Sample records for peaks

  1. Equivalent peak resolution: characterization of the extent of separation for two components based on their relative peak overlap.

    PubMed

    Dvořák, Martin; Svobodová, Jana; Dubský, Pavel; Riesová, Martina; Vigh, Gyula; Gaš, Bohuslav

    2015-03-01

    Although the classical formula of peak resolution was derived to characterize the extent of separation only for Gaussian peaks of equal areas, it is often used even when the peaks follow non-Gaussian distributions and/or have unequal areas. This practice can result in misleading information about the extent of separation in terms of the severity of peak overlap. We propose here the use of the equivalent peak resolution value, a term based on relative peak overlap, to characterize the extent of separation that had been achieved. The definition of equivalent peak resolution is not constrained either by the form(s) of the concentration distribution function(s) of the peaks (Gaussian or non-Gaussian) or the relative area of the peaks. The equivalent peak resolution value and the classically defined peak resolution value are numerically identical when the separated peaks are Gaussian and have identical areas and SDs. Using our new freeware program, Resolution Analyzer, one can calculate both the classically defined and the equivalent peak resolution values. With the help of this tool, we demonstrate here that the classical peak resolution values mischaracterize the extent of peak overlap even when the peaks are Gaussian but have different areas. We show that under ideal conditions of the separation process, the relative peak overlap value is easily accessible by fitting the overall peak profile as the sum of two Gaussian functions. The applicability of the new approach is demonstrated on real separations. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Peak tree: a new tool for multiscale hierarchical representation and peak detection of mass spectrometry data.

    PubMed

    Zhang, Peng; Li, Houqiang; Wang, Honghui; Wong, Stephen T C; Zhou, Xiaobo

    2011-01-01

    Peak detection is one of the most important steps in mass spectrometry (MS) analysis. However, the detection result is greatly affected by severe spectrum variations. Unfortunately, most current peak detection methods are neither flexible enough to revise false detection results nor robust enough to resist spectrum variations. To improve flexibility, we introduce peak tree to represent the peak information in MS spectra. Each tree node is a peak judgment on a range of scales, and each tree decomposition, as a set of nodes, is a candidate peak detection result. To improve robustness, we combine peak detection and common peak alignment into a closed-loop framework, which finds the optimal decomposition via both peak intensity and common peak information. The common peak information is derived and loopily refined from the density clustering of the latest peak detection result. Finally, we present an improved ant colony optimization biomarker selection method to build a whole MS analysis system. Experiment shows that our peak detection method can better resist spectrum variations and provide higher sensitivity and lower false detection rates than conventional methods. The benefits from our peak-tree-based system for MS disease analysis are also proved on real SELDI data.

  3. Localised and delocalised optically induced conversion of composite glow peak 5 in LiF:Mg,Ti (TLD-100) to glow peak 4 as a function of postirradiation annealing temperature.

    PubMed

    Horowitz, Y S; Einav, Y; Biderman, S; Oster, L

    2002-01-01

    The composite structure of glow peak 5 in LiF:Mg,Ti (TLD-100) has been investigated using optical bleaching by 310 nm (4 eV) light. The glow peak conversion efficiency of peak 5a (Tm = 187 degrees C) to peak 4 traps is very high at a value of 3+/-0.5 (1 SD) whereas the glow peak conversion efficiency of peak 5 (Tm = 205 degrees C) to peak 4 traps is 0.0026+/-0.0012 (1 SD). The high conversion efficiency of peak 5a to peak 4 arises from direct optical ionisation of the electron in the electron-hole pair. leaving behind a singly-trapped hole (peak 4), a direct mechanism, relatively free of competitive mechanisms. Optical ionisation of the 'singly-trapped' electron (peak 5), however, can lead to peak 4 only via multi-stage mechanisms involving charge carrier transport in the valence and conduction bands, a mechanism subject to competitive processes. The conduction/valence band competitive processes lead to the factor of one thousand decrease in the conversion efficiency of peak 5 compared to peak 5a.

  4. PeakRanger: A cloud-enabled peak caller for ChIP-seq data

    PubMed Central

    2011-01-01

    Background Chromatin immunoprecipitation (ChIP), coupled with massively parallel short-read sequencing (seq) is used to probe chromatin dynamics. Although there are many algorithms to call peaks from ChIP-seq datasets, most are tuned either to handle punctate sites, such as transcriptional factor binding sites, or broad regions, such as histone modification marks; few can do both. Other algorithms are limited in their configurability, performance on large data sets, and ability to distinguish closely-spaced peaks. Results In this paper, we introduce PeakRanger, a peak caller software package that works equally well on punctate and broad sites, can resolve closely-spaced peaks, has excellent performance, and is easily customized. In addition, PeakRanger can be run in a parallel cloud computing environment to obtain extremely high performance on very large data sets. We present a series of benchmarks to evaluate PeakRanger against 10 other peak callers, and demonstrate the performance of PeakRanger on both real and synthetic data sets. We also present real world usages of PeakRanger, including peak-calling in the modENCODE project. Conclusions Compared to other peak callers tested, PeakRanger offers improved resolution in distinguishing extremely closely-spaced peaks. PeakRanger has above-average spatial accuracy in terms of identifying the precise location of binding events. PeakRanger also has excellent sensitivity and specificity in all benchmarks evaluated. In addition, PeakRanger offers significant improvements in run time when running on a single processor system, and very marked improvements when allowed to take advantage of the MapReduce parallel environment offered by a cloud computing resource. PeakRanger can be downloaded at the official site of modENCODE project: http://www.modencode.org/software/ranger/ PMID:21554709

  5. Impact of the definition of peak standardized uptake value on quantification of treatment response.

    PubMed

    Vanderhoek, Matt; Perlman, Scott B; Jeraj, Robert

    2012-01-01

    PET-based treatment response assessment typically measures the change in maximum standardized uptake value (SUV(max)), which is adversely affected by noise. Peak SUV (SUV(peak)) has been recommended as a more robust alternative, but its associated region of interest (ROI(peak)) is not uniquely defined. We investigated the impact of different ROI(peak) definitions on quantification of SUV(peak) and tumor response. Seventeen patients with solid malignancies were treated with a multitargeted receptor tyrosine kinase inhibitor resulting in a variety of responses. Using the cellular proliferation marker 3'-deoxy-3'-(18)F-fluorothymidine ((18)F-FLT), whole-body PET/CT scans were acquired at baseline and during treatment. (18)F-FLT-avid lesions (∼2/patient) were segmented on PET images, and tumor response was assessed via the relative change in SUV(peak). For each tumor, 24 different SUV(peaks) were determined by changing ROI(peak) shape (circles vs. spheres), size (7.5-20 mm), and location (centered on SUV(max) vs. placed in highest-uptake region), encompassing different definitions from the literature. Within each tumor, variations in the 24 SUV(peaks) and tumor responses were measured using coefficient of variation (CV), standardized deviation (SD), and range. For each ROI(peak) definition, a population average SUV(peak) and tumor response were determined over all tumors. A substantial variation in both SUV(peak) and tumor response resulted from changing the ROI(peak) definition. The variable ROI(peak) definition led to an intratumor SUV(peak) variation ranging from 49% above to 46% below the mean (CV, 17%) and an intratumor SUV(peak) response variation ranging from 49% above to 35% below the mean (SD, 9%). The variable ROI(peak) definition led to a population average SUV(peak) variation ranging from 24% above to 28% below the mean (CV, 14%) and a population average SUV(peak) response variation ranging from only 3% above to 3% below the mean (SD, 2%). The size of ROI(peak) caused more variation in intratumor response than did the location or shape of ROI(peak). Population average tumor response was independent of size, shape, and location of ROI(peak). Quantification of individual tumor response using SUV(peak) is highly sensitive to the ROI(peak) definition, which can significantly affect the use of SUV(peak) for assessment of treatment response. Clinical trials are necessary to compare the efficacy of SUV(peak) and SUV(max) for quantification of response to therapy.

