Sample records for peak total force

  1. Changes in Manipulative Peak Force Modulation and Time to Peak Thrust among First-Year Chiropractic Students Following a 12-Week Detraining Period.

    PubMed

    Starmer, David J; Guist, Brett P; Tuff, Taylor R; Warren, Sarah C; Williams, Matthew G R

    2016-05-01

    The purpose of this study was to analyze differences in peak force modulation and time-to-peak thrust in posterior-to-anterior (PA) high-velocity-low-amplitude (HVLA) manipulations in first-year chiropractic students prior to and following a 12-week detraining period. Chiropractic students (n=125) performed 2 thrusts prior to and following a 12-week detraining period: total peak force targets were 400 and 600 N, on a force-sensing table using a PA hand contact of the participant's choice (bilateral hypothenar, bilateral thenar, or cross bilateral). Force modulation was compared to defined target total peak force values of 600 and 400 N, and time-to-peak thrust was compared between data sets using 2-tailed paired t-tests. Total peak force for the 600 N intensity varied by 124.11 + 65.77 N during the pre-test and 123.29 + 61.43 N during the post-test compared to the defined target of 600 N (P = .90); total peak force for the 400 N intensity varied by 44.91 + 34.67 N during the pre-test and 44.60 + 32.63 N during the post-test compared to the defined target of 400 N (P = .57). Time-to-peak thrust for the 400 N total peak force was 137.094 + 42.47 milliseconds during the pre-test and 125.385 + 37.46 milliseconds during the post-test (P = .0004); time-to-peak thrust for the 600 N total peak force was 136.835 + 40.48 milliseconds during the pre-test and 125.385 + 33.78 milliseconds during the post-test (P = .03). The results indicate no drop-off in the ability to modulate force for either thrust intensity, but did indicate a statistically significant change in time-to-peak thrust for the 400 N total peak force thrust intensity in first-year chiropractic students following a 12-week detraining period. Copyright © 2016 National University of Health Sciences. Published by Elsevier Inc. All rights reserved.

  2. Knee contact forces and lower extremity support moments during running in young individuals post-partial meniscectomy.

    PubMed

    Willy, R W; Bigelow, M A; Kolesar, A; Willson, J D; Thomas, J S

    2017-01-01

    While partial meniscectomy results in a compromised tibiofemoral joint, little is known regarding tibiofemoral joint loading during running in individuals who are post-partial meniscectomy. It was hypothesized that individuals post-partial meniscectomy would run with a greater hip support moment, yielding reduced peak knee extension moments and reduced tibiofemoral joint contact forces. 3-D Treadmill running mechanics were evaluated in 23 athletic individuals post-partial meniscectomy (37.5 ± 19.0 months post-partial meniscectomy) and 23 matched controls. Bilateral hip, knee and ankle contributions to the total support moment and the peak knee extension moment were calculated. A musculoskeletal model estimated peak and impulse tibiofemoral joint contact forces. Knee function was quantified with the Knee injury and Osteoarthritis Outcome Score (KOOS). During running, the partial meniscectomy group had a greater hip support moment (p = 0.002) and a reduced knee support moment (p < 0.001) relative to the total support moment. This movement pattern was associated with a 14.5 % reduction (p = 0.019) in the peak knee extension moment. Despite these differences, there were no significant group differences in peak or impulse tibiofemoral joint contact forces. Lower KOOS Quality of Life scores were associated with greater hip support moment (p = 0.004, r = -0.58), reduced knee support moment (p = 0.006, r = 0.55) and reduced peak knee extension moment (p = 0.01, r = 0.52). Disordered running mechanics are present long term post-partial meniscectomy. A coordination strategy that shifts a proportion of the total support moment away from the knee to the hip reduces the peak knee extension moment, but does not equate to reduced tibiofemoral joint contact forces during running in individuals post-partial meniscectomy. III.

  3. Medial gastrocnemius structure and gait kinetics in spastic cerebral palsy and typically developing children: A cross-sectional study.

    PubMed

    Martín Lorenzo, Teresa; Rocon, Eduardo; Martínez Caballero, Ignacio; Lerma Lara, Sergio

    2018-05-01

    To compare medial gastrocnemius muscle-tendon structure, gait propulsive forces, and ankle joint gait kinetics between typically developing children and those with spastic cerebral palsy, and to describe significant associations between structure and function in children with spastic cerebral palsy.A sample of typically developing children (n = 9 /16 limbs) and a sample of children with spastic cerebral palsy (n = 29 /43 limbs) were recruited. Ultrasound and 3-dimensional motion capture were used to assess muscle-tendon structure, and propulsive forces and ankle joint kinetics during gait, respectively.Children with spastic cerebral palsy had shorter fascicles and muscles, and longer Achilles tendons than typically developing children. Furthermore, total negative power and peak negative power at the ankle were greater, while total positive power, peak positive power, net power, total vertical ground reaction force, and peak vertical and anterior ground reaction forces were smaller compared to typically developing children. Correlation analyses revealed that smaller resting ankle joint angles and greater maximum dorsiflexion in children with spastic cerebral palsy accounted for a significant decrease in peak negative power. Furthermore, short fascicles, small fascicle to belly ratios, and large tendon to fascicle ratios accounted for a decrease in propulsive force generation.Alterations observed in the medial gastrocnemius muscle-tendon structure of children with spastic cerebral palsy may impair propulsive mechanisms during gait. Therefore, conventional treatments should be revised on the basis of muscle-tendon adaptations.

  4. Force-time curve characteristics of dynamic and isometric muscle actions of elite women olympic weightlifters.

    PubMed

    Haff, G Gregory; Carlock, Jon M; Hartman, Michael J; Kilgore, J Lon; Kawamori, Naoki; Jackson, Janna R; Morris, Robert T; Sands, William A; Stone, Michael H

    2005-11-01

    Six elite women weightlifters were tested to evaluate force-time curve characteristics and intercorrelations of isometric and dynamic muscle actions. Subjects performed isometric and dynamic mid-thigh clean pulls at 30% of maximal isometric peak force and 100 kg from a standardized position on a 61.0 x 121.9 cm AMTI forceplate. Isometric peak force showed strong correlations to the athletes' competitive snatch, clean and jerk, and combined total (r = 0.93, 0.64, and 0.80 respectively). Isometric rate of force development showed moderate to strong relationships to the athletes' competitive snatch, clean and jerk, and combined total (r = 0.79, 0.69, and 0.80 respectively). The results of this study suggest that the ability to perform maximal snatch and clean and jerks shows some structural and functional foundation with the ability to generate high forces rapidly in elite women weightlifters.

  5. Finger Flexor Force Influences Performance in Senior Male Air Pistol Olympic Shooting

    PubMed Central

    Mon, Daniel; Zakynthinaki, María S.; Cordente, Carlos A.; Antón, Antonio J. Monroy; Rodríguez, Bárbara Rodríguez; Jiménez, David López

    2015-01-01

    The ability to stabilize the gun is crucial for performance in Olympic pistol shooting and is thought to be related to the shooters muscular strength. The present study examines the relation between performance and finger flexor force as well as shoulder abduction isometric force in senior male air pistol shooting. 46 Spanish national level shooters served as test subjects of the study. Two maximal force tests were carried out recording handgrip and deltoid force data under competition conditions, during the official training time at national Spanish championships. Performance was measured as the total score of 60 shots at competition. Linear regressions were calculated to examine the relations between performance and peak and average finger flexor forces, peak and average finger flexor forces relative to the BMI, peak and average shoulder abduction isometric forces, peak shoulder abduction isometric force relative to the BMI. The connection between performance and other variables such as age, weight, height, BMI, experience in years and training hours per week was also analyzed. Significant correlations were found between performance at competition and average and peak finger flexor forces. For the rest of the force variables no significant correlations were found. Significant correlations were also found between performance at competition and experience as well as training hours. No significant correlations were found between performance and age, weight, height or BMI. The study concludes that hand grip strength training programs are necessary for performance in air pistol shooting. PMID:26121145

  6. Finger Flexor Force Influences Performance in Senior Male Air Pistol Olympic Shooting.

    PubMed

    Mon, Daniel; Zakynthinaki, María S; Cordente, Carlos A; Antón, Antonio J Monroy; Rodríguez, Bárbara Rodríguez; Jiménez, David López

    2015-01-01

    The ability to stabilize the gun is crucial for performance in Olympic pistol shooting and is thought to be related to the shooters muscular strength. The present study examines the relation between performance and finger flexor force as well as shoulder abduction isometric force in senior male air pistol shooting. 46 Spanish national level shooters served as test subjects of the study. Two maximal force tests were carried out recording handgrip and deltoid force data under competition conditions, during the official training time at national Spanish championships. Performance was measured as the total score of 60 shots at competition. Linear regressions were calculated to examine the relations between performance and peak and average finger flexor forces, peak and average finger flexor forces relative to the BMI, peak and average shoulder abduction isometric forces, peak shoulder abduction isometric force relative to the BMI. The connection between performance and other variables such as age, weight, height, BMI, experience in years and training hours per week was also analyzed. Significant correlations were found between performance at competition and average and peak finger flexor forces. For the rest of the force variables no significant correlations were found. Significant correlations were also found between performance at competition and experience as well as training hours. No significant correlations were found between performance and age, weight, height or BMI. The study concludes that hand grip strength training programs are necessary for performance in air pistol shooting.

  7. Evaluation of peak force of a manually operated chiropractic adjusting instrument with an adapter for use in animals.

    PubMed

    Duarte, Felipe Coutinho Kullmann; Kolberg, Carolina; Barros, Rodrigo R; Silva, Vivian G A; Gehlen, Günter; Vassoler, Jakson M; Partata, Wania A

    2014-05-01

    This study was designed to assess the peak force of a manually operated chiropractic adjusting instrument, the Activator Adjusting Instrument 4 (AAI 4), with an adapter for use in animals, which has a 3- to 4-fold smaller contact surface area than the original rubber tip. Peak force was determined by thrusting the AAI 4 with the adapter or the original rubber tip onto a load cell. First, the AAI 4 was applied perpendicularly by a doctor of chiropractic onto the load cell. Then, the AAI 4 was fixed in a rigid framework and applied to the load cell. This procedure was done to prevent any load on the load cell before the thrust impulse. In 2 situations, trials were performed with the AAI 4 at all force settings (settings I, II, III, and IV, minimum to maximum, respectively). A total of 50000 samples per second over a period of 3 seconds were collected. In 2 experimental protocols, the use of the adapter in the AAI 4 increased the peak force only with setting I. The new value was around 80% of the maximum value found for the AAI 4. Nevertheless, the peak force values of the AAI 4 with the adapter and with the original rubber tip in setting IV were similar. The adapter effectively determines the maximum peak force value at force setting I of AAI 4. Copyright © 2014 National University of Health Sciences. Published by Mosby, Inc. All rights reserved.

  8. Unintentional force changes in cyclical tasks performed by an abundant system: Empirical observations and a dynamical model.

    PubMed

    Reschechtko, Sasha; Hasanbarani, Fariba; Akulin, Vladimir M; Latash, Mark L

    2017-05-14

    The study explored unintentional force changes elicited by removing visual feedback during cyclical, two-finger isometric force production tasks. Subjects performed two types of tasks at 1Hz, paced by an auditory metronome. One - Force task - required cyclical changes in total force while maintaining the sharing, defined as relative contribution of a finger to total force. The other task - Share task - required cyclical changes in sharing while keeping total force unchanged. Each trial started under full visual feedback on both force and sharing; subsequently, feedback on the variable that was instructed to stay constant was frozen, and finally feedback on the other variable was also removed. In both tasks, turning off visual feedback on total force elicited a drop in the mid-point of the force cycle and an increase in the peak-to-peak force amplitude. Turning off visual feedback on sharing led to a drift of mean share toward 50:50 across both tasks. Without visual feedback there was consistent deviation of the two force time series from the in-phase pattern (typical of the Force task) and from the out-of-phase pattern (typical of the Share task). This finding is in contrast to most earlier studies that demonstrated only two stable patterns, in-phase and out-of-phase. We interpret the results as consequences of drifts of parameters in a dynamical system leading in particular to drifts in the referent finger coordinates toward their actual coordinates. The relative phase desynchronization is caused by the right-left differences in the hypothesized drift processes, consistent with the dynamic dominance hypothesis. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Unintentional force changes in cyclical tasks performed by an abundant system: Empirical observations and a dynamical model

    PubMed Central

    Reschechtko, Sasha; Hasanbarani, Fariba; Akulin, Vladimir M.; Latash, Mark L.

    2017-01-01

    The study explored unintentional force changes elicited by removing visual feedback during cyclical, two-finger isometric force production tasks. Subjects performed two types of tasks at 1 Hz, paced by an auditory metronome. One – Force task – required cyclical changes in total force while maintaining the sharing, defined as relative contribution of a finger to total force. The other task – Share task – required cyclical changes in sharing while keeping total force unchanged. Each trial started under full visual feedback on both force and sharing; subsequently, feedback on the variable that was instructed to stay constant was frozen, and finally feedback on the other variable was also removed. In both tasks, turning off visual feedback on total force elicited a drop in the mid-point of the force cycle and an increase in the peak-to-peak force amplitude. Turning off visual feedback on sharing led to a drift of mean share toward 50:50 across both tasks. Without visual feedback there was consistent deviation of the two force time series from the in-phase pattern (typical of the Force task) and from the out-of-phase pattern (typical of the Share task). This finding is in contrast to most earlier studies that demonstrated only two stable patterns, in-phase and out-of-phase. We interpret the results as consequences of drifts of parameters in a dynamical system leading in particular to drifts in the referent finger coordinates toward their actual coordinates. The relative phase desynchronization is caused by the right-left differences in the hypothesized drift processes, consistent with the dynamic dominance hypothesis. PMID:28344070

  10. Inaccuracy of a physical strain trainer for the monitoring of partial weight bearing.

    PubMed

    Pauser, Johannes; Jendrissek, Andreas; Swoboda, Bernd; Gelse, Kolja; Carl, Hans-Dieter

    2011-11-01

    To investigate the use of a physical strain trainer for the monitoring of partial weight bearing. Case series with healthy volunteers. Orthopedic clinic. Healthy volunteers (N=10) with no history of foot complaints. Volunteers were taught to limit weight bearing to 10% body weight (BW) and 50% BW, monitored by a physical strain trainer. The parameters peak pressure, maximum force, force-time integral, and pressure-time integral were assessed by dynamic pedobarography when volunteers walked with full BW (condition 1), 50% BW (condition 2), and 10% BW (condition 3). With 10% BW (condition 3), forces with normative gait (condition 1) were statistically significantly reduced under the hindfoot where the physical strain trainer is placed. All pedobarographic parameters were, however, exceeded when the total foot was measured. A limitation to 10% BW with the physical strain trainer (condition 3) was equal to a bisection of peak pressure and maximum force for the total foot with normative gait (condition 1). Halved BW (condition 2) left a remaining mean 82% of peak pressure and mean 59% of maximum force from full BW (condition 1). The concept of controlling partial weight bearing with the hindfoot-addressing device does not represent complete foot loading. Such devices may be preferably applied in cases when the hindfoot in particular must be off-loaded. Other training devices (eg, biofeedback soles) that monitor forces of the total foot have to be used to control partial weight bearing of the lower limb accurately. Copyright © 2011 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  11. Computational fluid dynamics simulation of transcatheter aortic valve degeneration.

    PubMed

    Dwyer, Harry A; Matthews, Peter B; Azadani, Ali; Jaussaud, Nicolas; Ge, Liang; Guy, T Sloane; Tseng, Elaine E

    2009-08-01

    Studied under clinical trials, transcatheter aortic valves (TAV) have demonstrated good short-term feasibility and results in high-risk surgical patients with severe aortic stenosis. However, their long-term safety and durability are unknown. The objective of this study is to evaluate hemodynamic changes within TAV created by bioprosthetic leaflet degeneration. Computational fluid dynamics (CFD) simulations were performed to evaluate the hemodynamics through TAV sclerosis (35% orifice reduction) and stenosis (78% orifice reduction). A three-dimensional surface mesh of the TAV within the aortic root was generated for each simulation. Leaflets were contained within an open, cylindrical body without attachment to the sinus commissures representing the stent. A continuous surface between the annulus and TAV excluded the geometry of the native calcified leaflets and prevented paravalvular leak. Unsteady control volume analysis throughout systole was used to calculate leaflet shear stress and total force on the TAV. Sclerosis increased total force on the TAV by 63% (0.602-0.98 N). Advancement of degeneration from sclerosis to stenosis was accompanied by an 86% increase in total force (1.82 N) but only a 32% increase in peak wall shear stress on the leaflets. Of the total force exerted on the TAV, 99% was in the direction of axial flow. Shear stresses on the TAV were greatest during peak systolic flow with stress concentrations on the tips of the leaflets. In the normal TAV, the aortic root geometry and physiologic flow dominate location and magnitude of shear stress. Following leaflet degeneration, the specific geometry of the stenosis dictates the profile of axial velocity leaving the TAV and shear stress on the leaflets. A dramatic increase in peak leaflet shear stress was observed (115 Pa stenosis vs. 87 Pa sclerosis and 29 Pa normal). CFD simulations in this study provide the first of its kind data quantifying hemodynamics within stenosed TAV. Stenosis leads to significant forces of TAV during systole; however, diastolic forces predominate even with significant stenosis. Substantial changes in peak shear stress occur with TAV degeneration. As the first implanted TAV begin to stenose, the authors recommend watchful examination for device failure.

  12. Muscle anatomy and dynamic muscle function in osteogenesis imperfecta type I.

    PubMed

    Veilleux, Louis-Nicolas; Lemay, Martin; Pouliot-Laforte, Annie; Cheung, Moira S; Glorieux, Francis H; Rauch, Frank

    2014-02-01

    Results of previous studies suggested that children and adolescents with osteogenesis imperfecta (OI) type I have a muscle force deficit. However, muscle function has only been assessed by static isometric force tests and not in more natural conditions such as dynamic force and power tests. The purpose of this study was to assess lower extremity dynamic muscle function and muscle anatomy in OI type I. The study was performed in the outpatient department of a pediatric orthopedic hospital. A total of 54 individuals with OI type I (6-21 years; 20 male) and 54 age- and sex-matched controls took part in this study. Calf muscle cross-sectional area and density were measured by peripheral quantitative computed tomography. Lower extremity muscle function (peak force per body weight and peak power per body mass) was measured by jumping mechanography through 5 tests: multiple two-legged hopping, multiple one-legged hopping, single two-legged jump, chair-rise test, and heel-rise test. Compared with age- and sex-matched controls, patients with OI type I had smaller muscle size (P = .04) but normal muscle density (P = .21). They also had lower average peak force and lower specific force (peak force/muscle cross-sectional area; all P < .008). Average peak power was lower in patients with OI type I but not significantly so (all P > .054). Children and adolescents with OI type I have, on average, a significant force deficit in the lower limb as measured by dynamic force tests. Nonetheless, these data also show that OI type I is compatible with normal muscle performance in some individuals.

  13. Change in knee contact force with simulated change in body weight.

    PubMed

    Knarr, Brian A; Higginson, Jill S; Zeni, Joseph A

    2016-02-01

    The relationship between obesity, weight gain and progression of knee osteoarthritis is well supported, suggesting that excessive joint loading may be a mechanism responsible for cartilage deterioration. Examining the influence of weight gain on joint compressive forces is difficult, as both muscles and ground reaction forces can have a significant impact on the forces experienced during gait. While previous studies have examined the relationship between body weight and knee forces, these studies have used models that were not validated using experimental data. Therefore, the objective of this study was to evaluate the relationship between changes in body weight and changes in knee joint contact forces for an individual's gait pattern using musculoskeletal modeling that is validated against known internal compressive forces. Optimal weighting constants were determined for three subjects to generate valid predictions of knee contact forces (KCFs) using in vivo data collection with instrumented total knee arthroplasty. A total of five simulations per walking trial were generated for each subject, from 80% to 120% body weight in 10% increments, resulting in 50 total simulations. The change in peak KCF with respect to body weight was found to be constant and subject-specific, predominantly determined by the peak force during the baseline condition at 100% body weight. This relationship may be further altered by any change in kinematics or body mass distribution that may occur as a result of a change in body weight or exercise program.

  14. Plantar loading during cutting while wearing a rigid carbon fiber insert.

    PubMed

    Queen, Robin M; Abbey, Alicia N; Verma, Ravi; Butler, Robert J; Nunley, James A

    2014-01-01

    Stress fractures are one of the most common injuries in sports, accounting for approximately 10% of all overuse injuries. Treatment of fifth metatarsal stress fractures involves both surgical and nonsurgical interventions. Fifth metatarsal stress fractures are difficult to treat because of the risks of delayed union, nonunion, and recurrent injuries. Most of these injuries occur during agility tasks, such as those performed in soccer, basketball, and lacrosse. To examine the effect of a rigid carbon graphite footplate on plantar loading during 2 agility tasks. Crossover study. Laboratory. A total of 19 recreational male athletes with no history of lower extremity injury in the past 6 months and no previous metatarsal stress fractures were tested. Seven 45° side-cut and crossover-cut tasks were completed in a shoe with or without a full-length rigid carbon plate. Testing order between the shoe conditions and the 2 cutting tasks was randomized. Plantar-loading data were recorded using instrumented insoles. Peak pressure, maximum force, force-time integral, and contact area beneath the total foot, the medial and lateral midfoot, and the medial, middle, and lateral forefoot were analyzed. A series of paired t tests was used to examine differences between the footwear conditions (carbon graphite footplate, shod) for both cutting tasks independently (α = .05). During the side-cut task, the footplate increased total foot and lateral midfoot peak pressures while decreasing contact area and lateral midfoot force-time integral. During the crossover-cut task, the footplate increased total foot and lateral midfoot peak pressure and lateral forefoot force-time integral while decreasing total and lateral forefoot contact area. Although a rigid carbon graphite footplate altered some aspects of the plantar-pressure profile during cutting in uninjured participants, it was ineffective in reducing plantar loading beneath the fifth metatarsal.

  15. Relationship between knee joint contact forces and external knee joint moments in patients with medial knee osteoarthritis: effects of gait modifications.

    PubMed

    Richards, R E; Andersen, M S; Harlaar, J; van den Noort, J C

    2018-04-30

    To evaluate 1) the relationship between the knee contact force (KCF) and knee adduction and flexion moments (KAM and KFM) during normal gait in people with medial knee osteoarthritis (KOA), 2) the effects on the KCF of walking with a modified gait pattern and 3) the relationship between changes in the KCF and changes in the knee moments. We modeled the gait biomechanics of thirty-five patients with medial KOA using the AnyBody Modeling System during normal gait and two modified gait patterns. We calculated the internal KCF and evaluated the external joint moments (KAM and KFM) against it using linear regression analyses. First peak medial KCF was associated with first peak KAM (R 2  = 0.60) and with KAM and KFM (R 2  = 0.73). Walking with both modified gait patterns reduced KAM (P = 0.002) and the medial to total KCF ratio (P < 0.001) at the first peak. Changes in KAM during modified gait were moderately associated with changes in the medial KCF at the first peak (R 2  = 0.54 and 0.53). At the first peak, KAM is a reasonable substitute for the medial contact force, but not at the second peak. First peak KFM is also a significant contributor to the medial KCF. At the first peak, walking with a modified gait reduced the ratio of the medial to total KCF but not the medial KCF itself. To determine the effects of gait modifications on cartilage loading and disease progression, longitudinal studies and individualized modeling, accounting for motion control, would be required. Copyright © 2018 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  16. A comparison of cleat types during two football-specific tasks on FieldTurf.

    PubMed

    Queen, R M; Charnock, B L; Garrett, W E; Hardaker, W M; Sims, E L; Moorman, C T

    2008-04-01

    To examine the effect of different cleat plate configurations on plantar pressure during two tasks. Thirty-six athletes ran an agility course 5 times while wearing 4 different types of Nike Vitoria cleats: (1) bladed, (2) elliptical firm ground, (3) hard ground and (4) turf. Plantar pressure data were recorded during a side cut and a cross cut using Pedar-X insoles. Controlled laboratory study No history of lower extremity injury in the past 6 months, no previous foot or ankle surgery, not currently wearing foot orthotics and play a cleated sport at least twice a week. Total foot contact time, contact area, maximum force, peak pressure and the force-time integral (FTI) in the medial, middle and lateral regions of the forefoot were collected. A 1x4 ANOVA (alpha = 0.05) was performed on each dependent variable. A Bonferroni adjustment was conducted (alpha = 0.008). In the cross cut task, statistical differences between cleats were observed in three variables: total foot peak pressure, lateral forefoot FTI, and lateral forefoot normalised maximum force. In the side cut task, statistical differences between cleats were observed in 4 variables: total foot peak pressure, the medial and middle forefoot FTI, and the medial and middle forefoot normalised maximum force. Significant differences in forefoot loading patterns existed between cleat types. Based on the results of this study, it might be beneficial to increase the forefoot cushioning in cleats in an attempt to decrease loading in these regions of the foot.

  17. Unilateral total hip replacement patients with symptomatic leg length inequality have abnormal hip biomechanics during walking.

    PubMed

    Li, Junyan; McWilliams, Anthony B; Jin, Zhongmin; Fisher, John; Stone, Martin H; Redmond, Anthony C; Stewart, Todd D

    2015-06-01

    Symptomatic leg length inequality accounts for 8.7% of total hip replacement related claims made against the UK National Health Service Litigation authority. It has not been established whether symptomatic leg length inequality patients following total hip replacement have abnormal hip kinetics during gait. Hip kinetics in 15 unilateral total hip replacement patients with symptomatic leg length inequality during gait was determined through multibody dynamics and compared to 15 native hip healthy controls and 15 'successful' asymptomatic unilateral total hip replacement patients. More significant differences from normal were found in symptomatic leg length inequality patients than in asymptomatic total hip replacement patients. The leg length inequality patients had altered functions defined by lower gait velocity, reduced stride length, reduced ground reaction force, decreased hip range of motion, reduced hip moment and less dynamic hip force with a 24% lower heel-strike peak, 66% higher mid-stance trough and 37% lower toe-off peak. Greater asymmetry in hip contact force was also observed in leg length inequality patients. These gait adaptions may affect the function of the implant and other healthy joints in symptomatic leg length inequality patients. This study provides important information for the musculoskeletal function and rehabilitation of symptomatic leg length inequality patients. Copyright © 2015. Published by Elsevier Ltd.

  18. The categorisation of swimming start performance with reference to force generation on the main block and footrest components of the Omega OSB11 start blocks.

    PubMed

    Slawson, Sian E; Conway, Paul P; Cossor, Jodi; Chakravorti, Nandini; West, Andrew A

    2013-01-01

    Work presented in this paper provides a methodology for categorising swimming start performance based on peak force production on the main block and footrest components of the Omega OSB11 starting block. A total of 46 elite British swimmers were tested, producing over 1000 start trials. Overwater cameras were synchronised to a specifically designed start block that allowed the measurement of force production via two sets of four, tri-axis, force transducers; one set in the main block and one in the footrest. Data were then analysed, segregating trials for gender. Each start was categorised, with respect to the peak force production in horizontal and vertical components, into one of nine categories. Three performance indicators, i.e. block time, take-off velocity and distance of entry, were used to assess whether differences in performance could be correlated with these categories. Results from these data suggest that swimmers generating higher than average peak forces were more likely to produce a better overall start performance than those who produced forces lower than the average, for this population of athletes.

  19. Changes in In Vivo Knee Loading with a Variable-Stiffness Intervention Shoe Correlate with Changes in the Knee Adduction Moment

    PubMed Central

    Erhart, Jennifer C.; Dyrby, Chris O.; D'Lima, Darryl D.; Colwell, Clifford W.; Andriacchi, Thomas P.

    2010-01-01

    External knee adduction moment can be reduced using footwear interventions, but the exact changes in in vivo medial joint loading remain unknown. An instrumented knee replacement was used to assess changes in in vivo medial joint loading in a single patient walking with a variable-stiffness intervention shoe. We hypothesized that during walking with a load modifying variable-stiffness shoe intervention: (1) the first peak knee adduction moment will be reduced compared to a subject's personal shoes; (2) the first peak in vivo medial contact force will be reduced compared to personal shoes; and (3) the reduction in knee adduction moment will be correlated with the reduction in medial contact force. The instrumentation included a motion capture system, force plate, and the instrumented knee prosthesis. The intervention shoe reduced the first peak knee adduction moment (13.3%, p=0.011) and medial compartment joint contact force (22%; p=0.008) compared to the personal shoe. The change in first peak knee adduction moment was significantly correlated with the change in first peak medial contact force (R2=0.67, p=0.007). Thus, for a single subject with a total knee prosthesis the variable-stiffness shoe reduces loading on the affected compartment of the joint. The reductions in the external knee adduction moment are indicative of reductions in in vivo medial compressive force with this intervention. PMID:20973058

  20. Force application during handcycling and handrim wheelchair propulsion: an initial comparison.

    PubMed

    Arnet, Ursina; van Drongelen, Stefan; Veeger, D H; van der Woude L, H V

    2013-12-01

    The aim of the study was to evaluate the external applied forces, the effectiveness of force application and the net shoulder moments of handcycling in comparison with handrim wheelchair propulsion at different inclines. Ten able-bodied men performed standardized exercises on a treadmill at inclines of 1%, 2.5% and 4% with an instrumented handbike and wheelchair that measured three-dimensional propulsion forces. The results showed that during handcycling significantly lower mean forces were applied at inclines of 2.5% (P < .001) and 4% (P < .001) and significantly lower peak forces were applied at all inclines (1%: P = .014, 2.5% and 4%: P < .001). At the 2.5% incline, where power output was the same for both devices, total forces (mean over trial) of 22.8 N and 27.5 N and peak forces of 40.1 N and 106.9 N were measured for handbike and wheelchair propulsion. The force effectiveness did not differ between the devices (P = .757); however, the effectiveness did increase with higher inclines during handcycling whereas it stayed constant over all inclines for wheelchair propulsion. The resulting peak net shoulder moments were lower for handcycling compared with wheelchair propulsion at all inclines (P < .001). These results confirm the assumption that handcycling is physically less straining.

  1. Injury risk curves for the skeletal knee-thigh-hip complex for knee-impact loading.

    PubMed

    Rupp, Jonathan D; Flannagan, Carol A C; Kuppa, Shashi M

    2010-01-01

    Injury risk curves for the skeletal knee-thigh-hip (KTH) relate peak force applied to the anterior aspect of the flexed knee, the primary source of KTH injury in frontal motor-vehicle crashes, to the probability of skeletal KTH injury. Previous KTH injury risk curves have been developed from analyses of peak knee-impact force data from studies where knees of whole cadavers were impacted. However, these risk curves either neglect the effects of occupant gender, stature, and mass on KTH fracture force, or account for them using scaling factors derived from dimensional analysis without empirical support. A large amount of experimental data on the knee-impact forces associated with KTH fracture are now available, making it possible to estimate the effects of subject characteristics on skeletal KTH injury risk by statistically analyzing empirical data. Eleven studies were identified in the biomechanical literature in which the flexed knees of whole cadavers were impacted. From these, peak knee-impact force data and the associated subject characteristics were reanalyzed using survival analysis with a lognormal distribution. Results of this analysis indicate that the relationship between peak knee-impact force and the probability of KTH fracture is a function of age, total body mass, and whether the surface that loads the knee is rigid. Comparisons between injury risk curves for the midsize adult male and small adult female crash test dummies defined in previous studies and new risk curves for these sizes of occupants developed in this study suggest that previous injury risk curves generally overestimate the likelihood of KTH fracture at a given peak knee-impact force. Future work should focus on defining the relationships between impact force at the human knee and peak axial compressive forces measured by load cells in the crash test dummy KTH complex so that these new risk curves can be used with ATDs.

  2. Escaping blood-fed malaria mosquitoes minimize tactile detection without compromising on take-off speed.

    PubMed

    Muijres, F T; Chang, S W; van Veen, W G; Spitzen, J; Biemans, B T; Koehl, M A R; Dudley, R

    2017-10-15

    To escape after taking a blood meal, a mosquito must exert forces sufficiently high to take off when carrying a load roughly equal to its body weight, while simultaneously avoiding detection by minimizing tactile signals exerted on the host's skin. We studied this trade-off between escape speed and stealth in the malaria mosquito Anopheles coluzzii using 3D motion analysis of high-speed stereoscopic videos of mosquito take-offs and aerodynamic modeling. We found that during the push-off phase, mosquitoes enhanced take-off speed using aerodynamic forces generated by the beating wings in addition to leg-based push-off forces, whereby wing forces contributed 61% of the total push-off force. Exchanging leg-derived push-off forces for wing-derived aerodynamic forces allows the animal to reduce peak force production on the host's skin. By slowly extending their long legs throughout the push-off, mosquitoes spread push-off forces over a longer time window than insects with short legs, thereby further reducing peak leg forces. Using this specialized take-off behavior, mosquitoes are capable of reaching take-off speeds comparable to those of similarly sized fruit flies, but with weight-normalized peak leg forces that were only 27% of those of the fruit flies. By limiting peak leg forces, mosquitoes possibly reduce the chance of being detected by the host. The resulting combination of high take-off speed and low tactile signals on the host might help increase the mosquito's success in escaping from blood-hosts, which consequently also increases the chance of transmitting vector-borne diseases, such as malaria, to future hosts. © 2017. Published by The Company of Biologists Ltd.

  3. The effect of exercise repetition on the frequency characteristics of motor output force: implications for Achilles tendinopathy rehabilitation.

    PubMed

    Grigg, Nicole L; Wearing, Scott C; O'Toole, John M; Smeathers, James E

    2014-01-01

    To investigate the frequency characteristics of the ground reaction force (GRF) recorded throughout the eccentric Achilles tendon rehabilitation programme described by Alfredson. Controlled laboratory study, longitudinal. Nine healthy adult males performed six sets (15 repetitions per set) of eccentric ankle exercise. Ground reaction force was recorded throughout the exercise protocol. For each exercise repetition the frequency power spectrum of the resultant ground reaction force was calculated and normalised to total power. The magnitude of peak relative power within the 8-12 Hz bandwidth and the frequency at which this peak occurred was determined. The magnitude of peak relative power within the 8-12 Hz bandwidth increased with each successive exercise set and following the 4th set (60 repetitions) of exercise the frequency at which peak relative power occurred shifted from 9 to 10 Hz. The increase in magnitude and frequency of ground reaction force vibrations with an increasing number of exercise repetitions is likely connected to changes in muscle activation with fatigue and tendon conditioning. This research illustrates the potential for the number of exercise repetitions performed to influence the tendons' mechanical environment, with implications for tendon remodelling and the clinical efficacy of eccentric rehabilitation programmes for Achilles tendinopathy. Copyright © 2013 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  4. The Relationship Between the Push Off Ground Reaction Force and Ball Speed in High School Baseball Pitchers.

    PubMed

    Oyama, Sakiko; Myers, Joseph B

    2018-05-01

    Oyama, S and Myers, JB. The relationship between the push off ground reaction force and ball speed in high school baseball pitchers. J Strength Cond Res 32(5): 1324-1328, 2018-Baseball pitching is a sequential movement that requires transfer of momentum from the lower extremity to the throwing arm. Therefore, the ground reaction force (GRF) during push off is suggested to play a role in production of ball speed. The purpose of this study was to investigate the correlation between GRF characteristics during push off and ball speed in high school baseball pitchers. A total of 52 pitchers performed fast pitches from an indoor pitching mound. A force plate embedded in an indoor mound was used to capture the push off GRF. The GRF characteristics (peak anterior, vertical, and resultant forces, vertical and resultant forces at the time of peak anterior GRF, and impulse produced by the anterior GRF) from the 3 fastest strike pitches from each pitcher were used for analyses. Spearman's rank correlation coefficients were used to describe the relationships between ball speed and the GRF characteristics. Ball speed was only weakly correlated with peak resultant force (ρ = 0.32, p = 0.02) and vertical (ρ = 0.45, p < 0.001) and resultant (ρ = 0.42, p = 0.002) forces at the time of peak anterior force. The ball speed was not correlated with other variables. The correlation between ball speed and push off force in high school pitchers was weak, especially when compared with what was reported for adult pitchers in other studies. Unlike for adult pitchers, higher push off force is only weakly correlated with ball velocity in high school pitchers, which suggests that training to better use body momentum may help high school pitchers improve ball speed.

  5. The effective forces transmitted by high-speed, low-amplitude thoracic manipulation.

    PubMed

    Herzog, W; Kats, M; Symons, B

    2001-10-01

    Twenty asymptomatic volunteers each received three spinal manipulative treatments to the thoracic spine. The treatments consisted of a straight posterior-to-anterior high-speed, low-amplitude thrust to the transverse process of T3-T10 using a reinforced hypothenar contact. All treatments were given by a full-time practicing clinician with 3 years of experience. The primary objective of this study was to quantify local measures of loading applied by the clinician on the volunteers during spinal manipulative treatments and to compare these local measures of loading with previously described global measures. The sparse information on the mechanics of spinal manipulative treatments deals exclusively with global force or pressure measurements. On the basis of these global data, incorrect conclusions may be drawn about the beneficial effects of spinal manipulative therapy, the loading of internal structures, and the risks associated with these treatments. Twenty asymptomatic subjects each received three posterior-to-anterior, high-speed, low-amplitude spinal manipulative treatments to the transverse process of the thoracic spine. Total force, local force, contact area, peak pressure, and average pressure at the contact interface between clinician and subject were measured continuously by use of a thin, flexible pressure pad. Local and global measures of loading were compared and analyzed by use of nonparametric statistics (alpha = 0.01). The average peak total force was 238.2 N. The average peak local force over a target area of 25 mm2 was 5 N, indicating that global measures of loading vastly overestimate the local effective forces at the target site. The peak pressure point moved, on average, 9.8 mm during the course of the manipulation. To the authors' best knowledge, this is the first study to quantify local, effective measures of loading and compare them with the global measures typically used. The conclusions are limited because the study used a single clinician. The effective loading of specific target sites is much smaller than the global measures might suggest. This result occurs because as the forces during spinal manipulative treatment increase, so does the contact area; therefore, much of the total treatment force is taken up by non-target-specific tissues. Because of the vast discrepancy between the global and local measures of loading, it is suggested that risk-benefit assessments of high-speed, low-amplitude spinal manipulative treatments should be made, including local measures of loading. Finally, because theoretical approaches and the inverse dynamics approach can provide only global measures of loading, the results of such studies should be interpreted with caution.

  6. Plantar Loading During Cutting While Wearing a Rigid Carbon Fiber Insert.

    PubMed

    Queen, Robin M; Abbey, Alicia N; Verma, Ravi; Butler, Robert J; Nunley, James A

    2014-02-12

    Context : Stress fractures are one of the most common injuries in sports, accounting for approximately 10% of all overuse injuries. Treatment of fifth metatarsal stress fractures involves both surgical and nonsurgical interventions. Fifth metatarsal stress fractures are difficult to treat because of the risks of delayed union, nonunion, and recurrent injuries. Most of these injuries occur during agility tasks, such as those performed in soccer, basketball, and lacrosse. Objective : To examine the effect of a rigid carbon graphite footplate on plantar loading during 2 agility tasks. Design :  Crossover study. Setting : Laboratory. Patients or Other Participants : A total of 19 recreational male athletes with no history of lower extremity injury in the past 6 months and no previous metatarsal stress fractures were tested. Main Outcome Measure(s) :  Seven 45° side-cut and crossover-cut tasks were completed in a shoe with or without a full-length rigid carbon plate. Testing order between the shoe conditions and the 2 cutting tasks was randomized. Plantar-loading data were recorded using instrumented insoles. Peak pressure, maximum force, force-time integral, and contact area beneath the total foot, the medial and lateral midfoot, and the medial, middle, and lateral forefoot were analyzed. A series of paired t tests was used to examine differences between the footwear conditions (carbon graphite footplate, shod) for both cutting tasks independently (α = .05). Results : During the side-cut task, the footplate increased total foot and lateral midfoot peak pressures while decreasing contact area and lateral midfoot force-time integral. During the crossover-cut task, the footplate increased total foot and lateral midfoot peak pressure and lateral forefoot force-time integral while decreasing total and lateral forefoot contact area. Conclusions : Although a rigid carbon graphite footplate altered some aspects of the plantar- pressure profile during cutting in uninjured participants, it was ineffective in reducing plantar loading beneath the fifth metatarsal.

  7. Plantar Loading During Cutting While Wearing a Rigid Carbon Fiber Insert

    PubMed Central

    Queen, Robin M.; Abbey, Alicia N.; Verma, Ravi; Butler, Robert J.; Nunley, James A.

    2014-01-01

    Context Stress fractures are one of the most common injuries in sports, accounting for approximately 10% of all overuse injuries. Treatment of fifth metatarsal stress fractures involves both surgical and nonsurgical interventions. Fifth metatarsal stress fractures are difficult to treat because of the risks of delayed union, nonunion, and recurrent injuries. Most of these injuries occur during agility tasks, such as those performed in soccer, basketball, and lacrosse. Objective: To examine the effect of a rigid carbon graphite footplate on plantar loading during 2 agility tasks. Design:  Crossover study. Setting: Laboratory. Patients or Other Participants: A total of 19 recreational male athletes with no history of lower extremity injury in the past 6 months and no previous metatarsal stress fractures were tested. Main Outcome Measure(s):  Seven 45° side-cut and crossover-cut tasks were completed in a shoe with or without a full-length rigid carbon plate. Testing order between the shoe conditions and the 2 cutting tasks was randomized. Plantar-loading data were recorded using instrumented insoles. Peak pressure, maximum force, force-time integral, and contact area beneath the total foot, the medial and lateral midfoot, and the medial, middle, and lateral forefoot were analyzed. A series of paired t tests was used to examine differences between the footwear conditions (carbon graphite footplate, shod) for both cutting tasks independently (α = .05). Results: During the side-cut task, the footplate increased total foot and lateral midfoot peak pressures while decreasing contact area and lateral midfoot force-time integral. During the crossover-cut task, the footplate increased total foot and lateral midfoot peak pressure and lateral forefoot force-time integral while decreasing total and lateral forefoot contact area. Conclusions: Although a rigid carbon graphite footplate altered some aspects of the plantar-pressure profile during cutting in uninjured participants, it was ineffective in reducing plantar loading beneath the fifth metatarsal. PMID:24955620

  8. Kinetic and kinematic analysis of stamping impacts during simulated rucking in rugby union.

    PubMed

    Oudshoorn, Bodil Y; Driscoll, Heather F; Dunn, Marcus; James, David

    2018-04-01

    Laceration injuries account for up to 23% of injuries in rugby union. They are frequently caused by studded footwear as a result of a player stamping onto another player during the ruck. Little is known about the kinetics and kinematics of rugby stamping impacts; current test methods assessing laceration injury risk of stud designs therefore lack informed test parameters. In this study, twelve participants stamped on an anthropomorphic test device in a one-on-one simulated ruck setting. Velocity and inclination angle of the foot prior to impact was determined from high-speed video footage. Total stamping force and individual stud force were measured using pressure sensors. Mean foot inbound velocity was 4.3 m ∙ s -1 (range 2.1-6.3 m ∙ s -1 ). Mean peak total force was 1246 N and mean peak stud force was 214 N. The total mean effective mass during stamping was 6.6 kg (range: 1.6-13.5 kg) and stud effective mass was 1.2 kg (range: 0.5-2.9 kg). These results provide representative test parameters for mechanical test devices designed to assess laceration injury risk of studded footwear for rugby union.

  9. Forces and pressures beneath the saddle during mounting from the ground and from a raised mounting platform.

    PubMed

    Geutjens, C A; Clayton, H M; Kaiser, L J

    2008-03-01

    The objective was to use an electronic pressure mat to measure and compare forces and pressures of the saddle on a horse's back when riders mounted from the ground and with the aid of a mounting platform. Ten riders mounted a horse three times each from the ground and from a 35 cm high mounting platform in random order. Total force (summation of forces over all 256 sensors) was measured and compared at specific points on the force-time curve. Total force was usually highest as the rider's right leg was swinging upwards and was correlated with rider mass. When normalized to rider mass, total force and peak pressure were significantly higher when mounting from the ground than from a raised platform (P<0.05). The area of highest pressure was on the right side of the withers in 97% of mounting efforts, confirming the importance of the withers in stabilizing the saddle during mounting.

  10. Influence of handrim wheelchair propulsion training in adolescent wheelchair users, a pilot study.

    PubMed

    Dysterheft, Jennifer L; Rice, Ian M; Rice, Laura A

    2015-01-01

    Ten full-time adolescent wheelchair users (ages 13-18) completed a total of three propulsion trials on carpet and tile surfaces, at a self-selected velocity, and on a concrete surface, at a controlled velocity. All trials were performed in their personal wheelchair with force and moment sensing wheels attached bilaterally. The first two trials on each surface were used as pre-intervention control trials. The third trial was performed after receiving training on proper propulsion technique. Peak resultant force, contact angle, stroke frequency, and velocity were recorded during all trials for primary analysis. Carpet and tile trials resulted in significant increases in contact angle and peak total force with decreased stroke frequency after training. During the velocity controlled trials on concrete, significant increases in contact angle occurred, as well as decreases in stroke frequency after training. Overall, the use of a training video and verbal feedback may help to improve short-term propulsion technique in adolescent wheelchair users and decrease the risk of developing upper limb pain and injury.

  11. The effects of running cadence manipulation on plantar loading in healthy runners.

    PubMed

    Wellenkotter, J; Kernozek, T W; Meardon, S; Suchomel, T

    2014-08-01

    Our purpose was to evaluate effects of cadence manipulation on plantar loading during running. Participants (n=38) ran on a treadmill at their preferred speed in 3 conditions: preferred, 5% increased, and 5% decreased while measured using in-shoe sensors. Data (contact time [CT], peak force [PF], force time integral [FTI], pressure time integral [PTI] and peak pressure [PP]) were recorded for 30 right footfalls. Multivariate analysis was performed to detect differences in loading between cadences in the total foot and 4 plantar regions. Differences in plantar loading occurred between cadence conditions. Total foot CT and PF were lower with a faster cadence, but no total foot PP differences were observed. Faster cadence reduced CT, pressure and force variables in both the heel and metatarsal regions. Increasing cadence did not elevate metatarsal loads; rather, total foot and all regions were reduced when healthy runners increased their cadence. If a 5% increase in cadence from preferred were maintained over each mile run the impulse at the heel would be reduced by an estimated 565 body weights*s (BW*s) and the metatarsals 140-170 BW*s per mile run despite the increased steps taken. Increasing cadence may benefit overuse injuries associated with elevated plantar loading. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Relationship Between Force Production During Isometric Squats and Knee Flexion Angles During Landing.

    PubMed

    Fisher, Harry; Stephenson, Mitchell L; Graves, Kyle K; Hinshaw, Taylour J; Smith, Derek T; Zhu, Qin; Wilson, Margaret A; Dai, Boyi

    2016-06-01

    Decreased knee flexion angles during landing are associated with increased anterior cruciate ligament loading. The underlying mechanisms associated with decreased self-selected knee flexion angles during landing are still unclear. The purpose of this study was to establish the relationship between the peak force production at various knee flexion angles (35, 55, 70, and 90°) during isometric squats and the actual knee flexion angles that occur during landing in both men and women. A total of 18 men and 18 women recreational/collegiate athletes performed 4 isometric squats at various knee flexion angles while vertical ground reaction forces were recorded. Participants also performed a jump-landing-jump task while lower extremity kinematics were collected. For women, significant correlations were found between the peak force production at 55 and 70° of knee flexion during isometric squats and the knee flexion angle at initial contact of landing. There were also significant correlations between the peak force production at 55, 70, and 90° of knee flexion during isometric squats and the peak knee flexion angle during landing. These correlations tended to be stronger during isometric squats at greater knee flexion compared with smaller knee flexion. No significant correlations were found for men. Posture-specific strength may play an important role in determining self-selected knee flexion angles during landing for women.

  13. Aerosol and ozone changes as forcing for climate evolution between 1850 and 2100

    NASA Astrophysics Data System (ADS)

    Szopa, Sophie; Balkanski, Y.; Schulz, M.; Bekki, S.; Cugnet, D.; Fortems-Cheiney, A.; Turquety, S.; Cozic, A.; Déandreis, C.; Hauglustaine, D.; Idelkadi, A.; Lathière, J.; Lefevre, F.; Marchand, M.; Vuolo, R.; Yan, N.; Dufresne, J.-L.

    2013-05-01

    Global aerosol and ozone distributions and their associated radiative forcings were simulated between 1850 and 2100 following a recent historical emission dataset and under the representative concentration pathways (RCP) for the future. These simulations were used in an Earth System Model to account for the changes in both radiatively and chemically active compounds, when simulating the climate evolution. The past negative stratospheric ozone trends result in a negative climate forcing culminating at -0.15 W m-2 in the 1990s. In the meantime, the tropospheric ozone burden increase generates a positive climate forcing peaking at 0.41 W m-2. The future evolution of ozone strongly depends on the RCP scenario considered. In RCP4.5 and RCP6.0, the evolution of both stratospheric and tropospheric ozone generate relatively weak radiative forcing changes until 2060-2070 followed by a relative 30 % decrease in radiative forcing by 2100. In contrast, RCP8.5 and RCP2.6 model projections exhibit strongly different ozone radiative forcing trajectories. In the RCP2.6 scenario, both effects (stratospheric ozone, a negative forcing, and tropospheric ozone, a positive forcing) decline towards 1950s values while they both get stronger in the RCP8.5 scenario. Over the twentieth century, the evolution of the total aerosol burden is characterized by a strong increase after World War II until the middle of the 1980s followed by a stabilization during the last decade due to the strong decrease in sulfates in OECD countries since the 1970s. The cooling effects reach their maximal values in 1980, with -0.34 and -0.28 W m-2 respectively for direct and indirect total radiative forcings. According to the RCP scenarios, the aerosol content, after peaking around 2010, is projected to decline strongly and monotonically during the twenty-first century for the RCP8.5, 4.5 and 2.6 scenarios. While for RCP6.0 the decline occurs later, after peaking around 2050. As a consequence the relative importance of the total cooling effect of aerosols becomes weaker throughout the twenty-first century compared with the positive forcing of greenhouse gases. Nevertheless, both surface ozone and aerosol content show very different regional features depending on the future scenario considered. Hence, in 2050, surface ozone changes vary between -12 and +12 ppbv over Asia depending on the RCP projection, whereas the regional direct aerosol radiative forcing can locally exceed -3 W m-2.

  14. Hip contact forces in asymptomatic total hip replacement patients differ from normal healthy individuals: Implications for preclinical testing.

    PubMed

    Li, Junyan; Redmond, Anthony C; Jin, Zhongmin; Fisher, John; Stone, Martin H; Stewart, Todd D

    2014-08-01

    Preclinical durability testing of hip replacement implants is standardised by ISO-14242-1 (2002) which is based on historical inverse dynamics analysis using data obtained from a small sample of normal healthy individuals. It has not been established whether loading cycles derived from normal healthy individuals are representative of loading cycles occurring in patients following total hip replacement. Hip joint kinematics and hip contact forces derived from multibody modelling of forces during normal walking were obtained for 15 asymptomatic total hip replacement patients and compared to 38 normal healthy individuals and to the ISO standard for pre-clinical testing. Hip kinematics in the total hip replacement patients were comparable to the ISO data and the hip contact force in the normal healthy group was also comparable to the ISO cycles. Hip contact forces derived from the asymptomatic total hip replacement patients were comparable for the first part of the stance period but exhibited 30% lower peak loads at toe-off. Although the ISO standard provides a representative kinematic cycle, the findings call into question whether the hip joint contact forces in the ISO standard are representative of those occurring in the joint following total hip replacement. Copyright © 2014. Published by Elsevier Ltd.

  15. Running quietly reduces ground reaction force and vertical loading rate and alters foot strike technique.

    PubMed

    Phan, Xuan; Grisbrook, Tiffany L; Wernli, Kevin; Stearne, Sarah M; Davey, Paul; Ng, Leo

    2017-08-01

    This study aimed to determine if a quantifiable relationship exists between the peak sound amplitude and peak vertical ground reaction force (vGRF) and vertical loading rate during running. It also investigated whether differences in peak sound amplitude, contact time, lower limb kinematics, kinetics and foot strike technique existed when participants were verbally instructed to run quietly compared to their normal running. A total of 26 males completed running trials for two sound conditions: normal running and quiet running. Simple linear regressions revealed no significant relationships between impact sound and peak vGRF in the normal and quiet conditions and vertical loading rate in the normal condition. t-Tests revealed significant within-subject decreases in peak sound, peak vGRF and vertical loading rate during the quiet compared to the normal running condition. During the normal running condition, 15.4% of participants utilised a non-rearfoot strike technique compared to 76.9% in the quiet condition, which was corroborated by an increased ankle plantarflexion angle at initial contact. This study demonstrated that quieter impact sound is not directly associated with a lower peak vGRF or vertical loading rate. However, given the instructions to run quietly, participants effectively reduced peak impact sound, peak vGRF and vertical loading rate.

  16. Use of body plethysmography to measure effect of bimaxillary orthognathic surgery on airway resistance and lung volumes.

    PubMed

    Rezaeetalab, Fariba; Kazemian, Mozhgan; Vaezi, Touraj; Shaban, Barratollah

    2015-12-01

    Bimaxillary orthognathic surgery can cause changes to respiration and the airways. We used body plethysmography to evaluate its effect on airway resistance and lung volumes in 20 patients with class III malocclusions (8 men and 12 women, aged 17 - 32 years). Lung volumes (forced vital capacity; forced inspiratory volume/one second; forced expiratory volume/one second: forced vital capacity; peak expiratory flow; maximum expiratory flow 25-75; maximum inspiratory flow; total lung capacity; residual volume; residual volume:total lung capacity), and airway resistance were evaluated one week before, and six months after, operation. Bimaxillary operations to correct class III malocclusions significantly increased airway resistance, residual volume, total lung capacity, and residual volume:total lung capacity. Other variables also changed after operation but not significantly so. Orthognathic operations should be done with caution in patients who have pre-existing respiratory diseases. Copyright © 2015 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  17. Influence of Handrim Wheelchair Propulsion Training in Adolescent Wheelchair Users, A Pilot Study

    PubMed Central

    Dysterheft, Jennifer L.; Rice, Ian M.; Rice, Laura A.

    2015-01-01

    Ten full-time adolescent wheelchair users (ages 13–18) completed a total of three propulsion trials on carpet and tile surfaces, at a self-selected velocity, and on a concrete surface, at a controlled velocity. All trials were performed in their personal wheelchair with force and moment sensing wheels attached bilaterally. The first two trials on each surface were used as pre-intervention control trials. The third trial was performed after receiving training on proper propulsion technique. Peak resultant force, contact angle, stroke frequency, and velocity were recorded during all trials for primary analysis. Carpet and tile trials resulted in significant increases in contact angle and peak total force with decreased stroke frequency after training. During the velocity controlled trials on concrete, significant increases in contact angle occurred, as well as decreases in stroke frequency after training. Overall, the use of a training video and verbal feedback may help to improve short-term propulsion technique in adolescent wheelchair users and decrease the risk of developing upper limb pain and injury. PMID:26042217

  18. Compressive and shear hip joint contact forces are affected by pediatric obesity during walking

    PubMed Central

    Lerner, Zachary F.; Browning, Raymond C.

    2016-01-01

    Obese children exhibit altered gait mechanics compared to healthy-weight children and have an increased prevalence of hip pain and pathology. This study sought to determine the relationships between body mass and compressive and shear hip joint contact forces during walking. Kinematic and kinetic data were collected during treadmill walking at 1 m•s−1 in 10 obese and 10 healthy-weight 8–12 year-olds. We estimated body composition, segment masses, lower-extremity alignment, and femoral neck angle via radiographic images, created personalized musculoskeletal models in OpenSim, and computed muscle forces and hip joint contact forces. Hip extension at mid-stance was 9° less, on average, in the obese children (p<0.001). Hip abduction, knee flexion, and body-weight normalized peak hip moments were similar between groups. Normalized to body-weight, peak contact forces were similar at the first peak and slightly lower at the second peak between the obese and healthy-weight participants. Total body mass explained a greater proportion of contact force variance compared to lean body mass in the compressive (r2=0.89) and vertical shear (perpendicular to the physis acting superior-to-inferior) (r2=0.84) directions; lean body mass explained a greater proportion in the posterior shear direction (r2=0.54). Stance-average contact forces in the compressive and vertical shear directions increased by 41 N and 48 N, respectively, for every kilogram of body mass. Age explained less than 27% of the hip loading variance. No effect of sex was found. The proportionality between hip loads and body-weight may be implicated in an obese child’s increased risk of hip pain and pathology. PMID:27040390

  19. Compressive and shear hip joint contact forces are affected by pediatric obesity during walking.

    PubMed

    Lerner, Zachary F; Browning, Raymond C

    2016-06-14

    Obese children exhibit altered gait mechanics compared to healthy-weight children and have an increased prevalence of hip pain and pathology. This study sought to determine the relationships between body mass and compressive and shear hip joint contact forces during walking. Kinematic and kinetic data were collected during treadmill walking at 1ms(-1) in 10 obese and 10 healthy-weight 8-12 year-olds. We estimated body composition, segment masses, lower-extremity alignment, and femoral neck angle via radiographic images, created personalized musculoskeletal models in OpenSim, and computed muscle forces and hip joint contact forces. Hip extension at mid-stance was 9° less, on average, in the obese children (p<0.001). Hip abduction, knee flexion, and body-weight normalized peak hip moments were similar between groups. Normalized to body-weight, peak contact forces were similar at the first peak and slightly lower at the second peak between the obese and healthy-weight participants. Total body mass explained a greater proportion of contact force variance compared to lean body mass in the compressive (r(2)=0.89) and vertical shear (perpendicular to the physis acting superior-to-inferior) (r(2)=0.84) directions; lean body mass explained a greater proportion in the posterior shear direction (r(2)=0.54). Stance-average contact forces in the compressive and vertical shear directions increased by 41N and 48N, respectively, for every kilogram of body mass. Age explained less than 27% of the hip loading variance. No effect of sex was found. The proportionality between hip loads and body-weight may be implicated in an obese child׳s increased risk of hip pain and pathology. Published by Elsevier Ltd.

  20. Ground Reaction Forces of the Lead and Trail Limbs when Stepping Over an Obstacle

    PubMed Central

    Bovonsunthonchai, Sunee; Khobkhun, Fuengfa; Vachalathiti, Roongtiwa

    2015-01-01

    Background Precise force generation and absorption during stepping over different obstacles need to be quantified for task accomplishment. This study aimed to quantify how the lead limb (LL) and trail limb (TL) generate and absorb forces while stepping over obstacle of various heights. Material/Methods Thirteen healthy young women participated in the study. Force data were collected from 2 force plates when participants stepped over obstacles. Two limbs (right LL and left TL) and 4 conditions of stepping (no obstacle, stepping over 5 cm, 20 cm, and 30 cm obstacle heights) were tested for main effect and interaction effect by 2-way ANOVA. Paired t-test and 1-way repeated-measure ANOVA were used to compare differences of variables between limbs and among stepping conditions, respectively. The main effects on the limb were found in first peak vertical force, minimum vertical force, propulsive peak force, and propulsive impulse. Results Significant main effects of condition were found in time to minimum force, time to the second peak force, time to propulsive peak force, first peak vertical force, braking peak force, propulsive peak force, vertical impulse, braking impulse, and propulsive impulse. Interaction effects of limb and condition were found in first peak vertical force, propulsive peak force, braking impulse, and propulsive impulse. Conclusions Adaptations of force generation in the LL and TL were found to involve adaptability to altered external environment during stepping in healthy young adults. PMID:26169293

  1. Effect of attentional focus strategies on peak force and performance in the standing long jump.

    PubMed

    Wu, Will F W; Porter, Jared M; Brown, Lee E

    2012-05-01

    Significant benefits in standing long jump performance have been demonstrated when subjects were provided verbal instructions that promoted an external focus of attention compared with an internal focus of attention, suggesting differences in ground reaction forces. The purpose of the present study was to evaluate peak force and jump performance between internal and external focus of attention strategies. Untrained subjects were assigned to both experimental conditions in which verbal instructions were provided to promote either an external or internal focus of attention. All subjects completed a total number of 5 standing long jumps. The results of the study demonstrated that the external focus of attention condition elicited significantly greater jump distance (153.6 ± 38.6 cm) than the internal focus of attention condition (139.5 ± 46.7 cm). There were no significant differences observed between conditions in peak force (1429.8 ± 289.1 N and 1453.7 ± 299.7 N, respectively). The results add to the growing body of literature describing the training and learning benefits of an external focus of attention. Practitioners should create standardized verbal instructions using an external focus of attention to maximize standing long jump performance.

  2. Force-Time Entropy of Isometric Impulse.

    PubMed

    Hsieh, Tsung-Yu; Newell, Karl M

    2016-01-01

    The relation between force and temporal variability in discrete impulse production has been viewed as independent (R. A. Schmidt, H. Zelaznik, B. Hawkins, J. S. Frank, & J. T. Quinn, 1979 ) or dependent on the rate of force (L. G. Carlton & K. M. Newell, 1993 ). Two experiments in an isometric single finger force task investigated the joint force-time entropy with (a) fixed time to peak force and different percentages of force level and (b) fixed percentage of force level and different times to peak force. The results showed that the peak force variability increased either with the increment of force level or through a shorter time to peak force that also reduced timing error variability. The peak force entropy and entropy of time to peak force increased on the respective dimension as the parameter conditions approached either maximum force or a minimum rate of force production. The findings show that force error and timing error are dependent but complementary when considered in the same framework with the joint force-time entropy at a minimum in the middle parameter range of discrete impulse.

  3. Biomechanics and Strength of Manual Wheelchair Users

    PubMed Central

    Ambrosio, Fabrisia; Boninger, Michael L; Souza, Aaron L; Fitzgerald, Shirley G; Koontz, Alicia M; Cooper, Rory A

    2005-01-01

    Background/Objective: Previous investigations have identified muscular imbalance in the shoulder as a source of pain and injury in manual wheelchair users. Our aim was to determine whether a correlation exists between strength and pushrim biomechanical variables including: tangential (motive) force (Ft), radial force (Fr), axial force (Fz), total (resultant) force (FR), fraction of effective force (FEF), and cadence. Methods: Peak isokinetic shoulder strength (flexion [FLX], extension [EXT], abduction [ABD], adduction [ADD], internal rotation [IR], and external rotation [ER]) was tested in 22 manual wheelchair users with a BioDex system for 5 repetitions at 60°/s. Subjects then propelled their own manual wheelchair at 2 speeds, 0.9 m/s (2 mph) and 1.8 m/s (4 mph), for 20 seconds, during which kinematic (OPTOTRAK) and kinetic (SMARTWHEEL) data were collected. Peak isokinetic forces in the cardinal planes were correlated with pushrim biomechanical variables. Results: All peak torque strength variables correlated significantly (P ≤ 0.05) with Ft, Fr, and FR, but were not significantly correlated with Fz, FEF, or cadence. Finally, there were no relationships found between muscle strength ratios (for example, FLX/EXT) and Ft, Fr, FR, Fz, or FEF. Conclusion: There was a correlation between strength and force imparted to the pushrim among wheelchair users; however, there was no correlation found in wheelchair propulsion or muscle imbalance. Clinicians should be aware of this, and approach strength training and training in wheelchair propulsion techniques separately. PMID:16869087

  4. Pre-impact lower extremity posture and brake pedal force predict foot and ankle forces during an automobile collision.

    PubMed

    Hardin, E C; Su, A; van den Bogert, A J

    2004-12-01

    The purpose of this study was to determine how a driver's foot and ankle forces during a frontal vehicle collision depend on initial lower extremity posture and brake pedal force. A 2D musculoskeletal model with seven segments and six right-side muscle groups was used. A simulation of a three-second braking task found 3647 sets of muscle activation levels that resulted in stable braking postures with realistic pedal force. These activation patterns were then used in impact simulations where vehicle deceleration was applied and driver movements and foot and ankle forces were simulated. Peak rearfoot ground reaction force (F(RF)), peak Achilles tendon force (FAT), peak calcaneal force (F(CF)) and peak ankle joint force (F(AJ)) were calculated. Peak forces during the impact simulation were 476 +/- 687 N (F(RF)), 2934 +/- 944 N (F(CF)) and 2449 +/- 918 N (F(AJ)). Many simulations resulted in force levels that could cause fractures. Multivariate quadratic regression determined that the pre-impact brake pedal force (PF), knee angle (KA) and heel distance (HD) explained 72% of the variance in peak FRF, 62% in peak F(CF) and 73% in peak F(AJ). Foot and ankle forces during a collision depend on initial posture and pedal force. Braking postures with increased knee flexion, while keeping the seat position fixed, are associated with higher foot and ankle forces during a collision.

  5. Tibiofemoral contact mechanics after serial medial meniscectomies in the human cadaveric knee.

    PubMed

    Lee, Stephen J; Aadalen, Kirk J; Malaviya, Prasanna; Lorenz, Eric P; Hayden, Jennifer K; Farr, Jack; Kang, Richard W; Cole, Brian J

    2006-08-01

    There is no consensus regarding the extent of meniscectomy leading to deleterious effects on tibiofemoral contact mechanics. The meniscus aids in optimizing tibiofemoral contact mechanics, increasing contact area, and decreasing contact stress. Controlled laboratory study. Twelve fresh-frozen human cadaveric knees each underwent 15 separate testing conditions-5 serial 20-mm posterior medial meniscectomy conditions (intact, 50% radial width, 75% radial width, segmental, and total meniscectomy) at 3 flexion angles (0 degrees , 30 degrees , and 60 degrees )-under an 1800-N axial load. Tekscan sensors were used to measure total force and medial force, contact area, mean contact stress, and peak contact stress. All posterior medial meniscectomy conditions resulted in significantly decreased contact areas and increased mean and peak contact stresses compared with the intact state (P < .05). The changes in contact mechanics after segmental and total posterior medial meniscectomies were not statistically different (P > .05). Incremental changes in contact area and mean contact stress increased as more peripheral portions of the medial meniscus were removed, whereas peak contact stresses exhibited similar incremental changes throughout all meniscectomy conditions. The meniscus is a crucial load-bearing structure, optimizing contact area and minimizing contact stress. Loss of hoop tension (ie, segmental meniscectomy) is equivalent to total meniscectomy in load-bearing terms. The peripheral portion of the medial meniscus provides a greater contribution to increasing contact areas and decreasing mean contact stresses than does the central portion, whereas peak contact stresses increase proportionally to the amount of meniscus removed. Because the degree of meniscectomy leading to clinically significant outcomes is unknown, a prudent strategy is to preserve the greatest amount of meniscus possible.

  6. The hindlimb in walking horses: 1. Kinematics and ground reaction forces.

    PubMed

    Hodson, E; Clayton, H M; Lanovaz, J L

    2001-01-01

    The objective was to study associations between kinematics and ground reaction forces in the hindlimb of walking horses. Video (60 Hz) and force (2000 Hz) data were gathered for 8 strides from each of 5 sound horses during the walk. Sagittal plane kinematics were measured concurrently with the vertical and longitudinal ground reaction forces. The hindlimb showed rapid loading and braking in the initial 10% stride. The stifle, tarsal and coffin joints flexed and the fetlock joint extended during this period of rapid loading. The vertical ground reaction force showed 2 peaks separated by a dip; this pattern was similar to the fetlock joint angle-time graph. Peaks in the longitudinal ground reaction force did not appear to correspond with kinematic events. Total braking impulse was equal to total propulsive impulse over the entire stride. Flexion and extension of the hip were responsible for protraction and retraction of the entire limb. Maximal protraction occurred shortly before the end of swing and maximal retraction occurred during breakover. During the middle part of stance the tarsal joint extended slowly, while the stifle began to flex when the limb was retracted beyond the midstance position at 28% stride. Flexion cycles of the stifle and tarsal joints were well coordinated during the swing phase to raise the distal limb as it was protracted. The results demonstrate a relationship between limb kinematics and vertical limb loading in the hindlimbs of sound horses. Future studies will elucidate the alterations in response to lameness.

  7. Quadriceps force and anterior tibial force occur obviously later than vertical ground reaction force: a simulation study.

    PubMed

    Ueno, Ryo; Ishida, Tomoya; Yamanaka, Masanori; Taniguchi, Shohei; Ikuta, Ryohei; Samukawa, Mina; Saito, Hiroshi; Tohyama, Harukazu

    2017-11-18

    Although it is well known that quadriceps force generates anterior tibial force, it has been unclear whether quadriceps force causes great anterior tibial force during the early phase of a landing task. The purpose of the present study was to examine whether the quadriceps force induced great anterior tibial force during the early phase of a landing task. Fourteen young, healthy, female subjects performed a single-leg landing task. Muscle force and anterior tibial force were estimated from motion capture data and synchronized force data from the force plate. One-way repeated measures analysis of variance and the post hoc Bonferroni test were conducted to compare the peak time of the vertical ground reaction force, quadriceps force and anterior tibial force during the single-leg landing. In addition, we examined the contribution of vertical and posterior ground reaction force, knee flexion angle and moment to peak quadriceps force using multiple linear regression. The peak times of the estimated quadriceps force (96.0 ± 23.0 ms) and anterior tibial force (111.9 ± 18.9 ms) were significantly later than that of the vertical ground reaction force (63.5 ± 6.8 ms) during the single-leg landing. The peak quadriceps force was positively correlated with the peak anterior tibial force (R = 0.953, P < 0.001). Multiple linear regression analysis showed that the peak knee flexion moment contributed significantly to the peak quadriceps force (R 2  = 0.778, P < 0.001). The peak times of the quadriceps force and the anterior tibial force were obviously later than that of the vertical ground reaction force for the female athletes during successful single-leg landings. Studies have reported that the peak time of the vertical ground reaction force was close to the time of anterior cruciate ligament (ACL) disruption in ACL injury cases. It is possible that early contraction of the quadriceps during landing might induce ACL disruption as a result of excessive anterior tibial force in unanticipated situations in ACL injury cases.

  8. Analysis of the lateral push-off in the freestyle flip turn.

    PubMed

    Araujo, Luciana; Pereira, Suzana; Gatti, Roberta; Freitas, Elinai; Jacomel, Gabriel; Roesler, Helio; Villas-Boas, Joao

    2010-09-01

    The aim of this study was to examine the contact phase during the lateral push-off in the turn of front crawl swimming to determine which biomechanical variables (maximum normalized peak force, contact time, impulse, angle of knee flexion, and total turn time within 15 m) contribute to the performance of this turn technique. Thirty-four swimmers of state, national, and international competitive standard participated in the study. For data collection, the following equipment was used: an underwater force platform, a 30-Hz VHS video camera, and a MiniDv digital camera within an underwater box. Data are expressed as descriptive statistics. Inferential analyses were performed using Pearson's correlation and multiple linear regressions. All variables studied had a significant relationship with turn performance. We conclude that a turn executed with a knee flexion angle of between 100° and 120° provides optimum peak forces to generate impulses that allow the swimmer to lose less time in the turn without the need for an excessive force application and with less energy lost.

  9. Anthropometry as a predictor of high speed performance.

    PubMed

    Caruso, J F; Ramey, E; Hastings, L P; Monda, J K; Coday, M A; McLagan, J; Drummond, J

    2009-07-01

    To assess anthropometry as a predictor of high-speed performance, subjects performed four seated knee- and hip-extension workouts with their left leg on an inertial exercise trainer (Impulse Technologies, Newnan GA). Workouts, done exclusively in either the tonic or phasic contractile mode, entailed two one-minute sets separated by a 90-second rest period and yielded three performance variables: peak force, average force and work. Subjects provided the following anthropometric data: height, weight, body mass index, as well as total, upper and lower left leg lengths. Via multiple regression, anthropometry attempted to predict the variance per performance variable. Anthropometry explained a modest (R2=0.27-0.43) yet significant degree of variance from inertial exercise trainer workouts. Anthropometry was a better predictor of peak force variance from phasic workouts, while it accounted for a significant degree of average force and work variance solely from tonic workouts. Future research should identify variables that account for the unexplained variance from high-speed exercise performance.

  10. Reduction of plantar pressures in leprosy patients by using custom made shoes and total contact insoles.

    PubMed

    Tang, Simon Fuk-Tan; Chen, Carl P C; Lin, Shih-Cherng; Wu, Chih-Kuan; Chen, Chih-Kuang; Cheng, Shun-Ping

    2015-02-01

    The purpose of this study was to observe whether our custom made shoes and total contact insoles can effectively increase the plantar contact areas and reduce peak pressures in patients with leprosy. In the rehabilitation laboratory of a tertiary medical center. Six male and two female leprosy patients were recruited in this study. In this study, parameters related to foot pressures were compared between these patients wearing commercial available soft-lining kung-fu shoes and our custom made shoes with total contact insoles. The custom made shoes were made with larger toe box and were able to accommodate both the foot and the insoles. Custom made total contact insoles were made with the subtalar joints under neutral and non-weight-bearing positions. The insole force measurement system of Novel Pedar-X (Novel, Munich, Germany) was used to measure the plantar forces. The parameters of contact area (cm(2)), peak plantar pressures (kPa), contact time (s), and pressure time integral (kPa s) were measured. There were significant contact area increases in the right and left foot heel areas, left medial arch, and second to fifth toes after wearing the custom made shoes and insoles. There were significant decreases in peak plantar pressures in bilateral heels, left lateral midfoot, bilateral second to fourth metatarsal areas, and left fifth metatarsal head after wearing the custom made shoes and insoles (p<0.05). Plantar ulceration is a common serious disability in leprosy patients. As a result, footwear and measures able to reduce plantar pressures may be beneficial in preventing plantar ulcers from occurring in these patients. Our custom made shoes and total contact insoles were proven to be effective in increasing contact areas and decreasing peak pressures in plantar surfaces, and may therefore be a feasible treatment option in preventing leprosy patients from developing plantar ulcers. © 2015 Elsevier B.V. All rights reserved.

  11. Do the peak and mean force methods of assessing vertical jump force asymmetry agree?

    PubMed

    Lake, Jason P; Mundy, Peter D; Comfort, Paul; Suchomel, Timothy J

    2018-05-21

    The aim of this study was to assess agreement between peak and mean force methods of quantifying force asymmetry during the countermovement jump (CMJ). Forty-five men performed four CMJ with each foot on one of two force plates recording at 1,000 Hz. Peak and mean were obtained from both sides during the braking and propulsion phases. The dominant side was obtained for the braking and propulsion phase as the side with the largest peak or mean force and agreement was assessed using percentage agreement and the kappa coefficient. Braking phase peak and mean force methods demonstrated a percentage agreement of 84% and a kappa value of 0.67 (95% confidence limits: 0.45-0.90), indicating substantial agreement. Propulsion phase peak and mean force methods demonstrated a percentage agreement of 87% and a kappa value of 0.72 (95% confidence limits: 0.51-0.93), indicating substantial agreement. While agreement was substantial, side-to-side differences were not reflected equally when peak and mean force methods of assessing CMJ asymmetry were used. These methods should not be used interchangeably, but rather a combined approach should be used where practitioners consider both peak and mean force to obtain the fullest picture of athlete asymmetry.

  12. The influence of cricket fast bowlers' front leg technique on peak ground reaction forces.

    PubMed

    Worthington, Peter; King, Mark; Ranson, Craig

    2013-01-01

    High ground reaction forces during the front foot contact phase of the bowling action are believed to be a major contributor to the high prevalence of lumbar stress fractures in fast bowlers. This study aimed to investigate the influence of front leg technique on peak ground reaction forces during the delivery stride. Three-dimensional kinematic data and ground reaction forces during the front foot contact phase were captured for 20 elite male fast bowlers. Eight kinematic parameters were determined for each performance, describing run-up speed and front leg technique, in addition to peak force and time to peak force in the vertical and horizontal directions. There were substantial variations between bowlers in both peak forces (vertical 6.7 ± 1.4 body weights; horizontal (braking) 4.5 ± 0.8 body weights) and times to peak force (vertical 0.03 ± 0.01 s; horizontal 0.03 ± 0.01 s). These differences were found to be linked to the orientation of the front leg at the instant of front foot contact. In particular, a larger plant angle and a heel strike technique were associated with lower peak forces and longer times to peak force during the front foot contact phase, which may help reduce the likelihood of lower back injuries.

  13. Experimental estimation of energy absorption during heel strike in human barefoot walking.

    PubMed

    Baines, Patricia M; Schwab, A L; van Soest, A J

    2018-01-01

    Metabolic energy expenditure during human gait is poorly understood. Mechanical energy loss during heel strike contributes to this energy expenditure. Previous work has estimated the energy absorption during heel strike as 0.8 J using an effective foot mass model. The aim of our study is to investigate the possibility of determining the energy absorption by more directly estimating the work done by the ground reaction force, the force-integral method. Concurrently another aim is to compare this method of direct determination of work to the method of an effective foot mass model. Participants of our experimental study were asked to walk barefoot at preferred speed. Ground reaction force and lower leg kinematics were collected at high sampling frequency (3000 Hz; 1295 Hz), with tight synchronization. The work done by the ground reaction force is 3.8 J, estimated by integrating this force over the foot-ankle deformation. The effective mass model is improved by dropping the assumption that foot-ankle deformation is maximal at the instant of the impact force peak. On theoretical grounds it is clear that in the presence of substantial damping that peak force and peak deformation do not occur simultaneously. The energy absorption results, due the vertical force only, corresponding to the force-integral method is similar to the results of the improved application of the effective mass model (2.7 J; 2.5 J). However the total work done by the ground reaction force calculated by the force-integral method is significantly higher than that of the vertical component alone. We conclude that direct estimation of the work done by the ground reaction force is possible and preferable over the use of the effective foot mass model. Assuming that energy absorbed is lost, the mechanical energy loss of heel strike is around 3.8 J for preferred walking speeds (≈ 1.3 m/s), which contributes to about 15-20% of the overall metabolic cost of transport.

  14. The unique contribution of manual chest compression-vibrations to airflow during physiotherapy in sedated, fully ventilated children.

    PubMed

    Gregson, Rachael K; Shannon, Harriet; Stocks, Janet; Cole, Tim J; Peters, Mark J; Main, Eleanor

    2012-03-01

    This study aimed to quantify the specific effects of manual lung inflations with chest compression-vibrations, commonly used to assist airway clearance in ventilated patients. The hypothesis was that force applied during the compressions made a significant additional contribution to increases in peak expiratory flow and expiratory to inspiratory flow ratio over and above that resulting from accompanying increases in inflation volume. Prospective observational study. Cardiac and general pediatric intensive care. Sedated, fully ventilated children. Customized force-sensing mats and a commercial respiratory monitor recorded force and respiration during physiotherapy. Percentage changes in peak expiratory flow, peak expiratory to inspiratory flow ratios, inflation volume, and peak inflation pressure between baseline and manual inflations with and without compression-vibrations were calculated. Analysis of covariance determined the relative contribution of changes in pressure, volume, and force to influence changes in peak expiratory flow and peak expiratory to inspiratory flow ratio. Data from 105 children were analyzed (median age, 1.3 yrs; range, 1 wk to 15.9 yrs). Force during compressions ranged from 15 to 179 N (median, 46 N). Peak expiratory flow increased on average by 76% during compressions compared with baseline ventilation. Increases in peak expiratory flow were significantly related to increases in inflation volume, peak inflation pressure, and force with peak expiratory flow increasing by, on average, 4% for every 10% increase in inflation volume (p < .001), 5% for every 10% increase in peak inflation pressure (p = .005), and 3% for each 10 N of applied force (p < .001). By contrast, increase in peak expiratory to inspiratory flow ratio was only related to applied force with a 4% increase for each 10 N of force (p < .001). These results provide evidence of the unique contribution of compression forces in increasing peak expiratory flow and peak expiratory to inspiratory flow ratio bias over and above that related to accompanying changes from manual hyperinflations. Force generated during compression-vibrations was the single significant factor in multivariable analysis to explain the increases in expiratory flow bias. Such increases in the expiratory bias provide theoretically optimal physiological conditions for cephalad mucus movement in fully ventilated children.

  15. A kinematic and kinetic analysis of the sit-to-stand transfer using an ejector chair: implications for elderly rheumatoid arthritic patients.

    PubMed

    Munro, B J; Steele, J R; Bashford, G M; Ryan, M; Britten, N

    1998-03-01

    Twelve elderly female rheumatoid arthritis patients (mean age = 65.5 +/- 8.6 yr) were assessed rising from an instrumented Eser Ejector chair under four conditions: high seat (540 mm), low seat (450 mm), with and without the ejector mechanism operating. Sagittal plane motion, ground reaction forces, and vertical chair arm rest forces were recorded during each trial with the signals synchronised at initial subject head movement. When rising from a high seat, subjects displayed significantly (p < 0.05) greater time to seat off; greater trunk, knee and ankle angles at seat off; increased ankle angular displacement; decreased knee angular displacement; and decreased total net and normalised arm rest forces compared to rising from a low seat. When rising using the ejector mechanism, time to seat off and trunk and knee angle at seat off significantly increased, whereas trunk and knee angular displacement, and total net and normalised arm rest forces significantly decreased compared to rising unassisted. Regardless of seat height or ejector mechanism use, there were no significant differences in the peak, or time to peak horizontal velocity of the subjects' total body centre of mass, or net knee and ankle moments. It was concluded that increased seat height and use of the ejector mechanism facilitated sit-to-stand transfers performed by elderly female rheumatoid arthritic patients. However, using the ejector chair may be preferred by these patients compared to merely raising seat height because it does not necessitate the use of a footstool, a possible obstacle contributing to falls.

  16. Patellofemoral joint stress during running with alterations in foot strike pattern.

    PubMed

    Vannatta, Charles Nathan; Kernozek, Thomas W

    2015-05-01

    This study aimed to quantify differences in patellofemoral joint stress that may occur when healthy runners alter their foot strike pattern from their habitual rearfoot strike to a forefoot strike to gain insight on the potential etiology and treatment methods of patellofemoral pain. Sixteen healthy female runners completed 20 running trials in a controlled laboratory setting under rearfoot strike and forefoot strike conditions. Kinetic and kinematic data were used to drive a static optimization technique to estimate individual muscle forces to input into a model of the patellofemoral joint to estimate joint stress during running. Peak patellofemoral joint stress and the stress-time integral over stance phase decreased by 27% and 12%, respectively, in the forefoot strike condition (P < 0.001). Peak vertical ground reaction force increased slightly in the forefoot strike condition (P < 0.001). Peak quadriceps force and average hamstring force decreased, whereas gastrocnemius and soleus muscle forces increased when running with a forefoot strike (P < 0.05). Knee flexion angle at initial contact increased (P < 0.001), total knee excursion decreased (P < 0.001), and no change occurred in peak knee flexion angle (P = 0.238). Step length did not change between conditions (P = 0.375), but the leading leg landed with the foot positioned with a horizontal distance closer to the hip at initial contact in the forefoot strike condition (P < 0.001). Altering one's strike pattern to a forefoot strike results in consistent reductions in patellofemoral joint stress independent of changes in step length. Thus, implementation of forefoot strike training programs may be warranted in the treatment of runners with patellofemoral pain. However, it is suggested that the transition to a forefoot strike pattern should be completed in a graduated manner.

  17. Testing the Millennial-Scale Holocene Solar-Climate Connection in the Indo-Pacific Warm Pool

    NASA Astrophysics Data System (ADS)

    Khider, D.; Emile-Geay, J.; McKay, N.; Jackson, C. S.; Routson, C.

    2016-12-01

    The existence of 1000 and 2500-year periodicities found in reconstructions of total solar irradiance (TSI) and a number of Holocene climate records has led to the hypothesis of a causal relationship. However, attributing Holocene millennial-scale variability to solar forcing requires a mechanism by which small changes in total irradiance can influence a global climate response. One possible amplifier within the climate system is the ocean. If this is the case, then we need to know more about where and how this may be occurring. On the other hand, the similarity in spectral peaks could be merely coincidental, and this should be made apparent by a lack of coherence in how that power and phasing are distributed in time and space. The plausibility of the solar forcing hypothesis is assessed through a Bayesian model of the age uncertainties affecting marine sedimentary records that is propagated through spectral analysis of the climate and forcing signals at key frequencies. Preliminary work on Mg/Ca and alkenone records from the Indo-Pacific Warm Pool suggests that despite large uncertainties in the location of the spectral peaks within each individual record arising from age model uncertainty, sea surface variability on timescales of 1025±36 years and 2427±133 years (±standard error of the mean of the median periodicity in each record) are present in at least 95% and 70% of the ensemble spectra, respectively. However, we find a long phase delay between the peak in forcing and the maximum response in at least one of the records, challenging the solar forcing hypothesis and requiring further investigation between low- and high-latitude signals. Remarkably, all records suggest a periodicity near 1470±85 years, reminiscent of the cycles characteristic of Marine Isotope Stage 3; these cycles are absent from existing records of TSI, further questioning the millennial solar-climate connection.

  18. Imaging surface nanobubbles at graphite-water interfaces with different atomic force microscopy modes.

    PubMed

    Yang, Chih-Wen; Lu, Yi-Hsien; Hwang, Ing-Shouh

    2013-05-08

    We have imaged nanobubbles on highly ordered pyrolytic graphite (HOPG) surfaces in pure water with different atomic force microscopy (AFM) modes, including the frequency-modulation, the tapping, and the PeakForce techniques. We have compared the performance of these modes in obtaining the surface profiles of nanobubbles. The frequency-modulation mode yields a larger height value than the other two modes and can provide more accurate measurement of the surface profiles of nanobubbles. Imaging with PeakForce mode shows that a nanobubble appears smaller and shorter with increasing peak force and disappears above a certain peak force, but the size returns to the original value when the peak force is reduced. This indicates that imaging with high peak forces does not cause gas removal from the nanobubbles. Based on the presented findings and previous AFM observations, the existing models for nanobubbles are reviewed and discussed. The model of gas aggregate inside nanobubbles provides a better explanation for the puzzles of the high stability and the contact angle of surface nanobubbles.

  19. Prediction of plantar shear stress distribution by artificial intelligence methods.

    PubMed

    Yavuz, Metin; Ocak, Hasan; Hetherington, Vincent J; Davis, Brian L

    2009-09-01

    Shear forces under the human foot are thought to be responsible for various foot pathologies such as diabetic plantar ulcers and athletic blisters. Frictional shear forces might also play a role in the metatarsalgia observed among hallux valgus (HaV) and rheumatoid arthritis (RA) patients. Due to the absence of commercial devices capable of measuring shear stress distribution, a number of linear models were developed. All of these have met with limited success. This study used nonlinear methods, specifically neural network and fuzzy logic schemes, to predict the distribution of plantar shear forces based on vertical loading parameters. In total, 73 subjects were recruited; 17 had diabetic neuropathy, 14 had HaV, 9 had RA, 11 had frequent foot blisters, and 22 were healthy. A feed-forward neural network (NN) and adaptive neurofuzzy inference system (NFIS) were built. These systems were then applied to a custom-built platform, which collected plantar pressure and shear stress data as subjects walked over the device. The inputs to both models were peak pressure, peak pressure-time integral, and time to peak pressure, and the output was peak resultant shear. Root-mean-square error (RMSE) values were calculated to test the models' accuracy. RMSE/actual shear ratio varied between 0.27 and 0.40 for NN predictions. Similarly, NFIS estimations resulted in a 0.28-0.37 ratio for local peak values in all subject groups. On the other hand, error percentages for global peak shear values were found to be in the range 11.4-44.1. These results indicate that there is no direct relationship between pressure and shear magnitudes. Future research should aim to decrease error levels by introducing shear stress dependent variables into the models.

  20. Preventing fall-related vertebral fractures: effect of floor stiffness on peak impact forces during backward falls.

    PubMed

    Sran, Meena M; Robinovitch, Stephen N

    2008-08-01

    In vivo biomechanical study of 11 male volunteers. To measure the peak forces applied to the buttocks in a backward fall from standing, and to determine whether this force is lowered by reductions in floor stiffness. Fall-related vertebral fractures are common and backward falls result in impact to the buttocks. Compliant flooring may reduce impact force and risk for vertebral fracture during a fall. However, we have little knowledge of the peak forces applied to the body during a backward fall, or how floor stiffness affects this force. Eleven males, mean age 25 +/- 5 (SD) years, were suddenly released from a backward lean of 15 degrees , falling backward onto the ground which was covered with 4.5, 7.5, or 10.5 cm of ethylene vinyl acetate foam rubber. We measured 3-dimensional impact forces applied to the buttocks at 960 Hz with a force plate. We used repeated measures analysis of variance and post hoc t tests to compare peak forces between conditions. We also modeled peak vertical force for falls onto a bare floor. RESULTS.: There was a significant difference in peak vertical force between falls onto the 10.5 cm foam condition compared with the 7.5 cm (P = 0.002) and 4.5 cm (P < 0.001) conditions. Peak vertical force (N) was (mean +/- SD) 5099 +/- 868, 4788 +/- 702, and 4544 +/- 672 for the 4.5, 7.5, and 10.5 cm foam conditions, respectively, and estimated at 6027 +/- 988 for the rigid (bare floor) condition. Compared with the bare floor, these foam floors provided, on average, 24, 20, and 15% force attenuation respectively. In a backward fall onto the buttocks, peak impact forces are 6.4 to 9.0 times body weight in a fall onto a bare floor. Reducing floor stiffness using even a thin (4.5 cm) layer of foam may provide 15% vertical force attenuation during a fall onto the buttocks.

  1. Human occupants in low-speed frontal sled tests: effects of pre-impact bracing on chest compression, reaction forces, and subject acceleration.

    PubMed

    Kemper, Andrew R; Beeman, Stephanie M; Madigan, Michael L; Duma, Stefan M

    2014-01-01

    The purpose of this study was to investigate the effects of pre-impact bracing on the chest compression, reaction forces, and accelerations experienced by human occupants during low-speed frontal sled tests. A total of twenty low-speed frontal sled tests, ten low severity (∼2.5g, Δv=5 kph) and ten medium severity (∼5g, Δv=10 kph), were performed on five 50th-percentile male human volunteers. Each volunteer was exposed to two impulses at each severity, one relaxed and the other braced prior to the impulse. A 59-channel chestband, aligned at the nipple line, was used to quantify the chest contour and anterior-posterior sternum deflection. Three-axis accelerometer cubes were attached to the sternum, 7th cervical vertebra, and sacrum of each subject. In addition, three linear accelerometers and a three-axis angular rate sensor were mounted to a metal mouthpiece worn by each subject. Seatbelt tension load cells were attached to the retractor, shoulder, and lap portions of the standard three-point driver-side seatbelt. In addition, multi-axis load cells were mounted to each interface between the subject and the test buck to quantify reaction forces. For relaxed tests, the higher test severity resulted in significantly larger peak values for all resultant accelerations, all belt forces, and three resultant reaction forces (right foot, seatpan, and seatback). For braced tests, the higher test severity resulted in significantly larger peak values for all resultant accelerations, and two resultant reaction forces (right foot and seatpan). Bracing did not have a significant effect on the occupant accelerations during the low severity tests, but did result in a significant decrease in peak resultant sacrum linear acceleration during the medium severity tests. Bracing was also found to significantly reduce peak shoulder and retractor belt forces for both test severities, and peak lap belt force for the medium test severity. In contrast, bracing resulted in a significant increase in the peak resultant reaction force for the right foot and steering column at both test severities. Chest compression due to belt loading was observed for all relaxed subjects at both test severities, and was found to increase significantly with increasing severity. Conversely, chest compression due to belt loading was essentially eliminated during the braced tests for all but one subject, who sustained minor chest compression due to belt loading during the medium severity braced test. Overall, the data from this study illustrate that muscle activation has a significant effect on the biomechanical response of human occupants in low-speed frontal impacts.

  2. Ice Action on Pairs of Cylindrical and Conical Structures,

    DTIC Science & Technology

    1983-09-01

    correlation because the forces generated ficult to pick a distinct peak in the autospectra for between the structure and the ice sheet are af- the...against two conical structures ...... 20 24. Normalized maximum ice force versus ice velocity ................. 20 25. Normalized initial peak force...versus ice velocity .................. 21 26. Ratio of initial peak ice force to theoretical ice force versus ratio of center-to-center distance

  3. Supercomputer simulations of structure formation in the Universe

    NASA Astrophysics Data System (ADS)

    Ishiyama, Tomoaki

    2017-06-01

    We describe the implementation and performance results of our massively parallel MPI†/OpenMP‡ hybrid TreePM code for large-scale cosmological N-body simulations. For domain decomposition, a recursive multi-section algorithm is used and the size of domains are automatically set so that the total calculation time is the same for all processes. We developed a highly-tuned gravity kernel for short-range forces, and a novel communication algorithm for long-range forces. For two trillion particles benchmark simulation, the average performance on the fullsystem of K computer (82,944 nodes, the total number of core is 663,552) is 5.8 Pflops, which corresponds to 55% of the peak speed.

