Science.gov

Sample records for peak x-ray power

  1. Discovery of the correlation between peak episodic jet power and X-ray peak luminosity of the soft state in black hole transients

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Yu, W.

    2015-08-01

    Episodic jets are usually observed in the intermediate state of black hole transients during their X-ray outbursts. Here we report the discovery of a strong positive correlation between the peak radio power of the episodic jet Pjet and the corresponding peak X-ray luminosity Lx of the soft state (in Eddington units) in a complete sample of the outbursts of black hole transients observed during the RXTE era of which data are available, which follows the relation log Pjet = (2.2 ± 0.3) + (1.6 ± 0.2) × log Lx. The transient ultraluminous X-ray source in M31 and HLX-1 in EXO 243-49 fall on the relation if they contain stellar-mass black hole and either stellar-mass black hole or intermediate-mass black hole, respectively. Besides, a significant correlation between the peak power of the episodic jet and the rate of increase of the X-ray luminosity dLx/dt during the rising phase of those outbursts is also found, following log Pjet = (2.0 ± 0.4) + (0.7 ± 0.2) × log dLx/dt. In GX 339-4 and H 1743-322 in which data for two outbursts are available, measurements of the peak radio power of the episodic jet and the X-ray peak luminosity (and its rate of change) shows similar positive correlations between outbursts, which demonstrate the dominant role of accretion over black hole spin in generating episodic jet power. On the other hand, no significant difference is seen among the systems with different measured black hole spin in current sample. This implies that the power of the episodic jet is strongly affected by non-stationary accretion instead of black hole spin characterized primarily by the rate of change of the mass accretion rate.

  2. Multi-tens of GW peak power plasma-based soft x-ray laser

    NASA Astrophysics Data System (ADS)

    Oliva, E.; Fajardo, M.; Li, L.; Le, T. T. T.; Ros, D.; Sebban, S.; Velarde, P.; Zeitoun, P.

    2013-09-01

    Ultra-intense X-ray sources have opened new avenues by creating new states of matter or probing and imaging living or inert matter. Free-electron lasers have a strong leadership by delivering pulses combining femtosecond duration and 10s of microJoules to milliJoule energy. However, these sources remain highly expensive limiting their number to a few worldwide. In parallel, laser-pumped soft X-ray lasers hold outstanding promises having demonstrated the most energetic monochromatic soft x-ray pulse and being intrinsically fully synchronized with any secondary source of the pump laser. Since the first successful demonstration of amplification of a high harmonic pulse in a plasma from gas in 2003 and from solid in 2008, we have developed an extensive numerical study. 2D hydrodynamic simulations showed that optimized Transient Collisional Excitation plasma amplifiers, may store up to 0.4 mJ in the population inversion. If carefully seeded, pulses of 80 fs and 20 μJ might be generated with table-top lasers (10J). As the energy extracted is far from the milliJoule requirements of most exciting applications, we studied the seminal experiment of Ditmire et al who seeded a plasma emitting milliJoules in the form of Amplified Spontaneous Emission (ASE).We retrieved and explained for the first time the experimental result (ASE 1,000 times stronger than amplified seed). We thus proposed and fully modeled the transposition of the so-called Chirped Pulse Amplification (CPA) in the soft X-ray range, showing that 6 mJ, 200 fs, fully coherent soft X-ray pulse is accessible with compact pump lasers.

  3. X-Ray-powered Macronovae

    NASA Astrophysics Data System (ADS)

    Kisaka, Shota; Ioka, Kunihito; Nakar, Ehud

    2016-02-01

    A macronova (or kilonova) was observed as an infrared excess several days after the short gamma-ray burst GRB 130603B. Although the r-process radioactivity is widely discussed as an energy source, it requires a huge mass of ejecta from a neutron star (NS) binary merger. We propose a new model in which the X-ray excess gives rise to the simultaneously observed infrared excess via thermal re-emission, and explore what constraints this would place on the mass and velocity of the ejecta. This X-ray-powered model explains both the X-ray and infrared excesses with a single energy source such as the central engine like a black hole, and allows for a broader parameter region than the previous models, in particular a smaller ejecta mass ˜ {10}-3{--}{10}-2{M}⊙ and higher iron abundance mixed as suggested by general relativistic simulations for typical NS-NS mergers. We also discuss the other macronova candidates in GRB 060614 and GRB 080503, and the implications for the search of electromagnetic counterparts to gravitational waves.

  4. EFFECT OF SATELLITE LINES FROM X-RAY SOURCE ON X-RAY DIFFRACTION PEAKS

    EPA Science Inventory

    The article discusses the development of a method for relating reactivity to crystallite size and strain parameters obtained by the Warren-Averbach technique. PA has been using crystallite size and strain data obtained from x-ray diffraction (XRD) peak profile analysis to predict...

  5. Using computational modeling to compare X-ray tube Practical Peak Voltage for Dental Radiology

    NASA Astrophysics Data System (ADS)

    Holanda Cassiano, Deisemar; Arruda Correa, Samanda Cristine; de Souza, Edmilson Monteiro; da Silva, Ademir Xaxier; Pereira Peixoto, José Guilherme; Tadeu Lopes, Ricardo

    2014-02-01

    The Practical Peak Voltage-PPV has been adopted to measure the voltage applied to an X-ray tube. The PPV was recommended by the IEC document and accepted and published in the TRS no. 457 code of practice. The PPV is defined and applied to all forms of waves and is related to the spectral distribution of X-rays and to the properties of the image. The calibration of X-rays tubes was performed using the MCNPX Monte Carlo code. An X-ray tube for Dental Radiology (operated from a single phase power supply) and an X-ray tube used as a reference (supplied from a constant potential power supply) were used in simulations across the energy range of interest of 40 kV to 100 kV. Results obtained indicated a linear relationship between the tubes involved.

  6. 2009 Observations of X-rays at South Baldy Peak

    NASA Astrophysics Data System (ADS)

    Lundberg, J.; Millan, R.

    2009-12-01

    Observations of x-rays were made using two scintillator detectors (a 3x3 in. NaI crystal and a 1.5x1.5 in. LaBr(Ce) crystal) atop South Baldy Peak, New Mexico from July until September in an attempt to observe x-ray emissions from lightning strikes. It has been observed previously that accelerated electrons in lightning produce Bremsstrahlung that can be seen with ground detectors. The output of the two detectors was digitized without the use of pre-amplification to preserve pulse shapes during high count rate events. Being presented is data from these observations as well as comparisons of analysis techniques that can be used to decompose simple output pulses from scintillator detectors.

  7. X-ray photoelectron spectroscopy peak assignment for perfluoropolyether oils

    NASA Technical Reports Server (NTRS)

    Mori, Shigeyuki; Morales, Wilfredo

    1990-01-01

    Perfluoroalkylpolyether (PFPE) oils are increasingly being used as vacuum pump oils and as lubricants for magnetic recording media and instrumentation for satellites. In this paper, the relative binding energies of three PFPE oils are determined. When sample oils are continuously irradiated during X-ray spectroscopy (XPS) measurements, the relative peak intensity of the spectra is altered significantly, indicating that gaseous products form from the oils during XPS measurements. Thus, attention should be paid to chemical changes when XPE is used to characterize fluorinated carbons such as PFPE oils.

  8. High power distributed x-ray source

    NASA Astrophysics Data System (ADS)

    Frutschy, Kris; Neculaes, Bogdan; Inzinna, Lou; Caiafa, Antonio; Reynolds, Joe; Zou, Yun; Zhang, Xi; Gunturi, Satish; Cao, Yang; Waters, Bill; Wagner, Dave; De Man, Bruno; McDevitt, Dan; Roffers, Rick; Lounsberry, Brian; Pelc, Norbert J.

    2010-04-01

    This paper summarizes the development of a distributed x-ray source with up to 60kW demonstrated instantaneous power. Component integration and test results are shown for the dispenser cathode electron gun, fast switching controls, high voltage stand-off insulator, brazed anode, and vacuum system. The current multisource prototype has been operated for over 100 hours without failure, and additional testing is needed to discover the limiting component. Example focal spot measurements and x-ray radiographs are included. Lastly, future development opportunities are highlighted.

  9. Flywheel-powered X-ray generator

    NASA Technical Reports Server (NTRS)

    Siedband, M. P.

    1984-01-01

    The use of a small flywheel appears to be a practical alternative to other power sources for mobile X-ray system applications. A 5 kg flywheel has been constructed which runs at 10 krpm and stores 30 KJ while requiring less than 500 W to bring the system up to speed. The wheel is coupled to an aircraft alternator and can yield pulsed power levels over 50 KWp. The aircraft alternator has the advantage of high frequency output which has also permitted the design of smaller high voltage transformers. A series of optical sensors detecting shaft position function as an electronic commutator so that the alternator may operate as a motor to bring the wheel up to operating speed. The system permits the generation of extremely powerful X-rays from a variety of low power sources such as household power outlets, automobile batteries or sources of poorly regulated electrical power such as those found in third world countries.

  10. Accretion powered X-ray pulsars

    NASA Technical Reports Server (NTRS)

    White, N. E.; Swank, J. H.; Holt, S. S.

    1982-01-01

    A unified description of the properties of 14 X-ray pulsars is presented and compared with the current theoretical understanding of these systems. The sample extends over six orders of magnitude in luminosity, with the only trend in the phase averaged spectra being that the lower luminosity systems appear to have less abrupt high energy cutoffs. There is no correlation of luminosity with power law index, high energy cutoff energy or iron line EW. Detailed pulse phase spectroscopy is given for five systems.

  11. THE EFFECT OF SATELLITE LINES FROM THE X-RAY SOURCE ON X-RAY DIFFRACTION PEAKS

    EPA Science Inventory

    The article discusses the development of a method for relating reactivity to crystallite size and strain parameters obtained by the Warren-Averbach technique. EPA has been using crystallite size and strain data obtained from x-ray diffraction (XRD) peak profile analysis to predic...

  12. Dante Soft X-ray Power Diagnostic for NIF

    SciTech Connect

    Dewald, E; Campbell, K; Turner, R; Holder, J; Landen, O; Glenzer, S; Kauffman, R; Suter, L; Landon, M; Rhodes, M; Lee, D

    2004-04-15

    Soft x-ray power diagnostics are essential for measuring spectrally resolved the total x-ray flux, radiation temperature, conversion efficiency and albedo that are important quantities for the energetics of indirect drive hohlraums. At the Nova or Omega Laser Facilities, these measurements are performed mainly with Dante, but also with DMX and photo-conductive detectors (PCD's). The Dante broadband spectrometer is a collection of absolute calibrated vacuum x-ray diodes, thin filters and x-ray mirrors used to measure the soft x-ray emission for photon energies above 50 eV.

  13. Infrared peak in HZ Herculis prior to X-ray eclipse

    SciTech Connect

    Gnedin, IU.N.; Kirian, V.V.; Krat, A.V.; Pogodin, M.A.; Tarasov, A.E.

    1986-04-01

    In the summer and autumn of 1984, HZ Her (one of the stars in the Hercules X-1 binary system) was observed in the IR (J, H, and K bands) with the 125-cm AZT-11 telescope of the Crimean Astrophysical Observatory. The observations of the star disclosed a sharp IR peak at orbital phase phi = 0.91, shortly before an X-ray eclipse, reaching a power greater than about 10 to the 36th erg/s. Although several hypotheses are suggested to provide an interpretation of this phenomenon, none of the proposed mechanisms can fully explain the peculiarities in the object's light curves close to eclipse. 16 references.

  14. X-ray Emission of Low-Energy-Peaked BL Lacertae Objects

    SciTech Connect

    Randall, Jill M.; Perlman, Eric S.

    2009-12-18

    Presented here is an analysis of X-ray observations of the following seven low-energy-peaked BL Lacertae objects: BL Lacertae, S5 0716+71, W Comae, 3C 66A, S4 0954+65, OJ 287, and AO 0235+16. The spectral data for these objects were taken from observations by the XMM-Newton and/or Chandra X-ray observatories. These objects are being analyzed in an effort to reanalyze all XMM-Newton and Chandra data of low-energy BL Lacs, similar to the efforts of Perlman et al.[4] for high energy BL Lacs. The objects were studied in an effort to understand the nature of the X-ray and multi-waveband emissions in these objects, study the shape of the spectra, and compare the observations of low-energy-peaked BL Lacs to previous observations of these objects and also to observations of high-energy-peaked BL Lacs. Light curves and spectra were analyzed to look for evidence of spectral variability in the objects and as a comparison to previous research on these objects. Most data shows both synchrotron and Inverse-Compton emission, though only little correlation was seen between the emission strength and the spectral slope. Our data is generally well-fitted to a broken power law model with distinct bimodality seen in the first spectral index (six observations with {Gamma}{sub 1{approx}}0.4 and four observations with {Gamma}{sub 1{approx}}3.0), a break in energy between 0.6 and 1.4 keV, and a second spectral index {Gamma}{sub 2{approx}}2.0. None of the observations showed spectral lines, which is consistent with past results. For S5 0716+71 the XMM-Newton X-ray and optical data, along with radio data obtained from the University of Michigan Radio Astronomy Observatory (UMRAO), a spectral energy distribution was created and peak frequencies were estimated.

  15. The x ray variability of NGC6814: Power spectra

    NASA Technical Reports Server (NTRS)

    Done, C.; Madejski, G. M.; Mushotsky, R. F.; Turner, T. J.; Koyama, K.; Kunieda, H.

    1992-01-01

    Simulation techniques are used to obtain the X-ray variability power spectrum of unevenly sampled GINGA data from NGC6814. A simple power law is not an adequate description of the power spectrum, with the residuals showing excess power on timescales consistent with the periodicity seen in EXOSAT observations of this object. However the shape of the folded lightcurve is very different, with 3 main peaks, two of which are separated by an extremely sharp dip instead of the single peak and small harmonic structure observed by EXOSAT. Using the dip as a fiducial mark, a second GINGA observation of this source taken one year later is found to be consistent with being completely periodic and phase coherent with this first GINGA observation. Thus the period is consistent with being constant over a period of 6 years, but phase coherence is only maintained on timescales of approximately 1 year. Over 75 percent of the total source variability is due to the periodic component (r.m.s. amplitude of 36 percent). The residual variability can be described as the more usual 'flicker noise' f(exp -1.1) powerlaw. This shows no apparent high frequency break on timescales greater than 300 seconds. Subtle differences in the shape of the folded light curve with energy, and the very large amount of power in the periodic component suggest occultation as its origin, though amplification of variability from an X-ray emitting 'hot spot' at the disk inner radius through gravitational lensing is also possible. The former suffers from the very arbitrary nature of the periodic timescale, while the latter is unattractive as it cannot simply explain the lack of high frequency break in the residual power. That these models probably fail to provide an adequate explanation may be due to the added complexity of anisotropy of the X-ray emission, suggested by the discrepancy between the lack of soft photons implied by the flat spectrum and the copious source of soft photons available from reprocessing in

  16. Time-Resolved Imaging of Cryogenic Target X-Ray Emission at Peak Compression on OMEGA

    NASA Astrophysics Data System (ADS)

    Marshall, F. J.; Delettrez, J. A.; Epstein, R.; Goncharov, V. N.; Michel, D. T.; Sangster, T. C.; Stoeckl, C.

    2014-10-01

    This talk will describe the measurements of cryogenic target region size and time history inferred from the combination of a high-speed x-ray framing camera and two time-integrating x-ray microscopes. The high-speed framing camera infers the time of peak stagnation from pinhole images taken at 30-ps time intervals with 30-ps frame times and with ~15 μm resolution. The two Kirkpatrick-Baez-type x-ray microscopes have spatial resolutions of ~5 μm and ~7 μm respectively, and are currently time integrating. The inferred x-ray core size and emission time interval will be compared to the measured neutron emission time and to simulations of the experiments. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  17. Measuring the dynamical state of Planck SZ-selected clusters: X-ray peak - BCG offset

    NASA Astrophysics Data System (ADS)

    Rossetti, M.; Gastaldello, F.; Ferioli, G.; Bersanelli, M.; De Grandi, S.; Eckert, D.; Ghizzardi, S.; Maino, D.; Molendi, S.

    2016-04-01

    We want to characterize the dynamical state of galaxy clusters detected with the Sunyaev-Zeldovich (SZ) effect by Planck and compare them with the dynamical state of clusters selected in X-rays survey. We analysed a representative subsample of the Planck SZ catalogue, containing the 132 clusters with the highest signal to noise ratio and characterize their dynamical state using as an indicator the projected offset between the peak of the X-ray emission and the position of the Brightest cluster galaxy. We compare the distribution of this indicator for the Planck SZ-selected sample and three X-ray-selected samples (HIFLUGCS, MACS and REXCESS). The distributions are significantly different and the fraction of relaxed objects is smaller in the Planck sample (52 ± 4 per cent) than in X-ray samples (≃74 per cent) We interpret this result as an indication of different selection effects affecting X-rays (e.g. `cool core bias') and SZ surveys of galaxy clusters.

  18. EVIDENCE FOR POLAR X-RAY JETS AS SOURCES OF MICROSTREAM PEAKS IN THE SOLAR WIND

    SciTech Connect

    Neugebauer, Marcia

    2012-05-01

    It is proposed that the interplanetary manifestations of X-ray jets observed in solar polar coronal holes during periods of low solar activity are the peaks of the so-called microstreams observed in the fast polar solar wind. These microstreams exhibit velocity fluctuations of {+-}35 km s{sup -1}, higher kinetic temperatures, slightly higher proton fluxes, and slightly higher abundances of the low-first-ionization-potential element iron relative to oxygen ions than the average polar wind. Those properties can all be explained if the fast microstreams result from the magnetic reconnection of bright-point loops, which leads to X-ray jets which, in turn, result in solar polar plumes. Because most of the microstream peaks are bounded by discontinuities of solar origin, jets are favored over plumes for the majority of the microstream peaks.

  19. PLEIADES: High Peak Brightness, Subpicosecond Thomson Hard-X-ray source

    SciTech Connect

    Kuba, J; Anderson, S G; Barty, C J; Betts, S M; Booth, R; Brown, W J; Crane, J K; Cross, R R; Fittinghoff, D N; Gibson, D J; Harteman, F V; Le Sage, G P; Rosenzweig, J B; Tremaine, A M; Springer, P T

    2003-12-15

    The Picosecond Laser-Electron Inter-Action for the Dynamic Evaluation of Structures (PLEIADES) facility, is a unique, novel, tunable (10-200 keV), ultrafast (ps-fs), hard x-ray source that greatly extends the parameter range reached by existing 3rd generation sources, both in terms of x-ray energy range, pulse duration, and peak brightness at high energies. First light was observed at 70 keV early in 2003, and the experimental data agrees with 3D codes developed at LLNL. The x-rays are generated by the interaction of a 50 fs Fourier-transform-limited laser pulse produced by the TW-class FALCON CPA laser and a highly focused, relativistic (20-100 MeV), high brightness (1 nC, 0.3-5 ps, 5 mm.mrad, 0.2% energy spread) photo-electron bunch. The resulting x-ray brightness is expected to exceed 10{sup 20} ph/mm{sup 2}/s/mrad{sup 2}/0.1% BW. The beam is well-collimated (10 mrad divergence over the full spectrum, 1 mrad for a single color), and the source is a unique tool for time-resolved dynamic measurements in matter, including high-Z materials.

  20. Soft x-ray diagnostics for pulsed power machines

    SciTech Connect

    Idzorek, G.C.; Coulter, W.L.; Walsh, P.J.; Montoya, R.R.

    1995-08-01

    A variety of soft x-ray diagnostics are being fielded on the Los Alamos National Laboratory Pegasus and Procyon pulsed power systems and also being fielded on joint US/Russian magnetized target fusion experiments known as MAGO (Magnitoye Obzhatiye). The authors have designed a low-cost modular photoemissive detector designated the XRD-96 that uses commercial 1100 series aluminum for the photocathode. In addition to photocathode detectors a number of designs using solid state silicon photodiodes have been designed and fielded. They also present a soft x-ray time-integrated pinhole camera system that uses standard type TMAX-400 photographic film that obviates the need for expensive and no longer produced zero-overcoat soft x-ray emulsion film. In a typical experiment the desired spectral energy cuts, signal intensity levels, and desired field of view will determine diagnostic geometry and x-ray filters selected. The authors have developed several computer codes to assist in the diagnostic design process and data deconvolution. Examples of the diagnostic design process and data analysis for a typical pulsed power experiment are presented.

  1. Origins of sp(3)C peaks in C1s X-ray Photoelectron Spectra of Carbon Materials.

    PubMed

    Fujimoto, Ayaka; Yamada, Yasuhiro; Koinuma, Michio; Sato, Satoshi

    2016-06-21

    X-ray photoelectron spectroscopy (XPS) is among the most powerful techniques to analyze defective structures of carbon materials such as graphene and activated carbon. However, reported assignments of defects, especially sp(3)C and sp(2)C, are questionable. Most reports assign sp(3)C peaks to be higher than sp(2)C peaks, whereas a few reports assign sp(3)C peaks to be lower than sp(2)C peaks. Our group previously reported that calculated binding energies of sp(3)C were basically lower than those of sp(2)C. This work clarified that one of the reasons for the prevailing ambiguous assignments of sp(3)C peaks is charging effects of diamond. PMID:27264720

  2. Electron beam stability and beam peak to peak motion data for NSLS X-Ray storage ring

    SciTech Connect

    Singh, O.

    1993-07-01

    In the past two years, a significant reduction in electron beam motion has been achieved at the NSLS X-Ray storage ring. The implementation of global analog orbit feedbacks, based on a harmonics correction scheme, has reduced the beam motion globally. Implementation of six local analog feedback systems has reduced the beam motion even further at the corresponding beam line straight sections. This paper presents beam motion measurements, showing the improvement due to the feedback systems. Beam motion is measured using a spectrum analyzer and data is presented at various frequencies, where peaks were observed. Finally, some of the beam motion sources are discussed.

  3. Witnessing the Gradual Slowdown of Powerful Extragalactic Jets: The X-Ray-Optical-Radio Connection

    NASA Technical Reports Server (NTRS)

    Georganopoulos, Markos; Kazanas, Demosthenes

    2004-01-01

    A puzzling feature of the Chandra-detected quasar jets is that their X-ray emission decreases faster along the jet than their radio emission, resulting from an outward-increasing radio-to-X-ray ratio. In some sources this behavior is so extreme that the radio emission peak is located clearly downstream of that of the X-rays. This is a rather unanticipated behavior given that the inverse Compton nature of the X-rays and the synchrotron radio emission are attributed to roughly the same electrons of the jet's nonthermal electron distribution. In this letter we show that this morphological behavior can result from the gradual deceleration of a relativistic flow and that the offsets in peak emission at different wavelengths carry the imprint of this deceleration. This notion is consistent with another recent finding, namely, that the jets feeding the terminal hot spots of powerful radio galaxies and quasars are still relativistic with Lorentz factors GAMMA approximately 2-3. The picture of the kinematics of powerful jets emerging from these considerations is that they remain relativistic as they gradually decelerate from kiloparsec scales to the hot spots, where, in a final collision with the intergalactic medium, they slow down rapidly to the subrelativistic velocities of the hot spot advance speed.

  4. X-ray fluorescence (XRF) set-up with a low power X-ray tube.

    PubMed

    Gupta, Sheenu; Deep, Kanan; Jain, Lalita; Ansari, M A; Mittal, Vijay Kumar; Mittal, Raj

    2010-10-01

    The X-ray fluorescence set-up with a 100 W X-ray tube comprises a computer controlled system developed for remote operation and monitoring of tube and an adjustable stable 3D arrangement to procure variable excitation energies with low scattered background. The system was tested at different filament currents/anode voltages. The MDL of the set-up at 0.05-1.00 mA/4-12 kV is found approximately (1-100)ppm for K and L excitations and approximately (200-700)ppm for M excitations of elements and improves with filament current and anode voltage. Moreover, L measurements for Sm and Eu at five K X-ray energies of elements(Z=29-40) and analytical determination in some synthetic samples were undertaken. PMID:20570160

  5. Determination of the diagnostic x-ray tube practical peak voltage (PPV) from average or average peak voltage measurements.

    PubMed

    Hourdakis, C J

    2011-04-01

    The practical peak voltage (PPV) has been adopted as the reference measuring quantity for the x-ray tube voltage. However, the majority of commercial kV-meter models measure the average peak, Ū(P), the average, Ū, the effective, U(eff) or the maximum peak, U(P) tube voltage. This work proposed a method for determination of the PPV from measurements with a kV-meter that measures the average Ū or the average peak, Ū(p) voltage. The kV-meter reading can be converted to the PPV by applying appropriate calibration coefficients and conversion factors. The average peak k(PPV,kVp) and the average k(PPV,Uav) conversion factors were calculated from virtual voltage waveforms for conventional diagnostic radiology (50-150 kV) and mammography (22-35 kV) tube voltages and for voltage ripples from 0% to 100%. Regression equation and coefficients provide the appropriate conversion factors at any given tube voltage and ripple. The influence of voltage waveform irregularities, like 'spikes' and pulse amplitude variations, on the conversion factors was investigated and discussed. The proposed method and the conversion factors were tested using six commercial kV-meters at several x-ray units. The deviations between the reference and the calculated-according to the proposed method-PPV values were less than 2%. Practical aspects on the voltage ripple measurement were addressed and discussed. The proposed method provides a rigorous base to determine the PPV with kV-meters from Ū(p) and Ū measurement. Users can benefit, since all kV-meters, irrespective of their measuring quantity, can be used to determine the PPV, complying with the IEC standard requirements. PMID:21403184

  6. Analysis of low-angle x-ray scattering peaks from lyophilized biological samples

    NASA Astrophysics Data System (ADS)

    Desouky, Omar S.; Elshemey, Wael M.; Selim, Nabila S.; Ashour, Ahmed H.

    2001-08-01

    Low-angle x-ray scattering (LAXS) from lyophilized blood and its constituents is characterized by the presence of two peaks in the forward direction of scattering. These peaks are found to be sensitive to the variations in the molecular structure of a given sample. The present work aims to explore the nature of LAXS from a variety of lyophilized biological samples. It also aims to investigate the possibility that a certain biological macromolecule is responsible of the production of LAXS peaks. This is carried out through measurements of LAXS from complex biological samples and their basic constituents. Among the measured samples are haemoglobin (Hb), globin, haem, packed red blood cells, bovine albumin, egg albumin, milk, casein, glutamine, alanine, fat, muscle and DNA. A table containing some characteristic parameters of the LAXS profiles of these samples is also presented. Analysis of measured profiles shows that all lyophilized samples produce at least one relatively broad peak at a scattering angle around 10.35°. The full width at half maximum (FWHM) of this peak varies considerably among the measured samples. Except for milk and casein, one additional peak at a scattering angle around 4.65° is observed only in the LAXS profiles of proteins or protein-rich samples. This fact strongly suggests protein to be the biological macromolecule from which this characteristic peak originates. The same idea is further strengthened through discussion of some previous observations.

  7. Assembly of NASA's Most Powerful X-Ray Telescope Completed

    NASA Astrophysics Data System (ADS)

    1998-03-01

    Assembly of the world's most powerful X-ray telescope, NASA's Advanced X-ray Astrophysics Facility, was completed last week with the installation of its power-generating twin solar panels. The observatory is scheduled for launch aboard Space Shuttle mission STS-93, in December 1998. The last major components of the observatory were bolted and pinned into place March 4 at TRW Space & Electronics Group in Redondo Beach, Calif., and pre-launch testing of the fully assembled observatory began March 7. "Completion of the observatory's assembly process is a big step forward toward launch scheduled for the end of this year," said Fred Wojtalik, manager of the Observatory Projects Office at NASA's Marshall Space Flight Center in Huntsville, Ala. "With all the major components in place, we are now concentrating on a thorough pre-launch checkout of the observatory." "We're delighted to reach this major milestone for the program," said Craig Staresinich, TRW's Advanced X-ray Astrophysics Facility program manager. "The entire observatory team has worked hard to get to this point and will continue an exhaustive test program to ensure mission success. We're looking forward to delivering a truly magnificent new space capability to NASA later this summer." The first pre-launch test of the Advanced X-ray Astrophysics Facility was an acoustic test, which simulated the sound pressure environment inside the Space Shuttle cargo bay during launch. A thorough electrical checkout before and after the acoustic test verifies that the observatory and its science instruments can withstand the extreme sound levels and vibrations that accompany launch. "With 10 times the resolution and 50-100 times the sensitivity of any previous X-ray telescope, this observatory will provide us with a new perspective of our universe," said the project's chief scientist, Dr. Martin Weisskopf of Marshall Center. "We'll be able to study sources of X-rays throughout the universe, like colliding galaxies and black

  8. A wavelet transform algorithm for peak detection and application to powder x-ray diffraction data

    NASA Astrophysics Data System (ADS)

    Gregoire, John M.; Dale, Darren; van Dover, R. Bruce

    2011-01-01

    Peak detection is ubiquitous in the analysis of spectral data. While many noise-filtering algorithms and peak identification algorithms have been developed, recent work [P. Du, W. Kibbe, and S. Lin, Bioinformatics 22, 2059 (2006); A. Wee, D. Grayden, Y. Zhu, K. Petkovic-Duran, and D. Smith, Electrophoresis 29, 4215 (2008)] has demonstrated that both of these tasks are efficiently performed through analysis of the wavelet transform of the data. In this paper, we present a wavelet-based peak detection algorithm with user-defined parameters that can be readily applied to the application of any spectral data. Particular attention is given to the algorithm's resolution of overlapping peaks. The algorithm is implemented for the analysis of powder diffraction data, and successful detection of Bragg peaks is demonstrated for both low signal-to-noise data from theta-theta diffraction of nanoparticles and combinatorial x-ray diffraction data from a composition spread thin film. These datasets have different types of background signals which are effectively removed in the wavelet-based method, and the results demonstrate that the algorithm provides a robust method for automated peak detection.

  9. X-ray peak broadening studies of nanocrystalline hydroxyapatite by Williamson-Hall analysis

    NASA Astrophysics Data System (ADS)

    Venkateswarlu, K.; Chandra Bose, A.; Rameshbabu, N.

    2010-10-01

    Hydroxyapatite (HA) nanoparticles were prepared by microwave synthesis method and the obtained powder is annealed at 800 °C for 2 h. The annealed HA particles were characterized by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy methods. The HA size and morphology were examined using a transmission electron microscope (TEM). The XRD results reveal that the diffraction peaks of the annealed HA were of well crystalline and correspond to the hexagonal crystal structure. The XRD and FTIR results confirm the absence of secondary phases such as β-tricalcium phosphate (β-TCP) and calcium oxide in annealed HA particles. The TEM result confirms the hexagonal structure of annealed HA and the particles were observed to be of ellipsoid-like shaped morphology with less agglomeration. The lattice strain, crystallite size, lattice deformation stress and deformation energy density for annealed (800 °C) HA nanoparticles were estimated by Williamson-Hall-isotropic strain model ( W- H-ISM), W-H-anisotropic strain model ( W- H-ASM) and W-H-energy density model ( W- H-EDM) based on Williamson-Hall ( W- H) plot from powder X-ray diffraction data. The results of estimated average crystallite size of annealed HA by Scherrer and W- H plot methods were compared with TEM results. It is found that the average crystallite size measured by W- H plot methods is in good agreement with TEM results.

  10. Total x-ray power improvement on recent wire array experiments on the Z machine.

    SciTech Connect

    Jennings, Christopher A.; Ampleford, David J.; Porter, John Larry, Jr.; Cuneo, Michael Edward; Savage, Mark Edward; Rochau, Gregory Alan; Lopez, Mike R.; Jones, Brent Manley; Jones, Michael C.

    2010-11-01

    Recent experiments on the refurbished Z-machine were conducted using large diameter stainless steel arrays which produced x-ray powers of 260 TW. Follow-up experiments were then conducted utilizing tungsten wires with approximately the same total mass with the hypothesis that the total x-ray power would increase. On the large diameter tungsten experiments, the x-ray power averaged over 300 TW and the total x-ray energy was greater than 2MJ. Different analysis techniques for inferring the x-ray power will be described in detail.

  11. Origin of nondetectable x-ray diffraction peaks in nanocomposite CuTiZr alloys

    NASA Astrophysics Data System (ADS)

    Jiang, J. Z.; Kato, H.; Ohsuna, T.; Saida, J.; Inoue, A.; Saksl, K.; Franz, H.; Stâhl, K.

    2003-10-01

    Microscopic structures of Cu60Ti10+xZr30-x (x=0 and 10) alloys have been investigated by transmission electron microscopy, x-ray diffraction (XRD) and differential scanning calorimeter (DSC). In the Cu60Ti10Zr30 samples annealed at 708 K for times ranging from 0 to 130 min, where the enthalpy of the first exothermic peak decreases by 80%, the corresponding XRD patterns still look similar to that for the as-prepared sample. However, the simulated XRD patterns for the pure Cu51Zr14 phase, which is the crystalline phase formed during the first exothermic reaction, with small grain sizes and defects clearly show a broadened amorphous-like feature. This might be the reason that no diffraction peaks from the nanocrystalline component were detected in the XRD patterns recorded for the as-cast or as-spun Cu60Ti10+xZr30-x (x=0 and 10) alloys and for the alloys annealed at lower temperatures, in which the enthalpy of the first exothermic peak has a significant reduction. The second exothermic peak found in DSC curves is due to the formation of another hexagonal phase, spacing group P63/mmc (194) and lattice parameters a=5.105 Å and c=8.231 Å.

  12. [A novel voltage multiplier for X-ray power supply].

    PubMed

    Tang, Zhide; Yang, Hong; Wang, Guantao; Zhang, Zhengmao

    2011-10-01

    In this paper, a seriesly connected three phase bipolar symmetrical voltage multiplier (VM) is proposed, which is a novel VM for X-ray power supply. It consists of three single phase bipolar symmetrical VM, which are connected in series at their smoothing columns. The charging and discharging process occurs six times in a cycle and the frequency of the output voltage ripple is six times as large as the drive signal frequency. The proposed VM has three times larger output voltage and three times smaller ripple factor as compared to single phase bipolar symmetrical VM, and smaller voltage drop and faster dynamic response than those of the series connected three phase symmetrical VM. The simulation is provided to show the feasibility of proposed VM. PMID:22097261

  13. Peak power ratio generator

    DOEpatents

    Moyer, R.D.

    A peak power ratio generator is described for measuring, in combination with a conventional power meter, the peak power level of extremely narrow pulses in the gigahertz radio frequency bands. The present invention in a preferred embodiment utilizes a tunnel diode and a back diode combination in a detector circuit as the only high speed elements. The high speed tunnel diode provides a bistable signal and serves as a memory device of the input pulses for the remaining, slower components. A hybrid digital and analog loop maintains the peak power level of a reference channel at a known amount. Thus, by measuring the average power levels of the reference signal and the source signal, the peak power level of the source signal can be determined.

  14. Peak power ratio generator

    DOEpatents

    Moyer, Robert D.

    1985-01-01

    A peak power ratio generator is described for measuring, in combination with a conventional power meter, the peak power level of extremely narrow pulses in the gigahertz radio frequency bands. The present invention in a preferred embodiment utilizes a tunnel diode and a back diode combination in a detector circuit as the only high speed elements. The high speed tunnel diode provides a bistable signal and serves as a memory device of the input pulses for the remaining, slower components. A hybrid digital and analog loop maintains the peak power level of a reference channel at a known amount. Thus, by measuring the average power levels of the reference signal and the source signal, the peak power level of the source signal can be determined.

  15. Reversal of asymmetry of x-ray peak profiles from individual grains during a strain path change.

    SciTech Connect

    Wejdemann, C.; Lienert, U.; Pantleon, W.

    2010-05-01

    X-ray peak profiles are measured from individual bulk grains during tensile deformation. Two differently oriented copper samples pre-deformed in tension show the expected peak profile asymmetry caused by intra-grain stresses. One of the samples is oriented to achieve a significant change of the intra-grain stresses during in situ tensile loading and this is observed as a reversal of the sign of the peak profile asymmetry.

  16. MULTI-WAVELENGTH OBSERVATIONS OF SOLAR FLARES WITH A CONSTRAINED PEAK X-RAY FLUX

    SciTech Connect

    Bowen, Trevor A.; Testa, Paola; Reeves, Katharine K.

    2013-06-20

    We present an analysis of soft X-ray (SXR) and extreme-ultraviolet (EUV) observations of solar flares with an approximate C8 Geostationary Operational Environmental Satellite (GOES) class. Our constraint on peak GOES SXR flux allows for the investigation of correlations between various flare parameters. We show that the duration of the decay phase of a flare is proportional to the duration of its rise phase. Additionally, we show significant correlations between the radiation emitted in the flare rise and decay phases. These results suggest that the total radiated energy of a given flare is proportional to the energy radiated during the rise phase alone. This partitioning of radiated energy between the rise and decay phases is observed in both SXR and EUV wavelengths. Though observations from the EUV Variability Experiment show significant variation in the behavior of individual EUV spectral lines during different C8 events, this work suggests that broadband EUV emission is well constrained. Furthermore, GOES and Atmospheric Imaging Assembly data allow us to determine several thermal parameters (e.g., temperature, volume, density, and emission measure) for the flares within our sample. Analysis of these parameters demonstrate that, within this constrained GOES class, the longer duration solar flares are cooler events with larger volumes capable of emitting vast amounts of radiation. The shortest C8 flares are typically the hottest events, smaller in physical size, and have lower associated total energies. These relationships are directly comparable with several scaling laws and flare loop models.

  17. Evidence for two hard X-ray components in double power-law fits to the 1980 June 7 flare

    NASA Technical Reports Server (NTRS)

    Smith, Dean F.; Orwig, Larry E.

    1988-01-01

    The June 7, 1980 flare at 0312 UT was analyzed with double power-law fits on the basis of SMM hard X-ray burst spectrometer data. The flare is found to consist of seven peaks of characteristic time scale of about 8 sec followed by seven valleys which may contain significant peak components because of overlap. It is suggested that the possibility of thermal spectra for the peaks is unlikely. An investigation of the double power-law parameters through the third and fourth peaks revealed a hysteresis effect in the fourth peak. The present results have been interpreted in terms of a trap plus precipitation model.

  18. High power x-ray welding of metal-matrix composites

    DOEpatents

    Rosenberg, Richard A.; Goeppner, George A.; Noonan, John R.; Farrell, William J.; Ma, Qing

    1999-01-01

    A method for joining metal-matrix composites (MMCs) by using high power x-rays as a volumetric heat source is provided. The method involves directing an x-ray to the weld line between two adjacent MMCs materials to create an irradiated region or melt zone. The x-rays have a power density greater than about 10.sup.4 watts/cm.sup.2 and provide the volumetric heat required to join the MMC materials. Importantly, the reinforcing material of the metal-matrix composites remains uniformly distributed in the melt zone, and the strength of the MMCs are not diminished. In an alternate embodiment, high power x-rays are used to provide the volumetric heat required to weld metal elements, including metal elements comprised of metal alloys. In an alternate embodiment, high power x-rays are used to provide the volumetric heat required to weld metal elements, including metal elements comprised of metal alloys.

  19. Most powerful X-ray telescope marks third anniversary

    NASA Astrophysics Data System (ADS)

    2002-08-01

    A black hole gobbles up matter in our own Milky Way Galaxy. A hot spot of X-rays pulsates from near Jupiter's poles. An intergalactic web of hot gas, hidden from view since the time galaxies formed, is finally revealed. These scenarios sound like science fiction - but to those familiar with the latest developments in X-ray astronomy, they are just a few of the real-life discoveries made by NASA's Chandra X-ray Observatory during its third year of operation. "Within the last year, Chandra has revealed another series of never-before-seen phenomena in our galaxy and beyond," said Chandra project scientist Dr. Martin Weisskopf of NASA's Marshall Space Flight Center in Huntsville, Ala. "When you combine recent discoveries with the secrets revealed during the observatory's first two years in orbit, it's amazing how much Chandra has told us about the universe in a relatively short period of time." One such discovery was an unprecedented view of a supermassive black hole devouring material in the Milky Way Galaxy - a spectacle witnessed for the first time when Chandra observed a rapid X-ray flare emitted from the direction of the black hole residing at our galaxy's center. In a just few minutes, Sagittarius A, a source of radio emission believed to be associated with the black hole, became 45 times brighter in X-rays, before declining to pre-flare levels a few hours later, offering astronomers a never-before-seen view of the energetic processes surrounding this supermassive black hole. "When we launched the Chandra Observatory, we attempted to explain its amazing capabilities in Earthly terms, such as the fact it can 'see' so well, it's like someone reading the letters of a stop sign 12 miles away," said Chandra Program Manager Tony Lavoie of the Marshall Center. "But now that the observatory has been in orbit for three years, we have unearthly proof of the technological marvel Chandra really is. Not only has it continued to operate smoothly and efficiently, it has

  20. Constraining high-redshift X-ray sources with next generation 21-cm power spectrum measurements

    NASA Astrophysics Data System (ADS)

    Ewall-Wice, Aaron; Hewitt, Jacqueline; Mesinger, Andrei; Dillon, Joshua S.; Liu, Adrian; Pober, Jonathan

    2016-05-01

    We use the Fisher matrix formalism and seminumerical simulations to derive quantitative predictions of the constraints that power spectrum measurements on next-generation interferometers, such as the Hydrogen Epoch of Reionization Array (HERA) and the Square Kilometre Array (SKA), will place on the characteristics of the X-ray sources that heated the high-redshift intergalactic medium. Incorporating observations between z = 5 and 25, we find that the proposed 331 element HERA and SKA phase 1 will be capable of placing ≲ 10 per cent constraints on the spectral properties of these first X-ray sources, even if one is unable to perform measurements within the foreground contaminated `wedge' or the FM band. When accounting for the enhancement in power spectrum amplitude from spin temperature fluctuations, we find that the observable signatures of reionization extend well beyond the peak in the power spectrum usually associated with it. We also find that lower redshift degeneracies between the signatures of heating and reionization physics lead to errors on reionization parameters that are significantly greater than previously predicted. Observations over the heating epoch are able to break these degeneracies and improve our constraints considerably. For these two reasons, 21-cm observations during the heating epoch significantly enhance our understanding of reionization as well.

  1. High-average-power, 100-Hz-repetition-rate, tabletop soft-x-ray lasers at sub-15-nm wavelengths

    NASA Astrophysics Data System (ADS)

    Reagan, Brendan A.; Berrill, Mark; Wernsing, Keith A.; Baumgarten, Cory; Woolston, Mark; Rocca, Jorge J.

    2014-05-01

    Efficient excitation of dense plasma columns at 100-Hz repetition rate using a tailored pump pulse profile produced a tabletop soft-x-ray laser average power of 0.1 mW at λ = 13.9 nm and 20 μW at λ = 11.9 nm from transitions of Ni-like Ag and Ni-like Sn, respectively. Lasing on several other transitions with wavelengths between 10.9 and 14.7 nm was also obtained using 0.9-J pump pulses of 5-ps duration from a compact diode-pumped chirped pulse amplification Yb:YAG laser. Hydrodynamic and atomic plasma simulations show that the pump pulse profile, consisting of a nanosecond ramp followed by two peaks of picosecond duration, creates a plasma with an increased density of Ni-like ions at the time of peak temperature that results in a larger gain coefficient over a temporally and spatially enlarged space leading to a threefold increase in the soft-x-ray laser output pulse energy. The high average power of these compact soft-x-ray lasers will enable applications requiring high photon flux. These results open the path to milliwatt-average-power tabletop soft-x-ray lasers.

  2. X-ray Spectral Measurements of the JMAR High-Power Laser-plasma Source

    NASA Astrophysics Data System (ADS)

    Whitlock, Robert R.; Dozier, Charles M.; Newman, Daniel A.; Turcu, I. C. Edmond; Gaeta, Celestino J.; Cassidy, Kelly L.; Powers, Michael F.; Kleindolph, Thomas; Morris, James H.; Forber, Richard A.

    2002-10-01

    X-ray spectra of Cu plasmas at the focus of a four-beam, solid-state diode-pumped laser have been recorded. This laser-plasma X-ray source is being developed for JMAR's lithography systems aimed at high- performance semiconductor integrated circuits. The unique simultaneous overlay of the four sub-nanosecond laser beams at 300 Hertz produces a bright, point-plasma X-ray source. PIN diode measurements of the X-ray output indicate that the conversion efficiency (ratio of X-ray emission energy into 2π steradians to incident laser energy) was approximately 9 percent with average X-ray power yields of greater than 10 Watts. Spectra were recorded on calibrated Kodak DEF film in a curved-crystal spectrograph. A KAP crystal (2d = 26.6 Angstroms) was used to disperse the 900 eV to 3000 eV spectral energies onto the film. Preliminary examination of the films indicated the existence of Cu and Cu XX ionization states. Additional spectra as a function of laser input power were also recorded to investigate potential changes in X-ray yields. These films are currently being analyzed. The analysis of the spectra provide absolute line and continuum intensities, and total X-ray output in the measured spectral range.

  3. Searching for hard X-ray directivity during the rise, peak, and decay phases of solar flares

    NASA Technical Reports Server (NTRS)

    Li, Peng

    1994-01-01

    We have identified 72 large solar flares (peak counting rates more than 1000 counts/s) observed by Hard X-ray Burst Spectroscopy (HXRBS) on-board the Solar Maximum Mission (SMM). Using a database of these flares, we have studied hard X-ray (50-850 keV) spectral center-to-limb variation and its evolution with time. The major results are the following: (1) During the rise phase, the center-to-limb spectral variation is small, with a hardness of delta delta = 0.02 +/- 0.25, and a statistical significance of 0.1 sigma. (2) During the peak phase, the center-to-limb variation is delta delta = 0.13 +/- 0.13, with a statistical significance of 1 sigma. (3) During the decay phase, the center-to-limb variation changes to softening. The softness is relatively large with delta delta = -0.25 +/- 0.21, and a statistical significance of 1.2 sigma. (4) The linear least-squares fits to the spectral center-to-limb variations do not have slopes significantly different from zero during all those three phases. (5) The center events and limb events spectral distributions are shown to be not different by using Kolmogorov-Smirnov two-samples test. (6) The fraction of events detected near the limb is marginally consistent with that expected from isotropically emitting flares. (7) On average, flares evolve as soft-hard-soft. These results suggest that there is no statistically significant evidence for hard X-ray directivity during the rise, peak, and decay phases of solar flares. The hard X-ray radiation pattern at those energies is almost isotropic during all those phases. This lack of directivity (or anisotropy) found in this study is not in agreement with the results discovered by Vestrand et al. (1987) in which they found energetic photon source is anisotropic, using SMM Gamma-Ray Spectrometer (GRS) data at a much higher energy band of 0.3-1 MeV. If we want to interpret the results of Vestrand et al. (1987) and our present results in a self-consistent way, we must conclude that at

  4. GRPANL: a program for fitting complex peak groupings for gamma and x-ray energies and intensities

    SciTech Connect

    Gunnink, R.; Ruhter, W.D.

    1980-01-01

    GRPANL is a general-purpose peak-fitting program that calculates gamma-ray and x-ray energies and intensities from a given spectral region. The program requires that the user supply input information such as the first and last channels of the region, the channels to be used as pre- and post-region background, the system gain and zero-intercept, and a list of approximate energy values at which peaks occur in the region. Because the peak position and peak-shape parameters enter nonlinearly into the peak-fitting algorithm, an iterative least-square procedure is used in the fitting process. The program iterates until either all convergence criteria are met or ten iterations have elapsed. The code described here allows for twenty free parameters and a region as large as 240 data channels. This code runs on an LSI-11 computer with 32K memory and disk-storage capability.

  5. High-average-power water window soft X-rays from an Ar laser plasma

    NASA Astrophysics Data System (ADS)

    Amano, Sho

    2016-07-01

    A high average power of 140 mW and high conversion efficiency of 14% were demonstrated in “water window” soft X-rays generated using a laser plasma source developed in-house, when a solid Ar target was irradiated by a commercial Nd:YAG Q-switched laser with an energy of 1 J at a repetition rate of 1 Hz. This soft X-ray power compared favorably with that produced using a synchrotron radiation source, and the developed laser plasma source can be used in various applications, such as soft X-ray microscopy, in place of synchrotron facilities.

  6. Chandra Discovers the X-ray Signature of a Powerful Wind from a Galactic Microquasar

    NASA Astrophysics Data System (ADS)

    2000-11-01

    CCD Imaging Spectrometer (ACIS) was used as a camera to record the X-ray spectral data, which computers processed and plotted onto a graph, revealing the P Cygni signature. Specific elements, such as silicon or iron, emit specific X-ray wavelengths, revealing their presence in the emitting material to astronomers. Before the observation with Chandra, astronomers knew the force of gravity in an X-ray binary system strips material off the surface of the normal star and then pulls this material toward the surface of the super-dense neutron star, forming a relatively flat spiraling cloud of gas called an accretion disk. The detailed Chandra data revealed, in addition, that the radiation and rotational forces in the Circinus X-1 disk are blasting some of the inward-spiraling gas back out into space in a powerful wind, which creates the P Cygni lines in the object's spectrum. P Cygni profiles carry much diagnostic information that is hard to obtain in other ways--such as how fast the wind is moving, how much material it contains, how dense it is, and its chemical composition. "The wind coming out of Circinus X-1 is composed of gas that contains highly ionized atoms of silicon, neon, iron, magnesium, and sulfur, and its peak observed velocity is about 4.5 million miles per hour--so fast it would cross the entire radius of the Earth in about three seconds," Brandt reports. The astronomers used Doppler techniques that detect positive velocities from material moving away from Earth, with signals shifted toward the red end of the spectrum, and negative velocities from material that is coming toward Earth, with signals shifted toward the blue end of the spectrum. "We learned these two stars clearly interact dramatically with each other while this wind is blowing outward at high velocity, which appears to be causing certain properties of the wind to change over time," Schulz says. The researchers produced a time-lapse movie of one of their spectra, which is available on the World

  7. Grain structure and dislocation density measurements in a friction stir welded aluminum alloy using x-ray peak profile analysis

    SciTech Connect

    Woo, Wan Chuck; Balogh, Levente; Ungar, Prof Tomas; Choo, Hahn; Feng, Zhili

    2008-01-01

    The dislocation density and grain structure of a friction stir welded 6061-T6 aluminum alloy was determined as a function of distance from the weld centerline using high-resolution micro-beam x-ray diffraction. The results of the x-ray peak profile analysis show that the dislocation density is about 1.2 x 10^14 m-2 inside and 4.8 x 10^14 m-2 outside of the weld region. The average subgrain size is about 180 nm in both regions. Compared to the base material, the dislocation density was significantly decreased in the dynamic recrystallized zone of the friction stir welds, which is a good correlation with the TEM observations. The influence of the dislocation density on the strain hardening behavior during tensile deformation is also discussed.

  8. Miniature, low-power X-ray tube using a microchannel electron generator electron source

    NASA Technical Reports Server (NTRS)

    Elam, Wm. Timothy (Inventor); Kelliher, Warren C. (Inventor); Hershyn, William (Inventor); DeLong, David P. (Inventor)

    2011-01-01

    Embodiments of the invention provide a novel, low-power X-ray tube and X-ray generating system. Embodiments of the invention use a multichannel electron generator as the electron source, thereby increasing reliability and decreasing power consumption of the X-ray tube. Unlike tubes using a conventional filament that must be heated by a current power source, embodiments of the invention require only a voltage power source, use very little current, and have no cooling requirements. The microchannel electron generator comprises one or more microchannel plates (MCPs), Each MCP comprises a honeycomb assembly of a plurality of annular components, which may be stacked to increase electron intensity. The multichannel electron generator used enables directional control of electron flow. In addition, the multichannel electron generator used is more robust than conventional filaments, making the resulting X-ray tube very shock and vibration resistant.

  9. Normal incidence X-ray telescope power spectra of X-ray emission from solar active regions. I - Observations. II - Theory

    NASA Technical Reports Server (NTRS)

    Gomez, Daniel O.; Martens, Petrus C. H.; Golub, Leon

    1993-01-01

    Fourier analysis is applied to very high resolution image of coronal active regions obtained by the Normal Incidence X-Ray Telescope is used to find a broad isotropic power-law spectrum of the spatial distribution of soft X-ray intensities. Magnetic structures of all sizes are present down to the resolution limit of the instrument. Power spectra for the X-ray intensities of a sample of topologically different active regions are found which fall off with increasing wavenumber as 1/k-cubed. A model is presented that relates the basic features of coronal magnetic fluctuations to the subphotospheric hydrodynamic turbulence that generates them. The model is used to find a theoretical power spectrum for the X-ray intensity which falls off with increasing wavenumber as 1/k-cubed. The implications of a turbulent regime in active regions are discussed.

  10. X-ray power and yield measurements at the refurbished Z machine

    SciTech Connect

    Jones, M. C. Ampleford, D. J.; Cuneo, M. E.; Hohlfelder, R.; Jennings, C. A.; Johnson, D. W.; Jones, B.; Lopez, M. R.; MacArthur, J.; Mills, J. A.; Preston, T.; Rochau, G. A.; Savage, M.; Spencer, D.; Sinars, D. B.; Porter, J. L.

    2014-08-15

    Advancements have been made in the diagnostic techniques to measure accurately the total radiated x-ray yield and power from z-pinch implosion experiments at the Z machine with high accuracy. The Z machine is capable of outputting 2 MJ and 330 TW of x-ray yield and power, and accurately measuring these quantities is imperative. We will describe work over the past several years which include the development of new diagnostics, improvements to existing diagnostics, and implementation of automated data analysis routines. A set of experiments on the Z machine were conducted in which the load and machine configuration were held constant. During this shot series, it was observed that the total z-pinch x-ray emission power determined from the two common techniques for inferring the x-ray power, a Kimfol filtered x-ray diode diagnostic and the total power and energy diagnostic, gave 449 TW and 323 TW, respectively. Our analysis shows the latter to be the more accurate interpretation. More broadly, the comparison demonstrates the necessity to consider spectral response and field of view when inferring x-ray powers from z-pinch sources.

  11. Omega Dante Soft X-Ray Power Diagnostic Component Calibration at the National Synchrotron Light Source

    SciTech Connect

    Campbell, K; Weber, F; Dewald, E; Glenzer, S; Landen, O; Turner, R; Waide, P

    2004-04-15

    The Dante soft x-ray spectrometer installed on the Omega laser facility at the Laboratory for Laser Energetics, University of Rochester is a twelve-channel filter-edge defined x-ray power diagnostic. It is used to measure the absolute flux from direct drive, indirect drive (hohlraums) and other plasma sources. Calibration efforts using two beam lines, U3C (50eV-1keV) and X8A (1keV-6keV) at the National Synchrotron Light Source (NSLS) have been implemented to insure the accuracy of these measurements. We have calibrated vacuum x-ray diodes, mirrors and filters.

  12. Omega Dante soft x-ray power diagnostic component calibration at the National Synchrotron Light Source

    SciTech Connect

    Campbell, K.M.; Weber, F.A.; Dewald, E.L.; Glenzer, S.H.; Landen, O.L.; Turner, R.E.; Waide, P.A.

    2004-10-01

    The Dante soft x-ray spectrometer, installed on the Omega laser facility at the Laboratory for Laser Energetics, University of Rochester, is a 12-channel filter-edge defined soft x-ray power diagnostic. It is used to measure the spectrally resolved, absolute flux from direct drive, indirect drive (hohlraums) and other plasma sources. Dante component calibration efforts using two beam lines, U3C (50 eV-1 keV) and X8A (1-6 keV) at the National Synchrotron Light Source have been implemented to improve the accuracy of these measurements. We have calibrated metallic vacuum x-ray diodes, mirrors and filters.

  13. X-Ray Emitting GHz-Peaked Spectrum Galaxies: Testing a Dynamical-Radiative Model with Broad-Band Spectra

    SciTech Connect

    Ostorero, L.; Moderski, R.; Stawarz, L.; Diaferio, A.; Kowalska, I.; Cheung, C.C.; Kataoka, J.; Begelman, M.C.; Wagner, S.J.; /Heidelberg Observ.

    2010-06-07

    In a dynamical-radiative model we recently developed to describe the physics of compact, GHz-Peaked-Spectrum (GPS) sources, the relativistic jets propagate across the inner, kpc-sized region of the host galaxy, while the electron population of the expanding lobes evolves and emits synchrotron and inverse-Compton (IC) radiation. Interstellar-medium gas clouds engulfed by the expanding lobes, and photoionized by the active nucleus, are responsible for the radio spectral turnover through free-free absorption (FFA) of the synchrotron photons. The model provides a description of the evolution of the GPS spectral energy distribution (SED) with the source expansion, predicting significant and complex high-energy emission, from the X-ray to the {gamma}-ray frequency domain. Here, we test this model with the broad-band SEDs of a sample of eleven X-ray emitting GPS galaxies with Compact-Symmetric-Object (CSO) morphology, and show that: (i) the shape of the radio continuum at frequencies lower than the spectral turnover is indeed well accounted for by the FFA mechanism; (ii) the observed X-ray spectra can be interpreted as non-thermal radiation produced via IC scattering of the local radiation fields off the lobe particles, providing a viable alternative to the thermal, accretion-disk dominated scenario. We also show that the relation between the hydrogen column densities derived from the X-ray (N{sub H}) and radio (N{sub HI}) data of the sources is suggestive of a positive correlation, which, if confirmed by future observations, would provide further support to our scenario of high-energy emitting lobes.

  14. X-RAY-EMITTING GHz-PEAKED-SPECTRUM GALAXIES: TESTING A DYNAMICAL-RADIATIVE MODEL WITH BROADBAND SPECTRA

    SciTech Connect

    Ostorero, L.; Diaferio, A.; Moderski, R.; Stawarz, L.; Kowalska, I.; Cheung, C. C.; Kataoka, J.; Begelman, M. C.; Wagner, S. J.

    2010-06-01

    In a dynamical-radiative model we recently developed to describe the physics of compact, GHz-peaked-spectrum (GPS) sources, the relativistic jets propagate across the inner, kpc-sized region of the host galaxy, while the electron population of the expanding lobes evolves and emits synchrotron and inverse-Compton (IC) radiation. Interstellar-medium gas clouds engulfed by the expanding lobes, and photoionized by the active nucleus, are responsible for the radio spectral turnover through free-free absorption (FFA) of the synchrotron photons. The model provides a description of the evolution of the spectral energy distribution (SED) of GPS sources with their expansion, predicting significant and complex high-energy emission, from the X-ray to the {gamma}-ray frequency domain. Here, we test this model with the broadband SEDs of a sample of 11 X-ray-emitting GPS galaxies with compact-symmetric-object morphology, and show that (1) the shape of the radio continuum at frequencies lower than the spectral turnover is indeed well accounted for by the FFA mechanism and (2) the observed X-ray spectra can be interpreted as non-thermal radiation produced via IC scattering of the local radiation fields off the lobe particles, providing a viable alternative to the thermal, accretion-disk-dominated scenario. We also show that the relation between the hydrogen column densities derived from the X-ray (N {sub H}) and radio (N {sub HI}) data of the sources is suggestive of a positive correlation, which, if confirmed by future observations, would provide further support to our scenario of high-energy emitting lobes.

  15. Prospects for using high power x-rays as a volumetric heat source

    SciTech Connect

    Rosenberg, R.A.; Farrell, W.; Ma, Q.

    1997-09-01

    Third-generation, high-intensity, x-ray synchrotron radiation sources are capable of producing high heat-flux x-ray beams. In many applications finding ways to handle these powers is viewed as a burden. However, there are some technological applications where the deep penetration length of the x-rays may find beneficial uses as a volumetric heat source. In this paper the authors discuss the prospects for using high power x-rays for volumetric heating and report some recent experimental results. The particular applications they focus on are welding and surface heat treatment. The radiation source is an undulator at the Advanced Photon Source (APS). Results of preliminary tests on aluminum, aluminum metal matrix composites, and steel will be presented.

  16. Wire array z-pinch insights for high x-ray power generation

    SciTech Connect

    Sanford, T.W.L.; Mock, R.C.; Nash, T.J.

    1998-08-01

    The discovery that the use of very large numbers of wires enables high x-ray power to be generated from wire-array z-pinches represents a breakthrough in load design for large pulsed power generators, and has permitted high temperatures to be generated in radiation cavities on Saturn. In this paper, changes in x-ray emission characteristics as a function of wire number, array mass, and load radius, for 20-mm-long aluminum arrays on Saturn that led to these breakthrough hohlraum results, are discussed and compared with a few related emission characteristics of high-wire-number aluminum and tungsten arrays on Z. X=ray measurement comparisons with analytic models and 2-D radiation-magnetohydrodynamic (RMHC) code simulations in the x-y and r-z planes provide confidence in the ability of the models and codes to predict future x-ray performance with very-large-number wire arrays.

  17. Wire array z-pinch insights for high x-ray power generation

    SciTech Connect

    Sanford, T.W.L.; Mock, R.C.; Marder, B.M.

    1997-12-31

    The discovery that the use of very large numbers of wires enables high x-ray power to be generated from wire-array z-pinches represents a breakthrough in load design for large pulsed power generators, and has permitted high temperatures to be generated in radiation cavities on Saturn and Z. In this paper, changes in x-ray emission characteristics as a function of wire number, array mass, and load radius, for 20-mm-long aluminum arrays on Saturn that led to these breakthrough hohlraum results, are discussed and compared with a few related emission characteristics of high-wire-number aluminum and tungsten arrays on Z. X-ray measurement comparisons with analytic models and 2-D radiation-magnetohydrodynamic (RMHC) code simulations in the x-y and r-z planes provide confidence in the ability of the models and codes to predict future x-ray performance with very-large-number wire arrays.

  18. X-ray power and yield measurements at the refurbished Z machine

    SciTech Connect

    Jones, M. C.; Ampleford, D. J.; Cuneo, M. E.; Hohlfelder, R.; Jennings, C. A.; Johnson, D. W.; Jones, B.; Lopez, M. R.; MacArthur, J.; Mills, J. A.; Preston, T.; Rochau, G. A.; Savage, M.; Spencer, D.; Sinars, D. B.; Porter, J. L.

    2014-08-04

    Advancements have been made in the diagnostic techniques to measure accurately the total radiated x-ray yield and power from z-pinch loads at the Z Machine with high accuracy. The Z-accelerator is capable of outputting 2MJ and 330 TW of x-ray yield and power, and accurately measuring these quantities is imperative. We will describe work over the past several years which include the development of new diagnostics, improvements to existing diagnostics, and implementation of automated data analysis routines. A set of experiments were conducted on the Z machine where the load and machine configuration were held constant. During this shot series, it was observed that total z-pinch x-ray emission power determined from the two common techniques for inferring the x-ray power, Kimfol filtered x-ray diode diagnostic and the Total Power and Energy diagnostic gave 450 TW and 327 TW respectively. Our analysis shows the latter to be the more accurate interpretation. More broadly, the comparison demonstrates the necessity to consider spectral response and field of view when inferring xray powers from z-pinch sources.

  19. X-ray power and yield measurements at the refurbished Z machine

    DOE PAGESBeta

    Jones, M. C.; Ampleford, D. J.; Cuneo, M. E.; Hohlfelder, R.; Jennings, C. A.; Johnson, D. W.; Jones, B.; Lopez, M. R.; MacArthur, J.; Mills, J. A.; et al

    2014-08-04

    Advancements have been made in the diagnostic techniques to measure accurately the total radiated x-ray yield and power from z-pinch loads at the Z Machine with high accuracy. The Z-accelerator is capable of outputting 2MJ and 330 TW of x-ray yield and power, and accurately measuring these quantities is imperative. We will describe work over the past several years which include the development of new diagnostics, improvements to existing diagnostics, and implementation of automated data analysis routines. A set of experiments were conducted on the Z machine where the load and machine configuration were held constant. During this shot series,more » it was observed that total z-pinch x-ray emission power determined from the two common techniques for inferring the x-ray power, Kimfol filtered x-ray diode diagnostic and the Total Power and Energy diagnostic gave 450 TW and 327 TW respectively. Our analysis shows the latter to be the more accurate interpretation. More broadly, the comparison demonstrates the necessity to consider spectral response and field of view when inferring xray powers from z-pinch sources.« less

  20. THE RADIATIVE X-RAY AND GAMMA-RAY EFFICIENCIES OF ROTATION-POWERED PULSARS

    SciTech Connect

    Vink, Jacco; Bamba, Aya; Yamazaki, Ryo

    2011-02-01

    We present a statistical analysis of the X-ray luminosity of rotation-powered pulsars and their surrounding nebulae using the sample of Kargaltsev and Pavlov, and we complement this with an analysis of the {gamma}-ray emission of Fermi-detected pulsars. We report a strong trend in the efficiency with which spin-down power is converted to X-ray and {gamma}-ray emission with characteristic age: young pulsars and their surrounding nebulae are efficient X-ray emitters, whereas in contrast old pulsars are efficient {gamma}-ray emitters. We divided the X-ray sample in a young ({tau}{sub c} < 1.7 x 10{sup 4} yr) and old sample and used linear regression to search for correlations between the logarithm of the X-ray and {gamma}-ray luminosities and the logarithms of the periods and period derivatives. The X-ray emission from young pulsars and their nebulae are both consistent with L{sub X}{proportional_to} P-dot{sup 3}/P{sup 6}. For old pulsars and their nebulae the X-ray luminosity is consistent with a more or less constant efficiency {eta}{identical_to}L{sub X}/ E-dot{sub rot}{approx}8x10{sup -5}. For the {gamma}-ray luminosity we confirm that L{sub {gamma}} {proportional_to} {radical}E-dot{sub rot}. We discuss these findings in the context of pair production inside pulsar magnetospheres and the striped wind model. We suggest that the striped wind model may explain the similarity between the X-ray properties of the pulsar wind nebulae and the pulsars themselves, which according to the striped wind model may both find their origin outside the light cylinder, in the pulsar wind zone.

  1. A low power X-ray diffractometer for soil analysis in remote locations employing a multiwire proportional counter detector array.

    NASA Technical Reports Server (NTRS)

    Gregory, J. C.; Parnell, T. A.

    1972-01-01

    A low power X-ray powder diffraction system suitable for remote mineralogical analysis of lunar, planetary, or asteroid soils has been designed. A one Curie Fe-55 source provides a monochromatic X-ray beam of 5.9 keV. Seeman-Bohlin focusing geometry is employed in the camera, allowing peak detection to proceed simultaneously at all angles and obviating the need for moving parts. The detector system is an array of 500-600 proportional counters with a wire-spacing of 1 mm. An electronics unit comprising preamplifier, postamplifier, window discriminators, and storage flip-flops requiring only 3.5 milliwatts has been designed and tested. Total instrument power is less than 5 W.

  2. A search for X-ray reprocessing echoes in the power spectral density functions of AGN

    NASA Astrophysics Data System (ADS)

    Emmanoulopoulos, D.; Papadakis, I. E.; Epitropakis, A.; Pecháček, T.; Dovčiak, M.; McHardy, I. M.

    2016-09-01

    We present the results of a detailed study of the X-ray power spectral density (PSD) functions of 12 X-ray bright AGN, using almost all the archival XMM-Newton data. The total net exposure of the EPIC-pn light curves is larger than 350 ks in all cases (and exceeds 1 Ms in the case of 1H 0707-497). In a physical scenario in which X-ray reflection occurs in the inner part of the accretion disc of AGN, the X-ray reflection component should be a filtered echo of the X-ray continuum signal and should be equal to the convolution of the primary emission with the response function of the disc. Our primary objective is to search for these reflection features in the 5-7 keV (iron line) and 0.5-1 keV (soft) bands, where the X-ray reflection fraction is expected to be dominant. We fit to the observed periodograms two models: a simple bending power-law model (BPL) and a BPL model convolved with the transfer function of the accretion disc assuming the lamp-post geometry and X-ray reflection from a homogeneous disc. We do not find any significant features in the best-fitting BPL model residuals either in individual PSDs in the iron band, soft and full band (0.3-10 keV) or in the average PSD residuals of the brightest and more variable sources (with similar black hole mass estimates). The typical amplitude of the soft and full-band residuals is around 3-5 per cent. It is possible that the expected general relativistic effects are not detected because they are intrinsically lower than the uncertainty of the current PSDs, even in the strong relativistic case in which X-ray reflection occurs on a disc around a fast rotating black hole having an X-ray source very close above it. However, we could place strong constrains to the X-ray reflection geometry with the current data sets if we knew in advance the intrinsic shape of the X-ray PSDs, particularly its high-frequency slope.

  3. A search for X-ray reprocessing echoes in the power spectral density functions of AGN

    NASA Astrophysics Data System (ADS)

    Emmanoulopoulos, D.; Papadakis, I. E.; Epitropakis, A.; Pecháček, T.; Dovčiak, M.; McHardy, I. M.

    2016-06-01

    We present the results of a detailed study of the X-ray power spectra density (PSD) functions of twelve X-ray bright AGN, using almost all the archival XMM-Newton data. The total net exposure of the EPIC-pn light curves is larger than 350 ks in all cases (and exceeds 1 Ms in the case of 1H 0707-497). In a physical scenario in which X-ray reflection occurs in the inner part of the accretion disc of AGN, the X-ray reflection component should be a filtered echo of the X-ray continuum signal and should be equal to the convolution of the primary emission with the response function of the disc. Our primary objective is to search for these reflection features in the 5 - 7 keV (iron line) and 0.5 - 1 keV (soft) bands, where the X-ray reflection fraction is expected to be dominant. We fit to the observed periodograms two models: a simple bending power law model (BPL) and a BPL model convolved with the transfer function of the accretion disc assuming the lamp-post geometry and X-ray reflection from a homogeneous disc. We do not find any significant features in the best-fitting BPL model residuals either in individual PSDs in the iron band, soft and full band (0.3 - 10 keV) or in the average PSD residuals of the brightest and more variable sources (with similar black hole mass estimates). The typical amplitude of the soft and full-band residuals is around 3 - 5 per cent. It is possible that the expected general relativistic effects are not detected because they are intrinsically lower than the uncertainty of the current PSDs, even in the strong relativistic case in which X-ray reflection occurs on a disc around a fast rotating black hole having an X-ray source very close above it. However, we could place strong constrains to the X-ray reflection geometry with the current data sets if we knew in advance the intrinsic shape of the X-ray PSDs, particularly its high frequency slope.

