We also find Landau level like structures and oscillatory phenomena similar to the de-Haas-van Alphen effect.
NASA Astrophysics Data System (ADS)
Hori, Yasuko; Kuzuhara, Masaaki; Ando, Yuji; Mizuta, Masashi
2000-04-01
Electric field distribution in the channel of a field effect transistor (FET) with a field-modulating plate (FP) has been theoretically investigated using a two-dimensional ensemble Monte Carlo simulation. This analysis revealed that the introduction of FP is effective in canceling the influence of surface traps under forward bias conditions and in reducing the electric field intensity at the drain side of the gate edge under pinch-off bias conditions. This study also found that a partial overlap of the high-field region under the gate and that at the FP electrode is important for reducing the electric field intensity. The optimized metal-semiconductor FET with FP (FPFET) (LGF˜0.2 μm) exhibited a much lower peak electric field intensity than a conventional metal-semiconductor FET. Based on these numerically calculated results, we have proposed a design procedure to optimize the power FPFET structure with extremely high breakdown voltages while maintaining reasonable gain performance.
NASA Astrophysics Data System (ADS)
Huang, Yu; Chen, Yun; Gao, Weixiang; Yang, Zhengxuan; Wang, Lingling
2018-04-01
Depending on the experimental conditions and plasmonic systems, the correlations between near-field surface enhanced Raman scattering (SERS) behaviors and far-field optical responses have sometimes been accepted directly, or argued, or explored. In this work, we have numerically demonstrated the anomalous spectral correlations between the near- and far-field properties for roughened Au mesoparticles. As a counterexample, it is witnessed that the dipole extinction peak of the mesoparticles may mislead us in seeking favorable SERS performance. The simple Rayleigh scattering spectra can also be misguided in the presence of dark modes. For roughened mesoparticles with a moderate size here, the huge near-field enhancement is a synergistic result of the overall dark quadrupole mode and the substructural bonding dipole coupling. The conclusions demonstrated here would be of general interest to the field of plasmonics, especially the optimization of single-particle SERS substrates.
Maximum screening fields of superconducting multilayer structures
Gurevich, Alex
2015-01-07
Here, it is shown that a multilayer comprised of alternating thin superconducting and insulating layers on a thick substrate can fully screen the applied magnetic field exceeding the superheating fields H s of both the superconducting layers and the substrate, the maximum Meissner field is achieved at an optimum multilayer thickness. For instance, a dirty layer of thickness ~0.1 μm at the Nb surface could increase H s ≃ 240 mT of a clean Nb up to H s ≃ 290 mT. Optimized multilayers of Nb 3Sn, NbN, some of the iron pnictides, or alloyed Nb deposited onto the surfacemore » of the Nb resonator cavities could potentially double the rf breakdown field, pushing the peak accelerating electric fields above 100 MV/m while protecting the cavity from dendritic thermomagnetic avalanches caused by local penetration of vortices.« less
Surface phonons on Bi2Sr2CaCu2O8+δ
NASA Astrophysics Data System (ADS)
Phelps, R. B.; Akavoor, P.; Kesmodel, L. L.; Demuth, J. E.; Mitzi, D. B.
1993-11-01
We report measurements of surface optical phonons on Bi2Sr2CaCu2O8+δ with high-resolution electron-energy-loss spectroscopy (HREELS). In addition to peaks near 50 and 80 meV (403 and 645 cm-1), which have been previously observed, our loss spectra exhibit a peak at 26 meV (210 cm-1). Loss spectra were measured at temperatures from 45 to 146 K, and the temperature dependence of the peaks was found to be weak. The 50 and 80 meV peaks shift to lower frequency by ~1.5 meV over this temperature range. All three peaks are attributed to surface optical phonons. The identification of particular bulk modes corresponding to the surface modes observed with HREELS is discussed.
Review of the Frontier Workshop and Q-slope results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gianluigi Ciovati
Over the last few years, significant progress has been made to produce field emission free niobium surfaces. Nowadays, the major limitation towards achieving the critical field in radio-frequency (rf) superconducting cavities made of bulk niobium of high purity is represented by the so-called ''high field Q-slope'' or ''Q-drop''. This phenomenon is characterized by a sharp decrease of the cavity quality factor, in absence of field emission, starting at a peak surface magnetic field of the order of 100 mT. It has been observed that these losses are usually reduced by a low-temperature ''in-situ'' baking, typically at 100-120 C for 24-48more » h. Several models have been proposed to explain the high field Q-slope and many experiments have been conducted in different laboratories to validate such models. A three-day workshop was held in Argonne in September 2004 to present and discuss experimental and theoretical results on the present limitations of superconducting rf cavities. In this paper, we will focus on the high field Q-slope by reviewing the results presented at the workshop along with other experimental data. In order to explain the Q-drop and the baking effect we will discuss an improved version of the oxygen diffusion model.« less
Setterbo, Jacob J; Garcia, Tanya C; Campbell, Ian P; Reese, Jennifer L; Morgan, Jessica M; Kim, Sun Y; Hubbard, Mont; Stover, Susan M
2009-10-01
To compare hoof acceleration and ground reaction force (GRF) data among dirt, synthetic, and turf surfaces in Thoroughbred racehorses. 3 healthy Thoroughbred racehorses. Forelimb hoof accelerations and GRFs were measured with an accelerometer and a dynamometric horseshoe during trot and canter on dirt, synthetic, and turf track surfaces at a racecourse. Maxima, minima, temporal components, and a measure of vibration were extracted from the data. Acceleration and GRF variables were compared statistically among surfaces. The synthetic surface often had the lowest peak accelerations, mean vibration, and peak GRFs. Peak acceleration during hoof landing was significantly smaller for the synthetic surface (mean + or - SE, 28.5g + or - 2.9g) than for the turf surface (42.9g + or - 3.8g). Hoof vibrations during hoof landing for the synthetic surface were < 70% of those for the dirt and turf surfaces. Peak GRF for the synthetic surface (11.5 + or - 0.4 N/kg) was 83% and 71% of those for the dirt (13.8 + or - 0.3 N/kg) and turf surfaces (16.1 + or - 0.7 N/kg), respectively. The relatively low hoof accelerations, vibrations, and peak GRFs associated with the synthetic surface evaluated in the present study indicated that synthetic surfaces have potential for injury reduction in Thoroughbred racehorses. However, because of the unique material properties and different nature of individual dirt, synthetic, and turf racetrack surfaces, extending the results of this study to encompass all track surfaces should be done with caution.
Impact of surface morphology on the properties of light emission in InGaN epilayers
NASA Astrophysics Data System (ADS)
Kristijonas Uždavinys, Tomas; Marcinkevičius, Saulius; Mensi, Mounir; Lahourcade, Lise; Carlin, Jean-François; Martin, Denis; Butté, Raphaël; Grandjean, Nicolas
2018-05-01
Scanning near-field optical microscopy was used to study the influence of the surface morphology on the properties of light emission and alloy composition in InGaN epitaxial layers grown on GaN substrates. A strong correlation between the maps of the photoluminescence (PL) peak energy and the gradient of the surface morphology was observed. This correlation demonstrates that the In incorporation strongly depends on the geometry of the monolayer step edges that form during growth in the step-flow mode. The spatial distribution of nonradiative recombination centers — evaluated from PL intensity maps — was found to strongly anticorrelate with the local content of In atoms in the InGaN alloy.
Investigation of passive atmospheric sounding using millimeter and submillimeter wavelength channels
NASA Technical Reports Server (NTRS)
Gasiewski, Albin J.
1993-01-01
Presented in this study are the results of controlled partially polarimetric measurements of thermal emission at 91.65 GHz from a striated water surface as corroborated by a geometrical optics radiative model. The measurements were obtained outdoors using a precision polarimetric radiometer which directly measured the first three modified Stokes' parameters. Significant variations in these parameters as a function of azimuthal water wave angle were found, with peak-to-peak variations in T(sub u) of up to approximately 10 K. The measurements are well corroborated by the GO model over a range of observations angles from near nadir up to approximately 65 degrees from nadir. The model incorporates both multiple scattering and a realistic downwelling background brightness field.
Phosphine Functionalization GaAs(111)A Surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Traub, M.; Biteen, J; Michalak, D
Phosphorus-functionalized GaAs surfaces have been prepared by exposure of Cl-terminated GaAs(111)A surfaces to triethylphosphine (PEt3) or trichlorophosphine (PCl3), or by the direct functionalization of the native-oxide terminated GaAs(111)A surface with PCl3. The presence of phosphorus on each functionalized surface was confirmed by X-ray photoelectron spectroscopy. High-resolution, soft X-ray photoelectron spectroscopy was used to evaluate the As and Ga 3d regions of such surfaces. On PEt3 treated surfaces, the Ga 3d spectra exhibited a bulk Ga peak as well as peaks that were shifted to 0.35, 0.92 and 1.86 eV higher binding energy. These peaks were assigned to residual Cl-terminated Gamore » surface sites, surficial Ga2O and surficial Ga2O3, respectively. For PCl3-treated surfaces, the Ga 3d spectra displayed peaks ascribable to bulk Ga(As), Ga2O, and Ga2O3, as well as a peak shifted 0.30 eV to higher binding energy relative to the bulk signal. A peak corresponding to Ga(OH)3, observed on the Cl-terminated surface, was absent from all of the phosphine-functionalized surfaces. After reaction of the Cl-terminated GaAs(111)A surface with PCl3 or PEt3, the As 3d spectral region was free of As oxides and As0. Although native oxide-terminated GaAs surfaces were free of As oxides after reaction with PCl3, such surfaces contained detectable amounts of As0. Photoluminescence measurements indicted that phosphine-functionalized surfaces prepared from Cl-terminated GaAs(111)A surfaces had better electrical properties than the native-oxide capped GaAs(111)A surface, while the native-oxide covered surface treated with PCl3 showed no enhancement in PL intensity.« less
Nanophotonics with Surface Enhanced Coherent Raman Microscopy
NASA Astrophysics Data System (ADS)
Fast, Alexander
Nonlinear nanophotonics is a rapidly developing field of research that aims at detecting and disentangling weak congested optical signatures on the nanoscale. Sub-wavelength field confinement of the local electromagnetic fields and the resulting field enhancement is achieved by utilizing plasmonic near-field antennas. This allows for probing nanoscopic volumes, a property unattainable by conventional far-field microscopy techniques. Combination of plasmonics and nonlinear optical microscopy provides a path to visualizing a small chemical and spatial subset of target molecules within an ensemble. This is achieved while maintaining rapid signal acquisition, which is necessary for capturing biological processes in living systems. Herein, a novel technique, wide-field surface enhanced coherent anti-Stokes Raman scattering (wfSE-CARS) is presented. This technique allows for isolating weak vibrational signals in nanoscopic proximity to the surface by using chemical sensitivity of coherent Raman microspectroscopy (CRM) and field confinement from surface plasmons supported on a thin gold film. Uniform field enhancement over a large field of view, achieved with surface plasmon polaritons (SPP) in wfSE-CARSS, allows for biomolecular imaging demonstrated on extended structures like phospholipid droplets and live cells. Surface selectivity and chemical contrast are achieved at 70 fJ/mum2 incident energy densities, which is over five orders of magnitude lower than used in conventional point scanning CRM. Next, a novel surface sensing imaging technique, local field induced metal emission (LFIME), is introduced. Presence of a sample material at the surface influences the local fields of a thin flat gold film, such that nonlinear fluorescence signal of the metal can be detected in the far-field. Nanoscale nonmetallic, nonfluorescent objects can be imaged with high signal-to-background ratio and diffraction limited lateral resolution using LFIME. Additionally, structure of the extended samples' surfaces can be visualized with a nanoscale axial resolution providing topographic information. Finally, a platform for coherently interrogating single molecules is presented. Single-molecule limit SE-CARS on non-resonant molecules is achieved by means of 3D local field confinement in the nanojunctions between two spherical gold nanoparticles. Localized plasmon resonance of the dimer nanostructure confines the probe volume down to 1 nm3 and provides the local field enhancement necessary to reach single-molecule detection limit. Nonlinear excitation of Raman vibrations in SE-CARS microspectroscopy allows for higher image acquisition rates than in conventionally used single-molecule surface enhanced Raman spectroscopy (SERS). Therefore, data throughput is significantly improved while preserving spectral information despite the presence of the metal. Data simultaneously acquired from hundreds of nanoantennas allows to establish the peak enhancement factor from the observed count rates and define the maximum allowed local-field that preserves the integrity of the antenna. These results are paramount for the future design of time resolved single-molecule studies with multiple pulsed laser excitations, required for single-molecule coherence manipulation and quantum computing.
Recurrence rate and magma effusion rate for the latest volcanism on Arsia Mons, Mars
NASA Astrophysics Data System (ADS)
Richardson, Jacob A.; Wilson, James A.; Connor, Charles B.; Bleacher, Jacob E.; Kiyosugi, Koji
2017-01-01
Magmatism and volcanism have evolved the Martian lithosphere, surface, and climate throughout the history of Mars. Constraining the rates of magma generation and timing of volcanism on the surface clarifies the ways in which magma and volcanic activity have shaped these Martian systems. The ages of lava flows on other planets are often estimated using impact crater counts, assuming that the number and size-distribution of impact craters per unit area reflect the time the lava flow has been on the surface and exposed to potential impacts. Here we show that impact crater age model uncertainty is reduced by adding stratigraphic information observed at locations where neighboring lavas abut each other, and demonstrate the significance of this reduction in age uncertainty for understanding the history of a volcanic field comprising 29 vents in the 110-km-diameter caldera of Arsia Mons, Mars. Each vent within this caldera produced lava flows several to tens of kilometers in length; these vents are likely among the youngest on Mars, since no impact craters in their lava flows are larger than 1 km in diameter. First, we modeled the age of each vent with impact crater counts performed on their corresponding lava flows and found very large age uncertainties for the ages of individual vents, often spanning the estimated age for the entire volcanic field. The age model derived from impact crater counts alone is broad and unimodal, with estimated peak activity in the field around 130 Ma. Next we applied our volcano event age model (VEAM), which uses a directed graph of stratigraphic relationships and random sampling of the impact crater age determinations to create alternative age models. Monte Carlo simulation was used to create 10,000 possible vent age sets. The recurrence rate of volcanism is calculated for each possible age set, and these rates are combined to calculate the median recurrence rate of all simulations. Applying this approach to the 29 volcanic vents, volcanism likely began around 200-300 Ma then first peaked around 150 Ma, with an average production rate of 0.4 vents per Myr. The recurrence rate estimated including stratigraphic data is distinctly bimodal, with a second, lower peak in activity around 100 Ma. Volcanism then waned until the final vents were produced 10-90 Ma. Based on this model, volume flux is also bimodal, reached a peak rate of 1-8 km3 Myr-1 by 150 Ma and remained above half this rate until about 90 Ma, after which the volume flux diminished greatly. The onset of effusive volcanism from 200-150 Ma might be due to a transition of volcanic style away from explosive volcanism that emplaced tephra on the western flank of Arsia Mons, while the waning of volcanism after the 150 Ma peak might represent a larger-scale diminishing of volcanic activity at Arsia Mons related to the emplacement of flank apron lavas.
Recurrence Rate and Magma Effusion Rate for the Latest Volcanism on Arsia Mons, Mars
NASA Technical Reports Server (NTRS)
Richardson, Jacob A.; Wilson, James A.; Connor, Charles B.; Bleacher, Jacob E.; Kiyosugi, Koji
2016-01-01
Magmatism and volcanism have evolved the Martian lithosphere, surface, and climate throughout the history of Mars. Constraining the rates of magma generation and timing of volcanism on the surface clarifies the ways in which magma and volcanic activity have shaped these Martian systems. The ages of lava flows on other planets are often estimated using impact crater counts, assuming that the number and size-distribution of impact craters per unit area reflect the time the lava flow has been on the surface and exposed to potential impacts. Here we show that impact crater age model uncertainty is reduced by adding stratigraphic information observed at locations where neighboring lavas abut each other, and demonstrate the significance of this reduction in age uncertainty for understanding the history of a volcanic field comprising 29 vents in the 110-kilometer-diameter caldera of Arsia Mons, Mars. Each vent within this caldera produced lava flows several to tens of kilometers in length; these vents are likely among the youngest on Mars, since no impact craters in their lava flows are larger than 1 kilometer in diameter. First, we modeled the age of each vent with impact crater counts performed on their corresponding lava flows and found very large age uncertainties for the ages of individual vents, often spanning the estimated age for the entire volcanic field. The age model derived from impact crater counts alone is broad and unimodal, with estimated peak activity in the field around 130Ma (megaannum, 1 million years). Next we applied our volcano event age model (VEAM), which uses a directed graph of stratigraphic relationships and random sampling of the impact crater age determinations to create alternative age models. Monte Carlo simulation was used to create 10,000 possible vent age sets. The recurrence rate of volcanism is calculated for each possible age set, and these rates are combined to calculate the median recurrence rate of all simulations. Applying this approach to the 29 volcanic vents, volcanism likely began around 200-300Ma then first peaked around 150Ma, with an average production rate of 0.4 vents per Myr (million years). The recurrence rate estimated including stratigraphic data is distinctly bimodal, with a second, lower peak in activity around 100Ma. Volcanism then waned until the final vents were produced 10-90Ma. Based on this model, volume flux is also bimodal, reached a peak rate of 1-8 cubic kilometers per million years by 150Ma and remained above half this rate until about 90Ma, after which the volume flux diminished greatly. The onset of effusive volcanism from 200-150Ma might be due to a transition of volcanic style away from explosive volcanism that emplaced tephra on the western flank of Arsia Mons, while the waning of volcanism after the 150Ma peak might represent a larger-scale diminishing of volcanic activity at Arsia Mons related to the emplacement of flank apron lavas.
rf breakdown tests of mm-wave metallic accelerating structures
Dal Forno, Massimo; Dolgashev, Valery; Bowden, Gordon; ...
2016-01-06
In this study, we explore the physics and frequency-scaling of vacuum rf breakdowns at sub-THz frequencies. We present the experimental results of rf tests performed in metallic mm-wave accelerating structures. These experiments were carried out at the facility for advanced accelerator experimental tests (FACET) at the SLAC National Accelerator Laboratory. The rf fields were excited by the FACET ultrarelativistic electron beam. We compared the performances of metal structures made with copper and stainless steel. The rf frequency of the fundamental accelerating mode, propagating in the structures at the speed of light, varies from 115 to 140 GHz. The traveling wavemore » structures are 0.1 m long and composed of 125 coupled cavities each. We determined the peak electric field and pulse length where the structures were not damaged by rf breakdowns. We calculated the electric and magnetic field correlated with the rf breakdowns using the FACET bunch parameters. The wakefields were calculated by a frequency domain method using periodic eigensolutions. Such a method takes into account wall losses and is applicable to a large variety of geometries. The maximum achieved accelerating gradient is 0.3 GV/m with a peak surface electric field of 1.5 GV/m and a pulse length of about 2.4 ns.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barada, Kshitish K.; Chattopadhyay, P. K.; Ghosh, J.
2013-01-15
Asymmetry in density peaks on either side of an m = +1 half helical antenna is observed both in terms of peak position and its magnitude with respect to magnetic field variation in a linear helicon plasma device [Barada et al., Rev. Sci. Instrum. 83, 063501 (2012)]. The plasma is produced by powering the m = +1 half helical antenna with a 2.5 kW, 13.56 MHz radio frequency source. During low magnetic field (B < 100 G) operation, plasma density peaks are observed at critical magnetic fields on either side of the antenna. However, the density peaks occurred at differentmore » critical magnetic fields on both sides of antenna. Depending upon the direction of the magnetic field, in the m = +1 propagation side, the main density peak has been observed around 30 G of magnetic field. On this side, the density peak around 5 G corresponding to electron cyclotron resonance (ECR) is not very pronounced, whereas in the m = -1 propagation side, very pronounced ECR peak has been observed around 5 G. Another prominent density peak around 12 G has also been observed in m = -1 side. However, no peak has been observed around 30 G on this m = -1 side. This asymmetry in the results on both sides is explained on the basis of polarization reversal of left hand polarized waves to right hand polarized waves and vice versa in a bounded plasma system. The density peaking phenomena are likely to be caused by obliquely propagating helicon waves at the resonance cone boundary.« less
Jing, Xufeng; Shao, Jianda; Zhang, Junchao; Jin, Yunxia; He, Hongbo; Fan, Zhengxiu
2009-12-21
In order to more exactly predict femtosecond pulse laser induced damage threshold, an accurate theoretical model taking into account photoionization, avalanche ionization and decay of electrons is proposed by comparing respectively several combined ionization models with the published experimental measurements. In addition, the transmittance property and the near-field distribution of the 'moth eye' broadband antireflective microstructure directly patterned into the substrate material as a function of the surface structure period and groove depth are performed by a rigorous Fourier model method. It is found that the near-field distribution is strongly dependent on the periodicity of surface structure for TE polarization, but for TM wave it is insensitive to the period. What's more, the femtosecond pulse laser damage threshold of the surface microstructure on the pulse duration taking into account the local maximum electric field enhancement was calculated using the proposed relatively accurate theoretical ionization model. For the longer incident wavelength of 1064 nm, the weak linear damage threshold on the pulse duration is shown, but there is a surprising oscillation peak of breakdown threshold as a function of the pulse duration for the shorter incident wavelength of 532 nm.
Molecular dynamics simulations and photoluminescence measurements of annealed ZnO surfaces
NASA Astrophysics Data System (ADS)
Min, Tjun Kit; Yoon, Tiem Leong; Ling, Chuo Ann; Mahmud, Shahrom; Lim, Thong Leng; Saw, Kim Guan
2017-06-01
The effect of thermal annealing on wurtzite ZnO, terminated by two surfaces, (000 1 bar) (which is oxygen-terminated) and (0 0 0 1) (which is Zn-terminated), is investigated via molecular dynamics simulation using reactive force field (ReaxFF). As a result of annealing at a threshold temperature range of 700 K
NASA Astrophysics Data System (ADS)
Krishna Podagatlapalli, G.; Hamad, Syed; Ahamad Mohiddon, Md; Venugopal Rao, S.
2015-03-01
Ablation of silver targets immersed in double distilled water (DDW)/acetone was performed with first order, non-diffracting Bessel beams generated by focusing ultrashort Gaussian pulses (~2 and ~40 fs) through an Axicon. The fabricated Ag dispersions were characterized by UV-visible absorption spectroscopy, transmission electron microscopy and the nanostructured Ag targets were characterized by field emission scanning electron microscopy. Ag colloids prepared with ~2 ps laser pulses at various input pulse energies of ~400, ~600, ~800 and ~1000 µJ demonstrated similar localized surface plasmon resonance (LSPR) peaks appearing near 407 nm. Analogous behavior was observed for Ag colloids prepared in acetone and ablated with ~40 fs pulses, wherein the LSPR peak was observed near 412 nm prepared with input energies of ~600, ~800 and ~1000 µJ. Observed parallels in LSPR peaks, average size of NPs, plasmon bandwidths are tentatively explained using cavitation bubble dynamics and simultaneous generation/fragmentation of NPs under the influence of Bessel beam. Fabricated Ag nanostructures in both the cases demonstrated strong enhancement factors (>106) in surface enhanced Raman scattering studies of the explosive molecule CL-20 (2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane) at 5 μM concentration.
A mechanism study of sound wave-trapping barriers.
Yang, Cheng; Pan, Jie; Cheng, Li
2013-09-01
The performance of a sound barrier is usually degraded if a large reflecting surface is placed on the source side. A wave-trapping barrier (WTB), with its inner surface covered by wedge-shaped structures, has been proposed to confine waves within the area between the barrier and the reflecting surface, and thus improve the performance. In this paper, the deterioration in performance of a conventional sound barrier due to the reflecting surface is first explained in terms of the resonance effect of the trapped modes. At each resonance frequency, a strong and mode-controlled sound field is generated by the noise source both within and in the vicinity outside the region bounded by the sound barrier and the reflecting surface. It is found that the peak sound pressures in the barrier's shadow zone, which correspond to the minimum values in the barrier's insertion loss, are largely determined by the resonance frequencies and by the shapes and losses of the trapped modes. These peak pressures usually result in high sound intensity component impinging normal to the barrier surface near the top. The WTB can alter the sound wave diffraction at the top of the barrier if the wavelengths of the sound wave are comparable or smaller than the dimensions of the wedge. In this case, the modified barrier profile is capable of re-organizing the pressure distribution within the bounded domain and altering the acoustic properties near the top of the sound barrier.
Crystalline multiwall carbon nanotubes and their application as a field emission electron source.
Liu, Peng; Zhou, Duanliang; Zhang, Chunhai; Wei, Haoming; Yang, Xinhe; Wu, Yang; Li, Qingwei; Liu, Changhong; Du, Bingchu; Liu, Liang; Jiang, Kaili; Fan, Shoushan
2018-05-18
Using super-aligned carbon nanotube (CNT) film, we have fabricated van der Waals crystalline multiwall CNTs (MWCNT) by adopting high pressure and high temperature processing. The CNTs keep parallel to each other and are distributed uniformly. X-ray diffraction characterization shows peaks at the small angle range, which can be assigned to the spacing of the MWCNT crystals. The mechanical, electrical and thermal properties are all greatly improved compared with the original CNT film. The field emission properties of van der Waals crystalline MWCNTs are tested and they show a better surface morphology stability for the large emission current. We have further fabricated a field emission x-ray tube and demonstrated a precise resolution imaging ability.
The Correlation between Radon Emission Concentration and Subsurface Geological Condition
NASA Astrophysics Data System (ADS)
Kuntoro, Yudi; Setiawan, Herru L.; Wijayanti, Teni; Haerudin, Nandi
2018-03-01
Exploration activities with standard methods have already encountered many obstacles in the field. Geological survey is often difficult to find outcrop because they are covered by vegetation, alluvial layer or as a result of urban development and housing. Seismic method requires a large expense and licensing in the use of dynamite is complicated. Method of gravity requires the operator to go back (looping) to the starting point. Given some of these constraints, therefore it needs a solution in the form of new method that can work more efficiently with less cost. Several studies in various countries have shown a correlation between the presence of hydrocarbons and Radon gas concentration in the earth surface. By utilizing the properties of Radon that can migrate to the surface, the value of Radon concentration in the surface is suggested to provide information about the subsurface structure condition. Radon is the only radioactive substance that gas-phased at atmospheric temperature. It is very abundant in the earth mantle. The vast differences of temperatures and pressures between the mantle and the earth crust cause the convection flow toward earth surface. Radon in gas phase will be carried by convection flow to the surface. The quantity of convection currents depend on the porosity and permeability of rocks where Radon travels within, so that Radon concentration in the earth surface delineates the porosity and permeability of subsurface rock layers. Some measurements were carried out at several locations with various subsurface geological conditions, including proven oil fields, proven geothermal field, and frontier area as a comparison. These measurements show that the average and the background concentration threshold in the proven oil field (11,200 Bq/m3) and proven geothermal field (7,820 Bq/m3) is much higher than the quantity in frontier area (329 and 1,620 Bq/m3). Radon concentration in the earth surface is correlated with the presence of geological faults. Peak concentrations of Radon takes place along the fault.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atsumi, H.; Tanabe, T.; Shikama, T.
Thermal desorption spectrometry (TDS) has been investigated to obtain fundamental information of tritium behavior in graphite and carbon materials especially at high temperatures. 29 brands of graphite, HOPG, glassy carbon and CFC materials charged with deuterium gas are tested up to the temperature of 1735 K with a heating rate of 0.1 K/s. TDS spectra have five peaks at 600-700 K, around 900 K, 1200 K, 1300-1450 K and 1600-1650 K. The amounts of released deuterium have been compared with crystallographic parameters derived from XRD analysis. The results can be summarized as follows. First, TDS spectra of deuterium were quitemore » varied among the samples tested, such as existence of peaks, peak temperatures and release amounts of deuterium. Secondly, TDS spectra may consist of five peaks, which are peak 1 (600-700 K), peak 2 (around 900 K), peak 3 (around 1200 K), peak 4 (1300-1450 K) and peak 5 (1600-1650 K). Thirdly, the correlations between the estimated surface area of edge surface and the total amount of released deuterium could be observed for peaks 4 and 5. Fourthly, high energy trapping site (peak 5) may exist even at edge surface or a near surface region, not only for intercalary. And fifth, in order to obtain the lower tritium retention for graphite and CFC materials, the material should be composed of a filler grain with a smaller crystallite size or having the smaller net edge surface in its structure. It is shown that heat treatment does not reduce originally existing trapping sites but trapping sites generated by neutron irradiation for instance can be reduced in some degree.« less
NASA Astrophysics Data System (ADS)
Song, Hao; Fang, Rui Yang; Li, Ling
2018-02-01
In this work, we experimentally synthesized the Fe3O4@Au nanocomposites and used them as surface-enhanced Raman scattering (SERS) substrates. The Fe3O4@Au nanocomposites retained the metallic plasmon resonant effect and possessed the magnetic field controllable characteristics. The Raman spectra of Rhodamine B (RhB) probe molecules were studied under different external magnetic field. The magnitude of external magnetic field varied from 0 Gs to 700 Gs (1 Gs = 10-4 T) with intervals of 100 Gs. When the magnetic field magnitude increased, the Raman intensity of RhB probe molecules at 1356 cm-1 increased linearly. The slope of the linear fitting curves for the Raman intensity and area were 0.118/Gs and 3.700/Gs. The Raman enhancement could raise up to 7 times for RhB probe molecules when the magnetic field magnitude increased to 700 Gs. After removing the external magnetic field, the Raman peaks returned to its original intensity in several minutes. Under the external magnetic field, the Fe3O4@Au nanocomposites were concentrated, leading to the increase number of SERS "hot spots" and the surface Au density. The results show that the magnetic field controlled Fe3O4@Au nanocomposites can realize the enhanced and controllable SERS effect, which can be used in the reversible optical sensing and bio-medical applications.
Kolva, J.R.
1985-01-01
A previous study of flood magitudes and frequencies in Ohio concluded that existing regionalized flood equations may not be adequate for estimating peak flows in small basins that are heavily forested, surface mined, or located in northwestern Ohio. In order to provide a large data base for improving estimation of flood peaks in these basins, 30 crest-stage gages were installed in 1977, in cooperation with the Ohio Department of Transportation, to provide a 10-year record of flood data The study area consists of two distinct parts: Northwestern Ohio, which contains 8 sites, and southern and eastern Ohio, which contains 22 sites in small forested or surface-mined drainage basins. Basin characteristics were determined for all 30 sites for 1978 conditions. Annual peaks were recorded or estimated for all 30 sites for water years 1978-82; an additional year of peak discharges was available at four sites. The 2-year (Q2) and 5-year (Q5) flood peaks were determined from these annual peaks.Q2 and Q5 values also were calculated using published regionalized regression equations for Ohio. The ratios of the observed to predicted 2-year (R2) and 5-year (R5) values were then calculated. This study found that observed flood peaks aree lower than estimated peaks by a significant amount in surface-mined basins. The average ratios of observed to predicted R2 values are 0.51 for basins with more than 40 percent surface-minded land, and 0.68 for sites with any surface-mined land. The average R5 value is 0.55 for sites with more than 40 percent surface-minded land, and 0.61 for sites with any surface-mined land. Estimated flood peaks from forested basins agree with the observed values fairly well. R2 values average 0.87 for sites with 20 percent or more forested land, but no surface-mined land, and R5 values average 0.96. If all sites with more than 20 percent forested land and some surface-mined land are considered, R2 the values average 0.86, and the R5 values average 0.82.
A statistical study of transient events in the outer dayside magnetosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanny, J.; Venturini, C.C.; Sibeck, D.G.
1996-03-01
The AMPTE CCE satellite frequently observed transient (1{le}{tau}{le}8 min) events marked by magnetic field strength increases and bipolar magnetic field signatures (peak-to-peak amplitudes {ge}4 nT) while in the outer dayside magnetosphere. The authors report a survey of 59 prominant events observed from August to November 1984. The bipolar signatures and minimum variance analysis reveal that most events move poleward and antisunward, except in the immediate vicinity of local noon. Here the motion of the events appears to be better governed by the spiral/orthospiral interplanetary magnetic field (IMF) orientation than magnetic curvature forces associated with IMF B{sub y}. The IMF orientationmore » appears to have little or no influence on event occurence or orientation. The authors interpret the events in terms of solar wind/foreshock pressure pulse induced ripples on the magnetopause surface. Their results can be reconciled with those obtained in previous studies which made use of ISEE 1/2, AMPTE IRM, and AMPTE UKS observations if pressure pulses produce large-amplitude events and bursty merging (or reconnection) produces small-amplitude events. 47 refs., 10 fig., 1 tab.« less
NASA Astrophysics Data System (ADS)
Zhou, Ping; Zev Rymer, William
2004-12-01
The number of motor unit action potentials (MUAPs) appearing in the surface electromyogram (EMG) signal is directly related to motor unit recruitment and firing rates and therefore offers potentially valuable information about the level of activation of the motoneuron pool. In this paper, based on morphological features of the surface MUAPs, we try to estimate the number of MUAPs present in the surface EMG by counting the negative peaks in the signal. Several signal processing procedures are applied to the surface EMG to facilitate this peak counting process. The MUAP number estimation performance by this approach is first illustrated using the surface EMG simulations. Then, by evaluating the peak counting results from the EMG records detected by a very selective surface electrode, at different contraction levels of the first dorsal interosseous (FDI) muscles, the utility and limitations of such direct peak counts for MUAP number estimation in surface EMG are further explored.
Web of Pseudostreamer and Streamer Belts and their Interplanetary Signatures
NASA Astrophysics Data System (ADS)
Crooker, N. U.; Owens, M. J.; McPherron, R. L.
2012-12-01
A new method of identifying pseudostreamer and streamer belts on potential field source surface (PFSS) maps reveals how they interconnect to form a network or web-like pattern that expands to cover the Sun at solar maximum. The method is based upon calculating the distance dS between the photospheric footpoints of field lines that are uniformly spaced in longitude at the source surface. This distance peaks sharply under the large arcades characteristic of both pseudostreamer and streamer belts, where the former (latter) mark boundaries between coronal holes with the same (different) polarities. Thus the two kinds of belts are distinguished from each other by noting whether or not a change in magnetic polarity accompanies the peak, signaling passage of the heliospheric current sheet unique to the streamer belt. To compare the plasma and composition properties of pseudostreamer and streamer belts at 1 AU, we use 12 years of ACE data to perform superposed epoch analysis centered on stream interfaces in interaction regions, where the interfaces mark the trailing boundaries of what was originally slow flow. The interfaces are sorted according to whether they bound streamers or pseudostreamers by ballistically mapping them back to traces of dS across the source surface. Preliminary results indicate sharp drops in oxygen and carbon charge state ratios as well as the elemental abundance ratio Fe/O at both streamer and pseudostreamer boundaries. Combined with the web-like pattern of streamer and pseudostreamer belts, the results are consistent with the separatrix-web model of the slow solar wind first described by Antiochos et al. [Astrophys. J., 731, 112, 2011].
NASA Astrophysics Data System (ADS)
Meza Conde, Eustorgio
The Hybrid Wave Model (HWM) is a deterministic nonlinear wave model developed for the computation of wave properties in the vicinity of ocean wave measurements. The HWM employs both Mode-Coupling and Phase Modulation Methods to model the wave-wave interactions in an ocean wave field. Different from other nonlinear wave models, the HWM decouples the nonlinear wave interactions from ocean wave field measurements and decomposes the wave field into a set of free-wave components. In this dissertation the HWM is applied to the prediction of wave elevation from pressure measurements and to the quantification of energy during breaking of long-crested irregular surface waves. 1.A transient wave train was formed in a two-dimensional wave flume by sequentially generating a series of waves from high to low frequencies that superposed at a downstream location. The predicted wave elevation using the HWM based on the pressure measurement of a very steep transient wave train is in excellent agreement with the corresponding elevation measurement, while that using Linear Wave Theory (LWT) has relatively large discrepancies. Furthermore, the predicted elevation using the HWM is not sensitive to the choice of the cutoff frequency, while that using LWT is very sensitive. 2.Several transient wave trains containing an isolated plunging or spilling breaker at a prescribed location were generated in a two-dimensional wave flume using the same superposition technique. Surface elevation measurements of each transient wave train were made at locations before and after breaking. Applying the HWM nonlinear deterministic decomposition to the measured elevation, the free-wave components comprising the transient wave train were derived. By comparing the free-wave spectra before and after breaking it is found that energy loss was almost exclusively from wave components at frequencies higher than the spectral peak frequency. Even though the wave components near the peak frequency are the largest, they do not significantly gain or lose energy after breaking. It was also observed that wave components of frequencies significantly below or near the peak frequency gain a small portion of energy lost by the high-frequency waves. These findings may have important implications to the ocean wave energy budget.
Mapping apparent stress and energy radiation over fault zones of major earthquakes
McGarr, A.; Fletcher, Joe B.
2002-01-01
Using published slip models for five major earthquakes, 1979 Imperial Valley, 1989 Loma Prieta, 1992 Landers, 1994 Northridge, and 1995 Kobe, we produce maps of apparent stress and radiated seismic energy over their fault surfaces. The slip models, obtained by inverting seismic and geodetic data, entail the division of the fault surfaces into many subfaults for which the time histories of seismic slip are determined. To estimate the seismic energy radiated by each subfault, we measure the near-fault seismic-energy flux from the time-dependent slip there and then multiply by a function of rupture velocity to obtain the corresponding energy that propagates into the far-field. This function, the ratio of far-field to near-fault energy, is typically less than 1/3, inasmuch as most of the near-fault energy remains near the fault and is associated with permanent earthquake deformation. Adding the energy contributions from all of the subfaults yields an estimate of the total seismic energy, which can be compared with independent energy estimates based on seismic-energy flux measured in the far-field, often at teleseismic distances. Estimates of seismic energy based on slip models are robust, in that different models, for a given earthquake, yield energy estimates that are in close agreement. Moreover, the slip-model estimates of energy are generally in good accord with independent estimates by others, based on regional or teleseismic data. Apparent stress is estimated for each subfault by dividing the corresponding seismic moment into the radiated energy. Distributions of apparent stress over an earthquake fault zone show considerable heterogeneity, with peak values that are typically about double the whole-earthquake values (based on the ratio of seismic energy to seismic moment). The range of apparent stresses estimated for subfaults of the events studied here is similar to the range of apparent stresses for earthquakes in continental settings, with peak values of about 8 MPa in each case. For earthquakes in compressional tectonic settings, peak apparent stresses at a given depth are substantially greater than corresponding peak values from events in extensional settings; this suggests that crustal strength, inferred from laboratory measurements, may be a limiting factor. Lower bounds on shear stresses inferred from the apparent stress distribution of the 1995 Kobe earthquake are consistent with tectonic-stress estimates reported by Spudich et al. (1998), based partly on slip-vector rake changes.
NASA Technical Reports Server (NTRS)
Asnin, V. M.; Krainsky, I. L.
1998-01-01
A fine structure was discovered in the low-energy peak of the secondary electron emission spectra of the diamond surface with negative electron affinity. We studied this structure for the (100) surface of the natural type-IIb diamond crystal. We have found that the low-energy peak consists of a total of four maxima. The relative energy positions of three of them could be related to the electron energy minima near the bottom of the conduction band. The fourth peak, having the lowest energy, was attributed to the breakup of the bulk exciton at the surface during the process of secondary electron emission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hahn, Herwig, E-mail: hahn@gan.rwth-aachen.de; Reuters, Benjamin; Geipel, Sascha
2015-03-14
GaN-based heterostructure FETs (HFETs) featuring a 2-D electron gas (2DEG) can offer very attractive device performance for power-switching applications. This performance can be assessed by evaluation of the dynamic on-resistance R{sub on,dyn} vs. the breakdown voltage V{sub bd}. In literature, it has been shown that with a high V{sub bd}, R{sub on,dyn} is deteriorated. The impairment of R{sub on,dyn} is mainly driven by electron injection into surface, barrier, and buffer traps. Electron injection itself depends on the electric field which typically peaks at the gate edge towards the drain. A concept suitable to circumvent this issue is the charge-balancing conceptmore » which employs a 2-D hole gas (2DHG) on top of the 2DEG allowing for the electric field peak to be suppressed. Furthermore, the 2DEG concentration in the active channel cannot decrease by a change of the surface potential. Hence, beside an improvement in breakdown voltage, also an improvement in dynamic behaviour can be expected. Whereas the first aspect has already been demonstrated, the second one has not been under investigation so far. Hence, in this report, the effect of charge-balancing is discussed and its impact on the dynamic characteristics of HFETs is evaluated. It will be shown that with appropriate device design, the dynamic behaviour of HFETs can be improved by inserting an additional 2DHG.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaikovsky, S. A.; Datsko, I. M.; Labetskaya, N. A.
The paper presents the results of an experimental study of the skin explosion of cylindrical conductors of diameter 1–3 mm (copper, aluminum, titanium, steel 3, and stainless steel) at a peak magnetic field of 200–600 T. The experiments were carried out on the MIG pulsed power generator at a current of up to 2.5 MA and a current rise time of 100 ns. The surface explosion of a conductor was identified by the appearance of a flash of extreme ultraviolet radiation. A minimum magnetic induction has been determined below which no plasma is generated at the conductor surface. For copper, aluminum, steel 3,more » titanium, and stainless steel, the minimum magnetic induction has been estimated to be (to within 10%) 375, 270, 280, 220, and 245 T, respectively.« less
Optical function of the finite-thickness corrugated pellicle of euglenoids.
Inchaussandague, Marina E; Skigin, Diana C; Dolinko, Andrés E
2017-06-20
We explore the electromagnetic response of the pellicle of selected species of euglenoids. These microorganisms are bounded by a typical surface pellicle formed by S-shaped overlapping bands that resemble a corrugated film. We investigate the role played by this structure in the protection of the cell against UV radiation. By considering the pellicle as a periodically corrugated film of finite thickness, we applied the C-method to compute the reflectance spectra. The far-field results revealed reflectance peaks with a Q-factor larger than 10 3 in the UV region for all the illumination conditions investigated. The resonant behavior responsible for this enhancement has also been illustrated by near-field computations performed by a photonic simulation method. These results confirm that the corrugated pellicle of euglenoids shields the cell from harmful UV radiation and open up new possibilities for the design of highly UV-reflective surfaces.
Excitation mechanism of surface plasmon polaritons in a double-layer wire grid structure
NASA Astrophysics Data System (ADS)
Motogaito, Atsushi; Nakajima, Tomoyasu; Miyake, Hideto; Hiramatsu, Kazumasa
2017-12-01
We characterize the optical properties of a double-layer wire grid structure and investigate in detail the excitation mechanism of surface plasmon polaritons (SPPs). Angular spectra for the transmittance of the transverse magnetic polarized light that are obtained through the experiment reveal two peaks. In addition, simulated mapping of the transmittance and the magnetic field distribution indicate that SPPs are excited in two areas of the wire grid structures: at the interface between the Au layer and the resist layer or the glass substrate and at the interface between the Au layer and air. The experimental data are consistent with the transmittance mapping result and the distribution of the magnetic field. Accordingly, we constructed a model of SPPs propagation. We consider that SPPs excited at the interface between the Au layer and the resist layer or the glass substrate strongly contribute to the extraordinary transmission observed in the wire grid structures.
Observation of low magnetic field density peaks in helicon plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barada, Kshitish K.; Chattopadhyay, P. K.; Ghosh, J.
2013-04-15
Single density peak has been commonly observed in low magnetic field (<100 G) helicon discharges. In this paper, we report the observations of multiple density peaks in low magnetic field (<100 G) helicon discharges produced in the linear helicon plasma device [Barada et al., Rev. Sci. Instrum. 83, 063501 (2012)]. Experiments are carried out using argon gas with m = +1 right helical antenna operating at 13.56 MHz by varying the magnetic field from 0 G to 100 G. The plasma density varies with varying the magnetic field at constant input power and gas pressure and reaches to its peakmore » value at a magnetic field value of {approx}25 G. Another peak of smaller magnitude in density has been observed near 50 G. Measurement of amplitude and phase of the axial component of the wave using magnetic probes for two magnetic field values corresponding to the observed density peaks indicated the existence of radial modes. Measured parallel wave number together with the estimated perpendicular wave number suggests oblique mode propagation of helicon waves along the resonance cone boundary for these magnetic field values. Further, the observations of larger floating potential fluctuations measured with Langmuir probes at those magnetic field values indicate that near resonance cone boundary; these electrostatic fluctuations take energy from helicon wave and dump power to the plasma causing density peaks.« less
NASA Astrophysics Data System (ADS)
Duran, C.; Yazyi, J.; de La Cruz, F.; Bishop, D. J.; Mitzi, D. B.; Kapitulnik, A.
1991-10-01
We have used the high-Q mechanical-oscillator technique to probe the vortex-lattice structure in high-quality Bi-Sr-Ca-Cu-O single crystals over a wide range of magnetic fields (200 Oe to 40 kOe), and relative orientations θ between the magnetic field and the crystalline c^ axis. In addition to the large softening and dissipation peak previously observed and interpreted as due to flux-lattice melting, another distinctly different peak at higher temperatures is seen. The temperatures where the dissipation peaks take place are solely defined by the parallel component of the field cosθ, while the restoring force on the oscillator is due to both field components. We suggest that the two peaks are due to the softening of interplanar coupling at the low-temperature peak, and melting or depinning of the two-dimensional pancake vortices at the higher-temperature peak.
NASA Astrophysics Data System (ADS)
Liu, Limei; Trakic, Adnan; Sanchez-Lopez, Hector; Liu, Feng; Crozier, Stuart
2014-01-01
MRI-LINAC is a new image-guided radiotherapy treatment system that combines magnetic resonance imaging (MRI) with a linear accelerator (LINAC) in a single unit. One drawback is that the pulsing of the split gradient coils of the system induces an electric field and currents in the patient which need to be predicted and evaluated for patient safety. In this novel numerical study the in situ electric fields and associated current densities were evaluated inside tissue-accurate male and female human voxel models when a number of different split-geometry gradient coils were operated. The body models were located in the MRI-LINAC system along the axial and radial directions in three different body positions. Each model had a region of interest (ROI) suitable for image-guided radiotherapy. The simulation results show that the amplitudes and distributions of the field and current density induced by different split x-gradient coils were similar with one another in the ROI of the body model, but varied outside of the region. The fields and current densities induced by a split classic coil with the surface unconnected showed the largest deviation from those given by the conventional non-split coils. Another finding indicated that the distributions of the peak current densities varied when the body position, orientation or gender changed, while the peak electric fields mainly occurred in the skin and fat tissues.
Geomagnetic spikes on the core-mantle boundary
NASA Astrophysics Data System (ADS)
Davies, Christopher; Constable, Catherine
2017-05-01
Extreme variations of Earth's magnetic field occurred in the Levant region around 1000 BC, when the field intensity rapidly rose and fell by a factor of 2. No coherent link currently exists between this intensity spike and the global field produced by the core geodynamo. Here we show that the Levantine spike must span >60° longitude at Earth's surface if it originates from the core-mantle boundary (CMB). Several low intensity data are incompatible with this geometric bound, though age uncertainties suggest these data could have sampled the field before the spike emerged. Models that best satisfy energetic and geometric constraints produce CMB spikes 8-22° wide, peaking at O(100) mT. We suggest that the Levantine spike reflects an intense CMB flux patch that grew in place before migrating northwest, contributing to growth of the dipole field. Estimates of Ohmic heating suggest that diffusive processes likely govern the ultimate decay of geomagnetic spikes.
Circulation patterns in active lava lakes
NASA Astrophysics Data System (ADS)
Redmond, T. C.; Lev, E.
2014-12-01
Active lava lakes provide a unique window into magmatic conduit processes. We investigated circulation patterns of 4 active lava lakes: Kilauea's Halemaumau crater, Mount Erebus, Erta Ale and Nyiragongo, and in an artificial "lava lake" constructed at the Syracuse University Lava Lab. We employed visual and thermal video recordings collected at these volcanoes and use computer vision techniques to extract time-dependent, two-dimensional surface velocity maps. The large amount of data available from Halemaumau enabled us to identify several characteristic circulation patterns. One such pattern is a rapid acceleration followed by rapid deceleration, often to a level lower than the pre-acceleration level, and then a slow recovery. Another pattern is periodic asymmetric peaks of gradual acceleration and rapid deceleration, or vice versa, previously explained by gas pistoning. Using spectral analysis, we find that the dominant period of circulation cycles at approximately 30 minutes, 3 times longer than the dominant period identified previously for Mount Erebus. Measuring a complete surface velocity field allowed us to map and follow locations of divergence and convergence, therefore upwelling and downwelling, thus connecting the surface flow with that at depth. At Nyiragongo, the location of main upwelling shifts gradually, yet is usually at the interior of the lake, for Erebus it is usually along the perimeter yet often there is catastrophic downwelling at the interior; For Halemaumau upwelling/downwelling position is almost always on the perimeter. In addition to velocity fields, we developed an automated tool for counting crustal plates at the surface of the lava lakes, and found a correlation, and a lag time, between changes if circulation vigor and the average size of crustal plates. Circulation in the artificial basaltic lava "lake" was limited by its size and degree of foaming, yet we measured surface velocities and identify patterns. Maximum surface velocity showed symmetrical peaks of acceleration and deceleration. In summary, extended observations at lava lakes reveal patterns of circulations at different time scales, yielding insight into different processes controlling the exchange of gas and fluids between the magma chamber and conduit, and the surface and atmosphere.