  4. Aerobic exercise training induces skeletal muscle hypertrophy and age-dependent adaptations in myofiber function in young and older men

    PubMed Central

    Konopka, Adam R.; Undem, Miranda K.; Hinkley, James M.; Minchev, Kiril; Kaminsky, Leonard A.; Trappe, Todd A.; Trappe, Scott

    2012-01-01

    To examine potential age-specific adaptations in skeletal muscle size and myofiber contractile physiology in response to aerobic exercise, seven young (YM; 20 ± 1 yr) and six older men (OM; 74 ± 3 yr) performed 12 wk of cycle ergometer training. Muscle biopsies were obtained from the vastus lateralis to determine size and contractile properties of isolated slow [myosin heavy chain (MHC) I] and fast (MHC IIa) myofibers, MHC composition, and muscle protein concentration. Aerobic capacity was higher (P < 0.05) after training in both YM (16 ± 2%) and OM (13 ± 3%). Quadriceps muscle volume, determined via MRI, was 5 ± 1 and 6 ± 1% greater (P < 0.05) after training for YM and OM, respectively, which was associated with an increase in MHC I myofiber cross-sectional area (CSA), independent of age. MHC I peak power was higher (P < 0.05) after training for both YM and OM, while MHC IIa peak power was increased (P < 0.05) with training in OM only. MHC I and MHC IIa myofiber peak and normalized (peak force/CSA) force were preserved with training in OM, while MHC I peak force/CSA and MHC IIa peak force were lower (P < 0.05) after training in YM. The age-dependent adaptations in myofiber function were not due to changes in protein content, as total muscle protein and myofibrillar protein concentration were unchanged (P > 0.05) with training. Training reduced (P < 0.05) the proportion of MHC IIx isoform, independent of age, whereas no other changes in MHC composition were observed. These data suggest relative improvements in muscle size and aerobic capacity are similar between YM and OM, while adaptations in myofiber contractile function showed a general improvement in OM. Training-related increases in MHC I and MHC IIa peak power reveal that skeletal muscle of OM is responsive to aerobic exercise training and further support the use of aerobic exercise for improving cardiovascular and skeletal muscle health in older individuals. PMID:22984247

  5. The effect of tibiotalar alignment on coronal plane mechanics following total ankle replacement.

    PubMed

    Grier, A Jordan; Schmitt, Abigail C; Adams, Samuel B; Queen, Robin M

    2016-07-01

    Gait mechanics following total ankle replacement (TAR) have reported improved ankle motion following surgery. However, no studies have addressed the impact of preoperative radiographic tibiotalar alignment on post-TAR gait mechanics. We therefore investigated whether preoperative tibiotalar alignment (varus, valgus, or neutral) resulted in significantly different coronal plane mechanics or ground reaction forces post-TAR. We conducted a non-randomized study of 93 consecutive end-stage ankle arthritis patients. Standard weight-bearing radiographs were obtained preoperatively to categorize patients as having neutral (±4°), varus (≥5° of varus), or valgus (≥5° of valgus) coronal plane tibiotalar alignment. All patients underwent a standard walking assessment including three-dimensional lower extremity kinetics and kinematics preoperatively, 12 and 24 months postoperatively. A significant group by time interaction was observed for the propulsive vertical ground reaction force (vGRF), coronal plane hip range of motion (ROM) and the peak hip abduction moment. The valgus group demonstrated an increase in the peak knee adduction angle and knee adduction angle at heel strike when compared to the other groups. Coronal plane ankle ROM, knee and hip angles at heel strike, and the peak hip angle exhibited significant increases across time. Peak ankle inversion moment, peak knee abduction moment and the weight acceptance vGRF also exhibited significant increases across time. Neutral ankle alignment was achieved for all patients by 2 years following TAR. Restoration of neutral ankle alignment at the time of TAR in patients with preoperative varus or valgus tibiotalar alignment resulted in biomechanics similar to those of patients with neutral preoperative tibiotalar alignment by 24-month follow-up. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Environmental Impact Analysis Process. Final Environmental Assessment. Deactivation of 6594th Test Group, Hickam Air Force Base, Hawaii

    DTIC Science & Technology

    1986-08-01

    affected area is along Kamehameha Highway at the Makalapa Gate, where 24-hour volumes are about 18,500, and peak a.m. traffic is about 1,500 (Station...AFB NUMBER OF VEHICLES PEAK-HOUR STATION NUMBER LOCATION AM PM 24-HOUR TOTAL 1. 3-C Kamehameha and Nimitz Highways at Elliot...3,222 3:30-4:30 3,898 23,996 4. 5-B Kamehameha Highway at Redford Drive (Makalapa Gate – inbound/outbound) 11:00-12:00 1,532 3:30-4:30

  7. Age-related differences in lower-limb force-time relation during the push-off in rapid voluntary stepping.

    PubMed

    Melzer, I; Krasovsky, T; Oddsson, L I E; Liebermann, D G

    2010-12-01

    This study investigated the force-time relationship during the push-off stage of a rapid voluntary step in young and older healthy adults, to study the assumption that when balance is lost a quick step may preserve stability. The ability to achieve peak propulsive force within a short time is critical for the performance of such a quick powerful step. We hypothesized that older adults would achieve peak force and power in significantly longer times compared to young people, particularly during the push-off preparatory phase. Fifteen young and 15 older volunteers performed rapid forward steps while standing on a force platform. Absolute anteroposterior and body weight normalized vertical forces during the push-off in the preparation and swing phases were used to determine time to peak and peak force, and step power. Two-way analyses of variance ('Group' [young-older] by 'Phase' [preparation-swing]) were used to assess our hypothesis (P ≤ 0.05). Older people exerted lower peak forces (anteroposterior and vertical) than young adults, but not necessarily lower peak power. More significantly, they showed a longer time to peak force, particularly in the vertical direction during the preparation phase. Older adults generate propulsive forces slowly and reach lower magnitudes, mainly during step preparation. The time to achieve a peak force and power, rather than its actual magnitude, may account for failures in quickly performing a preventive action. Such delay may be associated with the inability to react and recruit muscles quickly. Thus, training elderly to step fast in response to relevant cues may be beneficial in the prevention of falls. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Comparison of abdominal muscle activity and peak expiratory flow between forced vital capacity and fast expiration exercise.

    PubMed

    Ishida, Hiroshi; Suehiro, Tadanobu; Watanabe, Susumu

    2017-04-01

    [Purpose] The purpose of this investigation was to compare the activities of the abdominal muscles and peak expiratory flow between forced vital capacity and fast expiration exercise. [Subjects and Methods] Fifteen healthy male participated in this study. Peak expiratory flow and electromyographic activities of the rectus abdominis, external oblique, and internal oblique/transversus abdominis muscles were measured during forced vital capacity and fast expiration exercise and then peak amplitude and its appearance time were obtained. [Results] Peak expiratory flow values were significantly higher during fast expiration exercise than during forced vital capacity. The internal oblique/transversus abdominis muscles showed significantly higher peak amplitude during fast expiration exercise than during forced vital capacity. However, there were no significant differences between forced vital capacity and fast expiration exercise in the rectus abdominis and external oblique muscles. There was no difference in the appearance time of the peak amplitude between forced vital capacity and fast expiration exercise in any muscle. [Conclusion] Fast expiration exercise might be beneficial for increasing expiratory speed and neuromuscular activation of the internal oblique/transversus abdominis muscles compared to forced vital capacity. These findings could be considered when recommending a variation of expiratory muscle strength training as part of pulmonary rehabilitation programs.

  9. Biomechanical evaluation of an innovative spring-loaded axillary crutch design.

    PubMed

    Zhang, Yanxin; Liu, Guangyu; Xie, Shengquan; Liger, Aurélien

    2011-01-01

    We evaluated an innovative spring-loaded crutch design by comparing its performance with standard crutches through a biomechanical approach. Gait analysis was conducted for 7 male subjects under two conditions: walking with standard crutches and with spring-loaded crutches. Three-dimensional kinematic data and ground reaction force were recorded. Spatiotemporal variables, external mechanical work, and elastic energy (for spring crutches) were calculated based on recorded data. The trajectories of vertical ground reaction forces with standard crutches had two main peaks before and after mid-stance, and those with optimized spring-loaded crutches had only one main peak. The magnitude of external mechanical work was significantly higher with spring-loaded crutches than with standard crutches for all subjects, and the transferred elastic energy made an important contribution to the total external work for spring-loaded crutches. No significant differences in the spatiotemporal parameters were observed. Optimized spring-loaded crutches can efficiently propel crutch walkers and could reduce the total energy expenditure in crutch walking. Further research using optimized spring-loaded crutches with respect to energy efficiency is recommended.

  10. Correlation of prostaglandin E2 concentrations in synovial fluid with ground reaction forces and clinical variables for pain or inflammation in dogs with osteoarthritis induced by transection of the cranial cruciate ligament.

    PubMed

    Trumble, Troy N; Billinghurst, R Clark; McIlwraith, C Wayne

    2004-09-01

    To evaluate the temporal pattern of prostaglandin (PG) E2 concentrations in synovial fluid after transection of the cranial cruciate ligament (CCL) in dogs and to correlate PGE2 concentrations with ground reaction forces and subjective clinical variables for lameness or pain. 19 purpose-bred adult male Walker Hounds. Force plate measurements, subjective clinical analysis of pain or lameness, and samples of synovial fluid were obtained before (baseline) and at various time points after arthroscopic transection of the right CCL. Concentrations of PGE2 were measured in synovial fluid samples, and the PGE2 concentrations were correlated with ground reaction forces and clinical variables. The PGE2 concentration increased significantly above the baseline value throughout the entire study, peaking 14 days after transection. Peak vertical force and vertical impulse significantly decreased by day 14 after transection, followed by an increase over time without returning to baseline values. All clinical variables (eg, lameness, degree of weight bearing, joint extension, cumulative pain score, effusion score, and total protein content of synovial fluid, except for WBC count in synovial fluid) increased significantly above baseline values. Significant negative correlations were detected between PGE2 concentrations and peak vertical force (r, -0.5720) and vertical impulse (r, -0.4618), and significant positive correlations were detected between PGE2 concentrations and the subjective lameness score (r, 0.5016) and effusion score (r, 0.6817). Assessment of the acute inflammatory process by measurement of PGE2 concentrations in synovial fluid may be correlated with the amount of pain or lameness in dogs.

  11. Relationship between depolarization-induced force responses and Ca2+ content in skeletal muscle fibres of rat and toad.

    PubMed

    Owen, V J; Lamb, G D; Stephenson, D G; Fryer, M W

    1997-02-01

    1. The relationship between the total Ca2+ content of a muscle fibre and the magnitude of the force response to depolarization was examined in mechanically skinned fibres from the iliofibularis muscle of the toad and the extensor digitorum longus muscle of the rat. The response to depolarization in each skinned fibre was assessed either at the endogenous level of Ca2+ content or after depleting the fibre of Ca2+ to some degree. Ca2+ content was determined by a fibre lysing technique. 2. In both muscle types, the total Ca2+ content could be reduced from the endogenous level of approximately 1.3 mmol l-1 (expressed relative to intact fibre volume) to approximately 0.25 mmol l-1 by either depolarization or caffeine application in the presence of Ca2+ chelators, showing that the great majority of the Ca2+ was stored in the sarcoplasmic reticulum (SR). Chelation of Ca2+ in the transverse tubular (T-) system, either by exposure of fibres to EGTA before skinning or by permeabilizing the T-system with saponin after skinning, reduced the lower limit of Ca2+ content to < or = 0.12 mmol l-1, indicating that 10-20% of the total fibre Ca2+ resided in the T-system. 3. In toad fibres, both the peak and the area (i.e. time integral) of the force response to depolarization were reduced by any reduction in SR Ca2+ content, with both decreasing to zero in an approximately linear manner as the SR Ca2+ content was reduced to < 15% of the endogenous level. In rat fibres, the peak size of the force response was less affected by small decreases in SR content, but both the peak and area of the response decreased to zero with greater depletion. In partially depleted toad fibres, inhibition of SR Ca2+ uptake potentiated the force response to depolarization almost 2-fold. 4. The results show that in this skinned fibre preparation: (a) T-system depolarization and caffeine application can each virtually fully deplete the SR of Ca2+, irrespective of any putative inhibitory effect of SR depletion on channel activation; (b) all of the endogenous level of SR Ca2+ must be released in order to produce a maximal response to depolarization; and (c) a substantial part (approximately 40%) of the Ca2+ released by a depolarization is normally taken back into the SR before it can contribute to force production.

  12. Relationship between depolarization-induced force responses and Ca2+ content in skeletal muscle fibres of rat and toad.

    PubMed Central

    Owen, V J; Lamb, G D; Stephenson, D G; Fryer, M W

    1997-01-01

    1. The relationship between the total Ca2+ content of a muscle fibre and the magnitude of the force response to depolarization was examined in mechanically skinned fibres from the iliofibularis muscle of the toad and the extensor digitorum longus muscle of the rat. The response to depolarization in each skinned fibre was assessed either at the endogenous level of Ca2+ content or after depleting the fibre of Ca2+ to some degree. Ca2+ content was determined by a fibre lysing technique. 2. In both muscle types, the total Ca2+ content could be reduced from the endogenous level of approximately 1.3 mmol l-1 (expressed relative to intact fibre volume) to approximately 0.25 mmol l-1 by either depolarization or caffeine application in the presence of Ca2+ chelators, showing that the great majority of the Ca2+ was stored in the sarcoplasmic reticulum (SR). Chelation of Ca2+ in the transverse tubular (T-) system, either by exposure of fibres to EGTA before skinning or by permeabilizing the T-system with saponin after skinning, reduced the lower limit of Ca2+ content to < or = 0.12 mmol l-1, indicating that 10-20% of the total fibre Ca2+ resided in the T-system. 3. In toad fibres, both the peak and the area (i.e. time integral) of the force response to depolarization were reduced by any reduction in SR Ca2+ content, with both decreasing to zero in an approximately linear manner as the SR Ca2+ content was reduced to < 15% of the endogenous level. In rat fibres, the peak size of the force response was less affected by small decreases in SR content, but both the peak and area of the response decreased to zero with greater depletion. In partially depleted toad fibres, inhibition of SR Ca2+ uptake potentiated the force response to depolarization almost 2-fold. 4. The results show that in this skinned fibre preparation: (a) T-system depolarization and caffeine application can each virtually fully deplete the SR of Ca2+, irrespective of any putative inhibitory effect of SR depletion on channel activation; (b) all of the endogenous level of SR Ca2+ must be released in order to produce a maximal response to depolarization; and (c) a substantial part (approximately 40%) of the Ca2+ released by a depolarization is normally taken back into the SR before it can contribute to force production. PMID:9051571

  13. Effect of External Loading on Force and Power Production During Plyometric Push-ups.

    PubMed

    Hinshaw, Taylour J; Stephenson, Mitchell L; Sha, Zhanxin; Dai, Boyi

    2018-04-01

    Hinshaw, TJ, Stephenson, ML, Sha, Z, and Dai, B. Effect of external loading on force and power production during plyometric push-ups. J Strength Cond Res 32(4): 1099-1108, 2018-One common exercise to train upper-body strength and power is the push-up. Training at the loads that would produce the greatest power is an effective way to increase peak power. The purpose of the current study was to quantify the changes in peak force, peak power, and peak velocity among a modified plyometric push-up and plyometric push-ups with or without external loading in physically active young adults. Eighteen male and 17 female participants completed 4 push-ups: (a) modified plyometric push-up on the knees, (b) plyometric push-up without external loading, (c) plyometric push-up with an external load of 5% of body weight, and (d) plyometric push-up with an external load of 10% of body weight. Two force platforms were set up to collect vertical ground reaction forces at the hands and feet. The modified plyometric push-up demonstrated the lowest force, power, and velocity (5.4≥ Cohen's dz ≥1.2). Peak force and force at peak velocity increased (3.8≥ Cohen's dz ≥0.3) and peak velocity and velocity at peak power decreased (1.4≥ Cohen's dz ≥0.8) for the push-up without external loading compared with the 2 push-ups with external loading. No significant differences were observed for peak power among the push-ups with or without external loading (0.4≥ Cohen's dz ≥0.1). Although peak power is similar with or without external loading, push-ups without external loading may be more beneficial for a quick movement, and push-ups with external loading may be more beneficial for a greater force production.

  14. Effect of total-contact orthosis on medial longitudinal arch and lower extremities in flexible flatfoot subjects during walking.

    PubMed

    Prachgosin, Tulaya; Leelasamran, Wipawan; Smithmaitrie, Pruittikorn; Chatpun, Surapong

    2017-12-01

    Total-contact orthosis (TCO) is one kind of foot orthosis (FO) that is used to adjust biomechanics in flexible flatfoot. To determine the effects of a TCO on the MLA moment, MLA deformation angle and lower limb biomechanics. Cross-sectional study. Seven-flatfoot and thirteen-normal foot subjects were recruited by footprint and radiographs. The biomechanics of subjects with normal foot (NF), flatfoot with shoe only (FWOT) and flatfoot with TCO (FWT) were collected in a 3D motion analysis laboratory and force plates. The MLA and lower limb biomechanics in each condition during specific sub-phases of stance were analyzed. The NF had larger MLA eversion moment after shod walking ( p = 0.001). The FWT condition compared with the FWOT condition had a significantly larger peak MLA upward moment ( p = 0.035) during pre-swing, larger peak knee external rotation angle ( p = 0.040) during mid stance, smaller peak knee extension moment during terminal stance ( p = 0.035) and a larger ground reaction force in the anterior-posterior direction during early stance ( p < 0.05). Our study found positive effects from the customized TCOs which included an increased TCO angle that led to a decreased peak MLA moment in the frontal plane in flexible flatfoot subjects during walking. Clinical relevance Lower limb biomechanics is different from normal in subjects with flexible flatfoot. The design of a TCO affects MLA, ankle and knee biomechanics and may be used to clinically correct biomechanical changes in flexible flatfoot.

  15. Criterion and Construct Validity of an Isometric Midthigh-Pull Dynamometer for Assessing Whole-Body Strength in Professional Rugby League Players.

    PubMed

    Dobbin, Nick; Hunwicks, Richard; Jones, Ben; Till, Kevin; Highton, Jamie; Twist, Craig

    2018-02-01

    To examine the criterion and construct validity of an isometric midthigh-pull dynamometer to assess whole-body strength in professional rugby league players. Fifty-six male rugby league players (33 senior and 23 youth players) performed 4 isometric midthigh-pull efforts (ie, 2 on the dynamometer and 2 on the force platform) in a randomized and counterbalanced order. Isometric peak force was underestimated (P < .05) using the dynamometer compared with the force platform (95% LoA: -213.5 ± 342.6 N). Linear regression showed that peak force derived from the dynamometer explained 85% (adjusted R 2  = .85, SEE = 173 N) of the variance in the dependent variable, with the following prediction equation derived: predicted peak force = [1.046 × dynamometer peak force] + 117.594. Cross-validation revealed a nonsignificant bias (P > .05) between the predicted and peak force from the force platform and an adjusted R 2 (79.6%) that represented shrinkage of 0.4% relative to the cross-validation model (80%). Peak force was greater for the senior than the youth professionals using the dynamometer (2261.2 ± 222 cf 1725.1 ± 298.0 N, respectively; P < .05). The isometric midthigh pull assessed using a dynamometer underestimates criterion peak force but is capable of distinguishing muscle-function characteristics between professional rugby league players of different standards.

  16. Endovascular Crossing of Chronic Total Occlusions Using an Impulse: An Explorative Design Study.

    PubMed

    Sakes, Aimée; van der Wiel, Marleen; Dodou, Dimitra; Breedveld, Paul

    2017-06-01

    In this study we investigated whether exerting an impulse on a Chronic Total Occlusion (CTO) improves the success rate of CTO crossing as compared to the currently used method of statically pushing the guidewire against the CTO. A prototype (Ø2 mm) was developed that generates translational momentum using a spring-loaded indenter and converts it to an impulse during impact. Mechanical performance was evaluated by measuring the peak force and momentum for different spring compressions and strike distances in air and blood-mimicking fluid. Puncture performance, in terms of number of punctures, number of strikes to puncture, and energy transfer from the indenter to the CTO, was assessed for six tip shapes (stamp, wedge, spherical, pointed, hollow spherical, and ringed) on three CTO models with different weight percentages of gelatin and calcium. As a control, a Ø0.4 mm rigid rod was tested. A maximum indenter momentum of 1.3 mNs (velocity of 3.4 m/s), a peak force of 19.2 N (vs. 1.5 N reported in literature and 2.7 N for the control), and CTO displacement of 1.4 mm (vs. 2.7 mm for the control) were measured. The spherical and ringed tips were most effective, with on average 2.3 strikes to puncture the most calcified CTO model. The prototype generated sufficient peak forces to puncture highly calcified CTO models, which are considered most difficult to cross during PCI. Furthermore, CTO displacement was minimized, resulting in a more effective procedure. In future, a smaller, faster, and flexible clinical prototype will be developed.

  17. Finger forces in fastball baseball pitching.

    PubMed

    Kinoshita, Hiroshi; Obata, Satoshi; Nasu, Daiki; Kadota, Koji; Matsuo, Tomoyuki; Fleisig, Glenn S

    2017-08-01

    Forces imparted by the fingers onto a baseball are the final, critical aspects for pitching, however these forces have not been quantified previously as no biomechanical technology was available. In this study, an instrumented baseball was developed for direct measurement of ball reaction force by individual fingers and used to provide fundamental information on the forces during a fastball pitch. A tri-axial force transducer with a cable having an easily-detachable connector were installed in an official baseball. Data were collected from 11 pitchers who placed the fingertip of their index, middle, ring, or thumb on the transducer, and threw four-seam fastballs to a target cage from a flat mound. For the index and middle fingers, resultant ball reaction force exhibited a bimodal pattern with initial and second peaks at 38-39ms and 6-7ms before ball release, and their amplitudes were around 97N each. The ring finger and thumb produced single-peak forces of approximately 50 and 83N, respectively. Shear forces for the index and middle fingers formed distinct peak at 4-5ms before release, and the peaks summed to 102N; a kinetic source for backspin on the ball. An additional experiment with submaximal pitching effort showed a linear relationship of peak forces with ball velocity. The peak ball reaction force for fastballs exceeded 80% of maximum finger strength measured, suggesting that strengthening of the distal muscles is important both for enhancing performance and for avoiding injuries. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Decreased knee adduction moment does not guarantee decreased medial contact force during gait.

    PubMed

    Walter, Jonathan P; D'Lima, Darryl D; Colwell, Clifford W; Fregly, Benjamin J

    2010-10-01

    Excessive contact force is believed to contribute to the development of medial compartment knee osteoarthritis. The external knee adduction moment (KAM) has been identified as a surrogate measure for medial contact force during gait, with an abnormally large peak value being linked to increased pain and rate of disease progression. This study used in vivo gait data collected from a subject with a force-measuring knee implant to assess whether KAM decreases accurately predict corresponding decreases in medial contact force. Changes in both quantities generated via gait modification were analyzed statistically relative to the subject's normal gait. The two gait modifications were a "medial thrust" gait involving knee medialization during stance phase and a "walking pole" gait involving use of bilateral walking poles. Reductions in the first (largest) peak of the KAM (32-33%) did not correspond to reductions in the first peak of the medial contact force. In contrast, reductions in the second peak and angular impulse of the KAM (15-47%) corresponded to reductions in the second peak and impulse of the medial contact force (12-42%). Calculated reductions in both KAM peaks were highly sensitive to rotation of the shank reference frame about the superior-inferior axis of the shank. Both peaks of medial contact force were best predicted by a combination of peak values of the external KAM and peak absolute values of the external knee flexion moment (R(2) = 0.93). Future studies that evaluate the effectiveness of gait modifications for offloading the medial compartment of the knee should consider the combined effect of these two knee moments. Published by Wiley Periodicals, Inc. J Orthop Res 28:1348-1354, 2010.

  19. On the relationship between lower extremity muscles activation and peak vertical and posterior ground reaction forces during single leg drop landing.

    PubMed

    Mahaki, M; Mi'mar, R; Mahaki, B

    2015-10-01

    Anterior cruciate ligament (ACL) injury continues to be an important medical issue for athletes participating in sports. Vertical and posterior ground reaction forces have received considerable attention for their potential influence on ACL injuries. The purpose of this study was to examine the relationship between electromyographic activity of lower extremity muscles and the peak vertical and posterior ground reaction forces during single leg drop landing. Thirteen physical education male students participated in this correlation study. Electromyographic activities of gluteus medius, biceps femoris, medial gastrocnemius, soleus as well as anterior tibialis muscles along with ground reaction forces were measured. Participants performed single-leg landing from a 0.3 m height on to a force platform. Landing was divided into two phases: 100 ms preceding ground contact and 100 ms proceeding ground contact. Pearson correlation test was used to determine the relationships between these muscles activity and peak vertical and posterior ground reaction forces. The results of the study indicated that the activity of soleus and tibialis anterior in pre-landing phase were positively correlated with peak vertical ground reaction force ([P≤0.04], [P≤0.008], respectively). However, no significant correlation was found between the activities of other muscles in pre-landing phase and peak vertical as well as peak posterior ground reaction forces. Also, no significant correlation was found between the activities of muscles in post-landing phase and peak vertical as well as peak posterior ground reaction forces. Soleus loading shifts the proximal tibia posterior at the knee joint and tibialis anterior prevent hyperporonation of the ankle, a mechanisms of ACL injury. Hence, neuromuscular training promoting preparatory muscle activity in these muscles may reduce the incidence of ACL injuries.

  20. Timing at peak force may be the hidden target controlled in continuation and synchronization tapping.

    PubMed

    Du, Yue; Clark, Jane E; Whitall, Jill

    2017-05-01

    Timing control, such as producing movements at a given rate or synchronizing movements to an external event, has been studied through a finger-tapping task where timing is measured at the initial contact between finger and tapping surface or the point when a key is pressed. However, the point of peak force is after the time registered at the tapping surface and thus is a less obvious but still an important event during finger tapping. Here, we compared the time at initial contact with the time at peak force as participants tapped their finger on a force sensor at a given rate after the metronome was turned off (continuation task) or in synchrony with the metronome (sensorimotor synchronization task). We found that, in the continuation task, timing was comparably accurate between initial contact and peak force. These two timing events also exhibited similar trial-by-trial statistical dependence (i.e., lag-one autocorrelation). However, the central clock variability was lower at the peak force than the initial contact. In the synchronization task, timing control at peak force appeared to be less variable and more accurate than that at initial contact. In addition to lower central clock variability, the mean SE magnitude at peak force (SEP) was around zero while SE at initial contact (SEC) was negative. Although SEC and SEP demonstrated the same trial-by-trial statistical dependence, we found that participants adjusted the time of tapping to correct SEP, but not SEC, toward zero. These results suggest that timing at peak force is a meaningful target of timing control, particularly in synchronization tapping. This result may explain the fact that SE at initial contact is typically negative as widely observed in the preexisting literature.

  1. Consistency of peak and mean concentric and eccentric force using a novel squat testing device.

    PubMed

    Stock, Matt S; Luera, Micheal J

    2014-04-01

    The ability to examine force curves from multiple-joint assessments combines many of the benefits of dynamic constant external resistance exercise and isokinetic dynamometry. The purpose of this investigation was to examine test-retest reliability statistics for peak and mean force using the Exerbotics eSQ during maximal concentric and eccentric squats. Seventeen resistance-trained men (mean±SD age=21±2 years) visited the laboratory on two occasions. For each trial, the subjects performed two maximal concentric and eccentric squats, and the muscle actions with the highest force values were analyzed. There were no mean differences between the trials (P>.05), and the effect sizes were <0.12. When the entire force curve was examined, the intraclass correlation coefficients (model 2,1) and standard errors of measurement, respectively, were concentric peak force=0.743 (8.8%); concentric mean force=0.804 (6.0%); eccentric peak force=0.696 (10.6%); eccentric mean force=0.736 (9.6%). These findings indicated moderate-to-high reliability for the peak and mean force values obtained from the Exerbotics eSQ during maximal squat testing. The analysis of force curves from multiple-joint testing provides researchers and practitioners with a reliable means of assessing performance, especially during concentric muscle actions.

  2. Force Plate Gait Analysis in Doberman Pinschers with and without Cervical Spondylomyelopathy

    PubMed Central

    Foss, K.; da Costa, R.C.; Rajala-Shultz, P.J.; Allen, M.J.

    2014-01-01

    Background The most accepted means of evaluating the response of a patient with cervical spondylomyelopathy (CSM) to treatment is subjective and based on the owner and clinician's perception of the gait. Objective To establish and compare kinetic parameters based on force plate gait analysis between normal and CSM-affected Dobermans. Animals Nineteen Doberman Pinschers: 10 clinically normal and 9 with CSM. Methods Force plate analysis was prospectively performed in all dogs. At least 4 runs of ipsilateral limbs were collected from each dog. Eight force platform parameters were evaluated, including peak vertical force (PVF) and peak vertical impulse (PVI), peak mediolateral force (PMLF) and peak mediolateral impulse, peak braking force and peak braking impulse, and peak propulsive force (PPF) and peak propulsive impulse. In addition, the coefficient of variation (CV) for each limb was calculated for each parameter. Data analysis was performed by a repeated measures approach. Results PMLF (P = .0062), PVI (P = .0225), and PPF (P = .0408) were found to be lower in CSM-affected dogs compared with normal dogs. Analysis by CV as the outcome indicated more variability in PVF in CSM-affected dogs (P = 0.0045). The largest difference in the CV of PVF was seen in the thoracic limbs of affected dogs when compared with the thoracic limbs of normal dogs (P = 0.0019). Conclusions and Clinical Importance The CV of PVF in all 4 limbs, especially the thoracic limbs, distinguished clinically normal Dobermans from those with CSM. Other kinetic parameters less reliably distinguished CSM-affected from clinically normal Dobermans. PMID:23278957

  3. Neuromuscular control of the head in an isometric force reproduction task: comparison of whiplash subjects and healthy controls.

    PubMed

    Descarreaux, Martin; Mayrand, Nancy; Raymond, Jean

    2007-01-01

    A number of recent scientific publications suggest that patients suffering from whiplash-associated disorders (WADs) exhibit sensorimotor deficits in the control of head and neck movements. The main objective of the present study was to evaluate if subjects with WADs can produce isometric neck extension and flexion forces with precision, variability, and a mode of control similar to the values of healthy subjects. A control group study with repeated measures. Neck force production parameters and neuromuscular control were measured in 17 whiplash and 14 control subjects. The experimental group included subjects who had a history of persistent neck pain or disability after a motor vehicle accident. Pain levels were assessed on a standard 100-mm visual analog pain scale at the beginning and end of the experiment. Each whiplash subject completed the neck disability index and the short-form 36 health survey (SF-36) questionnaire before the experiment. All subjects were asked to exert flexion and extension forces against a fixed head harness. Kinetic variables included time to peak force, time to peak force variability, peak force variability, and absolute error in peak force. Surface electrodes were applied bilaterally over the sternocleidomastoideus and paraspinal muscles. Electromyography (EMG)-dependent variables included EMG burst duration and amplitude using numerical integrated techniques. The average time to peak force was significantly longer for whiplash subjects than for the healthy controls. A significant increase in peak force variability was also observed in the whiplash group, and no group differences were noted for absolute error. Heightened muscular activity was seen in both paraspinal muscles, even though it only reached statistical significance for the left paraspinal muscle. Our results show that the whiplash subjects involved in the study were able to produce isometric forces with spatial precision similar to healthy controls using a motor strategy in which the time to peak force is increased. This trade-off between spatial precision and time to peak force probably reflects an adaptation aimed at limiting pain and further injuries.

  4. Knee Joint Loads and Surrounding Muscle Forces during Stair Ascent in Patients with Total Knee Replacement

    PubMed Central

    Rasnick, Robert; Standifird, Tyler; Reinbolt, Jeffrey A.; Cates, Harold E.

    2016-01-01

    Total knee replacement (TKR) is commonly used to correct end-stage knee osteoarthritis. Unfortunately, difficulty with stair climbing often persists and prolongs the challenges of TKR patents. Complete understanding of loading at the knee is of great interest in order to aid patient populations, implant manufacturers, rehabilitation, and future healthcare research. Musculoskeletal modeling and simulation approximates joint loading and corresponding muscle forces during a movement. The purpose of this study was to determine if knee joint loadings following TKR are recovered to the level of healthy individuals, and determine the differences in muscle forces causing those loadings. Data from five healthy and five TKR patients were selected for musculoskeletal simulation. Variables of interest included knee joint reaction forces (JRF) and the corresponding muscle forces. A paired samples t-test was used to detect differences between groups for each variable of interest (p<0.05). No differences were observed for peak joint compressive forces between groups. Some muscle force compensatory strategies appear to be present in both the loading and push-off phases. Evidence from knee extension moment and muscle forces during the loading response phase indicates the presence of deficits in TKR in quadriceps muscle force production during stair ascent. This result combined with greater flexor muscle forces resulted in similar compressive JRF during loading response between groups. PMID:27258086

  5. Effects of the forearm support band on wrist extensor muscle fatigue.

    PubMed

    Knebel, P T; Avery, D W; Gebhardt, T L; Koppenhaver, S L; Allison, S C; Bryan, J M; Kelly, A

    1999-11-01

    A crossover experimental design with repeated measures. To determine whether the forearm support band alters wrist extensor muscle fatigue. Fatigue of the wrist extensor muscles is thought to be a contributing factor in the development of lateral epicondylitis. The forearm support band is purported to reduce or prevent symptoms of lateral epicondylitis but the mechanism of action is unknown. Fifty unimpaired subjects (36 men, 14 women; mean age = 29 +/- 6 years) were tested with and without a forearm support band before and after a fatiguing bout of exercise. Peak wrist extension isometric force, peak isometric grip force, and median power spectral frequency for wrist extensor electromyographic activity were measured before and after exercise and with and without the forearm support band. A 2 x 2 repeated measures multivariate analysis of variance was used to analyze the data, followed by univariate analysis of variance and Tukey's multiple comparison tests. Peak wrist extension isometric force, peak grip isometric force, and median power spectral frequency were all reduced after exercise. However, there was a significant reduction in peak grip isometric force and peak wrist extension isometric force values for the with-forearm support band condition (grip force 28%, wrist extension force 26%) compared to the without-forearm support band condition (grip force 18%, wrist extension force 15%). Wearing the forearm support band increased the rate of fatigue in unimpaired individuals. Our findings do not support the premise that wearing the forearm support band reduces muscle fatigue in the wrist extensors.

  6. A Comparison of 2 Current-Issue Army Boots, 5 Prototype Military Boots, and 5 Commercial Hiking Boots: Performance, Efficiency, Biomechanics, Comfort and Injury

    DTIC Science & Technology

    1999-11-01

    Maximum force (N) on the ankle, knee and hip while walking at 3.5 mph 51 23. Maximum heel- strike force (N) while walking at 3.5 mph ^.ർ 24...to first force peak while running at 6.5 mph ’.""."..62 34. Variables relating to force low point between the heel- strike and push-off peak...was lower peak deceleration and lower peak pressure at the heel than at the forefoot . In the second phase of their research, Hamill and Bensel (7, 8

  7. Jumping and hopping in elite and amateur orienteering athletes and correlations to sprinting and running.

    PubMed

    Hébert-Losier, Kim; Jensen, Kurt; Holmberg, Hans-Christer

    2014-11-01

    Jumping and hopping are used to measure lower-body muscle power, stiffness, and stretch-shortening-cycle utilization in sports, with several studies reporting correlations between such measures and sprinting and/or running abilities in athletes. Neither jumping and hopping nor correlations with sprinting and/or running have been examined in orienteering athletes. The authors investigated squat jump (SJ), countermovement jump (CMJ), standing long jump (SLJ), and hopping performed by 8 elite and 8 amateur male foot-orienteering athletes (29 ± 7 y, 183 ± 5 cm, 73 ± 7 kg) and possible correlations to road, path, and forest running and sprinting performance, as well as running economy, velocity at anaerobic threshold, and peak oxygen uptake (VO(2peak)) from treadmill assessments. During SJs and CMJs, elites demonstrated superior relative peak forces, times to peak force, and prestretch augmentation, albeit lower SJ heights and peak powers. Between-groups differences were unclear for CMJ heights, hopping stiffness, and most SLJ parameters. Large pairwise correlations were observed between relative peak and time to peak forces and sprinting velocities; time to peak forces and running velocities; and prestretch augmentation and forest-running velocities. Prestretch augmentation and time to peak forces were moderately correlated to VO(2peak). Correlations between running economy and jumping or hopping were small or trivial. Overall, the elites exhibited superior stretch-shortening-cycle utilization and rapid generation of high relative maximal forces, especially vertically. These functional measures were more closely related to sprinting and/or running abilities, indicating benefits of lower-body training in orienteering.

  8. Hamstrings Stiffness and Landing Biomechanics Linked to Anterior Cruciate Ligament Loading

    PubMed Central

    Blackburn, J. Troy; Norcross, Marc F.; Cannon, Lindsey N.; Zinder, Steven M.

    2013-01-01

    Context: Greater hamstrings stiffness is associated with less anterior tibial translation during controlled perturbations. However, it is unclear how hamstrings stiffness influences anterior cruciate ligament (ACL) loading mechanisms during dynamic tasks. Objective: To evaluate the influence of hamstrings stiffness on landing biomechanics related to ACL injury. Design: Cross-sectional study. Setting: Research laboratory. Patients or Other Participants: A total of 36 healthy, physically active volunteers (18 men, 18 women; age = 23 ± 3 years, height = 1.8 ± 0.1 m, mass = 73.1 ± 16.6 kg). Intervention(s): Hamstrings stiffness was quantified via the damped oscillatory technique. Three-dimensional lower extremity kinematics and kinetics were captured during a double-legged jump-landing task via a 3-dimensional motion-capture system interfaced with a force plate. Landing biomechanics were compared between groups displaying high and low hamstrings stiffness via independent-samples t tests. Main Outcome Measure(s): Hamstrings stiffness was normalized to body mass (N/m·kg−1). Peak knee-flexion and -valgus angles, vertical and posterior ground reaction forces, anterior tibial shear force, internal knee-extension and -varus moments, and knee-flexion angles at the instants of each peak kinetic variable were identified during the landing task. Forces were normalized to body weight, whereas moments were normalized to the product of weight and height. Results: Internal knee-varus moment was 3.6 times smaller in the high-stiffness group (t22 = 2.221, P = .02). A trend in the data also indicated that peak anterior tibial shear force was 1.1 times smaller in the high-stiffness group (t22 = 1.537, P = .07). The high-stiffness group also demonstrated greater knee flexion at the instants of peak anterior tibial shear force and internal knee-extension and -varus moments (t22 range = 1.729–2.224, P < .05). Conclusions: Greater hamstrings stiffness was associated with landing biomechanics consistent with less ACL loading and injury risk. Musculotendinous stiffness is a modifiable characteristic; thus exercises that enhance hamstrings stiffness may be important additions to ACL injury-prevention programs. PMID:24303987

  9. Deficits in Lower Limb Muscle Reflex Contraction Latency and Peak Force Are Associated With Impairments in Postural Control and Gross Motor Skills of Children With Developmental Coordination Disorder: A Cross-Sectional Study.

    PubMed

    Fong, Shirley S M; Ng, Shamay S M; Guo, X; Wang, Yuling; Chung, Raymond C K; Stat, Grad; Ki, W Y; Macfarlane, Duncan J

    2015-10-01

    This cross-sectional, exploratory study aimed to compare neuromuscular performance, balance and motor skills proficiencies of typically developing children and those with developmental coordination disorder (DCD) and to determine associations of these neuromuscular factors with balance and motor skills performances in children with DCD.One hundred thirty children with DCD and 117 typically developing children participated in the study. Medial hamstring and gastrocnemius muscle activation onset latencies in response to an unexpected posterior-to-anterior trunk perturbation were assessed by electromyography and accelerometer. Hamstring and gastrocnemius muscle peak force and time to peak force were quantified by dynamometer, and balance and motor skills performances were evaluated with the Movement Assessment Battery for Children (MABC).Independent t tests revealed that children with DCD had longer hamstring and gastrocnemius muscle activation onset latencies (P < 0.001) and lower isometric peak forces (P < 0.001), but not times to peak forces (P > 0.025), than the controls. Multiple regression analysis accounting for basic demographics showed that gastrocnemius peak force was independently associated with the MABC balance subscore and ball skills subscore, accounting for 5.7% (P = 0.003) and 8.5% (P = 0.001) of the variance, respectively. Gastrocnemius muscle activation onset latency also explained 11.4% (P < 0.001) of the variance in the MABC ball skills subscore.Children with DCD had delayed leg muscle activation onset times and lower isometric peak forces. Gastrocnemius peak force was associated with balance and ball skills performances, whereas timing of gastrocnemius muscle activation was a determinant of ball skill performance in the DCD population.

  10. Comparison of the relation between timing and force control during finger-tapping sequences by pianists and non pianists.

    PubMed

    Inui, N; Ichihara, T

    2001-10-01

    To examine the relation between timing and force control during finger taping sequences by both pianists and nonpianists, participants tapped a force plate connected to strain gauges. A series of finger tapping tasks consisted of 16 combinations of pace (intertap interval: 180, 200, 400, or 800 ms) and peak force (50, 100, 200, or 400 g). Analysis showed that, although movement timing was independent of force control under low or medium pace conditions, there were strong interactions between the 2 parameters under high pace conditions. The results indicate that participants adapted the movement by switching from separately controlling these parameters in the slow and moderate movement to coupling them in the fast movement. While variations in the intertap interval affected force production by nonpianists, they had little effect for pianists. The ratios of time-to-peak force to press duration increased linearly in pianists but varied irregularly in nonpianists, as the required force decreased. Thus, pianists regulate peak force by timing control of peak force to press duration, suggesting that training affects the relationship between the 2 parameters.

  11. A novel mouse running wheel that senses individual limb forces: biomechanical validation and in vivo testing

    PubMed Central

    Roach, Grahm C.; Edke, Mangesh

    2012-01-01

    Biomechanical data provide fundamental information about changes in musculoskeletal function during development, adaptation, and disease. To facilitate the study of mouse locomotor biomechanics, we modified a standard mouse running wheel to include a force-sensitive rung capable of measuring the normal and tangential forces applied by individual paws. Force data were collected throughout the night using an automated threshold trigger algorithm that synchronized force data with wheel-angle data and a high-speed infrared video file. During the first night of wheel running, mice reached consistent running speeds within the first 40 force events, indicating a rapid habituation to wheel running, given that mice generated >2,000 force-event files/night. Average running speeds and peak normal and tangential forces were consistent throughout the first four nights of running, indicating that one night of running is sufficient to characterize the locomotor biomechanics of healthy mice. Twelve weeks of wheel running significantly increased spontaneous wheel-running speeds (16 vs. 37 m/min), lowered duty factors (ratio of foot-ground contact time to stride time; 0.71 vs. 0.58), and raised hindlimb peak normal forces (93 vs. 115% body wt) compared with inexperienced mice. Peak normal hindlimb-force magnitudes were the primary force component, which were nearly tenfold greater than peak tangential forces. Peak normal hindlimb forces exceed the vertical forces generated during overground running (50-60% body wt), suggesting that wheel running shifts weight support toward the hindlimbs. This force-instrumented running-wheel system provides a comprehensive, noninvasive screening method for monitoring gait biomechanics in mice during spontaneous locomotion. PMID:22723628

  12. Ground reaction forces of Olympic and World Championship race walkers.

    PubMed

    Hanley, Brian; Bissas, Athanassios

    2016-01-01

    Race walking is an Olympic event where no visible loss of contact should occur and the knee must be straightened until midstance. The purpose of this study was to analyse ground reaction forces of world-class race walkers and associate them with key spatiotemporal variables. Nineteen athletes race walked along an indoor track and made contact with two force plates (1000 Hz) while being filmed using high-speed videography (100 Hz). Race walking speed was correlated with flight time (r = .46, p = .049) and flight distance (r = .69, p = .001). The knee's movement from hyperextension to flexion during late stance meant the vertical push-off force that followed midstance was smaller than the earlier loading peak (p < .001), resulting in a flattened profile. Athletes with narrower stride widths experienced reduced peak braking forces (r = .49, p = .046), peak propulsive forces (r = .54, p = .027), peak medial forces (r = .63, p = .007) and peak vertical push-off forces (r = .60, p = .011). Lower fluctuations in speed during stance were associated with higher stride frequencies (r = .69, p = .001), and highlighted the importance of avoiding too much braking in early stance. The flattened trajectory and consequential decrease in vertical propulsion might help the race walker avoid visible loss of contact (although non-visible flight times were useful in increasing stride length), while a narrow stride width was important in reducing peak forces in all three directions and could improve movement efficiency.

  13. Effects of Jaw Clenching and Jaw Alignment Mouthpiece Use on Force Production During Vertical Jump and Isometric Clean Pull.

    PubMed

    Allen, Charles R; Fu, Yang-Chieh; Cazas-Moreno, Vanessa; Valliant, Melinda W; Gdovin, Jacob R; Williams, Charles C; Garner, John C

    2018-01-01

    Allen, CR, Fu, Y-C, Cazas-Moreno, V, Valliant, MW, Gdovin, JR, Williams, CC, and Garner, JC. Effects of jaw clenching and jaw alignment mouthpiece use on force production during vertical jump and isometric clean pull. J Strength Cond Res 32(1): 237-243, 2018-This study examined the effects of jaw clenching, a self-adapted, jaw-repositioning mouthpiece on force production during maximum countermovement vertical jump and maximum isometric midthigh clean pull assessments in an attempt to determine any ergogenic effect attributable to clenching, jaw-repositioning mouthpiece use, or the combination of both. Thirty-six male subjects performed vertical jump and isometric clean pull assessments from a force platform under various mouthpiece and clench conditions. A 3 × 2 (mouthpiece × clench) repeated-measures analysis of variance was conducted to analyze each of the following force production variables for both assessments: peak force, normalized peak force, and rate of force development. In addition, jump height was analyzed for the vertical jump. Results revealed improvements in peak force (F1,35 = 15.84, p ≤ 0.001, (Equation is included in full-text article.)= 0.31), normalized peak force (F1,35 = 16.28, p ≤ 0.001, (Equation is included in full-text article.)= 0.32), and rate of force development (F1,35 = 12.89, p = 0.001, (Equation is included in full-text article.)= 0.27) during the isometric clean pull assessment when participants maximally clenched their jaw, regardless of mouthpiece condition. There were no statistically significant differences in jump height, peak force, normalized peak force, or rate of force development during the vertical jump for any treatment condition. This study supports previous research demonstrating that the implementation of remote voluntary contractions such as jaw clenching can lead to concurrent activation potentiation and a resulting ergogenic effect during activities involving and requiring high-force production.

  14. Radiative Forcing Due to Enhancements in Tropospheric Ozone and Carbonaceous Aerosols Caused by Asian Fires During Spring 2008

    NASA Technical Reports Server (NTRS)

    Natarajan, Murali; Pierce, R. Bradley; Lenzen, Allen J.; Al-Saadi, Jassim A.; Soja, Amber J.; Charlock, Thomas P.; Rose, Fred G.; Winker, David M.; Worden, John R.

    2012-01-01

    Simulations of tropospheric ozone and carbonaceous aerosol distributions, conducted with the Real-time Air Quality Modeling System (RAQMS), are used to study the effects of major outbreaks of fires that occurred in three regions of Asia, namely Thailand, Kazakhstan, and Siberia, during spring 2008. RAQMS is a global scale meteorological and chemical modeling system. Results from these simulations, averaged over April 2008, indicate that tropospheric ozone column increases by more than 10 Dobson units (DU) near the Thailand region, and by lesser amounts in the other regions due to the fires. Widespread increases in the optical depths of organic and black carbon aerosols are also noted. We have used an off-line radiative transfer model to evaluate the direct radiative forcing due to the fire-induced changes in atmospheric composition. For clear sky, the monthly averaged radiative forcing at the top of the atmosphere (TOA) is mostly negative with peak values less than -12 W/sq m occurring near the fire regions. The negative forcing represents the increased outgoing shortwave radiation caused by scattering due to carbonaceous aerosols. At high latitudes, the radiative forcing is positive due to the presence of absorbing aerosols over regions of high surface albedo. Regions of positive forcing at TOA are more pronounced under total sky conditions. The monthly averaged radiative forcing at the surface is mostly negative, and peak values of less than -30 W/sq m occur near the fire regions. Persistently large negative forcing at the surface could alter the surface energy budget and potentially weaken the hydrological cycle.

  15. Does team lifting increase the variability in peak lumbar compression in ironworkers?

    PubMed

    Faber, Gert; Visser, Steven; van der Molen, Henk F; Kuijer, P Paul F M; Hoozemans, Marco J M; Van Dieën, Jaap H; Frings-Dresen, Monique H W

    2012-01-01

    Ironworkers frequently perform heavy lifting tasks in teams of two or four workers. Team lifting could potentially lead to a higher variation in peak lumbar compression forces than lifts performed by one worker, resulting in higher maximal peak lumbar compression forces. This study compared single-worker lifts (25-kg, iron bar) to two-worker lifts (50-kg, two iron bars) and to four-worker lifts (100-kg, iron lattice). Inverse dynamics was used to calculate peak lumbar compression forces. To assess the variability in peak lumbar loading, all three lifting tasks were performed six times. Results showed that the variability in peak lumbar loading was somewhat higher in the team lifts compared to the single-worker lifts. However, despite this increased variability, team lifts did not result in larger maximum peak lumbar compression forces. Therefore, it was concluded that, from a biomechanical point of view, team lifting does not result in an additional risk for low back complaints in ironworkers.

  16. Determinant Factors of the Squat Jump in Sprinting and Jumping Athletes

    PubMed Central

    González-Badillo, Juan José; Jiménez-Reyes, Pedro; Ramírez-Lechuga, Jorge

    2017-01-01

    Abstract The aim of this study was to assess the relationship between strength variables and maximum velocity (Vmax) in the squat jump (SJ) in sprinting and jumping athletes. Thirty-two sprinting and jumping athletes of national level (25.4 ± 4.5 years; 79.4 ± 6.9 kg and 180.4 ± 6.0 cm) participated in the study. Vmax in the SJ showed significant relationships with peak force 1 (PF1) (r = 0.82, p ≤ 0.001), peak force 2 (PF2) (r = 0.68, p ≤ 0.001), PF2 by controlling for PF1 (r = 0.30, non-significant), the maximum rate of force development at peak force 1 (RFDmax1) (r = 0.62, p ≤ 0.001), mean RFD 1 (RFDmean1) (r = 0.48, p ≤ 0.01), mean RFD 2 (RFDmean2) (r = 0.70, p ≤ 0.001), force at RFDmax1 (r = 0.36, p ≤ 0.05), force at RFDmax2 (r = 0.83, p ≤ 0.001) and force at RFDmax2 by controlling for PF1 (r = 0.40, p ≤ 0.05). However, Vmax in the SJ was associated negatively with the ratio PF2/PF1 (r = -0.54, p ≤ 0.01), time at peak force 2 (Tp2) (r = -0.64, p ≤ 0.001) and maximum rate of force development at peak force 2 (RFDmax2) (r = -0.71, p ≤ 0.001). These findings indicate that the peak force achieved at the beginning of the movement (PF1) is the main predictor of performance in jumping, although the RFDmax values and the ratio PF2/PF1 are also variables to be taken into account when analyzing the determinant factors of vertical jumping. PMID:28828074

  17. Shock-absorbing effect of shoe insert materials commonly used in management of lower extremity disorders.

    PubMed

    Shiba, N; Kitaoka, H B; Cahalan, T D; Chao, E Y

    1995-01-01

    The efficacy of 3 shock-absorbing materials was compared by determining impact characteristics with a drop test method and also by testing the effect of each material when used as a shoe insert in 16 asymptomatic subjects. Peak vertical ground reaction force (F1, F2, F3) and temporal force factors (T1, T2, T3) were obtained with a force plate at a high-frequency sampling rate. Impact force, impact time, impact slope, and impact energy were determined. A standard weight was dropped from 3 heights on each material covering the force plate while reduction of peak force was compared. Impact force was attenuated most effectively by Insert 3 (polymeric foam rubber) and averaged 11% less than that in shoes without inserts. Impact time was increased for all 3 inserts. Impact slope and impact energy were reduced significantly in Insert 3. There was a significant difference in peak vertical force F1 for all 3 inserts, in vertical force F2 for Insert 2 (viscoelastic polymeric material), and in vertical force F3 for Insert 2. Drop-test studies showed that at all ball heights, the highest mean peak force was observed consistently in Insert 2.

  18. Fatal injury epidemiology among the New Zealand military forces in the First World War.

    PubMed

    Wilson, Nick; Summers, Jennifer A; Baker, Michael G; Thomson, George; Harper, Glyn

    2013-11-01

    Despite the large mortality burden of First World War (WW1) on New Zealand (NZ) military forces, no analysis using modern epidemiological methods has ever been conducted. We therefore aimed to study injury-related mortality amongst NZ military forces in WW1. An electronic version of the Roll-of-Honour for NZ Expeditionary Force (NZEF) personnel was supplemented with further coding and analysed statistically. We also performed literature searches to provide context. Out of a total of 16,703 deaths occurring during the war (28 July 1914 to 11 November 1918), injury deaths predominated: 65.1% were "killed in action" (KIA), 23.4% "died of wounds" (DOW), 1.0% were other injuries (e.g. "accidents", drownings, suicides and executions), and 10.5% were other causes (mainly disease). During the course of the war, the annual mortality rate from injury (for KIA + DOW) per 10,000 NZEF personnel in the North Hemisphere peaked at 1335 in 1915 (Gallipoli campaign) and then peaked again in 1917 at 937 (largely the Battle of Passchendaele). Some of the offensive campaigns involved very high mortality peaks (e.g. 2 days with over 450 deaths per day in October 1917). Participation in First World War was by far the worst fatal injury event in New Zealand's history. Many of these injury deaths could be considered to have been preventable through: better diplomacy (to prevent the war), improved military planning to reduce failed campaigns (e.g. Gallipoli, Passchendaele), earlier use of protective equipment such as helmets, and improved healthcare services.

  19. The use of ambient humidity conditions to improve influenza forecast.

    PubMed

    Shaman, Jeffrey; Kandula, Sasikiran; Yang, Wan; Karspeck, Alicia

    2017-11-01

    Laboratory and epidemiological evidence indicate that ambient humidity modulates the survival and transmission of influenza. Here we explore whether the inclusion of humidity forcing in mathematical models describing influenza transmission improves the accuracy of forecasts generated with those models. We generate retrospective forecasts for 95 cities over 10 seasons in the United States and assess both forecast accuracy and error. Overall, we find that humidity forcing improves forecast performance (at 1-4 lead weeks, 3.8% more peak week and 4.4% more peak intensity forecasts are accurate than with no forcing) and that forecasts generated using daily climatological humidity forcing generally outperform forecasts that utilize daily observed humidity forcing (4.4% and 2.6% respectively). These findings hold for predictions of outbreak peak intensity, peak timing, and incidence over 2- and 4-week horizons. The results indicate that use of climatological humidity forcing is warranted for current operational influenza forecast.

  20. The use of ambient humidity conditions to improve influenza forecast

    PubMed Central

    Kandula, Sasikiran; Karspeck, Alicia

    2017-01-01

    Laboratory and epidemiological evidence indicate that ambient humidity modulates the survival and transmission of influenza. Here we explore whether the inclusion of humidity forcing in mathematical models describing influenza transmission improves the accuracy of forecasts generated with those models. We generate retrospective forecasts for 95 cities over 10 seasons in the United States and assess both forecast accuracy and error. Overall, we find that humidity forcing improves forecast performance (at 1–4 lead weeks, 3.8% more peak week and 4.4% more peak intensity forecasts are accurate than with no forcing) and that forecasts generated using daily climatological humidity forcing generally outperform forecasts that utilize daily observed humidity forcing (4.4% and 2.6% respectively). These findings hold for predictions of outbreak peak intensity, peak timing, and incidence over 2- and 4-week horizons. The results indicate that use of climatological humidity forcing is warranted for current operational influenza forecast. PMID:29145389

  1. Effect of keyswitch design of desktop and notebook keyboards related to key stiffness and typing force.

    PubMed

    Bufton, Marcia J; Marklin, Richard W; Nagurka, Mark L; Simoneau, Guy G

    2006-08-15

    This study aimed to compare and analyse rubber-dome desktop, spring-column desktop and notebook keyboards in terms of key stiffness and fingertip typing force. The spring-column keyboard resulted in the highest mean peak contact force (0.86N), followed by the rubber dome desktop (0.68N) and the notebook (0.59N). All these differences were statistically significant. Likewise, the spring-column keyboard registered the highest fingertip typing force and the notebook keyboard the lowest. A comparison of forces showed the notebook (rubber dome) keyboard had the highest fingertip-to-peak contact force ratio (overstrike force), and the spring-column generated the least excess force (as a ratio of peak contact force). The results of this study could aid in optimizing computer key design that could possibly reduce subject discomfort and fatigue.

  2. Evaluation of changes in vertical ground reaction forces as indicators of meniscal damage after transection of the cranial cruciate ligament in dogs.

    PubMed

    Trumble, Troy N; Billinghurst, R Clark; Bendele, Alison M; McIlwraith, C Wayne

    2005-01-01

    To determine whether decreases in peak vertical force of the hind limb after transection of the cranial cruciate ligament (CrCL) would be indicative of medial meniscal damage in dogs. 39 purpose-bred adult male Walker Hounds. The right CrCL was transected arthroscopically. Force plate measurements of the right hind limb were made prior to and 2, 4, 10, and 18 weeks after transection of the CrCL. Only dogs with > or =10% decreases in peak vertical force after week 2 were considered to have potential meniscal damage. Dogs that did not have > or =10% decreases in peak vertical force at any time point after week 2 were assigned to group 1. Group 2 dogs had > or =10% decreases in peak vertical force from weeks 2 to 4 only. Group 3 and 4 dogs had > or =10% decreases in peak vertical force from weeks 4 to 10 only or from weeks 10 to 18 only, respectively. Damage to menisci and articular cartilage was graded at week 18, and grades for groups 2 to 4 were compared with those of group 1. The percentage change in peak vertical force and impulse area was significantly different in groups 2 (n = 4), 3 (4), and 4 (4) at the end of each measurement period (weeks 4, 10, and 18, respectively) than in group 1 (27). The meniscal grade for groups 2 to 4 was significantly higher than for group 1. A > or =10% decrease in peak vertical force had sensitivity of 52% and accuracy of 72% for identifying dogs with moderate to severe medial meniscal damage. In dogs with transected or ruptured CrCLs, force plate analysis can detect acute exacerbation of lameness, which may be the result of secondary meniscal damage, and provide an objective noninvasive technique that delineates the temporal pattern of medial meniscal injury.

  3. Assessment and monitoring of ballistic and maximal upper-body strength qualities in athletes.

    PubMed

    Young, Kieran P; Haff, G Gregory; Newton, Robert U; Gabbett, Tim J; Sheppard, Jeremy M

    2015-03-01

    To evaluate whether the dynamic strength index (DSI: ballistic peak force/isometric peak force) could be effectively used to guide specific training interventions and detect training-induced changes in maximal and ballistic strength. Twenty-four elite male athletes were assessed in the isometric bench press and a 45% 1-repetition-maximum (1RM) ballistic bench throw using a force plate and linear position transducer. The DSI was calculated using the peak force values obtained during the ballistic bench throw and isometric bench press. Athletes were then allocated into 2 groups as matched pairs based on their DSI and strength in the 1RM bench press. Over the 5 wk of training, athletes performed either high-load (80-100% 1RM) bench press or moderate-load (40-55% 1RM) ballistic bench throws. The DSI was sensitive to disparate training methods, with the bench-press group increasing isometric bench-press peak force (P=.035, 91% likely), and the ballistic-bench-throw group increasing bench-throw peak force to a greater extent (P≤.001, 83% likely). A significant increase (P≤.001, 93% likely) in the DSI was observed for both groups. The DSI can be used to guide specific training interventions and can detect training-induced changes in isometric bench-press and ballistic bench-throw peak force over periods as short as 5 wk.

  4. Sex differences in lower extremity biomechanics during single leg landings.

    PubMed

    Schmitz, Randy J; Kulas, Anthony S; Perrin, David H; Riemann, Bryan L; Shultz, Sandra J

    2007-07-01

    Females have an increased incident rate of anterior cruciate ligament tears compared to males. Biomechanical strategies to decelerate the body in the vertical direction have been implicated as a contributing cause. This study determined if females would exhibit single leg landing strategies characterized by decreased amounts of hip, knee, and ankle flexion resulting in greater vertical ground reaction forces and altered energy absorption patterns when compared to males. Recreationally active males (N=14) and females (N=14), completed five single leg landings from a 0.3m height onto a force platform while three-dimensional kinematics and kinetics were simultaneously collected. Compared to males, females exhibited (1) less total hip and knee flexion displacements (40% and 64% of males, respectively, P<0.05) and less time to peak hip and knee flexion (48% and 78% of males, respectively, P<0.05), (2) 9% greater peak vertical ground reaction forces (P<0.05), (3) less total lower body energy absorption (76% of males, P<0.05), and (4) 11% greater relative energy absorption at the ankle (P<0.05). Females in this study appear to adopt a single leg landing style using less hip and knee flexion, absorbing less total lower body energy with more relative energy at the ankle resulting in a landing style that can be described as stiff. This may potentially cause increased demands on non-contractile components of the lower extremity. Preventative training programs designed to prevent knee injury may benefit from the biomechanical description of sex-specific landing methods demonstrated by females in this study by focusing on the promotion of more reliance on using the contractile components to absorb impact energy during landings.

  5. The effect of a braking device in reducing the ground impact forces inherent in plyometric training.

    PubMed

    Humphries, B J; Newton, R U; Wilson, G J

    1995-02-01

    As a consequence of performing plyometric type exercises, such as depth jumps, impact forces placed on the musculoskeletal system during landing can lead to a potential for injury. A reduction of impact forces upon landing could therefore contribute to reduce the risk of injury. Twenty subjects performed a series of loaded jumps for maximal height, with and without a brake mechanism designed to reduce impact force during landing. The braked jumps were performed on the Plyometric Power System (PPS) with its braking mechanism set at 75% of body weight during the downward phase. The non-braked condition involved jumps with no braking. Vertical ground reaction force data, sampled for 5.5 s at 550 Hz from a Kistler forceplate, were collected for each jump condition. The following parameters were then calculated: peak vertical force, time to peak force, passive impact impulse and maximum concentric force. The brake served to significantly (p < 0.01) reduce peak impact force by 155% and passive impact impulse by 200%. No significant differences were found for peak concentric force production. The braking mechanism of the PPS significantly reduced ground impact forces without impeding concentric force production. The reduction in eccentric loading, using the braking mechanism, may reduce the incidence of injury associated with landings from high intensity plyometric exercises.

  6. Inner Structure of CME Shock Fronts Revealed by the Electromotive Force and Turbulent Transport Coefficients in Helios-2 Observations

    NASA Astrophysics Data System (ADS)

    Bourdin, Philippe-A.; Hofer, Bernhard; Narita, Yasuhito

    2018-03-01

    Electromotive force is an essential quantity in dynamo theory. During a coronal mass ejection (CME), magnetic helicity gets decoupled from the Sun and advected into the heliosphere with the solar wind. Eventually, a heliospheric magnetic transient event might pass by a spacecraft, such as the Helios space observatories. Our aim is to investigate the electromotive force, the kinetic helicity effect (α term), the turbulent diffusion (β term), and the cross-helicity effect (γ term) in the inner heliosphere below 1 au. We set up a one-dimensional model of the solar wind velocity and magnetic field for a hypothetic interplanetary CME. Because turbulent structures within the solar wind evolve much slower than this structure needs to pass by the spacecraft, we use a reduced curl operator to compute the current density and vorticity. We test our CME shock-front model against an observed magnetic transient that passes by the Helios-2 spacecraft. At the peak of the fluctuations in this event we find strongly enhanced α, β, and γ terms, as well as a strong peak in the total electromotive force. Our method allows us to automatically identify magnetic transient events from any in situ spacecraft observations that contain magnetic field and plasma velocity data of the solar wind.

  7. Reductions in Sprint Paddling Ability and Countermovement Jump Performance After Surfing Training.

    PubMed

    Secomb, Josh L; Sheppard, Jeremy M; Dascombe, Ben J

    2015-07-01

    The present study aimed to determine whether any meaningful change in a surfer's sprint paddling ability and countermovement jump (CMJ) performance developed after a 2-hour surfing training session and also whether any physical demands of the surfing session were related to the resultant changes in the capacities. Fifteen competitive male surfing athletes (age, 22.1 ± 3.9 years; height, 175.4 ± 6.4 cm; body mass, 72.5 ± 7.7 kg) performed a 2-hour surfing training session, with 15-m sprint paddle and CMJ trials performed both before and after the surfing session. Pre- to posttesting measures were analyzed using magnitude-based inferences. Likely declines were observed in the velocity achieved at the 5-, 10-, and 15-m splits of the 15-m sprint paddle, as well as peak velocity. Similarly, likely declines were calculated for CMJ peak force, relative peak force, and jump height. Furthermore, large correlations were calculated between presurfing session peak velocity and the change in 5, 10, 15 m, and peak velocity of the 15-m sprint paddle and total distance covered, wave riding bouts, and success rate. Surfing athletes and coaches may need to consider implementing shorter duration training sessions to reduce the decline in sprint paddling ability and CMJ performance. Furthermore, surfing athletes should possess highly developed sprint paddling ability because this may allow them to undertake a greater workload and catch more waves, which will increase the opportunity for technical refinement of maneuvers and skill acquisition.

  8. Chemical Constituents of Sweetpotato Genotypes in Relation to Textural Characteristics of Processed French Fries.

    PubMed

    Sato, Ai; Truong, Van-Den; Johanningsmeier, Suzanne D; Reynolds, Rong; Pecota, Kenneth V; Yencho, G Craig

    2018-01-01

    Sweetpotato French fries (SPFF) are growing in popularity, however limited information is available on SPFF textural properties in relation to chemical composition. This study investigated the relationship between chemical components of different sweetpotato varieties and textural characteristics of SPFF. Sixteen sweetpotato genotypes were evaluated for (1) chemical constituents; (2) instrumental and sensory textural properties of SPFF; and (3) the relationship between chemical components, instrumental measurements, and sensory attributes. Dry matter (DM), alcohol-insoluble solids (AIS), starch, sugar, and oil content, and also α- and β-amylase activities were quantified in raw sweetpotatoes and SPFF. Peak force and overall hardness describing instrumental textural properties of SPFF were measured using a texture analyzer. Descriptive sensory analysis was conducted and 10 attributes were evaluated by a trained panel. Results showed that DM, AIS, and starch content in raw sweetpotatoes were significantly correlated (P < 0.05) with instrumental peak force and overall hardness (r = 0.41 to 0.68), and with sensory surface roughness, hardness, fracturability, and crispness (r = 0.63 to 0.90). Total sugar content in raw sweetpotatoes was positively correlated with sensory smoothness and moistness (r = 0.77), and negatively correlated with instrumental peak force and overall hardness (r = -0.62 to -0.69). Instrumental measurements were positively correlated with sensory attributes of hardness, fracturability, and crispness (r = 0.68 to 0.96) and negatively correlated with oiliness, smoothness, moistness, and cohesiveness (r = -0.61 to -0.91). Therefore, DM, AIS, starch, and total sugar contents and instrumental measurements could be used as indicators to evaluate sweetpotato genotypes for SPFF processing. In recent years, sweetpotato French fries (SPFF) have grown in popularity, but limited information is available on SPFF textural properties in relation to the differences in chemical constituents among sweetpotato varieties. This study demonstrated that sensory texture attributes of SPFF varied widely and were significantly correlated with chemical components such as dry matter, starch, and total sugar contents of raw sweetpotatoes and instrumental texture measurements of SPFF. The knowledge generated from this study will benefit the food industry and breeding programs with the selection of sweetpotato varieties for improved SPFF quality. © 2017 Institute of Food Technologists®.

  9. Comparison of body weight distribution, peak vertical force, and vertical impulse as measures of hip joint pain and efficacy of total hip replacement.

    PubMed

    Seibert, Rachel; Marcellin-Little, Denis J; Roe, Simon C; DePuy, Venita; Lascelles, B Duncan X

    2012-05-01

    To determine whether there is a difference between the ability of peak vertical force (PVF), vertical impulse (VI), and percentage body weight distribution (%BW(dist) ) in differentiating which leg is most affected by hip joint pain before total hip replacement (THR) surgery, and for measuring changes in limb use after THR surgery. Prospective clinical study. Dogs (n = 47). Ground reaction force (GRF) data were collected using a pressure-sensitive walkway the day before THR surgery and at ∼3, 6, and 12 months postoperatively. PVF and VI expressed as a percentage of body weight (%PVF, %VI), and %BW(dist) were recorded. Regression models performed separately for each outcome were used for statistical analysis. When comparing limb use between the affected limb (AP) and the nonaffected limb (NP) preoperatively, differences between limbs were statistically significant when evaluated using PVF (P = .023), VI (P = .010), and %BW(dist) (P = .012). When evaluating the magnitude of absolute and percentage change difference in AP limb use preoperatively versus postoperatively, differences were statistically significant when evaluated using PVF (P < .001 and P = .001, respectively), VI (P = .001 and P < .001) and %BW(dist) (P < .001 and P < .001). There appeared to be no difference in the sensitivity of VI, PVF, and %BW(dist) for evaluating limb use before and after THR. © Copyright 2012 by The American College of Veterinary Surgeons.

  10. Difference in peak weight transfer and timing based on golf handicap.

    PubMed

    Queen, Robin M; Butler, Robert J; Dai, Boyi; Barnes, C Lowry

    2013-09-01

    Weight shift during the golf swing has been a topic of discussion among golf professionals; however, it is still unclear how weight shift varies in golfers of different performance levels. The main purpose of this study was to examine the following: (a) the changes in the peak ground reaction forces (GRF) and the timing of these events between high (HHCP) and low handicap (LHCP) golfers and (b) the differences between the leading and trailing legs. Twenty-eight male golfers were recruited and divided based on having an LHCP < 9 or HHCP > 9. Three-dimensional GRF peaks and the timing of the peaks were recorded bilaterally during a golf swing. The golf swing was divided into different phases: (a) address to the top of the backswing, (b) top of the backswing to ball contact, and (c) ball contact to the end of follow through. Repeated measures analyses of variance (α = 0.05) were completed for each study variable: the magnitude and the timing of peak vertical GRF, peak lateral GRF, and peak medial GRF (α = 0.05). The LHCP group had a greater transfer of vertical force from the trailing foot to the leading foot in phase 2 than the HHCP group. The LHCP group also demonstrated earlier timing of peak vertical force throughout the golf swing than the HHCP group. The LHCP and HHCP groups demonstrated different magnitudes of peak lateral force. The LHCP group had an earlier timing of peak lateral GRF in phase 2 and earlier timing of peak medial GRF in phases 1 and 2 than the HHCP group. In general, LHCP golfers demonstrated greater and earlier force generation than HHCP golfers. It may be relevant to consider both the magnitude of the forces and the timing of these events during golf-specific training to improve performance. These data reveal weight shifting differences that can be addressed by teaching professionals to help their students better understand weight transfer during the golf swing to optimize performance.

  11. Relationships Between Potentiation Effects After Ballistic Half-Squats and Bilateral Symmetry.

    PubMed

    Suchomel, Timothy J; Sato, Kimitake; DeWeese, Brad H; Ebben, William P; Stone, Michael H

    2016-05-01

    The purposes of this study were to examine the effect of ballistic concentric-only half-squats (COHS) on subsequent squat-jump (SJ) performances at various rest intervals and to examine the relationships between changes in SJ performance and bilateral symmetry at peak performance. Thirteen resistance-trained men performed an SJ immediately and every minute up to 10 min on dual force plates after 2 ballistic COHS repetitions at 90% of their 1-repetition-maximum COHS. SJ peak force, peak power, net impulse, and rate of force development (RFD) were compared using a series of 1-way repeated-measures ANOVAs. The percent change in performance at which peak performance occurred for each variable was correlated with the symmetry index scores at the corresponding time point using Pearson correlation coefficients. Statistical differences in peak power (P = .031) existed between rest intervals; however, no statistically significant pairwise comparisons were present (P > .05). No statistical differences in peak force (P = .201), net impulse (P = .064), and RFD (P = .477) were present between rest intervals. The relationships between changes in SJ performance and bilateral symmetry after the rest interval that produced the greatest performance for peak force (r = .300, P = .319), peak power (r = -.041, P = .894), net impulse (r = -.028, P = .927), and RFD (r = -.434, P = .138) were not statistically significant. Ballistic COHS may enhance SJ performance; however, the changes in performance were not related to bilateral symmetry.

  12. The Influence of Component Alignment and Ligament Properties on Tibiofemoral Contact Forces in Total Knee Replacement.

    PubMed

    Smith, Colin R; Vignos, Michael F; Lenhart, Rachel L; Kaiser, Jarred; Thelen, Darryl G

    2016-02-01

    The study objective was to investigate the influence of coronal plane alignment and ligament properties on total knee replacement (TKR) contact loads during walking. We created a subject-specific knee model of an 83-year-old male who had an instrumented TKR. The knee model was incorporated into a lower extremity musculoskeletal model and included deformable contact, ligamentous structures, and six degrees-of-freedom (DOF) tibiofemoral and patellofemoral joints. A novel numerical optimization technique was used to simultaneously predict muscle forces, secondary knee kinematics, ligament forces, and joint contact pressures from standard gait analysis data collected on the subject. The nominal knee model predictions of medial, lateral, and total contact forces during gait agreed well with TKR measures, with root-mean-square (rms) errors of 0.23, 0.22, and 0.33 body weight (BW), respectively. Coronal plane component alignment did not affect total knee contact loads, but did alter the medial-lateral load distribution, with 4 deg varus and 4 deg valgus rotations in component alignment inducing +17% and -23% changes in the first peak medial tibiofemoral contact forces, respectively. A Monte Carlo analysis showed that uncertainties in ligament stiffness and reference strains induce ±0.2 BW uncertainty in tibiofemoral force estimates over the gait cycle. Ligament properties had substantial influence on the TKR load distributions, with the medial collateral ligament and iliotibial band (ITB) properties having the largest effects on medial and lateral compartment loading, respectively. The computational framework provides a viable approach for virtually designing TKR components, considering parametric uncertainty and predicting the effects of joint alignment and soft tissue balancing procedures on TKR function during movement.

  13. The Influence of Component Alignment and Ligament Properties on Tibiofemoral Contact Forces in Total Knee Replacement

    PubMed Central

    Smith, Colin R.; Vignos, Michael F.; Lenhart, Rachel L.; Kaiser, Jarred; Thelen, Darryl G.

    2016-01-01

    The study objective was to investigate the influence of coronal plane alignment and ligament properties on total knee replacement (TKR) contact loads during walking. We created a subject-specific knee model of an 83-year-old male who had an instrumented TKR. The knee model was incorporated into a lower extremity musculoskeletal model and included deformable contact, ligamentous structures, and six degrees-of-freedom (DOF) tibiofemoral and patellofemoral joints. A novel numerical optimization technique was used to simultaneously predict muscle forces, secondary knee kinematics, ligament forces, and joint contact pressures from standard gait analysis data collected on the subject. The nominal knee model predictions of medial, lateral, and total contact forces during gait agreed well with TKR measures, with root-mean-square (rms) errors of 0.23, 0.22, and 0.33 body weight (BW), respectively. Coronal plane component alignment did not affect total knee contact loads, but did alter the medial–lateral load distribution, with 4 deg varus and 4 deg valgus rotations in component alignment inducing +17% and −23% changes in the first peak medial tibiofemoral contact forces, respectively. A Monte Carlo analysis showed that uncertainties in ligament stiffness and reference strains induce ±0.2 BW uncertainty in tibiofemoral force estimates over the gait cycle. Ligament properties had substantial influence on the TKR load distributions, with the medial collateral ligament and iliotibial band (ITB) properties having the largest effects on medial and lateral compartment loading, respectively. The computational framework provides a viable approach for virtually designing TKR components, considering parametric uncertainty and predicting the effects of joint alignment and soft tissue balancing procedures on TKR function during movement. PMID:26769446

  14. Treatment of Glioma Using neuroArm Surgical System

    PubMed Central

    2016-01-01

    The use of robotic technology in the surgical treatment of brain tumour promises increased precision and accuracy in the performance of surgery. Robotic manipulators may allow superior access to narrow surgical corridors compared to freehand or conventional neurosurgery. This paper reports values and ranges of tool-tissue interaction forces during the performance of glioma surgery using an MR compatible, image-guided neurosurgical robot called neuroArm. The system, capable of microsurgery and stereotaxy, was used in the surgical resection of glioma in seven cases. neuroArm is equipped with force sensors at the end-effector allowing quantification of tool-tissue interaction forces and transmits force of dissection to the surgeon sited at a remote workstation that includes a haptic interface. Interaction forces between the tool tips and the brain tissue were measured for each procedure, and the peak forces were quantified. Results showed maximum and minimum peak force values of 2.89 N (anaplastic astrocytoma, WHO grade III) and 0.50 N (anaplastic oligodendroglioma, WHO grade III), respectively, with the mean of peak forces varying from case to case, depending on type of the glioma. Mean values of the peak forces varied in range of 1.27 N (anaplastic astrocytoma, WHO grade III) to 1.89 N (glioblastoma with oligodendroglial component, WHO grade IV). In some cases, ANOVA test failed to reject the null hypothesis of equality in means of the peak forces measured. However, we could not find a relationship between forces exerted to the pathological tissue and its size, type, or location. PMID:27314044

  15. In vivo contact kinematics and contact forces of the knee after total knee arthroplasty during dynamic weight-bearing activities.

    PubMed

    Varadarajan, Kartik M; Moynihan, Angela L; D'Lima, Darryl; Colwell, Clifford W; Li, Guoan

    2008-07-19

    Analysis of polyethylene component wear and implant loosening in total knee arthroplasty (TKA) requires precise knowledge of in vivo articular motion and loading conditions. This study presents a simultaneous in vivo measurement of tibiofemoral articular contact forces and contact kinematics in three TKA patients. These measurements were accomplished via a dual fluoroscopic imaging system and instrumented tibial implants, during dynamic single leg lunge and chair rising-sitting. The measured forces and contact locations were also used to determine mediolateral distribution of axial contact forces. Contact kinematics data showed a medial pivot during flexion of the knee, for all patients in the study. Average axial forces were higher for lunge compared to chair rising-sitting (224% vs. 187% body weight). In this study, we measured peak anteroposterior and mediolateral forces averaging 13.3% BW during lunge and 18.5% BW during chair rising-sitting. Mediolateral distributions of axial contact force were both patient and activity specific. All patients showed equitable medial-lateral loading during lunge but greater loads at the lateral compartment during chair rising-sitting. The results of this study may enable more accurate reproduction of in vivo loads and articular motion patterns in wear simulators and finite element models. This in turn may help advance our understanding of factors limiting longevity of TKA implants, such as aseptic loosening and polyethylene component wear, and enable improved TKA designs.

  16. Validity Of The Nintendo Wii Balance Board To Assess Weight Bearing Asymmetry During Sit-To-Stand And Return-To-Sit Task

    PubMed Central

    Abujaber, Sumayeh; Gillispie, Gregory; Marmon, Adam; Zeni, Joseph

    2015-01-01

    Weight bearing asymmetry is common in patients with unilateral lower limb musculoskeletal pathologies. The Nintendo Wii Balance Board (WBB) has been suggested as a low-cost and widely-available tool to measure weight bearing asymmetry in a clinical environment; however no study has evaluated the validity of this tool during dynamic tasks. Therefore, the purpose of this study was to determine the concurrent validity of force measurements acquired from the WBB as compared to laboratory force plates. Thirty-five individuals before, or within 1 year of total joint arthroplasty performed a sit-to-stand and return-to-sit task in two conditions. First, subjects performed the task with both feet placed on a single WBB. Second, the task was repeated with each foot placed on an individual laboratory force plate. Peak vertical ground reaction force (VGRF) under each foot and the inter-limb symmetry ratio were calculated. Validity was examined using Intraclass Correlation Coefficients (ICC), regression analysis, 95% limits of agreement and Bland-Altman plots. Force plates and the WBB exhibited excellent agreement for all outcome measurements (ICC =0.83–0.99). Bland-Altman plots showed no obvious relationship between the difference and the mean for the peak VGRF, but there was a consistent trend in which VGRF on the unaffected side was lower and VGRF on the affected side was higher when using the WBB. However, these consistent biases can be adjusted for by utilizing regression equations that estimate the force plate values based on the WBB force. The WBB may serve as a valid, suitable, and low-cost alternative to expensive, laboratory force plates for measuring weight bearing asymmetry in clinical settings. PMID:25715680

  17. Validity of the Nintendo Wii Balance Board to assess weight bearing asymmetry during sit-to-stand and return-to-sit task.

    PubMed

    Abujaber, Sumayeh; Gillispie, Gregory; Marmon, Adam; Zeni, Joseph

    2015-02-01

    Weight bearing asymmetry is common in patients with unilateral lower limb musculoskeletal pathologies. The Nintendo Wii Balance Board (WBB) has been suggested as a low-cost and widely-available tool to measure weight bearing asymmetry in a clinical environment; however no study has evaluated the validity of this tool during dynamic tasks. Therefore, the purpose of this study was to determine the concurrent validity of force measurements acquired from the WBB as compared to laboratory force plates. Thirty-five individuals before, or within 1 year of total joint arthroplasty performed a sit-to-stand and return-to-sit task in two conditions. First, subjects performed the task with both feet placed on a single WBB. Second, the task was repeated with each foot placed on an individual laboratory force plate. Peak vertical ground reaction force (VGRF) under each foot and the inter-limb symmetry ratio were calculated. Validity was examined using Intraclass Correlation Coefficients (ICC), regression analysis, 95% limits of agreement and Bland-Altman plots. Force plates and the WBB exhibited excellent agreement for all outcome measurements (ICC=0.83-0.99). Bland-Altman plots showed no obvious relationship between the difference and the mean for the peak VGRF, but there was a consistent trend in which VGRF on the unaffected side was lower and VGRF on the affected side was higher when using the WBB. However, these consistent biases can be adjusted for by utilizing regression equations that estimate the force plate values based on the WBB force. The WBB may serve as a valid, suitable, and low-cost alternative to expensive, laboratory force plates for measuring weight bearing asymmetry in clinical settings. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. VARIABILITY OF PEAK SHOULDER FORCE DURING WHEELCHAIR PROPULSION IN MANUAL WHEELCHAIR USERS WITH AND WITHOUT SHOULDER PAIN

    PubMed Central

    Moon, Y.; Chandrasekaran, J.; Hsu, I.M.K.; Rice, I.M.; Hsiao-Wecksler, E.T.; Sosnoff, J.J.

    2013-01-01

    Background Manual wheelchair users report a high prevalence of shoulder pain. Growing evidence shows that variability in forces applied to biological tissue is related to musculoskeletal pain. The purpose of this study was to examine the variability of forces acting on the shoulder during wheelchair propulsion as a function of shoulder pain. Methods Twenty-four manual wheelchair users (13 with pain, 11 without pain) participated in the investigation. Kinetic and kinematic data of wheelchair propulsion were recorded for three minutes maintaining a constant speed at three distinct propulsion speeds (fast speed of 1.1 m/s, a self-selected speed, and a slow speed of 0.7 m/s). Peak resultant shoulder forces in the push phase were calculated using inverse dynamics. Within individual variability was quantified as the coefficient of variation of cycle to cycle peak resultant forces. Findings There was no difference in mean peak shoulder resultant force between groups. The pain group had significantly smaller variability of peak resultant force than the no pain group (p < 0.01, η2 = 0.18). Interpretation The observations raise the possibility that propulsion variability could be a novel marker of upper limb pain in manual wheelchair users. PMID:24210512

  19. Kinesio Taping effects on knee extension force among soccer players

    PubMed Central

    Serra, Maysa V. G. B.; Vieira, Edgar R.; Brunt, Denis; Goethel, Márcio F.; Gonçalves, Mauro; Quemelo, Paulo R. V.

    2015-01-01

    Background: Kinesio Taping (KT) is widely used, however the effects of KT on muscle activation and force are contradictory. Objective: To evaluate the effects of KT on knee extension force in soccer players. Method: This is a clinical trial study design. Thirty-four subjects performed two maximal isometric voluntary contractions of the lower limbs pre, immediately post, and 24 hours after tape application on the lower limbs. Both lower limbs were taped, using K-Tape and 3M Micropore tape randomly on the right and left thighs of the participants. Isometric knee extension force was measured for dominant side using a strain gauge. The following variables were assessed: peak force, time to peak force, rate of force development until peak force, time to peak rate of force development, and 200 ms pulse. Results: There were no statistically significant differences in the variables assessed between KT and Micropore conditions (F=0.645, p=0.666) or among testing sessions (pre, post, and 24h after) (F=0.528, p=0.868), and there was no statistical significance (F=0.271, p=0.986) for interaction between tape conditions and testing session. Conclusion: KT did not affect the force-related measures assessed immediately and 24 hours after the KT application compared with Micropore application, during maximal isometric voluntary knee extension. PMID:25789557

  20. Kinesio Taping effects on knee extension force among soccer players.

    PubMed

    Serra, Maysa V G B; Vieira, Edgar R; Brunt, Denis; Goethel, Márcio F; Gonçalves, Mauro; Quemelo, Paulo R V

    2015-01-01

    Kinesio Taping (KT) is widely used, however the effects of KT on muscle activation and force are contradictory. To evaluate the effects of KT on knee extension force in soccer players. This is a clinical trial study design. Thirty-four subjects performed two maximal isometric voluntary contractions of the lower limbs pre, immediately post, and 24 hours after tape application on the lower limbs. Both lower limbs were taped, using K-Tape and 3M Micropore tape randomly on the right and left thighs of the participants. Isometric knee extension force was measured for dominant side using a strain gauge. The following variables were assessed: peak force, time to peak force, rate of force development until peak force, time to peak rate of force development, and 200 ms pulse. There were no statistically significant differences in the variables assessed between KT and Micropore conditions (F=0.645, p=0.666) or among testing sessions (pre, post, and 24h after) (F=0.528, p=0.868), and there was no statistical significance (F=0.271, p=0.986) for interaction between tape conditions and testing session. KT did not affect the force-related measures assessed immediately and 24 hours after the KT application compared with Micropore application, during maximal isometric voluntary knee extension.

  1. Increasing hip and knee flexion during a drop-jump task reduces tibiofemoral shear and compressive forces: implications for ACL injury prevention training.

    PubMed

    Tsai, Liang-Ching; Ko, Yi-An; Hammond, Kyle E; Xerogeanes, John W; Warren, Gordon L; Powers, Christopher M

    2017-12-01

    Although most ACL injury prevention programmes encourage greater hip and knee flexion during landing, it remains unknown how this technique influences tibiofemoral joint forces. We examined whether a landing strategy utilising greater hip and knee flexion decreases tibiofemoral anterior shear and compression. Twelve healthy women (25.9 ± 3.5 years) performed a drop-jump task before and after a training session (10-15 min) that emphasised greater hip and knee flexion. Peak tibiofemoral anterior shear and compressive forces were calculated using an electromyography (EMG)-driven knee model that incorporated joint kinematics, EMG and participant-specific muscle volumes and patella tendon orientation measured using magnetic resonance imaging (MRI). Participants demonstrated a decrease in peak anterior tibial shear forces (11.1 ± 3.3 vs. 9.6 ± 2.7 N · kg -1 ; P = 0.008) and peak tibiofemoral compressive forces (68.4 ± 7.6 vs. 62.0 ± 5.5 N · kg -1 ; P = 0.015) post-training. The decreased peak anterior tibial shear was accompanied by a decrease in the quadriceps anterior shear force, while the decreased peak compressive force was accompanied by decreased ground reaction force and hamstring forces. Our data provide justification for injury prevention programmes that encourage greater hip and knee flexion during landing to reduce tibiofemoral joint loading.

  2. A statistical study on the F2 layer vertical variation during nighttime medium-scale traveling ionospheric disturbances

    NASA Astrophysics Data System (ADS)

    Ssessanga, Nicholas; Kim, Yong Ha; Jeong, Se-Heon

    2017-03-01

    A statistical study on the relationship between the perturbation component (ΔTEC (total electron content)) and the F2 layer peak height (hmF2) during nighttime medium-scale traveling ionospheric disturbances is presented. The results are obtained by using a time-dependent computerized ionospheric tomography (CIT) technique. This was realized by using slant total electron content observations from a dense Global Positioning System receiver network over Japan (with more than 1000 receivers), together with a multiplicative algebraic reconstruction technique. Reconstructions from CIT were validated by using ionosonde and occultation measurements. A total of 36 different time snapshots of the ionosphere when medium-scale traveling ionospheric disturbances (MSTIDs) were eminent were analyzed. These were obtained from a data set covering years from 2011 to 2014. The reconstructed surface wavefronts of ΔTEC and hmF2 structure were found to be aligned along the northwest-southeast direction. These results confirm that nighttime MSTIDs are driven by electrodynamic forces related to Perkins instability which explains the northwest-southeast wavefront alignment based on the F region electrodynamics. Furthermore, from the statistical analysis hmF2 varied quasiperiodically in altitude with dominant peak-to-peak amplitudes between 10 and 40 km. In addition, ΔTEC and hmF2 were 60% anticorrelated.

  3. Isokinetic strength and endurance during 30-day 6 degrees head-down bed rest with isotonic and isokinetic exercise training

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Bernauer, E. M.; Ertl, A. C.; Bulbulian, R.; Bond, M.

    1994-01-01

    The purpose of our study was to determine if an intensive, intermittent, isokinetic, lower extremity exercise training program would attenuate or eliminate the decrease of muscular strength and endurance during prolonged bed rest (BR). The 19 male subjects (36 +/- 1 yr, 178 +/- 2 cm, 76.5 +/- 1.7 kg) were allocated into a no exercise (NOE) training group (N = 5), an isotonic (lower extremity cycle ergometer) exercise (ITE) training group (N = 7), and an isokinetic (isokinetic knee flexion-extension) exercise (IKE) training group (N = 7). Peak knee (flexion and extension) and shoulder (abduction-adduction) functions were measured weekly in all groups with one 5-repetition set. After BR, average knee extension total work decreased by 16% with NOE, increased by 27% with IKE, and was unchanged with ITE. Average knee flexion total work and peak torque (strength) responses were unchanged in all groups. Force production increased by 20% with IKE and was unchanged with NOE and ITE. Shoulder total work was unchanged in all groups, while gross average peak torque increased by 27% with ITE and by 22% with IKE, and was unchanged with NOE. Thus, while ITE training can maintain some isokinetic functions during BR, maximal intermittent IKE training can increase other functions above pre-BR control levels.

  4. Isokinetic Strength and Endurance During 30-day 6 deg Head-Down Bed Rest with Isotonic and Isokinetic Exercise Training

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Bernauer, E. M.; Ertl, A. C.; Bond, M.; Bulbulian, R.

    1994-01-01

    The purpose of our study was to determine if an intensive, intermittent, isokinetic, lower extremity exercise training program would attenuate or eliminate the decrease of muscular strength and endurance during prolonged bed rest (BR). The 19 male subjects (36 +/- 1 yr, 178 +/- 2 cm, 76.5 +/- 1.7 kg) were allocated into a no exercise (NOE) training group (N = 5), an isotonic (lower extremity cycle orgometer) exercise (ITE) training group (N = 7), and an isokinetic (isokinetic knee flexion-extension) exercise (IKE) training group (N = 7). Peak knee (flexion and extension) and shoulder (abduction-adduction) functions were measured weekly in all groups with one 5-repetition set. After BR, average knee extension total work decreased by 16% with NOE, increased by 27% with IKE, and was unchanged with ITE. Average knee flexion total work and peak torque (strength) responses were unchanged in all groups. Force production increased by 20% with IKE and was unchanged with NOE and ITE. Shoulder total work was unchanged in all groups, while gross average peak torque increased by 27% with ITE and by 22% with IKE, and was unchanged with NOE. Thus, while ITE training can maintain some isokinetic functions during BR, maximal intermittent IKE training can increase other functions above pre-BR control levels.

  5. Differences in plantar loading between training shoes and racing flats at a self-selected running speed.

    PubMed

    Wiegerinck, Johannes I; Boyd, Jennifer; Yoder, Jordan C; Abbey, Alicia N; Nunley, James A; Queen, Robin M

    2009-04-01

    The purpose of this study was to examine the difference in plantar loading between two different running shoe types. We hypothesized that a higher maximum force, peak pressure, and contact area would exist beneath the entire foot while running in a racing flat when compared to a training shoe. 37 athletes (17 male and 20 female) were recruited for this study. Subjects had no history of lower extremity injuries in the past six months, no history of foot or ankle surgery within the past 3 years, and no history of metatarsal stress fractures. Subjects had to be physically active and run at least 10 miles per week. Each subject ran on a 10m runway 7 times wearing two different running shoe types, the Nike Air Pegasus (training shoe) and the Nike Air Zoom Katana IV (racing flat). A Pedar-X in-shoe pressure measurement system sampling at 50Hz was used to collect plantar pressure data. Peak pressure, maximum force, and contact area beneath eight different anatomical regions of the foot as well as beneath the total foot were obtained. The results of this study demonstrated a significant difference between training shoes and racing flats in terms of peak pressure, maximum force, and contact area. The significant differences measured between the two shoes can be of importance when examining the influence of shoe type on the occurrence of stress fractures in runners.

  6. Comparison of three empirical force fields for phonon calculations in CdSe quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelley, Anne Myers

    Three empirical interatomic force fields are parametrized using structural, elastic, and phonon dispersion data for bulk CdSe and their predictions are then compared for the structures and phonons of CdSe quantum dots having average diameters of ~2.8 and ~5.2 nm (~410 and ~2630 atoms, respectively). The three force fields include one that contains only two-body interactions (Lennard-Jones plus Coulomb), a Tersoff-type force field that contains both two-body and three-body interactions but no Coulombic terms, and a Stillinger-Weber type force field that contains Coulombic interactions plus two-body and three-body terms. While all three force fields predict nearly identical peak frequencies formore » the strongly Raman-active “longitudinal optical” phonon in the quantum dots, the predictions for the width of the Raman peak, the peak frequency and width of the infrared absorption peak, and the degree of disorder in the structure are very different. The three force fields also give very different predictions for the variation in phonon frequency with radial position (core versus surface). The Stillinger-Weber plus Coulomb type force field gives the best overall agreement with available experimental data.« less

  7. The effect of total hip and hip resurfacing arthroplasty on vertical ground reaction force and impulse symmetry during a sit-to-stand task.