  4. On the origin of power-law X-ray spectra of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Schlosman, I.; Shaham, J.; Shaviv, G.

    1984-01-01

    In the present analytical model for a power law X-ray continuum production in active galactic nuclei, the dissipation of turbulent energy flux above the accretion disk forms an optically thin transition layer with an inverted temperature gradient. The emitted thermal radiation has a power law spectrum in the 0.1-100 keV range, with a photon energy spectral index gamma of about 0.4-1.0. Thermal X-ray contribution from the layer is 5-10 percent of the total disk luminosity. The gamma value of 0.75 is suggested as a 'natural' power law index for Seyfert galaxies and QSOs.

  5. The effect of added protein on the interchain x-ray peak profile in egg lecithin.

    PubMed Central

    Brady, G W; Fein, D B

    1979-01-01

    The effect of added protein on the phospholipid interchain peak profile has been measured. The results indicate that the basic organization of the bilayer is preserved, and that the added protein affects only the arrangement of the lipid hydrocarbon chains in the first few adjacent layers. PMID:263628

  6. SWIFT X-RAY TELESCOPE TIMING OBSERVATIONS OF THE BLACK HOLE BINARY SWIFT J1753.5-0127: DISK-DILUTED FLUCTUATIONS IN THE OUTBURST PEAK

    SciTech Connect

    Kalamkar, M.; Van der Klis, M.; Uttley, P.; Altamirano, Diego; Wijnands, Rudy

    2013-04-01

    After a careful analysis of the instrumental effects on the Poisson noise to demonstrate the feasibility of detailed stochastic variability studies with the Swift X-Ray Telescope (XRT), we analyze the variability of the black hole X-ray binary SWIFT J1753.5-0127 in all XRT observations during 2005-2010. We present the evolution of the power spectral components along the outburst in two energy bands: soft (0.5-2 keV) and hard (2-10 keV), and in the hard band we find results consistent with those from the Rossi X-Ray Timing Explorer (RXTE). The advantage of the XRT is that we can also explore the soft band not covered by RXTE. The source has previously been suggested to host an accretion disk extending down to close to the black hole in the low hard state, and to show low-frequency variability in the soft-band intrinsic to this disk. Our results are consistent with this, with stronger low-frequency variability at low intensities in the soft than in the hard band. From our analysis, we are able to present the first measurements of the soft-band variability in the peak of the outburst. We find the soft band to be less variable than the hard band, especially at high frequencies, opposite to what is seen at low intensity. Both results can be explained within the framework of a simple two emission-region model where the hot flow is more variable in the peak of the outburst and the disk is more variable at low intensities.

  7. MAGNETIC NON-POTENTIALITY OF SOLAR ACTIVE REGIONS AND PEAK X-RAY FLUX OF THE ASSOCIATED FLARES

    SciTech Connect

    Tiwari, Sanjiv Kumar; Venkatakrishnan, P.; Gosain, Sanjay E-mail: sgosain@prl.res.i

    2010-09-20

    Predicting the severity of solar eruptive phenomena such as flares and coronal mass ejections remains a great challenge despite concerted efforts to do so over the past several decades. However, the advent of high-quality vector magnetograms obtained from Hinode (SOT/SP) has increased the possibility of meeting this challenge. In particular, the spatially averaged signed shear angle (SASSA) seems to be a unique parameter for quantifying the non-potentiality of active regions. We demonstrate the usefulness of the SASSA for predicting flare severity. For this purpose, we present case studies of the evolution of magnetic non-potentiality using 115 vector magnetograms of four active regions, namely, ARs NOAA 10930, 10960, 10961, and 10963 during 2006 December 8-15, 2007 June 3-10, 2007 June 28-July 5, and 2007 July 10-17, respectively. The NOAA ARs 10930 and 10960 were very active and produced X and M class flares, respectively, along with many smaller X-ray flares. On the other hand, the NOAA ARs 10961 and 10963 were relatively less active and produced only very small (mostly A- and B-class) flares. For this study, we have used a large number of high-resolution vector magnetograms obtained from Hinode (SOT/SP). Our analysis shows that the peak X-ray flux of the most intense solar flare emanating from the active regions depends on the magnitude of the SASSA at the time of the flare. This finding of the existence of a lower limit of the SASSA for a given class of X-ray flares will be very useful for space weather forecasting. We have also studied another non-potentiality parameter called the mean weighted shear angle (MWSA) of the vector magnetograms along with the SASSA. We find that the MWSA does not show such distinction as the SASSA for upper limits of the GOES X-ray flux of solar flares; however, both the quantities show similar trends during the evolution of all active regions studied.

  8. High-average-power 100-Hz repetition rate table-top soft x-ray lasers

    NASA Astrophysics Data System (ADS)

    Rocca, Jorge J.; Reagan, Brendan A.; Wernsing, Keith; Wang, Yong; Yin, Liang; Wang, Shoujun; Berrill, Mark; Woolston, Mark R.; Curtis, Alden H.; Furch, Federico J. A.; Shlyaptsev, Vyacheslav N.; Luther, Brad M.; Patel, Dinesh; Marconi, Mario C.; Menoni, Carmen S.

    2013-09-01

    The table-top generation of high average power coherent soft x-ray radiation in a compact set up is of high interest for numerous applications. We have demonstrated the generation of bright soft x-ray laser pulses at 100 Hz repetition rate with record-high average power from compact plasma amplifiers excited by an ultrafast diode-pumped solid state laser. Results of compact λ=18.9nm Ni-like Mo and λ=13.9nm Ni-like Ag lasers operating at 100 Hz repetition rate are discussed.

  9. The X-ray variability of NGC 6814 - Power spectrum

    NASA Technical Reports Server (NTRS)

    Done, C.; Madejski, G. M.; Mushotzky, R. F.; Turner, T. J.; Koyama, K.; Kunieda, H.

    1992-01-01

    The existence of the periodic component seen in NGC 6814 with Exosat at 12,000 +/- 100 s is confirmed by a power spectrum and folded light curve analysis of unevenly sampled Ginga data. A comparison of the power spectra produced from simulated light curves with that observed enables the intrinsic shape of the power spectrum of the source to be determined despite the distortions introduced by the window function. The best estimate for the period is 12,132 +/- 3 s, where the error is that derived from simulations. An upper limit to the rate of change of period of about 10 exp -9 is inferred if the light curves are truly phase-coherent, but as this is not required by the data, the conservative upper limit is not greater than 5 x 10 exp -7. The large amount of power in the periodic component and its stability both suggest occultation of the source as its origin.

  10. Total x-ray power measurements in the Sandia LIGA program.

    SciTech Connect

    Malinowski, Michael E. (Sandia National Laboratories, Livermore, CA); Ting, Aili (Sandia National Laboratories, Livermore, CA)

    2005-08-01

    Total X-ray power measurements using aluminum block calorimetry and other techniques were made at LIGA X-ray scanner synchrotron beamlines located at both the Advanced Light Source (ALS) and the Advanced Photon Source (APS). This block calorimetry work was initially performed on the LIGA beamline 3.3.1 of the ALS to provide experimental checks of predictions of the LEX-D (LIGA Exposure- Development) code for LIGA X-ray exposures, version 7.56, the version of the code in use at the time calorimetry was done. These experiments showed that it was necessary to use bend magnet field strengths and electron storage ring energies different from the default values originally in the code in order to obtain good agreement between experiment and theory. The results indicated that agreement between LEX-D predictions and experiment could be as good as 5% only if (1) more accurate values of the ring energies, (2) local values of the magnet field at the beamline source point, and (3) the NIST database for X-ray/materials interactions were used as code inputs. These local magnetic field value and accurate ring energies, together with NIST database, are now defaults in the newest release of LEX-D, version 7.61. Three dimensional simulations of the temperature distributions in the aluminum calorimeter block for a typical ALS power measurement were made with the ABAQUS code and found to be in good agreement with the experimental temperature data. As an application of the block calorimetry technique, the X-ray power exiting the mirror in place at a LIGA scanner located at the APS beamline 10 BM was measured with a calorimeter similar to the one used at the ALS. The overall results at the APS demonstrated the utility of calorimetry in helping to characterize the total X-ray power in LIGA beamlines. In addition to the block calorimetry work at the ALS and APS, a preliminary comparison of the use of heat flux sensors, photodiodes and modified beam calorimeters as total X-ray power

  11. Design and thermal stress analysis of high power x-ray monochromators cooled with liquid nitrogen

    NASA Astrophysics Data System (ADS)

    Rogers, C. S.; Assoufid, L.

    1994-07-01

    Cryogenically cooled, single-crystal silicon, x-ray monochromators offer much better thermal performance than room-temperature silicon monochromators. The improved performance can be quantified by a figure-of-merit equal to the ratio of the thermal conductivity to the coefficient of thermal expansion. This ratio increases by about a factor of 50 as the temperature is decreased from 300 K to 100 K. An extensive thermal and structural finite element analysis is presented for an inclined, liquid nitrogen cooled, Si monochromator crystal diffracting 4.2 keV photons from the (111) planes using Undulator A at the Advanced Photon Source. The angular size of the beam accepted on the crystal was chosen to be 50 (mu)rad vertically and 120 (mu)rad horizontally. The deflection parameter, K, was 2.17 for all cases. The peak power density at normal incidence to the beam was calculated to be 139 W/mm(exp 2), and the total power was 750 W at a distance of 30 m from the source for a positron current of 100 mA. The crystal was oriented in the inclined geometry with an inclination angle of 85 degrees for all cases. The performance of the crystal was investigated for beam currents of 100, 200, and 300 mA. The calculated peak slopes of the diffraction plane over the extent of the beam footprint were -1.17, -2.35, and 0.33 (mu)rad, and the peak temperatures were 88.2, 102.6, and 121.4 K, respectively. The variation in the Bragg angle due to change in d-spacing across the beam footprint was less than 1 (mu)rad for all cases. These results indicate that a properly designed, cryogenically cooled, inclined silicon monochromator can deliver the full brilliance of Undulator A at even the highest machine currents.

  12. Energy dependence of power-spectral noise in X-ray binaries

    NASA Astrophysics Data System (ADS)

    Stiele, Holger; Yu, Wenfei

    2014-08-01

    Black hole and neutron star X-ray binaries show variability on time-scales ranging from milliseconds to years. In the last two decades a detailed phenomenological picture of short-term variability in low-mass X-ray binaries has emerged mainly based on RXTE observations that cover energies above 3 keV. This picture comprises periodic or quasi-periodic variability, seen as spikes or humps in power density spectra, that are superposed on broad noise components. The overall shape of the noise components as well as the occurrence of quasi-periodic oscillations is known to vary with the state of the X-ray binary. We are accomplishing a comprehensive study of archival XMM-Newton observations in timing or burst mode of more than ten black hole and more than thirty neutron star low-mass X-ray binaries to investigate the variability properties of these sources at softer energies where the thermal disk component starts to emerge.Here we present some results of the energy dependence of the noise component in power density spectra: a discussion of the energy dependence of the power spectral state that we found in the “plateau” state of GRS 1915+105 and the intermediate state of 4U 1630-47; the dependence of the break-frequency of the band-limited noise component as well as the quasi-periodic oscillations on the studied energy band in several X-ray binaries like GX 339-4 or Swift J1753.5-0127. We will discuss the implications of these findings for the picture of the accretion geometry in black hole X-ray binaries.

  13. Intrinsic X-ray Weakness and the Launching of Powerful Quasar Winds

    NASA Astrophysics Data System (ADS)

    Garmire, Gordon

    2014-09-01

    Recent NuSTAR observations suggest that a significant fraction of local Broad Absorption Line quasars (BALQSOs) are intrinsically X-ray weak, a result of considerable interest. However, the current measurements of this fraction suffer from large uncertainties. We therefore propose to improve significantly constraints upon the fraction of intrinsically X-ray weak high-ionization BALQSOs. This can be accomplished systematically and economically by re-observing six objects from the Gallagher et al. (2006) sample of well-studied z ~ 1.5-3 BALQSOs from the Large Bright Quasar Survey. The ultimate result will be improved understanding of the general importance of intrinsic X-ray weakness to the launching of powerful quasar winds.

  14. A HARD X-RAY POWER-LAW SPECTRAL CUTOFF IN CENTAURUS X-4

    SciTech Connect

    Chakrabarty, Deepto; Nowak, Michael A.; Tomsick, John A.; Boggs, Steven E.; Craig, William W.; Grefenstette, Brian W.; Fürst, Felix; Harrison, Fiona A.; Rana, Vikram; Psaltis, Dimitrios; Bachetti, Matteo; Barret, Didier; Christensen, Finn E.; Hailey, Charles J.; Kaspi, Victoria M.; Miller, Jon M.; Stern, Daniel; Wik, Daniel R.; Zhang, William W.; Wilms, Jörn

    2014-12-20

    The low-mass X-ray binary (LMXB) Cen X-4 is the brightest and closest (<1.2 kpc) quiescent neutron star transient. Previous 0.5-10 keV X-ray observations of Cen X-4 in quiescence identified two spectral components: soft thermal emission from the neutron star atmosphere and a hard power-law tail of unknown origin. We report here on a simultaneous observation of Cen X-4 with NuSTAR (3-79 keV) and XMM-Newton (0.3-10 keV) in 2013 January, providing the first sensitive hard X-ray spectrum of a quiescent neutron star transient. The 0.3-79 keV luminosity was 1.1×10{sup 33} D{sub kpc}{sup 2} erg s{sup –1}, with ≅60% in the thermal component. We clearly detect a cutoff of the hard spectral tail above 10 keV, the first time such a feature has been detected in this source class. We show that thermal Comptonization and synchrotron shock origins for the hard X-ray emission are ruled out on physical grounds. However, the hard X-ray spectrum is well fit by a thermal bremsstrahlung model with kT{sub e} = 18 keV, which can be understood as arising either in a hot layer above the neutron star atmosphere or in a radiatively inefficient accretion flow. The power-law cutoff energy may be set by the degree of Compton cooling of the bremsstrahlung electrons by thermal seed photons from the neutron star surface. Lower thermal luminosities should lead to higher (possibly undetectable) cutoff energies. We compare Cen X-4's behavior with PSR J1023+0038, IGR J18245–2452, and XSS J12270–4859, which have shown transitions between LMXB and radio pulsar modes at a similar X-ray luminosity.

  15. MUDMASTER: A Program for Calculating Crystalline Size Distributions and Strain from the Shapes of X-Ray Diffraction Peaks

    USGS Publications Warehouse

    Eberl, D.D.; Drits, V.A.; Srodon, Jan; Nuesch, R.

    1996-01-01

    Particle size may strongly influence the physical and chemical properties of a substance (e.g. its rheology, surface area, cation exchange capacity, solubility, etc.), and its measurement in rocks may yield geological information about ancient environments (sediment provenance, degree of metamorphism, degree of weathering, current directions, distance to shore, etc.). Therefore mineralogists, geologists, chemists, soil scientists, and others who deal with clay-size material would like to have a convenient method for measuring particle size distributions. Nano-size crystals generally are too fine to be measured by light microscopy. Laser scattering methods give only average particle sizes; therefore particle size can not be measured in a particular crystallographic direction. Also, the particles measured by laser techniques may be composed of several different minerals, and may be agglomerations of individual crystals. Measurement by electron and atomic force microscopy is tedious, expensive, and time consuming. It is difficult to measure more than a few hundred particles per sample by these methods. This many measurements, often taking several days of intensive effort, may yield an accurate mean size for a sample, but may be too few to determine an accurate distribution of sizes. Measurement of size distributions by X-ray diffraction (XRD) solves these shortcomings. An X-ray scan of a sample occurs automatically, taking a few minutes to a few hours. The resulting XRD peaks average diffraction effects from billions of individual nano-size crystals. The size that is measured by XRD may be related to the size of the individual crystals of the mineral in the sample, rather than to the size of particles formed from the agglomeration of these crystals. Therefore one can determine the size of a particular mineral in a mixture of minerals, and the sizes in a particular crystallographic direction of that mineral.

  16. X-Ray Lasers

    ERIC Educational Resources Information Center

    Chapline, George; Wood, Lowell

    1975-01-01

    Outlines the prospects of generating coherent x rays using high-power lasers and indentifies problem areas in their development. Indicates possible applications for coherent x rays in the fields of chemistry, biology, and crystallography. (GS)

  17. Development of an ultra-low-power x-ray-photon-resolving imaging detector array

    NASA Astrophysics Data System (ADS)

    Sun, Shunming; Downey, Stephen; Gaalema, Stephen; Gates, James L.; Jernigan, J. Garrett; Kaaret, Philip; MacIntosh, Scott; Ramsey, Brian; Wall, Bruce

    2010-08-01

    We report on progress to develop and demonstrate CZT and Si hybrid detector arrays for future NASA missions in X-ray and Gamma-ray astronomy. The primary goal for these detectors is consistent with the design concept for the EXIST mission1 and will also be appropriate for other NASA applications and ground-based projects. In particular we target science instruments that have large aperture (multiple square meters) and therefore require a low power ROIC (readout integrated circuits) design (< 10 microwatt per pixel in quiescent mode). The design also must achieve good energy resolution for single photon detection for X rays in the range 5-600 keV with a CZT sense layer and 2-30 keV with a Si sense layer. The target CZT arrays are 2 cm × 2 cm with 600 micron square-shaped pixels. The low power smart pixel detects rare X-ray hits with an adjustable threshold setting. A test array of 7 × 5 pixels with a 5 mm thick CZT sense layer demonstrates that the low power pixel can successfully detect X-rays with {50 readout noise electrons RMS.

  18. Searching for Dual AGNs in Galaxy Mergers: Understanding Double-Peaked [O III] and Ultra Hard X-rays as Selection Method

    NASA Astrophysics Data System (ADS)

    McGurk, Rosalie C.; Max, Claire E.; Medling, Anne; Shields, Gregory A.

    2015-01-01

    When galaxies merge, gas accretes onto both central supermassive black holes. Thus, one expects to see close pairs of active galactic nuclei (AGNs), or dual AGNs, in a fraction of galaxy mergers. However, finding them remains a challenge. The presence of double-peaked [O III] or of ultra hard X-rays have been proposed as techniques to select dual AGNs efficiently. We studied a sample of double-peaked narrow [O III] emitting AGNs from SDSS DR7. By obtaining new and archival high spatial resolution images taken with the Keck 2 Laser Guide Star Adaptive Optics system and the near-infrared (IR) camera NIRC2, we showed that 30% of double-peaked [O III] emission line SDSS AGNs have two spatial components within a 3' radius. However, spatially resolved spectroscopy or X-ray observations are needed to confirm these galaxy pairs as systems containing two AGNs. We followed up these spatially-double candidate dual AGNs with integral field spectroscopy from Keck OSIRIS and Gemini GMOS and with long-slit spectroscopy from Keck NIRSPEC and Shane Kast Double Spectrograph. We find double-peaked emitters are caused sometimes by dual AGN and sometimes by outflows or narrow line kinematics. We also performed Chandra X-ray ACIS-S observations on 12 double-peaked candidate dual AGNs. Using our observations and 8 archival observations, we compare the distribution of X-ray photons to our spatially double near-IR images, measure X-ray luminosities and hardness ratios, and estimate column densities. By assessing what fraction of double-peaked emission line SDSS AGNs are true dual AGNs, we can better determine whether double-peaked [O III] is an efficient dual AGN indicator and constrain the statistics of dual AGNs. A second technique to find dual AGN is the detection of ultra hard X-rays by the Swift Burst Alert Telescope. We use CARMA observations to measure and map the CO(1-0) present in nearby ultra-hard X-ray Active Galactic Nuclei (AGNs) merging with either a quiescent companion

  19. Diagnosing x-ray power and energy of tungsten wire array z-pinch with a flat spectral response x-ray diode

    SciTech Connect

    Wang, Kun-lun; Ren, Xiao-dong; Huang, Xian-bin Zhang, Si-qun; Zhou, Shao-tong; Dan, Jia-kun; Li, Jing; Xu, Qiang; Ouyang, Kai; Cai, Hong-chun; Wei, Bing; Ji, Ce; Feng, Shu-ping; Wang, Meng; Xie, Wei-ping; Deng, Jian-jun

    2015-11-15

    Fast z-pinch is a very efficient way of converting electromagnetic energy to radiation. With an 8-10 MA current on primary test stand facility, about 1 MJ electromagnetic energy is delivered to vacuum chamber, which heats z-pinch plasma to radiate soft x-ray. To develop a pulsed high power x-ray source, we studied the applicability of diagnosing x-ray power from tungsten wire array z-pinch with a flat spectral response x-ray diode (FSR-XRD). The detector was originally developed to diagnose radiation of a hohlraum in SG-III prototype laser facility. It utilized a gold cathode XRD and a specially configured compound gold filter to yield a nearly flat spectral response in photon energy range of 0.1-4 keV. In practice, it was critical to avoid surface contamination of gold cathode. It is illustrated that an exposure of an XRD to multiple shots caused a significant change of response. Thus, in diagnosing x-ray power and energy, we used each XRD in only one shot after calibration. In a shot serial, output of FSR-XRD was compared with output of a nickel bolometer. In these shots, the outputs agreed with each other within their uncertainties which were about 12% for FSR-XRD and about 15% for bolometer. Moreover, the ratios between the FSR-XRD and the bolometer among different shots were explored. In 8 shots, the standard deviation of the ratio was 6%. It is comparable to XRD response change of 7%.

  20. Diagnosing x-ray power and energy of tungsten wire array z-pinch with a flat spectral response x-ray diode.

    PubMed

    Wang, Kun-lun; Ren, Xiao-dong; Huang, Xian-bin; Zhang, Si-qun; Zhou, Shao-tong; Dan, Jia-kun; Li, Jing; Xu, Qiang; Ouyang, Kai; Cai, Hong-chun; Wei, Bing; Ji, Ce; Feng, Shu-ping; Wang, Meng; Xie, Wei-ping; Deng, Jian-jun

    2015-11-01

    Fast z-pinch is a very efficient way of converting electromagnetic energy to radiation. With an 8-10 MA current on primary test stand facility, about 1 MJ electromagnetic energy is delivered to vacuum chamber, which heats z-pinch plasma to radiate soft x-ray. To develop a pulsed high power x-ray source, we studied the applicability of diagnosing x-ray power from tungsten wire array z-pinch with a flat spectral response x-ray diode (FSR-XRD). The detector was originally developed to diagnose radiation of a hohlraum in SG-III prototype laser facility. It utilized a gold cathode XRD and a specially configured compound gold filter to yield a nearly flat spectral response in photon energy range of 0.1-4 keV. In practice, it was critical to avoid surface contamination of gold cathode. It is illustrated that an exposure of an XRD to multiple shots caused a significant change of response. Thus, in diagnosing x-ray power and energy, we used each XRD in only one shot after calibration. In a shot serial, output of FSR-XRD was compared with output of a nickel bolometer. In these shots, the outputs agreed with each other within their uncertainties which were about 12% for FSR-XRD and about 15% for bolometer. Moreover, the ratios between the FSR-XRD and the bolometer among different shots were explored. In 8 shots, the standard deviation of the ratio was 6%. It is comparable to XRD response change of 7%. PMID:26628136

  1. Diagnosing x-ray power and energy of tungsten wire array z-pinch with a flat spectral response x-ray diode

    NASA Astrophysics Data System (ADS)

    Wang, Kun-lun; Ren, Xiao-dong; Huang, Xian-bin; Zhang, Si-qun; Zhou, Shao-tong; Dan, Jia-kun; Li, Jing; Xu, Qiang; Ouyang, Kai; Cai, Hong-chun; Wei, Bing; Ji, Ce; Feng, Shu-ping; Wang, Meng; Xie, Wei-ping; Deng, Jian-jun

    2015-11-01

    Fast z-pinch is a very efficient way of converting electromagnetic energy to radiation. With an 8-10 MA current on primary test stand facility, about 1 MJ electromagnetic energy is delivered to vacuum chamber, which heats z-pinch plasma to radiate soft x-ray. To develop a pulsed high power x-ray source, we studied the applicability of diagnosing x-ray power from tungsten wire array z-pinch with a flat spectral response x-ray diode (FSR-XRD). The detector was originally developed to diagnose radiation of a hohlraum in SG-III prototype laser facility. It utilized a gold cathode XRD and a specially configured compound gold filter to yield a nearly flat spectral response in photon energy range of 0.1-4 keV. In practice, it was critical to avoid surface contamination of gold cathode. It is illustrated that an exposure of an XRD to multiple shots caused a significant change of response. Thus, in diagnosing x-ray power and energy, we used each XRD in only one shot after calibration. In a shot serial, output of FSR-XRD was compared with output of a nickel bolometer. In these shots, the outputs agreed with each other within their uncertainties which were about 12% for FSR-XRD and about 15% for bolometer. Moreover, the ratios between the FSR-XRD and the bolometer among different shots were explored. In 8 shots, the standard deviation of the ratio was 6%. It is comparable to XRD response change of 7%.

  2. X-Ray Emission from the Host Clusters of Powerful AGN

    NASA Astrophysics Data System (ADS)

    Hall, Patrick B.; Ellingson, Erica; Green, Richard F.

    1997-04-01

    We report the detection of X-ray emission from the host cluster of the unusual radio-quiet quasar \\1821\\ using the ROSAT HRI, and the non-detection of X-ray emission from the host cluster of the radio-loud quasar 3C 206 (3sigma \\ upper limit of 1.63 10(44) ergs s(-1) ) using the EINSTEIN HRI. The host cluster of \\1821\\ is one of the most X-ray luminous clusters known, with a rest-frame 0.1-2.4 keV luminosity of 3.74+/-0.57 h50(-2) 10(45) ergs s(-1) , %(\\qo=0.5), 38% of which is from a barely resolved cooling flow component. The cluster emission complicates interpretation of previous X-ray spectra of this field. In particular, the observed Fe Kalpha emission can probably be attributed entirely to the cluster and either the quasar is relatively X-ray quiet for its optical luminosity or the cluster has a relatively low temperature for its luminosity. We combine these data with the recent detection of X-ray emission from the host cluster of the `buried' radio-quiet quasar \\9104 (\\cite{fc95}), our previous upper limits for the host clusters of two z ~ 0.7 radio-loud quasars, and literature data on FR II radio galaxies. We compare this dataset to the predictions of three models for the presence and evolution of powerful AGN in clusters: the low-velocity-dispersion model, the low-ICM-density model, and the cooling flow model. Neither the low-ICM-density model nor the cooling flow model can explain all the observations. We suggest that strong interactions with gas-containing galaxies may be the only mechanism needed to explain the presence and evolution of powerful AGN in clusters, a scenario consistent with the far-IR and optical properties of the host galaxies studied here, all of which show some evidence for past interactions. However, the cooling flow model cannot be ruled out for at least some objects, and it is likely that both processes are at work in creating and fueling powerful AGN in clusters. Each scenario makes testable predictions for future

  3. An ultraluminous X-ray source powered by an accreting neutron star.

    PubMed

    Bachetti, M; Harrison, F A; Walton, D J; Grefenstette, B W; Chakrabarty, D; Fürst, F; Barret, D; Beloborodov, A; Boggs, S E; Christensen, F E; Craig, W W; Fabian, A C; Hailey, C J; Hornschemeier, A; Kaspi, V; Kulkarni, S R; Maccarone, T; Miller, J M; Rana, V; Stern, D; Tendulkar, S P; Tomsick, J; Webb, N A; Zhang, W W

    2014-10-01

    The majority of ultraluminous X-ray sources are point sources that are spatially offset from the nuclei of nearby galaxies and whose X-ray luminosities exceed the theoretical maximum for spherical infall (the Eddington limit) onto stellar-mass black holes. Their X-ray luminosities in the 0.5-10 kiloelectronvolt energy band range from 10(39) to 10(41) ergs per second. Because higher masses imply less extreme ratios of the luminosity to the isotropic Eddington limit, theoretical models have focused on black hole rather than neutron star systems. The most challenging sources to explain are those at the luminous end of the range (more than 10(40) ergs per second), which require black hole masses of 50-100 times the solar value or significant departures from the standard thin disk accretion that powers bright Galactic X-ray binaries, or both. Here we report broadband X-ray observations of the nuclear region of the galaxy M82 that reveal pulsations with an average period of 1.37 seconds and a 2.5-day sinusoidal modulation. The pulsations result from the rotation of a magnetized neutron star, and the modulation arises from its binary orbit. The pulsed flux alone corresponds to an X-ray luminosity in the 3-30 kiloelectronvolt range of 4.9 × 10(39) ergs per second. The pulsating source is spatially coincident with a variable source that can reach an X-ray luminosity in the 0.3-10 kiloelectronvolt range of 1.8 × 10(40) ergs per second. This association implies a luminosity of about 100 times the Eddington limit for a 1.4-solar-mass object, or more than ten times brighter than any known accreting pulsar. This implies that neutron stars may not be rare in the ultraluminous X-ray population, and it challenges physical models for the accretion of matter onto magnetized compact objects. PMID:25297433

  4. Characterisation of flash X-ray source generated by Kali-1000 Pulse Power System

    NASA Astrophysics Data System (ADS)

    Satyanarayana, N.; Durga Prasada Rao, A.; Mittal, K. C.

    2016-02-01

    The electron beam-driven Rod Pinch Diode (RPD) is presently fielded on KALI-1000 Pulse Power System at Bhabha Atomic Research Centre, Visakhapatnam and is a leading candidate for future flash X-ray radiographic sources. The diode is capable of producing less than 2-mm radiation spot sizes and greater than 350 milli rads of dose measured at 1 m from the X-ray source. KALI-1000 Pulse Power Source is capable of delivering up to 600 kV using a Tesla Transformer with Demineralized Insulated Transmission Line (DITL), the diode typically operates between 250-330 kV . Since the radiation dose has a power-law dependence on diode voltage, this limits the dose production on KALI-1000 system. Radiation dose with angular variation is measured using thermoluminescent detectors (TLD's) and the X-ray spot size is measured using pin hole arrangement with image plate (IP) to obtain the time-integrated source profile as well as a time-resolved spot diagnostic. An X-ray pinhole camera was used to pick out where the energetic e-beam connects to the anode. Ideally the diode should function such that the radiation is emitted from the tip. The camera was mounted perpendicular to the machine's axis to view the radiation from the tip. Comparison of the spot sizes of the X-ray sources obtained by the pin hole and rolled edge arrangements was carried and results obtained by both the techniques are with in ± 10% of the average values.

  5. Magnet power supply control of the NSLS VUV and x-ray storage rings transfer lines

    SciTech Connect

    Klein, J.D.; Ramamoorthy, S.; Singh, O.; Smith, J.D.

    1985-01-01

    The transfer lines for NSLS VUV and x-ray storage rings have been split. New power supplies have been incorporated with existing ones. The existing microprocessor system has been upgraded in order to control the additional functions. This system expands the input/output port of the microprocessor to an addressable serial/parallel link to each magnet power supply. The implementation of this system will be discussed.

  6. Chandra Discovers the X-ray Signature of a Powerful Wind from a Galactic Microquasar

    NASA Astrophysics Data System (ADS)

    2000-11-01

    NASA's Chandra X-ray Observatory has detected, for the first time in X rays, a stellar fingerprint known as a P Cygni profile--the distinctive spectral signature of a powerful wind produced by an object in space. The discovery reveals a 4.5-million-mile-per-hour wind coming from a highly compact pair of stars in our galaxy, report researchers from Penn State and the Massachusetts Institute of Technology in a paper they will present on 8 November 2000 during a meeting of the High-Energy Astrophysics Division of the American Astronomical Society in Honolulu, Hawaii. The paper also has been accepted for publication in The Astrophysical Journal Letters. "To our knowledge, these are the first P Cygni profiles reported in X rays," say researchers Niel Brandt, assistant professor of astronomy and astrophysics at Penn State, and Norbert S. Schulz, research scientist at the Massachusetts Institute of Technology. The team made the discovery during their first observation of a binary-star system with the Chandra X-ray Observatory, which was launched into space in July 1999. The system, known as Circinus X-1, is located about 20,000 light years from Earth in the constellation Circinus near the Southern Cross. It contains a super-dense neutron star in orbit around a normal fusion-burning star like our Sun. Although Circinus X-1 was discovered in 1971, many properties of this system remain mysterious because Circinus X-1 lies in the galactic plane where obscuring dust and gas have blocked its effective study in many wavelengths. The P Cygni spectral profile, previously detected primarily at ultraviolet and optical wavelengths but never before in X rays, is the textbook tool astronomers rely on for probing stellar winds. The profile looks like the outline of a roller coaster, with one really big hill and valley in the middle, on a data plot with velocity on one axis and the flow rate of photons per second on the other. It is named after the famous star P Cygni, in which such

  7. Kiloelectronvolt X-rays Emitted from the Earth's Atmosphere During the Peak and Descending Phases of the 23rd Solar Activity Cycle

    NASA Astrophysics Data System (ADS)

    Spjeldvik, Walther; Gusev, Anatoly; Pugacheva, Galina; Martin, Inacio

    We have studied long-term observations of the low-energy, 3 to 8 keV, X-ray emission during the period July 2001 through December 2005. The data were obtained with CadmiumTelluride (CdTe) solid state detectors flown on the LEO CORONAS-F satellite and used to assess the dynamics of X-ray fluxes radiated by the Earth’s upper atmosphere during the peak and declining phases of the 23rd solar cycle as observed within the shadowed segments of the spacecraft trajectory. We present empirical maps of near-global distributions soft X-ray luminescence with data emphasis on northern hemisphere summer and winter conditions. These observations reveal some irregularities, and the maximum X-ray photon energy does not exceed about 8 keV. We found that the X-rays exhibit seasonal variations in addition to the expected dependence on solar activity levels, and there are definite latitudinal and longitudinal patterns. In year 2001, during the solar maximum activity, the 3 to 8 keV X-ray flux reached a maximum of 170 photons/(cm2 s sr) in the geographic northwestern part of the Earth. The luminosity of the brightest soft X-ray atmospheric emission spot was about 40 kW integrated over an upward atmospheric emission geographic area of 200º longitude and 20º latitude as seem at altitude of about 500 km. For comparison, typical auroral emissions in this soft X-ray band is around 10 to 30 MW. We argue that these X-ray fluxes cannot be scattered solar X-rays since solar X-rays are most often lower in photon energy (< 2 keV) and also lower in intensity -- except in short-lived events. We interpret our observations as being due to Bremsstrahlung X-rays resulting from magnetospheric electrons precipitating into the atmosphere from the radiation belts and depositing their kinetic energy there, an energetic electron precipitation flux that is modulated by electromagnetic disturbances such as magnetospheric ELF waves during and following magnetic storms and substorms, terrestrial lightning

  8. X-ray power increase from symmetrized wire-array z-pinch implosions

    SciTech Connect

    Sanford, T.W.L.; Allshouse, G.O.; Marder, B.M.

    1996-08-01

    A systematic experimental study of annular aluminum-wire z-pinches on the Saturn accelerator shows that, for the first time, the measured spatial characteristics and x-ray powers can approach those of two-dimensional, radiation-magneto-hydrodynamic simulations when large numbers of wires are used. Calculations show that the implosion begins to transition from that of individual plasma wires to that of a continuous plasma shell, when the circumferential gap between wires in the array is reduced below 1.4+1.3/-0.7 mm. This calculated gap coincides with the measured transition of 1.4 {+-}0.4 mm between the observed regimes of slow and rapid improvement in power output with decreasing gap. In the plasma shell regime, x-ray powers in excess of a factor of three over that generated in the plasma-wire region are measured.

  9. Dante soft x-ray power diagnostic for National Ignition Facility

    SciTech Connect

    Dewald, E.L.; Campbell, K.M.; Turner, R.E.; Holder, J.P.; Landen, O.L.; Glenzer, S.H.; Kauffman, R.L.; Suter, L.J.; Landon, M.; Rhodes, M.; Lee, D.

    2004-10-01

    Soft x-ray power diagnostics are essential for measuring the total x-ray flux, radiation temperature, conversion efficiency, and albedo that define the energetics in indirect and direct drive, as well as other types of high temperature laser plasma experiments. A key diagnostic for absolute radiation flux and radiation temperature in hohlraum experiments is the Dante broadband soft x-ray spectrometer. For the extended range of x-ray fluxes predicted for National Ignition Facility (NIF) compared to Omega or Nova hohlraums, the Dante spectrometer for NIF will include more high energy (<2 keV) edge filter band-pass channels and access to an increased dynamic range using grids and signal division. This will allow measurements of radiation fluxes of between 0.01 to 100 TW/sr, for hohlraum radiation temperatures between 50 eV and 1 keV. The NIF Dante will include a central four-channel imaging line-of-sight to verify the source size, alignment as well as checking for any radiation contributions from unconverted laser light plasmas.

  10. High power, short pulses ultraviolet laser for the development of a new x-ray laser

    SciTech Connect

    Meixler, L.; Nam, C.H.; Robinson, J.; Tighe, W.; Krushelnick, K.; Suckewer, S.; Goldhar, J.; Seely, J.; Feldman, U.

    1989-04-01

    A high power, short pulse ultraviolet laser system (Powerful Picosecond-Laser) has been developed at the Princeton Plasma Physics Laboratory (PPPL) as part of experiments designed to generate shorter wavelength x-ray lasers. With the addition of pulse compression and a final KrF amplifier the laser output is expected to have reached 1/3-1/2 TW (10/sup 12/ watts) levels. The laser system, particularly the final amplifier, is described along with some initial soft x-ray spectra from laser-target experiments. The front end of the PP-Laser provides an output of 20--30 GW (10/sup 9/ watts) and can be focussed to intensities of /approximately/10/sup 16/ W/cm/sup 2/. Experiments using this output to examine the effects of a prepulse on laser-target interaction are described. 19 refs., 14 figs.

  11. An X-ray absorption method for the identification of calcium phosphate species using peak height ratios

    NASA Astrophysics Data System (ADS)

    Oxmann, J. F.

    2013-11-01

    X-ray absorption near edge structure (XANES) studies on calcium phosphate species (Ca-P) deal with marginal differences among subtle spectral features despite a hitherto missing systematic breakdown of these differences. Related fingerprinting approaches depend therefore on spectral libraries that are not validated against each other, incomplete and scattered among publications. This study compiled a comprehensive spectral library from published reference compound libraries in order to establish more clear-cut criteria for Ca-P determination by distinctive phosphorus K-edge XANES features. A specifically developed normalization method identified diagnostic spectral features within the compiled library, e.g. by uniform calculation of ratios between white-line and secondary peak heights. Post-processing of the spectra (n = 81) verified distinguishability among most but not all phases, which included hydroxylapatite (HAP), poorly crystalline HAP, amorphous HAP, fluorapatite, carbonate fluorapatite (CFAP), carbonate hydroxylapatite, β-tricalcium phosphate, octacalcium phosphate (OCP), brushite, monetite, monocalcium phosphate, amorphous calcium phosphate (ACP), anapaite, herderite, scholzite, messelite, whiteite and P on CaCO3. Particularly, peak height ratios significantly improved analyte specificity, e.g. by supplementary breakdown into OCP and ACP. The spectral analysis also revealed Ca-P standards that were rarely investigated or inappropriately synthesized, and thus provides a basis for standard selection and synthesis. The developed method and resulting breakdown by species were subsequently tested on Ca-P spectra from studies on bone and sediment. The test indicated that bone material likely comprises only poorly crystalline apatite, which implies direct nucleation of apatite in bone. This biological apatite formation is likely opposed to that of sedimentary apatite, which apparently forms by successive crystallization. Application of the method to

  12. Technical Note: An X-ray absorption method for the identification of calcium phosphate species using peak-height ratios

    NASA Astrophysics Data System (ADS)

    Oxmann, J. F.

    2014-04-01

    X-ray absorption near edge structure (XANES) studies on calcium phosphate species (Ca-P) deal with marginal differences among subtle spectral features despite a hitherto missing systematic breakdown of these differences. Related fingerprinting approaches depend, therefore, on spectral libraries that are not validated against each other, incomplete and scattered among publications. This study compiled a comprehensive spectral library from published reference compound libraries in order to establish more clear-cut criteria for Ca-P determination by distinctive phosphorus K-edge XANES features. A specifically developed normalization method identified diagnostic spectral features in the compiled library, e.g. by uniform calculation of ratios between white-line and secondary peak heights. Post-processing of the spectra (n = 81) verified distinguishability among most but not all phases, which included hydroxylapatite (HAP), poorly crystalline HAP, amorphous HAP, fluorapatite, carbonate fluorapatite (CFAP), carbonate hydroxylapatite, β-tricalcium phosphate, octacalcium phosphate (OCP), brushite, monetite, monocalcium phosphate, amorphous calcium phosphate (ACP), anapaite, herderite, scholzite, messelite, whiteite and P on CaCO3. Particularly, peak-height ratios significantly improved analyte specificity, e.g. by supplementary breakdown into OCP and ACP. The spectral analysis also revealed Ca-P standards that were rarely investigated or inappropriately synthesized, and thus provides a basis for standard selection and synthesis. The method developed and resulting breakdown by species were subsequently tested on Ca-P spectra from studies on bone and sediment. The test indicated that bone material likely comprises only poorly crystalline apatite, which confirms direct nucleation of apatite in bone. This biological apatite formation is likely opposed to that of sedimentary apatite, which apparently forms by both direct nucleation and successive crystallization. Application of

  13. 100 Hz repetition rate, high average power, plasma-based soft x-ray lasers

    NASA Astrophysics Data System (ADS)

    Reagan, Brendan; Wernsing, Keith; Baumgarten, Cory; Berrill, Mark; Durivage, Leon; Furch, Federico; Curtis, Alden; Luther, Bradley; Patel, Dinesh; Menoni, Carmen; Shlyaptsev, Vyacheslav; Rocca, Jorge

    2013-10-01

    Numerous applications demand high average power / high repetition rate compact sources of coherent soft x-ray radiation. We report the demonstration table-top soft x-ray lasers at wavelengths ranging from 10.9 nm to 18.9 nm from plasmas created at 100 Hz repetition rate. Results includes a record average power of 0.15 mW at λ = 18.9 nm from a laser-produced Mo plasma and 0.1 mW average power at λ = 13.9 nm from a Ag plasma. These soft x-ray lasers are driven by collisional electron impact excitation in elongated line focus plasmas a few mm in length heated by a compact, directly diode-pumped, chirped pulse amplification Yb:YAG laser that produces 1 J pulses of ps duration at 100 Hz repetition rate. Pulses from this laser irradiate the surface of polished metal targets producing transient population inversions on the 4d1S0 --> 4p1P1 transition of Ni-like ions. Tailoring of the temporal profile of the driver laser pulse is observed to significantly increase soft x-ray laser output power as well as allow the generation of shorter wavelength lasers with reduced pump energy. Work was supported by the NSF ERC for Extreme Ultraviolet Science and Technology using equipment developed under NSF Award MRI-ARRA 09-561, and by the AMOS program of the Office of Basic Energy Sciences, US Department of Energy.

  14. How DARHT Works - the World's Most Powerful X-ray Machine

    SciTech Connect

    2011-11-06

    The Dual Axis Radiographic Hydrodynamic Test (DARHT) facility at Los Alamos National Laboratory is an essential scientific tool that supports Stockpile Stewardship at the Laboratory. The World's most powerful x-ray machine, it's used to take high-speed images of mock nuclear devices - data that is used to confirm and modify advanced computer codes in assuring the safety, security, and effectiveness of the U.S. nuclear deterrent.

  15. X-RAY AND GAMMA-RAY EMISSIONS FROM ROTATION POWERED MILLISECOND PULSARS

    SciTech Connect

    Takata, J.; Cheng, K. S.; Taam, Ronald E. E-mail: hrspksc@hkucc.hku.hk

    2012-01-20

    The Fermi Large Area Telescope has revealed that rotation powered millisecond pulsars (MSPs) are a major contributor to the Galactic {gamma}-ray source population. Such pulsars may also be important in modeling the quiescent state of several low-mass X-ray binaries (LMXBs), where optical observations of the companion star suggest the possible existence of rotation powered MSPs. To understand the observational properties of the different evolutionary stages of MSPs, the X-ray and {gamma}-ray emissions associated with the outer gap model are investigated. For rotation powered MSPs, the size of the outer gap and the properties of the high-energy emission are controlled by either the photon-photon pair-creation process or magnetic pair-creation process near the surface. For these pulsars, we find that the outer gap model controlled by the magnetic pair-creation process is preferable in explaining the possible correlations between the {gamma}-ray luminosity or non-thermal X-ray luminosity versus the spin-down power. For the accreting MSPs in quiescent LMXBs, the thermal X-ray emission at the neutron star (NS) surface resulting from deep crustal heating can control the conditions in the outer gap. We argue that the optical modulation observed in the quiescent state of several LMXBs originates from the irradiation of the donor star by {gamma}-rays from the outer gap. In these systems, the irradiation luminosity required for the optical modulation of the source such as SAX J1808.4-3658 can be achieved for a NS of high mass. Finally, we discuss the high-energy emission associated with an intra-binary shock in black widow systems, e.g., PSR B1957+20.

  16. How DARHT Works - the World's Most Powerful X-ray Machine

    ScienceCinema

    None

    2014-06-25

    The Dual Axis Radiographic Hydrodynamic Test (DARHT) facility at Los Alamos National Laboratory is an essential scientific tool that supports Stockpile Stewardship at the Laboratory. The World's most powerful x-ray machine, it's used to take high-speed images of mock nuclear devices - data that is used to confirm and modify advanced computer codes in assuring the safety, security, and effectiveness of the U.S. nuclear deterrent.

  17. Measuring the x-ray resolving power of bent potassium acid phthalate diffraction crystalsa)

    NASA Astrophysics Data System (ADS)

    Haugh, M. J.; Wu, M.; Jacoby, K. D.; Loisel, G. P.

    2014-11-01

    This report presents the results from measuring the X-ray resolving power of a curved potassium acid phthalate (KAP(001)) spectrometer crystal using two independent methods. It is part of a continuing effort to measure the fundamental diffraction properties of bent crystals that are used to study various characteristics of high temperature plasmas. Bent crystals like KAP(001) do not usually have the same diffraction properties as corresponding flat crystals. Models that do exist to calculate the effect of bending the crystal on the diffraction properties have simplifying assumptions and their accuracy limits have not been adequately determined. The type of crystals that we measured is being used in a spectrometer on the Z machine at Sandia National Laboratories in Albuquerque, New Mexico. The first technique for measuring the crystal resolving power measures the X-ray spectral line width of the characteristic lines from several metal anodes. The second method uses a diode X-ray source and a double crystal diffractometer arrangement to measure the reflectivity curve of the KAP(001) crystal. The width of that curve is inversely proportional to the crystal resolving power. The measurement results are analyzed and discussed.

  18. Measuring the x-ray resolving power of bent potassium acid phthalate diffraction crystals

    SciTech Connect

    Haugh, M. J. Jacoby, K. D.; Wu, M.; Loisel, G. P.

    2014-11-15

    This report presents the results from measuring the X-ray resolving power of a curved potassium acid phthalate (KAP(001)) spectrometer crystal using two independent methods. It is part of a continuing effort to measure the fundamental diffraction properties of bent crystals that are used to study various characteristics of high temperature plasmas. Bent crystals like KAP(001) do not usually have the same diffraction properties as corresponding flat crystals. Models that do exist to calculate the effect of bending the crystal on the diffraction properties have simplifying assumptions and their accuracy limits have not been adequately determined. The type of crystals that we measured is being used in a spectrometer on the Z machine at Sandia National Laboratories in Albuquerque, New Mexico. The first technique for measuring the crystal resolving power measures the X-ray spectral line width of the characteristic lines from several metal anodes. The second method uses a diode X-ray source and a double crystal diffractometer arrangement to measure the reflectivity curve of the KAP(001) crystal. The width of that curve is inversely proportional to the crystal resolving power. The measurement results are analyzed and discussed.

  19. Measuring the X-ray Resolving Power of Bent Potassium Acid Phthalate Diffraction Crystals

    SciTech Connect

    Haugh, M. J.; Wu, M.; Jacoby, K. D.; Loisel, G. P.

    2014-11-01

    This report presents the results from measuring the X-ray resolving power of a curved potassium acid phthalate (KAP(001)) spectrometer crystal using two independent methods. It is part of a continuing effort to measure the fundamental diffraction properties of bent crystals that are used to study various characteristics of high temperature plasmas. Bent crystals like KAP(001) do not usually have the same diffraction properties as corresponding flat crystals. Models that do exist to calculate the effect of bending the crystal on the diffraction properties have simplifying assumptions and their accuracy limits have not been adequately determined. The type of crystals that we measured is being used in a spectrometer on the Z machine at Sandia National Laboratories (SNL) in Albuquerque, NM. The first technique for measuring the crystal resolving power measures the X-ray spectral line width of the characteristic lines from several metal anodes. The second method uses a diode X-ray source and a dual goniometer arrangement to measure the reflectivity curve of the KAP(001) crystal. The width of that curve is inversely proportional to the crystal resolving power. The measurement results are analyzed and discussed.

  20. On syntheses of the X-ray background with power-law sources

    NASA Technical Reports Server (NTRS)

    De Zotti, G.; Boldt, E. A.; Marshall, F. E.; Swank, J. H.; Szymkowiak, A. E.; Cavaliere, A.; Danese, L.; Franceschini, A.

    1982-01-01

    The conditions under which the combined emission from power-law sources can mimic the X-ray background (XRB) spectrum in the 3-50 keV range are considered in view of HEAO 1 A-2 experiment measurements, and it is confirmed that a good fit may be obtained. The required spectral properties of the component sources differ, however, from those observed for local active galactic nuclei. Constraints are deduced for both the low-luminosity extension and evolution of such local objects, and it is shown that any other class of sources contributing to the X-ray background must be characterized by an energy spectral index lower than about 0.4, which is the mean index of the XRB, and exhibit steeper spectra at higher energies.

  1. On syntheses of the X-ray background with power-law sources

    NASA Technical Reports Server (NTRS)

    Dezotti, G.; Boldt, E. A.; Cavaliere, A.; Danese, L.; Franceschini, A.; Marshall, F. E.; Swank, J. H.; Szymkowiak, A. E.

    1981-01-01

    The conditions under which the combined emission from power law sources can mimic the X-ray background (XRB) spectrum in the 3-50 keV range are considered in view of HEAO 1 A-2 experiment measurements, and it is confirmed that a good fit may be obtained. The required spectral properties of the component sources differ, however, from those observed for local active galactic nuclei. Constraints are deduced for both the low luminosity extension and evolution of such local objects, and it is shown that any other class of sources contributing to the X-ray background must be characterized by an energy spectral index lower than about 0.4, which is the mean index of the XRB, and exhibit sleeper spectra at higher energies.

  2. On syntheses of the X-ray background with power-law sources

    NASA Astrophysics Data System (ADS)

    De Zotti, G.; Boldt, E. A.; Cavaliere, A.; Danese, L.; Franceschini, A.; Marshall, F. E.; Swank, J. H.; Szymkowiak, A. E.

    1981-08-01

    The conditions under which the combined emission from power law sources can mimic the X-ray background (XRB) spectrum in the 3-50 keV range are considered in view of HEAO 1 A-2 experiment measurements, and it is confirmed that a good fit may be obtained. The required spectral properties of the component sources differ, however, from those observed for local active galactic nuclei. Constraints are deduced for both the low luminosity extension and evolution of such local objects, and it is shown that any other class of sources contributing to the X-ray background must be characterized by an energy spectral index lower than about 0.4, which is the mean index of the XRB, and exhibit sleeper spectra at higher energies.

  3. Soft x-ray power diagnostic improvements at the Omega Laser Facility

    SciTech Connect

    Sorce, C.; Schein, J.; Weber, F.; Widmann, K.; Campbell, K.; Dewald, E.; Turner, R.; Landen, O.; Jacoby, K.; Torres, P.; Pellinen, D.

    2006-10-15

    Soft x-ray power diagnostics are essential for evaluating high temperature laser plasma experiments. The Dante soft x-ray spectrometer, a core diagnostic for radiation flux and temperature measurements of Hohlraums, installed on the Omega Laser Facility at the Laboratory for Laser Energetics has recently undergone a series of upgrades. Work performed at Brookhaven National Laboratory for the development of the National Ignition Facility (NIF) Dante spectrometer enables the Omega Dante to offer a total of 18 absolutely calibrated channels in the energy range from 50 eV to 20 keV. This feature provides Dante with the capability to measure higher, NIF relevant, radiation temperatures with increased accuracy including a differentiation of higher energy radiation such as the Au M and L bands. Diagnostic monitoring using experimental data from directly driven Au spherical shots is discussed.

  4. Spatially confined low-power optically pumped ultrafast synchrotron x-ray nanodiffraction

    SciTech Connect

    Park, Joonkyu; Zhang, Qingteng; Chen, Pice; Cosgriff, Margaret P.; Tilka, Jack A.; Evans, Paul G.; Adamo, Carolina; Schlom, Darrell G.; Wen, Haidan; Zhu, Yi

    2015-08-15

    The combination of ultrafast optical excitation and time-resolved synchrotron x-ray nanodiffraction provides unique insight into the photoinduced dynamics of materials, with the spatial resolution required to probe individual nanostructures or small volumes within heterogeneous materials. Optically excited x-ray nanobeam experiments are challenging because the high total optical power required for experimentally relevant optical fluences leads to mechanical instability due to heating. For a given fluence, tightly focusing the optical excitation reduces the average optical power by more than three orders of magnitude and thus ensures sufficient thermal stability for x-ray nanobeam studies. Delivering optical pulses via a scannable fiber-coupled optical objective provides a well-defined excitation geometry during rotation and translation of the sample and allows the selective excitation of isolated areas within the sample. Experimental studies of the photoinduced lattice dynamics of a 35 nm BiFeO{sub 3} thin film on a SrTiO{sub 3} substrate demonstrate the potential to excite and probe nanoscale volumes.

  5. Spatially confined low-power optically pumped ultrafast synchrotron x-ray nanodiffraction.

    PubMed

    Park, Joonkyu; Zhang, Qingteng; Chen, Pice; Cosgriff, Margaret P; Tilka, Jack A; Adamo, Carolina; Schlom, Darrell G; Wen, Haidan; Zhu, Yi; Evans, Paul G

    2015-08-01

    The combination of ultrafast optical excitation and time-resolved synchrotron x-ray nanodiffraction provides unique insight into the photoinduced dynamics of materials, with the spatial resolution required to probe individual nanostructures or small volumes within heterogeneous materials. Optically excited x-ray nanobeam experiments are challenging because the high total optical power required for experimentally relevant optical fluences leads to mechanical instability due to heating. For a given fluence, tightly focusing the optical excitation reduces the average optical power by more than three orders of magnitude and thus ensures sufficient thermal stability for x-ray nanobeam studies. Delivering optical pulses via a scannable fiber-coupled optical objective provides a well-defined excitation geometry during rotation and translation of the sample and allows the selective excitation of isolated areas within the sample. Experimental studies of the photoinduced lattice dynamics of a 35 nm BiFeO3 thin film on a SrTiO3 substrate demonstrate the potential to excite and probe nanoscale volumes. PMID:26329208

  6. Crosscheck of different techniques for two dimensional power spectral density measurements of x-ray optics

    SciTech Connect

    Yashchuk, Valeriy V.; Irick, Steve C.; Gullikson, Eric M.; Howells, Malcolm R.; MacDowell, Alastair A.; McKinney, Wayne R.; Salmassi, Farhad; Warwick, Tony

    2005-07-12

    The consistency of different instruments and methods for measuring two-dimensional (2D) power spectral density (PSD) distributions are investigated. The instruments are an interferometric microscope, an atomic force microscope (AFM) and the X-ray Reflectivity and Scattering experimental facility, all available at Lawrence Berkeley National Laboratory. The measurements were performed with a gold-coated mirror with a highly polished stainless steel substrate. It was shown that these three techniques provide essentially consistent results. For the stainless steel mirror, an envelope over all measured PSD distributions can be described with an inverse power-law PSD function. It is also shown that the measurements can be corrected for the specific spatial frequency dependent systematic errors of the instruments. The AFM and the X-ray scattering measurements were used to determine the modulation transfer function of the interferometric microscope. The corresponding correction procedure is discussed in detail. Lower frequency investigation of the 2D PSD distribution was also performed with a long trace profiler and a ZYGO GPI interferometer. These measurements are in some contradiction, suggesting that the reliability of the measurements has to be confirmed with additional investigation. Based on the crosscheck of the performance of all used methods, we discuss the ways for improving the 2D PSD characterization of X-ray optics.

  7. Bifurcation timescales in power spectra of black hole binaries and ultraluminous X-ray sources

    NASA Astrophysics Data System (ADS)

    Wang, Taishan; Li, Tipei

    2010-01-01

    For black hole binaries (BHBs) and active galactic nuclei (AGNs), bifurcation timescales (BTs) Δ t b exist, below which time-domain power is significantly higher than the corresponding Fourier power. Quasi-periodic oscillations (QPOs) are removed from the Fourier spectra of BHBs. A relationship between BT, black hole mass and bolometric luminosity is derived. Strong anti-correlation between BT and luminosity of Cyg X-1 is found. After removing the QPOs, BTs are also obtained for two ultraluminous X-ray sources (ULXs), M82 X-1 and NGC5408 X-1. The results support that they harbor intermediate mass black holes (IMBHs).

  8. Spatial power-spectra from Yohkoh soft X-ray images

    NASA Technical Reports Server (NTRS)

    Martens, Petrus C. H.; Gomez, Daniel O.

    1992-01-01

    We analyze three sequences of images from active regions, and a full disk image obtained by Yohkoh's Soft X-ray Telescope. Two sequences are from a region at center disk observed through different filters, and one sequence is from the limb. After Fourier-transforming the X-ray intensity of the images we find nearly isotropic power-spectra with an azimuthally integrated slope of -2.1 for the center disk, and -2.8 for the limb images. The full-disk picture yields a spectrum of -2.4. These results are different from the active region spectra obtained with the Normal Incidence X-ray Telescope which have a slope of the order of -3.0, and we ascribe this to the difference in temperature response between the instruments. However, both the SXT and NIXT results are consistent with coronal heating as the end result of a downward quasistatic cascade (in lengthscales) of free magnetic energy in the corona, driven by footpoint motions in the photosphere.

  9. Soft x-ray blazed transmission grating spectrometer with high resolving power and extended bandpass

    NASA Astrophysics Data System (ADS)

    Heilmann, Ralf K.; Bruccoleri, Alexander Robert; Schattenburg, Mark

    2016-04-01

    A number of high priority questions in astrophysics can be addressed by a state-of-the-art soft x-ray grating spectrometer, such as the role of Active Galactic Nuclei in galaxy and star formation, characterization of the Warm-Hot Intergalactic Medium and the “missing baryon” problem, characterization of halos around the Milky Way and nearby galaxies, as well as stellar coronae and surrounding winds and disks. An Explorer-scale, large-area (> 1,000 cm2), high resolving power (R = λ/Δλ > 3,000) soft x-ray grating spectrometer is highly feasible based on Critical-Angle Transmission (CAT) grating technology. Still significantly higher performance can be provided by a CAT grating spectrometer on an X-ray-Surveyor-type mission. CAT gratings combine the advantages of blazed reflection gratings (high efficiency, use of higher diffraction orders) with those of conventional transmission gratings (low mass, relaxed alignment tolerances and temperature requirements, transparent at higher energies) with minimal mission resource requirements. They are high-efficiency blazed transmission gratings that consist of freestanding, ultra-high aspect-ratio grating bars fabricated from silicon-on-insulator (SOI) wafers using advanced anisotropic dry and wet etch techniques. Blazing is achieved through grazing-incidence reflection off the smooth grating bar sidewalls. The reflection properties of silicon are well matched to the soft x-ray band. Nevertheless, CAT gratings with sidewalls made of higher atomic number elements allow extension of the CAT grating principle to higher energies and larger dispersion angles. We show x-ray data from metal-coated CAT gratings and demonstrate efficient blazing to higher energies and larger blaze angles than possible with silicon alone. We also report on measurements of the resolving power of a breadboard CAT grating spectrometer consisting of a Wolter-I slumped-glass focusing mirror pair from Goddard Space Flight Center and CAT gratings, to be

  10. The X-ray behaviour of the high-energy peaked BL Lacertae source PKS 2155-304 in the 0.3-10 keV band

    NASA Astrophysics Data System (ADS)

    Kapanadze, B.; Romano, P.; Vercellone, S.; Kapanadze, S.

    2014-10-01

    We present the results of our monitoring of the high-energy peaked BL Lac object PKS 2155-304 by the Swift/X-Ray Telescope (XRT) during 2005-2012. Our timing study shows that the source was highly variable both on longer (weeks-to-months) and intra-day time-scales, up to a factor of 7 in flux, and 30 per cent in fractional variability amplitudes, with no periodic variations. The X-ray spectra are mainly curved with broad ranges of photon index, curvature parameter, and hardness ratio which exhibit significant variability with the flux on different time-scales. Our study of multi-wavelength cross-correlations has revealed that the one-zone SSC scenario seems to be valid for the most optical-to-gamma-ray flares observed during 2006-2012. An `orphan' X-ray flare with no counterpart in other spectral bands suggests the existence of different electron populations. Based on the absence of a correlation between photon index and curvature parameter (expected from the energy-dependent acceleration probability scenario), the observed distribution of curvature parameter from the XRT spectra peaking at b = 0.37, and the observed anti-correlation between the curvature parameter and the 0.3-10 keV flux (i.e. lower curvatures in flaring states), we conclude that the most likely mechanism responsible for producing X-ray emission during the flares is the stochastic acceleration of the electrons.

  11. Power spectrum analysis of the x-ray scatter signal in mammography and breast tomosynthesis projections

    PubMed Central

    Sechopoulos, Ioannis; Bliznakova, Kristina; Fei, Baowei

    2013-01-01

    Purpose: To analyze the frequency domain characteristics of the signal in mammography images and breast tomosynthesis projections with patient tissue texture due to detected scattered x-rays. Methods: Acquisitions of x-ray projection images of 19 different patient breasts were simulated using previously acquired volumetric patient images. Acquisition of these images was performed with a dedicated breast CT prototype system, and the images were classified into voxels representing skin, adipose, and glandular tissue with a previously validated automated algorithm. The classified three dimensional images then underwent simulated mechanical compression representing that which is performed during acquisition of mammography and breast tomosynthesis images. The acquisition of projection images of each patient breast was simulated using Monte Carlo methods with each simulation resulting in two images: one of the primary (non-scattered) signal and one of the scatter signal. To analyze the scatter signal for both mammography and breast tomosynthesis, two projections images of each patient breast were simulated, one with the x-ray source positioned at 0° (mammography and central tomosynthesis projection) and at 30° (wide tomosynthesis projection). The noise power spectra (NPS) for both the scatter signal alone and the total signal (primary + scatter) for all images were obtained and the combined results of all patients analyzed. The total NPS was fit to the expected power-law relationship NPS(f) = k/f^β and the results were compared with those previously published on the power spectrum characteristics of mammographic texture. The scatter signal alone was analyzed qualitatively and a power-law fit was also performed. Results: The mammography and tomosynthesis projections of three patient breasts were too small to analyze, so a total of 16 patient breasts were analyzed. The values of β for the total signal of the 0° projections agreed well with previously published results

  12. Solid-state pulsed power for driving a high-power dense plasma focus x-ray source

    NASA Astrophysics Data System (ADS)

    Petr, R.; Reilly, D.; Freshman, J.; Orozco, N.; Pham, D.; Ngo, L.; Mangano, J.

    2000-03-01

    Solid-state pulsed power technology has been successfully applied to a high average power dense plasma focus (DPF) x-ray point source. In the past, electrode erosion and the associated insulator lifetime have been the primary limiting factors for implementing a DPF x-ray source in a practical x-ray lithographic tool. The solid-state pulsed power supply described here uses fast-switching thyristors, diodes, and saturable magnetics to eliminate current reversal through the DPF electrodes. This has improved the DPF system performance and lifetime by reducing the electrode and insulator vaporization rates more than 20× compared to conventional sparkgap-switched drivers. Erosion measurements indicate that an electrode set can last more than 5 million shots before refurbishment. The DPF source produces an average energy of 7.3 J pulse into 4π Sr at a 1.1 keV effective wavelength in ˜1 Torr of neon gas at repetition rates up to 60 Hz. The x-ray yield efficiency is nominally 0.6%.

  13. Origin of a Raman scattering peak generated in single-walled carbon nanotubes by X-ray irradiation and subsequent thermal annealing

    NASA Astrophysics Data System (ADS)

    Murakami, Toshiya; Matsuda, Mitsuaki; Kisoda, Kenji; Itoh, Chihiro

    2016-08-01

    We have found that a Raman scattering (RS) peak around 1870 cm-1 was produced by the annealing of the X-ray irradiated film of single-walled carbon nanotubes (SWNTs) at 450 oC. The intensity of 1870-cm-1 peak showed a maximum at the probe energy of 2.3 eV for the RS spectroscopy with various probe lasers. Both the peak position and the probe-energy dependence were almost identical to those of the one-dimensional carbon chains previously reported in multi-walled carbon nanotubes. Consequently, we concluded that the 1870-cm-1 peak found in the present study is attributed to carbon chains. The formation of carbon chains by the annealing at temperature lower than 500 oC is firstly reported by the present study. The carbon chains would be formed by aggregation of the interstitial carbons, which are formed as a counterpart of carbon vacancies by X-ray irradiation diffused on SWNT walls. The result indicates that the combination of X-ray irradiation and subsequent thermal annealing is a feasible tool for generating new nanostructures in SWNT.

  14. Chandra Imaging of the X-Ray Nebula Powered by Pulsar B1509-58

    NASA Astrophysics Data System (ADS)

    Gaensler, B. M.; Arons, J.; Kaspi, V. M.; Pivovaroff, M. J.; Kawai, N.; Tamura, K.

    2002-04-01

    We present observations with the Chandra X-Ray Observatory of the pulsar wind nebula (PWN) powered by the energetic young pulsar B1509-58. These data confirm the complicated morphology of the system indicated by previous observations, and in addition reveal several new components to the nebula. The overall PWN shows a clear symmetry axis oriented at a position angle 150deg+/-5deg (north through east), which we argue corresponds to the pulsar spin axis. We show that a previously identified radio feature matches well with the overall extent of the X-ray PWN, and propose the former as the long-sought radio nebula powered by the pulsar. We further identify a bright collimated feature, at least 4' long, lying along the nebula's main symmetry axis; we interpret this feature as a physical outflow from the pulsar, and infer a velocity for this jet of greater than 0.2c. The lack of any observed counterjet implies that the pulsar spin axis is inclined at ~30° to the line of sight, contrary to previous estimates made from lower resolution data. We also identify a variety of compact features close to the pulsar. A pair of semicircular X-ray arcs lie 17" and 30" to the north of the pulsar; the latter arc shows a highly polarized radio counterpart. We show that these features can be interpreted as ion-compression wisps in a particle-dominated equatorial flow, and use their properties to infer a ratio of electromagnetic to particle energy in pairs at the wind shock σ~0.005, similar to that seen in the Crab Nebula. We further identify several compact knots seen very close to the pulsar; we use these to infer σ<0.003 at a separation from the pulsar of 0.1 pc.

  15. Assessment of temperature peaks reached during a wildfire. An approach using X-ray diffraction and differential thermal analysis

    NASA Astrophysics Data System (ADS)

    Jiménez-González, Marco A.; Jordán, Antonio; Zavala, Lorena M.; Mataix-Solera, Jorge; Bárcenas-Moreno, Gema; Jiménez-Morillo, Nicasio T.; Bellinfante, Nicolás

    2014-05-01

    1. INTRODUCTION Wildfires may induce important chemical and physical changes in soils, including changes in the soil composition, mineralogical changes, soil water repellency, aggregate stability or textural changes (Bodí et al., 2013; Granged et al., 2011a, 2011b, 2011c; Jordán et al., 2011, 2013; Mataix-Solera et al., 2011). As these changes usually occur after threshold temperature peaks, the assessment of these helps to explain many of the processes occurring during burning and in the postfire (Pereira et al., 2012, 2013; Shakesby, 2011). In July 2011, a wildfire burnt a pine forested area (50 ha) in Gorga (Alicante, SW Spain), approximately at 38° 44.3' N and 0° 20.7' W. Main soil type is Lithic Xerorthent developed from limestone. The study of mineralogical changes in soil after a wildfire should help to assess fire temperature peaks reached during burning. In order to study the impact of fire temperature on mineralogical changes and determine temperature peaks during burning, burnt soil plots under shrubland were randomly collected (0-5 cm deep). Control samples from adjacent unburnt areas were also collected for control. 2. METHODS Soil samples were ground using an agate mortar and then sieved (< 0.002mm) and analyzed by X-ray diffraction (XRD). XRD was conducted on a Bruker (model D8 advance A25) powder θ:θ diffractometer, which uses a Cu anticathode (40KV, 30mA), Ni filter in the diffracted bean and lineal detector. Powder samples were scanned from 3 to 70° 2θ, using a step size of 0.015° 2θ and a scan speed of 0.15° 2θ s-1. Mineralogical phase identification and quantification of minerals was carried out with XPowder. In order to study other possible reaction in burnt soil, unburnt soil samples were exposed to temperatures of 300, 500 and 700 °C in a Mufla furnace during 20 minutes. Unburnt control and treated samples were analyzed by differential thermal analysis (DTA) and thermogravimetric analysis (TG). 3. RESULTS Diffractograms show that

  16. X-ray monochromator

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B. (Inventor)

    1992-01-01

    An x-ray monochromator is described, wherin a housing supports a plurality of mirrors forming a plurality of opposed mirror faces in parallel with each other and having thereon multilayer coatings, with each of said pairs of mirror faces being provided with identical coatings which are different from the coatings on the other pairs of mirror faces such that each pair of mirror faces has a peak x-ray reflection at a different wavelength regime. The housing is moveable to bring into a polychromatic x-ray beam that pair of mirror faces having the best x-ray reflection for the desired wavelength, with the mirrors being pivotable to move the mirror faces to that angle of incidence at which the peak reflectivity of the desired wavelength x-rays occurs.

  17. THE FIRST HARD X-RAY POWER SPECTRAL DENSITY FUNCTIONS OF ACTIVE GALACTIC NUCLEUS

    SciTech Connect

    Shimizu, T. Taro; Mushotzky, Richard F.