  6. How to use your peak flow meter

    MedlinePlus

    Peak flow meter - how to use; Asthma - peak flow meter; Reactive airway disease - peak flow meter; Bronchial asthma - peak flow meter ... your airways are narrowed and blocked due to asthma, your peak flow values drop. You can check ...

  7. [A peak recognition algorithm designed for chromatographic peaks of transformer oil].

    PubMed

    Ou, Linjun; Cao, Jian

    2014-09-01

    In the field of the chromatographic peak identification of the transformer oil, the traditional first-order derivative requires slope threshold to achieve peak identification. In terms of its shortcomings of low automation and easy distortion, the first-order derivative method was improved by applying the moving average iterative method and the normalized analysis techniques to identify the peaks. Accurate identification of the chromatographic peaks was realized through using multiple iterations of the moving average of signal curves and square wave curves to determine the optimal value of the normalized peak identification parameters, combined with the absolute peak retention times and peak window. The experimental results show that this algorithm can accurately identify the peaks and is not sensitive to the noise, the chromatographic peak width or the peak shape changes. It has strong adaptability to meet the on-site requirements of online monitoring devices of dissolved gases in transformer oil.

  8. Comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry peak sorting algorithm.

    PubMed

    Oh, Cheolhwan; Huang, Xiaodong; Regnier, Fred E; Buck, Charles; Zhang, Xiang

    2008-02-01

    We report a novel peak sorting method for the two-dimensional gas chromatography/time-of-flight mass spectrometry (GC x GC/TOF-MS) system. The objective of peak sorting is to recognize peaks from the same metabolite occurring in different samples from thousands of peaks detected in the analytical procedure. The developed algorithm is based on the fact that the chromatographic peaks for a given analyte have similar retention times in all of the chromatograms. Raw instrument data are first processed by ChromaTOF (Leco) software to provide the peak tables. Our algorithm achieves peak sorting by utilizing the first- and second-dimension retention times in the peak tables and the mass spectra generated during the process of electron impact ionization. The algorithm searches the peak tables for the peaks generated by the same type of metabolite using several search criteria. Our software also includes options to eliminate non-target peaks from the sorting results, e.g., peaks of contaminants. The developed software package has been tested using a mixture of standard metabolites and another mixture of standard metabolites spiked into human serum. Manual validation demonstrates high accuracy of peak sorting with this algorithm.

  9. Detecting and accounting for multiple sources of positional variance in peak list registration analysis and spin system grouping.

    PubMed

    Smelter, Andrey; Rouchka, Eric C; Moseley, Hunter N B

    2017-08-01

    Peak lists derived from nuclear magnetic resonance (NMR) spectra are commonly used as input data for a variety of computer assisted and automated analyses. These include automated protein resonance assignment and protein structure calculation software tools. Prior to these analyses, peak lists must be aligned to each other and sets of related peaks must be grouped based on common chemical shift dimensions. Even when programs can perform peak grouping, they require the user to provide uniform match tolerances or use default values. However, peak grouping is further complicated by multiple sources of variance in peak position limiting the effectiveness of grouping methods that utilize uniform match tolerances. In addition, no method currently exists for deriving peak positional variances from single peak lists for grouping peaks into spin systems, i.e. spin system grouping within a single peak list. Therefore, we developed a complementary pair of peak list registration analysis and spin system grouping algorithms designed to overcome these limitations. We have implemented these algorithms into an approach that can identify multiple dimension-specific positional variances that exist in a single peak list and group peaks from a single peak list into spin systems. The resulting software tools generate a variety of useful statistics on both a single peak list and pairwise peak list alignment, especially for quality assessment of peak list datasets. We used a range of low and high quality experimental solution NMR and solid-state NMR peak lists to assess performance of our registration analysis and grouping algorithms. Analyses show that an algorithm using a single iteration and uniform match tolerances approach is only able to recover from 50 to 80% of the spin systems due to the presence of multiple sources of variance. Our algorithm recovers additional spin systems by reevaluating match tolerances in multiple iterations. To facilitate evaluation of the algorithms, we developed a peak list simulator within our nmrstarlib package that generates user-defined assigned peak lists from a given BMRB entry or database of entries. In addition, over 100,000 simulated peak lists with one or two sources of variance were generated to evaluate the performance and robustness of these new registration analysis and peak grouping algorithms.

  10. [An automatic peak detection method for LIBS spectrum based on continuous wavelet transform].

    PubMed

    Chen, Peng-Fei; Tian, Di; Qiao, Shu-Jun; Yang, Guang

    2014-07-01

    Spectrum peak detection in the laser-induced breakdown spectroscopy (LIBS) is an essential step, but the presence of background and noise seriously disturb the accuracy of peak position. The present paper proposed a method applied to automatic peak detection for LIBS spectrum in order to enhance the ability of overlapping peaks searching and adaptivity. We introduced the ridge peak detection method based on continuous wavelet transform to LIBS, and discussed the choice of the mother wavelet and optimized the scale factor and the shift factor. This method also improved the ridge peak detection method with a correcting ridge method. The experimental results show that compared with other peak detection methods (the direct comparison method, derivative method and ridge peak search method), our method had a significant advantage on the ability to distinguish overlapping peaks and the precision of peak detection, and could be be applied to data processing in LIBS.

  11. Automated peak picking and peak integration in macromolecular NMR spectra using AUTOPSY.

    PubMed

    Koradi, R; Billeter, M; Engeli, M; Güntert, P; Wüthrich, K

    1998-12-01

    A new approach for automated peak picking of multidimensional protein NMR spectra with strong overlap is introduced, which makes use of the program AUTOPSY (automated peak picking for NMR spectroscopy). The main elements of this program are a novel function for local noise level calculation, the use of symmetry considerations, and the use of lineshapes extracted from well-separated peaks for resolving groups of strongly overlapping peaks. The algorithm generates peak lists with precise chemical shift and integral intensities, and a reliability measure for the recognition of each peak. The results of automated peak picking of NOESY spectra with AUTOPSY were tested in combination with the combined automated NOESY cross peak assignment and structure calculation routine NOAH implemented in the program DYANA. The quality of the resulting structures was found to be comparable with those from corresponding data obtained with manual peak picking. Copyright 1998 Academic Press.

  12. Weak lensing mass map and peak statistics in Canada-France-Hawaii Telescope Stripe 82 survey

    NASA Astrophysics Data System (ADS)

    Shan, Huan Yuan; Kneib, Jean-Paul; Comparat, Johan; Jullo, Eric; Charbonnier, Aldée; Erben, Thomas; Makler, Martin; Moraes, Bruno; Van Waerbeke, Ludovic; Courbin, Frédéric; Meylan, Georges; Tao, Charling; Taylor, James E.

    2014-08-01

    We present a weak lensing mass map covering ˜124 deg2 of the Canada-France-Hawaii Telescope Stripe 82 Survey (CS82). We study the statistics of rare peaks in the map, including peak abundance, the peak-peak correlation functions and the tangential-shear profiles around peaks. We find that the abundance of peaks detected in CS82 is consistent with predictions from a Λ cold dark matter cosmological model, once noise effects are properly included. The correlation functions of peaks with different signal-to-noise ratio (SNR) are well described by power laws, and there is a clear cross-correlation between the Sloan Digital Sky Survey III/Constant Mass galaxies and high SNR peaks. The tangential-shear profiles around peaks increase with peak SNR. We fit analytical models to the tangential-shear profiles, including a projected singular isothermal sphere (SIS) model and a projected Navarro, Frenk & White (NFW) model, plus a two-halo term. For the high SNR peaks, the SIS model is rejected at ˜3σ. The NFW model plus a two-halo term gives more acceptable fits to the data. Some peaks match the positions of optically detected clusters, while others are relatively dark. Comparing dark and matched peaks, we find a difference in lensing signal of a factor of 2, suggesting that about half of the dark peaks are false detections.