    PubMed

    Caplan, N; Stewart, S; Kashyap, S; Banaszkiewicz, P; St Clair Gibson, A; Kader, D; Ewen, A

    2014-12-01

    The aim of this study was to determine the influence of total hip arthroplasty and hip resurfacing arthroplasty on limb loading symmetry before, and after, hip reconstruction surgery during a sit-to-stand task. Fourteen patients were recruited that were about to receive either a total hip prosthesis (n=7) or a hip resurfacing prosthesis (n=7), as well as matched controls. Patients performed a sit-to-stand movement before, 3 months after, and 12 months after surgery. Peak vertical ground reaction force and impulse were measured for each leg, from which ground reaction force and impulse symmetry ratios were calculated. Before surgery, hip resurfacing patients showed a small asymmetry which was not different to normal for ground reaction force (0.88(0.28) vs. 1.00(0.11); p=0.311) or impulse (0.87(0.29) vs. 0.99(0.09); p=0.324) symmetry ratios. Total hip patients offloaded their affected hip by 30% in terms of impulse symmetry ratio (0.71(0.36) vs. 0.99(0.23); p=0.018). At 3 months following surgery asymmetries were seen that were different to normal in both hip resurfacing patients for ground reaction force (0.77(0.16); p=0.007), and total hip patients for ground reaction force (0.70(0.15); p=0.018) and impulse (0.72(0.16); p=0.011) symmetry ratios. By 12 months after surgery total hip patients regained a symmetrical loading pattern for both ground reaction force (0.95(0.06); p=0.676) and impulse (1.00(0.06); p=0.702) symmetry ratios. Hip resurfacing patients, however, performed the task by overloading their operated hip, with impulse symmetry ratio being larger than normal (1.16(0.16); p=0.035). Physiotherapists should appreciate the need for early recovery of limb loading symmetry as well as subsequent differences in the responses observed with different prostheses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Intra-operatively measured spastic semimembranosus forces of children with cerebral palsy.

    PubMed

    Yucesoy, Can A; Temelli, Yener; Ateş, Filiz

    2017-10-01

    The knee kept forcibly in a flexed position is typical in cerebral palsy. Using a benchmark, we investigate intra-operatively if peak spastic hamstring force is measured in flexed knee positions. This tests the assumed shift of optimal length due to adaptation of spastic muscle and a decreasing force trend towards extension. Previously we measured spastic gracilis (GRA) and semitendinosus (ST) forces. Presently, we studied spastic semimembranosus (SM) and tested the following hypotheses: spastic SM forces are (1) high in flexed and (2) low in extended positions. We compared the data to those of GRA and ST to test (3) if percentages of peak force produced in flexed positions are different. During muscle lengthening surgery of 8 CP patients (9years, 4months; GMFCS levels=II-IV; limbs tested=13) isometric SM forces were measured from flexion (120°) to full extension (0°). Spastic SM forces were low in flexed knee positions (only 4.2% (3.4%) and 10.7% (9.7%) of peak force at KA=120° and KA=90° respectively, indicating less force production compared to the GRA or ST) and high in extended knee positions (even 100% of peak force at KA=0°). This indicates an absence of strong evidence for a shift of optimal muscle length of SM towards flexion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Distribution and sources of polychlorinated biphenyls in Woods Inlet, Lake Worth, Fort Worth, Texas, 2003

    USGS Publications Warehouse

    Besse, Richard E.; Van Metre, Peter C.; Wilson, Jennifer T.

    2005-01-01

    Woods Inlet is a flooded stream channel on the southern shore of Lake Worth along the western boundary of Air Force Plant 4 in Fort Worth, Texas, where elevated polychlorinated biphenyl (PCB) concentrations in sediment were detected in a previous study. In response, the U.S. Geological Survey, in cooperation with the U.S. Air Force, conducted a study in 2003 to map the extent of elevated PCB concentrations in Woods Inlet and to identify possible sources (or more specifically, source areas) of PCBs in the watershed of Woods Inlet. Three gravity cores (penetration to pre-reservoir sediment at three sites) and 17 box cores (surficial bottom sediment samples) were collected in Woods Inlet. Suspended sediment in stormwater runoff and streambed sediment were sampled in tributaries to Woods Inlet following storms. Assemblages of PCB congeners in surficial inlet sediments and suspended and streambed sediments were analyzed to indicate sources of PCBs in the inlet sediments on the basis of chemical signatures of PCBs. Woods Inlet receives runoff primarily from three tributaries: (1) Gruggs Park Creek, (2) the small unnamed creek that drains a Texas National Guard maintenance facility, called TNG Creek for this report, and (3) Meandering Road Creek. Twenty-seven of 209 possible PCB congeners were analyzed. The sum of the congeners was used as a measure of total PCB. The spatial distribution of total PCB concentrations in the inlet indicates that most PCBs are originating in the Meandering Road Creek watershed. Peak total PCB concentrations in the three gravity cores occurred at depths corresponding to sediment deposition dates of about 1960 for two of the cores and about 1980 for the third core. The magnitudes of peak total PCB concentrations in the gravity cores followed a spatial distribution generally similar to that of surficial bottom sediment concentrations. Total PCB concentrations in suspended and streambed sediment varied greatly between sites and indicated a likely source of PCBs associated with a sampling site that receives runoff from Air Force Plant 4. Three approaches to the analyses of congener assemblages indicate that PCBs in surficial bottom sediment of Woods Inlet primarily enter Lake Worth from Meandering Road Creek and that runoff from Air Force Plant 4 is a source of the PCBs in Meandering Road Creek. Although current (2003) transport of PCBs from Air Force Plant 4 to the creek is occurring, large decreases in PCB concentrations with decreasing age in two cores indicate that PCB loading to the inlet has decreased greatly since the 1960s. Because runoff entering Meandering Road Creek from some parts of Air Force Plant 4 was not measured or sampled in this study, it cannot be said with certainty that the Air Force Plant 4 site sampled is the only source of PCBs to Meandering Road Creek.

  10. Comparison of the Pullout Strength of Different Pedicle Screw Designs and Augmentation Techniques in an Osteoporotic Bone Model.

    PubMed

    Kiyak, Gorkem; Balikci, Tevfik; Heydar, Ahmed Majid; Bezer, Murat

    2018-02-01

    Mechanical study. To compare the pullout strength of different screw designs and augmentation techniques in an osteoporotic bone model. Adequate bone screw pullout strength is a common problem among osteoporotic patients. Various screw designs and augmentation techniques have been developed to improve the biomechanical characteristics of the bone-screw interface. Polyurethane blocks were used to mimic human osteoporotic cancellous bone, and six different screw designs were tested. Five standard and expandable screws without augmentation, eight expandable screws with polymethylmethacrylate (PMMA) or calcium phosphate augmentation, and distal cannulated screws with PMMA and calcium phosphate augmentation were tested. Mechanical tests were performed on 10 unused new screws of each group. Screws with or without augmentation were inserted in a block that was held in a fixture frame, and a longitudinal extraction force was applied to the screw head at a loading rate of 5 mm/min. Maximum load was recorded in a load displacement curve. The peak pullout force of all tested screws with or without augmentation was significantly greater than that of the standard pedicle screw. The greatest pullout force was observed with 40-mm expandable pedicle screws with four fins and PMMA augmentation. Augmented distal cannulated screws did not have a greater peak pullout force than nonaugmented expandable screws. PMMA augmentation provided a greater peak pullout force than calcium phosphate augmentation. Expandable pedicle screws had greater peak pullout forces than standard pedicle screws and had the advantage of augmentation with either PMMA or calcium phosphate cement. Although calcium phosphate cement is biodegradable, osteoconductive, and nonexothermic, PMMA provided a significantly greater peak pullout force. PMMA-augmented expandable 40-mm four-fin pedicle screws had the greatest peak pullout force.

  11. The application of musculoskeletal modeling to investigate gender bias in non-contact ACL injury rate during single-leg landings.

    PubMed

    Ali, Nicholas; Andersen, Michael Skipper; Rasmussen, John; Robertson, D Gordon E; Rouhi, Gholamreza

    2014-01-01

    The central tenet of this study was to develop, validate and apply various individualised 3D musculoskeletal models of the human body for application to single-leg landings over increasing vertical heights and horizontal distances. While contributing to an understanding of whether gender differences explain the higher rate of non-contact anterior cruciate ligament (ACL) injuries among females, this study also correlated various musculoskeletal variables significantly impacted by gender, height and/or distance and their interactions with two ACL injury-risk predictor variables; peak vertical ground reaction force (VGRF) and peak proximal tibia anterior shear force (PTASF). Kinematic, kinetic and electromyography data of three male and three female subjects were measured. Results revealed no significant gender differences in the musculoskeletal variables tested except peak VGRF (p = 0.039) and hip axial compressive force (p = 0.032). The quadriceps and the gastrocnemius muscle forces had significant correlations with peak PTASF (r = 0.85, p < 0.05 and r = - 0.88, p < 0.05, respectively). Furthermore, hamstring muscle force was significantly correlated with peak VGRF (r = - 0.90, p < 0.05). The ankle flexion angle was significantly correlated with peak PTASF (r = - 0.82, p < 0.05). Our findings indicate that compared to males, females did not exhibit significantly different muscle forces, or ankle, knee and hip flexion angles during single-leg landings that would explain the gender bias in non-contact ACL injury rate. Our results also suggest that higher quadriceps muscle force increases the risk, while higher hamstring and gastrocnemius muscle forces as well as ankle flexion angle reduce the risk of non-contact ACL injury.

  12. Jump Shrug Height and Landing Forces Across Various Loads.

    PubMed

    Suchomel, Timothy J; Taber, Christopher B; Wright, Glenn A

    2016-01-01

    The purpose of this study was to examine the effect that load has on the mechanics of the jump shrug. Fifteen track and field and club/intramural athletes (age 21.7 ± 1.3 y, height 180.9 ± 6.6 cm, body mass 84.7 ± 13.2 kg, 1-repetition-maximum (1RM) hang power clean 109.1 ± 17.2 kg) performed repetitions of the jump shrug at 30%, 45%, 65%, and 80% of their 1RM hang power clean. Jump height, peak landing force, and potential energy of the system at jump-shrug apex were compared between loads using a series of 1-way repeated-measures ANOVAs. Statistical differences in jump height (P < .001), peak landing force (P = .012), and potential energy of the system (P < .001) existed; however, there were no statistically significant pairwise comparisons in peak landing force between loads (P > .05). The greatest magnitudes of jump height, peak landing force, and potential energy of the system at the apex of the jump shrug occurred at 30% 1RM hang power clean and decreased as the external load increased from 45% to 80% 1RM hang power clean. Relationships between peak landing force and potential energy of the system at jump-shrug apex indicate that the landing forces produced during the jump shrug may be due to the landing strategy used by the athletes, especially at lighter loads. Practitioners may prescribe heavier loads during the jump-shrug exercise without viewing landing force as a potential limitation.

  13. The impact of working technique on physical loads - an exposure profile among newspaper editors.

    PubMed

    Lindegård, A; Wahlström, J; Hagberg, M; Hansson, G-A; Jonsson, P; Wigaeus Tornqvist, E

    2003-05-15

    The aim of this study was to investigate the possible associations between working technique, sex, symptoms and level of physical load in VDU-work. A study group of 32 employees in the editing department of a daily newspaper answered a questionnaire, about physical working conditions and symptoms from the neck and the upper extremities. Muscular load, wrist positions and computer mouse forces were measured. Working technique was assessed from an observation protocol for computer work. In addition ratings of perceived exertion and overall comfort were collected. The results showed that subjects classified as having a good working technique worked with less muscular load in the forearm (extensor carpi ulnaris p=0.03) and in the trapezius muscle on the mouse operating side (p=0.02) compared to subjects classified as having a poor working technique. Moreover there were no differences in gap frequency (number of episodes when muscle activity is below 2.5% of a reference contraction) or muscular rest (total duration of gaps) between the two working technique groups. Women in this study used more force (mean force p=0.006, peak force p=0.02) expressed as % MVC than the men when operating the computer mouse. No major differences were shown in muscular load, wrist postures, perceived exertion or perceived comfort between men and women or between cases and symptom free subjects. In conclusion a good working technique was associated with reduced muscular load in the forearm muscles and in the trapezius muscle on the mouse operating side. Moreover women used more force (mean force and peak force) than men when operating the click button (left button) of the computer mouse.

  14. Total and Lower Extremity Lean Mass Percentage Positively Correlates With Jump Performance.

    PubMed

    Stephenson, Mitchell L; Smith, Derek T; Heinbaugh, Erika M; Moynes, Rebecca C; Rockey, Shawn S; Thomas, Joi J; Dai, Boyi

    2015-08-01

    Strength and power have been identified as valuable components in both athletic performance and daily function. A major component of strength and power is the muscle mass, which can be assessed with dual-energy x-ray absorptiometry (DXA). The primary purpose of this study was to quantify the relationship between total body lean mass percentage (TBLM%) and lower extremity lean mass percentage (LELM%) and lower extremity force/power production during a countermovement jump (CMJ) in a general population. Researchers performed a DXA analysis on 40 younger participants aged 18-35 years, 28 middle-aged participants aged 36-55 years, and 34 older participants aged 56-75 years. Participants performed 3 CMJ on force platforms. Correlations revealed significant and strong relationships between TBLM% and LELM% compared with CMJ normalized peak vertical ground reaction force (p < 0.001, r = 0.59), normalized peak vertical power (p < 0.001, r = 0.73), and jump height (p < 0.001, r = 0.74) for the combined age groups. Most relationships were also strong within each age group, with some relationships being relatively weaker in the middle-aged and older groups. Minimal difference was found between correlation coefficients of TBLM% and LELM%. Coefficients of determination were all below 0.6 for the combined group, indicating that between-participant variability in CMJ measures cannot be completely explained by lean mass percentages. The findings have implications in including DXA-assessed lean mass percentage as a component for evaluating lower extremity strength and power. A paired DXA analysis and CMJ jump test may be useful for identifying neuromuscular deficits that limit performance.

  15. Prevalence of low back disorders among female workers and biomechanical limits on the handling of load and patients.

    PubMed

    Gutiérrez, Manuel; Monzó, Jorge

    2012-01-01

    The purpose of this investigation was to determine the association between prevalence of low back disorders in female workers and biomechanical demands of compressive and shear forces at the lumbar spine. A descriptive, cross-sectional and correlational study was carried out in 11 groups of female workers in the Province of Concepción. An interview was performed to investigate the prevalence of low back pain. To estimate biomechanical demands on the lumbar spine, it was used the 3DSSPP software. The Pearson correlation coefficient between the prevalence of low back disorders and peak compression force at the lumbar spine was r = (p<0.005). The Spearman correlation coefficient between the prevalence of low back disorders and peak shear force was r = 0.9 (p <0.005). To protect 90% of female workers studied, the limits of compression and shear forces should be at 2.8 kN and 0.3 kN, respectively. These values differ from the recommendations currently used, 3.4 kN for peak compression force and 0.5 kN for peak shear force.

  16. A Parametric Approach to Numerical Modeling of TKR Contact Forces

    PubMed Central

    Lundberg, Hannah J.; Foucher, Kharma C.; Wimmer, Markus A.

    2009-01-01

    In vivo knee contact forces are difficult to determine using numerical methods because there are more unknown forces than equilibrium equations available. We developed parametric methods for computing contact forces across the knee joint during the stance phase of level walking. Three-dimensional contact forces were calculated at two points of contact between the tibia and the femur, one on the lateral aspect of the tibial plateau, and one on the medial side. Muscle activations were parametrically varied over their physiologic range resulting in a solution space of contact forces. The obtained solution space was reasonably small and the resulting force pattern compared well to a previous model from the literature for kinematics and external kinetics from the same patient. Peak forces of the parametric model and the previous model were similar for the first half of the stance phase, but differed for the second half. The previous model did not take into account the transverse external moment about the knee and could not calculate muscle activation levels. Ultimately, the parametric model will result in more accurate contact force inputs for total knee simulators, as current inputs are not generally based on kinematics and kinetics inputs from TKR patients. PMID:19155015

  17. Effect of a powered drive on pushing and pulling forces when transporting bariatric hospital beds.

    PubMed

    Wiggermann, Neal

    2017-01-01

    Powered drives designed to assist with moving hospital beds are commercially available but no studies have evaluated whether they reduce the push and pull forces likely contributing to injury in caregivers. This study measured hand forces of 10 caregivers maneuvering a manual and powered bariatric bed through simulated hospital environments (hallway, elevator, and ramp). Peak push and pull forces exceeded previously established psychophysical limits for all activities with the manual bed. For the powered bed, peak forces were significantly (p < 0.05) lower for all tasks, and below psychophysical limits. Powered drive reduced peak forces between 38% (maneuvering into elevator) and 94% (descending ramp). Powered drive also reduced stopping distance by 55%. When maneuvering, the integral of hand force was 34% lower with powered drive, but average forces during straight-line pushing did not differ between beds. Powered drive may reduce the risk of injury or the number of caregivers needed for transport. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Stalk-length-dependence of the contractility of Vorticella convallaria

    NASA Astrophysics Data System (ADS)

    Gul Chung, Eun; Ryu, Sangjin

    2017-12-01

    Vorticella convallaria is a sessile protozoan of which the spasmoneme contracts on a millisecond timescale. Because this contraction is induced and powered by the binding of calcium ions (Ca2+), the spasmoneme showcases Ca2+-powered cellular motility. Because the isometric tension of V. convallaria increases linearly with its stalk length, it is hypothesized that the contractility of V. convallaria during unhindered contraction depends on the stalk length. In this study, the contractile force and energetics of V. convallaria cells of different stalk lengths were evaluated using a fluid dynamic drag model which accounts for the unsteadiness and finite Reynolds number of the water flow caused by contracting V. convallaria and the wall effect of the no-slip substrate. It was found that the contraction displacement, peak contraction speed, peak contractile force, total mechanical work, and peak power depended on the stalk length. The observed stalk-length-dependencies were simulated using a damped spring model, and the model estimated that the average spring constant of the contracting stalk was 1.34 nN µm-1. These observed length-dependencies of Vorticella’s key contractility parameters reflect the biophysical mechanism of the spasmonemal contraction, and thus they should be considered in developing a theoretical model of the Vorticella spasmoneme.

  19. Ankle and Midfoot Power During Walking and Stair Ascent in Healthy Adults.

    PubMed

    DiLiberto, Frank E; Nawoczenski, Deborah A; Houck, Jeff

    2018-02-27

    Ankle power dominates forward propulsion of gait, but midfoot power generation is also important for successful push off. However, it is unclear if midfoot power generation increases or stays the same in response to propulsive activities that induce larger external loads and require greater ankle power. The purpose of this study was to examine ankle and midfoot power in healthy adults during progressively more demanding functional tasks. Multi-segment foot motion (tibia, calcaneus, forefoot) and ground reaction forces were recorded as participants (N=12) walked, ascended a standard step, and ascended a high step. Ankle and midfoot positive peak power and total power, and the proportion of midfoot to ankle total power were calculated. One-way repeated measures ANOVAs were conducted to evaluate differences across tasks. Main effects were found for ankle and midfoot peak and total powers (all p < .001), but not for the proportion of midfoot to ankle total power (p = .331). Ankle and midfoot power significantly increased across each task. Midfoot power increased in proportion to ankle power and in congruence to the external load of a task. Study findings may serve to inform multi-segment foot modeling applications and internal mechanistic theories of normal and pathological foot function.

  20. Adaptations in single-leg hop biomechanics following anterior cruciate ligament reconstruction.

    PubMed

    Orishimo, Karl F; Kremenic, Ian J; Mullaney, Michael J; McHugh, Malachy P; Nicholas, Stephen J

    2010-11-01

    When a patient performs a clinically normal hop test based on distance, it cannot be assumed that the biomechanics are similar between limbs. The objective was to compare takeoff and landing biomechanics between legs in patients who have undergone anterior cruciate ligament reconstruction. Kinematics and ground reaction forces were recorded as 13 patients performed the single-leg hop on each leg. Distance hopped, joint range of motion, peak joint kinetics and the peak total extensor moment were compared between legs during both takeoff and landing. Average hop distance ratio (involved/noninvolved) was 93 ± 4%. Compared to the noninvolved side, knee motion during takeoff on the involved side was significantly reduced (P = 0.008). Peak moments and powers on the involved side were lower at the knee and higher at the ankle and hip compared with the noninvolved side (Side by Joint P = 0.011; P = 0.003, respectively). The peak total extensor moment was not different between legs (P = 0.305) despite a decrease in knee moment and increases in ankle and hip moments (Side by Joint P = 0.015). During landing, knee motion was reduced (P = 0.043), and peak power absorbed was decreased at the knee and hip and increased at the ankle on the involved side compared to the noninvolved side (P = 0.003). The compensations by other joints may indicate protective adaptations to avoid overloading the reconstructed knee.

  1. Inter-individual similarities and variations in muscle forces acting on the ankle joint during gait.

    PubMed

    Błażkiewicz, Michalina; Wiszomirska, Ida; Kaczmarczyk, Katarzyna; Naemi, Roozbeh; Wit, Andrzej

    2017-10-01

    Muscle forces acting over the ankle joint play an important role in the forward progression of the body during gait. Yet despite the importance of ankle muscle forces, direct in-vivo measurements are neither possible nor practical. This makes musculoskeletal simulation useful as an indirect technique to quantify the muscle forces at work during locomotion. The purpose of this study was to: 1) identify the maximum peaks of individual ankle muscle forces during gait; 2) investigate the order over which the muscles are sorted based on their maximum peak force. Three-dimensional kinematics and ground reaction forces were measured during the gait of 10 healthy subjects, and the data so obtained were input into the musculoskeletal model distributed with the OpenSim software. In all 10 individuals we observed that the soleus muscle generated the greatest strength both in dynamic (1856.1N) and isometric (3549N) conditions, followed by the gastrocnemius in dynamic conditions (1232.5N). For all other muscles, however, the sequence looks different across subjects, so the k-means clustering method was used to obtain one main order over which the muscles' peak-forces are sorted. The results indicate a common theme, with some variations in the maximum peaks of ankle muscle force across subjects. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Intratester Reliability and Construct Validity of a Hip Abductor Eccentric Strength Test.

    PubMed

    Brindle, Richard A; Ebaugh, David; Milner, Clare E

    2018-06-06

    Side-lying hip abductor strength tests are commonly used to evaluate muscle strength. In a "break" test, the tester applies sufficient force to lower the limb to the table while the patient resists. The peak force is postulated to occur while the leg is lowering, thus representing the participant's eccentric muscle strength. However, it is unclear whether peak force occurs before or after the leg begins to lower. To determine intrarater reliability and construct validity of a hip abductor eccentric strength test. Intrarater reliability and construct validity study. Twenty healthy adults (26 [6] y; 1.66 [0.06] m; 62.2 [8.0] kg) made 2 visits to the laboratory at least 1 week apart. During the hip abductor eccentric strength test, a handheld dynamometer recorded peak force and time to peak force, and limb position was recorded via a motion capture system. Intrarater reliability was determined using intraclass correlation, SEM, and minimal detectable difference. Construct validity was assessed by determining if peak force occurred after the start of the lowering phase using a 1-sample t test. The hip abductor eccentric strength test had substantial intrarater reliability (intraclass correlation (3,3)  = .88; 95% confidence interval, .65-.95), SEM of 0.9 %BWh, and a minimal detectable difference of 2.5 %BWh. Construct validity was established as peak force occurred 2.1 (0.6) seconds (range: 0.7-3.7 s) after the start of the lowering phase of the test (P ≤ .001). The hip abductor eccentric strength test is a valid and reliable measure of eccentric muscle strength. This test may be used clinically to assess changes in eccentric muscle strength over time.

  3. PeakForce Tapping resolves individual microvilli on living cells.

    PubMed

    Schillers, Hermann; Medalsy, Izhar; Hu, Shuiqing; Slade, Andrea L; Shaw, James E

    2016-02-01

    Microvilli are a common structure found on epithelial cells that increase the apical surface thus enhancing the transmembrane transport capacity and also serve as one of the cell's mechanosensors. These structures are composed of microfilaments and cytoplasm, covered by plasma membrane. Epithelial cell function is usually coupled to the density of microvilli and its individual size illustrated by diseases, in which microvilli degradation causes malabsorption and diarrhea. Atomic force microscopy (AFM) has been widely used to study the topography and morphology of living cells. Visualizing soft and flexible structures such as microvilli on the apical surface of a live cell has been very challenging because the native microvilli structures are displaced and deformed by the interaction with the probe. PeakForce Tapping® is an AFM imaging mode, which allows reducing tip-sample interactions in time (microseconds) and controlling force in the low pico-Newton range. Data acquisition of this mode was optimized by using a newly developed PeakForce QNM-Live Cell probe, having a short cantilever with a 17-µm-long tip that minimizes hydrodynamic effects between the cantilever and the sample surface. In this paper, we have demonstrated for the first time the visualization of the microvilli on living kidney cells with AFM using PeakForce Tapping. The structures observed display a force dependence representing either the whole microvilli or just the tips of the microvilli layer. Together, PeakForce Tapping allows force control in the low pico-Newton range and enables the visualization of very soft and flexible structures on living cells under physiological conditions. © 2015 The Authors Journal of Molecular Recognition Published by John Wiley & Sons Ltd.

  4. Effects of anterior offsetting of humeral head component in posteriorly unstable total shoulder arthroplasty: Finite element modeling of cadaver specimens.

    PubMed

    Lewis, Gregory S; Conaway, William K; Wee, Hwabok; Kim, H Mike

    2017-02-28

    A novel technique of "anterior offsetting" of the humeral head component to address posterior instability in total shoulder arthroplasty has been proposed, and its biomechanical benefits have been previously demonstrated experimentally. The present study sought to characterize the changes in joint mechanics associated with anterior offsetting with various amounts of glenoid retroversion using cadaver specimen-specific 3-dimensional finite element models. Specimen-specific computational finite element models were developed through importing digitized locations of six musculotendinous units of the rotator cuff and deltoid muscles based off three cadaveric shoulder specimens implanted with total shoulder arthroplasty in either anatomic or anterior humeral head offset. Additional glenoid retroversion angles (0°, 10°, 20°, and 30°) other than each specimen׳s actual retroversion were modeled. Contact area, contact force, peak pressure, center of pressure, and humeral head displacement were calculated at each offset and retroversion for statistical analysis. Anterior offsetting was associated with significant anterior shift of center of pressure and humeral head displacement upon muscle loading (p<0.05). Although statistically insignificant, anterior offsetting was associated with increased contact area and decreased peak pressure (p > 0.05). All study variables showed significant differences when compared between the 4 different glenoid retroversion angles (p < 0.05) except for total force (p < 0.05). The study finding suggests that the anterior offsetting technique may contribute to joint stability in posteriorly unstable shoulder arthroplasty and may reduce eccentric loading on glenoid components although the long term clinical results are yet to be investigated in future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Peak vertical force in a stabilized canine cranial cruciate deficient stifle model: A one-year follow-up.

    PubMed

    Lussier, Bertrand; Gagnon, Alexandre; Moreau, Maxim; Pelletier, Jean-Pierre; Troncy, Éric

    2018-04-01

    This study aimed to describe the peak vertical force (PVF) over a 1-year period in a stabilized canine cranial cruciate deficient stifle model. Our hypothesis was that PVF would be restored to Baseline (intact) at the end of the follow-up. Fifteen (> 20 kg) mixed-breed dogs were included in this study. Cranial cruciate ligament was transected on Day (D) 0 followed by lateral suture stabilization at D28. Peak vertical force was acquired at D-1, D14, D26, D91, D210 and D357. When compared to Baseline, the PVF was significantly decreased at D14, D26, and D91. Values at D210 and D357 were not statistically different to Baseline. This study suggests a return to normal baseline peak vertical force in a canine cranial cruciate deficient stifle model when lateral suture stabilization has been performed 28 days after surgical transection.

  6. [Kinetics of heifers and cows walking on an instrumented treadmill].

    PubMed

    Nuss, K; Waldern, N M; Weishaupt, M A; Wiestner, T

    2015-01-01

    Kinetic data of stride characteristics and ground reaction forces of cattle become increasingly important as automated lameness detection may be installed in dairy cow housing systems in the future. Therefore, sound heifers and cows were measured on an instrumented treadmill to collect such basic data. Nine heifers and 10 cows were trained to walk on an instrumented treadmill. Vertical ground reaction forces as well as step and stride timing and length variables were measured for all limbs simultaneously. On average, 16 stride cycles in cows and 24 strides in heifers were analysed in each case. The cows walked on the treadmill at an average speed of 1.2 ± 0.05 m/s (mean ± standard deviation), with a stride rate of 43.0 ± 1.9/min and a stride length of 1.68 ± 0.1 m. The heifers had average values of 1.3 ± 0.04 m/s, 53.7 ± 2.2/min and 1.49 ± 0.05 m, respectively. The stance duration relative to stride duration (the duty factor) was for the cows significantly longer in the forelimbs (67%) than in the hind limbs (64%). Force-time-curves of all limbs showed two peaks, one after landing (FP1) and another during push off (FP2). Vertical ground reaction force was highest for FP1 in the hind limbs, but for FP2 in the forelimbs. At all limbs, force minimum between the peaks occurred shortly before midstance. The vertical impulse carried by both forelimbs amounted to 53.7% of the total stride impulse in cows and to 55.0% in heifers. The location of the centre of body mass varied during the stride cycle but was always located more towards the front limbs. Cows and heifers showed a symmetrical walk with minimal intra-individual variations. Relative stride impulse of the front limbs was higher than that of the hind limbs. Peak vertical force in the hind limbs was highest at landing and in the forelimbs at push off. The present study offers kinetic data of sound cows and heifers which might be helpful as guidelines for automated systems for lameness detection in cattle.

  7. Reconstruction of the Mars Science Laboratory Parachute Performance and Comparison to the Descent Simulation

    NASA Technical Reports Server (NTRS)

    Cruz, Juan R.; Way, David W.; Shidner, Jeremy D.; Davis, Jody L.; Adams, Douglas S.; Kipp, Devin M.

    2013-01-01

    The Mars Science Laboratory used a single mortar-deployed disk-gap-band parachute of 21.35 m nominal diameter to assist in the landing of the Curiosity rover on the surface of Mars. The parachute system s performance on Mars has been reconstructed using data from the on-board inertial measurement unit, atmospheric models, and terrestrial measurements of the parachute system. In addition, the parachute performance results were compared against the end-to-end entry, descent, and landing (EDL) simulation created to design, develop, and operate the EDL system. Mortar performance was nominal. The time from mortar fire to suspension lines stretch (deployment) was 1.135 s, and the time from suspension lines stretch to first peak force (inflation) was 0.635 s. These times were slightly shorter than those used in the simulation. The reconstructed aerodynamic portion of the first peak force was 153.8 kN; the median value for this parameter from an 8,000-trial Monte Carlo simulation yielded a value of 175.4 kN - 14% higher than the reconstructed value. Aeroshell dynamics during the parachute phase of EDL were evaluated by examining the aeroshell rotation rate and rotational acceleration. The peak values of these parameters were 69.4 deg/s and 625 deg/sq s, respectively, which were well within the acceptable range. The EDL simulation was successful in predicting the aeroshell dynamics within reasonable bounds. The average total parachute force coefficient for Mach numbers below 0.6 was 0.624, which is close to the pre-flight model nominal drag coefficient of 0.615.

  8. Effects of the new imidazopyridine CL 86-02-01 on isolated papillary muscle of guinea-pig hearts.

    PubMed

    Studenik, C; Lemmens-Gruber, R; Heistracher, P

    1998-06-01

    Inotropic activity and the effect of CL 86-02-01 (2-(3-methoxy-5-methylsulfinyl-2-thienyl)-1H-imidazo[4,5-c]pyridine hydrochloride, CAS 109 792-24-7) on membrane resting and action potentials were studied in isolated guinea-pig papillary muscles. Membrane resting potential and action potential parameters were not significantly changed, while CL 86-02-01 exerted a concentration-dependent inotropic effect by increasing the maximum rate of force development and maximum rate of force relaxation. Time to peak force, relaxation time and total contraction time were reduced. These effects are similar to those of beta-adrenergic drugs and phosphodiesterase inhibitors, but markedly differ from those described for other positive inotropic agents like cardiac glycosides, calcium agonists, alpha-adrenergic drugs or increased extracellular calcium concentration.

  9. Feasibility and acceptability of using jumping mechanography to detect early components of sarcopenia in community-dwelling older women

    PubMed Central

    Hannam, K.; Hartley, A.; Clark, E.M.; Sayer, A. Aihie; Tobias, J.H.; Gregson, C.L.

    2017-01-01

    Objective: To determine the feasibility and acceptability of using peak power and force, measured by jumping mechanography (JM), to detect early age-related features of sarcopenia in older women. Methods: Community-dwelling women aged 71-87 years were recruited into this cross-sectional study. Physical function tests comprised the short physical performance battery (SPPB), grip strength and, if SPPB score≥6, JM. JM measured peak weight-adjusted power and force from two-footed jumps and one-legged hops respectively. Questionnaires assessed acceptability. Results: 463 women were recruited; 37(8%) with SPPB<6 were ineligible for JM. Of 426 remaining, 359(84%) were able to perform ≥1 valid two-footed jump, 300(70%) completed ≥1 valid one-legged hop. No adverse events occurred. Only 14% reported discomfort. Discomfort related to JM performance, with inverse associations with both power and force (p<0.01). Peak power and force respectively explained 8% and 10% of variance in SPPB score (13% combined); only peak power explained additional variance in grip strength (17%). Conclusions: Peak power and force explained a significant, but limited, proportion of variance in SPPB and grip strength. JM represents a safe and acceptable clinical tool for evaluating lower-limb muscle power and force in older women, detecting distinct components of muscle function, and possibly sarcopenia, compared to those evaluated by more established measures. PMID:28860427

  10. Dual-joint modeling for estimation of total knee replacement contact forces during locomotion.

    PubMed

    Hast, Michael W; Piazza, Stephen J

    2013-02-01

    Model-based estimation of in vivo contact forces arising between components of a total knee replacement is challenging because such forces depend upon accurate modeling of muscles, tendons, ligaments, contact, and multibody dynamics. Here we describe an approach to solving this problem with results that are tested by comparison to knee loads measured in vivo for a single subject and made available through the Grand Challenge Competition to Predict in vivo Tibiofemoral Loads. The approach makes use of a "dual-joint" paradigm in which the knee joint is alternately represented by (1) a ball-joint knee for inverse dynamic computation of required muscle controls and (2) a 12 degree-of-freedom (DOF) knee with elastic foundation contact at the tibiofemoral and patellofemoral articulations for forward dynamic integration. Measured external forces and kinematics were applied as a feedback controller and static optimization attempted to track measured knee flexion angles and electromyographic (EMG) activity. The resulting simulations showed excellent tracking of knee flexion (average RMS error of 2.53 deg) and EMG (muscle activations within ±10% envelopes of normalized measured EMG signals). Simulated tibiofemoral contact forces agreed qualitatively with measured contact forces, but their RMS errors were approximately 25% of the peak measured values. These results demonstrate the potential of a dual-joint modeling approach to predict joint contact forces from kinesiological data measured in the motion laboratory. It is anticipated that errors in the estimation of contact force will be reduced as more accurate subject-specific models of muscles and other soft tissues are developed.

  11. Muscle force distribution of the lower limbs during walking in diabetic individuals with and without polyneuropathy.

    PubMed

    Gomes, Aline A; Ackermann, Marko; Ferreira, Jean P; Orselli, Maria Isabel V; Sacco, Isabel C N

    2017-11-09

    Muscle force estimation could advance the comprehension of the neuromuscular strategies that diabetic patients adopt to preserve walking ability, which guarantees their independence as they deal with their neural and muscular impairments due to diabetes and neuropathy. In this study, the lower limb's muscle force distribution during gait was estimated and compared in diabetic patients with and without polyneuropathy. Thirty individuals were evaluated in a cross-sectional study, equally divided among controls (CG) and diabetic patients with (DNG) and without (DG) polyneuropathy. The acquired ground reaction forces and kinematic data were used as input variables for a scaled musculoskeletal model in the OpenSim software. The maximum isometric force of the ankle extensors and flexors was reduced in the model of DNG by 30% and 20%, respectively. The muscle force was calculated using static optimization, and peak forces were compared among groups (flexors and extensors of hip, knee, and ankle; ankle evertors; and hip abductors) using MANOVAs, followed by univariate ANOVAs and Newman-Keuls post-hoc tests (p < 0.05). From the middle to late stance phase, DG showed a lower soleus muscle peak force compared to the CG (p=0.024) and the DNG showed lower forces in the gastrocnemius medialis compared to the DG (p=0.037). At the terminal swing phase, the semitendinosus and semimembranosus peak forces showed lower values in the DG compared to the CG and DNG. At the late stance, the DNG showed a higher peak force in the biceps short head, semimembranosus, and semitendinosus compared to the CG and DG. Peak forces of ankle (flexors, extensors, and evertors), knee (flexors and extensors), and hip abductors distinguished DNG from DG, and both of those from CG. Both diabetic groups showed alterations in the force production of the ankle extensors with reductions in the forces of soleus (DG) and gastrocnemius medialis (DNG) seen in both diabetic groups, but only DNG showed an increase in the hamstrings (knee flexor) at push-off. A therapeutic approach focused on preserving the functionality of the knee muscles is a promising strategy, even if the ankle dorsiflexors and plantarflexors are included in the resistance training.

  12. Anticipatory responses of catecholamines on muscle force production.

    PubMed

    French, Duncan N; Kraemer, William J; Volek, Jeff S; Spiering, Barry A; Judelson, Daniel A; Hoffman, Jay R; Maresh, Carl M

    2007-01-01

    Few data exist on the temporal relationship between catecholamines and muscle force production in vivo. The purpose of this study was to examine the influence of preexercise arousal on sympathoadrenal neurohormones on muscular force expression during resistance exercise. Ten resistance-trained men completed two experimental conditions separated by 7 days: 1) acute heavy resistance exercise protocol (AHREP; 6 x 10 repetitions parallel squats, 80% 1 repetition maximum) and 2) control (Cont; rest). Peak force (F(peak)) was recorded during a maximal isometric squat preceding each set and mean force (F(mean)) was measured during each set. Serial venous blood samples were collected before the AHREP and immediately preceding each set. Blood collection times were matched during Cont. Preexercise epinephrine (Epi), norepinephrine (NE), and dopamine (DA) increased (P or= 0.05) in muscular performance (F(peak), F(mean)) during AHREP and that five subjects (F(reducers)) had significant reductions in F(peak) and F(mean). Integrated area under the curve for Epi, NE, and F(peak) were greater (P < 0.02) for F(maintainers) than F(reducers). In conclusion, an anticipatory rise in catecholamines existed, which may be essential for optimal force production at the onset of exercise.

  13. Rapid perceptual adaptation to high gravitoinertial force levels Evidence for context-specific adaptation

    NASA Technical Reports Server (NTRS)

    Lackner, J. R.; Graybiel, A.

    1982-01-01

    Subjects exposed to periodic variations in gravitoinertial force (2-G peak) in parabolic flight maneuvers quickly come to perceive the peak force level as having decreased in intensity. By the end of a 40-parabola flight, the decrease in apparent force is approximately 40%. On successive flight days, the apparent intensity of the force loads seems to decrease as well, indicating a cumulative adaptive effect. None of the subjects reported feeling abnormally 'light' for more than a minute or two after return to 1-G background force levels. The pattern of findings suggests a context-specific adaptation to high-force levels.

  14. Is the thumb a fifth finger? A study of digit interaction during force production tasks

    PubMed Central

    Olafsdottir, Halla; Zatsiorsky, Vladimir M.; Latash, Mark L.

    2010-01-01

    We studied indices of digit interaction in single- and multi-digit maximal voluntary contraction (MVC) tests when the thumb acted either in parallel or in opposition to the fingers. The peak force produced by the thumb was much higher when the thumb acted in opposition to the fingers and its share of the total force in the five-digit MVC test increased dramatically. The fingers showed relatively similar peak forces and unchanged sharing patterns in the four-finger MVC task when the thumb acted in parallel and in opposition to the fingers. Enslaving during one-digit tasks showed relatively mild differences between the two conditions, while the differences became large when enslaving was quantified for multi-digit tasks. Force deficit was pronounced when the thumb acted in parallel to the fingers; it showed a monotonic increase with the number of explicitly involved digits up to four digits and then a drop when all five digits were involved. Force deficit all but disappeared when the thumb acted in opposition to the fingers. However, for both thumb positions, indices of digit interaction were similar for groups of digits that did or did not include the thumb. These results suggest that, given a certain hand configuration, the central nervous system treats the thumb as a fifth finger. They provide strong support for the hypothesis that indices of digit interaction reflect neural factors, not the peripheral design of the hand. An earlier formal model was able to account for the data when the thumb acted in parallel to the fingers. However, it failed for the data with the thumb acting in opposition to the fingers. PMID:15322785

  15. Coherence and interlimb force control: Effects of visual gain.

    PubMed

    Kang, Nyeonju; Cauraugh, James H

    2018-03-06

    Neural coupling across hemispheres and homologous muscles often appears during bimanual motor control. Force coupling in a specific frequency domain may indicate specific bimanual force coordination patterns. This study investigated coherence on pairs of bimanual isometric index finger force while manipulating visual gain and task asymmetry conditions. We used two visual gain conditions (low and high gain = 8 and 512 pixels/N), and created task asymmetry by manipulating coefficient ratios imposed on the left and right index finger forces (0.4:1.6; 1:1; 1.6:0.4, respectively). Unequal coefficient ratios required different contributions from each hand to the bimanual force task resulting in force asymmetry. Fourteen healthy young adults performed bimanual isometric force control at 20% of their maximal level of the summed force of both fingers. We quantified peak coherence and relative phase angle between hands at 0-4, 4-8, and 8-12 Hz, and estimated a signal-to-noise ratio of bimanual forces. The findings revealed higher peak coherence and relative phase angle at 0-4 Hz than at 4-8 and 8-12 Hz for both visual gain conditions. Further, peak coherence and relative phase angle values at 0-4 Hz were larger at the high gain than at the low gain. At the high gain, higher peak coherence at 0-4 Hz collapsed across task asymmetry conditions significantly predicted greater signal-to-noise ratio. These findings indicate that a greater level of visual information facilitates bimanual force coupling at a specific frequency range related to sensorimotor processing. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Ground reaction forces and knee kinetics during single and repeated badminton lunges.

    PubMed

    Lam, Wing Kai; Ding, Rui; Qu, Yi

    2017-03-01

    Repeated movement (RM) lunge that frequently executed in badminton might be used for footwear evaluation. This study examined the influence of single movement (SM) and RM lunges on the ground reaction forces (GRFs) and knee kinetics during the braking phase of a badminton lunge step. Thirteen male university badminton players performed left-forward lunges in both SM and RM sessions. Force platform and motion capturing system were used to measure GRFs and knee kinetics variables. Paired t-test was performed to determine any significant differences between SM and RM lunges regarding mean and coefficient of variation (CV) in each variable. The kinetics results indicated that compared to SM lunges, the RM lunges had shorter contact time and generated smaller maximum loading rate of impact force, peak knee anterior-posterior force, and peak knee sagittal moment but generated larger peak horizontal resultant forces (Ps < 0.05). Additionally, the RM lunges had lower CV for peak knee medial-lateral and vertical forces (Ps < 0.05). These results suggested that the RM testing protocols had a distinct loading response and adaptation pattern during lunge and that the RM protocol showed higher within-trial reliability, which may be beneficial for the knee joint loading evaluation under different interventions.

  17. Hip and knee joint loading during vertical jumping and push jerking

    PubMed Central

    Cleather, Daniel J; Goodwin, Jon E; Bull, Anthony MJ

    2014-01-01

    Background The internal joint contact forces experienced at the lower limb have been frequently studied in activities of daily living and rehabilitation activities. In contrast, the forces experienced during more dynamic activities are not well understood, and those studies that do exist suggest very high degrees of joint loading. Methods In this study a biomechanical model of the right lower limb was used to calculate the internal joint forces experienced by the lower limb during vertical jumping, landing and push jerking (an explosive exercise derived from the sport of Olympic weightlifting), with a particular emphasis on the forces experienced by the knee. Findings The knee experienced mean peak loadings of 2.4-4.6 × body weight at the patellofemoral joint, 6.9-9.0 × body weight at the tibiofemoral joint, 0.3-1.4 × body weight anterior tibial shear and 1.0-3.1 × body weight posterior tibial shear. The hip experienced a mean peak loading of 5.5-8.4 × body weight and the ankle 8.9-10.0 × body weight. Interpretation The magnitudes of the total (resultant) joint contact forces at the patellofemoral joint, tibiofemoral joint and hip are greater than those reported in activities of daily living and less dynamic rehabilitation exercises. The information in this study is of importance for medical professionals, coaches and biomedical researchers in improving the understanding of acute and chronic injuries, understanding the performance of prosthetic implants and materials, evaluating the appropriateness of jumping and weightlifting for patient populations and informing the training programmes of healthy populations. PMID:23146164

  18. Hip and knee joint loading during vertical jumping and push jerking.

    PubMed

    Cleather, Daniel J; Goodwin, Jon E; Bull, Anthony M J

    2013-01-01

    The internal joint contact forces experienced at the lower limb have been frequently studied in activities of daily living and rehabilitation activities. In contrast, the forces experienced during more dynamic activities are not well understood, and those studies that do exist suggest very high degrees of joint loading. In this study a biomechanical model of the right lower limb was used to calculate the internal joint forces experienced by the lower limb during vertical jumping, landing and push jerking (an explosive exercise derived from the sport of Olympic weightlifting), with a particular emphasis on the forces experienced by the knee. The knee experienced mean peak loadings of 2.4-4.6×body weight at the patellofemoral joint, 6.9-9.0×body weight at the tibiofemoral joint, 0.3-1.4×body weight anterior tibial shear and 1.0-3.1×body weight posterior tibial shear. The hip experienced a mean peak loading of 5.5-8.4×body weight and the ankle 8.9-10.0×body weight. The magnitudes of the total (resultant) joint contact forces at the patellofemoral joint, tibiofemoral joint and hip are greater than those reported in activities of daily living and less dynamic rehabilitation exercises. The information in this study is of importance for medical professionals, coaches and biomedical researchers in improving the understanding of acute and chronic injuries, understanding the performance of prosthetic implants and materials, evaluating the appropriateness of jumping and weightlifting for patient populations and informing the training programmes of healthy populations. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Loading of Hip Measured by Hip Contact Forces at Different Speeds of Walking and Running.

    PubMed

    Giarmatzis, Georgios; Jonkers, Ilse; Wesseling, Mariska; Van Rossom, Sam; Verschueren, Sabine

    2015-08-01

    Exercise plays a pivotal role in maximizing peak bone mass in adulthood and maintaining it through aging, by imposing mechanical loading on the bone that can trigger bone mineralization and growth. The optimal type and intensity of exercise that best enhances bone strength remains, however, poorly characterized, partly because the exact peak loading of the bone produced by the diverse types of exercises is not known. By means of integrated motion capture as an input to dynamic simulations, contact forces acting on the hip of 20 young healthy adults were calculated during walking and running at different speeds. During walking, hip contact forces (HCFs) have a two-peak profile whereby the first peak increases from 4.22 body weight (BW) to 5.41 BW and the second from 4.37 BW to 5.74 BW, by increasing speed from 3 to 6 km/h. During running, there is only one peak HCF that increases from 7.49 BW to 10.01 BW, by increasing speed from 6 to 12 km/h. Speed related profiles of peak HCFs and ground reaction forces (GRFs) reveal a different progression of the two peaks during walking. Speed has a stronger impact on peak HCFs rather than on peak GRFs during walking and running, suggesting an increasing influence of muscle activity on peak HCF with increased speed. Moreover, results show that the first peak of HCF during walking can be predicted best by hip adduction moment, and the second peak of HCF by hip extension moment. During running, peak HCF can be best predicted by hip adduction moment. The present study contributes hereby to a better understanding of musculoskeletal loading during walking and running in a wide range of speeds, offering valuable information to clinicians and scientists exploring bone loading as a possible nonpharmacological osteogenic stimulus. © 2015 American Society for Bone and Mineral Research. © 2015 American Society for Bone and Mineral Research.

  20. Changing Sagittal-Plane Landing Styles to Modulate Impact and Tibiofemoral Force Magnitude and Directions Relative to the Tibia

    PubMed Central

    Shimokochi, Yohei; Ambegaonkar, Jatin P.; Meyer, Eric G.

    2016-01-01

    Context: Ground reaction force (GRF) and tibiofemoral force magnitudes and directions have been shown to affect anterior cruciate ligament loading during landing. However, the kinematic and kinetic factors modifying these 2 forces during landing are unknown. Objective: To clarify the intersegmental kinematic and kinetic links underlying the alteration of the GRF and tibiofemoral force vectors secondary to changes in the sagittal-plane body position during single-legged landing. Design: Crossover study. Setting: Laboratory. Patients or Other Participants: Twenty recreationally active participants (age = 23.4 ± 3.6 years, height = 171.0 ± 9.4 cm, mass = 73.3 ± 12.7 kg). Intervention(s): Participants performed single-legged landings using 3 landing styles: self-selected landing (SSL), body leaning forward and landing on the toes (LFL), and body upright with flat-footed landing (URL). Three-dimensional kinetics and kinematics were recorded. Main Outcome Measure(s): Sagittal-plane tibial inclination and knee-flexion angles, GRF magnitude and inclination angles relative to the tibia, and proximal tibial forces at peak tibial axial forces. Results: The URL resulted in less time to peak tibial axial forces, smaller knee-flexion angles, and greater magnitude and a more anteriorly inclined GRF vector relative to the tibia than did the SSL. These changes led to the greatest peak tibial axial and anterior shear forces in the URL among the 3 landing styles. Conversely, the LFL resulted in longer time to peak tibial axial forces, greater knee-flexion angles, and reduced magnitude and a more posteriorly inclined GRF vector relative to the tibia than the SSL. These changes in LFL resulted in the lowest peak tibial axial and largest posterior shear forces among the 3 landing styles. Conclusions: Sagittal-plane intersegmental kinematic and kinetic links strongly affected the magnitude and direction of GRF and tibiofemoral forces during the impact phase of single-legged landing. Therefore, improving sagittal-plane landing mechanics is important in reducing harmful magnitudes and directions of impact forces on the anterior cruciate ligament. PMID:27723362

  1. Independence of reaction time and response force control during isometric leg extension.

    PubMed

    Fukushi, Tamami; Ohtsuki, Tatsuyuki

    2004-04-01

    In this study, we examined the relative control of reaction time and force in responses of the lower limb. Fourteen female participants (age 21.2 +/- 1.0 years, height 1.62 +/- 0.05 m, body mass 54.1 +/- 6.1 kg; mean +/- s) were instructed to exert their maximal isometric one-leg extension force as quickly as possible in response to an auditory stimulus presented after one of 13 foreperiod durations, ranging from 0.5 to 10.0 s. In the 'irregular condition' each foreperiod was presented in random order, while in the 'regular condition' each foreperiod was repeated consecutively. A significant interactive effect of foreperiod duration and regularity on reaction time was observed (P < 0.001 in two-way ANOVA with repeated measures). In the irregular condition the shorter foreperiod induced a longer reaction time, while in the regular condition the shorter foreperiod induced a shorter reaction time. Peak amplitude of isometric force was affected only by the regularity of foreperiod and there was a significant variation of changes in peak force across participants; nine participants were shown to significantly increase peak force for the regular condition (P < 0.001), three to decrease it (P < 0.05) and two showed no difference. These results indicate the independence of reaction time and response force control in the lower limb motor system. Variation of changes in peak force across participants may be due to the different attention to the bipolar nature of the task requirements such as maximal force and maximal speed.

  2. The effect of muscle stiffness and damping on simulated impact force peaks during running.

    PubMed

    Nigg, B M; Liu, W

    1999-08-01

    It has been frequently reported that vertical impact force peaks during running change only minimally when changing the midsole hardness of running shoes. However, the underlying mechanism for these experimental observations is not well understood. An athlete has various possibilities to influence external and internal forces during ground contact (e.g. landing velocity, geometrical alignment, muscle tuning, etc.). The purpose of this study was to discuss one possible strategy to influence external impact forces acting on the athlete's body during running, the strategy to change muscle activity (muscle tuning). The human body was modeled as a simplified mass-spring-damper system. The model included masses of the upper and the lower bodies with each part of the body represented by a rigid and a non-rigid wobbling mass. The influence of mechanical properties of the human body on the vertical impact force peak was examined by varying the spring constants and damping coefficients of the spring-damper units that connected the various masses. Two types of shoe soles were modeled using a non-linear force deformation model with two sets of parameters based on the force-deformation curves of pendulum impact experiments. The simulated results showed that the regulation of the mechanical coupling of rigid and wobbling masses of the human body had an influence on the magnitude of the vertical impact force, but not on its loading rate. It was possible to produce the same impact force peaks altering specific mechanical properties of the system for a soft and a hard shoe sole. This regulation can be achieved through changes of joint angles, changes in joint angular velocities and/or changes in muscle activation levels in the lower extremity. Therefore, it has been concluded that changes in muscle activity (muscle tuning) can be used as a possible strategy to affect vertical impact force peaks during running.

  3. Effects of a 6-Week Bench Press Program Using the Freak Bar in a Sample of Collegiate Club Powerlifters.

    PubMed

    Ghigiarelli, Jamie J; Pelton, Luke M; Gonzalez, Adam M; Fulop, Andras M; Gee, Joshua Y; Sell, Katie M

    2018-04-01

    Ghigiarelli, JJ, Pelton, LM, Gonzalez, AM, Fulop, AM, Gee, JY, and Sell, KM. Effects of a 6-week bench press program using the freak bar in a sample of collegiate club powerlifters. J Strength Cond Res 32(4): 938-949, 2018-Powerlifters train using specialty bars for unstable load (UL) training. For the bench press, the acute effects of UL are mixed, with few studies that examine training interventions. The purpose of this study was to examine the effects of a 6-week bench press training program that uses the Freak Bar (FB) as compared to a traditional barbell (TB) on maximum bench press, peak force, and peak impulse. Seven men and 3 women (21 ± 2.0 years, 172.2 ± 2.9 cm, and 95.3 ± 20.3 kg) were required to bench press 2 days per week as part of a structured program. On the second bench press day, the FB and TB groups performed 3-position pause bench presses at 60-70% one repetition maximum (1RM). One repetition maximum, peak force, and peak impulse were measured before test and after test after the 6-week program. Peak force and peak impulse were tested at 3 bench positions, including the presticking, sticking, and poststicking points, defined by the distance of the barbell from the chest. Posttraining 1RM for the FB group and TB group increased 6.7% (6.78 ± 1.6 kg, p = 0.006) and 4.3% (4.5 ± 2.7 kg, p = 0.23), respectively, with no significant differences between the groups (p = 0.589, ηp = 0.044). There were no significant differences between the groups at each bench position for peak force (p = 0.606) or peak impulse (p = 0.542). Freak Bar can be an alternative for improving maximum strength and peak force but is not significantly better than TB training when performing the 3-position pause bench press.

  4. The fascicular anatomy and peak force capabilities of the sternocleidomastoid muscle.

    PubMed

    Kennedy, Ewan; Albert, Michael; Nicholson, Helen

    2017-06-01

    The fascicular morphology of the sternocleidomastoid (SCM) is not well described in modern anatomical texts, and the biomechanical forces it exerts on individual cervical motion segments are not known. The purpose of this study is to investigate the fascicular anatomy and peak force capabilities of the SCM combining traditional dissection and modern imaging. This study is comprised of three parts: Dissection, magnetic resonance imaging (MRI) and biomechanical modelling. Dissection was performed on six embalmed cadavers: three males of age 73-74 years and three females of age 63-93 years. The fascicular arrangement and morphologic data were recorded. MRIs were performed on six young, healthy volunteers: three males of age 24-37 and three females of age 26-28. In vivo volumes of the SCM were calculated using the Cavalieri method. Modelling of the SCM was performed on five sets of computed tomography (CT) scans. This mapped the fascicular arrangement of the SCM with relation to the cervical motion segments, and used volume data from the MRIs to calculate realistic peak force capabilities. Dissection showed the SCM has four parts; sterno-mastoid, sterno-occipital, cleido-mastoid and cleido-occipital portions. Force modelling shows that peak torque capacity of the SCM is higher at lower cervical levels, and minimal at higher levels. Peak shear forces are higher in the lower cervical spine, while compression is consistent throughout. The four-part SCM is capable of producing forces that vary across the cervical motion segments. The implications of these findings are discussed with reference to models of neck muscle function and dysfunction.

  5. Patient-specific musculoskeletal modeling of the hip joint for preoperative planning of total hip arthroplasty: A validation study based on in vivo measurements

    PubMed Central

    Schick, Fabian; Asseln, Malte; Damm, Philipp; Radermacher, Klaus

    2018-01-01

    Validation of musculoskeletal models for application in preoperative planning is still a challenging task. Ideally, the simulation results of a patient-specific musculoskeletal model are compared to corresponding in vivo measurements. Currently, the only possibility to measure in vivo joint forces is to implant an instrumented prosthesis in patients undergoing a total joint replacement. In this study, a musculoskeletal model of the AnyBody Modeling System was adapted patient-specifically and validated against the in vivo hip joint force measurements of ten subjects performing one-leg stance and level walking. The impact of four model parameters was evaluated; hip joint width, muscle strength, muscle recruitment, and type of muscle model. The smallest difference between simulated and in vivo hip joint force was achieved by using the hip joint width measured in computed tomography images, a muscle strength of 90 N/cm2, a third order polynomial muscle recruitment, and a simple muscle model. This parameter combination reached mean deviations between simulation and in vivo measurement during the peak force phase of 12% ± 14% in magnitude and 11° ± 5° in orientation for one-leg stance and 8% ± 6% in magnitude and 10° ± 5° in orientation for level walking. PMID:29649235

  6. Effects of modified short-leg walkers on ground reaction force characteristics.

    PubMed

    Keefer, Maria; King, Jon; Powell, Douglas; Krusenklaus, John H; Zhang, Songning

    2008-11-01

    Although short-leg walkers are often used in the treatment of lower extremity injuries (ankle and foot fractures and severe ankle sprains), little is known about the effect the short-leg walker on gait characteristics. The purpose was to examine how heel height modifications in different short-leg walkers and shoe side may affect ground reaction forces in walking. Force platforms were used to collect ground reaction force data on 10 healthy participants. Five trials were performed in each of six conditions: lab shoes, gait walker, gait walker with heel insert on shoe side, gait walker modified with insert on walker side, equalizer walker, and equalizer walker with heel insert on shoe side. Conditions were randomized and walking speed was standardized between conditions. A 2x6 (sidexcondition) repeated analysis of variance was used on selected ground reaction force variables (P<0.05). The application of a walker created peak vertical and anteroposterior ground reaction forces prior to the normal peaks associated with the loading response. Wearing a walker introduced an elevated minimum vertical ground reaction force in all conditions except the equalizer walker when compared to shoe on the shoe side. Peak propulsive anteroposterior ground reaction forces were smaller in all walker conditions compared to shoe on walker side. The application of heel insert in gait walker with heel insert (on shoe side) and gait walker modified (on walker side) does not diminish the minimum vertical ground reaction force as hypothesized. Wearing a walker decreases the peak propulsive anteroposterior ground reaction force on the walker side and induces asymmetrical loading.

  7. BMD in elite female triathletes is related to isokinetic peak torque without any association to sex hormone concentrations.

    PubMed

    Wulff Helge, E; Melin, A; Waaddegaard, M; Kanstrup, I L

    2012-10-01

    Female endurance athletes suffering from low energy availability and reproductive hormonal disorders are at risk of low BMD. Muscle forces acting on bone may have a reverse site-specific effect. Therefore we wanted to test how BMD in female elite triathletes was associated to isokinetic peak torque (IPT) and reproductive hormone concentrations (RHC). A possible effect of oral contraceptives (OCON's) is taken into consideration. Eight female elite triathletes (training 8-24 hrs/wk) and seven sedentary controls, age 21-37 years, participated. Total body and regional BMD (g.cm-2) were measured by DXA. IPT were measured during knee extension, and trunk extension and flexion (Nm). Serum RHC and biochemical bone markers were evaluated. Energy balance was estimated from 7-days training-and weighed food records. Despite a high training volume, BMD in triathletes was not higher than in controls. In triathletes trunk flexion IPT, but not RHC, was a strong predictor of BMD in both total body and femur (0.70

  8. Friction in Total Hip Joint Prosthesis Measured In Vivo during Walking

    PubMed Central

    Damm, Philipp; Dymke, Joern; Ackermann, Robert; Bender, Alwina; Graichen, Friedmar; Halder, Andreas; Beier, Alexander; Bergmann, Georg

    2013-01-01

    Friction-induced moments and subsequent cup loosening can be the reason for total hip joint replacement failure. The aim of this study was to measure the in vivo contact forces and friction moments during walking. Instrumented hip implants with Al2O3 ceramic head and an XPE inlay were used. In vivo measurements were taken 3 months post operatively in 8 subjects. The coefficient of friction was calculated in 3D throughout the whole gait cycle, and average values of the friction-induced power dissipation in the joint were determined. On average, peak contact forces of 248% of the bodyweight and peak friction moments of 0.26% bodyweight times meter were determined. However, contact forces and friction moments varied greatly between individuals. The friction moment increased during the extension phase of the joint. The average coefficient of friction also increased during this period, from 0.04 (0.03 to 0.06) at contralateral toe off to 0.06 (0.04 to 0.08) at contralateral heel strike. During the flexion phase, the coefficient of friction increased further to 0.14 (0.09 to 0.23) at toe off. The average friction-induced power throughout the whole gait cycle was 2.3 W (1.4 W to 3.8 W). Although more parameters than only the synovia determine the friction, the wide ranges of friction coefficients and power dissipation indicate that the lubricating properties of synovia are individually very different. However, such differences may also exist in natural joints and may influence the progression of arthrosis. Furthermore, subjects with very high power dissipation may be at risk of thermally induced implant loosening. The large increase of the friction coefficient during each step could be caused by the synovia being squeezed out under load. PMID:24260114

  9. Friction in total hip joint prosthesis measured in vivo during walking.

    PubMed

    Damm, Philipp; Dymke, Joern; Ackermann, Robert; Bender, Alwina; Graichen, Friedmar; Halder, Andreas; Beier, Alexander; Bergmann, Georg

    2013-01-01

    Friction-induced moments and subsequent cup loosening can be the reason for total hip joint replacement failure. The aim of this study was to measure the in vivo contact forces and friction moments during walking. Instrumented hip implants with Al2O3 ceramic head and an XPE inlay were used. In vivo measurements were taken 3 months post operatively in 8 subjects. The coefficient of friction was calculated in 3D throughout the whole gait cycle, and average values of the friction-induced power dissipation in the joint were determined. On average, peak contact forces of 248% of the bodyweight and peak friction moments of 0.26% bodyweight times meter were determined. However, contact forces and friction moments varied greatly between individuals. The friction moment increased during the extension phase of the joint. The average coefficient of friction also increased during this period, from 0.04 (0.03 to 0.06) at contralateral toe off to 0.06 (0.04 to 0.08) at contralateral heel strike. During the flexion phase, the coefficient of friction increased further to 0.14 (0.09 to 0.23) at toe off. The average friction-induced power throughout the whole gait cycle was 2.3 W (1.4 W to 3.8 W). Although more parameters than only the synovia determine the friction, the wide ranges of friction coefficients and power dissipation indicate that the lubricating properties of synovia are individually very different. However, such differences may also exist in natural joints and may influence the progression of arthrosis. Furthermore, subjects with very high power dissipation may be at risk of thermally induced implant loosening. The large increase of the friction coefficient during each step could be caused by the synovia being squeezed out under load.

  10. Physical training in children with osteogenesis imperfecta.

    PubMed

    Van Brussel, Marco; Takken, Tim; Uiterwaal, Cuno S P M; Pruijs, Hans J; Van der Net, Janjaap; Helders, Paul J M; Engelbert, Raoul H H

    2008-01-01

    To study the effects of a physical training program on exercise capacity, muscle force, and subjective fatigue levels in patients with mild to moderate forms of osteogenesis imperfecta (OI). Thirty-four children with OI type I or IV were randomly assigned to either a 12-week graded exercise program or care as usual for 3 months. Exercise capacity and muscle force were studied; subjective fatigue, perceived competence, and health-related quality of life were secondary outcomes. All outcomes were measured at baseline (T = 0), after intervention (T = 1), and after 6 and 9 months (T = 2 and T = 3, respectively). After intervention (T = 1), peak oxygen consumption (VO2peak), relative VO2peak (VO2peak/kg), maximal working capacity (Wmax), and muscle force were significantly improved (17%, 18%, 10%, and 12%, respectively) compared with control values. Subjective fatigue decreased borderline statistically significantly. Follow-up at T = 2 showed a significant decrease of the improvements measured at T = 1 of VO2peak, but VO2peak/kg, Wmax, and subjective fatigue showed no significant difference. At T = 3, we found a further decrease of the gained improvements. A supervised training program can improve aerobic capacity and muscle force and reduces levels of subjective fatigue in children with OI type I and IV in a safe and effective manner.

  11. Vertical leaping mechanics of the Lesser Egyptian Jerboa reveal specialization for maneuverability rather than elastic energy storage.

    PubMed

    Moore, Talia Y; Rivera, Alberto M; Biewener, Andrew A

    2017-01-01

    Numerous historical descriptions of the Lesser Egyptian jerboa, Jaculus jaculus , a small bipedal mammal with elongate hindlimbs, make special note of their extraordinary leaping ability. We observed jerboa locomotion in a laboratory setting and performed inverse dynamics analysis to understand how this small rodent generates such impressive leaps. We combined kinematic data from video, kinetic data from a force platform, and morphometric data from dissections to calculate the relative contributions of each hindlimb muscle and tendon to the total movement. Jerboas leapt in excess of 10 times their hip height. At the maximum recorded leap height (not the maximum observed leap height), peak moments for metatarso-phalangeal, ankle, knee, and hip joints were 13.1, 58.4, 65.1, and 66.9 Nmm, respectively. Muscles acting at the ankle joint contributed the most work (mean 231.6 mJ / kg Body Mass) to produce the energy of vertical leaping, while muscles acting at the metatarso-phalangeal joint produced the most stress (peak 317.1 kPa). The plantaris, digital flexors, and gastrocnemius tendons encountered peak stresses of 25.6, 19.1, and 6.0 MPa, respectively, transmitting the forces of their corresponding muscles (peak force 3.3, 2.0, and 3.8 N, respectively). Notably, we found that the mean elastic energy recovered in the primary tendons of both hindlimbs comprised on average only 4.4% of the energy of the associated leap. The limited use of tendon elastic energy storage in the jerboa parallels the morphologically similar heteromyid kangaroo rat, Dipodomys spectabilis . When compared to larger saltatory kangaroos and wallabies that sustain hopping over longer periods of time, these small saltatory rodents store and recover less elastic strain energy in their tendons. The large contribution of muscle work, rather than elastic strain energy, to the vertical leap suggests that the fitness benefit of rapid acceleration for predator avoidance dominated over the need to enhance locomotor economy in the evolutionary history of jerboas.

  12. Footwear characteristics are related to running mechanics in runners with patellofemoral pain.

    PubMed

    Esculier, Jean-Francois; Dubois, Blaise; Bouyer, Laurent J; McFadyen, Bradford J; Roy, Jean-Sébastien

    2017-05-01

    Running footwear is known to influence step rate, foot inclination at foot strike, average vertical loading rate (VLR) and peak patellofemoral joint (PFJ) force. However, the association between the level of minimalism of running shoes and running mechanics, especially with regards to these relevant variables for runners with patellofemoral pain (PFP), has yet to be investigated. The objective of this study was to explore the relationship between the level of minimalism of running shoes and habitual running kinematics and kinetics in runners with PFP. Running shoes of 69 runners with PFP (46 females, 23 males, 30.7±6.4years) were evaluated using the Minimalist Index (MI). Kinematic and kinetic data were collected during running on an instrumented treadmill. Principal component and correlation analyses were performed between the MI and its subscales and step rate, foot inclination at foot strike, average VLR, peak PFJ force and peak Achilles tendon force. Higher MI scores were moderately correlated with lower foot inclination (r=-0.410, P<0.001) and lower peak PFJ force (r=-0.412, P<0.001). Moderate correlations also showed that lower shoe mass is indicative of greater step rate (ρ=0.531, P<0.001) and lower peak PFJ force (ρ=-0.481, P<0.001). Greater shoe flexibility was moderately associated with lower foot inclination (ρ=-0.447, P<0.001). Results suggest that greater levels of minimalism are associated with lower inclination angle and lower peak PFJ force in runners with PFP. Thus, this population may potentially benefit from changes in running mechanics associated with the use of shoes with a higher level of minimalism. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Biomechanical measures of knee joint mobilization.

    PubMed

    Silvernail, Jason L; Gill, Norman W; Teyhen, Deydre S; Allison, Stephen C

    2011-08-01

    The purpose of this study was to quantify the biomechanical properties of specific manual therapy techniques in patients with symptomatic knee osteoarthritis. Twenty subjects (7 female/13 male, age 54±8 years, ht 1·7±0·1 m, wt 94·2±21·8 kg) participated in this study. One physical therapist delivered joint mobilizations (tibiofemoral extension and flexion; patellofemoral medial-lateral and inferior glide) at two grades (Maitland's grade III and grade IV). A capacitance-based pressure mat was used to capture biomechanical characteristics of force and frequency during 2 trials of 15 second mobilizations. Statistical analysis included intraclass correlation coefficient (ICC(3,1)) for intrarater reliability and 2×4 repeated measures analyses of variance and post-hoc comparison tests. Force (Newtons) measurements (mean, max.) for grade III were: extension 45, 74; flexion 39, 61; medial-lateral glide 20, 34; inferior glide 16, 27. Force (Newtons) measurements (mean, max.) for grade IV were: extension 57, 76; flexion 47, 68; medial-lateral glide 23, 36; inferior glide 18, 35. Frequency (Hz) measurements were between 0·9 and 1·2 for grade III, and between 2·1 and 2·4 for grade IV. ICCs were above 0·90 for almost all measures. Maximum force measures were between the ranges reported for cervical and lumbar mobilization at similar grades. Mean force measures were greater at grade IV than III. Oscillation frequency and peak-to-peak amplitude measures were consistent with the grade performed (i.e. greater frequency at grade IV, greater peak-to-peak amplitude at grade III). Intrarater reliability for force, peak-to-peak amplitude and oscillation frequency for knee joint mobilizations was excellent.

  14. Biomechanical measures of knee joint mobilization

    PubMed Central

    Silvernail, Jason L; Gill, Norman W; Teyhen, Deydre S; Allison, Stephen C

    2011-01-01

    Background and purpose The purpose of this study was to quantify the biomechanical properties of specific manual therapy techniques in patients with symptomatic knee osteoarthritis. Methods Twenty subjects (7 female/13 male, age 54±8 years, ht 1·7±0·1 m, wt 94·2±21·8 kg) participated in this study. One physical therapist delivered joint mobilizations (tibiofemoral extension and flexion; patellofemoral medial–lateral and inferior glide) at two grades (Maitland’s grade III and grade IV). A capacitance-based pressure mat was used to capture biomechanical characteristics of force and frequency during 2 trials of 15 second mobilizations. Statistical analysis included intraclass correlation coefficient (ICC3,1) for intrarater reliability and 2×4 repeated measures analyses of variance and post-hoc comparison tests. Results Force (Newtons) measurements (mean, max.) for grade III were: extension 45, 74; flexion 39, 61; medial–lateral glide 20, 34; inferior glide 16, 27. Force (Newtons) measurements (mean, max.) for grade IV were: extension 57, 76; flexion 47, 68; medial–lateral glide 23, 36; inferior glide 18, 35. Frequency (Hz) measurements were between 0·9 and 1·2 for grade III, and between 2·1 and 2·4 for grade IV. ICCs were above 0·90 for almost all measures. Discussion and conclusion Maximum force measures were between the ranges reported for cervical and lumbar mobilization at similar grades. Mean force measures were greater at grade IV than III. Oscillation frequency and peak-to-peak amplitude measures were consistent with the grade performed (i.e. greater frequency at grade IV, greater peak-to-peak amplitude at grade III). Intrarater reliability for force, peak-to-peak amplitude and oscillation frequency for knee joint mobilizations was excellent. PMID:22851879

  15. Physical Determinants of Interval Sprint Times in Youth Soccer Players

    PubMed Central

    Amonette, William E.; Brown, Denham; Dupler, Terry L.; Xu, Junhai; Tufano, James J.; De Witt, John K.

    2014-01-01

    Relationships between sprinting speed, body mass, and vertical jump kinetics were assessed in 243 male soccer athletes ranging from 10–19 years. Participants ran a maximal 36.6 meter sprint; times at 9.1 (10 y) and 36.6 m (40 y) were determined using an electronic timing system. Body mass was measured by means of an electronic scale and body composition using a 3-site skinfold measurement completed by a skilled technician. Countermovement vertical jumps were performed on a force platform - from this test peak force was measured and peak power and vertical jump height were calculated. It was determined that age (r=−0.59; p<0.01), body mass (r=−0.52; p<0.01), lean mass (r=−0.61; p<0.01), vertical jump height (r=−0.67; p<0.01), peak power (r=−0.64; p<0.01), and peak force (r=−0.56; p<0.01) were correlated with time at 9.1 meters. Time-to-complete a 36.6 meter sprint was correlated with age (r=−0.71; p<0.01), body mass (r=−0.67; p<0.01), lean mass (r=−0.76; p<0.01), vertical jump height (r=−0.75; p<0.01), peak power (r=−0.78; p<0.01), and peak force (r=−0.69; p<0.01). These data indicate that soccer coaches desiring to improve speed in their athletes should devote substantive time to fitness programs that increase lean body mass and vertical force as well as power generating capabilities of their athletes. Additionally, vertical jump testing, with or without a force platform, may be a useful tool to screen soccer athletes for speed potential. PMID:25031679

  16. The Effects of Walking Speed on Tibiofemoral Loading Estimated Via Musculoskeletal Modeling

    PubMed Central

    Lerner, Zachary F.; Haight, Derek J.; DeMers, Matthew S.; Board, Wayne J.; Browning, Raymond C.

    2015-01-01

    Net muscle moments (NMMs) have been used as proxy measures of joint loading, but musculoskeletal models can estimate contact forces within joints. The purpose of this study was to use a musculoskeletal model to estimate tibiofemoral forces and to examine the relationship between NMMs and tibiofemoral forces across walking speeds. We collected kinematic, kinetic, and electromyographic data as ten adult participants walked on a dual-belt force-measuring treadmill at 0.75, 1.25, and 1.50 m/s. We scaled a musculoskeletal model to each participant and used OpenSim to calculate the NMMs and muscle forces through inverse dynamics and weighted static optimization, respectively. We determined tibiofemoral forces from the vector sum of intersegmental and muscle forces crossing the knee. Estimated tibiofemoral forces increased with walking speed. Peak early-stance compressive tibiofemoral forces increased 52% as walking speed increased from 0.75 to 1.50 m/s, whereas peak knee extension NMMs increased by 168%. During late stance, peak compressive tibiofemoral forces increased by 18% as speed increased. Although compressive loads at the knee did not increase in direct proportion to NMMs, faster walking resulted in greater compressive forces during weight acceptance and increased compressive and anterior/posterior tibiofemoral loading rates in addition to a greater abduction NMM. PMID:23878264

  17. Patellofemoral joint contact forces during activities with high knee flexion.

    PubMed

    Trepczynski, Adam; Kutzner, Ines; Kornaropoulos, Evgenios; Taylor, William R; Duda, Georg N; Bergmann, Georg; Heller, Markus O

    2012-03-01

    The patellofemoral (PF) joint plays an essential role in knee function, but little is known about the in vivo loading conditions at the joint. We hypothesized that the forces at the PF joint exceed the tibiofemoral (TF) forces during activities with high knee flexion. Motion analysis was performed in two patients with telemetric knee implants during walking, stair climbing, sit-to-stand, and squat. TF and PF forces were calculated using a musculoskeletal model, which was validated against the simultaneously measured in vivo TF forces, with mean errors of 10% and 21% for the two subjects. The in vivo peak TF forces of 2.9-3.4 bodyweight (BW) varied little across activities, while the peak PF forces showed significant variability, ranging from less than 1 BW during walking to more than 3 BW during high flexion activities, exceeding the TF forces. Together with previous in vivo measurements at the hip and knee, the PF forces determined here provide evidence that peak forces across these joints reach values of around 3 BW during high flexion activities, also suggesting that the in vivo loading conditions at the knee can only be fully understood if the forces at the TF and the PF joints are considered together. Copyright © 2011 Orthopaedic Research Society.

  18. Impact Forces of Plyometric Exercises Performed on Land and in Water

    PubMed Central

    Donoghue, Orna A.; Shimojo, Hirofumi; Takagi, Hideki

    2011-01-01

    Background: Aquatic plyometric programs are becoming increasingly popular because they provide a less stressful alternative to land-based programs. Buoyancy reduces the impact forces experienced in water. Purpose: To quantify the landing kinetics during a range of typical lower limb plyometric exercises performed on land and in water. Study Design: Crossover design. Methods: Eighteen male participants performed ankle hops, tuck jumps, a countermovement jump, a single-leg vertical jump, and a drop jump from 30 cm in a biomechanics laboratory and in a swimming pool. Land and underwater force plates (Kistler) were used to obtain peak impact force, impulse, rate of force development, and time to reach peak force for the landing phase of each jump. Results: Significant reductions were observed in peak impact forces (33%-54%), impulse (19%-54%), and rate of force development (33%-62%) in water compared with land for the majority of exercises in this study (P < 0.05). Conclusions: The level of force reduction varies with landing technique, water depth, and participant height and body composition. Clinical Relevance: This information can be used to reintroduce athletes to the demands of plyometric exercises after injury. PMID:23016022

  19. Bion 11 Spaceflight Project: Effect of Weightlessness on Single Muscle Fiber Function in Rhesus Monkeys

    NASA Technical Reports Server (NTRS)

    Fitts, Robert H.; Romatowski, Janell G.; Widrick, Jeffrey J.; DeLaCruz, Lourdes

    1999-01-01

    Although it is well known that microgravity induces considerable limb muscle atrophy, little is known about how weightlessness alters cell function. In this study, we investigated how weightlessness altered the functional properties of single fast and slow striated muscle fibers. Physiological studies were carried out to test the hypothesis that microgravity causes fiber atrophy, a decreased peak force (Newtons), tension (Newtons/cross-sectional area) and power, an elevated peak rate of tension development (dp/dt), and an increased maximal shortening velocity (V(sub o)) in the slow type I fiber, while changes in the fast-twitch fiber are restricted to atrophy and a reduced peak force. For each fiber, we determined the peak force (P(sub o)), V(sub o), dp/dt, the force-velocity relationship, peak power, the power-force relationship, the force-pCa relationship, and fiber stiffness. Biochemical studies were carried out to assess the effects of weightlessness on the enzyme and substrate profile of the fast- and slow-twitch fibers. We predicted that microgravity would increase resting muscle glycogen and glycolytic metabolism in the slow fiber type, while the fast-twitch fiber enzyme profile would be unaltered. The increased muscle glycogen would in part result from an elevated hexokinase and glycogen synthase. The enzymes selected for study represent markers for mitochondrial function (citrate synthase and 0-hydroxyacyl-CoA dehydrogenase), glycolysis (Phosphofructokinase and lactate dehydrogenase), and fatty acid transport (Carnitine acetyl transferase). The substrates analyzed will include glycogen, lactate, adenosine triphosphate, and phosphocreatine.

  20. Accuracy and precision of loadsol® insole force-sensors for the quantification of ground reaction force-based biomechanical running parameters.

    PubMed

    Seiberl, Wolfgang; Jensen, Elisabeth; Merker, Josephine; Leitel, Marco; Schwirtz, Ansgar

    2018-05-29

    Force plates represent the "gold standard" in measuring running kinetics to predict performance or to identify the sources of running-related injuries. As these measurements are generally limited to laboratory analyses, wireless high-quality sensors for measuring in the field are needed. This work analysed the accuracy and precision of a new wireless insole forcesensor for quantifying running-related kinetic parameters. Vertical ground reaction force (GRF) was simultaneously measured with pit-mounted force plates (1 kHz) and loadsol ® sensors (100 Hz) under unshod forefoot and rearfoot running-step conditions. GRF data collections were repeated four times, each separated by 30 min treadmill running, to test influence of extended use. A repeated-measures ANOVA was used to identify differences between measurement devices. Additionally, mean bias and Bland-Altman limits of agreement (LoA) were calculated. We found a significant difference (p < .05) in ground contact time, peak force, and force rate, while there was no difference in parameters impulse, time to peak, and negative force rate. There was no influence of time point of measurement. The mean bias of ground contact time, impulse, peak force, and time to peak ranged between 0.6% and 3.4%, demonstrating high accuracy of loadsol ® devices for these parameters. For these same parameters, the LoA analysis showed that 95% of all measurement differences between insole and force plate measurements were less than 12%, demonstrating high precision of the sensors. However, highly dynamic behaviour of GRF, such as force rate, is not yet sufficiently resolved by the insole devices, which is likely explained by the low sampling rate.

  1. Development of optical fiber Bragg grating force-reflection sensor system of medical application for safe minimally invasive robotic surgery

    NASA Astrophysics Data System (ADS)

    Song, Hoseok; Kim, Kiyoung; Lee, Jungju

    2011-07-01

    Force feedback plays a very important role in medical surgery. In minimally invasive surgery (MIS), however, the very long and stiff bars of surgical instruments greatly diminish force feedback for the surgeon. In the case of minimally invasive robotic surgery (MIRS), force feedback is totally eliminated. Previous researchers have reported that the absence of force feedback increased the average force magnitude applied to the tissue by at least 50%, and increased the peak force magnitude by at least a factor of two. Therefore, it is very important to provide force information in MIRS. Recently, many sensors are being developed for MIS and MIRS, but some obstacles to their application in actual medical surgery must be surmounted. The most critical problems are size limit and sterilizability. Optical fiber sensors are among the most suitable sensors for the surgical environment. The optical fiber Bragg grating (FBG) sensor, in particular, offers an important additional advantage over other optical fiber sensors in that it is not influenced by the intensity of the light source. In this paper, we present the initial results of a study on the application of a FBG sensor to measure reflected forces in MIRS environments and suggest the possibility of successful application to MIRS systems.

  2. Presque Isle Peninsula, Frie, Pennsylvania. Volume II. Appendices. Revised.

    DTIC Science & Technology

    1980-11-01

    Population Pyramid 9 c. Employment 9 d. Labor Force 9 .e. Public Facilities and Services 14 1. Transportation 14 2. Health Facilities. 14 3. Communications 14...Distribution of Shoreline Use and Overship, 3 Erie County, PA B2 Population Pyramid of Erie County 13 53 Travel Demand Curve Peak Day Good Weather 38...are also experiencing a decline in total population. 4(5) Population Pyramid B2.13 Figure B2, the population pyramid of Erie County, PA, for the years

  3. Obesity is associated with higher absolute tibiofemoral contact and muscle forces during gait with and without knee osteoarthritis.

    PubMed

    Harding, Graeme T; Dunbar, Michael J; Hubley-Kozey, Cheryl L; Stanish, William D; Astephen Wilson, Janie L

    2016-01-01

    Obesity is an important risk factor for knee osteoarthritis initiation and progression. However, it is unclear how obesity may directly affect the mechanical loading environment of the knee joint, initiating or progressing joint degeneration. The objective of this study was to investigate the interacting role of obesity and moderate knee osteoarthritis presence on tibiofemoral contact forces and muscle forces within the knee joint during walking gait. Three-dimensional gait analysis was performed on 80 asymptomatic participants and 115 individuals diagnosed with moderate knee osteoarthritis. Each group was divided into three body mass index categories: healthy weight (body mass index<25), overweight (25≤body mass index≤30), and obese (body mass index>30). Tibiofemoral anterior-posterior shear and compressive forces, as well as quadriceps, hamstrings and gastrocnemius muscle forces, were estimated based on a sagittal plane contact force model. Peak contact and muscle forces during gait were compared between groups, as well as the interaction between disease presence and body mass index category, using a two-factor analysis of variance. There were significant osteoarthritis effects in peak shear, gastrocnemius and quadriceps forces only when they were normalized to body mass, and there were significant BMI effects in peak shear, compression, gastrocnemius and hamstrings forces only in absolute, non-normalized forces. There was a significant interaction effect in peak quadriceps muscle forces, with higher forces in overweight and obese groups compared to asymptomatic healthy weight participants. Body mass index was associated with higher absolute tibiofemoral compression and shear forces as well as posterior muscle forces during gait, regardless of moderate osteoarthritis presence or absence. The differences found may contribute to accelerated joint damage with obesity, but with the osteoarthritic knees less able to accommodate the high loads. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Measures of functional performance and their association with hip and thigh strength.

    PubMed

    Kollock, Roger; Van Lunen, Bonnie L; Ringleb, Stacie I; Oñate, James A

    2015-01-01

    Insufficient hip and thigh strength may increase an athlete's susceptibility to injury. However, screening for strength deficits using isometric and isokinetic instrumentation may not be practical in all clinical scenarios. To determine if functional performance tests are valid indicators of hip and thigh strength. Descriptive laboratory study. Research laboratory. Sixty-two recreationally athletic men (n = 30, age = 21.07 years, height = 173.84 cm, mass = 81.47 kg) and women (n = 32, age = 21.03 years, height = 168.77 cm, mass = 68.22 kg) participants were recruited. During session 1, we measured isometric peak force and rate of force development for 8 lower extremity muscle groups, followed by an isometric endurance test. During session 2, participants performed functional performance tests. Peak force, rate of force development, fatigue index, hop distance (or height), work (joules), and number of hops performed during the 30-second lateral-hop test were assessed. The r values were squared to calculate r (2). We used Pearson correlations to evaluate the associations between functional performance and strength. In men, the strongest relationship was observed between triple-hop work and hip-adductor peak force (r(2) = 50, P ≤ .001). Triple-hop work also was related to hip-adductor (r(2) = 38, P ≤ .01) and hip-flexor (r(2) = 37, P ≤ .01) rate of force development. For women, the strongest relationships were between single-legged vertical-jump work and knee-flexor peak force (r(2) = 0.44, P ≤ .01) and single-legged vertical-jump height and knee-flexor peak force (r(2) = 0.42, P ≤ .01). Single-legged vertical-jump height also was related to knee-flexor rate of force development (r(2) = 0.49, P ≤ .001). The 30-second lateral-hop test did not account for a significant portion of the variance in strength endurance. Hop tests alone did not provide clinicians with enough information to make evidence-based decisions about lower extremity strength in isolated muscle groups.

  5. Measurement of the effect of playground surface materials on hand impact forces during upper limb fall arrests.

    PubMed

    Choi, Woochol J; Kaur, Harjinder; Robinovitch, Stephen N

    2014-04-01

    Distal radius fractures are common on playgrounds. Yet current guidelines for the selection of playground surface materials are based only on protection against fall-related head injuries. We conducted "torso release" experiments to determine how common playground surface materials affect impact force applied to the hand during upper limb fall arrests. Trials were acquired for falls onto a rigid surface, and onto five common playground surface materials: engineered wood fiber, gravel, mulch, rubber tile, and sand. Measures were acquired for arm angles of 20 and 40 degrees from the vertical. Playground surface materials influenced the peak resultant and vertical force (P<.001), but not the peak horizontal force (P=.159). When compared with the rigid condition, peak resultant force was reduced 17% by sand (from 1039 to 864 N), 16% by gravel, 7% by mulch, 5% by engineered wood fiber, and 2% by rubber tile. The best performing surface provided only a 17% reduction in peak resultant force. These results help to explain the lack of convincing evidence from clinical studies on the effectiveness of playground surface materials in preventing distal radius fractures during playground falls, and highlight the need to develop playground surface materials that provide improved protection against these injuries.

  6. Increasing Running Step Rate Reduces Patellofemoral Joint Forces

    PubMed Central

    Lenhart, Rachel L.; Thelen, Darryl G.; Wille, Christa M.; Chumanov, Elizabeth S.; Heiderscheit, Bryan C.

    2013-01-01

    Purpose Increasing step rate has been shown to elicit changes in joint kinematics and kinetics during running, and has been suggested as a possible rehabilitation strategy for runners with patellofemoral pain. The purpose of this study was to determine how altering step rate affects internal muscle forces and patellofemoral joint loads, and then to determine what kinematic and kinetic factors best predict changes in joint loading. Methods We recorded whole body kinematics of 30 healthy adults running on an instrumented treadmill at three step rate conditions (90%, 100%, and 110% of preferred step rate). We then used a 3D lower extremity musculoskeletal model to estimate muscle, patellar tendon, and patellofemoral joint forces throughout the running gait cycles. Additionally, linear regression analysis allowed us to ascertain the relative influence of limb posture and external loads on patellofemoral joint force. Results Increasing step rate to 110% of preferred reduced peak patellofemoral joint force by 14%. Peak muscle forces were also altered as a result of the increased step rate with hip, knee and ankle extensor forces, and hip abductor forces all reduced in mid-stance. Compared to the 90% step rate condition, there was a concomitant increase in peak rectus femoris and hamstring loads during early and late swing, respectively, at higher step rates. Peak stance phase knee flexion decreased with increasing step rate, and was found to be the most important predictor of the reduction in patellofemoral joint loading. Conclusion Increasing step rate is an effective strategy to reduce patellofemoral joint forces and could be effective in modulating biomechanical factors that can contribute to patellofemoral pain. PMID:23917470

  7. Relationship between jump landing kinematics and peak ACL force during a jump in downhill skiing: a simulation study.

    PubMed

    Heinrich, D; van den Bogert, A J; Nachbauer, W

    2014-06-01

    Recent data highlight that competitive skiers face a high risk of injuries especially during off-balance jump landing maneuvers in downhill skiing. The purpose of the present study was to develop a musculo-skeletal modeling and simulation approach to investigate the cause-and-effect relationship between a perturbed landing position, i.e., joint angles and trunk orientation, and the peak force in the anterior cruciate ligament (ACL) during jump landing. A two-dimensional musculo-skeletal model was developed and a baseline simulation was obtained reproducing measurement data of a reference landing movement. Based on the baseline simulation, a series of perturbed landing simulations (n = 1000) was generated. Multiple linear regression was performed to determine a relationship between peak ACL force and the perturbed landing posture. Increased backward lean, hip flexion, knee extension, and ankle dorsiflexion as well as an asymmetric position were related to higher peak ACL forces during jump landing. The orientation of the trunk of the skier was identified as the most important predictor accounting for 60% of the variance of the peak ACL force in the simulations. Teaching of tactical decisions and the inclusion of exercise regimens in ACL injury prevention programs to improve trunk control during landing motions in downhill skiing was concluded. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Effects of High-Intensity Training on Anaerobic and Aerobic Contributions to Total Energy Release During Repeated Supramaximal Exercise in Obese Adults.

    PubMed

    Jabbour, Georges; Iancu, Horia-Daniel; Paulin, Anne

    Studying relative anaerobic and aerobic metabolism contributions to total energy release during exercise may be valuable in understanding exercise energetic demands and the energetic adaptations that occur in response to acute or chronic exercise in obese adults. The aim of the present study is to evaluate the effects of 6 weeks of high-intensity training (HIT) on relative anaerobic and aerobic contributions to total energy release and on peak power output during repeated supramaximal cycling exercises (SCE) in obese adults. Twenty-four obese adults (body mass index = ± 33 kg.m -2 ) were randomized into a control group ( n  = 12) and an HIT group ( n  = 12). Accumulated oxygen deficits (ml.min -1 ) and anaerobic and aerobic contributions (%) were measured in all groups before and after training via repeated SCE. In addition, the peak power output performed during SCE was determined using the force-velocity test. Before HIT, anaerobic contributions to repeated SCE did not differ between the groups and decreased significantly during the third and fourth repetitions. After HIT, anaerobic contributions increased significantly in the HIT group (+11 %, p  < 0.01) and were significantly higher than those of the control group ( p  < 0.01). Moreover, the peak power obtained during SCE increased significantly in the HIT group (+110 W.kg -1 , p  < 0.01) and correlated positively with increases in anaerobic contributions ( r  = 0.9, p  < 0.01). In obese adults, HIT increased anaerobic contributions to energy release which were associated with peak power enhancement in response to repeated SCE. Consequently, HIT may be an appropriate approach for improving energy contributions and muscle power among obese adults.

  9. Biomechanical comparison of reverse total shoulder arthroplasty systems in soft tissue-constrained shoulders.

    PubMed

    Henninger, Heath B; King, Frank K; Tashjian, Robert Z; Burks, Robert T

    2014-05-01

    Numerous studies have examined the biomechanics of isolated variables in reverse total shoulder arthroplasty. This study directly compared the composite performance of two reverse total shoulder arthroplasty systems; each system was designed around either a medialized or a lateralized glenohumeral center of rotation. Seven pairs of shoulders were tested on a biomechanical simulator. Center of rotation, position of the humerus, passive and active range of motion, and force to abduct the arm were quantified. Native arms were tested, implanted with a Tornier Aequalis or DJO Surgical Reverse Shoulder Prosthesis (RSP), and then retested. Differences from the native state were then documented. Both systems shifted the center of rotation medially and inferiorly relative to native. Medial shifts were greater in the Aequalis implant (P < .037). All humeri shifted inferior compared with native but moved medially with the Aequalis (P < .001). Peak passive abduction, internal rotation, and external rotation did not differ between systems (P > .05). Both reverse total shoulder arthroplasty systems exhibited adduction deficits, but the RSP implant deficit was smaller (P = .046 between implants). Both systems reduced forces to abduct the arm compared with native, although the Aequalis required more force to initiate motion from the resting position (P = .022). Given the differences in system designs and configurations, outcome variables were generally comparable. The RSP implant allowed slightly more adduction, had a more lateralized humeral position, and required less force to initiate elevation. These factors may play roles in limiting scapular notching, improving active external rotation by normalizing the residual rotator cuff length, and limiting excessive stress on the deltoid. Copyright © 2014 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.