NASA Technical Reports Server (NTRS)
2002-01-01
(Released 14 June 2002) The Science This THEMIS visible image shows a classic example of a martian impact crater with a central peak. Central peaks are common in large, fresh craters on both Mars and the Moon. This peak formed during the extremely high-energy impact cratering event. In many martian craters the central peak has been either eroded or buried by later sedimentary processes, so the presence of a peak in this crater indicates that the crater is relatively young and has experienced little degradation. Observations of large craters on the Earth and the Moon, as well as computer modeling of the impact process, show that the central peak contains material brought from deep beneath the surface. The material exposed in these peaks will provide an excellent opportunity to study the composition of the martian interior using THEMIS multi-spectral infrared observations. The ejecta material around the crater can is well preserved, again indicating relatively little modification of this landform since its initial creation. The inner walls of this approximately 18 km diameter crater show complex slumping that likely occurred during the impact event. Since that time there has been some downslope movement of material to form the small chutes and gullies that can be seen on the inner crater wall. Small (50-100 m) mega-ripples composed of mobile material can be seen on the floor of the crater. Much of this material may have come from the walls of the crater itself, or may have been blown into the crater by the wind. The Story When a meteor smacked into the surface of Mars with extremely high energy, pow! Not only did it punch an 11-mile-wide crater in the smoother terrain, it created a central peak in the middle of the crater. This peak forms kind of on the 'rebound.' You can see this same effect if you drop a single drop of milk into a glass of milk. With craters, in the heat and fury of the impact, some of the land material can even liquefy. Central peaks like the one above are common in large, fresh craters on both Mars and the Moon. In many older Martian craters, however, the central peak has either been eroded or was buried by later deposits of sand, dust, and 'dirt' on the terrain. With the pronounced, non-eroded peak in this crater, you can tell that it hasn't been around for a long time. Its youth is also apparent because of the ejected material around the crater that spreads out from it in an almost flame-or petal-like pattern with little evidence of erosion. Observations of large craters on the Earth and the Moon, as well as computer modeling of the impact process, show that central peaks contain material brought from deep beneath the surface. The material exposed in these peaks will provide an excellent opportunity to study what the interior of Mars is made of. In addition to providing images of Mars like the one above, the THEMIS camera system has the capability to analyze the mineral composition of the surface. That means it will be able to look at this area and 'see' both the composition of the top surface, as well as the exposed interior that is uplifted in the central peak. Stay tuned for more news later from this crater! Until then, take a closer look at the walls of this crater. Particularly on the western side, you can see how whole portions of the wall have slid or 'slumped' downward, probably sometime during the impact event. Since then, smaller amounts of material have slid downslope as well, forming small chutes and gullies that streak down the inner crater wall. On the floor of the crater, you can also see small, mobile mega-ripples that extend up to a football field in length. (Look for the tiny, bright, white ripples especially to the north of the crater floor.) These ripples were probably created from material coming down from the wall of the crater or alternatively from dust and 'dirt' that was blown into the crater by the wind.
NASA Astrophysics Data System (ADS)
Walsh, C. A.; Chittenden, J. P.; McGlinchey, K.; Niasse, N. P. L.; Appelbe, B. D.
2017-04-01
Three-dimensional extended-magnetohydrodynamic simulations of the stagnation phase of inertial confinement fusion implosion experiments at the National Ignition Facility are presented, showing self-generated magnetic fields over 104 T . Angular high mode-number perturbations develop large magnetic fields, but are localized to the cold, dense hot-spot surface, which is hard to magnetize. When low-mode perturbations are also present, the magnetic fields are injected into the hot core, reaching significant magnetizations, with peak local thermal conductivity reductions greater than 90%. However, Righi-Leduc heat transport effectively cools the hot spot and lowers the neutron spectra-inferred ion temperatures compared to the unmagnetized case. The Nernst effect qualitatively changes the results by demagnetizing the hot-spot core, while increasing magnetizations at the edge and near regions of large heat loss.
Walsh, C A; Chittenden, J P; McGlinchey, K; Niasse, N P L; Appelbe, B D
2017-04-14
Three-dimensional extended-magnetohydrodynamic simulations of the stagnation phase of inertial confinement fusion implosion experiments at the National Ignition Facility are presented, showing self-generated magnetic fields over 10^{4} T. Angular high mode-number perturbations develop large magnetic fields, but are localized to the cold, dense hot-spot surface, which is hard to magnetize. When low-mode perturbations are also present, the magnetic fields are injected into the hot core, reaching significant magnetizations, with peak local thermal conductivity reductions greater than 90%. However, Righi-Leduc heat transport effectively cools the hot spot and lowers the neutron spectra-inferred ion temperatures compared to the unmagnetized case. The Nernst effect qualitatively changes the results by demagnetizing the hot-spot core, while increasing magnetizations at the edge and near regions of large heat loss.
Sherwood, James M.; Ebner, Andrew D.; Koltun, G.F.; Astifan, Brian M.
2007-01-01
Heavy rains caused severe flooding on June 22-24, 2006, and damaged approximately 4,580 homes and 48 businesses in Cuyahoga County. Damage estimates in Cuyahoga County for the two days of flooding exceed $47 million; statewide damage estimates exceed $150 million. Six counties (Cuyahoga, Erie, Huron, Lucas, Sandusky, and Stark) in northeast Ohio were declared Federal disaster areas. One death, in Lorain County, was attributed to the flooding. The peak streamflow of 25,400 cubic feet per second and corresponding peak gage height of 23.29 feet were the highest recorded at the U.S. Geological Survey (USGS) streamflow-gaging station Cuyahoga River at Independence (04208000) since the gaging station began operation in 1922, exceeding the previous peak streamflow of 24,800 cubic feet per second that occurred on January 22, 1959. An indirect calculation of the peak streamflow was made by use of a step-backwater model because all roads leading to the gaging station were inundated during the flood and field crews could not reach the station to make a direct measurement. Because of a statistically significant and persistent positive trend in the annual-peak-streamflow time series for the Cuyahoga River at Independence, a method was developed and applied to detrend the annual-peak-streamflow time series prior to the traditional log-Pearson Type III flood-frequency analysis. Based on this analysis, the recurrence interval of the computed peak streamflow was estimated to be slightly less than 100 years. Peak-gage-height data, peak-streamflow data, and recurrence-interval estimates for the June 22-24, 2006, flood are tabulated for the Cuyahoga River at Independence and 10 other USGS gaging stations in north-central Ohio. Because flooding along the Cuyahoga River near Independence and Valley View was particularly severe, a study was done to document the peak water-surface profile during the flood from approximately 2 miles downstream from the USGS streamflow-gaging station at Independence to approximately 2 miles upstream from the gaging station. High-water marks were identified and flagged in the field. Third-order-accuracy surveys were used to determine elevations of the high-water marks, and the data were tabulated and plotted.
Transcranial Photoacoustic Measurements of Cold-Injured Brains in Rats
NASA Astrophysics Data System (ADS)
Ueda, Yoshinori; Sato, Shunichi; Hasegawa, Makoto; Nawashiro, Hiroshi; Saitoh, Daizoh; Shima, Katsuji; Ashida, Hiroshi; Obara, Minoru
2005-09-01
We performed transcranial photoacoustic measurements of cold-injured brains in rats. Before inducing injury, a signal peak was observed at two locations corresponding to the surfaces of the skull and brain, while after injury, a third peak appeared at a location corresponding to the back surface of the skull; the third peak was found to be caused by subdural hematoma. The signal peak for the brain surface shifted to a deeper region with elapse of time after injury, indicating deformation of the brain. These findings suggest that small hemorrhage and morphological change of the brain can be transcranially detected by photoacoustic measurement.
Barium Titanate Nanoparticles for Biomarker Applications
NASA Astrophysics Data System (ADS)
Matar, O.; Posada, O. M.; Hondow, N. S.; Wälti, C.; Saunders, M.; Murray, C. A.; Brydson, R. M. D.; Milne, S. J.; Brown, A. P.
2015-10-01
A tetragonal crystal structure is required for barium titanate nanoparticles to exhibit the nonlinear optical effect of second harmonic light generation (SHG) for use as a biomarker when illuminated by a near-infrared source. Here we use synchrotron XRD to elucidate the tetragonal phase of commercially purchased tetragonal, cubic and hydrothermally prepared barium titanate (BaTiO3) nanoparticles by peak fitting with reference patterns. The local phase of individual nanoparticles is determined by STEM electron energy loss spectroscopy (EELS), measuring the core-loss O K-edge and the Ti L3-edge energy separation of the t2g, eg peaks. The results show a change in energy separation between the t2g and eg peak from the surface and core of the particles, suggesting an intraparticle phase mixture of the barium titanate nanoparticles. HAADF-STEM and bright field TEM-EDX show cellular uptake of the hydrothermally prepared BaTiO3 nanoparticles, highlighting the potential for application as biomarkers.
Electrically-Tunable Group Delays Using Quantum Wells in a Distributed Bragg Reflector
NASA Technical Reports Server (NTRS)
Nelson, Thomas R., Jr.; Loehr, John P.; Fork, Richard L.; Cole, Spencer; Jones, Darryl K.; Keys, Andrew
1999-01-01
There is a growing interest in the fabrication of semiconductor optical group delay lines for the development of phased arrays of Vertical-Cavity Surface-Emitting Lasers (VCSELs). We present a novel structure incorporating In(x)GA(1-x)As quantum wells in the GaAs quarter-wave layers of a GaAs/AlAs distributed Bragg reflector (DBR). Application of an electric field across the quantum wells leads to red shifting and peak broadening of the el-hhl exciton peak via the quantum-confined Stark effect. Resultant changes in the index of refraction thereby provide a means for altering the group delay of an incident laser pulse. We discuss the tradeoffs between the maximum amount of change in group delay versus absorption losses for such a device. We also compare a simple theoretical model to experimental results, and discuss both angle and position tuning of the BDR band edge resonance relative to the exciton absorption peak. The advantages of such monolithically grown devices for phased-array VCSEL applications will be detailed.
Lenz, Bernard N.; Saad, David A.; Fitzpatrick, Faith A.
2003-01-01
The effects of land cover on flooding and base-flow characteristics of Whittlesey Creek, Bayfield County, Wis., were examined in a study that involved ground-water-flow and rainfall-runoff modeling. Field data were collected during 1999-2001 for synoptic base flow, streambed head and temperature, precipitation, continuous streamflow and stream stage, and other physical characteristics. Well logs provided data for potentiometric-surface altitudes and stratigraphic descriptions. Geologic, soil, hydrography, altitude, and historical land-cover data were compiled into a geographic information system and used in two ground-water-flow models (GFLOW and MODFLOW) and a rainfall-runoff model (SWAT). A deep ground-water system intersects Whittlesey Creek near the confluence with the North Fork, producing a steady base flow of 17?18 cubic feet per second. Upstream from the confluence, the creek has little or no base flow; flow is from surface runoff and a small amount of perched ground water. Most of the base flow to Whittlesey Creek originates as recharge through the permeable sands in the center of the Bayfield Peninsula to the northwest of the surface-water-contributing basin. Based on simulations, model-wide changes in recharge caused a proportional change in simulated base flow for Whittlesey Creek. Changing the simulated amount of recharge by 25 to 50 percent in only the ground-water-contributing area results in relatively small changes in base flow to Whittlesey Creek (about 2?11 percent). Simulated changes in land cover within the Whittlesey Creek surface-water-contributing basin would have minimal effects on base flow and average annual runoff, but flood peaks (based on daily mean flows on peak-flow days) could be affected. Based on the simulations, changing the basin land cover to a reforested condition results in a reduction in flood peaks of about 12 to 14 percent for up to a 100-yr flood. Changing the basin land cover to 25 percent urban land or returning basin land cover to the intensive row-crop agriculture of the 1920s results in flood peaks increasing by as much as 18 percent. The SWAT model is limited to a daily time step, which is adequate for describing the surface-water/ground-water interaction and percentage changes. It may not, however, be adequate in describing peak flow because the instantaneous peak flow in Whittlesey Creek during a flood can be more than twice the magnitude of the daily mean flow during that same flood. In addition, the storage and infiltration capacities of wetlands in the basin are not fully understood and need further study.
An Aeroacoustic Characterization of a Multi-Element High-Lift Airfoil
NASA Astrophysics Data System (ADS)
Pascioni, Kyle A.
The leading edge slat of a high-lift system is known to be a large contributor to the overall radiated acoustic field from an aircraft during the approach phase of the flight path. This is due to the unsteady flow field generated in the slat-cove and near the leading edge of the main element. In an effort to understand the characteristics of the flow-induced source mechanisms, a suite of experimental measurements has been performed on a two-dimensional multi-element airfoil, namely, the MD-30P30N. Particle image velocimetry provide mean flow field and turbulence statistics to illustrate the differences associated with a change in angle of attack. Phase-averaged quantities prove shear layer instabilities to be linked to narrowband peaks found in the acoustic spectrum. Unsteady surface pressure are also acquired, displaying strong narrowband peaks and large spanwise coherence at low angles of attack, whereas the spectrum becomes predominately broadband at high angles. Nonlinear frequency interaction is found to occur at low angles of attack, while being negligible at high angles. To localize and quantify the noise sources, phased microphone array measurements are per- formed on the two dimensional high-lift configuration. A Kevlar wall test section is utilized to allow the mean aerodynamic flow field to approach distributions similar to a free-air configuration, while still capable of measuring the far field acoustic signature. However, the inclusion of elastic porous sidewalls alters both aerodynamic and acoustic characteristics. Such effects are considered and accounted for. Integrated spectra from Delay and Sum and DAMAS beamforming effectively suppress background facility noise and additional noise generated at the tunnel wall/airfoil junction. Finally, temporally-resolved estimates of a low-dimensional representation of the velocity vector fields are obtained through the use of proper orthogonal decomposition and spectral linear stochastic estimation. An estimate of the pressure field is then extracted by Poissons equation. From this, Curles analogy projects the time-resolved pressure forces on the airfoil surface to further establish the connection between the dominating unsteady flow structures and the propagated noise.
Role of the Coronal Alfvén Speed in Modulating the Solar-wind Helium Abundance
NASA Astrophysics Data System (ADS)
Wang, Y.-M.
2016-12-01
The helium abundance He/H in the solar wind is relatively constant at ˜0.04 in high-speed streams, but varies in phase with the sunspot number in slow wind, from ˜0.01 at solar minimum to ˜0.04 at maximum. Suggested mechanisms for helium fractionation have included frictional coupling to protons and resonant interactions with high-frequency Alfvénic fluctuations. We compare He/H measurements during 1995-2015 with coronal parameters derived from source-surface extrapolations of photospheric field maps. We find that the near-Earth helium abundance is an increasing function of the magnetic field strength and Alfvén speed v A in the outer corona, while being only weakly correlated with the proton flux density. Throughout the solar cycle, fast wind is associated with short-term increases in v A near the source surface; resonance with Alfvén waves, with v A and the relative speed of α-particles and protons decreasing with increasing heliocentric distance, may then lead to enhanced He/H at 1 au. The modulation of helium in slow wind reflects the tendency for the associated coronal Alfvén speeds to rise steeply from sunspot minimum, when this wind is concentrated around the source-surface neutral line, to sunspot maximum, when the source-surface field attains its peak strengths. The helium abundance near the source surface may represent a balance between collisional decoupling from protons and Alfvén wave acceleration.
Extensive electron transport and energization via multiple, localized dipolarizing flux bundles
NASA Astrophysics Data System (ADS)
Gabrielse, Christine; Angelopoulos, Vassilis; Harris, Camilla; Artemyev, Anton; Kepko, Larry; Runov, Andrei
2017-05-01
Using an analytical model of multiple dipolarizing flux bundles (DFBs) embedded in earthward traveling bursty bulk flows, we demonstrate how equatorially mirroring electrons can travel long distances and gain hundreds of keV from betatron acceleration. The model parameters are constrained by four Time History of Events and Macroscale Interactions during Substorms satellite observations, putting limits on the DFBs' speed, location, and magnetic and electric field magnitudes. We find that the sharp, localized peaks in magnetic field have such strong spatial gradients that energetic electrons ∇B drift in closed paths around the peaks as those peaks travel earthward. This is understood in terms of the third adiabatic invariant, which remains constant when the field changes on timescales longer than the electron's drift timescale: An energetic electron encircles a sharp peak in magnetic field in a closed path subtending an area of approximately constant flux. As the flux bundle magnetic field increases the electron's drift path area shrinks and the electron is prevented from escaping to the ambient plasma sheet, while it continues to gain energy via betatron acceleration. When the flux bundles arrive at and merge with the inner magnetosphere, where the background field is strong, the electrons suddenly gain access to previously closed drift paths around the Earth. DFBs are therefore instrumental in transporting and energizing energetic electrons over long distances along the magnetotail, bringing them to the inner magnetosphere and energizing them by hundreds of keV.
Growth of Au nanoparticle films and the effect of nanoparticle shape on plasmon peak wavelength
NASA Astrophysics Data System (ADS)
Horikoshi, S.; Matsumoto, N.; Omata, Y.; Kato, T.
2014-05-01
Metal nanoparticles (NPs) exhibit localized surface plasmon resonance (LSPR) and thus have potential for use in a wide range of applications. A facile technique for the preparation of NP films using an electron-cyclotron-resonance plasma sputtering method without a dewetting process is described. Field emission scanning electron microscopy (FE-SEM) observations revealed that the Au NPs grew independently as island-like particles during the first stage of sputtering and then coalesced with one another as sputtering time increased to ultimately form a continuous film. A plasmon absorption peak was observed via optical measurement of absorption efficiency. The LSPR peak shifted toward longer wavelengths (red shift) with an increase in sputtering time. The cause of this plasmon peak shift was theoretically investigated using the finite-difference time-domain calculation method. A realistic statistical distribution of the particle shapes based on FE-SEM observations was applied for the analysis, which has not been previously reported. It was determined that the change in the shape of the NPs from spheroidal to oval or slender due to coalescence with neighbouring NPs caused the LSPR peak shift. These results may enable the design of LSPR devices by controlling the characteristics of the nanoparticles, such as their size, shape, number density, and coverage.
NASA Astrophysics Data System (ADS)
Lu, Yanhui; Jiang, Lan; Sun, Jingya; Cao, Qiang; Wang, Qingsong; Han, Weina; Lu, Yongfeng
2018-04-01
This study demonstrated that femtosecond-laser-induced ripples on an alumina-doped zinc oxide (AZO) film with space intervals of approximately 340 and 660 nm exhibit modulations of anisotropic optical transmission. At low laser fluence, ripples can not affect the original absorption peak of AZO film, but at higher laser fluence, the absorption peak of AZO film is disappeared due to the modulation by femtosecond laser induced ripples. Moreover, the relationship between the anisotropic optical transmission and the features of nanostructures is discussed. Ripples with a space interval of approximately 660 nm have a higher ability to block light than nanostructures with a space interval of approximately 340 nm. These observations indicate that anisotropic optical transmission has potential applications in the field of optoelectronics.
Development and evaluation of an empirical diurnal sea surface temperature model
NASA Astrophysics Data System (ADS)
Weihs, R. R.; Bourassa, M. A.
2013-12-01
An innovative method is developed to determine the diurnal heating amplitude of sea surface temperatures (SSTs) using observations of high-quality satellite SST measurements and NWP atmospheric meteorological data. The diurnal cycle results from heating that develops at the surface of the ocean from low mechanical or shear produced turbulence and large solar radiation absorption. During these typically calm weather conditions, the absorption of solar radiation causes heating of the upper few meters of the ocean, which become buoyantly stable; this heating causes a temperature differential between the surface and the mixed [or bulk] layer on the order of a few degrees. It has been shown that capturing the diurnal cycle is important for a variety of applications, including surface heat flux estimates, which have been shown to be underestimated when neglecting diurnal warming, and satellite and buoy calibrations, which can be complicated because of the heating differential. An empirical algorithm using a pre-dawn sea surface temperature, peak solar radiation, and accumulated wind stress is used to estimate the cycle. The empirical algorithm is derived from a multistep process in which SSTs from MTG's SEVIRI SST experimental hourly data set are combined with hourly wind stress fields derived from a bulk flux algorithm. Inputs for the flux model are taken from NASA's MERRA reanalysis product. NWP inputs are necessary because the inputs need to incorporate diurnal and air-sea interactive processes, which are vital to the ocean surface dynamics, with a high enough temporal resolution. The MERRA winds are adjusted with CCMP winds to obtain more realistic spatial and variance characteristics and the other atmospheric inputs (air temperature, specific humidity) are further corrected on the basis of in situ comparisons. The SSTs are fitted to a Gaussian curve (using one or two peaks), forming a set of coefficients used to fit the data. The coefficient data are combined with accumulated wind stress and peak solar radiation to create an empirical relationship that approximates physical processes such as turbulence and heating memory (capacity) of the ocean. Weaknesses and strengths of the model, including potential spatial biases, will be discussed.
The effect of simulated low earth orbit radiation on polyimides (UV degradation study)
NASA Technical Reports Server (NTRS)
Forsythe, John S.; George, Graeme A.; Hill, David J. T.; Odonnell, James H.; Pomery, Peter J.; Rasoul, Firas A.
1995-01-01
UV degradation of polyimide films in air and vacuum were studied using UV-visible, ESR, FTIR, and XPS spectroscopies. The UV-visible spectra of polyimide films showed a blue shift in the absorption compared to Kapton. This behavior was attributed to the presence of bulky groups and kinks along the polymer chains which disrupt the formation of a charge transfer complex. The UV-visible spectra showed also that UV irradiation of polyimides result extensively in surface degradation, leaving the bulk of the polymer intact. ESR spectra of polyimides irradiated in vacuum revealed the formation of stable carbon-centered radicals which give a singlet ESR spectrum, while polyimides irradiated in air produced an asymmetric signal shifted to a lower magnetic field, with a higher g value and line width. This signal was attributed to oxygen-cenetered radicals of peroxy and/or alkoxy type. The rate of radical formation in air was two fold higher than for vacuum irradiation, and reached a plateau after a short time. This suggests a continuous depletion of radicals on the surface via an ablative degradation process. FTIR, XPS, and weight loss studies supported this postulate. An XPS study of the surface indicated a substantial increase in the surface oxidation after irradiation in air. The sharp increase in the C-O binding energy peak relative to the C-C peak was believed to be associated with an aromatic ring opening reaction.
Transcranial current stimulation focality using disc and ring electrode configurations: FEM analysis
NASA Astrophysics Data System (ADS)
Datta, Abhishek; Elwassif, Maged; Battaglia, Fortunato; Bikson, Marom
2008-06-01
We calculated the electric fields induced in the brain during transcranial current stimulation (TCS) using a finite-element concentric spheres human head model. A range of disc electrode configurations were simulated: (1) distant-bipolar; (2) adjacent-bipolar; (3) tripolar; and three ring designs, (4) belt, (5) concentric ring, and (6) double concentric ring. We compared the focality of each configuration targeting cortical structures oriented normal to the surface ('surface-radial' and 'cross-section radial'), cortical structures oriented along the brain surface ('surface-tangential' and 'cross-section tangential') and non-oriented cortical surface structures ('surface-magnitude' and 'cross-section magnitude'). For surface-radial fields, we further considered the 'polarity' of modulation (e.g. superficial cortical neuron soma hyper/depolarizing). The distant-bipolar configuration, which is comparable with commonly used TCS protocols, resulted in diffuse (un-focal) modulation with bi-directional radial modulation under each electrode and tangential modulation between electrodes. Increasing the proximity of the two electrodes (adjacent-bipolar electrode configuration) increased focality, at the cost of more surface current. At similar electrode distances, the tripolar-electrodes configuration produced comparable peak focality, but reduced radial bi-directionality. The concentric-ring configuration resulted in the highest spatial focality and uni-directional radial modulation, at the expense of increased total surface current. Changing ring dimensions, or use of two concentric rings, allow titration of this balance. The concentric-ring design may thus provide an optimized configuration for targeted modulation of superficial cortical neurons.
High pressure effects in high-field asymmetric waveform ion mobility spectrometry.
Wang, Yonghuan; Wang, Xiaozhi; Li, Lingfen; Chen, Chilai; Xu, Tianbai; Wang, Tao; Luo, Jikui
2016-08-30
High-Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) is an analytical technique based on the principle of non-linear electric field dependence of coefficient of mobility of ions for separation that was originally conceived in the Soviet Union in the early 1980s. Being well developed over the past decades, FAIMS has become an efficient method for the separation and characterization of gas-phase ions at ambient pressure, often in air, to detect trace amounts of chemical species including explosives, toxic chemicals, chemical warfare agents and other compounds. However the resolution of FAIMS and ion separation capability need to be improved for more applications of the technique. The effects of above-ambient pressure varying from 1 to 3 atm on peak position, resolving power, peak width, and peak intensity are investigated theoretically and experimentally using micro-fabricated planar FAIMS in purified air. Peak positions, varying with pressure in a way as a function of dispersion voltage, could be simplified by expressing both compensation and dispersion fields in Townsend units for E/N, the ratio of electric field intensity (E) to the gas number density (N). It is demonstrated that ion Townsend-scale peak positions remain unchanged for a range of pressures investigated, implying that the higher the pressure is, stronger compensation and separation fields are needed within limits of air breakdown field. Increase in pressure is found to separate ions that could not be distinguished in ambient pressure, which could be interpreted as the differentials of ions' peak compensation voltage expanded wider than the dilation of peak widths leading to resolving power enhancement with pressure. Increase in pressure can also result in an increase in peak intensity. Copyright © 2016 John Wiley & Sons, Ltd.
High Frequency Near-Field Ground Motion Excited by Strike-Slip Step Overs
NASA Astrophysics Data System (ADS)
Hu, Feng; Wen, Jian; Chen, Xiaofei
2018-03-01
We performed dynamic rupture simulations on step overs with 1-2 km step widths and present their corresponding horizontal peak ground velocity distributions in the near field within different frequency ranges. The rupture speeds on fault segments are determinant in controlling the near-field ground motion. A Mach wave impact area at the free surface, which can be inferred from the distribution of the ratio of the maximum fault-strike particle velocity to the maximum fault-normal particle velocity, is generated in the near field with sustained supershear ruptures on fault segments, and the Mach wave impact area cannot be detected with unsustained supershear ruptures alone. Sub-Rayleigh ruptures produce stronger ground motions beyond the end of fault segments. The existence of a low-velocity layer close to the free surface generates large amounts of high-frequency seismic radiation at step over discontinuities. For near-vertical step overs, normal stress perturbations on the primary fault caused by dipping structures affect the rupture speed transition, which further determines the distribution of the near-field ground motion. The presence of an extensional linking fault enhances the near-field ground motion in the extensional regime. This work helps us understand the characteristics of high-frequency seismic radiation in the vicinities of step overs and provides useful insights for interpreting the rupture speed distributions derived from the characteristics of near-field ground motion.
Yin, Yi; Zech, M; Williams, T L; Wang, X F; Wu, G; Chen, X H; Hoffman, J E
2009-03-06
We present an atomic resolution scanning tunneling spectroscopy study of superconducting BaFe1.8Co0.2As2 single crystals in magnetic fields up to 9 T. At zero field, a single gap with coherence peaks at Delta=6.25 meV is observed in the density of states. At 9 and 6 T, we image a disordered vortex lattice, consistent with isotropic, single flux quantum vortices. Vortex locations are uncorrelated with strong-scattering surface impurities, demonstrating bulk pinning. The vortex-induced subgap density of states fits an exponential decay from the vortex center, from which we extract a coherence length xi=27.6+/-2.9 A, corresponding to an upper critical field Hc2=43 T.
Control of single-electron charging of metallic nanoparticles onto amorphous silicon surface.
Weis, Martin; Gmucová, Katarína; Nádazdy, Vojtech; Capek, Ignác; Satka, Alexander; Kopáni, Martin; Cirák, Július; Majková, Eva
2008-11-01
Sequential single-electron charging of iron oxide nanoparticles encapsulated in oleic acid/oleyl amine envelope and deposited by the Langmuir-Blodgett technique onto Pt electrode covered with undoped hydrogenated amorphous silicon film is reported. Single-electron charging (so-called quantized double-layer charging) of nanoparticles is detected by cyclic voltammetry as current peaks and the charging effect can be switched on/off by the electric field in the surface region induced by the excess of negative/positive charged defect states in the amorphous silicon layer. The particular charge states in amorphous silicon are created by the simultaneous application of a suitable bias voltage and illumination before the measurement. The influence of charged states on the electric field in the surface region is evaluated by the finite element method. The single-electron charging is analyzed by the standard quantized double layer model as well as two weak-link junctions model. Both approaches are in accordance with experiment and confirm single-electron charging by tunnelling process at room temperature. This experiment illustrates the possibility of the creation of a voltage-controlled capacitor for nanotechnology.
Surface plasmon dispersion analysis in the metal-oxide-metal tunnel diode
NASA Technical Reports Server (NTRS)
Donohue, J. F.; Wang, E. Y.
1987-01-01
A detailed model of surface plasmon dispersion in the metal-oxide-metal tunnel diode is presented in order to clarify the spectral emission from this diode. The model predicts the location of the spectral peaks and the emission between the peaks by considering the effects of retardation on the surface plasmon. A nonradiative mode is found to play a major role in the transition from the visible to UV peaks in the diode spectra.
The effect of external magnetic field on the Raman peaks in manganites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sahu, A. K., E-mail: ajitsahu@seemantaengg.ac.in; Rout, G. C.
2014-04-24
We report here a microscopic theoretical model study exhibiting the effect of external magnetic field on the Raman excitation peaks in the CMR manganite system. The Hamiltonian consists of Jahn-Teller (J-T) distortion in e{sub g} band, the double exchange interaction and the Heisenberg spin-spin interaction. Further the phonons are coupled to e{sub g} band electrons, J-T distorted e{sub g} band and the double exchange interaction. The Raman spectral intensity is calculated from the imaginary part of the phonon Green function. The spectra exhibits three peaks besides a very weak high energy peak. The magnetic field effect on these peaks aremore » reported.« less
Simulation of double stage hall thruster with double-peaked magnetic field
NASA Astrophysics Data System (ADS)
Ding, Yongjie; Li, Peng; Sun, Hezhi; Wei, Liqiu; Xu, Yu; Peng, Wuji; Su, Hongbo; Li, Hong; Yu, Daren
2017-07-01
This study adopts double permanent magnetic rings and four permanent magnetic rings to form two symmetrical magnetic peaks and two asymmetrical magnetic peaks in the channel of a Hall thruster, and uses a 2D-3V PIC-MCC model to analyze the influence of magnetic strength on the discharge characteristic and performance of Hall thrusters with an intermediate electrode and double-peaked magnetic field. As opposed to the two symmetrical magnetic peaks formed by double permanent magnetic rings, increasing the magnetic peak value deep within the channel can cause propellant ionization to occur; with the increase in the magnetic peak deep in the channel, the propellant utilization, thrust, and anode efficiency of the thruster are significantly improved. Double-peaked magnetic field can realize separate control of ionization and acceleration in a Hall thruster, and provide technical means for further improving thruster performance. Contribution to the Topical Issue "Physics of Ion Beam Sources", edited by Holger Kersten and Horst Neumann.
Topological phase transition of Dirac superconductors in the presence of pseudo-scalar pairings
NASA Astrophysics Data System (ADS)
Salehi, Morteza; Jafari, S. A.
2018-06-01
Motivated by recent developments in the field of topological superconductors, we show that there is a topological phase transition (TPT) for three dimensional Dirac superconductors (3DDS) in the presence of pseudo-scalar superconducting order parameter which leads to the appearance of a two dimensional Majorana sea (2DMS) on its surface. The perfect Andreev-Klein transmission, resonant peak with robust character in the differential conductance and 4π periodic Josephson current are experimental signatures of 2DMS.
NASA Astrophysics Data System (ADS)
Yoshida, Takahiko; Tokizaki, Chihiro; Takayanagi, Toshiyuki
2015-08-01
A three degree-of-freedom potential energy surface of the cyclooctatetraene (COT) unimolecular reaction that can describe both ring-inversion (D2d ↔ D2d) and double bond-alternation (D4h ↔ D4h) processes was constructed using complete active space self-consistent field calculations. The potential energy surface was used to simulate the experimentally measured transition-state spectrum by calculating the photodetachment spectrum of the COT anion with time-dependent wave packet formalism. The calculated spectrum reproduces the experimental result well. We also analyzed wavefunction properties at spectral peak positions to understand the COT unimolecular reaction dynamics.
Annular wave packets at Dirac points in graphene and their probability-density oscillation.
Luo, Ji; Valencia, Daniel; Lu, Junqiang
2011-12-14
Wave packets in graphene whose central wave vector is at Dirac points are investigated by numerical calculations. Starting from an initial Gaussian function, these wave packets form into annular peaks that propagate to all directions like ripple-rings on water surface. At the beginning, electronic probability alternates between the central peak and the ripple-rings and transient oscillation occurs at the center. As time increases, the ripple-rings propagate at the fixed Fermi speed, and their widths remain unchanged. The axial symmetry of the energy dispersion leads to the circular symmetry of the wave packets. The fixed speed and widths, however, are attributed to the linearity of the energy dispersion. Interference between states that, respectively, belong to two branches of the energy dispersion leads to multiple ripple-rings and the probability-density oscillation. In a magnetic field, annular wave packets become confined and no longer propagate to infinity. If the initial Gaussian width differs greatly from the magnetic length, expanding and shrinking ripple-rings form and disappear alternatively in a limited spread, and the wave packet resumes the Gaussian form frequently. The probability thus oscillates persistently between the central peak and the ripple-rings. If the initial Gaussian width is close to the magnetic length, the wave packet retains the Gaussian form and its height and width oscillate with a period determined by the first Landau energy. The wave-packet evolution is determined jointly by the initial state and the magnetic field, through the electronic structure of graphene in a magnetic field. © 2011 American Institute of Physics
Brillouin scattering in planar waveguides. II. Experiments
NASA Astrophysics Data System (ADS)
Chiasera, A.; Montagna, M.; Moser, E.; Rossi, F.; Tosello, C.; Ferrari, M.; Zampedri, L.; Caponi, S.; Gonçalves, R. R.; Chaussedent, S.; Monteil, A.; Fioretto, D.; Battaglin, G.; Gonella, F.; Mazzoldi, P.; Righini, G. C.
2003-10-01
Silica-titania planar waveguides of different thicknesses and compositions have been produced by radio-frequency sputtering and dip coating on silica substrates. Waveguides were also produced by silver exchange on a soda-lime silicate glass substrate. Brillouin scattering of the samples has been studied by coupling the exciting laser beam with a prism to different transverse-electric (TE) modes of the waveguides, and collecting the scattered light from the front surface. In multimode waveguides, the spectra depend on the m mode of excitation. For waveguides with a step index profile, two main peaks due to longitudinal phonons are present, apart from the case of the TE0 excitation, where a single peak is observed. The energy separation between the two peaks increases with the mode index. In graded-index waveguides, m-1 peaks of comparable intensities are observed. The spectra are reproduced very well by a model which considers the space distribution of the exciting field in the mode, a simple space dependence of the elasto-optic coefficients, through the value of the refraction index, and neglects the refraction of phonons. A single-fit parameter, i.e., the longitudinal sound velocity, is used to calculate as many spectra as is the number of modes in the waveguide.
Green roof hydrologic performance and modeling: a review.
Li, Yanling; Babcock, Roger W
2014-01-01
Green roofs reduce runoff from impervious surfaces in urban development. This paper reviews the technical literature on green roof hydrology. Laboratory experiments and field measurements have shown that green roofs can reduce stormwater runoff volume by 30 to 86%, reduce peak flow rate by 22 to 93% and delay the peak flow by 0 to 30 min and thereby decrease pollution, flooding and erosion during precipitation events. However, the effectiveness can vary substantially due to design characteristics making performance predictions difficult. Evaluation of the most recently published study findings indicates that the major factors affecting green roof hydrology are precipitation volume, precipitation dynamics, antecedent conditions, growth medium, plant species, and roof slope. This paper also evaluates the computer models commonly used to simulate hydrologic processes for green roofs, including stormwater management model, soil water atmosphere and plant, SWMS-2D, HYDRUS, and other models that are shown to be effective for predicting precipitation response and economic benefits. The review findings indicate that green roofs are effective for reduction of runoff volume and peak flow, and delay of peak flow, however, no tool or model is available to predict expected performance for any given anticipated system based on design parameters that directly affect green roof hydrology.
Toward a terahertz-driven electron gun
Huang, W. Ronny; Nanni, Emilio A.; Ravi, Koustuban; Hong, Kyung-Han; Fallahi, Arya; Wong, Liang Jie; Keathley, Phillip D.; Zapata, Luis E.; Kärtner, Franz X.
2015-01-01
Femtosecond electron bunches with keV energies and eV energy spread are needed by condensed matter physicists to resolve state transitions in carbon nanotubes, molecular structures, organic salts, and charge density wave materials. These semirelativistic electron sources are not only of interest for ultrafast electron diffraction, but also for electron energy-loss spectroscopy and as a seed for x-ray FELs. Thus far, the output energy spread (hence pulse duration) of ultrafast electron guns has been limited by the achievable electric field at the surface of the emitter, which is 10 MV/m for DC guns and 200 MV/m for RF guns. A single-cycle THz electron gun provides a unique opportunity to not only achieve GV/m surface electric fields but also with relatively low THz pulse energies, since a single-cycle transform-limited waveform is the most efficient way to achieve intense electric fields. Here, electron bunches of 50 fC from a flat copper photocathode are accelerated from rest to tens of eV by a microjoule THz pulse with peak electric field of 72 MV/m at 1 kHz repetition rate. We show that scaling to the readily-available GV/m THz field regime would translate to monoenergetic electron beams of ~100 keV. PMID:26486697
Effect of sequential surface irrigations on field-scale emissions of 1,3-dichloropropene.
Yates, S R; Knuteson, J; Ernst, F F; Zheng, W; Wang, Q
2008-12-01
A field experiment was conducted to measure subsurface movement and volatilization of 1,3-dichloropropene (1,3-D) after shank injection to an agricultural soil. The goal of this study was to evaluate the effect of sprinkler irrigation on the emissions of 1,3-D to the atmosphere and is based on recent research that has shown that saturating the soil pore space reduces gas-phase diffusion and leads to reduced volatilization rates. Aerodynamic, integrated horizontal flux, and theoretical profile shape methods were used to estimate fumigant volatilization rates and total emission losses. These methods provide estimates of the volatilization rate based on measurements of wind speed, temperature, and 1,3-D concentration in the atmosphere. The volatilization rate was measured continuously for 16 days, and the daily peak volatilization rates for the three methods ranged from 18 to 60 microg m(-2) s(-1). The total 13-D mass entering the atmosphere was approximately 44-68 kg ha(-1), or 10-15% of the applied active ingredient This represents approximately 30-50% reduction in the total emission losses compared to conventional fumigant applications in field and field-plot studies. Significant reduction in volatilization of 1,3-D was observed when five surface irrigations were applied to the field, one immediately after fumigation followed by daily irrigations.
Two-Pole Caustic Model for High-Energy Lightcurves of Pulsars
NASA Technical Reports Server (NTRS)
Dyks, J.; Rudak, B.
2003-01-01
We present a new model of high-energy lightcurves from rotation powered pulsars. The key ingredient of the model is the gap region (i.e. the region where particle acceleration is taking place and high-energy photons originate) which satisfies the following assumptions: i) the gap region extends from each polar cap to the light cylinder; ii) the gap is thin and confined to the surface of last open magnetic-field lines; iii) photon emissivity is uniform within the gap region. The model lightcurves are dominated by strong peaks (either double or single) of caustic origin. Unlike in other pulsar models with caustic effects, the double peaks arise due to crossing two caustics, each of which is associated with a different magnetic pole. The generic features of the lightcurves are consistent with the observed characteristics of pulsar lightcurves: 1) the most natural (in terms of probability) shape consists of two peaks (separated by 0.4 to 0.5 in phase for large viewing angles); 2) the peaks possess well developed wings; 3) there is a bridge (inter-peak) emission component; 4) there is a non-vanishing off-pulse emission level; 5) the radio pulse occurs before the leading high-energy peak. The model is well suited for four gamma-ray pulsars - Crab, Vela, Geminga and B1951+32 - with double-peak lightcurves exhibiting the peak separation of 0.4 to 0.5 in phase. Hereby, we apply the model to the Vela pulsar. Moreover, we indicate the limitation of the model in accurate reproducing of the lightcurves with single pulses and narrowly separated (about 0.2 in phase) pulse peaks. We also discuss the optical polarization properties for the Crab pulsar in the context of the two-pole caustic model.
Active high-power RF switch and pulse compression system
Tantawi, Sami G.; Ruth, Ronald D.; Zolotorev, Max
1998-01-01
A high-power RF switching device employs a semiconductor wafer positioned in the third port of a three-port RF device. A controllable source of directed energy, such as a suitable laser or electron beam, is aimed at the semiconductor material. When the source is turned on, the energy incident on the wafer induces an electron-hole plasma layer on the wafer, changing the wafer's dielectric constant, turning the third port into a termination for incident RF signals, and. causing all incident RF signals to be reflected from the surface of the wafer. The propagation constant of RF signals through port 3, therefore, can be changed by controlling the beam. By making the RF coupling to the third port as small as necessary, one can reduce the peak electric field on the unexcited silicon surface for any level of input power from port 1, thereby reducing risk of damaging the wafer by RF with high peak power. The switch is useful to the construction of an improved pulse compression system to boost the peak power of microwave tubes driving linear accelerators. In this application, the high-power RF switch is placed at the coupling iris between the charging waveguide and the resonant storage line of a pulse compression system. This optically controlled high power RF pulse compression system can handle hundreds of Megawatts of power at X-band.
NASA Astrophysics Data System (ADS)
Jeon, Woosung; Leem, Jae-Young
2018-05-01
ZnO nanorods were prepared on a Si substrate with and without a ZnO seed layer formed by electro-oxidation to investigate the effect of the seed layer on their growth. The ZnO nanorods grown on the ZnO seed layer had top surfaces that were flat whereas those grown without it had rough top surfaces, as observed in field-emission scanning electron microscopy images. In the Xray diffraction analysis, all ZnO nanorods showed preferential orientation with the (002) plane. In the case of ZnO nanorods prepared with a ZnO seed layer, the residual stress decreased, and the full width at half maximum of the ZnO (002) plane peak decreased. The photoluminescence spectra show a strong and narrow near-band-edge emission peak and high near-band-edge emission to deep-level emission peak ratio for the ZnO nanorods prepared with the seed layer. With respect to the photoresponse properties, the ZnO nanorods grown with the ZnO seed layer showed higher responsivity and faster rise/decay curves than those grown without it. Thus, the ZnO seed layer formed by electro-oxidation improves the structural, optical, and photoresponse properties of the ZnO nanorods formed on it. This method could serve as a new route for improving the properties of optoelectronic devices.
Doping- and irradiation-controlled pinning of vortices in BaFe 2 (As 1 - x P x ) 2 single crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, L.; Jia, Y.; Schlueter, J. A.
We report on the systematic evolution of vortex pinning behavior in isovalent doped single crystals of BaFe 2 (As 1 - x P x ) 2 . Proceeding from optimal doped to overdoped samples, we find a clear transformation of the magnetization hysteresis from a fishtail behavior to a distinct peak effect, followed by a reversible magnetization and Bean-Livingston surface barriers. Strong point pinning dominates the vortex behavior at low fields whereas weak collective pinning determines the behavior at higher fields. In addition to doping effects, we show that particle irradiation by energetic protons can tune vortex pinning in thesemore » materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, L.; Jia, Y.; Schlueter, J. A.
We report on the systematic evolution of vortex pinning behavior in isovalent doped single crystals of BaFe{sub 2}(As{sub 1-x}P{sub x}){sub 2}. Proceeding from optimal doped to overdoped samples, we find a clear transformation of the magnetization hysteresis from a fishtail behavior to a distinct peak effect, followed by a reversible magnetization and Bean-Livingston surface barriers. Strong point pinning dominates the vortex behavior at low fields whereas weak collective pinning determines the behavior at higher fields. In addition to doping effects, we show that particle irradiation by energetic protons can tune vortex pinning in these materials.
JPRS report: Science and technology. Central Eurasia: Physics and mathematics
NASA Astrophysics Data System (ADS)
1993-11-01
Translated articles cover the following topics: laser-acoustic cleaning of surfaces from mechanical microparticles; supersonic CO laser with HF excitation in combustion products; possibility of use of interaction between acoustic and light waves in fiber light conductors for generation of short light pulses; steady three-dimensional flow of viscous gas through channels and nozzles; current fluctuations in superconductor with superlattice in strong electric and magnetic fields; influence of strong electric field on conductivity of high-temperature superconductor ceramic of YBaCuO system; effect of electron bombardment on peak-effect in YBa2 Cu3Ox single crystals; and evolution of homogeneous isotropic universe, dark mass, and absence of monopoles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Weiguo; Shaw, William J.
This paper compares the wind field from a diagnostic model (CALMET) over complex terrain in the Phoenix region in the USA with observations that are gridded by a state-of-the-art Four-Dimensional Data Assimilation (FDDA) system. The wind difference between the CALMET and FDDA wind fields is larger at night than in the day. The magnitude of the wind difference can be smaller than 5% of the mean wind speed at low levels in areas with dense observational stations, while it can be larger than 80% in areas without observational stations or at high altitudes. The vector-mean wind direction difference over themore » domain is 15 deg on the surface level and 25 deg between 10 and 1500 m. To evaluate the effects of the wind difference on dispersion calculations, dispersion of a hypothetical passive tracer released from surface point sources is simulated by the second-order closure integrated puff (SCIPUFF) model driven by the CALMET and FDDA wind fields, respectively. Differences in the two simulated tracer concentration fields increase with time due to accumulation of effects of the wind differences both near the surface and at higher altitudes. Even for the release in the area with the densest distribution of surface stations, the relative difference in the peak surface concentration from CALMET-SCIPUFF and from FDDA-SCIPUFF is less than 10% only within 0.5 hr after the release in the afternoon, and increases to 70% at 1.5 hr; this is because of large differences in wind above the surface. For the release in the area with few stations, the difference can be larger than 100% or even larger after 1.5 hr from the release. To improve dispersion simulations driven by the CALMET wind in the region, observations at upper-air stations are needed and the current surface observation network needs to be reorganized or more stations are needed to account for the influence of terrain.« less
COMPARISON OF CORONAL EXTRAPOLATION METHODS FOR CYCLE 24 USING HMI DATA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arden, William M.; Norton, Aimee A.; Sun, Xudong
2016-05-20
Two extrapolation models of the solar coronal magnetic field are compared using magnetogram data from the Solar Dynamics Observatory /Helioseismic and Magnetic Imager instrument. The two models, a horizontal current–current sheet–source surface (HCCSSS) model and a potential field–source surface (PFSS) model, differ in their treatment of coronal currents. Each model has its own critical variable, respectively, the radius of a cusp surface and a source surface, and it is found that adjusting these heights over the period studied allows for a better fit between the models and the solar open flux at 1 au as calculated from the Interplanetary Magneticmore » Field (IMF). The HCCSSS model provides the better fit for the overall period from 2010 November to 2015 May as well as for two subsets of the period: the minimum/rising part of the solar cycle and the recently identified peak in the IMF from mid-2014 to mid-2015 just after solar maximum. It is found that an HCCSSS cusp surface height of 1.7 R {sub ⊙} provides the best fit to the IMF for the overall period, while 1.7 and 1.9 R {sub ⊙} give the best fits for the two subsets. The corresponding values for the PFSS source surface height are 2.1, 2.2, and 2.0 R {sub ⊙} respectively. This means that the HCCSSS cusp surface rises as the solar cycle progresses while the PFSS source surface falls.« less
The second peak effect and vortex pinning mechanisms in Ba(Fe,Ni)2As2 superconductors
NASA Astrophysics Data System (ADS)
Ghorbani, S. R.; Arabi, H.; Wang, X. L.
2017-09-01
Vortex pinning mechanisms have been studied systematically in BaFe1.9Ni0.1As2 single crystal as a function of temperature and magnetic field. The obtained shielding current density, Js, showed a second peak in the intermediate magnetic field range at high temperatures. The temperature dependence of the shielding current density, Js(T), was analysed within the collective pinning model at different magnetic fields. It was found that the second peak reflects the coexistence of both δl pinning, reflecting spatial variation in the mean free path (l), and δTc pinning, reflecting spatial variation in the superconducting critical temperature (Tc) at low temperature and low magnetic fields in BaFe1.9Ni0.1As2 single crystal. The results clearly show that pinning mechanism effects are strongly temperature and magnetic field dependent, and the second peak effect is more powerful at higher temperatures and magnetic fields. It was also found that the magnetic field mainly controls the pinning mechanism effect.
NASA Astrophysics Data System (ADS)
Ledentsov, N.; Shchukin, V. A.; Kropp, J.-R.; Burger, S.; Schmidt, F.; Ledentsov, N. N.