  13. Method and apparatus for current-output peak detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Geronimo, Gianluigi

    2017-01-24

    A method and apparatus for a current-output peak detector. A current-output peak detector circuit is disclosed and works in two phases. The peak detector circuit includes switches to switch the peak detector circuit from the first phase to the second phase upon detection of the peak voltage of an input voltage signal. The peak detector generates a current output with a high degree of accuracy in the second phase.

  14. PeakWorks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2016-11-30

    The PeakWorks software is designed to assist in the quantitative analysis of atom probe tomography (APT) generated mass spectra. Specifically, through an interactive user interface, mass peaks can be identified automatically (defined by a threshold) and/or identified manually. The software then provides a means to assign specific elemental isotopes (including more than one) to each peak. The software also provides a means for the user to choose background subtraction of each peak based on background fitting functions, the choice of which is left to the users discretion. Peak ranging (the mass range over which peaks are integrated) is also automatedmore » allowing the user to chose a quantitative range (e.g. full-widthhalf- maximum). The software then integrates all identified peaks, providing a background-subtracted composition, which also includes the deconvolution of peaks (i.e. those peaks that happen to have overlapping isotopic masses). The software is also able to output a 'range file' that can be used in other software packages, such as within IVAS. A range file lists the peak identities, the mass range of each identified peak, and a color code for the peak. The software is also able to generate 'dummy' peak ranges within an outputted range file that can be used within IVAS to provide a means for background subtracted proximity histogram analysis.« less

  15. A simple multi-scale Gaussian smoothing-based strategy for automatic chromatographic peak extraction.

    PubMed

    Fu, Hai-Yan; Guo, Jun-Wei; Yu, Yong-Jie; Li, He-Dong; Cui, Hua-Peng; Liu, Ping-Ping; Wang, Bing; Wang, Sheng; Lu, Peng

    2016-06-24

    Peak detection is a critical step in chromatographic data analysis. In the present work, we developed a multi-scale Gaussian smoothing-based strategy for accurate peak extraction. The strategy consisted of three stages: background drift correction, peak detection, and peak filtration. Background drift correction was implemented using a moving window strategy. The new peak detection method is a variant of the system used by the well-known MassSpecWavelet, i.e., chromatographic peaks are found at local maximum values under various smoothing window scales. Therefore, peaks can be detected through the ridge lines of maximum values under these window scales, and signals that are monotonously increased/decreased around the peak position could be treated as part of the peak. Instrumental noise was estimated after peak elimination, and a peak filtration strategy was performed to remove peaks with signal-to-noise ratios smaller than 3. The performance of our method was evaluated using two complex datasets. These datasets include essential oil samples for quality control obtained from gas chromatography and tobacco plant samples for metabolic profiling analysis obtained from gas chromatography coupled with mass spectrometry. Results confirmed the reasonability of the developed method. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Osteoporosis: Peak Bone Mass in Women

    MedlinePlus

    ... Osteoporosis: Peak Bone Mass in Women Osteoporosis: Peak Bone Mass in Women Bones are the framework for ... that affect peak bone mass. Factors Affecting Peak Bone Mass A variety of genetic and environmental factors ...

  17. Historical changes in annual peak flows in Maine and implications for flood-frequency analyses

    USGS Publications Warehouse

    Hodgkins, Glenn A.

    2010-01-01

    Flood-frequency analyses use statistical methods to compute peak streamflows for selected recurrence intervals— the average number of years between peak flows that are equal to or greater than a specified peak flow. Analyses are based on annual peak flows at a stream. It has long been assumed that the annual peak streamflows used in these computations were stationary (non-changing) over very long periods of time, except in river basins subject to direct effects of human activities, such as urbanization and regulation. Because of the potential effects of global warming on peak flows, the assumption of peak-flow stationarity has recently been questioned. Maine has many streamgages with 50 to 105 years of recorded annual peak streamflows. In this study, this long-term record has been tested for historical flood-frequency stationarity, to provide some insight into future flood frequency. Changes over time in annual instantaneous peak streamflows at 28 U.S. Geological Survey streamgages with long-term data (50 or more years) and relatively complete records were investigated by examining linear trends for each streamgage’s period of record. None of the 28 streamgages had more than 5 years of missing data. Eight streamgages have substantial streamflow regulation. Because previous studies have suggested that changes over time may have occurred as a step change around 1970, step changes between each streamgage’s older record (start year to 1970) and newer record (1971 to 2006) also were computed. The median change over time for all 28 streamgages is an increase of 15.9 percent based on a linear change and an increase of 12.4 percent based on a step change. The median change for the 20 unregulated streamgages is slightly higher than for all 28 streamgages; it is 18.4 percent based on a linear change and 15.0 percent based on a step change. Peak flows with 100- and 5-year recurrence intervals were computed for the 28 streamgages using the full annual peak-flow record and multiple sub-periods of that record using the guidelines (Bulletin 17B) of the Interagency Advisory Committee on Water Data. Magnitudes of 100- and 5-year peak flows computed from sub-periods then were compared to those computed from the full period. Sub-periods of 30 years with starting years staggered by 10 years were evaluated (1907–36, 1917–46, 1927–56, 1937–66, 1947–76, 1957–86, 1967–96, and 1977–2006). Two other sub-periods were evaluated using older data (start-of-record to 1970) and newer data (1971 to 2006). The 5-year peak flow is used to represent small and relatively frequent flood flows in Maine, whereas the 100-year peak flow is used to represent large flood flows. The 1967–96 sub-period generated the highest 100- and 5-year peak flows overall when compared to peak flows based on the full period of record; the median difference for all 28 streamgages is 8 percent for 100- and 5-year peak flows. The 1977–2006 and 1971–2006 sub-periods also generated 100- and 5-year peak flows higher than peak flows based on the full period of record, but not as high as the peak flows based on the 1967–96 sub-period. The 1937–66 sub-period generated the lowest 100- and 5-year peak flows overall. The median difference from full-period peak flows is -11 percent for 100-year peak flows and -8 percent for 5-year peak flows. Overall, differences between peak flows based on the sub-periods and those based on the full periods, generated using the 20 unregulated streamgages, are similar to differences using all 28 streamgages. Increases in the 5- and 100-year peak flows based on recent years of record are, in general, modest when compared to peak flows based on complete periods of record. The highest peak flows are based on the 1967–96 sub-period rather than the most recent sub-period (1977-2006). Peak flows for selected recurrence intervals are sensitive to very high peak flows that may occur once in a century or even less frequently. It is difficult, therefore, to determine which approach will produce the most reliable future estimates of peak flows for selected recurrence intervals, using only recent years of record or the traditional method using the entire historical period. One possible conservative approach to computing peak flows of selected recurrence intervals would be to compute peak flows using recent annual peak flows and the entire period of record, then choose the higher computed value. Whether recent or entire periods of record are used to compute peak flows of selected recurrence intervals, the results of this study highlight the importance of using recent data in the computation of the peak flows. The use of older records alone could result in underestimation of peak flows, particularly peak flows with short recurrence intervals, such as the 5-year peak flows.

  18. Head-to-head comparison of peak supine bicycle exercise echocardiography and treadmill exercise echocardiography at peak and at post-exercise for the detection of coronary artery disease.