    2013-06-10

    We present results of our power spectral density (PSD) analysis of 30 active galactic nuclei (AGNs) using the 58 month light curves from Swift's Burst Alert Telescope (BAT) in the 14-150 keV band. PSDs were fit using a Monte Carlo based algorithm to take into account windowing effects and measurement error. All but one source were found to be fit very well using an unbroken power law with a slope of {approx} - 1, consistent at low frequencies with previous studies in the 2-10 keV band, with no evidence of a break in the PSD. For five of the highest signal-to-noise ratio sources, we tested the energy dependence of the PSD and found no significant difference in the PSD at different energies. Unlike previous studies of X-ray variability in AGNs, we do not find any significant correlations between the hard X-ray variability and different properties of the AGN including luminosity and black hole mass. The lack of break frequencies and correlations seem to indicate that AGNs are similar to the high state of Galactic black holes.

  18. Power-law X-ray and gamma-ray emission from relativistic thermal plasmas

    NASA Technical Reports Server (NTRS)

    Zdziarski, A. A.

    1985-01-01

    A common characteristic of cosmic sources is power-law X-ray emission. Extragalactic sources of this type include compact components of active galactic nuclei (AGN). The present study is concerned with a theoretical model of such sources, taking into account the assumption that the power-law spectra are produced by repeated Compton scatterings of soft photons by relativistic thermal electrons. This is one of several possible physical mechanisms leading to the formation of a power-law spectrum. Attention is given to the Comptonization of soft photon sources, the rates of pair processes, the solution of the pair equilibrium equation, and the constraints on a soft photon source and an energy source. It is concluded that the compactness parameters L/R of most of the cosmic sources observed to date lie below the maximum luminosity curves considered.

  19. Chandra Reveals Twin X-ray Jets in the Powerful FR-II Radio Galaxy 3C353

    SciTech Connect

    Kataoka, J.; Stawarz, L.; Harris, D.E.; Siemiginowska, A.; Ostrowski, M.; Swain, M.R.; Hardcastle, M.J.; Goodger, J.L.; Iwasawa, K.; Edwards, P.G.

    2008-06-13

    We report X-ray imaging of the powerful FR II radio galaxy 3C 353 using the Chandra X-ray Observatory. 3C 353's two 4-inch wide and 2-feet long jets allow us to study in detail the internal structure of the large-scale relativistic outflows at both radio and X-ray photon energies with the sub-arcsecond spatial resolution provided by the VLA and Chandra instruments. In a 90 ks Chandra observation, we have detected X-ray emission from most radio structures in 3C 353, including the nucleus, the jet and the counterjet, the terminal jet regions (hotspots), and one radio lobe. We show that the detection of the X-ray emission associated with the radio knots and counterknots, which is most likely non-thermal in origin, puts several crucial constraints on the X-ray emission mechanisms in powerful large-scale jets of quasars and FR II sources. In particular, we show that this detection is inconsistent with the inverse-Compton model proposed in the literature, and instead implies a synchrotron origin of the X-ray jet photons. We also find that the width of the X-ray counterjet is possibly narrower than that measured in radio bands, that the radio-to-X-ray flux ratio decreases systematically downstream along the jets, and that there are substantial (kpc-scale) offsets between the positions of the X-ray and radio intensity maxima within each knot, whose magnitudes increase away from the nucleus. We discuss all these findings in the wider context of the physics of extragalactic jets, proposing some particular though not definitive solutions or interpretations for each problem. In general, we find that the synchrotron X-ray emission of extragalactic large-scale jets is not only shaped by the global hydrodynamical configuration of the outflows, but is also likely to be very sensitive to the microscopic parameters of the jet plasma. A complete, self-consistent model for the X-ray emission of extragalactic jets still remains elusive.

  20. Chandra Reveals Twin X-ray Jets in the Powerful FR II Radio Galaxy 3C 353

    SciTech Connect

    Kataoka, Jun

    2008-12-24

    We report X-ray imaging of the powerful FR II radio galaxy 3C 353 using the Chandra X-ray Observatory. 3C 353's two 4''-wide and 2'-long jets allow us to study in detail the internal structure of the large-scale relativistic outflows at both radio and X-ray photon energies with the sub-arcsecond spatial resolution provided by the VLA and Chandra instruments. In a 90 ks Chandra observation, we have detected X-ray emission from most radio structures in 3C 353, including the nucleus, the jet and the counterjet, the terminal jet regions (hotspots), and one radio lobe. We show that the detection of the X-ray emission associated with the radio knots and counterknots, which is most likely non-thermal in origin, puts several crucial constraints on the X-ray emission mechanisms in powerful large-scale jets of quasars and FR II sources. In particular, we show that this detection is inconsistent with the inverse-Compton model proposed in the literature, and instead implies a synchrotron origin of the X-ray jet photons. We also find that the width of the X-ray counterjet is possibly narrower than that measured in radio bands, that the radio-to-X-ray flux ratio decreases systematically downstream along the jets, and that there are substantial (kpc-scale) offsets between the positions of the X-ray and radio intensity maxima within each knot, whose magnitudes increase away from the nucleus. We discuss all these findings in the wider context of the physics of extragalactic jets, proposing some particular though not definitive solutions or interpretations for each problem. In general, we find that the synchrotron X-ray emission of extragalactic large-scale jets is not only shaped by the global hydrodynamical configuration of the outflows, but is also likely to be very sensitive to the microscopic parameters of the jet plasma. A complete, self-consistent model for the X-ray emission of extragalactic jets still remains elusive.

  1. Thermometric- and Acoustic-Based Beam Power Monitor for Ultra-Bright X-Rays

    SciTech Connect

    Bentsen, Gregory; /Rochester U. /SLAC

    2010-08-25

    A design for an average beam power monitor for ultra-bright X-ray sources is proposed that makes simultaneous use of calorimetry and radiation acoustics. Radiation incident on a solid target will induce heating and ultrasonic vibrations, both of which may be measured to give a fairly precise value of the beam power. The monitor is intended for measuring ultra-bright Free-Electron Laser (FEL) X-ray beams, for which traditional monitoring technologies such as photo-diodes or scintillators are unsuitable. The monitor consists of a Boron Carbide (B{sub 4}C) target designed to absorb most of the incident beam's energy. Resistance temperature detectors (RTD) and piezoelectric actuators are mounted on the outward faces of the target to measure the temperature changes and ultrasonic vibrations induced by the incident beam. The design was tested using an optical pulsed beam (780 nm, 120 and 360 Hz) from a Ti:sapphire oscillator at several energies between 0.8 and 2.6 mJ. The RTDs measured an increase in temperature of about 10 K over a period of several minutes. The piezoelectric sensors recorded ringing acoustic oscillations at 580 {+-} 40 kHz. Most importantly, the amplitude of the acoustic signals was observed to scale linearly with beam power up to 2 mJ of pulse energy. Above this pulse energy, the vibrational signals became nonlinear. Several causes for this nonlinearity are discussed, including amplifier saturation and piezoelectric saturation. Despite this nonlinearity, these measurements demonstrate the feasibility of such a beam power measurement device. The advantage of two distinct measurements (acoustic and thermometric) provides a useful method of calibration that is unavailable to current LCLS diagnostics tools.

  2. Offsets between the X-ray and the Sunyaev-Zel'Dovich-effect peaks in merging galaxy clusters and their cosmological implications

    SciTech Connect

    Zhang, Congyao; Yu, Qingjuan; Lu, Youjun

    2014-12-01

    Observations reveal that the peaks of the X-ray map and the Sunyaev-Zel'dovich (SZ) effect map of some galaxy clusters are offset from each other. In this paper, we perform a set of hydrodynamical simulations of mergers of two galaxy clusters to investigate the spatial offset between the maxima of the X-ray and the SZ surface brightness of the merging clusters. We find that significantly large SZ-X-ray offsets (>100 kpc) can be produced during the major mergers of galaxy clusters (with mass > 1 × 10{sup 14} M {sub ☉}). The significantly large offsets are mainly caused by a 'jump effect' that occurs between the primary and secondary pericentric passages of the two merging clusters, during which the X-ray peak may jump to the densest gas region located near the center of the small cluster, but the SZ peak remains near the center of the large one. Our simulations show that merging systems with higher masses and larger initial relative velocities may result in larger offset sizes and longer offset time durations; and only nearly head-on mergers are likely to produce significantly large offsets. We further investigate the statistical distribution of the SZ-X-ray offset sizes and find that (1) the number distribution of the offset sizes is bimodal with one peak located at low offsets ∼0 and the other at large offsets ∼350-450 h {sup –1} kpc, but the objects with intermediate offsets are scarce; and (2) the probabilities of the clusters in the mass range higher than 2 × 10{sup 14} h {sup –1} M {sub ☉} that have offsets larger than 20, 50, 200, 300, and 500 h {sup –1} kpc are 34.0%, 11.1%, 8.0%, 6.5%, and 2.0%, respectively, at z = 0.7. The probability is sensitive to the underlying pairwise velocity distribution and the merger rate of clusters. We suggest that the SZ-X-ray offsets provide a probe to the cosmic velocity fields on the cluster scale and the cluster merger rate, and future observations on the SZ-X-ray offsets for a large number of clusters may

  3. SHORT-TIMESCALE MONITORING OF THE X-RAY, UV, AND BROAD DOUBLE-PEAK EMISSION LINE OF THE NUCLEUS OF NGC 1097

    SciTech Connect

    Schimoia, Jaderson S.; Storchi-Bergmann, Thaisa; Grupe, Dirk; Eracleous, Michael; Peterson, Bradley M.; Baldwin, Jack A.; Nemmen, Rodrigo S.; Winge, Cláudia

    2015-02-10

    Recent studies have suggested that the short-timescale (≲ 7 days) variability of the broad (∼10,000 km s{sup –1}) double-peaked Hα profile of the LINER nucleus of NGC 1097 could be driven by a variable X-ray emission from a central radiatively inefficient accretion flow. To test this scenario, we have monitored the NGC 1097 nucleus in X-ray and UV continuum with Swift and the Hα flux and profile in the optical spectrum using SOAR and Gemini-South from 2012 August to 2013 February. During the monitoring campaign, the Hα flux remained at a very low level—three times lower than the maximum flux observed in previous campaigns and showing only limited (∼20%) variability. The X-ray variations were small, only ∼13% throughout the campaign, while the UV did not show significant variations. We concluded that the timescale of the Hα profile variation is close to the sampling interval of the optical observations, which results in only a marginal correlation between the X-ray and Hα fluxes. We have caught the active galaxy nucleus in NGC 1097 in a very low activity state, in which the ionizing source was very weak and capable of ionizing just the innermost part of the gas in the disk. Nonetheless, the data presented here still support the picture in which the gas that emits the broad double-peaked Balmer lines is illuminated/ionized by a source of high-energy photons which is located interior to the inner radius of the line-emitting part of the disk.

  4. Short-timescale Monitoring of the X-Ray, UV, and Broad Double-peak Emission Line of the Nucleus of NGC 1097

    NASA Astrophysics Data System (ADS)

    Schimoia, Jaderson S.; Storchi-Bergmann, Thaisa; Grupe, Dirk; Eracleous, Michael; Peterson, Bradley M.; Baldwin, Jack A.; Nemmen, Rodrigo S.; Winge, Cláudia

    2015-02-01

    Recent studies have suggested that the short-timescale (lsim 7 days) variability of the broad (~10,000 km s-1) double-peaked Hα profile of the LINER nucleus of NGC 1097 could be driven by a variable X-ray emission from a central radiatively inefficient accretion flow. To test this scenario, we have monitored the NGC 1097 nucleus in X-ray and UV continuum with Swift and the Hα flux and profile in the optical spectrum using SOAR and Gemini-South from 2012 August to 2013 February. During the monitoring campaign, the Hα flux remained at a very low level—three times lower than the maximum flux observed in previous campaigns and showing only limited (~20%) variability. The X-ray variations were small, only ~13% throughout the campaign, while the UV did not show significant variations. We concluded that the timescale of the Hα profile variation is close to the sampling interval of the optical observations, which results in only a marginal correlation between the X-ray and Hα fluxes. We have caught the active galaxy nucleus in NGC 1097 in a very low activity state, in which the ionizing source was very weak and capable of ionizing just the innermost part of the gas in the disk. Nonetheless, the data presented here still support the picture in which the gas that emits the broad double-peaked Balmer lines is illuminated/ionized by a source of high-energy photons which is located interior to the inner radius of the line-emitting part of the disk.

  5. The Relation Between Accretion Rate And Jet Power in X-Ray Luminous Elliptical Galaxies

    SciTech Connect

    Allen, Steven W.; Dunn, R.J.H.; Fabian, A.C.; Taylor, G.B.; Reynolds, C.S.; /Maryland U.

    2006-03-10

    Using Chandra X-ray observations of nine nearby, X-ray luminous elliptical galaxies with good optical velocity dispersion measurements, we show that a tight correlation exists between the Bondi accretion rates calculated from the observed gas temperature and density profiles and estimated black hole masses, and the power emerging from these systems in relativistic jets. The jet powers, which are inferred from the energies and timescales required to inflate cavities observed in the surrounding X-ray emitting gas, can be related to the accretion rates using a power law model of the form log (P{sub Bondi}/10{sup 43} erg s{sup -1}) = A + B log (P{sub jet}/10{sup 43} erg s{sup -1}), with A = 0.62 {+-} 0.15 and B = 0.77 {+-} 0.18. Our results show that a significant fraction of the energy associated with the rest mass of material entering the Bondi accretion radius (2.4{sub -0.7}{sup +1.0} per cent, for P{sub jet} = 10{sup 43} erg s{sup -1}) eventually emerges in the relativistic jets. Our results have significant implications for studies of accretion, jet formation and galaxy formation. The observed tight correlation suggests that the Bondi formulae provide a reasonable description of the accretion process in these systems, despite the likely presence of magnetic pressure and angular momentum in the accreting gas. The similarity of the P{sub Bondi} and P{sub jet} values argues that a significant fraction of the matter entering the accretion radius flows down to regions close to the black holes, where the jets are presumably formed. The tight correlation between P{sub Bondi} and P{sub jet} also suggests that the accretion flows are approximately stable over timescales of a few million years. Our results show that the black hole ''engines'' at the hearts of large elliptical galaxies and groups feed back sufficient energy to stem cooling and star formation, leading naturally to the observed exponential cut off at the bright end of the galaxy luminosity function.

  6. Establishing nonlinearity thresholds with ultraintense X-ray pulses.

    PubMed

    Szlachetko, Jakub; Hoszowska, Joanna; Dousse, Jean-Claude; Nachtegaal, Maarten; Błachucki, Wojciech; Kayser, Yves; Sà, Jacinto; Messerschmidt, Marc; Boutet, Sebastien; Williams, Garth J; David, Christian; Smolentsev, Grigory; van Bokhoven, Jeroen A; Patterson, Bruce D; Penfold, Thomas J; Knopp, Gregor; Pajek, Marek; Abela, Rafael; Milne, Christopher J

    2016-01-01

    X-ray techniques have evolved over decades to become highly refined tools for a broad range of investigations. Importantly, these approaches rely on X-ray measurements that depend linearly on the number of incident X-ray photons. The advent of X-ray free electron lasers (XFELs) is opening the ability to reach extremely high photon numbers within ultrashort X-ray pulse durations and is leading to a paradigm shift in our ability to explore nonlinear X-ray signals. However, the enormous increase in X-ray peak power is a double-edged sword with new and exciting methods being developed but at the same time well-established techniques proving unreliable. Consequently, accurate knowledge about the threshold for nonlinear X-ray signals is essential. Herein we report an X-ray spectroscopic study that reveals important details on the thresholds for nonlinear X-ray interactions. By varying both the incident X-ray intensity and photon energy, we establish the regimes at which the simplest nonlinear process, two-photon X-ray absorption (TPA), can be observed. From these measurements we can extract the probability of this process as a function of photon energy and confirm both the nature and sub-femtosecond lifetime of the virtual intermediate electronic state. PMID:27620067

  7. X-rays Flares and Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Feigelson, Eric D.

    2011-04-01

    X-ray observations of star forming regions show that magnetic reconnection flares are powerful and frequent in pre-main sequence solar-type stars. Well-defined samples in the Orion Nebula Cluster and Taurus clouds exhibit flares with peak X- ray luminosities Lx˜10^29 - 10^32 erg/s, orders of magnitude stronger and more frequent than contemporary solar flares. X-rays are emitted in magnetic loops extending 0.1-10 R * above the stellar surface and thus have a favorable geometry to irradiate the protoplanetary disk. Several lines of evidence - fluorescent iron X-ray emission line, forbidden [NeII] infrared line, and excited molecular bands - support X-ray irradiation of cold material in some young systems. Several astrophysical consequences of X-ray irradiation are outlined. As ionization fractions need only reach 10-12 to induce the magnetorotational instability and associated turbulence, X-rays may be the principal determinant of the extent of the viscous "active zone" and laminar "dead zone" in the layered accretion disk. X-ray irradiation may thus play a major role in planet formation processes: particle settling; meter-size inspiral; protoplanetary migration; and dissipation of the gaseous disk.

  8. Evaluation of a CMOS image detector for low-cost and power medical x-ray imaging applications

    NASA Astrophysics Data System (ADS)

    Smith, Scott T.; Bednarek, Daniel R.; Wobschall, Darold C.; Jeong, Myoungki; Kim, Hyunkeun; Rudin, Stephen

    1999-05-01

    Recent developments in CMOS image detectors are changing the way digital imaging is performed for many applications. The replacement of charge coupled devices (CCDs), with CMOS detectors is a desirable paradigm shift that will depend on the ability to match the high performance characteristics of CCDs. Digital X-ray imaging applications (chest X-ray, mammography) would benefit greatly from this shift because CMOS detectors have the following inherent characteristics: (1) Low operating power (5 - 10 times lower than CCD/processing electronics). (2) Standard CMOS manufacturing process (CCD requires special manufacturing). (3) On-chip integration of analog/digital processing functions (difficult with CCD). (4) Low Cost (5 - 10 times lower cost than CCD). The achievement of both low cost and low power is highly desirable for portable applications as well as situations where large, expensive X-ray imaging machines are not feasible (small hospitals and clinics, emergency medical vehicles, remote sites). Achieving this goal using commercially available components would allow rapid development of such digital X-ray systems as compared with the development difficulties incurred through specialized direct detectors and systems. The focus of this paper is to evaluate a CMOS image detector for medical X-ray applications and to demonstrate the results obtained from a prototype CMOS digital X-ray camera. Results from the images collected from this optically-coupled camera are presented for a particular lens, X-ray conversion screen, and demagnification factor. Further, an overview of the overall power consumption and cost of a multi-sensor CMOS mosaic compared to its CCD counterpart are also reported.

  9. A model of the steep power-law spectra and high-frequency quasi-periodic oscillations in luminous black hole X-ray binaries

    NASA Astrophysics Data System (ADS)

    Dexter, Jason; Blaes, Omer

    2014-03-01

    We propose a new model of the steep power-law state of luminous black hole X-ray binaries. The model uses the fact that at high luminosities, the inner radii of radiation pressure dominated accretion discs are expected to (i) become effectively optically thin and (ii) produce significant luminosities. The gas temperature therefore rises sharply inwards, producing local saturated Compton spectra with rapidly increasing peak energies. These spectra sum together to form a steep power-law tail to the spectrum. A given photon energy on this tail corresponds to a narrow range in radius, so that local vertical oscillations of the disc naturally produce high-quality high-frequency quasi-periodic oscillations (HFQPOs) in the hard X-ray band. The two lowest order modes have a robust frequency ratio of sqrt{7/3}˜eq 1.53. This model explains the appearance of steep power-law spectra and HFQPOs at high luminosity, the 3:2 HFQPO frequency ratios, and their association with the power-law spectral component. We predict an increase in QPO quality factor when the power spectrum is restricted to a narrower photon energy band, and an increase in HFQPO frequency at higher X-ray energies or lower luminosities. Future X-ray telescopes could detect additional HFQPOs from higher order modes. We demonstrate how this model could be used to measure black hole spin from HFQPOs, and qualitatively estimate the spin of GRO J1655-40 as a/M ˜ 0.4-0.7.

  10. X-Ray Fluctuation Power Spectral Densities of Seyfert 1 Galaxies

    NASA Technical Reports Server (NTRS)

    Markowitz, A.; Edelson, R.; Vaughan, S.; Uttley, P.; George, I. M.; Griffiths, R. E.; Kaspi, S.; Lawrence, A.; McHandy, I.; Nandra, K.

    2003-01-01

    By combining complementary monitoring observations spanning long, medium and short time scales, we have constructed power spectral densities (PSDs) of six Seyfert 1 galaxies. These PSDs span approx. greater than 4 orders of magnitude in temporal frequency, sampling variations on time scales ranging from tens of minutes to over a year. In at least four cases, the PSD shows a "break," a significant departure from a power law, typically on time scales of order a few days. This is similar to the behavior of Galactic X-ray binaries (XRBs), lower mass compact systems with breaks on time scales of seconds. NGC 3783 shows tentative evidence for a doubly-broken power law, a feature that until now has only been seen in the (much better-defined) PSDs of low-state XRBs. It is also interesting that (when one previously-observed object is added to make a small sample of seven), an apparently significant correlation is seen between the break time scale T and the putative black hole mass M(sub BH), while none is seen between break time scale and luminosity. The data are consistent with the linear relation T = M(sub BH) /10(exp 6.5) solar mass; extrapolation over 6-7 orders of magnitude is in reasonable agreement with XRBs. All of this strengthens the case for a physical similarity between Seyfert 1s and XRBs.

  11. Design and thermal stress analysis of high-power x-ray monochromators cooled with liquid nitrogen

    NASA Astrophysics Data System (ADS)

    Rogers, C. S.; Assoufid, L.

    1995-02-01

    Cryogenically cooled, single-crystal silicon, x-ray monochromators offer much better thermal performance than room-temperature silicon monochromators. The improved performance can be quantified by a figure-of-merit equal to the ratio of the thermal conductivity to the coefficient of thermal expansion. This ratio increases by about a factor of 50 as the temperature is decreased from 300 to 100 K. An extensive thermal and structural finite element analysis is presented for an inclined, liquid-nitrogen-cooled, Si monochromator crystal diffracting 4.2 keV photons from the [111] planes using undulator A at the Advanced Photon Source. The angular size of the beam accepted on the crystal was chosen to be 50 μrad vertically and 120 μrad horizontally. The deflection parameter, K, was 2.17 for all cases. The peak power density at normal incidence to the beam was calculated to be 139 W/mm2, and the total power was 750 W at a distance of 30 m from the source for a positron current of 100 mA. The crystal was oriented in the inclined geometry with an inclination angle of 85° for all cases. The performance of the crystal was investigated for beam currents of 100, 200, and 300 mA. The calculated peak slopes of the diffraction plane over the extent of the beam footprint were -1.17, -2.35, and 0.33 μrad, and the peak temperatures were 88.2, 102.6, and 121.4 K, respectively. The variation in the Bragg angle due to change in d spacing across the beam footprint was less than 1 μrad for all cases. These results indicate that a properly designed, cryogenically cooled, inclined silicon monochromator can deliver the full brilliance of undulator A at even the highest machine currents.

  12. Design and thermal stress analysis of high-power x-ray monochromators cooled with liquid nitrogen

    SciTech Connect

    Rogers, C.S.; Assoufid, L. )

    1995-02-01

    Cryogenically cooled, single-crystal silicon, x-ray monochromators offer much better thermal performance than room-temperature silicon monochromators. The improved performance can be quantified by a figure-of-merit equal to the ratio of the thermal conductivity to the coefficient of thermal expansion. This ratio increases by about a factor of 50 as the temperature is decreased from 300 to 100 K. An extensive thermal and structural finite element analysis is presented for an inclined, liquid-nitrogen-cooled, Si monochromator crystal diffracting 4.2 keV photons from the [111] planes using undulator A at the Advanced Photon Source. The angular size of the beam accepted on the crystal was chosen to be 50 [mu]rad vertically and 120 [mu]rad horizontally. The deflection parameter, [ital K], was 2.17 for all cases. The peak power density at normal incidence to the beam was calculated to be 139 W/mm[sup 2], and the total power was 750 W at a distance of 30 m from the source for a positron current of 100 mA. The crystal was oriented in the inclined geometry with an inclination angle of 85[degree] for all cases. The performance of the crystal was investigated for beam currents of 100, 200, and 300 mA. The calculated peak slopes of the diffraction plane over the extent of the beam footprint were [minus]1.17, [minus]2.35, and 0.33 [mu]rad, and the peak temperatures were 88.2, 102.6, and 121.4 K, respectively. The variation in the Bragg angle due to change in [ital d] spacing across the beam footprint was less than 1 [mu]rad for all cases. These results indicate that a properly designed, cryogenically cooled, inclined silicon monochromator can deliver the full brilliance of undulator A at even the highest machine currents.

  13. Laser-based K α X-ray emission characterization using a high contrast ratio and high-power laser system

    NASA Astrophysics Data System (ADS)

    Fourmaux, S.; Kieffer, J. C.

    2016-06-01

    We characterized a laser-based K_α X-ray source produced onto a Mo solid target. We used a laser system with a high laser pulse contrast ratio (LPCR) and an instantaneous power ˜30 TW. We investigated simultaneously the K_α X-ray conversion efficiency, the X-ray source size, and the proton front surface emission. We found a high K_α X-ray conversion efficiency up to 2× 10^{-4} associated with an X-ray source size only ˜1.8 times larger than the laser focal spot for the highest intensities. We found that using a high LPCR laser pulse with 245 mJ per pulse is of interest to develop a laser-based X-ray imaging system as it can combine a high conversion efficiency with a small increase in the X-ray source size compared to the laser focal spot.

  14. Passive radio frequency peak power multiplier

    DOEpatents

    Farkas, Zoltan D.; Wilson, Perry B.

    1977-01-01

    Peak power multiplication of a radio frequency source by simultaneous charging of two high-Q resonant microwave cavities by applying the source output through a directional coupler to the cavities and then reversing the phase of the source power to the coupler, thereby permitting the power in the cavities to simultaneously discharge through the coupler to the load in combination with power from the source to apply a peak power to the load that is a multiplication of the source peak power.

  15. Anode thermal analysis of high power microfocus CNT x-ray tubes for in vivo small animal imaging

    NASA Astrophysics Data System (ADS)

    Shan, Jing; Zhou, Otto; Lu, Jianping

    2012-03-01

    Carbon nanotube (CNT) micro-focus x-ray tubes have been demonstrated as a novel technology for in-vivo small animal imaging. It enables simultaneous respiratory and cardiac gated prospective CT imaging of free breathing animals with high temporal resolution. Operating the micro-focus CNT x-ray source at high power is required to achieve high temporal resolution. The thermal loading of the anode focal spot is a limiting factor in determining the maximum power of an x-ray tube. In this paper, we developed a reliable simulation model to quantitatively analyze the anode heat load of the CNT x-ray source operating in both DC and pulse modes. The anode temperature distribution is simulated using finite element analysis. The model is validated by comparing simulation results for the micro-focus x- ray tube with reported experimental results. We investigated the relationship between the maximum power and the effective focal spot size for CNT micro-CT system running in both DC and pulse modes. Our results show that when operating in pulse mode, the maximum power of the CNT x-ray source can be significantly higher than when operating in DC mode. In DC mode, we found that the maximum power scales non-linearly with the effective focal spot size as P(in W) = (0.25/ sin θ+1.6)f0.73 s (in μm), where 1/sin θ is the projection factor for a given anode angle θ. However, in pulse mode the maximum power linearly increases with the effective focal spot size asP(in W) = (0.20/ sin θ+0.35)fs(in μm), and is significantly higher than that in the DC mode. This implies that it is feasible to improve the micro-CT temporal resolution further without sacrificing the image quality. The simulation method developed here also enables us to analyze the thermal loading of the other CNT x-ray sources for other applications, such as the stationary digital breast tomosynthesis scanner and the CNT microbeam radiation therapy system.

  16. Effect of background trends removal on noise power spectrum measurements in digital x-ray imaging

    NASA Astrophysics Data System (ADS)

    Zhou, Zhongxing; Gao, Feng; Zhao, Huijuan; Zhang, Lixin

    2011-03-01

    Noise characterization through estimation of the noise power spectrum (NPS) is a central component of the evaluation of digital X-ray systems. Extensive works have been conducted to achieve accurate and precise measurement of NPS. One approach to improve the accuracy of the NPS measurement is to reduce the statistical variance of the NPS results. However, this method is based on the assumption that the noise in a radiographic image is arising from stochastic (random) processes. In the practical data, the artifactuals always superimpose on the stochastic noise as low-frequency background trends and prevent us from achieving accurate NPS. In this study, NPS measurement was implemented and compared before and after background trends removal, the results showed that background detrending reduced the variance of the low-frequency spectral components, hence improving the accuracy of NPS measurement. Our results also showed that involving more samples for ensemble averaging had little effect in reducing the variance of the low-frequency spectral components. All results implied that it is necessary and feasible to get better NPS estimate by appropriate background detredning.

  17. Powerful conveyer belt real-time online detection system based on x-ray

    NASA Astrophysics Data System (ADS)

    Rong, Feng; Miao, Chang-yun; Meng, Wei

    2009-07-01

    The powerful conveyer belt is widely used in the mine, dock, and so on. After used for a long time, internal steel rope of the conveyor belt may fracture, rust, joints moving, and so on .This would bring potential safety problems. A kind of detection system based on x-ray is designed in this paper. Linear array detector (LDA) is used. LDA cost is low, response fast; technology mature .Output charge of LDA is transformed into differential voltage signal by amplifier. This kind of signal have great ability of anti-noise, is suitable for long-distance transmission. The processor is FPGA. A IP core control 4-channel A/D convertor, achieve parallel output data collection. Soft-core processor MicroBlaze which process tcp/ip protocol is embedded in FPGA. Sampling data are transferred to a computer via Ethernet. In order to improve the image quality, algorithm of getting rid of noise from the measurement result and taking gain normalization for pixel value is studied and designed. Experiments show that this system work well, can real-time online detect conveyor belt of width of 2.0m and speed of 5 m/s, does not affect the production. Image is clear, visual and can easily judge the situation of conveyor belt.

  18. High Power Experiment of X-Band Thermionic Cathode RF Gun for Compton Scattering X-ray Source

    SciTech Connect

    Sakamoto, Fumito; Uesaka, Mitsuru; Dobashi, Katsuhiro; Yamamoto, Tomohiko; Meng, De; Urakawa, Junji; Higo, Toshiyasu; Akemoto, Mitsuo; Matsuo, Kenichi; Sakae, Hisaharu; Yamamoto, Masashi

    2006-11-27

    We are currently developing a compact monochromatic X-ray source based on laser-electron collision. To realize remarkably compact-, high-intensity- and highly-stable-system, we adopt an X-band multi-bunch liner accelerator (linac) and reliable Q-switch laser. The X-ray yields by the multi-bunch electron beam and Q-switch Nd: YAG laser of 1.4 J/10 ns (FWHM) (532 nm, second harmonic) is 107 photons/RF-pulse (108 photons/sec for 10 Hz operation). The injector of the system consists of a 3.5-cell X-band thermionic cathode RF gun and an alpha magnet. So far we have achieved beam generation from the X-band thermionic cathode RF gun. The peak beam energy is 2 MeV. This experimental high energy ({approx}2 MeV) beam generation from the X-band thermionic cathode RF gun is the first in the world. In this paper, we describe the system of the Compton scattering X-ray source based on the X-band linac, experimental results of X-band thermionic cathode RF gun and the details of the experimental setup for Compton scattering X-ray generation that are under construction.

  19. Automatic Peak Identification in Scanning Electron Microscopy/Energy Dispersive X-ray (SEM/EDS) Microanalysis: Can You Always Trust the Results?

    NASA Astrophysics Data System (ADS)

    Newbury, D.

    2006-05-01

    The degree of sophistication of computer-aided scanning electron microscopy/energy dispersive x-ray spectrometry (SEM/EDS) microanalysis has advanced to the point where it is possible with a single command to automatically perform sequential qualitative analysis (peak identification) and quantitative analysis and then create a report of analysis with full statistical support. Often the actual algorithms employed in commercial software for each stage of the analysis are not provided or tested in sufficient detail nor are any inherent limitations in applying such "black box" software described to enable the analyst to estimate the performance. The identification of the elements responsible for the characteristic peaks in the EDS spectrum is obviously the first critical step in performing a robust analysis. Can the software be trusted to always deliver the correct elemental identification for the easiest possible case: peaks with high intensity and high peak-to-background that arise from major constituents (i.e., concentration, C above 0.1 mass fraction = 10 weight percent) and which do not suffer peak interference from another constituent? Unfortunately, testing of automatic peak identification procedures in a series of commercial systems has revealed that serious mistakes occur approximately 3 to 5 percent of the time for this easiest case [1]. Moreover, these mistakes are not random but occur systematically for certain elements. The situation is even worse when minor (C from 0.01 to 0.1) and trace (C less than 0.01) constituents are of interest or when analysis is performed under "low voltage" conditions (beam energy 5 keV or less). The prudent analyst will always use manual peak identification procedures to provide confirmation of automatic peak identification results before proceeding to quantitative analysis [2]. [1] Newbury, D., Microscopy and Microanalysis, 11 (2005) 545. [2] Goldstein, J., Newbury, D., Joy, D., Lyman, C., Echlin, P., Lifshin, E., Sawyer, L

  20. Tentative study on x-ray enhancement by fluorescent emission of radiation by plasma x-ray source

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Sagae, Michiaki; Ichimaru, Toshio; Hayasi, Yasuomi; Ojima, Hidenori; Takayama, Kazuyoshi; Ido, Hideaki; Sakamaki, Kimio; Tamakawa, Yoshiharu

    1999-09-01

    Tentative study on characteristic x-ray enhancement by fluorescent emission of radiation by plasma x-ray source is described. The enhancement was performed by the plasma flash x-ray generator having a cold-cathode triode. And the generator employs a high-voltage power supply, a low-impedance coaxial transmission line with a gap switch, a high-voltage condenser with a capacity of 200 nF, a turbo-molecular pump, a thyristor pulser as a trigger device, and a flash x-ray tube. The high-voltage main condenser is charged up to 60 kV by the power supply, and the electric charges in the condenser are discharged to the tube after triggering the cathode electrode. The flash x-rays are then produced. The x-ray tube is of a demountable triode that is connected to the turbo molecular pump with a pressure of approximately 1 mPa. As the electron flows from the cathode electrode are roughly converged to the target by the electric field in the tube, the plasma x-ray source, which consists of metal ions and electrons, forms by the target evaporating. Both the tube voltage and current displayed damped oscillations, and their peak values increased according to increases in the charging voltage. In the present work, the peak tube voltage was almost equivalent to the initial charging voltage of the main condenser, and the peak current was less than 30 kA. The characteristic x-ray intensity substantially increased according to the growth in the plasma x-ray source. When the linear plasma x-ray source formed, the bremsstrahlung x-rays were absorbed without using a monochromatic filter, and high- intensity characteristic x-rays were produced.

  1. Identification of B-K near edge x-ray absorption fine structure peaks of boron nitride thin films prepared by sputtering deposition

    SciTech Connect

    Niibe, Masahito; Miyamoto, Kazuyoshi; Mitamura, Tohru; Mochiji, Kozo

    2010-09-15

    Four {pi}{sup *} resonance peaks were observed in the B-K near edge x-ray absorption fine structure spectra of boron nitride thin films prepared by magnetron sputtering. In the past, these peaks have been explained as the K-absorption of boron atoms, which are present in environment containing nitrogen vacancies, the number of which is 1-3 corresponding to the three peaks at higher photon energy. However, the authors found that there was a strong correlation between the intensities of these three peaks and that of O-K absorption after wide range scanning and simultaneous measurement of nitrogen and oxygen K-absorptions of the BN films. Therefore, the authors conclude that these three peaks at the higher energy side correspond to boron atoms bound to one-to-three oxygen atoms instead of three nitrogen atoms surrounding the boron atom in the h-BN structure. The result of the first-principles calculation with a simple cluster model supported the validity of this explanation.

  2. X-ray crystallography

    NASA Technical Reports Server (NTRS)

    2001-01-01

    X-rays diffracted from a well-ordered protein crystal create sharp patterns of scattered light on film. A computer can use these patterns to generate a model of a protein molecule. To analyze the selected crystal, an X-ray crystallographer shines X-rays through the crystal. Unlike a single dental X-ray, which produces a shadow image of a tooth, these X-rays have to be taken many times from different angles to produce a pattern from the scattered light, a map of the intensity of the X-rays after they diffract through the crystal. The X-rays bounce off the electron clouds that form the outer structure of each atom. A flawed crystal will yield a blurry pattern; a well-ordered protein crystal yields a series of sharp diffraction patterns. From these patterns, researchers build an electron density map. With powerful computers and a lot of calculations, scientists can use the electron density patterns to determine the structure of the protein and make a computer-generated model of the structure. The models let researchers improve their understanding of how the protein functions. They also allow scientists to look for receptor sites and active areas that control a protein's function and role in the progress of diseases. From there, pharmaceutical researchers can design molecules that fit the active site, much like a key and lock, so that the protein is locked without affecting the rest of the body. This is called structure-based drug design.

  3. X-ray and Optical follow-up of the mid-2014 Outburst of Aql X-1 at peak and at low activity

    NASA Astrophysics Data System (ADS)

    Gandhi, Poshak; Dhillon, Vik S.; Tomsick, John A.; Butterley, Tim; Littlefair, Stuart M.; Wilson, Richard W.; Kennea, Jamie A.

    2014-09-01

    Following reports of optical and X-ray brightening of the soft X-ray transient Aql X-1 (ATel #6280, #6286), we obtained monitoring observations of the source with the Swift X-ray mission, and with the 0.5 m Durham/Sheffield robotic optical telescope located on La Palma.

  4. Chest x-ray

    MedlinePlus

    ... Images Aortic rupture, chest x-ray Lung cancer, frontal chest x-ray Adenocarcinoma - chest x-ray Coal ... cancer - chest x-ray Lung nodule, right middle lobe - chest x-ray Lung mass, right upper lung - ...

  5. The thermoluminescence glow curve and the deconvoluted glow peak characteristics of erbium doped silica fiber exposed to 70-130 kVp x-rays.

    PubMed

    Alawiah, A; Bauk, S; Marashdeh, M W; Nazura, M Z N; Abdul-Rashid, H A; Yusoff, Z; Gieszczyk, W; Noramaliza, M N; Adikan, F R Mahamd; Mahdiraji, G A; Tamchek, N; Muhd-Yassin, S Z; Mat-Sharif, K A; Zulkifli, M I; Omar, N; Wan Abdullah, W S; Bradley, D A

    2015-10-01

    In regard to thermoluminescence (TL) applied to dosimetry, in recent times a number of researchers have explored the role of optical fibers for radiation detection and measurement. Many of the studies have focused on the specific dopant concentration, the type of dopant and the fiber core diameter, all key dependencies in producing significant increase in the sensitivity of such fibers. At doses of less than 1 Gy none of these investigations have addressed the relationship between dose response and TL glow peak behavior of erbium (Er)-doped silica cylindrical fibers (CF). For x-rays obtained at accelerating potentials from 70 to 130 kVp, delivering doses of between 0.1 and 0.7 Gy, present study explores the issue of dose response, special attention being paid to determination of the kinetic parameters and dosimetric peak properties of Er-doped CF. The effect of dose response on the kinetic parameters of the glow peak has been compared against other fiber types, revealing previously misunderstood connections between kinetic parameters and radiation dose. Within the investigated dose range there was an absence of supralinearity of response of the Er-doped silica CF, instead sub-linear response being observed. Detailed examination of glow peak response and kinetic parameters has thus been shown to shed new light of the rarely acknowledged issue of the limitation of TL kinetic model and sub-linear dose response of Er-doped silica CF. PMID:26188687

  6. Plasma flash x-ray generator (PFXG-02)

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Germer, Rudolf K.; Hayasi, Yasuomi; Tanaka, Etsuro; Mori, Hidezo; Kawai, Toshiaki; Usuki, Tatsumi; Sato, Koetsu; Obara, Haruo; Zuguchi, Masayuki; Ichimaru, Toshio; Ojima, Hidenori; Takayama, Kazuyoshi; Ido, Hideaki

    2003-07-01

    In the plasma flash x-ray generator, high-voltage main condenser of about 200 nF is charged up to 50 kV by a power supply, and electric charges in the condenser are discharged to an x-ray tube after triggering the cathode electrode. The flash x-rays are then produced. The x-ray tube is of a demountable triode that is connected to a turbo molecular pump with a pressure of approximately 1 mPa. As electron flows from the cathode electrode are roughly converged to a rod iron target of 3.0 mm in diameter by electric field in the x-ray tube, the weakly ionized linear plasma, which consists of iron ions and electrons, forms by target evaporating. At a charging voltage of 50 kV, the maximum tube voltage was almost equal to the charging voltage of the main condenser, and the peak current was about 20 kA. When the charging voltage was increased, the linear plasma formed, and the K-series characteristic x-ray intensities increased. The x-ray pulse widths were about 800 ns, and the time-integrated x-ray intensity had a value of about 10 μC/kg at 1.0 m from x-ray source with a charging voltage of 50 kV. The plasma x-rays were diffused after passing through two lead slits.

  7. Cosmological constraints from the observed angular cross-power spectrum between Sunyaev-Zel'dovich and X-ray surveys

    NASA Astrophysics Data System (ADS)

    Hurier, G.; Douspis, M.; Aghanim, N.; Pointecouteau, E.; Diego, J. M.; Macias-Perez, J. F.

    2015-04-01

    We present the first detection of the cross-correlation angular power spectrum between the thermal Sunyaev-Zel'dovich (tSZ) effect and the X-ray emission over the full sky. The tSZ effect and X-rays are produced by the same hot gas within groups and clusters of galaxies, which creates a naturally strong correlation between them that can be used to boost the joint signal and derive cosmological parameters. We computed the correlation between the ROSAT All Sky Survey in the 0.5-2 keV energy band and the tSZ effect reconstructed from six Planck all-sky frequency maps between 70 and 545 GHz. We detect a significant correlation over a wide range of angular scales. In the range 50 <ℓ< 2000, the cross-correlation of X-rays to tSZ is detected at an overall significance of 28σ. As part of our systematic study, we performed a multi-frequency modelling of the AGN contamination and the correlation between cosmic infra-red background and X-rays. Taking advantage of the strong dependence of the cross-correlation signal on the amplitude of the power spectrum, we constrained σ8 = 0.804 ± 0.037, where modelling uncertainties dominate statistical and systematic uncertainties. We also derived constraints on the mass indices of scaling relations between the halo mass and X-ray luminosity, L500 - M500, and SZ signal, Y500 - M500, asz + ax = 3.37 ± 0.09, and on the indices of the extra-redshift evolution, βsz + βx = 0.4+0.4_{-0.5}.

  8. Filtered x-ray diode diagnostics fielded on the Z-accelerator for source power measurements

    SciTech Connect

    Chandler, G.A.; Deeney, C.; Cuneo, M.

    1998-06-02

    Filtered x-ray diode, (XRD), detectors are used as primary radiation flux diagnostics on Sandia`s Z-accelerator, which generates nominally a 200 TW, 2 MJ, x-ray pulse. Given such flux levels and XRD sensitivities the detectors are being fielded 23 meters from the source. The standard diagnostic setup and sensitivities are discussed. Vitreous carbon photocathodes are being used to reduce the effect of hydrocarbon contamination present in the Z-machine vacuum system. Nevertheless pre- and post-calibration data taken indicate spectrally dependent changes in the sensitivity of these detectors by up to factors up to 2 or 3.

  9. Time- and space-resolved X-ray absorption spectroscopy of aluminum irradiated by a subpicosecond high-power laser

    NASA Astrophysics Data System (ADS)

    Tzortzakis, S.; Audebert, P.; Renaudin, P.; Bastiani-Ceccotti, S.; Geindre, J. P.; Chenais-Popovics, C.; Nagels, V.; Gary, S.; Shepherd, R.; Girard, F.; Matsushima, I.; Peyrusse, O.; Gauthier, J.-C.

    2006-05-01

    The ionization and recombination dynamics of transient aluminum plasmas was measured using point projection K-shell absorption spectroscopy. An aluminum plasma was produced with a subpicosecond beam of the 100-TW laser at the LULI facility and probed at different times with a picosecond X-ray backlighter created with a synchronized subpicosecond laser beam. Fourier-Domain-Interferometry (FDI) was used to measure the electron temperature at the peak of the heating laser pulse. Absorption X-ray spectra at early times are characteristic of a dense and rather homogeneous plasma, with limited longitudinal gradients as shown by hydrodynamic simulations. The shift of the Al K-edge was measured in the cold dense plasma located at the edge of the heated plasma. From the 1s 2p absorption spectra, the average ionization was measured as a function of time and was also modeled with a collisional-radiative atomic physics code coupled with hydrodynamic simulations.

  10. Energetics and timing of the hard and soft X-ray emissions in white light flares

    NASA Technical Reports Server (NTRS)

    Neidig, Donald F.; Kane, Sharad R.

    1993-01-01

    By comparing the light curves in optical, hard X-ray, and soft X-ray wavelengths for eight well-observed flares, we confirm previous results indicating that the white light flare (WLF) is associated with the flare impulsive phase. The WLF emission peaks within seconds after the associated hard X-ray peak, and nearly two minutes before the 1-8 A soft X-ray peak. It is further shown that the peak power in nonthermal electrons above 50 keV is typically an order of magnitude larger, and the power in 1-8 A soft X-rays radiated over 2pi sr, at the time of the WLF peak, is an order of magnitude smaller than the peak WLF power.

  11. Sample-morphology effects on x-ray photoelectron peak intensities. III. Simulated spectra of model core–shell nanoparticles

    SciTech Connect

    Powell, Cedric J.; Chudzicki, Maksymilian; Werner, Wolfgang S. M.; Smekal, Werner

    2015-09-15

    The National Institute of Standards and Technology database for the simulation of electron spectra for surface analysis has been used to simulate Cu 2p photoelectron spectra for four types of spherical copper–gold nanoparticles (NPs). These simulations were made to extend the work of Tougaard [J. Vac. Sci. Technol. A 14, 1415 (1996)] and of Powell et al. [J. Vac. Sci. Technol. A 31, 021402 (2013)] who performed similar simulations for four types of planar copper–gold films. The Cu 2p spectra for the NPs were compared and contrasted with analogous results for the planar films and the effects of elastic scattering were investigated. The new simulations were made for a monolayer of three types of Cu/Au core–shell NPs on a Si substrate: (1) an Au shell of variable thickness on a Cu core with diameters of 0.5, 1.0, 2.0, 5.0, and 10.0 nm; (2) a Cu shell of variable thickness on an Au core with diameters of 0.5, 1.0, 2.0, 5.0, and 10.0 nm; and (3) an Au shell of variable thickness on a 1 nm Cu shell on an Au core with diameters of 0.5, 1.0, 2.0, 5.0, and 10.0 nm. For these three morphologies, the outer-shell thickness was varied until the Cu 2p{sub 3/2} peak intensity was the same (within 2%) as that found in our previous work with planar Cu/Au morphologies. The authors also performed similar simulations for a monolayer of spherical NPs consisting of a CuAu{sub x} alloy (also on a Si substrate) with diameters of 0.5, 1.0, 2.0, 5.0, and 10.0 nm. In the latter simulations, the relative Au concentration (x) was varied to give the same Cu 2p{sub 3/2} peak intensity (within 2%) as that found previously. For each morphology, the authors performed simulations with elastic scattering switched on and off. The authors found that elastic-scattering effects were generally strong for the Cu-core/Au-shell and weak for the Au-core/Cu-shell NPs; intermediate elastic-scattering effects were found for the Au-core/Cu-shell/Au-shell NPs. The shell thicknesses required to give

  12. The Causal Connection Between Disc and Power-Law Variability in Hard State Black Hole X-Ray Binaries

    NASA Technical Reports Server (NTRS)

    Uttley, P.; Wilkinson, T.; Cassatella, P.; Wilms, J.; Pottschimdt, K.; Hanke, M.; Boeck, M.

    2010-01-01

    We use the XMM-Newton EPIC-pn instrument in timing mode to extend spectral time-lag studies of hard state black hole X-ray binaries into the soft X-ray band. \\Ve show that variations of the disc blackbody emission substantially lead variations in the power-law emission, by tenths of a second on variability time-scales of seconds or longer. The large lags cannot be explained by Compton scattering but are consistent with time-delays due to viscous propagation of mass accretion fluctuations in the disc. However, on time-scales less than a second the disc lags the power-law variations by a few ms, consistent with the disc variations being dominated by X-ray heating by the power-law, with the short lag corresponding to the light-travel time between the power-law emitting region and the disc. Our results indicate that instabilities in the accretion disc are responsible for continuum variability on time-scales of seconds or longer and probably also on shorter time-scales.

  13. Plasma spectroscopy diagnostics in pulsed-power X-ray radiography diode research.

    SciTech Connect

    Maron, Yitzhak; Oliver, Bryan Velten; Portillo, Salvador; Johnston, Mark D.; Rose, David Vincent; Hahn, Kelly Denise; Schamiloglu, Edl; Welch, Dale R.; Droemer, Darryl W.; Rovang, Dean Curtis; Maenchen, John Eric

    2005-07-01

    Spectroscopic investigations in the visible and near UV are underway to study plasmas present in X-ray radiography diodes during the time of the electron beam propagation. These studies are being performed on the RITS-3 accelerator (5.25 MV and 120 kA) at Sandia National Laboratories using several diode configurations. The proper characterization of the plasmas occurring during the time of the X-ray pulse can lead to a greater understanding of diode behavior and X-ray spot size evolution. By studying these plasmas along with the use of selective dopants, insights into such phenomena as impedance collapse, thermal and non-thermal species behavior, charge and current neutralization, anode and cathode plasma formation and propagation, and beam/foil interactions, can be obtained. Information from line and continuum emission and absorption can give key plasma parameters such as temperatures, densities, charge states, and expansion velocities. This information is important for proper modeling and future predictive capabilities for the design and improvement of flash X-ray radiography diodes. Diagnostics include a gated, intensified multichannel plate camera combined with a 1 meter Czerny-Turner monochromator with a multi-fiber spectral input, allowing for both temporal and spatial resolution. Recent results are presented.

  14. Performance of water jet cooled silicon monochromators in high power x-ray beams (abstract)

    NASA Astrophysics Data System (ADS)

    Berman, Lonny E.; Hart, Michael

    1992-01-01

    We have fabricated and tested water jet cooled silicon (111) and (220) monochromators specially tailored for extended wiggler beam and concentrated undulator beam power loadings. The tests were made at the X25 27 pole, 1.1 T hybrid wiggler beam line1 at the National Synchrotron Light Source (NSLS). The wiggler-like line-type loading was produced by the direct, unfocused wiggler white beam, in which 300 W of total power in a 60-mm-wide by 5-mm-high [full width at half maximum (FWHM)] cross section were available in the experimental hutch; this represents a typical power density at existing insertion device beam lines. The undulator-like point-type loading was produced by the focused wiggler white beam, generated via reflection of a portion of the direct white beam from a toroidal platinum-coated silicon mirror, resulting in 75 W of total power in a 0.8-mm-wide (FWHM) by 0.45-mm-high (FWHM) cross section in the hutch. This will be a typical power density at next-generation insertion device beam lines. The monochromator design consists of a thin walled silicon box whose bottom is glued to a stainless-steel water manifold; the coolant is delivered through jet tubes directed perpendicular to the underside of the top, diffracting surface of the box.2 Rectangular monochromators with multiple jets were used for the line power loading studies, and cylindrical monochromators with single jets were used for the point power loading studies. Provisions for simple adaptive corrections to compensate for the inevitable beam-induced thermal deformations, consisting of mechanisms to reverse-bend the top surface, and internal heat baffles to frustrate the cooling at the edges of the crystal (to produce an isothermal top surface), were included in the designs. These required approximate matching of the top surface dimensions to the x-ray footprint. To better understand the thermal strain fields, spatial and angular mapping of both fundamental and harmonic Bragg reflections within the

  15. Tentative study on high-photon-energy quasi-x-ray laser generator by forming plasma x-ray source

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Hayasi, Yasuomi; Ichimaru, Toshio; Mori, Hidezo; Tanaka, Etsuro; Ojima, Hidenori; Takayama, Kazuyoshi; Usuki, Tatsumi; Sato, Koetsu; Sakamaki, Kimio; Tamakawa, Yoshiharu

    2001-04-01

    Tentative study on high-photon-energy quasi-x-ray-laser generator by forming plasma x-ray source is described. The generator employs a high-voltage power supply, a low-impedance coaxial transmission line, a high-voltage condenser with a capacity of about 200 nF, a turbo-molecular pump, a thyristor pulse generator as a trigger device, and a flash x-ray tube. The high-voltage main condenser is charged up to 60 kV by the power supply, and the electric charges in the condenser are discharged to the tube after triggering the cathode electrode. The flash x-rays are then produced. The x-ray tube is of a demountable triode that is connected to the turbo molecular pump with a pressure of approximately 1 mPa. As the electron flows from the cathode electrode are roughly converged to the copper target by the electric field in the tube, the plasma x- ray source, which consists of metal ions and electrons, forms by the target evaporating. Both the tube voltage and current displayed damped oscillations, and their peak values increased according to increases in the charging voltage. In the present work, the peak tube voltage was much higher than the initial charging voltage of the main condenser, and the peak current was about 25 kA with a charging voltage of 60 kV. When the charging voltage was increased, the plasma x-ray source formed, and the characteristic x-ray intensities of K-series lines increased. When the plate target was employed, we observed high-intensity characteristic x-rays from the axial direction of the linear plasma x-ray source. In the case where the rod target was employed, we detected higher-intensity characteristic x-rays.

  16. X-ray lithography source

    DOEpatents

    Piestrup, Melvin A.; Boyers, David G.; Pincus, Cary

    1991-01-01

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and elminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an exellent moderate-priced X-ray source for lithography.

  17. X-ray lithography source

    DOEpatents

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.

    1991-12-31

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits is disclosed. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and eliminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an excellent moderate-priced X-ray source for lithography. 26 figures.

  18. Soft x-ray lasers

    SciTech Connect

    Matthews, D.L.; Rosen, M.D.

    1988-12-01

    One of the elusive dreams of laser physicists has been the development of an x-ray laser. After 25 years of waiting, the x-ray laser has at last entered the scientific scene, although those now in operation are still laboratory prototypes. They produce soft x rays down to about five nanometers. X-ray lasers retain the usual characteristics of their optical counterparts: a very tight beam, spatial and temporal coherence, and extreme brightness. Present x-ray lasers are nearly 100 times brighter that the next most powerful x-ray source in the world: the electron synchrotron. Although Lawrence Livermore National Laboratory (LLNL) is widely known for its hard-x-ray laser program which has potential applications in the Strategic Defense Initiative, the soft x-ray lasers have no direct military applications. These lasers, and the scientific tools that result from their development, may one day have a place in the design and diagnosis of both laser fusion and hard x-ray lasers. The soft x-ray lasers now in operation at the LLNL have shown great promise but are still in the primitive state. Once x-ray lasers become reliable, efficient, and economical, they will have several important applications. Chief among them might be the creation of holograms of microscopic biological structures too small to be investigated with visible light. 5 figs.

  19. Estimation of soft X-ray and EUV transition radiation power emitted from the MIRRORCLE-type tabletop synchrotron.

    PubMed

    Toyosugi, N; Yamada, H; Minkov, D; Morita, M; Yamaguchi, T; Imai, S

    2007-03-01

    The tabletop synchrotron light sources MIRRORCLE-6X and MIRRORCLE-20SX, operating at electron energies E(el) = 6 MeV and E(el) = 20 MeV, respectively, can emit powerful transition radiation (TR) in the extreme ultraviolet (EUV) and the soft X-ray regions. To clarify the applicability of these soft X-ray and EUV sources, the total TR power has been determined. A TR experiment was performed using a 385 nm-thick Al foil target in MIRRORCLE-6X. The angular distribution of the emitted power was measured using a detector assembly based on an NE102 scintillator, an optical bundle and a photomultiplier. The maximal measured total TR power for MIRRORCLE-6X is P(max) approximately equal 2.95 mW at full power operation. Introduction of an analytical expression for the lifetime of the electron beam allows calculation of the emitted TR power by a tabletop synchrotron light source. Using the above measurement result, and the theoretically determined ratio between the TR power for MIRRORCLE-6X and MIRRORCLE-20SX, the total TR power for MIRRORCLE-20SX can be obtained. The one-foil TR target thickness is optimized for the 20 MeV electron energy. P(max) approximately equal 810 mW for MIRRORCLE-20SX is obtained with a single foil of 240 nm-thick Be target. The emitted bremsstrahlung is negligible with respect to the emitted TR for optimized TR targets. From a theoretically known TR spectrum it is concluded that MIRRORCLE-20SX can emit 150 mW of photons with E > 500 eV, which makes it applicable as a source for performing X-ray lithography. The average wavelength, \\overline\\lambda = 13.6 nm, of the TR emission of MIRRORCLE-20SX, with a 200 nm Al target, could provide of the order of 1 W EUV. PMID:17317923

  20. A DISTINCT PEAK-FLUX DISTRIBUTION OF THE THIRD CLASS OF GAMMA-RAY BURSTS: A POSSIBLE SIGNATURE OF X-RAY FLASHES?

    SciTech Connect

    Veres, P.; Bagoly, Z.; Meszaros, A.; Balazs, L. G.

    2010-12-20

    Gamma-ray bursts (GRBs) are the most luminous events in the universe. Going beyond the short-long classification scheme, we work in the context of three burst populations with the third group of intermediate duration and softest spectrum. We are looking for physical properties which discriminate the intermediate duration bursts from the other two classes. We use maximum likelihood fits to establish group memberships in the duration-hardness plane. To confirm these results we also use k-means and hierarchical clustering. We use Monte Carlo simulations to test the significance of the existence of the intermediate group and we find it with 99.8% probability. The intermediate duration population has a significantly lower peak flux (with 99.94% significance). Also, long bursts with measured redshift have higher peak fluxes (with 98.6% significance) than long bursts without measured redshifts. As the third group is the softest, we argue that we have related them with X-ray flashes among the GRBs. We give a new, probabilistic definition for this class of events.

  1. On the power spectra of the wind-fed X-ray binary pulsar GX 301 - 2

    NASA Technical Reports Server (NTRS)

    Orlandini, Mauro; Morfill, G. E.

    1992-01-01

    A phenomenological model of accretion which is applied to the wind-fed X-ray binary pulsar GX 301 - 2 is developed, assuming that the accretion onto the neutron star does not occur from a continuous flux of plasma, but from blobs of matter which are threaded by the magnetic field lines onto the magnetic polar caps of the neutron star. These 'lumps' are produced at the magnetospheric limit by magnetohydrodynamical instability, introducing a 'noise' in the accretion process, due to the discontinuity in the flux of matter onto the neutron star. This model is able to describe the change of slope observed in the continuum component of the power spectra of the X-ray binary pulsar GX 301 - 2, in the frequency range 0.01 - 0.1 Hz. The physical properties of the infalling blobs derived in the model are in agreement with the constraints imposed by observations.

  2. High average power, high repetition rate table-top soft x-ray lasers for applications in nanoscience and nanotechnology

    NASA Astrophysics Data System (ADS)

    Reagan, Brendan; Wernsing, Keith; Baumgarten, Cory; Durivage, Leon; Berrill, Mark; Curtis, Alden; Furch, Federico; Luther, Brad; Woolston, Mark; Patel, Dinesh; Menoni, Carmen; Shlyaptsev, Vyacheslav; Rocca, Jorge

    2014-03-01

    There is great interest in table-top sources of bright coherent soft x-ray radiation for nanoscale applications. We report the demonstration of a compact, high repetition rate soft x-ray laser operating at wavelengths between 10.9nm to 18.9nm, including the generation of 0.15mW average power at λ = 18.9nm and 0.1mW average power at λ = 13.9nm. These short wavelength lasers were driven by an all diode pumped, chirped pulse amplification laser based on cryogenically-cooled Yb:YAG amplifiers that produces 1 Joule, picosecond duration pulses at 100 Hz repetition rate. Irradiation of solid targets results in the production of plasmas with large transient population inversions on the 4d1S0 --> 4p1P1 transition of Ni-like ions. Optimization of this high repetition rate laser combined with the development of high shot capacity, rotating targets has allowed the uninterrupted operation of this soft x-ray laser for hundreds of thousands of consecutive shots, making it suitable for a number of applications requiring high photon flux at short wavelengths. Work was supported by the NSF ERC for Extreme Ultraviolet Science and Technology using equipment developed under NSF Award MRI-ARRA 09-561, and by the AMOS program of the Office of Basic Energy Sciences, US Department of Energy.

  3. The dynamic X-ray nebula powered by the pulsar B1259-63

    SciTech Connect

    Kargaltsev, Oleg; Volkov, Igor; Hare, Jeremy; Pavlov, George G.; Durant, Martin

    2014-04-01

    We present observations of the eccentric γ-ray binary B1259-63/LS 2883 with the Chandra X-ray Observatory. The images reveal a variable, extended (about 4'', or ∼1000 times the binary orbit size) structure, which appears to be moving away from the binary with the velocity of 0.05 of the speed of light. The observed emission is interpreted as synchrotron radiation from relativistic particles supplied by the pulsar. However, the fast motion through the circumbinary medium would require the emitting cloud to be loaded with a large amount of baryonic matter. Alternatively, the extended emission can be interpreted as a variable extrabinary shock in the pulsar wind outflow launched near binary apastron. The resolved variable X-ray nebula provides an opportunity to probe pulsar winds and their interaction with stellar winds in a previously inaccessible way.

  4. High average power, highly brilliant laser-produced plasma source for soft X-ray spectroscopy

    SciTech Connect

    Mantouvalou, Ioanna; Grötzsch, Daniel; Neitzel, Michael; Günther, Sabrina; Baumann, Jonas; Kanngießer, Birgit; Witte, Katharina; Jung, Robert; Stiel, Holger; Sandner, Wolfgang

    2015-03-15

    In this work, a novel laser-produced plasma source is presented which delivers pulsed broadband soft X-radiation in the range between 100 and 1200 eV. The source was designed in view of long operating hours, high stability, and cost effectiveness. It relies on a rotating and translating metal target and achieves high stability through an on-line monitoring device using a four quadrant extreme ultraviolet diode in a pinhole camera arrangement. The source can be operated with three different laser pulse durations and various target materials and is equipped with two beamlines for simultaneous experiments. Characterization measurements are presented with special emphasis on the source position and emission stability of the source. As a first application, a near edge X-ray absorption fine structure measurement on a thin polyimide foil shows the potential of the source for soft X-ray spectroscopy.

  5. Diagnosing Pulsed Power Produced Plasmas with X-ray Thomson Scattering at the Nevada Terawatt Facility

    NASA Astrophysics Data System (ADS)

    Valenzuela, J. C.; Krauland, C.; Mariscal, D.; Krasheninnikov, I.; Beg, F. N.; Wiewior, P.; Covington, A.; Presura, R.; Ma, T.; Niemann, C.; Mabey, P.; Gregori, G.

    2015-11-01

    We present experimental results on X-ray Thomson scattering (XRTS) at the Nevada Terawatt Facility (NTF) to study current driven plasmas. Using the Leopard laser, ~ 30 J and pulse width of 0.8 ns, we generated He- α emission (4.75 keV) from a thin Ti foil. Initial parameter scans showed that the optimum intensity is ~ 1015W/cm2 with a foil thickness of 2 μm for forward X-ray production. Bandwidth measurements of the source, using a HAPG crystal in the Von Hamos configuration, were found to be ΔE/E ~ 0.01. Giving the scattering angle of our experimental setup of 129 degrees and X-ray probing energy, the non-collective regime was accessed. The ZEBRA load was a 3 mm wide, 500 μm thick, and 10 mm long graphite foil, placed at one of the six current return posts. Estimates of the plasma temperature, density and ionization state were made by fitting the scattering spectra with dynamic structure factor calculations based on the random phase approximation for the treatment of charged particle coupling. The work was partially funded by the Department of Energy grant number DE-NA0001995.

  6. ORIGIN OF INTERMITTENT ACCRETION-POWERED X-RAY OSCILLATIONS IN NEUTRON STARS WITH MILLISECOND SPIN PERIODS

    SciTech Connect

    Lamb, Frederick K.; Boutloukos, Stratos; Van Wassenhove, Sandor; Chamberlain, Robert T.; Lo, Ka Ho; Coleman Miller, M.

    2009-11-01

    We have shown previously that many of the properties of persistent accretion-powered millisecond pulsars can be understood if their X-ray emitting areas are near their spin axes and move as the accretion rate and structure of the inner disk vary. Here, we show that this 'nearly aligned moving spot model' may also explain the intermittent accretion-powered pulsations that have been detected in three weakly magnetic accreting neutron stars. We show that movement of the emitting area from very close to the spin axis to approx10 deg. away can increase the fractional rms amplitude from approx<0.5%, which is usually undetectable with current instruments, to a few percent, which is easily detectable. The second harmonic of the spin frequency usually would not be detected, in agreement with observations. The model produces intermittently detectable oscillations for a range of emitting area sizes and beaming patterns, stellar masses and radii, and viewing directions. Intermittent oscillations are more likely in stars that are more compact. In addition to explaining the sudden appearance of accretion-powered millisecond oscillations in some neutron stars with millisecond spin periods, the model explains why accretion-powered millisecond oscillations are relatively rare and predicts that the persistent accretion-powered millisecond oscillations of other stars may become undetectable for brief intervals. It suggests why millisecond oscillations are frequently detected during the X-ray bursts of some neutron stars but not others and suggests mechanisms that could explain the occasional temporal association of intermittent accretion-powered oscillations with thermonuclear X-ray bursts.

  7. Detecting vacuum birefringence with x-ray free electron lasers and high-power optical lasers: a feasibility study

    NASA Astrophysics Data System (ADS)

    Schlenvoigt, Hans-Peter; Heinzl, Tom; Schramm, Ulrich; Cowan, Thomas E.; Sauerbrey, Roland

    2016-02-01

    We study the feasibility of measuring vacuum birefringence by probing the focus of a high-intensity optical laser with an x-ray free electron laser (XFEL). This amounts to performing a new type of QED precision experiment, employing only laser pulses, hence space- and time-dependent fields. To set the stage, we briefly review the status of QED precision tests and then focus on the example of vacuum birefringence. Adopting a realistic laser beam model in terms of pulsed Gaussian beams we calculate the induced phase shift and translate it into an experimental signal, counting the number of photons with flipped polarization. We carefully design a detailed experiment at the European XFEL operating in self-seeded mode, supplemented by a petawatt class optical laser via the HIBEF project. Assuming all components to represent the current state of the art, in particular the x-ray polarizers, realistic estimates of signal-to-noise ratios plus ensuing acquisition times are provided. This is accompanied by a statistical analysis of the impact of poor laser focus overlap either due to timing and pointing jitter as well as limited alignment accuracy. A number of parasitic effects are analyzed together with appropriate countermeasures. We conclude that vacuum birefringence can indeed be measured upon combining an XFEL with a high-power optical laser if depolarization effects in the x-ray lenses can be controlled.

  8. Microscopic nonlinear relativistic quantum theory of absorption of powerful x-ray radiation in plasma.

    PubMed

    Avetissian, H K; Ghazaryan, A G; Matevosyan, H H; Mkrtchian, G F

    2015-10-01

    The microscopic quantum theory of plasma nonlinear interaction with the coherent shortwave electromagnetic radiation of arbitrary intensity is developed. The Liouville-von Neumann equation for the density matrix is solved analytically considering a wave field exactly and a scattering potential of plasma ions as a perturbation. With the help of this solution we calculate the nonlinear inverse-bremsstrahlung absorption rate for a grand canonical ensemble of electrons. The latter is studied in Maxwellian, as well as in degenerate quantum plasma for x-ray lasers at superhigh intensities and it is shown that one can achieve the efficient absorption coefficient in these cases. PMID:26565352

  9. VEGA: A low-power front-end ASIC for large area multi-linear X-ray silicon drift detectors: Design and experimental characterization

    NASA Astrophysics Data System (ADS)

    Ahangarianabhari, Mahdi; Macera, Daniele; Bertuccio, Giuseppe; Malcovati, Piero; Grassi, Marco

    2015-01-01

    We present the design and the first experimental characterization of VEGA, an Application Specific Integrated Circuit (ASIC) designed to read out large area monolithic linear Silicon Drift Detectors (SDD's). VEGA consists of an analog and a digital/mixed-signal section to accomplish all the functionalities and specifications required for high resolution X-ray spectroscopy in the energy range between 500 eV and 50 keV. The analog section includes a charge sensitive preamplifier, a shaper with 3-bit digitally selectable shaping times from 1.6 μs to 6.6 μs and a peak stretcher/sample-and-hold stage. The digital/mixed-signal section includes an amplitude discriminator with coarse and fine threshold level setting, a peak discriminator and a logic circuit to fulfill pile-up rejection, signal sampling, trigger generation, channel reset and the preamplifier and discriminators disabling functionalities. A Serial Peripherical Interface (SPI) is integrated in VEGA for loading and storing all configuration parameters in an internal register within few microseconds. The VEGA ASIC has been designed and manufactured in 0.35 μm CMOS mixed-signal technology in single and 32 channel versions with dimensions of 200 μm×500 μm per channel. A minimum intrinsic Equivalent Noise Charge (ENC) of 12 electrons r.m.s. at 3.6 μs peaking time and room temperature is measured and the linearity error is between -0.9% and +0.6% in the whole input energy range. The total power consumption is 481 μW and 420 μW per channel for the single and 32 channels version, respectively. A comparison with other ASICs for X-ray SDD's shows that VEGA has a suitable low noise and offers high functionality as ADC-ready signal processing but at a power consumption that is a factor of four lower than other similar existing ASICs.

  10. Hard X-ray emission from X-ray bursters.

    NASA Astrophysics Data System (ADS)

    Tavani, M.; Liang, E.