2016-03-01
Oxide-confined apertures in vertical cavity surface emitting laser (VCSEL) can be engineered such that they promote leakage of the transverse optical modes from the non- oxidized core region to the selectively oxidized periphery of the device. The reason of the leakage is that the VCSEL modes in the core can be coupled to tilted modes in the periphery if the orthogonality between the core mode and the modes at the periphery is broken by the oxidation-induced optical field redistribution. Three-dimensional modeling of a practical VCSEL design reveals i) significantly stronger leakage losses for high-order transverse modes than that of the fundamental one as high-order modes have a higher field intensity close to the oxide layers and ii) narrow peaks in the far-field profile generated by the leaky component of the optical modes. Experimental 850-nm GaAlAs leaky VCSELs produced in the modeled design demonstrate i) single-mode lasing with the aperture diameters up to 5μm with side mode suppression ratio >20dB at the current density of 10kA/cm2; and ii) narrow peaks tilted at 37 degrees with respect to the vertical axis in excellent agreement with the modeling data and confirming the leaky nature of the modes and the proposed mechanism of mode selection. The results indicate that in- plane coupling of VCSELs, VCSELs and p-i-n photodiodes, VCSEL and delay lines is possible allowing novel photonic integrated circuits. We show that the approach enables design of oxide apertures, air-gap apertures, devices created by impurity-induced intermixing or any combinations of such designs through quantitative evaluation of the leaky emission.
Photoelectron transport tuning of self-assembled subbands
NASA Astrophysics Data System (ADS)
Xiong, Zhengwei; Wang, Xinmin; Wu, Weidong; Wang, Xuemin; Peng, Liping; Zhao, Yan; Yan, Dawei; Jiang, Tao; Shen, Changle; Zhan, Zhiqiang; Cao, Linhong; Li, Weihua
2016-02-01
Conventionally, electrical transport of quantum subbands occurs at very high electric fields, indicating that the medium is easy to break down. In the experiments and practical applications, the extreme condition is difficult to satisfy. For quantum information transmission, low power consumption and convenient implementation are what we expect. In this paper, we engineered a special quantum dot array (QDA) embedded in a single crystal matrix. By external optical field excitation, we found a series of subbands made of the self-assembled QDA discretely located in the matrix. Changing the spacing between the quantum dots leads to the variation of subband spacing. Artificially manipulating the microcosmic QDA system can bring interesting macroscopic effects, such as an enhanced absorption intensity in the ultraviolet range, a blue-shift of the surface plasmon resonance peak and nonlinear absorption changed from two-photon absorption to saturated absorption. The intrinsic mechanism of the subband optical response was revealed due to the strong quantum confinement effect and dominant intraband transitions. The weak surface plasmon resonance absorption of Ni QDA gave an excellent figure of merit of the order of 10-10. The composite films are expectation enough to become a prime candidate for nonlinear applications near 532 nm. Therefore with interplay of the weak optical field and subbands, we achieved a tunable photoelectron transport process.Conventionally, electrical transport of quantum subbands occurs at very high electric fields, indicating that the medium is easy to break down. In the experiments and practical applications, the extreme condition is difficult to satisfy. For quantum information transmission, low power consumption and convenient implementation are what we expect. In this paper, we engineered a special quantum dot array (QDA) embedded in a single crystal matrix. By external optical field excitation, we found a series of subbands made of the self-assembled QDA discretely located in the matrix. Changing the spacing between the quantum dots leads to the variation of subband spacing. Artificially manipulating the microcosmic QDA system can bring interesting macroscopic effects, such as an enhanced absorption intensity in the ultraviolet range, a blue-shift of the surface plasmon resonance peak and nonlinear absorption changed from two-photon absorption to saturated absorption. The intrinsic mechanism of the subband optical response was revealed due to the strong quantum confinement effect and dominant intraband transitions. The weak surface plasmon resonance absorption of Ni QDA gave an excellent figure of merit of the order of 10-10. The composite films are expectation enough to become a prime candidate for nonlinear applications near 532 nm. Therefore with interplay of the weak optical field and subbands, we achieved a tunable photoelectron transport process. Electronic supplementary information (ESI) available: Tables 1 and 2. See DOI: 10.1039/c5nr07861j
The static quark potential from the gauge independent Abelian decomposition
NASA Astrophysics Data System (ADS)
Cundy, Nigel; Cho, Y. M.; Lee, Weonjong; Leem, Jaehoon
2015-06-01
We investigate the relationship between colour confinement and the gauge independent Cho-Duan-Ge Abelian decomposition. The decomposition is defined in terms of a colour field n; the principle novelty of our study is that we have used a unique definition of this field in terms of the eigenvectors of the Wilson Loop. This allows us to establish an equivalence between the path-ordered integral of the non-Abelian gauge fields and an integral over an Abelian restricted gauge field which is tractable both theoretically and numerically in lattice QCD. We circumvent path ordering without requiring an additional path integral. By using Stokes' theorem, we can compute the Wilson Loop in terms of a surface integral over a restricted field strength, and show that the restricted field strength may be dominated by certain structures, which occur when one of the quantities parametrising the colour field n winds itself around a non-analyticity in the colour field. If they exist, these structures will lead to an area law scaling for the Wilson Loop and provide a mechanism for quark confinement. Unlike most studies of confinement using the Abelian decomposition, we do not rely on a dual-Meissner effect to create the inter-quark potential. We search for these structures in quenched lattice QCD. We perform the Abelian decomposition, and compare the electric and magnetic fields with the patterns expected theoretically. We find that the restricted field strength is dominated by objects which may be peaks of a single lattice spacing in size or extended string-like lines of electromagnetic flux. The objects are not isolated monopoles, as they generate electric fields in addition to magnetic fields, and the fields are not spherically symmetric, but may be either caused by a monopole/anti-monopole condensate, some other types of topological objects, or a combination of these. Removing these peaks removes the area law scaling of the string tension, suggesting that they are responsible for confinement.
NASA Astrophysics Data System (ADS)
Melott, Adrian L.; Pivarunas, Anthony; Meert, Joseph G.; Lieberman, Bruce S.
2018-01-01
The record of reversals of the geomagnetic field has played an integral role in the development of plate tectonic theory. Statistical analyses of the reversal record are aimed at detailing patterns and linking those patterns to core-mantle processes. The geomagnetic polarity timescale is a dynamic record and new paleomagnetic and geochronologic data provide additional detail. In this paper, we examine the periodicity revealed in the reversal record back to 375 million years ago (Ma) using Fourier analysis. Four significant peaks were found in the reversal power spectra within the 16-40-million-year range (Myr). Plotting the function constructed from the sum of the frequencies of the proximal peaks yield a transient 26 Myr periodicity, suggesting chaotic motion with a periodic attractor. The possible 16 Myr periodicity, a previously recognized result, may be correlated with `pulsation' of mantle plumes and perhaps; more tentatively, with core-mantle dynamics originating near the large low shear velocity layers in the Pacific and Africa. Planetary magnetic fields shield against charged particles, which can give rise to radiation at the surface and ionize the atmosphere, which is a loss mechanism particularly relevant to M stars. Understanding the origin and development of planetary magnetic fields can shed light on the habitable zone.
Temperature field simulation on Ti6Al4V and Inconel718 heated by continuous infrared laser
NASA Astrophysics Data System (ADS)
Wang, Yanshen; Zhang, Zheng; Feng, Weiwei; Wang, Bo; Gai, Yuxian
2014-08-01
Laser assisted machining technology can heat and soften metals, which can be used for improving the machinability of superalloys such as Ti6Al4V and Inconel718. Researches on temperature field simulation of Ti6Al4V and Inconel718 are conducted in this paper. A thermal differential equation is established based on Fourier's law and energy conservation law. Then, a model using ABAQUS for simulating heat transfer process is brought out, which is then experimentally validated. Using the simulation model, detailed investigations on temperature field simulation are carried out in Ti6Al4V and Inconel718. According to simulation, surface temperature of the two superalloys eventually reaches their peak values, and the peak temperature of Ti6Al4V is much higher than that of Inconel718. To further investigate temperature heated by laser, laser parameters such as power, scanning velocity, laser spot radius and inclination angle are set to be variables separately for simulation. Simulation results show that laser power and laser spot radius are predominant factors in heating process compared with the influence of scanning velocity and inclination angle. Simulations in this paper provide valuable references for parameter optimization in the following laser heating experiments, which plays an important role in laser assisted machining.
Observations Of Energetic High Magnetic Field Pulsars With The Fermi Large Area Telescope
Parent, D.; Kerr, M.; den Hartog, P. R.; ...
2011-12-02
We report the detection of γ-ray pulsations from the high-magnetic-field rotation-powered pulsar PSR J1119-6127 using data from the Fermi Large Area Telescope. The γ-ray light curve of PSR J1119-6127 shows a single, wide peak offset from the radio peak by 0.43± 0.02 in phase. Spectral analysis suggests a power law of index 1.0 ± 0.3+0.4 -0.2 with an energy cut-off at 0.8 ± 0.2+2.0 -0.5GeV. The first uncertainty is statistical and the second is systematic. We discuss the emission models of PSR J1119-6127 and demonstrate that despite the object’s high surface magnetic field—near that of magnetars—the field strength and structuremore » in the γ-ray emitting zone are apparently similar to those of typical young pulsars. Additionally, we present upper limits on the γ-ray pulsed emission for the magnetically active PSR J1846-0258 in the supernova remnant Kesteven 75 and two other energetic high-B pulsars, PSRs J1718-3718 and J1734-3333. We explore possible explanations for the non-detection of these three objects, including peculiarities in their emission geometry.« less
Lessons From the Largest Historic Floods Documented by the U.S. Geological Survey
NASA Astrophysics Data System (ADS)
Costa, J. E.
2003-12-01
A recent controversy over the flood risk downstream from a USGS streamgaging station in southern California that recorded a large debris flow led to the decision to closely examine a sample of the largest floods documented in the US. Twenty-nine floods that define the envelope curve of the largest rainfall-runoff floods were examined in detail, including field visits. These floods have a profound impact on local, regional, and national interpretations of potential peak discharges and flood risk. These 29 floods occured throughout the US from the northern Chesapeake Bay in Maryland to Kauai, Hawaii, and over time from 1935-1978. Methods used to compute peak discharges were slope-area (21/29), culvert computations (2/29), measurements lost or not available for study (2/29), bridge contraction, culvert flow, and flow over road (1/29), rating curve extension (1/29), current meter measurement (1/29), and rating curve and current meter measurement (1/29). While field methods and tools have improved significantly over the last 70 years (e.g. total stations, GPS, GIS, hydroacoustics, digital plotters and computer programs like SAC and CAP), the primary methods of hydraulic analysis for indirect measurements of outstanding floods has not changed: today flow is still assumed to be 1-D and gradually varied. Unsteady or multi-dimensional flow models are rarely if ever used to determine peak discharges. Problems identified in this sample of 29 floods include debris flows misidentified as water floods, small drainage areas determined from small-scale maps and mislocated sites, high-water marks set by transient hydraulic phenomena, possibility of disconnected flow surfaces, scour assumptions in sand channels, poor site selection, incorrect approach angle for road overflow, and missing or lost records. Each published flood magnitude was checked by applying modern computer models with original field data, or by re-calculating computations. Four of 29 floods in this sample were found to have errors resulting in a change of the peak discharge of more than 10%.
Characteristics of tyre dust in polluted air: Studies by single particle mass spectrometry (ATOFMS)
NASA Astrophysics Data System (ADS)
Dall'Osto, Manuel; Beddows, David C. S.; Gietl, Johanna K.; Olatunbosun, Oluremi A.; Yang, Xiaoguang; Harrison, Roy M.
2014-09-01
There is a paucity of quantitative knowledge on the contributions of non-exhaust (abrasion and re-suspension) sources to traffic emissions. Abrasive emissions can be broadly categorised as tyre wear, brake wear and road dust/road surface wear. Current research often considers road dust and tyre dust as externally mixed particles, the former mainly composed of mineral matter and the latter solely composed of mainly organic matter and some trace elements. The aim of this work was to characterise tyre wear from both laboratory and field studies by using Aerosol Time-Of-Flight Mass Spectrometry (ATOFMS). Real-time single particle chemical composition was obtained from a set of rubber tyres rotating on a metal surface. Bimodal particle number size distributions peaking at 35 nm and 85 nm were obtained from SMPS/APS measurements over the range 6-20,000 nm. ATOFMS mass spectra of tyre wear in the particle size range 200-3000 nm diameter show peaks due to exo-sulphur compounds, nitrate, Zn and ions of high molecular weight (m/z > 100) attributed to organic polymers. Two large ATOFMS datasets collected from a number of outdoor studies were examined. The former was constituted of 48 road dust samples collected on the roads of London. The latter consisted of ATOFMS ambient air field studies from Europe, overall composed of more than 2,000,000 single particle mass spectra. The majority (95%) of tyre wear particles present in the road dust samples and atmospheric samples are internally mixed with metals (Li, Na, Ca, Fe, Ti), as well as phosphate. It is concluded that the interaction of tyres with the road surface creates particles internally mixed from two sources: tyre rubber and road surface materials. Measurements of the tyre rubber component alone may underestimate the contribution of tyre wear to concentrations of airborne particulate matter. The results presented are especially relevant for urban aerosol source apportionment and PM2.5 exposure assessment.
NASA Astrophysics Data System (ADS)
Kuo, Chih-Hao
Efficient and accurate modeling of electromagnetic scattering from layered rough surfaces with buried objects finds applications ranging from detection of landmines to remote sensing of subsurface soil moisture. The formulation of a hybrid numerical/analytical solution to electromagnetic scattering from layered rough surfaces is first presented in this dissertation. The solution to scattering from each rough interface is sought independently based on the extended boundary condition method (EBCM), where the scattered fields of each rough interface are expressed as a summation of plane waves and then cast into reflection/transmission matrices. To account for interactions between multiple rough boundaries, the scattering matrix method (SMM) is applied to recursively cascade reflection and transmission matrices of each rough interface and obtain the composite reflection matrix from the overall scattering medium. The validation of this method against the Method of Moments (MoM) and Small Perturbation Method (SPM) is addressed and the numerical results which investigate the potential of low frequency radar systems in estimating deep soil moisture are presented. Computational efficiency of the proposed method is also discussed. In order to demonstrate the capability of this method in modeling coherent multiple scattering phenomena, the proposed method has been employed to analyze backscattering enhancement and satellite peaks due to surface plasmon waves from layered rough surfaces. Numerical results which show the appearance of enhanced backscattered peaks and satellite peaks are presented. Following the development of the EBCM/SMM technique, a technique which incorporates a buried object in layered rough surfaces by employing the T-matrix method and the cylindrical-to-spatial harmonics transformation is proposed. Validation and numerical results are provided. Finally, a multi-frequency polarimetric inversion algorithm for the retrieval of subsurface soil properties using VHF/UHF band radar measurements is devised. The top soil dielectric constant is first determined using an L-band inversion algorithm. For the retrieval of subsurface properties, a time-domain inversion technique is employed together with a parameter optimization for the pulse shape of time delay echoes from VHF/UHF band radar observations. Numerical studies to investigate the accuracy of the proposed inversion technique in presence of errors are addressed.
Wave breaking induced surface wakes and jets observed during a bora event
NASA Astrophysics Data System (ADS)
Jiang, Qingfang; Doyle, James D.
2005-09-01
An observational and modeling study of a bora event that occurred during the field phase of the Mesoscale Alpine Programme is presented. Research aircraft in-situ measurements and airborne remote-sensing observations indicate the presence of strong low-level wave breaking and alternating surface wakes and jets along the Croatian coastline over the Adriatic Sea. The observed features are well captured by a high-resolution COAMPS simulation. Analysis of the observations and modeling results indicate that the long-extending wakes above the boundary layer are induced by dissipation associated with the low-level wave breaking, which locally tends to accelerate the boundary layer flow beneath the breaking. Farther downstream of the high peaks, a hydraulic jump occurs in the boundary layer, which creates surface wakes. Downstream of lower-terrain (passes), the boundary layer flow stays strong, resembling supercritical flow.
Upper Ocean Response to Hurricanes Katrina and Rita (2005) from Multi-sensor Satellites
NASA Astrophysics Data System (ADS)
Gierach, M. M.; Bulusu, S.
2006-12-01
Analysis of satellite observations and model simulations of the mixed layer provided an opportunity to assess the biological and physical effects of hurricanes Katrina and Rita (2005) in the Gulf of Mexico. Oceanic cyclonic circulation was intensified by the hurricanes' wind field, maximizing upwelling, surface cooling, and deepening the mixed layer. Two areas of maximum surface chlorophyll-a concentration and sea surface cooling were detected with peak intensities ranging from 2-3 mg m-3 and 4-6°C, along the tracks of Katrina and Rita. The temperature of the mixed layer cooled approximately 2°C and the depth of the mixed layer deepened by approximately 33-52 m. The forced deepening of the mixed layer injected nutrients into the euphotic zone, generating phytoplankton blooms 3-5 days after the passage of Katrina and Rita (2005).
Experimental Investigation – Magnetic Assisted Electro Discharge Machining
NASA Astrophysics Data System (ADS)
Kesava Reddy, Chirra; Manzoor Hussain, M.; Satyanarayana, S.; Krishna, M. V. S. Murali
2018-04-01
Emerging technology needs advanced machined parts with high strength and temperature resistance, high fatigue life at low production cost with good surface quality to fit into various industrial applications. Electro discharge machine is one of the extensively used machines to manufacture advanced machined parts which cannot be machined by other traditional machine with high precision and accuracy. Machining of DIN 17350-1.2080 (High Carbon High Chromium steel), using electro discharge machining has been discussed in this paper. In the present investigation an effort is made to use permanent magnet at various positions near the spark zone to improve surface quality of the machined surface. Taguchi methodology is used to obtain optimal choice for each machining parameter such as peak current, pulse duration, gap voltage and Servo reference voltage etc. Process parameters have significant influence on machining characteristics and surface finish. Improvement in surface finish is observed when process parameters are set at optimum condition under the influence of magnetic field at various positions.
Slope-area thresholds of road-induced gully erosion and consequent hillslope-channel interactions
Harry Alexander Katz; J. Michael Daniels; Sandra Ryan-Burkett
2014-01-01
Pikes Peak Highway is a partially paved road between Cascade, Colorado and the summit of Pikes Peak. Significant gully erosion is occurring on the hillslopes due to the concentration of surface runoff, the rearrangement of drainage pathways along the road surface and adjacent drainage ditches, and the high erodibility of weathered Pikes Peak granite that underlies the...
NASA Technical Reports Server (NTRS)
Barrett, Joe, III; Short, David; Roeder, William
2008-01-01
The expected peak wind speed for the day is an important element in the daily 24-Hour and Weekly Planning Forecasts issued by the 45th Weather Squadron (45 WS) for planning operations at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). The morning outlook for peak speeds also begins the warning decision process for gusts ^ 35 kt, ^ 50 kt, and ^ 60 kt from the surface to 300 ft. The 45 WS forecasters have indicated that peak wind speeds are a challenging parameter to forecast during the cool season (October-April). The 45 WS requested that the Applied Meteorology Unit (AMU) develop a tool to help them forecast the speed and timing of the daily peak and average wind, from the surface to 300 ft on KSC/CCAFS during the cool season. The tool must only use data available by 1200 UTC to support the issue time of the Planning Forecasts. Based on observations from the KSC/CCAFS wind tower network, surface observations from the Shuttle Landing Facility (SLF), and CCAFS upper-air soundings from the cool season months of October 2002 to February 2007, the AMU created multiple linear regression equations to predict the timing and speed of the daily peak wind speed, as well as the background average wind speed. Several possible predictors were evaluated, including persistence, the temperature inversion depth, strength, and wind speed at the top of the inversion, wind gust factor (ratio of peak wind speed to average wind speed), synoptic weather pattern, occurrence of precipitation at the SLF, and strongest wind in the lowest 3000 ft, 4000 ft, or 5000 ft. Six synoptic patterns were identified: 1) surface high near or over FL, 2) surface high north or east of FL, 3) surface high south or west of FL, 4) surface front approaching FL, 5) surface front across central FL, and 6) surface front across south FL. The following six predictors were selected: 1) inversion depth, 2) inversion strength, 3) wind gust factor, 4) synoptic weather pattern, 5) occurrence of precipitation at the SLF, and 6) strongest wind in the lowest 3000 ft. The forecast tool was developed as a graphical user interface with Microsoft Excel to help the forecaster enter the variables, and run the appropriate regression equations. Based on the forecaster's input and regression equations, a forecast of the day's peak and average wind is generated and displayed. The application also outputs the probability that the peak wind speed will be ^ 35 kt, 50 kt, and 60 kt.
Lama, Pemba; Suslov, Anatoliy; Walser, Ardie D; Dorsinville, Roger
2014-06-02
Nonlinear optical characterizations were performed on monodispersed silver (Ag) nanoparticles (NPs) of various sizes using a picosecond Z-scan technique with excitation wavelengths of 532 nm and 1064 nm. The Ag NPs were fabricated using a heterogeneous condensation technique in a gas medium. The nonlinear refraction values were higher for the monodispersed Ag NPs whose surface plasmon resonance (SPR) peak is closer to the excitation wavelength. The higher nonlinear optical response is explained in terms of an electric field enhancement near the SPR. Moreover, the fabrication method allows the tailoring of the nonlinear refraction index of the Ag NPs by tuning the SPR peak of the sample. A comparison of the nonlinear refraction index of the monodispersed and polydispersed Ag NPs showed that the nonlinear refractive index of the monodispersed Ag NPs is higher.
NASA Astrophysics Data System (ADS)
Talmage, Gita; Walker, John S.; Brown, Samuel H.; Sondergaard, Neal A.
1993-09-01
In homopolar motors and generators, large dc electric currents pass through the sliding electrical contacts between rotating copper disks (rotors) and static copper surfaces shrouding the rotor tips (stators). A liquid metal in the small radial gap between the rotor tip and concentric stator surface can provide a low-resistance, low-drag electrical contact. Since there is a strong magnetic field in the region of the electrical contacts, there are large electromagnetic body forces on the liquid metal. The primary, azimuthal motion consists of simple Couette flow, plus an electromagnetically driven flow with large extremes of the azimuthal velocity near the rotor corners. The secondary flow involves the radial and axial velocity components, is driven by the centrifugal force associated with the primary flow, and is opposed by the electromagnetic body force, so that the circulation varies inversely as the square of the magnetic-field strength. Three flow regimes are identified as the angular velocity Ω of the rotor is increased. For small Ω, the primary flow is decoupled from the secondary flow. As Ω increases, the secondary flow begins to convect the azimuthal-velocity peaks radially outward, which in turn changes the centrifugal force driving the secondary flow. At some critical value of Ω, the flow becomes periodic through the coupling of the primary and secondary flows. The azimuthal-velocity peaks begin to move radially in and out with an accompanying oscillation in the secondary-flow strength.
NASA Astrophysics Data System (ADS)
Hu, Binhui; Yazdanpanah, Mohamad Meqdad; Kane, Bruce E.
2015-03-01
The quality of hydrogen-terminated Si(111) (H-Si(111)) transistors has improved significantly. Peak electron mobility of 325,000 cm2/Vs was achieved at 90 mK, and the fractional quantum Hall effect (FQHE) at 1 < ν < 2 was studied extensively. We have further improved the device by solving gate leakage and contact problems with an updated design, in which a Si piece with thermal oxide acts as a gate through a vacuum cavity, and PN junctions are used to define a hexagonal two-dimensional (2D) region on a H-Si(111) piece. The device operates as an ambipolar transistor, in which a 2D electron system (2DES) and a 2D hole system can be induced at the same H-Si(111) surface. Peak electron mobility of more than 200,000 cm2/Vs is routinely achieved at 300 mK. The Si(111) surface has a six-fold valley degeneracy. The hexagonal device is designed to investigate the symmetry of the 2DES. Preliminary data show that the transport anisotropy at ν < 6 can be explained by the valley occupancy. The details of the valley occupancy can be caused by several mechanisms, such as miscut, magnetic field, pseudospin quantum Hall ferromagnetism (QHFM), and nematic valley polarization phases. The FQHE is investigated in magnetic fields up to 35T, and the properties of composite fermions will be discussed.
NASA Astrophysics Data System (ADS)
Hou, Jie; Wang, Yu; Eguchi, Keitaro; Nanjo, Chihiro; Takaoka, Tsuyoshi; Sainoo, Yasuyuki; Awaga, Kunio; Komeda, Tadahiro
2018-05-01
We report scanning tunneling microscope (STM) observation of vanadyl tetrakis(thiadiazole) porphyrazine (VOTTDPz) molecules, which is a family molecule of phthalocyanine (Pc) but without Csbnd H termination in the perimeter, deposited on Au(1 1 1) surface. Well-ordered film corresponding to 4 × 4 superstructure with respect to Au(1 1 1) surface is formed, in which the centers of the molecules are separated by 1.12 nm, which is much smaller than that observed for a VOPc molecule on Au(1 1 1), due to the absence of Csbnd H termination. At the same time, the azimuthal angles of neighboring molecules rotate with each other by 30°. A contrast variation of bright and dark molecules is observed, which are interpreted as O-up and O-down molecules, respectively, based on the density functional theory simulation. Spin-polarized local density of states calculation shows spin-polarized V 3d state, which is delocalized over the ring. Spin detection is executed by measuring Kondo resonance in the tunneling spectroscopy near the Fermi level, which is caused by the interaction of an isolated spin and conduction electron of the substrate. We detected asymmetric and weak Kondo peak for out-of-plane outer magnetic field of 0 T, which becomes strong and symmetric peak at 5 T, which is understood by the shift of the spin center of the Kondo resonance from V 3d to delocalized π state in ring with the magnetic field.
Costa, John E.; Jarrett, Robert D.
2008-01-01
Thirty flood peak discharges determine the envelope curve of maximum floods documented in the United States by the U.S. Geological Survey. These floods occurred from 1927 to 1978 and are extraordinary not just in their magnitude, but in their hydraulic and geomorphic characteristics. The reliability of the computed discharge of these extraordinary floods was reviewed and evaluated using current (2007) best practices. Of the 30 flood peak discharges investigated, only 7 were measured at daily streamflow-gaging stations that existed when the flood occurred, and 23 were measured at miscellaneous (ungaged) sites. Methods used to measure these 30 extraordinary flood peak discharges consisted of 21 slope-area measurements, 2 direct current-meter measurements, 1 culvert measurement, 1 rating-curve extension, and 1 interpolation and rating-curve extension. The remaining four peak discharges were measured using combinations of culvert, slope-area, flow-over-road, and contracted-opening measurements. The method of peak discharge determination for one flood is unknown. Changes to peak discharge or rating are recommended for 20 of the 30 flood peak discharges that were evaluated. Nine floods retained published peak discharges, but their ratings were downgraded. For two floods, both peak discharge and rating were corrected and revised. Peak discharges for five floods that are subject to significant uncertainty due to complex field and hydraulic conditions, were re-rated as estimates. This study resulted in 5 of the 30 peak discharges having revised values greater than about 10 percent different from the original published values. Peak discharges were smaller for three floods (North Fork Hubbard Creek, Texas; El Rancho Arroyo, New Mexico; South Fork Wailua River, Hawaii), and two peak discharges were revised upward (Lahontan Reservoir tributary, Nevada; Bronco Creek, Arizona). Two peak discharges were indeterminate because they were concluded to have been debris flows with peak discharges that were estimated by an inappropriate method (slope-area) (Big Creek near Waynesville, North Carolina; Day Creek near Etiwanda, California). Original field notes and records could not be found for three of the floods, however, some data (copies of original materials, records of reviews) were available for two of these floods. A rating was assigned to each of seven peak discharges that had no rating. Errors identified in the reviews include misidentified flow processes, incorrect drainage areas for very small basins, incorrect latitude and longitude, improper field methods, arithmetic mistakes in hand calculations, omission of measured high flows when developing rating curves, and typographical errors. Common problems include use of two-section slope-area measurements, poor site selection, uncertainties in Manning's n-values, inadequate review, lost data files, and insufficient and inadequately described high-water marks. These floods also highlight the extreme difficulty in making indirect discharge measurements following extraordinary floods. Significantly, none of the indirect measurements are rated better than fair, which indicates the need to improve methodology to estimate peak discharge. Highly unsteady flow and resulting transient hydraulic phenomena, two-dimensional flow patterns, debris flows at streamflow-gaging stations, and the possibility of disconnected flow surfaces are examples of unresolved problems not well handled by current indirect discharge methodology. On the basis of a comprehensive review of 50,000 annual peak discharges and miscellaneous floods in California, problems with individual flood peak discharges would be expected to require a revision of discharge or rating curves at a rate no greater than about 0.10 percent of all floods. Many extraordinary floods create complex flow patterns and processes that cannot be adequately documented with quasi-steady, uniform one-dimensional analyses. These floods are most accura
NASA Astrophysics Data System (ADS)
Rebelo Kornmeier, Joana; Gibmeier, Jens; Hofmann, Michael
2011-06-01
Neutron strain measurements are critical at the surface. When scanning close to a sample surface, aberration peak shifts arise due to geometrical and divergence effects. These aberration peak shifts can be of the same order as the peak shifts related to residual strains. In this study it will be demonstrated that by optimizing the horizontal bending radius of a Si (4 0 0) monochromator, the aberration peak shifts from surface effects can be strongly reduced. A stress-free sample of fine-grained construction steel, S690QL, was used to find the optimal instrumental conditions to minimize aberration peak shifts. The optimized Si (4 0 0) monochromator and instrument settings were then applied to measure the residual stress depth gradient of a shot-peened SAE 4140 steel sample to validate the effectiveness of the approach. The residual stress depth profile is in good agreement with results obtained by x-ray diffraction measurements from an international round robin test (BRITE-EURAM-project ENSPED). The results open very promising possibilities to bridge the gap between x-ray diffraction and conventional neutron diffraction for non-destructive residual stress analysis close to surfaces.
Simulated peak flows and water-surface profiles for Scott Creek near Sylva, North Carolina
Pope, B.F.
1996-01-01
Peak flows were simulated for Scott Creek, just upstream from Sylva, in Jackson County, North Carolina, in order to provide Jackson County officials with information that can be used to improve preparation for and response to flash floods along the reach of Scott Creek that flows through Sylva. A U.S. Geological Survey rainfall-runoff model was calibrated using observed rainfall and streamflow data collected from March 1994 through September 1995. Standard errors for calibration were 34 percent for runoff volumes and 21 percent for peak flows. The calibrated model was used to simulate peak flows resulting from syn- thetic rainfall amounts of 1.0, 2.5, 5.0, and 7.5 inches in 24-hour periods. For each rainfall amount, peak flows were simulated under low-, moderate-, and high-antecedent soil-moisture conditions, represented by selected 3-month periods of daily rainfall and evaporation record from nearby climatic-data measuring stations. Simulated peak flows ranged from 89 to 10,100 cubic feet per second. Profiles of water-surface elevations for selected observed and simu- lated peak flows were computed for the reach of Scott Creek that flows through Sylva, North Carolina. The profiles were computed using the U.S. Army Corps of Engineers HEC-2 Water Surface Profiles computer program and channel cross-section data collected by the Tennessee Valley Authority. The stage-discharge relation for Scott Creek at the simulation site has changed since the collection of the cross-section data. These changes, however, are such that the water-surface profiles presented in this report likely overestimate the true water-surface elevations at the simulation site for a given peak flow
A comparison of field-line resonances observed at the Goose Bay and Wick radars
NASA Astrophysics Data System (ADS)
Provan, G.; Yeoman, T. K.
1997-02-01
Previous observations with the Goose Bay HF coherent-scatter radar have revealed structured spectral peaks at ultra-low frequencies. The frequencies of these spectral peaks have been demonstrated to be extremely consistent from day to day. The stability of these spectral peaks can be seen as evidence for the existence of global magnetospheric cavity modes whose resonant frequencies are independent of latitude. Field-line resonances occur when successive harmonics of the eigenfrequency of the magnetospheric cavity or waveguide match either the first harmonic eigenfrequency of the geomagnetic field lines or higher harmonics of this frequency. Power spectra observed at the SABRE VHF coherent-scatter radar at Wick, Scotland, during night and early morning are revealed to show similarly clearly structured spectral peaks. These spectral peaks are the result of local field-line resonances due to Alfvén waves standing on magnetospheric field lines. A comparison of the spectra observed by the Goose Bay and Wick radars demonstrate that the frequencies of the field-line resonances are, on average, almost identical, despite the different latitudinal ranges covered by the two radars. Possible explanations for the similarity of the signatures on the two radar systems are discussed.
Choi, Woochol J; Kaur, Harjinder; Robinovitch, Stephen N
2014-04-01
Distal radius fractures are common on playgrounds. Yet current guidelines for the selection of playground surface materials are based only on protection against fall-related head injuries. We conducted "torso release" experiments to determine how common playground surface materials affect impact force applied to the hand during upper limb fall arrests. Trials were acquired for falls onto a rigid surface, and onto five common playground surface materials: engineered wood fiber, gravel, mulch, rubber tile, and sand. Measures were acquired for arm angles of 20 and 40 degrees from the vertical. Playground surface materials influenced the peak resultant and vertical force (P<.001), but not the peak horizontal force (P=.159). When compared with the rigid condition, peak resultant force was reduced 17% by sand (from 1039 to 864 N), 16% by gravel, 7% by mulch, 5% by engineered wood fiber, and 2% by rubber tile. The best performing surface provided only a 17% reduction in peak resultant force. These results help to explain the lack of convincing evidence from clinical studies on the effectiveness of playground surface materials in preventing distal radius fractures during playground falls, and highlight the need to develop playground surface materials that provide improved protection against these injuries.
ROLE OF THE CORONAL ALFVÉN SPEED IN MODULATING THE SOLAR-WIND HELIUM ABUNDANCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Y.-M., E-mail: yi.wang@nrl.navy.mil
The helium abundance He/H in the solar wind is relatively constant at ∼0.04 in high-speed streams, but varies in phase with the sunspot number in slow wind, from ∼0.01 at solar minimum to ∼0.04 at maximum. Suggested mechanisms for helium fractionation have included frictional coupling to protons and resonant interactions with high-frequency Alfvénic fluctuations. We compare He/H measurements during 1995–2015 with coronal parameters derived from source-surface extrapolations of photospheric field maps. We find that the near-Earth helium abundance is an increasing function of the magnetic field strength and Alfvén speed v {sub A} in the outer corona, while being onlymore » weakly correlated with the proton flux density. Throughout the solar cycle, fast wind is associated with short-term increases in v {sub A} near the source surface; resonance with Alfvén waves, with v {sub A} and the relative speed of α -particles and protons decreasing with increasing heliocentric distance, may then lead to enhanced He/H at 1 au. The modulation of helium in slow wind reflects the tendency for the associated coronal Alfvén speeds to rise steeply from sunspot minimum, when this wind is concentrated around the source-surface neutral line, to sunspot maximum, when the source-surface field attains its peak strengths. The helium abundance near the source surface may represent a balance between collisional decoupling from protons and Alfvén wave acceleration.« less
Quantum calculations for one-dimensional cooling of helium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vredenbregt, E.; Doery, M.; Bergeman, T.
1993-05-01
We report theoretical velocity distributions for sub-Doppler laser cooling of metastable He*(2{sup 3}S), calculated with the Density Matrix and Monte Carlo Wavefunction approaches. For low-field (B = 50 mG) magnetic-field induced laser cooling on the 2{sup 3}S {yields} (2{sup 3}P, J = 2) transition ({lambda} = 1083 nm), we get a narrow, sub-Doppler structure, consisting of three, {approximately}1 photon recoil wide peaks, spaced {approximately}1 recoil apart. With increasing field, this three-peak structure develops into two velocity-selective resonance (VSR) peaks, each {approximately}2 recoils wide. For the 2{sup 3}S {yields} (3{sup 3}P, J = 2) transition ({lambda} 389 nm), VSR peaks aremore » predicted to appear at low field without the third, central peak, which only develops at higher field (B = 200 mG). Additional computations deal with polarization-gradient cooling. In general, we find that for one-dimensional cooling calculations, the Density Matrix method is more efficient than the Monte Carlo Wavefunction approach. Experiments are currently under way to test the results.« less
NASA Astrophysics Data System (ADS)
Yadav, Harekrishna; Agrawal, Amit
2018-03-01
This experimental study pertains to the formation of a secondary peak in heat transfer distribution for an axisymmetric turbulent impinging submerged jet. The analysis of instantaneous fields is undertaken at various Reynolds numbers based upon the bulk velocity and nozzle diameter (Re = 1300-10 000) and surface spacings (L/D = 0.25-6). Our analysis shows that flow separation and reattachment correspond to decrease/increase in local pressure and are caused by primary vortices; these are further linked to the location of maxima in streamwise and cross-stream velocities. It is further observed that the locations of maxima and minima in velocities are linked to fluctuations in rms velocities and thickening/thinning of the boundary layer. The vortices transported along the surface either coalesce among themselves or combine with other eddies to form a primary vortex. The primary vortex while getting convected downstream makes multiple interactions with the inner shear layer and causes waviness in instantaneous flow fields. In their later stage, the primary vortex moves away from the wall and accelerates, while the flow decelerates in the inner shear layer. The accelerated fluid in the outer shear layer pulls the downstream fluid from the inner shear layer and leads to the formation of a secondary vortex. After a certain distance downstream, the secondary vortex rolling between the primary vortex and the wall eventually breaks down, while the flow reattaches to the wall. The behavior of time average and instantaneous velocity fields suggests that unsteadiness in the heat transfer is linked to the location of maximum streamwise velocity, location of flow attachment, location of rms velocity, and thickness of the boundary layer. The instantaneous velocity fields show that for a given surface spacing, the chances for the appearance of the secondary vortex reduce with an increase in Reynolds number because of the reduction in space available for the secondary vortex to develop. It is further deduced that the strength of the secondary vortex is primarily dependent upon the strength of the primary vortex. However, the velocity field estimated using the linear stochastic estimation technique shows a tendency for the formation of the secondary vortex at higher Reynolds number, suggesting that most measurements do not resolve them well. Our analysis explains the reason for the appearance of the secondary peak in heat transfer distribution and helps resolve the contradictions in the literature regarding this phenomenon.
Luo, Mei; Zhou, Peiheng; Liu, Yunfeng; Wang, Xin; Xie, Jianliang
2016-12-01
One of the challenges in the design of microwave absorbers lies in tunable amplitude of dynamic permeability. In this work, we demonstrate that electric-field-induced magnetoelastic anisotropy in nano-granular film FeCoB-SiO 2 /PMN-PT (011) composites can be used to tune the amplitude of ferromagnetic resonance peak at room temperature. The FeCoB magnetic particles are separated from each other by SiO 2 insulating matrix and present slightly different in-plane anisotropy fields. As a result, multi-resonances appear in the imaginary permeability (μ″) curve and mixed together to form a broadband absorption peak. The amplitude of the resonance peak could be modulated by external electric field from 118 to 266.
NASA Astrophysics Data System (ADS)
Taoufik, A.; Ramzi, A.; Senoussi, S.; Labrag, A.
2004-05-01
The flux jumps, the second peak and the irreversible magnetic field in the magnetization hysteresis cycles have been investigated in the high temperature superconductor YBa2Cu3O7- single crystals. These cycles were obtained for different temperature values, the applied magnetic fields up to 6 T and the angle between the applied magnetic field and c-axis. The magnetization curves exhibit a remarkable second peak fishtail, this second peak was not observed for the low temperature, but we observed the flux jumps saw tooth. The temperature dependence of the irreversible magnetic field, Hirr, for the applied magnetic field perpendicular to the ab planes is given by an extended expression, Hirr α (1-T/Tc )α, where α is a constant, the Abrikosov flux dynamics can explain this behavior. The Hirr as a function of has been strongly influenced by the flux pinning and the thermally assisted flux motion.
Singh, Kunwar Pal; Guo, Chunlei
2017-06-21
The nanochannel diameter and surface charge density have a significant impact on current-voltage characteristics in a nanofluidic transistor. We have simulated the effect of the channel diameter and surface charge density on current-voltage characteristics of a fluidic nanochannel with positive surface charge on its walls and a gate electrode on its surface. Anion depletion/enrichment leads to a decrease/increase in ion current with gate potential. The ion current tends to increase linearly with gate potential for narrow channels at high surface charge densities and narrow channels are more effective to control the ion current at high surface charge densities. The current-voltage characteristics are highly nonlinear for wide channels at low surface charge densities and they show different regions of current change with gate potential. The ion current decreases with gate potential after attaining a peak value for wide channels at low values of surface charge densities. At low surface charge densities, the ion current can be controlled by a narrow range of gate potentials for wide channels. The current change with source drain voltage shows ohmic, limiting and overlimiting regions.
Experimental and numerical analysis on noise reduction in a multi-blade centrifugal fan
NASA Astrophysics Data System (ADS)
Chen, X. J.; Y Cao, T.; Su, J.; Qin, G. L.
2013-12-01
In this work, analysis on noise source and reduction in a multi-blade centrifugal fan used for air-conditioners was carried out by experimental and numerical methods. Firstly, an experimental system using microphone mounted on volute surface for measuring surface pressure fluctuations of volute was designed and introduced, then surface pressure fluctuations of the whole volute for a multi-blade centrifugal fan were measured by this system, and the inlet noise for this fan was also obtained. And then, based on the experimental results, the aerodynamic noise source of the studied fan was analysed. The surface pressure fluctuations of the volute showed that there were largest surface pressure fluctuations near the volute tongue, and peaks appeared at the Blade Passing Frequency (BPF). The spectra of fan inlet noise showed that the peaks also appeared at BPF, and noise levels in a wide range of frequency were also larger. Secondly, the internal flow of the fan was simulated by commercial software under the same conditions with the experiment, and then the fluid flow and acoustic power field were obtained and discussed. The contours of acoustic power level showed that the larger noise was generated at the impeller area close to the outlet of scroll and at the volute tongue, which is same as that from experiment. Based on all of the results, we can find that the vortex noise is an important part of fan noise for the studied fan, and the rotation noise also cannot be neglected. Finally, several reduction methods that are thought to be effective based on experimental and numerical results were suggested.
Magnetotransport properties of MoP 2
Wang, Aifeng; Graf, D.; Stein, Aaron; ...
2017-11-02
We report magnetotransport and de Haas–van Alphen (dHvA) effect studies on MoP 2 single crystals, predicted to be a type- II Weyl semimetal with four pairs of robust Weyl points located below the Fermi level and long Fermi arcs. The temperature dependence of resistivity shows a peak before saturation, which does not move with magnetic field. Large nonsaturating magnetoresistance (MR) was observed, and the field dependence of MR exhibits a crossover from semiclassical weak-field B 2 dependence to the high-field linear-field dependence, indicating the presence of Dirac linear energy dispersion. In addition, a systematic violation of Kohler's rule was observed,more » consistent with multiband electronic transport. Strong spin-orbit coupling splitting has an effect on dHvA measurements whereas the angular-dependent dHvA orbit frequencies agree well with the calculated Fermi surface. The cyclotron effective mass ~1.6m e indicates the bands might be trivial, possibly since the Weyl points are located below the Fermi level.« less
Comprehensive Understanding for Vegetated Scene Radiance Relationships
NASA Technical Reports Server (NTRS)
Kimes, D. S.; Deering, D. W.
1984-01-01
The improvement of our fundamental understanding of the dynamics of directional scattering properties of vegetation canopies through analysis of field data and model simulation data is discussed. Directional reflectance distributions spanning the entire existance hemisphere were measured in two field studies; one using a Mark III 3-band radiometer and one using rapid scanning bidirectional field instrument called PARABOLA. Surfaces measured included corn, soybeans, bare soils, grass lawn, orchard grass, alfalfa, cotton row crops, plowed field, annual grassland, stipa grass, hard wheat, salt plain shrubland, and irrigated wheat. Some structural and optical measurements were taken. Field data show unique reflectance distributions ranging from bare soil to complete vegetation canopies. Physical mechanisms causing these trends are proposed based on scattering properties of soil and vegetation. Soil exhibited a strong backscattering peak toward the Sun. Complete vegetation exhibited a bowl distribution with the minimum reflectance near nadir. Incomplete vegetation canopies show shifting of the minimum reflectance off of nadir in the forward scattering direction because both the scattering properties or the vegetation and soil are observed.
Electric field cycling behavior of ferroelectric hafnium oxide.
Schenk, Tony; Schroeder, Uwe; Pešić, Milan; Popovici, Mihaela; Pershin, Yuriy V; Mikolajick, Thomas
2014-11-26
HfO2 based ferroelectrics are lead-free, simple binary oxides with nonperovskite structure and low permittivity. They just recently started attracting attention of theoretical groups in the fields of ferroelectric memories and electrostatic supercapacitors. A modified approach of harmonic analysis is introduced for temperature-dependent studies of the field cycling behavior and the underlying defect mechanisms. Activation energies for wake-up and fatigue are extracted. Notably, all values are about 100 meV, which is 1 order of magnitude lower than for conventional ferroelectrics like lead zirconate titanate (PZT). This difference is mainly atttributed to the one to two orders of magnitude higher electric fields used for cycling and to the different surface to volume ratios between the 10 nm thin films in this study and the bulk samples of former measurements or simulations. Moreover, a new, analog-like split-up effect of switching peaks by field cycling is discovered and is explained by a network model based on memcapacitive behavior as a result of defect redistribution.
Superconductivity with extremely large upper critical fields in Nb2Pd0.81S5
Zhang, Q.; Li, G.; Rhodes, D.; Kiswandhi, A.; Besara, T.; Zeng, B.; Sun, J.; Siegrist, T.; Johannes, M. D.; Balicas, L.
2013-01-01
Here, we report the discovery of superconductivity in a new transition metal-chalcogenide compound, i.e. Nb2Pd0.81S5, with a transition temperature Tc ≅ 6.6 K. Despite its relatively low Tc, it displays remarkably high and anisotropic superconducting upper critical fields, e.g. μ0Hc2 (T → 0 K) > 37 T for fields applied along the crystallographic b-axis. For a field applied perpendicularly to the b-axis, μ0Hc2 shows a linear dependence in temperature which coupled to a temperature-dependent anisotropy of the upper critical fields, suggests that Nb2Pd0.81S5 is a multi-band superconductor. This is consistent with band structure calculations which reveal nearly cylindrical and quasi-one-dimensional Fermi surface sheets having hole and electron character, respectively. The static spin susceptibility as calculated through the random phase approximation, reveals strong peaks suggesting proximity to a magnetic state and therefore the possibility of unconventional superconductivity. PMID:23486091
Measurement of skin dose from cone-beam computed tomography imaging.
Akyalcin, Sercan; English, Jeryl D; Abramovitch, Kenneth M; Rong, Xiujiang J
2013-10-09
To measure surface skin dose from various cone-beam computed tomography (CBCT) scanners using point-dosimeters. A head anthropomorphic phantom was used with nanoDOT optically stimulated luminescence (OSL) dosimeters (Landauer Corp., Glenwood, IL) attached to various anatomic landmarks. The phantom was scanned using multiple exposure protocols for craniofacial evaluations in three different CBCT units and a conventional x-ray imaging system. The dosimeters were calibrated for each of the scan protocols on the different imaging systems. Peak skin dose and surface doses at the eye lens, thyroid, submandibular and parotid gland levels were measured. The measured skin doses ranged from 0.09 to 4.62 mGy depending on dosimeter positions and imaging systems. The average surface doses to the lens locations were ~4.0 mGy, well below the threshold for cataractogenesis (500 mGy). The results changed accordingly with x-ray tube output (mAs and kV) and also were sensitive to scan field of view (SFOV). As compared to the conventional panoramic and cephalometric imaging system, doses from all three CBCT systems were at least an order of magnitude higher. Peak skin dose and surface doses at the eye lens, thyroid, and salivary gland levels measured from the CBCT imaging systems were lower than the thresholds to induce deterministic effects. However, our findings do not justify the routine use of CBCT imaging in orthodontics considering the lifetime-attributable risk to the individual.
Measurement of skin dose from cone-beam computed tomography imaging
2013-01-01
Objective To measure surface skin dose from various cone-beam computed tomography (CBCT) scanners using point-dosimeters. Materials & methods A head anthropomorphic phantom was used with nanoDOT optically stimulated luminescence (OSL) dosimeters (Landauer Corp., Glenwood, IL) attached to various anatomic landmarks. The phantom was scanned using multiple exposure protocols for craniofacial evaluations in three different CBCT units and a conventional x-ray imaging system. The dosimeters were calibrated for each of the scan protocols on the different imaging systems. Peak skin dose and surface doses at the eye lens, thyroid, submandibular and parotid gland levels were measured. Results The measured skin doses ranged from 0.09 to 4.62 mGy depending on dosimeter positions and imaging systems. The average surface doses to the lens locations were ~4.0 mGy, well below the threshold for cataractogenesis (500 mGy). The results changed accordingly with x-ray tube output (mAs and kV) and also were sensitive to scan field of view (SFOV). As compared to the conventional panoramic and cephalometric imaging system, doses from all three CBCT systems were at least an order of magnitude higher. Conclusions Peak skin dose and surface doses at the eye lens, thyroid, and salivary gland levels measured from the CBCT imaging systems were lower than the thresholds to induce deterministic effects. However, our findings do not justify the routine use of CBCT imaging in orthodontics considering the lifetime-attributable risk to the individual. PMID:24192155
Venus: ionosphere and atmosphere as measured by dual-frequency radio occultation of mariner v.