  10. Tolerance of centrifuge-simulated suborbital spaceflight by medical condition.

    PubMed

    Blue, Rebecca S; Pattarini, James M; Reyes, David P; Mulcahy, Robert A; Garbino, Alejandro; Mathers, Charles H; Vardiman, Johnené L; Castleberry, Tarah L; Vanderploeg, James M

    2014-07-01

    We examined responses of volunteers with known medical disease to G forces in a centrifuge to evaluate how potential commercial spaceflight participants (SFPs) might tolerate the forces of spaceflight despite significant medical history. Volunteers were recruited based upon suitability for each of five disease categories (hypertension, cardiovascular disease, diabetes, lung disease, back or neck problems) or a control group. Subjects underwent seven centrifuge runs over 2 d. Day 1 consisted of two +G(z) runs (peak = +3.5 G(z), Run 2) and two +G(x), runs (peak = +6.0 G(x), Run 4). Day 2 consisted of three runs approximating suborbital spaceflight profiles (combined +G(x) and +G(z), peak = +6.0 G(x)/+4.0 G(z)). Data collected included blood pressure, electrocardiogram, pulse oximetry, neurovestibular exams, and post-run questionnaires regarding motion sickness, disorientation, grayout, and other symptoms. A total of 335 subjects registered for participation, of which 86 (63 men, 23 women, age 20-78 yr) participated in centrifuge trials. The most common causes for disqualification were weight and severe and uncontrolled medical or psychiatric disease. Five subjects voluntarily withdrew from the second day of testing: three for anxiety reasons, one for back strain, and one for time constraints. Maximum hemodynamic values recorded included HR of 192 bpm, systolic BP of 217 mmHg, and diastolic BP of 144 mmHg. Common subjective complaints included grayout (69%), nausea (20%), and chest discomfort (6%). Despite their medical history, no subject experienced significant adverse physiological responses to centrifuge profiles. These results suggest that most individuals with well-controlled medical conditions can withstand acceleration forces of launch and re-entry profiles of current commercial spaceflight vehicles.

  11. Torsional Performance of ProTaper Gold Rotary Instruments during Shaping of Small Root Canals after 2 Different Glide Path Preparations.

    PubMed

    Arias, Ana; de Vasconcelos, Rafaela Andrade; Hernández, Alexis; Peters, Ove A

    2017-03-01

    The purpose of this study was to assess the ex vivo torsional performance of a novel rotary system in small root canals after 2 different glide path preparations. Each independent canal of 8 mesial roots of mandibular molars was randomly assigned to achieve a reproducible glide path with a new set of either PathFile #1 (Dentsply Maillefer, Ballaigues, Switzerland) and #2 or ProGlider (Dentsply Maillefer) after negotiation with a 10 K-file. After glide path preparation, root canals in both groups were shaped with the same sequence of ProTaper Gold (Dentsply Tulsa Dental Specialties, Tulsa, OK) following the directions for use recommended by the manufacturer. A total of 16 new sets of each instrument of the ProTaper Gold (PTG) system were used. The tests were run in a standardized fashion in a torque-testing platform. Peak torque (Ncm) and force (N) were registered during the shaping procedure and compared with Student t tests after normal distribution of data was confirmed. No significant differences were found for any of the instruments in peak torque or force after the 2 different glide path preparations (P > .05). Data presented in this study also serve as a basis for the recommended torque for the use of PTG instruments. Under the conditions of this study, differences in the torsional performance of PTG rotary instruments after 2 different glide path preparations could not be shown. The different geometry of glide path rotary systems seemed to have no effect on peak torque and force induced by PTG rotary instruments when shaping small root canals in extracted teeth. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  12. Testing peak cycling performance: effects of braking force during growth.

    PubMed

    Doré, E; Bedu, M; França, N M; Diallo, O; Duché, P; Van Praagh, E

    2000-02-01

    The purpose of this study was to investigate the relationship between cycling peak power (CPP; flywheel inertia included) and the applied braking force (F(B)) on a friction-loaded cycle ergometer in male children, adolescents, and adults. A total of 520 male subjects aged 8-20 yr performed three brief maximal sprints against three F(B): 0.245, 0.491, and 0.736 N x kg(-1) body mass (BM) (corresponding applied loads: 25 [F(B)25], 50 [F(B)50], and 75 [F(B)75] g x kg(-1) BM). For each F(B), peak power (PP) was measured (PP25, PP50 and PP75). For each subject, the highest PP was defined as CPP. Results showed that PP was dependent on F(B). In young adults PP25 underestimated CPP by more than 10%, and consequently, F(B)25 seemed to be too low for this population. However, in children, PP75 underestimated CPP by about 20%. A F(B) of 0.736 N x kg(-1) BM was definitively too high for the pediatric population. Therefore, the optimal F(B), even corrected for BM, was lower in children than in adults. The influence of growth and maturation on the force-generating capacity of the leg muscles may explain this difference. In this study, however, it was shown that the difference between PP50 and CPP was independent of age for the whole population investigated. Consequently, when flywheel inertia is included, one cycling sprint with a F(B) of 0.495 N x kg(-1) BM (corresponding applied load: 50 g x kg(-1) BM) is a feasible method for testing both children, adolescents, or young adults.

  13. Cutting moments and grip forces in meat cutting operations and the effect of knife sharpness.

    PubMed

    McGorry, Raymond W; Dowd, Peter C; Dempsey, Patrick G

    2003-07-01

    The force exposure associated with meat cutting operations and the effect of knife sharpness on performance and productivity have not been well documented. Specialized hardware was used to measure grip force and reactive moments with 15 professional meat cutters performing lamb shoulder boning, beef rib trimming and beef loin trim operations in a field study conducted in two meat packing plants. A system for measuring relative blade sharpness was developed for this study. Mean and peak cutting moments observed for the meat cutting operations, averaged across subjects were 4.7 and 17.2 Nm for the shoulder boning, 3.5 and 12.9 Nm for the rib trim, and 2.3 and 10.6 Nm for the loin trim, respectively. Expressed as percent of MVC, mean grip forces of 28.3% and peak grip forces of 72.6% were observed overall. Blade sharpness was found to effect grip forces, cutting moments and cutting time, with sharper blades requiring statistically significantly lower peak and mean cutting moments, and grip forces than dull knives. Efforts aimed at providing and maintaining sharp blades could have a significant impact on force exposure.

  14. Effect of walking velocity on ground reaction force variables in the hind limb of clinically normal horses.

    PubMed

    Khumsap, S; Clayton, H M; Lanovaz, J L

    2001-06-01

    To measure the effect of subject velocity on hind limb ground reaction force variables at the walk and to use the data to predict the force variables at different walking velocities in horses. 5 clinically normal horses. Kinematic and force data were collected simultaneously. Each horse was led over a force plate at a range of walking velocities. Stance duration and force data were recorded for the right hind limb. To avoid the effect of horse size on the outcome variables, the 8 force variables were standardized to body mass and height at the shoulders. Velocity was standardized to height at the shoulders and expressed as velocity in dimensionless units (VDU). Stance duration was also expressed in dimensionless units (SDU). Simple regression analysis was performed, using stance duration and force variables as dependent variables and VDU as the independent variable. Fifty-six trials were recorded with velocities ranging from 0.24 to 0.45 VDU (0.90 to 1.72 m/s). Simple regression models between measured variables and VDU were significant (R2 > 0.69) for SDU, first peak of vertical force, dip between the 2 vertical force peaks, vertical impulse, and timing of second peak of vertical force. Subject velocity affects vertical force components only. In the future, differences between the forces measured in lame horses and the expected forces calculated for the same velocity will be studied to determine whether the equations can be used as diagnostic criteria.

  15. Effect of 8 Weeks Soccer Training on Health and Physical Performance in Untrained Women.

    PubMed

    Ortiz, Jaelson G; da Silva, Juliano F; Carminatti, Lorival J; Guglielmo, Luiz G A; Diefenthaeler, Fernando

    2018-03-01

    This study aims to analyze the physiological, neuromuscular, and biochemical responses in untrained women after eight weeks of regular participation in small-sided soccer games compared to aerobic training. Twenty-seven healthy untrained women were divided into two groups [soccer group (SG = 17) and running group (RG = 10)]. Both groups trained three times per week for eight weeks. The variables measured in this study were maximal oxygen uptake (VO 2 max), relative velocity at VO 2 max (vVO 2 max), peak velocity, relative intensity at lactate threshold (vLT), relative intensity at onset of blood lactate accumulation (vOBLA), peak force, total cholesterol, HDL, LDL, triglycerides, and cholesterol ratio (LDL/HDL). VO 2 max, vLT, and vOBLA increased significantly in both groups (12.8 and 16.7%, 11.1 and 15.3%, 11.6 and 19.8%, in SG and RG respectively). However, knee extensors peak isometric strength and triglyceride levels, total cholesterol, LDL, and HDL did not differ after eight weeks of training in both groups. On the other hand, the LDL/HDL ratio significantly reduced in both groups. In conclusion, eight weeks of regular participation in small-sided soccer games was sufficient to increase aerobic performance and promote health benefits related to similar aerobic training in untrained adult women.

  16. Segmental Dynamics of Forward Fall Arrests: System Identification Approach

    PubMed Central

    Kim, Kyu-Jung; Ashton-Miller, James A.

    2009-01-01

    Background Fall-related injuries are multifaceted problems, necessitating thorough biodynamic simulation to identify critical biomechanical factors. Methods A 2-degree-of-freedom discrete impact model was constructed through system identification and validation processes using the experimental data to understand dynamic interactions of various biomechanical parameters in bimanual forward fall arrests. Findings The bimodal reaction force response from the identified models had small identification errors for the first and second force peaks less than 3.5% and high coherence between the measured and identified model responses (R2=0.95). Model validation with separate experimental data also demonstrated excellent validation accuracy and coherence, less than 7% errors and R2=0.87, respectively. The first force peak was usually greater than the second force peak and strongly correlated with the impact velocity of the upper extremity, while the second force peak was associated with the impact velocity of the body. The impact velocity of the upper extremity relative to the body could be a major risk factor to fall-related injuries as observed from model simulations that a 75% faster arm movement relative to the falling speed of the body alone could double the first force peak from soft landing, thereby readily exceeding the fracture strength of the distal radius. Interpretation Considering that the time-critical nature of falling often calls for a fast arm movement, the use of the upper extremity in forward fall arrests is not biomechanically justified unless sufficient reaction time and coordinated protective motion of the upper extremity are available. PMID:19250726

  17. The influence of wheelchair propulsion technique on upper extremity muscle demand: a simulation study.

    PubMed

    Rankin, Jeffery W; Kwarciak, Andrew M; Richter, W Mark; Neptune, Richard R

    2012-11-01

    The majority of manual wheelchair users will experience upper extremity injuries or pain, in part due to the high force requirements, repetitive motion and extreme joint postures associated with wheelchair propulsion. Recent studies have identified cadence, contact angle and peak force as important factors for reducing upper extremity demand during propulsion. However, studies often make comparisons between populations (e.g., able-bodied vs. paraplegic) or do not investigate specific measures of upper extremity demand. The purpose of this study was to use a musculoskeletal model and forward dynamics simulations of wheelchair propulsion to investigate how altering cadence, peak force and contact angle influence individual muscle demand. Forward dynamics simulations of wheelchair propulsion were generated to emulate group-averaged experimental data during four conditions: 1) self-selected propulsion technique, and while 2) minimizing cadence, 3) maximizing contact angle, and 4) minimizing peak force using biofeedback. Simulations were used to determine individual muscle mechanical power and stress as measures of muscle demand. Minimizing peak force and cadence had the lowest muscle power requirements. However, minimizing peak force increased cadence and recovery power, while minimizing cadence increased average muscle stress. Maximizing contact angle increased muscle stress and had the highest muscle power requirements. Minimizing cadence appears to have the most potential for reducing muscle demand and fatigue, which could decrease upper extremity injuries and pain. However, altering any of these variables to extreme values appears to be less effective; instead small to moderate changes may better reduce overall muscle demand. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Lung function indices of children exposed to wood smoke in a fishing port in South-South Nigeria.

    PubMed

    Oloyede, Iso P; Ekrikpo, Udeme E; Ekanem, Emmanuel E

    2013-10-01

    Children in the warm rain forest are at risk of having their lung function compromised by a variety of factors, including smoke from wood fires. A total of 358 children from a fishing port and 400 children living in a farm settlement were tested to determine their peak expiratory flow rate (PEFR), forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC), forced expiratory volume in 1 s per cent and forced expiratory flow between 25 and 75%. The values for the PEFR, FVC, FEV1, forced expiratory volume in 1 s per cent and forced expiratory flow between 25 and 75% of the subjects were significantly lower than those of the controls (P value for males = <0.001, 0.01, 0.002, 0.01 and <0.001, respectively, whereas for their female counterparts = <0.001, 0.003, 0.001, 0.04 and <0.001, respectively). These deficits were observed to be more with increasing duration of exposure to wood smoke for PEFR, FVC and FEV1. Chronic exposure to fish drying using firewood can impair lung function in children. There is a need for alternative methods of fish preservation for those engaged in fish drying.

  19. Knee Extensor Strength and Gait Characteristics After Minimally Invasive Unicondylar Knee Arthroplasty vs Minimally Invasive Total Knee Arthroplasty: A Nonrandomized Controlled Trial.

    PubMed

    Braito, Matthias; Giesinger, Johannes M; Fischler, Stefan; Koller, Arnold; Niederseer, David; Liebensteiner, Michael C

    2016-08-01

    In light of the existing lack of evidence, it was the aim of this study to compare gait characteristics and knee extensor strength after medial unicondylar knee arthroplasty (MUKA) with those after total knee arthroplasty (TKA), given the same standardized minimally invasive surgery (MIS) approach in both groups. Patients scheduled for MIS-MUKA or MIS-TKA as part of clinical routine were invited to participate. A posterior cruciate ligament-retaining total knee design was used for all MIS-TKA. A 3-dimensional gait analysis was performed preoperatively with a VICON system and at 8 weeks postoperative to determine temporospatial parameters, ground reaction forces, joint angles, and joint moments. At the same 2 times, isokinetic tests were performed to obtain peak values of knee extensor torque. A multivariate analysis of variance was conducted and included the main effects time (before and after surgery) and surgical group and the group-by-time interaction effect. Fifteen MIS-MUKA patients and 17 MIS-TKA patients were eligible for the final analysis. The groups showed no differences regarding age, body mass index, sex, side treated, or stage of osteoarthritis. We determined neither intergroup differences nor time × group interactions for peak knee extensor torque or any gait parameters (temporospatial, ground reaction forces, joint angles, and joint moments). It is concluded that MUKA is not superior to TKA with regard to knee extensor strength or 3-dimensional gait characteristics at 8 weeks after operation. As gait characteristics and knee extensor strength are only 2 of the various potential outcome parameters (knee scores, activity scores…) and quadriceps strength might take a longer time to recover, our findings should be interpreted with caution. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Properties of the optimal trajectories for coplanar, aeroassisted orbital transfer

    NASA Technical Reports Server (NTRS)

    Miele, A.; Wang, T.; Deaton, A. W.

    1990-01-01

    The optimization of trajectories for coplaner, aeroassisted orbital transfer (AOT) from a high Earth orbit (HEO) to a low Earth orbit (LEO) is examined. In particular, HEO can be a geosynchronous Earth orbit (GEO). It is assumed that the initial and final orbits are circular, that the gravitational field is central and is governed by the inverse square law, and that two impulses are employed, one at HEO exit and one at LEO entry. During the atmospheric pass, the trajectory is controlled via the lift coefficient in such a way that the total characteristic velocity is minimized. First, an ideal optimal trajectory is determined analytically for lift coefficient unbounded. This trajectory is called grazing trajectory, because the atmospheric pass is made by flying at constant altitude along the edge of the atmosphere until the excess velocity is depleted. For the grazing trajectory, the lift coefficient varies in such a way that the lift, the centrifugal force due to the Earth's curvature, the weight, and the Coriolis force due to the Earth's rotation are in static balance. Also, the grazing trajectory minimizes the total characteristic velocity and simultaneously nearly minimizes the peak values of the altitude drop, dynamic pressure, and heating rate. Next, starting from the grazing trajectory results, a real optimal trajectory is determined numerically for the lift coefficient bounded from both below and above. This trajectory is characterized by atmospheric penetration with the smallest possible entry angle, followed by flight at the lift coefficient lower bound. Consistently with the grazing trajectory behavior, the real optimal trajectory minimizes the total characteristic velocity and simultaneously nearly minimizes the peak values of the altitude drop, the dynamic pressure, and the heating rate.

  1. Spaceflight effects on single skeletal muscle fiber function in the rhesus monkey.

    PubMed

    Fitts, R H; Desplanches, D; Romatowski, J G; Widrick, J J

    2000-11-01

    The purpose of this investigation was to understand how 14 days of weightlessness alters the cellular properties of individual slow- and fast-twitch muscle fibers in the rhesus monkey. The diameter of the soleus (Sol) type I, medial gastrocnemius (MG) type I, and MG type II fibers from the vivarium controls averaged 60 +/- 1, 46 +/- 2, and 59 +/- 2 microm, respectively. Both a control 1-G capsule sit (CS) and spaceflight (SF) significantly reduced the Sol type I fiber diameter (20 and 13%, respectively) and peak force, with the latter declining from 0.48 +/- 0.01 to 0.31 +/- 0.02 (CS group) and 0.32 +/- 0.01 mN (SF group). When the peak force was expressed as kiloNewtons per square meter (kN/m(2)), only the SF group showed a significant decline. This group also showed a significant 15% drop in peak fiber stiffness that suggests that fewer cross bridges were contracting in parallel. In the MG, SF but not CS depressed the type I fiber diameter and force. Additionally, SF significantly depressed absolute (mN) and relative (kN/m(2)) force in the fast-twitch MG fibers by 30% and 28%, respectively. The Ca(2+) sensitivity of the type I fiber (Sol and MG) was significantly reduced by growth but unaltered by SF. Flight had no significant effect on the mean maximal fiber shortening velocity in any fiber type or muscle. The post-SF Sol type I fibers showed a reduced peak power and, at peak power, an elevated velocity and decreased force. In conclusion, CS and SF caused atrophy and a reduced force and power in the Sol type I fiber. However, only SF elicited atrophy and reduced force (mN) in the MG type I fiber and a decline in relative force (kN/m(2)) in the Sol type I and MG type II fibers.

  2. Spaceflight effects on single skeletal muscle fiber function in the rhesus monkey

    NASA Technical Reports Server (NTRS)

    Fitts, R. H.; Desplanches, D.; Romatowski, J. G.; Widrick, J. J.

    2000-01-01

    The purpose of this investigation was to understand how 14 days of weightlessness alters the cellular properties of individual slow- and fast-twitch muscle fibers in the rhesus monkey. The diameter of the soleus (Sol) type I, medial gastrocnemius (MG) type I, and MG type II fibers from the vivarium controls averaged 60 +/- 1, 46 +/- 2, and 59 +/- 2 microm, respectively. Both a control 1-G capsule sit (CS) and spaceflight (SF) significantly reduced the Sol type I fiber diameter (20 and 13%, respectively) and peak force, with the latter declining from 0.48 +/- 0.01 to 0.31 +/- 0.02 (CS group) and 0.32 +/- 0.01 mN (SF group). When the peak force was expressed as kiloNewtons per square meter (kN/m(2)), only the SF group showed a significant decline. This group also showed a significant 15% drop in peak fiber stiffness that suggests that fewer cross bridges were contracting in parallel. In the MG, SF but not CS depressed the type I fiber diameter and force. Additionally, SF significantly depressed absolute (mN) and relative (kN/m(2)) force in the fast-twitch MG fibers by 30% and 28%, respectively. The Ca(2+) sensitivity of the type I fiber (Sol and MG) was significantly reduced by growth but unaltered by SF. Flight had no significant effect on the mean maximal fiber shortening velocity in any fiber type or muscle. The post-SF Sol type I fibers showed a reduced peak power and, at peak power, an elevated velocity and decreased force. In conclusion, CS and SF caused atrophy and a reduced force and power in the Sol type I fiber. However, only SF elicited atrophy and reduced force (mN) in the MG type I fiber and a decline in relative force (kN/m(2)) in the Sol type I and MG type II fibers.

  3. Evidence of a double peak in muscle activation to enhance strike speed and force: an example with elite mixed martial arts fighters.

    PubMed

    McGill, Stuart M; Chaimberg, Jon D; Frost, David M; Fenwick, Chad M J

    2010-02-01

    The main issue addressed here is the paradox of muscle contraction to optimize speed and strike force. When muscle contracts, it increases in both force and stiffness. Force creates faster movement, but the corresponding stiffness slows the change of muscle shape and joint velocity. The purpose of this study was to investigate how this speed strength is accomplished. Five elite mixed martial arts athletes were recruited given that they must create high strike force very quickly. Muscle activation using electromyography and 3-dimensional spine motion was measured. A variety of strikes were performed. Many of the strikes intend to create fast motion and finish with a very large striking force, demonstrating a "double peak" of muscle activity. An initial peak was timed with the initiation of motion presumably to enhance stiffness and stability through the body before motion. This appeared to create an inertial mass in the large "core" for limb muscles to "pry" against to initiate limb motion. Then, some muscles underwent a relaxation phase as speed of limb motion increased. A second peak was observed upon contact with the opponent (heavy bag). It was postulated that this would increase stiffness through the body linkage, resulting in a higher effective mass behind the strike and likely a higher strike force. Observation of the contract-relax-contract pulsing cycle during forceful and quick strikes suggests that it may be fruitful to consider pulse training that involves not only the rate of muscle contraction but also the rate of muscle relaxation.

  4. Test-Retest Reliability of a Novel Isokinetic Squat Device With Strength-Trained Athletes.

    PubMed

    Bridgeman, Lee A; McGuigan, Michael R; Gill, Nicholas D; Dulson, Deborah K

    2016-11-01

    Bridgeman, LA, McGuigan, MR, Gill, ND, and Dulson, DK. Test-retest reliability of a novel isokinetic squat device with strength-trained athletes. J Strength Cond Res 30(11): 3261-3265, 2016-The aim of this study was to investigate the test-retest reliability of a novel multijoint isokinetic squat device. The subjects in this study were 10 strength-trained athletes. Each subject completed 3 maximal testing sessions to assess peak concentric and eccentric force (N) over a 3-week period using the Exerbotics squat device. Mean differences between eccentric and concentric force across the trials were calculated. Intraclass correlation coefficients (ICCs) and coefficients of variation (CVs) for the variables of interest were calculated using an excel reliability spreadsheet. Between trials 1 and 2 an 11.0 and 2.3% increase in mean concentric and eccentric forces, respectively, was reported. Between trials 2 and 3 a 1.35% increase in the mean concentric force production and a 1.4% increase in eccentric force production was reported. The mean concentric peak force CV and ICC across the 3 trials was 10% (7.6-15.4) and 0.95 (0.87-0.98) respectively. However, the mean eccentric peak force CV and ICC across the trials was 7.2% (5.5-11.1) and 0.90 (0.76-0.97), respectively. Based on these findings it is suggested that the Exerbotics squat device shows good test-retest reliability. Therefore practitioners and investigators may consider its use to monitor changes in concentric and eccentric peak force.

  5. Use of Temperature to Improve West Nile Virus Forecasts

    NASA Astrophysics Data System (ADS)

    Shaman, J. L.; DeFelice, N.; Schneider, Z.; Little, E.; Barker, C.; Caillouet, K.; Campbell, S.; Damian, D.; Irwin, P.; Jones, H.; Townsend, J.

    2017-12-01

    Ecological and laboratory studies have demonstrated that temperature modulates West Nile virus (WNV) transmission dynamics and spillover infection to humans. Here we explore whether the inclusion of temperature forcing in a model depicting WNV transmission improves WNV forecast accuracy relative to a baseline model depicting WNV transmission without temperature forcing. Both models are optimized using a data assimilation method and two observed data streams: mosquito infection rates and reported human WNV cases. Each coupled model-inference framework is then used to generate retrospective ensemble forecasts of WNV for 110 outbreak years from among 12 geographically diverse United States counties. The temperature-forced model improves forecast accuracy for much of the outbreak season. From the end of July until the beginning of October, a timespan during which 70% of human cases are reported, the temperature-forced model generated forecasts of the total number of human cases over the next 3 weeks, total number of human cases over the season, the week with the highest percentage of infectious mosquitoes, and the peak percentage of infectious mosquitoes that were on average 5%, 10%, 12%, and 6% more accurate, respectively, than the baseline model. These results indicate that use of temperature forcing improves WNV forecast accuracy and provide further evidence that temperatures influence rates of WNV transmission. The findings help build a foundation for implementation of a statistically rigorous system for real-time forecast of seasonal WNV outbreaks and their use as a quantitative decision support tool for public health officials and mosquito control programs.

  6. Changes in gluteal muscle forces with alteration of footstrike pattern during running.

    PubMed

    Vannatta, Charles Nathan; Kernozek, Thomas W; Gheidi, Naghmeh

    2017-10-01

    Gait retraining is a common form of treatment for running related injuries. Proximal factors at the hip have been postulated as having a role in the development of running related injuries. How altering footstrike affects hip muscles forces and kinematics has not been described. Thus, we aimed to quantify differences in hip muscle forces and hip kinematics that may occur when healthy runners are instructed to alter their foot strike pattern from their habitual rear-foot strike to a forefoot strike. This may gain insight on the potential etiology and treatment methods of running related lower extremity injury. Twenty-five healthy female runners completed a minimum of 10 running trials in a controlled laboratory setting under rear-foot strike and instructed forefoot strike conditions. Kinetic and kinematic data were used in an inverse dynamic based static optimization to estimate individual muscle forces during running. Within subject differences were investigated using a repeated measures multi-variate analysis of variance. Peak gluteus medius and minimus and hamstring forces were reduced while peak gluteus maximus force was increased when running with an instructed forefoot strike pattern. Peak hip adduction, hip internal rotation, and heel-COM distance were also reduced. Therefore, instructing habitual rearfoot strike runners to run with a forefoot strike pattern resulted in changes in peak gluteal and hamstring muscle forces and hip kinematics. These changes may be beneficial to the development and treatment of running related lower extremity injury. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Running stride peak forces inversely determine running economy in elite runners.

    PubMed

    Støren, Øyvind; Helgerud, Jan; Hoff, Jan

    2011-01-01

    The present study investigated the relationship between running economy (RE) at 15 km/h(-1) , 3.000-m race time, maximal strength, and a number of physiological, anthropometrical, and mechanical variables. The variables measured included RE, maximal oxygen consumption, heart rate, step length and frequency, contact time, and the peak horizontal and vertical forces of each step. Maximal strength was measured as the 1 repetition maximum (1RM) half-squat using a leg press machine. Eleven male elite endurance athletes with a V(O2)max of 75.8 ± 6.2 mL/kg(-1)/min(-1) participated in this study. After the anthropometric data were collected, they were tested for RE, running characteristics, and force measures on a level treadmill at 15 km/h(-1). The athletes wore contact soles, and the treadmill was placed on a force platform. Maximal oxygen consumption and 1RM were tested after the RE measurements. The sum of horizontal and vertical peak forces revealed a significant inverse correlation (p < 0.05) both with 3,000-m performance (R = 0.71) and RE (R = 0.66). Inverse correlations were also found (p < 0.05) between RE and body height (R = 0.61) and between RE and body fat percentage (R = 0.62). In conclusion, the sum of horizontal and vertical peak forces was found to be negatively correlated to running economy and 3,000-m running performance, indicating that avoiding vertical movements and high horizontal braking force is crucial for a positive development of RE.

  8. Examining impairment of adaptive compensation for stabilizing motor repetitions in stroke survivors.

    PubMed

    Kim, Yushin; Koh, Kyung; Yoon, BumChul; Kim, Woo-Sub; Shin, Joon-Ho; Park, Hyung-Soon; Shim, Jae Kun

    2017-12-01

    The hand, one of the most versatile but mechanically redundant parts of the human body, suffers more and longer than other body parts after stroke. One of the rehabilitation paradigms, task-oriented rehabilitation, encourages motor repeatability, the ability to produce similar motor performance over repetitions through compensatory strategies while taking advantage of the motor system's redundancy. The previous studies showed that stroke survivors inconsistently performed a given motor task with limited motor solutions. We hypothesized that stroke survivors would exhibit deficits in motor repeatability and adaptive compensation compared to healthy controls in during repetitive force-pulse (RFP) production tasks using multiple fingers. Seventeen hemiparetic stroke survivors and seven healthy controls were asked to repeatedly press force sensors as fast as possible using the four fingers of each hand. The hierarchical variability decomposition model was employed to compute motor repeatability and adaptive compensation across finger-force impulses, respectively. Stroke survivors showed decreased repeatability and adaptive compensation of force impulses between individual fingers as compared to the control (p < 0.05). The stroke survivors also showed decreased pulse frequency and greater peak-to-peak time variance than the control (p < 0.05). Force-related variables, such as mean peak force and peak force interval variability, demonstrated no significant difference between groups. Our findings indicate that stroke-induced brain injury negatively affects their ability to exploit their redundant or abundant motor system in an RFP task.

  9. Use of temperature to improve West Nile virus forecasts

    PubMed Central

    Schneider, Zachary D.; Caillouet, Kevin A.; Campbell, Scott R.; Damian, Dan; Irwin, Patrick; Jones, Herff M. P.; Townsend, John

    2018-01-01

    Ecological and laboratory studies have demonstrated that temperature modulates West Nile virus (WNV) transmission dynamics and spillover infection to humans. Here we explore whether inclusion of temperature forcing in a model depicting WNV transmission improves WNV forecast accuracy relative to a baseline model depicting WNV transmission without temperature forcing. Both models are optimized using a data assimilation method and two observed data streams: mosquito infection rates and reported human WNV cases. Each coupled model-inference framework is then used to generate retrospective ensemble forecasts of WNV for 110 outbreak years from among 12 geographically diverse United States counties. The temperature-forced model improves forecast accuracy for much of the outbreak season. From the end of July until the beginning of October, a timespan during which 70% of human cases are reported, the temperature-forced model generated forecasts of the total number of human cases over the next 3 weeks, total number of human cases over the season, the week with the highest percentage of infectious mosquitoes, and the peak percentage of infectious mosquitoes that on average increased absolute forecast accuracy 5%, 10%, 12%, and 6%, respectively, over the non-temperature forced baseline model. These results indicate that use of temperature forcing improves WNV forecast accuracy and provide further evidence that temperature influences rates of WNV transmission. The findings provide a foundation for implementation of a statistically rigorous system for real-time forecast of seasonal WNV outbreaks and their use as a quantitative decision support tool for public health officials and mosquito control programs. PMID:29522514

  10. Peak power, force, and velocity during jump squats in professional rugby players.

    PubMed

    Turner, Anthony P; Unholz, Cedric N; Potts, Neill; Coleman, Simon G S

    2012-06-01

    Training at the optimal load for peak power output (PPO) has been proposed as a method for enhancing power output, although others argue that the force, velocity, and PPO are of interest across the full range of loads. The aim of this study was to examine the influence of load on PPO, peak barbell velocity (BV), and peak vertical ground reaction force (VGRF) during the jump squat (JS) in a group of professional rugby players. Eleven male professional rugby players (age, 26 ± 3 years; height, 1.83 ± 6.12 m; mass, 97.3 ± 11.6 kg) performed loaded JS at loads of 20-100% of 1 repetition maximum (1RM) JS. A force plate and linear position transducer, with a mechanical braking unit, were used to measure PPO, VGRF, and BV. Load had very large significant effects on PPO (p < 0.001, partial η² = 0.915); peak VGRF (p < 0.001, partial η² = 0.854); and peak BV (p < 0.001, partial η² = 0.973). The PPO and peak BV were the highest at 20% 1RM, though PPO was not significantly greater than that at 30% 1RM. The peak VGRF was significantly greater at 1RM than all other loads, with no significant difference between 20 and 60% 1RM. In resistance trained professional rugby players, the optimal load for eliciting PPO during the loaded JS in the range measured occurs at 20% 1RM JS, with decreases in PPO and BV, and increases in VGRF, as the load is increased, although greater PPO likely occurs without any additional load.

  11. Antagonist muscle co-contraction during a double-leg landing maneuver at two heights.

    PubMed

    Mokhtarzadeh, Hossein; Yeow, Chen Hua; Goh, James Cho Hong; Oetomo, Denny; Ewing, Katie; Lee, Peter Vee Sin

    2017-10-01

    Knee injuries are common during landing activities. Greater landing height increases peak ground reaction forces (GRFs) and loading at the knee joint. As major muscles to stabilize the knee joint, Quadriceps and Hamstring muscles provide internal forces to attenuate the excessive GRF. Despite the number of investigations on the importance of muscle function during landing, the role of landing height on these muscles forces using modeling during landing is not fully investigated. Participant-specific musculoskeletal models were developed using experimental motion analysis data consisting of anatomic joint motions and GRF from eight male participants performing double-leg drop landing from 30 and 60 cm. Muscle forces were calculated in OpenSim and their differences were analyzed at the instances of high risk during landing i.e. peak GRF for both heights. The maximum knee flexion angle and moments were found significantly higher from a double-leg landing at 60 cm compared to 30 cm. The results showed elevated GRF, and mean muscle forces during landing. At peak GRF, only quadriceps showed significantly greater forces at 60 cm. Hamstring muscle forces did not significantly change at 60 cm compared to 30 cm. Quadriceps and hamstring muscle forces changed at different heights. Since hamstring forces were similar in both landing heights, this could lead to an imbalance between the antagonist muscles, potentially placing the knee at risk of injury if combined with small flexion angles that was not observed at peak GRF in our study. Thus, enhanced neuromuscular training programs strengthening the hamstrings may be required to address this imbalance. These findings may contribute to enhance neuromuscular training programs to prevent knee injuries during landing.

  12. Pushrim kinetics during advanced wheelchair skills in manual wheelchair users with spinal cord injury.

    PubMed

    Nagy, Jennifer; Winslow, Amy; Brown, Jessica M; Adams, Lisa; O'Brien, Kathleen; Boninger, Michael; Nemunaitis, Gregory

    2012-01-01

    To assess the peak force during wheelchair propulsion of individuals with spinal cord injury propelling over obstacles from the Wheelchair Skills Test. Twenty-three individuals with spinal cord injury (SCI) who are full-time manual wheelchair users were included in this prospective study. A SmartWheel (Three Rivers Holdings, LLC) was used to analyze each push while subjects negotiated standardized obstacles used in the Wheelchair Skills Test, including tile, carpet, soft surface, 5° and 10° ramps, 2 cm, 5 cm, and 15 cm curbs. When the peak forces of the advanced skills were compared to level 10 m tile/10 m carpet, there was a statistically significant increase in all peak forces (P value ranged from .0001 to .0268). It is well documented that a large number of individuals with SCI develop upper limb pain. One of the recommendations to preserve the upper limb is to minimize force during repetitive tasks. Advanced wheelchair skills require an increase in force to accomplish. The increase in forces ranged from 18% to 130% over that required for level 10 m tile/10 m carpet.

  13. An Analysis of Peak Wind Speed Data from Collocated Mechanical and Ultrasonic Anemometers

    NASA Technical Reports Server (NTRS)

    Short, David A.; Wells, Leonard; Merceret, Francis J.; Roeder, William P.

    2007-01-01

    This study compared peak wind speeds reported by mechanical and ultrasonic anemometers at Cape Canaveral Air Force Station and Kennedy Space Center (CCAFS/KSC) on the east central coast of Florida and Vandenberg Air Force Base (VAFB) on the central coast of California. Launch Weather Officers, forecasters, and Range Safety analysts need to understand the performance of wind sensors at CCAFS/KSC and VAFB for weather warnings, watches, advisories, special ground processing operations, launch pad exposure forecasts, user Launch Commit Criteria (LCC) forecasts and evaluations, and toxic dispersion support. The legacy CCAFS/KSC and VAFB weather tower wind instruments are being changed from propeller-and-vane (CCAFS/KSC) and cup-and-vane (VAFB) sensors to ultrasonic sensors under the Range Standardization and Automation (RSA) program. Mechanical and ultrasonic wind measuring techniques are known to cause differences in the statistics of peak wind speed as shown in previous studies. The 45th Weather Squadron (45 WS) and the 30th Weather Squadron (30 WS) requested the Applied Meteorology Unit (AMU) to compare data between the RSA ultrasonic and legacy mechanical sensors to determine if there are significant differences. Note that the instruments were sited outdoors under naturally varying conditions and that this comparison was not designed to verify either technology. Approximately 3 weeks of mechanical and ultrasonic wind data from each range from May and June 2005 were used in this study. The CCAFS/KSC data spanned the full diurnal cycle, while the VAFB data were confined to 1000-1600 local time. The sample of 1-minute data from numerous levels on five different towers on each range totaled more than 500,000 minutes of data (482,979 minutes of data after quality control). The ten towers were instrumented at several levels, ranging from 12 ft to 492 ft above ground level. The ultrasonic sensors were collocated at the same vertical levels as the mechanical sensors and typically within 15 ft horizontally of each another. Data from a total of 53 RSA ultrasonic sensors, collocated with mechanical sensors were compared. The 1- minute average wind speed/direction and the 1-second peak wind speed/direction were compared.

  14. Sinusoidal high-intensity exercise does not elicit ventilatory limitation in chronic obstructive pulmonary disease.

    PubMed

    Porszasz, Janos; Rambod, Mehdi; van der Vaart, Hester; Rossiter, Harry B; Ma, Shuyi; Kiledjian, Rafi; Casaburi, Richard

    2013-06-01

    During exercise at critical power (CP) in chronic obstructive pulmonary disease (COPD) patients, ventilation approaches its maximum. As a result of the slow ventilatory dynamics in COPD, ventilatory limitation during supramaximal exercise might be escaped using rapid sinusoidal forcing. Nine COPD patients [age, 60.2 ± 6.9 years; forced expiratory volume in the first second (FEV(1)), 42 ± 17% of predicted; and FEV(1)/FVC, 39 ± 12%] underwent an incremental cycle ergometer test and then four constant work rate cycle ergometer tests; tolerable duration (t(lim)) was recorded. Critical power was determined from constant work rate testing by linear regression of work rate versus 1/t(lim). Patients then completed fast (FS; 60 s period) and slow (SS; 360 s period) sinusoidally fluctuating exercise tests with mean work rate at CP and peak at 120% of peak incremental test work rate, and one additional test at CP; each for a 20 min target. The value of t(lim) did not differ between CP (19.8 ± 0.6 min) and FS (19.0 ± 2.5 min), but was shorter in SS (13.2 ± 4.2 min; P < 0.05). The sinusoidal ventilatory amplitude was minimal (37.4 ± 34.9 ml min(-1) W(-1)) during FS but much larger during SS (189.6 ± 120.4 ml min(-1) W(-1)). The total ventilatory response in SS reached 110 ± 8.0% of the incremental test peak, suggesting ventilatory limitation. Slow components in ventilation during constant work rate and FS exercises were detected in most subjects and contributed appreciably to the total response asymptote. The SS exercise was associated with higher mid-exercise lactate concentrations (5.2 ± 1.7, 7.6 ± 1.7 and 4.5 ± 1.3 mmol l(-1) in FS, SS and CP). Large-amplitude, rapid sinusoidal fluctuation in work rate yields little fluctuation in ventilation despite reaching 120% of the incremental test peak work rate. This high-intensity exercise strategy might be suitable for programmes of rehabilitative exercise training in COPD.

  15. Transmitral flow velocity-contour variation after premature ventricular contractions: a novel test of the load-independent index of diastolic filling.

    PubMed

    Boskovski, Marko T; Shmuylovich, Leonid; Kovács, Sándor J

    2008-12-01

    The new echocardiography-based, load-independent index of diastolic filling (LIIDF) M was assessed using load-/shape-varying E-waves after premature ventricular contractions (PVCs). Twenty-six PVCs in 15 subjects from a preexisting simultaneous echocardiography-catheterization database were selected. Perturbed load-state beats, defined as the first two post-PVC E-waves, and steady-state E-waves, were subjected to conventional and model-based analysis. M, a dimensionless index, defined by the slope of the peak driving-force vs. peak (filling-opposing) resistive-force regression, was determined from steady-state E-waves alone, and from load-perturbed E-waves combined with a matched number of subsequent beats. Despite high degrees of E-wave shape variation, M derived from load-varying, perturbed beats and M derived from steady-state beats alone were indistinguishable. Because the peak driving-force vs. peak resistive-force relation determining M remains highly linear in the extended E-wave shape and load variation regime observed, we conclude that M is a robust LIIDF.

  16. Effect of loudness on reaction time and response force in different motor tasks.

    PubMed

    Jaśkowski, Piotr; Włodarczyk, Dariusz

    2005-12-01

    Van der Molen and Keuss, in 1979 and 1981, showed that paradoxically long reaction times occur with extremely strong auditory stimuli when the task is difficult, e.g., choice-by-location or Simon paradigm. It was argued that this paradoxical behavior of RT is due to active inhibition of an arousal-dependent bypassing mechanism to prevent false responses. As the peak force, i.e., maximal force exerted by participants on a response key, is considered to be related to immediate arousal, we predicted that for extremely loud stimuli and for difficult tasks, lengthening of RT should be associated with reduction of peak force. Moreover, these effects should be enhanced when emphasis is on accuracy rather than speed. Although the relation between RT and intensity depended on task difficulty, no increase in RT was found for the loudest tones. Moreover, peak force increased monotonically with loudness, showing no tendency to be suppressed for loudest tones and difficult tasks.

  17. Limitations to maximum running speed on flat curves.

    PubMed

    Chang, Young-Hui; Kram, Rodger

    2007-03-01

    Why is maximal running speed reduced on curved paths? The leading explanation proposes that an increase in lateral ground reaction force necessitates a decrease in peak vertical ground reaction force, assuming that maximum leg extension force is the limiting factor. Yet, no studies have directly measured these forces or tested this critical assumption. We measured maximum sprint velocities and ground reaction forces for five male humans sprinting along a straight track and compared them to sprints along circular tracks of 1, 2, 3, 4 and 6 m radii. Circular track sprint trials were performed either with or without a tether that applied centripetal force to the center of mass. Sprinters generated significantly smaller peak resultant ground reaction forces during normal curve sprinting compared to straight sprinting. This provides direct evidence against the idea that maximum leg extension force is always achieved and is the limiting factor. Use of the tether increased sprint speed, but not to expected values. During curve sprinting, the inside leg consistently generated smaller peak forces compared to the outside leg. Several competing biomechanical constraints placed on the stance leg during curve sprinting likely make the inside leg particularly ineffective at generating the ground reaction forces necessary to attain maximum velocities comparable to straight path sprinting. The ability of quadrupeds to redistribute function across multiple stance legs and decouple these multiple constraints may provide a distinct advantage for turning performance.

  18. Upper and Lower Body Muscle Power Increases After 3-Month Resistance Training in Overweight and Obese Men

    PubMed Central

    Zemková, Erika; Kyselovičová, Oľga; Jeleň, Michal; Kováčiková, Zuzana; Ollé, Gábor; Štefániková, Gabriela; Vilman, Tomáš; Baláž, Miroslav; Kurdiová, Timea; Ukropec, Jozef; Ukropcová, Barbara

    2016-01-01

    This study evaluates the effect of 3 months resistance and aerobic training on muscle strength and power in 17 male overweight and obese men. Subjects underwent either a resistance or aerobic training for a period of 3 months (three sessions per week). Peak isometric force, rate of force development, peak power and height of countermovement and squat jumps, reactive strength index, and mean power in the concentric phase of bench presses were all assessed prior to and after completing the training program. Results identified a significant increase of mean power during both countermovement bench presses at 30 kg (18.6%, p = .021), 40 kg (14.6%, p = .033), and 50 kg (13.1%, p = .042) and concentric-only bench presses at 30 kg (19.6%, p = .017) and 40 kg (13.9%, p = .037) after the resistance training. There was also a significant increase in the height of the jump (12.8%, p = .013), peak power (10.1%, p = .026), and peak velocity (9.7%, p = .037) during the countermovement jump and height of the jump (11.8%, p = .019), peak power (9.6%, p = .032), and peak velocity (9.5%, p = .040) during the squat jump. There were no significant changes in the reactive strength index, peak force, and the rate of force development after the resistance training. The aerobic group failed to show any significant improvements in these parameters. It may be concluded that 3 months of resistance training without caloric restriction enhances upper and lower body muscle power in overweight and obese men. PMID:27530821

  19. Anthropometrics, body composition, and aerobic fitness in Norwegian home guard personnel.

    PubMed

    Aandstad, Anders; Hageberg, Rune; Holme, Ingar M; Anderssen, Sigmund A

    2014-11-01

    The Norwegian Home Guard (HG) consists of soldiers and officers who primarily live a civilian life but are typically called in for military training a few days per year. Although full-time soldiers and officers are monitored annually on physical fitness, no such assessments are performed on regular HG personnel. Data on physical fitness of similar forces from other nations are also scarce. Thus, the main aim of this study was to collect reference data on physical fitness in HG personnel. A total of 799 male soldiers and officers from the regular and the rapid reaction HG force participated in this study. Between 13 and 19% of the subjects were obese, according to measured body mass index, waist circumference and estimations of body fat. The mean (95% confidence interval) estimated peak oxygen uptake from the 20-m shuttle run test was 50.1 (49.7-50.6) mL·kg·minute. Personnel from the rapid reaction force had a more favorable body composition compared with the regular HG personnel, whereas no differences were found for peak oxygen uptake. The physical demands on HG personnel are not well defined, but we believe that the majority of Norwegian HG soldiers and officers have a sufficient aerobic fitness level to fulfill their planned HG tasks. The gathered data can be used by military leaders to review the ability of the HG to perform expected military tasks, to serve as a future reference material for secular changes in HG fitness level, and for comparison purposes among similar international reserve forces.

  20. The effects of poling on physiological, kinematic and kinetic responses in roller ski skating.

    PubMed

    Grasaas, Erik; Hegge, Ann Magdalen; Ettema, Gertjan; Sandbakk, Øyvind

    2014-09-01

    We investigated the effects of poling on physiological, kinematic and kinetic responses in the G4 skating technique where the poling movement is synchronized with the leg push-off on one side (strong side) followed by a forward arm swing during the leg push-off on the other side (weak side). G4 skating with (G4-P) and without (G4-NP) poling was compared in 17 elite male cross-country skiers during 4-min submaximal tests on a 2% inclined roller ski treadmill at 10, 15 and 20 km h(-1). G4-P demonstrated less ventilatory stress and higher gross efficiency compared to G4-NP at all velocities, and the blood lactate concentration was lower at the high velocity (all P < 0.05). Furthermore, longer cycle lengths and lower cycle rates were found with G4-P at all velocities, with correspondingly lower peak ski forces, increased ski velocities and less angling and edging of the skis (all P < 0.05). The peak ski forces on the strong side were lower than on the weak side with G4-P at all velocities (all P < 0.05), but no differences between the sides were found with G4-NP. The reduced physiological cost, higher gross efficiency and longer cycle lengths together with the lower ski forces at a given work rate with G4-P demonstrate the effectiveness of poling in the G4 skating technique. Thus, poling provides possibilities to increase total propulsion, to reduce ski forces and to enhance skiing efficiency.

  1. Beta-Alanine Supplementation Improves Throwing Velocities in Repeated Sprint Ability and 200-m Swimming Performance in Young Water Polo Players.

    PubMed

    Claus, Gabriel Machado; Redkva, Paulo Eduardo; Brisola, Gabriel Mota Pinheiro; Malta, Elvis Sousa; de Araujo Bonetti de Poli, Rodrigo; Miyagi, Willian Eiji; Zagatto, Alessandro Moura

    2017-05-01

    The purpose of this study was to investigate the effects of beta-alanine supplementation on specific tests for water polo. Fifteen young water polo players (16 ± 2 years) underwent a 200-m swimming performance, repeated-sprint ability test (RSA) with free throw (shooting), and 30-s maximal tethered eggbeater kicks. Participants were randomly allocated into two groups (placebo × beta-alanine) and supplemented with 6.4g∙day -1 of beta-alanine or a placebo for six weeks. The mean and total RSA times, the magnitude based inference analysis showed a likely beneficial effect for beta-alanine supplementation (both). The ball velocity measured in the throwing performance after each sprint in the RSA presented a very like beneficial inference in the beta-alanine group for mean (96.4%) and percentage decrement of ball velocity (92.5%, likely beneficial). Furthermore, the percentage change for mean ball velocity was different between groups (beta-alanine=+2.5% and placebo=-3.5%; p = .034). In the 30-s maximal tethered eggbeater kicks the placebo group presented decreased peak force, mean force, and fatigue index, while the beta-alanine group maintained performance in mean force (44.1%, possibly beneficial), only presenting decreases in peak force. The 200-m swimming performance showed a possibly beneficial effect (68.7%). Six weeks of beta-alanine supplementation was effective for improving ball velocity shooting in the RSA, maintaining performance in the 30-s test, and providing possibly beneficial effects in the 200-m swimming performance.

  2. Does Foot Anthropometry Predict Metabolic Cost During Running?

    PubMed

    van Werkhoven, Herman; Piazza, Stephen J

    2017-10-01

    Several recent investigations have linked running economy to heel length, with shorter heels being associated with less metabolic energy consumption. It has been hypothesized that shorter heels require larger plantar flexor muscle forces, thus increasing tendon energy storage and reducing metabolic cost. The goal of this study was to investigate this possible mechanism for metabolic cost reduction. Fifteen male subjects ran at 16 km⋅h -1 on a treadmill and subsequently on a force-plate instrumented runway. Measurements of oxygen consumption, kinematics, and ground reaction forces were collected. Correlational analyses were performed between oxygen consumption and anthropometric and kinetic variables associated with the ankle and foot. Correlations were also computed between kinetic variables (peak joint moment and peak tendon force) and heel length. Estimated peak Achilles tendon force normalized to body weight was found to be strongly correlated with heel length normalized to body height (r = -.751, p = .003). Neither heel length nor any other measured or calculated variable were correlated with oxygen consumption, however. Subjects with shorter heels experienced larger Achilles tendon forces, but these forces were not associated with reduced metabolic cost. No other anthropometric and kinetic variables considered explained the variance in metabolic cost across individuals.

  3. Eddy response to variable atmospheric forcing in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Ward, M. L.; McC. Hogg, A.

    2009-04-01

    Satellite altimeter data of the Southern Ocean (SO) reveal an anomalous peak in eddy kinetic energy (EKE) in the Antarctic Circumpolar Current (ACC) in 2000-2002. This peak has been attributed to a delayed response to an earlier peak in the Southern Annular Mode (SAM) and its associated circumpolar eastward winds that occurred around 1998, where the delay is due to the formation and adjustment of the eddy field associated with the increased winds (Meredith & Hogg, 2006). A more recent analysis reveals that the EKE response varies regionally, with the strongest response in the Pacific, and it has been suggested that this variability is due to the additional influence of ENSO. The 2000-2002 peak in EKE is therefore attributed to the coincident peak in SAM and ENSO 2-3 years earlier, and that the EKE response was weaker in past years when modes were out of phase (Morrow & Pasquet, 2008). We investigate this issue by applying SAM-like and ENSO-like wind forcings to Q-GCM, the eddy-resolving model used in Meredith & Hogg and configured for the Southern Ocean. We analyze the EKE response to each individual forcing as well as a simultaneous forcing of the two, both in and out of phase. From these results, we are able to quantify both the global and regional response to each forcing, and the degree to which each mode is responsible for the EKE strength and distribution across the ACC.

  4. Biomechanical tolerance of whole lumbar spines in straightened posture subjected to axial acceleration.

    PubMed

    Stemper, Brian D; Chirvi, Sajal; Doan, Ninh; Baisden, Jamie L; Maiman, Dennis J; Curry, William H; Yoganandan, Narayan; Pintar, Frank A; Paskoff, Glenn; Shender, Barry S

    2018-06-01

    Quantification of biomechanical tolerance is necessary for injury prediction and protection of vehicular occupants. This study experimentally quantified lumbar spine axial tolerance during accelerative environments simulating a variety of military and civilian scenarios. Intact human lumbar spines (T12-L5) were dynamically loaded using a custom-built drop tower. Twenty-three specimens were tested at sub-failure and failure levels consisting of peak axial forces between 2.6 and 7.9 kN and corresponding peak accelerations between 7 and 57 g. Military aircraft ejection and helicopter crashes fall within these high axial acceleration ranges. Testing was stopped following injury detection. Both peak force and acceleration were significant (p < 0.0001) injury predictors. Injury probability curves using parametric survival analysis were created for peak acceleration and peak force. Fifty-percent probability of injury (95%CI) for force and acceleration were 4.5 (3.9-5.2 kN), and 16 (13-19 g). A majority of injuries affected the L1 spinal level. Peak axial forces and accelerations were greater for specimens that sustained multiple injuries or injuries at L2-L5 spinal levels. In general, force-based tolerance was consistent with previous shorter-segment lumbar spine testing (3-5 vertebrae), although studies incorporating isolated vertebral bodies reported higher tolerance attributable to a different injury mechanism involving structural failure of the cortical shell. This study identified novel outcomes with regard to injury patterns, wherein more violent exposures produced more injuries in the caudal lumbar spine. This caudal migration was likely attributable to increased injury tolerance at lower lumbar spinal levels and a faster inertial mass recruitment process for high rate load application. Published 2017. This article is a U.S. Government work and is in the public domain in the USA. J Orthop Res 36:1747-1756, 2018. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  5. Footwear affects the behavior of low back muscles when jogging.

    PubMed

    Ogon, M; Aleksiev, A R; Spratt, K F; Pope, M H; Saltzman, C L

    2001-08-01

    Use of modified shoes and insole materials has been widely advocated to treat low back symptoms from running impacts, although considerable uncertainty remains regarding the effects of these devices on the rate of shock transmission to the spine. This study investigated the effects of shoes and insole materials on a) the rate of shock transmission to the spine, b) the temporal response of spinal musculature to impact loading, and c) the time interval between peak lumbar acceleration and peak lumbar muscle response. It was hypothesised that shoes and inserts a) decrease the rate of shock transmission, b) decrease the low back muscle response time, and c) shorten the time interval between peak lumbar acceleration and peak lumbar muscle response. Twelve healthy subjects were tested while jogging barefoot (unshod) or wearing identical athletic shoes (shod). Either no material, semi-rigid (34 Shore A), or soft (9.5 Shore A) insole material covered the force plate in the barefoot conditions and was placed as insole when running shod. Ground reaction forces, acceleration at the third lumbar level, and erector spinae myoelectric activity were recorded simultaneously. The rate of shock transmission to the spine was greater (p < 0.0003) unshod (acceleration rate: Means +/- SD 127.35 +/- 87.23 g/s) than shod (49.84 +/- 33.98 g/s). The temporal response of spinal musculature following heel strike was significantly shorter (p < 0.023) unshod (0.038 +/- 0.021 s) than shod (0.047 +/- 0.036 s). The latency between acceleration peak (maximal external force) and muscle response peak (maximal internal force) was significantly (p < 0.021) longer unshod (0.0137 +/- 0.022s) than shod (0.004 +/- 0.040 s). These results suggest that one of the benefits of running shoes and insoles is improved temporal synchronization between potentially destabilizing external forces and stabilizing internal forces around the lumbar spine.

  6. Instruction of jump-landing technique using videotape feedback: altering lower extremity motion patterns.

    PubMed

    Oñate, James A; Guskiewicz, Kevin M; Marshall, Stephen W; Giuliani, Carol; Yu, Bing; Garrett, William E

    2005-06-01

    Anterior cruciate ligament injury prevention programs have used videotapes of jump-landing technique as a key instructional component to improve landing performance. All videotape feedback model groups will increase knee flexion angles at initial contact and overall knee flexion motion and decrease peak vertical ground reaction forces and peak proximal anterior tibial shear forces to a greater extent than will a nonfeedback group. The secondary hypothesis is that the videotape feedback using the combination of the expert and self models will create the greatest change in each variable. Controlled laboratory study. Knee kinematics and kinetics of college-aged recreational athletes randomly placed in 3 different videotape feedback model groups (expert only, self only, combination of expert and self) and a nonfeedback group were collected while participants performed a basketball jump-landing task on 3 testing occasions. All feedback groups significantly increased knee angular displacement flexion angles [F(6,70) = 8.03, P = .001] and decreased peak vertical ground reaction forces [F(6,78) = 2.68, P = .021] during performance and retention tests. The self and combination groups significantly increased knee angular displacement flexion angles more than the control group did; the expert model group did not change significantly more than the control group did. All feedback groups and the nonfeedback group significantly reduced peak vertical forces across performance and retention tests. There were no statistically significant changes in knee flexion angle at initial ground contact (P = .111) and peak proximal anterior tibial shear forces (P = .509) for both testing sessions for each group. The use of self or combination videotape feedback is most useful for increasing knee angular displacement flexion angles and reducing peak vertical forces during landing. The use of self or combination modeling is more effective than is expert-only modeling for the implementation of instructional programs aimed at reducing the risk of jump-landing anterior cruciate ligament injuries.

  7. Discrete Element Method Simulation of a Boulder Extraction From an Asteroid

    NASA Technical Reports Server (NTRS)

    Kulchitsky, Anton K.; Johnson, Jerome B.; Reeves, David M.; Wilkinson, Allen

    2014-01-01

    The force required to pull 7t and 40t polyhedral boulders from the surface of an asteroid is simulated using the discrete element method considering the effects of microgravity, regolith cohesion and boulder acceleration. The connection between particle surface energy and regolith cohesion is estimated by simulating a cohesion sample tearing test. An optimal constant acceleration is found where the peak net force from inertia and cohesion is a minimum. Peak pulling forces can be further reduced by using linear and quadratic acceleration functions with up to a 40% reduction in force for quadratic acceleration.

  8. Force Outputs during Squats Performed Using a Rotational Inertia Device under Stable versus Unstable Conditions with Different Loads.

    PubMed

    Vázquez-Guerrero, Jairo; Moras, Gerard; Baeza, Jennifer; Rodríguez-Jiménez, Sergio

    2016-01-01

    The purpose of the study was to compare the force outputs achieved during a squat exercise using a rotational inertia device in stable versus unstable conditions with different loads and in concentric and eccentric phases. Thirteen male athletes (mean ± SD: age 23.7 ± 3.0 years, height 1.80 ± 0.08 m, body mass 77.4 ± 7.9 kg) were assessed while squatting, performing one set of three repetitions with four different loads under stable and unstable conditions at maximum concentric effort. Overall, there were no significant differences between the stable and unstable conditions at each of the loads for any of the dependent variables. Mean force showed significant differences between some of the loads in stable and unstable conditions (P < 0.010) and peak force output differed between all loads for each condition (P < 0.045). Mean force outputs were greater in the concentric than in the eccentric phase under both conditions and with all loads (P < 0.001). There were no significant differences in peak force between concentric and eccentric phases at any load in either stable or unstable conditions. In conclusion, squatting with a rotational inertia device allowed the generation of similar force outputs under stable and unstable conditions at each of the four loads. The study also provides empirical evidence of the different force outputs achieved by adjusting load conditions on the rotational inertia device when performing squats, especially in the case of peak force. Concentric force outputs were significantly higher than eccentric outputs, except for peak force under both conditions. These findings support the use of the rotational inertia device to train the squatting exercise under unstable conditions for strength and conditioning trainers. The device could also be included in injury prevention programs for muscle lesions and ankle and knee joint injuries.

  9. Force Outputs during Squats Performed Using a Rotational Inertia Device under Stable versus Unstable Conditions with Different Loads

    PubMed Central

    Vázquez-Guerrero, Jairo; Moras, Gerard

    2016-01-01

    The purpose of the study was to compare the force outputs achieved during a squat exercise using a rotational inertia device in stable versus unstable conditions with different loads and in concentric and eccentric phases. Thirteen male athletes (mean ± SD: age 23.7 ± 3.0 years, height 1.80 ± 0.08 m, body mass 77.4 ± 7.9 kg) were assessed while squatting, performing one set of three repetitions with four different loads under stable and unstable conditions at maximum concentric effort. Overall, there were no significant differences between the stable and unstable conditions at each of the loads for any of the dependent variables. Mean force showed significant differences between some of the loads in stable and unstable conditions (P < 0.010) and peak force output differed between all loads for each condition (P < 0.045). Mean force outputs were greater in the concentric than in the eccentric phase under both conditions and with all loads (P < 0.001). There were no significant differences in peak force between concentric and eccentric phases at any load in either stable or unstable conditions. In conclusion, squatting with a rotational inertia device allowed the generation of similar force outputs under stable and unstable conditions at each of the four loads. The study also provides empirical evidence of the different force outputs achieved by adjusting load conditions on the rotational inertia device when performing squats, especially in the case of peak force. Concentric force outputs were significantly higher than eccentric outputs, except for peak force under both conditions. These findings support the use of the rotational inertia device to train the squatting exercise under unstable conditions for strength and conditioning trainers. The device could also be included in injury prevention programs for muscle lesions and ankle and knee joint injuries. PMID:27111766

  10. Peak energy turnover in lactating European hares: the role of fat reserves

    PubMed Central

    Valencak, T. G.; Tataruch, F.; Ruf, T.

    2010-01-01

    SUMMARY European hares (Lepus europaeus) in central Europe have high energetic costs of reproduction, mainly due to precocial, rapidly growing young that rely largely on energy rich milk. Thus, hares in this climate build up large fat stores during winter which are then gradually depleted during the spring to autumn breeding season. We hypothesized that diminishing fat stores of females over the breeding season may affect resource allocation, peak energy assimilation during lactation, or the total investment in offspring. Therefore, we measured energy intake, milk quality and milk production throughout lactation in spring, summer and autumn, in females raising (size-manipulated) litters with three young each, under natural photoperiod but at buffered ambient temperatures inside our facility. Over the course of the breeding season the amount of milk production remained constant but fat content of the milk decreased. Hence, total energy transfer to young decreased significantly in autumn. By using undecanoic acid as a tracer of body fat mobilization we were able to show that milk fat partially originated from maternal fat stores particularly in spring. Peak sustained energy assimilation rates of lactating females were significantly higher in autumn, due to increased rates of food intake. We conclude that fat stores allow female hares to downregulate energy intake and expenditure early in the breeding season whereas late breeding forces them to reach peak energy intake levels. Accordingly, we suggest that in hares, peak energy turnover during lactation varies with the availability of fat reserves. Limits to sustained metabolic rate serve as variable constraints on reproductive investment. There may be a trade-off in energetic costs to mothers rearing early vs. late litters in the year. PMID:19112142

  11. Independent effects of step length and foot strike pattern on tibiofemoral joint forces during running.

    PubMed

    Bowersock, Collin D; Willy, Richard W; DeVita, Paul; Willson, John D

    2017-10-01

    The purpose of this study was to examine the effects of step length and foot strike pattern along with their interaction on tibiofemoral joint (TFJ) and medial compartment TFJ kinetics during running. Nineteen participants ran with a rear foot strike pattern at their preferred speed using a short (-10%), preferred, and long (+10%) step length. These step length conditions were then repeated using a forefoot strike pattern. Regardless of foot strike pattern, a 10% shorter step length resulted in decreased peak contact force, force impulse per step, force impulse per kilometre, and average loading rate at the TFJ and medial compartment, while a 10% increased step length had the opposite effects (all P < 0.05). A forefoot strike pattern significantly lowered TFJ and medial compartment TFJ average loading rates compared with a rear foot strike pattern (both <0.05) but did not change TFJ or medial compartment peak force, force impulse per step, or force impulse per km. The combination of a shorter step length and forefoot strike pattern produced the greatest reduction in peak medial compartment contact force (P < 0.05). Knowledge of these running modification effects may be relevant to the management or prevention of TFJ injury or pathology among runners.

  12. AFM PeakForce QNM mode: Evidencing nanometre-scale mechanical properties of chitin-silica hybrid nanocomposites.

    PubMed

    Smolyakov, G; Pruvost, S; Cardoso, L; Alonso, B; Belamie, E; Duchet-Rumeau, J

    2016-10-20

    PeakForce Quantitative Nanomechanical Mapping (QNM) AFM mode was used to explore the mechanical properties of textured chitin-silica hybrid films at the nanoscale. The influence of the force applied by the tip on the sample surface was studied for standard homogeneous samples, for chitin nanorods and for chitin-silica hybrid nanocomposites. Thick films of superimposed chitin nanorods showed a monotonous increase of DMT modulus (based on the Derjaguin-Muller-Toporov model) owing to an increase in modulus at the interface between nanorods due to geometrical constraints of the AFM acquisition. A similar variation of DMT modulus was obtained for chitin-silica hybrid thick films related to mechanical strengthening induced by the presence of silica. This work revealed the role of the organic-inorganic interface, at the nanoscale, in the mechanical behaviour of textured materials using PeakForce QNM mode, with optimized analysis conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Force-time profile differences in the delivery of simulated toggle-recoil spinal manipulation by students, instructors, and field doctors of chiropractic.

    PubMed

    DeVocht, James W; Owens, Edward F; Gudavalli, Maruti Ram; Strazewski, John; Bhogal, Ramneek; Xia, Ting

    2013-01-01

    The objectives of this study were to examine the force-time profiles of toggle recoil using an instrumented simulator to objectively measure and evaluate students' skill to determine if they become quicker and use less force during the course of their training and to compare them to course instructors and to field doctors of chiropractic (DCs) who use this specific technique in their practices. A load cell was placed within a toggle recoil training device. The preload, speed, and magnitude of the toggle recoil thrusts were measured from 60 students, 2 instructors, and 77 DCs (ie, who use the toggle recoil technique in their regular practice). Student data were collected 3 times during their toggle course (after first exposure, at midterm, and at course end.) Thrusts showed a dual-peak force-time profile not previously described in other forms of spinal manipulation. There was a wide range of values for each quantity measured within and between all 3 subject groups. The median peak load for students decreased over the course of their class, but they became slower. Field doctors were faster than students or instructors and delivered higher peak loads. Toggle recoil thrusts into a dropping mechanism varied based upon subject and amount of time practicing the task. As students progressed through the class, speed reduced as they increased control to lower peak loads. In the group studies, field DCs applied higher forces and were faster than both students and instructors. There appears to be a unique 2-peak feature of the force-time plot that is unique to toggle recoil manipulation with a drop mechanism. Copyright © 2013 National University of Health Sciences. Published by Mosby, Inc. All rights reserved.

  14. Mechanics of the human hamstring muscles during sprinting.

    PubMed

    Schache, Anthony G; Dorn, Tim W; Blanch, Peter D; Brown, Nicholas A T; Pandy, Marcus G

    2012-04-01

    An understanding of hamstring mechanics during sprinting is important for elucidating why these muscles are so vulnerable to acute strain-type injury. The purpose of this study was twofold: first, to quantify the biomechanical load (specifically, musculotendon strain, velocity, force, power, and work) experienced by the hamstrings across a full stride cycle; and second, to determine how these parameters differ for each hamstring muscle (i.e., semimembranosus (SM), semitendinosus (ST), biceps femoris long head (BF), biceps femoris short head (BF)). Full-body kinematics and ground reaction force data were recorded simultaneously from seven subjects while sprinting on an indoor running track. Experimental data were integrated with a three-dimensional musculoskeletal computer model comprised of 12 body segments and 92 musculotendon structures. The model was used in conjunction with an optimization algorithm to calculate musculotendon strain, velocity, force, power, and work for the hamstrings. SM, ST, and BF all reached peak strain, produced peak force, and formed much negative work (energy absorption) during terminal swing. The biomechanical load differed for each hamstring muscle: BF exhibited the largest peak strain, ST displayed the greatest lengthening velocity, and SM produced the highest peak force, absorbed and generated the most power, and performed the largest amount of positive and negative work. As peak musculotendon force and strain for BF, ST, and SM occurred around the same time during terminal swing, it is suggested that this period in the stride cycle may be when the biarticular hamstrings are at greatest injury risk. On this basis, hamstring injury prevention or rehabilitation programs should preferentially target strengthening exercises that involve eccentric contractions performed with high loads at longer musculotendon lengths.

  15. Low cell pH depresses peak power in rat skeletal muscle fibres at both 30 degrees C and 15 degrees C: implications for muscle fatigue.

    PubMed

    Knuth, S T; Dave, H; Peters, J R; Fitts, R H

    2006-09-15

    Historically, an increase in intracellular H(+) (decrease in cell pH) was thought to contribute to muscle fatigue by direct inhibition of the cross-bridge leading to a reduction in velocity and force. More recently, due to the observation that the effects were less at temperatures closer to those observed in vivo, the importance of H(+) as a fatigue agent has been questioned. The purpose of this work was to re-evaluate the role of H(+) in muscle fatigue by studying the effect of low pH (6.2) on force, velocity and peak power in rat fast- and slow-twitch muscle fibres at 15 degrees C and 30 degrees C. Skinned fast type IIa and slow type I fibres were prepared from the gastrocnemius and soleus, respectively, mounted between a force transducer and position motor, and studied at 15 degrees C and 30 degrees C and pH 7.0 and 6.2, and fibre force (P(0)), unloaded shortening velocity (V(0)), force-velocity, and force-power relationships determined. Consistent with previous observations, low pH depressed the P(0) of both fast and slow fibres, less at 30 degrees C (4-12%) than at 15 degrees C (30%). However, the low pH-induced depressions in slow type I fibre V(0) and peak power were both significantly greater at 30 degrees C (25% versus 9% for V(0) and 34% versus 17% for peak power). For the fast type IIa fibre type, the inhibitory effect of low pH on V(0) was unaltered by temperature, while for peak power the inhibition was reduced at 30 degrees C (37% versus 18%). The curvature of the force-velocity relationship was temperature sensitive, and showed a higher a/P(0) ratio (less curvature) at 30 degrees C. Importantly, at 30 degrees C low pH significantly depressed the ratio of the slow type I fibre, leading to less force and velocity at peak power. These data demonstrate that the direct effect of low pH on peak power in both slow- and fast-twitch fibres at near-in vivo temperatures (30 degrees C) is greater than would be predicted based on changes in P(0), and that the fatigue-inducing effects of low pH on cross-bridge function are still substantial and important at temperatures approaching those observed in vivo.

  16. Measures of Functional Performance and Their Association With Hip and Thigh Strength

    PubMed Central

    Kollock, Roger; Van Lunen, Bonnie L.; Ringleb, Stacie I.; Oñate, James A.

    2015-01-01

    Context: Insufficient hip and thigh strength may increase an athlete's susceptibility to injury. However, screening for strength deficits using isometric and isokinetic instrumentation may not be practical in all clinical scenarios. Objective: To determine if functional performance tests are valid indicators of hip and thigh strength. Design: Descriptive laboratory study. Setting: Research laboratory. Patients or Other Participants: Sixty-two recreationally athletic men (n = 30, age = 21.07 years, height = 173.84 cm, mass = 81.47 kg) and women (n = 32, age = 21.03 years, height = 168.77 cm, mass = 68.22 kg) participants were recruited. Intervention(s): During session 1, we measured isometric peak force and rate of force development for 8 lower extremity muscle groups, followed by an isometric endurance test. During session 2, participants performed functional performance tests. Main Outcome Measure(s): Peak force, rate of force development, fatigue index, hop distance (or height), work (joules), and number of hops performed during the 30-second lateral-hop test were assessed. The r values were squared to calculate r 2. We used Pearson correlations to evaluate the associations between functional performance and strength. Results: In men, the strongest relationship was observed between triple-hop work and hip-adductor peak force (r2 = 50, P ≤ .001). Triple-hop work also was related to hip-adductor (r2 = 38, P ≤ .01) and hip-flexor (r2 = 37, P ≤ .01) rate of force development. For women, the strongest relationships were between single-legged vertical-jump work and knee-flexor peak force (r2 = 0.44, P ≤ .01) and single-legged vertical-jump height and knee-flexor peak force (r2 = 0.42, P ≤ .01). Single-legged vertical-jump height also was related to knee-flexor rate of force development (r2 = 0.49, P ≤ .001). The 30-second lateral-hop test did not account for a significant portion of the variance in strength endurance. Conclusions: Hop tests alone did not provide clinicians with enough information to make evidence-based decisions about lower extremity strength in isolated muscle groups. PMID:25347236

  17. Skilful force control in expert pianists.

    PubMed

    Oku, Takanori; Furuya, Shinichi

    2017-05-01

    Dexterous object manipulation in skilful behaviours such as surgery, craft making, and musical performance involves fast, precise, and efficient control of force with the fingers. A challenge in playing musical instruments is the requirement of independent control of the magnitude and rate of force production, which typically vary in relation to loudness and tempo. However, it is unknown how expert musicians skilfully control finger force to elicit tones with a wide range of loudness and tempi. Here, we addressed this issue by comparing the variation of spatiotemporal characteristics of force during repetitive and simultaneous piano keystrokes in relation to the loudness and tempo between pianists and musically untrained individuals. While the peak key-descending velocity varied with loudness but not with tempo in both groups, the peak and impulse of the key-depressing force were smaller in pianists than in the non-musicians, specifically when eliciting loud tones, suggesting superior energetic efficiency in the trained individuals. The key-depressing force was more consistent across strikes in pianists than in the non-musicians at all loudness levels but only at slow tempi, confirming expertise-dependency of precise force control. A regression analysis demonstrated that individual differences in the keystroke rates when playing at the fastest tempo across the trained pianists were negatively associated with the force impulse during the key depression but not with the peak force only at the loudest tone. This suggests that rapid reductions of force following the key depression plays a role in considerably fast performance of repetitive piano keystrokes.

  18. Transmission of Force in the Lumbosacral Spine During Backward Falls

    PubMed Central

    Van Toen, Carolyn; Sran, Meena M.; Robinovitch, Stephen N.; Cripton, Peter A.

    2012-01-01

    Study Design Mathematical model, combined with and verified using human subject data. Objective (1) To develop and verify a lumped-parameter mathematical model for prediction of spine forces during backward falls; (2) to use this model to evaluate the effect of floor stiffness on spine forces during falls; and (3) to compare predicted impact forces with forces previously measured to fracture the spine. Summary of Background Data Vertebral fractures are the most common osteoporotic fractures and commonly result from falls from standing height. Compliant flooring reduces the force at the ground during a backward fall from standing; however, the effect on spine forces is unknown. Methods A 6-df model of the body was developed and verified using data from 10 human subjects falling from standing onto 3 types of compliant floors (soft: 59 kN/m, medium: 67 kN/m, and firm: 95 kN/m). The simulated ground forces were compared with those measured experimentally. The model was also used to assess the effect of floor stiffness on spine forces at various intervertebral levels. Results There was less than 14% difference between model predictions and experimentally measured peak ground reaction forces, when averaged over all floor conditions. When compared with the rigid floor, average peak spine force attenuations of 46%, 43%, and 41% were achieved with the soft, medium, and firm floors, respectively (3.7, 3.9, 4.1 kN vs. 6.9 kN at L4/L5). Spine forces were lower than those at the ground and decreased cranially (4.9, 3.9, 3.7, 3.5 kN at the ground, L5/S1, L4/L5, and L3/L4, respectively, for the soft floor). Conclusion Lowering the floor stiffness (from 400 to 59 kN/m) can attenuate peak lumbosacral spine forces in a backward fall onto the buttocks from standing by 46% (average peak from 6.9 to 3.7 kN at L4/L5) to values closer to the average tolerance of the spine to fracture (3.4 kN). PMID:22076645

  19. Transmission of force in the lumbosacral spine during backward falls.

    PubMed

    Van Toen, Carolyn; Sran, Meena M; Robinovitch, Stephen N; Cripton, Peter A

    2012-04-20

    Mathematical model, combined with and verified using human subject data. (1) To develop and verify a lumped-parameter mathematical model for prediction of spine forces during backward falls; (2) to use this model to evaluate the effect of floor stiffness on spine forces during falls; and (3) to compare predicted impact forces with forces previously measured to fracture the spine. Vertebral fractures are the most common osteoporotic fractures and commonly result from falls from standing height. Compliant flooring reduces the force at the ground during a backward fall from standing; however, the effect on spine forces is unknown. A 6-df model of the body was developed and verified using data from 10 human subjects falling from standing onto 3 types of compliant floors (soft: 59 kN/m, medium: 67 kN/m, and firm: 95 kN/m). The simulated ground forces were compared with those measured experimentally. The model was also used to assess the effect of floor stiffness on spine forces at various intervertebral levels. There was less than 14% difference between model predictions and experimentally measured peak ground reaction forces, when averaged over all floor conditions. When compared with the rigid floor, average peak spine force attenuations of 46%, 43%, and 41% were achieved with the soft, medium, and firm floors, respectively (3.7, 3.9, 4.1 kN vs. 6.9 kN at L4/L5). Spine forces were lower than those at the ground and decreased cranially (4.9, 3.9, 3.7, 3.5 kN at the ground, L5/S1, L4/L5, and L3/L4, respectively, for the soft floor). Lowering the floor stiffness (from 400 to 59 kN/m) can attenuate peak lumbosacral spine forces in a backward fall onto the buttocks from standing by 46% (average peak from 6.9 to 3.7 kN at L4/L5) to values closer to the average tolerance of the spine to fracture (3.4 kN).

  20. Developing a Peak Wind Probability Forecast Tool for Kennedy Space Center and Cape Canaveral Air Force Station

    NASA Technical Reports Server (NTRS)

    Lambert, WInifred; Roeder, William

    2007-01-01

    This conference presentation describes the development of a peak wind forecast tool to assist forecasters in determining the probability of violating launch commit criteria (LCC) at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) in east-central Florida. The peak winds are an important forecast element for both the Space Shuttle and Expendable Launch Vehicle (ELV) programs. The LCC define specific peak wind thresholds for each launch operation that cannot be exceeded in order to ensure the safety of the vehicle. The 45th Weather Squadron (45 WS) has found that peak winds are a challenging parameter to forecast, particularly in the cool season months of October through April. Based on the importance of forecasting peak winds, the 45 WS tasked the Applied Meteorology Unit (AMU) to develop a short-range peak-wind forecast tool to assist in forecasting LCC violations. The tool will include climatologies of the 5-minute mean and peak winds by month, hour, and direction, and probability distributions of the peak winds as a function of the 5-minute mean wind speeds.

  1. Statistical Short-Range Guidance for Peak Wind Forecasts on Kennedy Space Center/Cape Canaveral Air Force Station, Phase III

    NASA Technical Reports Server (NTRS)

    Crawford, Winifred

    2010-01-01

    This final report describes the development of a peak wind forecast tool to assist forecasters in determining the probability of violating launch commit criteria (LCC) at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). The peak winds are an important forecast element for both the Space Shuttle and Expendable Launch Vehicle (ELV) programs. The LCC define specific peak wind thresholds for each launch operation that cannot be exceeded in order to ensure the safety of the vehicle. The 45th Weather Squadron (45 WS) has found that peak winds are a challenging parameter to forecast, particularly in the cool season months of October through April. Based on the importance of forecasting peak winds, the 45 WS tasked the Applied Meteorology Unit (AMU) to develop a short-range peak-wind forecast tool to assist in forecasting LCC violations.The tool includes climatologies of the 5-minute mean and peak winds by month, hour, and direction, and probability distributions of the peak winds as a function of the 5-minute mean wind speeds.

  2. A Peak Wind Probability Forecast Tool for Kennedy Space Center and Cape Canaveral Air Force Station

    NASA Technical Reports Server (NTRS)

    Crawford, Winifred; Roeder, William

    2008-01-01

    This conference abstract describes the development of a peak wind forecast tool to assist forecasters in determining the probability of violating launch commit criteria (LCC) at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) in east-central Florida. The peak winds are an important forecast element for both the Space Shuttle and Expendable Launch Vehicle (ELV) programs. The LCC define specific peak wind thresholds for each launch operation that cannot be exceeded in order to ensure the safety of the vehicle. The 45th Weather Squadron (45 WS) has found that peak winds are a challenging parameter to forecast, particularly in the cool season months of October through April. Based on the importance of forecasting peak winds, the 45 WS tasked the Applied Meteorology Unit (AMU) to develop a short-range peak-wind forecast tool to assist in forecasting LCC violatioas.The tool will include climatologies of the 5-minute mean end peak winds by month, hour, and direction, and probability distributions of the peak winds as a function of the 5-minute mean wind speeds.

  3. Peak Wind Forecasts for the Launch-Critical Wind Towers on Kennedy Space Center/Cape Canaveral Air Force Station, Phase IV

    NASA Technical Reports Server (NTRS)

    Crawford, Winifred

    2011-01-01

    This final report describes the development of a peak wind forecast tool to assist forecasters in determining the probability of violating launch commit criteria (LCC) at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). The peak winds arc an important forecast clement for both the Space Shuttle and Expendable Launch Vehicle (ELV) programs. The LCC define specific peak wind thresholds for each launch operation that cannot be exceeded in order to ensure the safety of the vehicle. The 45th Weather Squadron (45 WS) has found that peak winds are a challenging parameter to forecast, particularly in the cool season months of October through April. Based on the importance of forecasting peak winds, the 45 WS tasked the Applied Meteorology Unit (AMU) to update the statistics in the current peak-wind forecast tool to assist in forecasting LCC violations. The tool includes onshore and offshore flow climatologies of the 5-minute mean and peak winds and probability distributions of the peak winds as a function of the 5-minute mean wind speeds.

  4. Total contact cast wall load in patients with a plantar forefoot ulcer and diabetes.

    PubMed

    Begg, Lindy; McLaughlin, Patrick; Vicaretti, Mauro; Fletcher, John; Burns, Joshua

    2016-01-01

    The total contact cast (TCC) is an effective intervention to reduce plantar pressure in patients with diabetes and a plantar forefoot ulcer. The walls of the TCC have been indirectly shown to bear approximately 30 % of the plantar load. A new direct method to measure inside the TCC walls with capacitance sensors has shown that the anterodistal and posterolateral-distal regions of the lower leg bear the highest load. The objective of this study was to directly measure these two regions in patients with Diabetes and a plantar forefoot ulcer to further understand the mechanism of pressure reduction in the TCC. A TCC was applied to 17 patients with Diabetes and a plantar forefoot ulcer. TCC wall load (contact area, peak pressure and max force) at the anterodistal and posterolateral-distal regions of the lower leg were evaluated with two capacitance sensor strips measuring 90 cm(2) (pliance®, novel GmbH, Germany). Plantar load (contact area, peak pressure and max force) was measured with a capacitance sensor insole (pedar®, novel GmbH, Germany) placed inside the TCC. Both pedar® and pliance® collected data simultaneously at a sampling rate of 50Hz synchronised to heel strike. The magnitude of TCC wall load as a proportion of plantar load was calculated. The TCC walls were then removed to determine the differences in plantar loading between the TCC and the cut down shoe-cast for the whole foot, rearfoot, midfoot and forefoot (region of interest). TCC wall load was substantial. The anterodistal lower leg recorded 48 % and the posterolateral-distal lower leg recorded 34 % of plantar contact area. The anterodistal lower leg recorded 28 % and the posterolateral-distal lower leg recorded 12 % of plantar peak pressure. The anterodistal lower leg recorded 12 % and the posterolateral-distal lower leg recorded 4 % of plantar max force. There were significant differences in plantar load between the TCC and the cut down shoe-cast for the whole foot, rearfoot, midfoot and forefoot (region of ulcer). Contact area significantly increased by 5 % beneath the whole foot, 8 % at the midfoot and 6 % at the forefoot in the shoe-cast (p < 0.05). Peak pressure significantly increased by 8 % beneath the midfoot and 13 % at the forefoot in the shoe-cast (p < 0.05). Max force significantly increased 6 % beneath the midfoot in the (shoe-cast p < 0.05). In patients with diabetes and a plantar forefoot ulcer, the walls of the TCC bear considerable load. Reduced plantar contact area in the TCC compared to the shoe-cast suggests that the foot is suspended by the considerable load bearing capacity of the walls of the TCC which contributes mechanically to the pressure reduction and redistribution properties of the TCC.

  5. The Relationship Between Propulsive Force in Tethered Swimming and 200-m Front Crawl Performance.

    PubMed

    Santos, Karini B; Bento, Paulo C B; Pereira, Gleber; Rodacki, André L F

    2016-09-01

    Santos, KB, Bento, PCB, Pereira, G, and Rodacki, ALF. The relationship between propulsive force in tethered swimming and 200-m front crawl performance. J Strength Cond Res 30(9): 2500-2507, 2016-The aims of this study were to determine whether propulsive force (peak force, mean force, impulse, and rate of force development) and stroke rate change during 2 minutes of front crawl tethered swimming and to correlate them with the stroke rate and swimming velocity in 200-m front crawl swimming. Twenty-one swimmers (21.6 ± 4.8 years, 1.78 ± 0.06 m, 71.7 ± 8.1 kg), with 200-m front crawl swimming performance equivalent to 78% of the world record (140.4 ± 10.1 seconds), were assessed during 2 minutes of maximal front crawl tethered swimming (propulsive forces and stroke rate) and 200-m front crawl swimming (stroke rate and clean velocity). Propulsive forces decreased between the beginning and the middle instants (∼20%; p ≤ 0.05) but remained stable between the middle and the end instants (∼6%; p > 0.05). The peak force was positively correlated with the clean velocity in the 200-m front crawl swimming (mean r = 0.61; p < 0.02). The stroke rates of the tethered swimming and 200-m front crawl swimming were positively correlated (r = 45; p≤ 0.01) at the middle instant. Therefore, the propulsive force and stroke rate changed throughout the 2 minutes of tethered swimming, and the peak force is the best propulsive force variable tested that correlated with 200-m front crawl swimming performance.

  6. The effect of gender and fatigue on the biomechanics of bilateral landings from a jump: peak values.

    PubMed

    Pappas, Evangelos; Sheikhzadeh, Ali; Hagins, Marshall; Nordin, Margareta

    2007-01-01

    Female athletes are substantially more susceptible than males to suffer acute non-contact anterior cruciate ligament injury. A limited number of studies have identified possible biomechanical risk factors that differ between genders. The effect of fatigue on the biomechanics of landing has also been inadequately investigated. The objective of the study was to examine the effect of gender and fatigue on peak values of biomechanical variables during landing from a jump. Thirty-two recreational athletes performed bilateral drop jump landings from a 40 cm platform. Kinetic, kinematic and electromyographic data were collected before and after a functional fatigue protocol. Females landed with 9° greater peak knee valgus (p = 0.001) and 140% greater maximum vertical ground reaction forces (p = 0.003) normalized to body weight compared to males. Fatigue increased peak foot abduction by 1.7° (p = 0.042), peak rectus femoris activity by 27% (p = 0.018), and peak vertical ground reaction force (p = 0.038) by 20%. The results of the study suggest that landing with increased peak knee valgus and vertical ground reaction force may contribute to increased risk for knee injury in females. Fatigue caused significant but small changes on some biomechanical variables. Anterior cruciate ligament injury prevention programs should focus on implementing strategies to effectively teach females to control knee valgus and ground reaction force. Key pointsFemale athletes landed with increased knee valgus and VGRF which may predispose them to ACL injury.Fatigue elicited a similar response in male and female athletes.The effectiveness of sports injury prevention programs may improve by focusing on teaching females to land softer and with less knee valgus.

  7. The Effect of Gender and Fatigue on the Biomechanics of Bilateral Landings from a Jump: Peak Values

    PubMed Central

    Pappas, Evangelos; Sheikhzadeh, Ali; Hagins, Marshall; Nordin, Margareta

    2007-01-01

    Female athletes are substantially more susceptible than males to suffer acute non-contact anterior cruciate ligament injury. A limited number of studies have identified possible biomechanical risk factors that differ between genders. The effect of fatigue on the biomechanics of landing has also been inadequately investigated. The objective of the study was to examine the effect of gender and fatigue on peak values of biomechanical variables during landing from a jump. Thirty-two recreational athletes performed bilateral drop jump landings from a 40 cm platform. Kinetic, kinematic and electromyographic data were collected before and after a functional fatigue protocol. Females landed with 9° greater peak knee valgus (p = 0.001) and 140% greater maximum vertical ground reaction forces (p = 0.003) normalized to body weight compared to males. Fatigue increased peak foot abduction by 1.7° (p = 0.042), peak rectus femoris activity by 27% (p = 0.018), and peak vertical ground reaction force (p = 0.038) by 20%. The results of the study suggest that landing with increased peak knee valgus and vertical ground reaction force may contribute to increased risk for knee injury in females. Fatigue caused significant but small changes on some biomechanical variables. Anterior cruciate ligament injury prevention programs should focus on implementing strategies to effectively teach females to control knee valgus and ground reaction force. Key pointsFemale athletes landed with increased knee valgus and VGRF which may predispose them to ACL injury.Fatigue elicited a similar response in male and female athletes.The effectiveness of sports injury prevention programs may improve by focusing on teaching females to land softer and with less knee valgus. PMID:24149228

  8. Impact of anaemia on lung function and exercise capacity in patients with stable severe chronic obstructive pulmonary disease.

    PubMed

    Guo, Jian; Zheng, Cong; Xiao, Qiang; Gong, Sugang; Zhao, Qinhua; Wang, Lan; He, Jing; Yang, Wenlan; Shi, Xue; Sun, Xingguo; Liu, Jinming

    2015-10-08

    This study intended to search for potential correlations between anaemia in patients with severe chronic obstructive pulmonary disease (COPD; GOLD stage III) and pulmonary function at rest, exercise capacity as well as ventilatory efficiency, using pulmonary function test (PFT) and cardiopulmonary exercise testing (CPET). The study was undertaken at Shanghai Pulmonary Hospital, a tertiary-level centre affiliated to Tongji University. It caters to a large population base within Shanghai and referrals from centres in other cities as well. 157 Chinese patients with stable severe COPD were divided into 2 groups: the anaemia group (haemoglobin (Hb) <12.0 g/dL for males, and <11 g/dL for females (n=48)) and the non-anaemia group (n=109). Arterial blood gas, PFT and CPET were tested in all patients. (1) Diffusing capacity for carbon monoxide (DLCO) corrected by Hb was significantly lower in the anaemia group ((15.3±1.9) mL/min/mm Hg) than in the non-anaemia group ((17.1±2.1) mL/min/mm Hg) (p<0.05). A significant difference did not exist in the level of forced expiratory volume in 1 s (FEV1), FEV1%pred, FEV1/forced vital capacity (FVC), inspiratory capacity (IC), residual volume (RV), total lung capacity (TLC) and RV/TLC (p>0.05). (2) Peak Load, Peak oxygen uptake (VO2), Peak VO2%pred, Peak VO2/kg, Peak O2 pulse and the ratio of VO2 increase to WR increase (ΔVO2/ΔWR) were significantly lower in the anaemia group (p<0.05); however, Peak minute ventilation (VE), Lowest VE/carbon dioxide output (VCO2) and Peak dead space/tidal volume ratio (VD/VT) were similar between the 2 groups (p>0.05). (3) A strong positive correlation was found between Hb concentration and Peak VO2 in patients with anaemia (r=0.702, p<0.01). Anaemia has a negative impact on gas exchange and exercise tolerance during exercise in patients with severe COPD. The decrease in amplitude of Hb levels is related to the quantity of oxygen uptake. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  9. The effects of Navy ship ladder descent on the knee internal joint reaction forces

    NASA Astrophysics Data System (ADS)

    Coulter, Jonathan D.; Weinhandl, Joshua T.; Bawab, Sebastian Y.; Ringleb, Stacie I.

    2017-02-01

    Military populations may be at risk for developing knee osteoarthritis and other knee problems when descending a Navy ship ladder, which differs from traditional stairs due to non-overlapping treads, a larger rise and a steeper inclination angle. The purpose of this study was to develop a forward dynamic model of the descent of a Navy ship ladder to determine how this motion affects the internal knee reaction forces and how altering the hamstring/quadriceps ratio affects the internal joint reaction forces in the knee. Kinematic and kinetic data were collected from three male sailors descending a replica of a Navy ship ladder and were used as input into a model constructed in OpenSim. The peak resultant joint reaction force was 6.6 × BW, which was greater than values reported in the literature in traditional stairs. Peak compressive and anterior joint reaction forces, 4.05 × BW and 5.46 × BW, respectively, were greater than reported values for a squat, a motion similar to descending a ship ladder. The average peak vertical and anterior internal joint reaction force at the knee were 4.05 × BW and 5.46 × BW, respectively. The resultant joint reaction forces calculated from the ladder descent were greater than stair descent and squatting. Little effects were found in the joint reaction forces after adjusting the quadriceps to hamstring muscle strength ratios, possibly because these ratios might change the distribution of the contact forces across the joint, not the resultant forces.

  10. A Climatology of Midlatitude Continental Clouds from the ARM SGP Site. Part II; Cloud Fraction and Surface Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Xi, B.; Minnis, P.

    2006-01-01

    Data collected at the Department of Energy Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Central Facility (SCF) are analyzed to determine the monthly and hourly variations of cloud fraction and radiative forcing between January 1997 and December 2002. Cloud fractions are estimated for total cloud cover and for single-layered low (0-3 km), middle (3-6 km), and high clouds (more than 6 km) using ARM SCG ground-based paired lidar-radar measurements. Shortwave (SW) and longwave (LW) fluxes are derived from up- and down-looking standard precision spectral pyranometers and precision infrared radiometer measurements with uncertainties of approximately 10 Wm(exp -2). The annual averages of total, and single-layered low, middle and high cloud fractions are 0.49, 0.11, 0.03, and 0.17, respectively. Both total and low cloud amounts peak during January and February and reach a minimum during July and August, high clouds occur more frequently than other types of clouds with a peak in summer. The average annual downwelling surface SW fluxes for total and low clouds (151 and 138 Wm(exp-2), respectively) are less than those under middle and high clouds (188 and 201 Wm(exp -2), respectively), but the downwelling LW fluxes (349 and 356 Wm(exp -2)) underneath total and low clouds are greater than those from middle and high clouds (337 and 333 Wm(exp -2)). Low clouds produce the largest LW warming (55 Wm(exp -2) and SW cooling (-91 Wm(exp -2)) effects with maximum and minimum absolute values in spring and summer, respectively. High clouds have the smallest LW warming (17 Wm(exp -2)) and SW cooling (-37 Wm(exp -2)) effects at the surface. All-sky SW CRF decreases and LW CRF increases with increasing cloud fraction with mean slopes of -0.984 and 0.616 Wm(exp -2)%(exp -1), respectively. Over the entire diurnal cycle, clouds deplete the amount of surface insolation more than they add to the downwelling LW flux. The calculated CRFs do not appear to be significantly affected by uncertainties in data sampling and clear-sky screening. Traditionally, cloud radiative forcing includes, not only the radiative impact of the hydrometeors, but also the changes in the environment. Taken together over the ARM SCF, changes in humidity and surface albedo between clear and cloudy conditions offset approximately 20% of the NET radiative forcing caused by the cloud hydrometeors alone. Variations in water vapor, on average, account for 10% and 83% of the SW and LW CRFs, respectively, in total cloud cover conditions. The error analysis further reveals that the cloud hydrometeors dominate the SW CRF, while water vapor changes are most important for LW flux changes in cloudy skies. Similar studies over other locales are encouraged where water and surface albedo changes from clear to cloudy conditions may be much different than observed over the ARM SCF.