    PubMed

    Peteiro, Jesús; Bouzas-Mosquera, Alberto; Estevez, Rodrigo; Pazos, Pablo; Piñeiro, Miriam; Castro-Beiras, Alfonso

    2012-03-01

    Supine bicycle exercise (SBE) echocardiography and treadmill exercise (TME) echocardiography have been used for evaluation of coronary artery disease (CAD). Although peak imaging acquisition has been considered unfeasible with TME, higher sensitivity for the detection of CAD has been recently found with this method compared with post-TME echocardiography. However, peak TME echocardiography has not been previously compared with the more standardized peak SBE echocardiography. The aim of this study was to compare peak TME echocardiography, peak SBE echocardiography, and post-TME echocardiography for the detection of CAD. A series of 116 patients (mean age, 61 ± 10 years) referred for evaluation of CAD underwent SBE (starting at 25 W, with 25-W increments every 2-3 min) and TME with peak and postexercise imaging acquisition, in a random sequence. Digitized images at baseline, at peak TME, after TME, and at peak SBE were interpreted in a random and blinded fashion. All patients underwent coronary angiography. Maximal heart rate was higher during TME, whereas systolic blood pressure was higher during SBE, resulting in similar rate-pressure products. On quantitative angiography, 75 patients had coronary stenosis (≥50%). In these patients, wall motion score indexes at maximal exercise were higher at peak TME (median, 1.45; interquartile range [IQR], 1.13-1.75) than at peak SBE (median, 1.25; IQR, 1.0-1.56) or after TME (median, 1.13; IQR, 1.0-1.38) (P = .002 between peak TME and peak SBE imaging, P < .001 between post-TME imaging and the other modalities). The extent of myocardial ischemia (number of ischemic segments) was also higher during peak TME (median, 5; IQR, 2-12) compared with peak SBE (median, 3; IQR, 0-8) or after TME (median, 2; IQR, 0-4) (P < .001 between peak TME and peak SBE imaging, P < .001 between post-TME imaging and the other modalities). ST-segment changes in patients with CAD and normal baseline ST segments were higher during TME (median, 1 mm [IQR, 0-1.9 mm] vs 0 mm [IQR, 0-1.5 mm]; P = .006). The sensitivity of peak TME, peak SBE, and post-TME echocardiography for CAD was 84%, 75%, and 60% (P = .001 between post-TME and peak TME echocardiography, P = .055 between post-TME and peak SBE echocardiography), with specificity of 63%, 80%, and 78%, respectively (P = NS) and accuracy of 77%, 77%, and 66%, respectively (P = NS). Peak TME echocardiography diagnosed multivessel disease in 27 of the 40 patients with stenoses in more than one coronary artery, in contrast to 17 patients with peak SBE imaging and 12 with post-TME imaging (P < .05 between peak TME imaging and the other modalities). Image quality was similar with the three techniques. The duration of the test was longer with SBE echocardiography (9.5 ± 3.8 vs 7.6 ± 2.5 min, P < .001). During TME and SBE, patients achieve similar double products. Ischemia is more extensive and frequent with peak TME, which makes peak TME a more valuable exercise echocardiographic modality to increase sensitivity. However, peak SBE should be preferred to TME if the latter is performed with postexercise imaging acquisition. Copyright © 2012 American Society of Echocardiography. Published by Mosby, Inc. All rights reserved.

  19. Torsion and Antero-Posterior Bending in the In Vivo Human Tibia Loading Regimes during Walking and Running

    PubMed Central

    Yang, Peng-Fei; Sanno, Maximilian; Ganse, Bergita; Koy, Timmo; Brüggemann, Gert-Peter; Müller, Lars Peter; Rittweger, Jörn

    2014-01-01

    Bending, in addition to compression, is recognized to be a common loading pattern in long bones in animals. However, due to the technical difficulty of measuring bone deformation in humans, our current understanding of bone loading patterns in humans is very limited. In the present study, we hypothesized that bending and torsion are important loading regimes in the human tibia. In vivo tibia segment deformation in humans was assessed during walking and running utilizing a novel optical approach. Results suggest that the proximal tibia primarily bends to the posterior (bending angle: 0.15°–1.30°) and medial aspect (bending angle: 0.38°–0.90°) and that it twists externally (torsion angle: 0.67°–1.66°) in relation to the distal tibia during the stance phase of overground walking at a speed between 2.5 and 6.1 km/h. Peak posterior bending and peak torsion occurred during the first and second half of stance phase, respectively. The peak-to-peak antero-posterior (AP) bending angles increased linearly with vertical ground reaction force and speed. Similarly, peak-to-peak torsion angles increased with the vertical free moment in four of the five test subjects and with the speed in three of the test subjects. There was no correlation between peak-to-peak medio-lateral (ML) bending angles and ground reaction force or speed. On the treadmill, peak-to-peak AP bending angles increased with walking and running speed, but peak-to-peak torsion angles and peak-to-peak ML bending angles remained constant during walking. Peak-to-peak AP bending angle during treadmill running was speed-dependent and larger than that observed during walking. In contrast, peak-to-peak tibia torsion angle was smaller during treadmill running than during walking. To conclude, bending and torsion of substantial magnitude were observed in the human tibia during walking and running. A systematic distribution of peak amplitude was found during the first and second parts of the stance phase. PMID:24732724

  20. Torsion and antero-posterior bending in the in vivo human tibia loading regimes during walking and running.

    PubMed

    Yang, Peng-Fei; Sanno, Maximilian; Ganse, Bergita; Koy, Timmo; Brüggemann, Gert-Peter; Müller, Lars Peter; Rittweger, Jörn

    2014-01-01

    Bending, in addition to compression, is recognized to be a common loading pattern in long bones in animals. However, due to the technical difficulty of measuring bone deformation in humans, our current understanding of bone loading patterns in humans is very limited. In the present study, we hypothesized that bending and torsion are important loading regimes in the human tibia. In vivo tibia segment deformation in humans was assessed during walking and running utilizing a novel optical approach. Results suggest that the proximal tibia primarily bends to the posterior (bending angle: 0.15°-1.30°) and medial aspect (bending angle: 0.38°-0.90°) and that it twists externally (torsion angle: 0.67°-1.66°) in relation to the distal tibia during the stance phase of overground walking at a speed between 2.5 and 6.1 km/h. Peak posterior bending and peak torsion occurred during the first and second half of stance phase, respectively. The peak-to-peak antero-posterior (AP) bending angles increased linearly with vertical ground reaction force and speed. Similarly, peak-to-peak torsion angles increased with the vertical free moment in four of the five test subjects and with the speed in three of the test subjects. There was no correlation between peak-to-peak medio-lateral (ML) bending angles and ground reaction force or speed. On the treadmill, peak-to-peak AP bending angles increased with walking and running speed, but peak-to-peak torsion angles and peak-to-peak ML bending angles remained constant during walking. Peak-to-peak AP bending angle during treadmill running was speed-dependent and larger than that observed during walking. In contrast, peak-to-peak tibia torsion angle was smaller during treadmill running than during walking. To conclude, bending and torsion of substantial magnitude were observed in the human tibia during walking and running. A systematic distribution of peak amplitude was found during the first and second parts of the stance phase.