1967-12-29
Venus has daytime and nighttime ionospheres at the positions probed by radio occulation. The main layers are thin by terrestrial standards, with the nighttime peak concentration of electrons being about two orders of magnitude below that of the daytime peak. Above the nighttime peak were several scale-height regimes extending to a radius of at least 7500, and probably to 9700, kilometers from the center of Venus. Helium and hydrogen at plasma temperatures of 600 degrees to 1100 degrees K seem indicated in the regimes from 6300 to 7500 kilometers, with cooler molecular ions in lower regions. Above the daytime peak a sharp plasmapause was discovered, marking a sudden transition from appreciable ionization concentrations near Venus to the tenuous conditions of the solar wind. This may be indicative of a kind of interaction of the magnetized solar wind with a planetary body that differs from the two different kinds of interaction characterized by Earth and by Moon. For Venus and probably for Mars, the magnetic field of the solar wind may pile up in front of the conducting ionosphere, form an induced magnetosphere that ends at the plasmapause, above which any ionosphere that tends to form is swept away by the shocked solar wind that flows between the stand-off bow-shock and the magnetopause. The neutral atmosphere was also probed and a surface reflection may have been detected, but the data have not yet been studied in detail. Results are consistent with a super-refractive atmosphere, as expected from Soviet measurements near the surface. Thus, two unusual features of Venus can be described in terms of a light trap in the lower atmosphere, and a magnetic trap in the conducting ionosphere.
NASA Astrophysics Data System (ADS)
Forman, Steven L.; Oglesby, Robert; Webb, Robert S.
2001-05-01
The Holocene record of eolian sand and loess deposition is reviewed for numerous presently stabilized dune fields on the Great Plains of North America. Dune field activity reflects decade-to-century-scale dominance of drought that exceeded historic conditions, with a growing season deficit of precipitation >25%. The largest dune fields, the Nebraska Sand Hills and ergs in eastern Colorado, Kansas and the Southern High Plains showed peak activity sometime between ca. 7 and 5 cal. ka. Loess deposition between ca. 10 and 4 cal. ka also signifies widespread aridity. Most dune fields exhibit evidence for one or more reactivation events sometime in the past 2 cal. ka; a number of localities register two events post 1 cal. ka, the latest potentially after 1400 AD. However, there is not a clear association of the latest dune remobilization events with up to 13 droughts in the past 2 cal. ka identified in dendroclimatic and lacustrine records. Periods of persistent drought are associated with a La Niña-dominated climate state, with cooling of sea surface temperatures in the tropical Pacific Ocean and later of the tropical Atlantic Ocean and the Gulf of Mexico that significantly weakens cyclogenesis over central North America. As drought proceeds, reduced soil moisture and vegetation cover would lessen evaporative cooling and increase surface temperatures. These surface changes strengthen the eastward expansion of a high-pressure ridge aloft and shift the jet stream northward, further enhancing continent-wide drought. Uncertainty persists if dune fields will reactivate in the future at a scale similar to the Holocene because of widespread irrigation, the lack of migratory bison herds, and the suppression of prairie fires, all of which enhance stabilization of dune fields in the Great Plains.
NASA Astrophysics Data System (ADS)
Shibuya, H.; Tsunakawa, H.; Takahashi, F.; Shimizu, H.; Matsushima, M.
2010-12-01
We have reported the correlation between the high albedo marking (HAM) on the moon surface and the strength of horizontal component (Bh) of the near surface lunar magnetic field, at 2009 AGU Fall meeting, using the Lunar Prospector magnetometer data (LP-MAG). The correlation is further examined using the lowest altitude data at the latest orbits of Kaguya magnetometer data (KG-MAG). The Kaguya spacecraft (launched on September 14, 2007) dropped to the Moon at 65.5S and 80.4E on Jun 11, 2009. On the last few weeks, it flies over SPA with low altitudes as 10km, and the magnetometer acquired beautiful data. The magnetic field on the Mare Ingenii, on which we can see one of the most enhanced HAM, is restored using equivalent pole reduction (EPR) technique. First, EPR model is examined by comparing the model field and the other observations of LP-MAG and KG-MAG. They agree each other not only the shape but also the amplitude of the peaks. It indicates that the lunar magnetic field is well reproduced in 3-dimension. The magnetic field at the altitude of 5km is mapped over the Mare Ingenii and adjacent region where the HAM is clearly seen from Clementine albedo images. The coincidence of the HAM and the Bh is incredibly well, especially for the HAM in the flat crater floors. In some region, some of the detailed shapes of HAM match with the small bulge in the Bh contour. The HAM seems to be correlated maximas of Bh rather than its absolute strength. This result further support that the HMA is formed by magnetic shielding of the solar wind particles.
Simulation of an Ice Giant-style Dynamo
NASA Astrophysics Data System (ADS)
Soderlund, K. M.; Aurnou, J. M.
2010-12-01
The Ice Giants, Uranus and Neptune, are unique in the solar system. These planets are the only known bodies to have multipolar magnetic fields where the quadrupole and octopole components have strengths comparable to or greater than that of the dipole. Cloud layer observations show that the planets also have zonal (east-west) flows that are fundamentally different from the banded winds of Jupiter and Saturn. The surface winds are characterized by strong retrograde equatorial jets that are flanked on either side by prograde jets at high latitudes. Thermal emission measurements of Neptune show that the surface energy flux pattern peaks in the equatorial and polar regions with minima at mid-latitudes. (The measurements for Uranus cannot adequately resolve the emission pattern.) The winds and magnetic fields are thought to be the result of convection in the planetary interior, which will also affect the heat flux pattern. Typically, it is implicitly assumed that the zonal winds are generated in a shallow layer, separate from the dynamo generation region. However, if the magnetic fields are driven near the surface, a single region can simultaneously generate both the zonal flows and the magnetic fields. Here, we present a novel numerical model of an Ice Giant-style dynamo to investigate this possibility. An order unity convective Rossby number (ratio of buoyancy to Coriolis forces) has been chosen because retrograde equatorial jets tend to occur in spherical shells when the effects of rotation are relatively weak. Our modeling results qualitatively reproduce all of the structural features of the global dynamical observations. Thus, a self-consistent model can generate magnetic field, zonal flow, and thermal emission patterns that agree with those of Uranus and Neptune. This model, then, leads us to hypothesize that the Ice Giants' zonal flows and magnetic fields are generated via dynamically coupled deep convection processes.
Study on acoustic-electric-heat effect of coal and rock failure processes under uniaxial compression
NASA Astrophysics Data System (ADS)
Li, Zhong-Hui; Lou, Quan; Wang, En-Yuan; Liu, Shuai-Jie; Niu, Yue
2018-02-01
In recent years, coal and rock dynamic disasters are becoming more and more severe, which seriously threatens the safety of coal mining. It is necessary to carry out an depth study on the various geophysical precursor information in the process of coal and rock failure. In this paper, with the established acoustic-electric-heat multi-parameter experimental system of coal and rock, the acoustic emission (AE), surface potential and thermal infrared radiation (TIR) signals were tested and analyzed in the failure processes of coal and rock under the uniaxial compression. The results show that: (1) AE, surface potential and TIR have different response characteristics to the failure process of the sample. AE and surface potential signals have the obvious responses to the occurrence, extension and coalescence of cracks. The abnormal TIR signals occur at the peak and valley points of the TIR temperature curve, and are coincident with the abnormities of AE and surface potential to a certain extent. (2) The damage precursor points and the critical precursor points were defined to analyze the precursor characteristics reflected by AE, surface potential and TIR signals, and the different signals have the different precursor characteristics. (3) The increment of the maximum TIR temperature after the main rupture of the sample is significantly higher than that of the average TIR temperature. Compared with the maximum TIR temperature, the average TIR temperature has significant hysteresis in reaching the first peak value after the main rapture. (4) The TIR temperature contour plots at different times well show the evolution process of the surface temperature field of the sample, and indicate that the sample failure originates from the local destruction.
Rylands, Lee P; Roberts, Simon J; Hurst, Howard T
2015-09-01
The aim of this study was to ascertain the variation in elite male bicycle motocross (BMX) cyclists' peak power, torque, and time of power production during laboratory and field-based testing. Eight elite male BMX riders volunteered for the study, and each rider completed 3 maximal sprints using both a Schoberer Rad Messtechnik (SRM) ergometer in the laboratory and a portable SRM power meter on an Olympic standard indoor BMX track. The results revealed a significantly higher peak power (p ≤ 0.001, 34 ± 9%) and reduced time of power production (p ≤ 0.001, 105 ± 24%) in the field tests when compared with laboratory-derived values. Torque was also reported to be lower in the laboratory tests but not to an accepted level of significance (p = 0.182, 6 ± 8%). These results suggest that field-based testing may be a more effective and accurate measure of a BMX rider's peak power, torque, and time of power production.
NASA Astrophysics Data System (ADS)
Singh, Hanuman; Konishi, K.; Bhuktare, S.; Bose, A.; Miwa, S.; Fukushima, A.; Yakushiji, K.; Yuasa, S.; Kubota, H.; Suzuki, Y.; Tulapurkar, A. A.
2017-12-01
In this paper we demonstrate the injection locking of a recently demonstrated spintronic feedback nano-oscillator to microwave magnetic fields at integers (n =1 , 2, 3) as well as fractional multiples (f =1 /2 , 3 /2 , and 5 /2 ) of its auto-oscillation frequency. Feedback oscillators have delay as a new "degree of freedom" which is absent for spin-transfer torque-based oscillators, which gives rise to side peaks along with a main peak. We show that it is also possible to lock the oscillator on its sideband peaks, which opens an alternative avenue to phase-locked oscillators with large frequency differences. We observe that for low driving fields, sideband locking improves the quality factor of the main peak, whereas for higher driving fields the main peak is suppressed. Further, measurements at two field angles provide some insight into the role of the symmetry of oscillation orbit in determining the fractional locking.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowersox, J.R.; Shore, R.A.
1990-05-01
Surface subsidence due to reservoir compaction during production has been observed in many large oil fields. Subsidence is most obvious in coastal and offshore fields where inundation by the sea occurs. Well-known examples are Wilmington field in California and Ekofisk field in the North Sea. In South Belridge field, the Belridge Diatomite member of the late Miocene Reef Ridge Shale has proven prone to compaction during production. The reservoir, a high-porosity, low-permeability, highly compressive rock composed largely of diatomite and mudstone, is about 1,000 ft thick and lies at an average depth of 1,600 ft. Within the Belridge Diatomite, reservoirmore » compaction due to withdrawal of oil and water in Sec. 12, T28S, R20E, MDB and M, was noticed after casing failures in producing wells began occurring and tension cracks, enlarged by hydrocompaction after a heavy rainstorm were observed. Surface subsidence in Sec. 12 has been monitored since April 1987, through the surveying of benchmark monuments. The average annualized subsidence rate during 1987 was {minus}1.86 ft/yr, {minus}0.92 ft/yr during 1988, and {minus}0.65 ft/yr during 1989; the estimated peak subsidence rate reached {minus}7.50 ft/yr in July 1985, after 1.5 yrs of production from the Belridge Diatomite reservoir. Since production from the Belridge Diatomite reservoir commenced in February 1984, the surface of the 160-ac producing area has subsided about 12.5 ft. This equates to an estimated reservoir compaction of 30 ft in the Belridge Diatomite and an average loss of reservoir porosity of 2.4% from 55.2 to 52.8%. Injection of water for reservoir pressure maintenance in the Belridge diatomite began in June 1987, and has been effective in mitigating subsidence to current rates and repressurizing the reservoir to near-initial pressure. An added benefit of water injection has been improved recovery of oil from the Belridge Diatomite by waterflood.« less
NASA Astrophysics Data System (ADS)
Weng, Guojun; Yang, Yue; Zhao, Jing; Zhu, Jian; Li, Jianjun; Zhao, Junwu
2018-04-01
Surface-enhanced Raman scattering (SERS) has been widely used in biomedical sensing with the advantages of high sensitivity and label-free. However, the fabrication of SERS substrates with good Raman activity, reproducibility, and low cost is still under development in practical applications. This paper presents a practicable method for fabricating Au NP/paper strips by using inkjet printing and seed mediated growth. Small gold seed synthesized by borohydride reduction was used as ink and printed on the filter paper. The printed gold seed grew in situ in the growth solution and formed the gold nanoparticle (Au NP)/paper strips. The fabricated paper strip was characterized by diffuse reflectance spectroscopy and scanning electron microscopy (SEM). The diffuse reflectance spectra indicated that the Au NP/paper strips had two local surface plasmon resonance (LSPR) peaks: the short one at around 540 nm and the long one located in the range of 640-840 nm. And the long LSPR peak firstly shifted to red then to blue with the increased concentrations of silver ions in growth solution. From the SEM images, the shape of grown Au NPs was diverse, including sphere, rod, ellipsoid, dimer, trimer, and big aggregates. We thought the short peak came from the LSPR of nanospheres and the transvers LSPR of rod and ellipsoid like particles, while the long peak mainly came from the plasmonic coupling of dimer along the inter-particle axis. The obtained Au NP/paper strip with the long peak located around 650 nm had the highest SERS activity, which could be attributed to the plasmon resonance induced local field enhancement and nanogap effect. Also, the SERS performance results indicated the printed SERS strips exhibited satisfied uniformity and stability, demonstrating the potential of Au NP/paper strip in real-world applications.
Solar Cycle 24 and the Solar Dynamo
NASA Technical Reports Server (NTRS)
Pesnell, W. D.; Schatten, K.
2007-01-01
We will discuss the polar field precursor method for solar activity prediction, which predicts cycle 24 will be significantly lower than recent activity cycles, and some new ideas rejuvenating Babcock's shallow surface dynamo. The polar field precursor method is based on Babcock and Leighton's dynamo models wherein the polar field at solar minimum plays a major role in generating the next cycle's toroidal field and sunspots. Thus, by examining the polar fields of the Sun near solar minimum, a forecast for the next cycle's activity is obtained. With the current low value for the Sun's polar fields, this method predicts solar cycle 24 will be one of the lowest in recent times, with smoothed F10.7 radio flux values peaking near 135 plus or minus 35 (2 sigma), in the 2012-2013 timeframe (equivalent to smoothed Rz near 80 plus or minus 35 [2 sigma]). One may have to consider solar activity as far back as the early 20th century to find a cycle of comparable magnitude. We discuss unusual behavior in the Sun's polar fields that support this prediction. Normally, the solar precursor method is consistent with the geomagnetic precursor method, wherein geomagnetic variations are thought to be a good measure of the Sun's polar field strength. Because of the unusual polar field, the Earth does not appear to be currently bathed in the Sun's extended polar field (the interplanetary field), hence negating the primal cause behind the geomagnetic precursor technique. We also discuss how percolation may support Babcock's original shallow solar dynamo. In this process ephemeral regions from the solar magnetic carpet, guided by shallow surface fields, may collect to form pores and sunspots.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dal Forno, Massimo; Dolgashev, Valery; Bowden, Gordon
This study explores the physics of vacuum rf breakdowns in subterahertz high-gradient traveling-wave accelerating structures. We present the experimental results of rf tests of 200 GHz metallic accelerating structures, made of copper and copper-silver. These experiments were carried out at the Facility for Advanced Accelerator Experimental Tests (FACET) at the SLAC National Accelerator Laboratory. The rf fields were excited by the FACET ultrarelativistic electron beam. The traveling-wave structure is an open geometry, 10 cm long, composed of two halves separated by a gap. The rf frequency of the fundamental accelerating mode depends on the gap size and can be changedmore » from 160 to 235 GHz. When the beam travels off axis, a deflecting field is induced in addition to the longitudinal field. We measure the deflecting forces by observing the displacement of the electron bunch and use this measurement to verify the expected accelerating gradient. Furthermore, we present the first quantitative measurement of rf breakdown rates in 200 GHz metallic accelerating structures. The breakdown rate of the copper structure is 10 –2 per pulse, with a peak surface electric field of 500 MV/m and a rf pulse length of 0.3 ns, which at a relatively large gap of 1.5 mm, or one wavelength, corresponds to an accelerating gradient of 56 MV/m. For the same breakdown rate, the copper-silver structure has a peak electric field of 320 MV/m at a pulse length of 0.5 ns. For a gap of 1.1 mm, or 0.74 wavelengths, this corresponds to an accelerating gradient of 50 MV/m.« less
The effects of magnetic fields and protostellar feedback on low-mass cluster formation
NASA Astrophysics Data System (ADS)
Cunningham, Andrew J.; Krumholz, Mark R.; McKee, Christopher F.; Klein, Richard I.
2018-05-01
We present a large suite of simulations of the formation of low-mass star clusters. Our simulations include an extensive set of physical processes - magnetohydrodynamics, radiative transfer, and protostellar outflows - and span a wide range of virial parameters and magnetic field strengths. Comparing the outcomes of our simulations to observations, we find that simulations remaining close to virial balance throughout their history produce star formation efficiencies and initial mass function (IMF) peaks that are stable in time and in reasonable agreement with observations. Our results indicate that small-scale dissipation effects near the protostellar surface provide a feedback loop for stabilizing the star formation efficiency. This is true regardless of whether the balance is maintained by input of energy from large-scale forcing or by strong magnetic fields that inhibit collapse. In contrast, simulations that leave virial balance and undergo runaway collapse form stars too efficiently and produce an IMF that becomes increasingly top heavy with time. In all cases, we find that the competition between magnetic flux advection towards the protostar and outward advection due to magnetic interchange instabilities, and the competition between turbulent amplification and reconnection close to newly formed protostars renders the local magnetic field structure insensitive to the strength of the large-scale field, ensuring that radiation is always more important than magnetic support in setting the fragmentation scale and thus the IMF peak mass. The statistics of multiple stellar systems are similarly insensitive to variations in the initial conditions and generally agree with observations within the range of statistical uncertainty.
Phase 2 of the Array Automated Assembly Task for the Low Cost Solar Array Project
NASA Technical Reports Server (NTRS)
Campbell, R. B.; Rai-Choundhury, P.; Seman, E. J.; Rohatgi, A.; Davis, J. R.; Ostroski, J. W.; Stapleton, R. E.
1979-01-01
Two process specifications supplied by contractors were tested. The aluminum silk screening process resulted in cells comparable to those from sputtered Al. The electroless plating of contacts specification could be used only with extensive modification. Several experiments suggest that there is some degradation of the front junction during the Al back surface field (BSF) fabrication. A revised process sequence was defined which incorporates Al BSF formation. A cost analysis of this process yielded a selling price of $0.75/watt peak in 1980.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Yuming; Liu Liang; Fan Shoushan
2005-02-07
Self-organized conical microstructures are fabricated by 308 nm XeCl excimer laser irradiation of cyanoacrylate-carbon nanotube composites in air. The morphology of the surface on the composite films is studied, varying the total number and fluence of the applied laser pulses. A simple mechanism of the fabrication based on the evaporation of cyanoacrylate and the burning of carbon nanotubes is proposed. The conical peak structures of cyanoacrylate-carbon nanotube composite films show good field-emission properties. Similar structures are also observed on carbon nanotube arrays.
Surface-sensitive Raman spectroscopy of collagen I fibrils.
Gullekson, Corinne; Lucas, Leanne; Hewitt, Kevin; Kreplak, Laurent
2011-04-06
Collagen fibrils are the main constituent of the extracellular matrix surrounding eukaryotic cells. Although the assembly and structure of collagen fibrils is well characterized, very little appears to be known about one of the key determinants of their biological function-namely, the physico-chemical properties of their surface. One way to obtain surface-sensitive structural and chemical data is to take advantage of the near-field nature of surface- and tip-enhanced Raman spectroscopy. Using Ag and Au nanoparticles bound to Collagen type-I fibrils, as well as tips coated with a thin layer of Ag, we obtained Raman spectra characteristic to the first layer of collagen molecules at the surface of the fibrils. The most frequent Raman peaks were attributed to aromatic residues such as phenylalanine and tyrosine. In several instances, we also observed Amide I bands with a full width at half-maximum of 10-30 cm(-1). The assignment of these Amide I band positions suggests the presence of 3(10)-helices as well as α- and β-sheets at the fibril's surface. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Spatio-temporal monitoring of suspended sediments in the Solimões River (2000-2014)
NASA Astrophysics Data System (ADS)
Espinoza-Villar, Raul; Martinez, Jean-Michel; Armijos, Elisa; Espinoza, Jhan-Carlo; Filizola, Naziano; Dos Santos, Andre; Willems, Bram; Fraizy, Pascal; Santini, William; Vauchel, Philippe
2018-01-01
The Amazon River sediment discharge has been estimated at between 600 and 1200 Mt/year, of which more than 50% comes from the Solimões River. Because of the area's inaccessibility, few studies have examined the sediment discharge spatial and temporal pattern in the upper Solimões region. In this study, we use MODIS satellite images to retrieve and understand the spatial and temporal behaviour of suspended sediments in the Solimões River from Peru to Brazil. Six virtual suspended sediment gauging stations were created along the Solimões River on a 2050-km-long transect. At each station, field-derived river discharge estimates were available and field-sampling trips were conducted for validation of remote-sensing estimates during different periods of the annual hydrological cycle between 2007 and 2014. At two stations, 10-day surface suspended sediment data were available from the SO-HYBAM monitoring program (881 field SSS samples). MODIS-derived sediment discharge closely matched the field observations, showing a relative RMSE value of 27.3% (0.48 Mtday) overall. Satellite-retrieved annual sediment discharge at the Tamshiyacu (Peru) and Manacapuru (Brazil) stations is estimated at 521 and 825 Mt/year, respectively. While upstream the river presents one main sediment discharge peak during the hydrological cycle, a secondary sediment discharge peak is detected downstream during the declining water levels, which is induced by sediment resuspension from the floodplain, causing a 72% increase on average from June to September.
Multi-scale characterization of topographic anisotropy
NASA Astrophysics Data System (ADS)
Roy, S. G.; Koons, P. O.; Osti, B.; Upton, P.; Tucker, G. E.
2016-05-01
We present the every-direction variogram analysis (EVA) method for quantifying orientation and scale dependence of topographic anisotropy to aid in differentiation of the fluvial and tectonic contributions to surface evolution. Using multi-directional variogram statistics to track the spatial persistence of elevation values across a landscape, we calculate anisotropy as a multiscale, direction-sensitive variance in elevation between two points on a surface. Tectonically derived topographic anisotropy is associated with the three-dimensional kinematic field, which contributes (1) differential surface displacement and (2) crustal weakening along fault structures, both of which amplify processes of surface erosion. Based on our analysis, tectonic displacements dominate the topographic field at the orogenic scale, while a combination of the local displacement and strength fields are well represented at the ridge and valley scale. Drainage network patterns tend to reflect the geometry of underlying active or inactive tectonic structures due to the rapid erosion of faults and differential uplift associated with fault motion. Regions that have uniform environmental conditions and have been largely devoid of tectonic strain, such as passive coastal margins, have predominantly isotropic topography with typically dendritic drainage network patterns. Isolated features, such as stratovolcanoes, are nearly isotropic at their peaks but exhibit a concentric pattern of anisotropy along their flanks. The methods we provide can be used to successfully infer the settings of past or present tectonic regimes, and can be particularly useful in predicting the location and orientation of structural features that would otherwise be impossible to elude interpretation in the field. Though we limit the scope of this paper to elevation, EVA can be used to quantify the anisotropy of any spatially variable property.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agarici, G.; Klepper, C Christopher; Colas, L.
A dedicated study on JET-ILW, deploying two types of ICRH antennas and spectroscopic observation spots at two outboard, beryllium limiters, has provided insight on long-range (up to 6m) RFenhanced plasma-surface interactions (RF-PSI) due to near-antenna electric fields. To aid in the interpretation of optical emission measurements of these effects, the antenna near-fields are computed using the TOPICA code, specifically run for the ITER-like antenna (ILA); similar modelling already existed for the standard JET antennas (A2). In the experiment, both antennas were operated in current drive mode, as RF-PSI tends to be higher in this phasing and at similar power (∼0.5more » MW). When sweeping the edge magnetic field pitch angle, peaked RF-PSI effects, in the form of 2-4 fold increase in the local Be source,are consistently measured with the observation spots magnetically connect to regions of TOPICAL-calculated high near-fields, particularly at the near-antenna limiters. It is also found that similar RF-PSI effects are produced by the two types of antenna on similarly distant limiters. Although this mapping of calculated near-fields to enhanced RF-PSI gives only qualitative interpretion of the data, the present dataset is expected to provide a sound experimental basis for emerging RF sheath simulation model validation.« less
Study of intensification zones in a rectangular acoustic cavity
NASA Technical Reports Server (NTRS)
Peretti, Linda F.; Dowell, Earl H.
1992-01-01
The interior acoustic field of a rectangular acoustic cavity, which is excited by the structural vibration of one of its walls, or a portion of the wall, has been studied. Particularly, the spatial variations of sound pressure levels from the peak levels at the boundaries (intensification zones) to the uniform interior are considered. Analytical expressions, which describe the intensification zones, are obtained using the methodology of asymptotic modal analysis. These results agree well with results computed by a discrete summation over all of the modes. The intensification zones were also modeled as a set of oblique waves incident upon a surface. The result for a rigid surface agrees with the asymptotic modal analysis result. In the presence of an absorptive surface, the character of the intensification zone is dramatically changed. The behavior of the acoustic field near an absorptive wall is described by an expression containing the rigid wall result plus additional terms containing impedance information. The important parameter in the intensification zone analysis is the bandwidth to center frequency ratio. The effect of bandwidth is separated from that of center frequency by expanding the expression about the center frequency wave number. The contribution from the bandwidth is second order in bandwidth to center frequency ratio.
Dynamics of yield-stress droplets: Morphology of impact craters
NASA Astrophysics Data System (ADS)
Neufeld, Jerome; Sohr, David; Ferrari, Leo; Dalziel, Stuart
2017-11-01
Yield strength can play an important role for the dynamics of droplets impacting on surfaces, whether at the industrial or planetary scale, and can capture a zoo of impact crater morphologies, from simple parabolic craters, to more complex forms with forms with, for example, multiple rings, central peaks. Here we show that the morphology of planetary impact craters can be reproduced in the laboratory using carbopol, a transparent yield-stress fluid, as both impactor and bulk fluid. Using high-speed video photography, we characterise the universal, transient initial excavation stage of impact and show the dependence of the subsequent relaxation to final crater morphology on impactor size, impact speed and yield stress. To further interrogate our laboratory impacts, we dye our impactor to map its final distribution and use particle tracking to determine the flow fields during impact and the maximal extent of the yield surface. We characterise the flow-fields induced during impact, and the maximal extent of the yield surface, by tracking particles within the bulk fluid and map the distribution of impactor and bulk by tracing the final distribution of dyed impactor. The results of laboratory impact droplets are used to infer the properties of planetary impactors, and aid in inter.
Effect of Surface Roughness on Characteristics of Spherical Shock Waves
NASA Technical Reports Server (NTRS)
Huber, Paul W.; McFarland, Donald R.
1959-01-01
Measurements of peak overpressure and Mach stem height were made at four burst heights. Data were obtained with instrumentation capable of directly observing the variation of shock wave movement with time. Good similarity of free air shock peak overpressure with larger scale data was found to exist. The net effect of surface roughness on shock peak overpressures slightly. Surface roughness delayed the Mach stem formation at the greatest charge height and lowered the growth at all burst heights. A similarity parameter was found which approximately correlates the triple point path at different burst heights.
Dynamics of Katabatic Winds in Colorado' Brush Creek Valley.
NASA Astrophysics Data System (ADS)
Vergeiner, I.; Dreiseitl, E.; Whiteman, C. David
1987-01-01
A method is proposed to evaluate the coupled mass, momentum and thermal energy budget equations for a deep valley under two-dimensional, steady-state flow conditions. The method requires the temperature, down- valley wind and valley width fields to be approximated by simple analytical functions. The vertical velocity field is calculated using the mass continuity equation. Advection terms in the momentum and energy equations are then calculated using finite differences computed on a vertical two-dimensional grid that runs down the valley's axis. The pressure gradient term in the momentum equation is calculated from the temperature field by means of the hydrostatic equation. The friction term is then calculated as a residual in the xmomentum equation, and the diabatic cooling term is calculated as a residual in the thermal energy budget equation.The method is applied to data from an 8-km-long segment of Colorado's; Brush Creek Valley on the night of 30-31 July 1982. Pressure decreased with distance down the peak on horizontal surfaces, with peak horizontal pressure gradients of 0.04 hPa km1. The valley mass budget indicated that subsidence was required in the valley to support calculated mean along-valley mass flux divergence. Peak subsidence rates on the order of 0.10 m s1 were calculated. Subsiding motions in the valley produced negative vertical down-valley momentum fluxes in the upper valley atmosphere, but produced positive down-valley momentum fluxes below the level of the jet. Friction, calculated as a residual in the x momentum equation, was negative, as expected on physical grounds. and attained reasonable quantitative values.The strong subsidence field in the stable valley atmosphere produced subsidence warming that was only partly counteracted by down-valley cold air advection. Strong diabatic cooling was therefore required in order to account for the weak net cooling of the valley atmosphere during the nighttime period when tethered balloon observations were made.
Effect of hydrofracking fluid on colloid transport in the unsaturated zone.
Sang, Wenjing; Stoof, Cathelijne R; Zhang, Wei; Morales, Verónica L; Gao, Bin; Kay, Robert W; Liu, Lin; Zhang, Yalei; Steenhuis, Tammo S
2014-07-15
Hydraulic fracturing is expanding rapidly in the US to meet increasing energy demand and requires high volumes of hydrofracking fluid to displace natural gas from shale. Accidental spills and deliberate land application of hydrofracking fluids, which return to the surface during hydrofracking, are common causes of environmental contamination. Since the chemistry of hydrofracking fluids favors transport of colloids and mineral particles through rock cracks, it may also facilitate transport of in situ colloids and associated pollutants in unsaturated soils. We investigated this by subsequently injecting deionized water and flowback fluid at increasing flow rates into unsaturated sand columns containing colloids. Colloid retention and mobilization was measured in the column effluent and visualized in situ with bright field microscopy. While <5% of initial colloids were released by flushing with deionized water, 32-36% were released by flushing with flowback fluid in two distinct breakthrough peaks. These peaks resulted from 1) surface tension reduction and steric repulsion and 2) slow kinetic disaggregation of colloid flocs. Increasing the flow rate of the flowback fluid mobilized an additional 36% of colloids, due to the expansion of water filled pore space. This study suggests that hydrofracking fluid may also indirectly contaminate groundwater by remobilizing existing colloidal pollutants.
Solvated dissipative electro-elastic network model of hydrated proteins
NASA Astrophysics Data System (ADS)
Martin, Daniel
2013-03-01
Elastic network models coarse grain proteins into a network of residue beads connected by springs. We add dissipative dynamics to this mechanical system by applying overdamped Langevin equations of motion to normal-mode vibrations of the network. In addition, the network is made heterogeneous and softened at the protein surface by accounting for hydration of the ionized residues. Solvation changes the network Hessian in two ways. Diagonal solvation terms soften the spring constants and off-diagonal dipole-dipole terms correlate displacements of the ionized residues. The model is used to formulate the response functions of the electrostatic potential and electric field appearing in theories of redox reactions and spectroscopy. We also formulate the dielectric response of the protein and find that solvation of the surface ionized residues leads to a slow relaxation peak in the dielectric loss spectrum, about two orders of magnitude slower than the main peak of protein relaxation. Finally, the solvated network is used to formulate the allosteric response of the protein to ion binding. The global thermodynamics of ion binding is not strongly affected by the network solvation, but it dramatically enhances conformational changes in response to placing a charge at the a the active site.
Solvated dissipative electro-elastic network model of hydrated proteins
NASA Astrophysics Data System (ADS)
Martin, Daniel R.; Matyushov, Dmitry V.
2012-10-01
Elastic network models coarse grain proteins into a network of residue beads connected by springs. We add dissipative dynamics to this mechanical system by applying overdamped Langevin equations of motion to normal-mode vibrations of the network. In addition, the network is made heterogeneous and softened at the protein surface by accounting for hydration of the ionized residues. Solvation changes the network Hessian in two ways. Diagonal solvation terms soften the spring constants and off-diagonal dipole-dipole terms correlate displacements of the ionized residues. The model is used to formulate the response functions of the electrostatic potential and electric field appearing in theories of redox reactions and spectroscopy. We also formulate the dielectric response of the protein and find that solvation of the surface ionized residues leads to a slow relaxation peak in the dielectric loss spectrum, about two orders of magnitude slower than the main peak of protein relaxation. Finally, the solvated network is used to formulate the allosteric response of the protein to ion binding. The global thermodynamics of ion binding is not strongly affected by the network solvation, but it dramatically enhances conformational changes in response to placing a charge at the active site of the protein.
Composition of Plasma Formed from Hypervelocity Dust Impacts
NASA Astrophysics Data System (ADS)
Lee, N.; Close, S.; Rymer, A. M.; Mocker, A.
2012-12-01
Dust impacts can occur on all solar system bodies but are especially prevalent in the case of the Saturnian moons that are near or within the dust torus produced by Enceladus's plumes. Depending on the mass and charge on these plume particles, they will be influenced by both gravitational and electrodynamic forces, resulting in a range of possible impact speeds on the moons. The plasma formed upon impact can have very different characteristics depending on impact speed and on the electric field due to surface charging at the impact point. Through recent tests conducted at the Max Planck Institute for Nuclear Physics using a Van de Graaff dust accelerator, iron dust particles were electrostatically accelerated to speeds of 3-65 km/s and impacted on a variety of target materials including metallic and glassy surfaces. The target surfaces were connected to a biasing supply to represent surface charging effects. Because of the high specific kinetic energy of the dust particles, upon impact they vaporize along with part of the target surface and a fraction of this material is ionized forming a dense plasma. The impacts produced both positive and negative ions. We made measurements of the net current imparted by this expanding plasma at a distance of several centimeters from the impact point. By setting the bias of the target, we impose an electric field on the charge population, allowing a measurement of plasma composition through time of flight analysis. The figure shows representative measurements of the net current measured by a retarding potential analyzer (RPA) from separate 18 and 19 km/s impacts of 7 fg particles on a glassy surface that was negatively and positively biased, respectively. This target was an optical solar reflector donated by J. Likar of Lockheed Martin for these experiments. These results show that ions of both positive and negative charge can be formed through the mechanism of dust impacts, and has implications on the surface plasma environment at Enceladus and other airless bodies in the solar system. Measurements of net current from impact plasmas. The horizontal axis is normalized to particle mass based on time of flight. The red trace is from an impact on a positively biased surface, ejecting positive ions toward the sensor. The blue trace is from an impact on a negatively biased surface, ejecting electrons and negative ions toward the sensor. The first positive peak is from electrons causing secondary emission off the sensor. The subsequent negative peaks are from negative ions.
Aerodynamic Surface Stress Intermittency and Conditionally Averaged Turbulence Statistics
NASA Astrophysics Data System (ADS)
Anderson, W.
2015-12-01
Aeolian erosion of dry, flat, semi-arid landscapes is induced (and sustained) by kinetic energy fluxes in the aloft atmospheric surface layer. During saltation -- the mechanism responsible for surface fluxes of dust and sediment -- briefly suspended sediment grains undergo a ballistic trajectory before impacting and `splashing' smaller-diameter (dust) particles vertically. Conceptual models typically indicate that sediment flux, q (via saltation or drift), scales with imposed aerodynamic (basal) stress raised to some exponent, n, where n > 1. Since basal stress (in fully rough, inertia-dominated flows) scales with the incoming velocity squared, u^2, it follows that q ~ u^2n (where u is some relevant component of the above flow field, u(x,t)). Thus, even small (turbulent) deviations of u from its time-averaged value may play an enormously important role in aeolian activity on flat, dry landscapes. The importance of this argument is further augmented given that turbulence in the atmospheric surface layer exhibits maximum Reynolds stresses in the fluid immediately above the landscape. In order to illustrate the importance of surface stress intermittency, we have used conditional averaging predicated on aerodynamic surface stress during large-eddy simulation of atmospheric boundary layer flow over a flat landscape with momentum roughness length appropriate for the Llano Estacado in west Texas (a flat agricultural region that is notorious for dust transport). By using data from a field campaign to measure diurnal variability of aeolian activity and prevailing winds on the Llano Estacado, we have retrieved the threshold friction velocity (which can be used to compute threshold surface stress under the geostrophic balance with the Monin-Obukhov similarity theory). This averaging procedure provides an ensemble-mean visualization of flow structures responsible for erosion `events'. Preliminary evidence indicates that surface stress peaks are associated with the passage of inclined, high-momentum regions flanked by adjacent low-momentum regions. We will characterize geometric attributes of such structures and explore streamwise and vertical vorticity distribution within the conditionally averaged flow field.
On wind-wave-current interactions during the Shoaling Waves Experiment
NASA Astrophysics Data System (ADS)
Zhang, Fei W.; Drennan, William M.; Haus, Brian K.; Graber, Hans C.
2009-01-01
This paper presents a case study of wind-wave-current interaction during the Shoaling Waves Experiment (SHOWEX). Surface current fields off Duck, North Carolina, were measured by a high-frequency Ocean Surface Current Radar (OSCR). Wind, wind stress, and directional wave data were obtained from several Air Sea Interaction Spar (ASIS) buoys moored in the OSCR scanning domain. At several times during the experiment, significant coastal currents entered the experimental area. High horizontal shears at the current edge resulted in the waves at the peak of wind-sea spectra (but not those in the higher-frequency equilibrium range) being shifted away from the mean wind direction. This led to a significant turning of the wind stress vector away from the mean wind direction. The interactions presented here have important applications in radar remote sensing and are discussed in the context of recent radar imaging models of the ocean surface.
Flow in a centrifugal fan impeller at off-design conditions
NASA Astrophysics Data System (ADS)
Wright, T.; Tzou, K. T. S.; Madhavan, S.
1984-06-01
A fully three-dimensional finite element analysis of inviscid, incompressible blade channel flow is the basis of the present study of both predicted and measured surface velocity and pressure distributions in the internal flow channels of a centrifugal fan impeller, for volume flow rates of 80-125 percent the design flow rate. The experimental results made extensive use of blade and sidewall surface pressure taps installed in a scale model of an airfoil-bladed centrifugal fan impeller. The results obtained illustrate the ability of both flow analyses to predict the dominant features of the impeller flow field, including peak blade surface velocities and adverse gradients at flows far from the design point. Insight is also gained into the limiting channel diffusion values for typical centrifugal cascade performance, together with the influence of viscous effects, as seen in deviations from ideal flow predictions.
Modeling of thin, back-wall silicon solar cells
NASA Technical Reports Server (NTRS)
Baraona, C. R.
1979-01-01
The performance of silicon solar cells with p-n junctions on the nonilluminated surface (i.e., upside-down or back-wall cells) was calculated. These structures consisted of a uniformly shaped p-type substrate layer, a p(+)-type field layer on the front (illuminated) surface, and a shallow, n-type junction on the back (nonilluminated) surface. A four-layer solar cell model was used to calculate efficiency, open-circuit voltage, and short-circuit current. The effect on performance of p-layer thickness and resistivity was determined. The diffusion length was varied to simulate the effect of radiation damage. The results show that peak initial efficiencies greater than 15 percent are possible for cell thicknesses or 100 micrometers or less. After 10 years of radiation damage in geosynchronous orbit, thin (25 to 50 micrometers thick) cells made from 10 to 100 ohm cm material show the smallest decrease (approximately 10 percent) in performance.
3D full field strain analysis of polymerization shrinkage in a dental composite.
Martinsen, Michael; El-Hajjar, Rani F; Berzins, David W
2013-08-01
The objective of this research was to study the polymerization shrinkage in a dental composite using 3D digital image correlation (DIC). Using 2 coupled cameras, digital images were taken of bar-shaped composite (Premise Universal Composite; Kerr) specimens before light curing and after for 10 min. Three-dimensional DIC was used to assess in-plane and out-of-plane deformations associated with polymerization shrinkage. The results show the polymerization shrinkage to be highly variable with the peak values occurring 0.6-0.8mm away from the surface. Volumetric shrinkage began to significantly decrease at 3.2mm from the specimen surface and reached a minimum at 4mm within the composite. Approximately 25-30% of the strain registered at 5 min occurred after light-activation. Application of 3D DIC dental applications can be performed without the need for assumptions on the deformation field. Understanding the local deformations and strain fields from the initial polymerization shrinkage can lead to a better understanding of the composite material and interaction with surrounding tooth structure, aiding in their further development and clinical prognosis. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Assessment of the magnetic field exposure due to the battery current of digital mobile phones.
Jokela, Kari; Puranen, Lauri; Sihvonen, Ari-Pekka
2004-01-01
Hand-held digital mobile phones generate pulsed magnetic fields associated with the battery current. The peak value and the waveform of the battery current were measured for seven different models of digital mobile phones, and the results were applied to compute approximately the magnetic flux density and induced currents in the phone-user's head. A simple circular loop model was used for the magnetic field source and a homogeneous sphere consisting of average brain tissue equivalent material simulated the head. The broadband magnetic flux density and the maximal induced current density were compared with the guidelines of ICNIRP using two various approaches. In the first approach the relative exposure was determined separately at each frequency and the exposure ratios were summed to obtain the total exposure (multiple-frequency rule). In the second approach the waveform was weighted in the time domain with a simple low-pass RC filter and the peak value was divided by a peak limit, both derived from the guidelines (weighted peak approach). With the maximum transmitting power (2 W) the measured peak current varied from 1 to 2.7 A. The ICNIRP exposure ratio based on the current density varied from 0.04 to 0.14 for the weighted peak approach and from 0.08 to 0.27 for the multiple-frequency rule. The latter values are considerably greater than the corresponding exposure ratios 0.005 (min) to 0.013 (max) obtained by applying the evaluation based on frequency components presented by the new IEEE standard. Hence, the exposure does not seem to exceed the guidelines. The computed peak magnetic flux density exceeded substantially the derived peak reference level of ICNIRP, but it should be noted that in a near-field exposure the external field strengths are not valid indicators of exposure. Currently, no biological data exist to give a reason for concern about the health effects of magnetic field pulses from mobile phones.
Designs for improving electromagnetic acoustic transducers’ excitation performance
NASA Astrophysics Data System (ADS)
He, Jianpeng; Xu, Ke; Ren, Weiping
2018-06-01
The main drawback of electromagnetic acoustic transducers (EMATs) is their low energy transition efficiency. For the purpose of increasing the amplitude of the received signal, a ferrite core (FC) and a bias magnet (BM) are utilized respectively to improve the EMAT’s excitation performance in this paper. It indicates that the new configurations can increase the peak-to-peak amplitude of the received signal by a factor of 2.7 and 2.9, respectively. The reasons for the signal enhancement are also investigated through simulation and experimental methods. For the FC EMAT, improvement is achieved due to the enhancement of the dynamic magnetic field and the increase of coil inductance. In comparison, the change of the magnetostrictive transduction mechanism leads to the signal enhancement for the BM EMAT. The bias magnet magnetized the surface of the steel plate, which changes the signal excitation mechanism from domain wall movement to reversible domain rotations.
Experimental and simulated study of a composite structure metamaterial absorber
NASA Astrophysics Data System (ADS)
Li, Shengyong; Ai, Xiaochuan; Wu, Ronghua; Chen, Jiajun
2017-11-01
In this paper, a high performance metamaterial absorber is designed and experimental studied. Measured results indicate that a perfect absorption band and a short-wavelength absorption peak are achieved in the near-infrared spectrum. Current strength distributions reveal that the absorption band is excited by the cavity resonance. And electric field distributions show that the short-wavelength absorption peak is excited by the horizontal coupled of localized surface plasmon (LSP) modes near hole edges. On the one hand, the absorption property of the measured metamaterial absorber can be enhanced through optimizing the structural parameters (a, w, and H). On the other hand, the absorption property is sensitive to the change of refractive index of environmental medias. A sensing scheme is proposed for refractive index detecting based on the figure of merit (FOM) value. Measured results indicate that the proposed sensing scheme can achieve high FOM value with different environmental medias (water, glucose solution).
Study of a micro chamber quadrupole mass spectrometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Jinchan; Zhang Xiaobing; Mao Fuming
The design of a micro chamber quadrupole mass spectrometer (MCQMS) having a small total volume of only 20 cm{sup 3}, including Faraday cup ion detector and ion source, is described. This MCQMS can resist a vacuum baking temperature of 400-500 deg. C. The quadrupole elements with a hyperbolic surface are made of a ceramic material and coated with a thin metal layer. The quadrupole mass filter has a field radius of 3 mm and a length of 100 mm. Prototypes of this new MCQMS can detect a minimum partial pressure of 10{sup -8} Pa, have a peak width of {delta}M=1more » at 10% peak height from mass number 1 to 60, and show an excellent long-term stability. The new MCQMS is intended to be used in residual gas analyses of electron devices during a mutual pumping and baking process.« less
NASA Astrophysics Data System (ADS)
Stange, P.; Bach, L. T.; Le Moigne, F. A. C.; Taucher, J.; Boxhammer, T.; Riebesell, U.
2017-01-01
The ocean's potential to export carbon to depth partly depends on the fraction of primary production (PP) sinking out of the euphotic zone (i.e., the e-ratio). Measurements of PP and export flux are often performed simultaneously in the field, although there is a temporal delay between those parameters. Thus, resulting e-ratio estimates often incorrectly assume an instantaneous downward export of PP to export flux. Evaluating results from four mesocosm studies, we find that peaks in organic matter sedimentation lag chlorophyll a peaks by 2 to 15 days. We discuss the implications of these time lags (TLs) for current e-ratio estimates and evaluate potential controls of TL. Our analysis reveals a strong correlation between TL and the duration of chlorophyll a buildup, indicating a dependency of TL on plankton food web dynamics. This study is one step further toward time-corrected e-ratio estimates.
NASA Technical Reports Server (NTRS)
Clark, George W.; Woo, Jonathan W.; Nagase, Fumiaki; Makishima, Kazuo; Sakao, Taro
1990-01-01
A cyclotron absorption line near 20 keV has been found in the spectrum of the massive eclipsing binary X-ray pulsar 4U 1538 - 52 in observations with the Ginga observatory. The line is detected throughout the 529 s pulse cycle with a variable equivalent width that has its maximum value during the smaller peak of the two-peak pulse profile. It is found that the profile of the pulse and the phase-dependence of the cyclotron line can be explained qualitatively by a pulsar model based on recent theoretical results on the properties of pencil beams emitted by accretion-heated slabs of magnetized plasma at the magnetic poles of a neutron star. The indicated field at the surface of the neutron star is 1.7 (1 + z) x 10 to the 12th G, where z is the gravitational redshift.
NASA Technical Reports Server (NTRS)
Wilson, L. B., III; Cattell, C. A.; Kellogg, P. J.; Wygant, J. R.; Goetz, K.; Breneman, A.; Kersten, K.
2011-01-01
Wepresent resultsof a studyof the characteristicsof very large amplitude whistler mode waves inside the terrestrial magnetosphere at radial distances of less than 15 RE using waveform capture data from the Wind spacecraft. We observed 247 whistler mode waves with at least one electric field component (105/247 had !80 mV/m peak!to!peak amplitudes) and 66 whistler mode waves with at least one search coil magnetic field component (38/66 had !0.8 nT peak!to!peak amplitudes). Wave vectors determined from events with three magnetic field components indicate that 30/46 propagate within 20 of the ambient magnetic field, though some are more oblique (up to "50 ). No relationship was observed between wave normal angle and GSM latitude. 162/247 of the large amplitude whistler mode waves were observed during magnetically active periods (AE > 200 nT). 217 out of 247 total whistler mode waves examined were observed inside the radiation belts. We present a waveform capture with the largest whistler wave magnetic field amplitude (^8 nT peak!to!peak) ever reported in the radiation belts. The estimated Poynting flux magnitude associated with this wave is ^300 mW/m2, roughly four orders of magnitude above estimates from previous satellite measurements. Such large Poynting flux values are consistent with rapid energization of electrons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melentev, G. A., E-mail: gamelen@spbstu.ru; Shalygin, V. A.; Vorobjev, L. E.
2016-03-07
We present the results of experimental and theoretical studies of the surface plasmon polariton excitations in heavily doped GaN epitaxial layers. Reflection and emission of radiation in the frequency range of 2–20 THz including the Reststrahlen band were investigated for samples with grating etched on the sample surface, as well as for samples with flat surface. The reflectivity spectrum for p-polarized radiation measured for the sample with the surface-relief grating demonstrates a set of resonances associated with excitations of different surface plasmon polariton modes. Spectral peculiarities due to the diffraction effect have been also revealed. The characteristic features of themore » reflectivity spectrum, namely, frequencies, amplitudes, and widths of the resonance dips, are well described theoretically by a modified technique of rigorous coupled-wave analysis of Maxwell equations. The emissivity spectra of the samples were measured under epilayer temperature modulation by pulsed electric field. The emissivity spectrum of the sample with surface-relief grating shows emission peaks in the frequency ranges corresponding to the decay of the surface plasmon polariton modes. Theoretical analysis based on the blackbody-like radiation theory well describes the main peculiarities of the observed THz emission.« less
Effect of Intermolecular Distance on Surface-Plasmon-Assisted Catalysis.
Wu, Shiwei; Liu, Yu; Ma, Caiqing; Wang, Jing; Zhang, Yao; Song, Peng; Xia, Lixin
2018-06-26
4-Aminothiophenol (PATP) and 4-aminophenyl disulfide (APDS) in contact with silver will form H 2 N-C 6 H 4 -S-Ag (PATP-Ag), and under the conditions of surface-enhanced Raman spectroscopy (SERS), a coupling reaction will generate 4,4-dimercaptoazobenzene (DMAB). DMAB is strongly Raman-active, showing strong peaks at ν ≈ 1140, 1390, and 1432 cm -1 , and is widely used in surface-plasmon-assisted catalysis. Using APDS, PATP, p-nitrothiophenol (PNTP), and p-nitrodiphenyl disulfide (NPDS) as probe molecules, Raman spectroscopy and imaging techniques have been used to study the effect of intermolecular distance on surface-plasmon-assisted catalysis. Theoretically, PATP-Ag formed from APDS will be bound at proximal Ag atoms on the Ag surface due to S-S bond cleavage. The results show that APDS is more prone to surface-plasmon-assisted catalytic coupling due to the smaller distance between surface PATP-Ag moieties than those derived from PATP. Therefore, APDS has a higher reaction efficiency, better Raman activity, and better Raman imaging than does PATP. Analogous experiments with PNTP and NPDS gave similar results. Thus, this technique has great application prospects in the fields of surface chemistry and materials chemistry.