  11. Orofacial and thumb-index finger ramp-and-hold isometric force dynamics in young neurotypical adults.

    PubMed

    Barlow, Steven M; Hozan, Mohsen; Lee, Jaehoon; Greenwood, Jake; Custead, Rebecca; Wardyn, Brianna; Tippin, Kaytlin

    2018-04-27

    The relation among several parameters of the ramp-and-hold isometric force contraction (peak force and dF/dt max during the initial phase of force recruitment, and the proportion of hold-phase at target) was quantified for the right and left thumb-index finger pinch, and lower lip midline compression in 40 neurotypical right-handed young adults (20 female/20 males) using wireless force sensors and data acquisition technology developed in our laboratory. In this visuomotor control task, participants produced ramp-and-hold isometric forces as 'rapidly and accurately' as possible to end-point target levels at 0.25, 0.5, 1 and 2 Newtons presented to a computer monitor in a randomized block design. Significant relations were found between the parameters of the ramp-and-hold lip force task and target force level, including the peak rate of force change (dF/dt max ), peak force, and the criterion percentage of force within ±5% of target during the contraction hold phase. A significant performance advantage was found among these force variables for the thumb-index finger over the lower lip. The maximum voluntary compression force (MVCF) task revealed highly significant differences in force output between the thumb-index fingers and lower lip (∼4.47-4.70 times greater for the digits versus lower lip), a significant advantage of the right thumb-index finger over the non-dominant left thumb-index finger (12% and 25% right hand advantage for males and females, respectively), and a significant sex difference (∼1.65-1.73 times greater among males). Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Comparisons of eccentric knee flexor strength and asymmetries across elite, sub-elite and school level cricket players

    PubMed Central

    Chalker, Wade J.; Shield, Anthony J.; Opar, David A.

    2016-01-01

    Background. There has been a continual increase in injury rates in cricket, with hamstring strain injuries (HSIs) being the most prominent. Eccentric knee flexor weakness and bilateral asymmetries are major modifiable risk factors for future HSIs. However, there is a lack of data relating to eccentric hamstring strength in cricket at any skill level. The objective of this study was to compare eccentric knee flexor strength and bilateral asymmetries in elite, sub-elite and school level cricket players; and to determine if playing position and limb role influenced these eccentric knee flexor strength indices. Methods. Seventy four male cricket players of three distinct skill levels performed three repetitions of the Nordic hamstring exercise on the experimental device. Strength was assessed as the absolute and relative mean peak force output for both limbs, with bilateral asymmetries. Differences in mean peak force outputs between skill level and playing positions were measured. Results. There were no significant differences between elite, sub-elite and school level athletes for mean peak force and bilateral asymmetries of the knee flexors. There were no significant differences observed between bowler’s and batter’s mean peak force and bilateral asymmetries. There were no significant differences between front and back limb mean peak force outputs. Discussion. Skill level, playing position and limb role appeared to have no significant effect on eccentric knee flexor strength and bilateral asymmetries. Future research should seek to determine whether eccentric knee flexor strength thresholds are predictive of HSIs in cricket and if specific eccentric knee flexor strengthening can reduce these injuries. PMID:26925310

  13. Comparisons of eccentric knee flexor strength and asymmetries across elite, sub-elite and school level cricket players.

    PubMed

    Chalker, Wade J; Shield, Anthony J; Opar, David A; Keogh, Justin W L

    2016-01-01

    Background. There has been a continual increase in injury rates in cricket, with hamstring strain injuries (HSIs) being the most prominent. Eccentric knee flexor weakness and bilateral asymmetries are major modifiable risk factors for future HSIs. However, there is a lack of data relating to eccentric hamstring strength in cricket at any skill level. The objective of this study was to compare eccentric knee flexor strength and bilateral asymmetries in elite, sub-elite and school level cricket players; and to determine if playing position and limb role influenced these eccentric knee flexor strength indices. Methods. Seventy four male cricket players of three distinct skill levels performed three repetitions of the Nordic hamstring exercise on the experimental device. Strength was assessed as the absolute and relative mean peak force output for both limbs, with bilateral asymmetries. Differences in mean peak force outputs between skill level and playing positions were measured. Results. There were no significant differences between elite, sub-elite and school level athletes for mean peak force and bilateral asymmetries of the knee flexors. There were no significant differences observed between bowler's and batter's mean peak force and bilateral asymmetries. There were no significant differences between front and back limb mean peak force outputs. Discussion. Skill level, playing position and limb role appeared to have no significant effect on eccentric knee flexor strength and bilateral asymmetries. Future research should seek to determine whether eccentric knee flexor strength thresholds are predictive of HSIs in cricket and if specific eccentric knee flexor strengthening can reduce these injuries.

  14. Ankle joint function during walking in tophaceous gout: A biomechanical gait analysis study.

    PubMed

    Carroll, Matthew; Boocock, Mark; Dalbeth, Nicola; Stewart, Sarah; Frampton, Christopher; Rome, Keith

    2018-04-17

    The foot and ankle are frequently affected in tophaceous gout, yet kinematic and kinetic changes in this region during gait are unknown. The aim of the study was to evaluate ankle biomechanical characteristics in people with tophaceous gout using three-dimensional gait analysis. Twenty-four participants with tophaceous gout were compared with 24 age-and sex-matched control participants. A 9-camera motion analysis system and two floor-mounted force plates were used to calculate kinematic and kinetic parameters. Peak ankle joint angular velocity was significantly decreased in participants with gout (P < 0.01). No differences were found for ankle ROM in either the sagittal (P = 0.43) or frontal planes (P = 0.08). No differences were observed between groups for peak ankle joint power (P = 0.41), peak ankle joint force (P = 0.25), peak ankle joint moment (P = 0.16), timing for peak ankle joint force (P = 0.81), or timing for peak ankle joint moment (P = 0.16). Three dimensional gait analysis demonstrated that ankle joint function does not change in people with gout. People with gout demonstrated a reduced peak ankle joint angular velocity which may reflect gait-limiting factors and adaptations from the high levels of foot pain, impairment and disability experienced by this population. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Quantification of the trade-off between force attenuation and balance impairment in the design of compliant safety floors.

    PubMed

    Glinka, Michal N; Cheema, Kim P; Robinovitch, Stephen N; Laing, Andrew C

    2013-10-01

    Safety floors (also known as compliant floors) may reduce the risk of fall-related injuries by attenuating impact force during falls, but are only practical if they do not negatively affect balance and mobility. In this study, we evaluated seven safety surfaces based on their ability to attenuate peak femoral neck force during simulated hip impacts, and their influence on center of pressure (COP) sway during quiet and tandem stance. Overall, we found that some safety floors can attenuate up to 33.7% of the peak femoral impact force without influencing balance. More specifically, during simulated hip impacts, force attenuation for the safety floors ranged from 18.4 (SD 4.3)% to 47.2 (3.1)%, with each floor significantly reducing peak force compared with a rigid surface. For quiet stance, only COP root mean square was affected by flooring (and increased for only two safety floors). During tandem stance, COP root mean square and mean velocity increased in the medial-lateral direction for three of the seven floors. Based on the substantial force attenuation with no concomitant effects on balance for some floors, these results support the development of clinical trials to assess the effectiveness of safety floors at reducing fall-related injuries in high-risk settings.

  16. Commensurability effects in the critical forces of a superconducting film with Kagomé pinning array at submatching fields

    NASA Astrophysics Data System (ADS)

    Vizarim, Nicolas P.; Carlone, Maicon; Verga, Lucas G.; Venegas, Pablo A.

    2017-09-01

    Using molecular dynamics simulations, we find the commensurability force peaks in a two-dimensional superconducting thin-film with a Kagomé pinning array. A transport force is applied in two mutually perpendicular directions, and the magnetic field is increased up to the first matching field. Usually the condition to have pronounced force peaks in systems with periodic pinning is associated to the rate between the applied magnetic field and the first matching field, it must be an integer or a rational fraction. Here, we show that another condition must be satisfied, the vortex ground state must be ordered. Our calculations show that the pinning size and strength may dramatically change the vortex ground state. Small pinning radius and high values of pinning strength may lead to disordered vortex configurations, which fade the critical force peaks. The critical forces show anisotropic behavior, but the same dependence on pinning strength and radius is observed for both driven force directions. Different to cases where the applied magnetic field is higher than the first matching field, here the depinning process begins with vortices weakly trapped on top of a pinning site and not with interstitial vortices. Our results are in good agreement with recent experimental results.

  17. Statistical Short-Range Guidance for Peak Wind Speed Forecasts at Edwards Air Force Base, CA

    NASA Technical Reports Server (NTRS)

    Dreher, Joseph G.; Crawford, Winifred; Lafosse, Richard; Hoeth, Brian; Burns, Kerry

    2009-01-01

    The peak winds near the surface are an important forecast element for space shuttle landings. As defined in the Flight Rules (FR), there are peak wind thresholds that cannot be exceeded in order to ensure the safety of the shuttle during landing operations. The National Weather Service Spaceflight Meteorology Group (SMG) is responsible for weather forecasts for all shuttle landings, and is required to issue surface average and 10-minute peak wind speed forecasts. They indicate peak winds are a challenging parameter to forecast. To alleviate the difficulty in making such wind forecasts, the Applied Meteorology Unit (AMU) developed a PC-based graphical user interface (GUI) for displaying peak wind climatology and probabilities of exceeding peak wind thresholds for the Shuttle Landing Facility (SLF) at Kennedy Space Center (KSC; Lambert 2003). However, the shuttle occasionally may land at Edwards Air Force Base (EAFB) in southern California when weather conditions at KSC in Florida are not acceptable, so SMG forecasters requested a similar tool be developed for EAFB.

  18. Urethral catheter insertion forces: a comparison of experience and training.

    PubMed

    Canales, Benjamin K; Weiland, Derek; Reardon, Scott; Monga, Manoj

    2009-01-01

    This study was undertaken to evaluate the insertion forces utilized during simulated placement of a urethral catheter by healthcare individuals with a variety of catheter experience. A 21F urethral catheter was mounted to a metal spring. Participants were asked to press the tubing spring against a force gauge and stop when they met a level of resistance that would typically make them terminate a catheter placement. Simulated catheter insertion was repeated fives times, and peak compression forces were recorded. Healthcare professionals were divided into six groups according to their title: urology staff, non-urology staff, urology resident/ fellow, non-urology resident/ fellow, medical student, and registered nurse. A total of fifty-seven healthcare professionals participated in the study. Urology staff (n = 6) had the lowest average insertion force for any group at 6.8 +/- 2.0 Newtons (N). Medical students (n = 10) had the least amount of experience (1 +/- 0 years) and the highest average insertion force range of 10.1 +/- 3.7 N. Health care workers with greater than 25 years experience used significantly less force during catheter insertions (4.9 +/- 1.8 N) compared to all groups (p < 0.01). We propose the maximum force that should be utilized during urethral catheter insertion is 5 Newtons. This force deserves validation in a larger population and should be considered when designing urethral catheters or creating catheter simulators. Understanding urethral catheter insertion forces may also aid in establishing competency parameters for health care professionals in training.

  19. Sarcomere length dependence of rat skinned cardiac myocyte mechanical properties: dependence on myosin heavy chain

    PubMed Central

    Korte, F Steven; McDonald, Kerry S

    2007-01-01

    The effects of sarcomere length (SL) on sarcomeric loaded shortening velocity, power output and rates of force development were examined in rat skinned cardiac myocytes that contained either α-myosin heavy chain (α-MyHC) or β-MyHC at 12 ± 1°C. When SL was decreased from 2.3 μm to 2.0 μm submaximal isometric force decreased ∼40% in both α-MyHC and β-MyHC myocytes while peak absolute power output decreased 55% in α-MyHC myocytes and 70% in β-MyHC myocytes. After normalization for the fall in force, peak power output decreased about twice as much in β-MyHC as in α-MyHC myocytes (41%versus 20%). To determine whether the fall in normalized power was due to the lower force levels, [Ca2+] was increased at short SL to match force at long SL. Surprisingly, this led to a 32% greater peak normalized power output at short SL compared to long SL in α-MyHC myocytes, whereas in β-MyHC myocytes peak normalized power output remained depressed at short SL. The role that interfilament spacing plays in determining SL dependence of power was tested by myocyte compression at short SL. Addition of 2% dextran at short SL decreased myocyte width and increased force to levels obtained at long SL, and increased peak normalized power output to values greater than at long SL in both α-MyHC and β-MyHC myocytes. The rate constant of force development (ktr) was also measured and was not different between long and short SL at the same [Ca2+] in α-MyHC myocytes but was greater at short SL in β-MyHC myocytes. At short SL with matched force by either dextran or [Ca2+], ktr was greater than at long SL in both α-MyHC and β-MyHC myocytes. Overall, these results are consistent with the idea that an intrinsic length component increases loaded crossbridge cycling rates at short SL and β-MyHC myocytes exhibit a greater sarcomere length dependence of power output. PMID:17347271

  20. Reduced step length reduces knee joint contact forces during running following anterior cruciate ligament reconstruction but does not alter inter-limb asymmetry.

    PubMed

    Bowersock, Collin D; Willy, Richard W; DeVita, Paul; Willson, John D

    2017-03-01

    Anterior cruciate ligament reconstruction is associated with early onset knee osteoarthritis. Running is a typical activity following this surgery, but elevated knee joint contact forces are thought to contribute to osteoarthritis degenerative processes. It is therefore clinically relevant to identify interventions to reduce contact forces during running among individuals after anterior cruciate ligament reconstruction. The primary purpose of this study was to evaluate the effect of reducing step length during running on patellofemoral and tibiofemoral joint contact forces among people with a history of anterior cruciate ligament reconstruction. Inter limb knee joint contact force differences during running were also examined. 18 individuals at an average of 54.8months after unilateral anterior cruciate ligament reconstruction ran in 3 step length conditions (preferred, -5%, -10%). Bilateral patellofemoral, tibiofemoral, and medial tibiofemoral compartment peak force, loading rate, impulse, and impulse per kilometer were evaluated between step length conditions and limbs using separate 2 factor analyses of variance. Reducing step length 5% decreased patellofemoral, tibiofemoral, and medial tibiofemoral compartment peak force, impulse, and impulse per kilometer bilaterally. A 10% step length reduction further decreased peak forces and force impulses, but did not further reduce force impulses per kilometer. Tibiofemoral joint impulse, impulse per kilometer, and patellofemoral joint loading rate were lower in the previously injured limb compared to the contralateral limb. Running with a shorter step length is a feasible clinical intervention to reduce knee joint contact forces during running among people with a history of anterior cruciate ligament reconstruction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Postoperative changes in in vivo measured friction in total hip joint prosthesis during walking.

    PubMed

    Damm, Philipp; Bender, Alwina; Bergmann, Georg

    2015-01-01

    Loosening of the artificial cup and inlay is the most common reasons for total hip replacement failures. Polyethylene wear and aseptic loosening are frequent reasons. Furthermore, over the past few decades, the population of patients receiving total hip replacements has become younger and more active. Hence, a higher level of activity may include an increased risk of implant loosening as a result of friction-induced wear. In this study, an instrumented hip implant was used to measure the contact forces and friction moments in vivo during walking. Subsequently, the three-dimensional coefficient of friction in vivo was calculated over the whole gait cycle. Measurements were collected from ten subjects at several time points between three and twelve months postoperative. No significant change in the average resultant contact force was observed between three and twelve months postoperative. In contrast, a significant decrease of up to 47% was observed in the friction moment. The coefficient of friction also decreased over postoperative time on average. These changes may be caused by 'running-in' effects of the gliding components or by the improved lubricating properties of the synovia. Because the walking velocity and contact forces were found to be nearly constant during the observed period, the decrease in friction moment suggests an increase in fluid viscosity. The peak values of the contact force individually varied by 32%-44%. The friction moment individually differed much more, by 110%-129% at three and up to 451% at twelve months postoperative. The maximum coefficient of friction showed the highest individual variability, about 100% at three and up to 914% at twelve months after surgery. These individual variations in the friction parameters were most likely due to different 'running-in' effects that were influenced by the individual activity levels and synovia properties.

  2. Reperfusion response changes induced by repeated, sustained contractions in normal human masseter muscle.

    PubMed

    Aizawa, Shigeru; Tsukiyama, Yoshihiro; Koyano, Kiyoshi; Clark, Glenn T

    2002-07-01

    The purpose was to evaluate the intramuscular reperfusion response characteristics associated with repeated isometric contractions in normal human masseter. Intramuscular blood volume was quantified with a near-infrared spectroscopic device that measured the total haemoglobin (Hb) concentration in the muscle. Electromyographic (EMG) activity from the masseter and total bite forces were also recorded. Sixteen healthy volunteers, eight females and eight males, without masticatory muscle pain participated. They were asked first to clench their teeth for as long as possible at 50% of their maximum voluntary contraction (MVC). This was followed by a 60s rest and then immediately by a standard clenching task (50% MVC for 30s) and a 60s recovery period, immediately after which they were asked to repeat exactly the same procedure, with a final 5 min recovery period after the second 30s contraction. Bite force, EMG and Hb concentration were measured continuously and the duration of the two endurance tasks and the amplitudes of all recorded signals were compared (first trial versus second trial). Specifically, the difference between the lowest Hb (trough) seen during the standardised 30s contractions and the highest (peak) seen just after them was assessed. The trough-to-peak difference in Hb concentration of the second standard contraction task was significantly smaller than that of the first standard task (P<0.05, paired t-test). These data show that with sustained effort the post-contraction vasodilatory reperfusion responses of the human masseter are diminished, suggesting a progressive desensitisation of the vasodilatory system.

  3. Anthropometry as a predictor of bench press performance done at different loads.

    PubMed

    Caruso, John F; Taylor, Skyler T; Lutz, Brant M; Olson, Nathan M; Mason, Melissa L; Borgsmiller, Jake A; Riner, Rebekah D

    2012-09-01

    The purpose of our study was to examine the ability of anthropometric variables (body mass, total arm length, biacromial width) to predict bench press performance at both maximal and submaximal loads. Our methods required 36 men to visit our laboratory and submit to anthropometric measurements, followed by lifting as much weight as possible in good form one time (1 repetition maximum, 1RM) in the exercise. They made 3 more visits in which they performed 4 sets of bench presses to volitional failure at 1 of 3 (40, 55, or 75% 1RM) submaximal loads. An accelerometer (Myotest Inc., Royal Oak MI) measured peak force, velocity, and power after each submaximal load set. With stepwise multivariate regression, our 3 anthropometric variables attempted to explain significant amounts of variance for 13 bench press performance indices. For criterion measures that reached significance, separate Pearson product moment correlation coefficients further assessed if the strength of association each anthropometric variable had with the criterion was also significant. Our analyses showed that anthropometry explained significant amounts (p < 0.05) of variance for 8 criterion measures. It was concluded that body mass had strong univariate correlations with 1RM and force-related measures, total arm length was moderately associated with 1RM and criterion variables at the lightest load, whereas biacromial width had an inverse relationship with the peak number of repetitions performed per set at the 2 lighter loads. Practical applications suggest results may help coaches and practitioners identify anthropometric features that may best predict various measures of bench press prowess in athletes.

  4. Subject-specific knee joint geometry improves predictions of medial tibiofemoral contact forces.

    PubMed

    Gerus, Pauline; Sartori, Massimo; Besier, Thor F; Fregly, Benjamin J; Delp, Scott L; Banks, Scott A; Pandy, Marcus G; D'Lima, Darryl D; Lloyd, David G

    2013-11-15

    Estimating tibiofemoral joint contact forces is important for understanding the initiation and progression of knee osteoarthritis. However, tibiofemoral contact force predictions are influenced by many factors including muscle forces and anatomical representations of the knee joint. This study aimed to investigate the influence of subject-specific geometry and knee joint kinematics on the prediction of tibiofemoral contact forces using a calibrated EMG-driven neuromusculoskeletal model of the knee. One participant fitted with an instrumented total knee replacement walked at a self-selected speed while medial and lateral tibiofemoral contact forces, ground reaction forces, whole-body kinematics, and lower-limb muscle activity were simultaneously measured. The combination of generic and subject-specific knee joint geometry and kinematics resulted in four different OpenSim models used to estimate muscle-tendon lengths and moment arms. The subject-specific geometric model was created from CT scans and the subject-specific knee joint kinematics representing the translation of the tibia relative to the femur was obtained from fluoroscopy. The EMG-driven model was calibrated using one walking trial, but with three different cost functions that tracked the knee flexion/extension moments with and without constraint over the estimated joint contact forces. The calibrated models then predicted the medial and lateral tibiofemoral contact forces for five other different walking trials. The use of subject-specific models with minimization of the peak tibiofemoral contact forces improved the accuracy of medial contact forces by 47% and lateral contact forces by 7%, respectively compared with the use of generic musculoskeletal model. © 2013 Published by Elsevier Ltd.

  5. Subject-specific knee joint geometry improves predictions of medial tibiofemoral contact forces

    PubMed Central

    Gerus, Pauline; Sartori, Massimo; Besier, Thor F.; Fregly, Benjamin J.; Delp, Scott L.; Banks, Scott A.; Pandy, Marcus G.; D’Lima, Darryl D.; Lloyd, David G.

    2013-01-01

    Estimating tibiofemoral joint contact forces is important for understanding the initiation and progression of knee osteoarthritis. However, tibiofemoral contact force predictions are influenced by many factors including muscle forces and anatomical representations of the knee joint. This study aimed to investigate the influence of subject-specific geometry and knee joint kinematics on the prediction of tibiofemoral contact forces using a calibrated EMG-driven neuromusculoskeletal model of the knee. One participant fitted with an instrumented total knee replacement walked at a self-selected speed while medial and lateral tibiofemoral contact forces, ground reaction forces, whole-body kinematics, and lower-limb muscle activity were simultaneously measured. The combination of generic and subject-specific knee joint geometry and kinematics resulted in four different OpenSim models used to estimate muscle-tendon lengths and moment arms. The subject-specific geometric model was created from CT scans and the subject-specific knee joint kinematics representing the translation of the tibia relative to the femur was obtained from fluoroscopy. The EMG-driven model was calibrated using one walking trial, but with three different cost functions that tracked the knee flexion/extension moments with and without constraint over the estimated joint contact forces. The calibrated models then predicted the medial and lateral tibiofemoral contact forces for five other different walking trials. The use of subject-specific models with minimization of the peak tibiofemoral contact forces improved the accuracy of medial contact forces by 47% and lateral contact forces by 7%, respectively compared with the use of generic musculoskeletal model. PMID:24074941

  6. Changes in skeletal muscle and tendon structure and function following genetic inactivation of myostatin in rats

    PubMed Central

    Mendias, Christopher L; Lynch, Evan B; Gumucio, Jonathan P; Flood, Michael D; Rittman, Danielle S; Van Pelt, Douglas W; Roche, Stuart M; Davis, Carol S

    2015-01-01

    Myostatin is a negative regulator of skeletal muscle and tendon mass. Myostatin deficiency has been well studied in mice, but limited data are available on how myostatin regulates the structure and function of muscles and tendons of larger animals. We hypothesized that, in comparison to wild-type (MSTN+/+) rats, rats in which zinc finger nucleases were used to genetically inactivate myostatin (MSTNΔ/Δ) would exhibit an increase in muscle mass and total force production, a reduction in specific force, an accumulation of type II fibres and a decrease and stiffening of connective tissue. Overall, the muscle and tendon phenotype of myostatin-deficient rats was markedly different from that of myostatin-deficient mice, which have impaired contractility and pathological changes to fibres and their extracellular matrix. Extensor digitorum longus and soleus muscles of MSTNΔ/Δ rats demonstrated 20–33% increases in mass, 35–45% increases in fibre number, 20–57% increases in isometric force and no differences in specific force. The insulin-like growth factor-1 pathway was activated to a greater extent in MSTNΔ/Δ muscles, but no substantial differences in atrophy-related genes were observed. Tendons of MSTNΔ/Δ rats had a 20% reduction in peak strain, with no differences in mass, peak stress or stiffness. The general morphology and gene expression patterns were similar between tendons of both genotypes. This large rodent model of myostatin deficiency did not have the negative consequences to muscle fibres and extracellular matrix observed in mouse models, and suggests that the greatest impact of myostatin in the regulation of muscle mass may not be to induce atrophy directly, but rather to block hypertrophy signalling. PMID:25640143

  7. Number of thoracotomies predicts impairment in lung function and exercise capacity in patients with congenital heart disease.

    PubMed

    Müller, Jan; Ewert, Peter; Hager, Alfred

    2018-01-01

    Many patients with congenital heart disease (CHD) require surgery to ensure survival into adulthood. But history of previous thoracotomies is associated with respiratory muscle weakness, impairments in chest wall compliance, and moderately to severely impaired lung function. This study evaluated the impact of thoracotomies on functional outcome in patients with CHD. In total 1372 adolescents and adults with CHD (32.4±11.5 years, 624 female), who underwent spirometry and cardiopulmonary exercise testing in our institution from January 2010 to August 2015, were analyzed. After adjusting for confounding variables, with every thoracotomy the prevalence for a restrictive ventilatory pattern increased by 1.8-fold (CI: 1.606-2.050; p<0.001). The number of thoracotomies had no direct influence on an impaired exercise capacity in a multivariate model, but with every percentage point increase in forced vital capacity probability of impaired exercise capacity diminished (OR: 0.944, CI: 0.933-0.955, p<0.001). There was a moderate correlation of forced vital capacity and peak oxygen uptake (r=0.464, p<0.001). After a follow-up of 2.1±1.6 years 21 patients had died. Survival was only related to age (p<0.001) and peak oxygen uptake (p<0.001) after considering together with thoracotomies, oxygen saturation at rest and forced vital capacity in a multivariate model. Independent of CHD complexity and other risk factors, multiple thoracotomies lead to restrictive lung pattern. It could be suggested that those limitations in forced vital capacity contribute to impairments in exercise capacity, which turned out to be the strongest predictor for survival. Copyright © 2017 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  8. Sensory and Quality Evaluation of Traditional Compared with Power Ultrasound Processed Corn (Zea Mays) Tortilla Chips.

    PubMed

    Janve, Bhaskar; Yang, Wade; Sims, Charles

    2015-06-01

    Power ultrasound reduces the traditional corn steeping time from 18 to 1.5 h during tortilla chips dough (masa) processing. This study sought to examine consumer (n = 99) acceptability and quality of tortilla chips made from the masa by traditional compared with ultrasonic methods. Overall appearance, flavor, and texture acceptability scores were evaluated using a 9-point hedonic scale. The baked chips (process intermediate) before and after frying (finished product) were analyzed using a texture analyzer and machine vision. The texture values were determined using the 3-point bend test using breaking force gradient (BFG), peak breaking force (PBF), and breaking distance (BD). The fracturing properties determined by the crisp fracture support rig using fracture force gradient (FFG), peak fracture force (PFF), and fracture distance (FD). The machine vision evaluated the total surface area, lightness (L), color difference (ΔE), Hue (°h), and Chroma (C*). The results were evaluated by analysis of variance and means were separated using Tukey's test. Machine vision values of L, °h, were higher (P < 0.05) and ΔE was lower (P < 0.05) for fried and L, °h were significantly (P < 0.05) higher for baked chips produced from ultra-sonication as compare to traditional. Baked chips texture for ultra-sonication was significantly higher (P < 0.05) on BFG, BPD, PFF, and FD. Fried tortilla chips texture were higher significantly (P < 0.05) in BFG and PFF for ultra-sonication than traditional processing. However, the instrumental differences were not detected in sensory analysis, concluding possibility of power ultrasound as potential tortilla chips processing aid. © 2015 Institute of Food Technologists®

  9. Effects of Different Lifting Cadences on Ground Reaction Forces during the Squat Exercise

    NASA Technical Reports Server (NTRS)

    Bentley, Jason R.; Amonette, William E.; Hagan, R. Donald

    2008-01-01

    The purpose of this investigation was to determine the effect of different cadences on the ground reaction force (GRF(sub R)) during the squat exercise. It is known that squats performed with greater acceleration will produce greater inertial forces; however, it is not well understood how different squat cadences affect GRF(sub R). It was hypothesized that faster squat cadences will result in greater peak GRF(sub R). METHODS: Six male subjects (30.8+/-4.4 y, 179.5+/-8.9 cm, 88.8+/-13.3 kg) with previous squat experience performed three sets of three squats using three different cadences (FC = 1 sec descent/1 sec ascent; MC = 3 sec descent/1 sec ascent; SC = 4 sec descent/2 sec ascent) with barbell mass equal to body mass. Ground reaction force was used to calculate inertial force trajectories of the body plus barbell (FI(sub system)). Forces were normalized to body mass. RESULTS: Peak GRF(sub R) and peak FI(sub system) were significantly higher in FC squats compared to MC (p=0.0002) and SC (p=0.0002). Range of GRF(sub R) and FI(sub system) were also significantly higher in FC compared to MC (p<0.05), and MC were significantly higher than SC (p<0.05). DISCUSSION: Faster squat cadences result in significantly greater peak GRF(sub R) due to the inertia of the system. GRF(sub R) was more dependent upon decent cadence than on ascent cadence. PRACTICAL APPLICATION: This study demonstrates that faster squat cadences produce greater ground reaction forces. Therefore, the use of faster squat cadences might enhance strength and power adaptations to long-term resistance exercise training. Key Words: velocity, weight training, resistive exercise

  10. Fatigability of rat hindlimb muscle: associations between electromyogram and force during a fatigue test.

    PubMed Central

    Enoka, R M; Rankin, L L; Stuart, D G; Volz, K A

    1989-01-01

    1. An experimental protocol designed to assess fatigability in motor units (Burke, Levine, Tsairis & Zajac, 1973) has been applied to the whole muscles of anaesthetized adult rats, and the association between the electromyogram (EMG) and force was monitored over the course of the test. 2. Both test muscles (soleus and extensor digitorum longus) exhibited a wide range of fatigability, which was defined as the decline in isometric peak force at 6 min, such that the data could be separated into five levels of fatigability. Fatigue indices for each test muscle were distributed across three levels. 3. The EMG was quantified with four measures of amplitude, four of duration, and one interaction term (area). Correlation analyses indicated that the EMG was adequately represented by one measure of amplitude (absolute amplitude), one of duration (peak-to-peak duration) and area. The best single measure was area. 4. The EMG-force associations for soleus varied markedly among its three fatigability groups. In contrast, over the course of the test, all three extensor digitorum longus groups displayed qualitatively similar EMG-force associations. 5. Multiple regression analyses indicated that the EMG parameters were able to predict peak force better for extensor digitorum longus than for soleus. Furthermore, for both test muscle, the prediction was best for the most fatigable group. 6. The associations between EMG and force exhibited three patterns for the two test muscles and three levels of fatigability. These differences suggested variation in the mechanisms, related to both fibre-type composition and susceptibility to fatigue, that dictate the performance elicited by this particular stimulus regimen. The mechanisms seem to include both intracellular and transmission processes. Images Fig. 1 PMID:2778729

  11. Sea level oscillations in coastal waters of the Buenos Aires province, Argentina

    NASA Astrophysics Data System (ADS)

    Dragani, W. C.; Mazio, C. A.; Nuñez, M. N.

    2002-03-01

    Sea level oscillations, with periods ranging from a few minutes to almost 2 h, have been observed at various tide stations located on the coast of Buenos Aires. Simultaneous records of sea level elevation measured in Mar de Ajó, Pinamar and Mar del Plata during 1982 have been spectrally analyzed. Significant spectral energy has been detected between 0.85 and 4.69 cycles per hour (cph) and the most energetic peaks have frequencies between 1.17 and 1.49 cph. Spectra, coherence, and phase difference have been analyzed for the most energetic event of the year. During that event, the most intensive spectral peak is at 1.17 cph for Mar de Ajó and Pinamar, and at 1.49 cph for Mar del Plata. Simultaneous total energy peaks at Mar de Ajó, Pinamar and Mar del Plata, and the coherence function estimated between Mar de Ajó and Pinamar suggests that sea level oscillations could be a regional phenomenon. The analyzed data suggest that sea level oscillations could be forced by atmospheric gravity waves associated with frontal passages.

  12. RSA/Legacy Wind Sensor Comparison. Part 2; Eastern Range

    NASA Technical Reports Server (NTRS)

    Short, David A.; Wheeler, Mark M.

    2006-01-01

    This report describes a comparison of data from ultrasonic and propeller-and-vane anemometers on 5 wind towers at Kennedy Space Center and Cape Canaveral Air Force Station. The ultrasonic sensors are scheduled to replace the Legacy propeller-and-vane sensors under the Range Standardization and Automation (RSA) program. Because previous studies have noted differences between peak wind speeds reported by mechanical and ultrasonic wind sensors, the latter having no moving parts, the 30th and 45th Weather Squadrons wanted to understand possible differences between the two sensor types. The period-of-record was 13-30 May 2005, A total of 357,626 readings of 1-minute average and peak wind speed/direction from each sensor type were used. Statistics of differences in speed and direction were used to identify 15 out of 19 RSA sensors having the most consistent performance, with respect to the Legacy sensors. RSA average wind speed data from these 15 showed a small positive bias of 0.38 kts. A slightly larger positive bias of 0.94 kts was found in the RSA peak wind speed.

  13. Vertical Jump Height is more Strongly Associated with Velocity and Work Performed Prior to Take-off

    NASA Technical Reports Server (NTRS)

    Bentley, J. R.; Loehr, J. A.; DeWitt, J. K.; Lee, S. M. C.; English, K. L.; Nash, R. E.; Leach, M. A.; Hagan, R. D.

    2008-01-01

    Vertical jump (VJ) height is commonly used as a measure of athletic capability in strength and power sports. Although VJ has been shown to be a predictor of athletic performance, it is not clear which kinetic ground reaction force (GRF) variables, such as peak force (PF), peak power (PP), peak velocity (PV), total work (TW) or impulse (Imp) are the best correlates. To determine which kinetic variables (PF, PP, PV, TW, and Imp) best correlate with VJ height. Twenty subjects (14 males, 6 females) performed three maximal countermovement VJs on a force platform (Advanced Mechanical Technology, Inc., Watertown, MA, USA). VJ jump height was calculated as the difference between standing reach and the highest reach point measured using a Vertec. PF, PP, PV, TW, and Imp were calculated using the vertical GRF data sampled at 1000 Hz from the lowest point in the countermovement through the concentric portion until take-off. GRF data were normalized to body mass measured using a standard scale (Detecto, Webb City, MO, USA). Correlation coefficients were computed between each GRF variable and VJ height using a Pearson correlation. VJ height (43.4 plus or minus 9.1 cm) was significantly correlated (p less than 0.001) with PF (998 plus or minus 321 N; r=0.51), PP (1997 plus or minus 772 W; r=0.69), PV (2.66 plus or minus 0.40 m (raised dot) s(sup -1); r=0.85), TW (259 plus or minus 93.0 kJ; r=0.82), and Imp (204 plus or minus 51.1 N(raised dot)s; r=0.67). Although all variables were correlated to VJ height, PV and TW were more strongly correlated to VJ height than PF, PP, and Imp. Therefore, since TW is equal to force times displacement, the relative displacement of the center of mass along with the forces applied during the upward movement of the jump are critical determinants of VJ height. PV and TW are key determinants of VJ height, and therefore successful training programs to increase VJ height should focus on rapid movement (PV) and TW by increasing power over time rather than focusing on PF alone.

  14. The basic instrument for the study of China's population and employment: the labor life table.

    PubMed

    Jiang, Z

    1991-01-01

    The data and methods are provided for generating a labor life table for China in 1988. The purpose is to supply a useful instrument for studying, planning, and analyzing employment and social services, welfare programs, and insurance. These tables were constructed using age- and sex-specific employment data from the 1% sample of demographic data for 1987 in 13 nonfarming sectors. Employment was derived from the 1985 Industrial Survey on 2 sectors of the nonfarming population. Urban employment and rural agricultural employment were not calculated because of the imprecision of the data. The age structure has unique characteristic differences between the employment rate curves of the material and nonmaterial production sectors. The peak for the nonmaterial production sector is near 50 years for men and 44 years for women, while the curve for the material sector is more nearly bell-shaped with a peak for females at 20-30 years. The female employment pattern indicates that women continue working after the birth of a child, and women do not return to the work force once they resign. The reasons for the pattern in nonmaterial production are indicated. The method used to calculate the labor life table employs the same methods as the multiple life table approach for mortality, with some modifications. The assumption is a static labor population between the ages of 15-70 years. The age for which employment is the highest is selected; then the number of people employed is generated. Employment beyond the peak age is derived through the % of the labor force in the total population. The arithmetic mean value of the labor force for adjacent age groups is determined by survivors until a particular age. Mean work expectancy years and age-specific cumulative labor force are calculated per the life table method. As data become available, causes of death of the labor force and transfer of labor between sectors and regions may be computed. An example of retirement information is that 60-year old workers receive their pensions for an average number of years following retirement of 17.8-3.33 give or take 14 years. The data provided in this article are also available from the 1990 Yearbook of the Chinese Populations.

  15. Assessment of Head Displacement and Disassembly Force With Increasing Assembly Load at the Head/Trunnion Junction of a Total Hip Arthroplasty Prosthesis.

    PubMed

    Ramoutar, Darryl N; Crosnier, Emilie A; Shivji, Faiz; Miles, Anthony W; Gill, Harinderjit S

    2017-05-01

    Most femoral components used now for total hip arthroplasty are modular, requiring a strong connection at assembly. The aim of this study was to assess the effect of assembly force on the strength of head-trunnion interface and to measure the initial displacement of the head on the trunnion with different assembly forces. Three assembly load levels were assessed (A: 2 kN, B: 4 kN, C: 6 kN) with 4 implants in each group. The stems were mounted in a custom rig and the respective assembly loads were applied to the head at a constant rate of 0.05 kN/s (ISO7260-10:2003). Load levels were recorded during assembly. Head displacement was measured with a laser sensor. The disassembly force was determined by a standard pull-off test. The maximum head displacement on the trunnion was significantly different between the 2 kN group and the other 2 groups (4 kN, 6 kN, P = .029), but not between the 4 kN and 6 kN groups (P = .89). The disassembly forces between the 3 groups were significantly different (mean ± standard deviation, A: 1316 ± 223 kN; B: 2224 ± 151 kN; C: 3965 ± 344 kN; P = .007), with increasing assembly load leading to a higher pull-off force. For the 4 kN and 6 kN groups, a first peak of approximately 2.5 kN was observed on the load recordings during assembly before the required assembly load was eventually reached corresponding to sudden increase in head displacement to approximately 150 μm. An assembly force of 2 kN may be too low to overcome the frictional forces needed to engage the head and achieve maximum displacement on the trunnion and thus an assembly load of greater than 2.5 kN is recommended. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Material Models for the Human Torso Finite Element Model

    DTIC Science & Technology

    2018-04-04

    material characterizations drawn from current literature. Biofidelity of the ARL torso was determined by comparing peak force, force-displacement, peak...Flesh simulation. The soft tissue mesh in the upper neck was highly distorted at 21.2 ms (right) compared to the original mesh (left...a realistic response with results comparable to physical experiments to support future efforts to evaluate BABT. 2. Methods 2.1 Review of

  17. Reliability of Single-Leg Balance and Landing Tests in Rugby Union; Prospect of Using Postural Control to Monitor Fatigue

    PubMed Central

    Troester, Jordan C.; Jasmin, Jason G.; Duffield, Rob

    2018-01-01

    The present study examined the inter-trial (within test) and inter-test (between test) reliability of single-leg balance and single-leg landing measures performed on a force plate in professional rugby union players using commercially available software (SpartaMARS, Menlo Park, USA). Twenty-four players undertook test – re-test measures on two occasions (7 days apart) on the first training day of two respective pre-season weeks following 48h rest and similar weekly training loads. Two 20s single-leg balance trials were performed on a force plate with eyes closed. Three single-leg landing trials were performed by jumping off two feet and landing on one foot in the middle of a force plate 1m from the starting position. Single-leg balance results demonstrated acceptable inter-trial reliability (ICC = 0.60-0.81, CV = 11-13%) for sway velocity, anterior-posterior sway velocity, and mediolateral sway velocity variables. Acceptable inter-test reliability (ICC = 0.61-0.89, CV = 7-13%) was evident for all variables except mediolateral sway velocity on the dominant leg (ICC = 0.41, CV = 15%). Single-leg landing results only demonstrated acceptable inter-trial reliability for force based measures of relative peak landing force and impulse (ICC = 0.54-0.72, CV = 9-15%). Inter-test results indicate improved reliability through the averaging of three trials with force based measures again demonstrating acceptable reliability (ICC = 0.58-0.71, CV = 7-14%). Of the variables investigated here, total sway velocity and relative landing impulse are the most reliable measures of single-leg balance and landing performance, respectively. These measures should be considered for monitoring potential changes in postural control in professional rugby union. Key points Single-leg balance demonstrated acceptable inter-trial and inter-test reliability. Single-leg landing demonstrated good inter-trial and inter-test reliability for measures of relative peak landing force and relative impulse, but not time to stabilization. Of the variables investigated, sway velocity and relative landing impulse are the most reliable measures of single-leg balance and landing respectively, and should considered for monitoring changes in postural control. PMID:29769817

  18. Mechanical impedance and absorbed power of hand-arm under x(h)-axis vibration and role of hand forces and posture.

    PubMed

    Aldien, Yasser; Marcotte, Pierre; Rakheja, Subhash; Boileau, Paul-Emile

    2005-07-01

    The biodynamic responses of the hand-arm system under x(h)-axis vibration are investigated in terms of the driving point mechanical impedance (DPMI) and absorbed power in a laboratory study. For this purpose, seven healthy male subjects are exposed to two levels of random vibration in the 8-1,000 Hz frequency range, using three instrumented cylindrical handles of different diameters (30, 40 and 50 mm), and different combinations of grip (10, 30 and 50 N) and push (0, 25 and 50 N) forces. The experiments involve grasping the handle while adopting two different postures, involving elbow flexion of 90 degrees and 180 degrees, with wrist in the neutral position for both postures. The analyses of the results revealed peak DPMI magnitude and absorbed power responses near 25 Hz and 150 Hz, for majority of the test conditions considered. The frequency corresponding to the peak response increased with increasing hand forces. Unlike the absorbed power, the DPMI response was mostly observed to be insensitive to variations in the excitation magnitude. The handle diameter revealed obvious effects on the DPMI magnitude, specifically at frequencies above 250 Hz, which was not evident in the absorbed power due to relatively low velocity at higher frequencies. The influence of hand forces was also evident on the DPMI magnitude response particularly at frequencies. above 100 Hz, while the effect of hand-arm posture on the DPMI magnitude was nearly negligible. The magnitude of power absorbed within the hand and arm was observed to be strongly dependent upon the excitation level over the entire frequency range, while the influence of hand-arm posture on the total absorbed power was observed to be important. The effect of variations in the hand forces on the absorbed power was relatively small for the bent elbow posture, while an increase in either the grip or the push force coupled with the extended arm posture resulted in considerably higher energy absorption. The results suggested that the handle size, hand-arm posture and hand forces, produce coupled effect on the biodynamic response of the hand-arm system.

  19. 4-corner arthrodesis and proximal row carpectomy: a biomechanical comparison of wrist motion and tendon forces.

    PubMed

    Debottis, Daniel P; Werner, Frederick W; Sutton, Levi G; Harley, Brian J

    2013-05-01

    Controversy exists as to whether a proximal row carpectomy (PRC) is a better procedure than scaphoid excision with 4-corner arthrodesis for preserving motion in the painful posttraumatic arthritic wrist. The purpose of this study was to determine how the kinematics and tendon forces of the wrist are altered after PRC and 4-corner arthrodesis. We tested 6 fresh cadaver forearms for the extremes of wrist motion and then used a wrist simulator to move them through 4 cyclic dynamic wrist motions, during which time we continuously recorded the tendon forces. We repeated the extremes of wrist motion measurements and the dynamic motions after scaphoid excision with 4-corner arthrodesis, and then again after PRC. We analyzed extremes of wrist motion and the peak tendon forces required for each dynamic motion using a repeated measures analysis of variance. Wrist extremes of motion significantly decreased after both the PRC and 4-corner arthrodesis compared with the intact wrist. Wrist flexion decreased on average 13° after 4-corner arthrodesis and 12° after PRC. Extension decreased 20° after 4-corner arthrodesis and 12° after PRC. Four-corner arthrodesis significantly decreased wrist ulnar deviation from the intact wrist. Four-corner arthrodesis allowed more radial deviation but less ulnar deviation than the PRC. The average peak tendon force was significantly greater after 4-corner arthrodesis than after PRC for the extensor carpi ulnaris during wrist flexion-extension, circumduction, and dart throw motions. The peak forces were significantly greater after 4-corner arthrodesis than in the intact wrist for the extensor carpi ulnaris during the dart throw motion and for the flexor carpi ulnaris during the circumduction motion. The peak extensor carpi radialis brevis force after PRC was significantly less than in the intact wrist. The measured wrist extremes of motion decreased after both 4-corner arthrodesis and PRC. Larger peak tendon forces were required to achieve identical wrist motions with the 4-corner arthrodesis compared with the intact wrist. We observed smaller forces for the PRC. These results may help explain why PRC shows early clinical improvement, yet may lead to degenerative arthritis. Copyright © 2013 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  20. Bilateral contact ground reaction forces and contact times during plyometric drop jumping.

    PubMed

    Ball, Nick B; Stock, Christopher G; Scurr, Joanna C

    2010-10-01

    Drop jumping (DJ) is used in training programs aimed to improve lower extremity explosive power. When performing double-leg drop jumps, it is important to provide an equal stimulus to both legs to ensure balanced development of the lower legs. The aim of this study was to bilaterally analyze the ground reactions forces and temporal components of drop jumping from 3 heights. Ten recreationally active male subjects completed 3 bounce-drop jumps from 3 starting heights (0.2, 0.4, and 0.6 m). Two linked force platforms were used to record left- and right-leg peak vertical force, time to peak force, average force, ground contact time, impulse and time differential. Between-height and between-leg comparisons for each variable were made using a multivariate analysis of variance with post hoc Wilcoxon tests (p < 0.05). Results indicated that force and time variables increased as drop jump height increased (p < 0.0001). Post hoc analyses showed that at 0.2- and 0.4-m bilateral differences were present in the time to peak force, average force, and impulse. No bilateral differences for any variables were shown at 0.6-m starting height. The contact time for all jumps was <0.26 seconds. At 0.2 m, only 63% of the subjects had a starting time differential of <0.01 seconds, rising to 96.3% at 0.6 m. The results indicated that 0.6 m is the suggested drop jump height to ensure that no bilateral differences in vertical forces and temporal components occur; however, shorter contact times were found at the lower heights.

  1. Three-dimensional knee joint contact forces during walking in unilateral transtibial amputees.

    PubMed

    Silverman, Anne K; Neptune, Richard R

    2014-08-22

    Individuals with unilateral transtibial amputations have greater prevalence of osteoarthritis in the intact knee joint relative to the residual leg and non-amputees, but the cause of this greater prevalence is unclear. The purpose of this study was to compare knee joint contact forces and the muscles contributing to these forces between amputees and non-amputees during walking using forward dynamics simulations. We predicted that the intact knee contact forces would be higher than those of the residual leg and non-amputees. In the axial and mediolateral directions, the intact and non-amputee legs had greater peak tibio-femoral contact forces and impulses relative to the residual leg. The peak axial contact force was greater in the intact leg relative to the non-amputee leg, but the stance phase impulse was greater in the non-amputee leg. The vasti and hamstrings muscles in early stance and gastrocnemius in late stance were the largest contributors to the joint contact forces in the non-amputee and intact legs. Through dynamic coupling, the soleus and gluteus medius also had large contributions, even though they do not span the knee joint. In the residual leg, the prosthesis had large contributions to the joint forces, similar to the soleus in the intact and non-amputee legs. These results identify the muscles that contribute to knee joint contact forces during transtibial amputee walking and suggest that the peak knee contact forces may be more important than the knee contact impulses in explaining the high prevalence of intact leg osteoarthritis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Influence of post-stroke spasticity on EMG-force coupling and force steadiness in biceps brachii.

    PubMed

    Carlyle, Jennilee K; Mochizuki, George

    2018-02-01

    Individuals with spasticity after stroke experience a decrease in force steadiness which can impact function. Alterations in the strength of EMG-force coupling may contribute to the reduction in force steadiness observed in spasticity. The aim was to determine the extent to which force steadiness and EMG-force coupling is affected by post-stroke spasticity. This cross-sectional study involved individuals with upper limb spasticity after stroke. Participants were required to generate and maintain isometric contractions of the elbow flexors at varying force levels. Coefficient of variation of force, absolute force, EMG-force cross-correlation function peak and peak latency was measured from both limbs with surface electromyography and isometric dynamometry. Statistically significant differences were observed between the affected and less affected limbs for all outcome measures. Significant main effects of force level were also observed. Force steadiness was not statistically significantly correlated with EMG-force coupling; however, both force steadiness and absolute force were associated with the level of impairment as measured by the Chedoke McMaster Stroke Assessment Scale. Spasticity after stroke uncouples the relationship between EMG and force and is associated with reduced force steadiness during isometric contractions; however, these features of control are not associated in individuals with spasticity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Hindlimb immobilization - Length-tension and contractile properties of skeletal muscle

    NASA Technical Reports Server (NTRS)

    Witzmann, F. A.; Kim, D. H.; Fitts, R. H.

    1982-01-01

    Casts were placed around rat feet in plantar flexion position to immobilize the soleus muscle in a shortened position, while the other foot was fixed in dorsal flexion to set the extensor digitorum longus in a shortened position. The total muscular atrophy and contractile properties were measured at 1, 2, 4, 7, 14, 21, 28, 35, and 42 days after immobilization, with casts being replaced every two weeks. The slow twitch soleus and the fast-twitch vastus lateralis and longus muscles were excised after termination of the experiment. The muscles were then stretched and subjected to electric shock to elicit peak tetanic tension and peak tetanic tension development. Force velocity features of the three muscles were assayed in a series of afterloaded contractions and fiber lengths were measured from subsequently macerated muscle. All muscles atrophied during immobilization, reaching a new steady state by day 21. Decreases in fiber and sarcomere lengths were also observed.

  4. Comparison of the Hang High-Pull and Loaded Jump Squat for the Development of Vertical Jump and Isometric Force-Time Characteristics.

    PubMed

    Oranchuk, Dustin J; Robinson, Tracey L; Switaj, Zachary J; Drinkwater, Eric J

    2017-04-15

    Weightlifting movements have high skill demands and require expert coaching. Loaded jumps have a comparably lower skill demand, but may be similarly effective for improving explosive performance. The purpose of this study was to compare vertical jump performance, isometric force, and rate of force development (RFD) following a ten-week intervention employing the hang high-pull (hang-pull) or trap-bar jump squat (jump-squat). Eighteen NCAA Division II swimmers (8 males, 10 females) with at least one year of resistance training experience volunteered to participate. Testing included the squat jump (SJ), countermovement jump (CMJ) and the isometric mid-thigh pull (IMTP). Vertical ground reaction forces were analyzed to obtain jump height and relative peak power. Relative peak force, peak RFD and relative force at five time bands were obtained from the IMTP. Subjects were randomly assigned to either a hang-pull (n = 9) or jump-squat (n = 9) training group and completed a ten-week, volume-equated, periodized training program. While there was a significant main effect of training for both groups, no statistically significant between-group differences were found (p ≥ 0.17) for any of the dependent variables. However, medium effect sizes in favor of the jump-squat training group were seen in SJ height (d = 0.56) and SJ peak power (d = 0.69). Loaded jumps seem equally effective as weightlifting derivatives for improving lower-body power in experienced athletes. Since loaded jumps require less skill and less coaching expertise than weightlifting, loaded jumps should be considered where coaching complex movements is difficult.

  5. The Use of Ambient Humidity Conditions to Improve Influenza Forecast

    NASA Astrophysics Data System (ADS)

    Shaman, J. L.; Kandula, S.; Yang, W.; Karspeck, A. R.

    2017-12-01

    Laboratory and epidemiological evidence indicate that ambient humidity modulates the survival and transmission of influenza. Here we explore whether the inclusion of humidity forcing in mathematical models describing influenza transmission improves the accuracy of forecasts generated with those models. We generate retrospective forecasts for 95 cities over 10 seasons in the United States and assess both forecast accuracy and error. Overall, we find that humidity forcing improves forecast performance and that forecasts generated using daily climatological humidity forcing generally outperform forecasts that utilize daily observed humidity forcing. These findings hold for predictions of outbreak peak intensity, peak timing, and incidence over 2- and 4-week horizons. The results indicate that use of climatological humidity forcing is warranted for current operational influenza forecast and provide further evidence that humidity modulates rates of influenza transmission.

  6. Normative data and predictors of leg muscle function and postural control in children.

    PubMed

    Hazell, Tom J; Sharma, Atul K; Vanstone, Catherine A; Gagnon, Isabelle; Pham, Thu Trang; Finch, Sarah L; Weiler, Hope A; Rodd, Celia J

    2014-11-01

    At the present there are limited tools available to measure muscle function in young children. Ground reaction force plates measure lower-body function and postural control in older children and adults. The purpose of this study was threefold: 1) develop normative data for evaluating global muscle development; 2) determine the reproducibility of ground reaction force plates for assessing muscle function in preschool-age children; and 3) identify predictors of skeletal muscle function. Children's (n = 81, 1.8 to 6.0 yr; M = 52%) muscle function and postural control was measured for jump (JMP), sit-to-stand (STS), and both undistracted and distracted body sway tests using a ground reaction force plate (Kistler 9200A). Whole body composition used dual-energy x-ray absorptiometry (Hologic 4500A Discovery Series). Plasma 25-hydroxyvitamin D [25(OH)D] and parathyroid hormone concentrations were measured by chemiluminescence (Liaison, Diasorin, Mississauga, ON, Canada) as well as ionized calcium (ABL80 FLEX, Radiometer Medical A/S). Demographics, and anthropometry were collected. ANOVA and linear regression were used to identify predictors. Reproducibility was assessed by intersubject coefficient of variation. Age was a consistent predictor in all models; body size or fat and lean mass were important predictors in 3 of the models - STS peak force, STS peak power, and JMP peak power. STS was the most reproducible maneuver (average coefficient of variation =15.7%). Distracted body sway testing was not appropriate in these youngsters. The novel data presented in this study demonstrate a clear age (developmental) effect without any effect of sex on muscle function and postural control in young children. Lean muscle mass was important in some models (STS peak force and JMP peak power). The STS test was the best of the 4 maneuvers.

  7. Effects of 8-week in-season plyometric training on upper and lower limb performance of elite adolescent handball players.

    PubMed

    Chelly, Mohamed Souhaiel; Hermassi, Souhail; Aouadi, Ridha; Shephard, Roy J

    2014-05-01

    We hypothesized that replacement of a part of the normal in-season regimen of top-level adolescent handball players by an 8-week biweekly course of lower and upper limb plyometric training would enhance characteristics important to competition, including peak power output (Wpeak), jump performance, muscle volume, and ball throwing velocity. Study participants (23 men, age: 17.4 ± 0.5 years, body mass: 79.9 ± 11.5 kg, height: 1.79 ± 6.19 m, body fat: 13.8 ± 2.1%) were randomly assigned between controls (C; n = 11) and an experimental group (E, n = 12). Measures preintervention and postintervention included force-velocity ergometer tests for upper (Wupper peak) and lower limbs (Wlower peak), force platform determinations of squat jump (SJ) and countermovement jump (CMJ) characteristics (jump height, maximal force, initial velocity, and average power), video filming of sprint velocities (first step [V1S], first 5 m [V5m], and 25-30 m [Vmax]), and anthropometric estimates of leg muscle volume. E showed gains relative to C in Wupper peak and Wlower peak (p < 0.01 and p < 0.001), SJ (height p < 0.01; force p ≤ 0.05), CMJ (height p < 0.01; force p < 0.01 and relative power p ≤ 0.05), and sprint velocities (p < 0.001 for V1S, V5m, and Vmax). E also showed increases in leg and thigh muscle volumes (p < 0.001), but arm muscle volumes did not differ from control. We conclude that introduction of biweekly plyometric training into the standard regimen improved components important to handball performance, particularly explosive actions, such as sprinting, jumping, and ball throwing velocity.

  8. Methodological concerns for determining power output in the jump squat.

    PubMed

    Cormie, Prue; Deane, Russell; McBride, Jeffrey M

    2007-05-01

    The purpose of this study was to investigate the validity of power measurement techniques during the jump squat (JS) utilizing various combinations of a force plate and linear position transducer (LPT) devices. Nine men with at least 6 months of prior resistance training experience participated in this acute investigation. One repetition maximums (1RM) in the squat were determined, followed by JS testing under 2 loading conditions (30% of 1RM [JS30] and 90% of 1RM [JS90]). Three different techniques were used simultaneously in data collection: (a) 1 linear position transducer (1-LPT); (b) 1 linear position transducer and a force plate (1-LPT + FP); and (c) 2 linear position transducers and a force place (2-LPT + FP). Vertical velocity-, force-, and power-time curves were calculated for each lift using these methodologies and were compared. Peak force and peak power were overestimated by 1-LPT in both JS30 and JS90 compared with 2-LPT + FP and 1-LPT + FP (p

  9. Effects of Caffeine on Countermovement-Jump Performance Variables in Elite Male Volleyball Players.

    PubMed

    Zbinden-Foncea, Hermann; Rada, Isabel; Gomez, Jesus; Kokaly, Marco; Stellingwerff, Trent; Deldicque, Louise; Peñailillo, Luis

    2018-02-01

    To examine the effects of a moderate dose of caffeine in elite male volleyball players on countermovement-jump (CMJ) performance, as well as temporal concentric- and eccentric-phase effects. Ten elite male volleyball players took part in 2 experimental days via a randomized crossover trial 1 wk apart in which they ingested either 5 mg/kg of caffeine or a placebo in double-blind fashion. Heart rate and blood pressure were measured at rest and 60 min postingestion. Afterward, subjects also performed 3 CMJ trials 60 min postingestion, of which the average was used for further analysis. They filled out a questionnaire on possible side effects 24 h posttrial. Caffeine intake, compared with placebo, increased CMJ peak concentric force (6.5% ± 6.4%; P = .01), peak power (16.2% ± 8.3%; P < .01), flight time (5.3% ± 3.4%; P < .01), velocity at peak power (10.6% ± 8.0%; P < .01), peak displacement (10.8% ± 6.5%; P < .01), peak velocity (12.6% ± 7.4%; P < .01), peak acceleration (13.5% ± 8.5%; P < .01), and the force developed at peak power (6.0% ± 4.0%; P < .01) and reduced the time between peak power and peak force (16.7% ± 21.6%, P = .04). Caffeine increased diastolic blood pressure by 13.0% ± 8.9% (P < .05), whereas no adverse side effects were found. The ingestion of 5 mg/kg of anhydrous caffeine improves overall CMJ performance without inducing side effects.

  10. Quantification of upper limb kinetic asymmetries in front crawl swimming.

    PubMed

    Morouço, Pedro G; Marinho, Daniel A; Fernandes, Ricardo J; Marques, Mário C

    2015-04-01

    This study aimed at quantifying upper limb kinetic asymmetries in maximal front crawl swimming and to examine if these asymmetries would affect the contribution of force exertion to swimming performance. Eighteen high level male swimmers with unilateral breathing patterns and sprint or middle distance specialists, volunteered as participants. A load-cell was used to quantify the forces exerted in water by completing a 30s maximal front crawl tethered swimming test and a maximal 50 m free swimming was considered as a performance criterion. Individual force-time curves were obtained to calculate the mean and maximum forces per cycle, for each upper limb. Following, symmetry index was estimated and breathing laterality identified by questionnaire. Lastly, the pattern of asymmetries along the test was estimated for each upper limb using linear regression of peak forces per cycle. Asymmetrical force exertion was observed in the majority of the swimmers (66.7%), with a total correspondence of breathing laterality opposite to the side of the force asymmetry. Forces exerted by the dominant upper limb presented a higher decrease than from the non-dominant. Very strong associations were found between exerted forces and swimming performance, when controlling the isolated effect of symmetry index. Results point that force asymmetries occur in the majority of the swimmers, and that these asymmetries are most evident in the first cycles of a maximum bout. Symmetry index stood up as an influencing factor on the contribution of tethered forces over swimming performance. Thus, to some extent, a certain degree of asymmetry is not critical for short swimming performance. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Evaluating Upper-Body Strength and Power From a Single Test: The Ballistic Push-up.

    PubMed

    Wang, Ran; Hoffman, Jay R; Sadres, Eliahu; Bartolomei, Sandro; Muddle, Tyler W D; Fukuda, David H; Stout, Jeffrey R

    2017-05-01

    Wang, R, Hoffman, JR, Sadres, E, Bartolomei, S, Muddle, TWD, Fukuda, DH, and Stout, JR. Evaluating upper-body strength and power from a single test: the ballistic push-up. J Strength Cond Res 31(5): 1338-1345, 2017-The purpose of this study was to examine the reliability of the ballistic push-up (BPU) exercise and to develop a prediction model for both maximal strength (1 repetition maximum [1RM]) in the bench press exercise and upper-body power. Sixty recreationally active men completed a 1RM bench press and 2 BPU assessments in 3 separate testing sessions. Peak and mean force, peak and mean rate of force development, net impulse, peak velocity, flight time, and peak and mean power were determined. Intraclass correlation coefficients were used to examine the reliability of the BPU. Stepwise linear regression was used to develop 1RM bench press and power prediction equations. Intraclass correlation coefficient's ranged from 0.849 to 0.971 for the BPU measurements. Multiple regression analysis provided the following 1RM bench press prediction equation: 1RM = 0.31 × Mean Force - 1.64 × Body Mass + 0.70 (R = 0.837, standard error of the estimate [SEE] = 11 kg); time-based power prediction equation: Peak Power = 11.0 × Body Mass + 2012.3 × Flight Time - 338.0 (R = 0.658, SEE = 150 W), Mean Power = 6.7 × Body Mass + 1004.4 × Flight Time - 224.6 (R = 0.664, SEE = 82 W); and velocity-based power prediction equation: Peak Power = 8.1 × Body Mass + 818.6 × Peak Velocity - 762.0 (R = 0.797, SEE = 115 W); Mean Power = 5.2 × Body Mass + 435.9 × Peak Velocity - 467.7 (R = 0.838, SEE = 57 W). The BPU is a reliable test for both upper-body strength and power. Results indicate that the mean force generated from the BPU can be used to predict 1RM bench press, whereas peak velocity and flight time measured during the BPU can be used to predict upper-body power. These findings support the potential use of the BPU as a valid method to evaluate upper-body strength and power.

  12. Changes in the electromechanical delay components during a fatiguing stimulation in human skeletal muscle: an EMG, MMG and force combined approach.

    PubMed

    Cè, Emiliano; Rampichini, Susanna; Monti, Elena; Venturelli, Massimo; Limonta, Eloisa; Esposito, Fabio

    2017-01-01

    Peripheral fatigue involves electrochemical and mechanical mechanisms. An electromyographic, mechanomyographic and force combined approach may permit a kinetic evaluation of the changes at the synaptic, skeletal muscle fiber, and muscle-tendon unit level during a fatiguing stimulation. Surface electromyogram, mechanomyogram, force and stimulation current were detected from the gastrocnemius medialis muscle in twenty male participants during a fatiguing stimulation (twelve blocks of 35 Hz stimulations, duty cycle 9 s on/1 s off, duration 120 s). The total electromechanical delay and its three components (between stimulation current and electromyogram, synaptic component; between electromyogram and mechanomyogram signal onset, muscle fiber electrochemical component, and between mechanomyogram and force signal onset, mechanical component) were calculated. Interday reliability and sensitivity were determined. After fatigue, peak force decreased by 48% (P < 0.05) and the total electromechanical delay and its synaptic, electrochemical and mechanical components lengthened from 25.8 ± 0.9, 1.47 ± 0.04, 11.2 ± 0.6, and 13.1 ± 1.3 ms to 29.0 ± 1.6, 1.56 ± 0.05, 12.4 ± 0.9, and 17.2 ± 0.6 ms, respectively (P < 0.05). During fatigue, the total electromechanical delay and the mechanical component increased significantly after the 40th second, and then remained stable. The synaptic and electrochemical components lengthened significantly after the 20th and 30th second, respectively. Interday reliability was high to very high, with an adequate level of sensitivity. The kinetic evaluation of the delays during the fatiguing stimulation highlighted different onsets and kinetics, with the events at synaptic level being the first to reveal a significant elongation, followed by those at the intra-fiber level. The mechanical events, which were the most affected by fatigue, were the last to lengthen.

  13. Estimating 3D L5/S1 moments and ground reaction forces during trunk bending using a full-body ambulatory inertial motion capture system.

    PubMed

    Faber, G S; Chang, C C; Kingma, I; Dennerlein, J T; van Dieën, J H

    2016-04-11

    Inertial motion capture (IMC) systems have become increasingly popular for ambulatory movement analysis. However, few studies have attempted to use these measurement techniques to estimate kinetic variables, such as joint moments and ground reaction forces (GRFs). Therefore, we investigated the performance of a full-body ambulatory IMC system in estimating 3D L5/S1 moments and GRFs during symmetric, asymmetric and fast trunk bending, performed by nine male participants. Using an ambulatory IMC system (Xsens/MVN), L5/S1 moments were estimated based on the upper-body segment kinematics using a top-down inverse dynamics analysis, and GRFs were estimated based on full-body segment accelerations. As a reference, a laboratory measurement system was utilized: GRFs were measured with Kistler force plates (FPs), and L5/S1 moments were calculated using a bottom-up inverse dynamics model based on FP data and lower-body kinematics measured with an optical motion capture system (OMC). Correspondence between the OMC+FP and IMC systems was quantified by calculating root-mean-square errors (RMSerrors) of moment/force time series and the interclass correlation (ICC) of the absolute peak moments/forces. Averaged over subjects, L5/S1 moment RMSerrors remained below 10Nm (about 5% of the peak extension moment) and 3D GRF RMSerrors remained below 20N (about 2% of the peak vertical force). ICCs were high for the peak L5/S1 extension moment (0.971) and vertical GRF (0.998). Due to lower amplitudes, smaller ICCs were found for the peak asymmetric L5/S1 moments (0.690-0.781) and horizontal GRFs (0.559-0.948). In conclusion, close correspondence was found between the ambulatory IMC-based and laboratory-based estimates of back load. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Joint Kinetics and Kinematics During Common Lower Limb Rehabilitation Exercises.

    PubMed

    Comfort, Paul; Jones, Paul Anthony; Smith, Laura Constance; Herrington, Lee

    2015-10-01

    Unilateral body-weight exercises are commonly used to strengthen the lower limbs during rehabilitation after injury, but data comparing the loading of the limbs during these tasks are limited. To compare joint kinetics and kinematics during 3 commonly used rehabilitation exercises. Descriptive laboratory study. Laboratory. A total of 9 men (age = 22.1 ± 1.3 years, height = 1.76 ± 0.08 m, mass = 80.1 ± 12.2 kg) participated. Participants performed the single-legged squat, forward lunge, and reverse lunge with kinetic data captured via 2 force plates and 3-dimensional kinematic data collected using a motion-capture system. Peak ground reaction forces, maximum joint angles, and peak sagittal-joint moments. We observed greater eccentric and concentric peak vertical ground reaction forces during the single-legged squat than during both lunge variations (P ≤ .001). Both lunge variations demonstrated greater knee and hip angles than did the single-legged squat (P < .001), but we observed no differences between lunges (P > .05). Greater dorsiflexion occurred during the single-legged squat than during both lunge variations (P < .05), but we noted no differences between lunge variations (P = .70). Hip-joint moments were greater during the forward lunge than during the reverse lunge (P = .003) and the single-legged squat (P = .011). Knee-joint moments were greater in the single-legged squat than in the reverse lunge (P < .001) but not greater in the single-legged squat than in the forward lunge (P = .41). Ankle-joint moments were greater during the single-legged squat than during the forward lunge (P = .002) and reverse lunge (P < .001). Appropriate loading progressions for the hip should begin with the single-legged squat and progress to the reverse lunge and then the forward lunge. In contrast, loading progressions for the knee and ankle should begin with the reverse lunge and progress to the forward lunge and then the single-legged squat.

  15. Association between contact hip stress and RSA-measured wear rates in total hip arthroplasties of 31 patients.

    PubMed

    The, Bertram; Hosman, Anton; Kootstra, Johan; Kralj-Iglic, Veronika; Flivik, Gunnar; Verdonschot, Nico; Diercks, Ron

    2008-01-01

    The main concern in the long run of total hip replacements is aseptic loosening of the prosthesis. Optimization of the biomechanics of the hip joint is necessary for optimization of long-term success. A widely implementable tool to predict biomechanical consequences of preoperatively planned reconstructions still has to be developed. A potentially useful model to this purpose has been developed previously. The aim of this study is to quantify the association between the estimated hip joint contact force by this biomechanical model and RSA-measured wear rates in a clinical setting. Thirty-one patients with a total hip replacement were measured with RSA, the gold standard for clinical wear measurements. The reference examination was done within 1 week of the operation and the follow-up examinations were done at 1, 2 and 5 years. Conventional pelvic X-rays were taken on the same day. The contact stress distribution in the hip joint was determined by the computer program HIPSTRESS. The procedure for the determination of the hip joint contact stress distribution is based on the mathematical model of the resultant hip force in the one-legged stance and the mathematical model of the contact stress distribution. The model for the force requires as input data, several geometrical parameters of the hip and the body weight, while the model for stress requires as input data, the magnitude and direction of the resultant hip force. The stress distribution is presented by the peak stress-the maximal value of stress on the weight-bearing area (p(max)) and also by the peak stress calculated with respect to the body weight (p(max)/W(B)) which gives the effect of hip geometry. Visualization of the relations between predicted values by the model and the wear at different points in the follow-up was done using scatterplots. Correlations were expressed as Pearson r values. The predicted p(max) and wear were clearly correlated in the first year post-operatively (r = 0.58, p = 0.002), while this correlation is weaker after 2 years (r = 0.19, p = 0.337) and 5 years (r = 0.24, p = 0.235). The wear values at 1, 2 and 5 years post-operatively correlate with each other in the way that is expected considering the wear velocity curve of the whole group. The correlation between the predicted p(max) values of two observers who were blinded for each other's results was very good (r = 0.93, p < 0.001). We conclude that the biomechanical model used in this paper provides a scientific foundation for the development of a new way of constructing preoperative biomechanical plans for total hip replacements.

  16. Measuring tactile cues at the fingerpad for object compliances harder and softer than the skin

    PubMed Central

    Hauser, Steven C.; Gerling, Gregory J.

    2016-01-01

    Distinguishing an object’s compliance, into percepts of “softness” and “hardness,” is crucial to our ability to grasp and manipulate it. Biomechanical cues at the skin’s surface such as contact area and force rate have been thought to help encode compliance. However, no one has directly measured contact area with compliant materials, and few studies have considered compliances softer than the fingerpad. Herein, we developed a novel method to precisely measure the area in contact between compliant stimuli and the fingerpad, at given levels of force and displacement. To determine the method’s robustness, we conducted psychophysical and biomechanical experiments with human subjects. The results indicate that cues including contact area at stimulus peak force of 3 Newtons, force rate over stimulus movement and at peak force, displacement and/or time to reach peak force may help in discriminating compliances while the directional spread of contact area is less important. Between softer and harder compliances, some cues were slightly more evident, though not yet definitively. Based upon the method’s utility, the next step is to conduct broader experiments to distill the mixture of cues that encode compliance. The importance of such work lies in building haptic displays, for example, to render virtual tissues. PMID:27331072

  17. The Influence of Body Mass Index, Sex, & Muscle Activation on Pressure Distribution During Lateral Falls on the Hip.

    PubMed

    Pretty, Steven P; Martel, Daniel R; Laing, Andrew C

    2017-12-01

    Hip fracture incidence rates are influenced by body mass index (BMI) and sex, likely through mechanistic pathways that influence dynamics of the pelvis-femur system during fall-related impacts. The goal of this study was to extend our understanding of these impact dynamics by investigating the effects of BMI, sex, and local muscle activation on pressure distribution over the hip region during lateral impacts. Twenty participants underwent "pelvis-release experiments" (which simulate a lateral fall onto the hip), including muscle-'relaxed' and 'contracted' trials. Males and low-BMI individuals exhibited 44 and 55% greater peak pressure, as well as 66 and 56% lower peripheral hip force, compared to females and high-BMI individuals, respectively. Local muscle activation increased peak force by 10%, contact area by 17%, and peripheral hip force by 11% compared to relaxed trials. In summary, males and low-BMI individuals exhibited more concentrated loading over the greater trochanter. Muscle activation increased peak force, but this force was distributed over a larger area, preventing increased localized loading over the greater trochanter. These findings suggest potential value in incorporating sex, gender, and muscle activation-specific force distributions as inputs into computational tissue-level models, and have implications for the design of personalized protective devices including wearable hip protectors.

  18. High shear rate flow in a linear stroke magnetorheological energy absorber

    NASA Astrophysics Data System (ADS)

    Hu, W.; Wereley, N. M.; Hiemenz, G. J.; Ngatu, G. T.

    2014-05-01

    To provide adaptive stroking load in the crew seats of ground vehicles to protect crew from blast or impact loads, a magnetorheological energy absorber (MREA) or shock absorber was developed. The MREA provides appropriate levels of controllable stroking load for different occupant weights and peak acceleration because the viscous stroking load generated by the MREA force increases with velocity squared, thereby reducing its controllable range at high piston velocity. Therefore, MREA behavior at high piston velocity is analyzed and validated experimentally in order to investigate the effects of velocity and magnetic field on MREA performance. The analysis used to predict the MREA force as a function of piston velocity squared and applied field is presented. A conical fairing is mounted to the piston head of the MREA in order reduce predicted inlet flow loss by 9% at nominal velocity of 8 m/s, which resulted in a viscous force reduction of nominally 4%. The MREA behavior is experimentally measured using a high speed servo-hydraulic testing system for speeds up to 8 m/s. The measured MREA force is used to validate the analysis, which captures the transient force quite accurately, although the peak force is under-predicted at the peak speed of 8 m/s.

  19. The relationship between hippocampal EEG theta activity and locomotor behaviour in freely moving rats: effects of vigabatrin.

    PubMed

    Bouwman, B M; van Lier, H; Nitert, H E J; Drinkenburg, W H I M; Coenen, A M L; van Rijn, C M

    2005-01-30

    The relationship between hippocampal electroencephalogram (EEG) theta activity and locomotor speed in both spontaneous and forced walking conditions was studied in rats after vigabatrin injection (500 mg/kg i.p.). Vigabatrin increased the percentage of time that rats spent being immobile. During spontaneous walking in the open field, the speed of locomotion was increased by vigabatrin, while theta peak frequency was decreased. Vigabatrin also reduced the theta peak frequency during forced (speed controlled) walking. There was only a weak positive correlation (r=0.22) between theta peak frequency and locomotor speed for the saline condition. Furthermore, vigabatrin abolishes the weak relationship between speed of locomotion and theta peak frequency. Vigabatrin and saline did not differ in the slope of the regression line, but showed different offset points at the theta peak frequency axis. Thus, other factors than speed of locomotion seem to be involved in determination of the theta peak frequency.

  20. Targeted isometric force impulses in patients with traumatic brain injury reveal delayed motor programming and change of strategy.

    PubMed

    Cantagallo, Anna; Di Russo, Francesco; Favilla, Marco; Zoccolotti, Pierluigi

    2015-04-15

    The capability of quickly (as soon as possible) producing fast uncorrected and accurate isometric force impulses was examined to assess the motor efficiency of patients with moderate to severe traumatic brain injury (TBI) and good motor recovery at a clinical evaluation. Twenty male right-handed patients with moderate to severe TBI and 24 age-matched healthy male right-handed controls participated in the study. The experimental task required subjects to aim brief and uncorrected isometric force impulses to targets visually presented along with subjects' force displays. Both TBI patients and controls were able to produce force impulses whose mean peak amplitudes varied proportionally to the target load with no detectable group difference. Patients with TBI, however, were slower than controls in initiating their responses (reaction times [RTs] were longer by 125 msec) and were also slower during the execution of their motor responses, reaching the peak forces requested 23 msec later than controls (time to peak force: 35% delay). Further, their mean dF/dt (35 kg/sec) was slower than that of controls (53 kg/sec), again indicating a 34% impairment with respect to controls. Overall, patients with TBI showed accurate but delayed and slower isometric force impulses. Thus, an evaluation taking into account also response time features is more effective in picking up motor impairments than the standard clinical scales focusing on accuracy of movement only.

  1. Post-activation Potentiation in Propulsive Force after Specific Swimming Strength Training.

    PubMed

    Barbosa, A C; Barroso, R; Andries, O

    2016-04-01

    We investigated whether a conditioning activity (8×12.5 m with 2.5 min-interval using both hand paddles and parachute) induced post-activation potentiation in swimming propulsive force and whether a swimmer's force level affected a post-activation potentiation response. 8 competitive swimmers (5 males and 3 females, age: 18.4±1.3 years; IPS=796±56) performed a 10 s maximum tethered swimming test 8 and 4 min before (the highest value was considered as PRE), and 2.5 and 6.5 min after (POST1 and POST2, respectively) the conditioning activity. Rate of force development was not affected, but peak force in POST1 (p=0.02) and impulse in both POST1 (p=0.007) and POST2 (p=0.004) were reduced. Possibly the conditioning activity induced greater fatigue than post-activation potentiation benefits. For instance, the number of repetitions might have been excessive, and rest intervals between the conditioning activity and POST1 and POST2 were possibly too short. There were positive correlations between PRE peak force and changes in peak force and rate of force development. Although conditioning activity was detrimental, positive correlations suggest that weaker swimmers experience a deterioration of performance more than the stronger ones. This conditioning activity is not recommended for swimmers with the current competitive level before a competitive event. © Georg Thieme Verlag KG Stuttgart · New York.

  2. Effects of neuromuscular fatigue on perceptual-cognitive skills between genders in the contribution to the knee joint loading during side-stepping tasks.

    PubMed

    Khalid, Abdul Jabbar; Harris, Sujae Ian; Michael, Loke; Joseph, Hamill; Qu, Xingda

    2015-01-01

    This study investigated whether neuromuscular fatigue affects the neuromuscular control of an athlete within a sports context setting and whether these effects were more pronounced in the females. Lower limb joint kinetics of 6 male and 6 female inter-varsity soccer players performing side-stepping tasks in non-fatigue versus fatigue and anticipated versus unanticipated conditions were quantified using 10 Motion Analysis Corporation cameras and a Kistler(™) force platform. The Yo-Yo intermittent recovery Level 1 fatigue protocol was employed. Stance foot initial contact and peak forces, and peak joint knee moments of the lower limb were submitted to a 3-way mixed-model repeated measure ANOVA. The results suggested that males tend to elicit significantly higher knee joint loadings when fatigued. In addition, males elicited significantly higher peak proximal tibia anterior/posterior shear force, vertical ground reaction force at initial contact and peak internal rotational moments than females. These findings suggested that males were at greater overall injury risk than females, especially in the sagittal plane. Neuromuscular control-based training programmes/interventions that are designed to reduce the risk of the non-contact ACL injury need to be customised for the different genders.

  3. Gender, Vertical Height and Horizontal Distance Effects on Single-Leg Landing Kinematics: Implications for Risk of non-contact ACL Injury.

    PubMed

    Ali, Nicholas; Rouhi, Gholamreza; Robertson, Gordon

    2013-01-01

    There is a lack of studies investigating gender differences in whole-body kinematics during single-leg landings from increasing vertical heights and horizontal distances. This study determined the main effects and interactions of gender, vertical height, and horizontal distance on whole-body joint kinematics during single-leg landings, and established whether these findings could explain the gender disparity in non-contact anterior cruciate ligament (ACL) injury rate. Recreationally active males (n=6) and females (n=6) performed single-leg landings from a takeoff deck of vertical height of 20, 40, and 60 cm placed at a horizontal distance of 30, 50 and 70 cm from the edge of a force platform, while 3D kinematics and kinetics were simultaneously measured. It was determined that peak vertical ground reaction force (VGRF) and the ankle flexion angle exhibited significant gender differences (p=0.028, partial η(2)=0.40 and p=0.035, partial η(2)=0.37, respectively). Peak VGRF was significantly correlated to the ankle flexion angle (r= -0.59, p=0.04), hip flexion angle (r= -0.74, p=0.006), and trunk flexion angle (r= -0.59, p=0.045). Peak posterior ground reaction force (PGRF) was significantly correlated to the ankle flexion angle (r= -0.56, p=0.035), while peak knee abduction moment was significantly correlated to the knee flexion angle (r= -0.64, p=0.03). Rearfoot landings may explain the higher ACL injury rate among females. Higher plantar-flexed ankle, hip, and trunk flexion angles were associated with lower peak ground reaction forces, while higher knee flexion angle was associated with lower peak knee abduction moment, and these kinematics implicate reduced risk of non-contact ACL injury.

  4. Relative net vertical impulse determines jumping performance.

    PubMed

    Kirby, Tyler J; McBride, Jeffrey M; Haines, Tracie L; Dayne, Andrea M

    2011-08-01

    The purpose of this investigation was to determine the relationship between relative net vertical impulse and jump height in a countermovement jump and static jump performed to varying squat depths. Ten college-aged males with 2 years of jumping experience participated in this investigation (age: 23.3 ± 1.5 years; height: 176.7 ± 4.5 cm; body mass: 84.4 ± 10.1 kg). Subjects performed a series of static jumps and countermovement jumps in a randomized fashion to a depth of 0.15, 0.30, 0.45, 0.60, and 0.75 m and a self-selected depth (static jump depth = 0.38 ± 0.08 m, countermovement jump depth = 0.49 ± 0.06 m). During the concentric phase of each jump, peak force, peak velocity, peak power, jump height, and net vertical impulse were recorded and analyzed. Net vertical impulse was divided by body mass to produce relative net vertical impulse. Increasing squat depth corresponded to a decrease in peak force and an increase in jump height and relative net vertical impulse for both static jump and countermovement jump. Across all depths, relative net vertical impulse was statistically significantly correlated to jump height in the static jump (r = .9337, p < .0001, power = 1.000) and countermovement jump (r = .925, p < .0001, power = 1.000). Across all depths, peak force was negatively correlated to jump height in the static jump (r = -0.3947, p = .0018, power = 0.8831) and countermovement jump (r = -0.4080, p = .0012, power = 0.9050). These results indicate that relative net vertical impulse can be used to assess vertical jump performance, regardless of initial squat depth, and that peak force may not be the best measure to assess vertical jump performance.

  5. Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation.

    PubMed

    Lu, H; Isralewitz, B; Krammer, A; Vogel, V; Schulten, K

    1998-08-01

    Titin, a 1-microm-long protein found in striated muscle myofibrils, possesses unique elastic and extensibility properties in its I-band region, which is largely composed of a PEVK region (70% proline, glutamic acid, valine, and lysine residue) and seven-strand beta-sandwich immunoglobulin-like (Ig) domains. The behavior of titin as a multistage entropic spring has been shown in atomic force microscope and optical tweezer experiments to partially depend on the reversible unfolding of individual Ig domains. We performed steered molecular dynamics simulations to stretch single titin Ig domains in solution with pulling speeds of 0.5 and 1.0 A/ps. Resulting force-extension profiles exhibit a single dominant peak for each Ig domain unfolding, consistent with the experimentally observed sequential, as opposed to concerted, unfolding of Ig domains under external stretching forces. This force peak can be attributed to an initial burst of backbone hydrogen bonds, which takes place between antiparallel beta-strands A and B and between parallel beta-strands A' and G. Additional features of the simulations, including the position of the force peak and relative unfolding resistance of different Ig domains, can be related to experimental observations.

  6. Direct dynamics simulation of the impact phase in heel-toe running.

    PubMed

    Gerritsen, K G; van den Bogert, A J; Nigg, B M

    1995-06-01

    The influence of muscle activation, position and velocities of body segments at touchdown and surface properties on impact forces during heel-toe running was investigated using a direct dynamics simulation technique. The runner was represented by a two-dimensional four- (rigid body) segment musculo-skeletal model. Incorporated into the muscle model were activation dynamics, force-length and force-velocity characteristics of seven major muscle groups of the lower extremities: mm. glutei, hamstrings, m. rectus femoris, mm. vasti, m. gastrocnemius, m. soleus and m. tibialis anterior. The vertical force-deformation characteristics of heel, shoe and ground were modeled by a non-linear visco-elastic element. The maximum of a typical simulated impact force was 1.6 times body weight. The influence of muscle activation was examined by generating muscle stimulation combinations which produce the same (experimentally determined) resultant joint moments at heelstrike. Simulated impact peak forces with these different combinations of muscle stimulation levels varied less than 10%. Without this restriction on initial joint moments, muscle activation had potentially a much larger effect on impact force. Impact peak force was to a great extent influenced by plantar flexion (85 N per degree of change in foot angle) and vertical velocity of the heel (212 N per 0.1 m s-1 change in velocity) at touchdown. Initial knee flexion (68 N per degree of change in leg angle) also played a role in the absorption of impact. Increased surface stiffness resulted in higher impact peak forces (60 N mm-1 decrease in deformation).(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Lower extremity energy absorption and biomechanics during landing, part II: frontal-plane energy analyses and interplanar relationships.

    PubMed

    Norcross, Marc F; Lewek, Michael D; Padua, Darin A; Shultz, Sandra J; Weinhold, Paul S; Blackburn, J Troy

    2013-01-01

    Greater sagittal-plane energy absorption (EA) during the initial impact phase (INI) of landing is consistent with sagittal-plane biomechanics that likely increase anterior cruciate ligament (ACL) loading, but it does not appear to influence frontal-plane biomechanics. We do not know whether frontal-plane INI EA is related to high-risk frontal-plane biomechanics. To compare biomechanics among INI EA groups, determine if women are represented more in the high group, and evaluate interplanar INI EA relationships. Descriptive laboratory study. Research laboratory. Participants included 82 (41 men, 41 women; age = 21.0 ± 2.4 years, height = 1.74 ± 0.10 m, mass = 70.3 ± 16.1 kg) healthy, physically active volunteers. We assessed landing biomechanics with an electromagnetic motion-capture system and force plate. We calculated frontal- and sagittal-plane total, hip, knee, and ankle INI EA. Total frontal-plane INI EA was used to create high, moderate, and low tertiles. Frontal-plane knee and hip kinematics, peak vertical and posterior ground reaction forces, and peak internal knee-varus moment (pKVM) were identified and compared across groups using 1-way analyses of variance. We used a χ (2) analysis to evaluate male and female allocation to INI EA groups. We used simple, bivariate Pearson product moment correlations to assess interplanar INI EA relationships. The high-INI EA group exhibited greater knee valgus at ground contact, hip adduction at pKVM, and peak hip adduction than the low-INI EA group (P < .05) and greater peak knee valgus, pKVM, and knee valgus at pKVM than the moderate- (P < .05) and low- (P < .05) INI EA groups. Women were more likely than men to be in the high-INI EA group (χ(2) = 4.909, P = .03). Sagittal-plane knee and frontal-plane hip INI EA (r = 0.301, P = .006) and sagittal-plane and frontal-plane ankle INI EA were associated (r = 0.224, P = .04). No other interplanar INI EA relationships were found (P > .05). Greater frontal-plane INI EA was associated with less favorable frontal-plane biomechanics that likely result in greater ACL loading. Women were more likely than men to use greater frontal-plane INI EA. The magnitudes of sagittal- and frontal-plane INI EA were largely independent.

  8. The Effect of Variation of Plyometric Push-Ups on Force-Application Kinetics and Perception of Intensity.

    PubMed

    Dhahbi, Wissem; Chaouachi, Anis; Dhahbi, Anis Ben; Cochrane, Jodie; Chèze, Laurence; Burnett, Angus; Chamari, Karim

    2017-02-01

    To examine differences between ground-reaction-force (GRF)-based parameters collected from 5 types of plyometric push-ups. Between-trials reliability and the relationships between parameters were also assessed. Thirty-seven highly active commando soldiers performed 3 trials of 5 variations of the plyometric push-up in a counterbalanced order: standard countermovement push-up (SCPu), standard squat push-up (SSPu), kneeling countermovement push-up (KCPu), kneeling squat push-up (KSPu), and drop-fall push-up (DFPu). Vertical GRF was measured during these exercises using a portable Kistler force plate. The GRF applied by the hands in the starting position (initial force supported), peak GRF and rate of force development during takeoff, flight time, impact force, and rate of force development impact on landing were determined. During standard-position exercises (SCPu and SSPu) the initial force supported and impact force were higher (P < .001) than with kneeling exercises (KCPu, KSPu, and DFPu). The peak GRF and rate of force development during takeoff were higher (P < .001) in the countermovement push-up exercises ([CMP] SCPu, KCPu, and DFPu) than squat push-up exercises ([SP] SSPu and KSPu). Furthermore, the flight time was greater (P < .001) during kneeling exercises than during standard-position exercises. A significant relationship (P < .01) between impact force and the rate of force development impact was observed for CMP and SP exercises (r = .83 and r = .62, respectively). The initial force supported was also negatively related (P < .01) to the flight time for both CMP and SP (r = -.74 and r = -.80, respectively). It was revealed that the initial force supported and the peak GRF during takeoff had excellent reliability; however, other parameters had poor absolute reliability. It is possible to adjust the intensity of plyometric push-up exercises and train athletes' muscle power by correctly interpreting GRF-based parameters. However, caution is required as some parameters had marginal absolute reliability.

  9. Floods of September 6, 1960, in eastern Puerto Rico

    USGS Publications Warehouse

    Barnes, Harry Hawthorne; Bogart, Dean Butler

    1961-01-01

    The floods of September 6, 1960, were the greatest known on many streams in eastern Puerto Rico. There were 117 lives lost, 30 persons missing, and 136 injured. Total damage was estimated in excess of $7 million. Several thousand persons were forced from their homes by the floods as 484, houses were destroyed and more than 3,600 others were. damaged. All main highways and most secondary roads were impassable for a short period during the floods and damage to them was heavy. Following the passage of Hurricane Donna off the northeast coast, rains of very high intensity fell over parts of the eastern half of the island, beginning about 9 p.m. September 5. By dawn September 6, rains totaling more than 10 inches over a large area produced floods in every river basin from the Rio Grande de Manati eastward. Flood discharges on the Rio Humacao, Rio Turabo, and Rio Valenciano were the greatest known and rank high among the notable floods on streams that drain from 6 to ]5 square miles. An outstanding feature of the floods was the unusually high magnitude of peak discharges--9 of the 24 peak discharges determined had Myers ratings greater than 80 percent.

  10. Direct current force sensing device based on compressive spring, permanent magnet, and coil-wound magnetostrictive/piezoelectric laminate.

    PubMed

    Leung, Chung Ming; Or, Siu Wing; Ho, S L

    2013-12-01

    A force sensing device capable of sensing dc (or static) compressive forces is developed based on a NAS106N stainless steel compressive spring, a sintered NdFeB permanent magnet, and a coil-wound Tb(0.3)Dy(0.7)Fe(1.92)/Pb(Zr, Ti)O3 magnetostrictive∕piezoelectric laminate. The dc compressive force sensing in the device is evaluated theoretically and experimentally and is found to originate from a unique force-induced, position-dependent, current-driven dc magnetoelectric effect. The sensitivity of the device can be increased by increasing the spring constant of the compressive spring, the size of the permanent magnet, and/or the driving current for the coil-wound laminate. Devices of low-force (20 N) and high-force (200 N) types, showing high output voltages of 262 and 128 mV peak, respectively, are demonstrated at a low driving current of 100 mA peak by using different combinations of compressive spring and permanent magnet.

  11. Isokinetic analysis of ankle and ground reaction forces in runners and triathletes

    PubMed Central

    Luna, Natália Mariana Silva; Alonso, Angelica Castilho; Brech, Guilherme Carlos; Mochizuki, Luis; Nakano, Eduardo Yoshio; Greve, Júlia Maria D'Andréa

    2012-01-01

    OBJECTIVE: To analyze and compare the vertical component of ground reaction forces and isokinetic muscle parameters for plantar flexion and dorsiflexion of the ankle between long-distance runners, triathletes, and non-athletes. METHODS: Seventy-five males with a mean age of 30.26 (±6.5) years were divided into three groups: a triathlete group (n = 26), a long-distance runner group (n = 23), and a non-athlete control group. The kinetic parameters were measured during running using a force platform, and the isokinetic parameters were measured using an isokinetic dynamometer. RESULTS: The non-athlete control group and the triathlete group exhibited smaller vertical forces, a greater ground contact time, and a greater application of force during maximum vertical acceleration than the long-distance runner group. The total work (180°/s) was greater in eccentric dorsiflexion and concentric plantar flexion for the non-athlete control group and the triathlete group than the long-distance runner group. The peak torque (60°/s) was greater in eccentric plantar flexion and concentric dorsiflexion for the control group than the athlete groups. CONCLUSIONS: The athlete groups exhibited less muscle strength and resistance than the control group, and the triathletes exhibited less impact and better endurance performance than the runners. PMID:23018298

  12. Regulation of reaction forces during the golf swing.

    PubMed

    McNitt-Gray, J L; Munaretto, J; Zaferiou, A; Requejo, P S; Flashner, H

    2013-06-01

    During the golf swing, the reaction forces applied at the feet control translation and rotation of the body-club system. In this study, we hypothesized that skilled players using a 6-iron would regulate shot distance by scaling the magnitude of the resultant horizontal reaction force applied to the each foot with minimal modifications in force direction. Skilled players (n = 12) hit golf balls using a 6-iron. Shot distance was varied by hitting the ball as they would normally and when reducing shot distance using the same club. During each swing, reaction forces were measured using dual force plates (1200 Hz) and three-dimensional kinematics were simultaneously captured (110 Hz). The results indicate that, on average, the peak resultant horizontal reaction forces of the target leg were significantly less than normal (5%, p < 0.05) when reducing shot distance. No significant differences in the orientation of the peak resultant horizontal reaction forces were observed. Resultant horizontal reaction force-angle relationships within leg and temporal relationships between target and rear legs during the swing were consistent within player across shot conditions. Regulation of force magnitude with minimal modification in force direction is expected to provide advantages from muscle activation, coordination, and performance points of view.

  13. Gait ground reaction force characteristics of low back pain patients with pronated foot and able-bodied individuals with and without foot pronation.