    1996-11-01

    Hard X-ray emission from compact objects has been considered a spectral signature of black hole candidates. However, SIGMA and BATSE recently detected transient emission in the energy range 30-200keV from several X-ray bursters (XRBs) believed to contain weakly magnetized neutron stars. At least seven XRBs (including Aquila X-1 and 4U 1608-52) are currently known to produce erratic hard X-ray outbursts with typical durations of several weeks. These results lead us to reconsider theoretical models of high-energy emission from compact objects, and in particular thermal Comptonization models vs. non-thermal models of particle energization and X-ray emission from weakly magnetized neutron stars. We summarize here recent results for magnetic field reconnection models of non-thermal particle acceleration and high-energy emission of accretion disks. For intermediate soft X-ray luminosities below the Eddington limit, non-thermal hard X-ray emission is predicted to have a (broken) power-law spectrum with intensity anticorrelated with the soft X-ray luminosity. Recent GINGA/BATSE data for the XRB 4U 1608-52 are in agreement with the mechanism of emission proposed here: transient hard X-ray emission consistent with a broken power-law spectrum was detected for a sub-Eddington soft X-ray luminosity.

  11. Quasimonochromatic x-ray backlighting on the COrnell Beam Research Accelerator (COBRA) pulsed power generatora)

    NASA Astrophysics Data System (ADS)

    Knapp, P. F.; Greenly, J. B.; Gourdain, P. A.; Hoyt, C. L.; Pikuz, S. A.; Shelkovenko, T. A.; Hammer, D. A.

    2010-10-01

    Monochromatic x-ray backlighting has been employed with great success for imaging of plasmas with strong self-emission such as x-pinches and wire array z-pinches. However, implementation of a monochromatic backlighting system typically requires extremely high quality spherically bent crystals which are difficult to manufacture and can be prohibitively expensive. Furthermore, the crystal must have a direct line of sight to the object, which typically emits copious amounts of radiation and debris. We present a quasimonochromatic x-ray backlighting system which employs an elliptically bent mica crystal as the dispersive element. In this scheme a narrow band of continuum radiation is selected for imaging, instead of line radiation in the case of monochromatic imaging. The flat piece of mica is bent using a simple four-point bending apparatus that allows the curvature of the crystal to be adjusted in situ for imaging in the desired wavelength band. This system has the advantage that it is very cost effective, has a large aperture, and is extremely flexible. The principles of operation of the system are discussed and its performance is analyzed.

  12. Quasimonochromatic x-ray backlighting on the COrnell Beam Research Accelerator (COBRA) pulsed power generator

    SciTech Connect

    Knapp, P. F.; Greenly, J. B.; Gourdain, P. A.; Hoyt, C. L.; Pikuz, S. A.; Shelkovenko, T. A.; Hammer, D. A.

    2010-10-15

    Monochromatic x-ray backlighting has been employed with great success for imaging of plasmas with strong self-emission such as x-pinches and wire array z-pinches. However, implementation of a monochromatic backlighting system typically requires extremely high quality spherically bent crystals which are difficult to manufacture and can be prohibitively expensive. Furthermore, the crystal must have a direct line of sight to the object, which typically emits copious amounts of radiation and debris. We present a quasimonochromatic x-ray backlighting system which employs an elliptically bent mica crystal as the dispersive element. In this scheme a narrow band of continuum radiation is selected for imaging, instead of line radiation in the case of monochromatic imaging. The flat piece of mica is bent using a simple four-point bending apparatus that allows the curvature of the crystal to be adjusted in situ for imaging in the desired wavelength band. This system has the advantage that it is very cost effective, has a large aperture, and is extremely flexible. The principles of operation of the system are discussed and its performance is analyzed.

  13. Coronal accretion: the power of X-ray emission in AGN

    NASA Astrophysics Data System (ADS)

    Liu, B.-F.; Taam, R. E.; Qiao, E.; Yuan, W.

    2016-02-01

    The optical/UV and X-ray emissions in luminous AGN are commonly believed to be produced in an accretion disk and an embedded hot corona respectively. We explore the possibility that a geometrically thick coronal gas flow, which is supplied by gravitational capture of interstellar medium or stellar wind, condenses partially to a geometrically thin cold disk and accretes via a thin disk and a corona onto the supermassive black hole. We found that for mass supply rates less than about 0.01 (expressed in Eddington units), condensation does not occur and the accretion flow takes the form of a corona/ADAF. For higher mass supply rates, corona gas condenses to the disk. As a consequence, the coronal mass flow rate decreases and the cool mass flow rate increases towards the black hole. Here the thin disk is characterized by the condensation rate of hot gas as it flows towards the black hole. With increase of mass supply rate, condensation becomes more efficient, while the mass flow rate of the coronal gas attains values of order 0.02 in the innermost regions of the disk, which can help to elucidate the production of strong X-ray with respect to the optical and ultraviolet radiation in high luminosity AGN.

  14. Sample-morphology effects on x-ray photoelectron peak intensities. II. Estimation of detection limits for thin-film materials

    SciTech Connect

    Powell, Cedric J.; Werner, Wolfgang S. M.; Smekal, Werner

    2014-09-01

    The authors show that the National Institute of Standards and Technology database for the simulation of electron spectra for surface analysis (SESSA) can be used to determine detection limits for thin-film materials such as a thin film on a substrate or buried at varying depths in another material for common x-ray photoelectron spectroscopy (XPS) measurement conditions. Illustrative simulations were made for a W film on or in a Ru matrix and for a Ru film on or in a W matrix. In the former case, the thickness of a W film at a given depth in the Ru matrix was varied so that the intensity of the W 4d{sub 5/2} peak was essentially the same as that for a homogeneous RuW{sub 0.001} alloy. Similarly, the thickness of a Ru film at a selected depth in the W matrix was varied so that the intensity of the Ru 3p{sub 3/2} peak matched that from a homogeneous WRu{sub 0.01} alloy. These film thicknesses correspond to the detection limits of each minor component for measurement conditions where the detection limits for a homogeneous sample varied between 0.1 at. % (for the RuW{sub 0.001} alloy) and 1 at. % (for the WRu{sub 0.01} alloy). SESSA can be similarly used to convert estimates of XPS detection limits for a minor species in a homogeneous solid to the corresponding XPS detection limits for that species as a thin film on or buried in the chosen solid.

  15. Intermediate Results Of The Program On Realization Of High-Power Soft X-ray Radiation Source Powered From Magneto-Cumulative Generators

    SciTech Connect

    Selemir, V.D.; Demidov, V.A.; Ermolovich, V.F.; Spirov, G.M.; Repin, P.B.; Pikulin, I.V.; Volkov, A.A.; Orlov, A.P.; Boriskin, A.S.; Tatsenko, O.M.; Markevtsev, I.M.; Moiseenko, A.N.; Kazakov, S.A.; Selyavsky, V.T.; Shapovalov, E.V.; Giterman, B.P.; Vlasov, Yu.V.; Dydykin, P.S.; Ryaslov, E.A.; Kotelnikov, D.V.

    2006-01-05

    In the paper we discuss experiments on wire liner systems powering from helical and disk magneto-cumulative generators with a current from 2...3 MA up to 20 MA at current rise time from 0.3 {mu}s to 1 {mu}s, respectively. At currents level up to 4 MA maximum yield of soft x-ray radiation was more than 100 kJ at plasma pinch temperature of 55 eV. At currents up to 20 MA an expected yield of soft x-ray radiation exceeds 1 MJ.

  16. Chemical Analysis of Reaction Rims on Olivine Crystals in Natural Samples of Black Dacite Using Energy-Dispersive X-Ray Spectroscopy, Lassen Peak, CA.

    NASA Astrophysics Data System (ADS)

    Graham, N. A.

    2014-12-01

    Lassen Volcanic Center is the southernmost volcanic region in the Cascade volcanic arc formed by the Cascadia Subduction Zone. Lassen Peak last erupted in 1915 in an arc related event producing a black dacite material containing xenocrystic olivine grains with apparent orthopyroxene reaction rims. The reaction rims on these olivine grains are believed to have formed by reactions that ensued from a mixing/mingling event that occurred prior to eruption between the admixed mafic andesitic magma and a silicic dacite host material. Natural samples of the 1915 black dacite from Lassen Peak, CA were prepared into 15 polished thin sections and carbon coated for analysis using a FEI Quanta 250 Scanning Electron Microscope (SEM) to identify and measure mineral textures and disequilibrium reaction rims. Observed mineralogical textures related to magma mixing include biotite and amphibole grains with apparent dehydration/breakdown rims, pyroxene-rimmed quartz grains, high concentration of microlites in glass matrix, and pyroxene/amphibole reaction rims on olivine grains. Olivine dissolution is evidenced as increased iron concentration toward convolute edges of olivine grains as observed by Backscatter Electron (BSE) imagery and elemental mapping using NSS spectral imaging software. In an attempt to quantify the area of reaction rim growth on olivine grains within these samples, high-resolution BSE images of 30 different olivine grains were collected along with Energy-Dispersive X-Ray Spectroscopy (EDS) of different phases. Olivine cores and rims were extracted from BSE images using Photoshop and saved as separate image files. ImageJ software was used to calculate the area (μm2) of the core and rim of these grains. Average pyroxene reaction rim width for 30 grains was determined to be 11.68+/-1.65 μm. Rim widths of all 30 grains were averaged together to produce an overall average rim width for the Lassen Peak black dacite. By quantifying the reaction rims on olivine grains

  17. Design considerations for adjustable-curvature, high-power, X-ray mirrors based on elastic bending

    NASA Astrophysics Data System (ADS)

    Howells, Malcolm R.; Lunt, David

    1993-08-01

    The use of elastic bending to form the shapes of high-power X-ray mirrors for synchrotron radiation beamlines is considered. An approach in which the bending mechanism and the mirror are cut from the same monolithic block by electric-discharge-machining techniques is especially advocated. A discussion of the theory and practical design philosophies is given that includes circular and elliptical cylinder mirrors. The influence of gravity on the mirror shape is studied with emphasis on the optimum positions for the mirror supports that, for a uniform mirror, turn out to be at a spacing equal to the mirror length divided by root three.

  18. Hard X-Ray Emission of X-Ray Bursters

    NASA Technical Reports Server (NTRS)

    Kaaret, P.

    1999-01-01

    The primary goal of this proposal was to perform an accurate measurement of the broadband x-ray spectrum of a neutron-star low-mass x-ray binary found in a hard x-ray state. This goal was accomplished using data obtained under another proposal, which has provided exciting new information on the hard x-ray emission of neutron-star low-mass x-ray binaries. In "BeppoSAX Observations of the Atoll X-Ray Binary 4U0614+091", we present our analysis of the spectrum of 4U0614+091 over the energy band from 0.3-150 keV. Our data confirm the presence of a hard x-ray tail that can be modeled as thermal Comptonization of low-energy photons on electrons having a very high temperature, greater than 220 keV, or as a non-thermal powerlaw. Such a very hard x-ray spectrum has not been previously seen from neutron-star low-mass x-ray binaries. We also detected a spectral feature that can be interpreted as reprocessing, via Compton reflection, of the direct emission by an optically-thick disk and found a correlation between the photon index of the power-law tail and the fraction of radiation reflected which is similar to the correlation found for black hole candidate x-ray binaries and Seyfert galaxies. A secondary goal was to measure the timing properties of the x-ray emission from neutronstar low-mass x-ray binaries in their low/hard states.

  19. Emphasize the difference: On the energy dependance of power spectral states in Black Hole X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Stiele, Holger; Yu, W.

    2014-01-01

    Transient black hole X-ray binaries usually evolve through different energy spectral states that show characteristic spectral and variability properties. These characteristics mainly resulted from the energy spectra and the power density spectra obtained by the RXTE in the energy band above 3 keV. This picture has been challenged through our recent study on MAXI J1659-152, in which we found a clear energy dependence of the power spectral state; the thermal disk spectral component in the hard and the intermediate state is of a power-law noise with a possible cut-off at a frequency below the characteristic frequencies of the band-limited noise and QPOs seen simultaneously in the Comptonized component, which is similar to the power spectrum of the soft state. Here, we present the results of our comprehensive study of archival XMM-Newton observations of black hole X-ray binaries, which comprises GRS 1915+105, GX 339-4, H1743-322 and other sources. For the observations of GRS 1915+105 in the "plateau" state we will discuss the overall shape of the power density spectra related to the noise component and the presence or absence of quasi-periodic oscillations in different energy bands. Furthermore, we will present a summary of the power density spectra and related time lags in the observations of GX 339-4. The presence of quasi-periodic oscillations and band-limited noise in the power density spectra above ~2 keV and the simultaneous domination by a power-law noise in the power density spectra at lower energies imply that the quasi-periodic oscillations and the band-limited noise are in the Comptonized component and the optically thick disk contributes to a power-law noise which is independent of the energy spectral state. We will discuss the implications of this finding for the picture of the accretion geometry in black hole X-ray binaries.

  20. Comprehensive Study of the X-Ray Flares from Gamma-ray Bursts Observed by Swift

    NASA Astrophysics Data System (ADS)

    Yi, Shuang-Xi; Xi, Shao-Qiang; Yu, Hai; Wang, F. Y.; Mu, Hui-Jun; Lü, Lian-Zhong; Liang, En-Wei

    2016-06-01

    X-ray flares are generally supposed to be produced by later activities of the central engine, and may share a similar physical origin with the prompt emission of gamma-ray bursts (GRBs). In this paper, we have analyzed all significant X-ray flares from the GRBs observed by Swift from 2005 April to 2015 March. The catalog contains 468 bright X-ray flares, including 200 flares with redshifts. We obtain the fitting results of X-ray flares, such as start time, peak time, duration, peak flux, fluence, peak luminosity, and mean luminosity. The peak luminosity decreases with peak time, following a power-law behavior {L}{{p}}\\propto {T}{peak,z}-1.27. The flare duration increases with peak time. The 0.3–10 keV isotropic energy of the distribution of X-ray flares is a log-normal peaked at {10}51.2 erg. We also study the frequency distributions of flare parameters, including energies, durations, peak fluxes, rise times, decay times, and waiting times. Power-law distributions of energies, durations, peak fluxes, and waiting times are found in GRB X-ray flares and solar flares. These distributions could be well explained by a fractal-diffusive, self-organized criticality model. Some theoretical models based on magnetic reconnection have been proposed to explain X-ray flares. Our result shows that the relativistic jets of GRBs may be dominated by Poynting flux.

  1. On the Plerionic Supernova Remnant CTB 87 (G74.9+1.2) and Its Powering Engine: Insights from the Chandra X-ray Observatory

    NASA Astrophysics Data System (ADS)

    Safi-Harb, Samar; Matheson, H.; Kothes, R.

    2011-05-01

    Pulsar Wind Nebulae (PWNe) offer a valuable astrophysical laboratory to study the physics of pulsar winds and their interaction with the ISM, and to search for missed pulsars. While the Crab nebula has been known for decades to represent the prototype of PWNe, there are several PWNe whose properties differ from the Crab, leading to a class dubbed as `plerions of a second kind'. CTB 87 (G74.9+1.2) belongs to this class and is one of the least studied members in X-rays. In the radio, it has a low-frequency spectral break and an unusually steep spectral index hinting to an evolved PWN. We present an archival ASCA observation of this object and a new 70 ksec ACIS-I Chandra observation dedicated to resolve the putative pulsar and to perform a high-resolution imaging and spectroscopic study of the PWN, including the search for structures associated with the deposition of the neutron star's energy into its surroundings. The peak of X-ray emission is clearly offset from the radio peak. For the ASCA data, a power-law model fit yields a column density of (1.14±0.22)x1022 cm-2, a photon index of 1.77±0.15, and a luminosity of 1.4x1034 erg s-1 (at the revised distance of 6.1kpc). Thanks to Chandra, the source powering the nebula is resolved and its spectrum is studied separately from the PWN. Both are well described by a power law model with a hard photon index. The Chandra source-the putative pulsar- is found at the south-eastern edge of the bright radio nebula, with jet-like and diffuse emission from the PWN extending to the northwest. We discuss our X-ray study in correlation with recent sensitive radio continuum and polarization measurements obtained with the CGPS and Effelsberg. Finally, we compare G74.9+1.2 to other PWNe likely in a similar stage of their evolution, including G63.7+1.1, G65.7+1.2, and G76.9+1.0.

  2. Compact x-ray source and panel

    DOEpatents

    Sampayon, Stephen E.

    2008-02-12

    A compact, self-contained x-ray source, and a compact x-ray source panel having a plurality of such x-ray sources arranged in a preferably broad-area pixelized array. Each x-ray source includes an electron source for producing an electron beam, an x-ray conversion target, and a multilayer insulator separating the electron source and the x-ray conversion target from each other. The multi-layer insulator preferably has a cylindrical configuration with a plurality of alternating insulator and conductor layers surrounding an acceleration channel leading from the electron source to the x-ray conversion target. A power source is connected to each x-ray source of the array to produce an accelerating gradient between the electron source and x-ray conversion target in any one or more of the x-ray sources independent of other x-ray sources in the array, so as to accelerate an electron beam towards the x-ray conversion target. The multilayer insulator enables relatively short separation distances between the electron source and the x-ray conversion target so that a thin panel is possible for compactness. This is due to the ability of the plurality of alternating insulator and conductor layers of the multilayer insulators to resist surface flashover when sufficiently high acceleration energies necessary for x-ray generation are supplied by the power source to the x-ray sources.

  3. High-energy density experiments on planetary materials using high-power lasers and X-ray free electron laser

    NASA Astrophysics Data System (ADS)

    Ozaki, Norimasa

    2015-06-01

    Laser-driven dynamic compression allows us to investigate the behavior of planetary and exoplanetary materials at extreme conditions. Our high-energy density (HED) experiments for applications to planetary sciences began over five years ago. We measured the equation-of-state of cryogenic liquid hydrogen under laser-shock compression up to 55 GPa. Since then, various materials constituting the icy giant planets and the Earth-like planets have been studied using laser-driven dynamic compression techniques. Pressure-volume-temperature EOS data and optical property data of water and molecular mixtures were obtained at the planetary/exoplanetary interior conditions. Silicates and oxides data show interesting behaviors in the warm-dense matter regime due to their phase transformations. Most recently the structural changes of iron were observed for understanding the kinetics under the bcc-hcp transformation phenomena on a new HED science platform coupling power-lasers and the X-ray free electron laser (SACLA). This work was performed under the joint research project at the Institute of Laser Engineering, Osaka University. It was partially supported by a Grant-in-Aid for Scientific Research (Grant Nos. 20654042, 22224012, 23540556, and 24103507) and also by grants from the Core-to-Core Program of JSPS on International Alliance for Material Science in Extreme States with High Power Laser and XFEL, and the X-ray Free Electron Laser Priority Strategy Program of MEXT.

  4. A Cutoff in the X-Ray Fluctuation Power Density Spectrum of the Seyfert 1 Galaxy NGC 3516

    NASA Technical Reports Server (NTRS)

    Edelson, Rick; Nandra, Kirpal

    1999-01-01

    During 1997 March-July, RXTE observed the bright, strongly variable Seyfert 1 galaxy NGC 3516 once every approx. 12.8 hr for 4.5 months and nearly continuously (with interruptions due to SAA passage but not Earth occultation) for a 4.2 day period in the middle. These were followed by ongoing monitoring once every approx. 4.3 days. These data are used to construct the first well-determined X-ray fluctuation power density spectrum (PDS) of an active galaxy to span more than 4 decades of usable temporal frequency. The PDS shows no signs of any strict or quasi-periodicity, but does show a progressive flattening of the power-low slope from -1.74 at short time scales to -0.73 at longer time scales. This is the clearest observation to date of the long-predicted cutoff in the PDS. The characteristic variability time scale corresponding to this cutoff temporal frequency is approx. 1 month. Although it is unclear how this time scale may be interpreted in terms of a physical size or process, there are several promising candidate models. The PDS appears similar to those seen for Galactic black hole candidates such as Cyg X-1, suggesting that these two classes of objects with very different luminosities and putative black hole masses (differing by more than a factor of 10(exp 5)) may have similar X-ray generation processes and structures.

  5. Peak Power Markets for Satellite Solar Power

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2002-01-01

    This paper introduces first Indonesia, comprises 15,000 islands, has land area of two millions square kilometers. Extending from 95 to 141 degrees East longitude and from 6 degrees North to 11 degrees South latitude. Further the market of the Space Solar Power/SPS must be worldwide, including Indonesia. As we know, it can provide electricity anywhere in the world from the Earth's orbit, mostly Indonesia an equator country. We have to perform case studies of various countries to understand their benefits and disadvantages provided by the SSP, because each country has much different condition on energy from other countries. We are at the moment starting the international collaboration between Indonesia and Japan to carry out the case study for Indonesia. We understand that in Indonesia itself each province has much different micro-climate between one province compared to the other. In Japan, METI (Ministry of Economy, Trade and Industry) has already organized a committee to investigate the feasibility of Space Solar Power and to make a plan to launch a space demonstration of the SPS. While, Indonesia is quickly developing economy and increasing their energy demand. We are investigating the detailed energy conditions of Indonesia, the benefits and disadvantages of the Space Solar Power for Indonesia. Especially, we will perform the investigation on the receiving system for the Japanese pilot Space Power Satellite.

  6. X-ray peak broadening analysis of AA 6061{sub 100-x} - x wt.% Al{sub 2}O{sub 3} nanocomposite prepared by mechanical alloying

    SciTech Connect

    Sivasankaran, S.; Sivaprasad, K.; Narayanasamy, R.; Satyanarayana, P.V.

    2011-07-15

    Nanocrystalline AA 6061 alloy reinforced with alumina (0, 4, 8, and 12 wt.%) in amorphized state composite powder was synthesized by mechanical alloying and consolidated by conventional powder metallurgy route. The as-milled and as-sintered (573 K and 673 K) nanocomposites were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The peaks corresponding to fine alumina was not observed by XRD patterns due to amorphization. Using high-resolution transmission electron microscope, it is confirmed that the presence of amorphized alumina observed in Al lattice fringes. The crystallite size, lattice strain, deformation stress, and strain energy density of AA 6061 matrix were determined precisely from the first five most intensive reflection of XRD using simple Williamson-Hall models; uniform deformation model, uniform stress deformation model, and uniform energy density deformation model. Among the developed models, uniform energy density deformation model was observed to be the best fit and realistic model for mechanically alloyed powders. This model evidenced the more anisotropic nature of the ball milled powders. The XRD peaks of as-milled powder samples demonstrated a considerable broadening with percentage of reinforcement due to grain refinement and lattice distortions during same milling time (40 h). The as-sintered (673 K) unreinforced AA 6061 matrix crystallite size from well fitted uniform energy density deformation model was 98 nm. The as-milled and as-sintered (673 K) nanocrystallite matrix sizes for 12 wt.% Al{sub 2}O{sub 3} well fitted by uniform energy density deformation model were 38 nm and 77 nm respectively, which indicate that the fine Al{sub 2}O{sub 3} pinned the matrix grain boundary and prevented the grain growth during sintering. Finally, the lattice parameter of Al matrix in as-milled and as-sintered conditions was also investigated in this paper. Research highlights: {yields} Integral breadth methods using various

  7. Revealing the X-Ray Emission Processes of Old Rotation-Powered Pulsars: XMM-Newton Observations of PSR B0950+08, PSR B0823+26 and PSR J2043+2740

    NASA Technical Reports Server (NTRS)

    Becker, Werner; Weisskopf, Martin C.; Tenant, Allyn F.; Jessmer, Axel; Zhang, Shiang N.

    2004-01-01

    We have completed part of a program to study the X-ray emission properties of old rotation-powered pulsars with XMM-Newton in order to probe and identify the origin of their X radiation. The X-ray emission from these old pulsars is largely dominated by non-thermal processes. None of the observed spectra required adding a thermal component consisting of either a hot polar cap or surface cooling emission to model the data. The energy spectrum of PSR B0950+08 is best described by a single power law of photon-index alpha = 1.93(sup +0.14)(sub -0.12). Three-sigma temperature upper limits for possible contributions from a heated polar cap or the whole neutron star surface are T(sup infinity)(sub pc) < 0.87 x 10(exp 6) K and T(sup infinity)(sub s) < 0.48 x 10(exp 6) K, respectively. We also find that the X-ray emission from PSR B0950+08 is pulsed with two peaks per rotation period. The phase separation between the two X-ray peaks is approx. 144 deg (maximum to maximum) which is similar to the pulse peak separation observed in the radio band at 1.4 GHz. The fraction of X-ray pulsed photons is approx. 30%. A phase resolved spectral analysis confirms the nonthermal nature of the pulsed emission and finds power law slopes of alpha = 2.4(sup +0.52)(sub -0.42) and alpha = 1.93(sup +0.29)(sub -0.24) for the pulse peaks P1 and P2, respectively. The spectral emission properties observed for PSR B0823+26 are similar to those of PSR B0950+08. Its energy spectrum is very well described by a single power law with photon-index alpha = 2.5(sup +0.52)(sub -0.24. Three-sigma temperature upper limits for thermal contributions from a hot polar cap or from the entire neutron star surface are T(sup infinity)(sub pc) < 1.17 x 10(exp 6) K and T(sup infinity)(sub s) < 0.5 x 10(exp 6) K, respectively. There is evidence for pulsed X-ray emission at the - 97% confidence level with a pulsed fraction of 49 +/- 22%. For PSR 52043+2740 we report the first detection of X-ray emission. A power law

  8. Get the Latest on the World's Most Powerful X-ray Telescope: NASA Experts Available to Talk About Chandra Observatory

    NASA Astrophysics Data System (ADS)

    1999-07-01

    Media Advisory: 99-142 You could read a newspaper from half a mile away or see a stop sign from 12 miles. That’s the kind of strength packed into the world’s most powerful X-ray telescope. Its name is the Chandra X-ray observatory and it starts a five-year mission this week when the Space Shuttle’s first female commander, Eileen Collins, and her crew release the new observatory from the Shuttle’s payload bay. Chandra is the largest and heaviest payload ever launched by the Space Shuttle. Using Chandra, scientists will learn more about black holes, study quasars at the edge of the universe, analyze comets in our solar system, and more. Get the story on NASA’s newest great observatory from the experts at the Operations Control Center in Cambridge, Mass. Who: Chandra Experts When: Beginning Tuesday evening, July 20 through July 27 Time: 6 - 10 a.m.; 6 - 10 p.m. EDT Satellite Windows: 10 minutes Satellite Interview Information: Robert Drake, Producer (256) 544-4139 (256) 544-1183 (PIN 0022) Story Information: Tim Tyson, Media Relations (256) 544-0034

  9. High-power Waveguide Dampers for the Short-Pulse X-Ray Project at the Advanced Photon Source

    SciTech Connect

    Waldschmidt, G J; Liu, J; Middendorf, M E; Nassiri, A; Smith, T L; Wu, G; Henry, J; Mammosser, J D; Rimmer, R A; Wiseman, M

    2012-07-01

    High-power waveguide dampers have been designed and prototyped for the Short-Pulse X-ray (SPX) cavities at the Advanced Photon Source. The cavities will operate at 2.815 GHz and utilize the TM110 dipole mode. As a result, higher-order (HOM) and lower-order mode (LOM) in-vacuum dampers have been designed to satisfy the demanding broadband damping requirements in the APS storage ring. The SPX single-cell cavity consists of two WR284 waveguides for damping the HOMs and one WR284 waveguide for primarily damping the LOM where up to 2kW will be dissipated in the damping material. The damper designs and high-power experimental results will be discussed in this paper.

  10. X-Rays

    MedlinePlus

    X-rays are a type of radiation called electromagnetic waves. X-ray imaging creates pictures of the inside of ... different amounts of radiation. Calcium in bones absorbs x-rays the most, so bones look white. Fat ...

  11. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1990-01-01

    The annual progress report on Cosmic X Ray Physics is presented. Topics studied include: the soft x ray background, proportional counter and filter calibrations, the new sounding rocket payload: X Ray Calorimeter, and theoretical studies.

  12. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1991-01-01

    The annual progress report on Cosmic X Ray Physics for the period 1 Jan. to 31 Dec. 1990 is presented. Topics studied include: soft x ray background, new sounding rocket payload: x ray calorimeter, and theoretical studies.

  13. Joint x-ray

    MedlinePlus

    X-ray - joint; Arthrography; Arthrogram ... x-ray technologist will help you position the joint to be x-rayed on the table. Once in place, pictures are taken. The joint may be moved into other positions for more ...

  14. Z pinches as intense x-ray sources for inertial confinement fusion applications

    SciTech Connect

    Matzen, M.K.

    1997-05-01

    Fast z-pinch implosions can convert more than 10% of the stored electrical energy in a pulsed-power accelerator into x-rays. On the Saturn pulsed-power accelerator at Sandia National Laboratories, currents of 6 to 8 MA with a risetime of less than 50 ns have been used to drive cylindrically-symmetric arrays of wires, producing x-ray energies greater than 400 kJ with x-ray pulsewidths less than 5 ns and peak x-ray powers of 75 {+-} 10 TW. Using similar loads, PBFA Z has produced > 1.5 MJ and > 150 TW of x-rays in the first four months of operation in the z-pinch mode. These x-ray energies and powers are records for laboratory x-ray production. The x-ray output can be thermalized into a near-Planckian x-ray source by containing it within a cylindrical radiation case (a hohlraum). These energetic, intense, large volume, long-lived hohlraum x-ray sources have recently been used for ICF-relevant ablator physics experiments and offer the potential for performing many new basic physics and fusion-relevant experiments.

  15. A 62 Day X-Ray Periodicity and an X-Ray Flare from the Ultraluminous X-Ray Source in M82

    NASA Astrophysics Data System (ADS)

    Kaaret, Philip; Simet, Melanie G.; Lang, Cornelia C.

    2006-07-01

    In 240 days of X-ray monitoring of M82, we have discovered an X-ray periodicity at 62.0+/-2.5 days with a peak-to-peak amplitude corresponding to an isotropic luminosity of 2.4×1040 ergs s-1 in M82 and an X-ray flare reaching a peak luminosity of 9.8×1040 ergs s-1. The periodicity and flare likely originate from the ultraluminous X-ray source (ULX) in M82, which has been identified as a possible intermediate-mass black hole. We suggest that the 62 day modulation is due to orbital motion within an X-ray binary with a Roche lobe overflowing companion star, which would imply that the average density of the companion star is near 5×10-5 g cm-3 and is therefore a giant or supergiant. Chandra observations just after the flare show an energy spectrum that is consistent with a power law with no evidence of a thermal component or line emission. Radio observations made with the VLA during the flare allow us to rule out a blazar identification for the source and place strong constraints on relativistically beamed models of the X-ray emission. The Chandra observations reveal that a second X-ray source reached a flux of 4.4×10-12 ergs cm-2 s-1 in the 0.3-7 keV band, which is dramatically higher than any flux previously seen from this source and corresponds to an isotropic luminosity of 1.1×1040 ergs s-1. This source is a second ultraluminous X-ray source in M82 and may give rise to the QPOs detected from the central region of M82.

  16. A novel vacuum spectrometer for total reflection x-ray fluorescence analysis with two exchangeable low power x-ray sources for the analysis of low, medium, and high Z elements in sequence

    NASA Astrophysics Data System (ADS)

    Wobrauschek, P.; Prost, J.; Ingerle, D.; Kregsamer, P.; Misra, N. L.; Streli, C.

    2015-08-01

    The extension of the detectable elemental range with Total Reflection X-ray Fluorescence (TXRF) analysis is a challenging task. In this paper, it is demonstrated how a TXRF spectrometer is modified to analyze elements from carbon to uranium. Based on the existing design of a vacuum TXRF spectrometer with a 12 specimen sample changer, the following components were renewed: the silicon drift detector with 20 mm2 active area and having a special ultra-thin polymer window allowing the detection of elements from carbon upwards. Two exchangeable X-ray sources guarantee the efficient excitation of both low and high Z elements. These X-ray sources were two light-weighted easily mountable 35 W air-cooled low-power tubes with Cr and Rh anodes, respectively. The air cooled tubes and the Peltier-cooled detector allowed to construct a transportable tabletop spectrometer with compact dimensions, as neither liquid nitrogen cooling for the detector nor a water cooling circuit and a bulky high voltage generator for the X-ray tubes are required. Due to the excellent background conditions as a result of the TXRF geometry, detection limits of 150 ng for C, 12 ng for F, and 3.3 ng for Na have been obtained using Cr excitation in vacuum. For Rh excitation, the detection limits of 90 pg could be achieved for Sr. Taking 10 to 20 μl of sample volume, extrapolated detection limits in the ng/g (ppb) range are resulting in terms of concentration.

  17. A novel vacuum spectrometer for total reflection x-ray fluorescence analysis with two exchangeable low power x-ray sources for the analysis of low, medium, and high Z elements in sequence

    SciTech Connect

    Wobrauschek, P. Prost, J.; Ingerle, D.; Kregsamer, P.; Streli, C.; Misra, N. L.

    2015-08-15

    The extension of the detectable elemental range with Total Reflection X-ray Fluorescence (TXRF) analysis is a challenging task. In this paper, it is demonstrated how a TXRF spectrometer is modified to analyze elements from carbon to uranium. Based on the existing design of a vacuum TXRF spectrometer with a 12 specimen sample changer, the following components were renewed: the silicon drift detector with 20 mm{sup 2} active area and having a special ultra-thin polymer window allowing the detection of elements from carbon upwards. Two exchangeable X-ray sources guarantee the efficient excitation of both low and high Z elements. These X-ray sources were two light-weighted easily mountable 35 W air-cooled low-power tubes with Cr and Rh anodes, respectively. The air cooled tubes and the Peltier-cooled detector allowed to construct a transportable tabletop spectrometer with compact dimensions, as neither liquid nitrogen cooling for the detector nor a water cooling circuit and a bulky high voltage generator for the X-ray tubes are required. Due to the excellent background conditions as a result of the TXRF geometry, detection limits of 150 ng for C, 12 ng for F, and 3.3 ng for Na have been obtained using Cr excitation in vacuum. For Rh excitation, the detection limits of 90 pg could be achieved for Sr. Taking 10 to 20 μl of sample volume, extrapolated detection limits in the ng/g (ppb) range are resulting in terms of concentration.

  18. X-ray observations of XSS J12270-4859 in a new low state: A transformation to a disk-free rotation-powered pulsar binary

    SciTech Connect

    Bogdanov, Slavko; Patruno, Alessandro; Archibald, Anne M.; Bassa, Cees; Hessels, Jason W. T.; Janssen, Gemma H.; Stappers, Ben W.

    2014-07-01

    We present XMM-Newton and Chandra observations of the low-mass X-ray binary XSS J12270-4859, which experienced a dramatic decline in optical/X-ray brightness at the end of 2012, indicative of the disappearance of its accretion disk. In this new state, the system exhibits previously absent orbital-phase-dependent, large-amplitude X-ray modulations with a decline in flux at superior conjunction. The X-ray emission remains predominantly non-thermal but with an order of magnitude lower mean luminosity and significantly harder spectrum relative to the previous high flux state. This phenomenology is identical to the behavior of the radio millisecond pulsar (MSP) binary PSR J1023+0038 in the absence of an accretion disk, where the X-ray emission is produced in an intra-binary shock driven by the pulsar wind. This further demonstrates that XSS J12270-4859 no longer has an accretion disk and has transformed to a full-fledged eclipsing 'redback' system that hosts an active rotation-powered MSP. There is no evidence for diffuse X-ray emission associated with the binary that may arise due to outflows or a wind nebula. An extended source situated 1.'5 from XSS J12270-4859 is unlikely to be associated, and is probably a previously uncataloged galaxy cluster.

  19. AGN jet power, formation of X-ray cavities, and FR I/II dichotomy in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Fujita, Yutaka; Kawakatu, Nozomu; Shlosman, Isaac

    2016-04-01

    We investigate the ability of jets in active galactic nuclei to break out of the ambient gas with sufficiently large advance velocities. Using observationally estimated jet power, we analyze 28 bright elliptical galaxies in nearby galaxy clusters. Because the gas density profiles in the innermost regions of galaxies have not been resolved so far, we consider two extreme cases for temperature and density profiles. We also follow two types of evolution for the jet cocoons: being driven by the pressure inside the cocoon [Fanaroff-Riley (FR) type I], and being driven by the jet momentum (FR type II). Our main result is that regardless of the assumed form of the density profiles, jets with observed powers of ≲1044 erg s-1 are not powerful enough to evolve as FR II sources. Instead, they evolve as FR I sources and appear to be decelerated below the buoyant velocities of the cocoons when jets were propagating through the central dense regions of the host galaxies. This explains why FR I sources are more frequent than FR II sources in clusters. Furthermore, we predict the sizes of X-ray cavities from the observed jet powers and compare them with the observed ones-they are consistent within a factor of two if the FR I type evolution is realized. Finally, we find that the jets with a power ≳1044 erg s-1 are less affected by the ambient medium, and some of them, but not all, could serve as precursors of the FR II sources.

  20. Ionospheric effects of solar x-rays

    NASA Astrophysics Data System (ADS)

    Danskin, Donald

    2016-07-01

    The ionospheric absorption of radio waves caused by solar x-ray bursts is measured directly by Riometers from the Canada Riometer Array. The absorption is found to be proportional to the square root of the flux intensity of the X-ray burst with time delays of 18-20 seconds between the peak X-ray emission and absorption in the ionosphere. A detailed analysis showed that some X-ray flares during 2011-2014 are more effective at producing absorption than others. Solar longitude of X-ray burst for several X-class flares shows no consistent pattern of enhancement in the absorption.

  1. Chest x-ray

    MedlinePlus

    Chest radiography; Serial chest x-ray; X-ray - chest ... You stand in front of the x-ray machine. You will be told to hold your breath when the x-ray is taken. Two images are usually taken. You will ...

  2. Results from the Daresbury Compton backscattering X-ray source

    NASA Astrophysics Data System (ADS)

    Laundy, D.; Priebe, G.; Jamison, S. P.; Graham, D. M.; Phillips, P. J.; Smith, S. L.; Saveliev, Y.; Vassilev, S.; Seddon, E. A.

    2012-10-01

    The Daresbury Compton Backscattering X-ray Source uses a high power Ti Sapphire laser interacting in head on geometry with electron bunches in the ALICE energy recovery linear accelerator. X-ray photons with peak energy of 21 keV were generated with the accelerator operating at an energy of 29.6 MeV. The spatial profile of the X-rays emitted near the electron beam axis was measured. The characteristics of the X-ray yield measured as a function of relative timing between the laser pulse and the interacting electron bunch was found to be consistent with the modelled intensity behaviour using measured electron and laser beam parameters.

  3. X-ray imaging detectors for synchrotron and XFEL sources

    PubMed Central

    Hatsui, Takaki; Graafsma, Heinz

    2015-01-01

    Current trends for X-ray imaging detectors based on hybrid and monolithic detector technologies are reviewed. Hybrid detectors with photon-counting pixels have proven to be very powerful tools at synchrotrons. Recent developments continue to improve their performance, especially for higher spatial resolution at higher count rates with higher frame rates. Recent developments for X-ray free-electron laser (XFEL) experiments provide high-frame-rate integrating detectors with both high sensitivity and high peak signal. Similar performance improvements are sought in monolithic detectors. The monolithic approach also offers a lower noise floor, which is required for the detection of soft X-ray photons. The link between technology development and detector performance is described briefly in the context of potential future capabilities for X-ray imaging detectors. PMID:25995846

  4. Hard x-ray spectrometers for NIF (abstract)

    NASA Astrophysics Data System (ADS)

    Seely, John; Holland, Glenn; Brown, Charles; Deslattes, Richard; Hudson, Lawrence; Bell, Perry; Miller, Michael; Back, Christina

    2001-01-01

    A National Ignition Facility (NIF) core diagnostic instrument has been designed and will be fabricated to record x-ray spectra in the 1.2-20 keV energy range. The high-energy electronic x-ray instrument has four reflection crystals with overlapping coverage of 1.2-10.9 keV and one transmission crystal covering 8.6-20 keV. The spectral resolving power varies from approximately 1000 at low energies to 315 at 20 keV. The spectrum produced by each crystal is recorded by a modified commercial dental x-ray charge coupled device (CCD) detector. The scintillators on the CCD detectors are optimized for the energy ranges. A one-channel x-ray spectrometer, using one transmission crystal covering 12-60 keV, will be fabricated for the OMEGA laser facility. The transmission crystal spectrometers are based on instruments originally designed at National Institute for Standards and Technology for the purpose of characterizing the x-ray flux from medical radiography sources. Utilizing one of those instruments and a commercial dental x-ray CCD detector, x-ray images were recorded using a single pulse from a laboratory x-ray source with a peak charging voltage of 200 kV. A resolving power of 300 was demonstrated by recording on film the Kα1 and Kα2 characteristic x-ray lines near 17 keV from a molybdenum anode. The continuum radiation from a tungsten anode was recorded in the 20-50 keV energy range. The transmission crystal spectrometer has sufficient spectral resolution and sensitivity to record the line and continuum radiation from high-Z targets irradiated by the NIF laser and the OMEGA laser.

  5. Monochromatic plasma x-ray generator and its applications

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Sagae, Michiaki; Takahashi, Kei; Ichimaru, Toshio; Aiba, Wataru; Kumagai, Shigehito; Hayasi, Yasuomi; Ido, Hideaki; Sakamaki, Kimio; Takayama, Kazuyoshi; Tamakawa, Yoshiharu

    1998-07-01

    The constructions of a plasma flash x-ray generator having a cold-cathode radiation tube and its application to soft radiography are described. The x-ray generator employs a high- voltage power supply, a low-impedance coaxial transmission line with a gap switch, a high-voltage condenser with a capacity of 0.2 (mu) F, a turbo-molecular pump, a thyristor pulser as a trigger device, and a flash x-ray tube. The high- voltage main condenser is charged up to 60 kV by the power supply, and the electric charges in the condenser are discharged to the tube after triggering the cathode electrode. The flash x-rays are then produced. The x-ray tube is a demountable triode which is connected to the turbo molecular pump with a pressure of approximately 1 mPa. This tube consists of a rod-shaped carbon cathode, a trigger electrode made from a copper wire, a stainless-steel vacuum chamber, insulators, a polyethylene terephthalate x-ray window, and two anode electrodes (targets) of molybdenum and silver. The space between the anode and cathode electrodes had a constant value of approximately 20 mm, and the trigger electrode is set in the center of the cathode electrode. As the electron flows from the cathode electrode are roughly converged to the target by the electric field in the tube, the plasma x-ray source which consists of metal ions and electrons is produced by the target evaporating. Because the bremsstrahlung spectra are absorbed by the monochromatic filter, K-series characteristic x-rays are obtained. Both the tube voltage and current displayed damped oscillations, and their peak values increased according to increases in the charging voltage. In the present work, the peak tube voltage was almost equivalent to the initial charging voltage of the main condenser, and the peak current had a value of about 25 kA with a charging voltage of 60 kV. When the charging voltage was increased, the intensities of the K-series characteristic x-rays increased. Next, the intensities

  6. Inverse Compton X-Ray Halos Around High-z Radio Galaxies: A Feedback Mechanism Powered by Far-Infrared Starbursts or the Cosmic Microwave Background?

    NASA Technical Reports Server (NTRS)

    Small, Ian; Blundell, Katherine M.; Lehmer, B. D.; Alexander, D. M.

    2012-01-01

    We report the detection of extended X-ray emission around two powerful radio galaxies at z approx. 3.6 (4C 03.24 and 4C 19.71) and use these to investigate the origin of extended, inverse Compton (IC) powered X-ray halos at high redshifts. The halos have X-ray luminosities of L(sub X) approx. 3 x 10(exp 44) erg/s and sizes of approx.60 kpc. Their morphologies are broadly similar to the approx.60 kpc long radio lobes around these galaxies suggesting they are formed from IC scattering by relativistic electrons in the radio lobes, of either cosmic microwave background (CMB) photons or far-infrared photons from the dust-obscured starbursts in these galaxies. These observations double the number of z > 3 radio galaxies with X-ray-detected IC halos. We compare the IC X-ray-to-radio luminosity ratios for the two new detections to the two previously detected z approx. 3.8 radio galaxies. Given the similar redshifts, we would expect comparable X-ray IC luminosities if millimeter photons from the CMB are the dominant seed field for the IC emission (assuming all four galaxies have similar ages and jet powers). Instead we see that the two z approx. 3.6 radio galaxies, which are 4 fainter in the far-infrared than those at z 3.8, also have approx.4x fainter X-ray IC emission. Including data for a further six z > or approx. 2 radio sources with detected IC X-ray halos from the literature, we suggest that in the more compact, majority of radio sources, those with lobe sizes < or approx.100-200 kpc, the bulk of the IC emission may be driven by scattering of locally produced far-infrared photons from luminous, dust-obscured starbursts within these galaxies, rather than millimeter photons from the CMB. The resulting X-ray emission appears sufficient to ionize the gas on approx.100-200 kpc scales around these systems and thus helps form the extended, kinematically quiescent Ly(alpha) emission line halos found around some of these systems. The starburst and active galactic nucleus

  7. Glitch observation and hard X-ray power law measurement in PSR J1119-6127

    NASA Astrophysics Data System (ADS)

    Archibald, R. F.; Tendulkar, S. P.; Scholz, P. A.; Kaspi, V. M.

    2016-07-01

    We report on Swift-XRT, NuSTAR and Fermi spectral and timing observations of PSR J1119-6127, a rotation-powered high magnetic field pulsar that showed a magnetar-like burst on 2016 July 28, 01:27:51 UT (ATel #9274, ATel #9282).

  8. Ultrasoft X-ray background observations of the Local Interstellar Medium

    SciTech Connect

    Sanders, W.T.; Snowden, S.L.; Bloch, J.J.; Juda, M.; Jahoda, K.M.; Mccammon, D.

    1984-11-01

    Preliminary results from a May 8, 1984 sounding rocket survey of the soft X-ray background are presented. The X-ray detectors are sensitive to X-rays in three soft X-ray bandpasses: 80 to 110 eV, 90 to 188 eV, and 284 to 532 eV (at 20% of peak response). The lowest energy X-rays in this range have a mean free path of order 10 to the 19th power/sq cm and provide information about the Local Interstellar Medium. The count rate in the 80 to 110 eV energy band (the Be band) tracks the 90 to 188 (eV band (the B band) very well, indicating that the same approx. 1 million degree gas that is responsible for the B band emission may be responsible for the bulk of the Be band X-rays as well.

  9. Ultrasoft X-ray Background Observations of the Local Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Sanders, W. T.; Snowden, S. L.; Bloch, J. J.; Juda, M.; Jahoda, K. M.; Mccammon, D.

    1984-01-01

    Preliminary results from a May 8, 1984 sounding rocket survey of the soft X-ray background are presented. The X-ray detectors are sensitive to X-rays in three soft X-ray bandpasses: 80 to 110 eV, 90 to 188 eV, and 284 to 532 eV (at 20% of peak response). The lowest energy X-rays in this range have a mean free path of order 10 to the 19th power/sq cm and provide information about the local interstellar medium. The count rate in the 80 to 110 eV energy band (the Be band) tracks the 90 to 188 (eV band (the B band) very well, indicating that the same approx. 1 million degree gas that is responsible for the B band emission may be responsible for the bulk of the Be band X-rays as well.

  10. First Limits on the 21 cm Power Spectrum during the Epoch of X-ray heating.

    NASA Astrophysics Data System (ADS)

    Ewall-Wice, A.; Dillon, Joshua S.; Hewitt, J. N.; Loeb, A.; Mesinger, A.; Neben, A. R.; Offringa, A. R.; Tegmark, M.; Barry, N.; Beardsley, A. P.; Bernardi, G.; Bowman, Judd D.; Briggs, F.; Cappallo, R. J.; Carroll, P.; Corey, B. E.; de Oliveira-Costa, A.; Emrich, D.; Feng, L.; Gaensler, B. M.; Goeke, R.; Greenhill, L. J.; Hazelton, B. J.; Hurley-Walker, N.; Johnston-Hollitt, M.; Jacobs, Daniel C.; Kaplan, D. L.; Kasper, J. C.; Kim, HS; Kratzenberg, E.; Lenc, E.; Line, J.; Lonsdale, C. J.; Lynch, M. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Thyagarajan, Nithyanandan; Oberoi, D.; Ord, S. M.; Paul, S.; Pindor, B.; Pober, J. C.; Prabu, T.; Procopio, P.; Riding, J.; Rogers, A. E. E.; Roshi, A.; Shankar, N. Udaya; Sethi, Shiv K.; Srivani, K. S.; Subrahmanyan, R.; Sullivan, I. S.; Tingay, S. J.; Trott, C. M.; Waterson, M.; Wayth, R. B.; Webster, R. L.; Whitney, A. R.; Williams, A.; Williams, C. L.; Wu, C.; Wyithe, J. S. B.

    2016-05-01

    We present first results from radio observations with the Murchison Widefield Array seeking to constrain the power spectrum of 21 cm brightness temperature fluctuations between the redshifts of 11.6 and 17.9 (113 and 75 MHz). Three hours of observations were conducted over two nights with significantly different levels of ionospheric activity. We use these data to assess the impact of systematic errors at low frequency, including the ionosphere and radio-frequency interference, on a power spectrum measurement. We find that after the 1-3 hours of integration presented here, our measurements at the Murchison Radio Observatory are not limited by RFI, even within the FM band, and that the ionosphere does not appear to affect the level of power in the modes that we expect to be sensitive to cosmology. Power spectrum detections, inconsistent with noise, due to fine spectral structure imprinted on the foregrounds by reflections in the signal-chain, occupy the spatial Fourier modes where we would otherwise be most sensitive to the cosmological signal. We are able to reduce this contamination using calibration solutions derived from autocorrelations so that we achieve an sensitivity of 104 mK on comoving scales k ≲ 0.5 hMpc-1. This represents the first upper limits on the 21 cm power spectrum fluctuations at redshifts 12 ≲ z ≲ 18 but is still limited by calibration systematics. While calibration improvements may allow us to further remove this contamination, our results emphasize that future experiments should consider carefully the existence of and their ability to calibrate out any spectral structure within the EoR window.

  11. First limits on the 21 cm power spectrum during the Epoch of X-ray heating

    NASA Astrophysics Data System (ADS)

    Ewall-Wice, A.; Dillon, Joshua S.; Hewitt, J. N.; Loeb, A.; Mesinger, A.; Neben, A. R.; Offringa, A. R.; Tegmark, M.; Barry, N.; Beardsley, A. P.; Bernardi, G.; Bowman, Judd D.; Briggs, F.; Cappallo, R. J.; Carroll, P.; Corey, B. E.; de Oliveira-Costa, A.; Emrich, D.; Feng, L.; Gaensler, B. M.; Goeke, R.; Greenhill, L. J.; Hazelton, B. J.; Hurley-Walker, N.; Johnston-Hollitt, M.; Jacobs, Daniel C.; Kaplan, D. L.; Kasper, J. C.; Kim, HS; Kratzenberg, E.; Lenc, E.; Line, J.; Lonsdale, C. J.; Lynch, M. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Thyagarajan, Nithyanandan; Oberoi, D.; Ord, S. M.; Paul, S.; Pindor, B.; Pober, J. C.; Prabu, T.; Procopio, P.; Riding, J.; Rogers, A. E. E.; Roshi, A.; Shankar, N. Udaya; Sethi, Shiv K.; Srivani, K. S.; Subrahmanyan, R.; Sullivan, I. S.; Tingay, S. J.; Trott, C. M.; Waterson, M.; Wayth, R. B.; Webster, R. L.; Whitney, A. R.; Williams, A.; Williams, C. L.; Wu, C.; Wyithe, J. S. B.

    2016-08-01

    We present first results from radio observations with the Murchison Widefield Array seeking to constrain the power spectrum of 21 cm brightness temperature fluctuations between the redshifts of 11.6 and 17.9 (113 and 75 MHz). Three hours of observations were conducted over two nights with significantly different levels of ionospheric activity. We use these data to assess the impact of systematic errors at low frequency, including the ionosphere and radio-frequency interference, on a power spectrum measurement. We find that after the 1-3 hours of integration presented here, our measurements at the Murchison Radio Observatory are not limited by RFI, even within the FM band, and that the ionosphere does not appear to affect the level of power in the modes that we expect to be sensitive to cosmology. Power spectrum detections, inconsistent with noise, due to fine spectral structure imprinted on the foregrounds by reflections in the signal-chain, occupy the spatial Fourier modes where we would otherwise be most sensitive to the cosmological signal. We are able to reduce this contamination using calibration solutions derived from autocorrelations so that we achieve an sensitivity of $10^4$ mK on comoving scales $k\\lesssim 0.5 h$Mpc$^{-1}$. This represents the first upper limits on the $21$ cm power spectrum fluctuations at redshifts $12\\lesssim z \\lesssim 18$ but is still limited by calibration systematics. While calibration improvements may allow us to further remove this contamination, our results emphasize that future experiments should consider carefully the existence of and their ability to calibrate out any spectral structure within the EoR window.

  12. First limits on the 21 cm power spectrum during the Epoch of X-ray heating

    NASA Astrophysics Data System (ADS)

    Ewall-Wice, A.; Dillon, Joshua S.; Hewitt, J. N.; Loeb, A.; Mesinger, A.; Neben, A. R.; Offringa, A. R.; Tegmark, M.; Barry, N.; Beardsley, A. P.; Bernardi, G.; Bowman, Judd D.; Briggs, F.; Cappallo, R. J.; Carroll, P.; Corey, B. E.; de Oliveira-Costa, A.; Emrich, D.; Feng, L.; Gaensler, B. M.; Goeke, R.; Greenhill, L. J.; Hazelton, B. J.; Hurley-Walker, N.; Johnston-Hollitt, M.; Jacobs, Daniel C.; Kaplan, D. L.; Kasper, J. C.; Kim, HS; Kratzenberg, E.; Lenc, E.; Line, J.; Lonsdale, C. J.; Lynch, M. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Thyagarajan, Nithyanandan; Oberoi, D.; Ord, S. M.; Paul, S.; Pindor, B.; Pober, J. C.; Prabu, T.; Procopio, P.; Riding, J.; Rogers, A. E. E.; Roshi, A.; Shankar, N. Udaya; Sethi, Shiv K.; Srivani, K. S.; Subrahmanyan, R.; Sullivan, I. S.; Tingay, S. J.; Trott, C. M.; Waterson, M.; Wayth, R. B.; Webster, R. L.; Whitney, A. R.; Williams, A.; Williams, C. L.; Wu, C.; Wyithe, J. S. B.

    2016-08-01

    We present first results from radio observations with the Murchison Widefield Array seeking to constrain the power spectrum of 21 cm brightness temperature fluctuations between the redshifts of 11.6 and 17.9 (113 and 75 MHz). 3 h of observations were conducted over two nights with significantly different levels of ionospheric activity. We use these data to assess the impact of systematic errors at low frequency, including the ionosphere and radio-frequency interference, on a power spectrum measurement. We find that after the 1-3 h of integration presented here, our measurements at the Murchison Radio Observatory are not limited by RFI, even within the FM band, and that the ionosphere does not appear to affect the level of power in the modes that we expect to be sensitive to cosmology. Power spectrum detections, inconsistent with noise, due to fine spectral structure imprinted on the foregrounds by reflections in the signal-chain, occupy the spatial Fourier modes where we would otherwise be most sensitive to the cosmological signal. We are able to reduce this contamination using calibration solutions derived from autocorrelations so that we achieve an sensitivity of 104 mK on comoving scales k ≲ 0.5 h Mpc-1. This represents the first upper limits on the 21 cm power spectrum fluctuations at redshifts 12 ≲ z ≲ 18 but is still limited by calibration systematics. While calibration improvements may allow us to further remove this contamination, our results emphasize that future experiments should consider carefully the existence of and their ability to calibrate out any spectral structure within the EoR window.

  13. Low peak-power laser ultrasonics

    NASA Astrophysics Data System (ADS)

    Pierce, S. G.; Cleary, A.; Veres, I. A.; Culshaw, B.; Thursby, G.; McKee, C.; Swift, C.; Armstrong, I.

    2011-09-01

    Techniques for the successful excitation of guided ultrasonic waves using a low peak-power laser ultrasonic source are discussed and compared with more conventional Q-switched laser sources. The paper considers acoustic propagation in thin plates, in which the frequencies used, typically only the fundamental guided wave modes, are considered. Aspects of excitation and detection geometry are considered along with the physical mechanisms of photo-acoustic generation and the practical issues surrounding available source wavelengths and power outputs. Understanding of the effects of these constraints is critical for the successful application of the technique. Continuous wave excitation and fully arbitrary modulation schemes are compared, and a technique to control the bandwidth of Golay code modulation is introduced. It is shown that earlier work by the authors was capable of guided wave detection at peak-power densities of 104 W cm- 2. Later work has focussed on the use of erbium-doped fibre amplifiers combined with Golay code modulation to improve the recovered signal-to-noise ratio. Two key applications of the techniques are considered: material properties measurements (using inversion of dispersion curve data) and acoustic emission system calibration.

  14. Polycapillary radiography using a quasi-x-ray-laser generator

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Hayasi, Yasuomi; Tanaka, Etsuro; Mori, Hidezo; Kawai, Toshiaki; Obara, Haruo; Ichimaru, Toshio; Takayama, Kazuyoshi; Ido, Hideaki; Usuki, Tatsumi; Sato, Koetsu; Tamakawa, Yoshiharu

    2001-12-01

    The characteristics of a new quasi-x-ray laser generator and its application to polycapillary radiography are described. The generator employs a high-voltage power supply, a low- impedance coaxial transmission line, a high-voltage condenser with a capacity of about 200 nF, a turbo-molecular pump, a thyristor pulse generator as a trigger device, and a new plasma flash x-ray tube. The high-voltage main condenser is charged up to 60 kV by the power supply, and the electric charges in the condenser are discharged to the tube after triggering the cathode electrode. The flash x- rays are then produced. The x-ray tube is of a demountable triode that is connected to the turbo molecular pump with a pressure of approximately 1 mPa. As the electron flows from the cathode electrode are roughly converged to the copper target by the electric field in the tube, the plasma x-ray source, which consists of metal ions and electrons, forms by the target evaporating. Both the tube voltage and current displayed damped oscillations, and their peak values increased according to increase in the charging voltage. In the present work, the peak tube voltage was almost equal to the initial charging voltage of the main condenser, and the peak current was about 25 kA with a charging voltage of 60 kV. When the charging voltage was increased, the linear plasma x-ray source formed, and the characteristic x-ray intensities of K-series lines increased. In the radiogrpahy achieved with a computed radiography system, we employed a polycapilary plate with a hole diameter of 20 micrometers and a thickness of 1 mm. The image resolution was primarily determined by the resolution of the CR system and had a value of about 100micrometers .

  15. A Chandra/HETGS Census of X-Ray Variability from Sgr A* during 2012

    NASA Astrophysics Data System (ADS)

    Neilsen, J.; Nowak, M. A.; Gammie, C.; Dexter, J.; Markoff, S.; Haggard, D.; Nayakshin, S.; Wang, Q. D.; Grosso, N.; Porquet, D.; Tomsick, J. A.; Degenaar, N.; Fragile, P. C.; Houck, J. C.; Wijnands, R.; Miller, J. M.; Baganoff, F. K.

    2013-09-01

    We present the first systematic analysis of the X-ray variability of Sgr A* during the Chandra X-ray Observatory's 2012 Sgr A* X-ray Visionary Project. With 38 High Energy Transmission Grating Spectrometer observations spaced an average of 7 days apart, this unprecedented campaign enables detailed study of the X-ray emission from this supermassive black hole at high spatial, spectral and timing resolution. In 3 Ms of observations, we detect 39 X-ray flares from Sgr A*, lasting from a few hundred seconds to approximately 8 ks, and ranging in 2-10 keV luminosity from ~1034 erg s-1 to 2 × 1035 erg s-1. Despite tentative evidence for a gap in the distribution of flare peak count rates, there is no evidence for X-ray color differences between faint and bright flares. Our preliminary X-ray flare luminosity distribution dN/dL is consistent with a power law with index -1.9^{+0.3}_{-0.4}; this is similar to some estimates of Sgr A*'s near-IR flux distribution. The observed flares contribute one-third of the total X-ray output of Sgr A* during the campaign, and as much as 10% of the quiescent X-ray emission could be comprised of weak, undetected flares, which may also contribute high-frequency variability. We argue that flares may be the only source of X-ray emission from the inner accretion flow.

  16. Pulsed Power Issues for the Phillips Laboratory's Capillary Discharge Soft X-Ray Laser Experiment.

    NASA Astrophysics Data System (ADS)

    Ruden, Edward L.; Graham, Jack D.

    1996-11-01

    The Phillips Laboratory is presently attempting to reproduce the high gain laser results of J. Rocca's Capillary Discharge z-pinch pumped 46.9 nm Ne-like Ar laser. This poster discusses the design and operation of the PL laser's pulsed power circuit. The capillary circuit consists of a low inductance 3nH water capacitor discharged by a coaxial spark gap into a presently 12 cm capillary. The capillary is supplied with 39 kA of current which rises in 20ns. The capillary tube itself is submerged in the same water supply as the capacitor. The effect of the slower speed of electromagnetic propagation in water vs. plastic on the dynamic inductance of the plastic capillary is discussed. Higher current rise rates for the first few ns apparently result from the lag in the EM propagation in the water. This effect may improve implosion uniformity during the initial formative phase of the imploding z- pinch plasma.

  17. X-Ray and Radio Studies of Black Hole X-Ray Transients During Outburst Decay

    NASA Technical Reports Server (NTRS)

    Tomsick, John A.

    2005-01-01

    Black hole (BH) and black hole candidate (BHC) transients are X-ray binary systems that typically undergo bright outbursts that last a couple months with recurrence times of years to decades. For this ADP project, we are studying BH/BHC systems during the decaying phases of their outbursts using the Rossi X-ray Taming Explorer (RXTE), the Chandra X-ray Observatory, and multi-wavelength facilities. These systems usually undergo state transitions as they decay, and our observations are designed to catch the state transitions. The specific goals of this proposal include: 1. To determine the evolution of the characteristic frequencies present in the power spectrum (such as quasi-periodic oscillations, QPOs) during state transitions in order to place constraints on the accretion geometry; 2. To contemporaneously measure X-ray spectral and timing properties along with flux measurements in the radio band to determine the relationship between the accretion disk and radio jets; 3. To extend our studies of X-ray properties of BHCs to very low accretion rates using RXTE and Chandra. The work performed under this proposal has been highly successful, allowing the PI to lead, direct, or assist in the preparation of 7 related publications in refereed journals and 6 other conference presentations or reports. These items are listed below, and the abstracts for the refereed publications have also been included. Especially notable results include our detailed measurements of the characteristic frequencies and spectral parameters of BH/BHCs after the transition to the hard state (see All A3, and A5) and at low flux levels (see A4). Our measurements provide one of the strongest lines of evidence to date that the inner edge of the optically thick accretion disk gradually recedes from the black hole at low flux levels. In addition, we have succeeded in obtaining excellent multi-wavelength coverage of a BH system as its compact jet turned on (see Al). Our results show, somewhat

  18. Running Shanghai Soft x-ray FEL with the EEHG scheme

    SciTech Connect

    Xiang, D; Stupakov, G.; /SLAC

    2008-12-18

    With the nominal beam parameters (beam energy: 0.84 GeV, slice energy spread: 168 keV, peak current: 600 A, normalized emittance: 2 mm mrad) of the Shanghai soft X-ray Free Electron Laser (SXFEL) project, we show that using the echo-enabled harmonic generation (EEHG) scheme, 9 nm coherent soft x-ray with peak power exceeding 400 MW can be generated directly from the 270 nm seeding laser.

  19. The Iron PROJECT/RmaX Network: Atomic Calculations for the Iron-Peak Elements and for X-Ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Guoxin; Delahaye, Franck; Nahar, Sultana; Oelgetz, Justin; Pradhan, Anil; Zhang, Honglin; Bautista, Manuel

    2001-05-01

    We report the latest results from the Iron Project (IP) obtained by the Ohio State Atomic Astrophysics group. The IP is devoted to the study of collisional and radiative atomic processes primarily for the iron-group elements for various applications in astrophysical and laboratory plasmas. The RmaX network is a part of IP focused on inner-shell transitions and X-ray spectroscopy. The processes of interest are: electron impact excitation, photoionization, transition probabilities and electron-ion recombination. The large-scale atomic calculations for the heavy atomic systems are carried out with the close coupling R-matrix method, including relativistic effects in the Breit-Pauli approximation. Selected results, and new physical features, are reported from recent work on collision strengths, radiative transition probabilities, photoionization cross sections, and unified electron-ion recombination rates for Fe XVII, Fe XXIV, Fe XXV, and Ni II. For example, extensive and dense resonance structures are found in electron excitation collision strengths for Ne-like Fe XVII that differ considerably from those in the Distorted Wave approximation, and should significantly affect X-ray plasma diagnostics. (Partial support from the NSF and NASA is acknowledged.)

  20. High-resolution X-ray imaging—a powerful nondestructive technique for applications in semiconductor industry

    NASA Astrophysics Data System (ADS)

    Zschech, Ehrenfried; Yun, Wenbing; Schneider, Gerd

    2008-08-01

    The availability of high-brilliance X-ray sources, high-precision X-ray focusing optics and very efficient CCD area detectors has contributed essentially to the development of transmission X-ray microscopy (TXM) and X-ray computed tomography (XCT) with sub-50 nm resolution. Particularly, the fabrication of high aspect ratio Fresnel zone plates with zone widths approaching 15 nm has contributed to the enormous improvement in spatial resolution during the previous years. Currently, Fresnel zone plates give the ability to reach spatial resolutions of 15 to 20 nm in the soft and of about 30 to 50 nm in the hard X-ray energy range. X-ray microscopes with rotating anode X-ray sources that can be installed in an analytical lab next to a semiconductor fab have been developed recently. These unique TXM/XCT systems provide an important new capability of nondestructive 3D imaging of internal circuit structures without destructive sample preparation such as cross sectioning. These lab systems can be used for failure localization in micro- and nanoelectronic structures and devices, e.g., to visualize voids and residuals in on-chip metal interconnects without physical modification of the chip. Synchrotron radiation experiments have been used to study new processes and materials that have to be introduced into the semiconductor industry. The potential of TXM using synchrotron radiation in the soft X-ray energy range is shown for the nondestructive in situ imaging of void evolution in embedded on-chip copper interconnect structures during electromigration and for the imaging of different types of insulating thin films between the on-chip interconnects (spectromicroscopy).

  1. Dental x-rays

    MedlinePlus

    X-ray - teeth; Radiograph - dental; Bitewings; Periapical film; Panoramic film ... dentist's office. There are many types of dental x-rays. Some are: Bitewing Periapical Palatal (also called occlusal) ...

  2. X-ray (image)

    MedlinePlus

    X-rays are a form of ionizing radiation that can penetrate the body to form an image on ... will be shades of gray depending on density. X-rays can provide information about obstructions, tumors, and other ...

  3. X Ray Topography

    ERIC Educational Resources Information Center

    Balchin, A. A.

    1974-01-01

    Discusses some aspects in X-ray topography, including formation of dislocations, characteristics of stacking faults, x-ray contrast in defect inspection, Berg-Barrett technique, and Lang traversing crystal and Borrmann's methods. (CC)

  4. Extremity x-ray

    MedlinePlus

    ... degenerative) Bone tumor Broken bone (fracture) Dislocated bone Osteomyelitis (infection) Other conditions for which the test may ... Bone tumor Bone x-ray Broken bone Clubfoot Osteomyelitis X-ray Update Date 10/22/2014 Updated ...

  5. X-Ray Imaging

    MedlinePlus

    ... Brain Surgery Imaging Clinical Trials Basics Patient Information X-Ray Imaging Print This Page X-ray imaging is perhaps the most familiar type of imaging. Images produced by X-rays are due to the different absorption rates of ...

  6. X-Rays

    MedlinePlus

    X-rays are a type of radiation called electromagnetic waves. X-ray imaging creates pictures of the inside of your ... different amounts of radiation. Calcium in bones absorbs x-rays the most, so bones look white. Fat and ...

  7. Hand x-ray

    MedlinePlus

    X-ray - hand ... A hand x-ray is taken in a hospital radiology department or your health care provider's office by an ... technician. You will be asked to place your hand on the x-ray table, and keep it ...

  8. Sinus x-ray

    MedlinePlus

    Paranasal sinus radiography; X-ray - sinuses ... sinus x-ray is taken in a hospital radiology department. Or the x-ray may be taken ... Brown J, Rout J. ENT, neck, and dental radiology. In: Adam A, Dixon AK, Gillard JH Schaefer- ...

  9. SU-E-J-37: Combining Proton Radiography and X-Ray CT Information to Better Estimate Relative Proton Stopping Power in a Clinical Environment

    SciTech Connect

    CollinsFekete, C; Dias, M; Doolan, P; Hansen, David C; Beaulieu, L; Seco, J

    2014-06-01

    Purpose: In standard proton therapy clinical practice, proton stopping power uncertainties are in the order of 3.5%, which affects the ability of placing the proton Bragg peak at the edge of the tumor. The innovating idea of this project is to approach the uncertainty problem in RSP by using combined information from X-ray CT and proton radiography along a few beam angles. In addition, this project aims to quantify the systematic error introduced by the theoretical models (Janni, ICRU49, Bischel) for proton stopping power in media. Methods: A 3D phantom of 36 cm3 composed of 9 materials randomly placed is created. Measured RSP values are obtained using a Gammex phantom with a proton beam. Theoretical RSP values are calculated with Beth-Block equation in combination with three databases (Janni, ICRU49 and Bischel). Clinical RSP errors are simulated by introducing a systematic (1.5%, 2.5%, 3.5%) and a random error (+/−0.5%) to the theoretical RSP. A ray-tracing algorithm uses each of these RSP tables to calculate energy loss for proton crossing the phantom through various directions. For each direction, gradient descent (GD) method is done on the clinical RSP table to minimize the residual energy difference between the simulation with clinical RSP and with theoretical RSP. The possibility of a systematic material dependent error is investigated by comparing measured RSP to theoretical RSP as calculated from the three models. Results: Using 10,000 iterations on GD algorithm, RSP differences between theoretical values and clinical RSP have converged (<1%) for each error introduced. Results produced with ICRU49 have the smallest average difference (0.021%) to the measured RSP. Janni (1.168%) and Bischel (−0.372%) database shows larger systematic errors. Conclusion: Based on these results, ray-tracing optimisation using information from proton radiography and X-ray CT demonstrates a potential to improve the proton range accuracy in a clinical environment.