Spectral dependence of fluorescence near plasmon resonant metal nanoparticles
NASA Astrophysics Data System (ADS)
Chen, Yeechi
The optical properties of fluorophores are significantly modified when placed within the near field (0--100 nm) of plasmon resonant metal nanostructures, due to the competition between increased decay rates and "hotspots" of concentrated electric fields. The decay rates and effective electric field intensities are highly dependent on the relative position of dye and metal and the overlap between plasmon resonance and dye absorption and emission. Understanding these dependencies can greatly improve the performance of biosensing and nanophotonic devices. In this dissertation, the fluorescence intensity of organic dyes and CdSe quantum dots near single metal nanoparticles is studied as a function of the local surface plasmon resonance (LSPR) of the nanoparticle. Single metal nanoparticles have narrow, well-defined, intense local surface plasmon resonances that are tunable across the visible spectrum by changes in size and shape. First, we show that organic dyes can be self-assembled on single silver nanoprisms into known configurations by the hybridization of thiolated DNA oligomers. We correlate the fluorescence intensity of the dyes to the LSPR of the individual nanoprism to which they are attached. For each of three different organic dyes, we observe a strong correlation between the fluorescence intensity of the dye and the degree of spectral overlap with the plasmon resonance of the nanoparticle. On average, we observe the brightest fluorescence from dyes attached to metal nanoparticles that have a LSPR scattering peak 40--120 meV higher in energy than the emission peak of the fluorophore. Second, the plasmon-enhanced fluorescence from CdSe/CdS/CdZnS/ZnS core/shell quantum dots is studied near a variety of silver and gold nanoparticles. With single-particle scattering spectroscopy, the localized surface plasmon resonance spectra of single metal nanoparticles is correlated with the photoluminescence excitation (PLE) spectra of the nearby quantum dots. The PLE spectra closely track the scattering spectra of the metal nanoparticles. By taking advantage of the ability to excite quantum dots across a wide range of wavelengths while detecting a single emission wavelength, we measure an excitation enhancement factor for single metal nanoparticles. The data also provide a calculation of a lower-bound of experimentally attainable enhancement factors solely due to increased near-field excitation. This factor was found to range from ˜3 to 10 for Au spheres, Ag cubes and Ag nanoprisms.
NASA Astrophysics Data System (ADS)
Youssef, Jamal Ben; Brosseau, Christian
2006-12-01
The microwave damping mechanisms in magnetic inhomogeneous systems have displayed a richness of phenomenology that has attracted widespread interest over the years. Motivated by recent experiments, we report an extensive experimental study of the Gilbert damping parameter of multicomponent metal oxides micro- and nanophases. We label the former by M samples, and the latter by N samples. The main thrust of this examination is the magnetization dynamics in systems composed of mixtures of magnetic (γ-Fe2O3) and nonmagnetic (ZnO and epoxy resin) materials fabricated via powder processing. Detailed ferromagnetic resonance (FMR) measurements on N and M samples are described so to determine changes in the microwave absorption over the 6-18GHz frequency range as a function of composition and static magnetic field. The FMR linewidth and the field dependent resonance were measured for the M and N samples, at a given volume fraction of the magnetic phase. The asymmetry in the form and change in the linewidth for the M samples are caused by the orientation distribution of the local anisotropy fields, whereas the results for the N samples suggest that the linewidth is very sensitive to details of the spatial magnetic inhomogeneities. For N samples, the peak-to-peak linewidth increases continuously with the volume content of magnetic material. The influence of the volume fraction of the magnetic phase on the static internal field was also investigated. Furthermore, important insights are gleaned through analysis of the interrelationship between effective permeability and Gilbert damping constant. Different mechanisms have been considered to explain the FMR linewidth: the intrinsic Gilbert damping, the broadening induced by the magnetic inhomogeneities, and the extrinsic magnetic relaxation. We observed that the effective Gilbert damping constant of the series of N samples are found to be substantially smaller in comparison to M samples. This effect is attributed to the surface anisotropy contribution to the anisotropy of Fe2O3 nanoparticles. From these measurements, the characteristic intrinsic damping dependent on the selected material and the damping due to surface/interface effects and interparticle interaction were estimated. The inhomogeneous linewidth (damping) due to surface/interface effects decreases with diminishing particle size, whereas the homogeneous linewidth (damping) due to interactions increases with increasing volume fraction of magnetic particles (i.e., reducing the separation between neighboring magnetic phases) in the composite.
Electrochemical and nonenzymatic glucose biosensor based on MDPA/MWNT/PGE nanocomposite.
Surucu, Ozge; Abaci, Serdar
2017-09-01
The nonenzymatic detection of glucose has been widely investigated in a variety of fields ranging from biomedical applications to ecological approaches. Among these fields, electrochemical methods have great advantages such as high electrocatalytic ability, high sensitivity, good selectivity and low-cost for the electrooxidation of glucose. Future trends on glucose sensing are nanostructured electrodes depending upon the development of nanotechnology. In this study, an electrochemical and nonenzymatic glucose sensor based on (E)-4-((5-methylthiazole-2-yl)diazenyl)-N-phenylaniline (MDPA)/multi-walled carbon nanotube (MWNT)/pencil graphite electrode (PGE) was performed. Electrochemical measurements were obtained using cyclic voltammetry and square wave voltammetry techniques, and characterization of surfaces was carried out using scanning electron microscope and electrochemical impedance spectroscopy techniques. The modification of PGE was made using MDPA and MWNT, and 10 cycles coating was used to prepare the proposed electrode. The effects of scan rate and pH on the peak potential and the peak current were determined. The limit of detection and linear range were calculated using various concentrations of glucose. The interference study was made using coexisting substances including metal ions such as Al 3+ , Cu 2+ , Fe 3+ and ascorbic acid. Copyright © 2017 Elsevier B.V. All rights reserved.
High Voltage Dielectrophoretic and Magnetophoretic Hybrid Integrated Circuit / Microfluidic Chip
Issadore, David; Franke, Thomas; Brown, Keith A.; Hunt, Thomas P.; Westervelt, Robert M.
2010-01-01
A hybrid integrated circuit (IC) / microfluidic chip is presented that independently and simultaneously traps and moves microscopic objects suspended in fluid using both electric and magnetic fields. This hybrid chip controls the location of dielectric objects, such as living cells and drops of fluid, on a 60 × 61 array of pixels that are 30 × 38 μm2 in size, each of which can be individually addressed with a 50 V peak-to-peak, DC to 10 MHz radio frequency voltage. These high voltage pixels produce electric fields above the chip’s surface with a magnitude , resulting in strong dielectrophoresis (DEP) forces . Underneath the array of DEP pixels there is a magnetic matrix that consists of two perpendicular sets of 60 metal wires running across the chip. Each wire can be sourced with 120 mA to trap and move magnetically susceptible objects using magnetophoresis (MP). The DEP pixel array and magnetic matrix can be used simultaneously to apply forces to microscopic objects, such as living cells or lipid vesicles, that are tagged with magnetic nanoparticles. The capabilities of the hybrid IC / microfluidic chip demonstrated in this paper provide important building blocks for a platform for biological and chemical applications. PMID:20625468
High Voltage Dielectrophoretic and Magnetophoretic Hybrid Integrated Circuit / Microfluidic Chip.
Issadore, David; Franke, Thomas; Brown, Keith A; Hunt, Thomas P; Westervelt, Robert M
2009-12-01
A hybrid integrated circuit (IC) / microfluidic chip is presented that independently and simultaneously traps and moves microscopic objects suspended in fluid using both electric and magnetic fields. This hybrid chip controls the location of dielectric objects, such as living cells and drops of fluid, on a 60 × 61 array of pixels that are 30 × 38 μm(2) in size, each of which can be individually addressed with a 50 V peak-to-peak, DC to 10 MHz radio frequency voltage. These high voltage pixels produce electric fields above the chip's surface with a magnitude , resulting in strong dielectrophoresis (DEP) forces . Underneath the array of DEP pixels there is a magnetic matrix that consists of two perpendicular sets of 60 metal wires running across the chip. Each wire can be sourced with 120 mA to trap and move magnetically susceptible objects using magnetophoresis (MP). The DEP pixel array and magnetic matrix can be used simultaneously to apply forces to microscopic objects, such as living cells or lipid vesicles, that are tagged with magnetic nanoparticles. The capabilities of the hybrid IC / microfluidic chip demonstrated in this paper provide important building blocks for a platform for biological and chemical applications.
Possibility of deriving the Hermean surface composition through low energy neutral atom detection
NASA Astrophysics Data System (ADS)
Milillo, A.; Orsini, S.; Massetti, S.; Mura, A.; de Angelis, E.; Lammer, H.; Wurz, P.; di Lellis, A. M.
2003-04-01
The release processes induced by ion sputtering and/or micrometeoroids impacts induces erosion of the Mercury surface. The sputtered neutrals exhibit spectra peaked at low energies (few eV). Nevertheless, a high-energy neutral signal also emerges, due to these release processes. In principle, the directional neutral signal can be detected, providing information on the local surface composition. In this study, we simulate the neutral signal due to ion sputtering below the cusp regions, assuming a highly anisotropic surface composition. The NPA SERENA / ELENA instrument proposed on board the ESA mission BepiColombo is a nadir-pointing 1-D sensor, able to detect neutral atoms, form tens of eV to about 5 keV with a capability of resolving the major species. The ELENA field-of-view (FOV) is ~ 60 degrees, with the FOV plane perpendicular to the MPO orbital plane. Here, we speculate on the possibility of discriminating composition anisotropies by detecting the high-energy portion of the sputtered signal.
Self-organized nanostructure formation on the graphite surface induced by helium ion irradiation
NASA Astrophysics Data System (ADS)
Dutta, N. J.; Mohanty, S. R.; Buzarbaruah, N.; Ranjan, M.; Rawat, R. S.
2018-06-01
The effects of helium ion irradiation on the graphite surface are studied by employing a plasma focus device. The device emits helium ion pulse having energies in the range of a few keV to a few MeV and flux on the order of 1025 m-2 s-1 at 60 mm axial position from the anode tip. The field emission scanning electron microscopy confirms the formation of multi-modal spherical and elongated agglomerated structures on irradiated samples surface with increase in agglomerate size with increasing number of irradiation shots. The transient annealing in each irradiation was not enough to cause the Oswald ripening or sintering of particles into bigger particle or crystal size but only resulted in clustering. The atomic force micrographs reveal an increase in average surface roughness with increasing ion irradiation. The Raman study demonstrates increase in disordered D peak along with reduced crystallite size (La) with increasing number of irradiation shots.
Liu, Gui-qiang; Yu, Mei-dong; Liu, Zheng-qi; Liu, Xiao-shan; Huang, Shan; Pan, Ping-ping; Wang, Yan; Liu, Mu-lin; Gu, Gang
2015-05-08
One-process fabrication of highly active and reproducible surface-enhanced Raman scattering (SERS) substrates via ion beam deposition is reported. The fabricated metal-dielectric-metal (MDM) hierarchical nanostructure possesses rich nanogaps and a tunable resonant cavity. Raman scattering signals of analytes are dramatically strengthened due to the strong near-field coupling of localized surface plasmon resonances (LSPRs) and the strong interaction of LSPRs of metal NPs with surface plasmon polaritons (SPPs) on the underlying metal film by crossing over the dielectric spacer. The maximum Raman enhancement for the highest Raman peak at 1650 cm(-1) is 13.5 times greater than that of a single metal nanoparticle (NP) array. Moreover, the SERS activity can be efficiently tailored by varying the size and number of voids between adjacent metal NPs and the thickness of the dielectric spacer. These findings may broaden the scope of SERS applications of MDM hierarchical nanostructures in biomedical and analytical chemistry.
Axelrod, Daniel
2012-08-01
Microscopic fluorescent samples of interest to cell and molecular biology are commonly embedded in an aqueous medium near a solid surface that is coated with a thin film such as a lipid multilayer, collagen, acrylamide, or a cell wall. Both excitation and emission of fluorescent single molecules near film-coated surfaces are strongly affected by the proximity of the coated surface, the film thickness, its refractive index and the fluorophore's orientation. For total internal reflection excitation, multiple reflections in the film can lead to resonance peaks in the evanescent intensity versus incidence angle curve. For emission, multiple reflections arising from the fluorophore's near field emission can create a distinct intensity pattern in both the back focal plane and the image plane of a high aperture objective. This theoretical analysis discusses how these features can be used to report film thickness and refractive index, and fluorophore axial position and orientation. © 2012 The Author Journal of Microscopy © 2012 Royal Microscopical Society.
Fast penetration of megagauss fields into metallic conductors
NASA Astrophysics Data System (ADS)
Schnitzer, Ory
2014-08-01
Megagauss magnetic-field penetration into a conducting material is studied via a simplified but representative model, wherein the magnetic-diffusion equation is coupled with a thermal-energy balance. The specific scenario considered is that of a prescribed magnetic field rising (in proportion to an arbitrary power r of time) at the surface of a conducting half-space whose electric conductivity is assumed proportional to an arbitrary inverse power γ of temperature. We employ a systematic asymptotic scheme in which the case of a strong surface field corresponds to a singular asymptotic limit. In this limit, the highly magnetized and hot "skin" terminates at a distinct propagating wave-front. Employing the method of matched asymptotic expansions, we find self-similar solutions of the magnetized region which match a narrow boundary-layer region about the advancing wave front. The rapidly decaying magnetic-field profile in the latter region is also self similar; when scaled by the instantaneous propagation speed, its shape is time-invariant, depending only on the parameter γ. The analysis furnishes a simple asymptotic formula for the skin-depth (i.e., the wave-front position), which substantially generalizes existing approximations. It scales with the power γr + 1/2 of time and the power γ of field strength, and is much larger than the field-independent skin depth predicted by an athermal model. The formula further involves a dimensionless O(1) pre-factor which depends on r and γ. It is determined by solving a nonlinear eigenvalue problem governing the magnetized region. Another main result of the analysis, apparently unprecedented, is an asymptotic formula for the magnitude of the current-density peak characterizing the wave-front region. Complementary to these systematic results, we provide a closed-form but ad hoc generalization of the theory approximately applicable to arbitrary monotonically rising surface fields. Our results are in excellent agreement with numerical simulations of the model, and compare favourably with detailed magnetohydrodynamic simulations reported in the literature.
NASA Astrophysics Data System (ADS)
Tsygankov, S. S.; Doroshenko, V.; Lutovinov, A. A.; Mushtukov, A. A.; Poutanen, J.
2017-09-01
Aims: The magnetic field of accreting neutron stars determines their overall behavior including the maximum possible luminosity. Some models require an above-average magnetic field strength (≳1013 G) in order to explain super-Eddington mass accretion rate in the recently discovered class of pulsating ultraluminous X-ray sources (ULX). The peak luminosity of SMC X-3 during its major outburst in 2016-2017 reached 2.5 × 1039 erg s-1 comparable to that in ULXs thus making this source the nearest ULX-pulsar. Determination of the magnetic field of SMC X-3 is the main goal of this paper. Methods: SMC X-3 belongs to the class of transient X-ray pulsars with Be optical companions, and exhibited a giant outburst in July 2016-March 2017. The source has been observed over the entire outburst with the Swift/XRT and Fermi/GBM telescopes, as well as the NuSTAR observatory. Collected data allowed us to estimate the magnetic field strength of the neutron star in SMC X-3 using several independent methods. Results: Spin evolution of the source during and between the outbursts, and the luminosity of the transition to the so-called propeller regime in the range of (0.3-7) × 1035 erg s-1 imply a relatively weak dipole field of (1-5) × 1012 G. On the other hand, there is also evidence for a much stronger field in the immediate vicinity of the neutron star surface. In particular, transition from super- to sub-critical accretion regime associated with the cease of the accretion column and very high peak luminosity favor a field that is an order of magnitude stronger. This discrepancy makes SMC X-3 a good candidate for possessing significant non-dipolar components of the field, and an intermediate source between classical X-ray pulsars and accreting magnetars which may constitute an appreciable fraction of ULX population.
NASA Astrophysics Data System (ADS)
Bake, Muhammad Ali; Xie, Bai-Song; Aimidula, Aimierding; Wang, Hong-Yu
2013-07-01
A new scheme for acceleration and focusing of protons via an improved parabolic double concave target irradiated by an ultraintense laser pulse is proposed. When an intense laser pulse illuminates a concave target, the hot electrons are concentrated on the focal region of the rear cavity and they form a strong space-charge-separation field, which accelerates the protons. For a simple concave target, the proton energy spectrum becomes very broad outside the rear cavity because of transverse divergence of the electromagnetic fields. However, particle-in-cell simulations show that, when the concave target has an extended rear, the hot electrons along the wall surface induce a transverse focusing sheath field, resulting in a clear enhancement of proton focusing, which makes the lower proton energy spread, while, leads to a little reduction of the proton bunch peak energy.
Berenbrock, Charles; Rousseau, Joseph P.; Twining, Brian V.
2007-01-01
A 1.9-mile reach of the Big Lost River, between the Idaho National Engineering and Environmental Laboratory (INEEL) diversion dam and the Pioneer diversion structures, was investigated to evaluate the effects of streambed erosion and bedrock constrictions on model predictions of water-surface elevations. Two one-dimensional (1-D) models, a fixed-bed surface-water flow model (HEC-RAS) and a movable-bed surface-water flow and sediment-transport model (HEC-6), were used to evaluate these effects. The results of these models were compared to the results of a two-dimensional (2-D) fixed-bed model [Transient Inundation 2-Dimensional (TRIM2D)] that had previously been used to predict water-surface elevations for peak flows with sufficient stage and stream power to erode floodplain terrain features (Holocene inset terraces referred to as BLR#6 and BLR#8) dated at 300 to 500 years old, and an unmodified Pleistocene surface (referred to as the saddle area) dated at 10,000 years old; and to extend the period of record at the Big Lost River streamflow-gaging station near Arco for flood-frequency analyses. The extended record was used to estimate the magnitude of the 100-year flood and the magnitude of floods with return periods as long as 10,000 years. In most cases, the fixed-bed TRIM2D model simulated higher water-surface elevations, shallower flow depths, higher flow velocities, and higher stream powers than the fixed-bed HEC-RAS and movable-bed HEC-6 models for the same peak flows. The HEC-RAS model required flow increases of 83 percent [100 to 183 cubic meters per second (m3/s)], and 45 percent (100 to 145 m3/s) to match TRIM2D simulations of water-surface elevations at two paleoindicator sites that were used to determine peak flows (100 m3/s) with an estimated return period of 300 to 500 years; and an increase of 13 percent (150 to 169 m3/s) to match TRIM2D water-surface elevations at the saddle area that was used to establish the peak flow (150 m3/s) of a paleoflood with a return period of 10,000 years. A field survey of the saddle area, however, indicated that the elevation of the lowest point on the saddle area was 1.2 feet higher than indicated on the 2-ft contour map that was used in the TRIM2D model. Because of this elevation discrepancy, HEC-RAS model simulations indicated that a peak flow of at least 210 m3/s would be needed to initiate flow across the 10,000-year old Pleistocene surface. HEC-6 modeling results indicated that to compensate for the effects of streambed scour, additional flow increases would be needed to match HEC-RAS and TRIM2D water-surface elevations along the upper and middle reaches of the river, and to compensate for sediment deposition, a slight decrease in flows would be needed to match HEC-RAS water-surface elevations along the lower reach of the river. Differences in simulated water-surface elevations between the TRIM2D and the HEC-RAS and HEC-6 models are attributed primarily to differences in topographic relief and to differences in the channel and floodplain geometries used in these models. Topographic differences were sufficiently large that it was not possible to isolate the effects of these differences on simulated water-surface elevations from those attributable to the effects of supercritical flow, streambed scour, and sediment deposition.
NASA Astrophysics Data System (ADS)
Murkute, Punam; Ghadi, Hemant; Saha, Shantanu; Chavan, Vinayak; Chakrabarti, Subhananda
2018-03-01
ZnO has potential application in the field of short wavelength devices like LED's, laser diodes, UV detectors etc, because of its wide band gap (3.34 eV) and high exciton binding energy (60 meV). ZnO possess N-type conductivity due to presence of defects arising from oxygen and zinc interstitial vacancies. In order to achieve P-type or intrinsic carrier concentration an implantation study is preferred. In this report, we have varied phosphorous implantation time and studied its effect on optical as well structural properties of RF sputtered ZnO thin-films. Implantation was carried out using Plasma Immersion ion implantation technique for 10 and 20 s. These films were further annealed at 900°C for 10 s in oxygen ambient to activate phosphorous dopants. Low temperature photoluminescence (PL) spectra measured two distinct peaks at 3.32 and 3.199 eV for 20 s implanted sample annealed at 900°C. Temperature dependent PL measurement shows slightly blue shift in peak position from 18 K to 300 K. 3.199 eV peak can be attributed to donoracceptor pair (DAP) emission and 3.32 eV peak corresponds to conduction-band-to-acceptor (eA0) transition. High resolution x-ray diffraction revels dominant (002) peak from all samples. Increasing implantation time resulted in low peak intensity suggesting a formation of implantation related defects. Compression in C-axis with implantation time indicates incorporation of phosphorus in the formed film. Improvement in surface quality was observed from 20 s implanted sample which annealed at 900°C.
Taghaddos, Elaheh; Ma, T; Zhong, Hui; Zhou, Qifa; Wan, M X; Safari, Ahmad
2018-04-01
This paper discusses the fabrication and characterization of 3.5-MHz single-element transducers for therapeutic applications in which the active elements are made of hard lead-free BNT-based and hard commercial PZT (PZT-841) piezoceramics. Composition of (BiNa 0.88 K 0.08 Li 0.04 ) 0.5 (Ti 0.985 Mn 0.015 )O 3 (BNKLT88-1.5Mn) was used to develop lead-free piezoelectric ceramic. Mn-doped samples exhibited high mechanical quality factor ( ) of 970, thickness coupling coefficient ( ) of 0.48, a dielectric constant ( ) of 310 (at 1 kHz), depolarization temperature ( ) of 200 °C, and coercive field ( ) of 52.5 kV/cm. Two different unfocused single-element transducers using BNKLT88-1.5Mn and PZT-841 with the same center frequency of 3.5 MHz and similar aperture size of 10.7 and 10.5 mm were fabricated. Pulse-echo response, acoustic frequency spectrum, acoustic pressure field, and acoustic intensity field of transducers were characterized. The BNT-based transducer shows linear response up to the peak-to-peak voltage of 105 V in which the maximum rarefactional acoustic pressure of 1.1 MPa, and acoustic intensity of 43 W/cm 2 were achieved. Natural focal point of this transducer was at 60 mm from the surface of the transducer.
Tortorelli, R.L.
1996-01-01
The flash flood in southwestern Oklahoma City, Oklahoma, May 8, 1993, was the result of an intense 3-hour rainfall on saturated ground or impervious surfaces. The total precipitation of 5.28 inches was close to the 3-hour, 100-year frequency and produced extensive flooding. The most serious flooding was on Twin, Brock, and Lightning Creeks. Four people died in this flood. Over 1,900 structures were damaged along the 3 creeks. There were about $3 million in damages to Oklahoma City public facilities, the majority of which were in the three basins. A study was conducted to determine the magnitude of the May 8, 1993, flood peak discharge in these three creeks in southwestern Oklahoma City and compare these peaks with published flood estimates. Flood peak-discharge estimates for these creeks were determined at 11 study sites using a step-backwater analysis to match the flood water-surface profiles defined by high-water marks. The unit discharges during peak runoff ranged from 881 cubic feet per second per square mile for Lightning Creek at SW 44th Street to 3,570 cubic feet per second per square mile for Brock Creek at SW 59th Street. The ratios of the 1993 flood peak discharges to the Federal Emergency Management Agency 100-year flood peak discharges ranged from 1.25 to 3.29. The water-surface elevations ranged from 0.2 foot to 5.9 feet above the Federal Emergency Management Agency 500-year flood water-surface elevations. The very large flood peaks in these 3 small urban basins were the result of very intense rainfall in a short period of time, close to 100 percent runoff due to ground surfaces being essentially impervious, and the city streets acting as efficient conveyances to the main channels. The unit discharges compare in magnitude to other extraordinary Oklahoma urban floods.
Evans, Edward W; Carlile, Nolan R; Innes, Matthew B; Pitigala, Nadishan
2014-02-01
Scouting at key times in the seasonal development of insect pest populations, as guided by degree-day accumulation, is important for minimizing unwarranted insecticide application. Fields of small grains in northern Utah were censused weekly from 2001 to 2011, to assess infestation by the cereal leaf beetle, Oulema melanopus (L.) (Coleoptera: Chrysomelidae), and develop degree-day guidelines for measuring cereal leaf beetle abundance at peak egg and larval densities in any given year. Even in years of high overall numbers of cereal leaf beetle, relatively few fields were heavily infested (with 20 or more cereal leaf beetle eggs + larvae per 0.09 m2) at either egg or larval peak density during the growing season. In individual fields, the number of immature cereal leaf beetle (eggs + larvae) at peak larval density was positively related to the number of immature cereal leaf beetles present earlier at peak egg density. Although there was large variation among years in when cereal leaf beetle egg and larval numbers peaked during the season as measured by degree-day accumulation from 1 January, much of this variation was accounted for by the warmth of the early spring before significant egg laying occurred. Hence, degree-day estimates that account for early spring warmth can guide growers in scouting grain fields at peak egg densities to identify fields at high risk of subsequent economic damage from cereal leaf beetle larval feeding. The relatively low incidence of fields heavily infested by cereal leaf beetle in northern Utah emphasizes the benefit that growers can gain by scouting early before applying insecticide treatments.
NASA Astrophysics Data System (ADS)
Wang, Boshuo; Shen, Michael R.; Deng, Zhi-De; Smith, J. Evan; Tharayil, Joseph J.; Gurrey, Clement J.; Gomez, Luis J.; Peterchev, Angel V.
2018-06-01
Objective. To present a systematic framework and exemplar for the development of a compact and energy-efficient coil that replicates the electric field (E-field) distribution induced by an existing transcranial magnetic stimulation coil. Approach. The E-field generated by a conventional low field magnetic stimulation (LFMS) coil was measured for a spherical head model and simulated in both spherical and realistic head models. Then, using a spherical head model and spatial harmonic decomposition, a spherical-shaped cap coil was synthesized such that its windings conformed to a spherical surface and replicated the E-field on the cortical surface while requiring less energy. A prototype coil was built and electrically characterized. The effect of constraining the windings to the upper half of the head was also explored via an alternative coil design. Main results. The LFMS E-field distribution resembled that of a large double-cone coil, with a peak field strength around 350 mV m‑1 in the cortex. The E-field distributions of the cap coil designs were validated against the original coil, with mean errors of 1%–3%. The cap coil required as little as 2% of the original coil energy and was significantly smaller in size. Significance. The redesigned LFMS coil is substantially smaller and more energy-efficient than the original, improving cost, power consumption, and portability. These improvements could facilitate deployment of LFMS in the clinic and potentially at home. This coil redesign approach can also be applied to other magnetic stimulation paradigms. Finally, the anatomically-accurate E-field simulation of LFMS can be used to interpret clinical LFMS data.
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.
1980-01-01
Friction studies were conducted with a silicon carbide (0001) surface contacting polycrystalline iron. The surface of silicon carbide was pretreated: (1) by bombarding it with argon ions for 30 minutes at a pressure of 1.3 pascals; (2) by heating it at 800 C for 3 hours in vacuum at a pressure of 10 to the minus eighth power pascal; or (3) by heating it at 1500 C for 3 hours in a vacuum of 10 to the minus eighth power pascal. Auger emission spectroscopy was used to determine the presence of silicon and carbon and the form of the carbon. The surfaces of silicon carbide bombarded with argon ions or preheated to 800 C revealed the main Si peak and a carbide type of C peak in the Auger spectra. The surfaces preheated to 1500 C revealed only a graphite type of C peak in the Auger spectra, and the Si peak had diminished to a barely perceptible amount. The surfaces of silicon carbide preheated to 800 C gave a 1.5 to 3 times higher coefficient of friction than did the surfaces of silicon carbide preheated to 1500 C. The coefficient of friction was lower in the 11(-2)0 direction than in the 10(-1)0 direction; that is, it was lower in the preferred crystallographic slip direction.
Relationships between Electroencephalographic Spectral Peaks Across Frequency Bands
van Albada, S. J.; Robinson, P. A.
2013-01-01
The degree to which electroencephalographic spectral peaks are independent, and the relationships between their frequencies have been debated. A novel fitting method was used to determine peak parameters in the range 2–35 Hz from a large sample of eyes-closed spectra, and their interrelationships were investigated. Findings were compared with a mean-field model of thalamocortical activity, which predicts near-harmonic relationships between peaks. The subject set consisted of 1424 healthy subjects from the Brain Resource International Database. Peaks in the theta range occurred on average near half the alpha peak frequency, while peaks in the beta range tended to occur near twice and three times the alpha peak frequency on an individual-subject basis. Moreover, for the majority of subjects, alpha peak frequencies were significantly positively correlated with frequencies of peaks in the theta and low and high beta ranges. Such a harmonic progression agrees semiquantitatively with theoretical predictions from the mean-field model. These findings indicate a common or analogous source for different rhythms, and help to define appropriate individual frequency bands for peak identification. PMID:23483663
Synthesis of gold nanorods with a longitudinal surface plasmon resonance peak of around 1250 nm
NASA Astrophysics Data System (ADS)
Nguyen, Thi Nhat Hang; Le Trinh Nguyen, Thi; Thanh Tuyen Luong, Thi; Thang Nguyen, Canh Minh; Nguyen, Thi Phuong Phong
2016-03-01
We prepared gold nanorods and joined them to chemicals such as tetrachloauric (III) acid trihydrate, silver nitrate, hydroquinone, hexadecyltrimethylammonium bromide, sodium hydroxide and sodium borohydride using the seed-mediated method. The combination of hydroquinone, with or without salicylic acid, influences the size of the gold nanorods, and this is demonstrated by the results of TEM images, UV-vis spectra and the value of the longitudinal surface plasmon resonance peak with respect to the UV-vis spectra. By changing the Ag+ ion and hydroquinone concentration and the combination of hydroquinone and salicylic acid, the size of the gold nanorods can be controlled and this is manifested by longitudinal surface plasmon resonance peaks forming between 875 and 1278 nm. In particular, sample E2 achieved a longitudinal surface plasmon peak at 1273 nm and an aspect ratio of more than 10 by modifying the hydroquinone to 2.5 mM and salicylic acid to 0.5 mM concentration in the growth solution.
Trirotron: triode rotating beam radio frequency amplifier
Lebacqz, Jean V.
1980-01-01
High efficiency amplification of radio frequencies to very high power levels including: establishing a cylindrical cloud of electrons; establishing an electrical field surrounding and coaxial with the electron cloud to bias the electrons to remain in the cloud; establishing a rotating electrical field that surrounds and is coaxial with the steady field, the circular path of the rotating field being one wavelength long, whereby the peak of one phase of the rotating field is used to accelerate electrons in a beam through the bias field in synchronism with the peak of the rotating field so that there is a beam of electrons continuously extracted from the cloud and rotating with the peak; establishing a steady electrical field that surrounds and is coaxial with the rotating field for high-energy radial acceleration of the rotating beam of electrons; and resonating the rotating beam of electrons within a space surrounding the second field, the space being selected to have a phase velocity equal to that of the rotating field to thereby produce a high-power output at the frequency of the rotating field.
The shape of CMB temperature and polarization peaks on the sphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marcos-Caballero, A.; Fernández-Cobos, R.; Martínez-González, E.
2016-04-01
We present a theoretical study of CMB temperature peaks, including its effect over the polarization field, and allowing nonzero eccentricity. The formalism is developed in harmonic space and using the covariant derivative on the sphere, which guarantees that the expressions obtained are completely valid at large scales (i.e., no flat approximation). The expected patterns induced by the peak, either in temperature or polarization, are calculated, as well as their covariances. It is found that the eccentricity introduces a quadrupolar dependence in the peak shape, which is proportional to a complex bias parameter b {sub ε}, characterizing the peak asymmetry andmore » orientation. In addition, the one-point statistics of the variables defining the peak on the sphere is reviewed, finding some differences with respect to the flat case for large peaks. Finally, we present a mechanism to simulate constrained CMB maps with a particular peak on the field, which is an interesting tool for analysing the statistical properties of the peaks present in the data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Fei; Wan, Xiangang; Phelan, Daniel
ZrCuSi 2-type CePd 1-xBi 2 crystals were obtained from excess Bi flux. Magnetic susceptibility measurements reveal that CePd 1-xBi 2 is a highly anisotropic antiferromagnet with transition temperature at 6 K, and a magnetic-field-induced metamagnetic transition at 5 T. An enhanced Sommerfeld coefficient of γ of 0.199 J-mol-Ce -1K -2 obtained from specific heat measurements suggests a moderate Kondo effect in CePd 1-xBi 2. In addition to the antiferromagnetic peak the resistivity curve shows a shoulder-like behavior which could be attributed to the presence of Kondo effect and crystal-electric-field effects in this compound. Magnetoresistance and Hall effect measurements suggest anmore » interplay between Kondo and crystal-electric-field effects which reconstructs the Fermi surface topology of CePd 1-xBi 2 around 75 K. Electronic structure calculations reveal the Pd vacancies are important to the magnetic structure and enhance the crystal-electric-field effects which quench the orbital moment of Ce at low temperatures.« less
Li, Jianying; Fok, Alex S L; Satterthwaite, Julian; Watts, David C
2009-05-01
The aim of this study was to measure the full-field polymerization shrinkage of dental composites using optical image correlation method. Bar specimens of cross-section 4mm x 2mm and length 10mm approximately were light cured with two irradiances, 450 mW/cm(2) and 180 mW/cm(2), respectively. The curing light was generated with Optilux 501 (Kerr) and the two different irradiances were achieved by adjusting the distance between the light tip and the specimen. A single-camera 2D measuring system was used to record the deformation of the composite specimen for 30 min at a frequency of 0.1 Hz. The specimen surface under observation was sprayed with paint to produce sufficient contrast to allow tracking of individual points on the surface. The curing light was applied to one end of the specimen for 40s during which the painted surface was fully covered. After curing, the cover was removed immediately so that deformation of the painted surface could be recorded by the camera. The images were then analyzed with specialist software and the volumetric shrinkage determined along the beam length. A typical shrinkage strain field obtained on a specimen surface was highly non-uniform, even at positions of constant distance from the irradiation surface, indicating possible heterogeneity in material composition and shrinkage behavior in the composite. The maximum volumetric shrinkage strain of approximately 1.5% occurred at a subsurface distance of about 1mm, instead of at the irradiation surface. After reaching its peak value, the shrinkage strain then gradually decreased with increasing distance along the beam length, before leveling off to a value of approximately 0.2% at a distance of 4-5mm. The maximum volumetric shrinkage obtained agreed well with the value of 1.6% reported by the manufacturer for the composite examined in this work. Using irradiance of 180 mW/cm(2) resulted in only slightly less polymerization shrinkage than using irradiance of 450 mW/cm(2). Compared to the other measurement methods, the image correlation method is capable of producing full-field information about the polymerization shrinkage behavior of dental composites.
Magnetoexcitons and Faraday rotation in single-walled carbon nanotubes and graphene nanoribbons
NASA Astrophysics Data System (ADS)
Have, Jonas; Pedersen, Thomas G.
2018-03-01
The magneto-optical response of single-walled carbon nanotubes (CNTs) and graphene nanoribbons (GNRs) is studied theoretically, including excitonic effects. Both diagonal and nondiagonal response functions are obtained and employed to compute Faraday rotation spectra. For single-walled CNTs in a parallel field, the results show field-dependent splitting of the exciton absorption peaks caused by brightening a dark exciton state. Similarly, for GNRs in a perpendicular magnetic field, we observe a field-dependent shift of the exciton peaks and the emergence of an absorption peak above the energy gap. Results show that excitonic effects play a significant role in the optical response of both materials, particularly for the off-diagonal tensor elements.
27 Al MAS NMR Studies of HBEA Zeolite at Low to High Magnetic Fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Jian Zhi; Wan, Chuan; Vjunov, Aleksei
27Al single pulse (SP) MAS NMR spectra of HBEA zeolites with high Si/Al ratios of 71 and 75 were obtained at three magnetic field strengths of 7.05, 11.75 and 19.97 T. High field 27Al MAS NMR spectra acquired at 19.97 T show significantly improved spectral resolution, resulting in at least two well-resolved tetrahedral-Al NMR peaks. Based on the results obtained from 27Al MAS and MQMAS NMR acquired at 19.97 T, four different quadrupole peaks are used to deconvolute the 27Al SP MAS spectra acquired at vari-ous fields by using the same set of quadrupole coupling constants, asymmetric parameters and relativemore » integrated peak intensities for the tetrahedral Al peaks. The line shapes of individual peaks change from typical quadrupole line shape at low field to essentially symmetrical line shapes at high field. We demonstrate that for fully hydrated HBEA zeolites the effect of second order quadrupole interaction can be ignored and quantitative spectral analysis can be performed by directly fitting the high field spectra using mixed Gaussian/Lorentzian line shapes. Also, the analytical steps described in our work allow direct assignment of spectral intensity to individual Al tetrahedral sites (T-sites) of zeolite HBEA. Finally, the proposed concept is suggested generally applicable to other zeo-lite framework types, thus, allowing a direct probing of Al distributions by NMR spectroscopic methods in zeolites with high confi-dence.« less
Detecting Fermi-level shifts by Auger electron spectroscopy in Si and GaAs
NASA Astrophysics Data System (ADS)
Debehets, J.; Homm, P.; Menghini, M.; Chambers, S. A.; Marchiori, C.; Heyns, M.; Locquet, J. P.; Seo, J. W.
2018-05-01
In this paper, changes in surface Fermi-level of Si and GaAs, caused by doping and cleaning, are investigated by Auger electron spectroscopy. Based on the Auger voltage contrast, we compared the Auger transition peak energy but with higher accuracy by using a more accurate analyzer and an improved peak position determination method. For silicon, a peak shift as large as 0.46 eV was detected when comparing a cleaned p-type and n-type wafer, which corresponds rather well with the theoretical difference in Fermi-levels. If no cleaning was applied, the peak position did not differ significantly for both wafer types, indicating Fermi-level pinning in the band gap. For GaAs, peak shifts were detected after cleaning with HF and (NH4)2S-solutions in an inert atmosphere (N2-gas). Although the (NH4)2S-cleaning in N2 is very efficient in removing the oxygen from the surface, the observed Ga- and As-peak shifts are smaller than those obtained after the HF-cleaning. It is shown that the magnitude of the shift is related to the surface composition. After Si-deposition on the (NH4)2S-cleaned surface, the Fermi-level shifts back to a similar position as observed for an as-received wafer, indicating that this combination is not successful in unpinning the Fermi-level of GaAs.
Brurok, Berit; Tjønna, Arnt Erik; Tørhaug, Tom; Askim, Torunn
2017-01-01
Background People with stroke have a low peak aerobic capacity and experience increased effort during performance of daily activities. The purpose of this study was to examine test-retest reliability of a portable ergospirometry system in people with stroke during performance of functional activities in a field-test. Secondary aims were to examine the proportion of oxygen consumed during the field-test in relation to the peak-test and to analyse the correlation between the oxygen uptake during the field-test and peak-test in order to support the validity of the field-test. Methods With simultaneous measurement of oxygen consumption, participants performed a standardized field-test consisting of five activities; walking over ground, stair walking, stepping over obstacles, walking slalom between cones and from a standing position lifting objects from one height to another. All activities were performed in self-selected speed. Prior to the field-test, a peak aerobic capacity test was performed. The field-test was repeated minimum 2 and maximum 14 days between the tests. ICC2,1 and Bland Altman tests (Limits of Agreement, LoA) were used to analyse test-retest reliability. Results In total 31 participants (39% women, mean (SD) age 54.5 (12.7) years and 21.1 (14.3) months’ post-stroke) were included. The ICC2,1 was ≥ 0.80 for absolute V̇O2, relative V̇O2, minute ventilation, CO2, respiratory exchange ratio, heart rate and Borgs rating of perceived exertion. ICC2,1 for total time to complete the field-test was 0.99. Mean difference in steady state V̇O2 during Test 1 and Test 2 was -0.40 (2.12) The LoAs were -3.75 and 4.51. Participants spent 60.7% of their V̇O2peak performing functional activities. Correlation between field-test and peak-test was 0.689, p = 0.001 for absolute and 0.733, p = 0.001 for relative V̇O2. Conclusions This study presents first evidence on reliability of oxygen uptake during performance of functional activities after stroke, showing very good test-retest reliability. The secondary analysis showed that the amount of energy spent during the field-test relative to the peak-test was high and the correlation between the two test was good, supporting the validity of this method. PMID:29065164
NASA Astrophysics Data System (ADS)
Li, Jiayun; Tong, Juxiu; Xia, Chuanan; Hu, Bill X.; Zhu, Hao; Yang, Rui; Wei, Wenshuo
2017-06-01
It has been widely recognized that surface runoff from agricultural field is an important non-point pollution source, which however, the chemical transfer amount in the process is very difficult to be quantified in field since some variables and natural factors are hard to control, such as rainfall intensity, temperature, wind speeds and soil spatial heterogeneity, which may significantly affect the field experimental results. Therefore, a physically based nitrogen transport model was developed and tested with the so called semi-field experiments (i.e., artificial rainfall was used instead of natural rainfall, but other conditions were natural) in this paper. Our model integrated the raindrop driven process and diffusion effect with the simplified nitrogen chain reactions. In this model, chemicals in the soil surface layer, or the 'exchange layer', were transformed into the surface runoff layer due to raindrop impact. The raindrops also have a significant role on the diffusion process between the exchange layer and the underlying soil. The established mathematical model was solved numerically through the modified Hydrus-1d source code, and the model simulations agreed well with the experimental data. The modeling results indicate that the depth of the exchange layer and raindrop induced water transfer rate are two important parameters for the simulation results. Variation of the water transfer rate, er, can strongly influence the peak values of the NO-3-N and NH+4-N concentration breakthrough curves. The concentration of NO-3-N is more sensitive to the exchange layer depth, de, than NH+4-N. In general, the developed model well describes the nitrogen loss into surface runoff in a raindrop driven process. Since the raindrop splash erosion process may aggravate the loss of chemical fertilizer, choosing an appropriate fertilization time and application method is very important to prevent the pollution.
Röschmann, P
1991-10-01
The threshold conditions for an auditory perception of pulsed radiofrequency (RF) energy absorption in the human head have been studied on six volunteers with RF coils for magnetic resonance (MR) imaging. For homogeneous RF exposure with MR head coils in the 2.4- to 170-MHz range and pulse widths 3 microseconds less than or equal to Tp less than 100 microseconds, the auditory thresholds were observed at 16 +/- 4 mJ pulse energy. Localized RF exposure with optimized surface coils positioned flush with the ear lowers the auditory threshold to only 3 +/- 0.6 mJ. The hearing threshold of RF pulses with Tp greater than 200 microseconds occurs at more or less constant peak power levels of typically 150 +/- 50 W for head coils and as low as 20 W for surface coils. The results from this study confirm theoretical predictions from a thermoelastic expansion model and compare well with reported thresholds from near field antenna measurements at 425 to 3000 MHz. Details of the threshold dependence on RF pulse length reveal primary sites of RF to acoustic energy conversion at the mastoid and temporal bone region and the outer layer of the brain from where thermoelastically generated pressure transients excite audible pressure waves at the resonance modes of the skull around 1.7 kHz and of the brain around 11 kHz. If not masked by usually dominating noise from switched gradients, the conditions for hearing RF pulses, as applied to head coils in MR studies with flip angle alpha at main field B0, is given by Tp/ms less than or equal to 0.4 (alpha/pi)B0/[T]. At peak power levels up to 15 kW presently available in clinical MR systems, there is no evidence known for detrimental health effects arising from the RF auditory phenomenon which is a secondary cause associated with primary RF to thermal energy conversion in body tissues. To avoid the RF-evoked sound pressure levels in the head rising above the discomfort threshold at 110 dB SPL, an upper limit of 30 kW applied peak pulse power is suggested for head coils and 6 kW for surface coils.
NASA Astrophysics Data System (ADS)
Sidle, R. C.
2013-12-01
Hydrologic, pedologic, and geomorphic processes are strongly interrelated and affected by scale. These interactions exert important controls on runoff generation, preferential flow, contaminant transport, surface erosion, and mass wasting. Measurement of hydraulic conductivity (K) and infiltration capacity at small scales generally underestimates these values for application at larger field, hillslope, or catchment scales. Both vertical and slope-parallel saturated flow and related contaminant transport are often influenced by interconnected networks of preferential flow paths, which are not captured in K measurements derived from soil cores. Using such K values in models may underestimate water and contaminant fluxes and runoff peaks. As shown in small-scale runoff plot studies, infiltration rates are typically lower than integrated infiltration across a hillslope or in headwater catchments. The resultant greater infiltration-excess overland flow in small plots compared to larger landscapes is attributed to the lack of preferential flow continuity; plot border effects; greater homogeneity of rainfall inputs, topography and soil physical properties; and magnified effects of hydrophobicity in small plots. At the hillslope scale, isolated areas with high infiltration capacity can greatly reduce surface runoff and surface erosion at the hillslope scale. These hydropedologic and hydrogeomorphic processes are also relevant to both occurrence and timing of landslides. The focus of many landslide studies has typically been either on small-scale vadose zone process and how these affect soil mechanical properties or on larger scale, more descriptive geomorphic studies. One of the issues in translating laboratory-based investigations on geotechnical behavior of soils to field scales where landslides occur is the characterization of large-scale hydrological processes and flow paths that occur in heterogeneous and anisotropic porous media. These processes are not only affected by the spatial distribution of soil physical properties and bioturbations, but also by geomorphic attributes. Interactions among preferential flow paths can induce rapid pore water pressure response within soil mantles and trigger landslides during storm peaks. Alternatively, in poorly developed and unstructured soils, infiltration occurs mainly through the soil matrix and a lag time exists between the rainfall peak and development of pore water pressures at depth. Deep, slow-moving mass failures are also strongly controlled by secondary porosity within the regolith with the timing of activation linked to recharge dynamics. As such, understanding both small and larger scale processes is needed to estimate geomorphic impacts, as well as streamflow generation and contaminant migration.
Strzala, Marek; Stanula, Arkadiusz; Głab, Grzegorz; Glodzik, Jacek; Ostrowski, Andrzej; Kaca, Marcin; Nosiadek, Leszek
2015-01-01
The aim of this study was to investigate somatic properties and physiological capacity, and analyze kinematic parameters in the 200 m breaststroke swimming race. Twenty-seven male swimmers participated in the study. They were 15.7±1.98 years old. Their average height was 1.80 ± 0.02 m and lean body mass (LBM) was 62.45 ± 8.29 kg. Physiological exercise capacity was measured in two separate 90 sec. all-out tests, one for the arms and second for legs. During the tests total work of arm cranking (TWAR) and cycling (TWLG) as well as peak of VO2 for arm (VO2peakAR) and leg (VO2peakLG) were measured. The underwater swimmers body movements were recorded during the all-out swimming 200m breaststroke speed test using an underwater camera installed on a portable trolley. The swimming kinematic parameters and propulsive or non-propulsive movement phases of the arms and legs as well as average speed (V200), surface speed (V200surface) and swimming speed in turn zones (V200turns) were extracted. V200surface was significantly related to the percentage of leg propulsion and was shown to have large effect on VO2peakLG in the Cohen analysis. V200turns depended significantly on the indicators of physiological performance and body structure: TWAR, VO2peak LG and LBM, LBM, which in turn strongly determined the measured results of TWAR, TWLG, VO2peakAR and VO2peakLG. The V200turns and V200surface were strongly associated with V200, 0.92, p < 0.001 and 0.91, p < 0.001 respectively. In each lap of the 200m swimming there was an increased percentage of propulsion of limb movement observed simultaneously with a reduction in the gliding phase in the breaststroke cycles. Key points This study investigated the influence of the selected indicators of somatic properties and physiological capacity as well kinematic and coordination parameters on breaststroke swimming. In this observations the body’s functional capacity have an important impact on achieving good breaststroke swimming results, the V200 was moderately associated on VO2peakLG, moreover, separate V200turns depended with VO2peakLG and on LBM and TWAR. The speed of surface breaststroke swimming - V200surface similarly as V200turns had a very strong influence on the end result of V200 , 0.91, p<0.001 and 0.92, p<0.001 respectively. The ability to swim fast on the surface (V200surface) was positively and significantly associated with the percentage time of propulsion generation -LP in the breaststroke cycle. PMID:25729298
NASA Astrophysics Data System (ADS)
Kim, Vitaly P.; Hegai, Valery V.; Liu, Jann Yenq; Ryu, Kwangsun; Chung, Jong-Kyun
2017-12-01
The electric coupling between the lithosphere and the ionosphere is examined. The electric field is considered as a time- varying irregular vertical Coulomb field presumably produced on the Earth’s surface before an earthquake within its epicentral zone by some micro-processes in the lithosphere. It is shown that the Fourier component of this electric field with a frequency of 500 Hz and a horizontal scale-size of 100 km produces in the nighttime ionosphere of high and middle latitudes a transverse electric field with a magnitude of 20 mV/m if the peak value of the amplitude of this Fourier component is just 30 V/m. The time-varying vertical Coulomb field with a frequency of 500 Hz penetrates from the ground into the ionosphere by a factor of 7×105 more efficient than a time independent vertical electrostatic field of the same scale size. The transverse electric field with amplitude of 20 mV/m will cause perturbations in the nighttime F region electron density through heating the F region plasma resulting in a reduction of the downward plasma flux from the protonosphere and an excitation of acoustic gravity waves.