    PubMed

    Farahpour, Nader; Jafarnezhad, AmirAli; Damavandi, Mohsen; Bakhtiari, Abbas; Allard, Paul

    2016-06-14

    The link between gait parameters and foot abnormalities in association with low back pain is not well understood. The objective of this study was to investigate the effects of excessive foot pronation as well as the association of LBP with excessive foot pronation on the GRF components during shod walking. Forty-five subjects were equally divided into a control group, a group of subjects with pronated feet only, and another group with pronated feet and LBP. Ground reaction forces were analyzed during shod walking. Foot pronation without low back pain was associated with increased lateral-medial ground reaction force, impulse, and time to peak of all reaction forces in heel contact phase (p<0.03). In low back pain patients with pronated foot, greater vertical reaction forces (p=0.001) and loading rate, and time to peak on propulsion force were observed compared to pronated foot without low back pain group. Impulse in posterior-anterior reaction force was smaller in the able-bodied group with normal foot than in the other groups (p<0.05). Positive peak of free moments of the LBP group was significantly greater than that in other groups (p<0.05). In conclusion, foot pronation alone was not associated with elevated vertical ground reaction forces. While, low back pain patients with foot pronation displayed higher vertical ground reaction force as well as higher loading rate. Present results reveal that gait ground reaction force components in low back pain patients with pronated foot may have clinical values on the prognosis and rehabilitation of mechanical LBP patients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. The influence of heel height on utilized coefficient of friction during walking.

    PubMed

    Blanchette, Mark G; Brault, John R; Powers, Christopher M

    2011-05-01

    Wearing high heel shoes has been associated with an increased potential for slips and falls. The association between wearing high heels and the increased potential for slipping suggests that the friction demand while wearing high heels may be greater when compared to wearing low heel shoes. The purpose of this study was to determine if heel height affects utilized friction (uCOF) during walking. A secondary purpose of this study was to compare kinematics at the ankle, knee, and hip that may explain uCOF differences among shoes with varied heel heights. Fifteen healthy women (mean age 24.5±2.5yrs) participated. Subjects walked at self-selected velocity under 3 different shoe conditions that varied in heel height (low: 1.27cm, medium: 6.35cm, and high: 9.53cm). Ground reaction forces (GRFs) were recorded using a force platform (1560Hz). Kinematic data were obtained using an 8 camera motion analysis system (120Hz). Utilized friction was calculated as the ratio of resultant shear force to vertical force. One-way repeated measures ANOVAs were performed to test for differences in peak uCOF, GRFs at peak uCOF and lower extremity joint angles at peak uCOF. On average, peak uCOF was found to increase with heel height. The increased uCOF observed in high heel shoes was related to an increase in the resultant shear force and decrease in the vertical force. Our results signify the need for proper public education and increased footwear industry awareness of how high heel shoes affect slip risk. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Impact of Surface Type, Wheelchair Weight, and Axle Position on Wheelchair Propulsion by Novice Older Adults

    PubMed Central

    Cowan, Rachel E.; Nash, Mark S.; Collinger, Jennifer L.; Koontz, Alicia M.; Boninger, Michael L.

    2009-01-01

    Objective To examine the impact of surface type, wheelchair weight, and rear axle position on older adult propulsion biomechanics. Design Crossover trial. Setting Biomechanics laboratory. Participants Convenience sample of 53 ambulatory older adults with minimal wheelchair experience (65−87y); men = 20, women = 33. Intervention Participants propelled 4 different wheelchair configurations over 4 surfaces; tile, low carpet, high carpet, and an 8% grade ramp (surface, chair order randomized). Chair configurations included: (1) unweighted chair with an anterior axle position, (2) 9.05kg weighted chair with an anterior axle position, (3) unweighted chair with a posterior axle position (Δ0.08m), and (4) 9.05kg weighted chair with a posterior axle position (Δ0.08m). Weight was added to a titanium folding chair, simulating the weight difference between very light and depot wheelchairs. Instrumented wheels measured propulsion kinetics. Main Outcome Measures Average self-selected velocity, push-frequency, stroke length, peak resultant and tangential force. Results Velocity decreased as surface rolling resistance or chair weight increased. Peak resultant and tangential forces increased as chair weight increased, surface resistance increased, and with a posterior axle position. The effect of a posterior axle position was greater on high carpet and the ramp. The effect of weight was constant, but more easily observed on high carpet and ramp. The effects of axle position and weight were independent of one another. Conclusion Increased surface resistance decreases self-selected velocity and increases peak forces. Increased weight decreases self-selected velocity and increases forces. Anterior axle positions decrease forces, more so on high carpet. Effects of weight and axle position are independent. Greatest reductions in peak forces occur in lighter chairs with anterior axle positions. PMID:19577019

  16. Chemical energetics of force development, force maintenance, and relaxation in mammalian smooth muscle

    PubMed Central

    1980-01-01

    High-energy phosphate utilization (delta approximately P) associated with force development, force maintenance, and relaxation has been determined during single isometric tetani in the rabbit taenia coli. ATP resynthesis from glycolysis and respiration was stopped without deleterious effects on the muscle. At 18 degrees C and a muscle length of 95% l0, the resting rate of energy utilization is 1.8 +/- 0.2 nmol/g . s-1, or 0.85 +/- 0.2 mmol approximately P/mol of total creatine (Ct) . s-1, where Ct = 2.7 mumol/g wet wt. During the initial 25 s of stimulation when force is developed, the average rate of delta approximately P was -8.2 +/- 0.8 mmol/mol Ct . s-1, some four times greater than during the subsequent 35 s of force maintenance, when the rate was -2.0 +/- 0.6 mmol approximately P/mol Ct . s-1. The energy cost of force redevelopment (0 to 95% P0) after a quick release from the peak of a tetanus is very low compared with the initial force development. Therefore, the high rate of energy utilization during force development is not due only to internal work done against the series elasticity nor to any high rate of cross-bridge cycling inherently associated with force development. The high economy of force maintenance compared with other muscle types is undoubtedly due to a slower cross-bridge cycle time. The energy utilization during 45 s of relaxation was not statistically significant, and integral of Pdt/delta approximately P was higher during relaxation than during force maintenance in the stimulated muscle. PMID:6969290

  17. Mechanisms underlying hypothermia-induced cardiac contractile dysfunction.

    PubMed

    Han, Young-Soo; Tveita, Torkjel; Prakash, Y S; Sieck, Gary C

    2010-03-01

    Rewarming patients after profound hypothermia may result in acute heart failure and high mortality (50-80%). However, the underlying pathophysiological mechanisms are largely unknown. We characterized cardiac contractile function in the temperature range of 15-30 degrees C by measuring the intracellular Ca(2+) concentration ([Ca(2+)](i)) and twitch force in intact left ventricular rat papillary muscles. Muscle preparations were loaded with fura-2 AM and electrically stimulated during cooling at 15 degrees C for 1.5 h before being rewarmed to the baseline temperature of 30 degrees C. After hypothermia/rewarming, peak twitch force decreased by 30-40%, but [Ca(2+)](i) was not significantly altered. In addition, we assessed the maximal Ca(2+)-activated force (F(max)) and Ca(2+) sensitivity of force in skinned papillary muscle fibers. F(max) was decreased by approximately 30%, whereas the pCa required for 50% of F(max) was reduced by approximately 0.14. In rewarmed papillary muscle, both total cardiac troponin I (cTnI) phosphorylation and PKA-mediated cTnI phosphorylation at Ser23/24 were significantly increased compared with controls. We conclude that after hypothermia/rewarming, myocardial contractility is significantly reduced, as evidenced by reduced twitch force and F(max). The reduced myocardial contractility is attributed to decreased Ca(2+) sensitivity of force rather than [Ca(2+)](i) itself, resulting from increased cTnI phosphorylation.

  18. Importance of upper-limb inertia in calculating concentric bench press force.

    PubMed

    Rambaud, Olivier; Rahmani, Abderrahmane; Moyen, Bernard; Bourdin, Muriel

    2008-03-01

    The purpose of this study was to investigate the influence of upper-limb inertia on the force-velocity relationship and maximal power during concentric bench press exercise. Reference peak force values (Fpeakp) measured with a force plate positioned below the bench were compared to those measured simultaneously with a kinematic device fixed on the barbell by taking (Fpeakt) or not taking (Fpeakb) upper-limb inertia into account. Thirteen men (27.8 +/- 4.1 years, 184.6 +/- 5.5 cm, 99.5 +/- 18.6 kg) performed all-out concentric bench press exercise against 8 loads ranging between 7 and 74 kg. The results showed that for each load, Fpeakb was significantly less than Fpeakp (P < 0.0001), whereas no significant difference was found between Fpeakp and Fpeakt. The values of maximal force (F0), maximal velocity (V0), optimal velocity (Vopt), and maximal power (Pmax), extrapolated from the force- and power-velocity relationships determined with the kinematic device, were significantly underestimated when upper-limb inertia was ignored. The results underline the importance of taking account of the total inertia of the moving system to ensure precise evaluation of upper-limb muscular characteristics in all-out concentric bench press exercise with a kinematic device. A major application of this study would be to develop precise upper-limb muscular characteristic evaluation in laboratory and field conditions by using a simple and cheap kinematic device.

  19. Numerical Simulation of Dry Granular Flow Impacting a Rigid Wall Using the Discrete Element Method

    PubMed Central

    Wu, Fengyuan; Fan, Yunyun; Liang, Li; Wang, Chao

    2016-01-01

    This paper presents a clump model based on Discrete Element Method. The clump model was more close to the real particle than a spherical particle. Numerical simulations of several tests of dry granular flow impacting a rigid wall flowing in an inclined chute have been achieved. Five clump models with different sphericity have been used in the simulations. By comparing the simulation results with the experimental results of normal force on the rigid wall, a clump model with better sphericity was selected to complete the following numerical simulation analysis and discussion. The calculation results of normal force showed good agreement with the experimental results, which verify the effectiveness of the clump model. Then, total normal force and bending moment of the rigid wall and motion process of the granular flow were further analyzed. Finally, comparison analysis of the numerical simulations using the clump model with different grain composition was obtained. By observing normal force on the rigid wall and distribution of particle size at the front of the rigid wall at the final state, the effect of grain composition on the force of the rigid wall has been revealed. It mainly showed that, with the increase of the particle size, the peak force at the retaining wall also increase. The result can provide a basis for the research of relevant disaster and the design of protective structures. PMID:27513661

  20. Multi-segment foot kinematics and ground reaction forces during gait of individuals with plantar fasciitis.

    PubMed

    Chang, Ryan; Rodrigues, Pedro A; Van Emmerik, Richard E A; Hamill, Joseph

    2014-08-22

    Clinically, plantar fasciitis (PF) is believed to be a result and/or prolonged by overpronation and excessive loading, but there is little biomechanical data to support this assertion. The purpose of this study was to determine the differences between healthy individuals and those with PF in (1) rearfoot motion, (2) medial forefoot motion, (3) first metatarsal phalangeal joint (FMPJ) motion, and (4) ground reaction forces (GRF). We recruited healthy (n=22) and chronic PF individuals (n=22, symptomatic over three months) of similar age, height, weight, and foot shape (p>0.05). Retro-reflective skin markers were fixed according to a multi-segment foot and shank model. Ground reaction forces and three dimensional kinematics of the shank, rearfoot, medial forefoot, and hallux segment were captured as individuals walked at 1.35 ms(-1). Despite similarities in foot anthropometrics, when compared to healthy individuals, individuals with PF exhibited significantly (p<0.05) (1) greater total rearfoot eversion, (2) greater forefoot plantar flexion at initial contact, (3) greater total sagittal plane forefoot motion, (4) greater maximum FMPJ dorsiflexion, and (5) decreased vertical GRF during propulsion. These data suggest that compared to healthy individuals, individuals with PF exhibit significant differences in foot kinematics and kinetics. Consistent with the theoretical injury mechanisms of PF, we found these individuals to have greater total rearfoot eversion and peak FMPJ dorsiflexion, which may put undue loads on the plantar fascia. Meanwhile, increased medial forefoot plantar flexion at initial contact and decreased propulsive GRF are suggestive of compensatory responses, perhaps to manage pain. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Compressive tibiofemoral force during crouch gait.

    PubMed

    Steele, Katherine M; Demers, Matthew S; Schwartz, Michael H; Delp, Scott L

    2012-04-01

    Crouch gait, a common walking pattern in individuals with cerebral palsy, is characterized by excessive flexion of the hip and knee. Many subjects with crouch gait experience knee pain, perhaps because of elevated muscle forces and joint loading. The goal of this study was to examine how muscle forces and compressive tibiofemoral force change with the increasing knee flexion associated with crouch gait. Muscle forces and tibiofemoral force were estimated for three unimpaired children and nine children with cerebral palsy who walked with varying degrees of knee flexion. We scaled a generic musculoskeletal model to each subject and used the model to estimate muscle forces and compressive tibiofemoral forces during walking. Mild crouch gait (minimum knee flexion 20-35°) produced a peak compressive tibiofemoral force similar to unimpaired walking; however, severe crouch gait (minimum knee flexion>50°) increased the peak force to greater than 6 times body-weight, more than double the load experienced during unimpaired gait. This increase in compressive tibiofemoral force was primarily due to increases in quadriceps force during crouch gait, which increased quadratically with average stance phase knee flexion (i.e., crouch severity). Increased quadriceps force contributes to larger tibiofemoral and patellofemoral loading which may contribute to knee pain in individuals with crouch gait. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Muted responses of streamflow and suspended sediment flux in a wildfire-affected watershed

    NASA Astrophysics Data System (ADS)

    Owens, P. N.; Giles, T. R.; Petticrew, E. L.; Leggat, M. S.; Moore, R. D.; Eaton, B. C.

    2013-11-01

    In August 2003 a severe wildfire burnt 62% of Fishtrap Creek, a 158 km2 watershed in central British Columbia, Canada. Streamflows were obtained for the period 1980-2010 and suspended sediment fluxes were determined for the period 2004-2010 for Fishtrap Creek and these were compared to data for nearby Jamieson Creek, which was not affected by the wildfire. Peak streamflows in Fishtrap Creek after the wildfire were not significantly higher than before the wildfire, although total annual runoff had increased. Perhaps the most important change in streamflows following the wildfire was that peak flows associated with the annual freshet occurred earlier in the year (by ca. 2 weeks). Following the wildfire, monthly total suspended sediment fluxes peaked in April in Fishtrap Creek and May in Jamieson Creek, which reflects the change in timing of peak streamflows in Fishtrap. Specific suspended sediment yields were low in the first year following the wildfire (2004), and peak values for the 2004-2010 monitoring period occurred in 2006. Average specific suspended sediment yields over the monitoring period were similar for both watersheds at 2.8 and 2.9 t km- 2 year- 1 for Fishtrap and Jamieson watersheds, respectively. The muted responses of streamflows and suspended sediment fluxes following this severe wildfire are due to the lack of winter precipitation and the low intensities of summer rainfall events in the first year following the wildfire. Greater winter precipitation and associated snowmelt in subsequent years coincided with vegetation recovery. The major changes in the wildfire-affected watershed were increased bank erosion and channel migration due to a loss of root strength and cohesion, which occurred 3-5 years after the fire. This work demonstrates that the hydrological and geomorphological responses of watersheds to wildfires are a function of the severity of the wildfire and the timing and nature of driving forces (i.e. rainfall intensity, winter precipitation and snowmelt) during the progression of vegetation recovery.

  3. Kinematic, kinetic and EMG analysis of four front crawl flip turn techniques.

    PubMed

    Pereira, Suzana Matheus; Ruschel, Caroline; Hubert, Marcel; Machado, Leandro; Roesler, Helio; Fernandes, Ricardo Jorge; Vilas-Boas, João Paulo

    2015-01-01

    This study aimed to analyse the kinematic, kinetic and electromyographic characteristics of four front crawl flip turn technique variants. The variants distinguished from each other by differences in body position (i.e., dorsal, lateral, ventral) during rolling, wall support, pushing and gliding phases. Seventeen highly trained swimmers (17.9 ± 3.2 years old) participated in interventional sessions and performed three trials of each variant, being monitored with a 3-D video system, a force platform and an electromyography (EMG) system. Studied variables: rolling time and distance, wall support time, push-off time, peak force and horizontal impulse at wall support and push-off, centre of mass horizontal velocity at the end of the push-off, gliding time, centre of mass depth, distance, average and final velocity during gliding, total turn time and electrical activity of Gastrocnemius Medialis, Tibialis Anterior, Biceps Femoris and Vastus Lateralis muscles. Depending on the variant, total turn time ranged from 2.37 ± 0.32 to 2.43 ± 0.33 s, push-off force from 1.86 ± 0.33 to 1.92 ± 0.26 BW and centre of mass velocity during gliding from 1.78 ± 0.21 to 1.94 ± 0.22 m · s(-1). The variants were not distinguishable in terms of kinematical, kinetic and EMG parameters during the rolling, wall support, pushing and gliding phases.

  4. Mechanical Design and Analysis of a Unilateral Cervical Spinal Cord Contusion Injury Model in Non-Human Primates.

    PubMed

    Sparrey, Carolyn J; Salegio, Ernesto A; Camisa, William; Tam, Horace; Beattie, Michael S; Bresnahan, Jacqueline C

    2016-06-15

    Non-human primate (NHP) models of spinal cord injury better reflect human injury and provide a better foundation to evaluate potential treatments and functional outcomes. We combined finite element (FE) and surrogate models with impact data derived from in vivo experiments to define the impact mechanics needed to generate a moderate severity unilateral cervical contusion injury in NHPs (Macaca mulatta). Three independent variables (impactor displacement, alignment, and pre-load) were examined to determine their effects on tissue level stresses and strains. Mechanical measures of peak force, peak displacement, peak energy, and tissue stiffness were analyzed as potential determinants of injury severity. Data generated from FE simulations predicted a lateral shift of the spinal cord at high levels of compression (>64%) during impact. Submillimeter changes in mediolateral impactor position over the midline increased peak impact forces (>50%). Surrogate cords established a 0.5 N pre-load protocol for positioning the impactor tip onto the dural surface to define a consistent dorsoventral baseline position before impact, which corresponded with cerebrospinal fluid displacement and entrapment of the spinal cord against the vertebral canal. Based on our simulations, impactor alignment and pre-load were strong contributors to the variable mechanical and functional outcomes observed in in vivo experiments. Peak displacement of 4 mm after a 0.5N pre-load aligned 0.5-1.0 mm over the midline should result in a moderate severity injury; however, the observed peak force and calculated peak energy and tissue stiffness are required to properly characterize the severity and variability of in vivo NHP contusion injuries.

  5. Lower Extremity Movement Differences Persist After Anterior Cruciate Ligament Reconstruction and When Returning to Sports.

    PubMed

    Butler, Robert J; Dai, Boyi; Huffman, Nikki; Garrett, William E; Queen, Robin M

    2016-09-01

    To examine how landing mechanics change in patients after anterior cruciate ligament reconstruction (ACL-R) between 6 months and 12 months after surgery. Case-series. Laboratory. Fifteen adolescent patients after ACL-R participated. Lower extremity three-dimensional motion analysis was conducted during a bilateral stop jump task in patients at 6 and 12 months after ACL-R. Joint kinematic and kinetic data, in addition to ground reaction forces, were collected at each time point. During the stop jump landing, the peak joint moments and the initial and peak joint motion at the ankle, knee, and hip were examined. The peak vertical ground reaction force was also examined. Interactions were observed for both the peak knee (P = 0.03) and hip extension moment (P = 0.07). However, only the hip extension moment was symmetrical level at 12 months. Statistically significant (P < 0.05) side-to-side differences existed for the ankle angle at initial contact, peak plantarflexion moment, peak hip flexion angle, and peak impact vertical ground reaction force independent of time. The findings of this study suggest that sagittal plane moments at the knee and hip demonstrate an increase in symmetry between 6 months and 1 year after ACL-R surgery, however, symmetry of the knee extension moment is not established by 12 months after surgery. The lack of change in the variables across time was unexpected. As a result, it is inappropriate to expect a change in landing mechanics solely as a result of time alone after discharge from rehabilitation.

  6. Modulation of the relationship between external knee adduction moments and medial joint contact forces across subjects and activities.

    PubMed

    Trepczynski, Adam; Kutzner, Ines; Bergmann, Georg; Taylor, William R; Heller, Markus O

    2014-05-01

    The external knee adduction moment (EAM) is often considered a surrogate measure of the distribution of loads across the tibiofemoral joint during walking. This study was undertaken to quantify the relationship between the EAM and directly measured medial tibiofemoral contact forces (Fmed ) in a sample of subjects across a spectrum of activities. The EAM for 9 patients who underwent total knee replacement was calculated using inverse dynamics analysis, while telemetric implants provided Fmed for multiple repetitions of 10 activities, including walking, stair negotiation, sit-to-stand activities, and squatting. The effects of the factors "subject" and "activity" on the relationships between Fmed and EAM were quantified using mixed-effects regression analyses in terms of the root mean square error (RMSE) and the slope of the regression. Across subjects and activities a good correlation between peak EAM and Fmed values was observed, with an overall R(2) value of 0.88. However, the slope of the linear regressions varied between subjects by up to a factor of 2. At peak EAM and Fmed , the RMSE of the regression across all subjects was 35% body weight (%BW), while the maximum error was 127 %BW. The relationship between EAM and Fmed is generally good but varies considerably across subjects and activities. These findings emphasize the limitation of relying solely on the EAM to infer medial joint loading when excessive directed cocontraction of muscles exists and call for further investigations into the soft tissue-related mechanisms that modulate the internal forces at the knee. Copyright © 2014 by the American College of Rheumatology.

  7. Kinematic Analysis of Four Plyometric Push-Up Variations

    PubMed Central

    MOORE, LAURA H.; TANKOVICH, MICHAEL J.; RIEMANN, BRYAN L.; DAVIES, GEORGE J.

    2012-01-01

    Plyometric research in the upper extremity is limited, with the effects of open-chain plyometric exercises being studied most. Kinematic and ground reaction force data concerning closed-chain upper extremity plyometrics has yet to be examined. Twenty-one recreationally active male subjects performed four variations of plyometric push-ups in a counterbalanced order. These included box drop push-ups from 3.8 cm, 7.6 cm, 11.4 cm heights, and clap push-ups. Kinematics of the trunk, dominant extremity and both hands were collected to examine peak flight, elbow flexion at ground contact, elbow displacement, and hand separation. Additionally peak vertical ground reaction force was measured under the dominant extremity. The 11.4 cm and clap push-ups had significantly higher peak flight than the other variations (P<.001). At ground contact, the elbow was in significantly greater flexion for the 3.8 cm and clap push-up compared to the other variations (P<.001). The clap push-up had significantly more elbow displacement than the other variations (P<.001) while hand separation was not significantly different between variations (P=.129). Peak vertical ground reaction force was significantly greater for the clap push-ups than for all other variations (P< .001). Despite similar flight heights between the 11.4 cm and clap push-ups, the greater peak vertical ground reaction force and elbow displacement of the clap push-ups indicates the clap push-up is the most intense of the variations examined. Understanding the kinematic variables involved will aid in the creation of a closed chain upper-extremity plyometric progression. PMID:27182390

  8. The functional significance of morphological changes in the dentitions of early mammals.

    PubMed

    Conith, Andrew J; Imburgia, Michael J; Crosby, Alfred J; Dumont, Elizabeth R

    2016-11-01

    The Mesozoic marked a time of experimentation in the tooth morphology of early mammals. One particular experiment involved the movement of three points, or cusps, on the surface of a molar tooth from a line into a triangle. This transition is exemplified by two extinct insectivorous mammals, Morganucodon (cusps in a line) and Kuehneotherium (cusps in a triangle). Here we test whether this difference in cusp arrangement, alongside cusp heights and angles between cusps, is associated with differences in the ability of the teeth to fracture proxy-insect prey. We gathered measurements from molar teeth of both species and used them to create physical models. We then measured the force, time and energy at fracture and peak force, and the amount of damage inflicted by the models on hard and soft gels encased in a tough film that mimicked the material properties of insects. The Morganucodon model required less force and energy to fracture hard gels and reach peak force compared with Kuehneotherium Kuehneotherium required a similar time, force and energy to fracture soft gels but reduced the time, force and energy to reach peak force. More importantly, Kuehneotherium also inflicted more damage to both the hard and the soft gels. These results suggest that changes in dental morphology in some early mammals was driven primarily by selection for maximizing damage, and secondarily for maximizing biomechanical efficiency for a given food material property. © 2016 The Author(s).

  9. Increased in-shoe lateral plantar pressures with chronic ankle instability.

    PubMed

    Schmidt, Heather; Sauer, Lindsay D; Lee, Sae Yong; Saliba, Susan; Hertel, Jay

    2011-11-01

    Previous plantar pressure research found increased loads and slower loading response on the lateral aspect of the foot during gait with chronic ankle instability compared to healthy controls. The studies had subjects walking barefoot over a pressure mat and results have not been confirmed with an in-shoe plantar pressure system. Our purpose was to report in-shoe plantar pressure measures for chronic ankle instability subjects compared to healthy controls. Forty-nine subjects volunteered (25 healthy controls, 24 chronic ankle instability) for this case-control study. Subjects jogged continuously on a treadmill at 2.68 m/s (6.0 mph) while three trials of ten consecutive steps were recorded. Peak pressure, time-to-peak pressure, pressure-time integral, maximum force, time-to-maximum force, and force-time integral were assessed in nine regions of the foot with the Pedar-x in-shoe plantar pressure system (Novel, Munich, Germany). Chronic ankle instability subjects demonstrated a slower loading response in the lateral rearfoot indicated by a longer time-to-peak pressure (16.5% +/- 10.1, p = 0.001) and time-to-maximum force (16.8% +/- 11.3, p = 0.001) compared to controls (6.5% +/- 3.7 and 6.6% +/- 5.5, respectively). In the lateral midfoot, ankle instability subjects demonstrated significantly greater maximum force (318.8 N +/- 174.5, p = 0.008) and peak pressure (211.4 kPa +/- 57.7, p = 0.008) compared to controls (191.6 N +/- 74.5 and 161.3 kPa +/- 54.7). Additionally, ankle instability subjects demonstrated significantly higher force-time integral (44.1 N/s +/- 27.3, p = 0.005) and pressure-time integral (35.0 kPa/s +/- 12.0, p = 0.005) compared to controls (23.3 N/s +/- 10.9 and 24.5 kPa/s +/- 9.5). In the lateral forefoot, ankle instability subjects demonstrated significantly greater maximum force (239.9N +/- 81.2, p = 0.004), force-time integral (37.0 N/s +/- 14.9, p = 0.003), and time-to-peak pressure (51.1% +/- 10.9, p = 0.007) compared to controls (170.6 N +/- 49.3, 24.3 N/s +/- 7.2 and 43.8% +/- 4.3). Using an in-shoe plantar pressure system, chronic ankle instability subjects had greater plantar pressures and forces in the lateral foot compared to controls during jogging. These findings may have implications in the etiology and treatment of chronic ankle instability.

  10. A fundamental reconsideration of the CRASH3 damage analysis algorithm: the case against uniform ubiquitous linearity between BEV, peak collision force magnitude, and residual damage depth.

    PubMed

    Singh, Jai

    2013-01-01

    The objective of this study was a thorough reconsideration, within the framework of Newtonian mechanics and work-energy relationships, of the empirically interpreted relationships employed within the CRASH3 damage analysis algorithm in regards to linearity between barrier equivalent velocity (BEV) or peak collision force magnitude and residual damage depth. The CRASH3 damage analysis algorithm was considered, first in terms of the cases of collisions that produced no residual damage, in order to properly explain the damage onset speed and crush resistance terms. Under the modeling constraints of the collision partners representing a closed system and the a priori assumption of linearity between BEV or peak collision force magnitude and residual damage depth, the equations for the sole realistic model were derived. Evaluation of the work-energy relationships for collisions at or below the elastic limit revealed that the BEV or peak collision force magnitude relationships are bifurcated based upon the residual damage depth. Rather than being additive terms from the linear curve fits employed in the CRASH3 damage analysis algorithm, the Campbell b 0 and CRASH3 AL terms represent the maximum values that can be ascribed to the BEV or peak collision force magnitude, respectively, for collisions that produce zero residual damage. Collisions resulting in the production of non-zero residual damage depth already account for the surpassing of the elastic limit during closure and therefore the secondary addition of the elastic limit terms represents a double accounting of the same. This evaluation shows that the current energy absorbed formulation utilized in the CRASH3 damage analysis algorithm extraneously includes terms associated with the A and G stiffness coefficients. This sole realistic model, however, is limited, secondary to reducing the coefficient of restitution to a constant value for all cases in which the residual damage depth is nonzero. Linearity between BEV or peak collision force magnitude and residual damage depth may be applicable for particular ranges of residual damage depth for any given region of any given vehicle. Within the modeling construct employed by the CRASH3 damage algorithm, the case of uniform and ubiquitous linearity cannot be supported. Considerations regarding the inclusion of internal work recovered and restitution for modeling the separation phase change in velocity magnitude should account for not only the effects present during the evaluation of a vehicle-to-vehicle collision of interest but also to the approach taken for modeling the force-deflection response for each collision partner.

  11. Ground reaction force adaptations during cross-slope walking and running.

    PubMed

    Damavandi, Mohsen; Dixon, Philippe C; Pearsall, David J

    2012-02-01

    Though transversely inclined (cross-sloped) surfaces are prevalent, our understanding of the biomechanical adaptations required for cross-slope locomotion is limited. The purpose of this study was to examine ground reaction forces (GRF) in cross-sloped and level walking and running. Nine young adult males walked and ran barefoot along an inclinable walkway in both level (0°) and cross-slope (10°) configurations. The magnitude and time of occurrence of selected features of the GRF were extracted from the force plate data. GRF data were collected in level walking and running (LW and LR), inclined walking and running up-slope (IWU and IRU), and down-slope (IWD and IRD), respectively. The GRF data were then analyzed using repeated measures MANOVA. In the anteroposterior direction, the timing of the peak force values differed across conditions during walking (p=.041), while the magnitude of forces were modified across conditions for running (p=.047). Most significant differences were observed in the mediolateral direction, where generally force values were up to 390% and 530% (p<.001) larger during the cross-slope conditions compared to level for walking and running, respectively. The maximum force peak during running occurred earlier at IRU compared to the other conditions (p≤.031). For the normal axis a significant difference was observed in the first maximum force peak during walking (p=.049). The findings of this study showed that compared to level surfaces, functional adaptations are required to maintain forward progression and dynamic stability in stance during cross-slope walking and running. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Effects of a powered ankle-foot prosthesis on kinetic loading of the unaffected leg during level-ground walking

    PubMed Central

    2013-01-01

    Background People with a lower-extremity amputation that use conventional passive-elastic ankle-foot prostheses encounter a series of stress-related challenges during walking such as greater forces on their unaffected leg, and may thus be predisposed to secondary musculoskeletal injuries such as chronic joint disorders. Specifically, people with a unilateral transtibial amputation have an increased susceptibility to knee osteoarthritis, especially in their unaffected leg. Previous studies have hypothesized that the development of this disorder is linked to the abnormally high peak knee external adduction moments encountered during walking. An ankle-foot prosthesis that supplies biomimetic power could potentially mitigate the forces and knee adduction moments applied to the unaffected leg of a person with a transtibial amputation, which could, in turn, reduce the risk of knee osteoarthritis. We hypothesized that compared to using a passive-elastic prosthesis, people with a transtibial amputation using a powered ankle-foot prosthesis would have lower peak resultant ground reaction forces, peak external knee adduction moments, and corresponding loading rates applied to their unaffected leg during walking over a wide range of speeds. Methods We analyzed ground reaction forces and knee joint kinetics of the unaffected leg of seven participants with a unilateral transtibial amputation and seven age-, height- and weight-matched non-amputees during level-ground walking at 0.75, 1.00, 1.25, 1.50, and 1.75 m/s. Subjects with an amputation walked while using their own passive-elastic prosthesis and a powered ankle-foot prosthesis capable of providing net positive mechanical work and powered ankle plantar flexion during late stance. Results Use of the powered prosthesis significantly decreased unaffected leg peak resultant forces by 2-11% at 0.75-1.50 m/s, and first peak knee external adduction moments by 21 and 12% at 1.50 and 1.75 m/s, respectively. Loading rates were not significantly different between prosthetic feet. Conclusions Use of a biomimetic powered ankle-foot prosthesis decreased peak resultant force at slow and moderate speeds and knee external adduction moment at moderate and fast speeds on the unaffected leg of people with a transtibial amputation during level-ground walking. Thus, use of an ankle-foot prosthesis that provides net positive mechanical work could reduce the risk of comorbidities such as knee osteoarthritis. PMID:23758860

  13. The Lower Extremity Biomechanics of Single- and Double-Leg Stop-Jump Tasks

    PubMed Central

    2011-01-01

    The anterior cruciate ligament (ACL) injury is a common occurrence in sports requiring stop-jump tasks. Single- and double-leg stop-jump techniques are frequently executed in sports. The higher risk of ACL injury in single-leg drop landing task compared to a double-leg drop landing task has been identified. However the injury bias between single- and double-leg landing techniques has not been investigated for stop-jump tasks. The purpose of this study was to determine the differences between single- and double-leg stop-jump tasks in knee kinetics that were influenced by the lower extremity kinematics during the landing phase. Ground reaction force, lower extremity kinematics, and knee kinetics data during the landing phase were obtained from 10 subjects performing single- and double-leg stop-jump tasks, using motion-capture system and force palates. Greater peak posterior and vertical ground reaction forces, and peak proximal tibia anterior and lateral shear forces (p < 0.05) during landing phase were observed of single-leg stop-jump. Single-leg stop-jump exhibited smaller hip and knee flexion angle, and knee flexion angular velocity at initial foot contact with the ground (p < 0.05). We found smaller peak hip and knee flexion angles (p < 0.05) during the landing phase of single-leg stop-jump. These results indicate that single-leg landing may have higher ACL injury risk than double-leg landing in stop-jump tasks that may be influenced by the lower extremity kinematics during the landing phase. Key points Non-contact ACL injuries are more likely to occur during the single-leg stop-jump task than during the double-leg stop-jump task. Single-leg stop-jump exhibited greater peak proximal tibia anterior and lateral shear forces, and peak posterior and vertical ground reaction forces during the landing phase than the double-leg stop-jump task. Single-leg stop-jump exhibited smaller hip flexion angle, knee flexion angle, and knee flexion angular velocity at initial foot contact with the ground. Single-leg stop-jump exhibited greater peak knee extension and valgus moment during the landing phase than the double-leg stop-jump task. Single-leg stop-jump extended the hip joint at initial foot contact with the ground. PMID:24149308

  14. Impact insertion of osteochondral grafts: Interference fit and central graft reduction affect biomechanics and cartilage damage.

    PubMed

    Su, Alvin W; Chen, Yunchan; Wailes, Dustin H; Wong, Van W; Cai, Shengqiang; Chen, Albert C; Bugbee, William D; Sah, Robert L

    2018-01-01

    An osteochondral graft (OCG) is an effective treatment for articular cartilage and osteochondral defects. Impact of an OCG during insertion into the osteochondral recipient site (OCR) can cause chondrocyte death and matrix damage. The aim of the present study was to analyze the effects of graft-host interference fit and a modified OCG geometry on OCG insertion biomechanics and cartilage damage. The effects of interference fit (radius of OCG - radius of OCR), loose (0.00 mm), moderate (0.05 mm), tight (0.10 mm), and of a tight fit with OCG geometry modification (central region of decreased radius), were analyzed for OCG cylinders and OCR blocks from adult bovine knee joints with an instrumented drop tower apparatus. An increasingly tight (OCG - OCR) interference fit led to increased taps for insertion, peak axial force, graft cartilage axial compression, cumulative and total energy delivery to cartilage, lower time of peak axial force, lesser graft advancement during each tap, higher total crack length in the cartilage surface, and lower chondrocyte viability. The modified OCG, with reduction of diameter in the central area, altered the biomechanical insertion variables and biological consequences to be similar to those of the moderate interference fit scenario. Micro-computed tomography confirmed structural interference between the OCR bone and both the proximal and distal bone segments of the OCGs, with the central regions being slightly separated for the modified OCGs. These results clarify OCG insertion biomechanics and mechanobiology, and introduce a simple modification of OCGs that facilitates insertion with reduced energy while maintaining a structural interference fit. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:377-386, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  15. Ground reaction forces and knee mechanics in the weight acceptance phase of a dance leap take-off and landing.

    PubMed

    Kulig, Kornelia; Fietzer, Abbigail L; Popovich, John M

    2011-01-01

    Aesthetic constraints allow dancers fewer technique modifications than other athletes to negotiate the demands of leaping. We examined vertical ground reaction force and knee mechanics during a saut de chat performed by healthy dancers. It was hypothesized that vertical ground reaction force during landing would exceed that of take-off, resulting in greater knee extensor moments and greater knee angular stiffness. Twelve dancers (six males, six females; age 18.9 ± 1.2 years, mass 59.2 ± 9.5 kg, height 1.68 ± 0.08 m, dance training 8.9 ± 5.1 years) with no history of low back pain or lower extremity pathology participated in the study. Saut de chat data were captured using an eight-camera Vicon system and AMTI force platforms. Peak ground reaction force was 26% greater during the landing phase, but did not result in increased peak knee extensor moments. Taking into account the 67% greater knee angular displacement during landing, this resulted in less knee angular stiffness during landing. In conclusion, landing was accomplished with less knee angular stiffness despite the greater peak ground reaction force. A link between decreased joint angular stiffness and increased soft tissue injury risk has been proposed elsewhere; therefore, landing from a saut de chat may be more injurious to the knee soft tissue than take-off.

  16. The influence of sex and obesity on gait biomechanics in people with severe knee osteoarthritis scheduled for arthroplasty.

    PubMed

    Paterson, K L; Sosdian, L; Hinman, R S; Wrigley, T V; Kasza, J; Dowsey, M; Choong, P; Bennell, K L

    2017-11-01

    Sex and body mass may influence knee biomechanics associated with poor total knee arthroplasty (TKA) outcomes for knee osteoarthritis (OA). This study aimed to determine if gait differed between men and women, and overweight and class I obese patients with severe knee OA awaiting TKA. 34 patients with severe knee OA (average age 70.0 (SD 7.2) years, body mass index 30.3 (4.1kg/m 2 )) were recruited from a TKA waiting list. Three-dimensional gait analysis was performed at self-selected walking speed. Comparisons were made between men and women, and overweight (body mass index (BMI) 25.0-29.9kg/m 2 ) and class I obese (BMI 30.0-34.9kg/m 2 ) participants. Biomechanical outcomes included absolute and body size-adjusted peak knee adduction moment (KAM), KAM impulse, peak knee flexion moment, as well as peak knee flexion and varus-valgus angles, peak varus-valgus thrust, and peak vertical ground reaction force (GRF). Men had a higher absolute peak KAM, KAM impulse and peak GRF compared to women, and this sex-difference in frontal plane moments remained after adjusting for body size. However, when additionally adjusting for static knee alignment, differences disappeared. Knee biomechanics were similar between obesity groups after adjusting for the greater body weight of those with class I obesity. Men had greater KAM and KAM impulse even after adjustment for body size; however adjustment for their more varus knees removed this difference. Obesity group did not influence knee joint kinematics or moments. This suggests sex- and obesity-differences in these variables may not be associated with TKA outcomes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Compressibility effects on rotor forces in the leakage path between a shrouded pump impeller and its housing

    NASA Technical Reports Server (NTRS)

    Cao, Nhai The

    1993-01-01

    A modified approach to Childs' previous work on fluid-structure interaction forces in the leakage path between an impeller shroud and its housing is presented in this paper. Three governing equations consisting of continuity, path-momentum, and circumferential-momentum equations were developed to describe the leakage path inside a pump impeller. Radial displacement perturbations were used to solve for radial and circumferential force coefficients. In addition, impeller-discharge pressure disturbances were used to obtain pressure oscillation responses due to precessing impeller pressure wave pattern. Childs' model was modified from an incompressible model to a compressible barotropic-fluid model (the density of the working fluid is a function of the pressure and a constant temperature only). Results obtained from this model yielded interaction forces for radial and circumferential force coefficients. Radial and circumferential forces define reaction forces within the impeller leakage path. An acoustic model for the same leakage path was also developed. The convective, Coriolis, and centrifugal acceleration terms are removed from the compressible model to obtain the acoustics model. A solution due to impeller discharge pressure disturbances model was also developed for the compressible and acoustics models. The results from these modifications are used to determine what effects additional perturbation terms in the compressible model have on the acoustic model. The results show that the additional fluid mechanics terms in the compressible model cause resonances (peaks) in the force coefficient response curves. However, these peaks only occurred at high values of inlet circumferential velocity ratios greater than 0.7. The peak pressure oscillation was shown to occur at the wearing ring seal. Introduction of impeller discharge disturbances with n = 11 diametral nodes showed that maximum peak pressure oscillations occurred at nondimensional precession frequencies of f = 6.4 and f = 7.8 for this particular pump. Bolleter's results suggest that for peak pressure oscillations to occur at the wearing ring seal, the nondimensional excitation frequency should be on the order of f = 2.182 for n = 11. The resonances found in this research do not match the excitation frequencies predicted by Bolleter. At the predicted peak excitation frequencies given by Bolleter, the compressible model shows an attenuation of the pressure oscillations at the seal exit. The compressibility of the fluid does not have a significant influence on the model at low values of nondimensional excitation frequency. At high values of nondimensional frequency, the effects of compressibility become more significant. For the acoustic analysis, the convective, Coriolis, and centrifugal acceleration terms do affect the results to a limited extent for precession excitation and to a large extent for a pressure excitation when the fluid operates at relatively high Mach numbers.

  18. Grip force control in individuals with multiple sclerosis.

    PubMed

    Iyengar, Veena; Santos, Marcio J; Ko, Michael; Aruin, Alexander S

    2009-10-01

    Appropriate regulation of grip force is essential in performance of various activities of daily living such as drinking, eating, buttoning a shirt, and so on. The extent to which individuals with multiple sclerosis (MS) are able to regulate grip forces while performing elements of the activities of daily living is largely unknown. . To investigate how individuals with MS control grip force during performance of functional tasks. . This study evaluated the grip force control in selected individuals with MS (n = 9) and healthy control subjects (n = 9) while they performed the task of lifting and placing an instrumented object on a shelf and the task of lifting the object and bringing it close to the mouth to mimic drinking. The grip forces, object acceleration, force ratio, and time lag were recorded and analyzed. . The individuals with MS used significantly larger peak grip force and force ratio than control subjects while performing both tasks and for both hands. In addition, the time lag between the peaks of grip and load forces was significantly longer in individuals with MS. . The application of excessive grip force could predispose individuals with MS to additional fatigue and musculoskeletal overuse trauma. Rehabilitation protocols for the MS population may need to account for increased levels of grip force applied during the performance of functional tasks.

  19. The influence of cadence and power output on force application and in-shoe pressure distribution during cycling by competitive and recreational cyclists.

    PubMed

    Sanderson, D J; Hennig, E M; Black, A H

    2000-03-01

    The aim of this study was to determine the response of cyclists to manipulations of cadence and power output in terms of force application and plantar pressure distribution. Two groups of cyclists, 17 recreational and 12 competitive, rode at three nominal cadences (60, 80, 100 rev x min(-1)) and four power outputs (100, 200, 300, 400 W) while simultaneous force and in-shoe pressure data were collected. Two piezoelectric triaxial force transducers mounted in the right pedal measured components of the pedal force and orientation, and a discrete transducer system with 12 transducers recorded the in-shoe pressures. Force application was characterized by calculating peak resultant and peak effective pedal forces and positive and negative impulses. In-shoe pressures were analysed as peak pressures and as the percent relative load. The force data showed no significant group effect but there was a cadence and power main effect. The impulse data showed a significant three-way interaction. Increased cadence resulted in a decreased positive impulse, while increased power output resulted in an increased impulse. The competitive group produced less positive impulse but the difference became less at higher cadences. Few between-group differences were found in pressure, notable only in the pressure under the first metatarsal region. This showed a consistent pattern of in-shoe pressure distribution, where the primary loading structures were the first metatarsal and hallux. There was no indication that pressure at specific sites influenced the pedal force application. The absence of group differences indicated that pressure distribution was not the result of training, but reflected the intrinsic relationship between the foot, the shoe and the pedal.

  20. Adhesive force between graphene nanoscale flakes and living biological cells.

    PubMed

    Al Faouri, Radwan; Henry, Ralph; Biris, Alexandru S; Sleezer, Rob; Salamo, Gregory J

    2017-11-01

    We report on a measurement technique that quantifies the adhesive force between multi-layers of graphene flakes and the cell wall of live Escherichia coli cells using atomic force microscopy (AFM) in-fluid Peak Force- Quantitative Nanomechanical Mapping mode. To measure the adhesive force, we made use of the negative charge of E. coli cells to allow them to stick to positively charged surfaces, such as glass or silicon, that were covered by poly-L-Lysine. With this approach, cells were held in place for AFM characterization. Both pristine graphene (PG) flakes and functionalized graphene (FG) flakes were put on the E. coli cells and measurements of lateral size, flake thickness, and adhesion were made. Using this approach, the measured values of the adhesive force between multi-layers of graphene flakes (total thickness of 50 nm) and E. coli was determined to be equal or greater than 431 ± 65pN for (PG) and 694 ± 98pN for the (FG). More interestingly, the adhesive force of a graphene flake (thickness 1.3 nm) with the cell is determined to be equal or greater than 38.2 ± 16.4pN for the (PG) and 34.8 ± 15.3pN for the (FG). These interaction values can play an important role in determining and understanding the possible toxicity of graphene flakes. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  1. Extruded upper first molar intrusion: Comparison between unilateral and bilateral miniscrew anchorage.

    PubMed

    Sugii, Mari Miura; Barreto, Bruno de Castro Ferreira; Francisco Vieira-Júnior, Waldemir; Simone, Katia Regina Izola; Bacchi, Ataís; Caldas, Ricardo Armini

    2018-01-01

    The aim of his study was to evaluate the stress on tooth and alveolar bone caused by orthodontic intrusion forces in a supraerupted upper molar, by using a three-dimensional Finite Element Method (FEM). A superior maxillary segment was modeled in the software SolidWorks 2010 (SolidWorks Corporation, Waltham, MA, USA) containing: cortical and cancellous bone, supraerupted first molar, periodontal tissue and orthodontic components. A finite element model has simulated intrusion forces of 4N onto a tooth, directed to different mini-screw locations. Three different intrusion mechanics vectors were simulated: anchoring on a buccal mini-implant; anchoring on a palatal mini-implant and the association of both anchorage systems. All analyses were performed considering the minimum principal stress and total deformation. Qualitative analyses exhibited stress distribution by color maps. Quantitative analysis was performed with a specific software for reading and solving numerical equations (ANSYS Workbench 14, Ansys, Canonsburg, Pennsylvania, USA). Intrusion forces applied from both sides (buccal and palatal) resulted in a more homogeneous stress distribution; no high peak of stress was detected and it has allowed a vertical resultant movement. Buccal or palatal single-sided forces resulted in concentrated stress zones with higher values and tooth tipping to respective force side. Unilateral forces promoted higher stress in root apex and higher dental tipping. The bilateral forces promoted better distribution without evidence of dental tipping. Bilateral intrusion technique suggested lower probability of root apex resorption.

  2. Reynolds number scalability of bristled wings performing clap and fling

    NASA Astrophysics Data System (ADS)

    Jacob, Skyler; Kasoju, Vishwa; Santhanakrishnan, Arvind

    2017-11-01

    Tiny flying insects such as thrips show a distinctive physical adaptation in the use of bristled wings. Thrips use wing-wing interaction kinematics for flapping, in which a pair of wings clap together at the end of upstroke and fling apart at the beginning of downstroke. Previous studies have shown that the use of bristled wings can reduce the forces needed for clap and fling at Reynolds number (Re) on the order of 10. This study examines if the fluid dynamic advantages of using bristled wings also extend to higher Re on the order of 100. A robotic clap and fling platform was used for this study, in which a pair of physical wing models were programmed to execute clap and fling kinematics. Force measurements were conducted on solid (non-bristled) and bristled wing pairs. The results show lift and drag forces were both lower for bristled wings when compared to solid wings for Re ranging from 1-10, effectively increasing peak lift to peak drag ratio of bristled wings. However, peak lift to peak drag ratio was lower for bristled wings at Re =120 as compared to solid wings, suggesting that bristled wings may be uniquely advantageous for Re on the orders of 1-10. Flow structures visualized using particle image velocimetry (PIV) and their impact on force production will be presented.

  3. A calculation and uncertainty evaluation method for the effective area of a piston rod used in quasi-static pressure calibration

    NASA Astrophysics Data System (ADS)

    Gu, Tingwei; Kong, Deren; Shang, Fei; Chen, Jing

    2018-04-01

    This paper describes the merits and demerits of different sensors for measuring propellant gas pressure, the applicable range of the frequently used dynamic pressure calibration methods, and the working principle of absolute quasi-static pressure calibration based on the drop-weight device. The main factors affecting the accuracy of pressure calibration are analyzed from two aspects of the force sensor and the piston area. To calculate the effective area of the piston rod and evaluate the uncertainty between the force sensor and the corresponding peak pressure in the absolute quasi-static pressure calibration process, a method for solving these problems based on the least squares principle is proposed. According to the relevant quasi-static pressure calibration experimental data, the least squares fitting model between the peak force and the peak pressure, and the effective area of the piston rod and its measurement uncertainty, are obtained. The fitting model is tested by an additional group of experiments, and the peak pressure obtained by the existing high-precision comparison calibration method is taken as the reference value. The test results show that the peak pressure obtained by the least squares fitting model is closer to the reference value than the one directly calculated by the cross-sectional area of the piston rod. When the peak pressure is higher than 150 MPa, the percentage difference is less than 0.71%, which can meet the requirements of practical application.

  4. Does foot pitch at ground contact affect parachute landing technique?

    PubMed

    Whitting, John W; Steele, Julie R; Jaffrey, Mark; Munro, Bridget J

    2009-08-01

    The Australian Defence Force Parachute Training School instructs trainees to make initial ground contact using a flat foot whereas United States paratroopers are taught to contact the ground with the ball of the foot first. This study aimed to determine whether differences in foot pitch affected parachute landing technique. Kinematic, ground reaction force and electromyographic data were analyzed for 28 parachutists who performed parachute landings (vertical descent velocity = 3.4 m x s(-1)) from a monorail apparatus. Independent t-tests were used to determine significant (p < 0.05) differences between variables characterizing foot pitch. Subjects who landed flat-footed displayed less knee and ankle flexion, sustained higher peak ground reaction forces, and took less time to reach peak force than those who landed on the balls of their feet. Although forefoot landings lowered ground reaction forces compared to landing flat-footed, further research is required to confirm whether this is a safer parachute landing strategy.

  5. The Effect of Increasing Inertia upon Vertical Ground Reaction Forces during Locomotion

    NASA Technical Reports Server (NTRS)

    DeWitt, John K.; Hagan, R. Donald; Cromwell, Ronita L.

    2007-01-01

    The addition of inertia to exercising astronauts could increase ground reaction forces and potentially provide a greater health benefit. However, conflicting results have been reported regarding the adaptations to additional mass (inertia) without additional net weight (gravitational force) during locomotion. We examined the effect of increasing inertia while maintaining net gravitational force on vertical ground reaction forces and kinematics during walking and running. Vertical ground reaction force was measured for ten healthy adults (5 male/5 female) during walking (1.34 m/s) and running (3.13 m/s) using a force-measuring treadmill. Subjects completed locomotion at normal weight and mass, and at 10, 20, 30, and 40% of added inertial force. The added gravitational force was relieved with overhead suspension, so that the net force between the subject and treadmill at rest remained equal to 100% body weight. Peak vertical impact forces and loading rates increased with increased inertia during walking, and decreased during running. As inertia increased, peak vertical propulsive forces decreased during walking and did not change during running. Stride time increased during walking and running, and contact time increased during running. Vertical ground reaction force production and adaptations in gait kinematics were different between walking and running. The increased inertial forces were utilized independently from gravitational forces by the motor control system when determining coordination strategies.

  6. Wrist loading patterns during pommel horse exercises.

    PubMed

    Markolf, K L; Shapiro, M S; Mandelbaum, B R; Teurlings, L

    1990-01-01

    Gymnastics is a sport which involves substantial periods of upper extremity support as well as frequent impacts to the wrist. Not surprisingly, wrist pain is a common finding in gymnasts. Of all events, the pommel horse is the most painful. In order to study the forces of wrist impact, a standard pommel horse was instrumented with a specially designed load cell to record the resultant force of the hand on the pommel during a series of basic skills performed by a group of seventeen elite male gymnasts. The highest mean peak forces were recorded during the front scissors and flair exercises (1.5 BW) with peaks of up to 2.0 BW for some gymnasts. The mean peak force for hip circles at the center or end of the horse was 1.1 BW. The mean overall loading rate (initial contact to first loading peak) ranged from 5.2 BWs-1 (hip circles) to 10.6 BW s-1 (flairs). However, many recordings displayed localized initial loading spikes which occurred during 'hard' landings on the pommel. When front scissors were performed in an aggressive manner, the initial loading spikes averaged 1.0 BW in magnitude (maximum 1.8 BW) with an average rise time of 8.2 ms; calculated localized loading rates averaged 129 BW s-1 (maximum 219 BW s-1). These loading parameters are comparable to those encountered at heel strike during running. These impact forces and loading rates are remarkably high for an upper extremity joint not normally exposed to weight-bearing loads, and may contribute to the pathogenesis of wrist injuries in gymnastics.

  7. Squat exercise biomechanics during short-radius centrifugation.

    PubMed

    Duda, Kevin R; Jarchow, Thomas; Young, Laurence R

    2012-02-01

    Centrifuge-induced artificial gravity (AG) with exercise is a promising comprehensive countermeasure against the physiological de-conditioning that results from exposure to weightlessness. However, body movements onboard a rotating centrifuge are affected by both the gravity gradient and Coriolis accelerations. The effect of centrifugation on squat exercise biomechanics was investigated, and differences between AG and upright squat biomechanics were quantified. There were 28 subjects (16 male) who participated in two separate experiments. Knee position, foot reaction forces, and motion sickness were recorded during the squats in a 1-G field while standing upright and while supine on a horizontally rotating 2 m radius centrifuge at 0, 23, or 30 rpm. No participants terminated the experiment due to motion sickness symptoms. Total mediolateral knee deflection increased by 1.0 to 2.0 cm during centrifugation, and did not result in any injuries. There was no evidence of an increased mediolateral knee travel "after-effect" during postrotation supine squats. Peak foot reaction forces increased with rotation rate up to approximately 200% bodyweight (iRED on ISS provides approximately 210% bodyweight resistance). The ratio of left-to-right foot force throughout the squat cycle on the centrifuge was nonconstant and approximately sinusoidal. Total foot reaction force versus knee flexion-extension angles differed between upright and AG squats due to centripetal acceleration on the centrifuge. A brief exercise protocol during centrifugation can be safely completed without significant after-effects in mediolateral knee position or motion sickness. Several recommendations are made for the design of future centrifuge-based exercise protocols for in-space applications.

  8. Tropical High Cloud Fraction Controlled by Cloud Lifetime Rather Than Clear-sky Convergence

    NASA Astrophysics Data System (ADS)

    Seeley, J.; Jeevanjee, N.; Romps, D. M.

    2016-12-01

    Observations and simulations show a peak in cloud fraction below the tropopause. This peak is usually attributed to a roughly co-located peak in radiatively-driven clear-sky convergence, which is presumed to force convective detrainment and thus promote large cloud fraction. Using simulations of radiative-convective equilibrium forced by various radiative cooling profiles, we refute this mechanism by showing that an upper-tropospheric peak in cloud fraction persists even in simulations with no peak in clear-sky convergence. Instead, cloud fraction profiles seem to be controlled by cloud lifetimes — i.e., how long it takes for clouds to dissipate after they have detrained. A simple model of cloud evaporation shows that the small saturation deficit in the upper troposphere greatly extends cloud lifetimes there, while the large saturation deficit in the lower troposphere causes condensate to evaporate quickly. Since cloud mass flux must go to zero at the tropopause, a peak in cloud fraction emerges at a "sweet spot" below the tropopause where cloud lifetimes are long and there is still sufficient mass flux to be detrained.

  9. Enhanced electrohydrodynamic force generation in a two-stroke cycle dielectric-barrier-discharge plasma actuator

    NASA Astrophysics Data System (ADS)

    Sato, Shintaro; Takahashi, Masayuki; Ohnishi, Naofumi

    2017-05-01

    An approach for electrohydrodynamic (EHD) force production is proposed with a focus on a charge cycle on a dielectric surface. The cycle, consisting of positive-charging and neutralizing strokes, is completely different from the conventional methodology, which involves a negative-charging stroke, in that the dielectric surface charge is constantly positive. The two-stroke charge cycle is realized by applying a DC voltage combined with repetitive pulses. Simulation results indicate that the negative pulse eliminates the surface charge accumulated during constant voltage phase, resulting in repetitive EHD force generation. The time-averaged EHD force increases almost linearly with increasing repetitive pulse frequency and becomes one order of magnitude larger than that driven by the sinusoidal voltage, which has the same peak-to-peak voltage.

  10. The Interaction of Trunk-Load and Trunk-Position Adaptations on Knee Anterior Shear and Hamstrings Muscle Forces During Landing

    PubMed Central

    Kulas, Anthony S.; Hortobágyi, Tibor; DeVita, Paul

    2010-01-01

    Abstract Context: Because anterior cruciate ligament (ACL) injuries can occur during deceleration maneuvers, biomechanics research has been focused on the lower extremity kinetic chain. Trunk mass and changes in trunk position affect lower extremity joint torques and work during gait and landing, but how the trunk affects knee joint and muscle forces is not well understood. Objective: To evaluate the effects of added trunk load and adaptations to trunk position on knee anterior shear and knee muscle forces in landing. Design: Crossover study. Setting: Controlled laboratory environment. Patients or Other Participants: Twenty-one participants (10 men: age  =  20.3 ± 1.15 years, height  =  1.82 ± 0.04 m, mass  =  78.2 ± 7.3 kg; 11 women: age  =  20.0 ± 1.10 years, height  =  1.72 ± 0.06 m, mass  =  62.3 ± 6.4 kg). Intervention(s): Participants performed 2 sets of 8 double-leg landings under 2 conditions: no load and trunk load (10% body mass). Participants were categorized into one of 2 groups based on the kinematic trunk adaptation to the load: trunk flexor or trunk extensor. Main Outcome Measure(s): We estimated peak and average knee anterior shear, quadriceps, hamstrings, and gastrocnemius forces with a biomechanical model. Results: We found condition-by-group interactions showing that adding a trunk load increased peak (17%) and average (35%) knee anterior shear forces in the trunk-extensor group but did not increase them in the trunk-flexor group (peak: F1,19  =  10.56, P  =  .004; average: F1,19  =  9.56, P  =  .006). We also found a main effect for condition for quadriceps and gastrocnemius forces. When trunk load was added, peak (6%; F1,19  =  5.52, P  =  .030) and average (8%; F1,19  =  8.83, P  =  .008) quadriceps forces increased and average (4%; F1,19  =  4.94, P  =  .039) gastrocnemius forces increased, regardless of group. We found a condition-by-group interaction for peak (F1,19  =  5.16, P  =  .035) and average (F1,19  =  12.35, P  =  .002) hamstrings forces. When trunk load was added, average hamstrings forces decreased by 16% in the trunk-extensor group but increased by 13% in the trunk-flexor group. Conclusions: Added trunk loads increased knee anterior shear and knee muscle forces, depending on trunk adaptation strategy. The trunk-extensor adaptation to the load resulted in a quadriceps-dominant strategy that increased knee anterior shear forces. Trunk-flexor adaptations may serve as a protective strategy against the added load. These findings should be interpreted with caution, as only the face validity of the biomechanical model was assessed. PMID:20064042

  11. Effect of system compliance on crack nucleation in soft materials

    NASA Astrophysics Data System (ADS)

    Rattan, Shruti; Crosby, Alfred

    Puncture mechanics in soft materials is critical for the development of new surgical instruments, robot assisted-surgery as well as new materials used in personal protective equipment. However, analytical techniques to study this important deformation process are limited. We have previously described a simple experimental method to study the resistive forces and failure of a soft gel being indented with a small tip needle. We showed that puncture stresses can reach two orders of magnitude greater than the material modulus and that the force response is insensitive to the geometry of the indenter at large indentation depths. Currently, we are examining the influence of system compliance on crack nucleation (e.g. puncture) in soft gels. It is well known that system compliance influences the peak force in adhesion and traditional fracture experiments; however, its influence on crack nucleation is unresolved. We find that as the system becomes more compliant, lower peak forces required to puncture a gel of certain stiffness with the same indenter were measured. We are developing scaling relationships to relate the peak puncture force and system compliance. Our findings introduce new questions with regard to the possibility of intrinsic materials properties related to the critical stress and energy for crack nucleation in soft materials.

  12. Fan noise caused by the ingestion of anisotropic turbulence - A model based on axisymmetric turbulence theory

    NASA Technical Reports Server (NTRS)

    Kerschen, E. J.; Gliebe, P. R.

    1980-01-01

    An analytical model of fan noise caused by inflow turbulence, a generalization of earlier work by Mani, is presented. Axisymmetric turbulence theory is used to develop a statistical representation of the inflow turbulence valid for a wide range of turbulence properties. Both the dipole source due to rotor blade unsteady forces and the quadrupole source resulting from the interaction of the turbulence with the rotor potential field are considered. The effects of variations in turbulence properties and fan operating conditions are evaluated. For turbulence axial integral length scales much larger than the blade spacing, the spectrum is shown to consist of sharp peaks at the blade passing frequency and its harmonics, with negligible broadband content. The analysis can then be simplified considerably and the total sound power contained within each spectrum peak becomes independent of axial length scale, while the width of the peak is inversely proportional to this parameter. Large axial length scales are characteristic of static fan test facilities, where the transverse contraction of the inlet flow produces highly anisotropic turbulence. In this situation, the rotor/turbulence interaction noise is mainly caused by the transverse component of turbulent velocity.

  13. On the effectiveness of incorporating shear thickening fluid with fumed silica particles in hip protectors

    NASA Astrophysics Data System (ADS)

    Haris, A.; Goh, B. W. Y.; Tay, T. E.; Lee, H. P.; Rammohan, A. V.; Tan, V. B. C.

    2018-01-01

    The objective of this research is to develop a smart hip protector by incorporating shear thickening fluid (STF) into conventional foam hip protectors. The shear thickening properties of fumed silica particles dispersed in liquid polyethylene glycol (PEG) were determined from rheological tests. Dynamic drop tests, using a 4 kg drop platen at 0.5 m drop height, were conducted to study how STF improves energy absorption as compared to unfilled foam and PEG filled foam. The results show that PEG filled foam reduces the mean peak force transmitted by a further 55% and mean peak displacement by 32.5% as compared to the unfilled foam; the STF filled foam further reduces mean peak force and displacement by 15% and 41% respectively when compared to the PEG filled foam. At a displacement of 22 mm, the STF filled foam absorbs 7.4 times more energy than the PEG filled foam. The results of varying the drop mass and drop height show that the energy absorbed per unit displacement for STF filled foam is always higher than that of PEG filled foam. Finally, the effectiveness of a prototype of hip protector made from 15 mm thick STF filled foam in preventing hip fractures was studied under two different loading conditions: distributed load (plate drop test) and concentrated load (ball drop test). The results of the plate and ball drop tests show that among all hip protectors tested in this study, only the prototype can reduce the mean peak impact force to be lower than the force required to fracture a hip bone (3.1 kN) regardless of the type of loading. Moreover, the peak force of the prototype is about half of this value, suggesting thinner prototype could have been used instead. These findings show that STF is effective in improving the performance of hip protectors.

  14. Association of Quadriceps Strength and Psychosocial Factors With Single-Leg Hop Performance in Patients With Meniscectomy.

    PubMed

    Hsu, Chao-Jung; George, Steven Z; Chmielewski, Terese L

    2016-12-01

    Clinicians use the single-leg hop test to assess readiness for return to sports after knee injury. Few studies have reported the results of single-leg hop testing after meniscectomy. Additionally, the contributions of impairments in quadriceps strength and psychosocial factors to single-leg hop performance are unknown. To compare single-leg hop performance (distance and landing mechanics) between limbs and to examine the association of single-leg hop performance with quadriceps strength and psychosocial factors in patients with meniscectomy. Descriptive laboratory study. A total of 22 subjects who underwent meniscectomy for traumatic meniscal tears received either standard rehabilitation alone or with additional quadriceps strengthening. Testing was conducted immediately postrehabilitation and at 1 year postsurgery. A single-leg hop test was performed bilaterally, and hop distance was used to create a hop symmetry index. Landing mechanics (peak knee flexion angle, knee extension moment, and peak vertical ground-reaction force) were analyzed with a motion-capture system and a force plate. An isokinetic dynamometer (60 deg/s) assessed knee extensor peak torque and rate of torque development (RTD 0-200ms and RTD 0-peak torque ). Questionnaires assessed fear of reinjury (Tampa Scale for Kinesiophobia [TSK-11]) and self-efficacy (Knee Activity Self-Efficacy [KASE]). Rehabilitation groups did not significantly differ in single-leg hop performance; therefore, groups were combined for further analyses. The mean hop symmetry index was 88.6% and 98.9% at postrehabilitation and 1 year postsurgery, respectively. Compared with the nonsurgical limb, the surgical limb showed decreased peak knee flexion angle at postrehabilitation and decreased knee extension moment at 1 year postsurgery. The hop symmetry index was positively associated with peak torque, RTD 0-200ms , and the KASE score at postrehabilitation. Moreover, at postrehabilitation, the peak knee flexion angle was positively associated with peak torque and RTD 0-200ms , and the knee extension moment was positively associated with RTD 0-200ms . At 1 year postsurgery, peak knee flexion angle and knee extension moment were both positively associated with peak torque, RTD 0-200ms , and RTD 0-peak torque . Although the hop symmetry index could be considered satisfactory for returning to sports, asymmetries in landing mechanics still exist in the first year postmeniscectomy. Greater quadriceps strength was associated with greater single-leg hop distance and better landing mechanics at both postrehabilitation and 1 year postsurgery. Knee activity self-efficacy was the only psychosocial factor associated with single-leg hop performance and isolated to a positive association with single-leg hop distance at postrehabilitation. Rate of development is not typically measured in the clinic but can be an additional quadriceps measure to monitor for single-leg hop performance. Quadriceps strength and psychosocial factors appear to have separate influence on single-leg hop performance after meniscectomy, which has implications for developing appropriate interventions for optimal single-leg hop performance.

  15. Association of Quadriceps Strength and Psychosocial Factors With Single-Leg Hop Performance in Patients With Meniscectomy

    PubMed Central

    Hsu, Chao-Jung; George, Steven Z.; Chmielewski, Terese L.

    2016-01-01

    Background: Clinicians use the single-leg hop test to assess readiness for return to sports after knee injury. Few studies have reported the results of single-leg hop testing after meniscectomy. Additionally, the contributions of impairments in quadriceps strength and psychosocial factors to single-leg hop performance are unknown. Purpose: To compare single-leg hop performance (distance and landing mechanics) between limbs and to examine the association of single-leg hop performance with quadriceps strength and psychosocial factors in patients with meniscectomy. Study Design: Descriptive laboratory study. Methods: A total of 22 subjects who underwent meniscectomy for traumatic meniscal tears received either standard rehabilitation alone or with additional quadriceps strengthening. Testing was conducted immediately postrehabilitation and at 1 year postsurgery. A single-leg hop test was performed bilaterally, and hop distance was used to create a hop symmetry index. Landing mechanics (peak knee flexion angle, knee extension moment, and peak vertical ground-reaction force) were analyzed with a motion-capture system and a force plate. An isokinetic dynamometer (60 deg/s) assessed knee extensor peak torque and rate of torque development (RTD0-200ms and RTD0–peak torque). Questionnaires assessed fear of reinjury (Tampa Scale for Kinesiophobia [TSK-11]) and self-efficacy (Knee Activity Self-Efficacy [KASE]). Results: Rehabilitation groups did not significantly differ in single-leg hop performance; therefore, groups were combined for further analyses. The mean hop symmetry index was 88.6% and 98.9% at postrehabilitation and 1 year postsurgery, respectively. Compared with the nonsurgical limb, the surgical limb showed decreased peak knee flexion angle at postrehabilitation and decreased knee extension moment at 1 year postsurgery. The hop symmetry index was positively associated with peak torque, RTD0-200ms, and the KASE score at postrehabilitation. Moreover, at postrehabilitation, the peak knee flexion angle was positively associated with peak torque and RTD0-200ms, and the knee extension moment was positively associated with RTD0-200ms. At 1 year postsurgery, peak knee flexion angle and knee extension moment were both positively associated with peak torque, RTD0-200ms, and RTD0–peak torque. Conclusion: Although the hop symmetry index could be considered satisfactory for returning to sports, asymmetries in landing mechanics still exist in the first year postmeniscectomy. Greater quadriceps strength was associated with greater single-leg hop distance and better landing mechanics at both postrehabilitation and 1 year postsurgery. Knee activity self-efficacy was the only psychosocial factor associated with single-leg hop performance and isolated to a positive association with single-leg hop distance at postrehabilitation. Clinical Relevance: Rate of development is not typically measured in the clinic but can be an additional quadriceps measure to monitor for single-leg hop performance. Quadriceps strength and psychosocial factors appear to have separate influence on single-leg hop performance after meniscectomy, which has implications for developing appropriate interventions for optimal single-leg hop performance. PMID:28210647

  16. Impaction Force Influences Taper-Trunnion Stability in Total Hip Arthroplasty.

    PubMed

    Danoff, Jonathan R; Longaray, Jason; Rajaravivarma, Raga; Gopalakrishnan, Ananthkrishnan; Chen, Antonia F; Hozack, William J

    2018-07-01

    This study investigated the influence of femoral head impaction force, number of head strikes, the energy sequence of head strikes, and head offset on the strength of the taper-trunnion junction. Thirty titanium-alloy trunnions were mated with 36-mm zero-offset cobalt-chromium femoral heads of corresponding taper angle. A drop tower impacted the head with 2.5J or 8.25J, resulting in 6 kN or 14 kN impaction force, respectively, in a single strike or combinations of 6 kN + 14 kN or 14 kN + 14 kN. In addition, ten 36-mm heads with -5 and +5 offset were impacted with sequential 14 kN + 14 kN strikes. Heads were subsequently disassembled using a screw-driven mechanical testing frame, and peak distraction force was recorded. Femoral head pull-off force was 45% the strike force, and heads struck with a single 14 kN impact showed a pull-off force twice that of the 6 kN group. Two head strikes with the same force did not improve pull-off force for either 6 kN (P = .90) or 14 kN (P = .90). If the forces of the 2 impactions varied, but either impact measured 14 kN, a 51% higher pull-off force was found compared to impactions of either 6 kN or 6 kN + 6 kN. Femoral head offset did not significantly change the pull-off force among -5, 0, and +5 heads (P = .37). Femoral head impaction force influenced femoral head trunnion-taper stability, whereas offset did not affect pull-off force. Multiple head strikes did not add additional stability, as long as a single strike achieved 14 kN force at the mallet-head impactor interface. Insufficient impaction force may lead to inadequate engagement of the trunnion-taper junction. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Do force-time and power-time measures in a loaded jump squat differentiate between speed performance and playing level in elite and elite junior rugby union players?

    PubMed

    Hansen, Keir T; Cronin, John B; Pickering, Stuart L; Douglas, Lee

    2011-09-01

    The purpose of this study was to investigate the discriminative ability of rebound jump squat force-time and power-time measures in differentiating speed performance and competition level in elite and elite junior rugby union players. Forty professional rugby union players performed 3 rebound jump squats with an external load of 40 kg from which a number of force-time and power-time variables were acquired and analyzed. Additionally, players performed 3 sprints over 30 m with timing gates at 5, 10, and 30 m. Significant differences (p < 0.05) between the fastest 20 and slowest 20 athletes, and elite (n = 25) and elite junior (n = 15) players in speed and force-time and power-time variables were determined using independent sample t-tests. The fastest and slowest sprinters over 10 m differed in peak power (PP) expressed relative to body weight. Over 30 m, there were significant differences in peak velocity and relative PP and rate of power development. There was no significant difference in speed over any distance between elite and elite junior rugby union players; however, a number of force and power variables including peak force, PP, force at 100 milliseconds from minimum force, and force and impulse 200 milliseconds from minimum force were significantly (p < 0.05) different between playing levels. Although only power values expressed relative to body weight were able to differentiate speed performance, both absolute and relative force and power values differentiated playing levels in professional rugby union players. For speed development in rugby union players, training strategies should aim to optimize the athlete's power to weight ratio, and lower body resistance training should focus on movement velocity. For player development to transition elite junior players to elite status, adding lean mass is likely to be most beneficial.

  18. EMG and force production of the flexor hallucis longus muscle in isometric plantarflexion and the push-off phase of walking.

    PubMed

    Péter, Annamária; Hegyi, András; Stenroth, Lauri; Finni, Taija; Cronin, Neil J

    2015-09-18

    Large forces are generated under the big toe in the push-off phase of walking. The largest flexor muscle of the big toe is the flexor hallucis longus (FHL), which likely contributes substantially to these forces. This study examined FHL function at different levels of isometric plantarflexion torque and in the push-off phase at different speeds of walking. FHL and calf muscle activity were measured with surface EMG and plantar pressure was recorded with pressure insoles. FHL activity was compared to the activity of the calf muscles. Force and impulse values were calculated under the big toe, and were compared to the entire pressed area of the insole to determine the relative contribution of big toe flexion forces to the ground reaction force. FHL activity increased with increasing plantarflexion torque level (F=2.8, P=0.024) and with increasing walking speed (F=11.608, P<0.001). No differences were observed in the relative contribution of the force under the big toe to the entire sole between different plantarflexion torque levels (F=0.836, P=0.529). On the contrary, in the push-off phase of walking, peak force under the big toe increased at a higher rate than force under the other areas of the plantar surface (F=3.801, P=0.018), implying a greater relative contribution to total force at faster speeds. Moreover, substantial differences were found between isometric plantarflexion and walking concerning FHL activity relative to that of the calf muscles, highlighting the task-dependant behaviour of FHL. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Traction force and tension fluctuations in growing axons

    NASA Astrophysics Data System (ADS)

    Urbach, Jeffrey; Polackwich, Jamie; Koch, Daniel; McAllister, Ryan; Geller, Herbert

    Actively generated mechanical forces play a central role in axon growth and guidance during nervous system development. We describe the dynamics of traction stresses from growth cones of actively advancing axons from postnatal rat DRG neurons. By tracking the movement of the growth cone and analyzing the traction stresses in a co-moving reference frame, we show that there is a clear and consistent average stress field underlying the complex spatial stresses present at any one time. The average stress field has strong maxima on the sides of the growth cone, directed inward toward the growth cone neck. This pattern represents a Contractile stress contained within the growth cone, and a net force that is balanced by the axon tension. In addition, using high time-resolution measurements, we show that the stress field is composed of fluctuating local stress peaks, with a population of peaks whose lifetime distribution follows an exponential decay, and a small number of very long-lived peaks. We also find that the tension appears to vary randomly over short time scales, roughly consistent with the lifetime of the stress peaks, suggesting that the tension fluctuations originate from stochastic adhesion dynamics.

  20. Potential for Non-Contact ACL Injury Between Step-Close-Jump and Hop-Jump Tasks.

    PubMed

    Wang, Li-I; Gu, Chin-Yi; Chen, Wei-Ling; Chang, Mu-San

    2010-01-01

    This study aimed to compare the kinematics and kinetics during the landing of hop-jump and step-close-jump movements in order to provide further inferring that the potential risk of ACL injuries. Eleven elite male volleyball players were recruited to perform hop-jump and step-close-jump tasks. Lower extremity kinematics and ground reaction forces during landing in stop-jump tasks were recorded. Lower extremity kinetics was calculated by using an inverse dynamic process. Step-close-jump tasks demonstrated smaller peak proximal tibia anterior shear forces during the landing phase. In step-close-jump tasks, increasing hip joint angular velocity during initial foot-ground contact decreased peak posterior ground reaction force during the landing phase, which theoretically could reduce the risk of ACL injury. Key pointsThe different landing techniques required for these two stop-jump tasks do not necessarily affect the jump height.Hop-jump decreased the hip joint angular velocity at initial foot contact with ground, which could lead to an increasing peak posterior GRF during the landing phase.Hop-jump decreased hip and knee joint angular flexion displacement during the landing, which could increase the peak vertical loading rate during the landing phase.

  1. Soleus Fiber Force and Maximal Shortening Velocity After Non-Weight Bearing with Intermittent Activity

    NASA Technical Reports Server (NTRS)

    Widrick, Jeffrey J.; Bangart, Jill J.; Karhanek, Miloslav; Fitts, Robert H.

    1996-01-01

    This study examined the effectiveness of intermittent weight bearing (IWB) as a countermeasure to non-weight-bearing (NWB)-induced alterations in soleus type 1 fiber force (in mN), tension (P(sub o); force per fiber cross-sectional area in kN/sq m), and maximal unloaded shortening velocity (V(sub o), in fiber lengths/s). Adult rats were assigned to one of the following groups: normal weight bearing (WB), 14 days of hindlimb NWB (NWB group), and 14 days of hindlimb NWB with IWB treatments (IWB group). The IWB treatment consisted of four 10-min periods of standing WB each day. Single, chemically permeabilized soleus fiber segments were mounted between a force transducer and position motor and were studied at maximal Ca(2+) activation, after which type 1 fiber myosin heavy-chain composition was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. NWB resulted in a loss in relative soleus mass (-45%), with type 1 fibers displaying reductions in diameter (-28%) and peak isometric force (-55%) and an increase in V(sub o) (+33%). In addition, NWB induced a 16% reduction in type 1 fiber P., a 41% reduction in type 1 fiber peak elastic modulus [E(sub o), defined as ((delta)force/(delta)length x (fiber length/fiber cross-sectional area] and a significant increase in the P(sub o)/E(sub o) ratio. In contrast to NWB, IWB reduced the loss of relative soleus mass (by 22%) and attenuated alterations in type 1 fiber diameter (by 36%), peak force (by 29%), and V(sub o)(by 48%) but had no significant effect on P(sub o), E(sub o) or P(sub o)/E(sub o). These results indicate that a modest restoration of WB activity during 14 days of NWB is sufficient to attenuate type 1 fiber atrophy and to partially restore type 1 peak isometric force and V(sub o) to WB levels. However, the NWB-induced reductions in P(sub o) and E(sub o) which we hypothesize to be due to a decline in the number and stiffness of cross bridges, respectively, are considerably less responsive to this countermeasure treatment.

  2. Mechanical Design and Analysis of a Unilateral Cervical Spinal Cord Contusion Injury Model in Non-Human Primates

    PubMed Central

    Salegio, Ernesto A.; Camisa, William; Tam, Horace; Beattie, Michael S.; Bresnahan, Jacqueline C.

    2016-01-01

    Abstract Non-human primate (NHP) models of spinal cord injury better reflect human injury and provide a better foundation to evaluate potential treatments and functional outcomes. We combined finite element (FE) and surrogate models with impact data derived from in vivo experiments to define the impact mechanics needed to generate a moderate severity unilateral cervical contusion injury in NHPs (Macaca mulatta). Three independent variables (impactor displacement, alignment, and pre-load) were examined to determine their effects on tissue level stresses and strains. Mechanical measures of peak force, peak displacement, peak energy, and tissue stiffness were analyzed as potential determinants of injury severity. Data generated from FE simulations predicted a lateral shift of the spinal cord at high levels of compression (>64%) during impact. Submillimeter changes in mediolateral impactor position over the midline increased peak impact forces (>50%). Surrogate cords established a 0.5 N pre-load protocol for positioning the impactor tip onto the dural surface to define a consistent dorsoventral baseline position before impact, which corresponded with cerebrospinal fluid displacement and entrapment of the spinal cord against the vertebral canal. Based on our simulations, impactor alignment and pre-load were strong contributors to the variable mechanical and functional outcomes observed in in vivo experiments. Peak displacement of 4 mm after a 0.5N pre-load aligned 0.5–1.0 mm over the midline should result in a moderate severity injury; however, the observed peak force and calculated peak energy and tissue stiffness are required to properly characterize the severity and variability of in vivo NHP contusion injuries. PMID:26670940

  3. The effect of habitual waterpipe tobacco smoking on pulmonary function and exercise capacity in young healthy males: A pilot study.

    PubMed

    Hawari, F I; Obeidat, N A; Ghonimat, I M; Ayub, H S; Dawahreh, S S

    2017-01-01

    Evidence regarding the health effects of habitual waterpipe smoking is limited, particularly in young smokers. Respiratory health and cardiopulmonary exercise tests were compared in young male habitual waterpipe smokers (WPS) versus non-smokers. 69 WPS (≥3 times/week for three years) and 69 non-smokers were studied. Respiratory health was assessed through the American Thoracic Society and the Division of Lung Diseases (ATS-DLD-78) adult questionnaire. Pulmonary function and cardiopulmonary exercise tests were performed. Self-reported respiratory symptoms, forced expiratory volume in first second (FEV 1 ), forced vital capacity (FVC), FEV 1 /FVC ratio, forced expiratory flow between 25 and 75% of FVC (FEF 25-75% ), peak expiratory flow (PEF), exercise time, peak end-tidal CO 2 tension (PetCO 2 ), subject-reported leg fatigue and dyspnea; peak O 2 uptake (VO 2 max), and end-expiratory lung volume (EELV) change from baseline (at peak exercise) were measured. WPS were more likely than non-smokers to report respiratory symptoms. WPS also demonstrated: shorter exercise time; lower peak VO 2 ; higher perceived dyspnea at mid-exercise; lower values of the following: FEV 1 , FVC, PEF, and EELV change. Habitual waterpipe tobacco smoking in young seemingly healthy individuals is associated with a greater burden of respiratory symptoms and impaired exercise capacity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Phosphate and acidosis act synergistically to depress peak power in rat muscle fibers.

    PubMed

    Nelson, Cassandra R; Debold, Edward P; Fitts, Robert H

    2014-11-15

    Skeletal muscle fatigue is characterized by the buildup of H(+) and inorganic phosphate (Pi), metabolites that are thought to cause fatigue by inhibiting muscle force, velocity, and power. While the individual effects of elevated H(+) or Pi have been well characterized, the effects of simultaneously elevating the ions, as occurs during fatigue in vivo, are still poorly understood. To address this, we exposed slow and fast rat skinned muscle fibers to fatiguing levels of H(+) (pH 6.2) and Pi (30 mM) and determined the effects on contractile properties. At 30°C, elevated Pi and low pH depressed maximal shortening velocity (Vmax) by 15% (4.23 to 3.58 fl/s) in slow and 31% (6.24 vs. 4.55 fl/s) in fast fibers, values similar to depressions from low pH alone. Maximal isometric force dropped by 36% in slow (148 to 94 kN/m(2)) and 46% in fast fibers (148 to 80 kN/m(2)), declines substantially larger than what either ion exerted individually. The strong effect on force combined with the significant effect on velocity caused peak power to decline by over 60% in both fiber types. Force-stiffness ratios significantly decreased with pH 6.2 + 30 mM Pi in both fiber types, suggesting these ions reduced force by decreasing the force per bridge and/or increasing the number of low-force bridges. The data indicate the collective effects of elevating H(+) and Pi on maximal isometric force and peak power are stronger than what either ion exerts individually and suggest the ions act synergistically to reduce muscle function during fatigue. Copyright © 2014 the American Physiological Society.

  5. Relationships between Mechanical Variables in the Traditional and Close-Grip Bench Press.

    PubMed

    Lockie, Robert G; Callaghan, Samuel J; Moreno, Matthew R; Risso, Fabrice G; Liu, Tricia M; Stage, Alyssa A; Birmingham-Babauta, Samantha A; Stokes, John J; Giuliano, Dominic V; Lazar, Adrina; Davis, DeShaun L; Orjalo, Ashley J

    2017-12-01

    The study aim was to determine relationships between mechanical variables in the one-repetition maximum (1RM) traditional bench press (TBP) and close-grip bench press (CGBP). Twenty resistance-trained men completed a TBP and CGBP 1RM. The TBP was performed with the preferred grip; the CGBP with a grip width of 95% biacromial distance. A linear position transducer measured: lift distance and duration; work; and peak and mean power, velocity, and force. Paired samples t-tests (p < 0.05) compared the 1RM and mechanical variables for the TBP and CGBP; effect sizes (d) were also calculated. Pearson's correlations (r; p < 0.05) computed relationships between the TBP and CGBP. 1RM, lift duration, and mean force were greater in the TBP (d = 0.30-3.20). Peak power and velocity was greater for the CGBP (d = 0.50-1.29). The 1RM TBP correlated with CGBP 1RM, power, and force (r = 0.685-0.982). TBP work correlated with CGBP 1RM, lift distance, power, force, and work (r = 0.542-0.931). TBP power correlated with CGBP 1RM, power, force, velocity, and work (r = 0.484-0.704). TBP peak and mean force related to CGBP 1RM, power, and force (r = 0.596-0.980). Due to relationships between the load, work, power, and force for the TBP and CGBP, the CGBP could provide similar strength adaptations to the TBP with long-term use. The velocity profile for the CGBP was different to that of the TBP. The CGBP could be used specifically to improve high-velocity, upper-body pushing movements.

  6. Strain-sensitive upconversion for imaging biological forces (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lay, Alice; Wisser, Michael; Lin, Yu; Narayan, Tarun; Krieg, Michael; Atre, Ashwin; Goodman, Miriam; Dionne, Jennifer A.

    2016-09-01

    Nearly all diseases can be traced back to abnormal mechanotransduction, but few sensors can reliably measure biologically-relevant forces in vivo. Here, we investigate sub-25nm lanthanide-doped upconverting nanoparticles as novel optical force probes, which provide several biocompatible features: sharp emission peaks with near infrared illumination, a high signal-to-noise ratio, and photostability. To increase force sensitivity, we include d-metal doping in the nanoparticles; the d-metal siphons energy from the lanthanide ions with an efficiency that varies with pressure. We synthesize cubic-phase NaYF4: Er3+,Yb3+ nanoparticles doped with 0-5% Mn2+ and compress them in a hydrostatic environment using a diamond anvil cell. When illuminated at 980nm, the nanoparticles show sharp emission peaks centered at wavelengths of 522nm, 545nm, and 660nm. In 20nN increments, up to 700nN, the ratio of the red-to-green peaks in 0% Mn-doped nanoparticles increases by nearly 30%, resulting in a perceived color change from orange to red. In contrast, the 1% Mn-doped samples exhibit little color change but a large 40% decrease in upconversion intensity. In both cases, the red-to-green ratio varies linearly with strain and the optical properties are recoverable upon release. We further use atomic force microscopy to characterize optical responses at lower, pico-Newton to nano-Newton forces. To demonstrate in vivo imaging capabilities, we incubate C. elegans with nanoparticles dispersed in buffer solution (5mg/mL concentration) and image forces involved in digestion using confocal microscopy. Our nanoparticles provide a platform for the first, non-genetically-encoded in vivo force sensors, and we describe routes to increase their sensitivity to the single-pN range.

  7. Relationships between Mechanical Variables in the Traditional and Close-Grip Bench Press

    PubMed Central

    Callaghan, Samuel J.; Moreno, Matthew R.; Risso, Fabrice G.; Liu, Tricia M.; Stage, Alyssa A.; Birmingham-Babauta, Samantha A.; Stokes, John J.; Giuliano, Dominic V.; Lazar, Adrina; Davis, DeShaun L.; Orjalo, Ashley J.

    2017-01-01

    Abstract The study aim was to determine relationships between mechanical variables in the one-repetition maximum (1RM) traditional bench press (TBP) and close-grip bench press (CGBP). Twenty resistance-trained men completed a TBP and CGBP 1RM. The TBP was performed with the preferred grip; the CGBP with a grip width of 95% biacromial distance. A linear position transducer measured: lift distance and duration; work; and peak and mean power, velocity, and force. Paired samples t-tests (p < 0.05) compared the 1RM and mechanical variables for the TBP and CGBP; effect sizes (d) were also calculated. Pearson’s correlations (r; p < 0.05) computed relationships between the TBP and CGBP. 1RM, lift duration, and mean force were greater in the TBP (d = 0.30-3.20). Peak power and velocity was greater for the CGBP (d = 0.50-1.29). The 1RM TBP correlated with CGBP 1RM, power, and force (r = 0.685-0.982). TBP work correlated with CGBP 1RM, lift distance, power, force, and work (r = 0.542-0.931). TBP power correlated with CGBP 1RM, power, force, velocity, and work (r = 0.484-0.704). TBP peak and mean force related to CGBP 1RM, power, and force (r = 0.596-0.980). Due to relationships between the load, work, power, and force for the TBP and CGBP, the CGBP could provide similar strength adaptations to the TBP with long-term use. The velocity profile for the CGBP was different to that of the TBP. The CGBP could be used specifically to improve high-velocity, upper-body pushing movements. PMID:29339982

  8. Imagined Hand Clenching Force and Speed Modulate Brain Activity and Are Classified by NIRS Combined With EEG.

    PubMed

    Fu, Yunfa; Xiong, Xin; Jiang, Changhao; Xu, Baolei; Li, Yongcheng; Li, Hongyi

    2017-09-01

    Simultaneous acquisition of brain activity signals from the sensorimotor area using NIRS combined with EEG, imagined hand clenching force and speed modulation of brain activity, as well as 6-class classification of these imagined motor parameters by NIRS-EEG were explored. Near infrared probes were aligned with C3 and C4, and EEG electrodes were placed midway between the NIRS probes. NIRS and EEG signals were acquired from six healthy subjects during six imagined hand clenching force and speed tasks involving the right hand. The results showed that NIRS combined with EEG is effective for simultaneously measuring brain activity of the sensorimotor area. The study also showed that in the duration of (0, 10) s for imagined force and speed of hand clenching, HbO first exhibited a negative variation trend, which was followed by a negative peak. After the negative peak, it exhibited a positive variation trend with a positive peak about 6-8 s after termination of imagined movement. During (-2, 1) s, the EEG may have indicated neural processing during the preparation, execution, and monitoring of a given imagined force and speed of hand clenching. The instantaneous phase, frequency, and amplitude feature of the EEG were calculated by Hilbert transform; HbO and the difference between HbO and Hb concentrations were extracted. The features of NIRS and EEG were combined to classify three levels of imagined force [at 20/50/80% MVGF (maximum voluntary grip force)] and speed (at 0.5/1/2 Hz) of hand clenching by SVM. The average classification accuracy of the NIRS-EEG fusion feature was 0.74 ± 0.02. These results may provide increased control commands of force and speed for a brain-controlled robot based on NIRS-EEG.

  9. Method and apparatus for electrospark deposition

    DOEpatents

    Bailey, Jeffrey A.; Johnson, Roger N.; Park, Walter R.; Munley, John T.

    2004-12-28

    A method and apparatus for controlling electrospark deposition (ESD) comprises using electrical variable waveforms from the ESD process as a feedback parameter. The method comprises measuring a plurality of peak amplitudes from a series of electrical energy pulses delivered to an electrode tip. The maximum peak value from among the plurality of peak amplitudes correlates to the contact force between the electrode tip and a workpiece. The method further comprises comparing the maximum peak value to a set point to determine an offset and optimizing the contact force according to the value of the offset. The apparatus comprises an electrode tip connected to an electrical energy wave generator and an electrical signal sensor, which connects to a high-speed data acquisition card. An actuator provides relative motion between the electrode tip and a workpiece by receiving a feedback drive signal from a processor that is operably connected to the actuator and the high-speed data acquisition card.

  10. How tibiofemoral alignment and contact locations affect predictions of medial and lateral tibiofemoral contact forces.

    PubMed

    Lerner, Zachary F; DeMers, Matthew S; Delp, Scott L; Browning, Raymond C

    2015-02-26

    Understanding degeneration of biological and prosthetic knee joints requires knowledge of the in-vivo loading environment during activities of daily living. Musculoskeletal models can estimate medial/lateral tibiofemoral compartment contact forces, yet anthropometric differences between individuals make accurate predictions challenging. We developed a full-body OpenSim musculoskeletal model with a knee joint that incorporates subject-specific tibiofemoral alignment (i.e. knee varus-valgus) and geometry (i.e. contact locations). We tested the accuracy of our model and determined the importance of these subject-specific parameters by comparing estimated to measured medial and lateral contact forces during walking in an individual with an instrumented knee replacement and post-operative genu valgum (6°). The errors in the predictions of the first peak medial and lateral contact force were 12.4% and 11.9%, respectively, for a model with subject-specific tibiofemoral alignment and contact locations determined through radiographic analysis, vs. 63.1% and 42.0%, respectively, for a model with generic parameters. We found that each degree of tibiofemoral alignment deviation altered the first peak medial compartment contact force by 51N (r(2)=0.99), while each millimeter of medial-lateral translation of the compartment contact point locations altered the first peak medial compartment contact force by 41N (r(2)=0.99). The model, available at www.simtk.org/home/med-lat-knee/, enables the specification of subject-specific joint alignment and compartment contact locations to more accurately estimate medial and lateral tibiofemoral contact forces in individuals with non-neutral alignment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. How Tibiofemoral Alignment and Contact Locations Affect Predictions of Medial and Lateral Tibiofemoral Contact Forces

    PubMed Central

    Lerner, Zachary F.; DeMers, Matthew S.; Delp, Scott L.; Browning, Raymond C.