  10. Repetitive flash x-ray generator operated at low-dose rates for a medical x-ray television system

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Isobe, Hiroshi; Takahashi, Kei; Tamakawa, Yoshiharu; Yanagisawa, Toru

    1991-04-01

    The fundamental studies for the repetitive flash x-ray generator operated at lowdose rates for a medical x-ray television system are described. This x-ray generator consisted of the following components: a high-voltage power supply, an energy storage condenser of lOOnF, a coaxial cable condenser with a capacity of l000pF, a repetitive impulse switching system, a turbo molecular pump, and an x-ray tube having a cold cathode. The condenser was charged from 40 to 70kV by a power supply, and the electric charges stored in the condenser were discharged repetitively by using a trigger electrode operated by an impulse switching system. The x-ray tube was of the triode-type which was connected to the turbo molecular pump and had a large discharge impedance in order to prevent the damped oscillations of the tube current and voltage. The maximum tube voltage was equivalent to the initial charged voltage, and the peak current was less than 70A. The durations were about 2ps, and the x-ray intensities were less than 1. OpC/kg at 0. 5m per pulse. The repetition frequency was less than 50Hz, and the effective focal spot size was equivalent to the anode diameter of 3. 0mm. For the x-ray television system used in conjunction with this repetitive pulsed x-ray generator, since the electromagnetic noise primarily caused by the high tube current was decreased, noise-free stroboscopic radiography performed by the television system could be realized.

  11. Confirmation of the E(sup src)(sub Peak)-E(sub iso) (Amati) relation from the x-ray flash XRF 050416A observed by the Swift burst alert telescope

    NASA Technical Reports Server (NTRS)

    Sakamoti, T.; Barbier, L.; Barthelmy, S. D.; Cummings, J. R.; Fenimore, E. E.; Gehrels, N.; Hullinger, D.; Krimm, H. A.; Markwardt, C. B.

    2006-01-01

    We report Swift Burst Alert Telescope (BAT) observations of the X-ray flash (XRF) XRF 050416A. The fluence ratio between the 15-25 and 25-50 keV energy bands of this event is 1.5, thus making it the softest gamma-ray burst (GRB) observed by BAT so far. The spectrum is well fitted by a Band function with E(sup obs)(sub peak) of 15.0(sup +2.3)(sub -2.7) keV. Assuming the redshift of the host galaxy (z = 0.6535), the isotropic equivalent radiated energy E(sub iso) and the peak energy at the GRB rest frame (E(sup src)(sub peak)) of XRF 050416A are not only consistent with the correlation found by Amati et al. and extended to XRFs by Sakamoto et al. but also fill in the gap of this relation around the 30-80 keV range of E(sup src)(sub peak). This result tightens the validity of the E(sup src)(sub Peak)-E(sup src)(sub peak) relation from XRFs to GRBs. We also find that the jet break time estimated using the empirical relation between E(sup src)(sub peak) and the collimation corrected energy E(sub gamma), is inconsistent with the afterglow observation by the Swift X-Ray Telescope. This could be due to the extra external shock emission overlaid around the jet break time or to the nonexistence of a jet break feature for XRFs, which might be a further challenge for GRB jet emission models and XRF/GRB unification scenarios.

  12. Imaging with x-ray lasers

    SciTech Connect

    Da Silva, L.B.; Cauble, B.; Frieders, G.; Koch, J.A.; MacGowan, B.J.; Matthews, D.L.; Mrowka, S.; Ress, D.; Trebes, J.E.; Weiland, T.L.

    1993-11-01

    Collisionally pumped soft x-ray lasers now operate over a wavelength range extending from 35--300 {Angstrom}. These sources have high peak brightness and are now being utilized for x-ray imaging and plasma interferometry. In this paper we will describe our efforts to probe long scalelength plasmas using Moire deflectrometry and soft x-ray imaging. The progress in the development of short pulse x-ray lasers using a double pulse irradiation technique which incorporates a travelling wave pump will also be presented.

  13. Aerobic power and peak power of elite America's Cup sailors.

    PubMed

    Neville, Vernon; Pain, Matthew T G; Folland, Jonathan P

    2009-05-01

    Big-boat yacht racing is one of the only able bodied sporting activities where standing arm-cranking ('grinding') is the primary physical activity. However, the physiological capabilities of elite sailors for standing arm-cranking have been largely unreported. The purpose of the study was to assess aerobic parameters, VO(2peak) and onset of blood lactate (OBLA), and anaerobic performance, torque-crank velocity and power-crank velocity relationships and therefore peak power (P (max)) and optimum crank-velocity (omega(opt)), of America's Cup sailors during standing arm-cranking. Thirty-three elite professional sailors performed a step test to exhaustion, and a subset of ten grinders performed maximal 7 s isokinetic sprints at different crank velocities, using a standing arm-crank ergometer. VO(2peak) was 4.7 +/- 0.5 L/min (range 3.6-5.5 L/min) at a power output of 332 +/- 44 W (range 235-425 W). OBLA occurred at a power output of 202 +/- 31 W (61% of W(max)) and VO(2) of 3.3 +/- 0.4 L/min (71% of VO(2peak)). The torque-crank velocity relationship was linear for all participants (r = 0.9 +/- 0.1). P (max) was 1,420 +/- 37 W (range 1,192-1,617 W), and omega(opt) was 125 +/- 6 rpm. These data are among the highest upper-body anaerobic and aerobic power values reported. The unique nature of these athletes, with their high fat-free mass and specific selection and training for standing arm cranking, likely accounts for the high values. The influence of crank velocity on peak power implies that power production during on-board 'grinding' may be optimised through the use of appropriate gear-ratios and the development of efficient gear change mechanisms. PMID:19234715

  14. X-ray Spectroscopy and Imaging of Combined X-pinches with Mo and W wires at Cornell and UNR 1MA Pulsed Power Devices

    SciTech Connect

    Safronova, Alla; Kantsyrev, Victor; Fedin, Dmitry; Yilmaz, Fatih; Hoppe, Travis; Nalajala, Vidya

    2006-01-05

    X-pinch experiments using combined Mo and W wires were implemented on the 1MA Cornell University (CU) COBRA and University of Nevada, Reno (UNR) ZEBRA facilities. Spatially-resolved and integrated x-ray spectral data and time integrated and time-gated pinhole x-ray images accumulated in these X-pinch experiments are analyzed. In particular, x-ray L-shell spectra of Mo ions and M-shell spectra of W ions have been studied. A non-LTE collisional-radiative (CR) atomic kinetic model of Mo, successfully applied before to interpret UNR and CU x-ray spectra from Mo X-pinches, was used here to provide plasma parameters from L-shell Mo radiation from the combined (W/Mo) X-pinches. The recently developed non-LTE CR model of W based on FAC atomic structure code data has been applied to identify and diagnose the spectral features of W ions and to provide parameters of the plasma from M-shell W radiation from W/Mo X-pinches. As a result, the radiative properties of W/Mo X-pinches produced on two 1 MA university-scale pulsed power facilities are analyzed and compared.

  15. High efficiency, multiterawatt x-ray free electron lasers

    NASA Astrophysics Data System (ADS)

    Emma, C.; Fang, K.; Wu, J.; Pellegrini, C.

    2016-02-01

    In this paper we present undulator magnet tapering methods for obtaining high efficiency and multiterawatt peak powers in x-ray free electron lasers (XFELs), a key requirement for enabling 3D atomic resolution single molecule imaging and nonlinear x-ray science. The peak power and efficiency of tapered XFELs is sensitive to time dependent effects, like synchrotron sideband growth. To analyze this dependence in detail we perform a comparative numerical optimization for the undulator magnetic field tapering profile including and intentionally disabling these effects. We show that the solution for the magnetic field taper profile obtained from time independent optimization does not yield the highest extraction efficiency when time dependent effects are included. Our comparative optimization is performed for a novel undulator designed specifically to obtain TW power x-ray pulses in the shortest distance: superconducting, helical, with short period and built-in strong focusing. This design reduces the length of the breaks between modules, decreasing diffraction effects, and allows using a stronger transverse electron focusing. Both effects reduce the gain length and the overall undulator length. We determine that after a fully time dependent optimization of a 100 m long Linac coherent light source-like XFEL we can obtain a maximum efficiency of 7%, corresponding to 3.7 TW peak radiation power. Possible methods to suppress the synchrotron sidebands, and further enhance the FEL peak power, up to about 6 TW by increasing the seed power and reducing the electron beam energy spread, are also discussed.

  16. Integration of the Two-Dimensional Power Spectral Density into Specifications for the X-ray Domain -- Problems and Opportunities

    SciTech Connect

    McKinney, Wayne R.; Howells, M. R.; Yashchuk, V. V.

    2008-09-30

    An implementation of the two-dimensional statistical scattering theory of Church and Takacs for the prediction of scattering from x-ray mirrors is presented with a graphical user interface. The process of this development has clarified several problems which are of significant interest to the synchrotron community. These problems have been addressed to some extent, for example, for large astronomical telescopes, and at the National Ignition Facility for normal incidence optics, but not in the synchrotron community for grazing incidence optics. Since it is based on the Power Spectral Density (PSD) to provide a description of the deviations from ideal shape of the surface, accurate prediction of the scattering requires an accurate estimation of the PSD. Specifically, the spatial frequency range of measurement must be the correct one for the geometry of use of the optic--including grazing incidence and coherence effects, and the modifications to the PSD of the Optical Transfer Functions (OTF) of the measuring instruments must be removed. A solution for removal of OTF effects has been presented previously, the Binary Pseudo-Random Grating. Typically, the frequency range of a single instrument does not cover the range of interest, requiring the stitching together of PSD estimations. This combination generates its own set of difficulties in two dimensions. Fitting smooth functions to two dimensional PSDs, particularly in the case of spatial non-isotropy of the surface, which is often the case for optics in synchrotron beam lines, can be difficult. The convenient, and physically accurate fractal for one dimension does not readily transfer to two dimensions. Finally, a completely statistical description of scattering must be integrated with a deterministic low spatial frequency component in order to completely model the intensity near the image. An outline for approaching these problems, and our proposed experimental program is given.

  17. Weakly ionized plasma flash x-ray generator and its distinctive characteristics

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Hayasi, Yasuomi; Germer, Rudolf; Murakami, Kazunori; Koorikawa, Yoshitake; Tanaka, Etsuro; Mori, Hidezo; Kawai, Toshiaki; Ichimaru, Toshio; Obata, Fumiko; Takahashi, Kiyomi; Sato, Sigehiro; Takayama, Kazuyoshi; Ido, Hideaki

    2004-01-01

    In the plasma flash x-ray generator, a high-voltage main condenser of approximately 200 nF is charged up to 50 kV by a power supply, and electric charges in the condenser are discharged to an x-ray tube after triggering the cathode electrode. The flash x-rays are then produced. The x-ray tube is a demountable triode that is connected to a turbo molecular pump with a pressure of approximately 1 mPa. As electron flows from the cathode electrode are roughly converged to a rod copper target of 3.0 mm in diameter by the electric field in the x-ray tube, weakly ionized linear plasma, which consists of copper ions and electrons, forms by target evaporation. At a charging voltage of 50 kV, the maximum tube voltage was almost equal to the charging voltage of the main condenser, and the peak current was about 15 kA. When the charging voltage was increased, the linear plasma formed, and the K-series characteristic x-ray intensities increased. The K-series lines were quite sharp and intense, and hardly any bremsstrahlung rays were detected. The x-ray pulse widths were approximately 700 ns, and the time-integrated x-ray intensity had a value of approximately 30 μC/kg at 1.0 m from the x-ray source with a charging voltage of 50 kV.

  18. On the role of secondary extinction in the measurement of the integrated intensity of X-ray diffraction peaks and in the determination of the thickness of damaged epitaxial layers

    NASA Astrophysics Data System (ADS)

    Kyutt, R. N.

    2016-06-01

    The integrated intensity of X-ray diffraction reflections has been measured for a series of epitaxial layers of AIII nitrides (GaN, AlN, AlGaN) grown on different substrates (sapphire, SiC) and characterized by different degrees of structural perfection. It has been shown that, despite a high density of dislocations and a significant broadening of the diffraction peaks, the obtained values are not described by the kinematic theory of X-ray diffraction and suggest the existence of extinction. The results have been analyzed on the basis of the Darwin and Zachariasen extinction models. The secondary extinction coefficients and the thicknesses of epitaxial layers have been determined using two orders of reflection both in the Bragg geometry (0002 and 0004) and in the Laue geometry (10bar 10) and 10bar 20). It has been demonstrated that the secondary extinction coefficient is the greater, the smaller is the broadening of the diffraction peaks and, consequently, the dislocation density. It has been found that, for epitaxial layers with a regular system of threading dislocations, the secondary extinction coefficient for the Laue reflections is substantially greater than that for the Bragg reflections.

  19. Panoramic Dental X-Ray

    MedlinePlus

    ... X-ray? What is Panoramic X-ray? Panoramic radiography , also called panoramic x-ray , is a two- ... Exams Dental Cone Beam CT X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety About this Site ...

  20. Ablation of NIF Targets and Diagnostic Components by High Power Lasers and X-Rays from High Temperature Plasmas

    SciTech Connect

    Eder, D.C; Anderson, A.T.; Braun, D.G; Tobin, M.T.

    2000-04-19

    The National Ignition Facility (NIF) will consist of 192 laser beams that have a total energy of up to 1.8 MJ in the 3rd harmonic ({lambda} = 0.35 {micro}m) with the amount of 2nd harmonic and fundamental light depending on the pulse shape. Material near best focus of the 3rd harmonic light will be vaporized/ablated very rapidly, with a significant fraction of the laser energy converted into plasma x rays. Additional plasma x rays can come from imploding/igniting capsule inside Inertial Confinement Fusion (ICF) hohlraums. Material from outer portions of the target, diagnostic components, first-wall material, and optical components, are ablated by the plasma x rays. Material out to a radius of order 3 cm from target center is also exposed to a significant flux of 2nd harmonic and fundamental laser light. Ablation can accelerate the remaining material to high velocities if it has been fragmented or melted. In addition, the high velocity debris wind of the initially vaporized material pushes on the fragments/droplets and increases their velocity. The high velocity shrapnel fragments/droplets can damage the fused silica shields protecting the final optics in NIF. We discuss modeling efforts to calculate vaporization/ablation, x-ray generation, shrapnel production, and ways to mitigate damage to the shields.

  1. X ray microcalorimeters: Principles and performance

    NASA Technical Reports Server (NTRS)

    Moseley, S. H.; Juda, M.; Kelley, R. L.; Mccammon, D.; Stahle, C. K.; Szymkowiak, A. E.; Zhang, J.

    1992-01-01

    Microcalorimeters operating at cryogenic temperatures can be excellent X-ray spectrometers. They simultaneously offer very high spectral resolving power and high efficiency. These attributes are important for X-ray astronomy where most sources have low fluxes and where high spectral resolution is essential for understanding the physics of the emitting regions. The principles of operation of these detectors, limits to their sensitivity, design considerations, techniques of fabrication, and their performance as X-ray spectrometers, are reviewed.

  2. Baseband Feedback Frequency-Division Multiplexing with Low-Power dc-SQUIDs and Digital Electronics for TES X-Ray Microcalorimeters

    NASA Astrophysics Data System (ADS)

    Sakai, K.; Takei, Y.; Yamamoto, R.; Yamasaki, N. Y.; Mitsuda, K.; Hidaka, M.; Nagasawa, S.; Kohjiro, S.; Miyazaki, T.

    2014-08-01

    We are developing frequency-division multiplexing (FDM) systems with baseband feedback for TES X-ray microcalorimeter arrays for use with the DIOS mission. To meet the requirement of limited cooling capacity at cryogenic temperatures, we developed low-power and FDM-optmized dc-SQUIDs. To make maximum use of the SQUIDs, we also developed digital electronics using FPGA evaluation boards and ADC/DAC FMC daughter cards, and evaluated signal-to-noise ratios and gain-bandwidth products.

  3. Simulations of the kinetics of the active medium of an X-ray laser heated by high-power picosecond pulses

    SciTech Connect

    Politov, V Yu; Lykov, V A; Shinkarev, M K

    2000-12-31

    The gain on the 3S - 3P transitions of Ne-like ions produced upon material heating by high-power picosecond laser pulses was numerically simulated. The dependence of the gain on the average value of the nuclear charge Z and the irradiation intensity was investigated. The shortest wavelength of X-rays that can be produced from the plasma of Ne-like ions was predicted. (active media)

  4. X-ray laser related experiments and theory at Princeton

    SciTech Connect

    Suckewer, S.

    1989-04-01

    This paper describes a new system for the development of an x-ray laser in the wavelength region from 5 nm to 1 nm utilizing a Powerful Sub-Picosecond Laser (PP-Laser) of expected peak power up to 0.5 TW in a 300 fs pulse. Soft x-ray spectra generated by the interaction of the PP-Laser beam with different targets are presented and compared to the spectra generated by a much less intense laser beam (20--30 GW). A theoretical model for the interaction of atoms with such a strong laser EM field is also briefly discussed. The development of additional amplifiers for the recombining soft x-ray laser and the design of a cavity are presented from the point of view of applications for x-ray microscopy and microlithography. This overview concludes with the presentation of recent results on the quenching of spontaneous emission radiation and its possible effect on the absolute intensity calibration of soft x-ray spectrometers. 26 refs., 18 figs.

  5. X-ray binaries

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Satellite X-ray experiments and ground-based programs aimed at observation of X-ray binaries are discussed. Experiments aboard OAO-3, OSO-8, Ariel 5, Uhuru, and Skylab are included along with rocket and ground-based observations. Major topics covered are: Her X-1, Cyg X-3, Cen X-3, Cyg X-1, the transient source A0620-00, other possible X-ray binaries, and plans and prospects for future observational programs.

  6. Magnetic Nature of the 500 meV peak in La2−xSrxCuO4 Observed with Resonant Inelastic X-ray Scattering at the Cu K-edge

    SciTech Connect

    Hill, J.P.; Ellis, D.S.; Kim, J.; Wakimoto, S.; Birgeneau, R.J.; Shvyd’ko, Y.; Casa, D.; Gog, T.; Ishii, K.; Ikeuchi, K.; Paramekanti, A.; Kim, Y.-J.

    2010-02-15

    We present a comprehensive study of the temperature and doping dependence of the 500 meV peak observed at q = ({pi},0) in resonant inelastic x-ray scattering (RIXS) experiments on La{sub 2}CuO{sub 4}. The intensity of this peak persists above the Neel temperature (T{sub N} = 320 K), but decreases gradually with increasing temperature, reaching zero at around T = 500 K. The peak energy decreases with temperature in close quantitative accord with the behavior of the two-magnon B{sub 1g} Raman peak in La{sub 2}CuO{sub 4} and, with suitable rescaling, agrees with the Raman peak shifts in EuBa{sub 2}Cu{sub 3}O{sub 6} and K{sub 2}NiF{sub 4}. The overall dispersion of this excitation in the Brillouin zone is found to be in agreement with theoretical calculations for a two-magnon excitation. Upon doping, the peak intensity decreases analogous to the Raman mode intensity and appears to track the doping dependence of the spin-correlation length. Taken together, these observations strongly suggest that the 500 meV mode is magnetic in character and is likely a two-magnon excitation.

  7. X-ray Echo Spectroscopy.

    PubMed

    Shvyd'ko, Yuri

    2016-02-26

    X-ray echo spectroscopy, a counterpart of neutron spin echo, is being introduced here to overcome limitations in spectral resolution and weak signals of the traditional inelastic x-ray scattering (IXS) probes. An image of a pointlike x-ray source is defocused by a dispersing system comprised of asymmetrically cut specially arranged Bragg diffracting crystals. The defocused image is refocused into a point (echo) in a time-reversal dispersing system. If the defocused beam is inelastically scattered from a sample, the echo signal acquires a spatial distribution, which is a map of the inelastic scattering spectrum. The spectral resolution of the echo spectroscopy does not rely on the monochromaticity of the x rays, ensuring strong signals along with a very high spectral resolution. Particular schemes of x-ray echo spectrometers for 0.1-0.02 meV ultrahigh-resolution IXS applications (resolving power >10^{8}) with broadband ≃5-13  meV dispersing systems are introduced featuring more than 10^{3} signal enhancement. The technique is general, applicable in different photon frequency domains. PMID:26967404

  8. X-ray Echo Spectroscopy

    NASA Astrophysics Data System (ADS)

    Shvyd'ko, Yuri

    2016-02-01

    X-ray echo spectroscopy, a counterpart of neutron spin echo, is being introduced here to overcome limitations in spectral resolution and weak signals of the traditional inelastic x-ray scattering (IXS) probes. An image of a pointlike x-ray source is defocused by a dispersing system comprised of asymmetrically cut specially arranged Bragg diffracting crystals. The defocused image is refocused into a point (echo) in a time-reversal dispersing system. If the defocused beam is inelastically scattered from a sample, the echo signal acquires a spatial distribution, which is a map of the inelastic scattering spectrum. The spectral resolution of the echo spectroscopy does not rely on the monochromaticity of the x rays, ensuring strong signals along with a very high spectral resolution. Particular schemes of x-ray echo spectrometers for 0.1-0.02 meV ultrahigh-resolution IXS applications (resolving power >108 ) with broadband ≃5 - 13 meV dispersing systems are introduced featuring more than 103 signal enhancement. The technique is general, applicable in different photon frequency domains.

  9. Portable X-Ray Device

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Portable x-ray instrument developed by NASA now being produced commercially as an industrial tool may soon find further utility as a medical system. The instrument is Lixiscope - Low Intensity X-Ray Imaging Scope -- a self-contained, battery-powered fluoroscope that produces an instant image through use of a small amount of radioactive isotope. Originally developed by Goddard Space Flight Center, Lixiscope is now being produced by Lixi, Inc. which has an exclusive NASA license for one version of the device.

  10. Compound refractive X-ray lens

    DOEpatents

    Nygren, David R.; Cahn, Robert; Cederstrom, Bjorn; Danielsson, Mats; Vestlund, Jonas

    2000-01-01

    An apparatus and method for focusing X-rays. In one embodiment, his invention is a commercial-grade compound refractive X-ray lens. The commercial-grade compound refractive X-ray lens includes a volume of low-Z material. The volume of low-Z material has a first surface which is adapted to receive X-rays of commercially-applicable power emitted from a commercial-grade X-ray source. The volume of low-Z material also has a second surface from which emerge the X-rays of commercially-applicable power which were received at the first surface. Additionally, the commercial-grade compound refractive X-ray lens includes a plurality of openings which are disposed between the first surface and the second surface. The plurality of openings are oriented such that the X-rays of commercially-applicable power which are received at the first surface, pass through the volume of low-Z material and through the plurality openings. In so doing, the X-rays which emerge from the second surface are refracted to a focal point.

  11. Comparison of x ray computed tomography number to proton relative linear stopping power conversion functions using a standard phantom

    SciTech Connect

    Moyers, M. F.

    2014-06-15

    Purpose: Adequate evaluation of the results from multi-institutional trials involving light ion beam treatments requires consideration of the planning margins applied to both targets and organs at risk. A major uncertainty that affects the size of these margins is the conversion of x ray computed tomography numbers (XCTNs) to relative linear stopping powers (RLSPs). Various facilities engaged in multi-institutional clinical trials involving proton beams have been applying significantly different margins in their patient planning. This study was performed to determine the variance in the conversion functions used at proton facilities in the U.S.A. wishing to participate in National Cancer Institute sponsored clinical trials. Methods: A simplified method of determining the conversion function was developed using a standard phantom containing only water and aluminum. The new method was based on the premise that all scanners have their XCTNs for air and water calibrated daily to constant values but that the XCTNs for high density/high atomic number materials are variable with different scanning conditions. The standard phantom was taken to 10 different proton facilities and scanned with the local protocols resulting in 14 derived conversion functions which were compared to the conversion functions used at the local facilities. Results: For tissues within ±300 XCTN of water, all facility functions produced converted RLSP values within ±6% of the values produced by the standard function and within 8% of the values from any other facility's function. For XCTNs corresponding to lung tissue, converted RLSP values differed by as great as ±8% from the standard and up to 16% from the values of other facilities. For XCTNs corresponding to low-density immobilization foam, the maximum to minimum values differed by as much as 40%. Conclusions: The new method greatly simplifies determination of the conversion function, reduces ambiguity, and in the future could promote

  12. Comparison of x ray computed tomography number to proton relative linear stopping power conversion functions using a standard phantom1

    PubMed Central

    Moyers, M. F.

    2014-01-01

    Purpose: Adequate evaluation of the results from multi-institutional trials involving light ion beam treatments requires consideration of the planning margins applied to both targets and organs at risk. A major uncertainty that affects the size of these margins is the conversion of x ray computed tomography numbers (XCTNs) to relative linear stopping powers (RLSPs). Various facilities engaged in multi-institutional clinical trials involving proton beams have been applying significantly different margins in their patient planning. This study was performed to determine the variance in the conversion functions used at proton facilities in the U.S.A. wishing to participate in National Cancer Institute sponsored clinical trials. Methods: A simplified method of determining the conversion function was developed using a standard phantom containing only water and aluminum. The new method was based on the premise that all scanners have their XCTNs for air and water calibrated daily to constant values but that the XCTNs for high density/high atomic number materials are variable with different scanning conditions. The standard phantom was taken to 10 different proton facilities and scanned with the local protocols resulting in 14 derived conversion functions which were compared to the conversion functions used at the local facilities. Results: For tissues within ±300 XCTN of water, all facility functions produced converted RLSP values within ±6% of the values produced by the standard function and within 8% of the values from any other facility's function. For XCTNs corresponding to lung tissue, converted RLSP values differed by as great as ±8% from the standard and up to 16% from the values of other facilities. For XCTNs corresponding to low-density immobilization foam, the maximum to minimum values differed by as much as 40%. Conclusions: The new method greatly simplifies determination of the conversion function, reduces ambiguity, and in the future could promote

  13. An Imaging X-Ray Polarimetry Mission

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.; Bellazini, Ronaldo; Costa, Enrico; Ramsey, Brian; O'Dell, Steve; Tennant, Allyn; Elsner, Ronald; Pavlov, George; Matt, Girogio; Kaspi, Vicky; Coppi, Paolo; Wu, Kinwah; Siegmund, Oswald

    2008-01-01

    Technical progress both in x-ray optics and in polarization-sensitive x-ray detectors, which our groups have pioneered, enables a scientifically powerful - yet inexpensive - dedicated mission for imaging x-ray polarimetry. Such a mission is sufficiently sensitive to measure x-ray (linear) polarization for a broad range of cosmic sources --- particularly those involving neutron stars, stellar black holes, and supermassive black holes (active galactic nuclei). We describe the technical elements, discuss a mission concept, and synopsiz:e the important physical and astrophysical questions such as mission would address.

  14. An Imaging X-Ray Polarimetry Mission

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.; Bellazini, Ronaldo; Costa, Enrico; Ramsey, Brian; O'Dell, Steve; Elsner, Ronald; Pavlov, George; Matt, Giorgio; Kaspi, Victoria; Tennant, Allyn; Coppi, Paolo; Wu, Kinwah; Siegmund, Oswald

    2008-01-01

    Technical progress both in x-ray optics and in polarization-sensitive x-ray detectors, which our groups have pioneered, enables a scientifically powerful---yet inexpensive---dedicated mission for imaging x-ray polarimetry. Such a mission is sufficiently sensitive to measure x-ray (linear) polarization for a broad range of cosmic sources --particularly those involving neutron stars, stellar black holes, and supermassive black holes (active galactic nuclei). We describe the technical elements, discuss a mission concept, and synopsize the important physical and astrophysical questions such a mission would address.

  15. High power coupled midinfrared free-electron-laser oscillator scheme as a driver for up-frequency conversion processes in the x-ray region

    NASA Astrophysics Data System (ADS)

    Tecimer, M.

    2012-02-01

    In this paper we present a high-gain free-electron-laser (FEL) oscillator scheme composed of two oscillators that are ideally coupled unidirectionally, with the coupled signal power flowing from the master to the amplifier oscillator. Electron bunches driving the oscillators are in perfect synchronization with the optical pulses building up within the respective cavities. The scheme is applied to a 100 MeV range superconducting energy recovery linac FEL. The computed mJ level, ultrashort pulse (<10cycles) output in the midinfrared region indicates the potential of the proposed FEL oscillator scheme in driving up-frequency conversion processes in the x-ray region, enabling tunable, high average brightness, attosecond scale coherent soft/hard x-ray sources.

  16. Characterization of the resolving power and contrast transfer function of a transmission X-ray microscope with partially coherent illumination.

    PubMed

    Rehbein, Stefan; Guttmann, Peter; Werner, Stephan; Schneider, Gerd

    2012-03-12

    The achievable spatial resolution and the contrast transfer function (CTF) are key parameters characterizing an X-ray microscope. We measured the spatial resolution and the contrast transfer function of the transmission X-ray microscope (TXM) at the electron storage ring BESSY II. The TXM uses the radiation of an undulator source and operates under partially coherent illumination conditions. For spatial resolutions down to 25 nm, our measurements of the CTF's are in good agreement with theoretical CTF data for partial coherence. With higher resolution zone plate objectives, we measured a spatial resolution (half-pitch) of 11 nm in 1st and 3rd order of diffraction. However, with these objectives the stray light level increases significantly. PMID:22418460

  17. Talbot-Lau X-ray Deflectometer electron density diagnostic for laser and pulsed power high energy density plasma experiments

    DOE PAGESBeta

    Valdivia, M. P.; Stutman, D.; Stoeckl, C.; Mileham, C.; Begishev, I.; Theobald, W.; Bromage, J.; Regan, S. P.; Klein, S. R.; Munoz-Cordoves, G.; et al

    2016-04-21

    Talbot-Lau X-ray Deflectometry has been developed as an electron density diagnostic for High Energy Density plasmas. The technique can deliver x-ray refraction, attenuation, elemental composition, and scatter information from a single Moiré image. An 8 keV Talbot-Lau interferometer was deployed using laser and x-pinch backlighters. Grating survival and electron density mapping was demonstrated for 25-29 J, 8-30 ps laser pulses using copper foil targets. Moire pattern formation and grating survival was also observed using a copper x-pinch driven at 400 kA, ~1 kA/ns. Lastly, these results demonstrate the potential of TXD as an electron density diagnostic for HED plasmas.

  18. Precision white-beam slit design for high power density x-ray undulator beamlines at the Advanced Photon Source

    SciTech Connect

    Shu, D.; Brite, C.; Nian, T.

    1994-12-01

    A set of precision horizontal and vertical white-beam slits has been designed for the Advanced Photon Source (APS) X-ray undulator beamlines at Argonne National Laboratory. There are several new design concepts applied in this slit set, including: grazing-incidence knife-edge configuration to minimize the scattering of X-rays downstream, enhanced heat transfer tubing to provide water cooling, and a second slit to eliminate the thermal distortion on the slit knife edge. The novel aspect of this design is the use of two L-shaped knife-edge assemblies, which are manipulated by two precision X-Z stepping linear actuators. The principal and structural details of the design for this slit set are presented in this paper.

  19. X-ray measurements at high-power lasers. Relative conversion efficiencies of short pulse laser light into K X-ray radiation in medium to high Z elements

    NASA Astrophysics Data System (ADS)

    Szabo, C. I.; Indelicato, P.; Gumberidze, A.; Holland, G. E.; Seely, J. F.; Hudson, L. T.; Henins, A.; Audebert, P.; Bastiani-Ceccotti, S.; Tabakhoff, E.; Brambrink, E.

    2009-03-01

    Conversion efficiencies of laser light into K x-ray radiation are used to characterize laser-solid interactions e.g. in measurements with back-lighter targets in Inertial Confinement Fusion research or in ultra short x-ray science where ultra short laser pulses are used to create x-rays for investigation of dynamic processes. In our measurements we observed high energy (few tens of keV) K x-ray radiation of element pairs created upon impact of a 1 ps, 100 J laser pulse on the target surface. The high-energy electrons created in this interaction ionise and excite the target material. We have used high purity alloy foils of Pd and Ag, as well as In and Sn and crystals of CsI and rare earth molybdates as target materials. Both constituents of these targets were simultaneously excited in one shot. The K x-ray radiation was dispersed and detected with the LCS (LULI Crystal Spectrometer), a Cauchois-type cylindrically bent transmission-crystal spectrometer. Measuring ratios in the x-ray spectra permits determination of relative conversion efficiencies for pairs of elements under identical laser-target interaction conditions.

  20. X-ray beamsplitter

    DOEpatents

    Ceglio, Natale M.; Stearns, Daniel S.; Hawryluk, Andrew M.; Barbee, Jr., Troy W.

    1989-01-01

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5-50 pairs of alternate Mo/Si layers with a period of 20-250 A. The support membrane is 10-200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window.

  1. X-ray beamsplitter

    DOEpatents

    Ceglio, N.M.; Stearns, D.G.; Hawryluk, A.M.; Barbee, T.W. Jr.

    1987-08-07

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5--50 pairs of alternate Mo/Si layers with a period of 20--250 A. The support membrane is 10--200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window. 6 figs.

  2. X-ray - skeleton

    MedlinePlus

    A skeletal x-ray is an imaging test used to look at the bones. It is used to detect fractures , tumors, or ... in the health care provider's office by an x-ray technologist. You will lie on a table or ...

  3. Extremity x-ray

    MedlinePlus

    An extremity x-ray is an image of the hands, wrist, feet, ankle, leg, thigh, forearm humerus or upper arm, hip, shoulder ... term "extremity" often refers to a human limb. X-rays are a form of radiation that passes through ...

  4. X-ray Spectrometry.

    ERIC Educational Resources Information Center

    Markowicz, Andrzej A.; Van Grieken, Rene E.

    1984-01-01

    Provided is a selective literature survey of X-ray spectrometry from late 1981 to late 1983. Literature examined focuses on: excitation (photon and electron excitation and particle-induced X-ray emission; detection (wavelength-dispersive and energy-dispersive spectrometry); instrumentation and techniques; and on such quantitative analytical…

  5. Soft x-ray microscopy - a powerful analytical tool to image magnetism down to fundamental length and times scales

    SciTech Connect

    Fischer, Peter

    2008-08-01

    The magnetic properties of low dimensional solid state matter is of the utmost interest both scientifically as well as technologically. In addition to the charge of the electron which is the base for current electronics, by taking into account the spin degree of freedom in future spintronics applications open a new avenue. Progress towards a better physical understanding of the mechanism and principles involved as well as potential applications of nanomagnetic devices can only be achieved with advanced analytical tools. Soft X-ray microscopy providing a spatial resolution towards 10nm, a time resolution currently in the sub-ns regime and inherent elemental sensitivity is a very promising technique for that. This article reviews the recent achievements of magnetic soft X-ray microscopy by selected examples of spin torque phenomena, stochastical behavior on the nanoscale and spin dynamics in magnetic nanopatterns. The future potential with regard to addressing fundamental magnetic length and time scales, e.g. imaging fsec spin dynamics at upcoming X-ray sources is pointed out.

  6. Tokamak physics studies using x-ray diagnostic methods

    SciTech Connect

    Hill, K.W.; Bitter, M.; von Goeler, S.; Beiersdorfer, P.; Fredrickson, E.; Hsuan, H.; McGuire, K.; Sauthoff, N.R.; Sesnic, S.; Stevens, J.E.

    1987-03-01

    X-ray diagnostic measurements have been used in a number of experiments to improve our understanding of important tokamak physics issues. The impurity content in TFTR plasmas, its sources and control have been clarified through soft x-ray pulse-height analysis (PHA) measurements. The dependence of intrinsic impurity concentrations and Z/sub eff/ on electron density, plasma current, limiter material and conditioning, and neutral-beam power have shown that the limiter is an important source of metal impurities. Neoclassical-like impurity peaking following hydrogen pellet injection into Alcator C and a strong effect of impurities on sawtooth behavior were demonstrated by x-ray imaging (XIS) measurements. Rapid inward motion of impurities and continuation of m = 1 activity following an internal disruption were demonstrated with XIS measurements on PLT using injected aluminum to enhance the signals. Ion temperatures up to 12 keV and a toroidal plasma rotation velocity up to 6 x 10/sup 5/ m/s have been measured by an x-ray crystal spectrometer (XCS) with up to 13 MW of 85-keV neutral-beam injection in TFTR. Precise wavelengths and relative intensities of x-ray lines in several helium-like ions and neon-like ions of silver have been measured in TFTR and PLT by the XCS. The data help to identify the important excitation processes predicted in atomic physics. Wavelengths of n = 3 to 2 silver lines of interest for x-ray lasers were measured, and precise instrument calibration techniques were developed. Electron thermal conductivity and sawtooth dynamics have been studied through XIS measurements on TFTR of heat-pulse propagation and compound sawteeth. A non-Maxwellian electron distribution function has been measured, and evidence of the Parail-Pogutse instability identified by hard x-ray PHA measurements on PLT during lower-hybrid current-drive experiments.

  7. X-ray photoelectron spectroscopy of negative electrodes from high-power lithium-ion cells showing various levels of power fade

    SciTech Connect

    Herstedt, Marie; Abraham, Daniel P.; Kerr, John B.

    2004-02-28

    High-power lithium-ion cells for transportation applications are being developed and studied at Argonne National Laboratory. The current generation of cells containing LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2}-based cathodes, graphite-based anodes, and LiPF6-based electrolytes show loss of capacity and power during accelerated testing at elevated temperatures. Negative electrode samples harvested from some cells that showed varying degrees of power and capacity fade were examined by X-ray photoelectron spectroscopy (XPS). The samples exhibited a surface film on the graphite, which was thicker on samples from cells that showed higher fade. Furthermore, solvent-based compounds were dominant on samples from low power fade cells, whereas LiPF{sub 6}-based products were dominant on samples from high power fade cells. The effect of sample rinsing and air exposure is discussed. Mechanisms are proposed to explain the formation of compounds suggested by the XPS data.

  8. X-ray generator

    DOEpatents

    Dawson, John M.

    1976-01-01

    Apparatus and method for producing coherent secondary x-rays that are controlled as to direction by illuminating a mixture of high z and low z gases with an intense burst of primary x-rays. The primary x-rays are produced with a laser activated plasma, and these x-rays strip off the electrons of the high z atoms in the lasing medium, while the low z atoms retain their electrons. The neutral atoms transfer electrons to highly excited states of the highly striped high z ions giving an inverted population which produces the desired coherent x-rays. In one embodiment, a laser, light beam provides a laser spark that produces the intense burst of coherent x-rays that illuminates the mixture of high z and low z gases, whereby the high z atoms are stripped while the low z ones are not, giving the desired mixture of highly ionized and neutral atoms. To this end, the laser spark is produced by injecting a laser light beam, or a plurality of beams, into a first gas in a cylindrical container having an adjacent second gas layer co-axial therewith, the laser producing a plasma and the intense primary x-rays in the first gas, and the second gas containing the high and low atomic number elements for receiving the primary x-rays, whereupon the secondary x-rays are produced therein by stripping desired ions in a neutral gas and transfer of electrons to highly excited states of the stripped ions from the unionized atoms. Means for magnetically confining and stabilizing the plasma are disclosed for controlling the direction of the x-rays.

  9. The physics of x-ray free-electron lasers

    NASA Astrophysics Data System (ADS)

    Pellegrini, C.; Marinelli, A.; Reiche, S.

    2016-01-01

    X-ray free-electron lasers (x-ray FELs) give us for the first time the possibility to explore structures and dynamical processes of atomic and molecular systems at the angstrom-femtosecond space and time scales. They generate coherent photon pulses with time duration of a few to 100 fs, peak power of 10 to 100 GW, over a wavelength range extending from about 100 nm to less than 1 Å. Using these novel and unique capabilities new scientific results are being obtained in atomic and molecular sciences, in areas of physics, chemistry, and biology. This paper reviews the physical principles, the theoretical models, and the numerical codes on which x-ray FELs are based, starting from a single electron spontaneous undulator radiation to the FEL collective instability of a high density electron beam, strongly enhancing the electromagnetic radiation field intensity and its coherence properties. A short review is presented of the main experimental properties of x-ray FELs, and the results are discussed of the most recent research to improve their longitudinal coherence properties, increase the peak power, and generate multicolor spectra.

  10. On the Nature of the Variability Power Decay towards Soft Spectral States in X-Ray Binaries. Case Study in Cyg X-1

    NASA Technical Reports Server (NTRS)

    Titarchuk, Lev; Shaposhinikov, Nikolai

    2007-01-01

    A characteristic feature of the Fourier Power Density Spectrum (PDS) observed from black hole X-ray binaries in low/hard and intermediate spectral states is a broad band-limited noise, characterized by a constant below some frequency (a "break" frequency) and a power law above this frequency. It has been shown that the variability of this type can be produced by the inward diffusion of the local driving perturbations in a bounded configuration (accretion disk or corona). In the framework of this model, the perturbation diffusion time to is related to the phenomenological break frequency, while the PDS power-law slope above the "break" is determined by the viscosity distribution over the configuration. The perturbation diffusion scenario explains the decay of the power of X-ray variability observed in a number of compact sources (containing black hole and neutron star) during an evolution of theses sources from low/hard to high/soft states. We compare the model predictions with the subset of data from Cyg X-1 collected by the Rossi X-ray Time Explorer (RXTE). Our extensive analysis of the Cyg X-1 PDSs demonstrates that the observed integrated power P(sub x), decreases approximately as a square root of the characteristic frequency of the driving oscillations v(sub dr). The RXTE observations of Cyg X-1 allow us to infer P(sub dr), and t(sub o) as a function of v(sub dr). We also apply the basic parameters of observed PDSs, power-law index and low frequency quasiperiodic oscillations. to infer Reynolds (Re) number from the observations using the method developed in our previous paper. Our analysis shows that Re-number increases from values about 10 in low/hard state to that about 70 during the high/soft state. Subject headings: accretion, accretion disks-black hole physics-stars:individual (Cyg X-1) :radiation mechanisms: nonthermal-physical data and processes

  11. Optical generation of single-cycle 10 MW peak power 100 GHz waves.

    PubMed

    Wu, Xiaojun; Calendron, Anne-Laure; Ravi, Koustuban; Zhou, Chun; Hemmer, Michael; Reichert, Fabian; Zhang, Dongfang; Cankaya, Huseyin; Zapata, Luis E; Matlis, Nicholas H; Kärtner, Franz X

    2016-09-01

    We demonstrate the generation of 100 GHz single-cycle pulses with up to 10 MW of peak power using optical rectification and broadband phase matching via the tilted pulse front (TPF) technique in lithium niobate. The optical driver is a cryogenically cooled Yb:YAG amplifier providing tens of mJ energy, ~5 ps long laser pulses. We obtain a high THz pulse energy up to 65 µJ with 31.6 MV/m peak electric field when focused close to its diffraction limit of 2.5 mm diameter. A high optical-to-THz energy conversion efficiency of 0.3% at 85 K is measured in agreement with numerical simulations. This source is of great interest for a broad range of applications, such as nonlinear THz field-matter interaction and charged particle acceleration for ultrafast electron diffraction and table-top X-ray sources. PMID:27607709

  12. Optimization of X-ray sources from a high-average-power ND:Glass laser-produced plasma for proximity lithography

    SciTech Connect

    Celliers, P.; Da Silva, L.B.; Dane, C.B.

    1996-06-01

    The concept of a laser-based proximity lithography system for electronic microcircuit production has advanced to the point where a detailed design of a prototype system capable of exposing wafers at 40 wafer levels per hr is technically feasible with high-average-power laser technology. In proximity x-ray lithography, a photoresist composed of polymethyl- methacrylate (PMMA) or similar material is exposed to x rays transmitted through a mask placed near the photoresist, a procedure which is similar to making a photographic contact print. The mask contains a pattern of opaque metal features, with line widths as small as 0.12 {mu}m, placed on a thin (1-{mu}m thick) Si membrane. During the exposure, the shadow of the mask projected onto the resist produces in the physical and chemical properties of the resist a pattern of variation with the same size and shape as the features contained in the metal mask. This pattern can be further processed to produce microscopic structures in the Si substrate. The main application envisioned for this technology is the production of electronic microcircuits with spatial features significantly smaller than currently achievable with conventional optical lithographic techniques (0.12 {micro}m vs 0.25 {micro}m). This article describes work on optimizing a laser-produced plasma x-ray source intended for microcircuit production by proximity lithography.

  13. Microscopic x-ray luminescence computed tomography

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Zhu, Dianwen; Zhang, Kun; Li, Changqing

    2015-03-01

    X-ray luminescence computed tomography (XLCT) was emerged as a new hybrid imaging modality, in which the x-rays are used to excite phosphors emitting optical photons to be measured for imaging. In this paper, we reported a microscopic x-ray luminescence computed tomography (microXLCT) with a spatial resolution up to hundreds of micrometers for deep targets. We use a superfine x-ray pencil beam to scan the phosphor targets. The superfine x-ray pencil beam is generated by a small collimator mounted in front of a powerful x-ray tube (93212, Oxford Instrument). A CT detector is used to image the x-ray beam. We have generated an x-ray beam with a diameter of 192 micrometers with a collimator of 100 micrometers in diameter. The emitted optical photons on the top surface of phantom are reflected by a mirror and acquired by an electron multiplier charge-coupled device (EMCCD) camera (C9100-13, Hamamatsu Photonics). The microXLCT imaging system is built inside an x-ray shielding and light tight cabinet. The EMCCD camera is placed in a lead box. All the imaging components are controlled by a VC++ program. The optical photon propagation is modeled with the diffusion equation solved by the finite element method. We have applied different regularization methods including L2 and L1 in the microXLCT reconstruction algorithms. Numerical simulations and phantom experiments are used to validate the microXLCT imaging system.

  14. ANALYSIS AND MITIGATION OF X-RAY HAZARD GENERATED FROM HIGH INTENSITY LASER-TARGET INTERACTIONS

    SciTech Connect

    Qiu, R.; Liu, J.C.; Prinz, A.A.; Rokni, S.H.; Woods, M.; Xia, Z.; /SLAC

    2011-03-21

    Interaction of a high intensity laser with matter may generate an ionizing radiation hazard. Very limited studies have been made, however, on the laser-induced radiation protection issue. This work reviews available literature on the physics and characteristics of laser-induced X-ray hazards. Important aspects include the laser-to-electron energy conversion efficiency, electron angular distribution, electron energy spectrum and effective temperature, and bremsstrahlung production of X-rays in the target. The possible X-ray dose rates for several femtosecond Ti:sapphire laser systems used at SLAC, including the short pulse laser system for the Matter in Extreme Conditions Instrument (peak power 4 TW and peak intensity 2.4 x 10{sup 18} W/cm{sup 2}) were analysed. A graded approach to mitigate the laser-induced X-ray hazard with a combination of engineered and administrative controls is also proposed.

  15. BLACK HOLE POWERED NEBULAE AND A CASE STUDY OF THE ULTRALUMINOUS X-RAY SOURCE IC 342 X-1

    SciTech Connect

    Cseh, David; Corbel, Stephane; Paragi, Zsolt; Tzioumis, Anastasios; Tudose, Valeriu; Feng Hua

    2012-04-10

    We present new radio, optical, and X-ray observations of three ultraluminous X-ray sources (ULXs) that are associated with large-scale nebulae. We report the discovery of a radio nebula associated with the ULX IC 342 X-1 using the Very Large Array (VLA). Complementary VLA observations of the nebula around Holmberg II X-1, and high-frequency Australia Telescope Compact Array and Very Large Telescope spectroscopic observations of NGC 5408 X-1 are also presented. We study the morphology, ionization processes, and the energetics of the optical/radio nebulae of IC 342 X-1, Holmberg II X-1, and NGC 5408 X-1. The energetics of the optical nebula of IC 342 X-1 is discussed in the framework of standard bubble theory. The total energy content of the optical nebula is 6 Multiplication-Sign 10{sup 52} erg. The minimum energy needed to supply the associated radio nebula is 9.2 Multiplication-Sign 10{sup 50} erg. In addition, we detected an unresolved radio source at the location of IC 342 X-1 at the VLA scales. However, our Very Long Baseline Interferometry (VLBI) observations using the European VLBI Network likely rule out the presence of any compact radio source at milliarcsecond (mas) scales. Using a simultaneous Swift X-ray Telescope measurement, we estimate an upper limit on the mass of the black hole in IC 342 X-1 using the 'fundamental plane' of accreting black holes and obtain M{sub BH} {<=} (1.0 {+-} 0.3) Multiplication-Sign 10{sup 3} M{sub Sun }. Arguing that the nebula of IC 342 X-1 is possibly inflated by a jet, we estimate accretion rates and efficiencies for the jet of IC 342 X-1 and compare with sources like S26, SS433, and IC 10 X-1.

  16. Lumbosacral spine x-ray

    MedlinePlus

    X-ray - lumbosacral spine; X-ray - lower spine ... The test is done in a hospital x-ray department or your health care provider's office by an x-ray technician. You will be asked to lie on the x-ray table ...

  17. Thoracic spine x-ray

    MedlinePlus

    Vertebral radiography; X-ray - spine; Thoracic x-ray; Spine x-ray; Thoracic spine films; Back films ... The test is done in a hospital radiology department or in the health care provider's office. You will lie on the x-ray table in different positions. If the x-ray ...

  18. Pressure Dependence of X-Ray Yield on Cooling for Crystal X-Ray Generator

    NASA Astrophysics Data System (ADS)

    Trott, D. W.; Shafroth, S. M.

    1999-11-01

    The UNC crystal x-ray generator consists of a 6.5 x 3.1 x 2 mm LiTaO3 pyroelectric crystal, whose temperature can range from 22 to 120 degrees Celsius. A SiLi detector, placed approximately 1 cm away from a target, is used to detect x-rays from both the pyroelectric crystal and a thin target of Fe evaporated on to a Cu foil. When one surface of the crystal is heated a strong electric field is produced on the other side which accelerates electrons toward the crystal producing Ta L and M x-rays. During cooling, the electric field reverses and a target x-ray spectrum is obtained. The chamber can be pumped on so that effects of gas pressure can be studied. The x-ray intensity changes with varying pressure. Repeatable measurements have been done using the x-ray generator at various low pressures ranging from 5 to 30 mTorr. At low pressures, the x-ray yield is relatively constant with time. As the pressure increases an initial high x-ray peak is produced which decreases rapidly with time. The most dramatic increase seen in x-ray yield peak occurs between 20 and 30 mTorr differing by 64 counts/sec and 224 counts/sec, respectively.

  19. X-ray laser

    DOEpatents

    Nilsen, Joseph

    1991-01-01

    An X-ray laser (10) that lases between the K edges of carbon and oxygen, i.e. between 44 and 23 Angstroms, is provided. The laser comprises a silicon (12) and dysprosium (14) foil combination (16) that is driven by two beams (18, 20) of intense line focused (22, 24) optical laser radiation. Ground state nickel-like dysprosium ions (34) are resonantly photo-pumped to their upper X-ray laser state by line emission from hydrogen-like silicon ions (32). The novel X-ray laser should prove especially useful for the microscopy of biological specimens.

  20. Chandra X-Ray Observatory Concept

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This is an artist's concept of the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), fully developed in orbit in a star field with Earth. In 1999, the AXAF was renamed the CXO in honor of the late Indian-American Novel Laureate Subrahmanyan Chandrasekhar. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It is designed to observe x-rays from high energy regions of the Universe, such as hot gas in the renmants of exploded stars. It produces picture-like images of x-ray emissions analogous to those made in visible light, as well as gathers data on the chemical composition of x-ray radiating objects. The CXO helps astronomers world-wide better understand the structure and evolution of the universe by studying powerful sources of x-ray such as exploding stars, matter falling into black holes, and other exotic celestial objects. The Observatory has three major parts: (1) the x-ray telescope, whose mirrors will focus x-rays from celestial objects; (2) the science instruments that record the x-rays so that x-ray images can be produced and analyzed; and (3) the spacecraft, which provides the environment necessary for the telescope and the instruments to work. TRW, Inc. was the prime contractor for the development the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. (Image courtesy of TRW).

  1. Chandra X-Ray Observatory Concept

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is a computer rendering of the fully developed Chandra X-ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), in orbit in a star field. In 1999, the AXAF was renamed the CXO in honor of the late Indian-American Novel Laureate Subrahmanyan Chandrasekhar. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It is designed to observe x-rays from high energy regions of the Universe, such as hot gas in the renmants of exploded stars. It produces picture-like images of x-ray emissions analogous to those made in visible light, as well as gathers data on the chemical composition of x-ray radiating objects. The CXO helps astronomers world-wide better understand the structure and evolution of the universe by studying powerful sources of x-rays such as exploding stars, matter falling into black holes, and other exotic celestial objects. The Observatory has three major parts: (1) the x-ray telescope, whose mirrors will focus x-rays from celestial objects; (2) the science instruments that record the x-rays so that x-ray images can be produced and analyzed; and (3) the spacecraft, which provides the environment necessary for the telescope and the instruments to work. TRW, Inc. was the prime contractor for the development of the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. (Image courtesy of TRW).

  2. Chandra X-Ray Observatory Computer Rendering

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This is a computer rendering of the fully developed Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF). In 1999, the AXAF was renamed the CXO in honor of the late Indian-American Novel Laureate Subrahmanyan Chandrasekhar. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It is designed to observe x-rays from high energy regions of the Universe, such as hot gas in the renmants of exploded stars. It produces picture-like images of x-ray emissions analogous to those made in visible light, as well as gathers data on the chemical composition of x-ray radiating objects. The CXO helps astronomers world-wide better understand the structure and evolution of the universe by studying powerful sources of x-ray such as exploding stars, matter falling into black holes, and other exotic celestial objects. The Observatory has three major parts: (1) the x-ray telescope, whose mirrors will focus x-rays from celestial objects; (2) the science instruments that record the x-rays so that x-ray images can be produced and analyzed; and (3) the spacecraft, which provides the environment necessary for the telescope and the instruments to work. TRW, Inc. was the prime contractor for the development of the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. (Image courtesy of TRW).

  3. Improved intensifying screen reduces X-ray exposure

    NASA Technical Reports Server (NTRS)

    Buchanan, R. A.

    1972-01-01

    X-ray intensifying screen may make possible radiographic procedures where detection speed and X-ray tube power have been the limiting factors. Device will reduce total population exposure to harmful radiation in the United States.

  4. The Quiescent X-Ray Emission of Axps and Sgrs -- Powered by Accretion from a Fallback Disk

    NASA Astrophysics Data System (ADS)

    Truemper, Joachim; Dennerl, Konrad; Kylafis, Nikos; Zezas, Andreas; Ertan, Ünal

    2015-01-01

    Disk accretion as a means to explain the persistent and transient X-ray emission of anomalous X-ray pulsars (AXPs) has been first proposed by van Paradijs et al. 1995, by Chatterjee et al. 2000 and by Alpar 2001. This class of models was developed further in a series of papers of the Istanbul group (for a recent summary see Ertan et al. 2009), and can be applied to soft gamma ray repeaters (SGRs) as well, which have similar timing and spectral properties as AXPs. The required magnetic dipole fields to explain the temporal evolution of the neutron stars are in the range of 1012-1013 G. Highly super-Eddington bursts observed in SGRs, could be produced by the decay of super-strong magnetic fields (1014-1015 G) residing in localized multi-pole fields. The presence of magnetar multipole fields close to the surface of the star is compatible with the fallback disk model since the disk matter interacts with the magnetic dipole field.

  5. Medical X-Rays

    MedlinePlus

    ... Diagnostic X-Ray Equipment Compliance Program Guidance Manual CP 7386.003 Field Compliance Testing of Diagnostic (Medical) ... and Exporting Electronic Products Compliance Program Guidance Manual CP 7386.003 Field Compliance Testing of Diagnostic (Medical) ...

  6. Dental x-rays

    MedlinePlus

    ... or impacted teeth The presence and extent of dental caries (cavities) Bone damage (such as from periodontitis ) Abscessed ... Dental x-rays can reveal dental cavities (tooth decay) before they ... take yearly bitewings for the early development of cavities.

  7. X-ray - skeleton

    MedlinePlus

    ... is used to look for: Fractures or broken bone Cancer that has spread to other areas of the ... 2014:chap 8. Read More Bone tumor Broken bone Cancer Metastasis Osteomyelitis X-ray Update Date 5/9/ ...

  8. X-Ray Diffraction.

    ERIC Educational Resources Information Center

    Smith, D. K.; Smith, K. L.

    1980-01-01

    Reviews applications in research and analytical characterization of compounds and materials in the field of X-ray diffraction, emphasizing new developments in applications and instrumentation in both single crystal and powder diffraction. Cites 414 references. (CS)

  9. Abdominal x-ray

    MedlinePlus

    An abdominal x-ray is an imaging test to look at organs and structures in the abdomen. Organs include the spleen, stomach, and intestines. When the test is done to look at the bladder and kidney structures, ...

  10. X-Ray Spectrometry.

    ERIC Educational Resources Information Center

    Macdonald, G. L.

    1980-01-01

    Reviews instrumental developments and technique improvements in X-ray spectrometry, grouped into major topic areas of excitation, dispersion and detection, instrumentation and techniques, and quantitative analyses. Cites 162 references. (CS)

  11. Bone x-ray

    MedlinePlus

    ... or broken bone Bone tumors Degenerative bone conditions Osteomyelitis (inflammation of the bone caused by an infection) ... Multiple myeloma Osgood-Schlatter disease Osteogenesis imperfecta Osteomalacia Osteomyelitis Paget disease of the bone Rickets X-ray ...

  12. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1992-01-01

    This final report covers the period 1 January 1985 - 31 March 1992. It is divided into the following sections: the soft x-ray background; proportional counter and filter calibrations; sounding rocket flight preparations; new sounding rocket payload: x-ray calorimeter; and theoretical studies. Staff, publications, conference proceedings, invited talks, contributed talks, colloquia and seminars, public service lectures, and Ph. D. theses are listed.

  13. Thoracic spine x-ray

    MedlinePlus

    Vertebral radiography; X-ray - spine; Thoracic x-ray; Spine x-ray; Thoracic spine films; Back films ... Gillard JH, Schaefer-Prokop CM, eds. Grainger & Allison's Diagnostic Radiology: A Textbook of Medical Imaging . 6th ed. New ...

  14. The Integrated X-Ray Spectrum of Galactic Populations of Luminous Supersoft X-Ray Sources

    NASA Technical Reports Server (NTRS)

    DiStefano, R.; Becker, C. M.; Fabbiano, G.

    1996-01-01

    We compute the composite X-ray spectrum of a population of unresolved SSS's in a spiral galaxy such as our own or M31. The sources are meant to represent the total underlying population corresponding to all sources which have bolometric luminosities in the range of 10(exp 37) - 10(exp 38) ergs/s and kT on the order of tens of eV. These include close-binary supersoft sources, symbiotic novae, and planetary nebulae, for example. In order to determine whether the associated X-ray signal would be detectable, we also 'seed' the galaxy with other types of X-ray sources, specifically low-mass X-ray binaries (LMXB's) and high-mass X-ray binaries (HMXB's). We find that the total spectrum due to SSS's, LMXB's, and HMXB's exhibits a soft peak which owes its presence to the SSS population. Preliminary indications are that this soft peak may be observable.

  15. Perspectives of medical X-ray imaging

    NASA Astrophysics Data System (ADS)

    Freudenberger, J.; Hell, E.; Knüpfer, W.

    2001-06-01

    While X-ray image intensifiers (XII), storage phosphor screens and film-screen systems are still the work horses of medical imaging, large flat panel solid state detectors using either scintillators and amorphous silicon photo diode arrays (FD-Si), or direct X-ray conversion in amorphous selenium are reaching maturity. The main advantage with respect to image quality and low patient dose of the XII and FD-Si systems is caused by the rise of the Detector Quantum Efficiency originating from the application of thick needle-structured phosphor X-ray absorbers. With the detectors getting closer to an optimal state, further progress in medical X-ray imaging requires an improvement of the usable source characteristics. The development of clinical monochromatic X-ray sources of high power would not only allow an improved contrast-to-dose ratio by allowing smaller average photon energies in applications but would also lead to new imaging techniques.

  16. Tunable Soft X-Ray Oscillators

    SciTech Connect

    Wurtele, Jonathan; Gandhi, Punut; Gu, X-W; Fawley, William M; Reinsch, Matthia; Penn, Gregory; Kim, K-J; Lindberg, Ryan; Zholents, Alexander

    2010-09-17

    A concept for a tunable soft x-ray free electron laser (FEL) photon source is presented and studied numerically. The concept is based on echo-enabled harmonic generation (EEHG), wherein two modulator-chicane sections impose high harmonic structure with much greater efficacy as compared to conventional high harmonic FELs that use only one modulator-chicane section. The idea proposed here is to replace the external laser power sources in the EEHG modulators with FEL oscillators, and to combine the bunching of the beam with the production of radiation. Tunability is accomplished by adjusting the magnetic chicanes while the two oscillators remain at a fixed frequency. This scheme eliminates the need to develop coherent sources with the requisite power, pulse length, and stability requirements by exploiting the MHz bunch repetition rates of FEL continuous wave (CW) sources driven by superconducting (SC) linacs. We present time-dependent GINGER simulation results for an EEHG scheme with an oscillator modulator at 43 nm employing 50percent reflective dielectric mirrors and a second modulator employing an external, 215-nm drive laser. Peak output of order 300 MW is obtained at 2.7 nm, corresponding to the 80th harmonic of 215 nm. An alternative single-cavity echo-oscillator scheme based on a 13.4 nm oscillator is investigated with time-independent simulations that a 180-MW peak power at final wavelength of 1.12 nm. Three alternate configurations that use separate bunches to produce the radiation for EEHG microbunching are also presented. Our results show that oscillator-based soft x-ray FELs driven by CWSC linacs are extremely attractive because of their potential to produce tunable radiation at high average power together with excellent longitudinal coherence and narrow spectral bandwidth.

  17. Storage peak gas-turbine power unit

    NASA Technical Reports Server (NTRS)

    Tsinkotski, B.

    1980-01-01

    A storage gas-turbine power plant using a two-cylinder compressor with intermediate cooling is studied. On the basis of measured characteristics of a .25 Mw compressor computer calculations of the parameters of the loading process of a constant capacity storage unit (05.3 million cu m) were carried out. The required compressor power as a function of time with and without final cooling was computed. Parameters of maximum loading and discharging of the storage unit were calculated, and it was found that for the complete loading of a fully unloaded storage unit, a capacity of 1 to 1.5 million cubic meters is required, depending on the final cooling.

  18. SU-E-J-83: Ion Imaging to Better Estimate In-Vivo Relative Stopping Powers Using X-Ray CT Prior-Knowledge Information

    SciTech Connect

    Dias, M; Collins-Fekete, C; Riboldi, M; Baroni, G; Doolan, P; Hansen, D; Seco, J

    2014-06-01

    Purpose: To reduce uncertainties in relative stopping power (RSP) estimates for ions (alpha and carbon) by using Ion radiographic-imaging and X-ray CT prior-knowledge. Methods: A 36×36 phantom matrix composed of 9 materials with different thicknesses and randomly placed is generated. Theoretical RSPs are calculated using stopping power (SP) data from three references (Janni, ICRU49 and Bischel). We introduced an artificial systematic error (1.5%, 2.5% or 3.5%) and a random error (<0.5%) to the SP to simulated patient ion-range errors present in clinic environment. Carbon/alpha final energy for each RSPs set (theoretical and from CT images) is obtained with a ray-tracing algorithm. A gradient descent (GD) method is used to minimize the difference in exit particle energy, between theory and X-ray CT RSP maps, by iteratively correcting the RSP map from X-ray CT. Once a new set of RSPs is obtained for a direction a new optimization is done over other direction using the RSPs from the previous optimization. Theoretical RSPs are compared with experimental RSPs obtained with Gammex Phantom. Results: Preliminary results show that optimized RSP values can be obtained with smaller uncertainties (<1%) than clinical RSPs (1.5% to 3.5%). Theoretical values from three different references show uncertainties, up to 3% from experimental values. Further investigation will consider prior-knowledge from RSP obtained with CT images and ion radiographies from Monte Carlo Simulations. Conclusion: GD and ray-tracing methods have been implemented to reduce RSP uncertainties from values obtained for clinical treatment. Experimental RSPs will be obtained using carbon/alpha beams to consider the existence of material dependent systematic errors. Based on the results, it is hoped to show that using ray-tracing optimization with ion radiography and prior knowledge on RPSs, treatment planning accuracy and cost-effectiveness can be improved.

  19. Quasi-monochromatic parallel flash radiography achieved with a plane-focus x-ray tube

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Germer, Rudolf K.; Hayasi, Yasuomi; Tanaka, Etsuro; Mori, Hidezo; Kawai, Toshiaki; Usuki, Tatsumi; Sato, Koetsu; Obara, Haruo; Zuguchi, Masayuki; Ichimaru, Toshio; Ojima, Hidenori; Takayama, Kazuyoshi; Ido, Hideaki

    2003-07-01

    Quasi-monochromatic parallel flash radiography system utilizing a plane-focus plasma x-ray tube in conjunction with an x-ray lens is described. The x-ray generator employs a high-voltage power supply, a low-impedance coaxial transmission line, a high-voltage condenser with a capacity of about 200 nF, a turbo-molecular pump, a krytron pulse generator as a trigger device, and a flash x-ray tube. The high-voltage main condenser is charged up to 50 kV by the power supply, and the electric charges in the condenser are discharged to the tube after triggering the cathode electrode. The flash x-rays are then produced. The x-ray tube is of a demountable triode that is connected to the turbo molecular pump with a pressure of approximately 1 mPa. As the electron flows from the cathode electrode are roughly converged to the target plane by the electric field in the tube, the weakly ionized plasma x-ray source, which consists of copper ions and electrons, forms by the target evaporating. Both the tube voltage and current displayed damped oscillations, and their peak values increased according to increases in the charging voltage. In the present work, the peak tube voltage was almost equal to the initial charging voltage of the main condenser, and the peak current was about 20 kA with a charging voltage of 50 kV. The dimension of x-ray source was almost equal to the target diameter of about 10 mm, and the x-ray pulse widths were less than 1 μs. When the charging voltage was increased, the plasma x-ray source formed, and the characteristic x-ray intensities of K-series lines substantially increased. The quasi-monochromatic x-rays from the plane-focus tube were formed into parallel beam by a polycapillary plate with a hole diameter and a thickness of 25 μm and 1.0 mm, respectively, and quasi-monochromatic radiography was performed by a film-less computed radiography system.

  20. Characteristics of the plasma flash x-ray generator and applications

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Sagae, Michiaki; Ichimaru, Toshio; Takahashi, Kei; Ojima, Hidenori; Takayama, Kazuyoshi; Hayasi, Yasuomi; Ido, Hideaki; Sakamaki, Kimio; Tamakawa, Yoshiharu

    1999-06-01

    Various characteristics of a plasma flash x-ray generator having a cold-cathode radiation tube and its application to high-speed soft radiography are described. The x-ray generator employs a high-voltage power supply, a low-impedance coaxial transmission line with a gap switch, a high-voltage condenser with a capacity of about 200 nF, a turbo-molecular pump, a thyristor pulser as a trigger device, and a flash x-ray tube. The high-voltage main condenser is charged up to 60 kV by the power supply, and the electric charges in the condenser are discharged to the tube after triggering the cathode electrode. The flash x-rays are then produced. The x-ray tube is of a demountable triode which is connected to the turbo molecular pump with a pressure of approximately 1 mPa. As the electron flows from the cathode electrode are roughly converged to the target by the electric field in the tube, the plasma x-ray source which consists of metal ions and electrons is produced by the target evaporating. Both the tube voltage and current displayed damped oscillations, and their peak values increased according to increases in the charging voltage. In the present work, the peak tube voltage was almost equivalent to the initial charging voltage of the main condenser, and the peak current was less than 30 kA. In this experiment, we employed four types of plasma targets as follows: (1) single target, (2) coaxial double target, (3) alloy target, and (4) plate target. When the single target in conjunction with the monochromatic filter was employed, high-intensity quasi- monochromatic x-rays were obtained. Next, the characteristic x-ray intensities from the outer target increased in the case where the double target was used. By using the alloy (copper tungsten) target, the x-ray intensities of the copper K-series lines increased. Finally, when the linear plasma x-ray source was formed by using the plate target, the bremsstrahlung x- rays were absorbed and were converted into florescent rays

  1. WE-G-BRE-01: A High Power Nanotube X-Ray Microbeam Irradiator for Preclinical Brain Tumor Treatment

    SciTech Connect

    Chtcheprov, P; Inscoe, C; Zhang, L; Lu, J; Zhou, O; Chang, S; Sprenger, F; Laganis, P

    2014-06-15

    Purpose: Microbeam radiation therapy (MRT) is a new type of cancer treatment undergoing studies at various synchrotron facilities. The principle of MRT is using arrays of microscopically small, low-energy X-radiation for the treatment of various radio-resistant, deep-seated tumors. Our motivation is to develop a compact and inexpensive image guided MRT irradiator to use in the research lab setting. After a successful initial demonstration, here we report a second generation carbon nanotube (CNT) cathode based MRT tube, capable of producing multiple microbeam lines with an anticipated dose rate of 11 Gy/min per line. Methods: The system uses multiple line CNT source arrays to generate multiple focal lines on the anode. The increase in dose-rate, compared to our first generation system, is achieved by increasing the operating voltage from 160 kVp to 225kVp, adding multiple simultaneous focal lines on the anode, and a more efficient cooling mechanism using a 6kW oil-cooled anode. Results: This work will present the design and development process, challenges and solutions to meeting operating specifications, and the final design of the tube and collimator, along with optimization and stabilization of its use. A detailed characterization of its capabilities will be included with a comprehensive measurement of its X-ray focal line dimensions, an evaluation of its collimator alignment and microbeam dimensions, and phantom-based quantification of its dosimetric output. Conclusion: The development of a second generation, compact, multiple line MRT device using carbon nanotube (CNT) cathode based X-ray technology and a novel oil cooled anode design is presented here. With this new source, we are capable of delivering a total microbeam radiation dose comparable to the low end of the synchrotron based MRT systems for small animal brain tumor models.

  2. Quantitative Measurements of X-ray Intensity

    SciTech Connect

    Haugh, M. J., Schneider, M.