  1. Quality evaluation of extracted ion chromatograms and chromatographic peaks in liquid chromatography/mass spectrometry-based metabolomics data

    PubMed Central

    2014-01-01

    Background Extracted ion chromatogram (EIC) extraction and chromatographic peak detection are two important processing procedures in liquid chromatography/mass spectrometry (LC/MS)-based metabolomics data analysis. Most commonly, the LC/MS technique employs electrospray ionization as the ionization method. The EICs from LC/MS data are often noisy and contain high background signals. Furthermore, the chromatographic peak quality varies with respect to its location in the chromatogram and most peaks have zigzag shapes. Therefore, there is a critical need to develop effective metrics for quality evaluation of EICs and chromatographic peaks in LC/MS based metabolomics data analysis. Results We investigated a comprehensive set of potential quality evaluation metrics for extracted EICs and detected chromatographic peaks. Specifically, for EIC quality evaluation, we analyzed the mass chromatographic quality index (MCQ index) and propose a novel quality evaluation metric, the EIC-related global zigzag index, which is based on an EIC's first order derivatives. For chromatographic peak quality evaluation, we analyzed and compared six metrics: sharpness, Gaussian similarity, signal-to-noise ratio, peak significance level, triangle peak area similarity ratio and the local peak-related local zigzag index. Conclusions Although the MCQ index is suited for selecting and aligning analyte components, it cannot fairly evaluate EICs with high background signals or those containing only a single peak. Our proposed EIC related global zigzag index is robust enough to evaluate EIC qualities in both scenarios. Of the six peak quality evaluation metrics, the sharpness, peak significance level, and zigzag index outperform the others due to the zigzag nature of LC/MS chromatographic peaks. Furthermore, using several peak quality metrics in combination is more efficient than individual metrics in peak quality evaluation. PMID:25350128

  2. Quality evaluation of extracted ion chromatograms and chromatographic peaks in liquid chromatography/mass spectrometry-based metabolomics data.

    PubMed

    Zhang, Wenchao; Zhao, Patrick X

    2014-01-01

    Extracted ion chromatogram (EIC) extraction and chromatographic peak detection are two important processing procedures in liquid chromatography/mass spectrometry (LC/MS)-based metabolomics data analysis. Most commonly, the LC/MS technique employs electrospray ionization as the ionization method. The EICs from LC/MS data are often noisy and contain high background signals. Furthermore, the chromatographic peak quality varies with respect to its location in the chromatogram and most peaks have zigzag shapes. Therefore, there is a critical need to develop effective metrics for quality evaluation of EICs and chromatographic peaks in LC/MS based metabolomics data analysis. We investigated a comprehensive set of potential quality evaluation metrics for extracted EICs and detected chromatographic peaks. Specifically, for EIC quality evaluation, we analyzed the mass chromatographic quality index (MCQ index) and propose a novel quality evaluation metric, the EIC-related global zigzag index, which is based on an EIC's first order derivatives. For chromatographic peak quality evaluation, we analyzed and compared six metrics: sharpness, Gaussian similarity, signal-to-noise ratio, peak significance level, triangle peak area similarity ratio and the local peak-related local zigzag index. Although the MCQ index is suited for selecting and aligning analyte components, it cannot fairly evaluate EICs with high background signals or those containing only a single peak. Our proposed EIC related global zigzag index is robust enough to evaluate EIC qualities in both scenarios. Of the six peak quality evaluation metrics, the sharpness, peak significance level, and zigzag index outperform the others due to the zigzag nature of LC/MS chromatographic peaks. Furthermore, using several peak quality metrics in combination is more efficient than individual metrics in peak quality evaluation.

  3. Peak-flow characteristics of Virginia streams

    USGS Publications Warehouse

    Austin, Samuel H.; Krstolic, Jennifer L.; Wiegand, Ute

    2011-01-01

    Peak-flow annual exceedance probabilities, also called probability-percent chance flow estimates, and regional regression equations are provided describing the peak-flow characteristics of Virginia streams. Statistical methods are used to evaluate peak-flow data. Analysis of Virginia peak-flow data collected from 1895 through 2007 is summarized. Methods are provided for estimating unregulated peak flow of gaged and ungaged streams. Station peak-flow characteristics identified by fitting the logarithms of annual peak flows to a Log Pearson Type III frequency distribution yield annual exceedance probabilities of 0.5, 0.4292, 0.2, 0.1, 0.04, 0.02, 0.01, 0.005, and 0.002 for 476 streamgaging stations. Stream basin characteristics computed using spatial data and a geographic information system are used as explanatory variables in regional regression model equations for six physiographic regions to estimate regional annual exceedance probabilities at gaged and ungaged sites. Weighted peak-flow values that combine annual exceedance probabilities computed from gaging station data and from regional regression equations provide improved peak-flow estimates. Text, figures, and lists are provided summarizing selected peak-flow sites, delineated physiographic regions, peak-flow estimates, basin characteristics, regional regression model equations, error estimates, definitions, data sources, and candidate regression model equations. This study supersedes previous studies of peak flows in Virginia.

  4. A dynamic programming approach for the alignment of signal peaks in multiple gas chromatography-mass spectrometry experiments.

    PubMed

    Robinson, Mark D; De Souza, David P; Keen, Woon Wai; Saunders, Eleanor C; McConville, Malcolm J; Speed, Terence P; Likić, Vladimir A

    2007-10-29

    Gas chromatography-mass spectrometry (GC-MS) is a robust platform for the profiling of certain classes of small molecules in biological samples. When multiple samples are profiled, including replicates of the same sample and/or different sample states, one needs to account for retention time drifts between experiments. This can be achieved either by the alignment of chromatographic profiles prior to peak detection, or by matching signal peaks after they have been extracted from chromatogram data matrices. Automated retention time correction is particularly important in non-targeted profiling studies. A new approach for matching signal peaks based on dynamic programming is presented. The proposed approach relies on both peak retention times and mass spectra. The alignment of more than two peak lists involves three steps: (1) all possible pairs of peak lists are aligned, and similarity of each pair of peak lists is estimated; (2) the guide tree is built based on the similarity between the peak lists; (3) peak lists are progressively aligned starting with the two most similar peak lists, following the guide tree until all peak lists are exhausted. When two or more experiments are performed on different sample states and each consisting of multiple replicates, peak lists within each set of replicate experiments are aligned first (within-state alignment), and subsequently the resulting alignments are aligned themselves (between-state alignment). When more than two sets of replicate experiments are present, the between-state alignment also employs the guide tree. We demonstrate the usefulness of this approach on GC-MS metabolic profiling experiments acquired on wild-type and mutant Leishmania mexicana parasites. We propose a progressive method to match signal peaks across multiple GC-MS experiments based on dynamic programming. A sensitive peak similarity function is proposed to balance peak retention time and peak mass spectra similarities. This approach can produce the optimal alignment between an arbitrary number of peak lists, and models explicitly within-state and between-state peak alignment. The accuracy of the proposed method was close to the accuracy of manually-curated peak matching, which required tens of man-hours for the analyzed data sets. The proposed approach may offer significant advantages for processing of high-throughput metabolomics data, especially when large numbers of experimental replicates and multiple sample states are analyzed.

  5. A method for estimating peak and time of peak streamflow from excess rainfall for 10- to 640-acre watersheds in the Houston, Texas, metropolitan area

    USGS Publications Warehouse

    Asquith, William H.; Cleveland, Theodore G.; Roussel, Meghan C.