    2015-01-01

    Understanding degeneration of biological and prosthetic knee joints requires knowledge of the in-vivo loading environment during activities of daily living. Musculoskeletal models can estimate medial/lateral tibiofemoral compartment contact forces, yet anthropometric differences between individuals make accurate predictions challenging. We developed a full-body OpenSim musculoskeletal model with a knee joint that incorporates subject-specific tibiofemoral alignment (i.e. knee varus-valgus) and geometry (i.e. contact locations). We tested the accuracy of our model and determined the importance of these subject-specific parameters by comparing estimated to measured medial and lateral contact forces during walking in an individual with an instrumented knee replacement and post-operative genu valgum (6°). The errors in the predictions of the first peak medial and lateral contact force were 12.4% and 11.9%, respectively, for a model with subject-specific tibiofemoral alignment and contact locations determined via radiographic analysis, vs. 63.1% and 42.0%, respectively, for a model with generic parameters. We found that each degree of tibiofemoral alignment deviation altered the first peak medial compartment contact force by 51N (r2=0.99), while each millimeter of medial-lateral translation of the compartment contact point locations altered the first peak medial compartment contact force by 41N (r2=0.99). The model, available at www.simtk.org/home/med-lat-knee/, enables the specification of subject-specific joint alignment and compartment contact locations to more accurately estimate medial and lateral tibiofemoral contact forces in individuals with non-neutral alignment. PMID:25595425

  12. Thermomechanical conditions and stresses on the friction stir welding tool

    NASA Astrophysics Data System (ADS)

    Atthipalli, Gowtam

    Friction stir welding has been commercially used as a joining process for aluminum and other soft materials. However, the use of this process in joining of hard alloys is still developing primarily because of the lack of cost effective, long lasting tools. Here I have developed numerical models to understand the thermo mechanical conditions experienced by the FSW tool and to improve its reusability. A heat transfer and visco-plastic flow model is used to calculate the torque, and traverse force on the tool during FSW. The computed values of torque and traverse force are validated using the experimental results for FSW of AA7075, AA2524, AA6061 and Ti-6Al-4V alloys. The computed torque components are used to determine the optimum tool shoulder diameter based on the maximum use of torque and maximum grip of the tool on the plasticized workpiece material. The estimation of the optimum tool shoulder diameter for FSW of AA6061 and AA7075 was verified with experimental results. The computed values of traverse force and torque are used to calculate the maximum shear stress on the tool pin to determine the load bearing ability of the tool pin. The load bearing ability calculations are used to explain the failure of H13 steel tool during welding of AA7075 and commercially pure tungsten during welding of L80 steel. Artificial neural network (ANN) models are developed to predict the important FSW output parameters as function of selected input parameters. These ANN consider tool shoulder radius, pin radius, pin length, welding velocity, tool rotational speed and axial pressure as input parameters. The total torque, sliding torque, sticking torque, peak temperature, traverse force, maximum shear stress and bending stress are considered as the output for ANN models. These output parameters are selected since they define the thermomechanical conditions around the tool during FSW. The developed ANN models are used to understand the effect of various input parameters on the total torque and traverse force during FSW of AA7075 and 1018 mild steel. The ANN models are also used to determine tool safety factor for wide range of input parameters. A numerical model is developed to calculate the strain and strain rates along the streamlines during FSW. The strain and strain rate values are calculated for FSW of AA2524. Three simplified models are also developed for quick estimation of output parameters such as material velocity field, torque and peak temperature. The material velocity fields are computed by adopting an analytical method of calculating velocities for flow of non-compressible fluid between two discs where one is rotating and other is stationary. The peak temperature is estimated based on a non-dimensional correlation with dimensionless heat input. The dimensionless heat input is computed using known welding parameters and material properties. The torque is computed using an analytical function based on shear strength of the workpiece material. These simplified models are shown to be able to predict these output parameters successfully.

  13. 14 CFR 25.147 - Directional and lateral control.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... one engine inoperative, to provide a roll rate necessary for safety without excessive control forces... peak roll rate necessary for safety, without excessive control forces or travel. [Doc. No. 5066, 29 FR... force is 150 pounds need not be exceeded), and with— (1) The critical engine inoperative and its...

  14. 14 CFR 25.147 - Directional and lateral control.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... one engine inoperative, to provide a roll rate necessary for safety without excessive control forces... peak roll rate necessary for safety, without excessive control forces or travel. [Doc. No. 5066, 29 FR... force is 150 pounds need not be exceeded), and with— (1) The critical engine inoperative and its...

  15. 14 CFR 25.147 - Directional and lateral control.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... one engine inoperative, to provide a roll rate necessary for safety without excessive control forces... peak roll rate necessary for safety, without excessive control forces or travel. [Doc. No. 5066, 29 FR... force is 150 pounds need not be exceeded), and with— (1) The critical engine inoperative and its...

  16. 14 CFR 25.147 - Directional and lateral control.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... one engine inoperative, to provide a roll rate necessary for safety without excessive control forces... peak roll rate necessary for safety, without excessive control forces or travel. [Doc. No. 5066, 29 FR... force is 150 pounds need not be exceeded), and with— (1) The critical engine inoperative and its...

  17. 14 CFR 25.147 - Directional and lateral control.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... one engine inoperative, to provide a roll rate necessary for safety without excessive control forces... peak roll rate necessary for safety, without excessive control forces or travel. [Doc. No. 5066, 29 FR... force is 150 pounds need not be exceeded), and with— (1) The critical engine inoperative and its...

  18. The effect of a dynamic PCL brace on patellofemoral compartment pressures in PCL-and PCL/PLC-deficient knees.

    PubMed

    Welch, Tyler; Keller, Thomas; Maldonado, Ruben; Metzger, Melodie; Mohr, Karen; Kvitne, Ronald

    2017-12-01

    The natural history of posterior cruciate ligament (PCL) deficiency includes the development of arthrosis in the patellofemoral joint (PFJ). The purpose of this biomechanical study was to evaluate the hypothesis that dynamic bracing reduces PFJ pressures in PCL- and combined PCL/posterolateral corner (PLC)-deficient knees. Controlled Laboratory Study. Eight fresh frozen cadaveric knees with intact cruciate and collateral ligaments were included. PFJ pressures and force were measured using a pressure mapping system via a lateral arthrotomy at knee flexion angles of 30°, 60°, 90°, and 120° in intact, PCL-deficient, and PCL/PLC-deficient knees under a combined quadriceps/hamstrings load of 400 N/200 N. Testing was then repeated in PCL- and PCL/PLC-deficient knees after application of a dynamic PCL brace. Application of a dynamic PCL brace led to a reduction in peak PFJ pressures in PCL-deficient knees. In addition, the brace led to a significant reduction in peak pressures in PCL/PLC-deficient knees at 60°, 90°, and 120° of flexion. Application of the dynamic brace also led to a reduction in total PFJ force across all flexion angles for both PCL- and PCL/PLC-deficient knees. Dynamic bracing reduces PFJ pressures in PCL- and combined PCL/PLC-deficient knees, particularly at high degrees of knee flexion.

  19. Postoperative Changes in In Vivo Measured Friction in Total Hip Joint Prosthesis during Walking

    PubMed Central

    Damm, Philipp; Bender, Alwina; Bergmann, Georg

    2015-01-01

    Loosening of the artificial cup and inlay is the most common reasons for total hip replacement failures. Polyethylene wear and aseptic loosening are frequent reasons. Furthermore, over the past few decades, the population of patients receiving total hip replacements has become younger and more active. Hence, a higher level of activity may include an increased risk of implant loosening as a result of friction-induced wear. In this study, an instrumented hip implant was used to measure the contact forces and friction moments in vivo during walking. Subsequently, the three-dimensional coefficient of friction in vivo was calculated over the whole gait cycle. Measurements were collected from ten subjects at several time points between three and twelve months postoperative. No significant change in the average resultant contact force was observed between three and twelve months postoperative. In contrast, a significant decrease of up to 47% was observed in the friction moment. The coefficient of friction also decreased over postoperative time on average. These changes may be caused by ‘running-in’ effects of the gliding components or by the improved lubricating properties of the synovia. Because the walking velocity and contact forces were found to be nearly constant during the observed period, the decrease in friction moment suggests an increase in fluid viscosity. The peak values of the contact force individually varied by 32%-44%. The friction moment individually differed much more, by 110%-129% at three and up to 451% at twelve months postoperative. The maximum coefficient of friction showed the highest individual variability, about 100% at three and up to 914% at twelve months after surgery. These individual variations in the friction parameters were most likely due to different ‘running-in’ effects that were influenced by the individual activity levels and synovia properties. PMID:25806805

  20. The association between lower extremity energy absorption and biomechanical factors related to anterior cruciate ligament injury.

    PubMed

    Norcross, Marc F; Blackburn, J Troy; Goerger, Benjamin M; Padua, Darin A

    2010-12-01

    Greater total energy absorption by the lower extremity musculature during landing may reduce stresses placed on capsuloligamentous tissues with differences in joint contributions to energy absorption potentially affecting anterior cruciate ligament injury risk. However, the relationships between energy absorption and prospectively identified biomechanical factors associated with non-contact anterior cruciate ligament injury have yet to be demonstrated. Sagittal plane total, hip, knee and ankle energy absorption, and peak vertical ground reaction force, anterior tibial shear force, knee flexion and knee valgus angles, and internal hip extension and knee varus moments were measured in 27 individuals (14 females, 13 males) performing double leg jump landings. Correlation coefficients assessed the relationships between energy absorption during three time intervals (initial impact phase, terminal phase, and total landing) and biomechanical factors related to anterior cruciate ligament injury. More favorable values of biomechanical factors related to non-contact anterior cruciate ligament injury were associated with: 1) Lesser total (R(2)=0.178-0.558), hip (R(2)=0.229-0.651) and ankle (R(2)=0.280), but greater knee (R(2)=0.147) energy absorption during the initial impact phase; 2) Greater total (R(2)=0.170-0.845), hip (R(2)=0.599), knee (R(2)=0.236-0.834), and ankle (R(2)=0.276) energy absorption during the terminal phase of landing; and 3) Greater knee (R(2)=0.158-0.709), but lesser hip (R(2)=0.309) and ankle (R(2)=0.210-0.319) energy absorption during the total landing period. These results suggest that biomechanical factors related to anterior cruciate ligament injury are influenced by both the magnitude and timing of lower extremity energy absorption during landing. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Altered mechanical properties of titin immunoglobulin domain 27 in the presence of calcium.

    PubMed

    DuVall, Michael M; Gifford, Jessica L; Amrein, Matthias; Herzog, Walter

    2013-04-01

    Titin (connectin) based passive force regulation has been an important physiological mechanism to adjust to varying muscle stretch conditions. Upon stretch, titin behaves as a spring capable of modulating its elastic response in accordance with changes in muscle biochemistry. One such mechanism has been the calcium-dependent stiffening of titin domains that renders the spring inherently more resistant to stretch. This transient titin-calcium interaction may serve a protective function in muscle, which could preclude costly unfolding of select domains when muscles elongate to great lengths. To test this idea, fluorescence spectroscopy was performed revealing a change in the microenvironment of the investigated immunoglobulin domain 27 (I27) of titin with calcium. Additionally, an atomic force microscope was used to evaluate the calcium-dependent regulation of passive force by stretching eight linked titin I27 domains until they unfolded. When stretching in the presence of calcium, the I27 homopolymer chain became stabilized, displaying three novel properties: (1) higher stretching forces were needed to unfold the domains, (2) the stiffness, measured as a persistence length (PL), increased and (3) the peak-to-peak distance between adjacent I27 domains increased. Furthermore, a peak order dependence became apparent for both force and PL, reflecting the importance of characterizing the dynamic unfolding history of a polymer with this approach. Together, this novel titin Ig-calcium interaction may serve to stabilize the I27 domain permitting titin to tune passive force within stretched muscle in a calcium-dependent manner.

  2. Acute effects of elastic bands during the free-weight barbell back squat exercise on velocity, power, and force production.

    PubMed

    Stevenson, Mark W; Warpeha, Joseph M; Dietz, Cal C; Giveans, Russell M; Erdman, Arthur G

    2010-11-01

    The use of elastic bands in resistance training has been reported to be effective in increasing performance-related parameters such as power, rate of force development (RFD), and velocity. The purpose of this study was to assess the following measures during the free-weight back squat exercise with and without elastic bands: peak and mean velocity in the eccentric and concentric phases (PV-E, PV-C, MV-E, MV-C), peak force (PF), peak power in the concentric phase, and RFD immediately before and after the zero-velocity point and in the concentric phase (RFDC). Twenty trained male volunteers (age = 26.0 ± 4.4 years) performed 3 sets of 3 repetitions of squats (at 55% one repetition maximum [1RM]) on 2 separate days: 1 day without bands and the other with bands in a randomized order. The added band force equaled 20% of the subjects' 55% 1RM. Two independent force platforms collected ground reaction force data, and a 9-camera motion capture system was used for displacement measurements. The results showed that PV-E and RFDC were significantly (p < 0.05) greater with the use of bands, whereas PV-C and MV-C were greater without bands. There were no differences in any other variables. These results indicate that there may be benefits to performing squats with elastic bands in terms of RFD. Practitioners concerned with improving RFD may want to consider incorporating this easily implemented training variation.

  3. Effect of a gluteal activation warm-up on explosive exercise performance.

    PubMed

    Parr, Matt; Price, Phil Db; Cleather, Daniel J

    2017-01-01

    To evaluate the effect of a gluteal activation warm-up on the performance of an explosive exercise (the high hang pull (HHP)). Seventeen professional rugby union players performed one set of three HHPs (with 80% of their one repetition maximum load) following both a control and activation warm-up. Peak electrical activity of the gluteus maximus and medius was quantified using electromyography (EMG). In addition, the kinematics and kinetics of nine players was also recorded using force plate and motion capture technology. These data were analysed using a previously described musculoskeletal model of the right lower limb in order to provide estimates of the muscular force expressed during the movement. The mean peak EMG activity of the gluteus maximus was significantly lower following the activation warm-up as compared with the control (p<0.05, effect size d=0.30). There were no significant differences in the mean peak estimated forces in gluteus maximus and medius, the quadriceps or hamstrings (p=0.053), although there was a trend towards increased force in gluteus maximus and hamstrings following the activation warm-up. There were no differences between the ground reaction forces following the two warm-ups. This study suggests that a gluteal activation warm-up may facilitate recruitment of the gluteal musculature by potentiating the glutes in such a way that a smaller neural drive evokes the same or greater force production during movement. This could in turn potentially improve movement quality.

  4. Dust arcs in the region of Jupiter's Trojan asteroids

    NASA Astrophysics Data System (ADS)

    Liu, Xiaodong; Schmidt, Jürgen

    2018-01-01

    Aims: The surfaces of the Trojan asteroids are steadily bombarded by interplanetary micrometeoroids, which releases ejecta of small dust particles. These particles form the faint dust arcs that are associated with asteroid clouds. Here we analyze the particle dynamics and structure of the arc in the region of the L4 Trojan asteroids. Methods: We calculate the total cross section of the L4 Trojan asteroids and the production rate of dust particles. The motion of the particles is perturbed by a variety of forces. We simulate the dynamical evolution of the dust particles, and explore the overall features of the Trojan dust arc. Results: The simulations show that the arc is mainly composed of grains in the size range 4-10 microns. Compared to the L4 Trojan asteroids, the dust arc is distributed more widely in the azimuthal direction, extending to a range of [30, 120] degrees relative to Jupiter. The peak number density does not develop at L4. There exist two peaks that are azimuthally displaced from L4.

  5. Functional sensibility assessment. Part II: Effects of sensory improvement on precise pinch force modulation after transverse carpal tunnel release.

    PubMed

    Hsu, Hsiu-Yun; Kuo, Li-Chieh; Chiu, Haw-Yen; Jou, I-Ming; Su, Fong-Chin

    2009-11-01

    Patients with median nerve compression at the carpal tunnel often have poor sensory afferents. Without adequate sensory modulation control, these patients frequently exhibit clumsy performance and excessive force output in the affected hand. We analyzed precision grip function after the sensory recovery of patients with carpal tunnel syndrome (CTS) who underwent carpal tunnel release (CTR). Thirteen CTS patients were evaluated using a custom-designed pinch device and conventional sensory tools before and after CTR to measure sensibility, maximum pinch strength, and anticipated pinch force adjustments to movement-induced load fluctuations in a pinch-holding-up activity. Based on these tests, five force-related parameters and sensory measurements were used to determine improvements in pinch performance after sensory recovery. The force ratio between the exerted pinch force and maximum load force of the lifting object was used to determine pinch force coordination and to prove that CTR enabled precision motor output. The magnitude of peak pinch force indicated an economic force output during manipulations following CTR. The peak pinch force, force ratio, and percentage of maximum pinch force also demonstrated a moderate correlation with the Semmes-Weinstein test. Analysis of these tests revealed that improved sensory function helped restore patients' performance in precise pinch force control evaluations. These results suggest that sensory information plays an important role in adjusting balanced force output in dexterous manipulation. (c) 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  6. Variability of a "force signature" during windmill softball pitching and relationship between discrete force variables and pitch velocity.

    PubMed

    Nimphius, Sophia; McGuigan, Michael R; Suchomel, Timothy J; Newton, Robert U

    2016-06-01

    This study assessed reliability of discrete ground reaction force (GRF) variables over multiple pitching trials, investigated the relationships between discrete GRF variables and pitch velocity (PV) and assessed the variability of the "force signature" or continuous force-time curve during the pitching motion of windmill softball pitchers. Intraclass correlation coefficient (ICC) for all discrete variables was high (0.86-0.99) while the coefficient of variance (CV) was low (1.4-5.2%). Two discrete variables were significantly correlated to PV; second vertical peak force (r(5)=0.81, p=0.03) and time between peak forces (r(5)=-0.79; p=0.03). High ICCs and low CVs support the reliability of discrete GRF and PV variables over multiple trials and significant correlations indicate there is a relationship between the ability to produce force and the timing of this force production with PV. The mean of all pitchers' curve-average standard deviation of their continuous force-time curves demonstrated low variability (CV=4.4%) indicating a repeatable and identifiable "force signature" pattern during this motion. As such, the continuous force-time curve in addition to discrete GRF variables should be examined in future research as a potential method to monitor or explain changes in pitching performance. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Evaluation of measurements of propulsion used to reflect changes in walking speed in individuals poststroke.

    PubMed

    Hsiao, HaoYuan; Zabielski, Thomas M; Palmer, Jacqueline A; Higginson, Jill S; Binder-Macleod, Stuart A

    2016-12-08

    Recent rehabilitation approaches for individuals poststroke have focused on improving walking speed because it is a reliable measurement that is associated with quality of life. Previous studies have demonstrated that propulsion, the force used to propel the body forward, determines walking speed. However, there are several different ways of measuring propulsion and no studies have identified which measurement best reflects differences in walking speed. The primary purposes of this study were to determine for individuals poststroke, which measurement of propulsion (1) is most closely related to their self-selected walking speeds and (2) best reflects changes in walking speed within a session. Participants (N=43) with chronic poststroke hemiparesis walked at their self-selected and maximal walking speeds on a treadmill. Propulsive impulse, peak propulsive force, and mean propulsive value (propulsive impulse divided by duration) were analyzed. In addition, each participant׳s cadence was calculated. Pearson correlation coefficients were used to determine the relationships between different measurements of propulsion versus walking speed as well as changes in propulsion versus changes in walking speed. Stepwise linear regression was used to determine which measurement of propulsion best predicted walking speed and changes in walking speed. The results showed that all 3 measurements of propulsion were correlated to walking speed, with peak propulsive force showed the strongest correlation. Similarly, when participants increased their walking speeds, changes in peak propulsive forces showed the strongest correlation to changes in walking speed. In addition, multiplying each measurement by cadence improved the correlations. The present study suggests that measuring peak propulsive force and cadence may be most appropriate of the variables studied to characterize propulsion in individuals poststroke. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Effects of Stable and Unstable Resistance Training in an Altered-G Environment on Muscle Power.

    PubMed

    Zemková, E; Oddsson, L

    2016-04-01

    The study evaluated the effect of 4 weeks of combined resistance-balance training and resistance training alone in a 90° tilted environment on muscle power. Two groups of healthy young subjects performed leg extensions while in a supine position, either on a firm surface along a linear track or on an unstable surface requiring mediolateral balancing movements. Power and force during squats were measured at isokinetic velocities of 10 and 35 deg/s. Results showed significantly greater gains in peak force (44.1%; F(1,21)=8.876, p=0.026), mean force (58.6%; F(1,21)=16.136, p=0.013), peak power (58.7%; F(1,21)=18.754, p=0.009), and mean power (59.2%; F(1,21)=23.114, p=0.007) at the velocity of 35 deg/s after stable than unstable resistance training. However, there were no significant between-groups differences in pre-post training gains in peak force (10.4%; F(1,21)=1.965, p=0.74), mean force (10.3%; F(1,21)=1.889, p=0.80), peak power (12.9%; F(1,21)=2.980, p=0.49), and mean power (19.1%; F(1,21)=3.454, p=0.36) during squats at the velocity of 10 deg/s. Resistance exercises under stable conditions performed in a 90° tilted environment are more effective in the improvement of high velocity muscle power than their use in combination with balance exercises. Such training may be applicable in pre- and in-flight exercise regimens for astronauts and in functional rehabilitation of bed-ridden patients. © Georg Thieme Verlag KG Stuttgart · New York.

  9. Relationships Between Countermovement Jump Ground Reaction Forces and Jump Height, Reactive Strength Index, and Jump Time.

    PubMed

    Barker, Leland A; Harry, John R; Mercer, John A

    2018-01-01

    Barker, LA, Harry, JR, and Mercer, JA. Relationships between countermovement jump ground reaction forces and jump height, reactive strength index, and jump time. J Strength Cond Res 32(1): 248-254, 2018-The purpose of this study was to determine the relationship between ground reaction force (GRF) variables to jump height, jump time, and the reactive strength index (RSI). Twenty-six, Division-I, male, soccer players performed 3 maximum effort countermovement jumps (CMJs) on a dual-force platform system that measured 3-dimensional kinetic data. The trial producing peak jump height was used for analysis. Vertical GRF (Fz) variables were divided into unloading, eccentric, amortization, and concentric phases and correlated with jump height, RSI (RSI = jump height/jump time), and jump time (from start to takeoff). Significant correlations were observed between jump height and RSI, concentric kinetic energy, peak power, concentric work, and concentric displacement. Significant correlations were observed between RSI and jump time, peak power, unload Fz, eccentric work, eccentric rate of force development (RFD), amortization Fz, amortization time, second Fz peak, average concentric Fz, and concentric displacement. Significant correlations were observed between jump time and unload Fz, eccentric work, eccentric RFD, amortization Fz, amortization time, average concentric Fz, and concentric work. In conclusion, jump height correlated with variables derived from the concentric phase only (work, power, and displacement), whereas Fz variables from the unloading, eccentric, amortization, and concentric phases correlated highly with RSI and jump time. These observations demonstrate the importance of countermovement Fz characteristics for time-sensitive CMJ performance measures. Researchers and practitioners should include RSI and jump time with jump height to improve their assessment of jump performance.

  10. A new method for sudden mechanical perturbation with axial load, to assess postural control in sitting and standing.

    PubMed

    Claus, Andrew P; Verrel, Julius; Pounds, Paul E I; Shaw, Renee C; Brady, Niamh; Chew, Min T; Dekkers, Thomas A; Hodges, Paul W

    2016-05-03

    Sudden application of load along a sagittal or coronal axis has been used to study trunk stiffness, but not axial (vertical) load. This study introduces a new method for sudden-release axial load perturbation. Prima facie validity was supported by comparison with standard mechanical systems. We report the response of the human body to axial perturbation in sitting and standing and within-day repeatability of measures. Load of 20% of body weight was released from light contact onto the shoulders of 22 healthy participants (10 males). Force input was measured via force transducers at shoulders, output via a force plate below the participant, and kinematics via 3-D motion capture. System identification was used to fit data from the time of load release to time of peak load-displacement, fitting with a 2nd-order mass-spring-damper system with a delay term. At peak load-displacement, the mean (SD) effective stiffness measured with this device for participants in sitting was 12.0(3.4)N/mm, and in standing was 13.3(4.2)N/mm. Peak force output exceeded input by 44.8 (10.0)% in sitting and by 30.4(7.9)% in standing. Intra-class correlation coefficients for within-day repeatability of axial stiffness were 0.58 (CI: -0.03 to 0.83) in sitting and 0.82(0.57-0.93) in standing. Despite greater degrees of freedom in standing than sitting, standing involved lesser time, downward displacement, peak output force and was more repeatable in defending upright postural control against the same axial loads. This method provides a foundation for future studies of neuromuscular control with axial perturbation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Tibiofemoral contact forces during walking, running and sidestepping.

    PubMed

    Saxby, David J; Modenese, Luca; Bryant, Adam L; Gerus, Pauline; Killen, Bryce; Fortin, Karine; Wrigley, Tim V; Bennell, Kim L; Cicuttini, Flavia M; Lloyd, David G

    2016-09-01

    We explored the tibiofemoral contact forces and the relative contributions of muscles and external loads to those contact forces during various gait tasks. Second, we assessed the relationships between external gait measures and contact forces. A calibrated electromyography-driven neuromusculoskeletal model estimated the tibiofemoral contact forces during walking (1.44±0.22ms(-1)), running (4.38±0.42ms(-1)) and sidestepping (3.58±0.50ms(-1)) in healthy adults (n=60, 27.3±5.4years, 1.75±0.11m, and 69.8±14.0kg). Contact forces increased from walking (∼1-2.8 BW) to running (∼3-8 BW), sidestepping had largest maximum total (8.47±1.57 BW) and lateral contact forces (4.3±1.05 BW), while running had largest maximum medial contact forces (5.1±0.95 BW). Relative muscle contributions increased across gait tasks (up to 80-90% of medial contact forces), and peaked during running for lateral contact forces (∼90%). Knee adduction moment (KAM) had weak relationships with tibiofemoral contact forces (all R(2)<0.36) and the relationships were gait task-specific. Step-wise regression of multiple external gait measures strengthened relationships (0.20

  12. Effects of Ving Tsun Chinese Martial Art Training on Upper Extremity Muscle Strength and Eye-Hand Coordination in Community-Dwelling Middle-Aged and Older Adults: A Pilot Study.

    PubMed

    Fong, Shirley S M; Ng, Shamay S M; Cheng, Yoyo T Y; Wong, Janet Y H; Yu, Esther Y T; Chow, Gary C C; Chak, Yvonne T C; Chan, Ivy K Y; Zhang, Joni; Macfarlane, Duncan; Chung, Louisa M Y

    2016-01-01

    Objectives. To evaluate the effects of Ving Tsun (VT) martial art training on the upper extremity muscle strength and eye-hand coordination of middle-aged and older adults. Methods. This study used a nonequivalent pretest-posttest control group design. Forty-two community-dwelling healthy adults participated in the study; 24 (mean age ± SD = 68.5 ± 6.7 years) underwent VT training for 4 weeks (a supervised VT session twice a week, plus daily home practice), and 18 (mean age ± SD = 72.0 ± 6.7 years) received no VT training and acted as controls. Shoulder and elbow isometric muscle strength and eye-hand coordination were evaluated using the Lafayette Manual Muscle Test System and a computerized finger-pointing test, respectively. Results. Elbow extensor peak force increased by 13.9% (P = 0.007) in the VT group and the time to reach peak force decreased (9.9%) differentially in the VT group compared to the control group (P = 0.033). For the eye-hand coordination assessment outcomes, reaction time increased by 2.9% in the VT group and decreased by 5.3% in the control group (P = 0.002). Conclusions. Four weeks of VT training could improve elbow extensor isometric peak force and the time to reach peak force but not eye-hand coordination in community-dwelling middle-aged and older adults.

  13. Effects of Ving Tsun Chinese Martial Art Training on Upper Extremity Muscle Strength and Eye-Hand Coordination in Community-Dwelling Middle-Aged and Older Adults: A Pilot Study

    PubMed Central

    Ng, Shamay S. M.; Cheng, Yoyo T. Y.; Yu, Esther Y. T.; Chow, Gary C. C.; Chak, Yvonne T. C.; Chan, Ivy K. Y.; Zhang, Joni; Macfarlane, Duncan

    2016-01-01

    Objectives. To evaluate the effects of Ving Tsun (VT) martial art training on the upper extremity muscle strength and eye-hand coordination of middle-aged and older adults. Methods. This study used a nonequivalent pretest-posttest control group design. Forty-two community-dwelling healthy adults participated in the study; 24 (mean age ± SD = 68.5 ± 6.7 years) underwent VT training for 4 weeks (a supervised VT session twice a week, plus daily home practice), and 18 (mean age ± SD = 72.0 ± 6.7 years) received no VT training and acted as controls. Shoulder and elbow isometric muscle strength and eye-hand coordination were evaluated using the Lafayette Manual Muscle Test System and a computerized finger-pointing test, respectively. Results. Elbow extensor peak force increased by 13.9% (P = 0.007) in the VT group and the time to reach peak force decreased (9.9%) differentially in the VT group compared to the control group (P = 0.033). For the eye-hand coordination assessment outcomes, reaction time increased by 2.9% in the VT group and decreased by 5.3% in the control group (P = 0.002). Conclusions. Four weeks of VT training could improve elbow extensor isometric peak force and the time to reach peak force but not eye-hand coordination in community-dwelling middle-aged and older adults. PMID:27525020

  14. Extracellular Ca2+-induced force restoration in K+-depressed skeletal muscle of the mouse involves an elevation of [K+]i: implications for fatigue

    PubMed Central

    Leader, John P.; Loiselle, Denis S.; Higgins, Amanda; Lin, Wei; Renaud, Jean-Marc

    2015-01-01

    We examined whether a Ca2+-K+ interaction was a potential mechanism operating during fatigue with repeated tetani in isolated mouse muscles. Raising the extracellular Ca2+ concentration ([Ca2+]o) from 1.3 to 10 mM in K+-depressed slow-twitch soleus and/or fast-twitch extensor digitorum longus muscles caused the following: 1) increase of intracellular K+ activity by 20–60 mM (raised intracellular K+ content, unchanged intracellular fluid volume), so that the K+-equilibrium potential increased by ∼10 mV and resting membrane potential repolarized by 5–10 mV; 2) large restoration of action potential amplitude (16–54 mV); 3) considerable recovery of excitable fibers (∼50% total); and 4) restoration of peak force with the peak tetanic force-extracellular K+ concentration ([K+]o) relationship shifting rightward toward higher [K+]o. Double-sigmoid curve-fitting to fatigue profiles (125 Hz for 500 ms, every second for 100 s) showed that prior exposure to raised [K+]o (7 mM) increased, whereas lowered [K+]o (2 mM) decreased, the rate and extent of force loss during the late phase of fatigue (second sigmoid) in soleus, hence implying a K+ dependence for late fatigue. Prior exposure to 10 mM [Ca2+]o slowed late fatigue in both muscle types, but was without effect on the extent of fatigue. These combined findings support our notion that a Ca2+-K+ interaction is plausible during severe fatigue in both muscle types. We speculate that a diminished transsarcolemmal K+ gradient and lowered [Ca2+]o contribute to late fatigue through reduced action potential amplitude and excitability. The raised [Ca2+]o-induced slowing of fatigue is likely to be mediated by a higher intracellular K+ activity, which prolongs the time before stimulation-induced K+ efflux depolarizes the sarcolemma sufficiently to interfere with action potentials. PMID:25571990

  15. A comparative analysis of physiological responses at submaximal workloads during different laboratory simulations of field cycling.

    PubMed

    Kenny, G P; Reardon, F D; Marion, A; Thoden, J S

    1995-01-01

    The purpose of this study was to evaluate the relationships between heart rate (fc), oxygen consumption (VO2), peak force and average force developed at the crank in response to submaximal exercise employing a racing bicycle which was attached to an ergometer (RE), ridden on a treadmill (TC) and ridden on a 400-m track (FC). Eight male trained competitive cyclists rode at three pre-determined work intensities set at a proportion of their maximal oxygen consumption (VO2max): (1) below lactate threshold [work load that produces a VO2 which is 10% less than the lactate threshold VO2 (sub-LT)], (2) lactate threshold VO2 (LT), and (3) above lactate threshold [workload that produces a VO2 which is 10% greater than lactate threshold VO2 (supra-LT)], and equated across exercise modes on the basis of fc. Voltage signals from the crank arm were recorded as FM signals for subsequent representation of peak and average force. Open circuit VO2 measurements were done in the field by Douglas bag gas collection and in the laboratory by automated gas collection and analysis. fc was recorded with a telemeter (Polar Electro Sport Tester, PE3000). Significant differences (P < 0.05) were observed: (1) in VO2 between FC and both laboratory conditions at sub-LT intensity and LT intensities, (2) in peak force between FC and TC at sub-LT intensity, (3) in average force between FC and RE at sub-LT. No significant differences were demonstrated at supra-LT intensity for VO2. Similarly no significant differences were observed in peak and average force for either LT or supra-LT intensities. These data indicate that equating work intensities on the basis of fc measured in laboratory conditions would overestimate the VO2 which would be generated in the field and conversely, that using fc measured in the laboratory to establish field work intensity would underestimate mechanical workload experienced in the field.

  16. Changes in patellofemoral pain resulting from repetitive impact landings are associated with the magnitude and rate of patellofemoral joint loading.

    PubMed

    Atkins, Lee T; James, C Roger; Yang, Hyung Suk; Sizer, Phillip S; Brismée, Jean-Michel; Sawyer, Steven F; Powers, Christopher M

    2018-03-01

    Although a relationship between elevated patellofemoral forces and pain has been proposed, it is unknown which joint loading variable (magnitude, rate) is best associated with pain changes. The purpose of this study was to examine associations among patellofemoral joint loading variables and changes in patellofemoral pain across repeated single limb landings. Thirty-one females (age: 23.5(2.8) year; height: 166.8(5.8) cm; mass: 59.6(8.1) kg) with PFP performed 5 landing trials from 0.25 m. The dependent variable was rate of change in pain obtained from self-reported pain scores following each trial. Independent variables included 5-trial averages of peak, time-integral, and average and maximum development rates of the patellofemoral joint reaction force obtained using a previously described model. Pearson correlation coefficients were calculated to evaluate individual associations between rate of change in pain and each independent variable (α = 0.05). Stepwise linear multiple regression (α enter  = 0.05; α exit  = 0.10) was used to identify the best predictor of rate of change in pain. Subjects reported an average increase of 0.38 pain points with each landing trial. Although, rate of change in pain was positively correlated with peak force (r = 0.44, p = 0.01), and average (r = 0.41, p = 0.02) and maximum force development rates (r = 0.39, p = 0.03), only the peak force entered the predictive model explaining 19% of variance in rate of change in pain (r 2  = 0.19, p = 0.01). Peak patellofemoral joint reaction force was the best predictor of the rate of change in pain following repetitive singe limb landings. The current study supports the theory that patellofemoral joint loading contributes to changes in patellofemoral pain. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Free-energy landscape and characteristic forces for the initiation of DNA unzipping.

    PubMed

    Mentes, Ahmet; Florescu, Ana Maria; Brunk, Elizabeth; Wereszczynski, Jeff; Joyeux, Marc; Andricioaei, Ioan

    2015-04-07

    DNA unzipping, the separation of its double helix into single strands, is crucial in modulating a host of genetic processes. Although the large-scale separation of double-stranded DNA has been studied with a variety of theoretical and experimental techniques, the minute details of the very first steps of unzipping are still unclear. Here, we use atomistic molecular-dynamics simulations, coarse-grained simulations, and a statistical-mechanical model to study the initiation of DNA unzipping by an external force. Calculation of the potential of mean force profiles for the initial separation of the first few terminal basepairs in a DNA oligomer revealed that forces ranging between 130 and 230 pN are needed to disrupt the first basepair, and these values are an order of magnitude larger than those needed to disrupt basepairs in partially unzipped DNA. The force peak has an echo of ∼50 pN at the distance that unzips the second basepair. We show that the high peak needed to initiate unzipping derives from a free-energy basin that is distinct from the basins of subsequent basepairs because of entropic contributions, and we highlight the microscopic origin of the peak. To our knowledge, our results suggest a new window of exploration for single-molecule experiments. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. Of cuts and cracks: data analytics on constrained graphs for early prediction of failure in cementitious materials

    NASA Astrophysics Data System (ADS)

    Kahagalage, Sanath; Tordesillas, Antoinette; Nitka, Michał; Tejchman, Jacek

    2017-06-01

    Using data from discrete element simulations, we develop a data analytics approach using network flow theory to study force transmission and failure in a `dog-bone' concrete specimen submitted to uniaxial tension. With this approach, we establish the extent to which the bottlenecks, i.e., a subset of contacts that impedes flow and are prone to becoming overloaded, can predict the location of the ultimate macro-crack. At the heart of this analysis is a capacity function that quantifies, in relative terms, the maximum force that can be transmitted through the different contacts or edges in the network. Here we set this function to be solely governed by the size of the contact area between the deformable spherical grains. During all the initial stages of the loading history, when no bonds are broken, we find the bottlenecks coincide consistently with, and therefore predict, the location of the crack that later forms in the failure regime after peak force. When bonds do start to break, they are spread throughout the specimen: in, near, and far from, the bottlenecks. In one stage leading up to peak force, bonds collectively break in the lower portion of the specimen, momentarily shifting the bottlenecks to this location. Just before and around peak force, however, the bottlenecks return to their original location and remain there until the macro-crack emerges right along the bottlenecks.

  19. Estimation of lumbar spinal loading and trunk muscle forces during asymmetric lifting tasks: application of whole-body musculoskeletal modelling in OpenSim.

    PubMed

    Kim, Hyun-Kyung; Zhang, Yanxin

    2017-04-01

    Large spinal compressive force combined with axial torsional shear force during asymmetric lifting tasks is highly associated with lower back injury (LBI). The aim of this study was to estimate lumbar spinal loading and muscle forces during symmetric lifting (SL) and asymmetric lifting (AL) tasks using a whole-body musculoskeletal modelling approach. Thirteen healthy males lifted loads of 7 and 12 kg under two lifting conditions (SL and AL). Kinematic data and ground reaction force data were collected and then processed by a whole-body musculoskeletal model. The results show AL produced a significantly higher peak lateral shear force as well as greater peak force of psoas major, quadratus lumborum, multifidus, iliocostalis lumborum pars lumborum, longissimus thoracis pars lumborum and external oblique than SL. The greater lateral shear forces combined with higher muscle force and asymmetrical muscle contractions may have the biomechanical mechanism responsible for the increased risk of LBI during AL. Practitioner Summary: Estimating lumbar spinal loading and muscle forces during free-dynamic asymmetric lifting tasks with a whole-body musculoskeletal modelling in OpenSim is the core value of this research. The results show that certain muscle groups are fundamentally responsible for asymmetric movement, thereby producing high lumbar spinal loading and muscle forces, which may increase risks of LBI during asymmetric lifting tasks.

  20. Lower-extremity ground reaction forces in collegiate baseball pitchers.

    PubMed

    Guido, John A; Werner, Sherry L

    2012-07-01

    The purpose of this study was to investigate ground reaction forces (GRF) in collegiate baseball pitchers and their relationship to pitching mechanics. Fourteen healthy collegiate baseball pitchers participated in this study. High-speed video and force plate data were collected for fastballs from each pitcher. The average ball speed was 35 ± 3 m/sec (78 ± 7 mph). Peak GRFs of 245 ± 20% body weight (BW) were generated in an anterior or braking direction to control descent. Horizontal GRFs tended to occur in a laterally directed fashion, reaching a peak of 45 ± 63% BW. The maximum vertical GRF averaged 202 ± 43% BW approximately 45 milliseconds after stride foot contact. A correlation between braking force and ball velocity was evident. Because of the downward inclination and rotation of the pitching motion, in addition to volume, shear forces may occur in the musculoskeletal tissues of the stride limb leading to many of the lower-extremity injuries seen in this athletic population.

  1. Joint Kinetics and Kinematics During Common Lower Limb Rehabilitation Exercises

    PubMed Central

    Comfort, Paul; Jones, Paul Anthony; Smith, Laura Constance; Herrington, Lee

    2015-01-01

    Context  Unilateral body-weight exercises are commonly used to strengthen the lower limbs during rehabilitation after injury, but data comparing the loading of the limbs during these tasks are limited. Objective  To compare joint kinetics and kinematics during 3 commonly used rehabilitation exercises. Design  Descriptive laboratory study. Setting  Laboratory. Patients or Other Participants  A total of 9 men (age = 22.1 ± 1.3 years, height = 1.76 ± 0.08 m, mass = 80.1 ± 12.2 kg) participated. Intervention(s)  Participants performed the single-legged squat, forward lunge, and reverse lunge with kinetic data captured via 2 force plates and 3-dimensional kinematic data collected using a motion-capture system. Main Outcome Measure(s)  Peak ground reaction forces, maximum joint angles, and peak sagittal-joint moments. Results  We observed greater eccentric and concentric peak vertical ground reaction forces during the single-legged squat than during both lunge variations (P ≤ .001). Both lunge variations demonstrated greater knee and hip angles than did the single-legged squat (P < .001), but we observed no differences between lunges (P > .05). Greater dorsiflexion occurred during the single-legged squat than during both lunge variations (P < .05), but we noted no differences between lunge variations (P = .70). Hip-joint moments were greater during the forward lunge than during the reverse lunge (P = .003) and the single-legged squat (P = .011). Knee-joint moments were greater in the single-legged squat than in the reverse lunge (P < .001) but not greater in the single-legged squat than in the forward lunge (P = .41). Ankle-joint moments were greater during the single-legged squat than during the forward lunge (P = .002) and reverse lunge (P < .001). Conclusions  Appropriate loading progressions for the hip should begin with the single-legged squat and progress to the reverse lunge and then the forward lunge. In contrast, loading progressions for the knee and ankle should begin with the reverse lunge and progress to the forward lunge and then the single-legged squat. PMID:26418958

  2. Practical approach to subject-specific estimation of knee joint contact force.

    PubMed

    Knarr, Brian A; Higginson, Jill S

    2015-08-20

    Compressive forces experienced at the knee can significantly contribute to cartilage degeneration. Musculoskeletal models enable predictions of the internal forces experienced at the knee, but validation is often not possible, as experimental data detailing loading at the knee joint is limited. Recently available data reporting compressive knee force through direct measurement using instrumented total knee replacements offer a unique opportunity to evaluate the accuracy of models. Previous studies have highlighted the importance of subject-specificity in increasing the accuracy of model predictions; however, these techniques may be unrealistic outside of a research setting. Therefore, the goal of our work was to identify a practical approach for accurate prediction of tibiofemoral knee contact force (KCF). Four methods for prediction of knee contact force were compared: (1) standard static optimization, (2) uniform muscle coordination weighting, (3) subject-specific muscle coordination weighting and (4) subject-specific strength adjustments. Walking trials for three subjects with instrumented knee replacements were used to evaluate the accuracy of model predictions. Predictions utilizing subject-specific muscle coordination weighting yielded the best agreement with experimental data; however this method required in vivo data for weighting factor calibration. Including subject-specific strength adjustments improved models' predictions compared to standard static optimization, with errors in peak KCF less than 0.5 body weight for all subjects. Overall, combining clinical assessments of muscle strength with standard tools available in the OpenSim software package, such as inverse kinematics and static optimization, appears to be a practical method for predicting joint contact force that can be implemented for many applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Practical approach to subject-specific estimation of knee joint contact force

    PubMed Central

    Knarr, Brian A.; Higginson, Jill S.

    2015-01-01

    Compressive forces experienced at the knee can significantly contribute to cartilage degeneration. Musculoskeletal models enable predictions of the internal forces experienced at the knee, but validation is often not possible, as experimental data detailing loading at the knee joint is limited. Recently available data reporting compressive knee force through direct measurement using instrumented total knee replacements offer a unique opportunity to evaluate the accuracy of models. Previous studies have highlighted the importance of subject-specificity in increasing the accuracy of model predictions; however, these techniques may be unrealistic outside of a research setting. Therefore, the goal of our work was to identify a practical approach for accurate prediction of tibiofemoral knee contact force (KCF). Four methods for prediction of knee contact force were compared: (1) standard static optimization, (2) uniform muscle coordination weighting, (3) subject-specific muscle coordination weighting and (4) subject-specific strength adjustments. Walking trials for three subjects with instrumented knee replacements were used to evaluate the accuracy of model predictions. Predictions utilizing subject-specific muscle coordination weighting yielded the best agreement with experimental data, however this method required in vivo data for weighting factor calibration. Including subject-specific strength adjustments improved models’ predictions compared to standard static optimization, with errors in peak KCF less than 0.5 body weight for all subjects. Overall, combining clinical assessments of muscle strength with standard tools available in the OpenSim software package, such as inverse kinematics and static optimization, appears to be a practical method for predicting joint contact force that can be implemented for many applications. PMID:25952546

  4. Combined KHFAC+DC nerve block without onset or reduced nerve conductivity after block

    PubMed Central

    Franke, Manfred; Vrabec, Tina; Wainright, Jesse; Bhadra, Niloy; Bhadra, Narendra; Kilgore, Kevin

    2017-01-01

    Background Kilohertz Frequency Alternating Current waveforms (KHFAC) have been shown to provide peripheral nerve conductivity block in many acute and chronic animal models. KHFAC nerve block could be used to address multiple disorders caused by neural over-activity, including blocking pain and spasticity. However, one drawback of KHFAC block is a transient activation of nerve fibers during the initiation of the nerve block, called the onset response. The objective of this study is to evaluate the feasibility of using charge balanced direct current (CBDC) waveforms to temporarily block motor nerve conductivity distally to the KHFAC electrodes to mitigate the block onset-response. Methods A total of eight animals were used in this study. A set of four animals were used to assess feasibility and reproducibility of a combined KHFAC+CBDC block. A following randomized study, conducted on a second set of four animals, compared the onset response resulting from KHFAC alone and combined KHFAC+CBDC waveforms. To quantify the onset, peak forces and the force-time integral were measured during KHFAC block initiation. Nerve conductivity was monitored throughout the study by comparing muscle twitch forces evoked by supra-maximal stimulation proximal and distal to the block electrodes. Each animal of the randomized study received at least 300 seconds (range: 318 to 1563s) of cumulative DC to investigate the impact of combined KHFAC+CBDC on nerve viability. Results The peak onset force was reduced significantly from 20.73 N (range: 18.6–26.5 N) with KHFAC alone to 0.45 N (range: 0.2–0.7 N) with the combined CBDC and KHFAC block waveform (p<0.001). The area under the force curve was reduced from 6.8 Ns (range: 3.5–21.9 Ns) to 0.54 Ns (range: 0.18–0.86Ns) (p<0.01). No change in nerve conductivity was observed after application of the combined KHFAC+CBDC block relative to KHFAC waveforms. Conclusion The distal application of CBDC can significantly reduce or even completely prevent the KHFAC onset response without a change in nerve conductivity. PMID:25115572

  5. Combined KHFAC + DC nerve block without onset or reduced nerve conductivity after block

    NASA Astrophysics Data System (ADS)

    Franke, Manfred; Vrabec, Tina; Wainright, Jesse; Bhadra, Niloy; Bhadra, Narendra; Kilgore, Kevin

    2014-10-01

    Objective. Kilohertz frequency alternating current (KHFAC) waveforms have been shown to provide peripheral nerve conductivity block in many acute and chronic animal models. KHFAC nerve block could be used to address multiple disorders caused by neural over-activity, including blocking pain and spasticity. However, one drawback of KHFAC block is a transient activation of nerve fibers during the initiation of the nerve block, called the onset response. The objective of this study is to evaluate the feasibility of using charge balanced direct current (CBDC) waveforms to temporarily block motor nerve conductivity distally to the KHFAC electrodes to mitigate the block onset-response. Approach. A total of eight animals were used in this study. A set of four animals were used to assess feasibility and reproducibility of a combined KHFAC + CBDC block. A following randomized study, conducted on a second set of four animals, compared the onset response resulting from KHFAC alone and combined KHFAC + CBDC waveforms. To quantify the onset, peak forces and the force-time integral were measured during KHFAC block initiation. Nerve conductivity was monitored throughout the study by comparing muscle twitch forces evoked by supra-maximal stimulation proximal and distal to the block electrodes. Each animal of the randomized study received at least 300 s (range: 318-1563 s) of cumulative dc to investigate the impact of combined KHFAC + CBDC on nerve viability. Main results. The peak onset force was reduced significantly from 20.73 N (range: 18.6-26.5 N) with KHFAC alone to 0.45 N (range: 0.2-0.7 N) with the combined CBDC and KHFAC block waveform (p < 0.001). The area under the force curve was reduced from 6.8 Ns (range: 3.5-21.9 Ns) to 0.54 Ns (range: 0.18-0.86 Ns) (p < 0.01). No change in nerve conductivity was observed after application of the combined KHFAC + CBDC block relative to KHFAC waveforms. Significance. The distal application of CBDC can significantly reduce or even completely prevent the KHFAC onset response without a change in nerve conductivity.

  6. Lower extremity kinetics in tap dance.

    PubMed

    Mayers, Lester; Bronner, Shaw; Agraharasamakulam, Sujani; Ojofeitimi, Sheyi

    2010-01-01

    Tap dance is a unique performing art utilizing the lower extremities as percussion instruments. In a previous study these authors reported decreased injury prevalence among tap dancers compared to other dance and sports participants. No biomechanical analyses of tap dance exist to explain this finding. The purpose of the current pilot study was to provide a preliminary overview of normative peak kinetic and kinematic data, based on the hypothesis that tap dance generates relatively low ground reaction forces and joint forces and moments. Six professional tap dancers performed four common tap dance sequences that produced data captured by the use of a force platform and a five-camera motion analysis system. The mean vertical ground reaction force for all sequences was found to be 2.06+/-0.55 BW. Mean peak sagittal, frontal, and transverse plane joint moments (hip, knee, and ankle) ranged from 0.07 to 2.62 N.m/kg. These small ground reaction forces and joint forces and moments support our hypothesis, and may explain the relatively low injury incidence in tap dancers. Nevertheless, the analysis is highly complex, and other factors remain to be studied and clarified.

  7. Binding of dicamba to soluble and bound extracellular polymeric substances (EPS) from aerobic activated sludge: a fluorescence quenching study.

    PubMed

    Pan, Xiangliang; Liu, Jing; Zhang, Daoyong; Chen, Xi; Song, Wenjuan; Wu, Fengchang

    2010-05-15

    Binding of dicamba to soluble EPS (SEPS) and bound EPS (BEPS) from aerobic activated sludge was investigated using fluorescence spectroscopy. Two protein-like fluorescence peaks (peak A with Ex/Em=225 nm/342-344 nm and peak B with Ex/Em=275/340-344 nm) were identified in SEPS and BEPS. Humic-like fluorescence peak C (Ex/Em=270-275 nm/450-460 nm) was only found in BEPS. Fluorescence of the peaks A and B for SEPS and peak A for BEPS were markedly quenched by dicamba at all temperatures whereas fluorescence of peaks B and C for BEPS was quenched only at 298 K. A dynamic process dominated the fluorescence quenching of peak A of both SEPS and BEPS. Fluorescence quenching of peak B and C was governed a static process. The effective quenching constants (logK(a)) were 4.725-5.293 for protein-like fluorophores of SEPS and 4.23-5.190 for protein-like fluorophores of BEPS, respectively. LogK(a) for humic-like substances was 3.85. Generally, SEPS had greater binding capacity for dicamba than BEPS, and protein-like substances bound dicamba more strongly than humic-like substances. Binding of dicamba to SEPS and BEPS was spontaneous and exothermic. Electrostatic force and hydrophobic interaction forces play a crucial role in binding of dicamba to EPS. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Lower Extremity Energy Absorption and Biomechanics During Landing, Part II: Frontal-Plane Energy Analyses and Interplanar Relationships

    PubMed Central

    Norcross, Marc F.; Lewek, Michael D.; Padua, Darin A.; Shultz, Sandra J.; Weinhold, Paul S.; Blackburn, J. Troy

    2013-01-01

    Context: Greater sagittal-plane energy absorption (EA) during the initial impact phase (INI) of landing is consistent with sagittal-plane biomechanics that likely increase anterior cruciate ligament (ACL) loading, but it does not appear to influence frontal-plane biomechanics. We do not know whether frontal-plane INI EA is related to high-risk frontal-plane biomechanics. Objective: To compare biomechanics among INI EA groups, determine if women are represented more in the high group, and evaluate interplanar INI EA relationships. Design: Descriptive laboratory study. Setting: Research laboratory. Patients or Other Participants: Participants included 82 (41 men, 41 women; age = 21.0 ± 2.4 years, height = 1.74 ± 0.10 m, mass = 70.3 ± 16.1 kg) healthy, physically active volunteers. Intervention(s): We assessed landing biomechanics with an electromagnetic motion-capture system and force plate. Main Outcome Measure(s): We calculated frontal- and sagittal-plane total, hip, knee, and ankle INI EA. Total frontal-plane INI EA was used to create high, moderate, and low tertiles. Frontal-plane knee and hip kinematics, peak vertical and posterior ground reaction forces, and peak internal knee-varus moment (pKVM) were identified and compared across groups using 1-way analyses of variance. We used a χ2 analysis to evaluate male and female allocation to INI EA groups. We used simple, bivariate Pearson product moment correlations to assess interplanar INI EA relationships. Results: The high–INI EA group exhibited greater knee valgus at ground contact, hip adduction at pKVM, and peak hip adduction than the low–INI EA group (P < .05) and greater peak knee valgus, pKVM, and knee valgus at pKVM than the moderate– (P < .05) and low– (P < .05) INI EA groups. Women were more likely than men to be in the high–INI EA group (χ2 = 4.909, P = .03). Sagittal-plane knee and frontal-plane hip INI EA (r = 0.301, P = .006) and sagittal-plane and frontal-plane ankle INI EA were associated (r = 0.224, P = .04). No other interplanar INI EA relationships were found (P > .05). Conclusions: Greater frontal-plane INI EA was associated with less favorable frontal-plane biomechanics that likely result in greater ACL loading. Women were more likely than men to use greater frontal-plane INI EA. The magnitudes of sagittal- and frontal-plane INI EA were largely independent. PMID:23944381

  9. Lower limb joint angles and ground reaction forces in forefoot strike and rearfoot strike runners during overground downhill and uphill running.

    PubMed

    Kowalski, Erik; Li, Jing Xian

    2016-11-01

    This study investigated the normal and parallel ground reaction forces during downhill and uphill running in habitual forefoot strike and habitual rearfoot strike (RFS) runners. Fifteen habitual forefoot strike and 15 habitual RFS recreational male runners ran at 3 m/s ± 5% during level, uphill and downhill overground running on a ramp mounted at 6° and 9°. Results showed that forefoot strike runners had no visible impact peak in all running conditions, while the impact peaks only decreased during the uphill conditions in RFS runners. Active peaks decreased during the downhill conditions in forefoot strike runners while active loading rates increased during downhill conditions in RFS runners. Compared to the level condition, parallel braking peaks were larger during downhill conditions and parallel propulsive peaks were larger during uphill conditions. Combined with previous biomechanics studies, our findings suggest that forefoot strike running may be an effective strategy to reduce impacts, especially during downhill running. These findings may have further implications towards injury management and prevention.

  10. The influence of rail surface irregularities on contact forces and local stresses

    NASA Astrophysics Data System (ADS)

    Andersson, Robin; Torstensson, Peter T.; Kabo, Elena; Larsson, Fredrik

    2015-01-01

    The effect of initial rail surface irregularities on promoting further surface degradation is investigated. The study concerns rolling contact fatigue formation, in particular in the form of the so-called squats. The impact of surface irregularities in the form of dimples is quantified by peak magnitudes of dynamic contact stresses and contact forces. To this end simulations of two-dimensional (later extended to three-dimensional) vertical dynamic vehicle-track interaction are employed. The most influencing parameters are identified. It is shown that even very shallow dimples might have a large impact on local contact stresses. Peak magnitudes of contact forces and stresses due to the influence of rail dimples are shown to exceed those due to rail corrugation.

  11. Minimising the effect of nanoparticle deformation in intermittent contact amplitude modulation atomic force microscopy measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babic, Bakir, E-mail: bakir.babic@measurement.gov.au; Lawn, Malcolm A.; Coleman, Victoria A.

    The results of systematic height measurements of polystyrene (PS) nanoparticles using intermittent contact amplitude modulation atomic force microscopy (IC-AM-AFM) are presented. The experimental findings demonstrate that PS nanoparticles deform during AFM imaging, as indicated by a reduction in the measured particle height. This deformation depends on the IC-AM-AFM imaging parameters, material composition, and dimensional properties of the nanoparticles. A model for nanoparticle deformation occurring during IC-AM-AFM imaging is developed as a function of the peak force which can be calculated for a particular set of experimental conditions. The undeformed nanoparticle height can be estimated from the model by extrapolation tomore » zero peak force. A procedure is proposed to quantify and minimise nanoparticle deformation during IC-AM-AFM imaging, based on appropriate adjustments of the experimental control parameters.« less

  12. Atomic force microscopy of adsorbed proteoglycan mimetic nanoparticles: Toward new glycocalyx-mimetic model surfaces.

    PubMed

    Hedayati, Mohammadhasan; Kipper, Matt J

    2018-06-15

    Blood vessels present a dense, non-uniform, polysaccharide-rich layer, called the endothelial glycocalyx. The polysaccharides in the glycocalyx include polyanionic glycosaminoglycans (GAGs). This polysaccharide-rich surface has excellent and unique blood compatibility. We report new methods for preparing and characterizing dense GAG surfaces that can serve as models of the vascular endothelial glycocalyx. The GAG-rich surfaces are prepared by adsorbing heparin or chondroitin sulfate-containing polyelectrolyte complex nanoparticles (PCNs) to chitosan-hyaluronan polyelectrolyte multilayers (PEMs). The surfaces are characterized by PeakForce tapping atomic force microscopy, both in air and in aqueous pH 7.4 buffer, and by PeakForce quantitative nanomechanics (PF-QNM) mode with high spatial resolution. These new surfaces provide access to heparin-rich or chondroitin sulfate-rich coatings that mimic both composition and nanoscale structural features of the vascular endothelial glycocalyx. Copyright © 2018. Published by Elsevier Ltd.

  13. Inter-relationships between machine squat-jump strength, force, power and 10 m sprint times in trained sportsmen.

    PubMed

    Harris, Nigel K; Cronin, J B; Hopkins, W G; Hansen, K T

    2010-03-01

    Strength and conditioning practitioners appear focussed on developing maximal strength based on the premise that it underpins explosive muscular performance. Investigation into the relationship between strength and a multitude of explosive power measures is limited though. Furthermore, the relationship of explosive force and power with functional performance is unclear. We examined the inter-relationships between maximal strength and explosive measures of force and power at different loads. Also investigated were the relationships between explosive measures and 10-m sprinting ability. Forty elite-level well-trained rugby union and league athletes performed 10-m sprints followed by bilateral concentric-only machine squat-jumps at 20 and 80%1RM. The magnitudes of the inter-relationships between groups of force measures, power measures and sprint times were interpreted using Pearson correlation coefficients, which had uncertainty (90% confidence limits) of approximately +/-0.25. Measures investigated included peak force, peak power, rate of force development, and some of Zatsiorsky's explosive measures, all expressed relative to body mass. The relationship between maximal strength and peak power was moderate at 20 %1RM (r=0.32) but trivial at 80 %1RM (r=-0.03). Practically no relationship between any of the explosive measures and 10-m sprint ability was observed (r=-0.01 to 0.06). Although correlations do not imply cause and effect, we speculate that the common practice of focussing on high levels of maximal strength in a machine squat to improve power output may be misguided. Our results also cast doubt on the efficacy of increasing explosive force and power in a machine squat-jump with the intention of improving sprint ability in well-trained athletes.

  14. Ground reaction forces and kinematics in distance running in older-aged men.

    PubMed

    Bus, Sicco A

    2003-07-01

    The biomechanics of distance running has not been studied before in older-aged runners but may be different than in younger-aged runners because of musculoskeletal degeneration at older age. This study aimed at determining whether the stance phase kinematics and ground reaction forces in running are different between younger- and older-aged men. Lower-extremity kinematics using three-dimensional motion analysis and ground reaction forces (GRF) using a force plate were assessed in 16 older-aged (55-65 yr) and 13 younger-aged (20-35 yr) well-trained male distance runners running at a self-selected (SRS) and a controlled (CRS) speed of 3.3 m.s-1. The older subjects ran at significantly lower self-selected speeds than the younger subjects (mean 3.34 vs 3.77 m.s-1). In both speed conditions, the older runners exhibited significantly more knee flexion at heel strike and significantly less knee flexion and extension range of motion. No age group differences were present in subtalar joint motion. Impact peak force (1.91 vs 1.70 BW) and maximal initial loading rate (107.5 vs 85.5 BW.s-1) were significantly higher in the older runners at the CRS. Maximal peak vertical and anteroposterior forces and impulses were significantly lower in the older runners at the SRS. The biomechanics of running is different between older- and younger-aged runners on several relevant parameters. The larger impact peak force and initial loading rate indicate a loss of shock-absorbing capacity in the older runners. This may increase their susceptibility to lower-extremity overuse injuries. Moreover, it emphasizes the focus on optimizing cushioning properties in the design and prescription of running shoes and suggests that older-aged runners should be cautious with running under conditions of high impact.

  15. Pinning effects from substrate and AFM tip surfaces on interfacial nanobubbles

    NASA Astrophysics Data System (ADS)

    Teshima, Hideaki; Takahashi, Koji; Takata, Yasuyuki; Nishiyama, Takashi

    2017-11-01

    Measurement accuracy of atomic force microscopy (AFM) is vital to understand the mechanism of interfacial nanobubbles. In this study, we report the influence of pinning derived from both substrate and AFM tip surfaces on the measured shape of interfacial nanobubbles in peak force tapping mode. First, we pushed the nanobubbles using the AFM tip with high peak force setpoint. As a result, the deformed nanobubbles kept their flat shape for several tens of minutes. We quantitatively discuss the pinning force from substrate surface, which retains the flat shape enhancing the stability of nanobubbles. Next, we prepared three AFM tips with different wettability and measured the nanobubbles with an identical setpoint. By comparing the force curves obtained during the measurements, it seems that the (middle-)hydrophobic tips penetrated the liquid/gas interface and received repulsive force resulting from positive meniscus formed by pinning at the tip surface. In contrast, hydrophilic tip didn't penetrate the interface and received the force from the deformation of the interface of the nanobubbles. In addition, the measurements using the (middle-)hydrophobic tips led to the underestimation of the nanobubbles profile corresponding to the pinning position at the tip surfaces.

  16. Analysis of applied forces and electromyography of back and shoulders muscles when performing a simulated hand scaling task.

    PubMed

    Porter, William; Gallagher, Sean; Torma-Krajewski, Janet

    2010-05-01

    Hand scaling is a physically demanding task responsible for numerous overexertion injuries in underground mining. Scaling requires the miner to use a long pry bar to remove loose rock, reducing the likelihood of rock fall injuries. The experiments described in this article simulated "rib" scaling (scaling a mine wall) from an elevated bucket to examine force generation and electromyographic responses using two types of scaling bars (steel and fiberglass-reinforced aluminum) at five target heights ranging from floor level to 176 cm. Ten male and six female subjects were tested in separate experiments. Peak and average force applied at the scaling bar tip and normalized electromyography (EMG) of the left and right pairs of the deltoid and erectores spinae muscles were obtained. Work height significantly affected peak prying force during scaling activities with highest force capacity at the lower levels. Bar type did not affect force generation. However, use of the lighter fiberglass bar required significantly more muscle activity to achieve the same force. Results of these studies suggest that miners scale points on the rock face that are below their knees, and reposition the bucket as often as necessary to do so. Published by Elsevier Ltd.

  17. Large amplitude forcing of a high speed 2-dimensional jet

    NASA Technical Reports Server (NTRS)

    Bernal, L.; Sarohia, V.

    1984-01-01

    The effect of large amplitude forcing on the growth of a high speed two dimensional jet was investigated experimentally. Two forcing techniques were utilized: mass flow oscillations and a mechanical system. The mass flow oscillation tests were conducted at Strouhal numbers from 0.00052 to 0.045, and peak to peak amplitudes up to 50 percent of the mean exit velocity. The exit Mach number was varied in the range 0.15 to 0.8. The corresponding Reynolds numbers were 8,400 and 45,000. The results indicate no significant change of the jet growth rate or centerline velocity decay compared to the undisturbed free jet. The mechanical forcing system consists of two counter rotating hexagonal cylinders located parallel to the span of the nozzle. Forcing frequencies up to 1,500 Hz were tested. Both symmetric and antisymmetric forcing can be implemented. The results for antisymmetric forcing showed a significant (75 percent) increase of the jet growth rate at an exit Mach number of 0.25 and a Strouhal number of 0.019. At higher rotational speeds, the jet deflected laterally. A deflection angle of 39 deg with respect to the centerline was measured at the maximum rotational speed.

  18. Effects of running-induced fatigue on plantar pressure distribution in novice runners with different foot types.

    PubMed

    Anbarian, Mehrdad; Esmaeili, Hamed

    2016-07-01

    This study aimed to assess the effects of running-induced fatigue on plantar pressure parameters in novice runners with low and high medial longitudinal arch. Plantar pressure data from 42 novice runners (21 with high, and 21 with low arch) were collected before and after running-induced fatigue protocol during running at 3.3m/s along the Footscan(®) platform. Peak plantar pressure, peak force and force-time integral (impulse) were measured in ten anatomical zones. Relative time for foot roll-over phases and medio-lateral force ratio were calculated before and after the fatigue protocol. After the fatigue protocol, increases in the peak pressure under the first-third metatarsal zones and reduction under the fourth-fifth metatarsal regions were observed in the low arch individuals. In the high arch group, increases in peak pressure under the fourth-fifth metatarsal zones after the running-induced fatigue was observed. It could be concluded that running-induced fatigue had different effects on plantar pressure distribution pattern among novice runners with low and high medial longitudinal foot arch. These findings could provide some information related to several running injuries among individuals with different foot types. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Complex metabolic oscillations in plants forced by harmonic irradiance.

    PubMed Central

    Nedbal, Ladislav; Brezina, Vítezslav

    2002-01-01

    Plants exposed to harmonically modulated irradiance, approximately 1 + cos(omegat), exhibit a complex periodic pattern of chlorophyll fluorescence emission that can be deconvoluted into a steady-state component, a component that is modulated with the frequency of the irradiance (omega), and into at least two upper harmonic components (2omega and 3omega). A model is proposed that accounts for the upper harmonics in fluorescence emission by nonlinear negative feedback regulation of photosynthesis. In contrast to simpler linear models, the model predicts that the steady-state fluorescence component will depend on the frequency of light modulation, and that amplitudes of all fluorescence components will exhibit resonance peak(s) when the irradiance frequency is tuned to an internal frequency of a regulatory component. The experiments confirmed that the upper harmonic components appear and exhibit distinct resonant peaks. The frequency of autonomous oscillations observed earlier upon an abrupt increase in CO(2) concentration corresponds to the sharpest of the resonant peaks of the forced oscillations. We propose that the underlying principles are general for a wide spectrum of negative-feedback regulatory mechanisms. The analysis by forced harmonic oscillations will enable us to examine internal dynamics of regulatory processes that have not been accessible to noninvasive fluorescence monitoring to date. PMID:12324435

  20. Effects of Differing Response-Force Requirements on Food-Maintained Responding in C57BL/6J Mice

    ERIC Educational Resources Information Center

    Zarcone, Troy J.; Chen, Rong; Fowler, Stephen C.

    2009-01-01

    The effect of force requirements on response effort was examined using inbred C57BL/6J mice trained to press a disk with their snout. Lateral peak forces greater than 2 g were defined as responses (i.e., all responses above the measurement threshold). Different, higher force requirements were used to define criterion responses (a subclass of all…

  1. Nonlinear effects in the radiation force generated by amplitude-modulated focused beams

    NASA Astrophysics Data System (ADS)

    González, Nuria; Jiménez, Noé; Redondo, Javier; Roig, Bernardino; Picó, Rubén; Sánchez-Morcillo, Víctor; Konofagou, Elisa E.; Camarena, Francisco

    2012-10-01

    Harmonic Motion Imaging (HMI) uses an amplitude-modulated (AM) beam to induce an oscillatory radiation force before, during and after ablation. In this paper, the findings from a numerical analysis of the effects related with the nonlinear propagation of AM focused ultrasonic beams in water on the radiation force and the location of its maxima will be presented. The numerical modeling is performed using the KZK nonlinear parabolic equation. The radiation force is generated by a focused transducer with a gain of 18, a carrier frequency of 1 MHz and a modulation frequency of 25 kHz. The modulated excitation generates a spatially-invariant force proportional to the intensity. Regarding the nonlinear wave propagation, the force is no longer proportional to the intensity, reaching a factor of eight between the nonlinear and linear estimations. Also, a 9 mm shift in the on-axis force peak occurs when the initial pressure increased from 1 to 300 kPa. This spatial shift, due to the nonlinear effects, becomes dynamic in AM focused beams, as the different signal periods have different amplitudes. This study shows that both the value and the spatial position of the force peak are affected by the nonlinear propagation of the ultrasonic waves.

  2. Resistance of equine tibiae and radii to side impact loads.

    PubMed

    Piskoty, G; Jäggin, S; Michel, S A; Weisse, B; Terrasi, G P; Fürst, A

    2012-11-01

    There are no detailed studies describing the resistance of equine tibiae and radii to side impact loads, such as a horse kick and a better understanding of the general long bone impact behavioural model is required. To quantify the typical impact energy required to fracture or fissure an equine long bone, as well as to determine the range and time course of the impact force under conditions similar to that of a horse kick. Seventy-two equine tibiae and radii were investigated using a drop impact tester. The prepared bones were preloaded with an axial force of 2.5 kN and were then hit in the middle of the medial side. The impact velocity of the metal impactor, weighting 2 kg, was varied within the range of 6-11 m/s. The impact process was captured with a high-speed camera from the craniomedial side of the bone. The videos were used both for slow-motion observation of the process and for quantifying physical parameters, such as peak force via offline video tracking and subsequent numerical derivation of the 'position vs. time' function for the impactor. The macroscopic appearance of the resultant bone injuries was found to be similar to those produced by authentic horse kicks, indicating a successful simulation of the real load case. The impact behaviours of tibiae and radii do not differ considerably in terms of the investigated general characteristics. Peak force occurred between 0.15-0.30 ms after the start of the impact. The maximum contact force correlated with the 1.45-power of the impact velocity if no fracture occurred (F(max) ≈ 0.926 · v(i) (1.45) ). Peak force scatter was considerably larger within the fractured sub-group compared with fissured bones. The peak force for fracture tended to lie below the aforementioned function, within the range of F(max) = 11-23 kN ('fracture load'). The impact energy required to fracture a bone varied from 40-90 J. The video-based measuring method allowed quantifying of the most relevant physical parameters, such as contact force and energy balance. The results obtained should help with the development of bone implants and guards, supporting theoretical studies, and in the evaluation of bone injuries. © 2012 EVJ Ltd.

  3. Torsion and Antero-Posterior Bending in the In Vivo Human Tibia Loading Regimes during Walking and Running

    PubMed Central

    Yang, Peng-Fei; Sanno, Maximilian; Ganse, Bergita; Koy, Timmo; Brüggemann, Gert-Peter; Müller, Lars Peter; Rittweger, Jörn

    2014-01-01

    Bending, in addition to compression, is recognized to be a common loading pattern in long bones in animals. However, due to the technical difficulty of measuring bone deformation in humans, our current understanding of bone loading patterns in humans is very limited. In the present study, we hypothesized that bending and torsion are important loading regimes in the human tibia. In vivo tibia segment deformation in humans was assessed during walking and running utilizing a novel optical approach. Results suggest that the proximal tibia primarily bends to the posterior (bending angle: 0.15°–1.30°) and medial aspect (bending angle: 0.38°–0.90°) and that it twists externally (torsion angle: 0.67°–1.66°) in relation to the distal tibia during the stance phase of overground walking at a speed between 2.5 and 6.1 km/h. Peak posterior bending and peak torsion occurred during the first and second half of stance phase, respectively. The peak-to-peak antero-posterior (AP) bending angles increased linearly with vertical ground reaction force and speed. Similarly, peak-to-peak torsion angles increased with the vertical free moment in four of the five test subjects and with the speed in three of the test subjects. There was no correlation between peak-to-peak medio-lateral (ML) bending angles and ground reaction force or speed. On the treadmill, peak-to-peak AP bending angles increased with walking and running speed, but peak-to-peak torsion angles and peak-to-peak ML bending angles remained constant during walking. Peak-to-peak AP bending angle during treadmill running was speed-dependent and larger than that observed during walking. In contrast, peak-to-peak tibia torsion angle was smaller during treadmill running than during walking. To conclude, bending and torsion of substantial magnitude were observed in the human tibia during walking and running. A systematic distribution of peak amplitude was found during the first and second parts of the stance phase. PMID:24732724

  4. Torsion and antero-posterior bending in the in vivo human tibia loading regimes during walking and running.

    PubMed

    Yang, Peng-Fei; Sanno, Maximilian; Ganse, Bergita; Koy, Timmo; Brüggemann, Gert-Peter; Müller, Lars Peter; Rittweger, Jörn

    2014-01-01

    Bending, in addition to compression, is recognized to be a common loading pattern in long bones in animals. However, due to the technical difficulty of measuring bone deformation in humans, our current understanding of bone loading patterns in humans is very limited. In the present study, we hypothesized that bending and torsion are important loading regimes in the human tibia. In vivo tibia segment deformation in humans was assessed during walking and running utilizing a novel optical approach. Results suggest that the proximal tibia primarily bends to the posterior (bending angle: 0.15°-1.30°) and medial aspect (bending angle: 0.38°-0.90°) and that it twists externally (torsion angle: 0.67°-1.66°) in relation to the distal tibia during the stance phase of overground walking at a speed between 2.5 and 6.1 km/h. Peak posterior bending and peak torsion occurred during the first and second half of stance phase, respectively. The peak-to-peak antero-posterior (AP) bending angles increased linearly with vertical ground reaction force and speed. Similarly, peak-to-peak torsion angles increased with the vertical free moment in four of the five test subjects and with the speed in three of the test subjects. There was no correlation between peak-to-peak medio-lateral (ML) bending angles and ground reaction force or speed. On the treadmill, peak-to-peak AP bending angles increased with walking and running speed, but peak-to-peak torsion angles and peak-to-peak ML bending angles remained constant during walking. Peak-to-peak AP bending angle during treadmill running was speed-dependent and larger than that observed during walking. In contrast, peak-to-peak tibia torsion angle was smaller during treadmill running than during walking. To conclude, bending and torsion of substantial magnitude were observed in the human tibia during walking and running. A systematic distribution of peak amplitude was found during the first and second parts of the stance phase.

  5. Investigation of mechanical field weakening of axial flux permanent magnet motor

    NASA Astrophysics Data System (ADS)

    Syaifuddin Mohd, M.; Aziz, A. Rashid A.; Syafiq Mohd, M.

    2015-12-01

    An investigation of axial flux permanent magnet motor (AFPM) characteristics was conducted with a proposed mechanical field weakening control mechanisms (by means of stator-rotor force manipulation) on the motor through modeling and experimentation. By varying the air gap between at least two bistable positions, the peak torque and top speed of the motor can be extended. The motor high efficiency region can also be extended to cover greater part of the motor operating points. An analytical model of the motor had been developed to study the correlation between the total attraction force (between the rotor and the stator) and the operating parameters of the motor. The test results shows that the motor output complies with the prediction of the research hypothesis and it is likely that a spring locking mechanism can be built to dynamically adjust the air gap of the motor to increase the operating range and could be applied in electric drivetrain applications to improve overall efficiency of electric and hybrid electric vehicles.

  6. Time-varying span efficiency through the wingbeat of desert locusts.

    PubMed

    Henningsson, Per; Bomphrey, Richard J

    2012-06-07

    The flight performance of animals depends greatly on the efficacy with which they generate aerodynamic forces. Accordingly, maximum range, load-lifting capacity and peak accelerations during manoeuvres are all constrained by the efficiency of momentum transfer to the wake. Here, we use high-speed particle image velocimetry (1 kHz) to record flow velocities in the near wake of desert locusts (Schistocerca gregaria, Forskål). We use the measured flow fields to calculate time-varying span efficiency throughout the wing stroke cycle. The locusts are found to operate at a maximum span efficiency of 79 per cent, typically at a plateau of about 60 per cent for the majority of the downstroke, but at lower values during the upstroke. Moreover, the calculated span efficiencies are highest when the largest lift forces are being generated (90% of the total lift is generated during the plateau of span efficiency) suggesting that the combination of wing kinematics and morphology in locust flight perform most efficiently when doing the most work.

  7. A comparison of the capacity of ice hockey goaltender masks for the protection from puck impacts.

    PubMed

    Nur, Sarah; Kendall, Marshall; Clark, J Michio; Hoshizaki, T Blaine

    2015-01-01

    Goaltenders in ice hockey are the only players that are on the ice for the entire game. Their position exposes them to impacts from collisions with other players, falls to the ice, and puck impacts. In competitive ice hockey leagues, head injuries resulting from puck impacts have been reported with some cases resulting in ending the player's career. Considerable research has been conducted to assess the performance of hockey helmets; however, few have assessed the performance of goaltenders' masks. The purpose of this study was to compare the capacity of four goaltenders' masks for the protection from puck impact as measured by head acceleration and peak force. A Hybrid III headform was fitted with four different goaltender masks and impacted with a hockey puck in three locations at 25 m/s. The masks were found to vary in the level of protection they offered as the mask with the thickest liner resulted in lower forces than the thinnest mask for side impacts; however, the thinnest mask resulted in the lowest force for front impacts. Despite performance differences at specific locations, no one mask proved to be superior as peak acceleration and peak force values did not exceed the thresholds necessary for concussion.

  8. An examination of the jump-and-lift factors influencing the time to reach peak catch height during a Rugby Union lineout.

    PubMed

    Smith, Tiaki Brett; Hébert-Losier, Kim; McClymont, Doug

    2018-05-01

    The goal of an offensive Rugby Union lineout is to throw the ball in a manner that allows your team to maintain possession. Typically, the player catching the ball jumps and is lifted upwards by two teammates, reaching above the opposing player who is competing for the ball also. Despite various beliefs regarding the importance of the jumper's mass and attempted jump height, and lifters' magnitude and point of force application, there is negligible published data on the topic. The squeeze technique is one lifting method commonly employed by New Zealand teams during lineout plays, whereby the jumper initiates the jump quickly and the lifters provide assistance only once the jumper reaches 20-30 cm. While this strategy may reduce cues to the opposition, it might also constrain the jumper and lifters. We developed a model to explore how changes in the jumper's body mass and attempted jump height, and lifters' magnitude and point of force application influence the time to reach peak catch height. The magnitude of the lift force impacted the time-to-reach peak catch height the most; followed by the jumper's (attempted) jump height and body mass; and lastly, the point of lift force application.

  9. Modifying landing mat material properties may decrease peak contact forces but increase forefoot forces in gymnastics landings.

    PubMed

    Mills, Chris; Yeadon, Maurice R; Pain, Matthew T G

    2010-09-01

    This study investigated how changes in the material properties of a landing mat could minimise ground reaction forces (GRF) and internal loading on a gymnast during landing. A multi-layer model of a gymnastics competition landing mat and a subject-specific seven-link wobbling mass model of a gymnast were developed to address this aim. Landing mat properties (stiffness and damping) were optimised using a Simplex algorithm to minimise GRF and internal loading. The optimisation of the landing mat parameters was characterised by minimal changes to the mat's stiffness (<0.5%) but increased damping (272%) compared to the competition landing mat. Changes to the landing mat resulted in reduced peak vertical and horizontal GRF and reduced bone bending moments in the shank and thigh compared to a matching simulation. Peak bone bending moments within the thigh and shank were reduced by 6% from 321.5 Nm to 302.5Nm and GRF by 12% from 8626 N to 7552 N when compared to a matching simulation. The reduction in these forces may help to reduce the risk of bone fracture injury associated with a single landing and reduce the risk of a chronic injury such as a stress fracture.

  10. A Novel Balance Training Program for Children With Developmental Coordination Disorder

    PubMed Central

    Fong, Shirley S.M.; Guo, X.; Cheng, Yoyo T.Y.; Liu, Karen P.Y.; Tsang, William W.N.; Yam, Timothy T.T.; Chung, Louisa M.Y.; Macfarlane, Duncan J.

    2016-01-01

    Abstract This study aimed to compare the effectiveness of a specific functional movement–power training (FMPT) program, a functional movement training (FMT) program and no training in the improvement of balance strategies, and neuromuscular performance in children with developmental coordination disorder (DCD). It was a randomized, single-blinded, parallel group controlled trial. Methods: 161 children with DCD (age: 6–10 years) were randomly assigned to the FMPT, FMT, or control groups. The 2 intervention groups received FMPT or FMT twice a week for 3 months. Measurements were taken before, after, and 3 months after the end of the intervention period. The primary outcomes were the composite score and strategy scores on the sensory organization test as measured by a computerized dynamic posturography machine. Secondary outcomes included the knee muscle peak force and the time taken to reach the peak force. The balance strategies adopted in sensory challenging environments of the FMPT participants showed greater improvement from baseline to posttest than those of the FMT participants (7.10 points; 95% confidence interval, 1.51–12.69; P = 0.008) and the control participants (7.59 points; 95% confidence interval, 1.81–13.38; P = 0.005). The FMPT participants also exhibited greater improvement from baseline to the posttest in the knee extensor peak force and time to peak force in the knee flexors. The FMPT program was more effective than the conventional FMT program in the enhancement of balance strategies and neuromuscular performance in children with DCD. PMID:27100457

  11. The influence of shoe drop on the kinematics and kinetics of children tennis players.

    PubMed

    Herbaut, Alexis; Chavet, Pascale; Roux, Maxime; Guéguen, Nils; Gillet, Christophe; Barbier, Franck; Simoneau-Buessinger, Emilie

    2016-11-01

    This study investigated the immediate effects of reducing the shoe drop (i.e. the difference between the heel and the forefoot height) on the kinematics and kinetics of the lower extremities of children tennis players performing a tennis-specific movement. Thirteen children tennis players performed a series of simulated open stance forehands wearing 3 pairs of shoes differing only in the drop: 0 (D0), 6 (D6) and the control condition of 12 mm (D12). Two embedded forceplates and a motion capture system were used to analyse the ground reaction forces and ankle and knee joint angles and moments of the leading lower limb. In D6 compared with D12, the peak impact force was reduced by 24% (p = .004) and the ankle was less dorsiflexed at foot strike (p = .037). In D0 compared with D12, the peak impact force was reduced by 17% (p = .049), the ankle was less dorsiflexed at foot strike (p = .045) and the knee was more flexed at foot strike (p = .007). In addition, 4 out of 13 participants (31%) presented a forefoot strike pattern for some of the trials in D0. No difference was observed across shoe conditions for the peak knee extensor moment (p = .658) or the peak ankle plantarflexor moment (p = .071). The results provide preliminary data supporting the hypothesis that for children tennis players, using a 6-mm lower shoe drop might reduce heel impact forces and thus limit potentially impact-related injuries.

  12. OPERATION JANGLE. Blast and Shock Measurements 1. Project 1.1. Ground Acceleration Measurement (WT-388). Project 1.2a-1. Peak Air Blast Pressures along the Ground from Shock Velocity Measurements (WT-323). Project 1.2a-2. Transient Ground Mechanical Effects from HE and Nuclear Explosions (WT-385)

    DTIC Science & Technology

    1952-06-01

    September and five men during the month ~of November. AFSWP supplemented the personnel available at the Laboratory by de- tailing six Naval officers...two Air Force of ficers and cmcivilian szleatist to the group. The total field party of tve~tyzeight, men co : -231- .. ..- _ M pi PROJECT 1.1 of nine...ten days prior to the under- ’ound Ehot and remained until three days after the underground shot. These men handled the bracing of the instrument

  13. Discrete normal plantar stress variations with running speed.

    PubMed

    Gross, T S; Bunch, R P

    1989-01-01

    The distribution of force beneath the plantar foot surface during shod distance running, a kinetic descriptor of locomotion not previously reported, was recorded for ten rearfoot striking runners. Normal discrete stresses were assessed while the subjects ran on a treadmill at 2.98, 3.58, and 4.47 ms-1, with eight piezoceramic transducers secured inside the left shoe. Between 2.98 and 4.47 ms-1, mean peak stress increased significantly beneath the calcaneus (303.9-426.6 kPa), second metatarsal head (633.5-730.5 kPa), and hallux (575.1-712.4 kPa). Calcaneal stresses were notable for their rapid loading rate, averaging 10.1 kPa (ms)-1 at 3.58 ms-1. Highest stresses were measured beneath the second and third metatarsal heads and hallux. Peak first metatarsal head stress was less than peak second and third metatarsal head stresses in each of the 30 combinations of subjects and running speeds. However, lower stresses do not necessarily imply lower forces, as the force bearing surface area of each metatarsal head must be considered.

  14. Nanoscale simultaneous chemical and mechanical imaging via peak force infrared microscopy

    PubMed Central

    Wang, Le; Wang, Haomin; Wagner, Martin; Yan, Yong; Jakob, Devon S.; Xu, Xiaoji G.

    2017-01-01

    Nondestructive chemical and mechanical measurements of materials with ~10-nm spatial resolution together with topography provide rich information on the compositions and organizations of heterogeneous materials and nanoscale objects. However, multimodal nanoscale correlations are difficult to achieve because of the limitation on spatial resolution of optical microscopy and constraints from instrumental complexities. We report a novel noninvasive spectroscopic scanning probe microscopy method—peak force infrared (PFIR) microscopy—that allows chemical imaging, collection of broadband infrared spectra, and mechanical mapping at a spatial resolution of 10 nm. In our technique, chemical absorption information is directly encoded in the withdraw curve of the peak force tapping cycle after illumination with synchronized infrared laser pulses in a simple apparatus. Nanoscale phase separation in block copolymers and inhomogeneity in CH3NH3PbBr3 perovskite crystals are studied with correlative infrared/mechanical nanoimaging. Furthermore, we show that the PFIR method is sensitive to the presence of surface phonon polaritons in boron nitride nanotubes. PFIR microscopy will provide a powerful analytical tool for explorations at the nanoscale across wide disciplines. PMID:28691096

  15. Unilateral lower limb suspension does not mimic bed rest or spaceflight effects on human muscle fiber function

    NASA Technical Reports Server (NTRS)

    Widrick, J. J.; Trappe, S. W.; Romatowski, J. G.; Riley, D. A.; Costill, D. L.; Fitts, R. H.

    2002-01-01

    We used Ca2+-activated skinned muscle fibers to test the hypothesis that unilateral lower leg suspension (ULLS) alters cross-bridge mechanisms of muscle contraction. Soleus and gastrocnemius biopsies were obtained from eight subjects before ULLS, immediately after 12 days of ULLS (post-0 h), and after 6 h of reambulation (post-6 h). Post-0 h soleus fibers expressing type I myosin heavy chain (MHC) showed significant reductions in diameter, absolute and specific peak Ca2+-activated force, unloaded shortening velocity, and absolute and normalized peak power. Fibers obtained from the gastrocnemius were less affected by ULLS, particularly fibers expressing fast MHC isoforms. Post-6 h soleus fibers produced less absolute and specific peak force than did post-0 h fibers, suggesting that reambulation after ULLS induced cell damage. Like bed rest and spaceflight, ULLS primarily affects soleus over gastrocnemius fibers. However, in contrast to these other models, slow soleus fibers obtained after ULLS showed a decrease in unloaded shortening velocity and a greater reduction in specific force.

  16. Low Cardiorespiratory Fitness is Partially Linked to Ventilatory Factors in Obese Adolescents.

    PubMed

    Mendelson, Monique; Michallet, Anne-Sophie; Tonini, Julia; Favre-Juvin, Anne; Guinot, Michel; Wuyam, Bernard; Flore, Patrice

    2016-02-01

    To examine the role of ventilatory constraint on cardiorespiratory fitness in obese adolescents. Thirty obese adolescents performed a maximal incremental cycling exercise and were divided into 2 groups based on maximal oxygen uptake (VO2peak): those presenting low (L; n = 15; VO2peak: 72.9 ± 8.6% predicted) or normal (N; n = 15; VO2peak: 113.6 ± 19.2% predicted) cardiorespiratory fitness. Both were compared with a group of healthy controls (C; n = 20; VO2peak: 103.1 ± 11.2% predicted). Ventilatory responses were explored using the flow volume loop method. Cardiorespiratory fitness (VO2peak, in % predicted) was lower in L compared with C and N and was moderately associated with the percent predicted forced vital capacity (FVC) (r = .52; p < .05) in L. At peak exercise, end inspiratory point was lower in L compared with N and C (77.4 ± 8.1, 86.4 ± 7.7, and 89.9 ± 7.6% FVC in L, N, and C, respectively; p < .05), suggesting an increased risk of ventilatory constraint in L, although at peak exercise this difference could be attributed to the lower maximal ventilation in L. Forced vital capacity and ventilatory strategy to incremental exercise slightly differed between N and L. These results suggest a modest participation of ventilatory factors to exercise intolerance.

  17. Anti-gravity treadmills are effective in reducing knee forces.

    PubMed

    Patil, Shantanu; Steklov, Nikolai; Bugbee, William D; Goldberg, Timothy; Colwell, Clifford W; D'Lima, Darryl D

    2013-05-01

    Lower body positive pressure (LBPP) treadmills permit significant unweighting of patients and have the potential to enhance recovery following lower limb surgery. We determined the efficacy of an LBPP treadmill in reducing knee forces in vivo. Subjects, implanted with custom electronic tibial prostheses to measure forces in the knee, were tested on a treadmill housed within a LBPP chamber. Tibiofemoral forces were monitored at treadmill speeds from 1.5 mph (0.67 m/s) to 4.5 mph (2.01 m/s), treadmill incline from -10° to +10°, and four treadmill chamber pressure settings adjusted to decrease net treadmill reaction force from 100% to 25% of the subject's body weight (BW). The peak axial tibiofemoral force ranged from 5.1 times BW at a treadmill speed of 4.5 mph (2.01 m/s) and a pressure setting of 100% BW to 0.8 times BW at 1.5 mph (0.67 m/s) and a pressure setting of 25% BW. Peak knee forces were significantly correlated with walking speed and treadmill reaction force (R(2)  = 0.77, p = 0.04). The LBPP treadmill might be an effective tool in the rehabilitation of patients following lower-extremity surgery. The strong correlation between tibiofemoral force and walking speed and treadmill reaction forces allows for more precisely achieving the target knee forces desired during early rehabilitation. Copyright © 2012 Orthopaedic Research Society.

  18. Analysis of the Vertical Ground Reaction Forces and Temporal Factors in the Landing Phase of a Countermovement Jump

    PubMed Central

    Ortega, Daniel Rojano; Rodríguez Bíes, Elisabeth C.; Berral de la Rosa, Francisco J.

    2010-01-01

    In most common bilateral landings of vertical jumps, there are two peak forces (F1 and F2) in the force-time curve. The combination of these peak forces and the high frequency of jumps during sports produce a large amount of stress in the joints of the lower limbs which can be determinant of injury. The aim of this study was to find possible relationships between the jump height and F1 and F2, between F1 and F2 themselves, and between F1, F2, the time they appear (T1 and T2, respectively) and the length of the impact absorption phase (T). Thirty semi-professional football players made five countermovement jumps and the highest jump of each player was analyzed. They were instructed to perform the jumps with maximum effort and to land first with the balls of their feet and then with their heels. All the data were collected using a Kistler Quattro Jump force plate with a sample rate of 500 Hz. Quattro Jump Software, v.1.0.9.0., was used. There was neither significant correlation between T1 and F1 nor between T1 and F2. There was a significant positive correlation between flight height (FH) and F1 (r = 0.584, p = 0.01) but no significant correlation between FH and F2. A significant positive correlation between F1 and T2 (r = 0.418, p < 0.05) and a significant negative correlation between F2 and T2 (r = -0.406, p < 0.05) were also found. There is a significant negative correlation between T2 and T (r = -0. 443, p < 0.05). T1 has a little effect in the impact absorption process. F1 increases with increasing T2 but F2 decreases with increasing T2. Besides, increasing T2, with the objective of decreasing F2, makes the whole impact absorption shorter and the jump landing faster. Key points In the landing phase of a jump there are always sev-eral peak forces. The combination of these peaks forces and the high frequency of jumps during sports produces a large amount of stress in the joints of the lower limbs which can be determinant of injury. In the most common two-footed landings usually appear two peak forces (F1 and F2) in the force-time curve and the second one is usually related to injury’s risk. In this article it is shown that increasing the time F2 appears decrease F2. Increasing landing times could be counterproductive with respect to the goals of the sport. In this article it is shown that increasing the time F2 appears makes, however, the whole impact absorption shorter in du-ration. PMID:24149697

  19. External Load Affects Ground Reaction Force Parameters Non-uniformly during Running in Weightlessness

    NASA Technical Reports Server (NTRS)

    DeWitt, John; Schaffner, Grant; Laughlin, Mitzi; Loehr, James; Hagan, R. Donald

    2004-01-01

    Long-term exposure to microgravity induces detrimefits to the musculcskdetal system (Schneider et al., 1995; LeBlanc et al., 2000). Treadmill exercise is used onboard the International Space Station as an exercise countermeasure to musculoskeletal deconditioning due to spaceflight. During locomotive exercise in weightlessness (0G), crewmembers wear a harness attached to an external loading mechanism (EL). The EL pulls the crewmember toward the treadmill, and provides resistive load during the impact and propulsive phases of gait. The resulting forces may be important in stimulating bone maintenance (Turner, 1998). The EL can be applied via a bungee and carabineer clip configuration attached to the harness and can be manipulated to create varying amounts of load levels during exercise. Ground-based research performed using a vertically mounted treadmill found that peak ground reaction forces (GRF) during running at an EL of less than one body weight (BW) are less than those that occur during running in normal gravity (1G) (Davis et al., 1996). However, it is not known how the GRF are affected by the EL in a true OG environment. Locomotion while suspended may result in biomechanics that differ from free running. The purpose of this investigation was to determine how EL affects peak impact force, peak propulsive force, loading rate, and impulse of the GRF during running in 0G. It was hypothesized that increasing EL would result in increases in each GRF parameter.