    2011-09-01

    This chapter describes the characterization of several X-ray sources and their use in calibrating different types of X-ray cameras at National Security Technologies, LLC (NSTec). The cameras are employed in experimental plasma studies at Lawrence Livermore National Laboratory (LLNL), including the National Ignition Facility (NIF). The sources provide X-rays in the energy range from several hundred eV to 110 keV. The key to this effort is measuring the X-ray beam intensity accurately and traceable to international standards. This is accomplished using photodiodes of several types that are calibrated using radioactive sources and a synchrotron source using methods and materials that are traceable to the U.S. National Institute of Standards and Technology (NIST). The accreditation procedures are described. The chapter begins with an introduction to the fundamental concepts of X-ray physics. The types of X-ray sources that are used for device calibration are described. The next section describes the photodiode types that are used for measuring X-ray intensity: power measuring photodiodes, energy dispersive photodiodes, and cameras comprising photodiodes as pixel elements. Following their description, the methods used to calibrate the primary detectors, the power measuring photodiodes and the energy dispersive photodiodes, as well as the method used to get traceability to international standards are described. The X-ray source beams can then be measured using the primary detectors. The final section then describes the use of the calibrated X-ray beams to calibrate X-ray cameras. Many of the references are web sites that provide databases, explanations of the data and how it was generated, and data calculations for specific cases. Several general reference books related to the major topics are included. Papers expanding some subjects are cited.

  3. Quasi-monochromatic radiography using a high-intensity quasi-x-ray laser generator

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Hayasi, Yasuomi; Tanaka, Etsuro; Mori, Hidezo; Kawai, Toshiaki; Usuki, Tatsumi; Sato, Koetsu; Obara, Haruo; Ichimaru, Toshio; Takayama, Kazuyoshi; Ido, Hideaki; Tamakawa, Yoshiharu

    2002-05-01

    High-intensity quasi-monochromatic x-ray irradiation from the linear plasma target is described. The plasma x-ray generator employs a high-voltage power supply, a low- impedance coaxial transmission line, a high-voltage condenser with a capacity of about 200 nF, a turbo-molecular pump, a thyristor pulse generator as a trigger device, and a flash x-ray tube. The high-voltage main condenser is charged up to 55 kV by the power supply, and the electric charges in the condenser are discharged to the tube after triggering the cathode electrode. The flash x-rays are then produced. The x-ray tube is of a demountable triode that is connected to the turbo molecular pump with a pressure of approximately 1 mPa. As the electron flows from the cathode electrode are roughly converged to the molybdenum target by the electric field in the tube, the plasma x-ray source, which consists of metal ions and electrons, forms by the target evaporating. Both the tube voltage and current displayed damped oscillations, and their peak values increased according to increases in the charging voltage. In the present work, the peak tube voltage was almost equal to the initial charging voltage of the main condenser, and the peak current was about 20 kA with a charging voltage of 55 kV. When the charging voltage was increased, the linear plasma x-ray source formed, and the characteristic x-ray intensities of K-series lines increased. The quasi- monochromatic radiography was performed by as new film-less computed radiography system.

  4. High-intensity quasi-monochromatic x-ray irradiation from the linear plasma target

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Suzuki, Yusaku; Hayasi, Yasuomi; Tanaka, Etsuro; Mori, Hidezo; Kawai, Toshiaki; Takayama, Kazuyoshi; Ido, Hideaki; Tamakawa, Yoshiharu

    2001-12-01

    High-intensity quasi-monochromatic x-ray irradiation from the linear plasma target is described. The plasma x-ray generator employs a high-voltage power supply, a low- impedance coaxial transmission line, a high-voltage condenser with a capacity of about 200 nF, a turbo-molecular pump, a thyristor pulse generator as a trigger device, and a new flash x-ray tube. The high-voltage main condenser is charged up to 60 kV by the power supply, and the electric charges in the condenser are discharged to the tube after triggering the cathode electrode. The flash x-rays are then produced. The x-ray tube is of a demountable triode that is connected to the turbo molecular pump with a pressure of approximately 1 mPa. As the electron flows from the cathode electrode are roughly converged to the nickel target by the electric field in the tube, the plasma x-ray source, which consists of metal ions and electrons, forms by the target evaporating. Both the tube voltage and current displayed damped oscillations, and their peak values increased according to increases in the charging voltage. In the present work, the peak tube voltage was almost equal to the initial charging voltage of the main condenser, and the peak current was about 29 kA with a charging voltage of 60 kV. When the charging voltage was increased, the linear plasma x-ray source formed, and the characteristic x-ray intensities of K-series lines increased. The quasi- monochromatic radiography was performed by a new film-less computed radiography system.

  5. X-ray Optics for BES Light Source Facilities

    SciTech Connect

    Mills, Dennis; Padmore, Howard; Lessner, Eliane

    2013-03-27

    Each new generation of synchrotron radiation sources has delivered an increase in average brightness 2 to 3 orders of magnitude over the previous generation. The next evolution toward diffraction-limited storage rings will deliver another 3 orders of magnitude increase. For ultrafast experiments, free electron lasers (FELs) deliver 10 orders of magnitude higher peak brightness than storage rings. Our ability to utilize these ultrabright sources, however, is limited by our ability to focus, monochromate, and manipulate these beams with X-ray optics. X-ray optics technology unfortunately lags behind source technology and limits our ability to maximally utilize even today’s X-ray sources. With ever more powerful X-ray sources on the horizon, a new generation of X-ray optics must be developed that will allow us to fully utilize these beams of unprecedented brightness. The increasing brightness of X-ray sources will enable a new generation of measurements that could have revolutionary impact across a broad area of science, if optical systems necessary for transporting and analyzing X-rays can be perfected. The high coherent flux will facilitate new science utilizing techniques in imaging, dynamics, and ultrahigh-resolution spectroscopy. For example, zone-plate-based hard X-ray microscopes are presently used to look deeply into materials, but today’s resolution and contrast are restricted by limitations of the current lithography used to manufacture nanodiffractive optics. The large penetration length, combined in principle with very high spatial resolution, is an ideal probe of hierarchically ordered mesoscale materials, if zone-plate focusing systems can be improved. Resonant inelastic X-ray scattering (RIXS) probes a wide range of excitations in materials, from charge-transfer processes to the very soft excitations that cause the collective phenomena in correlated electronic systems. However, although RIXS can probe high-energy excitations, the most exciting and

  6. Transient x-ray diffraction and its application to materials science and x-ray optics

    SciTech Connect

    Hauer, A.A.; Kopp, R.; Cobble, J.; Kyrala, G.; Springer, R.

    1997-12-01

    Time resolved x-ray diffraction and scattering have been applied to the measurement of a wide variety of physical phenomena from chemical reactions to shock wave physics. Interest in this method has heightened in recent years with the advent of versatile, high power, pulsed x-ray sources utilizing laser plasmas, electron beams and other methods. In this article, we will describe some of the fundamentals involved in time resolved x-ray diffraction, review some of the history of its development, and describe some recent progress in the field. In this article we will emphasize the use of laser-plasmas as the x-ray source for transient diffraction.

  7. Multiphoton imaging with high peak power VECSELs

    NASA Astrophysics Data System (ADS)

    Mirkhanov, Shamil; Quarterman, Adrian H.; Swift, Samuel; Praveen, Bavishna B.; Smyth, Conor J. C.; Wilcox, Keith G.

    2016-03-01

    Multiphoton imaging (MMPI) has become one of thee key non-invasive light microscopy techniques. This technique allows deep tissue imaging with high resolution and less photo-damage than conventional confocal microscopy. MPI is type of laser-scanning microscopy that employs localized nonlinear excitation, so that fluorescence is excited only with is scanned focal volume. For many years, Ti: sapphire femtosecond lasers have been the leading light sources for MPI applications. However, recent developments in laser sources and new types of fluorophores indicate that longer wavelength excitation could be a good alternative for these applications. Mode-locked VECSEELs have the potential to be low cost, compact light sources for MPI systems, with the additional advantage of broad wavelength coverage through use of different semiconductor material systems. Here, we use a femtosecond fibber laser to investigate the effect average power and repetition rate has on MPI image quality, to allow us to optimize our mode-locked VVECSELs for MPI.

  8. DIRECT MEASUREMENT OF THE X-RAY TIME-DELAY TRANSFER FUNCTION IN ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Legg, E.; Miller, L.; Turner, T. J.; Giustini, M.; Reeves, J. N.; Kraemer, S. B.

    2012-11-20

    The origin of the observed time lags, in nearby active galactic nuclei (AGNs), between hard and soft X-ray photons is investigated using new XMM-Newton data for the narrow-line Seyfert I galaxy Ark 564 and existing data for 1H 0707-495 and NGC 4051. These AGNs have highly variable X-ray light curves that contain frequent, high peaks of emission. The averaged light curve of the peaks is directly measured from the time series, and it is shown that (1) peaks occur at the same time, within the measurement uncertainties, at all X-ray energies, and (2) there exists a substantial tail of excess emission at hard X-ray energies, which is delayed with respect to the time of the main peak, and is particularly prominent in Ark 564. Observation (1) rules out that the observed lags are caused by Comptonization time delays and disfavors a simple model of propagating fluctuations on the accretion disk. Observation (2) is consistent with time lags caused by Compton-scattering reverberation from material a few thousand light-seconds from the primary X-ray source. The power spectral density and the frequency-dependent phase lags of the peak light curves are consistent with those of the full time series. There is evidence for non-stationarity in the Ark 564 time series in both the Fourier and peaks analyses. A sharp 'negative' lag (variations at hard photon energies lead soft photon energies) observed in Ark 564 appears to be generated by the shape of the hard-band transfer function and does not arise from soft-band reflection of X-rays. These results reinforce the evidence for the existence of X-ray reverberation in type I AGN, which requires that these AGNs are significantly affected by scattering from circumnuclear material a few tens or hundreds of gravitational radii in extent.

  9. X-ray nanotomography

    NASA Astrophysics Data System (ADS)

    Sasov, Alexander

    2004-10-01

    A compact laboratory x-ray "nano-CT" scanner has been created for 3D non-invasive imaging with 150-200 nanometers 3D spatial resolution, using advanced x-ray technologies and specific physical phenomena for signal detection. This spatial resolution in volume terms is 3 orders better than can be achieved in synchrotron tomography, 5 orders better then in existing laboratory micro-CT instruments and 10-12 orders better in comparison to clinical CT. The instrument employs an x-ray source with a 300-400nm x-ray spot size and uses small-angle scattering to attain a detail detectability of 150-200nm. An object manipulator allows positioning and rotation with an accuracy of 150nm. The x-ray detector is based on an intensified CCD with single-photon sensitivity. A typical acquisition cycle for 3D reconstruction of the full object volume takes from 10 to 60 minutes, with the collection of several hundred angular views. Subsequent volumetric reconstruction produces results as a set of cross sections with isotropic voxel size down to 140 x 140 x 140nm, or as a 3D-model, which can be virtually manipulated and measured. This unique spatial resolution in non-invasive investigations gives previously unattainable 3D images in several application areas, such as composite materials, paper and wood microstructure, biomedical applications and others.

  10. Femtosecond laser-electron x-ray source

    DOEpatents

    Hartemann, Frederic V.; Baldis, Hector A.; Barty, Chris P.; Gibson, David J.; Rupp, Bernhard

    2004-04-20

    A femtosecond laser-electron X-ray source. A high-brightness relativistic electron injector produces an electron beam pulse train. A system accelerates the electron beam pulse train. The femtosecond laser-electron X-ray source includes a high intra-cavity power, mode-locked laser and an x-ray optics system.

  11. X-rays and Planet Formation

    NASA Astrophysics Data System (ADS)

    Feigelson, E. D.

    2005-12-01

    Planets form in cold circumstellar disks that can not emit X-rays. Nonetheless, X-ray band studies may have profound implications for the physical processes of planet formation in several ways. Observations of young stellar clusters, such as the recent Chandra Orion Ultradeep Project (COUP), demonstrate that all pre-main sequence stars produce powerful magnetic reconnection flares during the planet formation era. Calculations indicate that the X-rays can penetrate deeply into protoplanetary disks and will be the dominant source of gas ionization. COUP observations of fluorescent line emission in heavy disk stars and soft X-ray absorption in proplyds demonstrate that disk irradiation by X-rays does in fact occur. This may induce MHD turbulence in disk gases, which may substantially affect planetesimal growth and protoplanet migration. X-ray flares or associated shock waves may flash melt dustballs into chondrules, and spallation by energetic flare particles may generate shortlived radioactive isotopes which are prevalent in the meteoritic record. X-ray surveys are also useful for locating older stellar systems where the protoplanetary disk is dissipating but magnetic flaring continues. Infrared studies of such systems show a great diversity of older disk properties. The planned Constellation-X mission will propel all of these investigations in powerful ways. For example, reverberation mapping of fluorescent line emission following flares could give unique insights into the structure of the gaseous components of protoplanetary disks.

  12. Small-animal tomography with a liquid-metal-jet x-ray source

    NASA Astrophysics Data System (ADS)

    Larsson, D. H.; Lundström, U.; Westermark, U.; Takman, P. A. C.; Burvall, A.; Arsenian Henriksson, M.; Hertz, H. M.

    2012-03-01

    X-ray tomography of small animals is an important tool for medical research. For high-resolution x-ray imaging of few-cm-thick samples such as, e.g., mice, high-brightness x-ray sources with energies in the few-10-keV range are required. In this paper we perform the first small-animal imaging and tomography experiments using liquid-metal-jet-anode x-ray sources. This type of source shows promise to increase the brightness of microfocus x-ray systems, but present sources are typically optimized for an energy of 9 keV. Here we describe the details of a high-brightness 24-keV electron-impact laboratory microfocus x-ray source based on continuous operation of a heated liquid-In/Ga-jet anode. The source normally operates with 40 W of electron-beam power focused onto the metal jet, producing a 7×7 μm2 FWHM x-ray spot. The peak spectral brightness is 4 × 109 photons / ( s × mm2 × mrad2 × 0.1%BW) at the 24.2 keV In Kα line. We use the new In/Ga source and an existing Ga/In/Sn source for high-resolution imaging and tomography of mice.

  13. Lumbosacral spine x-ray

    MedlinePlus

    X-ray - lumbosacral spine; X-ray - lower spine ... be placed over the lower part of your spine. You will be asked to hold your breath ... x-ray. The most common reason for lumbosacral spine x-ray is to look for the cause ...

  14. Impulsive solar X-ray bursts

    NASA Technical Reports Server (NTRS)

    Crannell, C. J.; Frost, K. J.; Maetzler, C.; Ohki, K.; Saba, J. L.

    1977-01-01

    A set of 22 simple, impulsive solar flares, identified in the OSO-5 hard X-ray data, were analyzed together with coincident microwave and meterwave radio observations. The rise times and fall times of the X-ray bursts are found to be highly correlated and effectively equal, strongly suggesting a flare energizing mechanism that is reversible. The good time resolution available for these observations reveals that the microwave emission is influenced by an additional process, evident in the tendency of the microwave emission to peak later and decay more slowly than the symmetric X-ray bursts. Meterwave emission is observed in coincidence with the 5 events which show the strongest time correlation between the X-ray and microwave burst structure. This meterwave emission is characterized by U-burst radiation, indicating confinement of the flare source.

  15. Magnetic properties of X-ray bright points. [in sun

    NASA Technical Reports Server (NTRS)

    Golub, L.; Krieger, A. S.; Harvey, J. W.; Vaiana, G. S.

    1977-01-01

    Using high-resolution Kitt Peak National Observatory magnetograms and sequences of simultaneous S-054 soft X-ray solar images, the properties of X-ray bright points (XBP) and ephemeral active regions (ER) are compared. All XBP appear on the magnetograms as bipolar features, except for very recently emerged or old and decayed XBP. The separation of the magnetic bipoles is found to increase with the age of the XBP, with an average emergence growth rate of 2.2 plus or minus 0.4 km per sec. The total magnetic flux in a typical XBP living about 8 hr is found to be about two times ten to the nineteenth power Mx. A proportionality is found between XBP lifetime and total magnetic flux, equivalent to about ten to the twentieth power Mx per day of lifetime.

  16. Small Angle X-ray and Neutron Scattering: Powerful Tools for Studying the Structure of Drug-Loaded Liposomes

    PubMed Central

    Di Cola, Emanuela; Grillo, Isabelle; Ristori, Sandra

    2016-01-01

    Nanovectors, such as liposomes, micelles and lipid nanoparticles, are recognized as efficient platforms for delivering therapeutic agents, especially those with low solubility in water. Besides being safe and non-toxic, drug carriers with improved performance should meet the requirements of (i) appropriate size and shape and (ii) cargo upload/release with unmodified properties. Structural issues are of primary importance to control the mechanism of action of loaded vectors. Overall properties, such as mean diameter and surface charge, can be obtained using bench instruments (Dynamic Light Scattering and Zeta potential). However, techniques with higher space and time resolution are needed for in-depth structural characterization. Small-angle X-ray (SAXS) and neutron (SANS) scattering techniques provide information at the nanoscale and have therefore been largely used to investigate nanovectors loaded with drugs or other biologically relevant molecules. Here we revise recent applications of these complementary scattering techniques in the field of drug delivery in pharmaceutics and medicine with a focus to liposomal carriers. In particular, we highlight those aspects that can be more commonly accessed by the interested users. PMID:27043614

  17. Small Angle X-ray and Neutron Scattering: Powerful Tools for Studying the Structure of Drug-Loaded Liposomes.

    PubMed

    Di Cola, Emanuela; Grillo, Isabelle; Ristori, Sandra

    2016-01-01

    Nanovectors, such as liposomes, micelles and lipid nanoparticles, are recognized as efficient platforms for delivering therapeutic agents, especially those with low solubility in water. Besides being safe and non-toxic, drug carriers with improved performance should meet the requirements of (i) appropriate size and shape and (ii) cargo upload/release with unmodified properties. Structural issues are of primary importance to control the mechanism of action of loaded vectors. Overall properties, such as mean diameter and surface charge, can be obtained using bench instruments (Dynamic Light Scattering and Zeta potential). However, techniques with higher space and time resolution are needed for in-depth structural characterization. Small-angle X-ray (SAXS) and neutron (SANS) scattering techniques provide information at the nanoscale and have therefore been largely used to investigate nanovectors loaded with drugs or other biologically relevant molecules. Here we revise recent applications of these complementary scattering techniques in the field of drug delivery in pharmaceutics and medicine with a focus to liposomal carriers. In particular, we highlight those aspects that can be more commonly accessed by the interested users. PMID:27043614

  18. X-ray streak crystal spectography

    SciTech Connect

    Kauffman, R.L.; Brown, T.; Medecki, H.

    1983-07-01

    We have built an x-ray streaked crystal spectrograph for making time-resolved x-ray spectral measurements. This instrument can access Bragg angles from 11/sup 0/ to 38/sup 0/ and x-ray spectra from 200 eV to greater than 10 keV. We have demonstrated resolving powers, E/..delta..E > 200 at 1 keV and time resolution less than 20 psec. A description of the instrument and an example of the data is given.

  19. The 1979 X-ray outburst of Cen X-4

    NASA Technical Reports Server (NTRS)

    Kaluzienski, L. J.; Holt, S. S.; Swank, J. H.

    1980-01-01

    X-ray observations of the first major outburst (since its initial discovery in 1969) of the "classical" transient X-ray source Cen X-4 were obtained with the Ariel 5 All-Sky Monitor. The flare light curve exhibits a double-peaked maximum at a level of approximately 4 times the Crab nebula, and its duration and characteristic decay time scale are the shortest yet observed from the class of "soft" X-ray transients. A total X-ray output of approximately 3 x 10 to the 43rd power ergs, a factor of approximately 20 less than that of the 1969 outburst is estimated. In addition, evidence is found for a regular modulation of the flux during the decline phase at a period of 8.2 plus or minus 0.2 hours. The existing data are consistent with a source model involving episodic mass exchange from a late-type dwarf onto a neutron star comparison in a relatively close binary system.

  20. Multicolor, time-gated, soft x-ray pinhole imaging of wire array and gas puff Z pinches on the Z and Saturn pulsed power generators

    SciTech Connect

    Jones, B.; Coverdale, C. A.; Nielsen, D. S.; Jones, M. C.; Deeney, C.; Serrano, J. D.; Nielsen-Weber, L. B.; Meyer, C. J.; Apruzese, J. P.; Clark, R. W.; Coleman, P. L.

    2008-10-15

    A multicolor, time-gated, soft x-ray pinhole imaging instrument is fielded as part of the core diagnostic set on the 25 MA Z machine [M. E. Savage et al., in Proceedings of the Pulsed Power Plasma Sciences Conference (IEEE, New York, 2007), p. 979] for studying intense wire array and gas puff Z-pinch soft x-ray sources. Pinhole images are reflected from a planar multilayer mirror, passing 277 eV photons with <10 eV bandwidth. An adjacent pinhole camera uses filtration alone to view 1-10 keV photons simultaneously. Overlaying these data provides composite images that contain both spectral as well as spatial information, allowing for the study of radiation production in dense Z-pinch plasmas. Cu wire arrays at 20 MA on Z show the implosion of a colder cloud of material onto a hot dense core where K-shell photons are excited. A 528 eV imaging configuration has been developed on the 8 MA Saturn generator [R. B. Spielman et al., and A. I. P. Conf, Proc. 195, 3 (1989)] for imaging a bright Li-like Ar L-shell line. Ar gas puff Z pinches show an intense K-shell emission from a zippering stagnation front with L-shell emission dominating as the plasma cools.

  1. Can the cosmic x ray and gamma ray background be due to reflection of a steep power law spectrum and Compton scattering by relativistic electrons?

    NASA Technical Reports Server (NTRS)

    Zycki, Piotr T.; Zdziarski, Andrzej A.; Svensson, Roland

    1991-01-01

    We reconsider the recent model for the origin in the cosmic X-ray and gamma-ray background by Rogers and Field. The background in the model is due to an unresolved population of AGNs. An individual AGN spectrum contains three components: a power law with the energy index of alpha = 1.1, an enhanced reflection component, and a component from Compton scattering by relativistic electrons with a low energy cutoff at some minimum Lorentz factor, gamma(sub min) much greater than 1. The MeV bump seen in the gamma-ray background is then explained by inverse Compton emission by the electrons. We show that the model does not reproduce the shape of the observed X-ray and gamma-ray background below 10 MeV and that it overproduces the background at larger energies. Furthermore, we find the assumptions made for the Compton component to be physically inconsistent. Relaxing the inconsistent assumptions leads to model spectra even more different from that of the observed cosmic background. Thus, we can reject the hypothesis that the high-energy cosmic background is due to the described model.

  2. Prospects for a soft x-ray FEL powered by a relativistic-klystron high-gradient accelerator (RK-HGA)

    SciTech Connect

    Shay, H.D.; Barletta, W.A.; Yu, S.S.; Schlueter, R.; Deis, G.A.

    1989-09-28

    We present here the concept of x-ray FELs using high gain, single-pass amplifiers with electron beams accelerated in high gradient structures powered by relativistic klystrons. Other authors have also considered x-ray FELs; the unique aspect of this paper is the use of high gradient acceleration. One of the authors has previously presented preliminary studies on this concept. The intent in this paper is to display the results of a top level design study on a high gain FEL, to present its sensitivity to a variety of fabrication and tuning errors, to discuss several mechanisms for increasing gain yet more, and to present explicitly the output characteristics of such an FEL. The philosophy of the design study is to find a plausible operating point which employs existing or nearly existing state-of-the-art technologies while minimizing the accelerator and wiggler lengths. The notion is to distribute the technical risk as evenly as possible over the several technologies so that each must advance only slightly in order to make this design feasible. This study entailed no systematic investigation of possible costs so that, for example, the sole criterion for balancing the trade-off between beam energy and wiggler length is that the two components have comparable lengths. 20 refs., 10 figs., 1 tab.

  3. High-Energy X-Ray Detection of G359.89-0.08 (SGR A-E): Magnetic Flux Tube Emission Powered by Cosmic Rays?

    NASA Technical Reports Server (NTRS)

    Zhang, Shuo; Hailey, Charles J.; Baganoff, Frederick K.; Bauer, Franz E.; Boggs, Steven E.; Craig, William W.; Christensen, Finn E.; Gotthelf, Eric V.; Harrison, Fiona A.; Mori, Kaya; Nynka, Melania; Stern, Daniel; Tomsick, John A; Zhang, Will

    2014-01-01

    We report the first detection of high-energy X-ray (E (is) greater than 10 keV) emission from the Galactic center non-thermal filament G359.89-0.08 (Sgr A-E) using data acquired with the Nuclear Spectroscopic Telescope Array (NuSTAR). The bright filament was detected up to approximately 50 keV during a NuSTAR Galactic center monitoring campaign. The featureless power-law spectrum with a photon index gamma approximately equals 2.3 confirms a non-thermal emission mechanism. The observed flux in the 3-79 keV band is F(sub X) = (2.0 +/- 0.1) × 10(exp -12)erg cm(-2) s(-1) , corresponding to an unabsorbed X-ray luminosity L(sub X) = (2.6+/-0.8)×10(exp 34) erg s(-1) assuming a distance of 8.0 kpc. Based on theoretical predictions and observations, we conclude that Sgr A-E is unlikely to be a pulsar wind nebula (PWN) or supernova remnant-molecular cloud (SNR-MC) interaction, as previously hypothesized. Instead, the emission could be due to a magnetic flux tube which traps TeV electrons. We propose two possible TeV electron sources: old PWNe (up to (is) approximately 100 kyr) with low surface brightness and radii up to (is) approximately 30 pc or MCs illuminated by cosmic rays (CRs) from CR accelerators such as SNRs or Sgr A*.

  4. Accelerating an Ordered-Subset Low-Dose X-Ray Cone Beam Computed Tomography Image Reconstruction with a Power Factor and Total Variation Minimization

    PubMed Central

    Huang, Hsuan-Ming; Hsiao, Ing-Tsung

    2016-01-01

    In recent years, there has been increased interest in low-dose X-ray cone beam computed tomography (CBCT) in many fields, including dentistry, guided radiotherapy and small animal imaging. Despite reducing the radiation dose, low-dose CBCT has not gained widespread acceptance in routine clinical practice. In addition to performing more evaluation studies, developing a fast and high-quality reconstruction algorithm is required. In this work, we propose an iterative reconstruction method that accelerates ordered-subsets (OS) reconstruction using a power factor. Furthermore, we combine it with the total-variation (TV) minimization method. Both simulation and phantom studies were conducted to evaluate the performance of the proposed method. Results show that the proposed method can accelerate conventional OS methods, greatly increase the convergence speed in early iterations. Moreover, applying the TV minimization to the power acceleration scheme can further improve the image quality while preserving the fast convergence rate. PMID:27073853

  5. X-ray beam finder

    DOEpatents

    Gilbert, H.W.

    1983-06-16

    An X-ray beam finder for locating a focal spot of an X-ray tube includes a mass of X-ray opaque material having first and second axially-aligned, parallel-opposed faces connected by a plurality of substantially identical parallel holes perpendicular to the faces and a film holder for holding X-ray sensitive film tightly against one face while the other face is placed in contact with the window of an X-ray head.

  6. X-ray astronomical spectroscopy

    NASA Technical Reports Server (NTRS)

    Holt, Stephen S.

    1987-01-01

    The contributions of the Goddard group to the history of X-ray astronomy are numerous and varied. One role that the group has continued to play involves the pursuit of techniques for the measurement and interpretation of the X-ray spectra of cosmic sources. The latest development is the selection of the X-ray microcalorimeter for the Advanced X-ray Astrophysics Facility (AXAF) study payload. This technology is likely to revolutionize the study of cosmic X-ray spectra.

  7. X-ray Diode Preparation

    SciTech Connect

    Henderson, D J; Good, D E; Hogge, K W; Molina, I; Howe, R A; Lutz, S S; Flores, P A; McGillivray, K D; Skarda, W M; Nelson, D S; Ormond, E S; Cordova, S R

    2011-06-16

    A rod pinch x-ray diode assembly culminates in a coaxial anode cathode arrangement where a small anode rod extends through the aperture of a cathode plate. Shotto- shot repeatability in rod placement, and thus x-ray source spot position, has potential to positively affect radiographic image quality. Thus, how to both control and measure, according to a Cartesian coordinate system, anode rod tip displacement (x, y) (off the beam line-of-sight retical) and also anode rod tip extension (z) (along the line-of-sight center line) become salient issues relative to radiographic image set utility. To address these issues both hardware fabrication and x-ray diode assembly methods were reviewed, and additional controls were introduced. A photogrammetric procedure was developed to quantify anode rod tip position in situ. Computer models and mock-up assemblies with precision fiducials were produced to validate this procedure. Therefore, both anode rod tip displacement and anode rod tip extension parameters were successfully controlled. Rod position was measured and met the required specifications: (1) radial displacement <0.25 mm and (2) axial placement of ±0.25 mm. We demonstrated that precision control and measurement of large scale components is achievable in a pulse power system (i.e., hardware and operations). Correlations with diode performance and radiography are presented.

  8. Spectra of cosmic x-ray sources

    SciTech Connect

    Holt, S.S.; Mccray, R.

    1982-02-01

    X-ray measurements provide the most direct probes of astrophysical environments with temperatures exceeding one million K. Progress in experimental research utilizing dispersive techniques (e.g., Bragg and grating spectroscopy) is considerably slower than that in areas utilizing photometric techniques, because of the relative inefficiency of the former for the weak X-ray signals from celestial sources. As a result, the term spectroscopy as applied to X-ray astronomy has traditionally satisfied a much less restrictive definition (in terms of resolving power) than it has in other wavebands. Until quite recently, resolving powers of order unity were perfectly respectable, and still provide (in most cases) the most useful spectroscopic data. In the broadest sense, X-ray photometric measurements are spectroscopic, insofar as they represent samples of the overall electromagnetic continua of celestial objects.

  9. Spectra of cosmic X-ray sources

    NASA Technical Reports Server (NTRS)

    Holt, S. S.; Mccray, R.

    1982-01-01

    X-ray measurements provide the most direct probes of astrophysical environments with temperatures exceeding one million K. Progress in experimental research utilizing dispersive techniques (e.g., Bragg and grating spectroscopy) is considerably slower than that in areas utilizing photometric techniques, because of the relative inefficiency of the former for the weak X-ray signals from celestial sources. As a result, the term "spectroscopy" as applied to X-ray astronomy has traditionally satisfied a much less restrictive definition (in terms of resolving power) than it has in other wavebands. Until quite recently, resolving powers of order unity were perfectly respectable, and still provide (in most cases) the most useful spectroscopic data. In the broadest sense, X-ray photometric measurements are spectroscopic, insofar as they represent samples of the overall electromagnetic continua of celestial objects.

  10. X-ray

    MedlinePlus

    ... Most experts feel that the benefits of appropriate x-ray imaging greatly outweigh any risks. Young children and babies ... be pregnant. Alternative Names ... CM, eds. Grainger & Allison's Diagnostic Radiology: A Textbook of Medical Imaging . 6th ed. Philadelphia, PA: Elsevier Churchill Livingstone; 2014: ...

  11. Superluminous X-Rays from a Superluminous Supernova

    NASA Astrophysics Data System (ADS)

    Levan, A. J.; Read, A. M.; Metzger, B. D.; Wheatley, P. J.; Tanvir, N. R.

    2013-07-01

    The discovery of a population of superluminous supernovae (SLSNe), with peak luminosities a factor of ~100 brighter than normal supernovae (SNe; typically SLSNe have MV < -21), has shown an unexpected diversity in core-collapse SN properties. Numerous models have been postulated for the nature of these events, including a strong interaction of the shockwave with a dense circumstellar environment, a re-energizing of the outflow via a central engine, or an origin in the catastrophic destruction of the star following a loss of pressure due to pair production in an extremely massive stellar core (so-called pair instability SNe). Here we consider constraints that can be placed on the explosion mechanism of hydrogen-poor SLSNe (SLSNe-I) via X-ray observations, with XMM-Newton, Chandra, and Swift, and show that at least one SLSN-I is likely the brightest X-ray SN ever observed, with LX ~ 1045 erg s-1, ~150 days after its initial discovery. This is a luminosity three orders of magnitude higher than seen in other X-ray SNe powered via circumstellar interactions. Such high X-ray luminosities are sufficient to ionize the ejecta and markedly reduce the optical depth, making it possible to see deep into the ejecta and any source of emission that resides there. Alternatively, an engine could have powered a moderately relativistic jet external to the ejecta, similar to those seen in gamma-ray bursts. If the detection of X-rays does require an engine it implies that these SNe do create compact objects, and that the stars are not completely destroyed in a pair instability event. Future observations will determine which, if any, of these mechanisms are at play in SLSNe.

  12. Removing Cool Cores and Central Metallicity Peaks in Galaxy Clusters with Powerful Active Galactic Nucleus Outbursts

    NASA Astrophysics Data System (ADS)

    Guo, Fulai; Mathews, William G.

    2010-07-01

    Recent X-ray observations of galaxy clusters suggest that cluster populations are bimodally distributed according to central gas entropy and are separated into two distinct classes: cool core (CC) and non-cool core (NCC) clusters. While it is widely accepted that active galactic nucleus (AGN) feedback plays a key role in offsetting radiative losses and maintaining many clusters in the CC state, the origin of NCC clusters is much less clear. At the same time, a handful of extremely powerful AGN outbursts have recently been detected in clusters, with a total energy ~1061-1062 erg. Using two-dimensional hydrodynamic simulations, we show that if a large fraction of this energy is deposited near the centers of CC clusters, which is likely common due to dense cores, these AGN outbursts can completely remove CCs, transforming them to NCC clusters. Our model also has interesting implications for cluster abundance profiles, which usually show a central peak in CC systems. Our calculations indicate that during the CC to NCC transformation, AGN outbursts efficiently mix metals in cluster central regions and may even remove central abundance peaks if they are not broad enough. For CC clusters with broad central abundance peaks, AGN outbursts decrease peak abundances, but cannot effectively destroy the peaks. Our model may simultaneously explain the contradictory (possibly bimodal) results of abundance profiles in NCC clusters, some of which are nearly flat, while others have strong central peaks similar to those in CC clusters. A statistical analysis of the sizes of central abundance peaks and their redshift evolution may shed interesting insights on the origin of both types of NCC clusters and the evolution history of thermodynamics and AGN activity in clusters.

  13. Time-resolved x-ray imaging of high-power laser-irradiated under-dense silica aerogels and agar foams

    SciTech Connect

    Koch, J.A.; Estabrook, K.G.; Bauer, J.D.

    1995-08-01

    This paper presents the results of experiments in which a high-power laser was used to irradiate low density (4 - 9 mg/cm{sup 3}) silica aerogel and agar foam targets. The laser-solid interaction and energy transport through the material were monitored with time-resolved imaging diagnostics, and the data show the production and propagation of an x-ray emission front in the plasma. The emission-front trajectory data are found to be in significant disagreement with detailed simulations, which predict a much more rapid heating of the cold material, and the data suggest that this discrepancy is not explainable by target inhomogeneities. Evidence suggests that energy transport into the cold material may be dominated by thermal conduction; however, no completely satisfactory explanation for the discrepancies is identified, and further experimental and theoretical research is necessary in order to resolve this important problem in laser-plasma interaction physics.

  14. Direct Observations of the (Alpha to Gamma) Transformation at Different Input Powers in the Heat Affected Zone of 1045 C-Mn Steel Arc Welds Observed by Spatially Resolved X-Ray Diffraction

    SciTech Connect

    Palmer, T A; Elmer, J W

    2005-03-16

    Spatially Resolved X-Ray Diffraction (SRXRD) experiments have been performed during Gas Tungsten Arc (GTA) welding of AISI 1045 C-Mn steel at input powers ranging from 1000 W to 3750 W. In situ diffraction patterns taken at discreet locations across the width of the heat affected zone (HAZ) near the peak of the heating cycle in each weld show regions containing austenite ({gamma}), ferrite and austenite ({alpha}+{gamma}), and ferrite ({alpha}). Changes in input power have a demonstrated effect on the resulting sizes of these regions. The largest effect is on the {gamma} phase region, which nearly triples in width with increasing input power, while the width of the surrounding two phase {alpha}+{gamma} region remains relatively constant. An analysis of the diffraction patterns obtained across this range of locations allows the formation of austenite from the base metal microstructure to be monitored. After the completion of the {alpha} {yields} {gamma} transformation, a splitting of the austenite peaks is observed at temperatures between approximately 860 C and 1290 C. This splitting in the austenite peaks results from the dissolution of cementite laths originally present in the base metal pearlite, which remain after the completion of the {alpha} {yields} {gamma} transformation, and represents the formation of a second more highly alloyed austenite constituent. With increasing temperatures, carbon, originally present in the cementite laths, diffuses from the second newly formed austenite constituent to the original austenite constituent. Eventually, a homogeneous austenitic microstructure is produced at temperatures of approximately 1300 C and above, depending on the weld input power.

  15. Absolute radiant power measurement for the Au M lines of laser-plasma using a calibrated broadband soft X-ray spectrometer with flat-spectral response

    SciTech Connect

    Troussel, Ph.; Villette, B.; Oudot, G.; Tassin, V.; Bridou, F.; Delmotte, F.; Krumrey, M.

    2014-01-15

    CEA implemented an absolutely calibrated broadband soft X-ray spectrometer called DMX on the Omega laser facility at the Laboratory for Laser Energetics (LLE) in 1999 to measure radiant power and spectral distribution of the radiation of the Au plasma. The DMX spectrometer is composed of 20 channels covering the spectral range from 50 eV to 20 keV. The channels for energies below 1.5 keV combine a mirror and a filter with a coaxial photo-emissive detector. For the channels above 5 keV the photoemissive detector is replaced by a conductive detector. The intermediate energy channels (1.5 keV < photon energy < 5 keV) use only a filter and a coaxial detector. A further improvement of DMX consists in flat-response X-ray channels for a precise absolute measurement of the photon flux in the photon energy range from 0.1 keV to 6 keV. Such channels are equipped with a filter, a Multilayer Mirror (MLM), and a coaxial detector. We present as an example the development of channel for the gold M emission lines in the photon energy range from 2 keV to 4 keV which has been successfully used on the OMEGA laser facility. The results of the radiant power measurements with the new MLM channel and with the usual channel composed of a thin titanium filter and a coaxial detector (without mirror) are compared. All elements of the channel have been calibrated in the laboratory of the Physikalisch-Technische Bundesanstalt, Germany's National Metrology Institute, at the synchrotron radiation facility BESSY II in Berlin using dedicated well established and validated methods.

  16. Absolute radiant power measurement for the Au M lines of laser-plasma using a calibrated broadband soft X-ray spectrometer with flat-spectral response.

    PubMed

    Troussel, Ph; Villette, B; Emprin, B; Oudot, G; Tassin, V; Bridou, F; Delmotte, F; Krumrey, M

    2014-01-01

    CEA implemented an absolutely calibrated broadband soft X-ray spectrometer called DMX on the Omega laser facility at the Laboratory for Laser Energetics (LLE) in 1999 to measure radiant power and spectral distribution of the radiation of the Au plasma. The DMX spectrometer is composed of 20 channels covering the spectral range from 50 eV to 20 keV. The channels for energies below 1.5 keV combine a mirror and a filter with a coaxial photo-emissive detector. For the channels above 5 keV the photoemissive detector is replaced by a conductive detector. The intermediate energy channels (1.5 keV < photon energy < 5 keV) use only a filter and a coaxial detector. A further improvement of DMX consists in flat-response X-ray channels for a precise absolute measurement of the photon flux in the photon energy range from 0.1 keV to 6 keV. Such channels are equipped with a filter, a Multilayer Mirror (MLM), and a coaxial detector. We present as an example the development of channel for the gold M emission lines in the photon energy range from 2 keV to 4 keV which has been successfully used on the OMEGA laser facility. The results of the radiant power measurements with the new MLM channel and with the usual channel composed of a thin titanium filter and a coaxial detector (without mirror) are compared. All elements of the channel have been calibrated in the laboratory of the Physikalisch-Technische Bundesanstalt, Germany's National Metrology Institute, at the synchrotron radiation facility BESSY II in Berlin using dedicated well established and validated methods. PMID:24517761

  17. 5.8 X-ray Calorimeters

    NASA Technical Reports Server (NTRS)

    Porter, F. Scott

    2008-01-01

    X-ray calorimeter instruments for astrophysics have seen rapid development since they were invented in 1984. The prime instrument on all currently planned X-ray spectroscopic observatories is based on calorimeter technology. This relatively simple detection concept that senses the energy of an incident photon by measuring the temperature rise of an absorber material at very low temperatures, can form the basis of a very high performance, non-dispersive spectrometer. State-of-the-art calorimeter instruments have resolving powers of over 3000, large simultaneous band-passes, and near unit efficiency. This coupled with the intrinsic imaging capability of a pixilated x-ray calorimeter array, allows true spectral-spatial instruments to be constructed. In this chapter I briefly review the detection scheme, the state-of-the-art in X-ray calorimeter instruments and the future outlook for this technology.

  18. The X-ray emission of subflares

    NASA Astrophysics Data System (ADS)

    Valnichek, B. I.; Likin, O. B.; Morozova, E. I.; Pisarenko, N. F.; Farnik, F.

    1983-08-01

    Optical observations of subflares in the active region Mc Math 14553 in the period 8-15 December, 1976 are compared with the X-ray emission bursts measured during the same period by the X-ray photometer on board the Prognoz-5 automatic observatory. X-ray emissions with energies 2-7 and 6-10 keV are used in the analysis presented here. It is found that energy release in the X-ray emissions is directly proportional to the area of the H-alpha flare events over a wide range of flare intensities, i.e., from subflares to high-power flares of the class 3B.

  19. Coherent x-ray lasers for applications

    SciTech Connect

    London, R.A.; Amendt, P.; Rosen, M.D.; Feit, M.D.; Fleck, J.A. ); Strauss, M. )

    1990-12-01

    Many of the projected applications of x-ray lasers require high quality output radiation with properties such as short wavelength, high power, good focusability, short pulse, and high degree of coherence. We discuss the requirements of an x-ray laser for the application of holography of biological samples. We present ideas for achieving these properties. Given that population inversions can be established to provide laser gain, we discuss how the propagation and amplification of x-rays within the lasing medium affect the quality of the output radiation. Particular attention is given toward the development of transverse coherence. Results are presented from several methods for calculating the coherence, including a modal analysis and a numerical-wave propagation code. Calculations of the expected degree of coherence of standard x-ray lasers are given, as well as designs for more coherent lasers. 9 refs., 6 figs., 1 tab.

  20. Long term X-ray variability of Circinus X-1

    SciTech Connect

    Saz Parkinson, Pablo

    2003-03-19

    We present an analysis of long term X-ray monitoring observations of Circinus X-1 (Cir X-1) made with four different instruments: Vela 5B, Ariel V ASM, Ginga ASM, and RXTE ASM, over the course of more than 30 years. We use Lomb-Scargle periodograms to search for the {approx}16.5 day orbital period of Cir X-1 in each of these data sets and from this derive a new orbital ephemeris based solely on X-ray measurements, which we compare to the previous ephemerides obtained from radio observations. We also use the Phase Dispersion Minimization (PDM) technique, as well as FFT analysis, to verify the periods obtained from periodograms. We obtain dynamic periodograms (both Lomb-Scargle and PDM) of Cir X-1 during the RXTE era, showing the period evolution of Cir X-1, and also displaying some unexplained discrete jumps in the location of the peak power.

  1. Z-pinches as intense x-ray sources for high energy density physics application

    SciTech Connect

    Matzen, M.K.

    1997-02-01

    Fast z-pinch implosions can convert more than 10% of the stored electrical energy in a pulsed-power accelerator into x rays. These x rays are produced when an imploding cylindrical plasma, driven by the magnetic field pressure associated with very large axial currents, stagnates upon the cylindrical axis of symmetry. On the Saturn pulsed-power accelerator at Sandia National Laboratories, for example, currents of 6 to 8 MA with a risetime of less than 50 ns are driven through cylindrically-symmetric loads, producing implosions velocities as high as 100 cm/{mu}s and x-ray energies as high as 500 kJ. The keV component of the resulting x-ray spectrum has been used for many years 8 a radiation source for material response studies. Alternatively, the x-ray output can be thermalized into a near-Planckian x-ray source by containing it within a large cylindrical radiation case. These large volume, long-lived radiation sources have recently been used for ICF-relevant ablator physics experiments as well as astrophysical opacity and radiation-material interaction experiments. Hydromagnetic Rayleigh-Taylor instabilities and cylindrical load symmetry are critical, limiting factors in determining the assembled plasma densities and temperatures, and thus in the x-ray pulse widths that can be produced on these accelerators. In recent experiments on the Saturn accelerator, these implosion nonuniformities have been minimized by using uniform-fill gas puff loads or by using wire arrays with as many a 192 wires. These techniques produced significant improvements in the pinched plasma quality, Zn reproducibility, and x-ray output power. X-ray pulse widths of less than 5 ns and peak powers of 75{+-}10 TW have been achieved with arrays of 120 tungsten wires. These powers represent greater than a factor of three in power amplification over the electrical power of the Saturn n accelerator, and are a record for x-ray powers in the laboratory.

  2. X-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    2000-01-01

    Dr. S. N. Zhang has lead a seven member group (Dr. Yuxin Feng, Mr. XuejunSun, Mr. Yongzhong Chen, Mr. Jun Lin, Mr. Yangsen Yao, and Ms. Xiaoling Zhang). This group has carried out the following activities: continued data analysis from space astrophysical missions CGRO, RXTE, ASCA and Chandra. Significant scientific results have been produced as results of their work. They discovered the three-layered accretion disk structure around black holes in X-ray binaries; their paper on this discovery is to appear in the prestigious Science magazine. They have also developed a new method for energy spectral analysis of black hole X-ray binaries; four papers on this topics were presented at the most recent Atlanta AAS meeting. They have also carried Monte-Carlo simulations of X-ray detectors, in support to the hardware development efforts at Marshall Space Flight Center (MSFC). These computation-intensive simulations have been carried out entirely on the computers at UAH. They have also carried out extensive simulations for astrophysical applications, taking advantage of the Monte-Carlo simulation codes developed previously at MSFC and further improved at UAH for detector simulations. One refereed paper and one contribution to conference proceedings have been resulted from this effort.

  3. X-ray Spectrometer

    NASA Technical Reports Server (NTRS)

    Porter, F. Scott

    2004-01-01

    The X-ray Spectrometer (XRS) instrument is a revolutionary non-dispersive spectrometer that will form the basis for the Astro-E2 observatory to be launched in 2005. We have recently installed a flight spare X R S microcalorimeter spectrometer at the EBIT-I facility at LLNL replacing the XRS from the earlier Astro-E mission and providing twice the resolution. The X R S microcalorimeter is an x-ray detector that senses the heat deposited by the incident photon. It achieves a high energy resolution by operating at 0.06K and by carefully controlling the heat capacity and thermal conductance. The XRS/EBIT instrument has 32 pixels in a square geometry and achieves an energy resolution of 6 eV at 6 keV, with a bandpass from 0.1 to 12 keV (or more at higher operating temperature). The instrument allows detailed studies of the x-ray line emission of laboratory plasmas. The XRS/EBIT also provides an extensive calibration "library" for the Astro-E2 observatory.

  4. Monitoring X-Ray Emission from X-Ray Bursters

    NASA Technical Reports Server (NTRS)

    Kaaret, Philip

    1998-01-01

    The goal of this investigation was to use the All-Sky Monitor on the Rossi X-Ray Timing Explorer (RXTE) in combination with the Burst and Transient Source Experiment on the Compton Gamma-Ray Observatory to simultaneously measure the x-ray (2-12 keV) and hard x-ray (20-100 keV) emission from x-ray bursters. The investigation was successful. We made the first simultaneous measurement of hard and soft x-ray emission and found a strong anticorrelation of hard and soft x-ray emission from the X-Ray Burster 4U 0614+091. The monitoring performed under this investigation was also important in triggering target of opportunity observations of x-ray bursters made under the investigation hard x-ray emission of x-ray bursters approved for RXTE cycles 1 and 2. These observations lead to a number of papers on high-frequency quasi-periodic oscillations and on hard x-ray emission from the x-ray bursters 4U 0614+091 and 4U 1705-44.

  5. The peak electromagnetic power radiated by lightning return strokes

    NASA Technical Reports Server (NTRS)

    Krider, E. P.; Guo, C.

    1983-01-01

    Estimates of the peak electromagnetic (EM) power radiated by return strokes have been made by integrating the Poynting vector of measured fields over an imaginary hemispherical surface that is centered on the lightning source, assuming that ground losses are negligible. Values of the peak EM power from first and subsequent strokes have means and standard deviations of 2 + or - 2 x 10 to the 10th and 3 + or - 4 x 10 to the 9th W, respectively. The average EM power that is radiated by subsequent strokes, at the time of the field peak, is about 2 orders of magnitude larger than the optical power that is radiated by these strokes in the wavelength interval from 0.4 to 1.1 micron; hence an upper limit to the radiative efficiency of a subsequent stroke is of the order of 1 percent or less at this time.

  6. Fluctuation X-Ray Scattering

    SciTech Connect

    Saldin, PI: D. K.; Co-I's: J. C. H. Spence and P. Fromme

    2013-01-25

    The work supported by the grant was aimed at developing novel methods of finding the structures of biomolecules using x-rays from novel sources such as the x-ray free electron laser and modern synchrotrons

  7. Quasi-monochromatic x-ray production from the cerium target

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Hayasi, Yasuomi; Mori, Hidezo; Tanaka, Etsuro; Takayama, Kazuyoshi; Ido, Hideaki; Sakamaki, Kimio; Tamakawa, Yoshiharu

    2000-12-01

    Quasi-monochromatic x-ray production from the plasma flash x-ray generator having a cerium-target radiation tube is described. The K-series characteristic x-rays from the cerium target are very useful in order to perform angiography using iodine-based contrast medium because the photon energies of the x-rays are just over the K-absorption edge of iodine. The generator employs a high-voltage power supply, a low-impedance coaxial transmission line, a high- voltage condenser with a capacity of 200 nF, a turbo- molecular pump, thyristor pulse generator as a trigger device, and a flash x-ray tube. The high-voltage main condenser is charge dup to 60 kV by the power supply, and the electric charges in the condenser are discharged to the tube after triggering the cathode electrode. The flash x- rays are then produced. The x-ray tube is of a demountable triode that is connected to the turbo molecular pump with a pressure approximately 1 mPa. As the electron flows from the cathode electrode are roughly converged to the cerium target by the electric field in the tube, the plasma x-ray source, which consists of metal ions and electrons, forms by the target evaporating. Both the tube voltage and current displayed damped oscillations, and their peak values increased according to increases in the charging voltage. In the present work, the peak tube voltage was much higher than the initial charging voltage of the main condenser, and the peak current was about 25 kA with a charging voltage of 60kV. When the charging voltage was increased, the plasma x- ray source formed, and the characteristic x-ray intensities of K-series lines increased. In this experiment, we observed low-photon-energy bremsstrauhlung rays at the region of less than the K-absorption edge, because the tube current maximized at a low tube voltage.

  8. Hard X-Ray Flares Preceding Soft X-Ray Outbursts in Aquila X-1: A Link between Neutron Star and Black Hole State Transitions

    NASA Astrophysics Data System (ADS)

    Yu, Wenfei; Klein-Wolt, Marc; Fender, Rob; van der Klis, Michiel

    2003-05-01

    We have analyzed Rossi X-Ray Timing Explorer data of the neutron star transient Aquila X-1 obtained during its outbursts in 1999 May/June and 2000 September/October. We find that in the early rise of these outbursts, a hard flare in the energy range above 15 keV preceded the soft X-ray peak. The hard X-ray flux of the hard flares at maximum was more than a factor of 3 stronger than at any other point in the outbursts. The rise of the hard X-ray flare to this maximum was consistent with a monotonically brightening low-/hard-state spectrum. After the peak of the hard flare, a sharp spectral transition occurred with spectral pivoting in the range 8-12 keV. Our timing analysis shows that during the hard flare, the power spectra were composed mainly of band-limited noise and a ~1-20 Hz quasi-periodic oscillation (QPO), which correlate in frequency. Immediately after the hard flare, the power spectra turned into power-law noise. The spectral and timing properties during and after the hard flares are very similar to those in black hole transients during the early rise of an outburst. We suggest that these hard flares and spectral transitions in Aql X-1 are of the same origin as those observed in black hole transients. This leads to the association of the 1-20 Hz QPOs and band-limited noise in Aql X-1 with those in black hole transients. We discuss the impact of this discovery on our understanding of soft X-ray transient outbursts, state transitions, and variability in X-ray binaries.

  9. High-energy X-ray detection of G359.89–0.08 (SGR A–E): Magnetic flux tube emission powered by cosmic rays?

    SciTech Connect

    Zhang, Shuo; Hailey, Charles J.; Gotthelf, Eric V.; Mori, Kaya; Nynka, Melania; Baganoff, Frederick K.; Bauer, Franz E.; Boggs, Steven E.; Craig, William W.; Tomsick, John A.; Christensen, Finn E.; Harrison, Fiona A.; Stern, Daniel; Zhang, William W.

    2014-03-20

    We report the first detection of high-energy X-ray (E > 10 keV) emission from the Galactic center non-thermal filament G359.89–0.08 (Sgr A–E) using data acquired with the Nuclear Spectroscopic Telescope Array (NuSTAR). The bright filament was detected up to ∼50 keV during a NuSTAR Galactic center monitoring campaign. The featureless power-law spectrum with a photon index Γ ≈ 2.3 confirms a non-thermal emission mechanism. The observed flux in the 3-79 keV band is F{sub X} = (2.0 ± 0.1) × 10{sup –12} erg cm{sup –2} s{sup –1}, corresponding to an unabsorbed X-ray luminosity L{sub X} = (2.6 ± 0.8) × 10{sup 34} erg s{sup –1} assuming a distance of 8.0 kpc. Based on theoretical predictions and observations, we conclude that Sgr A–E is unlikely to be a pulsar wind nebula (PWN) or supernova remnant-molecular cloud (SNR-MC) interaction, as previously hypothesized. Instead, the emission could be due to a magnetic flux tube which traps TeV electrons. We propose two possible TeV electron sources: old PWNe (up to ∼100 kyr) with low surface brightness and radii up to ∼30 pc or MCs illuminated by cosmic rays (CRs) from CR accelerators such as SNRs or Sgr A*.

  10. Characteristics of the low photon energy plasma x-ray generator

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Toriyabe, Hiroyuki; Sagae, Michiaki; Hayasi, Yasuomi; Usuki, Tatsumi; Sato, Koetsu; Ido, Hideaki; Takayama, Kazuyoshi; Tamakawa, Yoshiharu

    2001-12-01

    The tentative experiment for production low photon energy characteristic x-rays using a capillary is described. The capillary of this flash x-ray tube was improved in order to increase the x-ray intensity and to generate high-intensity characteristic x-rays by forming the linear plasma x-ray source. The generator consists of a high-voltage power supply, a polarity-inversion ignitron pulse generator, a turbo-molecular pump, and a radiation tube with a capillary. A high-voltage condenser of 0.2(mu) F in the pulse generator is charged up to 20 kV by the power supply, and the electric charges in the condenser are discharged to the capillary in the tube after closing the ignitron. In the present work, the pump evacuates air from the tube with a pressure of about 1 mPa, and the aluminum anode and cathode electrodes are employed to produce characteristic x-rays. The diameter and the length of the capillary are 2.0 and 29 mm, respectively, and both the cathode voltage and the discharge current displayed almost the damped oscillations. The peak values of the voltage and current increased when the charging voltage was increase, and their maximum values were -9.2 kV and 4.6 kA, respectively. The x-ray durations detected by a 1.6 micrometers aluminum filter were less than 10microsecond(s) , and we observe the intensity of aluminum characteristic x-rays.

  11. Apparatus for monitoring X-ray beam alignment

    DOEpatents

    Steinmeyer, Peter A.

    1991-10-08

    A self-contained, hand-held apparatus is provided for minitoring alignment of an X-ray beam in an instrument employing an X-ray source. The apparatus includes a transducer assembly containing a photoresistor for providing a range of electrical signals responsive to a range of X-ray beam intensities from the X-ray beam being aligned. A circuit, powered by a 7.5 VDC power supply and containing an audio frequency pulse generator whose frequency varies with the resistance of the photoresistor, is provided for generating a range of audible sounds. A portion of the audible range corresponds to low X-ray beam intensity. Another portion of the audible range corresponds to high X-ray beam intensity. The transducer assembly may include an a photoresistor, a thin layer of X-ray fluorescent material, and a filter layer transparent to X-rays but opaque to visible light. X-rays from the beam undergoing alignment penetrate the filter layer and excite the layer of fluorescent material. The light emitted from the fluorescent material alters the resistance of the photoresistor which is in the electrical circuit including the audio pulse generator and a speaker. In employing the apparatus, the X-ray beam is aligned to a complete alignment by adjusting the X-ray beam to produce an audible sound of the maximum frequency.

  12. Apparatus for monitoring X-ray beam alignment

    DOEpatents

    Steinmeyer, P.A.

    1991-10-08

    A self-contained, hand-held apparatus is provided for monitoring alignment of an X-ray beam in an instrument employing an X-ray source. The apparatus includes a transducer assembly containing a photoresistor for providing a range of electrical signals responsive to a range of X-ray beam intensities from the X-ray beam being aligned. A circuit, powered by a 7.5 VDC power supply and containing an audio frequency pulse generator whose frequency varies with the resistance of the photoresistor, is provided for generating a range of audible sounds. A portion of the audible range corresponds to low X-ray beam intensity. Another portion of the audible range corresponds to high X-ray beam intensity. The transducer assembly may include an a photoresistor, a thin layer of X-ray fluorescent material, and a filter layer transparent to X-rays but opaque to visible light. X-rays from the beam undergoing alignment penetrate the filter layer and excite the layer of fluorescent material. The light emitted from the fluorescent material alters the resistance of the photoresistor which is in the electrical circuit including the audio pulse generator and a speaker. In employing the apparatus, the X-ray beam is aligned to a complete alignment by adjusting the X-ray beam to produce an audible sound of the maximum frequency. 2 figures.

  13. Global Properties of X-Ray Flashes and X-Ray-Rich GRBs Observed by Swift

    NASA Technical Reports Server (NTRS)

    Sakamoto, T.; Yamazaki, R.; Cummings, J.; Krimm, H.; Parsons, A.; Hullinger, D.; Barbier, L.; Fenimore, E.; Markwardt, C.; Tueller, J.; Sato, G.; Barthelmy, S.; Gehrels, N.; Palmer, D.

    2007-01-01

    We describe and discuss the spectral and temporal characteristics of the prompt emission and X-ray afterglow emission of X-ray flashes (XRFs) detected and observed by Swift between December 2005 and September 2006. We compare these characteristics to a sample of X-ray rich gamma-ray bursts (XRRs) and conventional classical gamma-ray bursts (C-GRBs)observed during the same period. We confirm the correlation between Epeak and fluence noted by others and find further evidence that XRFs and C-GRBs form a continuum. We also confirmed that our known redshift samples are consistent with the correlation between the peak energy (Epeak) and the isotropic radiated energy (Eiso), so called the Epeak-Eiso relation. The spectral properties of X-ray afterglows are similar to those of gamma-ray burst afterglows, but the temporal properties of the two classes are quite different. We found that the light curves of C-GRBs afterglow show a break to steeper indices (shallow-to-steep break) at much earlier times than do XRF afterglows. Moreover, the overall luminosity of X-ray afterglows of XRFs are systematically smaller by a factor of two or more compared with that of C-GRBs. These distinct differences in the X-ray afterglow between XRFs and C-GRBs are key to understanding not only a mysterious shallow-to-steep phase in the X-ray afterglow but also the unique nature of XRFs.

  14. X-ray Crystallography Facility

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Edward Snell, a National Research Council research fellow at NASA's Marshall Space Flight Center (MSFC), prepares a protein crystal for analysis by x-ray crystallography as part of NASA's structural biology program. The small, individual crystals are bombarded with x-rays to produce diffraction patterns, a map of the intensity of the x-rays as they reflect through the crystal.

  15. Tunable X-ray source

    DOEpatents

    Boyce, James R.

    2011-02-08

    A method for the production of X-ray bunches tunable in both time and energy level by generating multiple photon, X-ray, beams through the use of Thomson scattering. The method of the present invention simultaneously produces two X-ray pulses that are tunable in energy and/or time.

  16. Compton backscattered collmated X-ray source

    DOEpatents

    Ruth, Ronald D.; Huang, Zhirong

    2000-01-01

    A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

  17. Compton backscattered collimated x-ray source

    DOEpatents

    Ruth, R.D.; Huang, Z.

    1998-10-20

    A high-intensity, inexpensive and collimated x-ray source is disclosed for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications. 4 figs.

  18. Compton backscattered collimated x-ray source

    DOEpatents

    Ruth, Ronald D.; Huang, Zhirong

    1998-01-01

    A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

  19. Assembled Chandra X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This photograph shows TRW technicians preparing the assembled Chandra X-Ray Observatory (CXO) for an official unveiling at TRW Space and Electronics Group of Redondo Beach, California. The CXO is formerly known as the Advanced X-Ray Astrophysics Facility (AXAF), which was renamed in honor of the late Indian-American Astronomer, Subrahmanyan Chandrasekhar in 1999. The CXO will help astronomers world-wide better understand the structure and evolution of the universe by studying powerful sources of x-rays such as exploding stars, matter falling into black holes, and other exotic celestial objects. X-ray astronomy can only be done from space because Earth's atmosphere blocks x-rays from reaching the surface. The Observatory provides images that are 50 times more detailed than previous x-ray missions. At more than 45 feet in length and weighing more than 5 tons, it will be one of the largest objects ever placed in Earth orbit by the Space Shuttle. TRW, Inc. was the prime contractor and assembled and tested the observatory for NASA. The CXO program is managed by the Marshall Space Flight Center. The Observatory was launched on July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. (Image courtesy of TRW)

  20. Assembled Chandra X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This photograph shows a TRW technician inspecting the completely assembled Chandra X-ray Observatory (CXO) in the Thermal Vacuum Chamber at TRW Space and Electronics Group of Redondo Beach, California. The CXO is formerly known as the Advanced X-Ray Astrophysics Facility (AXAF), which was renamed in honor of the late Indian-American Astronomer, Subrahmanyan Chandrasekhar in 1999. The CXO will help astronomers worldwide better understand the structure and evolution of the universe by studying powerful sources of x-rays such as exploding stars, matter falling into black holes and other exotic celestial objects. X-ray astronomy can only be done from space because Earth's atmosphere blocks x-rays from reaching the surface. The Observatory provides images that are 50 times more detailed than previous x-ray missions. At more than 45 feet in length and weighing more than 5 tons, it will be one of the largest objects ever placed in Earth orbit by the Space Shuttle. TRW, Inc. was the prime contractor and assembled and tested the observatory for NASA. The CXO program is managed by the Marshall Space Flight Center. The Observatory was launched on July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. (Image courtesy of TRW)

  1. Years of Magnetic X-Ray Dichroism

    NASA Astrophysics Data System (ADS)

    van der Laan, Gerrit

    A historical overview of magnetic x-ray dichroism is presented. I describe the first theoretical and experimental results that have led to the development of this powerful technique for element-specific magnetometry. The theoretical progress of the sum rules is also described, starting with the spinorbit sum rule for the isotropic spectrum which led on to the spin and orbital moment sum rules for x-ray magnetic circular dichroism. The latter has been particularly useful to understand the magnetic anisotropy in thin films and multilayers. Further developments of circular dichroism in (resonant) photoemission and Auger, as well as x-ray detected optical activity, also are summarized. Currently, magnetic x-ray dichroism finds a wide application in x-ray spectroscopy and imaging for the study of magnetic materials and it is considered to be one of the most important discoveries in the field of magnetism in the last few decennia. It is hard to imagine modern research into magnetism without the aid of polarized x-rays.

  2. Portable x-ray fluorescence spectrometer for environmental monitoring of inorganic pollutants

    NASA Technical Reports Server (NTRS)

    Thornton, Michael G. (Inventor); Clark, III, Benton C. (Inventor)

    1991-01-01

    A portable x-ray fluorescence spectrometer has a portable sensor unit containing a battery, a high voltage power supply, an x-ray tube which produces a beam x-ray radiation directed toward a target sample, and a detector for fluorescent x-rays produced by the sample. If a silicon-lithium detector is used, the sensor unit also contains either a thermoelectric or thermochemical cooler, or a small dewar flask containing liquid nitrogen to cool the detector. A pulse height analyzer (PHA) generates a spectrum of data for each sample consisting of the number of fluorescent x-rays detected as a function of their energy level. The PHA can also store spectrum data for a number of samples in the field. A processing unit can be attached to the pulse height analyzer to upload and analyze the stored spectrum data for each sample. The processing unit provides a graphic display of the spectrum data for each sample, and provides qualitative and/or quantitative analysis of the elemental composition of the sample by comparing the peaks in the sample spectrum against known x-ray energies for various chemical elements. An optional filtration enclosure can be used to filter particles from a sample suspension, either in the form of a natural suspension or a chemically created precipitate. The sensor unit is then temporarily attached to the filtration unit to analyze the particles collected by the filter medium.

  3. Development of a Sub-Picosecond Tunable X-Ray Source at the LLNL Electron Linac

    SciTech Connect

    Slaughter, D; Springer, P; Le Sage, G; Crane, J; Ditmire, T; Cowan, T; Anderson, S G; Rosenzweig, J B

    2001-08-31

    The use of ultrafast laser pulses to generate very high brightness, ultra short (fs to ps) pulses of x-rays is a topic of great interest to the x-ray user community. In principle, femtosecond-scale pump-probe experiments can be used to temporally resolve structural dynamics of materials on the time scale of atomic motion. The development of sub-ps x-ray pulses will make possible a wide range of materials and plasma physics studies with unprecedented time resolution. A current project at LLNL will provide such a novel x-ray source based on Thomson scattering of high power, short laser pulses with a high peak brightness, relativistic electron bunch. The system is based on a 5 mm-mrad normalized emittance photoinjector, a 100 MeV electron RF linac, and a 300 mJ, 35 fs solid-state laser system. The Thomson x-ray source produces ultra fast pulses with x-ray energies capable of probing into high-Z metals, and a high flux per pulse enabling single shot experiments. The system will also operate at a high repetition rate ({approx} 10 Hz).

  4. High-intensity double-pulse X-ray free-electron laser

    DOE PAGESBeta

    Marinelli, A.; Ratner, D.; Lutman, A. A.; Turner, J.; Welch, J.; Decker, F. J.; Loos, H.; Behrens, C.; Gilevich, S.; Miahnahri, A. A.; et al

    2015-03-06

    The X-ray free-electron laser has opened a new era for photon science, improving the X-ray brightness by ten orders of magnitude over previously available sources. Similar to an optical laser, the spectral and temporal structure of the radiation pulses can be tailored to the specific needs of many experiments by accurately manipulating the lasing medium, that is, the electron beam. Here we report the generation of mJ-level two-colour hard X-ray pulses of few femtoseconds duration with an XFEL driven by twin electron bunches at the Linac Coherent Light Source. This performance represents an improvement of over an order of magnitudemore » in peak power over state-of-the-art two-colour XFELs. The unprecedented intensity and temporal coherence of this new two-colour X-ray free-electron laser enable an entirely new set of scientific applications, ranging from X-ray pump/X-ray probe experiments to the imaging of complex biological samples with multiple wavelength anomalous dispersion.« less

  5. High-intensity double-pulse X-ray free-electron laser

    SciTech Connect

    Marinelli, A.; Ratner, D.; Lutman, A. A.; Turner, J.; Welch, J.; Decker, F. J.; Loos, H.; Behrens, C.; Gilevich, S.; Miahnahri, A. A.; Vetter, S.; Maxwell, T. J.; Ding, Y.; Coffee, R.; Wakatsuki, S.; Huang, Z.

    2015-03-06

    The X-ray free-electron laser has opened a new era for photon science, improving the X-ray brightness by ten orders of magnitude over previously available sources. Similar to an optical laser, the spectral and temporal structure of the radiation pulses can be tailored to the specific needs of many experiments by accurately manipulating the lasing medium, that is, the electron beam. Here we report the generation of mJ-level two-colour hard X-ray pulses of few femtoseconds duration with an XFEL driven by twin electron bunches at the Linac Coherent Light Source. This performance represents an improvement of over an order of magnitude in peak power over state-of-the-art two-colour XFELs. The unprecedented intensity and temporal coherence of this new two-colour X-ray free-electron laser enable an entirely new set of scientific applications, ranging from X-ray pump/X-ray probe experiments to the imaging of complex biological samples with multiple wavelength anomalous dispersion.

  6. High-intensity double-pulse X-ray free-electron laser

    PubMed Central

    Marinelli, A.; Ratner, D.; Lutman, A. A.; Turner, J.; Welch, J.; Decker, F.-J.; Loos, H.; Behrens, C.; Gilevich, S.; Miahnahri, A. A.; Vetter, S.; Maxwell, T.J.; Ding, Y.; Coffee, R.; Wakatsuki, S.; Huang, Z.

    2015-01-01

    The X-ray free-electron laser has opened a new era for photon science, improving the X-ray brightness by ten orders of magnitude over previously available sources. Similar to an optical laser, the spectral and temporal structure of the radiation pulses can be tailored to the specific needs of many experiments by accurately manipulating the lasing medium, that is, the electron beam. Here we report the generation of mJ-level two-colour hard X-ray pulses of few femtoseconds duration with an XFEL driven by twin electron bunches at the Linac Coherent Light Source. This performance represents an improvement of over an order of magnitude in peak power over state-of-the-art two-colour XFELs. The unprecedented intensity and temporal coherence of this new two-colour X-ray free-electron laser enable an entirely new set of scientific applications, ranging from X-ray pump/X-ray probe experiments to the imaging of complex biological samples with multiple wavelength anomalous dispersion. PMID:25744344

  7. X-ray and Sunyaev-Zel'Dovich properties of the warm-hot intergalactic medium

    SciTech Connect

    Ursino, E.; Galeazzi, M.; Huffenberger, K.