    2011-01-01

    Estimates of peak and time of peak streamflow for small watersheds (less than about 640 acres) in a suburban to urban, low-slope setting are needed for drainage design that is cost-effective and risk-mitigated. During 2007-10, the U.S. Geological Survey (USGS), in cooperation with the Harris County Flood Control District and the Texas Department of Transportation, developed a method to estimate peak and time of peak streamflow from excess rainfall for 10- to 640-acre watersheds in the Houston, Texas, metropolitan area. To develop the method, 24 watersheds in the study area with drainage areas less than about 3.5 square miles (2,240 acres) and with concomitant rainfall and runoff data were selected. The method is based on conjunctive analysis of rainfall and runoff data in the context of the unit hydrograph method and the rational method. For the unit hydrograph analysis, a gamma distribution model of unit hydrograph shape (a gamma unit hydrograph) was chosen and parameters estimated through matching of modeled peak and time of peak streamflow to observed values on a storm-by-storm basis. Watershed mean or watershed-specific values of peak and time to peak ("time to peak" is a parameter of the gamma unit hydrograph and is distinct from "time of peak") of the gamma unit hydrograph were computed. Two regression equations to estimate peak and time to peak of the gamma unit hydrograph that are based on watershed characteristics of drainage area and basin-development factor (BDF) were developed. For the rational method analysis, a lag time (time-R), volumetric runoff coefficient, and runoff coefficient were computed on a storm-by-storm basis. Watershed-specific values of these three metrics were computed. A regression equation to estimate time-R based on drainage area and BDF was developed. Overall arithmetic means of volumetric runoff coefficient (0.41 dimensionless) and runoff coefficient (0.25 dimensionless) for the 24 watersheds were used to express the rational method in terms of excess rainfall (the excess rational method). Both the unit hydrograph method and excess rational method are shown to provide similar estimates of peak and time of peak streamflow. The results from the two methods can be combined by using arithmetic means. A nomograph is provided that shows the respective relations between the arithmetic-mean peak and time of peak streamflow to drainage areas ranging from 10 to 640 acres. The nomograph also shows the respective relations for selected BDF ranging from undeveloped to fully developed conditions. The nomograph represents the peak streamflow for 1 inch of excess rainfall based on drainage area and BDF; the peak streamflow for design storms from the nomograph can be multiplied by the excess rainfall to estimate peak streamflow. Time of peak streamflow is readily obtained from the nomograph. Therefore, given excess rainfall values derived from watershed-loss models, which are beyond the scope of this report, the nomograph represents a method for estimating peak and time of peak streamflow for applicable watersheds in the Houston metropolitan area. Lastly, analysis of the relative influence of BDF on peak streamflow is provided, and the results indicate a 0:04log10 cubic feet per second change of peak streamflow per positive unit of change in BDF. This relative change can be used to adjust peak streamflow from the method or other hydrologic methods for a given BDF to other BDF values; example computations are provided.

  6. Determination of the measurement threshold in gamma-ray spectrometry.

    PubMed

    Korun, M; Vodenik, B; Zorko, B

    2017-03-01

    In gamma-ray spectrometry the measurement threshold describes the lover boundary of the interval of peak areas originating in the response of the spectrometer to gamma-rays from the sample measured. In this sense it presents a generalization of the net indication corresponding to the decision threshold, which is the measurement threshold at the quantity value zero for a predetermined probability for making errors of the first kind. Measurement thresholds were determined for peaks appearing in the spectra of radon daughters 214 Pb and 214 Bi by measuring the spectrum 35 times under repeatable conditions. For the calculation of the measurement threshold the probability for detection of the peaks and the mean relative uncertainty of the peak area were used. The relative measurement thresholds, the ratios between the measurement threshold and the mean peak area uncertainty, were determined for 54 peaks where the probability for detection varied between some percent and about 95% and the relative peak area uncertainty between 30% and 80%. The relative measurement thresholds vary considerably from peak to peak, although the nominal value of the sensitivity parameter defining the sensitivity for locating peaks was equal for all peaks. At the value of the sensitivity parameter used, the peak analysis does not locate peaks corresponding to the decision threshold with the probability in excess of 50%. This implies that peaks in the spectrum may not be located, although the true value of the measurand exceeds the decision threshold. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Peak picking NMR spectral data using non-negative matrix factorization.

    PubMed

    Tikole, Suhas; Jaravine, Victor; Rogov, Vladimir; Dötsch, Volker; Güntert, Peter

    2014-02-11

    Simple peak-picking algorithms, such as those based on lineshape fitting, perform well when peaks are completely resolved in multidimensional NMR spectra, but often produce wrong intensities and frequencies for overlapping peak clusters. For example, NOESY-type spectra have considerable overlaps leading to significant peak-picking intensity errors, which can result in erroneous structural restraints. Precise frequencies are critical for unambiguous resonance assignments. To alleviate this problem, a more sophisticated peaks decomposition algorithm, based on non-negative matrix factorization (NMF), was developed. We produce peak shapes from Fourier-transformed NMR spectra. Apart from its main goal of deriving components from spectra and producing peak lists automatically, the NMF approach can also be applied if the positions of some peaks are known a priori, e.g. from consistently referenced spectral dimensions of other experiments. Application of the NMF algorithm to a three-dimensional peak list of the 23 kDa bi-domain section of the RcsD protein (RcsD-ABL-HPt, residues 688-890) as well as to synthetic HSQC data shows that peaks can be picked accurately also in spectral regions with strong overlap.

  8. Relationships between Electroencephalographic Spectral Peaks Across Frequency Bands

    PubMed Central

    van Albada, S. J.; Robinson, P. A.

    2013-01-01

    The degree to which electroencephalographic spectral peaks are independent, and the relationships between their frequencies have been debated. A novel fitting method was used to determine peak parameters in the range 2–35 Hz from a large sample of eyes-closed spectra, and their interrelationships were investigated. Findings were compared with a mean-field model of thalamocortical activity, which predicts near-harmonic relationships between peaks. The subject set consisted of 1424 healthy subjects from the Brain Resource International Database. Peaks in the theta range occurred on average near half the alpha peak frequency, while peaks in the beta range tended to occur near twice and three times the alpha peak frequency on an individual-subject basis. Moreover, for the majority of subjects, alpha peak frequencies were significantly positively correlated with frequencies of peaks in the theta and low and high beta ranges. Such a harmonic progression agrees semiquantitatively with theoretical predictions from the mean-field model. These findings indicate a common or analogous source for different rhythms, and help to define appropriate individual frequency bands for peak identification. PMID:23483663

  9. Author Correction: Low frequency transcranial electrical stimulation does not entrain sleep rhythms measured by human intracranial recordings.

    PubMed

    Lafon, Belen; Henin, Simon; Huang, Yu; Friedman, Daniel; Melloni, Lucia; Thesen, Thomas; Doyle, Werner; Buzsáki, György; Devinsky, Orrin; Parra, Lucas C; Liu, Anli

    2018-02-28

    It has come to our attention that we did not specify whether the stimulation magnitudes we report in this Article are peak amplitudes or peak-to-peak. All references to intensity given in mA in the manuscript refer to peak-to-peak amplitudes, except in Fig. 2, where the model is calibrated to 1 mA peak amplitude, as stated. In the original version of the paper we incorrectly calibrated the computational models to 1 mA peak-to-peak, rather than 1 mA peak amplitude. This means that we divided by a value twice as large as we should have. The correct estimated fields are therefore twice as large as shown in the original Fig. 2 and Supplementary Figure 11. The corrected figures are now properly calibrated to 1 mA peak amplitude. Furthermore, the sentence in the first paragraph of the Results section 'Intensity ranged from 0.5 to 2.5 mA (current density 0.125-0.625 mA mA/cm 2 ), which is stronger than in previous reports', should have read 'Intensity ranged from 0.5 to 2.5 mA peak to peak (peak current density 0.0625-0.3125 mA/cm 2 ), which is stronger than in previous reports.' These errors do not affect any of the Article's conclusions.

  10. Features of an annealing-induced thermoluminescence peak in α-Al2O3:C,Mg

    NASA Astrophysics Data System (ADS)

    Kalita, J. M.; Chithambo, M. L.