Enhanced optical transmission through double-overlapped annular aperture array
NASA Astrophysics Data System (ADS)
Wang, Chaonan; Bai, Ming; Jin, Ming
2012-07-01
In this paper, transmission properties through an array of concentric or eccentric double-overlapped annular apertures (CDOAAs or EDOAAs) are investigated. It is demonstrated that local surface plasmon-assisted TE11-like modes in CDOAAs exhibit a blue shift with the increasing overlapped factor. For EDOAAs with asymmetric annular apertures in both directions, a new resonant peak can be excited at a larger wavelength using linearly polarised light, which corresponds to extreme field localisation around the narrowest gap attributed to the gap plasmons' excitation and is quite sensitive to the offset of the eccentric centre island. These properties provide a possible method to achieve multiplexed and tunable wavelength selection using different local surface plasmon resonances and are of significant potential applicable value to the designing of tunable optical devices.
Wang, Hua; Zeng, Deping; Chen, Ziguang; Yang, Zengtao
2017-04-12
Based on the acousto-optic interaction, we propose a laser deflection method for rapidly, non-invasively and quantitatively measuring the peak positive pressure of HIFU fields. In the characterization of HIFU fields, the effect of nonlinear propagation is considered. The relation between the laser deflection length and the peak positive pressure is derived. Then the laser deflection method is assessed by comparing it with the hydrophone method. The experimental results show that the peak positive pressure measured by laser deflection method is little higher than that obtained by the hydrophone, confirming that they are in reasonable agreement. Considering that the peak pressure measured by hydrophones is always underestimated, the laser deflection method is assumed to be more accurate than the hydrophone method due to the absence of the errors in hydrophone spatial-averaging measurement and the influence of waveform distortion on hydrophone corrections. Moreover, noting that the Lorentz formula still remains applicable to high-pressure environments, the laser deflection method exhibits a great potential for measuring HIFU field under high-pressure amplitude. Additionally, the laser deflection method provides a rapid way for measuring the peak positive pressure, without the scan time, which is required by the hydrophones.
Gear Durability Shown To Be Improved by Superfinishing
NASA Technical Reports Server (NTRS)
Krautz, Timothy L.
2000-01-01
Gears, bearings, and similar mechanical elements transmit loads through contacting surfaces. At the NASA Glenn Research Center at Lewis Field, we postulated that the fatigue lives of gears could be improved by providing smoother tooth surfaces. A superfinishing process was applied to a set of conventionally ground, aerospace-quality gears. This process produced a highly polished, mirrorlike surface as shown in the preceding photograph. The surface fatigue lives of both superfinished and conventionally ground gears were measured by experiments. The superfinished gears survived about four times longer than the conventionally ground gears. These superfinished gears were produced from conventionally ground, aerospace-quality gears whose geometry had been inspected. The gears were superfinished by placing them in a vibrating bath consisting of water, detergent, abrasive powder, and small pieces of zinc. Upon removal from the bath, the surfaces were highly polished, as depicted in the preceding photograph. The gears were again inspected, and dimensional measurements made before and after the superfinishing operation were compared. Superfinishing removed the peaks of the grinding marks and left a much smoother surface. Profile and spacing checks proved that the overall gear tooth shape was not affected in any harmful way. Superfinishing uniformly removed approximately 2.5 microns from each surface.
Tang, Zhongfeng; Bao, Junjie; Du, Qingxia; Shao, Yu; Gao, Minghao; Zou, Bangkun; Chen, Chunhua
2016-12-21
A complete and ordered layered structure on the surface of LiNi 0.815 Co 0.15 Al 0.035 O 2 (NCA) has been achieved via a facile surface-oxidation method with Na 2 S 2 O 8 . The field-emission transmission electron microscopy images clearly show that preoxidation of the hydroxide precursor can eliminate the crystal defects and convert Ni(OH) 2 into layered β-NiOOH, which leads to a highly ordered crystalline NCA, with its (006) planes perpendicular to the surface in the sintering process. X-ray photoelectron spectroscopy and Raman shift results demonstrate that the contents of Ni 2+ and Co 2+ ions are reduced with preoxidization on the surface of the hydroxide precursor. The level of Li + /Ni 2+ disordering in the modified NCA determined by the peak intensity ratio I (003) /I (104) in X-ray diffraction patterns decreases. Thanks to the complete and ordered layered structure on the surface of secondary particles, lithium ions can easily intercalate/extract in the discharging-charging process, leading to greatly improved electrochemical properties.
A Coupled 2 × 2D Babcock-Leighton Solar Dynamo Model. II. Reference Dynamo Solutions
NASA Astrophysics Data System (ADS)
Lemerle, Alexandre; Charbonneau, Paul
2017-01-01
In this paper we complete the presentation of a new hybrid 2 × 2D flux transport dynamo (FTD) model of the solar cycle based on the Babcock-Leighton mechanism of poloidal magnetic field regeneration via the surface decay of bipolar magnetic regions (BMRs). This hybrid model is constructed by allowing the surface flux transport (SFT) simulation described in Lemerle et al. to provide the poloidal source term to an axisymmetric FTD simulation defined in a meridional plane, which in turn generates the BMRs required by the SFT. A key aspect of this coupling is the definition of an emergence function describing the probability of BMR emergence as a function of the spatial distribution of the internal axisymmetric magnetic field. We use a genetic algorithm to calibrate this function, together with other model parameters, against observed cycle 21 emergence data. We present a reference dynamo solution reproducing many solar cycle characteristics, including good hemispheric coupling, phase relationship between the surface dipole and the BMR-generating internal field, and correlation between dipole strength at cycle maximum and peak amplitude of the next cycle. The saturation of the cycle amplitude takes place through the quenching of the BMR tilt as a function of the internal field. The observed statistical scatter about the mean BMR tilt, built into the model, acts as a source of stochasticity which dominates amplitude fluctuations. The model thus can produce Dalton-like epochs of strongly suppressed cycle amplitude lasting a few cycles and can even shut off entirely following an unfavorable sequence of emergence events.
Implementing and testing a panel-based method for modeling acoustic scattering from CFD input
NASA Astrophysics Data System (ADS)
Swift, S. Hales
Exposure of sailors to high levels of noise in the aircraft carrier deck environment is a problem that has serious human and economic consequences. A variety of approaches to quieting exhausting jets from high-performance aircraft are undergoing development. However, testing of noise abatement solutions at full-scale may be prohibitively costly when many possible nozzle treatments are under consideration. A relatively efficient and accurate means of predicting the noise levels resulting from engine-quieting technologies at personnel locations is needed. This is complicated by the need to model both the direct and the scattered sound field in order to determine the resultant spectrum and levels. While the direct sound field may be obtained using CFD plus surface integral methods such as the Ffowcs-Williams Hawkings method, the scattered sound field is complicated by its dependence on the geometry of the scattering surface--the aircraft carrier deck, aircraft control surfaces and other nearby structures. In this work, a time-domain boundary element method, or TD-BEM, (sometimes referred to in terms of source panels) is proposed and developed that takes advantage of and offers beneficial effects for the substantial planar components of the aircraft carrier deck environment and uses pressure gradients as its input. This method is applied to and compared with analytical results for planar surfaces, corners and spherical surfaces using an analytic point source as input. The method can also accept input from CFD data on an acoustic data surface by using the G1A pressure gradient formulation to obtain pressure gradients on the surface from the flow variables contained on the acoustic data surface. The method is also applied to a planar scattering surface characteristic of an aircraft carrier flight deck with an acoustic data surface from a supersonic jet large eddy simulation, or LES, as input to the scattering model. In this way, the process for modeling the complete sound field (assuming the availability of an acoustic data surface from a time-realized numerical simulation of the jet flow field) is outlined for a realistic group of source location, scattering surface location and observer locations. The method was able to successfully model planar cases, corners and spheres with a level of error that is low enough for some engineering purposes. Significant benefits were realized for fully planar surfaces including high parallelizability and avoidance of interaction between portions of the paneled boundary. When the jet large eddy simulation case was considered the method was able to capture a substantial portion of the spectrum including the peak frequency region and a majority of the spectral energy with good fidelity.
Niwa, Masahiro; Hiraishi, Yasuhiro
2014-01-30
Tablets are the most common form of solid oral dosage produced by pharmaceutical industries. There are several challenges to successful and consistent tablet manufacturing. One well-known quality issue is visible surface defects, which generally occur due to insufficient physical strength, causing breakage or abrasion during processing, packaging, or shipping. Techniques that allow quantitative evaluation of surface strength and the risk of surface defect would greatly aid in quality control. Here terahertz pulsed imaging (TPI) was employed to evaluate the surface properties of core tablets with visible surface defects of varying severity after film coating. Other analytical methods, such as tensile strength measurements, friability testing, and scanning electron microscopy (SEM), were used to validate TPI results. Tensile strength and friability provided no information on visible surface defect risk, whereas the TPI-derived unique parameter terahertz electric field peak strength (TEFPS) provided spatial distribution of surface density/roughness information on core tablets, which helped in estimating tablet abrasion risk prior to film coating and predicting the location of the defects. TPI also revealed the relationship between surface strength and blending condition and is a nondestructive, quantitative approach to aid formulation development and quality control that can reduce visible surface defect risk in tablets. Copyright © 2013 Elsevier B.V. All rights reserved.
Self-calibrated active pyrometer for furnace temperature measurements
Woskov, Paul P.; Cohn, Daniel R.; Titus, Charles H.; Surma, Jeffrey E.
1998-01-01
Pyrometer with a probe beam superimposed on its field-of-view for furnace temperature measurements. The pyrometer includes a heterodyne millimeter/sub-millimeter-wave or microwave receiver including a millimeter/sub-millimeter-wave or microwave source for probing. The receiver is adapted to receive radiation from a surface whose temperature is to be measured. The radiation includes a surface emission portion and a surface reflection portion which includes the probe beam energy reflected from the surface. The surface emission portion is related to the surface temperature and the surface reflection portion is related to the emissivity of the surface. The simultaneous measurement of surface emissivity serves as a real time calibration of the temperature measurement. In an alternative embodiment, a translatable base plate and a visible laser beam allow slow mapping out of interference patterns and obtaining peak values therefor. The invention also includes a waveguide having a replaceable end portion, an insulating refractory sleeve and/or a source of inert gas flow. The pyrometer may be used in conjunction with a waveguide to form a system for temperature measurements in a furnace. The system may employ a chopper or alternatively, be constructed without a chopper. The system may also include an auxiliary reflector for surface emissivity measurements.
NASA Astrophysics Data System (ADS)
Virtanen, Ilpo; Mursula, Kalevi
2015-04-01
Several recent studies have shown that the solar and heliospheric magnetic fields are north-south asymmetric. The southward shift of the Heliospheric current sheet (HCS) (the so-called bashful ballerina phenomenon) is a persistent pattern, which occurs typically for about three years during the late declining phase of solar cycle. We study here the hemispherical asymmetry in the photospheric and coronal magnetic fields using Wilcox Solar Observatory (WSO), Mount Wilson, Kitt Peak, Solis, SOHO/MDI and SDO/HMI measurements of the photospheric magnetic field since the 1970s and the potential field source surface (PFSS) model.Multipole analysis of the photospheric magnetic field has shown that the bashful ballerina phenomenon is a consequence of g20 quadrupole term, which is oppositely signed to the dipole moment. We find that, at least during the four recent solar cycles, the g20 reflects the larger magnitude of the southern polar field during a few years in the declining phase of the cycle. Although the overall magnetic activity during the full solar cycle is not very different in the two hemispheres, the temporal distribution of activity is different, contributing to the asymmetry. The used data sets are in general in a good agreement with each other, but there are some significant deviations, especially in WSO data. Also, the data from Kitt Peak 512 channel magnetograph is known to suffer from zero level errors.We also note that the lowest harmonic coefficients do not scale with the overall magnitude in photospheric synoptic magnetic maps. Scaling factors based on histogram techniques can be as large as 10 (from Wilcox to HMI), but the corresponding difference in dipole strength is typically less than two. This is because the polar field has a dominant contribution to the dipole and quadrupole components. This should be noted, e.g., when using synoptic maps as input for coronal models.
Jarlbring, Mathias; Sandström, Dan E; Antzutkin, Oleg N; Forsling, Willis
2006-05-09
The chemically active phosphorus surface sites defined as PO(x), PO(x)H, and PO(x)H2, where x = 1, 2, or 3, and the bulk phosphorus groups of PO4(3-) at synthetic carbonate-free fluorapatite (Ca5(PO4)3F) have been studied by means of single-pulse 1H,31P, and 31P CP MAS NMR. The changes in composition and relative amounts of each surface species are evaluated as a function of pH. By combining spectra from single-pulse 1H and 31P MAS NMR and data from 31P CP MAS NMR experiments at varying contact times in the range 0.2-3.0 ms, it has been possible to distinguish between resonance lines in the NMR spectra originating from active surface sites and bulk phosphorus groups and also to assign the peaks in the NMR spectra to the specific phosphorus species. In the 31P CP MAS NMR experiments, the spinning frequency was set to 4.2 kHz; in the single-pulse 1H MAS NMR experiments, the spinning frequency was 10 kHz. The 31P CP MAS NMR spectrum of fluorapatite at pH 5.9 showed one dominating resonance line at 2.9 ppm assigned to originate from PO4(3-) groups and two weaker shoulder peaks at 5.4 and 0.8 ppm which were assigned to the unprotonated PO(x) (PO, PO2-, and PO3(2-)) and protonated PO(x)H (PO2H and PO3H-) surface sites. At pH 12.7, the intensity of the peak representing unprotonated PO(x) surface sites has increased 1.7% relative to the bulk peak, while the intensity of the peaks of the protonated species PO(x)H have decreased 1.4% relative to the bulk peak. At pH 3.5, a resonance peak at -4.5 ppm has appeared in the 31P CP MAS NMR spectrum assigned to the surface species PO(x)H2 (PO3H2). The results from the 1H MAS and 31P CP MAS NMR measurements indicated that H+, OH-, and physisorbed H2O at the surface were released during the drying process at 200 degrees C.
Purification of boron nitride nanotubes via polymer wrapping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Jin-Hyuk; Kim, Jaewoo; WCI Quantum Beam based Radiation Research Center, Korea Atomic Energy Research Institute, 1045 Daedukdaero, Daejeon 305-353
2013-03-15
Highlights: ► Surface modification of boron nitride nanotubes using polymeric materials. ► Surface-modified BNNT was purified with a simple dilution-centrifugation step. ► Surface-modified BNNT can be directly used for polymer composite fabrication ► Degree of purification was analyzed by Raman spectroscopy. - Abstract: Boron nitride nanotubes (BNNT) synthesized by a ball milling-annealing were surface-modified using three different types of polymeric materials. Those materials were chosen depending on future applications especially in polymer nanocomposite fabrications. We found that the surface-modified BNNT can be purified with a simple dilution-centrifugation step, which would be suitable for large-scale purification. Degree of purification was monitoredmore » by means of the center peak position and FWHM of E{sub 2g} mode of BNNT in Raman spectra. As the purification of BNNT develops, the peak position was up-shifted while FWHM of the peak was narrowed.« less
A Nine Kilometer Impact Crater and Its Central Peak
2017-02-08
found across the Martian surface. Each impact crater on Mars possesses a unique origin and composition, which makes the HiRISE team very interested in sampling as many of them as possible! Like the impact of a droplet into fluid, once an impact has occurred on the surface of Mars, an ejecta curtain forms immediately after, contributing to the raised rim visible at the top of the crater's walls. After the formation of the initial crater, if it is large enough, then a central peak appears as the surface rebounds. These central peaks can expose rocks that were previously deeply buried beneath the Martian surface. The blue and red colors in this enhanced-contrast image reflect the effects of post-impact sedimentation and weathering over time. http://photojournal.jpl.nasa.gov/catalog/PIA08395
Compact, maintainable 80-KeV neutral beam module
Fink, Joel H.; Molvik, Arthur W.
1980-01-01
A compact, maintainable 80-keV arc chamber, extractor module for a neutral beam system immersed in a vacuum of <10.sup.-2 Torr, incorporating a nested 60-keV gradient shield located midway between the high voltage ion source and surrounding grounded frame. The shield reduces breakdown or arcing path length without increasing the voltage gradient, tends to keep electric fields normal to conducting surfaces rather than skewed and reduces the peak electric field around irregularities on the 80-keV electrodes. The arc chamber or ion source is mounted separately from the extractor or ion accelerator to reduce misalignment of the accelerator and to permit separate maintenance to be performed on these systems. The separate mounting of the ion source provides for maintaining same without removing the ion accelerator.
Smoothing and roughening of slip surfaces in direct shear experiments
NASA Astrophysics Data System (ADS)
Sagy, Amir; Badt, Nir; Hatzor, Yossef H.
2015-04-01
Faults in the upper crust contain discrete slip surfaces which have absorbed a significant part of the shear displacement along them. Field measurements demonstrate that these surfaces are rough at all measurable scales and indicate that surfaces of relatively large-slip faults are statistically smoother than those of small-slip faults. However, post faulting and surface erosion process that might affect the geometry of outcrops cannot be discounted in such measurements. Here we present experimental results for the evolution of shear surface topography as function of slip distance and normal stress in direct shear experiments. A single prismatic fine grain limestone block is first fractured in tension mode using the four-point bending test methodology and then the fracture surface topography is scanned using a laser profilometer. We then shear the obtained tensile fracture surfaces in direct shear, ensuring the original fracture surfaces are in a perfectly matching configuration at the beginning of the shear test. First, shearing is conducted to distances varying from 5 to 15 mm under constant normal stress of 2MPa and a constant displacement rate of 0.05 mm/s using two closed-loop servo controlled hydraulic pistons, supplying normal and shear forces (Davidesko et al., 2014). In the tested configuration peak shear stress is typically attained after a shear displacement of about 2-3 mm, beyond which lower shear stress is required to continue shearing at the preset displacement rate of 0.05 mm/s as is typical for initially rough joints. Following some initial compression the interface begins to dilate and continues to do so until the end of the test. The sheared tensile fracture surface is then scanned again and the geometrical evolution, in term of RMS roughness and power spectral density (PSD) is analyzed. We show that shearing smooth the surface along all our measurements scales. The roughness ratio, measured by initial PSD / final PSD for each wavelength, increases as a function of slip amount. The roughness measured after slip can be fitted by a power-law similar to that of the initial tensile surface. In the next series of experiments a similar procedure is applied when the roughness evolution is measured as a function of increasing normal stress for a fixed displacement amount of 10 mm. While samples sheared under a constant normal stress of 5 MPa generated surface smoothing, shearing under normal stress of 7.5 MPa to 15 MPa exhibited surface roughening at the measured range of scales. We find that roughening is correlated with the attained peak shear stress values, stress drop (peak shear stress minus residual shear stress) and with wear accumulation, a novel measurement procedure of which is developed here. Analysis of the sheared samples shows that roughening is generated by sets of dense fractures that significantly damaged the sample in the immediate proximity to large asperities. This roughening is related to penetrative damage during transient wear in rough surfaces.
Activity of the 2013 Geminid meteoroid stream at the Moon
NASA Astrophysics Data System (ADS)
Szalay, Jamey R.; Pokorný, Petr; Jenniskens, Peter; Horányi, Mihály
2018-03-01
The Lunar Dust Experiment (LDEX) onboard the Lunar Atmosphere and Dust Environment Explorer mission orbited the Moon from 2013 October to 2014 April and detected impact ejecta generated by the continual bombardment of meteoroids to the lunar surface. While the Moon transited the Geminid meteoroid stream, LDEX observed a large enhancement in the lunar impact ejecta cloud, particularly above the portion of lunar surface normal to the Geminids radiant. Here, we present the LDEX measurements during the Geminids, using the surface density of impact ejecta at the Moon as a proxy for meteoroid activity. We find two peaks during the Geminids, a smaller peak at solar longitude λ⊙ = 261.3° ± 0.12° followed by a larger peak at λ⊙ = 262.2° ± 0.12°, with a surface density ratio of 2.6 between the two. Both peaks coincide with radar observations of shallower mass indices than most of the Geminids, suggesting an enhancement of larger particles during the two peaks. The total duration of the 2013 Geminid meteoroid shower at the Moon measured by LDEX is Δλ⊙ = 1.7° for activity >10 per cent of the peak value, corresponding to a width of 1.9 × 106 km normal to the Geminids velocity vector. The timing of the main observed peak matches ground-based visual observations of meteors with magnitude of -1 to -3 and suggests LDEX is detecting ejecta from primary impactors with radii ˜2 mm to 2 cm during this time.
NASA Astrophysics Data System (ADS)
Crosby, B. T.; Rodgers, D. W.; Lauer, I. H.
2017-12-01
The 1983 Borah Peak, Idaho, earthquake (M 7.0) produced both local ground surface rupture and notable far-field geodetic elevation changes that inspired a suite of investigations into coseismic flexural response. Shortly after the earthquake, Stein and Barrientos revisited a 50 km leveling line that runs roughly perpendicular to and spanning the Lost River normal fault. They found 1 meter of surface subsidence adjacent to the fault on the hanging wall that decays to no detectable change over 25 km distance from the fault. On the footwall, 20 cm of surface uplift was observed adjacent to the fault, decaying to zero change over 17 km. Though the changes in elevation are calculated as a difference between the first leveling in 1933 and the post-event leveling in 1984, they treat this change as the coseismic period, assuming little change between 1933 and 1983. A subsequent survey in 1985 revealed no significant change, suggesting that postseismic relaxation was complete. We evaluate the assumption that no detectable interseismic slip occurred between 1933 and the Borah Peak event by resurveying the line and differencing elevations between 2017 and 1985. If interseismic slip is insignificant, then there should be no detectable change over these 32 years. Using RTK GNSS with a 3D error ellipse of 0.9 cm, we resurveyed all leveling monuments in June, 2017. Significant deformation was observed. Between 1985 and 2017, 28 cm of displacement occurred across the fault. The hanging wall, adjacent to the fault, subsided 8 cm while the footwall rose 20 cm. Subsidence on the hanging wall increases slightly with distance away from the fault, reaching a maximum of 10 cm at a distance of 4 km from the fault and decaying to zero by 17 km. On the footwall surface uplift increases from 20 cm at the fault to 42 cm by 6.5 km before decaying. Clearly interseismic deformation has occurred over the last 32 years, including both discrete slip at the fault and distributed subsidence or surface uplift with distance away from the fault. A difference between the 2017 and 1933 data reveal that the opposing patterns of deformation pre and post event at on the footwall largely balance each other out, creating block-like surface uplift. These vertical changes are complemented by observations from continuous geodetic GNSS that corroborate the interseismic extension.
NASA Astrophysics Data System (ADS)
de Beurs, K.; Henebry, G. M.; Owsley, B.; Sokolik, I. N.
2016-12-01
Land surface phenology metrics allow for the summarization of long image time series into a set of annual observations that describe the vegetated growing season. These metrics have been shown to respond to both large scale climatic and anthropogenic impacts. In this study we assemble a time series (2001 - 2014) of Moderate Resolution Imaging Spectroradiometer (MODIS) Nadir BRDF-Adjusted Reflectance data and land surface temperature data at 0.05º spatial resolution. We then derive land surface phenology metrics focusing on the peak of the growing season by fitting quadratic regression models using NDVI and Accumulated Growing Degree-Days (AGDD) derived from land surface temperature. We link the annual information on the peak timing, the thermal time to peak and the maximum of the growing season with five of the most important large scale climate oscillations: NAO, AO, PDO, PNA and ENSO. We demonstrate several significant correlations between the climate oscillations and the land surface phenology peak metrics for a range of different bioclimatic regions in both dryland Central Asia and the northern Polar Regions. We will then link the correlation results with trends derived by the seasonal Mann-Kendall trend detection method applied to several satellite derived vegetation and albedo datasets.
NASA Astrophysics Data System (ADS)
Zhuo, Yan-Qun; Ma, Jin; Guo, Yan-Shuang; Ji, Yun-Tao
In stick-slip experiments modeling the occurrence of earthquakes, the meta-instability stage (MIS) is the process that occurs between the peak differential stress and the onset of sudden stress drop. The MIS is the final stage before a fault becomes unstable. Thus, identification of the MIS can help to assess the proximity of the fault to the earthquake critical time. A series of stick-slip experiments on a simulated strike-slip fault were conducted using a biaxial servo-controlled press machine. Digital images of the sample surface were obtained via a high speed camera and processed using a digital image correlation method for analysis of the fault displacement field. Two parameters, A and S, are defined based on fault displacement. A, the normalized length of local pre-slip areas identified by the strike-slip component of fault displacement, is the ratio of the total length of the local pre-slip areas to the length of the fault within the observed areas and quantifies the growth of local unstable areas along the fault. S, the normalized entropy of fault displacement directions, is derived from Shannon entropy and quantifies the disorder of fault displacement directions along the fault. Based on the fault displacement field of three stick-slip events under different loading rates, the experimental results show the following: (1) Both A and S can be expressed as power functions of the normalized time during the non-linearity stage and the MIS. The peak curvatures of A and S represent the onsets of the distinct increase of A and the distinct reduction of S, respectively. (2) During each stick-slip event, the fault evolves into the MIS soon after the curvatures of both A and S reach their peak values, which indicates that the MIS is a synergetic process from independent to cooperative behavior among various parts of a fault and can be approximately identified via the peak curvatures of A and S. A possible application of these experimental results to field conditions is provided. However, further validation is required via additional experiments and exercises.
NASA Astrophysics Data System (ADS)
Van der Donck, M.; Zarenia, M.; Peeters, F. M.
2018-02-01
The dependence of the excitonic photoluminescence (PL) spectrum of monolayer transition metal dichalcogenides (TMDs) on the tilt angle of an applied magnetic field is studied. Starting from a four-band Hamiltonian we construct a theory which quantitatively reproduces the available experimental PL spectra for perpendicular and in-plane magnetic fields. In the presence of a tilted magnetic field, we demonstrate that the dark exciton PL peaks brighten due to the in-plane component of the magnetic field and split for light with different circular polarizations as a consequence of the perpendicular component of the magnetic field. This splitting is more than twice as large as the splitting of the bright exciton peaks in tungsten-based TMDs. We propose an experimental setup that will allow for accessing the predicted splitting of the dark exciton peaks in the PL spectrum.
Flood of April 2007 in Southern Maine
Lombard, Pamela J.
2009-01-01
Up to 8.5 inches of rain fell from April 15 through 18, 2007, in southern Maine. The rain - in combination with up to an inch of water from snowmelt - resulted in extensive flooding. York County, Maine, was declared a presidential disaster area following the event. The U.S. Geological Survey, in cooperation with the Federal Emergency Management Agency (FEMA), determined peak streamflows and recurrence intervals at 24 locations and peak water-surface elevations at 63 sites following the April 2007 flood. Peak streamflows were determined with data from continuous-record streamflow-gaging stations where available and through hydraulic models where station data were not available. The flood resulted in peak streamflows with recurrence intervals greater than 100 years throughout most of York County, and recurrence intervals up to 50 years in Cumberland County. Peak flows for selected recurrence intervals varied from less than 10 percent to greater than 100 percent different than those in the current FEMA flood-insurance studies due to additional data or newer regression equations. Water-surface elevations observed during the April 2007 flood were bracketed by elevation profiles in FEMA flood-insurance studies with the same recurrence intervals as the recurrence intervals bracketing the observed peak streamflows at seven sites, with higher elevation-profile recurrence intervals than streamflow recurrence intervals at six sites, and with lower elevation-profile recurrence intervals than streamflow recurrence intervals at one site. The April 2007 flood resulted in higher peak flows and water-surface elevations than the flood of May 2006 in coastal locations in York County, and lower peak flows and water-surface elevations than the May 2006 flood further from the coast and in Cumberland County. The Mousam River watershed with over 13 dams and reservoirs was severely impacted by both events. Analyses indicate that the April 2007 peak streamflows in the Mousam River watershed occurred despite the fact that up to 287 million ft3 of runoff was stored by 13 dams and reservoirs.
Dal Forno, Massimo; Dolgashev, Valery; Bowden, Gordon; ...
2016-11-30
This study explores the physics of vacuum rf breakdowns in subterahertz high-gradient traveling-wave accelerating structures. We present the experimental results of rf tests of 200 GHz metallic accelerating structures, made of copper and copper-silver. These experiments were carried out at the Facility for Advanced Accelerator Experimental Tests (FACET) at the SLAC National Accelerator Laboratory. The rf fields were excited by the FACET ultrarelativistic electron beam. The traveling-wave structure is an open geometry, 10 cm long, composed of two halves separated by a gap. The rf frequency of the fundamental accelerating mode depends on the gap size and can be changedmore » from 160 to 235 GHz. When the beam travels off axis, a deflecting field is induced in addition to the longitudinal field. We measure the deflecting forces by observing the displacement of the electron bunch and use this measurement to verify the expected accelerating gradient. Furthermore, we present the first quantitative measurement of rf breakdown rates in 200 GHz metallic accelerating structures. The breakdown rate of the copper structure is 10 –2 per pulse, with a peak surface electric field of 500 MV/m and a rf pulse length of 0.3 ns, which at a relatively large gap of 1.5 mm, or one wavelength, corresponds to an accelerating gradient of 56 MV/m. For the same breakdown rate, the copper-silver structure has a peak electric field of 320 MV/m at a pulse length of 0.5 ns. For a gap of 1.1 mm, or 0.74 wavelengths, this corresponds to an accelerating gradient of 50 MV/m.« less
Motor unit size estimation: confrontation of surface EMG with macro EMG.
Roeleveld, K; Stegeman, D F; Falck, B; Stålberg, E V
1997-06-01
Surface EMG (SEMG) is little used for diagnostic purposes in clinical neurophysiology, mainly because it provides little direct information on individual motor units (MUs). One of the techniques to estimate the MU size is intra-muscular Macro EMG. The present study compares SEMG with Macro EMG. Fifty-eight channel SEMG was recorded simultaneously with Macro EMG. Individual MUPs were obtained by single fiber triggered averaging. All recordings were made from the biceps brachii of healthy subjects during voluntary contraction at low force. High positive correlations were found between all Macro and Surface motor unit potential (MUP) parameters: area, peak-to-peak amplitude, negative peak amplitude and positive peak amplitude. The MUPs recorded with SEMG were dependent on the distance between the MU and the skin surface. Normalizing the SEMG parameters for MU location did not improve the correlation coefficient between the parameters of both techniques. The two measurement techniques had almost the same relative range in MUP parameters in any individual subject compared to the others, especially after normalizing the surface MUP parameters for MU location. MUPs recorded with this type of SEMG provide useful information about the MU size.
Structure of an energetic narrow discrete arc
NASA Technical Reports Server (NTRS)
Mcfadden, J. P.; Carlson, C. W.; Boehm, M. H.
1990-01-01
Particle distributions, waves, dc electric fields, and magnetic fields were measured by two sounding rockets at altitudes of 950 and 430 km through an energetic (greater than 5 keV) narrow (about 10 km) stable discrete arc. Although the payloads' magnetic footprints were separated by only 50 km, differences in the arc's structure were observed including the spatial width, peak energy, and characteristic spectra. The energetic electron precipitation included both slowly varying isotropic fluxes that formed an inverted-V energy-time signature and rapidly varying field-aligned fluxes at or below the isotropic spectral peak. The isotropic precipitation had a flux discontinuity inside the arc indicating the arc was present on a boundary between two different magnetospheric plasmas. Dispersive and nondispersive bursts of field-aligned electrons were measured throughout the arc, appearing over broad energy ranges or as monoenergetic beams. Dispersive bursts gave variable source distances less than 8000 km. Plateauing of some of the most intense bursts suggests that waves stabilized these electrons. During the lower altitude arc crossing, the field-aligned component formed a separate inverted-V energy-time signature whose peak energy was half the isotropic peak energy.
Statistical Short-Range Guidance for Peak Wind Speed Forecasts at Edwards Air Force Base, CA
NASA Technical Reports Server (NTRS)
Dreher, Joseph G.; Crawford, Winifred; Lafosse, Richard; Hoeth, Brian; Burns, Kerry
2009-01-01
The peak winds near the surface are an important forecast element for space shuttle landings. As defined in the Flight Rules (FR), there are peak wind thresholds that cannot be exceeded in order to ensure the safety of the shuttle during landing operations. The National Weather Service Spaceflight Meteorology Group (SMG) is responsible for weather forecasts for all shuttle landings, and is required to issue surface average and 10-minute peak wind speed forecasts. They indicate peak winds are a challenging parameter to forecast. To alleviate the difficulty in making such wind forecasts, the Applied Meteorology Unit (AMU) developed a PC-based graphical user interface (GUI) for displaying peak wind climatology and probabilities of exceeding peak wind thresholds for the Shuttle Landing Facility (SLF) at Kennedy Space Center (KSC; Lambert 2003). However, the shuttle occasionally may land at Edwards Air Force Base (EAFB) in southern California when weather conditions at KSC in Florida are not acceptable, so SMG forecasters requested a similar tool be developed for EAFB.
NASA Astrophysics Data System (ADS)
Nield, J. M.; King, J.; Wiggs, G.
2012-12-01
The dust emissivity of salt pans (or playas) can be significant but is controlled by interactions between wind erosivity, surface moisture, salt chemistry and crust morphology. These surface properties influence the aeolian transport threshold and can be highly variable over both short temporal and spatial scales. In the past, field studies have been hampered by practical difficulties in accurately measuring properties controlling sediment availability at the surface in high resolution. Studies typically therefore, have investigated large scale monthly or seasonal change using remote sensing and assume a homogeneous surface when predicting dust emissivity. Here we present the first high resolution measurements (sub-cm) of salt crust expansion related to changes in diurnal moisture over daily and weekly time periods using terrestrial laser scanning (TLS, ground-based LiDAR) on Sua Pan, Botswana. The TLS measures both elevation and relative surface moisture change simultaneously, without disturbing the surface. Measurement sequences enable the variability in aeolian sediment availability to be quantified along with temporal feedbacks associated with crust degradation. On crusts with well-developed polygon ridges (high aerodynamic and surface roughness), daily surface expansion was greater than 30mm. The greatest surface change occurred overnight on the upper, exposed sections of the ridges, particularly when surface temperatures dropping below 10°C. These areas also experienced the greatest moisture variation and became increasingly moist overnight in response to an increase in relative humidity. In contrast, during daylight hours, the ridge areas were drier than the lower lying inter-ridge areas. Positive feedbacks between surface topography and moisture reinforced the maximum diurnal moisture variation at ridge peaks, encouraging crust thrusting due to overnight salt hydration, further enhancing the surface, and therefore, aerodynamic roughness. These feedbacks between surface roughness and moisture have implications for dust emissivity because crust expansion increases fluff production which is one of the main dust source materials. Further, increased roughness can locally increase wind erosivity and the potential evaporation of ridge areas. Crust thrusting also weakens the ridge peaks, developing cracked surfaces and exposing the sediment supply source below. These fast acting processes can have a major influence on wind erosion variability and dust emissivity from key dust source regions.; a-d) Elevation change overnight. e-f) Elevation change over 6 days.
Cellular effects of acute exposure to high peak power microwave systems: Morphology and toxicology.
Ibey, Bennett L; Roth, Caleb C; Ledwig, Patrick B; Payne, Jason A; Amato, Alayna L; Dalzell, Danielle R; Bernhard, Joshua A; Doroski, Michael W; Mylacraine, Kevin S; Seaman, Ronald L; Nelson, Gregory S; Woods, Clifford W
2016-03-15
Electric fields produced by advanced pulsed microwave transmitter technology now readily exceed the Institute of Electrical and Electronic Engineers (IEEE) C.95.1 peak E-field limit of 100 kV/m, highlighting a need for scientific validation of such a specific limit. Toward this goal, we exposed Jurkat Clone E-6 human lymphocyte preparations to 20 high peak power microwave (HPPM) pulses (120 ns duration) with a mean peak amplitude of 2.3 MV/m and standard deviation of 0.1 with the electric field at cells predicted to range from 0.46 to 2.7 MV/m, well in excess of current standard limit. We observed that membrane integrity and cell morphology remained unchanged 4 h after exposure and cell survival 24 h after exposure was not statistically different from sham exposure or control samples. Using flow cytometry to analyze membrane disruption and morphological changes per exposed cell, no changes were observed in HPPM-exposed samples. Current IEEE C95.1-2005 standards for pulsed radiofrequency exposure limits peak electric field to 100 kV/m for pulses shorter than 100 ms [IEEE (1995) PC95.1-Standard for Safety Levels with Respect to Human Exposure to Electric, Magnetic and Electromagnetic Fields, 0 Hz to 300 GHz, Institute of Electrical and Electronic Engineers: Piscataway, NJ, USA]. This may impose large exclusion zones that limit HPPM technology use. In this study, we offer evidence that maximum permissible exposure of 100 kV/m for peak electric field may be unnecessarily restrictive for HPPM devices. Bioelectromagnetics. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Yadgarov, Lena; Choi, Charina L; Sedova, Anastasiya; Cohen, Ayala; Rosentsveig, Rita; Bar-Elli, Omri; Oron, Dan; Dai, Hongjie; Tenne, Reshef
2014-04-22
The optical and electronic properties of suspensions of inorganic fullerene-like nanoparticles of MoS2 are studied through light absorption and zeta-potential measurements and compared to those of the corresponding microscopic platelets. The total extinction measurements show that, in addition to excitonic peaks and the indirect band gap transition, a new peak is observed at 700-800 nm. This spectral peak has not been reported previously for MoS2. Comparison of the total extinction and decoupled absorption spectrum indicates that this peak largely originates from scattering. Furthermore, the dependence of this peak on nanoparticle size, shape, and surface charge, as well as solvent refractive index, suggests that this transition arises from a plasmon resonance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sudheer,, E-mail: sudheer@rrcat.gov.in; Tiwari, P.; Rai, V. N.
The plasmonic responses of silver nanoparticles extracted from silver halide based electron microscope film are investigated. Photo-reduction process is carried out to convert the silver halide grains into the metallic silver. The centrifuge technique is used for separating the silver nanoparticles from the residual solution. Morphological study performed by field emission scanning electron microscope (FESEM) shows that all the nanoparticles have an average diameter of ~120 nm with a high degree of mono dispersion in size. The localized surface plasmon resonance (LSPR) absorption peak at ~537 nm confirms the presence of large size silver nanoparticles.
Space Shuttle orbiter entry heating and TPS response: STS-1 predictions and flight data
NASA Technical Reports Server (NTRS)
Ried, R. C.; Goodrich, W. D.; Li, C. P.; Scott, C. D.; Derry, S. M.; Maraia, R. J.
1982-01-01
Aerothermodynamic development flight test data from the first orbital flight test of the Space Transportation System (STS) transmitted after entry blackout is given. Engineering predictions of boundary layer transition and numerical simulations of the orbiter flow field were confirmed. The data tended to substantiate preflight predictions of surface catalysis phenomena. The thermal response of the thermal protection system was as expected. The only exception is that internal free convection was found to be significant in limiting the peak temperature of the structure in areas which do not have internal insulation.
Self-consistent field calculations of conductance through conjugated molecules at finite bias
NASA Astrophysics Data System (ADS)
Paulsson, Magnus; Stafström, Sven
2001-03-01
Conductance through conjugated molecules have previously been calculated for a large number of systems using the Landauer formula but only a few calculations have included charging effects. In this study we present calculations in the mean field approximation of the conductance of metal-molecule-metal systems using two different kinds of molecules for a large number of configurations and applied biases. The molecules are described in the Pariser-Parr Pople model. Current-voltage (I-V) characteristics and charge distribution of the molecule connected by one dimensional leads to reservoirs is solved within the Hartree-Fock approximation. Charging of the molecule occurs when the chemical potential of the reservoirs approach the resonant tunneling levels. The ensuing potential difference, due to the charging, shifts the tunneling peaks which affects the I-V curves considerably. Asymmetrical interaction with the metal leads, e.g. molecule on a metal surface contacted with an STM-tip, also give asymmetrical I-V curves where the potential of the molecule is shown to more closely follow the potential of the surface. Negative differential conductance is discussed in systems consisting of two weakly coupled molecules.
Red-light excitation of protoporphyrin IX fluorescence for subsurface tumor detection.
Roberts, David W; Olson, Jonathan D; Evans, Linton T; Kolste, Kolbein K; Kanick, Stephen C; Fan, Xiaoyao; Bravo, Jaime J; Wilson, Brian C; Leblond, Frederic; Marois, Mikael; Paulsen, Keith D
2018-06-01
OBJECTIVE The objective of this study was to detect 5-aminolevulinic acid (ALA)-induced tumor fluorescence from glioma below the surface of the surgical field by using red-light illumination. METHODS To overcome the shallow tissue penetration of blue light, which maximally excites the ALA-induced fluorophore protoporphyrin IX (PpIX) but is also strongly absorbed by hemoglobin and oxyhemoglobin, a system was developed to illuminate the surgical field with red light (620-640 nm) matching a secondary, smaller absorption peak of PpIX and detecting the fluorescence emission through a 650-nm longpass filter. This wide-field spectroscopic imaging system was used in conjunction with conventional blue-light fluorescence for comparison in 29 patients undergoing craniotomy for resection of high-grade glioma, low-grade glioma, meningioma, or metastasis. RESULTS Although, as expected, red-light excitation is less sensitive to PpIX in exposed tumor, it did reveal tumor at a depth up to 5 mm below the resection bed in 22 of 24 patients who also exhibited PpIX fluorescence under blue-light excitation during the course of surgery. CONCLUSIONS Red-light excitation of tumor-associated PpIX fluorescence below the surface of the surgical field can be achieved intraoperatively and enables detection of subsurface tumor that is not visualized under conventional blue-light excitation. Clinical trial registration no.: NCT02191488 (clinicaltrials.gov).
Wang, Yihong; Guo, Qing; Wang, Huafu; Qian, Kun; Tian, Liang; Yao, Chen; Song, Wei; Shu, Weixia; Chen, Ping; Qi, Jinxu
2017-02-01
Quaternized chitosan is a cationic biopolymer with good antibacterial activity, biocompatibility, and biodegradability, and it has been widely applied in many fields. We have developed a convenient method to evaluate the antibacterial activity of hydroxypropyltrimethylammonium chloride chitosan (HACC) with a nonionic surfactant poloxamer in aqueous solution by monitoring the change of the oxidation peak current in cyclic voltammetry. Increasing values of the oxidation peak current were positively correlated with the antibacterial activity of HACC-poloxamer solutions. Optical microscope images, the zeta potential, and fluorescence spectroscopy showed that the aggregation state of HACC-poloxamer was related to the ratio of the two polymers and also to the antibacterial activity and oxidation peak current. At an HACC-to-poloxamer ratio of 1:0.75, the maximum surface charge density and the smooth edge of HACC-poloxamer aggregates can accelerate diffusion in aqueous solution. It is expected that this convenient method can be applied for a quick evaluation of the antibacterial activity of cationic biopolymers in aqueous solution. Graphical Abstract The cyclic voltammograms of MB in HACC/poloxamer solution, and the antibacterial efficiency against S. aureus after incubated with HACC (a) and 1/0.75 of HACC/poloxamer (b).
NASA Astrophysics Data System (ADS)
Zhu, W.; Wang, R.
2017-08-01
An alternating current atmospheric pressure plasma jet is generated with noble gas or noble gas/oxygen admixture as working gas. A "core plasma filament" is observed at the center of the dielectric tube and extends to the plasma jet at higher peak-to-peak voltages. This type of plasma jet is believed to be of the same nature with the reported plasma bullet driven by pulsed DC power sources. Double current probes are used to assess the speed of the plasma bullet and show that the speed is around 104-105 m/s. The time dependence of the downstream bullet speed is attributed to the gas heating and in turn the increase of the reduced electric field E/N. Optical emission spectra show the dependence of helium and oxygen emission intensities on the concentration of oxygen additive in the carrier gas, with peak values found at 0.5% O2. Multiple radial jets are realized on dielectric tubes of different sizes. As a case study, one of these multi-jet devices is used to treat B. aureus on the inner surface of a plastic beaker and is shown to be more effective than a single jet.
NASA Technical Reports Server (NTRS)
Tsay, Si-Chee; Lau, William K. M. (Technical Monitor)
2002-01-01
Many recent field experiments are designed to study the compelling variability in spatial and temporal scale of both pollution-derived and naturally occurring aerosols, which often exist in high concentrations over eastern/southeastern Asia and along the rim of the western Pacific. For example, the phase-I of ACE-Asia was conducted from March-May 2001 in the vicinity of the Gobi desert, East Coast of China, Yellow Sea, Korea, and Japan, along the pathway of Kosa (severe events that blanket East Asia with yellow desert dust, peaked in the Spring season). Asian dust typically originates in desert areas far from polluted urban regions. During transport, dust layers can interact with anthropogenic sulfate and soot aerosols from heavily polluted urban areas. Springtime is also the peak season for biomass burning in southeastern Asia. Added to the complex effects of clouds and natural marine aerosols, dust particles reaching the marine environment can have drastically different properties than those from the source. Thus, understanding the unique temporal and spatial variations of Asian aerosols is of special importance in regional-to-global climate issues such as radiative forcing, the hydrological cycle, and primary biological productivity in the mid-Pacific Ocean. During ACE-Asia we have measured continuously aerosol physical/optical/radiative properties, column precipitable water amount, and surface reflectivity over homogeneous areas from surface. The inclusion of flux measurements permits the determination of aerosol radiative flux in addition to measurements of loading and optical depth. At the time of the Terra/MODIS (Moderate Resolution Imaging Spectroradiometer), SeaWiFS (Sea-viewing Wide Field-of-view Sensor), TOMS (Total Ozone Mapping Spectrometer) and other satellite overpasses, these ground-based observations can provide valuable data to compare with satellite retrievals over land. A column satellite-surface perspective of Asian aerosols will be presented and will discuss their implications in regional-to-global effects on climate, fresh water redistribution, and health issues. (to be presented in Hawaii, April 28 - May 3, and Beijing, China, May 6 - 10, 2002)
Global Solar Magnetology and Reference Points of the Solar Cycle
NASA Astrophysics Data System (ADS)
Obridko, V. N.; Shelting, B. D.
2003-11-01
The solar cycle can be described as a complex interaction of large-scale/global and local magnetic fields. In general, this approach agrees with the traditional dynamo scheme, although there are numerous discrepancies in the details. Integrated magnetic indices introduced earlier are studied over long time intervals, and the epochs of the main reference points of the solar cycles are refined. A hypothesis proposed earlier concerning global magnetometry and the natural scale of the cycles is verified. Variations of the heliospheric magnetic field are determined by both the integrated photospheric i(B r )ph and source surface i(B r )ss indices, however, their roles are different. Local fields contribute significantly to the photospheric index determining the total increase in the heliospheric magnetic field. The i(B r )ss index (especially the partial index ZO, which is related to the quasi-dipolar field) determines narrow extrema. These integrated indices supply us with a “passport” for reference points, making it possible to identify them precisely. A prominent dip in the integrated indices is clearly visible at the cycle maximum, resulting in the typical double-peak form (the Gnevyshev dip), with the succeeding maximum always being higher than the preceding maximum. At the source surface, this secondary maximum significantly exceeds the primary maximum. Using these index data, we can estimate the progression expected for the 23rd cycle and predict the dates of the ends of the 23rd and 24th cycles (the middle of 2007 and December 2018, respectively).
Kharat, Sopan N; Mendhulkar, Vijay D
2016-05-01
The simple, eco-friendly and cost effective method of green synthesis of silver nanoparticle in the leaf extract of medicinal plant Elephantopus scaber L. is illustrated in the present work. The synthesized silver nanoparticles (AgNPs) were characterized with UV-Vis-spectroscopy, nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) analysis. The UV-spectra show maximum absorbance at 435 nm, NTA analysis shows 78 nm average sizes of nanoparticles, TEM analysis indicates spherical shape of the nanoparticles with the average diameter of 50 nm. The XRD peaks at 2θ range of 30-80° correspond to (111), (200), (220), (311) reflection planes that indicate the structure of metallic silver. FTIR analysis reveals surface capping of phenolic groups. Existence of peaks in the range of 1611 to 1400 cm(-1) indicates the presence of aromatic rings in the leaf extract. The peak at 1109 cm(-1) is due to the presence of OH groups. The antioxidant activity of synthesized nanoparticles was evaluated performing DPPH assay and it is observed that the photosynthesized nanoparticle also possesses antioxidant potentials. Thus, it can be used as potential free radical scavenger. Silver particles have tremendous applications in the field of diagnostics and therapeutics. To this context, the surface coating of plant metabolite constituents has great potentials. Therefore, the present work has been undertaken to synthesize the AgNPs using leaf extract of medicinal plant, E. scaber, to characterize and access their antioxidant properties. Copyright © 2016 Elsevier B.V. All rights reserved.