    2014-07-01

    We use numerical simulations to predict the soft X-ray ([0.4-0.6] keV) and Sunyaev-Zel'dovich (SZ) signal (at 150 GHz) from a large-scale structure in the universe and then compute two-point statistics to study the spatial distribution and time evolution of the signals. The average X-ray signal predicted for the warm-hot intergalactic medium (WHIM) is in good agreement with observational constraints that set it at about 10% of the total diffuse X-ray background. The characteristic angle computed with the autocorrelation function is of the order of some arcminutes and becomes smaller at higher redshift. The power spectrum peak of the SZ due to the WHIM is at l ∼ 10,000 and has an amplitude of ∼0.2 μK{sup 2}, about one order of magnitude below the signal measured with telescopes like Planck, Atacama Cosmology Telescope, and South Pole Telescope. Even if the high-redshift WHIM signal is too weak to be detected using X-rays only, the small-scale correlation between X-ray and SZ maps is dominated by the high-redshift WHIM. This makes the analysis of the SZ signal in support of X-rays a promising tool to study the early time WHIM.

  8. Diamond for high-heat-load synchrotron x-ray applications

    SciTech Connect

    Lee, Wah-Keat

    1994-12-31

    Synchrotron facilities worldwide provide scientists with useful radiation in the ultraviolet to the x-ray regime. Third-generation synchrotron sources win deliver photon fluxes in the 10{sup 15} photons/s/0.1%BW range, with brilliance on the order of 10{sup 18} photons/s/0.1%BW/mrad{sup 2}/mm{sup 2}. Along with the increase in flux and brilliance is an increase in the power and power densities of the x-ray beam. Depending on the particular insertion device, the x-ray beam can have total power in excess of 10 kW and peak power, density of more than 400 W/mm{sup 2}. Such high heat loads are a major challenge in the design and fabrication of x-ray beamline components. The superior thermal and mechanical properties of diamond make it a good candidate as material in these components. Single crystal diamonds can be used as x-ray monochromators, while polycrystalline or CVD diamonds can be used in a variety of ways on the front-end beamline components. This paper discusses the issues regarding the feasibility of using diamond in third-generation synchrotron beamline components.

  9. Development of a kilowatt-class, joule-level ultrafast laser for driving compact high average power coherent EUV/soft x-ray sources

    NASA Astrophysics Data System (ADS)

    Reagan, Brendan A.; Baumgarten, Cory M.; Pedicone, Michael A.; Bravo, Herman; Yin, Liang; Woolston, Mark; Wang, Hanchen; Menoni, Carmen S.; Rocca, Jorge J.

    2016-03-01

    Our recent progress in the development of high energy / high average power, chirped pulse amplification laser systems based on diode-pumped, cryogenically-cooled Yb:YAG amplifiers is discussed, including the demonstration of a laser that produces 1 Joule, sub-10 picosecond duration, λ = 1.03μm pulses at 500 Hz repetition rate. This compact, all-diodepumped laser combines a mode-locked Yb:KYW oscillator and a water-cooled Yb:YAG preamplifer with two cryogenic power amplification stages to produce 1.5 Joule pulses with high beam quality which are subsequently compressed. This laser system occupies an optical table area of less than 1.5x3m2. This laser was employed to pump plasma-based soft x-ray lasers at λ = 10-20nm at repetition rates >=100 Hz. To accomplish this, temporally-shaped pulses were focused at grazing incidence into a high aspect ratio line focus using cylindrical optics on a high shot capacity rotating metal target. This results in an elongated plasma amplifier that produces microjoule pulses at several narrow-linewidth EUV wavelengths between λ = 109Å and 189Å. The resulting fraction of a milliwatt average powers are the highest reported to date for a compact, coherent source operating at these wavelengths, to the best of our knowledge.

  10. Anomalous X-ray diffraction with soft X-ray synchrotron radiation.

    PubMed

    Carpentier, P; Berthet-Colominas, C; Capitan, M; Chesne, M L; Fanchon, E; Lequien, S; Stuhrmann, H; Thiaudière, D; Vicat, J; Zielinski, P; Kahn, R

    2000-07-01

    Anomalous diffraction with soft X-ray synchrotron radiation opens new possibilities in protein crystallography and materials science. Low-Z elements like silicon, phosphorus, sulfur and chlorine become accessible as new labels in structural studies. Some of the heavy elements like uranium exhibit an unusually strong dispersion at their M(V) absorption edge (lambdaMV = 3.497 A, E(MV) = 3545 eV) and so does thorium. Two different test experiments are reported here showing the feasibility of anomalous X-ray diffraction at long wavelengths with a protein containing uranium and with a salt containing chlorine atoms. With 110 electrons the anomalous scattering amplitude of uranium exceeds by a factor of 4 the resonance scattering of other strong anomalous scatterers like that of the lanthanides at their L(III) edge. The resulting exceptional phasing power of uranium is most attractive in protein crystallography using the multi-wavelength anomalous diffraction (MAD) method. The anomalous dispersion of an uranium derivative of asparaginyl-tRNA synthetase (hexagonal unit cell; a = 123.4 A, c = 124.4 A) has been measured for the first time at 4 wavelengths near the M(V) edge using the beamline ID1 of ESRF (Grenoble, France). The present set up allowed to measure only 30% of the possible reflections at a resolution of 4 A, mainly because of the low sensitivity of the CCD detector. In the second experiment, the dispersion of the intensity of 5 X-ray diffraction peaks from pentakismethylammonium undecachlorodibismuthate (PMACB, orthorhombic unit cell; a = 13.003 A, b = 14.038 A, c = 15.450 A) has been measured at 30 wavelengths near the K absorption edge of chlorine (lambdaK = 4.397 A, EK= 2819.6 eV). All reflections within the resolution range from 6.4 A to 3.4 A expected in the 20 degree scan were observed. The chemical state varies between different chlorine atoms of PMACB, and so does the dispersion of different Bragg peaks near the K-edge of chlorine. The results reflect

  11. X-ray satellite

    NASA Technical Reports Server (NTRS)

    1985-01-01

    An overview of the second quarter 1985 development of the X-ray satellite project is presented. It is shown that the project is proceeding according to plan and that the projected launch date of September 9, 1987 is on schedule. An overview of the work completed and underway on the systems, subsystems, payload, assembly, ground equipment and interfaces is presented. Problem areas shown include cost increases in the area of focal instrumentation, the star sensor light scattering requirements, and postponements in the data transmission subsystems.

  12. SMM x ray polychromator

    NASA Technical Reports Server (NTRS)

    Saba, J. L. R.

    1993-01-01

    The objective of the X-ray Polychromator (XRP) experiment was to study the physical properties of solar flare plasma and its relation to the parent active region to understand better the flare mechanism and related solar activity. Observations were made to determine the temperature, density, and dynamic structure of the pre-flare and flare plasma as a function of wavelength, space and time, the extent to which the flare plasma departs from thermal equilibrium, and the variation of this departure with time. The experiment also determines the temperature and density structure of active regions and flare-induced changes in the regions.

  13. X-Ray Detector Simulations - Oral Presentation

    SciTech Connect

    Tina, Adrienne

    2015-08-20

    The free-electron laser at LCLS produces X-Rays that are used in several facilities. This light source is so bright and quick that we are capable of producing movies of objects like proteins. But making these movies would not be possible without a device that can detect the X-Rays and produce images. We need X-Ray cameras. The challenges LCLS faces include the X-Rays’ high repetition rate of 120 Hz, short pulses that can reach 200 femto-seconds, and extreme peak brightness. We need detectors that are compatible with this light source, but before they can be used in the facilities, they must first be characterized. My project was to do just that, by making a computer simulation program. My presentation discusses the individual detectors I simulated, the details of my program, and how my project will help determine which detector is most useful for a specific experiment.

  14. Synchrotron X-ray techniques for fluid dynamics

    NASA Astrophysics Data System (ADS)

    Kastengren, Alan; Powell, Christopher F.

    2014-03-01

    X-ray diagnostics have the potential for making quantitative measurements in many flowfields where optical diagnostics are challenging, especially multiphase flows. In the past, many such measurements have been taken with laboratory-scale X-ray sources. This review describes the measurements that are possible with synchrotron X-ray sources, which can provide high-flux, tunable, monochromatic X-ray beams that cannot be created with laboratory sources. The relevant properties of X-rays and their interactions with matter are described. The types and capabilities of various X-ray optics and sources are discussed. Finally, four major X-ray diagnostics are described in detail. X-ray radiography provides quantitative measurements of density in variable-density flows. X-ray phase-contrast imaging is used to visualize multiphase flows with high spatial and temporal resolution. X-ray fluorescence spectroscopy shows significant promise to study mixing in single-phase and multiphase flows. Small-angle X-ray scattering is a powerful technique to examine small-scale particles in flows.

  15. Soft X-ray observations of the interacting galaxies NGC 1808 and NGC 1792

    NASA Technical Reports Server (NTRS)

    Dahlem, Michael; Hartner, Gisela D.; Junkes, Norbert

    1994-01-01

    The soft X-ray emission from both galaxies NGC 1808 and NGC 1792, which we investigated using the ROSAT HRI and Position Sensitive Proportional Counter (PSPC), comes most probably from X-ray binaries and/or from hot ionized gas in powerful supernovae and supernova remnants. The distribution of the soft X-ray emission in NGC 1808, which is very well correlated with the distribution of 'radio knots' in the central starburst, suggests that hot gas dominates the emission in the ROSAT band. This is consistent with the results of PSPC observations by Junkes et al. The total soft X-ray luminosity in the ROSAT band of NGC 1808 of 1.2 x 10(exp 41) ergs/s is relatively high compared with other nearby starburst galaxies. Soft X-ray emission of diffuse hot ionized gas that is associated with the outflow traced by the conspicuous dust filaments protruding from the plane has been detected. Its luminosity in the ROSAT band is greater than or equal to 3 x 10(exp 39) ergs/s, i.e., several percent of the total soft X-ray luminosity. Thus, NGC 1808 is another example for a 'superwind' galaxy. The soft X-ray radiation from NGC 1792 is more likely to be dominated by a population of high-mass X-ray binaries or young powerful supernovae which are associated with the high-level star formation going on in the very prominent H II regions along its spiral arms, with possibly an additional contribution of diffuse hot ionized gas. The soft X-ray luminosities of individual sources lie in the range of 5 x 10(exp 38) to 2.7 x 10(exp 39) ergs/s, thus exceeding by far the Eddington luminosity of an accreting neutron star. The peaks of some of these soft X-ray luminous sources are offset with respect to the H II regions by a few hundred parsecs. Accordingly, if the soft X-ray sources should originate from the H II regions, their relative velocities with respect to the ambient medium have to be as high as approximately 100 km/s.

  16. X-Ray Spectra from MHD Simulations of Accreting Black Holes

    NASA Technical Reports Server (NTRS)

    Schnittman, Jeremy D.; Noble, Scott C.; Krolik, Julian H.

    2011-01-01

    We present new global calculations of X-ray spectra from fully relativistic magneto-hydrodynamic (MHO) simulations of black hole (BH) accretion disks. With a self consistent radiative transfer code including Compton scattering and returning radiation, we can reproduce the predominant spectral features seen in decades of X-ray observations of stellar-mass BHs: a broad thermal peak around 1 keV, power-law continuum up to >100 keV, and a relativistically broadened iron fluorescent line. By varying the mass accretion rate, different spectral states naturally emerge: thermal-dominant, steep power-law, and low/hard. In addition to the spectral features, we briefly discuss applications to X-ray timing and polarization.

  17. Nanofocusing of hard X-ray free electron laser pulses using diamond based Fresnel zone plates

    NASA Astrophysics Data System (ADS)

    David, C.; Gorelick, S.; Rutishauser, S.; Krzywinski, J.; Vila-Comamala, J.; Guzenko, V. A.; Bunk, O.; Färm, E.; Ritala, M.; Cammarata, M.; Fritz, D. M.; Barrett, R.; Samoylova, L.; Grünert, J.; Sinn, H.

    2011-08-01

    A growing number of X-ray sources based on the free-electron laser (XFEL) principle are presently under construction or have recently started operation. The intense, ultrashort pulses of these sources will enable new insights in many different fields of science. A key problem is to provide x-ray optical elements capable of collecting the largest possible fraction of the radiation and to focus into the smallest possible focus. As a key step towards this goal, we demonstrate here the first nanofocusing of hard XFEL pulses. We developed diamond based Fresnel zone plates capable of withstanding the full beam of the world's most powerful x-ray laser. Using an imprint technique, we measured the focal spot size, which was limited to 320 nm FWHM by the spectral band width of the source. A peak power density in the focal spot of 4×1017 W/cm2 was obtained at 70 fs pulse length.

  18. Nanofocusing of hard X-ray free electron laser pulses using diamond based Fresnel zone plates.

    PubMed

    David, C; Gorelick, S; Rutishauser, S; Krzywinski, J; Vila-Comamala, J; Guzenko, V A; Bunk, O; Färm, E; Ritala, M; Cammarata, M; Fritz, D M; Barrett, R; Samoylova, L; Grünert, J; Sinn, H

    2011-01-01

    A growing number of X-ray sources based on the free-electron laser (XFEL) principle are presently under construction or have recently started operation. The intense, ultrashort pulses of these sources will enable new insights in many different fields of science. A key problem is to provide x-ray optical elements capable of collecting the largest possible fraction of the radiation and to focus into the smallest possible focus. As a key step towards this goal, we demonstrate here the first nanofocusing of hard XFEL pulses. We developed diamond based Fresnel zone plates capable of withstanding the full beam of the world's most powerful x-ray laser. Using an imprint technique, we measured the focal spot size, which was limited to 320 nm FWHM by the spectral band width of the source. A peak power density in the focal spot of 4×10(17)W/cm(2) was obtained at 70 fs pulse length. PMID:22355576

  19. Scanning X-Ray Or Extreme-Ultraviolet Monochromator

    NASA Technical Reports Server (NTRS)

    Hoover, Richard

    1991-01-01

    Wavelength of peak transmission of proposed high-throughput, narrow-band-pass x-ray or extreme-ultraviolet monochromator continuously adjustable. Essential filtering and reflecting components designed according to principles described in "Compact X-Ray and Extreme-Ultraviolet Monochromator" (MFS-28499). However, angle of incidence varied to change wavelength of Bragg reflection.

  20. Monitoring X-Ray Emission from X-Ray Bursters

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Kaaret, Philip

    1999-01-01

    The scientific goal of this project was to monitor a selected sample of x-ray bursters using data from the All-Sky Monitor (ASM) on the Rossi X-Ray Timing Explorer together with data from the Burst and Transient Source Experiment (BATSE) on the Compton Gamma-Ray Observatory to study the long-term temporal evolution of these sources in the x-ray and hard x-ray bands. The project was closely related to "Long-Term Hard X-Ray Monitoring of X-Ray Bursters", NASA project NAG5-3891, and and "Hard x-ray emission of x-ray bursters", NASA project NAG5-4633, and shares publications in common with both of these. The project involved preparation of software for use in monitoring and then the actual monitoring itself. These efforts have lead to results directly from the ASM data and also from Target of Opportunity Observations (TOO) made with the Rossi X-Ray Timing Explorer based on detection of transient hard x-ray outbursts with the ASM and BATSE.

  1. X-ray emission current scaling experiments for compact single-tungsten-wire arrays at 80-nanosecond implosion times.

    PubMed

    Mazarakis, Michael G; Cuneo, Michael E; Stygar, William A; Harjes, Henry C; Sinars, Daniel B; Jones, Brent M; Deeney, Christopher; Waisman, Eduardo M; Nash, Thomas J; Struve, Kenneth W; McDaniel, Dillon H

    2009-01-01

    We report the results of a series of current scaling experiments with the Z accelerator for the compact, single, 20-mm diameter, 10-mm long, tungsten-wire arrays employed for the double-ended hohlraum ICF concept [M. E. Cuneo, Plasma Phys. Controlled Fusion 48, R1 (2006)]. We measured the z -pinch peak radiated x-ray power and total radiated x-ray energy as a function of the peak current, at a constant implosion time tau_{imp}=80ns . Previous x-ray emission current scaling for these compact arrays was obtained at tau_{imp}=95ns in the work of Stygar [Phys. Rev. E 69, 046403 (2004)]. In the present study we utilized lighter single-tungsten-wire arrays. For all the measurements, the load hardware dimensions, materials, and array wire number (N=300) were kept constant and were the same as the previous study. We also kept the normalized load current spatial and temporal profiles the same for all experiments reported in this work. Two different currents, 11.2+/-0.2MA and 17.0+/-0.3MA , were driven through the wire arrays. The average peak x-ray power for these compact wire arrays increased by 26%+/-7%to158+/-26TW at 17+/-0.3MA from the 125+/-24TW obtained at a peak current of 18.8+/-0.5MA with tau_{imp}=95ns . The higher peak power of the faster implosions may possibly be attributed to a higher implosion velocity, which in turn improves the implosion stability, and/or to shorter wire ablation times, which may lead to a decrease in trailing mass and trailing current. Our results show that the scaling of the radiated x-ray peak power and total radiated x-ray energy scaling with peak drive current to be closer to quadratic than the results of Stygar We find that the x-ray peak radiated power is P_{r} proportional, variantI;{1.57+/-0.20} and the total x-ray radiated energy E_{r} proportional, variantI;{1.9+/-0.24} . We also find that the current scaling exponent of the power is sensitive to the inclusion of a single data point with a peak power at least 1.9sigma below the

  2. Efficient generation of short and high-power x-ray free-electron-laser pulses based on superradiance with a transversely tilted beam

    NASA Astrophysics Data System (ADS)

    Prat, Eduard; Löhl, Florian; Reiche, Sven

    2015-10-01

    X-ray free electron lasers (XFELs) are innovative research tools able to produce high-power and short radiation pulses for multiple scientific applications. We present a new method to produce XFEL radiation with much higher power and shorter pulse lengths than the ones obtained at standard XFEL facilities. This will enable new kinds of experiments in scientific fields such as nonlinear optics and bioimaging. The scheme is based on introducing a transverse tilt to the electron beam, thus limiting the fraction of the bunch able to produce XFEL radiation. In the first part of the undulator beam line only the tail of the electron bunch lases. Then, by properly delaying and correcting the trajectory of the electron beam between some undulator modules, all the electrons can contribute to the amplification of a very short XFEL pulse. Apart from being efficient, our method is flexible since by tuning the tilt amplitude one can obtain shorter or more energetic XFEL pulses. The scheme can readily be applied since, besides the standard components of an XFEL facility, it only needs small chicanes between certain undulator modules. We have confirmed the validity of our proposal with numerical simulations done for the SwissFEL case.

  3. Experimental demonstration of a soft x-ray self-seeded free-electron laser

    DOE PAGESBeta

    Ratner, D.; Abela, R.; Amann, J.; Behrens, C.; Bohler, D.; Bouchard, G.; Bostedt, C.; Boyes, M.; Chow, K.; Cocco, D.; et al

    2015-02-06

    The Linac Coherent Light Source has added self-seeding capability to the soft x-ray range using a grating monochromator system. We report demonstration of soft x-ray self-seeding with a measured resolving power of 2000-5000, wavelength stability of 10-4, and an increase in peak brightness by a factor of 2-5 across the photon energy range of 500-1000 eV. By avoiding the need for a monochromator at the experimental station, the self-seeded beam can deliver as much as 50 fold higher brightness to users.

  4. Experimental demonstration of a soft x-ray self-seeded free-electron laser

    SciTech Connect

    Ratner, D.; Abela, R.; Amann, J.; Behrens, C.; Bohler, D.; Bouchard, G.; Bostedt, C.; Boyes, M.; Chow, K.; Cocco, D.; Decker, F. J.; Ding, Y.; Eckman, C.; Emma, P.; Fairley, D.; Feng, Y.; Field, C.; Flechsig, U.; Gassner, G.; Hastings, J.; Heimann, P.; Huang, Z.; Kelez, N.; Krzywinski, J.; Loos, H.; Lutman, A.; Marinelli, A.; Marcus, G.; Maxwell, T.; Moeller, S.; Morton, D.; Nuhn, H. D.; Rodes, N.; Schlotter, W.; Serkez, S.; Stevens, T.; Turner, J.; Walz, D.; Welch, J.; Wu, J.

    2015-02-06

    The Linac Coherent Light Source has added self-seeding capability to the soft x-ray range using a grating monochromator system. We report demonstration of soft x-ray self-seeding with a measured resolving power of 2000-5000, wavelength stability of 10-4, and an increase in peak brightness by a factor of 2-5 across the photon energy range of 500-1000 eV. By avoiding the need for a monochromator at the experimental station, the self-seeded beam can deliver as much as 50 fold higher brightness to users.

  5. Experimental demonstration of a soft x-ray self-seeded free-electron laser.

    PubMed

    Ratner, D; Abela, R; Amann, J; Behrens, C; Bohler, D; Bouchard, G; Bostedt, C; Boyes, M; Chow, K; Cocco, D; Decker, F J; Ding, Y; Eckman, C; Emma, P; Fairley, D; Feng, Y; Field, C; Flechsig, U; Gassner, G; Hastings, J; Heimann, P; Huang, Z; Kelez, N; Krzywinski, J; Loos, H; Lutman, A; Marinelli, A; Marcus, G; Maxwell, T; Montanez, P; Moeller, S; Morton, D; Nuhn, H D; Rodes, N; Schlotter, W; Serkez, S; Stevens, T; Turner, J; Walz, D; Welch, J; Wu, J

    2015-02-01

    The Linac Coherent Light Source has added a self-seeding capability to the soft x-ray range using a grating monochromator system. We report the demonstration of soft x-ray self-seeding with a measured resolving power of 2000-5000, wavelength stability of 10(-4), and an increase in peak brightness by a factor of 2-5 across the photon energy range of 500-1000 eV. By avoiding the need for a monochromator at the experimental station, the self-seeded beam can deliver as much as 50-fold higher brightness to users. PMID:25699448

  6. 21 CFR 872.1810 - Intraoral source x-ray system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Intraoral source x-ray system. 872.1810 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1810 Intraoral source x-ray system. (a) Identification. An intraoral source x-ray system is an electrically powered device that produces x-rays and...

  7. 21 CFR 872.1800 - Extraoral source x-ray system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Extraoral source x-ray system. 872.1800 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1800 Extraoral source x-ray system. (a) Identification. An extraoral source x-ray system is an AC-powered device that produces x-rays and is intended...

  8. 21 CFR 872.1810 - Intraoral source x-ray system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Intraoral source x-ray system. 872.1810 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1810 Intraoral source x-ray system. (a) Identification. An intraoral source x-ray system is an electrically powered device that produces x-rays and...

  9. 21 CFR 872.1800 - Extraoral source x-ray system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Extraoral source x-ray system. 872.1800 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1800 Extraoral source x-ray system. (a) Identification. An extraoral source x-ray system is an AC-powered device that produces x-rays and is intended...

  10. 21 CFR 872.1810 - Intraoral source x-ray system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Intraoral source x-ray system. 872.1810 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1810 Intraoral source x-ray system. (a) Identification. An intraoral source x-ray system is an electrically powered device that produces x-rays and...

  11. 21 CFR 872.1810 - Intraoral source x-ray system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Intraoral source x-ray system. 872.1810 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1810 Intraoral source x-ray system. (a) Identification. An intraoral source x-ray system is an electrically powered device that produces x-rays and...

  12. 21 CFR 872.1810 - Intraoral source x-ray system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Intraoral source x-ray system. 872.1810 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1810 Intraoral source x-ray system. (a) Identification. An intraoral source x-ray system is an electrically powered device that produces x-rays and...

  13. 21 CFR 872.1800 - Extraoral source x-ray system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Extraoral source x-ray system. 872.1800 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1800 Extraoral source x-ray system. (a) Identification. An extraoral source x-ray system is an AC-powered device that produces x-rays and is intended...

  14. 21 CFR 872.1800 - Extraoral source x-ray system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Extraoral source x-ray system. 872.1800 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1800 Extraoral source x-ray system. (a) Identification. An extraoral source x-ray system is an AC-powered device that produces x-rays and is intended...

  15. 21 CFR 872.1800 - Extraoral source x-ray system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Extraoral source x-ray system. 872.1800 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1800 Extraoral source x-ray system. (a) Identification. An extraoral source x-ray system is an AC-powered device that produces x-rays and is intended...

  16. Two conformations in the human kinesin power stroke defined by X-ray crystallography and EPR spectroscopy.

    PubMed

    Sindelar, Charles V; Budny, Mary Jane; Rice, Sarah; Naber, Nariman; Fletterick, Robert; Cooke, Roger

    2002-11-01

    Crystal structures of the molecular motor kinesin show conformational variability in a structural element called the neck linker. Conformational change in the neck linker, initiated by ATP exchange, is thought to drive the movement of kinesin along the microtubule track. We use site-specific EPR measurements to show that when microtubules are absent, the neck linker exists in equilibrium between two structural states (disordered and 'docked'). The active site nucleotide does not control the position taken by the neck linker. However, we find that sulfate can specifically bind near the nucleotide site and stabilize the docked neck linker conformation, which we confirmed by solving a new crystal structure. Comparing the crystal structures of our construct with the docked or undocked neck linker reveals how microtubule binding may activate the nucleotide-sensing mechanism of kinesin, allowing neck linker transitions to power motility. PMID:12368902

  17. Implications of stimulated resonant X-ray scattering for spectroscopy, imaging, and diffraction in the regime from soft to hard X-rays

    NASA Astrophysics Data System (ADS)

    Schreck, Simon; Beye, Martin; Föhlisch, Alexander

    2015-12-01

    The ultrahigh peak brilliance available at X-ray free-electron lasers opens the possibility to transfer nonlinear spectroscopic techniques from the optical and infrared into the X-ray regime. Here, we present a conceptual treatment of nonlinear X-ray processes with an emphasis on stimulated resonant X-ray scattering as well as a quantitative estimate for the scaling of stimulated X-ray scattering cross sections. These considerations provide the order of magnitude for the required X-ray intensities to experimentally observe stimulated resonant X-ray scattering for photon energies ranging from the extreme ultraviolet to the soft and hard X-ray regimes. At the same time, the regime where stimulated processes can safely be ignored is identified. With this basis, we discuss prospects and implications for spectroscopy, scattering, and imaging experiments at X-ray free-electron lasers.

  18. High peak power diode stacks for high energy lasers

    NASA Astrophysics Data System (ADS)

    Negoita, Viorel C.; Vethake, Thilo; Jiang, John; Roff, Robert; Shih, Ming; Duck, Richard; Bauer, Marc; Mite, Roberto; Boucke, Konstantin; Treusch, Georg

    2015-02-01

    High energy solid state lasers are being developed for fusion experiments and other research applications where high energy per pulse is required but the repetition rate is rather low, around 10Hz. We report our results on high peak power diode laser stacks used as optical pumps for these lasers. The stacks are based on 10 mm bars with 4 mm cavity length and 55% fill factor, with peak power exceeding 500 W per bar. These bars are stacked and mounted on a cooler which provides backside cooling and electrical insulation. Currently we mount 25 bars per cooler for a nominal peak power of 12.5 kW, but in principle the mounting scheme can be scaled to a different number of devices depending on the application. Pretesting of these bars before soldering on the cooler enables us to select devices with similar wavelength and thus we maintain tight control of the spectral width (FWHM less than 6 nm). Fine adjustments of the centroid wavelength can be done by means of temperature of the cooling fluid or bias current. The available wavelength range spans from 880 nm to 1000 nm, and the wavelength of the entire assembly of stacks can be controlled to within 0.5 nm of the target value, which makes these stacks suitable for pumping a variety of gain media. The devices are fast axis collimated, with over 95% power being collimated in 6 mrad (full angle). The slow axis divergence is 9° (full angle) for 95% power content.

  19. X-RAY POLARIZATION FROM ACCRETING BLACK HOLES: CORONAL EMISSION

    SciTech Connect

    Schnittman, Jeremy D.; Krolik, Julian H. E-mail: jhk@pha.jhu.ed

    2010-04-01

    We present new calculations of X-ray polarization from accreting black holes (BHs), using a Monte Carlo ray-tracing code in full general relativity. In our model, an optically thick disk in the BH equatorial plane produces thermal seed photons with polarization oriented parallel to the disk surface. These seed photons are then inverse-Compton scattered through a hot (but thermal) corona, producing a hard X-ray power-law spectrum. We consider three different models for the corona geometry: a wedge 'sandwich' with aspect ratio H/R and vertically integrated optical depth tau{sub 0} constant throughout the disk; an inhomogeneous 'clumpy' corona with a finite number of hot clouds distributed randomly above the disk within a wedge geometry; and a spherical corona of uniform density, centered on the BH and surrounded by a truncated thermal disk with inner radius R{sub edge}. In all cases, we find a characteristic transition from horizontal polarization at low energies to vertical polarization above the thermal peak; the vertical direction is defined as the projection of the BH spin axis on the plane of the sky. We show how the details of the spectropolarization signal can be used to distinguish between these models and infer various properties of the corona and BH. Although the bulk of this paper focuses on stellar-mass BHs, we also consider the effects of coronal scattering on the X-ray polarization signal from supermassive BHs in active galactic nuclei.

  20. Chandra X-Ray Imaging and Spectroscopy of the M87 Jet and Nucleus

    NASA Astrophysics Data System (ADS)

    Wilson, A. S.; Yang, Y.

    2002-03-01

    We report X-ray imaging spectroscopy of the jet of M87 at subarcsecond resolution with the Chandra X-ray Observatory. The galaxy nucleus and all the knots seen at radio and optical wavelengths, as far from the nucleus as knot C, are detected in the X-ray observations. There is a strong trend for the ratio of X-ray-to-radio, or optical, flux to decline with increasing distance from the nucleus. At least three knots are displaced from their radio/optical counterparts, being tens of parsecs closer to the nucleus at X-ray than at radio or optical wavelengths. The X-ray spectra of the nucleus and knots are well described by power laws absorbed by cold gas, with only the unresolved nucleus exhibiting intrinsic absorption. In view of the similar spectra of the nucleus and jet knots, and the high X-ray flux of the knots closest to the nucleus, we suggest that the X-ray emission coincident with the nucleus may actually originate from the parsec- or subparsec-scale jet rather than the accretion disk. Arguments are given that the X-ray emission process is unlikely to be inverse Compton scattering. Instead, we favor synchrotron radiation. Plotted as νSν, the spectra of the knots generally peak in or just above the optical-near-infrared band. However, the overall spectra of at least three knots cannot be described by simple models in which the spectral index monotonically increases with frequency, as would result from synchrotron losses or a high-energy cut-off to the injected electron spectrum. Instead, these spectra must turn down just above the optical band and then flatten in the X-ray band. In the context of a synchrotron model, this result suggests that either the X-ray-emitting electrons/positrons in these knots represent a separate ``population'' from those that emit the radio and optical radiation or that the magnetic field is highly inhomogeneous. If the former interpretation is correct, our results provide further support for the notion that radio galaxies produce

  1. Solar flare hard X-ray spikes observed by RHESSI: a case study

    NASA Astrophysics Data System (ADS)

    Qiu, J.; Cheng, J. X.; Hurford, G. J.; Xu, Y.; Wang, H.

    2012-11-01

    Context. Fast-varying hard X-ray spikes of subsecond time scales were discovered by space telescopes in the 70s and 80s, and are also observed by the Ramaty High Energy Solar Spectroscopic Imager (RHESSI). These events indicate that the flare energy release is fragmented. Aims: In this paper, we analyze hard X-ray spikes observed by RHESSI to understand their temporal, spectral, and spatial properties. Methods: A recently developed demodulation code was applied to hard X-ray light curves in several energy bands observed by RHESSI. Hard X-ray spikes were selected from the demodulated flare light curves. We measured the spike duration, the energy-dependent time delay, and count spectral index of these spikes. We also located the hard X-ray source emitting these spikes from RHESSI mapping that was coordinated with imaging observations in visible and UV wavelengths. Results: We identify quickly varying structures of ≤ 1 s during the rise of hard X-rays in five flares. These hard X-ray spikes can be observed at photon energies over 100 keV. They exhibit sharp rise and decay with a duration (FWHM) of less than 1 s. Energy-dependent time lags are present in some spikes. It is seen that the spikes exhibit harder spectra than underlying components, typically by 0.5 in the spectral index when they are fitted to power-law distributions. RHESSI clean maps at 25-100 keV with an integration of 2 s centered on the peak of the spikes suggest that hard X-ray spikes are primarily emitted by double foot-point sources in magnetic fields of opposite polarities. With the RHESSI mapping resolution of ~4'', the hard X-ray spike maps do not exhibit detectable difference in the spatial structure from sources emitting underlying components. Coordinated high-resolution imaging UV and infrared observations confirm that hard X-ray spikes are produced in magnetic structures embedded in the same magnetic environment of the underlying components. The coordinated high-cadence TRACE UV

  2. SU-C-204-04: Patient Specific Proton Stopping Powers Estimation by Combining Proton Radiography and Prior-Knowledge X-Ray CT Information

    SciTech Connect

    Collins-Fekete, CA; Brousmiche, S; Hansen, D; Beaulieu, L; Seco, J

    2015-06-15

    Purpose: The material relative stopping power (RSP) uncertainty is the highest contributor to the range uncertainty in proton therapy. The purpose of this work is to develop a robust and systematic method that yields accurate, patient specific, RSP by combining 1) pre-treatment x-ray CT and 2) daily proton radiograph of the patient. Methods: The method is formulated as a linear least-square optimization problem (min||Ax-B||2). The parameter A represents the pathlength crossed by the proton in each material. The RSPs for the materials (water equivalent thickness (WET)/physical thickness) are denoted by x. B is the proton radiograph expressed as WET crossed. The problem is minimized using a convex-conic optimization algorithm with xix-ray CT demonstrates serious potential to increase the accuracy of present RSP estimates.

  3. The ROSAT-ESO Flux-Limited X-ray (REFLEX) galaxy cluster survey - VI. Constraints on the cosmic matter density from the KL power spectrum

    NASA Astrophysics Data System (ADS)

    Schuecker, Peter; Guzzo, Luigi; Collins, Chris A.; Böhringer, Hans

    2002-09-01

    The Karhunen-Loéve (KL) eigenvectors and eigenvalues of the sample correlation matrix are used to analyse the spatial fluctuations of the REFLEX clusters of galaxies. The method avoids the disturbing effects of correlated power spectral densities that affect all previous cluster measurements on Gpc scales. Comprehensive tests use a large set of independent REFLEX-like mock cluster samples extracted from the Hubble Volume Simulation. It is found that unbiased measurements on Gpc scales are possible with the REFLEX data. The distribution of the KL eigenvalues is consistent with a Gaussian random field on the 93.4 per cent confidence level. Assuming spatially flat cold dark matter models, the marginalization of the likelihood contours over different sample volumes, fiducial cosmologies, mass-X-ray luminosity relations and baryon densities, yields a 95.4 per cent confidence interval for the matter density of 0.03 < Ωmh2 < 0.19. The N-body simulations show that cosmic variance, although difficult to estimate, is expected to increase the confidence intervals by about 50 per cent.

  4. X-Ray Calorimeter Arrays for Astrophysics

    NASA Technical Reports Server (NTRS)

    Kilbourne, Caroline A.

    2009-01-01

    High-resolution x-ray spectroscopy is a powerful tool for studying the evolving universe. The grating spectrometers on the XMM and Chandra satellites started a new era in x-ray astronomy, but there remains a need for instrumentation that can provide higher spectral resolution with high throughput in the Fe-K band (around 6 keV) and can enable imaging spectroscopy of extended sources, such as supernova remnants and galaxy clusters. The instrumentation needed is a broad-band imaging spectrometer - basically an x-ray camera that can distinguish tens of thousands of x-ray colors. The potential benefits to astrophysics of using a low-temperature calorimeter to determine the energy of an incident x-ray photon via measurement of a small change in temperature was first articulated by S. H. Moseley over two decades ago. In the time since, technological progress has been steady, though full realization in an orbiting x-ray telescope is still awaited. A low-temperature calorimeter can be characterized by the type of thermometer it uses, and three types presently dominate the field. The first two types are temperature-sensitive resistors - semiconductors in the metal-insulator transition and superconductors operated in the superconducting-normal transition. The third type uses a paramagnetic thermometer. These types can be considered the three generations of x-ray calorimeters; by now each has demonstrated a resolving power of 2000 at 6 keV, but only a semiconductor calorimeter system has been developed to spaceflight readiness. The Soft X-ray Spectrometer on Astro-H, expected to launch in 2013, will use an array of silicon thermistors with I-IgTe x-ray absorbers that will operate at 50 mK. Both the semiconductor and superconductor calorimeters have been implemented in small arrays, kilo-pixel arrays of the superconducting calorimeters are just now being produced, and it is anticipated that much larger arrays will require the non-dissipative advantage of magnetic thermometers.

  5. Characterization of low intensity X-ray imaging devices (Lixiscope)

    NASA Technical Reports Server (NTRS)

    Ferguson, G. A.

    1981-01-01

    Radioisotopic sources were used to excite the LIXISCOPE in preliminary experimental attempts to evaluate the usefulness of this instrument for industrial and medical applications. The characteristics of the LIXISCOPE when excited by x-ray produced by conventional electrically powered x-ray generators were studied. The optimum x-ray spectrum was determined and the mode of operation of the generator, which yields satisfactory LIXISCOPE images of medical and industrial specimens was investigated.

  6. Miniature x-ray source

    DOEpatents

    Trebes, James E.; Stone, Gary F.; Bell, Perry M.; Robinson, Ronald B.; Chornenky, Victor I.

    2002-01-01

    A miniature x-ray source capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature x-ray source comprises a compact vacuum tube assembly containing a cathode, an anode, a high voltage feedthru for delivering high voltage to the anode, a getter for maintaining high vacuum, a connection for an initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is highly x-ray transparent and made, for example, from boron nitride. The compact size and potential for remote operation allows the x-ray source, for example, to be placed adjacent to a material sample undergoing analysis or in proximity to the region to be treated for medical applications.

  7. Solar X-ray physics

    SciTech Connect

    Bornmann, P.L. )

    1991-01-01

    Research on solar X-ray phenomena performed by American scientists during 1987-1990 is reviewed. Major topics discussed include solar images observed during quiescent times, the processes observed during solar flares, and the coronal, interplanetary, and terrestrial phenomena associated with solar X-ray flares. Particular attention is given to the hard X-ray emission observed at the start of the flare, the energy transfer to the soft X-ray emitting plasma, the late resolution of the flare as observed in soft X-ray, and the rate of occurrence of solar flares as a function of time and latitude. Pertinent aspects of nonflaring, coronal X-ray emission and stellar flares are also discussed. 175 refs.

  8. The X-ray Power Density Spectrum of the Seyfert 2 Galaxy NGC 4945: Analysis and Application of the Method of Light Curve Simulations

    SciTech Connect

    Mueller, Martin; /SLAC

    2010-12-16

    The study of the power density spectrum (PDS) of fluctuations in the X-ray flux from active galactic nuclei (AGN) complements spectral studies in giving us a view into the processes operating in accreting compact objects. An important line of investigation is the comparison of the PDS from AGN with those from galactic black hole binaries; a related area of focus is the scaling relation between time scales for the variability and the black hole mass. The PDS of AGN is traditionally modeled using segments of power laws joined together at so-called break frequencies; associations of the break time scales, i.e., the inverses of the break frequencies, with time scales of physical processes thought to operate in these sources are then sought. I analyze the Method of Light Curve Simulations that is commonly used to characterize the PDS in AGN with a view to making the method as sensitive as possible to the shape of the PDS. I identify several weaknesses in the current implementation of the method and propose alternatives that can substitute for some of the key steps in the method. I focus on the complications introduced by uneven sampling in the light curve, the development of a fit statistic that is better matched to the distributions of power in the PDS, and the statistical evaluation of the fit between the observed data and the model for the PDS. Using archival data on one AGN, NGC 3516, I validate my changes against previously reported results. I also report new results on the PDS in NGC 4945, a Seyfert 2 galaxy with a well-determined black hole mass. This source provides an opportunity to investigate whether the PDS of Seyfert 1 and Seyfert 2 galaxies differ. It is also an attractive object for placement on the black hole mass-break time scale relation. Unfortunately, with the available data on NGC 4945, significant uncertainties on the break frequency in its PDS remain.

  9. Properties of X-ray bursts from the X-ray transient 1608-522

    SciTech Connect

    Murakami, T.; Inoue, H.; Koyama, K.

    1980-09-15

    The recurrent X-ray transient 1608--522 was observed from the X-ray astronomy satellite Hakucho through the high- and low-luminosity states of its persistent flux. 1608--522 is identified to be a burst source from which 22 X-ray bursts were recorded. The burst peak intensity is found to fluctuate by a factor as large as 7. 1608--522 exhibited two distinctly different burst modes with respect to the burst profile and the peak luminosity distribution. The burst mode seems to have changed in correlation with the persistent flux, whereas the burst frequency as well as the time-averaged burst luminosity were essentially constant despite a large change in the persistent flux.

  10. Tentative experiment for generating low-photon-energy quasi-x-ray lasers using a capillary

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Toriyabe, Hiroyuki; Awaji, Wataru; Hayasi, Yasuomi; Ichimaru, Toshio; Usuki, Tatsumi; Sato, Koetsu; Ojima, Hidenori; Takayama, Kazuyoshi; Tamakawa, Yoshiharu

    2001-04-01

    The tentative experiment for producing low-photon-energy quasi-x-ray laser using a capillary is described. This flash x-ray generator was improved in order to increase the x-ray intensity and to produce high-intensity characteristic x-rays by forming the linear plasma x-ray source. The generator consists of a high-voltage power supply, a polarity-inversion ignitron pulse generator, a turbo-molecular pump, and a radiation tube with a capillary. A high-voltage condenser of 0.2 (mu) F in the pulse generator is charged up to 20 kV by the power supply, and the electric charges in the condenser are discharged to the capillary in the tube after closing the ignitron. In the present work, the chamber is evacuated by the pump with a pressure of about 1 mPa, and the carbon anode and cathode electrodes are employed to produce K(alpha) characteristic x-rays. The diameter and the length of the ferrite capillary are 2.0 and 29 mm, respectively, and both the cathode voltage and the discharge current displayed damped oscillations. The peak values of the voltage and current increased when the charging voltage was increased, and their maximum values were -9.9 kV and 4.4 kA, respectively. The pulse durations of the x-rays were nearly equivalent to those of the damped oscillations in the voltage and current, and their values were less than 20 microseconds. In the spectrum measurement, we observed the carbon K(alpha) line.

  11. Topological X-Rays Revisited

    ERIC Educational Resources Information Center

    Lynch, Mark

    2012-01-01

    We continue our study of topological X-rays begun in Lynch ["Topological X-rays and MRI's," iJMEST 33(3) (2002), pp. 389-392]. We modify our definition of a topological magnetic resonance imaging and give an affirmative answer to the question posed there: Can we identify a closed set in a box by defining X-rays to probe the interior and without…

  12. Polarisation modulation in X-ray binaries

    NASA Astrophysics Data System (ADS)

    Ingram, Adam; Maccarone, Thomas

    2016-07-01

    X-ray polarimetry promises to provide a powerful new lever arm for studying accretion onto black holes with the next generation of X-ray telescopes. I will discuss how polarisation can be used to help constrain the physical origin of quasi-periodic oscillations (QPOs) observed in the X-ray light curves of accreting black holes. QPOs may be signatures of the frame dragging effect: in General Relativity, a spinning black hole twists up the surrounding space-time, causing vertical precession of nearby orbits. In the truncated disc / precessing inner flow model, the entire inner accretion flow precesses as a solid body causing a modulation in the X-ray flux through solid angle and Doppler effects. This model also predicts the observed polarisation of the X-ray signal to vary quasi-periodically. I will summarise our work to model the polarisation signal from a precessing accretion flow, starting with simple assumptions about the emission mechanism but taking General Relativity fully into account. We find that it should be possible to measure the predicted modulation in polarisation degree for a reasonable region of parameter space with a polarimeter capable of detecting ~60 counts per second from a bright black hole binary. I will also show that sensitivity can be greatly improved by correlating the signal with a high count rate reference band signal.

  13. The Chandra X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.

    2013-01-01

    The Chandra X-ray Observatory, the third of NASA's four Great Observatories and its flagship mission for X-ray astronomy, was launched by NASA's Space Shuttle Columbia on July 23, 1999. The first X-ray sources were observed on August 12, 1999. The brightest of these sources named Leon X-1 in honor of Chandra's Telescope Scientist who played the leading role in establishing the key to Chandra's great advance in angular resolution. Over the past years, the Observatory's ability to provide sub-arc second X-ray images and high resolution spectra has established it as one of the most versatile and powerful tools for astrophysical research in the 21st century. Chandra explores the high-energy regions of the universe, observing X-ray sources with fluxes ranging over more than 10 orders of magnitude. The longevity of Chandra also provides a long observing baseline enabling temporal studies over time-scales of years. I will discuss how the Observatory works, the current operational status, and scientific highlights covering a variety of objects from stars with nearby planets that impact the stellar activity to the deepest Chandra surveys.

  14. Bomb detection using backscattered x rays

    NASA Astrophysics Data System (ADS)

    Lockwood, Grant J.; Shope, Steve L.; Wehlburg, Joseph C.; Selph, Michael M.; Jacobs, Jennifer

    1999-01-01

    Currently the most common method to determine the contents of a package suspected of containing an explosive device is to use transmission radiography. This technique requires that an x-ray source and film be placed on opposite sites of the package. This poses a problem if the package is placed so that only one side is accessible, such as against a wall. There is also a threat to personnel and property since explosive devices may be 'booby trapped.' We have developed a method to x-ray a package using backscattered x-rays. This procedure eliminates the use of film behind the target. All of the detection is done from the same side as the source. When an object is subjected to x-rays, some of them are scattered back toward the source. The backscattering of x-rays is proportional to the atomic number (Z) of the material raised to the 4.1 power. This Z4.1 dependence allows us to easily distinguish between explosives, wires, timer, batteries, and other bomb components. Backscatter experiments at Sandia National Laboratories have been conducted on mock bombs in packages. We are able to readily identify the bomb components. The images that are obtained in this procedure are done in real time and the image is displayed on a computer screen.

  15. A laboratory-based hard x-ray monochromator for high-resolution x-ray emission spectroscopy and x-ray absorption near edge structure measurements.

    PubMed

    Seidler, G T; Mortensen, D R; Remesnik, A J; Pacold, J I; Ball, N A; Barry, N; Styczinski, M; Hoidn, O R

    2014-11-01

    We report the development of a laboratory-based Rowland-circle monochromator that incorporates a low power x-ray (bremsstrahlung) tube source, a spherically bent crystal analyzer, and an energy-resolving solid-state detector. This relatively inexpensive, introductory level instrument achieves 1-eV energy resolution for photon energies of ∼5 keV to ∼10 keV while also demonstrating a net efficiency previously seen only in laboratory monochromators having much coarser energy resolution. Despite the use of only a compact, air-cooled 10 W x-ray tube, we find count rates for nonresonant x-ray emission spectroscopy comparable to those achieved at monochromatized spectroscopy beamlines at synchrotron light sources. For x-ray absorption near edge structure, the monochromatized flux is small (due to the use of a low-powered x-ray generator) but still useful for routine transmission-mode studies of concentrated samples. These results indicate that upgrading to a standard commercial high-power line-focused x-ray tube or rotating anode x-ray generator would result in monochromatized fluxes of order 10(6)-10(7) photons/s with no loss in energy resolution. This work establishes core technical capabilities for a rejuvenation of laboratory-based hard x-ray spectroscopies that could have special relevance for contemporary research on catalytic or electrical energy storage systems using transition-metal, lanthanide, or noble-metal active species. PMID:25430123

  16. A laboratory-based hard x-ray monochromator for high-resolution x-ray emission spectroscopy and x-ray absorption near edge structure measurements

    SciTech Connect

    Seidler, G. T. Mortensen, D. R.; Remesnik, A. J.; Pacold, J. I.; Ball, N. A.; Barry, N.; Styczinski, M.; Hoidn, O. R.

    2014-11-15

    We report the development of a laboratory-based Rowland-circle monochromator that incorporates a low power x-ray (bremsstrahlung) tube source, a spherically bent crystal analyzer, and an energy-resolving solid-state detector. This relatively inexpensive, introductory level instrument achieves 1-eV energy resolution for photon energies of ∼5 keV to ∼10 keV while also demonstrating a net efficiency previously seen only in laboratory monochromators having much coarser energy resolution. Despite the use of only a compact, air-cooled 10 W x-ray tube, we find count rates for nonresonant x-ray emission spectroscopy comparable to those achieved at monochromatized spectroscopy beamlines at synchrotron light sources. For x-ray absorption near edge structure, the monochromatized flux is small (due to the use of a low-powered x-ray generator) but still useful for routine transmission-mode studies of concentrated samples. These results indicate that upgrading to a standard commercial high-power line-focused x-ray tube or rotating anode x-ray generator would result in monochromatized fluxes of order 10{sup 6}–10{sup 7} photons/s with no loss in energy resolution. This work establishes core technical capabilities for a rejuvenation of laboratory-based hard x-ray spectroscopies that could have special relevance for contemporary research on catalytic or electrical energy storage systems using transition-metal, lanthanide, or noble-metal active species.

  17. Tantalum/Copper X-Ray Targets

    NASA Technical Reports Server (NTRS)

    Waters, William J.; Edmonds, Brian

    1993-01-01

    Lewis Research Center developed unique solution to subsidiary problem of fabrication of x-ray target. Plasma spraying enabled fabrication of lightweight, high-performance targets. Power settings, atmosphere-control settings, rate of deposition, and other spraying parameters developed. Thin coats of tantalum successfully deposited on copper targets. Targets performed successfully in tests and satisfied all criteria expressed in terms of critical parameters. Significantly reduces projected costs of fabrication of targets and contributes to development of improved, long-lived, lightweight x-ray system.

  18. European XFEL: Soft X-Ray instrumentation

    SciTech Connect

    Molodtsov, S. L.

    2011-12-15

    The currently constructed European X-Ray Free Electron Laser (XFEL) will generate new knowledge in almost all the technical and scientific disciplines that are shaping our daily life-including nanotechnology, medicine, pharmaceutics, chemistry, materials science, power engineering and electronics. On 8 January 2009, civil engineering work (tunnels, shafts, halls) has been started at all three construction sites. In this presentation status and parameters of the European XFEL facility and instrumentation as well as planned research applications particularly in the range of soft X-rays are reviewed.

  19. Saving Power at Peak Hours (LBNL Science at the Theater)

    ScienceCinema

    Piette, Mary Ann

    2011-04-28

    California needs new, responsive, demand-side energy technologies to ensure that periods of tight electricity supply on the grid don't turn into power outages. Led by Berkeley Lab's Mary Ann Piette, the California Energy Commission (through its Public Interest Energy Research Program) has established a Demand Response Research Center that addresses two motivations for adopting demand responsiveness: reducing average electricity prices and preventing future electricity crises. The research seeks to understand factors that influence "what works" in Demand Response. Piette's team is investigating the two types of demand response, load response and price response, that may influence and reduce the use of peak electric power through automated controls, peak pricing, advanced communications, and other strategies.

  20. X-ray Absorption Spectroscopy

    SciTech Connect

    Yano, Junko; Yachandra, Vittal K.

    2009-07-09

    This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

  1. Soft x-ray interferometry

    SciTech Connect

    Not Available

    1993-09-01

    The purpose of the soft x-ray interferometry workshop held at Lawrence Berkeley Laboratory was to discuss with the scientific community the proposed technical design of the soft x-ray Fourier-transform spectrometer being developed at the ALS. Different design strategies for the instrument`s components were discussed, as well as detection methods, signal processing issues, and how to meet the manufacturing tolerances that are necessary for the instrument to achieve the desired levels of performance. Workshop participants were encouraged to report on their experiences in the field of Fourier transform spectroscopy. The ALS is developing a Fourier transform spectrometer that is intended to operate up to 100 eV. The motivation is solely improved resolution and not the throughput (Jaquinot) or multiplex (Fellgett) advantage, neither of which apply for the sources and detectors used in this spectral range. The proposed implementation of this is via a Mach-Zehnder geometry that has been (1) distorted from a square to a rhombus to get grazing incidence of a suitable angle for 100 eV and (2) provided with a mirror-motion system to make the path difference between the interfering beams tunable. The experiment consists of measuring the emergent light intensity (I(x)) as a function of the path difference (x). The resolving power of the system is limited by the amount of path difference obtainable that is 1 cm (one million half-waves at 200{angstrom} wavelength) in the design thus allowing a resolving power of one million. The free spectral range of the system is limited by the closeness with which the function I(x) is sampled. It is proposed to illuminate a helium absorption cell with roughly 1%-band-width light from a monochromator thus allowing one hundred aliases without spectral overlap even for sampling of I(x) at one hundredth of the Nyquist frequency.

  2. Apollo galactic X-ray astronomy observations

    NASA Technical Reports Server (NTRS)

    Adler, I.; Trombka, J.; Schmadebeck, R.; Gorenstein, P.; Bjorkholm, P.

    1971-01-01

    The galactic X-ray observations are a detailed study of the temporal behavior of pulsating X-ray sources. NASA's first X-ray astronomy satellite Uhuru (Explorer 42) has recently discovered fast time variability of pulsations in the output from several sources. The variability occurs on a time scale of minutes, seconds, or less, implying that the emitting regions are very small in size, much smaller than the sun, although they are emitting about a thousand times more power. Fast time variability may provide the clue that is needed to understand the mechanisms which drive pulsating sources. The Apollo observations record the emission from several objects continuously for a period of about an hour. The spacecraft can be pointed at the source for the entire time. On the other hand, Uhuru can observe only for about a minute or two per sighting. Consequently, Apollo has the capability for determining whether periodicities exist in the 10-1000 second range.

  3. Filtered fluorescer x-ray detector

    SciTech Connect

    Bruns, H.C.; Emig, J.A.; Thoe, R.S.; Springer, P.T.; Hernandez, J.A.

    1995-04-01

    Recently, an instrument capable of measuring x-rays between 8 and 90 keV was conceived to help understand conditions pertaining to pulsed power research. This resulted in the development of a versatile device that would incrementally detect x-rays emitted at predetermined energy bands over this range. To accomplish this, an array of well characterized filter-fluorescer combinations were produced which would allow fluoresced x-rays to be observed by time resolved electro-optical devices. As many as sixteen channels could be utilized with each channel having a corresponding background channel. Upon completion of the device, a three week series of experiments was then successfully carried out.

  4. X-ray emission from starburst galaxies

    NASA Technical Reports Server (NTRS)

    Rephaeli, Yoel; Gruber, Duane; Macdonald, Dan; Persic, Massimo

    1991-01-01

    The results are reported of an investigation of X-ray emission from a sample of 53 IRAS-selected candidate starburst galaxies. Superposed soft and hard X-ray emission from these galaxies in the Einstein-IPC and HEAO-1 A-2 and A-4 energy bands, which span 0.5 to 160 keV, is detected at the 99.6 percent confidence level, after allowing for confusion noise in the HEAO-1 data. Above 15 keV the confidence level is 97 percent. The combined spectrum is flat, with a (photon) power-law index of 1.0 +/- 0.3. The contribution of the population of sources represented by this sample to the 3-50 keV residual cosmic X-ray background is estimated to be at least about 4 percent assuming no evolution. Moderate evolution, for which there is some observational evidence, increases this fractional contribution to about 26 percent.

  5. The UHURU X-ray instrument.

    NASA Technical Reports Server (NTRS)

    Jagoda, N.; Austin, G.; Mickiewicz, S.; Goddard, R.

    1972-01-01

    On Dec. 12, 1970, the UHURU X-ray observatory was launched into equatorial orbit with the prime mission of conducting an all-sky survey of astronomical X-ray sources with intensities of 0.00005 Sco-X1 or greater. The X-ray detection system contains 12 gas-filled proportional counters, 6 behind each collimator. The aspect system is discussed together with the structure, the pulse height analyzer, the command system, the calibration system, and the power distribution system. Pulse shape discrimination circuits used on UHURU use the same technique that was used on the system originally developed for large area proportional counters described by Gorenstein and Mickiewicz (1968).

  6. X-RAY POINT-SOURCE POPULATIONS CONSTITUTING THE GALACTIC RIDGE X-RAY EMISSION

    SciTech Connect

    Morihana, Kumiko; Tsujimoto, Masahiro; Ebisawa, Ken; Yoshida, Tessei

    2013-03-20

    Apparently diffuse X-ray emission has been known to exist along the central quarter of the Galactic Plane since the beginning of X-ray astronomy; this is referred to as the Galactic Ridge X-ray emission (GRXE). Recent deep X-ray observations have shown that numerous X-ray point sources account for a large fraction of the GRXE in the hard band (2-8 keV). However, the nature of these sources is poorly understood. Using the deepest X-ray observations made in the Chandra bulge field, we present the result of a coherent photometric and spectroscopic analysis of individual X-ray point sources for the purpose of constraining their nature and deriving their fractional contributions to the hard-band continuum and Fe K line emission of the GRXE. Based on the X-ray color-color diagram, we divided the point sources into three groups: A (hard), B (soft and broad spectrum), and C (soft and peaked spectrum). The group A sources are further decomposed spectrally into thermal and non-thermal sources with different fractions in different flux ranges. From their X-ray properties, we speculate that the group A non-thermal sources are mostly active galactic nuclei and the thermal sources are mostly white dwarf (WD) binaries such as magnetic and non-magnetic cataclysmic variables (CVs), pre-CVs, and symbiotic stars, whereas the group B and C sources are X-ray active stars in flares and quiescence, respectively. In the log N-log S curve of the 2-8 keV band, the group A non-thermal sources are dominant above Almost-Equal-To 10{sup -14} erg cm{sup -2} s{sup -1}, which is gradually taken over by Galactic sources in the fainter flux ranges. The Fe K{alpha} emission is mostly from the group A thermal (WD binaries) and the group B (X-ray active stars) sources.

  7. Focal construct geometry for high intensity energy dispersive x-ray diffraction based on x-ray capillary optics.

    PubMed

    Li, Fangzuo; Liu, Zhiguo; Sun, Tianxi; Jiang, Bowen; Zhu, Yu

    2016-03-14

    We presented a focal construct geometry (FCG) method for high intensity energy dispersive X-ray diffraction by utilizing a home-made ellipsoidal single-bounce capillary (ESBC) and a polycapillary parallel X-ray lens (PPXRL). The ESBC was employed to focus the X-rays from a conventional laboratory source into a small focal spot and to produce an annular X-ray beam in the far-field. Additionally, diffracted polychromatic X-rays were confocally collected by the PPXRL attached to a stationary energy-resolved detector. Our FCG method based on ESBC and PPXRL had achieved relatively high intensity diffraction peaks and effectively narrowed the diffraction peak width which was helpful in improving the potential d-spacing resolution for material phase analysis. PMID:26979685

  8. Focal construct geometry for high intensity energy dispersive x-ray diffraction based on x-ray capillary optics

    NASA Astrophysics Data System (ADS)

    Li, Fangzuo; Liu, Zhiguo; Sun, Tianxi; Jiang, Bowen; Zhu, Yu

    2016-03-01

    We presented a focal construct geometry (FCG) method for high intensity energy dispersive X-ray diffraction by utilizing a home-made ellipsoidal single-bounce capillary (ESBC) and a polycapillary parallel X-ray lens (PPXRL). The ESBC was employed to focus the X-rays from a conventional laboratory source into a small focal spot and to produce an annular X-ray beam in the far-field. Additionally, diffracted polychromatic X-rays were confocally collected by the PPXRL attached to a stationary energy-resolved detector. Our FCG method based on ESBC and PPXRL had achieved relatively high intensity diffraction peaks and effectively narrowed the diffraction peak width which was helpful in improving the potential d-spacing resolution for material phase analysis.

  9. Two-dimensional imaging detectors for structural biology with X-ray lasers

    PubMed Central

    Denes, Peter

    2014-01-01

    Our ability to harness the advances in microelectronics over the past decade(s) for X-ray detection has resulted in significant improvements in the state of the art. Biology with X-ray free-electron lasers present daunting detector challenges: all of the photons arrive at the same time, and individual high peak power pulses must be read out shot-by-shot. Direct X-ray detection in silicon pixel detectors—monolithic or hybrid—are the standard for XFELs today. For structural biology, improvements are needed for today's 10–100 Hz XFELs, and further improvements are required for tomorrow's 10+ kHz XFELs. This article will discuss detector challenges, why they arise and ways to overcome them, along with the current state of the art. PMID:24914161

  10. Exosat observations of the X-ray burst source 4U 1608-52

    NASA Technical Reports Server (NTRS)

    Penninx, W.; Damen, E.; Van Paradijs, J.; Tan, J.; Lewin, W. H. G.

    1989-01-01

    The results of an analysis of two Exosat observations (July 1984, May 1986) of the highly variable X-ray burst source 4U 1608-52 are presented. During both observations the persistent X-ray flux was low (quiescence), and the persistent X-ray spectrum could be well fitted with a power-law model, with approximately the same index, but a somewhat different low-energy cut off. During both observations one type 1 burst was seen. It is shown that the relation between color temperature and effective temperature differs markedly from simple relations derived from theoretical models. A dip in the bolometric flux occurred near the peak of the 1986 burst. Possible models for this dip are discussed.

  11. SMM X-ray polychromator

    NASA Technical Reports Server (NTRS)

    Strong, Keith T.; Haisch, Bernhard M. (Compiler); Lemen, James R. (Compiler); Acton, L. W.; Bawa, H. S.; Claflin, E. S.; Freeland, S. L.; Slater, G. L.; Kemp, D. L.; Linford, G. A.

    1988-01-01

    The range of observing and analysis programs accomplished with the X-Ray Polychromator (XRP) instruments during the decline of solar cycle 21 and the rise of the solar cycle 22 is summarized. Section 2 describes XRP operations and current status. This is meant as a guide on how the instrument is used to obtain data and what its capabilities are for potential users. The science section contains a series of representative abstracts from recently published papers on major XRP science topics. It is not meant to be a complete list but illustrates the type of science that can come from the analysis of the XRP data. There then follows a series of appendixes that summarize the major data bases that are available. Appendix A is a complete bibliography of papers and presentations produced using XRP data. Appendix B lists all the spectroscopic data accumulated by the Flat Crystal Spectrometer (FCS). Appendix C is a compilation of the XRP flare catalogue for events equivalent to a GOES C-level flare or greater. It lists the start, peak and end times as well as the peak Ca XIX flux.

  12. Enhanced peak power CO2 laser processing of PCB materials

    NASA Astrophysics Data System (ADS)

    Moorhouse, C. J.; Villarreal, F.; Wendland, J. J.; Baker, H. J.; Hall, D. R.; Hand, D. P.

    2005-06-01

    Laser drilling has become a common processing step in the fabrication of printed circuit boards (PCB's). For this work, a recently developed enhanced peak power CO2 laser (~2.5 kW peak power, 200W average) or ultra-super pulse (USP) laser is used to drill alumina and copper coated dielectric laminate materials. The higher peak power and faster response times (than conventional CO2 lasers) produced by the USP laser are used to produce high speed alumina laser scribing and copper coated laminate microvia drilling processes. Alumina is a common PCB material used for applications, where its resistance to mechanical and thermal stresses is required. Here we present a comprehensive study of the melt eject mechanisms and recast formation to optimise the speed and quality of alumina laser scribing. Scribe speeds of up to 320 mms-1 (1.8 times current scribe rate) have been achieved using novel temporal pulse shapes unique to the USP laser. Also presented is the microvia drilling process of copper dielectric laminates, where the multi-level configuration presents different optical and thermal properties complicating their simultaneous laser ablation. In our experiments the USP laser has been used to drill standard thickness copper films (up to 50 μm thick) in a single shot. This investigation concentrates on understanding the mechanisms that determine the dielectric undercut dimensions.

  13. RELATIONSHIP BETWEEN THE KINETIC POWER AND BOLOMETRIC LUMINOSITY OF JETS: LIMITATION FROM BLACK HOLE X-RAY BINARIES, ACTIVE GALACTIC NUCLEI, AND GAMMA-RAY BURSTS

    SciTech Connect

    Ma, Renyi; Hou, Shujin; Xie, Fu-Guo E-mail: fgxie@shao.ac.cn

    2014-01-01

    The correlation between the kinetic power P {sub jet} and intrinsic bolometric luminosity L {sub jet} of jets may reveal the underlying jet physics in various black hole systems. Based on the recent work by Nemmen et al., we re-investigate this correlation with additional sources of black hole X-ray binaries (BXBs) in hard/quiescent states and low-luminosity active galactic nuclei (LLAGNs). The new sample includes 29 sets of data from 7 BXBs and 20 LLAGNs, with P {sub jet} and L {sub jet} being derived from spectral modeling of the quasi-simultaneous multi-band spectra under the accretion jet scenario. Compared to previous works, the range of luminosity is now enlarged to more than 20 decades, i.e., from ∼10{sup 31} erg s{sup –1} to ∼10{sup 52} erg s{sup –1}, which allows for better constraining of the correlation. One notable result is that the jets in BXBs and LLAGNs almost follow the same P {sub jet}-L {sub jet} correlation that was obtained from blazars and gamma-ray bursts. The slope indices we derived are 1.03 ± 0.01 for the whole sample, 0.85 ± 0.06 for the BXB subsample, 0.71 ± 0.11 for the LLAGN subsample, and 1.01 ± 0.05 for the LLAGN-blazar subsample, respectively. The correlation index around unit implies the independence of jet efficiency on the luminosity or kinetic power. Our results may further support the hypothesis that similar physical processes exist in the jets of various black hole systems.

  14. Relationship between the Kinetic Power and Bolometric Luminosity of Jets: Limitation from Black Hole X-Ray Binaries, Active Galactic Nuclei, and Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Ma, Renyi; Xie, Fu-Guo; Hou, Shujin

    2014-01-01

    The correlation between the kinetic power P jet and intrinsic bolometric luminosity L jet of jets may reveal the underlying jet physics in various black hole systems. Based on the recent work by Nemmen et al., we re-investigate this correlation with additional sources of black hole X-ray binaries (BXBs) in hard/quiescent states and low-luminosity active galactic nuclei (LLAGNs). The new sample includes 29 sets of data from 7 BXBs and 20 LLAGNs, with P jet and L jet being derived from spectral modeling of the quasi-simultaneous multi-band spectra under the accretion jet scenario. Compared to previous works, the range of luminosity is now enlarged to more than 20 decades, i.e., from ~1031 erg s-1 to ~1052 erg s-1, which allows for better constraining of the correlation. One notable result is that the jets in BXBs and LLAGNs almost follow the same P jet-L jet correlation that was obtained from blazars and gamma-ray bursts. The slope indices we derived are 1.03 ± 0.01 for the whole sample, 0.85 ± 0.06 for the BXB subsample, 0.71 ± 0.11 for the LLAGN subsample, and 1.01 ± 0.05 for the LLAGN-blazar subsample, respectively. The correlation index around unit implies the independence of jet efficiency on the luminosity or kinetic power. Our results may further support the hypothesis that similar physical processes exist in the jets of various black hole systems.

  15. High-resolution x-ray characterization of mosaic crystals for hard x-ray astronomy

    NASA Astrophysics Data System (ADS)

    Ferrari, Claudio; Buffagni, Elisa; Marchini, Laura; Zappettini, Andrea

    2012-04-01

    GaAs, Cu, CdTe, and CdZnTe crystals have been studied as optical elements for lenses for hard x-ray astronomy. High-resolution x-ray diffraction at 8 keV in Bragg geometry and at synchrotron at energies up to 500 keV in Laue geometry has been used. A good agreement was found between the mosaicity evaluated in Bragg geometry at 8 keV with x-ray penetration of the order of few tens of micrometers and that derived at synchrotron in transmission Laue geometry at higher x-ray energies. Mosaicity values in a range between a few to 150 arcsec were found in all the samples but, due to the presence of crystal grains in the cm range, CdTe and CdZnTe crystals were found not suitable. Cu crystals exhibit a mosaicity of the order of several arcmin; they indeed were found to be severely affected by cutting damage which could only be removed with a very deep etching. The full width at half maximum of the diffraction peaks decreased at higher x-ray energies showing that the peak broadening is affected by crystallite size. GaAs crystals grown by Czochralski method showed a mosaic spread up to 30 arcsec and good diffraction efficiency up to energies of 500 keV. The use of thermal treatments as a possible method to increase the mosaic spread was also evaluated.

  16. Soft x ray properties of the Geminga pulsar

    NASA Technical Reports Server (NTRS)

    Halpern, J. P.; Ruderman, M.

    1993-01-01

    The ROSAT soft x ray spectrum and pulse profile of the Geminga pulsar are analyzed and interpreted in terms of thermal emission from the surface of the neutron star. The x ray spectrum appears to consist of two blackbody components with T(sub 1) = (5.2 +/- 1.0) x 10 (exp 5) K and T(sub 2) approximately 3 x 10(exp 6) K, respectively. The inferred ratio of surface areas, A(sub 2)/A(sub 1), is approximately 3 x 10(exp -5). Both components are highly modulated at the pulsar rotation period, but the harder x ray pulse is narrower, and leads the main (soft) x ray pulse by about 105 deg of phase. The soft x ray component is interpreted as photospheric cooling of much of the neutron star's surface area, while the small, hot region could be part of the much smaller polar cap heated by energetic particles flowing inward from the magnetospheric accelerator which is responsible for the production of Geminga's gamma rays. Geminga's gamma ray emission is consistent with outer-magnetosphere accelerator models for highly inclined dipoles. These predict the beaming of energetic gamma rays close enough to the star to give copious e(+/-) production in the stellar magnetic field and a large circumstellar pair density from pair inflow toward the surface. These pairs may quench radio emission, and also reflect most of the hard polar cap x rays back to the stellar surface by cyclotron resonance scattering. They are then reemitted from that much larger area at the lower temperature T(sub 1). The single-peaked nature of the x ray pulse and its energy-dependent phase suggest an off-center dipole geometry for the surface magnetic field. Under the assumption that the soft x ray emission comes from the full surface of a neutron star of radius R = 10 km, a distance estimate of (150-400) pc is derived. This range is consistent with the fit interstellar column density of (1.5 +/- 0.5) x 10(exp 20) cm(exp -2). Distances less than 150 pc are probably ruled out both by the lower limit on the column

  17. Density gradient free electron collisionally excited x-ray laser

    DOEpatents

    Campbell, E.M.; Rosen, M.D.