  20. Explosive sport training and torque kinetics in children.

    PubMed

    Dotan, Raffy; Mitchell, Cameron J; Cohen, Rotem; Gabriel, David; Klentrou, Panagiota; Falk, Bareket

    2013-07-01

    A high rate of force development (RFD) is often more important than maximal force in daily and sports activities. In children, resistance training has been shown to increase maximal force. It is unclear whether, or to what extent, can children improve RFD and force kinetics. For this study, we compared strength and force kinetics of boy gymnasts with those of untrained boys and untrained men. Eight boy gymnasts (age, 9.5 ± 1.2 y), 20 untrained boys (age, 10.1 ± 1.3 y), and 20 untrained men (age, 22.9 ± 4.4 y) performed maximal, explosive, isometric elbow flexions (EF) and knee flexions (KF). Peak torque (maximal voluntary contraction (MVC)), elapsed times to 10%-100% MVC, peak rate of torque development (RTDpk), and other kinetics parameters were determined. When gymnasts were compared with untrained boys, size-normalized EF MVC was 11%-20% higher, RTDpk was 32% higher, and times to 30% and 80% MVC were 16% and 55% shorter, respectively (p < 0.05). No corresponding differences were observed in KF. Furthermore, although the normalized EF MVC was 28% lower in gymnasts than in men (p < 0.001), their torque kinetics parameters were similar. These findings highlight the specificity of gymnastics training, which markedly elevated the torque kinetics of young, prepubertal boys to adult levels, but only moderately affected peak torque. It is suggested that neurologic adaptations, such as enhanced firing and activation rates or increased type II motor-unit recruitment, as well as changes in musculotendinous stiffness, could explain these findings.

  1. Countermovement Jump Performance with Increased Training Loads in Elite Female Rugby Athletes.

    PubMed

    Gathercole, R; Sporer, B; Stellingwerff, T

    2015-08-01

    Countermovement jump (CMJ) performance is typically analyzed through single-point concentric-based variables (e. g., peak power or force and height). However, methodological approaches examining movement strategies may be more sensitive to neuromuscular fatigue. 12 elite female rugby sevens athletes undertook weekly CMJ testing throughout a 6-week training block involving progressively increased training loads. Athletes self-reported training load (TRIMP) and wellness daily. 22 CMJ variables were assessed, incorporating analyses of force, velocity, power and time measured during eccentric and concentric jump phases. Differences over time were examined using the magnitude of change (effect sizes; ES) compared to baseline. Pearson correlations examined relationships between CMJ variables, wellness and TRIMP. TRIMP displayed large increases (mean ES; weeks 2-6: 2.47). Wellness decreased in week 3 (-0.41), with small reductions following (weeks 4-6: -0.34). Flight time (weeks 3-6: -1.84), peak displacement (weeks 2-6: -2.24), time to peak force (weeks 3-6: 2.58), force at zero velocity (F@0V) (weeks 5-6: -1.28) displayed multiple changes indicative of diminished neuromuscular function. Wellness scores and max rate of force development (mean; r=0.32), F@0V (r=0.28) and flight time (r=0.34) displayed positive correlations. Intensified training decreased CMJ output and altered CMJ mechanics. Longitudinal neuromuscular fatigue monitoring of team-sport athletes appears improved through CMJ mechanics analysis. © Georg Thieme Verlag KG Stuttgart · New York.

  2. Validity and reliability of a controlled pneumatic resistance exercise device.

    PubMed

    Paulus, David C; Reynolds, Michael C; Schilling, Brian K

    2008-01-01

    During the concentric portion of the free-weight squat exercise, accelerating the mass from rest results in a fluctuation in ground reaction force. It is characterized by an initial period of force greater than the load while accelerating from rest followed by a period of force lower than the external load during negative acceleration. During the deceleration phase, less force is exerted and muscles are loaded sub-optimally. Thus, using a reduced inertia form of resistance such as pneumatics has the capability to minimize these inertial effects as well as control the force in real time to maximize the force exerted over the exercise cycle. To improve the system response of a preliminary design, a squat device was designed with a reduced mass barbell and two smaller pneumatic cylinders. The resistance was controlled by regulating cylinder pressure such that it is capable of adjusting force within a repetition to maximize force exerted during the lift. The resistance force production of the machine was statically validated with the input voltage and output force R2 =0.9997 for at four increments of the range of motion, and the intraclass correlation coefficient (ICC) between trials at the different heights equaled 0.999. The slew rate at three forces was 749.3 N/s +/- 252.3. Dynamic human subject testing showed the desired input force correlated with average and peak ground reaction force with R2 = 0.9981 and R2 = 0.9315, respectively. The ICC between desired force and average and peak ground reaction force was 0.963. Thus, the system is able to deliver constant levels of static and dynamic force with validity and reliability. Future work will be required to develop the control strategy required for real-time control, and performance testing is required to determine its efficacy.

  3. A metabolic basis for impaired muscle force production and neuromuscular compensation during sprint cycling.

    PubMed

    Bundle, Matthew W; Ernst, Carrie L; Bellizzi, Matthew J; Wright, Seth; Weyand, Peter G

    2006-11-01

    For both different individuals and modes of locomotion, the external forces determining all-out sprinting performances fall predictably with effort duration from the burst maximums attained for 3 s to those that can be supported aerobically as trial durations extend to roughly 300 s. The common time course of this relationship suggests a metabolic basis for the decrements in the force applied to the environment. However, the mechanical and neuromuscular responses to impaired force production (i.e., muscle fatigue) are generally considered in relation to fractions of the maximum force available, or the maximum voluntary contraction (MVC). We hypothesized that these duration-dependent decrements in external force application result from a reliance on anaerobic metabolism for force production rather than the absolute force produced. We tested this idea by examining neuromuscular activity during two modes of sprint cycling with similar external force requirements but differing aerobic and anaerobic contributions to force production: one- and two-legged cycling. In agreement with previous studies, we found greater peak per leg aerobic metabolic rates [59% (+/-6 SD)] and pedal forces at VO2 peak [30% (+/-9)] during one- vs. two-legged cycling. We also determined downstroke pedal forces and neuromuscular activity by surface electromyography during 15 to 19 all-out constant load sprints lasting from 12 to 400 s for both modes of cycling. In support of our hypothesis, we found that the greater reliance on anaerobic metabolism for force production induced compensatory muscle recruitment at lower pedal forces during two- vs. one-legged sprint cycling. We conclude that impaired muscle force production and compensatory neuromuscular activity during sprinting are triggered by a reliance on anaerobic metabolism for force production.

  4. Stiff Landings Are Associated With Increased ACL Injury Risk in Young Female Basketball and Floorball Players.

    PubMed

    Leppänen, Mari; Pasanen, Kati; Kujala, Urho M; Vasankari, Tommi; Kannus, Pekka; Äyrämö, Sami; Krosshaug, Tron; Bahr, Roald; Avela, Janne; Perttunen, Jarmo; Parkkari, Jari

    2017-02-01

    Few prospective studies have investigated the biomechanical risk factors of anterior cruciate ligament (ACL) injury. To investigate the relationship between biomechanical characteristics of vertical drop jump (VDJ) performance and the risk of ACL injury in young female basketball and floorball players. Cohort study; Level of evidence, 3. At baseline, a total of 171 female basketball and floorball players (age range, 12-21 years) participated in a VDJ test using 3-dimensional motion analysis. The following biomechanical variables were analyzed: (1) knee valgus angle at initial contact (IC), (2) peak knee abduction moment, (3) knee flexion angle at IC, (4) peak knee flexion angle, (5) peak vertical ground-reaction force (vGRF), and (6) medial knee displacement. All new ACL injuries, as well as match and training exposure, were then recorded for 1 to 3 years. Cox regression models were used to calculate hazard ratios (HRs) and 95% CIs. Fifteen new ACL injuries occurred during the study period (0.2 injuries/1000 player-hours). Of the 6 factors considered, lower peak knee flexion angle (HR for each 10° increase in knee flexion angle, 0.55; 95% CI, 0.34-0.88) and higher peak vGRF (HR for each 100-N increase in vGRF, 1.26; 95% CI, 1.09-1.45) were the only factors associated with increased risk of ACL injury. A receiver operating characteristic (ROC) curve analysis showed an area under the curve of 0.6 for peak knee flexion and 0.7 for vGRF, indicating a failed-to-fair combined sensitivity and specificity of the test. Stiff landings, with less knee flexion and greater vGRF, in a VDJ test were associated with increased risk of ACL injury among young female basketball and floorball players. However, although 2 factors (decreased peak knee flexion and increased vGRF) had significant associations with ACL injury risk, the ROC curve analyses revealed that these variables cannot be used for screening of athletes.

  5. The Effects of Injury Prevention Programs on the Biomechanics of Landing Tasks: A Systematic Review With Meta-analysis.

    PubMed

    Lopes, Thiago Jambo Alves; Simic, Milena; Myer, Gregory D; Ford, Kevin R; Hewett, Timothy E; Pappas, Evangelos

    2018-05-01

    Anterior cruciate ligament (ACL) tear is a common injury in sports and often occurs during landing from a jump. To synthesize the evidence on the effects of injury prevention programs (IPPs) on landing biomechanics as they relate to the ligament, quadriceps, trunk, and leg dominance theories associated with ACL injury risk. Meta-analysis. Six electronic databases were searched for studies that investigated the effect of IPPs on landing task biomechanics. Prospective studies that reported landing biomechanics at baseline and post-IPP were included. Results from trunk, hip, and knee kinematics and kinetics related to the ACL injury theories were extracted, and meta-analyses were performed when possible. The criteria were met by 28 studies with a total of 466 participants. Most studies evaluated young females, bilateral landing tasks, and recreational athletes, while most variables were related to the ligament and quadriceps dominance theories. An important predictor of ACL injury, peak knee abduction moment, decreased ( P = .01) after the IPPs while other variables related to the ligament dominance theory did not change. Regarding the quadriceps dominance theory, after the IPPs, angles of hip flexion at initial contact ( P = .009), peak hip flexion ( P = .002), and peak knee flexion ( P = .007) increased, while knee flexion at initial contact did not change ( P = .18). Moreover, peak knee flexion moment decreased ( P = .005) and peak vertical ground-reaction force did not change ( P = .10). The exercises used in IPPs might have the potential to improve landing task biomechanics related to the quadriceps dominance theory, especially increasing peak knee and hip flexion angles. Importantly, peak knee abduction moment decreased, which indicates that IPPs influence a desired movement strategy to help athletes overcome dangerous ligament dominance loads arising from lack of frontal plane control during dynamic tasks. The lack of findings for some biomechanical variables suggests that future IPPs may be enhanced by targeting participants' baseline profile deficits, highlighting the need to deliver an individualized and task-specific IPP.

  6. Coupling hydrologic and hydraulic models to take into consideration retention effects on extreme peak discharges in Switzerland

    NASA Astrophysics Data System (ADS)

    Felder, Guido; Zischg, Andreas; Weingartner, Rolf

    2015-04-01

    Estimating peak discharges with very low probabilities is still accompanied by large uncertainties. Common estimation methods are usually based on extreme value statistics applied to observed time series or to hydrological model outputs. However, such methods assume the system to be stationary and do not specifically consider non-stationary effects. Observed time series may exclude events where peak discharge is damped by retention effects, as this process does not occur until specific thresholds, possibly beyond those of the highest measured event, are exceeded. Hydrological models can be complemented and parameterized with non-linear functions. However, in such cases calibration depends on observed data and non-stationary behaviour is not deterministically calculated. Our study discusses the option of considering retention effects on extreme peak discharges by coupling hydrological and hydraulic models. This possibility is tested by forcing the semi-distributed deterministic hydrological model PREVAH with randomly generated, physically plausible extreme precipitation patterns. The resulting hydrographs are then used to force the hydraulic model BASEMENT-ETH (riverbed in 1D, potential inundation areas in 2D). The procedure ensures that the estimated extreme peak discharge does not exceed the physical limit given by the riverbed capacity and that the dampening effect of inundation processes on peak discharge is considered.

  7. Force-velocity and power characteristics of rat soleus muscle fibers after hindlimb suspension

    NASA Technical Reports Server (NTRS)

    Mcdonald, K. S.; Blaser, C. A.; Fitts, R. H.

    1994-01-01

    The effects of 1, 2, and 3 wk of hindlimb suspension (HS) on force-velocity and power characteristics of single rat soleus fibers were determined. After 1, 2, or 3 wk of HA, small fiber bundles were isolated, placed in skinning solution, and stored at -20 C until studied. Single fibers were isolated and placed between a motor arm and force transducer, functional properties were studied, and fiber protein content was subsequently analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Additional fibers were isolated from soleus of control after 1 and 3 wk of HS, and fiber type distribution and myosin light chain stoichiometry were determined from SDS-PAGE analysis. After 1 wk of HS, percent type I fibers declined from 82 to 74%, whereas hybrid fibers increased from 10 to 18%. Percent fast type II fibers increased from 8% in control and 1 wk of HS to 26% by 3 wk of HS. Most fibers showed an increased unloaded maximal shortening velocity (V sub O)), but myosin heavy chain remained entirely slow type I. The mechanism for increased V(sub O) is unknown. There was a progressive decrease in fiber diameter and peak force after 1, 2, and 3 wk of HS, respectively. One week of HS resulted in a shift of the force-velocity curve, and between 2 and 3 wk of HS the curve shifted further such that V(sub O) was higher than control at all relative loads less than 45% peak isometric force. Peak absolute power output of soleus fibers progressively decreased through 2 wk of HS but showed no further change at 3 wk. The results suggest that between 2 and 3 wk the HS-induced alterations in the force-velocity relationship act to maintain the power output of single soleus fibers despite a continued reduction in fiber force.

  8. Force-Velocity and Power Characteristics of Rat Soleus Muscle Fibers after Hindlimb Suspension

    NASA Technical Reports Server (NTRS)

    McDonald, K. S.; Blaser, C. A.; Fitts, R. H.

    1994-01-01

    The effects of 1, 2, and 3 wk of Hindlimb Suspension (HS) on force-velocity and power characteristics of single rat soleus fibers were determined. After 1, 2, or 3 wk of HS, small fiber bundles were isolated, placed in skinning solution, and stored at -20 C until studied. Single fibers were isolated and placed between a motor arm and force transducer, functional properties were studied, and fiber protein content was subsequently analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Additional fibers were isolated from soleus of control and after 1 and 3 wk of HS, and fiber type distribution and myosin light chain stoichiometry were determined from SDS-PAGE analysis. After 1 wk of HS, percent type I fibers declined from 82 to 74%, whereas hybrid fibers increased from 10 to 18%. Percent fast type 11 fibers increased from 8% in control and 1 wk of HS to 26% by 3 wk of HS. Most fibers showed an increased unloaded maximal shortening velocity (V(sub 0)), but myosin heavy chain remained entirely slow type I. The mechanism for increased V(sub 0) is unknown. There was a progressive decrease in fiber diameter (14, 30, and 38%) and peak force (38, 56, and 63%) after 1, 2, and 3 wk of HS, respectively. One week of HS resulted in a shift of the force-velocity curve, and between 2 and 3 wk of HS the curve shifted further such that V(sub 0) was higher than control at all relative loads less than 45% peak isometric force. Peak absolute power output of soleus fibers progressively decreased through 2 wk of HS but showed no further change at 3 wk. The results suggest that between 2 and 3 wk the HS-induced alterations in the force-velocity relationship act to maintain the power output of single soleus fibers despite a continued reduction in fiber force.

  9. Increased vertical impact forces and altered running mechanics with softer midsole shoes.

    PubMed

    Baltich, Jennifer; Maurer, Christian; Nigg, Benno M

    2015-01-01

    To date it has been thought that shoe midsole hardness does not affect vertical impact peak forces during running. This conclusion is based partially on results from experimental data using homogeneous samples of participants that found no difference in vertical impact peaks when running in shoes with different midsole properties. However, it is currently unknown how apparent joint stiffness is affected by shoe midsole hardness. An increase in apparent joint stiffness could result in a harder landing, which should result in increased vertical impact peaks during running. The purpose of this study was to quantify the effect of shoe midsole hardness on apparent ankle and knee joint stiffness and the associated vertical ground reaction force for age and sex subgroups during heel-toe running. 93 runners (male and female) aged 16-75 years ran at 3.33 ± 0.15 m/s on a 30 m-long runway with soft, medium and hard midsole shoes. The vertical impact peak increased as the shoe midsole hardness decreased (mean(SE); soft: 1.70BW(0.03), medium: 1.64BW(0.03), hard: 1.54BW(0.03)). Similar results were found for the apparent ankle joint stiffness where apparent stiffness increased as the shoe midsole hardness decreased (soft: 2.08BWm/º x 100 (0.05), medium: 1.92 BWm/º x 100 (0.05), hard: 1.85 BWm/º x 100 (0.05)). Apparent knee joint stiffness increased for soft (1.06BWm/º x 100 (0.04)) midsole compared to the medium (0.95BWm/º x 100 (0.04)) and hard (0.96BWm/º x 100 (0.04)) midsoles for female participants. The results from this study confirm that shoe midsole hardness can have an effect on vertical impact force peaks and that this may be connected to the hardness of the landing. The results from this study may provide useful information regarding the development of cushioning guidelines for running shoes.

  10. An integrative modeling approach for the efficient estimation of cross sectional tibial stresses during locomotion.

    PubMed

    Derrick, Timothy R; Edwards, W Brent; Fellin, Rebecca E; Seay, Joseph F

    2016-02-08

    The purpose of this research was to utilize a series of models to estimate the stress in a cross section of the tibia, located 62% from the proximal end, during walking. Twenty-eight male, active duty soldiers walked on an instrumented treadmill while external force data and kinematics were recorded. A rigid body model was used to estimate joint moments and reaction forces. A musculoskeletal model was used to gather muscle length, muscle velocity, moment arm and orientation information. Optimization procedures were used to estimate muscle forces and finally internal bone forces and moments were applied to an inhomogeneous, subject specific bone model obtained from CT scans to estimate stress in the bone cross section. Validity was assessed by comparison to stresses calculated from strain gage data in the literature and sensitivity was investigated using two simplified versions of the bone model-a homogeneous model and an ellipse approximation. Peak compressive stress occurred on the posterior aspect of the cross section (-47.5 ± 14.9 MPa). Peak tensile stress occurred on the anterior aspect (27.0 ± 11.7 MPa) while the location of peak shear was variable between subjects (7.2 ± 2.4 MPa). Peak compressive, tensile and shear stresses were within 0.52 MPa, 0.36 MPa and 3.02 MPa respectively of those calculated from the converted strain gage data. Peak values from a inhomogeneous model of the bone correlated well with homogeneous model (normal: 0.99; shear: 0.94) as did the normal ellipse model (r=0.89-0.96). However, the relationship between shear stress in the inhomogeneous model and ellipse model was less accurate (r=0.64). The procedures detailed in this paper provide a non-invasive and relatively quick method of estimating cross sectional stress that holds promise for assessing injury and osteogenic stimulus in bone during normal physical activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Increased Vertical Impact Forces and Altered Running Mechanics with Softer Midsole Shoes

    PubMed Central

    Baltich, Jennifer; Maurer, Christian; Nigg, Benno M.

    2015-01-01

    To date it has been thought that shoe midsole hardness does not affect vertical impact peak forces during running. This conclusion is based partially on results from experimental data using homogeneous samples of participants that found no difference in vertical impact peaks when running in shoes with different midsole properties. However, it is currently unknown how apparent joint stiffness is affected by shoe midsole hardness. An increase in apparent joint stiffness could result in a harder landing, which should result in increased vertical impact peaks during running. The purpose of this study was to quantify the effect of shoe midsole hardness on apparent ankle and knee joint stiffness and the associated vertical ground reaction force for age and sex subgroups during heel-toe running. 93 runners (male and female) aged 16-75 years ran at 3.33 ± 0.15 m/s on a 30 m-long runway with soft, medium and hard midsole shoes. The vertical impact peak increased as the shoe midsole hardness decreased (mean(SE); soft: 1.70BW(0.03), medium: 1.64BW(0.03), hard: 1.54BW(0.03)). Similar results were found for the apparent ankle joint stiffness where apparent stiffness increased as the shoe midsole hardness decreased (soft: 2.08BWm/º x 100 (0.05), medium: 1.92 BWm/º x 100 (0.05), hard: 1.85 BWm/º x 100 (0.05)). Apparent knee joint stiffness increased for soft (1.06BWm/º x 100 (0.04)) midsole compared to the medium (0.95BWm/º x 100 (0.04)) and hard (0.96BWm/º x 100 (0.04)) midsoles for female participants. The results from this study confirm that shoe midsole hardness can have an effect on vertical impact force peaks and that this may be connected to the hardness of the landing. The results from this study may provide useful information regarding the development of cushioning guidelines for running shoes. PMID:25897963

  12. Utility of Equations to Estimate Peak Oxygen Uptake and Work Rate From a 6-Minute Walk Test in Patients With COPD in a Clinical Setting.

    PubMed

    Kirkham, Amy A; Pauhl, Katherine E; Elliott, Robyn M; Scott, Jen A; Doria, Silvana C; Davidson, Hanan K; Neil-Sztramko, Sarah E; Campbell, Kristin L; Camp, Pat G

    2015-01-01

    To determine the utility of equations that use the 6-minute walk test (6MWT) results to estimate peak oxygen uptake ((Equation is included in full-text article.)o2) and peak work rate with chronic obstructive pulmonary disease (COPD) patients in a clinical setting. This study included a systematic review to identify published equations estimating peak (Equation is included in full-text article.)o2 and peak work rate in watts in COPD patients and a retrospective chart review of data from a hospital-based pulmonary rehabilitation program. The following variables were abstracted from the records of 42 consecutively enrolled COPD patients: measured peak (Equation is included in full-text article.)o2 and peak work rate achieved during a cycle ergometer cardiopulmonary exercise test, 6MWT distance, age, sex, weight, height, forced expiratory volume in 1 second, forced vital capacity, and lung diffusion capacity. Estimated peak (Equation is included in full-text article.)o2 and peak work rate were estimated from 6MWT distance using published equations. The error associated with using estimated peak (Equation is included in full-text article.)o2 or peak work to prescribe aerobic exercise intensities of 60% and 80% was calculated. Eleven equations from 6 studies were identified. Agreement between estimated and measured values was poor to moderate (intraclass correlation coefficients = 0.11-0.63). The error associated with using estimated peak (Equation is included in full-text article.)o2 or peak work rate to prescribe exercise intensities of 60% and 80% of measured values ranged from mean differences of 12 to 35 and 16 to 47 percentage points, respectively. There is poor to moderate agreement between measured peak (Equation is included in full-text article.)o2 and peak work rate and estimations from equations that use 6MWT distance, and the use of the estimated values for prescription of aerobic exercise intensity would result in large error. Equations estimating peak (Equation is included in full-text article.)o2 and peak work rate are of low utility for prescribing exercise intensity in pulmonary rehabilitation programs.

  13. New directions: Mineral dust and ozone - Heterogeneous chemistry

    NASA Astrophysics Data System (ADS)

    Ramachandran, S.

    2015-04-01

    Aerosols, the tiny solid or liquid particles suspended in air and produced from natural sources and anthropogenic activities, continue to contribute the largest uncertainty to radiative forcing (IPCC, 2013). Aerosol particles give rise to radiative forcing directly through scattering and absorption of solar and infrared radiation in the atmosphere. Aerosols also give rise to indirect radiative forcing by modifying the cloud optical properties and lifetimes. Among the aerosol species mineral dust and black carbon cause a warming (positive forcing) while sulphate and sea salt cause a cooling (negative forcing) of the Earth-atmosphere system. In tropics and sub-tropics mineral dust is a major contributor to aerosol loading and optical thickness. The global source strength of dust aerosol varies significantly on spatial and temporal scales. The source regions of dust are mainly deserts, dry lake beds, and semi-arid regions, in addition to drier regions where vegetation has been reduced or soil surfaces that are disturbed by man made activities. Anthropogenic activities mainly related to agriculture such as harvesting, ploughing, overgrazing, and cement production and transport also produce mineral dust. An estimated 2500 terragram (Tg, 1012 g) of mineral dust is emitted into the atmosphere per year, and dominates the aerosol mass over continental regions in south Asia and China accounting for ∼35% of the total aerosol mass (IPCC, 2013). In India, dust is prevalent throughout the north and western India during the year and peaks during premonsoon season.

  14. Aerodynamics of tip-reversal upstroke in a revolving pigeon wing.

    PubMed

    Crandell, Kristen E; Tobalske, Bret W

    2011-06-01

    During slow flight, bird species vary in their upstroke kinematics using either a 'flexed wing' or a distally supinated 'tip-reversal' upstroke. Two hypotheses have been presented concerning the function of the tip-reversal upstroke. The first is that this behavior is aerodynamically inactive and serves to minimize drag. The second is that the tip-reversal upstroke is capable of producing significant aerodynamic forces. Here, we explored the aerodynamic capabilities of the tip-reversal upstroke using a well-established propeller method. Rock dove (Columba livia, N=3) wings were spread and dried in postures characteristic of either mid-upstroke or mid-downstroke and spun at in vivo Reynolds numbers to simulate forces experienced during slow flight. We compared 3D wing shape for the propeller and in vivo kinematics, and found reasonable kinematic agreement between methods (mean differences 6.4% of wing length). We found that the wing in the upstroke posture is capable of producing substantial aerodynamic forces. At in vivo angles of attack (66 deg at mid-upstroke, 46 deg at mid-downstroke), the upstroke wings averaged for three birds produced a lift-to-drag ratio of 0.91, and the downstroke wings produced a lift-to-drag ratio of 3.33. Peak lift-to-drag ratio was 2.5 for upstroke and 6.3 for downstroke. Our estimates of total force production during each half-stroke suggest that downstroke produces a force that supports 115% of bodyweight, and during upstroke a forward-directed force (thrust) is produced at 36% of body weight.

  15. Wounding patterns and human performance in knife attacks: optimising the protection provided by knife-resistant body armour.

    PubMed

    Bleetman, A; Watson, C H; Horsfall, I; Champion, S M

    2003-12-01

    Stab attacks generate high loads, and to defeat them, armour needs to be of a certain thickness and stiffness. Slash attacks produce much lower loads and armour designed to defeat them can be far lighter and more flexible. Phase 1: Human performance in slash attacks: 87 randomly selected students at the Royal Military College of Science were asked to make one slash attack with an instrumented blade on a vertically mounted target. No instructions on how to slash the target were given. The direction, contact forces and velocity of each attack were recorded. Phase 2: Clinical experience with edged weapon attacks: The location and severity of all penetrating injuries in patients attending the Glasgow Royal Infirmary between 1993 and 1996 were charted on anatomical figures. Phase 1: Two types of human slash behaviour were evident: a 'chop and drag' blow and a 'sweep motion' type of attack. 'Chop and drag' attacks had higher peak forces and velocities than sweep attacks. Shoulder to waist blows (diagonal) accounted for 82% of attacks, 71% of attackers used a long diagonal slash with an average cut length of 34 cm and 11% used short diagonal attacks with an average cut length of 25 cm. Only 18% of attackers slashed across the body (short horizontal); the average measured cut length of this type was 28 cm. The maximum peak force for the total sample population was 212 N; the maximum velocity was 14.88 m s(-1). The 95 percentile force for the total sample population was 181 N and the velocity was 9.89 m s(-1). Phase 2: 431 of the 500 patients had been wounded with edged weapons. The average number of wounds sustained by victims in knife assaults was 2.4. The distribution of wounds by frequency and severity are presented. Anti-slash protection is required for the arms, neck, shoulders, and thighs. The clinical experience of knife-attack victims provides information on the relative vulnerabilities of different regions of the body. It is anticipated that designing a tunic-type of Police uniform that is inherently stab and slash resistant will eventually replace the current obvious and often bulky extra protective vest. Attempts at making a combined garment will need to be guided by ergonomic considerations and field testing. A similar anatomical regional risk model might also be appropriate in the design of anti-ballistic armour and combined anti-ballistic and knife-resistant armour.

  16. Vertical and lateral forces applied to the bar during the bench press in novice lifters.

    PubMed

    Duffey, Michael J; Challis, John H

    2011-09-01

    The purpose of this study was to determine the vertical and lateral forces applied to the bar during a maximal and a submaximal effort bench press lifts. For this study, 10 male and 8 female recreational lifters were recruited (mean height: 1.71 ± 0.08 m; mass: 73.7 ± 13.6 kg) and were asked to perform a maximal and submaximal (80% of maximal lift) bench press. These lifts were performed with a bar instrumented to record forces applied to it, via the hands, in the vertical direction and along the long axis of the bar. To determine the position of the bar and timing of events, 3D kinematic data were recorded and analyzed for both lifts. The subjects in this study averaged a maximal lift of 63 ± 29 kg (90 ± 31% bodyweight). The peak vertical force was 115 ± 22% (percentage of load), whereas for the submaximal condition it was 113 ± 20%; these forces were statistically different between conditions; they were not when expressed as a percentage of the load (p > 0.05). During all the lifts, the lateral forces were always outward along the bar. The lateral force profile was similar to that of the vertical force, albeit at a lesser magnitude. During the lift phase, the peak lateral force was on average 26.3 ± 3.9% of the vertical force for the maximal lift and 23.7 ± 3.9% of the vertical force for the submaximal lift. Given that the amount of force applied laterally to the bar was a similar percentage of vertical force irrespective of load, it appears that the generation of lateral forces during the bench press is a result of having the muscles engaged in generating vertical force.

  17. Dynamics-Enabled Nanoelectromechanical Systems (NEMS) Oscillators

    DTIC Science & Technology

    2014-06-01

    it becomes strongly nonlinear, and thus constitutes an archetypal candidate for nonlinear engineering • its fundamental resonant frequency...width of spectral peaks of atomic force microscopy (AFM) resonators as they are brought close to a surface. 39 Approved for public release...alternating current AD Allan Deviation AFM atomic force microscopy AFRL Air Force Research Laboratory AlN aluminum nitride APN Anomalous Phase

  18. Effects of load position and force direction on back muscle loading in one-wheeled wheelbarrow tasks.

    PubMed

    Chen, Su-Huang; Lee, Yung-Hui; Lin, Chiuhsiang Joe

    2015-01-01

    Various parameters related to pushing/pulling tasks have been examined yet the effects of changing the load position in one-wheeled wheelbarrow task has not been examined. To explore the effects of load position and force direction on muscle activity during wheelbarrow tasks. Nine participants were recruited to take part in the experiment. Each participant performed 18 trials consisting of 2 force directions (push and pull) and 9 load positions. The dependent variables were EMG of erector spinae and gripping force. ANOVA was used to identify significant differences between force direction and load position in EMG and gripping force data. Results showed that peak EMG was lowest for the left and right erector spinae when the load was positioned farther from the participant. Peak EMG of the bilateral erector spinae increased when the weight was near the participant and on the ipsilateral hand. Based on the EMG results, we suggest that loads be arranged in the anterior part of the bin in order to reduce muscle activity on the spine during the wheelbarrow task. This finding also provides some directions in the improvement and ergonomic redesign of the one-wheeled wheelbarrow.

  19. Assessment of Ablative Therapies in Swine: Response of Respiratory Diaphragm to Varying Doses.

    PubMed

    Singal, Ashish; Mattison, Lars M; Soule, Charles L; Ballard, John R; Rudie, Eric N; Cressman, Erik N K; Iaizzo, Paul A

    2018-03-28

    Ablation is a common procedure for treating patients with cancer, cardiac arrhythmia, and other conditions, yet it can cause collateral injury to the respiratory diaphragm. Collateral injury can alter the diaphragm's properties and/or lead to respiratory dysfunction. Thus, it is important to understand the diaphragm's physiologic and biomechanical properties in response to ablation therapies, in order to better understand ablative modalities, minimize complications, and maximize the safety and efficacy of ablative procedures. In this study, we analyzed physiologic and biomechanical properties of swine respiratory diaphragm muscle bundles when exposed to 5 ablative modalities. To assess physiologic properties, we performed in vitro tissue bath studies and measured changes in peak force and baseline force. To assess biomechanical properties, we performed uniaxial stress tests, measuring force-displacement responses, stress-strain characteristics, and avulsion forces. After treating the muscle bundles with all 5 ablative modalities, we observed dose-dependent sustained reductions in peak force and transient increases in baseline force-but no consistent dose-dependent biomechanical responses. These data provide novel insights into the effects of various ablative modalities on the respiratory diaphragm, insights that could enable improvements in ablative techniques and therapies.

  20. A comparison of take-off dynamics during three different spikes, block and counter-movement jump in female volleyball players.

    PubMed

    Kabacinski, Jaroslae; Dworak, Lecholslaw B; Murawa, Michal; Ostarello, John; Rzepnicka, Agata; Maczynski, Jacek

    2016-12-01

    The purpose of the study was to compare the take-off dynamics in counter-movement jump (CMJ), volleyball block and spikes. Twelve professional female players, representing the highest volleyball league in Poland, participated in the laboratory tests. A force platform was used to record ground reaction force (GRF) during take-off phase in CMJ test, block from a run-up and spikes: front row attack, slide attack, back row attack. Vertical (v) GRF (peak: Rmax and integral mean: ), impulse of vGRF (J) and mechanical power (peak: Pmax and integral mean:

    ) were analyzed. Significant differences (P<0.05) of values of the dynamic parameters (Rmax, , J, Pmax, and

    ) were found between CMJ, block from a run-up and three different technique spikes. The highest values were recorded during take-off in the back row attack: peak vGRF (2.93±0.05 BW), integral mean vGRF (1.90±0.08 BW), impulse of vGRF (354±40 Ns), peak power (5320±918 W) and integral mean power (3604±683 W). Peak power (2608±217 W) and integral mean power (1417±94 W) were determined in CMJ test to evaluate the force-velocity capabilities of the players. In terms of GRF and the mechanical power, high level of dynamics in take-off influences positively the jumping height and significantly increases the effectiveness of attacks during spike of the ball over the block of the opponent.

  1. Tibiofemoral loss of contact area but no changes in peak pressures after meniscectomy in a Lapine in vivo quadriceps force transfer model.

    PubMed

    Leumann, Andre; Fortuna, Rafael; Leonard, Tim; Valderrabano, Victor; Herzog, Walter

    2015-01-01

    The menisci are thought to modulate load transfer and to absorb shocks in the knee joint. No study has experimentally measured the meniscal functions in the intact, in vivo joint loaded by physiologically relevant muscular contractions. Right knee joints of seven New Zealand white rabbits were loaded using isometric contractions of the quadriceps femoris muscles controlled by femoral nerve stimulation. Isometric knee extensor torques at the maximal and two submaximal force levels were performed at knee angles of 70°, 90°, 110°, and 130°. Patellofemoral and tibiofemoral contact areas and pressure distributions were measured using Fuji Presensor film inserted above and below the menisci and also with the menisci removed. Meniscectomy was associated with a decrease in tibiofemoral contact area ranging from 30 to 70% and a corresponding increase in average contact pressures. Contact areas measured below the menisci were consistently larger than those measured on top of the menisci. Contact areas in the patellofemoral joint (PFJ), and peak pressures in tibiofemoral and PFJs, were not affected by meniscectomy. Contact areas and peak pressures in all joints depended crucially on knee joint angle and quadriceps force: The more flexed the knee joint was, the larger were the contact areas and the higher were the peak pressures. In agreement with the literature, removal of the menisci was associated with significant decreases in tibiofemoral contact area and corresponding increases in average contact pressures, but surprisingly, peak pressures remained unaffected, indicating that the function of the menisci is to distribute loads across a greater contact area.

  2. Temperature Responses to Spectral Solar Variability on Decadal Time Scales

    NASA Technical Reports Server (NTRS)

    Cahalan, Robert F.; Wen, Guoyong; Harder, Jerald W.; Pilewskie, Peter

    2010-01-01

    Two scenarios of spectral solar forcing, namely Spectral Irradiance Monitor (SIM)-based out-of-phase variations and conventional in-phase variations, are input to a time-dependent radiative-convective model (RCM), and to the GISS modelE. Both scenarios and models give maximum temperature responses in the upper stratosphere, decreasing to the surface. Upper stratospheric peak-to-peak responses to out-of-phase forcing are approx.0.6 K and approx.0.9 K in RCM and modelE, approx.5 times larger than responses to in-phase forcing. Stratospheric responses are in-phase with TSI and UV variations, and resemble HALOE observed 11-year temperature variations. For in-phase forcing, ocean mixed layer response lags surface air response by approx.2 years, and is approx.0.06 K compared to approx.0.14 K for atmosphere. For out-of-phase forcing, lags are similar, but surface responses are significantly smaller. For both scenarios, modelE surface responses are less than 0.1 K in the tropics, and display similar patterns over oceanic regions, but complex responses over land.

  3. Test-retest intra-rater reliability of grip force in patients with stroke.

    PubMed

    Hammer, Ann; Lindmark, Birgitta

    2003-07-01

    Coefficients of repeatability and reproducibility can be guides in differentiating between real changes and measurement error. The aim was to evaluate test-retest intra-rater reliability of a clinical procedure measuring grip force with Grippit in stroke patients, to assess relationship between grip force of the hands and between sustained and peak grip force. Eighteen patients were tested using the Grippit at two occasions one hour apart. Each occasion comprised three consecutive trials per hand. The paretic hand needs to score a 50 N change within and between occasions to exceed the measurement error in 95% of the observations, irrespective of calculation method. Expressed by CV(within) the measurement error was 10%. There was no learning or fatigue effect during measuring. There was a wide variation between subjects but the mean ratio between sides was 0.66. The mean ratio between sustained and peak grip force was 0.80-0.84. The measurement errors were acceptable and the instrument can be recommended for the use in stroke patients at a department of rehabilitation medicine.

  4. Interference of Locally Forced Internal Waves in Non-Uniform Stratifications

    NASA Astrophysics Data System (ADS)

    Supekar, Rohit; Peacock, Thomas

    2017-11-01

    Several studies have investigated the effect of constructive or destructive interference on the transmission of internal waves propagating through non-uniform stratifications. Such studies have been performed for internal waves that are spatiotemporally harmonic. To understand the effect of localization, we perform a theoretical and experimental study of the transmission of two-dimensional internal waves that are generated by a spatiotemporally localized boundary forcing. This is done by considering an idealized problem and applying a weakly viscous semi-analytic linear model. Parametric studies using this model show that localization leads to the disappearance of transmission peaks and troughs that would otherwise be present for a harmonic forcing. Laboratory experiments that we perform provide a clear indication of this physical effect. Based on the group velocity and angle of propagation of the internal waves, a practical criteria that assesses when the transmission peaks or troughs are evident, is obtained. It is found that there is a significant difference in the predicted energy transfer due to a harmonic and non-harmonic forcing which has direct implications to various physical forcings such as a storm over the ocean.

  5. Biomechanical study on axillary crutches during single-leg swing-through gait.

    PubMed

    Goh, J C; Toh, S L; Bose, K

    1986-08-01

    This paper describes a kinetic and kinematic study on axillary crutches during one-leg swing-through gait. The primary objective is to evaluate the interplay of forces at the crutch and body interfaces and to relate them in the understanding of problems associated with the use of axillary crutches. Ten normal adult male subjects with simulated left leg impairment participated in the study. For data acquisition, the VICON kinematic system, a Kistler force plate and an instrumented crutch (with force transducers at the two upper struts close to the axillary bar and one near the crutch tip) were used. Results showed that the peak ground reaction force on the weight-bearing leg during lower limb stance increased by 21.6 percent bodyweight. The peak reaction force transmitted to the arm during crutch stance was 44.4 percent bodyweight. These increased loadings could be detrimental to patients with unsound weight-bearing leg and upper extremities respectively. When the crutches were used incorrectly, 34 percent bodyweight was carried by the underarm. This could cause undue pressure over the neurovascular structures at the axillary region.

  6. Effect of 8 Weeks Soccer Training on Health and Physical Performance in Untrained Women

    PubMed Central

    Ortiz, Jaelson G.; da Silva, Juliano F.; Carminatti, Lorival J.; Guglielmo, Luiz G.A.; Diefenthaeler, Fernando

    2018-01-01

    This study aims to analyze the physiological, neuromuscular, and biochemical responses in untrained women after eight weeks of regular participation in small-sided soccer games compared to aerobic training. Twenty-seven healthy untrained women were divided into two groups [soccer group (SG = 17) and running group (RG = 10)]. Both groups trained three times per week for eight weeks. The variables measured in this study were maximal oxygen uptake (VO2max), relative velocity at VO2max (vVO2max), peak velocity, relative intensity at lactate threshold (vLT), relative intensity at onset of blood lactate accumulation (vOBLA), peak force, total cholesterol, HDL, LDL, triglycerides, and cholesterol ratio (LDL/HDL). VO2max, vLT, and vOBLA increased significantly in both groups (12.8 and 16.7%, 11.1 and 15.3%, 11.6 and 19.8%, in SG and RG respectively). However, knee extensors peak isometric strength and triglyceride levels, total cholesterol, LDL, and HDL did not differ after eight weeks of training in both groups. On the other hand, the LDL/HDL ratio significantly reduced in both groups. In conclusion, eight weeks of regular participation in small-sided soccer games was sufficient to increase aerobic performance and promote health benefits related to similar aerobic training in untrained adult women. Key points Regular participation in soccer small sided-games increase aerobic performance and promote health benefits related to similar aerobic training in untrained women. 8 weeks soccer training is enough to promote positive physiological and biochemical adaptations in untrained women. Soccer small sided-games have the potential to be more pleasurable and effective among women as other modalities as running and cycling. PMID:29535574

  7. Spectral properties of the association nanoparticle system of ciprofloxacin-phloxine and its application to fluorescence analysis.

    PubMed

    Zou, Jieming; Jiang, Zhiliang; Wang, Lisheng; Li, Tingsheng; Liu, Qinye

    2004-06-01

    There is a fluorescence peak at 570 nm, and a maximum absorption peak at 560 nm for phloxine (PHLO) in a pH 7 water solution. Under these conditions, the ciprofloxacin cation (CPFX+) and PHLO- combine into hydrophobic CPFX-PHLO association molecule by means of static gravitation. There are stronger van der Waals forces and hydrophobic forces among the CPFX-PHLO molecules. Thus, they aggregate automatically to the (CPFX-PHLO)n association nanoparticle in red-violet color. That was characterized by scan electron microscopy (SEM), hyperfiltration and dialysis tests. In 0.04 M HCl, the red-violet nanoparticles exhibited a Rayleigh scattering peak at 470 nm, a resonance scattering peak at 580 nm, a maximum absorption wavelength at 565 nm, and a fluorescence peak at 450 nm. The fluorescence analytical conditions of CPFX have been considered. The CPFX concentration in the range of 1.0 x 10(-6)-4.0 x 10(-5) M is linear to the fluorescence intensity, F450nm. The detection limit was achieved at 4.0 x 10(-7) M CPFX. The CPFX in real samples was determined with satisfactory results.

  8. Sex Differences During an Overhead Squat Assessment.

    PubMed

    Mauntel, Timothy C; Post, Eric G; Padua, Darin A; Bell, David R

    2015-08-01

    A disparity exists between the rates of male and female lower extremity injuries. One factor that may contribute to this disparity is high-risk biomechanical patterns that are commonly displayed by females. It is unknown what biomechanical differences exist between males and females during an overhead squat. This study compared lower extremity biomechanics during an overhead squat and ranges of motion between males and females. An electromagnetic motion tracking system interfaced with a force platform was used to quantify peak lower extremity kinematics and kinetics during the descent phase of each squat. Range of motion measurements were assessed with a standard goniometer. Differences between male and female kinematics, kinetics, and ranges of motion were identified with t tests. Males displayed greater peak knee valgus angle, peak hip flexion angle, peak vertical ground reaction forces, and peak hip extension moments. Males also displayed less active ankle dorsiflexion with the knee extended and hip internal and external rotation than females. No other differences were observed. The biomechanical differences between males and females during the overhead squat may result from differences in lower extremity ranges of motion. Therefore, sex-specific injury prevention programs should be developed to improve biomechanics and ranges of motion.

  9. Evidence of orbital forcing in 510 to 530 million year old shallow marine cycles, Utah and western Canada

    NASA Technical Reports Server (NTRS)

    Bond, Gerard C.; Beavan, John; Kominz, Michelle A.; Devlin, William

    1992-01-01

    Spectral analyses of two sequences of shallow marine sedimentary cycles that were deposited between 510 and 530 million years ago were completed. One sequence is from Middle Cambrian rocks in southern Utah and the other is from Upper Cambrian rocks in the southern Canadian Rockies. In spite of the antiquity of these strata, and even though there are differences in the age, location, and cycle facies between the two sequences, both records have distinct spectral peaks with surprisingly similar periodicities. A null model constructed to test for significance of the spectral peaks and circulatory in the methodology indicates that all but one of the spectral peaks are significant at the 90 percent confidence level. When the ratios between the statistically significant peaks are measured, we find a consistent relation to orbital forcing; specifically, the spectral peak ratios in both the Utah and Canadian examples imply that a significant amount of the variance in the cyclic records is driven by the short eccentricity (approximately 109 ky) and by the precessional (approximately 21 ky) components of the Earth's orbital variations. Neither section contains a significant component of variance at the period of the obliquity cycle, however.

  10. The physical demands of Olympic yacht racing.

    PubMed

    Mackie, H; Sanders, R; Legg, S

    1999-12-01

    The primary purpose of this study was to quantify the up wards forces of the feet on the hiking strap and the forces in the mainsheet of four Olympic classes of racing dinghies (Europe, Laser. Finn and 470) during realistic on-water sailing in varying wind conditions. The secondary aim of the study was to measure the joint angles adopted by the sailors and boat heel angles. The tertiary aim was to identify events and sailing conditions associated with large or patterned force production. Forces in the hiking strap and mainsheet of four classes of Olympic sailing dinghies were measured on eleven New Zealand sailors during simulated on-water racing in a range of wind conditions. Up-wind hiking strap forces reached an average of 73-87% of predicted maximal voluntary contraction (pred MVC), with peak forces exceeding 100% pred MVC. Mainsheet forces reached 25-35% pred MVC, with peak forces reaching 40-50% pred MVC. Off-wind hiking strap and mainsheet forces were considerably lower than up-wind forces. Ankle and hip joint angles increased and knee joint angles decreased with increasing wind speed during up-wind sailing. Large forces occurred in the hiking strap and mainsheet when boats reached the tops of wave during up-wind sailing in high wind speeds and when a gust of wind hit the boat. During off-wind sailing large forces were observed in the mainsheet when surfing down waves. It is recommended that the intensities and joint angles found in this study be used as a basis for the development of class specific off-water physical conditioning programmes.

  11. Foot-ground reaction force during resistive exercise in parabolic flight

    NASA Technical Reports Server (NTRS)

    Lee, Stuart M C.; Cobb, Kendall; Loehr, James A.; Nguyen, Daniel; Schneider, Suzanne M.

    2004-01-01

    INTRODUCTION: An interim resistance exercise device (iRED) was designed to provide resistive exercise as a countermeasure to spaceflight-induced loss of muscle strength and endurance as well as decreased bone mineral density. The purpose of this project was to compare foot-ground reaction force during iRED exercise in normal gravity (1 G) vs. microgravity (0 G) achieved during parabolic flight. METHODS: There were four subjects who performed three exercises (squat, heel raise, and deadlift) using the iRED during 1 G and 0 G at a moderate intensity (60% of maximum strength during deadlift exercise). Foot-ground reaction force was measured in the three orthogonal axes (x, y, z) using a force plate, and the magnitude of the resultant force vector was calculated (r = square root(x2 + y2 + z2)). Linear displacement (LD) was measured using a linear transducer. Peak force (Fpeak) and an index of total work (TWi) were calculated using a customized computer program. Paired t-tests were used to test if significant differences (p < or = 0.05) were observed between 1 G and 0 G exercise. RESULTS: Fpeak and TWi measured in the resultant axis were significantly less in 0 G for each of the exercises tested. During 0 G, Fpeak was 42-46% and TWi was 33-37% of that measured during 1 G. LD and average time to complete each repetition were not different from 1 G to 0 G. CONCLUSIONS: Crewmembers who perform resistive exercises during spaceflight that include the movement of a large portion of their body mass will require much greater external resistive force during 0 G than 1 G exercise to provide a sufficient stimulus to maintain muscle and bone mass.

  12. Multi-Step Fibrinogen Binding to the Integrin αIIbβ3 Detected Using Force Spectroscopy

    PubMed Central

    Litvinov, Rustem I.; Bennett, Joel S.; Weisel, John W.; Shuman, Henry

    2005-01-01

    The regulated ability of integrin αIIbβ3 to bind fibrinogen plays a crucial role in platelet aggregation and hemostasis. We have developed a model system based on laser tweezers, enabling us to measure specific rupture forces needed to separate single receptor-ligand complexes. First of all, we performed a thorough and statistically representative analysis of nonspecific protein-protein binding versus specific αIIbβ3-fibrinogen interactions in combination with experimental evidence for single-molecule measurements. The rupture force distribution of purified αIIbβ3 and fibrinogen, covalently attached to underlying surfaces, ranged from ∼20 to 150 pN. This distribution could be fit with a sum of an exponential curve for weak to moderate (20–60 pN) forces, and a Gaussian curve for strong (>60 pN) rupture forces that peaked at 80–90 pN. The interactions corresponding to these rupture force regimes differed in their susceptibility to αIIbβ3 antagonists or Mn2+, an αIIbβ3 activator. Varying the surface density of fibrinogen changed the total binding probability linearly >3.5-fold but did not affect the shape of the rupture force distribution, indicating that the measurements represent single-molecule binding. The yield strength of αIIbβ3-fibrinogen interactions was independent of the loading rate (160–16,000 pN/s), whereas their binding probability markedly correlated with the duration of contact. The aggregate of data provides evidence for complex multi-step binding/unbinding pathways of αIIbβ3 and fibrinogen revealed at the single-molecule level. PMID:16040750

  13. Neck muscle load distribution in lateral, frontal, and rear-end impacts: a three-dimensional finite element analysis.

    PubMed

    Hedenstierna, Sofia; Halldin, Peter; Siegmund, Gunter P

    2009-11-15

    A finite element (FE) model of the human neck was used to study the distribution of neck muscle loads during multidirectional impacts. The computed load distributions were compared to experimental electromyography (EMG) recordings. To quantify passive muscle loads in nonactive cervical muscles during impacts of varying direction and energy, using a three-dimensional (3D) continuum FE muscle model. Experimental and numerical studies have confirmed the importance of muscles in the impact response of the neck. Although EMG has been used to measure the relative activity levels in neck muscles during impact tests, this technique has not been able to measure all neck muscles and cannot directly quantify the force distribution between the muscles. A numerical model can give additional insight into muscle loading during impact. An FE model with solid element musculature was used to simulate frontal, lateral, and rear-end vehicle impacts at 4 peak accelerations. The peak cross-sectional forces, internal energies, and effective strains were calculated for each muscle and impact configuration. The computed load distribution was compared with experimental EMG data. The load distribution in the cervical muscles varied with load direction. Peak sectional forces, internal energies, and strains increased in most muscles with increasing impact acceleration. The dominant muscles identified by the model for each direction were splenius capitis, levator scapulae, and sternocleidomastoid in lateral impacts, splenius capitis, and trapezoid in frontal impacts, and sternocleidomastoid, rectus capitis posterior minor, and hyoids in rear-end impacts. This corresponded with the most active muscles identified by EMG recordings, although within these muscles the distribution of forces and EMG levels were not the same. The passive muscle forces, strains, and energies computed using a continuum FE model of the cervical musculature distinguished between impact directions and peak accelerations, and on the basis of prior studies, isolated the most important muscles for each direction.

  14. Impact Accelerations of Barefoot and Shod Running.

    PubMed

    Thompson, M; Seegmiller, J; McGowan, C P

    2016-05-01

    During the ground contact phase of running, the body's mass is rapidly decelerated resulting in forces that propagate through the musculoskeletal system. The repetitive attenuation of these impact forces is thought to contribute to overuse injuries. Modern running shoes are designed to reduce impact forces, with the goal to minimize running related overuse injuries. Additionally, the fore/mid foot strike pattern that is adopted by most individuals when running barefoot may reduce impact force transmission. The aim of the present study was to compare the effects of the barefoot running form (fore/mid foot strike & decreased stride length) and running shoes on running kinetics and impact accelerations. 10 healthy, physically active, heel strike runners ran in 3 conditions: shod, barefoot and barefoot while heel striking, during which 3-dimensional motion analysis, ground reaction force and accelerometer data were collected. Shod running was associated with increased ground reaction force and impact peak magnitudes, but decreased impact accelerations, suggesting that the midsole of running shoes helps to attenuate impact forces. Barefoot running exhibited a similar decrease in impact accelerations, as well as decreased impact peak magnitude, which appears to be due to a decrease in stride length and/or a more plantarflexed position at ground contact. © Georg Thieme Verlag KG Stuttgart · New York.

  15. The influence of heel height on vertical ground reaction force during landing tasks in recreationally active and athletic collegiate females.

    PubMed

    Lindenberg, Kelly M; Carcia, Christopher R

    2013-02-01

    To determine if heel height alters vertical ground reaction forces (vGRF) when landing from a forward hop or drop landing. Increased vGRF during landing are theorized to increase ACL injury risk in female athletes. Fifty collegiate females performed two single-limb landing tasks while wearing heel lifts of three different sizes (0, 12 & 24 mm) attached to the bottom of a athletic shoe. Using a force plate, peak vGRF at landing was examined. Repeated measures ANOVAs were used to determine the influence of heel height on the dependent measures. Forward hop task- Peak vGRF (normalized for body mass) with 0 mm, 12 mm, and 24 mm lifts were 2.613±0.498, 2.616±0.497 and 2.495±0.518% BW, respectively. Significant differences were noted between 0 and 24 mm lift (p<.001) and 12 and 24 mm lifts (p=.004), but not between the 0 and 12 mm conditions (p=.927). Jump-landing task- No significant differences were found in peak vGRF (p=.192) between any of the heel lift conditions. The addition of a 24 mm heel lift to the bottom of a sneaker significantly alters peak vGRF upon landing from a unilateral forward hop but not from a jumping maneuver.

  16. Dust-on-snow and the timing of peak streamflow in the upper Rio Grande

    USDA-ARS?s Scientific Manuscript database

    Dust radiative forcing on high elevation snowpack is well-documented in the southern Rockies. Various field studies show that dust deposits decrease snow albedo and increase absorption of solar radiation, leading to earlier snowmelt and peak stream flows. These findings have implications for the use...

  17. 75 FR 4443 - Petition for Declaratory Order by Fullington Trailways, LLC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-27

    .... L. 104-88, Sec. 204 (1995) (all ICC orders and determinations remain in effect until modified or... regardless of whether made during peak or off- peak commuting times. Third, Fullington's interstate... provision having the force and effect of law relating to-- (A) scheduling of interstate or intrastate...

  18. An Ecological Study of Anterior Cruciate Ligament Reconstruction, Part 2: Functional Performance Tests Correlate With Return-to-Sport Outcomes.

    PubMed

    McGrath, Timothy M; Waddington, Gordon; Scarvell, Jennie M; Ball, Nick; Creer, Rob; Woods, Kevin; Smith, Damian; Adams, Roger

    2017-02-01

    Additional high-quality prospective studies are needed to better define the objective criteria used in relation to return-to-sport decisions after anterior cruciate ligament (ACL) reconstruction in active populations. To investigate prospectively the relationship between functional performance test results at 24 weeks postoperative and return-to-sport activity (Tegner activity score) at 12 and 24 months, respectively, after synthetic (ligament advanced reinforcement system [LARS]) and autograft (doubled semitendinosus/gracilis [2ST/2GR]) ACL reconstructions. Case series; Level of evidence, 4. A total of 64 patients who underwent ACL reconstruction (32 LARS, 32 2ST/2GR autograft; mean age, 27.9 years; body mass index [BMI], 24.9 kg/m 2 ) were assessed preoperatively and at staged intervals postoperatively up to 24 weeks for isokinetic testing of quadriceps and hamstring average power per repetition at 60 deg/s and 180 deg/s, a battery of hop tests, peak vertical ground-reaction force (vGRF), and time to peak vGRF (in seconds) during a step- and jump-down task onto a force platform and peak speed (m/s) using a global positioning system (GPS unit) during a running task. A cohort of 32 healthy matched participants (mean age, 26.31 years; BMI, 25.7 kg/m 2 ) were also tested to act as reference. Pearson correlation was calculated to assess correlation of each performance measure at 24 weeks postoperative with activity outcomes (Tegner score) at 12 and 24 months. The strongest correlation between physical performance tests and return-to-sport outcomes was observed with peak speed during running. Large correlations were also observed for hamstring isokinetic power and hop test for distance. Moderate correlations were observed for timed hop, peak vGRF during a jump-down task, and quadriceps isokinetic power. No statistical correlations were observed for time to peak vGRF during a step-down and jump-down task as well as peak vGRF during a step-down task. When the performance tests were pooled together, mean postoperative improvements of 24% were observed from preoperative to 24 weeks within the surgical cohort. For each performance test, preoperative level of function strongly correlated with performance levels on the same test at 24 weeks. The results of this study indicate that clinicians might seek to prioritize these tests and the rehabilitation themes they imply when seeking to maximize postoperative ACL activity outcomes. The observed strength between pre- and postoperative performance tests and return-to-sport outcomes within this study highlights the potential value of preoperative conditioning before undergoing ACL reconstruction. Future research should examine absolute predictive criterion thresholds for functional performance-based tests and reinjury risk reduction after ACL reconstruction.

  19. Effects of a Low-Load Gluteal Warm-Up on Explosive Jump Performance

    PubMed Central

    Comyns, Thomas; Kenny, Ian; Scales, Gerard

    2015-01-01

    The purpose of this study was to investigate the effects of a low-load gluteal warm-up protocol on countermovement and squat jump performance. Research by Crow et al. (2012) found that a low-load gluteal warm-up could be effective in enhancing peak power output during a countermovement jump. Eleven subjects performed countermovement and squat jumps before and after the gluteal warm-up protocol. Both jumps were examined in separate testing sessions and performed 30 seconds, and 2, 4, 6 & 8 minutes post warm-up. Height jumped and peak ground reaction force were the dependent variables examined in both jumps, with 6 additional variables related to fast force production being examined in the squat jump only. All jumps were performed on a force platform (AMTI OR6-5). Repeated measures analysis of variance found a number of significant differences (p ≤ 0.05) between baseline and post warm-up scores. Height jumped decreased significantly in both jumps at all rest intervals excluding 8 minutes. Improvement was seen in 7 of the 8 recorded SJ variables at the 8 minute interval. Five of these improvements were deemed statistically significant, namely time to peak GRF (43.0%), and time to the maximum rate of force development (65.7%) significantly decreased, while starting strength (63.4%), change of force in first 100 ms of contraction (49.1%) and speed strength (43.6%) significantly increased. The results indicate that a gluteal warm-up can enhance force production in squat jumps performed after 8 minutes recovery. Future research in this area should include additional warm-up intervention groups for comparative reasons. PMID:26240661

  20. Effect of hoof boots and toe-extension shoes on the forelimb kinetics of horses during walking.

    PubMed

    Amitrano, Fernando N; Gutierrez-Nibeyro, Santiago D; Schaeffer, David J

    2016-05-01

    OBJECTIVE To determine and compare the effect of hoof boots (HBs) and shoes with a toe extension on stance duration, ground reaction force, and sole length in contact with the ground in nonlame horses during walking. ANIMALS 6 nonlame Standardbreds. PROCEDURES Force plate gait analyses of the forelimbs were performed while the horses were walking barefoot before manipulation of feet (baseline), while the horses were walking fitted with HBs, while the horses were walking shod with toe-extension shoes, and while the horses were walking barefoot after shoe removal. Horses underwent radiography of both forelimb feet to determine the sole length in contact with the ground when barefoot, wearing HBs, and shod with toe-extension shoes. Stance duration, ground reaction force, and sole length were compared among the various walking sessions. RESULTS Compared with baseline findings, stance duration increased significantly when horses were fitted with HBs (7%) or toe-extension shoes (5%). Peak forelimb ground reaction force was similar among walking sessions; however, time of braking force peak was significantly greater during the stance phase only when horses wore HBs. Also, the sole length in contact with the ground was significantly longer in horses fitted with HBs (14.3 cm) or shod with the toe-extension shoes (17.6 cm), compared with that for one of the barefoot hooves (12.7 cm). CONCLUSIONS AND CLINICAL RELEVANCE In nonlame horses, use of HBs prolonged the stance time and time of braking force peak, which is indicative of a slower deceleration phase during limb impact with the ground. Also, the use of HBs prolonged the deceleration phase of the stride and increased the sole length in contact with the ground.

  1. Aerial Rotation Effects on Vertical Jump Performance Among Highly Skilled Collegiate Soccer Players.

    PubMed

    Barker, Leland A; Harry, John R; Dufek, Janet S; Mercer, John A

    2017-04-01

    Barker, LA, Harry, JR, Dufek, JS, and Mercer, JA. Aerial rotation effects on vertical jump performance among highly skilled collegiate soccer players. J Strength Cond Res 31(4): 932-938, 2017-In soccer matches, jumps involving rotations occur when attempting to head the ball for a shot or pass from set pieces, such as corner kicks, goal kicks, and lob passes. However, the 3-dimensional ground reaction forces used to perform rotational jumping tasks are currently unknown. Therefore, the purpose of this study was to compare bilateral, 3-dimensional, and ground reaction forces of a standard countermovement jump (CMJ0) with those of a countermovement jump with a 180° rotation (CMJ180) among Division-1 soccer players. Twenty-four participants from the soccer team of the University of Nevada performed 3 trials of CMJ0 and CMJ180. Dependent variables included jump height, downward and upward phase times, vertical (Fz) peak force and net impulse relative to mass, and medial-lateral and anterior-posterior force couple values. Statistical significance was set a priori at α = 0.05. CMJ180 reduced jump height, increased the anterior-posterior force couple in the downward and upward phases, and increased upward peak Fz (p ≤ 0.05). All other variables were not significantly different between groups (p > 0.05). However, we did recognize that downward peak Fz trended lower in the CMJ0 condition (p = 0.059), and upward net impulse trended higher in the CMJ0 condition (p = 0.071). It was concluded that jump height was reduced during the rotational jumping task, and rotation occurred primarily via AP ground reaction forces through the entire countermovement jump. Coaches and athletes may consider additional rotational jumping in their training programs to mediate performance decrements during rotational jump tasks.

  2. High-speed atomic force microscopy and peak force tapping control

    NASA Astrophysics Data System (ADS)

    Hu, Shuiqing; Mininni, Lars; Hu, Yan; Erina, Natalia; Kindt, Johannes; Su, Chanmin

    2012-03-01

    ITRS Roadmap requires defect size measurement below 10 nanometers and challenging classifications for both blank and patterned wafers and masks. Atomic force microscope (AFM) is capable of providing metrology measurement in 3D at sub-nanometer accuracy but has long suffered from drawbacks in throughput and limitation of slow topography imaging without chemical information. This presentation focus on two disruptive technology developments, namely high speed AFM and quantitative nanomechanical mapping, which enables high throughput measurement with capability of identifying components through concurrent physical property imaging. The high speed AFM technology has allowed the imaging speed increase by 10-100 times without loss of the data quality. Such improvement enables the speed of defect review on a wafer to increase from a few defects per hour to nearly 100 defects an hour, approaching the requirements of ITRS Roadmap. Another technology development, Peak Force Tapping, substantially simplified the close loop system response, leading to self-optimization of most challenging samples groups to generate expert quality data. More importantly, AFM also simultaneously provides a series of mechanical property maps with a nanometer spatial resolution during defect review. These nanomechanical maps (including elastic modulus, hardness, and surface adhesion) provide complementary information for elemental analysis, differentiate defect materials by their physical properties, and assist defect classification beyond topographic measurements. This paper will explain the key enabling technologies, namely high speed tip-scanning AFM using innovative flexure design and control algorithm. Another critical element is AFM control using Peak Force Tapping, in which the instantaneous tip-sample interaction force is measured and used to derive a full suite of physical properties at each imaging pixel. We will provide examples of defect review data on different wafers and media disks. The similar AFM-based defect review capacity was also applied to EUV masks.

  3. The Efficacy of Wrestling-Style Compression Suits to Improve Maximum Isometric Force and Movement Velocity in Well-Trained Male Rugby Athletes.

    PubMed

    McMaster, Daniel T; Beaven, Christopher M; Mayo, Brad; Gill, Nicholas; Hébert-Losier, Kim

    2017-01-01

    Purpose: The prevalence of compression garment (CG) use is increasing with athletes striving to take advantage of the purported benefits to recovery and performance. Here, we investigated the effect of CG on muscle force and movement velocity performance in athletes. Methods: Ten well-trained male rugby athletes wore a wrestling-style CG suit applying 13-31 mmHg of compressive pressure during a training circuit in a repeated-measures crossover design. Force and velocity data were collected during a 5-s isometric mid-thigh pull (IMTP) and repeated countermovement jump (CMJ), respectively; and time to complete a 5-m horizontal loaded sled push was also measured. Results: IMTP peak force was enhanced in the CG condition by 139 ± 142 N (effect size [ES] = 0.36). Differences in CMJ peak velocity (ES = 0.08) and loaded sled-push sprint time between the conditions were trivial (ES = -0.01). A qualitative assessment of the effects of CG wear suggested that the likelihood of harm was unlikely in the CMJ and sled push, while a beneficial effect in the CMJ was possible, but not likely. Half of the athletes perceived a functional benefit in the IMTP and CMJ exercises. Conclusion: Consistent with other literature, there was no substantial effect of wearing a CG suit on CMJ and sprint performance. The improvement in peak force generation capability in an IMTP may be of benefit to rugby athletes involved in scrummaging or lineout lifting. The mechanism behind the improved force transmission is unclear, but may involve alterations in neuromuscular recruitment and proprioceptive feedback.

  4. Engagement techniques and playing level impact the biomechanical demands on rugby forwards during machine-based scrummaging.

    PubMed

    Preatoni, Ezio; Stokes, Keith A; England, Michael E; Trewartha, Grant

    2015-04-01

    This cross-sectional study investigated the factors that may influence the physical loading on rugby forwards performing a scrum by studying the biomechanics of machine-based scrummaging under different engagement techniques and playing levels. 34 forward packs from six playing levels performed repetitions of five different types of engagement techniques against an instrumented scrum machine under realistic training conditions. Applied forces and body movements were recorded in three orthogonal directions. The modification of the engagement technique altered the load acting on players. These changes were in a similar direction and of similar magnitude irrespective of the playing level. Reducing the dynamics of the initial engagement through a fold-in procedure decreased the peak compression force, the peak downward force and the engagement speed in excess of 30%. For example, peak compression (horizontal) forces in the professional teams changed from 16.5 (baseline technique) to 8.6 kN (fold-in procedure). The fold-in technique also reduced the occurrence of combined high forces and head-trunk misalignment during the absorption of the impact, which was used as a measure of potential hazard, by more than 30%. Reducing the initial impact did not decrease the ability of the teams to produce sustained compression forces. De-emphasising the initial impact against the scrum machine decreased the mechanical stresses acting on forward players and may benefit players' welfare by reducing the hazard factors that may induce chronic degeneration of the spine. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  5. Gender differences in head-neck segment dynamic stabilization during head acceleration.

    PubMed

    Tierney, Ryan T; Sitler, Michael R; Swanik, C Buz; Swanik, Kathleen A; Higgins, Michael; Torg, Joseph

    2005-02-01

    Recent epidemiological research has revealed that gender differences exist in concussion incidence but no study has investigated why females may be at greater risk of concussion. Our purpose was to determine whether gender differences existed in head-neck segment kinematic and neuromuscular control variables responses to an external force application with and without neck muscle preactivation. Forty (20 females and 20 males) physically active volunteers participated in the study. The independent variables were gender, force application (known vs unknown), and force direction (forced flexion vs forced extension). The dependent variables were kinematic and EMG variables, head-neck segment stiffness, and head-neck segment flexor and extensor isometric strength. Statistical analyses consisted of multiple multivariate and univariate analyses of variance, follow-up univariate analyses of variance, and t-tests (P < or = 0.05). Gender differences existed in head-neck segment dynamic stabilization during head angular acceleration. Females exhibited significantly greater head-neck segment peak angular acceleration (50%) and displacement (39%) than males despite initiating muscle activity significantly earlier (SCM only) and using a greater percentage of their maximum head-neck segment muscle activity (79% peak activity and 117% muscle activity area). The head-neck segment angular acceleration differences may be because females exhibited significantly less isometric strength (49%), neck girth (30%), and head mass (43%), resulting in lower levels of head-neck segment stiffness (29%). For our subject demographic, the results revealed gender differences in head-neck segment dynamic stabilization during head acceleration in response to an external force application. Females exhibited significantly greater head-neck segment peak angular acceleration and displacement than males despite initiating muscle activity earlier (SCM only) and using a greater percentage of their maximum head-neck segment muscle activity.

  6. Exploiting elasticity: Modeling the influence of neural control on mechanics and energetics of ankle muscle-tendons during human hopping.

    PubMed

    Robertson, Benjamin D; Sawicki, Gregory S

    2014-07-21

    We present a simplified Hill-type model of the human triceps surae-Achilles tendon complex working on a gravitational-inertial load during cyclic contractions (i.e. vertical hopping). Our goal was to determine the role that neural control plays in governing muscle, or contractile element (CE), and tendon, or series elastic element (SEE), mechanics and energetics within a compliant muscle-tendon unit (MTU). We constructed a 2D parameter space consisting of many combinations of stimulation frequency and magnitude (i.e. neural control strategies). We compared the performance of each control strategy by evaluating peak force and average positive mechanical power output for the system (MTU) and its respective components (CE, SEE), force-length (F-L) and -velocity (F-V) operating point of the CE during active force production, average metabolic rate for the CE, and both MTU and CE apparent efficiency. Our results suggest that frequency of stimulation plays a primary role in governing whole-MTU mechanics. These include the phasing of both activation and peak force relative to minimum MTU length, average positive power, and apparent efficiency. Stimulation amplitude was primarily responsible for governing average metabolic rate and within MTU mechanics, including peak force generation and elastic energy storage and return in the SEE. Frequency and amplitude of stimulation both played integral roles in determining CE F-L operating point, with both higher frequency and amplitude generally corresponding to lower CE strains, reduced injury risk, and elimination of the need for passive force generation in the CE parallel elastic element (PEE). Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. The Effects of Caffeine on Vertical Jump Height and Execution in Collegiate Athletes.

    PubMed

    Bloms, Lucas P; Fitzgerald, John S; Short, Martin W; Whitehead, James R

    2016-07-01

    Bloms, LP, Fitzgerald, JS, Short, MW, and Whitehead, JR. The effects of caffeine on vertical jump height and execution in collegiate athletes. J Strength Cond Res 30(7): 1855-1861, 2016-Caffeine ingestion elicits a variety of physiological effects that may be beneficial to maximal-intensity exercise performance, although its effectiveness and physical mechanism of action enhancing ballistic task performance are unclear. The purpose of this study was to examine the effects of caffeine ingestion on vertical jump height and jump execution in Division I collegiate athletes. The study used a single-blind, randomized, crossover design. Athletes (n = 25) consumed either caffeine (5 mg·kg) or placebo. After a 60-minute waiting period, athletes performed 3 squat jumps (SJ) and 3 countermovement jumps (CMJ) while standing on a force platform. Jump height and execution variables were calculated from mechanography data. In comparison with placebo, caffeine increased SJ height (32.8 ± 6.2 vs. 34.5 ± 6.7 cm; p = 0.001) and CMJ height (36.4 ± 6.9 vs. 37.9 ± 7.4 cm; p = 0.001). Peak force (p = 0.032) and average rate of force development (p = 0.037) were increased during the CMJ in the caffeine trail compared with the control. Time to half peak force was the only execution variable improved with caffeine (p = 0.019) during the SJ. It seems that caffeine affects both height and execution of jumping. Our data indicate that the physical mechanism of jump enhancement is increased peak force production or rate of force development during jumping depending on technique. The physical mechanism of jump enhancement suggests that the ergogenic effects of caffeine may transfer to other ballistic tasks involving the lower-body musculature in collegiate athletes.

  8. Hazards of decreasing marine oxygen: the near-term and millennial-scale benefits of meeting the Paris climate targets

    NASA Astrophysics Data System (ADS)

    Battaglia, Gianna; Joos, Fortunat

    2018-06-01

    Ocean deoxygenation is recognized as key ecosystem stressor of the future ocean and associated climate-related ocean risks are relevant for current policy decisions. In particular, benefits of reaching the ambitious 1.5 °C warming target mentioned by the Paris Agreement compared to higher temperature targets are of high interest. Here, we model oceanic oxygen, warming and their compound hazard in terms of metabolic conditions on multi-millennial timescales for a range of equilibrium temperature targets. Scenarios where radiative forcing is stabilized by 2300 are used in ensemble simulations with the Bern3D Earth System Model of Intermediate Complexity. Transiently, the global mean ocean oxygen concentration decreases by a few percent under low forcing and by 40 % under high forcing. Deoxygenation peaks about a thousand years after stabilization of radiative forcing and new steady-state conditions are established after AD 8000 in our model. Hypoxic waters expand over the next millennium and recovery is slow and remains incomplete under high forcing. Largest transient decreases in oxygen are projected for the deep sea. Distinct and near-linear relationships between the equilibrium temperature response and marine O2 loss emerge. These point to the effectiveness of the Paris climate target in reducing marine hazards and risks. Mitigation measures are projected to reduce peak decreases in oceanic oxygen inventory by 4.4 % °C-1 of avoided equilibrium warming. In the upper ocean, the decline of a metabolic index, quantified by the ratio of O2 supply to an organism's O2 demand, is reduced by 6.2 % °C-1 of avoided equilibrium warming. Definitions of peak hypoxia demonstrate strong sensitivity to additional warming. Volumes of water with less than 50 mmol O2 m-3, for instance, increase between 36 % and 76 % °C-1 of equilibrium temperature response. Our results show that millennial-scale responses should be considered in assessments of ocean deoxygenation and associated climate-related ocean risks. Peak hazards occur long after stabilization of radiative forcing and new steady-state conditions establish after AD 8000.

  9. Cervical Muscle Strength and Muscle Coactivation During Isometric Contractions in Patients With Migraine: A Cross-Sectional Study.

    PubMed

    Florencio, Lidiane Lima; de Oliveira, Anamaria Siriani; Carvalho, Gabriela Ferreira; Tolentino, Gabriella de Almeida; Dach, Fabiola; Bigal, Marcelo Eduardo; Fernández-de-las-Peñas, César; Bevilaqua Grossi, Débora

    2015-01-01

    This cross-sectional study investigated potential differences in cervical musculature in groups of migraine headaches vs. non-headache controls. Differences in cervical muscle strength and antagonist coactivation during maximal isometric voluntary contraction (MIVC) were analyzed between individuals with migraine and non-headache subjects and relationships between force with migraine and neck pain clinical aspects. A customized hand-held dynamometer was used to assess cervical flexion, extension, and bilateral lateral flexion strength in subjects with episodic migraine (n=31), chronic migraine (n = 21) and healthy controls (n = 31). Surface electromyography (EMG) from sternocleidomastoid, anterior scalene, and splenius capitis muscles were recorded during MIVC to evaluate antagonist coactivation. Comparison of main outcomes among groups was conducted with one-way analysis of covariance with the presence of neck pain as covariable. Correlations between peak force and clinical variables were demonstrated by Spearman's coefficient. Chronic migraine subjects exhibited lower cervical extension force (mean diff. from controls: 4.4 N/kg; mean diff from episodic migraine: 3.7 N/kg; P = .006) and spent significantly more time to generate peak force during cervical flexion (mean diff. from controls: 0.5 seconds; P = .025) and left lateral-flexion (mean diff. from controls: 0.4 seconds; mean diff. from episodic migraine: 0.5 seconds; P = .007). Both migraine groups showed significantly higher antagonist muscle coactivity of the splenius capitis muscle (mean diff. from controls: 20%MIVC, P = .03) during cervical flexion relative to healthy controls. Cervical extension peak force was moderately associated with the migraine frequency (rs: -0.30, P = .034), neck pain frequency (rs: -0.26, P = .020), and neck pain intensity (rs: -0.27, P = .012). Patients with chronic migraine exhibit altered muscle performance, took longer to reach peak of force during some cervical movements, and had higher coactivation of the splenius capitis during maximal isometric cervical flexion contraction. Finally, patients with migraine reported the presence of neck and head pain complaints during maximal isometric voluntary cervical contractions. © 2015 American Headache Society.

  10. A Comparison of Wind Speed Data from Mechanical and Ultrasonic Anemometers

    NASA Technical Reports Server (NTRS)

    Short, D.; Wells, L.; Merceret, F.; Roeder, W. P.

    2006-01-01

    This study compared the performance of mechanical and ultrasonic anemometers at the Eastern Range (ER; Kennedy Space Center and Cape Canaveral Air Force Station on Florida's Atlantic coast) and the Western Range (WR; Vandenberg Air Force Base on California's Pacific coast). Launch Weather Officers, forecasters, and Range Safety analysts need to understand the performance of wind sensors at the ER and WR for weather warnings, watches, advisories, special ground processing operations, launch pad exposure forecasts, user Launch Commit Criteria (LCC) forecasts and evaluations, and toxic dispersion support. The current ER and WR weather tower wind instruments are being changed from the current propeller-and-vane (ER) and cup-and-vane (WR) sensors to ultrasonic sensors through the Range Standardization and Automation (RSA) program. The differences between mechanical and ultrasonic techniques have been found to cause differences in the statistics of peak wind speed in previous studies. The 45th Weather Squadron (45 WS) and the 30th Weather Squadron (30 WS) requested the Applied Meteorology Unit (AMU) to compare data between RSA and current sensors to determine if there are significant differences. Approximately 3 weeks of Legacy and RSA wind data from each range were used in the study, archived during May and June 2005. The ER data spanned the full diurnal cycle, while the WR data was confined to 1000-1600 local time. The sample of 1-minute data from numerous levels on 5 different towers on each range totaled more than 500,000 minutes of data (482,979 minutes of data after quality control). The 10 towers were instrumented at several levels, ranging from 12 ft to 492 ft above ground level. The RSA sensors were collocated at the same vertical levels as the present sensors and typically within 15 ft horizontally of each another. Data from a total of 53 RSA ultrasonic sensors, collocated with present sensors were compared. The 1-minute average wind speed/direction and the 1-second peak wind speed/direction were compared.

  11. Feasibility Assessment of an EVA Glove Sensing Platform to Evaluate Potential Hand Injury Risk Factors

    NASA Technical Reports Server (NTRS)

    Reid, Christopher R.; McFarland, Shane M.

    2015-01-01

    Injuries to the hands are common among astronauts who train for extravehicular activity (EVA). When the gloves are pressurized, they restrict movement and create pressure points during tasks, sometimes resulting in pain, muscle fatigue, abrasions, and occasionally more severe injuries such as onycholysis. A brief review of the Lifetime Surveillance of Astronaut Health's injury database reveals that 58% of total astronaut hand and arm injuries from NBL training between 1993 and 2010 occurred either to the fingernail, MCP, or fingertip. The purpose of this study was to assess the potential of using small sensors to measure force acting on the fingers and hand within pressurized gloves and other variables such as blood perfusion, skin temperature, humidity, fingernail strain, skin moisture, among others. Tasks were performed gloved and ungloved in a pressurizable glove box. The test demonstrated that fingernails saw greater transverse strain levels for tension or compression than for longitudinal strain, even during axial fingertip loading. Blood perfusion peaked and dropped as the finger deformed during finger presses, indicating an initial dispersion and decrease of blood perfusion levels. Force sensitive resistors to force plate comparisons showed similar force curve patterns as fingers were depressed, indicating suitable functionality for future testing. Strategies for proper placement and protection of these sensors for ideal data collection and longevity through the test session were developed and will be implemented going forward for future testing.

  12. On the flow generated by rotating flat plates of low aspect ratio

    NASA Astrophysics Data System (ADS)

    DeVoria, Adam C.

    Low-aspect-ratio propulsors typically allow for high maneuverability at low-to-moderate speeds. This has made them the subject of much recent research aimed at employing such appendages on autonomous vehicles which are required to navigate tumultuous environments. This experimental investigation focuses on the fluid dynamic aspects associated with overly-simplified versions of such biologically-inspired propulsors. In doing so, fundamental contributions are made to the research area. The unsteady, three-dimensional flow of a low-aspect-ratio, trapezoidal flat plate undergoing rotation from rest at a 90° angle of attack and Reynolds numbers of O(103) is investigated experimentally. The objectives are to develop a straightforward protocol for vortex saturation, and to understand the effects of the root-to-tip flow for different velocity programs. The experiments are conducted in a glass-walled tank, and digital particle image velocimetry is used to obtain planar velocity measurements. A formation-parameter definition is investigated and is found to reasonably predict the state corresponding to the pinch-off of the initial tip vortex across the velocity programs tested. The flow in the region near the tip is relatively insensitive to Reynolds number over the range studied. The component normal to the plate is unaffected by total rotational amplitude while the tangential component has dependence on this angle. Also, an estimate of the first tip-vortex pinch-off time is obtained from the near-tip velocity data and agrees very well with values estimated using circulation. The angle of incidence of the bulk root-to-tip flow relative to the plate normal becomes more oblique with increasing rotational amplitude. Accordingly, the peak magnitude of the tangential velocity is also increased and as a result advects fluid momentum away from the plate at a higher rate. The more oblique impingement of the root-to-tip flow for increasing rotational amplitude is shown to have a distinct effect on the associated fluid dynamic force normal to the plate. For impulsive plate deceleration the time that a non-negligible force exists decreases, while for non-impulsive plate deceleration both this time and the relative force magnitude decrease for larger rotational amplitudes. In a separate set of experiments, force measurements are conducted on a similar plate that performs an advancing stroke from rest followed by a returning stroke. The parameters varied are the rotational amplitude of the motion and the rest time between the advancing and returning strokes. The unsteady normal forces track with the angular acceleration of the plate, with the added mass force peak in the returning stroke being larger than that in the advancing stroke. However, as the rest time is increased, the normal forces generated in each stroke become dynamically similar. The maximum total impulse is calculated from the force measurements and rapidly decays from its largest value at zero rest time and asymptotes to a constant with increased rest time. The direction of this impulse is also calculated and quickly approaches the direction about which the plate motion is symmetric. The largest additional impulse contribution obtained from executing a returning stroke within a finite time is approximately 18%. Increases in rotational amplitude initially increase the maximum total impulse, but it then plateaus at an amplitude of around 90 degrees. For non-zero rest times, any maxima of the impulse in a fixed direction are weak and necessarily reduced from the maximum possible impulse. For a nearly 100 degrees range of directions, the impulse is largest for rotational amplitudes between 75--90 degrees. The results are also applied to three types of propulsive configurations.

  13. Efficacy of an ankle brace with a subtalar locking system in inversion control in dynamic movements.

    PubMed

    Zhang, Songning; Wortley, Michael; Chen, Qingjian; Freedman, Julia

    2009-12-01

    Controlled laboratory study. To examine effectiveness of an ankle brace with a subtalar locking system in restricting ankle inversion during passive and dynamic movements. Semirigid ankle braces are considered more effective in restricting ankle inversion than other types of brace, but a semirigid brace with a subtalar locking system may be even more effective. Nineteen healthy subjects with no history of major lower extremity injuries were included in the study. Participants performed 5 trials of an ankle inversion drop test and a lateral-cutting movement without wearing a brace and while wearing either the Element (with the subtalar locking system), a Functional ankle brace, or an ASO ankle brace. A 2-way repeated-measures analysis of variance (ANOVA) was used to assess brace differences (P?.05). All 3 braces significantly reduced total passive ankle frontal plane range of motion (ROM), with the Element ankle brace being the most effective. For the inversion drop the results showed significant reductions in peak ankle inversion angle and inversion ROM for all 3 braces compared to the no brace condition; and the peak inversion velocity was also reduced for the Element brace and the Functional brace. In the lateral-cutting movement, a small but significant reduction of the peak inversion angle in early foot contact and the peak eversion velocity at push-off were seen when wearing the Element and the Functional ankle braces compared to the no brace condition. Peak vertical ground reaction force was reduced for the Element brace compared to the ASO brace and the no brace conditions. These results suggest that the tested ankle braces, especially the Element brace, provided effective restriction of ankle inversion during both passive and dynamic movements.

  14. Contribution of river floods, hurricanes, and cold fronts to elevation change in a deltaic floodplain, northern Gulf of Mexico, USA

    NASA Astrophysics Data System (ADS)

    Bevington, Azure E.; Twilley, Robert R.; Sasser, Charles E.; Holm, Guerry O.

    2017-05-01

    Deltas are globally important locations of diverse ecosystems, human settlement, and economic activity that are threatened by reductions in sediment delivery, accelerated sea level rise, and subsidence. Here we investigated the relative contribution of river flooding, hurricanes, and cold fronts on elevation change in the prograding Wax Lake Delta (WLD). Sediment surface elevation was measured across 87 plots, eight times from February 2008 to August 2011. The high peak discharge river floods in 2008 and 2011 resulted in the greatest mean net elevation gain of 5.4 to 4.9 cm over each flood season, respectively. The highest deltaic wetland sediment retention (13.5% of total sediment discharge) occurred during the 2008 river flood despite lower total and peak discharge compared to 2011. Hurricanes Gustav and Ike resulted in a total net elevation gain of 1.2 cm, but the long-term contribution of hurricane derived sediments to deltaic wetlands was estimated to be just 22% of the long-term contribution of large river floods. Winter cold front passage resulted in a net loss in elevation that is equal to the elevation gain from lower discharge river floods and was consistent across years. This amount of annual loss in elevation from cold fronts could effectively negate the long-term land building capacity within the delta without the added elevation gain from both high and low discharge river floods. The current lack of inclusion of cold front elevation loss in most predictive numerical models likely overestimates the land building capacity in areas that experience similar forcings to WLD.

  15. The Motor and the Brake of the Trailing Leg in Human Walking: Leg Force Control Through Ankle Modulation and Knee Covariance

    PubMed Central

    Toney, Megan E.; Chang, Young-Hui

    2016-01-01

    Human walking is a complex task, and we lack a complete understanding of how the neuromuscular system organizes its numerous muscles and joints to achieve consistent and efficient walking mechanics. Focused control of select influential task-level variables may simplify the higher-level control of steady state walking and reduce demand on the neuromuscular system. As trailing leg power generation and force application can affect the mechanical efficiency of step-to-step transitions, we investigated how joint torques are organized to control leg force and leg power during human walking. We tested whether timing of trailing leg force control corresponded with timing of peak leg power generation. We also applied a modified uncontrolled manifold analysis to test whether individual or coordinated joint torque strategies most contributed to leg force control. We found that leg force magnitude was adjusted from step-to-step to maintain consistent leg power generation. Leg force modulation was primarily determined by adjustments in the timing of peak ankle plantar-flexion torque, while knee torque was simultaneously covaried to dampen the effect of ankle torque on leg force. We propose a coordinated joint torque control strategy in which the trailing leg ankle acts as a motor to drive leg power production while trailing leg knee torque acts as a brake to refine leg power production. PMID:27334888

  16. Commercial spaceflight participant G-force tolerance during centrifuge-simulated suborbital flight.

    PubMed

    Blue, Rebecca S; Riccitello, Jon M; Tizard, Julia; Hamilton, Richard J; Vanderploeg, James M

    2012-10-01

    Medical knowledge of the human body in microgravity and hypergravity is based upon studies of healthy individuals well-conditioned for such environments. Little data exist regarding the effects of spaceflight on untrained commercial passengers. We examined the responses of potential spaceflight participants (SFP) to centrifuge G-force exposure. There were 77 individuals (65 men, 12 women), 22-88 yr old, who underwent 6 centrifuge runs over 48 h. Day 1 consisted of two +Gz runs (peak = 3.5+Gz, run 2) and two +Gx runs (peak = 6.0+Gx, run 4). Day 2 consisted of two runs approximating a suborbital spaceflight profile. Data included blood pressure, electrocardiogram, and postrun questionnaires regarding motion sickness, disorientation, greyout, and other symptoms. Of the 77 participants, average age was 50.4 +/- 12.7 yr. Average heart rate (HR) varied by sex and direction of G-exposure (+Gz: F 150 +/- 19, M 123 +/- 27; +Gx: F 135 +/- 30, M 110 +/- 27). Age and peak HR were inversely related (HR < 120 bpm: 60.2 +/- 12.2 yr, HR > 120: 47.1 +/- 10.9 yr). HR during peak G-exposure for the final run was associated with post-run imbalance (no imbalance: HR 126 +/- 26, imbalance: HR 145 +/- 21); no other significant hemodynamic change, sex, or age variation was associated with imbalance. Age and greyout were inversely associated; there was no association between greyout and vital sign change, sex, or G-force magnitude. Baseline/pretrial mean arterial pressure (MAP) was not associated with any symptoms. The results suggest that most individuals with well-controlled medical conditions can withstand acceleration forces involved in launch/landing profiles of commercial spaceflight vehicles. Further investigation will help refine which conditions present significant risk during suborbital flight and beyond.

  17. An Investigation Into the Relationship Between Maximum Isometric Strength and Vertical Jump Performance.

    PubMed

    Thomas, Christopher; Jones, Paul A; Rothwell, James; Chiang, Chieh Y; Comfort, Paul

    2015-08-01

    Research has demonstrated a clear relationship between dynamic strength and vertical jump (VJ) performance; however, the relationship of isometric strength and VJ performance has been studied less extensively. The aim of this study was to determine the relationship between isometric strength and performance during the squat jump (SJ) and countermovement jump (CMJ). Twenty-two male collegiate athletes (mean ± SD; age = 21.3 ± 2.9 years; height = 175.63 ± 8.23 cm; body mass = 78.06 ± 10.77 kg) performed isometric midthigh pulls (IMTPs) to assess isometric peak force (IPF), maximum rate of force development, and impulse (IMP) (I100, I200, and I300). Force-time data, collected during the VJs, were used to calculate peak velocity, peak force (PF), peak power (PP), and jump height. Absolute IMTP measures of IMP showed the strongest correlations with VJ PF (r = 0.43-0.64; p ≤ 0.05) and VJ PP (r = 0.38-0.60; p ≤ 0.05). No statistical difference was observed in CMJ height (0.33 ± 0.05 m vs. 0.36 ± 0.05 m; p = 0.19; ES = -0.29) and SJ height performance (0.29 ± 0.06 m vs. 0.33 ± 0.05 m; p = 0.14; ES = -0.34) when comparing stronger to weaker athletes. The results of this study illustrate that absolute IPF and IMP are related to VJ PF and PP but not VJ height. Because stronger athletes did not jump higher than weaker athletes, dynamic strength tests may be more practical methods of assessing the relationships between relative strength levels and dynamic performance in collegiate athletes.

  18. Ertl and Non-Ertl amputees exhibit functional biomechanical differences during the sit-to-stand task.

    PubMed

    Ferris, Abbie E; Christiansen, Cory L; Heise, Gary D; Hahn, David; Smith, Jeremy D

    2017-05-01

    People with transtibial amputation stand ~50times/day. There are two general approaches to transtibial amputation: 1) distal tibia and fibula union using a "bone-bridge" (Ertl), 2) non-union of the tibia and fibula (Non-Ertl). The Ertl technique may improve functional outcomes by increasing the end-bearing ability of the residual limb. We hypothesized individuals with an Ertl would perform a five-time sit-to-stand task faster through greater involvement/end-bearing of the affected limb. Ertl (n=11) and Non-Ertl (n=7) participants sat on a chair with each foot on separate force plates and performed the five-time sit-to-stand task. A symmetry index (intact vs affected limbs) was calculated using peak ground reaction forces. The Ertl group performed the task significantly faster (9.33s (2.66) vs 13.27 (2.83)s). Symmetry index (23.33 (23.83)% Ertl, 36.53 (13.51)% Non-Ertl) indicated the intact limb for both groups produced more force than the affected limb. Ertl affected limb peak ground reaction forces were significantly larger than the Non-Ertl affected limb. Peak knee power and net work of the affected limb were smaller than their respective intact limb for both groups. The Ertl intact limb produced significantly greater peak knee power and net work than the Non-Ertl intact knee. Although loading asymmetries existed between the intact and affected limb of both groups, the Ertl group performed the task ~30% faster. This was driven by greater power and work production of the Ertl intact limb knee. Our results suggest that functional differences exist between the procedures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Magnitude and pattern of Arctic warming governed by the seasonality of radiative forcing.

    PubMed

    Bintanja, R; Krikken, F

    2016-12-02

    Observed and projected climate warming is strongest in the Arctic regions, peaking in autumn/winter. Attempts to explain this feature have focused primarily on identifying the associated climate feedbacks, particularly the ice-albedo and lapse-rate feedbacks. Here we use a state-of-the-art global climate model in idealized seasonal forcing simulations to show that Arctic warming (especially in winter) and sea ice decline are particularly sensitive to radiative forcing in spring, during which the energy is effectively 'absorbed' by the ocean (through sea ice melt and ocean warming, amplified by the ice-albedo feedback) and consequently released to the lower atmosphere in autumn and winter, mainly along the sea ice periphery. In contrast, winter radiative forcing causes a more uniform response centered over the Arctic Ocean. This finding suggests that intermodel differences in simulated Arctic (winter) warming can to a considerable degree be attributed to model uncertainties in Arctic radiative fluxes, which peak in summer.

  20. Evaluation of a multiarray system for pharmaceutical analysis by microemulsion electrokinetic chromatography.

    PubMed

    Lynen, Frederic; Saavedra, Luis; Saveedra, Luis; Nickerson, Beverly; Sandra, Pat

    2011-05-15

    A multiplexed capillary electrophoresis (CE) system equipped with 96 channels was evaluated for high-throughput screening in drug discovery by microemulsion electrokinetic chromatography (MEEKC). Method transfer from a single channel to a multichannel CE system is described. Loss of efficiency and reduced migration times could be elucidated to the poor efficacy in Joule heat dissipation by forced air cooling in the multiarray system compared to liquid cooling in the single channel instrument. On the other hand, only 48 channels could actually be used because of the maximum total current of 3 mA. Precision data remained below 8% and 9% for migration times and peak areas, respectively. Some UV-detector cross-talk interference between neighboring capillary channels was noted. Impurities at 0.5% compared to the main peak (100%) could be detected with the multiplexed system which is 10 times lower compared to the single capillary system. Higher efficiency and improved figures of merit (absolute sensitivity and no cross-talk interferences) were obtained by using an array of only 24 capillaries. Copyright © 2011 Elsevier B.V. All rights reserved.

Top