Shu, Xiaoqin; Cheng, Xinlu; Zhang, Hong
2018-04-18
The energy resonance point of the prominent peak of the absorption spectrum of nitrogen-doped graphene is in the ultraviolet region. This limits its application as a co-catalyst in renewable hydrogen evolution through photocatalytic water splitting in the visible light region. It is well known that noble metal films show active absorption in the visible region due to the existence of the unique feature known as surface plasmon resonance. Here we report tunable plasmons in nitrogen-doped graphene nanostructures using noble metal (Au/Ag) films. The energy resonance point of the prominent peak of the composite nanostructure is altered by changing the separation space of two-layered nanostructures. We found the strength of the absorption spectrum of the composite nanostructure is much stronger than the isolated N-doped graphene monolayer. When the separation space is decreased, the prominent peak of the absorption spectrum is red-shifted to the visible light region. Moreover, currents of several microamperes exist above the surface of the N-doped graphene and Au film composite nanostructure. In addition, the field enhancement exceeds 1000 when an impulse excitation polarized in the armchair-edge direction (X-axis) when the separation space is decreased to 3 Å and is close to 100 when an impulse excitation polarized in the zigzag-edge direction (Y-axis). The N-doped graphene and noble metal film composite nanostructure is a good candidate material as a co-catalyst in renewable hydrogen production by photocatalytic water splitting in the visible light region.
Magnetic field induced enhancement of resistance in polycrystalline ZrTe5
NASA Astrophysics Data System (ADS)
Behera, Prakash; Bera, Sumit; Patidar, Manju Mishra; Singh, Durgesh; Mishra, A. K.; Krishnan, M.; Gangrade, M.; Deshpande, U. P.; Venkatesh, R.; Ganesan, V.
2018-04-01
Transport properties of the polycrystalline ZrTe5 showing a considerable positive Magneto-Resistance (MR) in the intermediate temperatures has been reported. Substantial shift of peak temperature by approximately 65 K with an applied magnetic field of 13.5 Tesla has been observed. Magneto resistance of this polycrystalline sample (˜100%) is comparable with its single crystalline counterpart reported in literature. The peak intensity scales with peak temperature and obeys reasonably the Dionne relationship that is a clear indication of polaron mediated conduction in this system. Magneto Resistance (MR) in this system is attributed to the two carrier polaronic conduction model similar to the Holstein's approach. The results are further complemented with the Peak shift in magnetic field expected for a system having a fraction of localized carrier density. This observation places this famous thermoelectric material that displays a topological Dirac to Weyl transition in magnetic field in to the family of materials that have potential technological applications in the liquid nitrogen temperature range viz. 85-150 K.
Electronic transport through Al/InN nanowire/Al junctions
Lu, Tzu -Ming; Wang, George T.; Pan, Wei; ...
2016-02-10
We report non-linear electronic transport measurement of Al/Si-doped n-type InN nanowire/Al junctions performed at T = 0.3 K, below the superconducting transition temperature of the Al electrodes. The proximity effect is observed in these devices through a strong dip in resistance at zero bias. In addition to the resistance dip at zero bias, several resistance peaks can be identified at bias voltages above the superconducting gap of the electrodes, while no resistance dip is observed at the superconducting gap. The resistance peaks disappear as the Al electrodes turn normal beyond the critical magnetic field except one which remains visible atmore » fields several times higher than critical magnetic field. An unexpected non-monotonic magnetic field dependence of the peak position is observed. As a result, we discuss the physical origin of these observations and propose that the resistance peaks could be the McMillan-Rowell oscillations arising from different closed paths localized near different regions of the junctions.« less
NASA Astrophysics Data System (ADS)
Menon, P. S.; Kandiah, K.; Mandeep, J. S.; Shaari, S.; Apte, P. R.
Long-wavelength VCSELs (LW-VCSEL) operating in the 1.55 μm wavelength regime offer the advantages of low dispersion and optical loss in fiber optic transmission systems which are crucial in increasing data transmission speed and reducing implementation cost of fiber-to-the-home (FTTH) access networks. LW-VCSELs are attractive light sources because they offer unique features such as low power consumption, narrow beam divergence and ease of fabrication for two-dimensional arrays. This paper compares the near field and far field effects of the numerically investigated LW-VCSEL for various design parameters of the device. The optical intensity profile far from the device surface, in the Fraunhofer region, is important for the optical coupling of the laser with other optical components. The near field pattern is obtained from the structure output whereas the far-field pattern is essentially a two-dimensional fast Fourier Transform (FFT) of the near-field pattern. Design parameters such as the number of wells in the multi-quantum-well (MQW) region, the thickness of the MQW and the effect of using Taguchi's orthogonal array method to optimize the device design parameters on the near/far field patterns are evaluated in this paper. We have successfully increased the peak lasing power from an initial 4.84 mW to 12.38 mW at a bias voltage of 2 V and optical wavelength of 1.55 μm using Taguchi's orthogonal array. As a result of the Taguchi optimization and fine tuning, the device threshold current is found to increase along with a slight decrease in the modulation speed due to increased device widths.
Detecting Fermi-level shifts by Auger electron spectroscopy in Si and GaAs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Debehets, J.; Homm, P.; Menghini, M.
In this study, changes in surface Fermi-level of Si and GaAs, caused by doping and cleaning, are investigated by Auger electron spectroscopy. Based on the Auger voltage contrast, we compared the Auger transition peak energy but with higher accuracy by using a more accurate analyzer and an improved peak position determination method. For silicon, a peak shift as large as 0.46 eV was detected when comparing a cleaned p-type and n-type wafer, which corresponds rather well with the theoretical difference in Fermi-levels. If no cleaning was applied, the peak position did not differ significantly for both wafer types, indicating Fermi-levelmore » pinning in the band gap. For GaAs, peak shifts were detected after cleaning with HF and (NH 4) 2S-solutions in an inert atmosphere (N 2-gas). Although the (NH 4) 2S-cleaning in N 2 is very efficient in removing the oxygen from the surface, the observed Ga- and As-peak shifts are smaller than those obtained after the HF-cleaning. It is shown that the magnitude of the shift is related to the surface composition. After Si-deposition on the (NH 4) 2S-cleaned surface, the Fermi-level shifts back to a similar position as observed for an as-received wafer, indicating that this combination is not successful in unpinning the Fermi-level of GaAs.« less
Detecting Fermi-level shifts by Auger electron spectroscopy in Si and GaAs
Debehets, J.; Homm, P.; Menghini, M.; ...
2018-01-12
In this study, changes in surface Fermi-level of Si and GaAs, caused by doping and cleaning, are investigated by Auger electron spectroscopy. Based on the Auger voltage contrast, we compared the Auger transition peak energy but with higher accuracy by using a more accurate analyzer and an improved peak position determination method. For silicon, a peak shift as large as 0.46 eV was detected when comparing a cleaned p-type and n-type wafer, which corresponds rather well with the theoretical difference in Fermi-levels. If no cleaning was applied, the peak position did not differ significantly for both wafer types, indicating Fermi-levelmore » pinning in the band gap. For GaAs, peak shifts were detected after cleaning with HF and (NH 4) 2S-solutions in an inert atmosphere (N 2-gas). Although the (NH 4) 2S-cleaning in N 2 is very efficient in removing the oxygen from the surface, the observed Ga- and As-peak shifts are smaller than those obtained after the HF-cleaning. It is shown that the magnitude of the shift is related to the surface composition. After Si-deposition on the (NH 4) 2S-cleaned surface, the Fermi-level shifts back to a similar position as observed for an as-received wafer, indicating that this combination is not successful in unpinning the Fermi-level of GaAs.« less
Newbury, Dale E
2006-12-01
Two recent developments in X-ray spectrometer technology provide dramatic improvements in analytical capabilities that impact the frontiers of electron microscopy. Silicon drift detectors (SDD) use the same physics as silicon (lithium) energy dispersive spectrometers [Si(Li) EDS] but differ in design: only 10% of the thickness of the Si(Li) EDS with an anode area below 0.1 mm2 and a complex rear surface electrode pattern that creates a lateral internal charge collection field. The SDD equals or betters the Si(Li) EDS in most measures of performance. For output versus input count rate, the SDD exceeds the Si(Li) EDS by a factor of 5 to 10 for the same resolution. This high throughput can benefit analytical measurements that are count limited, such as X-ray mapping and trace measurements. The microcalorimeter EDS determines the X-ray energy by measuring the temperature rise in a metal absorber. Operating at 100 mK, the microcalorimeter EDS achieves resolution of 2-5 eV over a photon energy range of 200 eV to 10 keV in energy dispersive operation, eliminating most peak interference situations and providing high peak-to-background to detect low fluorescence yield peaks. Chemical bonding effects on low energy (< 2 keV) peak shapes can be measured.
NASA Astrophysics Data System (ADS)
Hai, Thien An Phung; Sugimoto, Ryuichi
2018-06-01
A simple method for the preparation of multicolor polyvinyl alcohol (PVA) by chemical oxidative polymerization is introduced. The PVA surface was successfully modified with conjugated polymers composed of 3-hexylthiophene (3HT) and fluorene (F). The incorporation of the 3HT/F copolymer onto the PVA surface was confirmed by Fourier-transform infrared (FT-IR), ultraviolet-visible (UV-vis), and fluorescence spectroscopies, X-ray diffraction (XRD), as well as thermogravimetric analysis (TGA), contact angle, and field-emission scanning electron microscopy (FE-SEM) coupled with energy dispersive X-ray (EDX) analysis. Different 3HT/F ratios on the PVA surface result in optical properties that include multicolor-emission and absorption behavior. The color of the resultant (3HT/F)-g-PVA shifted from red to blue, and the quantum yield increased with increasing F content. The surface hydrophobicity of the modified PVA increased significantly through grafting with the conjugated polymers, with the water contact angle increasing by 30° compared to pristine PVA. The PVA XRD peaks were less intense following surface modification. Thermogravimetric analyses reveal that the thermal stability of the PVA decreases as a result of grafting with the 3HT/F copolymers.
NASA Astrophysics Data System (ADS)
Dimkovski, Z.; Lööf, P.-J.; Rosén, B.-G.; Nilsson, P. H.
2018-06-01
The reliability and lifetime of machine elements such as gears and rolling bearings depend on their wear and fatigue resistance. In order to screen the wear and surface damage, three finishing processes: (i) brushing, (ii) manganese phosphating and (iii) shot peening were applied on three disc pairs and long-term tested on a twin-disc tribometer. In this paper, the elastic contact of the disc surfaces (measured after only few revolutions) was simulated and a number of functional and roughness parameters were correlated. The functional parameters consisted of subsurface stresses at different depths and a new parameter called ‘pressure spikes’ factor’. The new parameter is derived from the pressure distribution and takes into account the proximity and magnitude of the pressure spikes. Strong correlations were found among the pressure spikes’ factor and surface peak/height parameters. The orthogonal shear stresses and Von Mises stresses at the shallowest depths under the surface have shown the highest correlations but no good correlations were found when the statistics of the whole stress fields was analyzed. The use of the new parameter offers a fast way to screen the durability of the contacting surfaces operating at similar conditions.
Tunnel flexibility effect on the ground surface acceleration response
NASA Astrophysics Data System (ADS)
Baziar, Mohammad Hassan; Moghadam, Masoud Rabeti; Choo, Yun Wook; Kim, Dong-Soo
2016-09-01
Flexibility of underground structures relative to the surrounding medium, referred to as the flexibility ratio, is an important factor that influences their dynamic interaction. This study investigates the flexibility effect of a box-shaped subway tunnel, resting directly on bedrock, on the ground surface acceleration response using a numerical model verified against dynamic centrifuge test results. A comparison of the ground surface acceleration response for tunnel models with different flexibility ratios revealed that the tunnels with different flexibility ratios influence the acceleration response at the ground surface in different ways. Tunnels with lower flexibility ratios have higher acceleration responses at short periods, whereas tunnels with higher flexibility ratios have higher acceleration responses at longer periods. The effect of the flexibility ratio on ground surface acceleration is more prominent in the high range of frequencies. Furthermore, as the flexibility ratio of the tunnel system increases, the acceleration response moves away from the free field response and shifts towards the longer periods. Therefore, the flexibility ratio of the underground tunnels influences the peak ground acceleration (PGA) at the ground surface, and may need to be considered in the seismic zonation of urban areas.
NASA Astrophysics Data System (ADS)
Miyakoshi, H.; Tsuno, S.
2013-12-01
The present method of the EEW system installed in the railway field of Japan predicts seismic ground motions based on the estimated earthquake information about epicentral distances and magnitudes using initial P-waves observed on the surface. In the case of local earthquakes beneath the Tokyo Metropolitan Area, however, a method to directly predict seismic ground motions using P-waves observed in deep boreholes could issue EEWs more simply and surely. Besides, a method to predict seismic ground motions, using S-waves observed in deep boreholes and S-wave velocity structures beneath seismic stations, could show planar distributions of ground motions for train operation control areas in the aftermath of earthquakes. This information is available to decide areas in which the emergency inspection of railway structures should be performed. To develop those two methods, we investigated relationships between peak amplitudes on the surface and those in deep boreholes, using seismic records of KiK-net stations in the Kanto Basin. In this study, we used earthquake accelerograms observed in boreholes whose depths are deeper than the top face of Pre-Neogene basement and those on the surface at 12 seismic stations of KiK-net. We selected 243 local earthquakes whose epicenters are located around the Kanto Region. Those JMA magnitudes are in the range from 4.5 to 7.0. We picked the on-set of P-waves and S-waves using a vertical component and two horizontal components, respectively. Peak amplitudes of P-waves and S-waves were obtained using vertical components and vector sums of two horizontal components, respectively. We estimated parameters which represent site amplification factors beneath seismic stations, using peak amplitudes of S-waves observed in the deep borehole and those on the surface, to minimize the residuals between calculations by the theoretical equation and observations. Correlation coefficients between calculations and observations are high values in the range from 0.8 to 0.9. This result suggests that we could predict ground motions with the high accuracy using peak amplitudes of S-waves in deep boreholes and site amplification factors based on S-wave velocity structures. Also, we estimated parameters which represent radiation coefficients and the P/S velocity ratios around hypocentral regions, using peak amplitudes of P-waves and S-waves observed in deep boreholes, to minimize the residuals between calculations and observations. Correlation coefficients between calculations and observations are slightly lower values in the range from 0.7 to 0.9 than those for site amplification factors. This result suggests that the variability of radiation patterns for individual earthquakes affects the accuracy to predict ground motions using P-waves in deep boreholes.
Harvey, Ronald W.; Kinner, Nancy E.; MacDonald, Dan; Metge, David W.; Bunn, Amoret
1993-01-01
The effect of physical variability upon the relative transport behavior of microbial-sized microspheres, indigenous bacteria, and bromide was examined in field and flow-through column studies for a layered, but relatively well sorted, sandy glaciofluvial aquifer. These investigations involved repacked, sieved, and undisturbed aquifer sediments. In the field, peak abundance of labeled bacteria traveling laterally with groundwater flow 6 m downgradient from point of injection was coincident with the retarded peak of carboxylated microspheres (retardation factor, RF = 1.7) at the 8.8 m depth, but preceded the bromide peak and the retarded microsphere peak (RF = 1.5) at the 9.0 m depth. At the 9.5 m depth, the bacterial peak was coincident with both the bromide and the microsphere peaks. Although sorption appeared to be a predominant mechanism responsible for immobilization of microbial-sized microspheres in the aquifer, straining appeared to be primarily responsible for their removal in 0.6-m-long columns of repacked, unsieved aquifer sediments. The manner in which the columns were packed also affected optimal size for microsphere transport, which in one experiment was near the size of the small (∼2 μm) groundwater protozoa (flagellates). These data suggest that variability in aquifer sediment structure can be important in interpretation of both small-scale field and laboratory experiments examining microbial transport behavior.
Weissland, Thierry; Faupin, Arnaud; Borel, Benoit; Berthoin, Serge; Leprêtre, Pierre-Marie
2015-01-01
A bioenergetical analysis of manoeuvrability and agility performance for wheelchair players is inexistent. It was aimed at comparing the physiological responses and performance obtained from the octagon multistage field test (MFT) and the modified condition in “8 form” (MFT-8). Sixteen trained wheelchair basketball players performed both tests in randomized condition. The levels performed (end-test score), peak values of oxygen uptake (VO2peak), minute ventilation (VEpeak), heart rate (HRpeak), peak and relative blood lactate (Δ[Lact−] = peak – rest values), and the perceived rating exertion (RPE) were measured. MFT-8 induced higher VO2peak and VEpeak values compared to MFT (VO2peak: 2.5 ± 0.6 versus 2.3 ± 0.6 L·min−1 and VEpeak: 96.3 ± 29.1 versus 86.6 ± 23.4 L·min−1; P < 0.05) with no difference in other parameters. Significant relations between VEpeak and end-test score were correlated for both field tests (P < 0.05). At exhaustion, MFT attained incompletely VO2peak and VEpeak. Among experienced wheelchair players, MFT-8 had no effect on test performance but generates higher physiological responses than MFT. It could be explained by demands of wheelchair skills occurring in 8 form during the modified condition. PMID:25802841
Saraceno, John F.; Pellerin, Brian A.; Downing, Bryan D.; Boss, Emmanuel; Bachand, Philip A. M.; Bergamaschi, Brian A.
2009-01-01
Dissolved organic matter (DOM) dynamics during storm events has received considerable attention in forested watersheds, but the extent to which storms impart rapid changes in DOM concentration and composition in highly disturbed agricultural watersheds remains poorly understood. In this study, we used identical in situ optical sensors for DOM fluorescence (FDOM) with and without filtration to continuously evaluate surface water DOM dynamics in a 415 km2agricultural watershed over a 4 week period containing a short-duration rainfall event. Peak turbidity preceded peak discharge by 4 h and increased by over 2 orders of magnitude, while the peak filtered FDOM lagged behind peak turbidity by 15 h. FDOM values reported using the filtered in situ fluorometer increased nearly fourfold and were highly correlated with dissolved organic carbon (DOC) concentrations (r2 = 0.97), providing a highly resolved proxy for DOC throughout the study period. Discrete optical properties including specific UV absorbance (SUVA254), spectral slope (S290–350), and fluorescence index (FI) were also strongly correlated with in situ FDOM and indicate a shift toward aromatic, high molecular weight DOM from terrestrially derived sources during the storm. The lag of the peak in FDOM behind peak discharge presumably reflects the draining of watershed soils from natural and agricultural landscapes. Field and experimental evidence showed that unfiltered FDOM measurements underestimated filtered FDOM concentrations by up to ∼60% at particle concentrations typical of many riverine systems during hydrologic events. Together, laboratory and in situ data provide insights into the timing and magnitude of changes in DOM quantity and quality during storm events in an agricultural watershed, and indicate the need for sample filtration in systems with moderate to high suspended sediment loads.
Ji, Xiong-Hui; Zheng, Sheng-Xian; Lu, Yan-Hong; Liao, Yu-Lin
2007-07-01
By using leakage pond to simulate the double cropping paddy fields in Dongtinghu Lake area, this paper studied the effects of urea (CF) and controlled release nitrogen fertilizer (CRNF) on the dynamics of surface water pH, electrical conductivity (EC), total nitrogen (TN), ammonia nitrogen (NH4(+)-N) and nitrate nitrogen (NO3(-)-N) and the runoff loss of TN in alluvial sandy loamy paddy soil and purple calcareous clayed paddy soil, the two main paddy soils in this area. The results showed that after applying urea, the surface water TN and NH4(+)-N concentrations reached the peak at the 1st and 3rd day, respectively, and decreased rapidly then. Surface water NO3(-)-N concentration was very low, though it showed a little raise at the 3rd to 7th day after applying urea in purple calcareous clayed paddy soil. In early rice field, surface water pH rose gradually within 15 days after applying urea, while in late rice field, it did within 3 days. EC kept consistent with the dynamics of NH4(+)-N. CRNF, especially 70% N CRNF, gave rise to distinctly lower surface water pH, EC, and TN and NH4(+)-N concentrations within 15 days after application, but NO3- concentration rose slightly at late growth stages, compared with urea application. The monitoring of TN runoff loss indicated that during double cropping rice growth season, the loss amount of TN under urea application was 7.70 kg x hm(-2), accounting for 2.57% of applied urea-N. The two runoff events occurred within 20 days after urea application contributed significantly to the TN runoff loss. CRNF application resulted in a significantly lower TN concentration in runoff water from the 1st runoff event occurred within 10 days of its application, and thereafter, the total TN runoff loss for CRNF and 70% N CRNF application was decreased by 24.5% and 27.2%, respectively, compared with urea application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Liulin; Ibrahim, Yehia M.; Hamid, Ahmed M.
We report the development and initial evaluation of a 13-m path length Structures for Lossless Manipulations (SLIM) module for achieving high resolution separations using traveling waves (TW) with ion mobility (IM) spectrometry. The TW SLIM module was fabricated using two mirror-image printed circuit boards with appropriately configured RF, DC and TW electrodes and positioned with a 2.75-mm inter-surface gap. Ions were effective confined between the surfaces by RF-generated pseudopotential fields and moved losslessly through a serpentine path including 44 “U” turns using TWs. The ion mobility resolution was characterized at different pressures, gaps between the SLIM surfaces, TW and RFmore » parameters. After initial optimization the SLIM IM-MS module provided about 5-fold higher resolution separations than present commercially available drift tube or traveling wave IM-MS platforms. Peak capacity and peak generation rates achieved were 246 and 370 s-1, respectively, at a TW speed of 148 m/s. The high resolution achieved in the TW SLIM IM-MS enabled e.g., isomeric sugars (Lacto-N-fucopentaose I and Lacto-N-fucopentaose II) to be baseline resolved, and peptides from a albumin tryptic digest much better resolved than with existing commercial IM-MS platforms. The present work also provides a foundation for the development of much higher resolution SLIM devices based upon both considerably longer path lengths and multi-pass designs.« less
Hepel, Maria; Dallas, Julia
2008-01-01
Multifunctional films are the basis of biosensors and play an important role in the emerging field of nanobioelectronics. In this work, films of a tripeptide glutathione (GSH) immobilized on a self-assembled monolayer of cysteamine (CA-SAM) on a quartz crystal Au piezosensor have been synthesized and characterized using electrochemical quartz crystal nanogravimetry (EQCN) with a Hg(II) ion probe. It has been found that in contrast to previously studied Au/GSH films, the Au/CA-GSH films strongly hinder the formation of Hg0 with bulk properties while still allowing for relatively easy permeation by Hg(II) ions. This results in complete disappearance of the sharp Hg0 electrodissolution peak which is observed on bare Au and Au/GSH piezosensors. The multiple-peak anodic behavior of Au/CA and bare Au is replaced by a single high-field anodic peak of mercury reoxidation in the case of Au/CA-GSH sensors. The mass-to-charge plots indicate predominant ingress/egress of Hg(II) to/from the film. The strong hindrance of CA-SAM to bulk-Hg0 formation is attributed to film-stabilizing formation of surface (CA)2Hg2+ complexes with conformation evaluated by ab initio quantum mechanical calculations of electronic structure using Hartree-Fock methods. The associates CA-GSH provide an additional functionality of the side sulfhydryl group which is free for interactions, e.g. with heavy metals. It is proposed that in the film, the CA-GSH molecules can assume open (extended) conformation or bent hydrogen-bonded conformation with up to four possible internal hydrogen bonds. PMID:27873925
Simulation of optically pumped intersubband laser in magnetic field
NASA Astrophysics Data System (ADS)
Erić, Marko; Milanović, Vitomir; Ikonić, Zoran; Indjin, Dragan
2007-06-01
Simulations of an optically pumped intersubband laser in magnetic field up to 60 T are performed within the steady-state rate equations model. The electron-polar optical phonon scattering is calculated using the confined and interface phonon model. A strong oscillatory optical gain vs. magnetic field dependence is found, with two dominant gain peaks occurring at 20 and 40 T, the fields which bring appropriate states into resonance with optical phonons and thus open additional relaxation paths. The peak at 20 T exceeds the value of gain achieved at zero field.
Effect of Hydrofracking Fluid on Colloid Transport in the Unsaturated Zone
2014-01-01
Hydraulic fracturing is expanding rapidly in the US to meet increasing energy demand and requires high volumes of hydrofracking fluid to displace natural gas from shale. Accidental spills and deliberate land application of hydrofracking fluids, which return to the surface during hydrofracking, are common causes of environmental contamination. Since the chemistry of hydrofracking fluids favors transport of colloids and mineral particles through rock cracks, it may also facilitate transport of in situ colloids and associated pollutants in unsaturated soils. We investigated this by subsequently injecting deionized water and flowback fluid at increasing flow rates into unsaturated sand columns containing colloids. Colloid retention and mobilization was measured in the column effluent and visualized in situ with bright field microscopy. While <5% of initial colloids were released by flushing with deionized water, 32–36% were released by flushing with flowback fluid in two distinct breakthrough peaks. These peaks resulted from 1) surface tension reduction and steric repulsion and 2) slow kinetic disaggregation of colloid flocs. Increasing the flow rate of the flowback fluid mobilized an additional 36% of colloids, due to the expansion of water filled pore space. This study suggests that hydrofracking fluid may also indirectly contaminate groundwater by remobilizing existing colloidal pollutants. PMID:24905470
Zhang, J.-H.; Zhou, Z.-M.; Wang, P.-J.; Yao, F.-M.; Yang, L.
2011-01-01
The field spectroradiometer was used to measure spectra of different snow and snow-covered land surface objects in Beijing area. The result showed that for a pure snow spectrum, the snow reflectance peaks appeared from visible to 800 nm band locations; there was an obvious absorption valley of snow spectrum near 1030 nm wavelength. Compared with fresh snow, the reflection peaks of the old snow and melting snow showed different degrees of decline in the ranges of 300~1300, 1700~1800 and 2200~2300 nm, the lowest was from the compacted snow and frozen ice. For the vegetation and snow mixed spectral characteristics, it was indicated that the spectral reflectance increased for the snow-covered land types(including pine leaf with snow and pine leaf on snow background), due to the influence of snow background in the range of 350~1300 nm. However, the spectrum reflectance of mixed pixel remained a vegetation spectral characteristic. In the end, based on the spectrum analysis of snow, vegetation, and mixed snow/vegetation pixels, the mixed spectral fitting equations were established, and the results showed that there was good correlation between spectral curves by simulation fitting and observed ones(correlation coefficient R2=0.9509).
Linear error analysis of slope-area discharge determinations
Kirby, W.H.
1987-01-01
The slope-area method can be used to calculate peak flood discharges when current-meter measurements are not possible. This calculation depends on several quantities, such as water-surface fall, that are subject to large measurement errors. Other critical quantities, such as Manning's n, are not even amenable to direct measurement but can only be estimated. Finally, scour and fill may cause gross discrepancies between the observed condition of the channel and the hydraulic conditions during the flood peak. The effects of these potential errors on the accuracy of the computed discharge have been estimated by statistical error analysis using a Taylor-series approximation of the discharge formula and the well-known formula for the variance of a sum of correlated random variates. The resultant error variance of the computed discharge is a weighted sum of covariances of the various observational errors. The weights depend on the hydraulic and geometric configuration of the channel. The mathematical analysis confirms the rule of thumb that relative errors in computed discharge increase rapidly when velocity heads exceed the water-surface fall, when the flow field is expanding and when lateral velocity variation (alpha) is large. It also confirms the extreme importance of accurately assessing the presence of scour or fill. ?? 1987.
Zhang, Kun; Chen, Baoliang; Mao, Jiefei; Zhu, Lizhong; Xing, Baoshan
2018-05-08
Molecular interactions between biochars and ionizable organic pollutants (IOPs) are of great concern in natural environments, however the role of water clusters on the biochar surface remain unclear. The pH-dependent adsorption of aniline, phenol, 2-chlorophenol, 3-chlorophenol, 4-chlorophenol, 4-methylphenol and 4-nitrophenol onto bamboo wood derived biochar (BW700) as a model was conducted to identify conventional and novel interaction mechanisms between aromatized surface and IOPs. The dissociation constant (pK a,surface ) of surface functional groups of BW700 was characterized by acid-base titration and Zeta potential measurements. The pH-dependent adsorption behavior depended on the pK a,IOP of IOPs and also related to the pK a,surface of biochar surface. An obvious peak of adsorption coefficients (K d ) in the range of solution pH was shaped at pH peak = (pK a,IOP + pK a,surface )/2, which cannot be well explained by the conventional mechanisms such as hydrophobic effects, π-π interaction, electrostatic attractions, and hydrogen-binding. The contribution of ice-like adlayer (water clusters) on aromatic surface as H-acceptors is proposed for the first time to the adsorption peak of IOP as H-donors at pH peak . Density functional theory (DFT) calculations provided a possible structure of the complex combined with ice-like adlayer and aromatic substrate of BW700, and indicated that the adsorbing peak resulted from the multiple π-bond and polarization assisted H-bond (π-PAHB) interactions. Three distinct properties of π-PAHB were given, based on multiple π-bond, hydrophobicity-dependence and pH sensitivity. This novel mechanism extends the definition of H-bonds for better understanding the molecular interactions of IOP with carbonaceous materials and their environmental fate. Copyright © 2018 Elsevier Ltd. All rights reserved.
Lanthanide-labeled clay: A new method for tracing sediment transport in Karst
Mahler, B.J.; Bennett, P.C.; Zimmerman, M.
1998-01-01
Mobile sediment is a fundamental yet poorly characterized aspect of mass transport through karst aquifers. Here the development and field testing of an extremely sensitive particle tracer that may be used to characterize sediment transport in karst aquifers is described. The tracer consists of micron-size montmorillonite particles homoionized to the lanthanide form; after injection and retrieval from a ground water system, the lanthanide ions are chemically stripped from the clay and quantified by high performance liquid chromatography. The tracer meets the following desired criteria: low detection limit; a number of differentiable signatures; inexpensive production and quantification using standard methods; no environmental risks; and hydrodynamic properties similar to the in situ sediment it is designed to trace. The tracer was tested in laboratory batch experiments and field tested in both surface water and ground water systems. In surface water, arrival times of the tracer were similar to those of a conservative water tracer, although a significant amount of material was lost due to settling. Two tracer tests were undertaken in a karst aquifer under different flow conditions. Under normal flow conditions, the time of arrival and peak concentration of the tracer were similar to or preceded that of a conservative water tracer. Under low flow conditions, the particle tracer was not detected, suggesting that in low flow the sediment settles out of suspension and goes into storage.Mobile sediment is a fundamental yet poorly characterized aspect of mass transport through karst aquifers. Here the development and field testing of an extremely sensitive particle tracer that may be used to characterize sediment transport in karst aquifers is described. The tracer consists of micron-size montmorillonite particles homoionized to the lanthanide form; after injection and retrieval from a ground water system, the lanthanide ions are chemically stripped from the clay and quantified by high performance liquid chromatography. The tracer meets the following desired criteria: low detection limit; a number of differentiable signatures; inexpensive production and quantification using standard methods; no environmental risks; and hydrodynamic properties similar to the in situ sediment it is designed to trace. The tracer was tested in laboratory batch experiments and field tested in both surface water and ground water systems. In surface water, arrival times of the tracer were similar to those of a conservative water tracer, although a significant amount of material was lost due to settling. Two tracer tests were undertaken in a karst aquifer under different flow conditions. Under normal flow conditions, the time of arrival and peak concentration of the tracer were similar to or preceded that of a conservative water tracer. Under low flow conditions, the particle tracer was not detected, suggesting that in low flow the sediment settles out of suspension and goes into storage.
The Chemistry and Excitation of Water in Molecular Clouds
NASA Technical Reports Server (NTRS)
Hollenbach, David
2003-01-01
We model the chemistry and thermal balance of opaque molecular clouds exposed to an external flux of ultraviolet photons. We include the processes of gas phase and grain surface chemical reactions; in particular we examine closely the freezing of atoms and molecules onto grain surfaces and the desorption of molecules from grain surfaces as a function of depth into a molecular cloud. We find that on the surface of a molecular cloud the gas phase water abundances are low because of photodissociation, and the grain phase water (ice) abundance is low because of photodesorption of water from the grain surfaces. Deeper into the cloud, at A(sub v) less than or approximately 2-8 depending on the strength of the external ultraviolet flux, the gas phase water abundance increases with depth as the photodissociation rates decline due to dust attenuation of the ultraviolet field. However, beyond A(sub v) less than or approximately 2-8 the gas phase water abundance declines because the water freezes as water ice on the grains, and photodesorption is no longer effective in clearing the ice. A peak water abundance of about 10(exp -6) to 10(exp -7) occurs at about A(sub v) approximately 2-8, relatively independent of the gas density and the ultraviolet field. We show that such a model matches very closely the observations of the Submillimeter Wave Astronomical Satellite (SWAS), a NASA Small Explorer Mission. The model elucidates several mechanisms that have been recently invoked to understand gas phase chemistry in clouds, including-the freeze-out of molecules onto grain surface, the desorption of these molecules from the surfaces, and the abundance gradients of molecules as functions of depth into molecular clouds.
General wave optics propagation scaling law.
Shakir, Sami A; Dolash, Thomas M; Spencer, Mark; Berdine, Richard; Cargill, Daniel S; Carreras, Richard
2016-12-01
A general far-field wave propagation scaling law is developed. The formulation is simple but predicts diffraction peak irradiance accurately in the far field, regardless of the near-field beam type or geometry, including laser arrays. We also introduce the concept of the equivalent uniform circular beam that generates a far-field peak irradiance and power-in-the-bucket that are the same as an arbitrary laser source. Applications to clipped Gaussian beams with an obscuration, both as a single beam and as an array of beams, are shown.
Oceanic Lightning versus Continental Lightning: VLF Peak Current Discrepancies
NASA Astrophysics Data System (ADS)
Dupree, N. A., Jr.; Moore, R. C.
2015-12-01
Recent analysis of the Vaisala global lightning data set GLD360 suggests that oceanic lightning tends to exhibit larger peak currents than continental lightning (lightning occurring over land). The GLD360 peak current measurement is derived from distant measurements of the electromagnetic fields emanated during the lightning flash. Because the GLD360 peak current measurement is a derived quantity, it is not clear whether the actual peak currents of oceanic lightning tend to be larger, or whether the resulting electromagnetic field strengths tend to be larger. In this paper, we present simulations of VLF signal propagation in the Earth-ionosphere waveguide to demonstrate that the peak field values for oceanic lightning can be significantly stronger than for continental lightning. Modeling simulations are performed using the Long Wave Propagation Capability (LWPC) code to directly evaluate the effect of ground conductivity on VLF signal propagation in the 5-15 kHz band. LWPC is an inherently narrowband propagation code that has been modified to predict the broadband response of the Earth-Ionosphere waveguide to an impulsive lightning flash while preserving the ability of LWPC to account for an inhomogeneous waveguide. Furthermore, we evaluate the effect of return stroke speed on these results.
Electromagnetic pulse-induced current measurement device
NASA Astrophysics Data System (ADS)
Gandhi, Om P.; Chen, Jin Y.
1991-08-01
To develop safety guidelines for exposure to high fields associated with an electromagnetic pulse (EMP), it is necessary to devise techniques that would measure the peak current induced in the human body. The main focus of this project was to design, fabricate, and test a portable, self-contained stand-on device that would measure and hold the peak current and the integrated change Q. The design specifications of the EMP-Induced Current Measurement Device are as follows: rise time of the current pulse, 5 ns; peak current, 20-600 A; charge Q, 0-20 microcoulombs. The device uses a stand-on parallel-plate bilayer sensor and fast high-frequency circuit that are well-shielded against spurious responses to high incident fields. Since the polarity of the incident peak electric field of the EMP may be either positive or negative, the induced peak current can also be positive or negative. Therefore, the device is designed to respond to either of these polarities and measure and hold both the peak current and the integrated charge which are simultaneously displayed on two separate 3-1/2 digit displays. The prototype device has been preliminarily tested with the EMP's generated at the Air Force Weapons Laboratory (ALECS facility) at Kirtland AFB, New Mexico.
Jet Surface Interaction Noise in a High Aspect Ratio Rectangular Exhaust
NASA Technical Reports Server (NTRS)
Khavaran, Abbas
2017-01-01
A physics-based prediction model is employed to simulate jet surface interaction (JSI) noise in a transversely sheared jet exhaust. The methodology finds application in jets with a high aspect ratio (AR) rectangular exhaust in the proximity of a flat surface. Two component spectra are simulated: (i) mixing/scrubbing noise; (ii) trailing edge noise--and are superimposed to obtain the far field exhaust noise on either side of a nearby surface. This document describes the necessary input parameters (including mean flow and turbulence information for the nozzle exhaust of interest) that should be prepared in order to initiate the simulation for each noise component. Sample input/output files in connection with an 8:1 aspect ratio rectangular exhaust at Mach 0.98 near a rigid surface are described. Jet noise spectra are examined below at operating conditions listed in Table IV. Individual noise components, designated as Scrubbing Noise and Trailing Edge Noise, are presented and their sum Total Noise (Analysis) is compared with Measurement (Refs. 8 and 9) at selective number of observer polar angles at azimuth f = 90deg. Results are presented on an arc R = 17.80-ft (i.e., R = 100Deq) on both sides of a nearby surface. Although the predicted TE noise component is symmetric with respect to the edge due to symmetry in the propagator, measurements for the majority of cases are not quite symmetric and exhibit a slightly larger peak on the reflected side of the surface. Turbulent mixing/scrubbing noise component has a greater presence on the reflected side, as expected. Figure 13 to Figure 18 show that the peak in the predicted TE component could differ from measurements by as much as 4 dB due to lack of symmetry in measured data, however, the general trend is in agreement with data across the three Mach numbers. The overall sound pressure level (OASPL) associated with the TE noise component follows a U5 velocity scaling in the current modeling (Ref. 4). Directivity predictions for the TE noise component as well as the total noise are shown in Figure 19 (bottom)-and are compared with measurements (top figure) at conditions of Table IV. As anticipated, the TE noise component (dashed-line) overwhelms the directivity factor due to its dominant spectral peak level. Only at small angles to the jet axis the mixing noise component contributes significant enough to weight noticeably on the total noise.
[The experiment research on solution refractive index sensor based on tilted fiber Bragg grating].
Jiang, Qi; Lü, Dan-Dan; Yu, Ming-Hao; Kang, Li-Min; Ouyang, Jun
2013-12-01
The present paper analyzes the sensor's basic principle of the bare tilted fiber Bragg grating (TFBG) and surface plasmon resonance sensor (SPR) that deposited nanoscale gold-coating on the surface of the cladding. We simulated the transmission spectrums and some order cladding mode of TFBG in different concentration solutions by Integration and optical fiber grating software OptiGrating. So by the graphic observation and data analysis, a preliminary conclusion was got that in a certain sensing scope, the cladding modes of TFBG shift slightly to right with the increasing the solution refractive index(SRI),and the relation between resonance peak caused by the coupling of core mode and a certain cladding mode and the SRI was linear. Then the 45 nm thick gold coating was deposited on the surface of the TFBG cladding in a small-scale sputtering chamber KYKY SBC-12, and thermal field scanning electron microscopy presents that the effect of gold-coating was satisfactory to a certain extent in terms of microscopic level. The refractive index(RI) sensing experiments of different concentration solutions of NaCI, MgCI2, CaCI2 were carried out using bare and gold deposited TFBG. The RI sensing characteristics of both bare and gold deposited TFBGs respectively were studied by experiments. Meanwhile, it proved the conclusion that the cladding modes of TFBG drifted to right gradually when the SRI was increasing and the relations between resonance peak caused by the coupling of core mode and a certain cladding mode and the SRI were linear. And by quantitative analysis, we know that SPR sensor with the deposited namoscale gold layer on the surface of cladding enhanced the RI sensitivity dramatically by 2 to 500 nm RIU-1 which is 200 to 300 times larger than that of the bare tilted fiber Bragg grating approximately. The degrees of linear fittings of resonance peak caused by the coupling of core mode and a certain cladding mode and SRI of bare and gold-coating deposited SPR sensor are very good and both of them reach up to more than 0. 99.
NASA Astrophysics Data System (ADS)
Hopkins, J.; Palmer, M.; Wihsgott, J. U.; Sharples, J.; Sivyer, D.; Greenwood, N.; Hull, T.; Hickman, A. E.; Williams, C. A. J.
2016-02-01
Although the approximate timing of the spring bloom can be predicted following Sverdrup's critical depth hypothesis the precise timing, intensity and evolution of this annual peak in primary production is determined by small scale and often incoherent, short and transient events. This is particularly true in shallow and highly dynamic temperate continental shelf sea environments. Following an intense field campaign on the NW European Shelf during the transition from mixed to stratified conditions we are able to examine the physical drivers behind initiation of the spring bloom in unprecedented detail. A wave powered vertically profiling float co-located with two ocean gliders provided high resolution profiles of density, chlorophyll-a fluorescence and the rate of turbulent kinetic energy dissipation every 10-15 minutes for 21 days. Full water column currents, meteorological variables and near surface PAR are taken from additional moorings in the array. After the onset of positive net surface heat fluxes, our data sets show how the timing and subsequent development of the bloom is determined by the available PAR and its recent history; the fine scale vertical hydrographic and turbulent structure of the water column that controls the residence time of phytoplankton at each depth; and the timing and intensity of wind and tidal mixing events. In April 2015 the main peak in depth integrated chlorophyll occurred almost a week after the main seasonal thermocline had started to form. It peaked following three consecutive sunny days and a reduction in wind stress that allowed a thin (10 m) near surface warm layer to be established and maintained overnight. There is significant semi-diurnal variability in the depth integrated chlorophyll demonstrating how small scale (< 10 km) incoherence in these physical drivers leads to strong gradients and patchiness in the bloom dynamics across a shelf.
Griffin, Robert J; Revelle, Meghan K; Dabdub, Donald
2004-02-01
Metrics associated with ozone (O3) formation are investigated using the California Institute of Technology (CIT) three-dimensional air-quality model. Variables investigated include the O3 production rate (P(O3)), O3 production efficiency (OPE), and total reactivity (the sum of the reactivity of carbon monoxide (CO) and all organic gases that react with the hydroxyl radical). Calculations are spatially and temporally resolved; surface-level and vertically averaged results are shown for September 9, 1993 for three Southern California locations: Central Los Angeles, Azusa, and Riverside. Predictions indicate increasing surface-level O3 concentrations with distance downwind, in line with observations. Surface-level and vertically averaged P(O3) values peak during midday and are highest downwind; surface P(O3) values are greater than vertically averaged values. Surface OPEs generally are highest downwind and peak during midday in downwind locations. In contrast, peaks occur in early morning and late afternoon in the vertically averaged case. Vertically averaged OPEs tend to be greater than those for the surface. Total reactivities are highest in upwind surface locations and peak during rush hours; vertically averaged reactivities are smaller and tend to be more uniform temporally and spatially. Total reactivity has large contributions from CO, alkanes, alkenes, aldehydes, unsubstituted monoaromatics, and secondary organics. Calculations using estimated emissions for 2010 result in decreases in P(O3) values and reactivities but increases in OPEs.
Terahertz generation from laser-driven ultrafast current propagation along a wire target
NASA Astrophysics Data System (ADS)
Zhuo, H. B.; Zhang, S. J.; Li, X. H.; Zhou, H. Y.; Li, X. Z.; Zou, D. B.; Yu, M. Y.; Wu, H. C.; Sheng, Z. M.; Zhou, C. T.
2017-01-01
Generation of intense coherent THz radiation by obliquely incidenting an intense laser pulse on a wire target is studied using particle-in-cell simulation. The laser-accelerated fast electrons are confined and guided along the surface of the wire, which then acts like a current-carrying line antenna and under appropriate conditions can emit electromagnetic radiation in the THz regime. For a driving laser intensity ˜3 ×1018W /cm2 and pulse duration ˜10 fs, a transient current above 10 KA is produced on the wire surface. The emission-cone angle of the resulting ˜0.15 mJ (˜58 GV/m peak electric field) THz radiation is ˜30∘ . The conversion efficiency of laser-to-THz energy is ˜0.75 % . A simple analytical model that well reproduces the simulated result is presented.
Sun, Bin; Voznyy, Oleksandr; Tan, Hairen; Stadler, Philipp; Liu, Mengxia; Walters, Grant; Proppe, Andrew H; Liu, Min; Fan, James; Zhuang, Taotao; Li, Jie; Wei, Mingyang; Xu, Jixian; Kim, Younghoon; Hoogland, Sjoerd; Sargent, Edward H
2017-07-01
Application of pseudohalogens in colloidal quantum dot (CQD) solar-cell active layers increases the solar-cell performance by reducing the trap densities and implementing thick CQD films. Pseudohalogens are polyatomic analogs of halogens, whose chemistry allows them to substitute halogen atoms by strong chemical interactions with the CQD surfaces. The pseudohalide thiocyanate anion is used to achieve a hybrid surface passivation. A fourfold reduced trap state density than in a control is observed by using a suite of field-effect transistor studies. This translates directly into the thickest CQD active layer ever reported, enabled by enhanced transport lengths in this new class of materials, and leads to the highest external quantum efficiency, 80% at the excitonic peak, compared with previous reports of CQD solar cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Changlei; Huang, Cheng; Pu, Mingbo; Song, Jiakun; Zhao, Zeyu; Wu, Xiaoyu; Luo, Xiangang
2017-07-18
In this article, a dual-band wide-angle metamaterial perfect absorber is proposed to achieve absorption at the wavelength where laser radar operates. It is composed of gold ring array and a Helmholtz resonance cavity spaced by a Si dielectric layer. Numerical simulation results reveal that the designed absorber displays two absorption peaks at the target wavelength of 10.6 μm and 1.064 μm with the large frequency ratio and near-unity absorptivity under the normal incidence. The wide-angle absorbing property and the polarization-insensitive feature are also demonstrated. Localized surface plasmons resonance and Helmholtz resonance are introduced to analyze and interpret the absorbing mechanism. The designed perfect absorber can be developed for potential applications in infrared stealth field.
Interactions of polymer surfaces and thin films
NASA Astrophysics Data System (ADS)
Zeng, Hongbo
2007-12-01
Characterization of the adhesion, tribological properties and dynamics of polymer surfaces has been of great interest for many years since polymers are commonly used as adhesive and lubricant coatings to produce both high and low adhesion or friction. Improving our fundamental understanding of the interactions of polymer surfaces at the molecular level is needed to develop further techniques in materials science and chemical engineering. The objectives of my research were to correlate the nano- and micro-scale properties of various polymer thin film and surface phenomena: adhesion, adhesion hysteresis, friction, lubrication, surface deformations, coalescence, spreading, and wear, and identify the fundamental physical forces and mechanisms at the molecular and micro-scales. I studied the adhesion of polymer films at temperatures ranging from below to above the glass transition temperature, Tg. The adhesion hysteresis was found to peak somewhere around Tg, but to also depend on the load, contact time and detachment rate. The results revealed some new scaling relations for the dynamic (rate-dependent) adhesion forces and effective surface energies of polymers. I studied the way polymer surfaces deform during adhesion (coalescence), spreading (wetting) and separation (detachment, rupture, fracture and failure) processes, and characterized the differences (and transition) between liquid-like and solid-like behavior during these processes, e.g., the transition from liquid-to-viscoelastic-to-ductile-to-brittle behavior. Complex and novel transient (dynamic) surface shape changes were found to occur during transitions that involved highly-ordered or disordered fingers, ripples, waves or cracks. A full picture has emerged for the transition from viscous liquid-like to brittle solid-like behavior of adhering and detaching interfaces. Finally, I developed a new experiment technique whereby an electric field can be applied across the two surfaces in a Surface Force Apparatus for the first time, and two types of experiments were performed to measure the normal and/or lateral forces between two surfaces under an E-field.
NASA Astrophysics Data System (ADS)
FramiñAn, Mariana B.; Valle-Levinson, Arnoldo; Sepúlveda, HéCtor H.; Brown, Otis B.
2008-08-01
Intratidal variability of density and velocity fields is investigated at the turbidity front of the Río de la Plata Estuary, South America. Current velocity and temperature-salinity profiles collected in August 1999 along a repeated transect crossing the front are analyzed. Horizontal and vertical gradients, stability of the front, convergence zones, and transverse flow associated to the frontal boundary are described. Strong horizontal convergence of the across-front velocity and build up of along-front velocity shear were observed at the front. In the proximity of the front, enhanced transverse (or along-front) flow created jet-like structures at the surface and near the bottom flowing in opposite directions. These structures persisted throughout the tidal cycle and were advected upstream (downstream) by the flood (ebb) current through a distance of ˜10 km. During peak flood, the upper layer flow reversed from its predominant downstream direction and upstreamflow occupied the entire water column; outside the peak flood, two-layer estuarine circulation dominated. Changes in density field were observed in response to tidal straining, tidal advection, and wind-induced mixing, but stratification remained throughout the tidal cycle. This work demonstrates the large spatial variability of the velocity field at the turbidity front; it provides evidence of enhanced transverse circulation along the frontal boundary; and reveals the importance of advective and frictional intratidal processes in the dynamics of the central part of the estuary.
An LNG release, transport, and fate model system for marine spills.