    1984-11-29

    An operational x-ray laser is provided that amplifies 3p-3s transition x-ray radiation along an approximately linear path. The x-ray laser is driven by a high power optical laser. The driving line focused optical laser beam illuminates a free-standing thin foil that may be associated with a substrate for improved structural integrity. This illumination produces a generally cylindrically shaped plasma having an essentially uniform electron density and temperature, that exists over a long period of time, and provides the x-ray laser gain medium. The x-ray laser may be driven by more than one optical laser beam. The x-ray laser has been successfully demonstrated to function in a series of experimental tests.

  18. Density gradient free electron collisionally excited X-ray laser

    DOEpatents

    Campbell, Edward M.; Rosen, Mordecai D.

    1989-01-01

    An operational X-ray laser (30) is provided that amplifies 3p-3s transition X-ray radiation along an approximately linear path. The X-ray laser (30) is driven by a high power optical laser. The driving line focused optical laser beam (32) illuminates a free-standing thin foil (34) that may be associated with a substrate (36) for improved structural integrity. This illumination produces a generally cylindrically shaped plasma having an essentially uniform electron density and temperature, that exists over a long period of time, and provides the X-ray laser gain medium. The X-ray laser (30) may be driven by more than one optical laser beam (32, 44). The X-ray laser (30) has been successfully demonstrated to function in a series of experimental tests.

  19. The effect of gradients at stagnation on K-shell x-ray line emission in high-current Ar gas-puff implosions

    SciTech Connect

    Jones, B. Harvey-Thompson, A. J.; Ampleford, D. J.; Jennings, C. A.; Hansen, S. B.; Moore, N. W.; Lamppa, D. C.; Johnson, D.; Jones, M. C.; Waisman, E. M.; Coverdale, C. A.; Cuneo, M. E.; Rochau, G. A.; Apruzese, J. P.; Giuliani, J. L.; Thornhill, J. W.; Ouart, N. D.; Chong, Y. K.; Velikovich, A. L.; Dasgupta, A.; and others

    2015-02-15

    Argon gas puffs have produced 330 kJ ± 9% of x-ray radiation above 3 keV photon energy in fast z-pinch implosions, with remarkably reproducible K-shell spectra and power pulses. This reproducibility in x-ray production is particularly significant in light of the variations in instability evolution observed between experiments. Soft x-ray power measurements and K-shell line ratios from a time-resolved spectrum at peak x-ray power suggest that plasma gradients in these high-mass pinches may limit the K-shell radiating mass, K-shell power, and K-shell yield from high-current gas puffs.

  20. The X-ray background and the evolution of quasars

    NASA Technical Reports Server (NTRS)

    Tucker, W. H.; Schwartz, D. A.

    1986-01-01

    The contribution of QSOs and active galaxies to the 2-10-keV X-ray background is calculated theoretically, assuming that the X-ray luminosity of each GSO has a power-law time evolution (dL/dt = AL exp alpha) and applying the continuity equation to derive the X-ray luminosity function at arbitrary redshift. The observed X-ray background is shown to require alpha greater than 1.2, ruling out pure luminosity evolution (alpha = 1).

  1. Silver Peak Innovative Exploration Project (Ram Power Inc.)

    DOE Data Explorer

    Miller, Clay

    2010-01-01

    Data generated from the Silver Peak Innovative Exploration Project, in Esmeralda County, Nevada, encompasses a “deep-circulation (amagmatic)” meteoric-geothermal system circulating beneath basin-fill sediments locally blanketed with travertine in western Clayton Valley (lithium-rich brines from which have been mined for several decades). Spring- and shallow-borehole thermal-water geochemistry and geothermometry suggest that a Silver Peak geothermal reservoir is very likely to attain the temperature range 260- 300oF (~125-150oC), and may reach 300-340oF (~150-170oC) or higher (GeothermEx, Inc., 2006). Results of detailed geologic mapping, structural analysis, and conceptual modeling of the prospect (1) support the GeothermEx (op. cit.) assertion that the Silver Peak prospect has good potential for geothermal-power production; and (2) provide a theoretical geologic framework for further exploration and development of the resource. The Silver Peak prospect is situated in the transtensional (regional shearing coupled with extension) Walker Lane structural belt, and squarely within the late Miocene to Pliocene (11 Ma to ~5 Ma) Silver Peak-Lone Mountain metamorphic core complex (SPCC), a feature that accommodated initial displacement transfer between major right-lateral strike- slip fault zones on opposite sides of the Walker Lane. The SPCC consists essentially of a ductiley-deformed lower plate, or “core,” of Proterozoic metamorphic tectonites and tectonized Mesozoic granitoids separated by a regionally extensive, low-angle detachment fault from an upper plate of severely stretched and fractured structural slices of brittle, Proterozoic to Miocene-age lithologies. From a geothermal perspective, the detachment fault itself and some of the upper-plate structural sheets could function as important, if secondary, subhorizontal thermal-fluid aquifers in a Silver Peak hydrothermal system.

  2. X-ray beam pointer

    NASA Technical Reports Server (NTRS)

    Nelson, C. W.

    1980-01-01

    Inexpensive, readily assembled pointer aims X-ray machine for welded assembly radiographs. Plumb bob used for vertical alinement and yardstick used to visualize X-ray paths were inconvenient and inaccurate. Pointer cuts alinement time by one-half and eliminates necessity of retakes. For 3,000 weld radiographs, pointer will save 300 worker-hours and significant materials costs.

  3. Plug Would Collimate X Rays

    NASA Technical Reports Server (NTRS)

    Anders, Jeffrey E.; Adams, James F.

    1989-01-01

    Device creates narrow, well-defined beam for radiographic measurements of thickness. Cylindrical plug collimates and aligns X rays with respect to through holes in parts. Helps in determination of wall thickness by radiography. Lead absorbs X rays that do not pass axially through central hole. Lead/vinyl seals prevent off-axis rays from passing along periphery of plug.

  4. X-ray based extensometry

    NASA Technical Reports Server (NTRS)

    Jordan, E. H.; Pease, D. M.

    1988-01-01

    A totally new method of extensometry using an X-ray beam was proposed. The intent of the method is to provide a non-contacting technique that is immune to problems associated with density variations in gaseous environments that plague optical methods. X-rays are virtually unrefractable even by solids. The new method utilizes X-ray induced X-ray fluorescence or X-ray induced optical fluorescence of targets that have melting temperatures of over 3000 F. Many different variations of the basic approaches are possible. In the year completed, preliminary experiments were completed which strongly suggest that the method is feasible. The X-ray induced optical fluorescence method appears to be limited to temperatures below roughly 1600 F because of the overwhelming thermal optical radiation. The X-ray induced X-ray fluorescence scheme appears feasible up to very high temperatures. In this system there will be an unknown tradeoff between frequency response, cost, and accuracy. The exact tradeoff can only be estimated. It appears that for thermomechanical tests with cycle times on the order of minutes a very reasonable system may be feasible. The intended applications involve very high temperatures in both materials testing and monitoring component testing. Gas turbine engines, rocket engines, and hypersonic vehicles (NASP) all involve measurement needs that could partially be met by the proposed technology.

  5. Power Efficiency Improvements through Peak-to-Average Power Ratio Reduction and Power Amplifier Linearization

    NASA Astrophysics Data System (ADS)

    Chen, Ning; Zhou, G. Tong; Qian, Hua

    2007-12-01

    Many modern communication signal formats, such as orthogonal frequency-division multiplexing (OFDM) and code-division multiple access (CDMA), have high peak-to-average power ratios (PARs). A signal with a high PAR not only is vulnerable in the presence of nonlinear components such as power amplifiers (PAs), but also leads to low transmission power efficiency. Selected mapping (SLM) and clipping are well-known PAR reduction techniques. We propose to combine SLM with threshold clipping and digital baseband predistortion to improve the overall efficiency of the transmission system. Testbed experiments demonstrate the effectiveness of the proposed approach.

  6. Numerical Modeling of X-ray Photoionization Experiments Driven by Z-Pinch X-rays

    NASA Astrophysics Data System (ADS)

    Shupe, N. C.; Cohen, D. H.; MacFarlane, J. J.

    2004-12-01

    We have performed an initial round of experiments at the Z-Machine at Sandia National Laboratory in an attempt to create and characterize an X-ray photoionized plasma that is analogous to those found in X-ray binaries and AGNs. The ultimate goal is to benchmark X-ray spectral modeling codes that are used to analyze Chandra and XMM data from accretion powered astrophysical objects. The initial experiments involved neon and the primary measurement made was time-integrated, back-lit X-ray absorption spectroscopy of the photoionized neon. We present numerical modeling of this experiment, including non-LTE radiation hydrodynamics and spectral synthesis results, that are in good agreement with the data. We also present scaling studies for future experiments, including sythesized time-resolved X-ray emission spectra that correspond to the high-resolution spectral data being produced by the current generation of X-ray telescopes. The authors acknowledge the support of Research Corporation grant CC5489.

  7. Beyond hard x-ray photoelectron spectroscopy: Simultaneous combination with x-ray diffraction

    SciTech Connect

    Rubio-Zuazo, Juan; Castro, German R.

    2013-05-15

    Hard x-ray photoelectron spectroscopy (HAXPES) is a powerful and novel emerging technique for the nondestructive determination of electronic properties and chemical composition of bulk, buried interfaces and surfaces. It benefits from the exceptionally large escape depth of high kinetic energy photoelectrons, increasing the information depth up to several tens of nanometers. Complementing HAXPES with an atomic structure sensitive technique (such as x-ray diffraction) opens a new research field with major applications for materials science. At SpLine, the Spanish CRG beamline at the European Synchrotron Radiation Facility, we have developed a novel experimental set-up that combines HAXPES and x-ray diffraction (x-ray reflectivity, surface x-ray diffraction, grazing incidence x-ray diffraction, and reciprocal space maps). Both techniques can be operated simultaneously on the same sample and using the same excitation source. The set-up includes a robust 2S + 3D diffractometer hosting a ultrahigh vacuum chamber equipped with a unique photoelectron spectrometer (few eV < electron kinetic energy < 15 keV), x-ray tube (Mg/Ti), 15 keV electron gun, and auxiliary standard surface facilities (molecular beam epitaxy evaporator, ion gun, low energy electron diffraction, sample heating/cooling system, leak valves, load-lock sample transfer, etc.). This end-station offers the unique possibility of performing simultaneous HAXPES + x-ray diffraction studies. In the present work, we describe the experimental set-up together with two experimental examples that emphasize its outstanding capabilities: (i) nondestructive characterization of the Si/Ge and HfO{sub 2}/SiO{sub 2} interfaces on Ge-based CMOS devices, and (ii) strain study on La{sub 0.7}Ca{sub 0.3}MnO{sub 3} ultrathin films grown on SrTiO{sub 3}(001) substrate.

  8. Saturn: A large area x-ray simulation accelerator

    SciTech Connect

    Bloomquist, D.D.; Stinnett, R.W.; McDaniel, D.H.; Lee, J.R.; Sharpe, A.W.; Halbleib, J.A.; Schlitt, L.G.; Spence, P.W.; Corcoran, P.

    1987-01-01

    Saturn is the result of a major metamorphosis of the Particle Beam Fusion Accelerator-I (PBFA-I) from an ICF research facility to the large-area x-ray source of the Simulation Technology Laboratory (STL) project. Renamed Saturn, for its unique multiple-ring diode design, the facility is designed to take advantage of the numerous advances in pulsed power technology made by the ICF program in recent years and much of the existing PBFA-I support system. Saturn will include significant upgrades in the energy storage and pulse-forming sections. The 36 magnetically insulated transmission lines (MITLs) that provided power flow to the ion diode of PBFA-I were replaced by a system of vertical triplate water transmission lines. These lines are connected to three horizontal triplate disks in a water convolute section. Power will flow through an insulator stack into radial MITLs that drive the three-ring diode. Saturn is designed to operate with a maximum of 750 kJ coupled to the three-ring e-beam diode with a peak power of 25 TW to provide an x-ray exposure capability of 5 x 10/sup 12/ rads/s (Si) and 5 cal/g (Au) over 500 cm/sup 2/.

  9. X-ray Emission from Supernovae in Dense Circumstellar Matter Environments: a Search for Collisionless Shocks

    NASA Technical Reports Server (NTRS)

    Ofek, E. O.; Fox, D.; Cenko, Stephen B.; Sullivan, M; Gnat, O.; Frail, D. A.; Horesh, A.; Corsi, A.; Quimby, R. M.; Gehrels, N.; Kulkarni, S. R.; Gal-Yam, A.; Nugent, P. E.; Yaron, O.; Fillippenko, A. V; Kasliwal, M. M.; Bildsten, L.; Bloom, J. S.; Poznanski, D.; Arcavi, I.; Laher, R. R.; Levitan, D.; Sesar, B.; Surace, J..

    2013-01-01

    The optical light curve of some supernovae (SNe) may be powered by the outward diffusion of the energy deposited by the explosion shock (the so-called shock breakout) in optically thick (Tau approx > 30) circumstellar matter (CSM). Recently, it was shown that the radiation-mediated and radiation-dominated shock in an optically thick wind must transform into a collisionless shock and can produce hard X-rays. The X-rays are expected to peak at late times, relative to maximum visible light. Here we report on a search, using Swift/XRT and Chandra, for X-ray emission from 28 SNe that belong to classes whose progenitors are suspected to be embedded in dense CSM. Our sample includes 19 Type IIn SNe, one Type Ibn SN, and eight hydrogen-poor superluminous SNe (SLSN-I such as SN 2005ap). Two SNe (SN 2006jc and SN 2010jl) have X-ray properties that are roughly consistent with the expectation for X-rays from a collisionless shock in optically thick CSM. However, the X-ray emission from SN 2006jc can also be explained as originating in an optically thin region. Thus, we propose that the optical light curve of SN 2010jl is powered by shock breakout in CSM. We suggest that two other events (SN 2010al and SN 2011ht) were too X-ray bright during the SN maximum optical light to be explained by the shock-breakout model.We conclude that the light curves of some, but not all, SNe IIn/Ibn are powered by shock breakout in CSM. For the rest of the SNe in our sample, including all of the SLSN-I events, our X-ray limits are not deep enough and were typically obtained too early (i.e., near the SN maximum light) for definitive conclusions about their nature. Late-time X-ray observations are required in order to further test whether these SNe are indeed embedded in dense CSM. We review the conditions required for a shock breakout in a wind profile. We argue that the timescale, relative to maximum light, for the SN to peak in X-rays is a probe of the column density and the density profile above

  10. SALT observation of X-ray pulse reprocessing in 4U 1626-67★

    NASA Astrophysics Data System (ADS)

    Raman, Gayathri; Paul, Biswajit; Bhattacharya, Dipankar; Mohan, Vijay

    2016-05-01

    We investigate optical reprocessing of X-rays in the low-mass X-ray binary (LMXB) pulsar 4U 1626-67 in its current spin-up phase using observations with Southern African Large Telescope (SALT), near-simultaneous observations with Swift-X-ray Telescope and non-simultaneous RXTE-Proportional Counter Array (PCA) observations and present the results of timing analysis. Using SALT observations carried out on 2014 March 5 and 6, we detect some interesting reprocessing signatures. We detect a weak optical quasiperiodic oscillation (QPO) in the power density spectrum on March 5 at 48 mHz with a fractional rms of 3.3 per cent in spite of the fact that source shows no corresponding X-ray QPO in the spin-up phase. In the light curve obtained on March 5, we detect a coherent pulsation at the spin period of ˜7.677 s. A previously known, slightly down-shifted side-band is also detected at 129.92 mHz. The frequency spacing between main pulse and this side-band is different from earlier observations, though the statistical significance of the difference is limited. The light curve of March 6 displays short time-scale variability in the form of flares on time-scales of a few minutes. Folded pulse profiles resulting from data of this night show an interesting trend of pulse peak drifting. This drift could be due to (i) rapid changes in the reprocessing agent, like orbital motion of an accretion disc warp around the neutron star, or (ii) intrinsic pulse phase changes in X-rays. We also examine some X-ray light curves obtained with RXTE-PCA during 2008-2010 for pulse shape changes in short time-scales during X-ray flares.

  11. X-ray shearing interferometer

    DOEpatents

    Koch, Jeffrey A.

    2003-07-08

    An x-ray interferometer for analyzing high density plasmas and optically opaque materials includes a point-like x-ray source for providing a broadband x-ray source. The x-rays are directed through a target material and then are reflected by a high-quality ellipsoidally-bent imaging crystal to a diffraction grating disposed at 1.times. magnification. A spherically-bent imaging crystal is employed when the x-rays that are incident on the crystal surface are normal to that surface. The diffraction grating produces multiple beams which interfere with one another to produce an interference pattern which contains information about the target. A detector is disposed at the position of the image of the target produced by the interfering beams.

  12. X-Ray Diffraction Apparatus

    NASA Technical Reports Server (NTRS)

    Blake, David F. (Inventor); Bryson, Charles (Inventor); Freund, Friedmann (Inventor)

    1996-01-01

    An x-ray diffraction apparatus for use in analyzing the x-ray diffraction pattern of a sample is introduced. The apparatus includes a beam source for generating a collimated x-ray beam having one or more discrete x-ray energies, a holder for holding the sample to be analyzed in the path of the beam, and a charge-coupled device having an array of pixels for detecting, in one or more selected photon energy ranges, x-ray diffraction photons produced by irradiating such a sample with said beam. The CCD is coupled to an output unit which receives input information relating to the energies of photons striking each pixel in the CCD, and constructs the diffraction pattern of photons within a selected energy range striking the CCD.

  13. X-Ray Tomographic Reconstruction

    SciTech Connect

    Bonnie Schmittberger

    2010-08-25

    Tomographic scans have revolutionized imaging techniques used in medical and biological research by resolving individual sample slices instead of several superimposed images that are obtained from regular x-ray scans. X-Ray fluorescence computed tomography, a more specific tomography technique, bombards the sample with synchrotron x-rays and detects the fluorescent photons emitted from the sample. However, since x-rays are attenuated as they pass through the sample, tomographic scans often produce images with erroneous low densities in areas where the x-rays have already passed through most of the sample. To correct for this and correctly reconstruct the data in order to obtain the most accurate images, a program employing iterative methods based on the inverse Radon transform was written. Applying this reconstruction method to a tomographic image recovered some of the lost densities, providing a more accurate image from which element concentrations and internal structure can be determined.

  14. Focusing X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen; Brissenden, Roger; Davis, William; Elsner, Ronald; Elvis, Martin; Freeman, Mark; Gaetz, Terrance; Gorenstein, Paul; Gubarev, Mikhall; Jerlus, Diab; Juda, Michael; Kolodziejczak, Jeffrey; Murray, Stephen; Petre, Robert; Podgorski, William; Ramsey, Brian; Reid, Paul; Saha, Timo; Wolk, Scott; Troller-McKinstry, Susan; Weisskopf, Martin; Wilke, Rudeger; Zhang, William

    2010-01-01

    During the half-century history of x-ray astronomy, focusing x-ray telescopes, through increased effective area and finer angular resolution, have improved sensitivity by 8 orders of magnitude. Here, we review previous and current x-ray-telescope missions. Next, we describe the planned next-generation x-ray-astronomy facility, the International X-ray Observatory (IXO). We conclude with an overview of a concept for the next next-generation facility, Generation X. Its scientific objectives will require very large areas (about 10,000 sq m) of highly-nested, lightweight grazing-incidence mirrors, with exceptional (about 0.1-arcsec) resolution. Achieving this angular resolution with lightweight mirrors will likely require on-orbit adjustment of alignment and figure.

  15. Radiological surveillance of formerly asbestos-exposed power industry workers: rates and risk factors of benign changes on chest X-ray and MDCT

    PubMed Central

    2014-01-01

    Background To determine the prevalence of asbestos-related changes on chest X-ray (CXR) and low-dose multidetector-row CT (MDCT) of the thorax in a cohort of formerly asbestos-exposed power industry workers and to assess the importance of common risk factors associated with specific radiological changes. Methods To assess the influence of selected risk factors (age, time since first exposure, exposure duration, cumulative exposure and pack years) on typical asbestos-related radiographic changes, we employed multiple logistic regression and receiver operating characteristic (ROC) analysis. Results On CXR, pleural changes and asbestosis were strongly associated with age, years since first exposure and exposure duration. The MDCT results showed an association between asbestosis and age and between plaques and exposure duration, years since first exposure and cumulative exposure. Parenchymal changes on CXR and MDCT, and diffuse pleural thickening on CXR were both associated with smoking. Using a cut-off of 55 years for age, 17 years for exposure duration and 28 years for latency, benign radiological changes in the cohort with CXR could be predicted with a sensitivity of 82.0% for all of the three variables and a specificity of 47.4%, 39.0% and 40.6%, respectively. Conclusions Participants aged 55 years and older and those with an asbestos exposure of at least 17 years or 28 years since first exposure should be seen as having an increased risk of abnormal radiological findings. For implementing a more focused approach the routine use of low-dose MDCT rather than CXR at least for initial examinations would be justified. PMID:24808921

  16. Emerging trends in X-ray spectroscopic studies of plasma produced by intense laser beams

    SciTech Connect

    Arora, V.; Chakera, J. A.; Naik, P. A.; Gupta, P. D.

    2015-07-31

    X-ray line emission from hot dense plasmas, produced by ultra-short high intensity laser systems, has been studied experimentally in recent years for applications in materials science as well as for back-lighter applications. By virtue of the CPA technology, several laser facilities delivering pulses with peak powers in excess of one petawatt (focused intensities > 10{sup 20} W-cm{sup −2}) have either been commissioned across the globe during the last few years or are presently under construction. On the other hand, hard x-ray sources on table top, generating ultra-short duration x-rays at a repetition rate up to 10 kHz, are routinely available for time resolved x-ray diffraction studies. In this paper, the recent experiments on x-ray spectroscopic studies of plasma produced by 45 fs, Ti:sapphire laser pulses (focused iintensity > 10{sup 18} W-cm{sup −2}) at RRCAT Indore will be presented.

  17. High Accuracy Non-LTE Modeling of X-Ray Radiation in Dense Matter

    NASA Astrophysics Data System (ADS)

    Dasgupta, Arati; Clark, Robert W.; Giuliani, John L.; Thornhill, Ward J.; Apruzese, John P.; Jones, Brent; Ampleford, Dave J.

    X-rays are emitted from a variety of astrophysical objects in the universe. With the advancement of experimental technologies, intense and very bright X-ray sources are also being produced in the laboratory. Similar progress in theoretical investigations has made it possible to accurately model the radiation and spectroscopy of X-rays from both laboratory and astrophysical sources. Present-day Z-pinch experiments generate 200 TW peak power, 5-10 ns duration X-ray bursts that provide new opportunities to advance radiation science. The experiments spotlight the underlying atomic and plasma physics and offer inertial confinement fusion and astrophysics applications. Spectroscopy is a key diagnostic tool and its reliability depends on the accuracy and reliability of the atomic and plasma physics models used to interpret the data. We report the current status of our theoretical investigations of X-ray spectroscopy using state-of-the-art atomic and plasma modeling to analyze the data obtained from Z machine at the US Sandia National Laboratories. Analysis used for Z-pinches can also be used to study ICF and astrophysical plasmas where laboratory measurements and simulations are the only means to interpret observed data.

  18. Portable energy dispersive X-ray fluorescence and X-ray diffraction and radiography system for archaeometry

    NASA Astrophysics Data System (ADS)

    Mendoza Cuevas, Ariadna; Perez Gravie, Homero

    2011-03-01

    Starting on a laboratory developed portable X-ray fluorescence (PXRF) spectrometer; three different analytical results can be performed: analysis of chemical elements, analysis of major chemical crystalline phase and structural analysis, which represents a contribution to a new, low cost development of portable X-ray analyzer; since these results are respectively obtained with independent equipments for X-ray fluorescence, X-ray diffraction and radiography. Detection limits of PXRF were characterized using standard reference materials for ceramics, glass, bronze and bones, which are the main materials requiring quantitative analysis in art and archeological objects. A setup for simultaneous energy dispersive X-ray fluorescence and diffraction (ED (XRF-XRD)) in the reflection mode has been tested for in situ and non-destructive analysis according to the requirements of art objects inspection. The system uses a single low power X-ray tube and an X-ray energy dispersive detector to measure X-ray diffraction spectrum at a fixed angle. Application to the identification of jadeite-jade mineral in archeological objects by XRD is presented. A local high resolution radiography image obtained with the same low power X-ray tube allows for studies in painting and archeological bones.

  19. Satisfying winter peak-power demand with phased gasification

    SciTech Connect

    Hall, E.H.; Moss, T.E.; Ravikumar, R.

    1987-01-01

    The purpose of this study, commissioned by the Bonneville Power Administration, was to investigate application of this concept to the Pacific Northwest. Coal gasification combined-cycle (GCC) plants are receiving serious attention from eastern utilities. Potomac Electric (PEPCO) has engaged Fluor Technology to perform conceptual and preliminary engineering for a nominal 375-MW coal GCC power generation facility to be located in northern Montgomery County, Maryland. Other eastern utilities are engaged in site-specific investigations of satisfying future power requirements employing this alternative, which involves an environmentally superior method of using coal. Coal is combined with oxygen to produce a medium-heating-value fuel gas as an alternative to natural gas. The fuel gas, cleaned to remove sulfur compounds, is burned in gas turbine-generator sets. The hot exhaust gas is used to generate steam for additional power generation. The gasification combined cycle plant is highly efficient and has a high level of flexibility to meet power demands. This study provided background for consideration of one alternative for satisfying winter peak-load demand. The concept is feasible, depending on the timing of the installation of the gasification system, projections of the cost and the availability of natural gas, and restrictions on the use of natural gas. It has the advantage of deferring capacity addition and capital outlay until power is needed and economics are favorable.

  20. X-Ray Morphology,Kinematics and Geometry of the Eridanus Soft X-Ray Enhancement

    NASA Astrophysics Data System (ADS)

    Guo, Zhiyu; Burrows, David N.; Sanders, Wilton T.; Snowden, Steve L.; Penprase, Bryan E.

    1994-12-01

    We present mosaics of X-ray intensity maps and spectral fit results for selected regions of the Eridanus soft X-ray Enhancement (EXE), as well as kinematics of the X-ray absorbing clouds in the EXE region and geometrical properties of this X-ray emitting bubble. The work is based on pointed observations with the ROSAT Position Sensitive Proportional Counter, 21 cm observations with the NRAO 140 foot telescope at Green Bank and interstellar Na D line observations with the NOAO Coude Feed telescope at Kitt Peak. The ROSAT pointed observations examine two regions of the EXE. The first is an X-ray absorption lane produced by an IR filament which is located at galactic coordinates of about (199(deg) , -45(deg) ). The second is in the vicinity of the northern (galactic) boundary of the 1/4 keV EXE, at galactic coordinates of about (200(deg) , -25(deg) ). Both our spatial and spectral analysis suggest that variations in emission measure and NH are primarily reponsible for the observed variations of the X-ray intensity. Using 100mu intensities obtained from IRAS maps and NH column densities obtained from our X-ray spectral fits, we find 100 microns/NH ratios across the IR filament that are compatible with typical high latitude values. Maps of the X-ray absorbing clouds in the EXE region at 21 cm reveal that these clouds may belong to two different expanding systems, with one possibly associated with our Local Bubble and the other with the boundary of the EXE. Combination of 21 cm data with interstellar Na D line observations toward stars in the directions of some of the X-ray absorbing clouds along (l,b) ~ (200(deg) ,-40(deg) ) indicate that the near side of the EXE is farther than 151 pc and the distance to the center of the EXE at this latitude is about 226 pc. The density and the thermal pressure found for this X-ray emitting superbubble are 0.015 cm(-3) and 4.9 times 10(4) cm(-3) K.

  1. A lab-based ambient pressure x-ray photoelectron spectrometer with exchangeable analysis chambers

    SciTech Connect

    Newberg, John T. Arble, Chris; Goodwin, Chris; Khalifa, Yehia; Broderick, Alicia; Åhlund, John

    2015-08-15

    Ambient pressure X-ray photoelectron spectroscopy (APXPS) is a powerful spectroscopy tool that is inherently surface sensitive, elemental, and chemical specific, with the ability to probe sample surfaces under Torr level pressures. Herein, we describe the design of a new lab-based APXPS system with the ability to swap small volume analysis chambers. Ag 3d(5/2) analyses of a silver foil were carried out at room temperature to determine the optimal sample-to-aperture distance, x-ray photoelectron spectroscopy analysis spot size, relative peak intensities, and peak full width at half maximum of three different electrostatic lens modes: acceleration, transmission, and angular. Ag 3d(5/2) peak areas, differential pumping pressures, and pump performance were assessed under varying N{sub 2}(g) analysis chamber pressures up to 20 Torr. The commissioning of this instrument allows for the investigation of molecular level interfacial processes under ambient vapor conditions in energy and environmental research.

  2. A lab-based ambient pressure x-ray photoelectron spectrometer with exchangeable analysis chambers

    NASA Astrophysics Data System (ADS)

    Newberg, John T.; Åhlund, John; Arble, Chris; Goodwin, Chris; Khalifa, Yehia; Broderick, Alicia

    2015-08-01

    Ambient pressure X-ray photoelectron spectroscopy (APXPS) is a powerful spectroscopy tool that is inherently surface sensitive, elemental, and chemical specific, with the ability to probe sample surfaces under Torr level pressures. Herein, we describe the design of a new lab-based APXPS system with the ability to swap small volume analysis chambers. Ag 3d(5/2) analyses of a silver foil were carried out at room temperature to determine the optimal sample-to-aperture distance, x-ray photoelectron spectroscopy analysis spot size, relative peak intensities, and peak full width at half maximum of three different electrostatic lens modes: acceleration, transmission, and angular. Ag 3d(5/2) peak areas, differential pumping pressures, and pump performance were assessed under varying N2(g) analysis chamber pressures up to 20 Torr. The commissioning of this instrument allows for the investigation of molecular level interfacial processes under ambient vapor conditions in energy and environmental research.

  3. Monolithic high peak-power coherent Doppler lidar system

    NASA Astrophysics Data System (ADS)

    Kotov, Leonid V.; Töws, Albert; Kurtz, Alfred; Bobkov, Konstantin K.; Aleshkina, Svetlana S.; Bubnov, Mikhail M.; Lipatov, Denis S.; Guryanov, Alexey N.; Likhachev, Mikhail

    2016-03-01

    In this work we present a monolithic lidar system, based on a newly-developed double-clad large mode area (LMA) polarization-maintaining Er-doped fiber and specially designed LMA passive components. Optimization of the fiber designs resulted in as high as 100 W of SBS limited peak power. The amplifier and its passive components (circulator and collimator) were integrated in an existing lidar system. The enhanced lidar system provides three times increase of scanning range compared to one based on standard telecom-grade amplifiers.

  4. Bomb Detection Using Backscattered X-Rays

    SciTech Connect

    Jacobs, J.; Lockwood, G.; Selph, M; Shope, S.; Wehlburg, J.

    1998-10-01

    Bomb Detection Using Backscattered X-rays* Currently the most common method to determine the contents of a package suspected of containing an explosive device is to use transmission radiography. This technique requires that an x-ray source and film be placed on opposite sides of the package. This poses a problem if the pachge is placed so that only one side is accessible, such as against a wall. There is also a threat to persomel and property since exTlosive devices may be "booby trapped." We have developed a method to x-ray a paclage using backscattered x-rays. This procedure eliminates the use of film behind the target. All of the detection is done from the same side as the source. When an object is subjected to x-rays, some of them iare scattered back towards the source. The backscattenng of x-rays is propordoml to the atomic number (Z) of the material raised to the 4.1 power. This 24"' dependence allows us to easily distinguish between explosives, wires, timer, batteries, and other bomb components. Using transmission radiography-to image the contents of an unknown package poses some undesirable risks. The object must have an x-ray film placed on the side opposite the x-ray source; this cannot be done without moving the package if it has been placed firmly against a wall or pillar. Therefore it would be extremely usefid to be able to image the contents of a package from only one side, without ever having to disturb the package itself. where E is the energy of the incoming x-ray. The volume of x-rays absorbed is important because it is, of course, directly correlated to the intensity of x-mys that will be scattered. Most of the x-rays that scatter will do so in a genemlly forward direction; however, a small percentage do scatter in a backward direction. Figure 1 shows a diagram of the various fates of x-rays directed into an object. The package that was examined in this ex~enment was an attache case made of pressed fiberboardwith a vinyl covering. It was

  5. Are There Intrinsically X-Ray Quiet Quasars

    NASA Technical Reports Server (NTRS)

    Gallagher, S. C.; Brandt, W. N.; Laor, A.; Elvis, Martin; Mathur, S.; Wills, Beverly J.; Iyomoto, N.; White, Nicholas (Technical Monitor)

    2000-01-01

    Recent ROSAT studies have identified a significant population of Active Galactic Nuclei (AGN) that are notably faint in soft X-rays relative to their optical fluxes. Are these AGN intrinsically X-ray weak or are they just highly absorbed? Brandt, Laor & Wills have systematically examined the optical and UV spectral properties of a well-defined sample of these soft X-ray weak (SXW) AGN drawn from the Boroson & Green sample of all the Palomar Green AGN 00 with z < 0.5. We present ASCA observations of three of these SXW AGN: PG 1011-040, PG 1535+547 (Mrk 486), and PG 2112+059. In general, our ASCA observations support the intrinsic absorption scenario for explaining soft X-ray weakness; both PG 1535+547 and PG 2112+059 show significant column densities (NH is approximately 10(exp 22) - 10(exp 23)/sq cm) of absorbing gas. Interestingly, PG 1011-040 shows no spectral evidence for X-ray absorption. The weak X-ray emission may result from very strong absorption of a partially covered source, or this AGN may be intrinsically X-ray weak. PG 2112+059 is a Broad Absorption Line (BAL) QSO, and we find it to have the highest X-ray flux known of this class. It shows a typical power-law X-ray continuum above 3 keV; this is the first direct evidence that BAL QSOs indeed have normal X-ray continua underlying their intrinsic absorption. Finally, marked variability between the ROSAT and ASCA observations of PG 1535+547 and PG 2112+059 suggests that the soft X-ray weak designation may be transient, and multi-epoch 0.1-10.0 KeV X-ray observations are required to constrain variability of the absorber and continuum.

  6. A practical method to generate brilliant hard x-rays with a tabletop electron storage ring

    SciTech Connect

    Yamada, H.; Amano, D.; Miyade, H.

    1995-12-31

    With electron storage rings not only synchrotron radiation(SR) but also bremsstrahlung(BS) from a thin target placed in the electron orbit are mechanisms to generate brilliant x-ray beams. The calculated brilliance of BS with a 50 MeV storage ring, which is nearly 10{sup 13} photons/s, mrad{sup 2}, mm{sup 2}, 0.1% band width for 100 keV x-rays, exceeds that of SR from a 1 GeV storage ring. This photon energy spectrum is almost constant and extend up to the electron energy. The reasons for this high brilliance with this new radiation scheme is that the electron beams penetrating the thin target are utilized repeatedly, the narrow angular divergence of BS is determined by the kinematics of relativistic electron as same as SR, and the x-ray source size of the order of 1 {mu}m is determined by the size of thin target instead of electron beam sizes. Continuous injection of electron beam to the storage ring at full energy is the way to keep high and constant beam current. Peak current and repetition rate determine x-ray out put power. Note that the power of x-ray beam is also provided from a RF cavity of the storage ring. In this paper we will report some experimental results and discuss further application on a coherent bremsstrahlung generated from a set of stacked foils placed in the electron orbit of the ring. Resulting from these investigations the photon storage ring which is based on a 50 MeV exact circular electron storage ring could provide wide range of coherent and incoherent radiations from far infrared to hard x-ray in a practical amount of radiation power.

  7. X-ray insights into star and planet formation

    PubMed Central

    Feigelson, Eric D.

    2010-01-01

    Although stars and planets form in cold environments, X-rays are produced in abundance by young stars. This review examines the implications of stellar X-rays for star and planet formation studies, highlighting the contributions of NASA’s (National Aeronautics and Space Administration) Chandra X-ray Observatory. Seven topics are covered: X-rays from protostellar outflow shocks, X-rays from the youngest protostars, the stellar initial mass function, the structure of young stellar clusters, the fate of massive stellar winds, X-ray irradiation of protoplanetary disks, and X-ray flare effects on ancient meteorites. Chandra observations of star-forming regions often show dramatic star clusters, powerful magnetic reconnection flares, and parsec-scale diffuse plasma. X-ray selected samples of premain sequence stars significantly advance studies of star cluster formation, the stellar initial mass function, triggered star-formation processes, and protoplanetary disk evolution. Although X-rays themselves may not play a critical role in the physics of star formation, they likely have important effects on protoplanetary disks by heating and ionizing disk gases. PMID:20404197

  8. Effects of variability of X-ray binaries on the X-ray luminosity functions of Milky Way

    NASA Astrophysics Data System (ADS)

    Islam, Nazma; Paul, Biswajit

    2016-08-01

    The X-ray luminosity functions of galaxies have become a useful tool for population studies of X-ray binaries in them. The availability of long term light-curves of X-ray binaries with the All Sky X-ray Monitors opens up the possibility of constructing X-ray luminosity functions, by also including the intensity variation effects of the galactic X-ray binaries. We have constructed multiple realizations of the X-ray luminosity functions (XLFs) of Milky Way, using the long term light-curves of sources obtained in the 2-10 keV energy band with the RXTE-ASM. The observed spread seen in the value of slope of both HMXB and LMXB XLFs are due to inclusion of variable luminosities of X-ray binaries in construction of these XLFs as well as finite sample effects. XLFs constructed for galactic HMXBs in the luminosity range 1036-1039 erg/sec is described by a power-law model with a mean power-law index of -0.48 and a spread due to variability of HMXBs as 0.19. XLFs constructed for galactic LMXBs in the luminosity range 1036-1039 erg/sec has a shape of cut-off power-law with mean power-law index of -0.31 and a spread due to variability of LMXBs as 0.07.

  9. Peak power prediction of a vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Yu, V. K.; Chen, D.

    2014-12-01

    The vanadium redox flow battery (VRFB) is a promising grid-scale energy storage technology, but future widespread commercialization requires a considerable reduction in capital costs. Determining the appropriate battery size for the intended power range can help minimize the amount of materials needed, thereby reducing capital costs. A physics-based model is an essential tool for predicting the power range of large scale VRFB systems to aid in the design optimization process. This paper presents a modeling framework that accounts for the effects of flow rate on the pumping losses, local mass transfer rate, and nonuniform vanadium concentration in the cell. The resulting low-order model captures battery performance accurately even at high power densities and remains computationally practical for stack-level optimization and control purposes. We first use the model to devise an optimal control strategy that maximizes battery life during discharge. Assuming optimal control is implemented, we then determine the upper efficiency limits of a given VRFB system and compare the net power and associated overpotential and pumping losses at different operating points. We also investigate the effects of varying the electrode porosity, stack temperature, and total vanadium concentration on the peak power.

  10. Magnetospheric Geometry in Pulsar B1929+10 from Radio/X-ray Phase Alignment

    NASA Astrophysics Data System (ADS)

    Somer, A. L.; Backer, D. C.; Halpern, J. P.; Wang, F. Y.-H.

    1998-05-01

    We have conducted a study of two rotation-powered pulsars that emit at both radio and x-ray wavelengths, PSR B0531+21 and PSR B1929+10. Using absolute phase information, we have phase-aligned x-ray and radio profiles from these pulsars. Observations were done using the Green Bank 140ft telescope, and ASCA. The 0531+21 x-ray profile is sharp and lines up well with the radio profile confirming that the x-ray emission from this pulsar is magnetospheric in origin. The 1929+10 profile is approximately sinusoidal (Wang & Halpern, ApJ 4 82, L159) with the peak of the emission arriving 67+/- 23 degrees after the maximum in the radio emission. The controversy to which the PSR B1929+10 result adds fuel, is whether this ``inter"-pulsar, is an ``aligned" or ``orthogonal" rotator - describing the alignment of the magnetic axis to the rotation axis. Do the two peaks in the radio profile (the pulse and interpulse) come from a double crossing of a thin hollow cone nearly aligned with rotation axis (as in Lyne & Manchester, 1988, MNRAS, 234, 477; Phillips, 1990, ApJL, 361, L57; Blaskiewicz et al, 1991, ApJ 370, 643), or alternatively (as in Rankin and Rathnasree, 1998 preprint) do they come from from opposite poles of an ``orthogonal" rotator where the spin axis is perpendicular to the magnetic axis? The radio to x-ray alignment we find favors the former explanation: if the x-ray hot spot is the result of return currents to the surface from the outward current that generates radio emission, then in the ``double-crossing" model, the hot spot phase is expected to lie between the main pulse and interpulse as observed.

  11. On The Nature of the Ultraluminous X-Ray Transient in Cen A (NGC 5128)

    NASA Technical Reports Server (NTRS)

    Ghosh, Kajal K.; Finger, Mark H.; Swartz, Douglas A.; Tennant, Allyn F.; Wu, Kinwah

    2005-01-01

    We combine 20 ROSAT, Chandra, and XMM-Newton observations of the Cen A galaxy to obtain the X-ray light curve of 1RXH J132519.8-430312 (=CXOU J132519.9-430317) spanning 1990 to 2003. The source reached a peak 0.1-2.4 keV flux F(sub X) > 10(exp -12) ergs/sq cm/s during a 10 day span in 1995 July. The inferred peak isotropic luminosity of the source therefore exceeded 3 x 10(exp 39) ergs/s, which places the source in the class of ultra-luminous X-ray sources. Coherent pulsations at 13.264 Hz are detected at the 3 sigma level during a second bright episode (F(sub x) > 3 x 10(exp -13) ergs/sq cm/s) in 1999 December. The source is detected and varies significantly within three additional observations but is below the detection threshold in 7 observations. The X-ray spectrum in 1999 December is best described as a cut-off power law or a disk-blackbody (multi-colored disk). We also detect an optical source, m(sub F555W) approx. 24.1 mag, within the Chandra error circle of 1RXH J132519.8-430312 in Hubble images taken 195 days before the nearest X-ray observation. The optical brightness of this source is consistent with a late O or early B star at the distance of Cen A. The X-ray and optical behavior of 1RXH J132519.8-430312 is therefore similar to the transient Be/X-ray pulsar A 0538-66.

  12. A Broad-Band X-Ray Study of the Geminga Pulsar

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Wang, F. Y.-H.; Oliversen, Ronald (Technical Monitor)

    2001-01-01

    We present a comprehensive study of the Geminga pulsar at energies 0.1-10 keV using data from the ASCA, ROSAT, and EUVE satellites. The bulk of the soft X-ray flux can be parameterized as a blackbody of T = (5.6 +/- 0.6) x 10(exp 5) K, occupying a fraction 0. 10 - 0.64 of the surface area of the neutron star at the parallax distance of 160 pc. The ASCA detection of Geminga resolves the nature of the harder X-ray component previously discovered by ROSAT in favor of nonthermal emission, rather than thermal emission from a heated polar cap. The hard X-ray spectrum can be fitted by a power-law of energy index 1.0 +/- 0.5. The hard X-ray light curve has a strong main peak and a weak secondary peak; its total pulsed fraction is = 55%. Three ROSAT PSPC observations show significant variability of Geminga's light curve. In particular, a peculiar energy dependence of the modulation in the soft X-ray component, dubbed the "Geminga effect" in the original PSPC data, is not present in later observations. In addition, fine structure in the soft X-ray light curve, interpreted as eclipses due to cyclotron resonance scattering by a plasma screen on the closed magnetic field lines, almost disappeared in the most recent observations. All of the variable properties of Geminga can probably be associated with the nonthermal process that supplies e(sup +, sup -) pairs to its inner magnetosphere.

  13. X-ray shout echoing through space

    NASA Astrophysics Data System (ADS)

    2004-01-01

    a flash of X-rays hi-res Size hi-res: 3991 Kb Credits: ESA, S. Vaughan (University of Leicester) EPIC camera shows the expanding rings caused by a flash of X-rays XMM-Newton's X-ray EPIC camera shows the expanding rings caused by a flash of X-rays scattered by dust in our Galaxy. The X-rays were produced by a powerful gamma-ray burst that took place on 3 December 2003. The slowly fading afterglow of the gamma-ray burst is at the centre of the expanding rings. Other, unrelated, X-ray sources can also be seen. The time since the gamma-ray explosion is shown in each panel in hours. At their largest size, the rings would appear in the sky about five times smaller than the full moon. a flash of X-rays hi-res Size hi-res: 2153 Kb Credits: ESA, S. Vaughan (University of Leicester) EPIC camera shows the expanding rings caused by a flash of X-rays (Please choose "hi-res" version for animation) XMM-Newton's X-ray EPIC camera shows the expanding rings caused by a flash of X-rays scattered by dust in our Galaxy. The X-rays were produced by a powerful gamma-ray burst that took place on 3 December 2003. The slowly fading afterglow of the gamma-ray burst is at the centre of the expanding rings. Other, unrelated, X-ray sources can also be seen. The time since the gamma-ray explosion is shown in each panel in seconds. At their largest size, the rings would appear in the sky about five times smaller than the full moon. This echo forms when the powerful radiation of a gamma-ray burst, coming from far away, crosses a slab of dust in our Galaxy and is scattered by it, like the beam of a lighthouse in clouds. Using the expanding rings to precisely pin-point the location of this dust, astronomers can identify places where new stars and planets are likely to form. On 3 December 2003 ESA's observatory, Integral, detected a burst of gamma rays, lasting about 30 seconds, from the direction of a distant galaxy. Within minutes of the detection, thanks to a sophisticated alert network, many

  14. Progress In The Development Of A New High Heat Load X-Ray Tube

    NASA Astrophysics Data System (ADS)

    Iversen, Arthur H.; Whitaker, Stephen

    1988-06-01

    The ongoing development of a new class of liquid cooled rotating anode x-ray tubes capable of high average and high peak power is discussed. Tube performance is characterized by zero wait-times between exposures and essentially no derating from peak instantaneous ratings for any arbitrary exposure sequence. The results of a successful program, which demonstrated proof of principle of the novel heat transfer surface will be described. The design and physics of the heat transfer surface of an experimental tube under construction will be reviewed. Potential benefits of this new tube include higher patient throughput in CT and certain fluoroscopic modalities, and possible longer tube life than conventional designs. New high average power techniques such as slit scanning, energy subtraction, x-ray spectrum optimization and special scatter rejection methods would become more clinically practical.

  15. X-Ray Spectroscopy of Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Nahar, Sultana N.; Montenegro, M.; Pradhan, A. K.; Pitzer, R.

    2009-06-01

    Inner shell transitions, such as 1s-2p, in heavy elements can absorb or produce hard X-rays, and hence are widely used in nanoparticles. Bio-medical research for cancer treatment has been using heavy element nanoparticles, embeded in malignant tumor, for efficient absorption of irradiated X-rays and leading emission of hard X-rays and energetic electrons to kill the surrounding cells. Ejection of a 1s electron during ionization of the element by absorption of a X-ray photon initiates the Auger cascades of emission of photons and electrons. We have investigated gold nanoparticles for the optimal energy range, below the K-edge (1s) ionization threshold, that corresponds to resonant absorption of X-rays with large attenuation coefficients, orders of magnitude higher over the background as well as to that at K-edge threshold. We applied these attenuation coefficients in Monte Carlo simulation to study the intensities of emission of photons and electrons by Auger cascades. The numerical experiments were carried out in a phantom of water cube with a thin layer, 0.1mm/g, of gold nanoparticles 10 cm inside from the surface using the well-known code Geant4. We will present results on photon and electron emission spectra from passing monochromatic X-ray beams at 67 keV, which is the resonant energy for resonant K_{α} lines, at 82 keV, the K-shell ionization threshold, and at 2 MeV where the resonant effect is non-existent. Our findings show a high peak in the gold nanoparticle absorption curve indicating complete absorption of radiation within the gold layer. The photon and electron emission spectra show resonant features. Acknowledgement: Partially supported by a Large Interdisciplinary Grant award of the Ohio State University and NASA APRA program (SNN). The computational work was carried out on the Cray X1 and Itanium 4 cluster at the Ohio Supercomputer Center, Columbus Ohio. "Resonant X-ray Irradiation of High-Z Nanoparticles For Cancer Theranostics" (refereed

  16. X-Ray Imaging System

    NASA Astrophysics Data System (ADS)

    1986-01-01

    The FluoroScan Imaging System is a high resolution, low radiation device for viewing stationary or moving objects. It resulted from NASA technology developed for x-ray astronomy and Goddard application to a low intensity x-ray imaging scope. FlouroScan Imaging Systems, Inc, (formerly HealthMate, Inc.), a NASA licensee, further refined the FluoroScan System. It is used for examining fractures, placement of catheters, and in veterinary medicine. Its major components include an x-ray generator, scintillator, visible light image intensifier and video display. It is small, light and maneuverable.

  17. X-ray burst sources

    NASA Technical Reports Server (NTRS)

    Lewin, W. H. G.

    1986-01-01

    There are about 100 bright X-ray sources in the Galaxy that are accretion-driven systems composed of a neutron star and a low mass companion that fills its critical Roche lobe. Many of these systems generate recurring X-ray bursts that are the result of thermonuclear flashes in the neutron star's surface layers, and are accompanied by a somewhat delayed optical burst due to X-ray heating of accretion disk. The Rapid Burster discovered in 1976 exhibits an interval between bursts that is strongly correlated with the energy in the preceding burst. There is no optical identification for this object.

  18. Nonthermal X-ray Microflares

    NASA Astrophysics Data System (ADS)

    Christe, S.; Rauscher, E.; Krucker, S.; Lin, R. P.

    2004-12-01

    The Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) provides unique sensitivity in the 3-15 keV energy range, with an effective area ˜100 times larger than similar past instruments. Along with its high spectral resolution (1 keV) RHESSI is uniquely suited to study small events. Microflares have been observed by Benz & Grigis (2002) and Krucker et al. (2002) to have anomalously steep spectra ( spectral index between -5 and -8) extending down to ˜ 7 keV. Thermal emission is found to dominate below ˜ 7 keV. In many other respects, microflares show properties similar to larger flares. We present single event studies of different types of x-ray microflares. RHESSI observations during quiet times (04-May 10-14; GOES level low B class) reveal a set 5 microflares (>=A Class). These microflares show power law spectra (spectral index of ˜4-8) with little or no thermal emission in the 3- ˜7 keV energy range above the nonthermal part of the spectrum. Other microflares in the same GOES class range, however, have been found which show extremely hard spectra with emission up to 50 keV (power law index ˜2). At lower energies, emission is dominated by a hot thermal component (20 MK). This work was supported by NASA contract NAS5-98033.

  19. Studying the energy dependence of intrinsic conversion efficiency of single crystal scintillators under X-ray excitation

    NASA Astrophysics Data System (ADS)

    Kalyvas, N.; Valais, I.; David, S.; Michail, Ch.; Fountos, G.; Liaparinos, P.; Kandarakis, I.

    2014-05-01

    Single crystal scintilators are used in various radiation detectors applications. The efficiency of the crystal can be determined by the Detector Optical Gain (DOG) defined as the ratio of the emitted optical photon flux over the incident radiation photons flux. A parameter affecting DOG is the intrinsic conversion efficiency ( n C ) giving the percentage of the X-ray photon power converted to optical photon power. n C is considered a constant value for X-ray energies in the order of keV although a non-proportional behavior has been reported. In this work an analytical model, has been utilized to single crystals scintillators GSO:Ce, LSO:Ce and LYSO:Ce to examine whether the intrinsic conversion efficiency shows non proportional behavior under X-ray excitation. DOG was theoretically calculated as a function of the incident X-ray spectrum, the X-ray absorption efficiency, the energy of the produced optical photons and the light transmission efficiency. The theoretical DOG values were compared with experimental data obtained by irradiating the crystals with X-rays at tube voltages from 50 to 140 kV and by measuring the light energy flux emitted from the irradiated screen. An initial value for n C (calculated from literature data) was assumed for the X-ray tube voltage of 50 kV. For higher X-ray tube voltages the optical photon propagation phenomena was assumed constant and any deviations between experimental and theoretical data were associated with changes in the intrinsic conversion efficiency. The experimental errors were below 7% for each experimental setup. The behavior of n C values for LSO:Ce and LYSO:Ce were found very similar, i.e., ranging with values from 0.089 at 50 kV to 0.015 at 140 kV, while for GSO:Ce, n C demonstrated a peak at 80 kV.

  20. X-ray resonant Raman spectroscopy

    SciTech Connect

    Cowan, P.L.; LeBrun, T.; Deslattes, R.D.

    1995-08-01

    X-ray resonant Raman scattering presents great promise as a high-resolution spectroscopic probe of the electronic structure of matter. Unlike other methods, the technique avoids the loss of energy resolution resulting from the lifetime broadening of short-lived core-excited states. In addition, measurements of polarization and angular anisotropies yield information on the symmetries of electronic states of atoms and molecules. We studied the L{sub 3} edge of xenon, where the lifetime broadening is a major feature of the spectra recorded previously. X-ray fluorescence spectra were taken of both the L{alpha}{sub l,2} and L{beta}{sub 2,15} peaks over a range of energies from 10 eV below the edge to 40 eV above. These spectra show the evolution of resonant Raman scattering into characteristic fluorescence as the photon energy is scanned across the edge, and confirm several features of these spectra such as asymmetries in resonant peak shapes due to the onset of the ionization continuum. These results constitute the most comprehensive study of X-ray resonant Raman scattering to date, and were submitted for publication. Studies of other cases are under way, and new instruments that would match the unique characteristics of the APS - and thus render a new range of experiments possible - are under consideration.

  1. Linking jet emission and X-ray properties in the peculiar neutron star X-ray binary Circinus X-1

    NASA Astrophysics Data System (ADS)

    Soleri, Paolo; Tudose, Valeriu; Fender, Rob; van der Klis, Michiel; Jonker, Peter G.

    2009-10-01

    We present the results of simultaneous X-ray and radio observations of the peculiar Z-type neutron star X-ray binary Cir X-1, observed with the Rossi X-ray Timing Explorer satellite and the Australia Telescope Compact Array in 2000 October and 2002 December. We identify typical Z-source behaviour in the power density spectra as well as characteristic Z patterns drawn in an X-ray hardness-intensity diagram. Power spectra typical of bright atoll sources have also been identified at orbital phases after the periastron passage, while orbital phases before the periastron passage are characterized by power spectra that are typical neither of Z nor of atoll sources. We investigate the coupling between the X-ray and the radio properties, focusing on three orbital phases when an enhancement of the radio flux density has been detected, to test the link between the inflow (X-ray) and the outflow (radio jet) to/from the compact object. In two out of three cases, we associate the presence of the radio jet to a spectral transition in the X-rays, although the transition does not precede the radio flare, as detected in other Z sources. An analogous behaviour has recently been found in the black hole candidate GX 339-4. In the third case, the radio light curve shows a similar shape to the X-ray light curve. We discuss our results in the context of jet models, considering also black hole candidates.

  2. X-ray Pulsation Searches with NICER

    NASA Astrophysics Data System (ADS)

    Ray, Paul S.; Arzoumanian, Zaven

    2016-04-01

    The Neutron Star Interior Composition Explorer (NICER) is an X-ray telescope with capabilities optimized for the study of the structure, dynamics, and energetics of neutron stars through high-precision timing of rotation- and accretion-powered pulsars in the 0.2-12 keV band. It has large collecting area (twice that of the XMM-Newton EPIC-pn camera), CCD-quality spectral resolution, and high-precision photon time tagging referenced to UTC through an onboard GPS receiver. NICER will begin its 18-month prime mission as an attached payload on the International Space Station around the end of 2016. I will describe the science planning for the pulsation search science working group, which is charged with searching for pulsations and studying flux modulation properties of pulsars and other neutron stars. A primary goal of our observations is to detect pulsations from new millisecond pulsars that will contribute to NICER’s studies of the neutron star equation of state through pulse profile modeling. Beyond that, our working group will search for pulsations in a range of source categories, including LMXBs, new X-ray transients that might be accreting millisecond pulsars, X-ray counterparts to unassociated Fermi LAT sources, gamma-ray binaries, isolated neutron stars, and ultra-luminous X-ray sources. I will survey our science plans and give an overview of our planned observations during NICER’s prime mission.

  3. Chandra HRC Observations of X-Rays from the Jupiter System

    NASA Technical Reports Server (NTRS)

    Gladstone, G. R.; Waite, J. H., Jr.; Grodent, D.; Crary, F. J.; Elsner, R. F.; Weisskopf, M. C.; Lewis, W. S.; Jahn, J.-M.; Bhardwaj, A.; Clarke, J. T.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    In support of the Cassini fly-by of Jupiter, the Chandra X-Ray Observatory's High Resolution Camera (HRC) was used to observe the Jovian system for a complete rotation of Jupiter on December 18, 2000, from 10-20 UT (Universal Time). The HRC is most sensitive to x-rays in the 0.1-10 keV range, with a peak sensitivity in the 1-1.5 keV range, and is a direct descendant of the imagers on the Einstein and ROSAT (Roentgen Satellite) satellites. Chandra differs from other x-ray observatories primarily by virtue of its remarkable 0.5 inch half-power PSF (Point Spread Function), which provides ten times the acuity of its nearest rival. Preliminary analysis of the December 18 data has yielded the following results: 1) a strong, high-latitude northern auroral 'hot spot,' which is relatively fixed near 60-70 degrees north latitude and 160-180 degrees system III longitude, and which pulsates with a period of about 40 minutes and has an average emitted power of about 1 GW; 2) relatively uniform low-latitude emissions, with a total power output of about 2 GW; 3) the first detection of x-ray emissions from the Io Plasma Torus, with a dusk/dawn brightness ratio of about 2.2 and a total emitted power of about 0.7 GW; and 4) the first detection of x-ray emissions from Io itself, with an emitted power of about 0.06 GW. These power estimates are based on an assumed emission wavelength of 653 eV (corresponding to the Lyman alpha line of OVIII ions), and is subject to revision as Chandra spectra of Jupiter are analyzed further. We will present these and other results from this unique data set.

  4. X-Ray Emission from Supernovae in Dense Circumstellar Matter Environments: A Search for Collisionless Shock

    NASA Technical Reports Server (NTRS)

    Ofek, E.O; Fox, D.; Cenko, B.; Sullivan, M.; Gnat, O.; Frail A.; Horesh, A.; Corsi, A; Quimby, R. M.; Gehrels, N.; Kulkarni, S. R.; Gal-Yam, A.; Nugent, P. E.; Yaron, O.; Filippenko, A. V.; Kasliwal, M. M.; Bildsten, L.; Bloom, J. S.; Poznanski, D; Arcavi, L.; Laher, R. R.; Levitan, D.; Sesar, B.; Surace, J.

    2012-01-01

    The optical light curve of some supernovae (SNe) may be powered by the outward diffusion of the energy deposited by the explosion shock (so-called shock breakout) in optically thick (tau approx > 30) circumstellar matter (CSM). Recently, it was shown that the radiation-mediated and -dominated shock in an optically thick wind must transform into 8. collisionless shock and can produce hard X-rays. The X-rays are expected to peak at late times, relative to maximum visible light. Here we report on a search, using Swift-XRT and Chandra, for X-ray emission from 28 SNe that belong to classes whose progenitors are suspected to be embedded in dense CSM. Our sample includes 19 type-IIn SNe, one type-Ibn SN and eiht hydrogen-poor super-luminous SNe (SLSN-I; SN 2005ap like). Two SNe (SN 2006jc and SN 2010jl) have X-ray properties that are roughly consistent with the expectation for X-rays from a collisionless shock in optically thick CSl\\l. Therefore, we suggest that their optical light curves are powered by shock breakout in CSM. We show that two other events (SN 2010al and SN 2011ht) were too X-ray bright during the SN maximum optical light to be explained by the shock breakout model. We conclude that the light curves of some, but not all, type-IIn/Ibn SNe are powered by shock breakout in CSM. For the rest of the SNe in our sample, including all the SLSN-I events, our X-ray limits are not deep enough and were typically obtained at too early times (i.e., near the SN maximum light) to conclude about their nature. Late time X-ray observations are required in order to further test if these SNe are indeed embedded in dense CSM. We review the conditions required for a shock breakOut in a wind profile. We argue that the time scale, relative to maximum light, for the SN to peak in X-rays is a probe of the column density and the density profile above the shock region. The optical light curves of SNe, for which the X-ray emission peaks at late times, are likely powered by the

  5. AGN feedback in X-ray luminous galaxy cluster: PKS 0745-191

    NASA Astrophysics Data System (ADS)

    Sonkamble, Satish Shripati; Vagshette, Nilkanth Dattatray; Patil, Madhav Khushalrao

    2015-08-01

    We present 117 ks Chandra observation of the cooling flow cluster PKS 0745-191 providing evidence of the strong interaction between the radio source associated with the center dominant galaxy PGC 021813 and the intra-cluster gas. This system is one of the strongest cool core cluster, requiring extreme mechanical feedback from its central AGN to offset cooling of the ICM. This analysis has enabled us to detect two pairs of X-ray cavities in the central ˜ 20 kpc region. In addition to the cavities, we have also evidenced relatively cooler X-ray arc and a temperature jump due to the shock front at 92'' (184 kpc) on the western side. 2D temperature maps as well as spectral analysis of X-ray photons extracted from wedge shaped reigns revealed six different cold fronts, 3 along the eastern direction, 2 on the west direction and one in the south direction of the X-ray peak. The apparent positions of cold fronts are found to match with the spiral structure apparent in the X-ray surface brightness distribution of PKS 0745-191 that is probably due to the gas sloshing. The Mach number for this shock is found to be ˜ 1.36. Systematic study of the X-ray cavities revealed a mechanical power of ˜ 2.95 X 1045 erg s-1 and is sufficient to offset the cooling due to radiative loss. We found that the radio source associated with the center dominant galaxy of this cluster is efficient enough to carve the observed cavities. The ratio of radio luminosity to mechanical cavity power is ˜ 10-3 .

  6. Miniature x-ray source

    DOEpatents

    Trebes, James E.; Bell, Perry M.; Robinson, Ronald B.

    2000-01-01

    A miniature x-ray source utilizing a hot filament cathode. The source has a millimeter scale size and is capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature source consists of a compact vacuum tube assembly containing the hot filament cathode, an anode, a high voltage feedthru for delivering high voltage to the cathode, a getter for maintaining high vacuum, a connector for initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is fabricated from highly x-ray transparent materials, such as sapphire, diamond, or boron nitride.

  7. Imaging X-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Grant, P. A.; Jackson, J. W., Jr.; Alcorn, G. E.; Marshall, F. E.

    1984-09-01

    An X-ray spectrometer for providing imaging and energy resolution of an X-ray source is described. This spectrometer is comprised of a thick silicon wafer having an embedded matrix or grid of aluminum completely through the wafer fabricated, for example, by thermal migration. The aluminum matrix defines the walls of a rectangular array of silicon X-ray detector cells or pixels. A thermally diffused aluminum electrode is also formed centrally through each of the silicon cells with biasing means being connected to the aluminum cell walls and causes lateral charge carrier depletion between the cell walls so that incident X-ray energy causes a photoelectric reaction within the silicon producing collectible charge carriers in the form of electrons which are collected and used for imaging.

  8. Abdomen X-Ray (Radiography)

    MedlinePlus

    ... have very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures that those parts of a patient's body not being imaged receive minimal radiation exposure. top ...

  9. Picosecond x-ray science.

    SciTech Connect

    Landahl, E.; Reis, D.; Wang, J.; Young, L.

    2006-01-01

    The report discusses the exciting times for short pulse X-rays and the current users of the technology in the United States. Tracking nuclear motions with X-rays transcends scientific disciplines and includes Biology, Materials Science, Condensed Matter and Chemistry. 1 picosecond accesses many phenomena previously hidden at 100ps. Synchrotron advantage over laser plasma and LCLS is that it's easily tunable. There is a large and diverse user community of this technology that is growing rapidly. A working group is being formed to implement 'fast track' Phases 1 and 2 which includes tunable, polarized, monochromatic, focused X-rays; variable pulse length (1 to 100ps) and 1 kHz, 10{sup 9} X-rays/s with 1% bandwidth. ERL would be a major advance for ultrafast time-resolved studies.

  10. X-ray microtomographic scanners

    SciTech Connect

    Syryamkin, V. I. Klestov, S. A.

    2015-11-17

    The article studies the operating procedures of an X-ray microtomographic scanner and the module of reconstruction and analysis 3D-image of a test sample in particular. An algorithm for 3D-image reconstruction based on image shadow projections and mathematical methods of the processing are described. Chapter 1 describes the basic principles of X-ray tomography and general procedures of the device developed. Chapters 2 and 3 are devoted to the problem of resources saving by the system during the X-ray tomography procedure, which is achieved by preprocessing of the initial shadow projections. Preprocessing includes background noise removing from the images, which reduces the amount of shadow projections in general and increases the efficiency of the group shadow projections compression. In conclusion, the main applications of X-ray tomography are presented.

  11. X-Ray Exam: Finger

    MedlinePlus

    ... KidsHealth in the Classroom What Other Parents Are Reading Upsetting News Reports? What to Say Vaccines: Which ... Results A radiologist, a doctor specially trained in reading and interpreting X-ray images, will look at ...

  12. X-Ray Exam: Hip

    MedlinePlus

    ... KidsHealth in the Classroom What Other Parents Are Reading Upsetting News Reports? What to Say Vaccines: Which ... For older kids, be sure to explain the importance of keeping still while the X-ray is ...

  13. X-Ray Exam: Foot

    MedlinePlus

    ... KidsHealth in the Classroom What Other Parents Are Reading Upsetting News Reports? What to Say Vaccines: Which ... For older kids, be sure to explain the importance of staying still while the X-ray is ...

  14. X-Ray Exam: Ankle

    MedlinePlus

    ... KidsHealth in the Classroom What Other Parents Are Reading Upsetting News Reports? What to Say Vaccines: Which ... For older kids, be sure to explain the importance of staying still while the X-ray is ...

  15. X-Ray Exam: Pelvis

    MedlinePlus

    ... KidsHealth in the Classroom What Other Parents Are Reading Upsetting News Reports? What to Say Vaccines: Which ... For older kids, be sure to explain the importance of keeping still while the X-ray is ...

  16. X-Ray Exam: Forearm

    MedlinePlus

    ... KidsHealth in the Classroom What Other Parents Are Reading Upsetting News Reports? What to Say Vaccines: Which ... For older kids, be sure to explain the importance of staying still while the X-ray is ...

  17. X-Ray Exam: Wrist

    MedlinePlus

    ... KidsHealth in the Classroom What Other Parents Are Reading Upsetting News Reports? What to Say Vaccines: Which ... For older kids, be sure to explain the importance of staying still while the X-ray is ...

  18. Imaging X-ray spectrometer

    NASA Technical Reports Server (NTRS)

    Grant, P. A.; Jackson, J. W., Jr.; Alcorn, G. E.; Marshall, F. E. (Inventor)

    1984-01-01

    An X-ray spectrometer for providing imaging and energy resolution of an X-ray source is described. This spectrometer is comprised of a thick silicon wafer having an embedded matrix or grid of aluminum completely through the wafer fabricated, for example, by thermal migration. The aluminum matrix defines the walls of a rectangular array of silicon X-ray detector cells or pixels. A thermally diffused aluminum electrode is also formed centrally through each of the silicon cells with biasing means being connected to the aluminum cell walls and causes lateral charge carrier depletion between the cell walls so that incident X-ray energy causes a photoelectric reaction within the silicon producing collectible charge carriers in the form of electrons which are collected and used for imaging.

  19. Astrophysical parameters and orbital solution of the peculiar X-ray transient IGR J00370+6122

    NASA Astrophysics Data System (ADS)

    González-Galán, A.; Negueruela, I.; Castro, N.; Simón-Díaz, S.; Lorenzo, J.; Vilardell, F.

    2014-06-01

    Context. BD + 60° 73 is the optical counterpart of the X-ray source IGR J00370+6122, a probable accretion-powered X-ray pulsar. The X-ray light curve of this binary system shows clear periodicity at 15.7 d, which has been interpreted as repeated outbursts around the periastron of an eccentric orbit. Aims: We aim to characterise the binary system IGR J00370+6122 by deriving its orbital and physical parameters. Methods: We obtained high-resolution spectra of BD + 60° 73 at different epochs. We used the fastwind code to generate a stellar atmosphere model to fit the observed spectrum and obtain physical magnitudes. The synthetic spectrum was used as a template for cross-correlation with the observed spectra to measure radial velocities. The radial velocity curve provided an orbital solution for the system. We also analysed the RXTE/ASM and Swift/BAT light curves to confirm the stability of the periodicity. Results: BD + 60° 73 is a BN0.7 Ib low-luminosity supergiant located at a distance ~3.1 kpc, in the Cas OB4 association. We derive Teff = 24 000 K and log gc = 3.0, and chemical abundances consistent with a moderately high level of evolution. The spectroscopic and evolutionary masses are consistent at the 1-σ level with a mass M∗ ≈ 15 M⊙. The recurrence time of the X-ray flares is the orbital period of the system. The neutron star is in a high-eccentricity (e = 0.56 ± 0.07) orbit, and the X-ray emission is strongly peaked around orbital phase φ = 0.2, though the observations are consistent with some level of X-ray activity happening at all orbital phases. Conclusions: The X-ray behaviour of IGR J00370+6122 is reminiscent of "intermediate" supergiant X-ray transients, though its peak luminosity is rather low. The orbit is somewhat wider than those of classical persistent supergiant X-ray binaries, which when combined with the low luminosity of the mass donor, explains the low X-ray luminosity. IGR J00370+6122 will very likely evolve towards a persistent

  20. Development of short pulse soft x-ray lasers

    SciTech Connect

    Da Silva, L.B.; MacGowan, B.J.; Koch, J.A.; Mrowka, S.; Matthews, D.L.; Eder, D.; London, R.

    1993-02-01

    X-ray lasers with pulse duration shorter than 20 ps allow the possibility of imaging laser produced plasmas with {mu}m resolution. In addition, the high peak brightness of these new sources will allow us to study nonlinear optics in the xuv region. In this paper we will describe our efforts to produce collisionally pumped short pulse x-ray lasers. Initial results, which have produced {approximately} 45 ps (FWHM) x-ray lasers, using a double pulse irradiation technique are presented along with a discussion of the prospects for reducing the pulse width.