    2017-08-01

    We report the thermoluminescence glow curves of beta irradiated single crystal α-Al2O3:C,Mg after annealing at 700 and 900 °C. A glow curve measured at 1 °C/s from samples irradiated to 1 Gy following annealing at 700 and 900 °C shows a high intensity peak at 163 °C and seven secondary peaks of weaker intensity at 43, 73, 100, 195, 280, 329 and 370 °C. Comparing the position of the peaks in the annealed samples with those in an un-annealed one, it is observed that the peak at 100 °C appears only after annealing at and above 700 °C. Kinetic analysis of this annealing-induced peak was carried out using the initial rise, whole glow peak, peak shape, curve fitting and variable heating rate methods. The order of kinetics of the peak was determined as first order using various methods including the Tm-Tstop technique and the dependence of Tm on irradiation dose. The activation energy of the peak is about 1.01 eV and the frequency factor of the order of 1012 s-1. The peak was found to be affected by thermal quenching in analysis based on change of peak intensity with heating rate. The activation energy of thermal quenching was evaluated as 1.06 ± 0.08 eV. We speculate that the annealing-induced peak is due to formation of a new electron trap after destruction of the F22+(2 Mg) centre when the sample is annealed at 700 °C. The annealing-induced peak fades with storage between irradiation and measurement. It was also concluded that electrons from traps corresponding to secondary peaks get re-trapped at the main electron trap.

  11. Microminiature high-resolution linear displacement sensor for peak strain detection in smart structures

    NASA Astrophysics Data System (ADS)

    Arms, Steven W.; Guzik, David C.; Townsend, Christopher P.

    1998-07-01

    Critical civil and military structures require 'smart' sensors in order to report their strain histories; this can help to insure safe operation after exposure to potentially damaging loads. A passive resetable peak strain detector was developed by modifying the mechanics of a differential variable reluctance transducer. The peak strain detector was attached to an aluminum test beam along with a bonded resistance strain gauge and a standard DVRT. Strain measurements were recorded during cyclic beam deflections. DVRT output was compared to the bonded resistance strain gauge output, yielding correlation coefficients ranging from 0.9989 to 0.9998 for al teste, including re-attachment of the DVRT to the specimen. Peak bending strains were obtained by the modified peak detect DVRT to the specimen. Peak bending strains were obtained by the modified peak detect DVRT and this was compared to the peak bending strains as measured by the bonded strain gauge. The peak detect DVRT demonstrated an accuracy of approximately +/- 5 percent over a peak range of 2000 to 2800 microstrain.

  12. Statistical Short-Range Guidance for Peak Wind Speed Forecasts on Kennedy Space Center/Cape Canaveral Air Force Station: Phase I Results

    NASA Technical Reports Server (NTRS)

    Lambert, Winifred C.; Merceret, Francis J. (Technical Monitor)

    2002-01-01

    This report describes the results of the ANU's (Applied Meteorology Unit) Short-Range Statistical Forecasting task for peak winds. The peak wind speeds are an important forecast element for the Space Shuttle and Expendable Launch Vehicle programs. The Keith Weather Squadron and the Spaceflight Meteorology Group indicate that peak winds are challenging to forecast. The Applied Meteorology Unit was tasked to develop tools that aid in short-range forecasts of peak winds at tower sites of operational interest. A 7 year record of wind tower data was used in the analysis. Hourly and directional climatologies by tower and month were developed to determine the seasonal behavior of the average and peak winds. In all climatologies, the average and peak wind speeds were highly variable in time. This indicated that the development of a peak wind forecasting tool would be difficult. Probability density functions (PDF) of peak wind speed were calculated to determine the distribution of peak speed with average speed. These provide forecasters with a means of determining the probability of meeting or exceeding a certain peak wind given an observed or forecast average speed. The climatologies and PDFs provide tools with which to make peak wind forecasts that are critical to safe operations.

  13. Data preprocessing method for liquid chromatography-mass spectrometry based metabolomics.

    PubMed

    Wei, Xiaoli; Shi, Xue; Kim, Seongho; Zhang, Li; Patrick, Jeffrey S; Binkley, Joe; McClain, Craig; Zhang, Xiang

    2012-09-18

    A set of data preprocessing algorithms for peak detection and peak list alignment are reported for analysis of liquid chromatography-mass spectrometry (LC-MS)-based metabolomics data. For spectrum deconvolution, peak picking is achieved at the selected ion chromatogram (XIC) level. To estimate and remove the noise in XICs, each XIC is first segmented into several peak groups based on the continuity of scan number, and the noise level is estimated by all the XIC signals, except the regions potentially with presence of metabolite ion peaks. After removing noise, the peaks of molecular ions are detected using both the first and the second derivatives, followed by an efficient exponentially modified Gaussian-based peak deconvolution method for peak fitting. A two-stage alignment algorithm is also developed, where the retention times of all peaks are first transferred into the z-score domain and the peaks are aligned based on the measure of their mixture scores after retention time correction using a partial linear regression. Analysis of a set of spike-in LC-MS data from three groups of samples containing 16 metabolite standards mixed with metabolite extract from mouse livers demonstrates that the developed data preprocessing method performs better than two of the existing popular data analysis packages, MZmine2.6 and XCMS(2), for peak picking, peak list alignment, and quantification.

  14. A Data Pre-processing Method for Liquid Chromatography Mass Spectrometry-based Metabolomics

    PubMed Central

    Wei, Xiaoli; Shi, Xue; Kim, Seongho; Zhang, Li; Patrick, Jeffrey S.; Binkley, Joe; McClain, Craig; Zhang, Xiang

    2012-01-01

    A set of data pre-processing algorithms for peak detection and peak list alignment are reported for analysis of LC-MS based metabolomics data. For spectrum deconvolution, peak picking is achieved at selected ion chromatogram (XIC) level. To estimate and remove the noise in XICs, each XIC is first segmented into several peak groups based on the continuity of scan number, and the noise level is estimated by all the XIC signals, except the regions potentially with presence of metabolite ion peaks. After removing noise, the peaks of molecular ions are detected using both the first and the second derivatives, followed by an efficient exponentially modified Gaussian-based peak deconvolution method for peak fitting. A two-stage alignment algorithm is also developed, where the retention times of all peaks are first transferred into z-score domain and the peaks are aligned based on the measure of their mixture scores after retention time correction using a partial linear regression. Analysis of a set of spike-in LC-MS data from three groups of samples containing 16 metabolite standards mixed with metabolite extract from mouse livers, demonstrates that the developed data pre-processing methods performs better than two of the existing popular data analysis packages, MZmine2.6 and XCMS2, for peak picking, peak list alignment and quantification. PMID:22931487

  15. Improved peak detection in mass spectrum by incorporating continuous wavelet transform-based pattern matching.

    PubMed

    Du, Pan; Kibbe, Warren A; Lin, Simon M

    2006-09-01

    A major problem for current peak detection algorithms is that noise in mass spectrometry (MS) spectra gives rise to a high rate of false positives. The false positive rate is especially problematic in detecting peaks with low amplitudes. Usually, various baseline correction algorithms and smoothing methods are applied before attempting peak detection. This approach is very sensitive to the amount of smoothing and aggressiveness of the baseline correction, which contribute to making peak detection results inconsistent between runs, instrumentation and analysis methods. Most peak detection algorithms simply identify peaks based on amplitude, ignoring the additional information present in the shape of the peaks in a spectrum. In our experience, 'true' peaks have characteristic shapes, and providing a shape-matching function that provides a 'goodness of fit' coefficient should provide a more robust peak identification method. Based on these observations, a continuous wavelet transform (CWT)-based peak detection algorithm has been devised that identifies peaks with different scales and amplitudes. By transforming the spectrum into wavelet space, the pattern-matching problem is simplified and in addition provides a powerful technique for identifying and separating the signal from the spike noise and colored noise. This transformation, with the additional information provided by the 2D CWT coefficients can greatly enhance the effective signal-to-noise ratio. Furthermore, with this technique no baseline removal or peak smoothing preprocessing steps are required before peak detection, and this improves the robustness of peak detection under a variety of conditions. The algorithm was evaluated with SELDI-TOF spectra with known polypeptide positions. Comparisons with two other popular algorithms were performed. The results show the CWT-based algorithm can identify both strong and weak peaks while keeping false positive rate low. The algorithm is implemented in R and will be included as an open source module in the Bioconductor project.