Spaulding, Malcolm L; Swanson, J Craig; Jayko, Kathy; Whittier, Nicole
2007-02-20
LNGMAP, a fully integrated, geographic information based modular system, has been developed to predict the fate and transport of marine spills of LNG. The model is organized as a discrete set of linked algorithms that represent the processes (time dependent release rate, spreading, transport on the water surface, evaporation from the water surface, transport and dispersion in the atmosphere, and, if ignited, burning and associated radiated heat fields) affecting LNG once it is released into the environment. A particle-based approach is employed in which discrete masses of LNG released from the source are modeled as individual masses of LNG or spillets. The model is designed to predict the gas mass balance as a function of time and to display the spatial and temporal evolution of the gas (and radiated energy field). LNGMAP has been validated by comparisons to predictions of models developed by ABS Consulting and Sandia for time dependent point releases from a draining tank, with and without burning. Simulations were in excellent agreement with those performed by ABS Consulting and consistent with Sandia's steady state results. To illustrate the model predictive capability for realistic emergency scenarios, simulations were performed for a tanker entering Block Island Sound. Three hypothetical cases were studied: the first assumes the vessel continues on course after the spill starts, the second that the vessel stops as soon as practical after the release begins (3 min), and the third that the vessel grounds at the closest site practical. The model shows that the areas of the surface pool and the incident thermal radiation field (with burning) are minimized and dispersed vapor cloud area (without burning) maximized if the vessel continues on course. For this case the surface pool area, with burning, is substantially smaller than for the without burning case because of the higher mass loss rate from the surface pool due to burning. Since the vessel speed substantially exceeds the spill spreading rate, both the thermal radiation fields and surface pool trail the vessel. The relative directions and speeds of the wind and vessel movement govern the orientation of the dispersed plume. If the vessel stops, the areas of the surface pool and incident radiation field (with burning) are maximized and the dispersed cloud area (without burning) minimized. The longer the delay in stopping the vessel, the smaller the peak values are for the pool area and the size of the thermal radiation field. Once the vessel stops, the spill pool is adjacent to the vessel and moving down current. The thermal radiation field is oriented similarly. These results may be particularly useful in contingency planning for underway vessels.
Experimental Study of Magnetic Field Production and Dielectric Breakdown of Auto-Magnetizing Liners
NASA Astrophysics Data System (ADS)
Shipley, Gabriel; Awe, Thomas; Hutchinson, Trevor; Hutsel, Brian; Slutz, Stephen; Lamppa, Derek
2017-10-01
AutoMag liners premagnetize the fuel in MagLIF targets and provide enhanced x-ray diagnostic access and increased current delivery without requiring external field coils. AutoMag liners are composite liners made with discrete metallic helical conduction paths separated by insulating material. First, a low dI/dt ``foot'' current pulse (1 MA in 100 ns) premagnetizes the fuel. Next, a higher dI/dt pulse with larger induced electric field initiates breakdown on the composite liner's; surface, switching the current from helical to axial to implode the liner. Experiments on MYKONOS have tested the premagnetization and breakdown phases of AutoMag and demonstrate axial magnetic fields above 90 Tesla for a 550 kA peak current pulse. Electric fields of 17 MV/m have been generated before breakdown. AutoMag may enhance MagLIF performance by increasing the premagnetization strength significantly above 30 T, thus reducing thermal-conduction losses and mitigating anomalous diffusion of magnetic field out of hotter fuel regions, by, for example, the Nernst thermoelectric effect. This project was funded in part by Sandia's Laboratory Directed Research and Development Program (Projects No. 200169 and 195306).
NASA Astrophysics Data System (ADS)
Leith, Kerry; Perras, Matthew; Siren, Topias; Rantanen, Tuomas; Heinonen, Suvi; Loew, Simon
2017-04-01
Long periods of exceptionally high temperatures in Finland and California during the summer of 2014 were associated with the formation of large 'exfoliation' or 'sheeting' fractures in bedrock surfaces. Videos taken at both locations show sharp fractures forming along the edge of thin (<1 m) bedrock sheets several meters across, before the rock surface appears to jump and buckle in the hot summer sun. Long striations visible on the surface of the rock at Långören Island are the result of boulders being dragged over the landscape during the last glacial period (>15,000 years ago), hinting at the rarity of the recent events on the otherwise undamaged surface. In order to uncover the mechanisms driving this remarkable event, we installed a unique low-cost monitoring system to track the behavior of the new Långören Island fracture through the summer of 2016. This included a local meteorological station, Arduino-based rock temperature profiles, acoustic emission measurements, and a 3G-enabled all-in-one PC for live data communication. Coupled with GPR data, field mapping, and a local DEM derived from a 'Go-Pro on a stick' structure from motion capture, we generate a unique insight into the conditions at the time of the 2014 event, and potential active micro-fracturing during a hot period in 2016. Our models suggest rock surface temperatures approached 40°C during 2014, almost ten degrees above the peak air temperature. The mid- to late-afternoon timing of fracturing was associated with peak thermal stress in the upper 1 m of bedrock, consistent with 2016 observations, where measured surface temperatures of around 35°C generate a thermal front that coincides with a series of acoustic emission events on a sensor installed in a borehole near the crest of the fracture.
Byrd, Kristin B.; Windham-Myers, Lisamarie; Leeuw, Thomas; Downing, Bryan D.; Morris, James T.; Ferner, Matthew C.
2016-01-01
Reducing uncertainty in data inputs at relevant spatial scales can improve tidal marsh forecasting models, and their usefulness in coastal climate change adaptation decisions. The Marsh Equilibrium Model (MEM), a one-dimensional mechanistic elevation model, incorporates feedbacks of organic and inorganic inputs to project elevations under sea-level rise scenarios. We tested the feasibility of deriving two key MEM inputs—average annual suspended sediment concentration (SSC) and aboveground peak biomass—from remote sensing data in order to apply MEM across a broader geographic region. We analyzed the precision and representativeness (spatial distribution) of these remote sensing inputs to improve understanding of our study region, a brackish tidal marsh in San Francisco Bay, and to test the applicable spatial extent for coastal modeling. We compared biomass and SSC models derived from Landsat 8, DigitalGlobe WorldView-2, and hyperspectral airborne imagery. Landsat 8-derived inputs were evaluated in a MEM sensitivity analysis. Biomass models were comparable although peak biomass from Landsat 8 best matched field-measured values. The Portable Remote Imaging Spectrometer SSC model was most accurate, although a Landsat 8 time series provided annual average SSC estimates. Landsat 8-measured peak biomass values were randomly distributed, and annual average SSC (30 mg/L) was well represented in the main channels (IQR: 29–32 mg/L), illustrating the suitability of these inputs across the model domain. Trend response surface analysis identified significant diversion between field and remote sensing-based model runs at 60 yr due to model sensitivity at the marsh edge (80–140 cm NAVD88), although at 100 yr, elevation forecasts differed less than 10 cm across 97% of the marsh surface (150–200 cm NAVD88). Results demonstrate the utility of Landsat 8 for landscape-scale tidal marsh elevation projections due to its comparable performance with the other sensors, temporal frequency, and cost. Integration of remote sensing data with MEM should advance regional projections of marsh vegetation change by better parameterizing MEM inputs spatially. Improving information for coastal modeling will support planning for ecosystem services, including habitat, carbon storage, and flood protection.
NASA Astrophysics Data System (ADS)
Kawase, H.; Nagashima, F.; Matsushima, S.; Sanchez-Sesma, F. J.
2013-05-01
Horizontal-to-vertical spectral ratios (HVRs) of microtremors have been traditionally interpreted theoretically as representing the Rayleigh wave ellipticity or just utilized a convenient tool to extract predominant periods of ground. However, based on the diffuse field theory (Sánchez-Sesma et al., 2011) the microtremor H/V spectral ratios (MHVRs) correspond to the square root of the ratio of the imaginary part of horizontal displacement for a horizontally applied unit harmonic load and the imaginary part of vertical displacement for a vertically applied unit load. The same diffuse field concept leads us to derive a simple formula for earthquake HVRs (EHVRs), that is, the ratio of the horizontal motion on the surface for a vertical incidence of S wave divided by the vertical motion on the surface for a vertical incidence of P wave with a fixed coefficient (Kawase et al., 2011). The difference for EHVRs comes from the fact that primary contribution of earthquake motions would be of plane body waves. Traditionally EHVRs are interpreted as the responses of inclined SV wave incidence only for their S wave portions. Without these compact theoretical solutions, EHVRs and MHVRs are either considered to be very similar/equivalent, or totally different in the previous studies. With these theoretical solutions we need to re-focus our attention on the difference of HVRs. Thus we have compared here HVRs at several dozens of strong motion stations in Japan. When we compared observed HVRs we found that EHVRs tend to be higher in general than the MHVRs, especially around their peaks. As previously reported, their general shapes share the common features. Especially their fundamental peak and trough frequencies show quite a good match to each other. However, peaks in EHVRs in the higher frequency range would not show up in MHVRs. When we calculated theoretical HVRs separately at these target sites, their basic characteristics correspond to these observed differences. At this stage of research we found that the underground structures that are optimized for EHVRs would not explain perfectly MHVRs. This strongly suggests that we need to optimize underground structures to explain both EHVRs and MHVRs at the same time.
NASA Astrophysics Data System (ADS)
Tanışlı, Murat; Taşal, Erol
2017-06-01
Atmospheric-pressure low-temperature plasma jets and their applications are a topic of great interest in the fields of physics, technology, and medicine. In this study, the used self-made plasma jet is based on a dielectric barrier discharge (DBD) in neon (Ne) with typical processing parameters, such as frequency in the kHz range and voltage in the kV range. The plasma is characterized by optical emission spectroscopy (OES). These types of plasma can be used in various applications such as surface modification, inactivation of microorganisms, and chemical decomposition. This study is concerned with the Fourier transform infrared spectrum (FT-IR) and ultraviolet-visible (UV-vis) absorption spectroscopy of the large 7-acetoxy-6-(2,3-dibromopropyl)-4,8-dimethylcoumarin molecule (abbreviated as 7AC) dissolved in ethanol and methanol solvents and their modification after atmospheric-pressure plasma treatment (APPT) with the DBD. The research is motivated by the significance of this molecule in different fields of application. Also the changes in the structure are recorded. After APPT, the peak corresponding to the carbonyl bond at a wavenumber of 1715 cm-1 disappears in the IR spectrum of the ethanol solution, and when splitting at a wavenumber of 1405 cm-1 is observed, the peak at 1224 cm-1 is found to disappear after plasma is applied. It is seen new peaks at frequencies of 432 and 655 cm-1 are formed. When the same situation is analyzed for the 7AC molecule dissolved in methanol, a new peak is observed at 1634 cm-1. The intensities of the peaks at 3433 and 2075 cm-1 also increase and there is a large change in the wavenumber at 600 cm-1. In the UV spectra, a significant increase in the absorbance of the 7AC molecule dissolved in ethanol is observed after APPT, whereas a small decrease in the absorbance of the 7AC molecule dissolved in methanol is obtained. Owing to the lack of symmetry, many normal bands of vibrations are mixed.
NASA Astrophysics Data System (ADS)
Fairall, C. W.
2016-12-01
In this paper we presents results of analysis of dropsondes deployed from the NOAA G-4 aircraft during the El Nino Rapid Response field program conducted between January 21 to March 10, 2016. The aircraft was based in Honolulu, HI; 593 sondes were launched in 22 flights. The study area was due south of Hawaii principally confined to a region between 180-140 W Longitude and 2 S to 20 N Latitude. The program was focused on the deep convection that was enhanced by strong El Nino conditions. Here we will discuss atmospheric budget calculations of divergence, Q1, and Q2 from seven flights that encircled convective masses (horizontal scale on the order of 400 km). Surface precipitation and evaporation are estimated from the vertical integral. For example, on flight 1 convergence peaked at 8E-6 s^-1 at an altitude of 4 km; surface precipitation was 25 mm/d. We found that Q1 peaked at significantly higher altitude than Q2 which implies relatively weak contribution from stratiform precipitation. The convective features tended to be elongated in a zonal direction. We will also describe a mission where a closed rectangular pattern (1400 km cross axis and 600 km along axis) was flown across an atmospheric river (AR) just NE of Hawaii. In this case, the integrated water transport (IVT) along the AR flow direction intensified by about 170 kg/m/s from the southwest end (entrance) to the northeast end (exit) of the AR. Most of increase was supplied by moisture convergences; loss by precipitation was about 15% of convergence plus evaporation.
NMR in an electric field: A bulk probe of the hidden spin and orbital polarizations
NASA Astrophysics Data System (ADS)
Ramírez-Ruiz, Jorge; Boutin, Samuel; Garate, Ion
2017-12-01
Recent theoretical work has established the presence of hidden spin and orbital textures in nonmagnetic materials with inversion symmetry. Here, we propose that these textures can be detected by nuclear magnetic resonance (NMR) measurements carried out in the presence of an electric field. In crystals with hidden polarizations, a uniform electric field produces a staggered magnetic field that points to opposite directions at atomic sites related by spatial inversion. As a result, the NMR resonance peak corresponding to inversion partner nuclei is split into two peaks. The magnitude of the splitting is proportional to the electric field and depends on the orientation of the electric field with respect to the crystallographic axes and the external magnetic field. As a case study, we present a theory of electric-field-induced splitting of NMR peaks for 77Se,125Te, and 209Bi in Bi2Se3 and Bi2Te3 . In conducting samples with current densities of ≃106A/cm 2 , the splitting for Bi can reach 100 kHz , which is comparable to or larger than the intrinsic width of the NMR lines. In order to observe the effect experimentally, the peak splitting must also exceed the linewidth produced by the Oersted field. In Bi2Se3 , this requires narrow wires of radius ≲1 μ m . We also discuss other potentially more promising candidate materials, such as SrRuO3 and BaIr2Ge2 , whose crystal symmetry enables strategies to suppress the linewidth produced by the Oersted field.
Tarandovskiy, Ivan D.; Artemenko, Elena O.; Panteleev, Mikhail A.; Sinauridze, Elena I.; Ataullakhanov, Fazoil I.
2013-01-01
Background Thrombin generation assay is a convenient and widely used method for analysis of the blood coagulation system status. Thrombin generation curve (TGC) is usually bell-shaped with a single peak, but there are exceptions. In particular, TGC in platelet-rich plasma (PRP) can sometimes have two peaks. Objective We sought to understand the mechanism underlying the occurrence of two peaks in the PRP thrombin generation curve. Methods Tissue factor-induced thrombin generation in PRP and platelet-poor plasma (PPP) was monitored using continuous measurement of the hydrolysis rate of the thrombin-specific fluorogenic substrate Z-Gly-Gly-Arg-AMC. Expression of phosphatidylserine (PS) and CD62P on the surface of activated platelets was measured by flow cytometry using corresponding fluorescently labeled markers. Results The addition of the P2Y12 receptor antagonist MeS-AMP (160 µM), 83 nM prostaglandin E1 (PGE1), or 1.6% DMSO to PRP caused the appearance of two peaks in the TGC. The PS exposure after thrombin activation on washed platelets in a suspension supplemented with DMSO, PGE1 or MeS-AMP was delayed, which could indicate mechanism of the second peak formation. Supplementation of PRP with 1.6% DMSO plus 830 nM PGE1 mediated the disappearance of the second peak and decreased the amplitude of the first peak. Increasing the platelet concentration in the PRP promoted the consolidation of the two peaks into one. Conclusions Procoagulant tenase and prothrombinase complexes in PRP assemble on phospholipid surfaces containing PS of two types - plasma lipoproteins and the surface of activated platelets. Thrombin generation in the PRP can be two-peaked. The second peak appears in the presence of platelet antagonists as a result of delayed PS expression on platelets, which leads to delayed assembly of the membrane-dependent procoagulant complexes and a second wave of thrombin generation. PMID:23405196
A homogeneous superconducting magnet design using a hybrid optimization algorithm
NASA Astrophysics Data System (ADS)
Ni, Zhipeng; Wang, Qiuliang; Liu, Feng; Yan, Luguang
2013-12-01
This paper employs a hybrid optimization algorithm with a combination of linear programming (LP) and nonlinear programming (NLP) to design the highly homogeneous superconducting magnets for magnetic resonance imaging (MRI). The whole work is divided into two stages. The first LP stage provides a global optimal current map with several non-zero current clusters, and the mathematical model for the LP was updated by taking into account the maximum axial and radial magnetic field strength limitations. In the second NLP stage, the non-zero current clusters were discretized into practical solenoids. The superconducting conductor consumption was set as the objective function both in the LP and NLP stages to minimize the construction cost. In addition, the peak-peak homogeneity over the volume of imaging (VOI), the scope of 5 Gauss fringe field, and maximum magnetic field strength within superconducting coils were set as constraints. The detailed design process for a dedicated 3.0 T animal MRI scanner was presented. The homogeneous magnet produces a magnetic field quality of 6.0 ppm peak-peak homogeneity over a 16 cm by 18 cm elliptical VOI, and the 5 Gauss fringe field was limited within a 1.5 m by 2.0 m elliptical region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chou Chau, Yuan-Fong, E-mail: chou.fong@ubd.edu.bn; Lim, Chee Ming; Kumara, N. T. R. N.
Tunable surface plasmon resonance (SPR) and dipole cavity plasmon modes of the scattering cross section (SCS) spectra on the single solid-gold/gold-shell nanorod have been numerically investigated by using the finite element method. Various effects, such as the influence of SCS spectra under x- and y-polarizations on the surface of the single solid-gold/gold-shell nanorod, are discussed in detail. With the single gold-shell nanorod, one can independently tune the relative SCS spectrum width by controlling the rod length and rod diameter, and the surface scattering by varying the shell thickness and polarization direction, as well as the dipole peak energy. These behaviorsmore » are consistent with the properties of localized SPRs and offer a way to optically control and produce selected emission wavelengths from the single solid-gold/gold-shell nanorod. The electric field and magnetic distributions provide us a qualitative idea of the geometrical properties of the single solid-gold/gold-shell nanorod on plasmon resonance.« less
NASA Astrophysics Data System (ADS)
Bin, Wang; Dong, Shiyun; Yan, Shixing; Gang, Xiao; Xie, Zhiwei
2018-03-01
Picosecond laser has ultrashort pulse width and ultrastrong peak power, which makes it widely used in the field of micro-nanoscale fabrication. polydimethylsiloxane (PDMS) is a typical silicone elastomer with good hydrophobicity. In order to further improve the hydrophobicity of PDMS, the picosecond laser was used to fabricate a grid-like microstructure on the surface of PDMS, and the relationship between hydrophobicity of PDMS with surface microstructure and laser processing parameters, such as processing times and cell spacing was studied. The results show that: compared with the unprocessed PDMS, the presence of surface microstructure significantly improved the hydrophobicity of PDMS. When the number of processing is constant, the hydrophobicity of PDMS decreases with the increase of cell spacing. However, when the cell spacing is fixed, the hydrophobicity of PDMS first increases and then decreases with the increase of processing times. In particular, when the times of laser processing is 6 and the cell spacing is 50μm, the contact angle of PDMS increased from 113° to 154°, which reached the level of superhydrophobic.
Marangoni-flow-induced partial coalescence of a droplet on a liquid/air interface
NASA Astrophysics Data System (ADS)
Sun, Kai; Zhang, Peng; Che, Zhizhao; Wang, Tianyou
2018-02-01
The coalescence of a droplet and a liquid/air interface of lower surface tension was numerically studied by using the lattice Boltzmann phase-field method. The experimental phenomenon of droplet ejection observed by Blanchette et al. [Phys. Fluids 21, 072107 (2009), 10.1063/1.3177339] at sufficiently large surface tension differences was successfully reproduced for the first time. Furthermore, the emergence, disappearance, and re-emergence of "partial coalescence" with increasing surface tension difference was observed and explained. The re-emergence of partial coalescence under large surface tension differences is caused by the remarkable lifting motion of the Marangoni flow, which significantly retards the vertical collapse. Two different modes of partial coalescence were identified by the simulation, namely peak injection occurs at lower Ohnesorge numbers and bottom pinch-off at higher Ohnesorge numbers. By comparing the characteristic timescales of the upward Marangoni flow with that of the downward flow driven by capillary pressure, a criterion for the transition from partial to total coalescence was derived based on scaling analysis and numerically validated.
NASA Astrophysics Data System (ADS)
Chou Chau, Yuan-Fong; Lim, Chee Ming; Lee, Chuanyo; Huang, Hung Ji; Lin, Chun-Ting; Kumara, N. T. R. N.; Yoong, Voo Nyuk; Chiang, Hai-Pang
2016-09-01
Tunable surface plasmon resonance (SPR) and dipole cavity plasmon modes of the scattering cross section (SCS) spectra on the single solid-gold/gold-shell nanorod have been numerically investigated by using the finite element method. Various effects, such as the influence of SCS spectra under x- and y-polarizations on the surface of the single solid-gold/gold-shell nanorod, are discussed in detail. With the single gold-shell nanorod, one can independently tune the relative SCS spectrum width by controlling the rod length and rod diameter, and the surface scattering by varying the shell thickness and polarization direction, as well as the dipole peak energy. These behaviors are consistent with the properties of localized SPRs and offer a way to optically control and produce selected emission wavelengths from the single solid-gold/gold-shell nanorod. The electric field and magnetic distributions provide us a qualitative idea of the geometrical properties of the single solid-gold/gold-shell nanorod on plasmon resonance.
Theoretical analysis of optical properties and sensing in a dual-layer asymmetric metamaterial
NASA Astrophysics Data System (ADS)
Xu, Hui; Li, Hongjian; He, Zhihui; Chen, Zhiquan; Zheng, Mingfei; Zhao, Mingzhuo
2018-01-01
Surface plasmon polaritons (SPPs) have undisputed advantages like strong enhancement of the local electric field and much better adaptability to nano architectures. Here, we propose a three-dimensional plasmonic metamaterial consist of two nanorod layers, where this system comprises two silver bars stacked above another two symmetric silver bars. We use a theoretical model, which well explains the generation of plasmon induced transparency (PIT) phenomena. The highest reflection and absorption can reach about ninety percent and forty percent by tuning the asymmetry, respectively. As one of the applications, plasmonic sensors rely either on surface plasmon polaritons or on localized surface plasmons on continuous or nanostructured noble-metal surfaces to detect many events. In the sensing devices, an important comparative parameter of sensing devices is the figure of merit (FOM), and we also demonstrate the FOM via changing the refractive index of environmental dielectric. By adjusting the parameters, we can realize a high FOM, and an interesting double-peak sensing is also obtained in this plasmonic metamaterial sensor. The proposed model and findings may provide guidance for fundamental research of the integrated plasmonic nanosensor applications.
Terahertz modulation based on surface plasmon resonance by self-gated graphene
NASA Astrophysics Data System (ADS)
Qian, Zhenhai; Yang, Dongxiao; Wang, Wei
2018-05-01
We theoretically and numerically investigate the extraordinary optical transmission through a terahertz metamaterial composed of metallic ring aperture arrays. The physical mechanism of different transmission peaks is elucidated to be magnetic polaritons or propagation surface plasmons with the help of surface current and electromagnetic field distributions at respective resonance frequencies. Then, we propose a high performance terahertz modulator based on the unique PSP resonance and combined with the metallic ring aperture arrays and a self-gated parallel-plate graphene capacitor. Because, to date, few researches have exhibited gate-controlled graphene modulation in terahertz region with low insertion losses, high modulation depth and low control voltage at room temperature. Here, we propose a 96% amplitude modulation with 0.7 dB insertion losses and ∼5.5 V gate voltage. Besides, we further study the absorption spectra of the modulator. When the transmission of modulator is very low, a 91% absorption can be achieved for avoiding damaging the source devices.
Flare differentially rotates sunspot on Sun's surface
Liu, Chang; Xu, Yan; Cao, Wenda; Deng, Na; Lee, Jeongwoo; Hudson, Hugh S.; Gary, Dale E.; Wang, Jiasheng; Jing, Ju; Wang, Haimin
2016-01-01
Sunspots are concentrations of magnetic field visible on the solar surface (photosphere). It was considered implausible that solar flares, as resulted from magnetic reconnection in the tenuous corona, would cause a direct perturbation of the dense photosphere involving bulk motion. Here we report the sudden flare-induced rotation of a sunspot using the unprecedented spatiotemporal resolution of the 1.6 m New Solar Telescope, supplemented by magnetic data from the Solar Dynamics Observatory. It is clearly observed that the rotation is non-uniform over the sunspot: as the flare ribbon sweeps across, its different portions accelerate (up to ∼50° h−1) at different times corresponding to peaks of flare hard X-ray emission. The rotation may be driven by the surface Lorentz-force change due to the back reaction of coronal magnetic restructuring and is accompanied by a downward Poynting flux. These results have direct consequences for our understanding of energy and momentum transportation in the flare-related phenomena. PMID:27721463
NASA Astrophysics Data System (ADS)
Nath, Jyotishman; Mallik, Sabuj; Borah, Anil
2015-04-01
The effect of ageing and intermetallic compound formation on the surface mount solder joints and its shear strength behavior under extreme mechanical and thermal conditions have been discussed in this paper. The specimens used are solder paste (Sn3.8Ag0.7Cu), bench marker II printed circuit boards (PCB), resistors 1206 and the fabrication of solder joints makes use of conventional surface mount technology (SMT). Reflow process was carried out at a peak temperature of 250 °C and the test samples were exposed to isothermal ageing at a constant temperature of 150 °C for a period of 600 h. Shear test was conducted on the PCB's. The shear strength of the solder joints rapidly increased during isothermal ageing to a certain time period and then started decreasing. Field emission scanning electron microscopy (FESEM) micrograph of the solder joint and energy dispersive X-ray (EDX) was performed on the solder sample to verify the formation of intermetallic compounds.
Method for improve x-ray diffraction determinations of residual stress in nickel-base alloys
Berman, Robert M.; Cohen, Isadore
1990-01-01
A process for improving the technique of measuring residual stress by x-ray diffraction in pieces of nickel-base alloys which comprises covering part of a predetermined area of the surface of a nickel-base alloy with a dispersion, exposing the covered and uncovered portions of the surface of the alloy to x-rays by way of an x-ray diffractometry apparatus, making x-ray diffraction determinations of the exposed surface, and measuring the residual stress in the alloy based on these determinations. The dispersion is opaque to x-rays and serves a dual purpose since it masks off unsatisfactory signals such that only a small portion of the surface is measured, and it supplies an internal standard by providing diffractogram peaks comparable to the peaks of the nickel alloy so that the alloy peaks can be very accurately located regardless of any sources of error external to the sample.
XPS and UPS studies on electronic structure of Li 2O
NASA Astrophysics Data System (ADS)
Tanaka, Satoru; Taniguchi, Masaki; Tanigawa, Hisashi
2000-12-01
The adsorption behavior of H 2O on Li 2O was studied by X-ray photo electron spectroscopy (XPS) and ultraviolet photo electron spectroscopy (UPS). XPS and UPS spectra of Li 2O single crystals which were exposed to different pressure of H 2O vapor were observed. In O(1s) region, two peaks were observed and they were assigned to O(1s) in precipitated LiOH on the surface and O(1s) in Li 2O. After H 2O exposure, a peak broadening and an appearance of a new peak were observed at the higher binding energy region than O(1s) in Li 2O. They were attributed to surface -OH and H 2O molecule adsorbed on the surface. The adsorption behavior of H 2O was discussed from the observation of electronic structure in Li 2O surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Dongxing; Wu, Jiarui; Gu, Ying, E-mail: ygu@pku.edu.cn
2014-09-15
We propose tailoring of the double Fano profiles via plasmon-assisted quantum interference in a hybrid exciton-plasmon system. Tailoring is performed by the interference between two exciton channels interacting with a common localized surface plasmon. Using an applied field of low intensity, the absorption spectrum of the hybrid system reveals a double Fano lineshape with four peaks. For relatively large field intensity, a broad flat window in the absorption spectrum appears which results from the destructive interference between excitons. Because of strong constructive interference, this window vanishes as intensity is further increased. We have designed a nanometer bandpass optical filter formore » visible light based on tailoring of the optical spectrum. This study provides a platform for quantum interference that may have potential applications in ultracompact tunable quantum devices.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ikegami, M.; Iwashita, Y.; Shirai, T.
MeV quasi-mono-energetic proton beam is produced by a combination of a synchronous radio frequency (rf) electric field and laser-plasma ion acceleration. The experiment was carried out at the Kansai Photon Science Institute, JAEA, using the Ti:Sapphire laser system called J-KAREN. The proton beam is emitted normal to the rear surface of the thin polyimide target of the thickness 7.5 {mu}m irradiated at peak intensity of 4x10{sup 18} W/cm{sup 2}. The energy spread is compressed from 100% to less than 11% at FWHM by the rf field. The focusing and defocusing effect of the transverse direction is also observed. These aremore » also studied by a Monte Carlo simulation. The relation between the transverse focusing and the energy spectrum of the phase-rotated beam is systematically shown by the simulation.« less
A COUPLED 2 × 2D BABCOCK–LEIGHTON SOLAR DYNAMO MODEL. II. REFERENCE DYNAMO SOLUTIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lemerle, Alexandre; Charbonneau, Paul, E-mail: lemerle@astro.umontreal.ca, E-mail: paulchar@astro.umontreal.ca
In this paper we complete the presentation of a new hybrid 2 × 2D flux transport dynamo (FTD) model of the solar cycle based on the Babcock–Leighton mechanism of poloidal magnetic field regeneration via the surface decay of bipolar magnetic regions (BMRs). This hybrid model is constructed by allowing the surface flux transport (SFT) simulation described in Lemerle et al. to provide the poloidal source term to an axisymmetric FTD simulation defined in a meridional plane, which in turn generates the BMRs required by the SFT. A key aspect of this coupling is the definition of an emergence function describing the probabilitymore » of BMR emergence as a function of the spatial distribution of the internal axisymmetric magnetic field. We use a genetic algorithm to calibrate this function, together with other model parameters, against observed cycle 21 emergence data. We present a reference dynamo solution reproducing many solar cycle characteristics, including good hemispheric coupling, phase relationship between the surface dipole and the BMR-generating internal field, and correlation between dipole strength at cycle maximum and peak amplitude of the next cycle. The saturation of the cycle amplitude takes place through the quenching of the BMR tilt as a function of the internal field. The observed statistical scatter about the mean BMR tilt, built into the model, acts as a source of stochasticity which dominates amplitude fluctuations. The model thus can produce Dalton-like epochs of strongly suppressed cycle amplitude lasting a few cycles and can even shut off entirely following an unfavorable sequence of emergence events.« less
Thermal desorption of CO and H2 from degassed 304 and 347 stainless steel
NASA Technical Reports Server (NTRS)
Rezaie-Serej, S.; Outlaw, R. A.
1994-01-01
Thermal desorption spectroscopy (TDS), along with Auger electron spectroscopy, was used to study the desorption of H2 and CO from baked 304 and 347 stainless-steel samples exposed only to residual gases. Both 347 and 304 samples gave identical TDS spectra. The spectra for CO contained a sharp leading peak centered in the temperature range 410-440C and an exponentially increasing part for temperatures higher than 500C, with a small peak around 600C appearing as a shoulder. The leading peak followed a second-order desorption behavior with an activation energy of 28+/-2 kcal/mol, suggesting that the rate-limiting step for this peak is most likely a surface reaction that produces the CO molecules in the surface layer. The amount of desorbed CO corresponding to this peak was approximately 0.5X10(exp 14) molecules/cm(exp 2) . The exponentially rising part of the CO spectrum appeared to originate from a bulk diffusion process. The TDS spectrum for H2 consisted of a main peak centered also in the temperature range 410-440C, with two small peaks appearing as shoulders at approximately 500 and 650C. The main peak in this case also displayed a second-order behavior with an activation energy of 14+/-2 kcal/mol. The amount of desorbed H2, approximately 1.9X 10(exp 15) molecules/cm(exp 2) , appeared to be independent of the concentration of hydrogen in the bulk, indicating that the majority of the desorbed H2 originated from the surface layer.
Mechanisms of ripple migration on a natural sand bed under waves
NASA Astrophysics Data System (ADS)
Carlson, E.; Foster, D. L.
2016-02-01
In nearshore environments, the wave bottom boundary layer is of particular importance to bedform migration and evolution as it is the location of energy transfer from the water column to the bed. This effort examines the mechanisms responsible for bedform evolution and migration. In a field scale laboratory study, sand ripple dynamics were measured using particle image velocimetry. Both monotonic (T = 4 s, 8 s), bimodal (wave pair T = 3.7, 4.3 s), and solitary wave cases were examined. Bedform states included orbital and anorbital rippled beds with wavelengths ranging from 5 to 15 cm. During cases of moderately high energy, time series of instantaneous ripple migration rates oscillated with the same frequency as the surface waves. The oscillatory ripple migration signature was asymmetric, with higher amplitudes during onshore directed movement. This asymmetry leads to a net onshore migration, ranging from 0.1 to 0.6 cm/min in the wave conditions mentioned. The cyclic motion of the ripple field was compared to concomitant transfer mechanisms affecting the boundary layer dynamics including: bed shear stress, coherent structure generation, and free stream velocity. Coherent structures were identified using the swirling strength criterion, and were present during each half wave developing in the ripple troughs. Two estimates of bed shear stress were made: 1) Meyer-Peter Muller method using the bed migration to determine the necessary stress and 2) double averaging of the velocity field and partitioning into components of stress, following the methods of Rodriguez-Abudo and Foster (2014). Peak ripple migration rates occurred during strengthening onshore flow, which coincides with peak bed shear stresses and the onset of coherent structure formation. Higher energy bimodal wave groups caused periods of high suspension which were coincident with peak onshore migrations, during the low velocity periods of the bimodal forcing the bed did not migrate.
NASA Astrophysics Data System (ADS)
Özcan, Selçuk; Açıkbaş, Gökhan; Çalış Açıkbaş, Nurcan
2018-04-01
Hydrophobic surfaces are also known to have antimicrobial effect by restricting the adherence of microorganisms. However, ceramic products are produced by high temperature processes resulting in a hydrophilic surface. In this study, an industrial ceramic wall tile glaze composition was modified by the inclusion of metallic zinc powder in the glaze suspension applied on the pre-sintered wall tile bodies by spraying. The glazed tiles were gloss fired at industrially applicable peak temperatures ranging from 980 °C to 1100 °C. The fired tile surfaces were coated with a commercial fluoropolymer avoiding water absorption. The surfaces were characterized with SEM, EDS, XRD techniques, roughness, sessile water drop contact angle, surface energy measurements, and standard antimicrobial tests. The surface hydrophobicity and the antimicrobial activity results were compared with that of unmodified, uncoated gloss fired wall tiles. A superhydrophobic contact angle of 150° was achieved at 1000 °C peak temperature due to the formation of micro-structured nanocrystalline zinc oxide granules providing a specific surface topography. At higher peak temperatures the hydrophobicity was lost as the specific granular surface topography deteriorated with the conversion of zinc oxide granules to the ubiquitous willemite crystals embedded in the glassy matrix. The antimicrobial efficacy also correlated with the hydrophobic character.
Local properties of the large-scale peaks of the CMB temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marcos-Caballero, A.; Martínez-González, E.; Vielva, P., E-mail: marcos@ifca.unican.es, E-mail: martinez@ifca.unican.es, E-mail: vielva@ifca.unican.es
2017-05-01
In the present work, we study the largest structures of the CMB temperature measured by Planck in terms of the most prominent peaks on the sky, which, in particular, are located in the southern galactic hemisphere. Besides these large-scale features, the well-known Cold Spot anomaly is included in the analysis. All these peaks would contribute significantly to some of the CMB large-scale anomalies, as the parity and hemispherical asymmetries, the dipole modulation, the alignment between the quadrupole and the octopole, or in the case of the Cold Spot, to the non-Gaussianity of the field. The analysis of the peaks ismore » performed by using their multipolar profiles, which characterize the local shape of the peaks in terms of the discrete Fourier transform of the azimuthal angle. In order to quantify the local anisotropy of the peaks, the distribution of the phases of the multipolar profiles is studied by using the Rayleigh random walk methodology. Finally, a direct analysis of the 2-dimensional field around the peaks is performed in order to take into account the effect of the galactic mask. The results of the analysis conclude that, once the peak amplitude and its first and second order derivatives at the centre are conditioned, the rest of the field is compatible with the standard model. In particular, it is observed that the Cold Spot anomaly is caused by the large value of curvature at the centre.« less
Linear Optical Response of Silicon Nanotubes Under Axial Magnetic Field
NASA Astrophysics Data System (ADS)
Chegel, Raad; Behzad, Somayeh
2013-01-01
We investigated the optical properties of silicon nanotubes (SiNTs) in the low energy region, E < 0.5 eV, and middle energy region, 1.8 eV < E < 2 eV. The dependence of optical matrix elements and linear susceptibility on radius and magnetic field, in terms of one-dimensional (1-d) wavevector and subband index, is calculated using the tight-binding approximation. It is found that, on increasing the nanotube diameter, the low-energy peaks show red-shift and their intensities are decreased. Also, we found that in the middle energy region all tubes have two distinct peaks, where the energy position of the second peak is approximately constant and independent of the nanotube diameter. Comparing the band structure of these tubes in different magnetic fields, several differences are clearly seen, such as splitting of degenerate bands, creation of additional band-edge states, and bandgap modification. It is found that applying the magnetic field leads to a phase transition in zigzag silicon hexagonal nanotubes (Si h-NTs), unlike in zigzag silicon gear-like nanotubes (Si g-NTs), which remain semiconducting in any magnetic field. We found that the axial magnetic field has two effects on the linear susceptibility spectrum, namely broadening and splitting. The axial magnetic field leads to the creation of a peak with energy less than 0.2 eV in metallic Si h-NTs, whereas in the absence of a magnetic field such a transition is not allowed.
Ion velocity distributions in dipolarization events: Distributions in the central plasma sheet
NASA Astrophysics Data System (ADS)
Birn, J.; Runov, A.; Zhou, X.-Z.
2017-08-01
Using combined MHD/test particle simulations, we further explore characteristic ion velocity distributions in the central plasma sheet (CPS) in relation to dipolarization events. Distributions in the CPS within the dipolarized flux bundle (DFB) that follows the passage of a dipolarization front typically show two opposing low subthermal-energy beams with a ring-like component perpendicular to the magnetic field at about twice the thermal energy. The dominance of the perpendicular anisotropy and a field-aligned peak at lower energy agree qualitatively with ion distribution functions derived from "Time History of Events and Macroscale Interactions during Substorms" observations. At locations somewhat off the equatorial plane the field-aligned peaks are shifted by a field-aligned component of the bulk flow, such that one peak becomes centered near zero net velocity, which makes it less likely to be observed. The origins of the field-aligned peaks are low-energy lobe (or near plasma sheet boundary layer) regions, while the ring distribution originates mostly from thermal plasma sheet particles on extended field lines. The acceleration mechanisms are also quite different: the beam ions are accelerated first by the E × B drift motion of the DFB and then by a slingshot effect of the earthward convecting DFB (akin to first-order Fermi, type B, acceleration), which causes an increase in field-aligned speed. In contrast, the ring particles are accelerated by successive, betatron-like acceleration after entering the high electric field region of an earthward propagating DFB.
NASA Astrophysics Data System (ADS)
Zulikifli, Farah Wahida Ahmad; Yazid, Hanani; Halim, Muhammad Zikri Budiman Abdul; Jani, Abdul Mutalib Md
2017-09-01
Carbon nanotubes (CNTs) have received impressive consideration as support materials of noble metal catalysts in heterogeneous catalysis due to their good mechanical strength, large surface area and good durability under harsh conditions. The interaction between CNTs and noble metal nanoparticles (NPs) gives an unusual unique microstructure properties and or modification of the electron density of the noble metal clusters, and enhances the catalytic activity. In this study, the MWCNTs were first treated with a mixture of concentrated sulfuric and nitric acid by sonication to improve its dispersibility and to introduce the carboxylic (-COOH) groups on CNTs surfaces. Gold nanoparticles (Au NPs) on multiwalled carbon nanotubes (MWCNTs) were synthesized by the deposition precipitation (DP) method as this method is simpler, low cost, and excellent method. Then, the effect of reducing agent (NaBH4) on gold distribution on the support of MWCNTs was also studied. Dispersion test, Fourier Transform Infrared spectroscopy (FTIR) and Field Emission Scanning Electron Microscope (FESEM) are all used to characterize the functionalized MWCNTs (fCNTs) and the Au NPs-fCNTs catalyst. There are three important peaks in functionalized MWCNTs which correspond to C=O, O-H, and C-O absorption peaks, as a result of the oxidation of COOH groups on the surface of CNTs. The absorption band at 1717 cm-1 is corresponded to C=O stretching of COOH, while the absorption bands at 3384 cm-1 and 1011cm-1 are associated with O-H bending and C-O stretching, respectively. Surface morphology of Au NPs-fCNTs R4 and Au NPs- fCNTs WR catalyst by FESEM showed that the Au NPs of 19.22 ± 2.33 nm and 23.05 ± 2.57 nm size were successfully deposited on CNTs, respectively.
A fundamental mode Nd:GdVO4 laser pumped by a large aperture 808 nm VCSEL
NASA Astrophysics Data System (ADS)
Hao, Y. Q.; Ma, J. L.; Yan, C. L.; Liu, G. J.; Ma, X. H.; Gong, J. F.; Feng, Y.; Wei, Z. P.; Wang, Y. X.; Zhao, Y. J.
2013-05-01
A fundamental mode Nd:GdVO4 laser pumped by a vertical cavity surface emitting laser (VCSEL) is experimentally demonstrated. The VCSEL has a circular output-beam which makes it easier for it to be directly coupled to a Nd:GdVO4 microcrystal. In our research, a large aperture 808 nm VCSEL, with a multi-ring-shaped aperture (MRSA) and an almost Gaussian-shaped far-field profile, is used as the pumping source. Experimental results for the Nd:GdVO4 laser pumped by the VCSEL are presented. The maximum output peak power of 0.754 W is obtained under a pump peak power of 1.3 W, and the corresponding opto-optic conversion efficiency is 58.1%. The average slope efficiency is 65.8% from the threshold pump power of 0.2 W to the pump power of 1.3 W. The laser beam quality factors are measured to be {M}x2=1.2 0 and {M}y2=1.1 5.
Molecular dynamics simulations of liquid silica crystallization.
Niu, Haiyang; Piaggi, Pablo M; Invernizzi, Michele; Parrinello, Michele
2018-05-07
Silica is one of the most abundant minerals on Earth and is widely used in many fields. Investigating the crystallization of liquid silica by atomic simulations is of great importance to understand the crystallization mechanism; however, the high crystallization barrier and the tendency of silica to form glasses make such simulations very challenging. Here we have studied liquid silica crystallization to [Formula: see text]-cristobalite with metadynamics, using X-ray diffraction (XRD) peak intensities as collective variables. The frequent transitions between solid and liquid of the biased runs demonstrate the highly successful use of the XRD peak intensities as collective variables, which leads to the convergence of the free-energy surface. By calculating the difference in free energy, we have estimated the melting temperature of [Formula: see text]-cristobalite, which is in good agreement with the literature. The nucleation mechanism during the crystallization of liquid silica can be described by classical nucleation theory. Copyright © 2018 the Author(s). Published by PNAS.
Audible thunder characteristic and the relation between peak frequency and lightning parameters
NASA Astrophysics Data System (ADS)
Yuhua, Ouyang; Ping, Yuan
2012-02-01
In recent summers, some natural lightning optical spectra and audible thunder signals were observed. Twelve events on 15 August 2008 are selected as samples since some synchronizing information about them are obtained, such as lightning optical spectra, surface E-field changes, etc. By using digital filter and Fourier transform, thunder frequency spectra in observation location have been calculated. Then the two main propagation effects, finite amplitude propagation and attenuation by air, are calculated. Upon that we take the test thunder frequency spectra and work backward to recalculate the original frequency spectra near generation location. Thunder frequency spectra and the frequency distribution varying with distance are researched. According to the theories on plasma, the channel temperature and electron density are further calculated by transition parameters of lines in lightning optical spectra. Pressure and the average ionization degree of each discharge channel are obtained by using Saha equations, charge conservation equations and particle conservation equations. Moreover, the relationship between the peak frequency of each thunder and channel parameters of the lightning is studied.
NASA Astrophysics Data System (ADS)
Luthra, Antriksh
With the advances in plasmonics, new fields have evolved involving the mixing of light with various states like Surface Plasmons (SPs), Surface Phonons (SPh), molecular emitters or resonators, and wavelength scale cavities. This work concentrates on the interaction of infrared (IR) light with SPs, cavity modes, and molecular vibrations. In the first chapter, the field of Plasmonics is introduced from a classical and a quantum mechanical perspective and a comparison of both is presented. In Chapter 2, the interaction of cavity modes with vibrations is discussed. Briefly, when IR light is illuminated upon an etalon, its fringes disperse as function of angle. If there is a dielectric in a cavity having a vibrational transition in the fringe region, it leads to a strong interaction that gives rise to a Rabi splitting. Data was obtained from collaborators at the U.S. Naval Research Laboratory (NRL) and a derivation for the dispersion of etalon cavity modes was carried out to model the peak positions of the fringes. In Chapter 3, the excitation of Surface Plasmons Polaritons (SPPs) on metal bi-gratings is discussed. The resonance condition occurs when the momentum of the IR light parallel to the surface plus the grating vector match the momentum of the SPP. Experiments were performed in the GammaX space (ky=0) and the resonance peak positions were modeled with SPP momentum matching equations. In Chapter 4, the application of plasmonics in the mid-IR frequency range that overlaps with the frequencies of molecular vibrations is explored. The plasmonic mesh has interesting optical properties, it focuses more light in the holes and that leads to an enhancement of the IR spectra of a particle trapped in the mesh hole. In this work, plasmonic mesh is used to study airborne particles that are usually difficult to study using FTIR spectroscopy due to strong Mie scattering effect. Respiring dust particles of 4 microns size has significant negative health consequences. Different environments pose different health hazards. Chemical insights of such dust collected from four very different environments: lab air, home air filter, the 11 September 2001 WTC event and the International Space Station is reported. These particles were collected by pumping air through plasmonic metal films with a 12.6 mum square lattice of 5 mum square holes, enabling us to record "scatter-free" IR absorption spectra of individual particles whose peaks reveal their IR active components. In Chapter 5, statistical methods such as single value decomposition (SVD) and support vector machine (SVM) informed with a Mie-Bruggeman model is presented, analyzing the spectral data from different dust environments.
NASA Astrophysics Data System (ADS)
Serafin, S.; De Wekker, S.; Knievel, J. C.
2013-12-01
Granite Peak, located in the Dugway Proving Ground (DPG) in western Utah, is an isolated mountain rising ~800 m above the surrounding terrain. It has an approximately ellipsoidal shape oriented in the NNW-SSE direction and its main axes are respectively ~10- and ~6-km long. A flat dry lake (playa) lies west and northwest of the peak, while a NW-sloping plain covered by herbaceous vegetation extends to the eastern part of DPG. Because of these topography and land-use features, a variety of different flow phenomena are expected to occur over and around Granite Peak. These include upslope and drainage winds, local breeze systems, gap flows, dynamically accelerated downslope winds and potentially boundary layer separation and the formation of wakes. Consequently, the area is an ideal location for studying the interaction between mountain flows and the atmospheric boundary layer. Since the 1990s, DPG has used a continuously operating meso-gamma-scale analysis and forecast system (4DWX) developed by the NCAR's Research Applications Laboratory (RAL). The system is based on WRF, runs with a grid spacing of 1.1-km in its innermost domain, applies observational nudging in a three-hour cycle, and provides weather analyses and forecasts at hourly intervals. In this study, model output from the 4DWX system is used to build a short-term climatography (2010-2012) of the prevailing boundary layer flow regimes in DPG. Measurements from the network of Surface Area Mesonet Stations (SAMS) operative at DPG are used to verify the quality of 4DWX simulations and their ability to reproduce the dominant flow patterns. The study then focuses on boundary-layer separation (BLS) events: near-surface wind, temperature and pressure fields from 4DWX are analysed in order to identify the most favorable regions for the onset of separation. A limited set of events, identified by means of an objective procedure, is then studied in detail in order to understand the preferred conditions for the development of the phenomenon. S-SW flows with considerable near-surface veering and an embedded low-level jet are found to be the most common scenario leading to leeside boundary-layer separation. Example of a BLS event in the lee of Granite Peak (near gridpoints x=12, y=15). Near-surface wind speed (in m/s) and vectors are displayed on the 4DWX model grid (Δx: 1.1 km).
Terahertz radiation in graphene hyperbolic medium excited by an electric dipole.
Feng, Xiaodong; Gong, Sen; Zhong, Renbin; Zhao, Tao; Hu, Min; Zhang, Chao; Liu, Shenggang
2018-03-01
In this Letter, the enhanced and directional radiation in a wide terahertz (THz) frequency range in a graphene hyperbolic medium excited by an electric dipole is presented. The numerical simulations and theoretical analyses indicate that the enhanced radiation comes from the strong surface plasmon couplings in the graphene hyperbolic medium, consisting of alternative graphene and dielectric substrate layers. The simulation results also show that the peak power flow of the enhanced THz radiation in the graphene hyperbolic medium is dramatically enhanced by more than 1 order of magnitude over that in a general medium within a certain distance from the dipole, and the electromagnetic fields are strongly concentrated in a narrow angle. Also, the radiation fields can be manipulated, and the fields' angular distributions can be tuned by adjusting the dielectric permittivity and thickness of the substrates, and the chemical potential of graphene. Accordingly, it provides a good opportunity for developing miniature, integratable, high-power-density, and tunable radiation sources in the THz band at room temperature.