  16. Contribution of central and peripheral factors at peak exercise in heart failure patients with progressive severity of exercise limitation.

    PubMed

    Del Torto, Alberico; Corrieri, Nicoletta; Vignati, Carlo; Gentile, Piero; Cattadori, Gaia; Paolillo, Stefania; Agostoni, Piergiuseppe

    2017-12-01

    A reduced cardiac output (CO) response during exercise is a major limiting factor in heart failure (HF). Oxygen consumption (VO 2 ) is directly proportional to CO. Peripheral mechanisms via arteriovenous oxygen difference (Δ(a-v)O 2 ) play a pivotal role in chronic HF. We hypothesized a weak correlation between peak VO 2 and peak CO with a greater Δ(a-v)O 2 variability in most severe HF. We analyzed 278 HF patients (NYHA II-III) who performed maximal cardiopulmonary exercise test with non-invasive CO measurement by inert gas rebreathing. Median peakVO 2 , CO and Δ(a-v)O 2 were 0.96 (0.78-1.28) L/min, 6.3 (5.1-8.0) L/min and 16.0 (14.2-18.0) mL/100mL respectively, with a linear relationship between VO 2 and CO: CO=5.3×VO 2 +1.13 (r 2 =0.705, p<0.001). Patients were grouped according to exercise limitation. Group 1 (101 patients) peakVO 2 <50% pred: peakVO 2 0.80 (0.67-0.94) L/min, peakCO 5.6 (4.7-6.5) L/min, peakΔ(a-v)O 2 14.8 (12.9-17.1) mL/100mL. Group 2 (89 patients) peakVO 2 ≥50-<65% pred: peakVO 2 1.02 (0.84-1.29) L/min, peakCO 6.4 (5.1-8.0) L/min, peakΔ(a-v)O 2 16.7 (15.0-18.5) mL/100mL. Group 3 (88 patients) peakVO 2 ≥65% pred: peakVO 2 1.28 (0.93-1.66) L/min, peakCO 8.0 (6.2-9.7) L/min, peakΔ(a-v)O 2 16.8 (14.6-18.3) mL/100mL. A peakVO 2 and peakCO linear relationship was observed in Group 1 (r 2 =0.381, p<0.001), Group 2 (r 2 =0.756, p<0.001) and Group 3 (r 2 =0.744, p<0.001). With worsening HF we observed a progressive reduction of peak CO and peak VO 2 . However in most compromised patients also peripheral mechanisms play a role as indicated by reduced Δ(a-v)O 2 . Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Peak-discharge frequency and potential extreme peak discharge for natural streams in the Brazos River basin, Texas

    USGS Publications Warehouse

    Raines, Timothy H.

    1998-01-01

    The potential extreme peak-discharge curves as related to contributing drainage area were estimated for each of the three hydrologic regions from measured extreme peaks of record at 186 sites with streamflow-gaging stations and from measured extreme peaks at 37 sites without streamflow-gaging stations in and near the Brazos River Basin. The potential extreme peak-discharge curves generally are similar for hydrologic regions 1 and 2, and the curve for region 3 consistently is below the curves for regions 1 and 2, which indicates smaller peak discharges.

  18. Kinetic modelling of the optically stimulated conversion of peaks 5a and 5 to peak 4 in LiF:Mg,Ti (TLD-100).

    PubMed

    Weizman, Y; Horowitz, Y S; Oster, L

    2002-01-01

    The TC/LC conversion model for peaks 4, 5a and 5 in LiF:Mg,Ti (TLD-100) has been studied by solution of the coupled differential equations describing the charge carrier traffic following optical stimulation. Aspects of the model investigated were (i) the two-component exponential decay of the composite peak 5 TL intensity following the bleach, (ii) the role of retrapping during bleaching, (iii) the hole nature of peak 4 and (iv) the conversion of peak 5a traps to peak 4 traps. The high conversion efficiency is naturally explained due to the absence of conduction band competitive mechanisms in the optical ionisation of the electron in the e-h occupied structure corresponding to peak 5a and thereby leading to the hole-only occupied TC/LC leading to peak 4.

  19. A generalized approach to automated NMR peak list editing: application to reduced dimensionality triple resonance spectra.

    PubMed

    Moseley, Hunter N B; Riaz, Nadeem; Aramini, James M; Szyperski, Thomas; Montelione, Gaetano T

    2004-10-01

    We present an algorithm and program called Pattern Picker that performs editing of raw peak lists derived from multidimensional NMR experiments with characteristic peak patterns. Pattern Picker detects groups of correlated peaks within peak lists from reduced dimensionality triple resonance (RD-TR) NMR spectra, with high fidelity and high yield. With typical quality RD-TR NMR data sets, Pattern Picker performs almost as well as human analysis, and is very robust in discriminating real peak sets from noise and other artifacts in unedited peak lists. The program uses a depth-first search algorithm with short-circuiting to efficiently explore a search tree representing every possible combination of peaks forming a group. The Pattern Picker program is particularly valuable for creating an automated peak picking/editing process. The Pattern Picker algorithm can be applied to a broad range of experiments with distinct peak patterns including RD, G-matrix Fourier transformation (GFT) NMR spectra, and experiments to measure scalar and residual dipolar coupling, thus promoting the use of experiments that are typically harder for a human to analyze. Since the complexity of peak patterns becomes a benefit rather than a drawback, Pattern Picker opens new opportunities in NMR experiment design.

  20. Peak picking NMR spectral data using non-negative matrix factorization

    PubMed Central

    2014-01-01

    Background Simple peak-picking algorithms, such as those based on lineshape fitting, perform well when peaks are completely resolved in multidimensional NMR spectra, but often produce wrong intensities and frequencies for overlapping peak clusters. For example, NOESY-type spectra have considerable overlaps leading to significant peak-picking intensity errors, which can result in erroneous structural restraints. Precise frequencies are critical for unambiguous resonance assignments. Results To alleviate this problem, a more sophisticated peaks decomposition algorithm, based on non-negative matrix factorization (NMF), was developed. We produce peak shapes from Fourier-transformed NMR spectra. Apart from its main goal of deriving components from spectra and producing peak lists automatically, the NMF approach can also be applied if the positions of some peaks are known a priori, e.g. from consistently referenced spectral dimensions of other experiments. Conclusions Application of the NMF algorithm to a three-dimensional peak list of the 23 kDa bi-domain section of the RcsD protein (RcsD-ABL-HPt, residues 688-890) as well as to synthetic HSQC data shows that peaks can be picked accurately also in spectral regions with strong overlap. PMID:24511909

  1. Reduction of chemical formulas from the isotopic peak distributions of high-resolution mass spectra.

    PubMed

    Roussis, Stilianos G; Proulx, Richard

    2003-03-15

    A method has been developed for the reduction of the chemical formulas of compounds in complex mixtures from the isotopic peak distributions of high-resolution mass spectra. The method is based on the principle that the observed isotopic peak distribution of a mixture of compounds is a linear combination of the isotopic peak distributions of the individual compounds in the mixture. All possible chemical formulas that meet specific criteria (e.g., type and number of atoms in structure, limits of unsaturation, etc.) are enumerated, and theoretical isotopic peak distributions are generated for each formula. The relative amount of each formula is obtained from the accurately measured isotopic peak distribution and the calculated isotopic peak distributions of all candidate formulas. The formulas of compounds in simple spectra, where peak components are fully resolved, are rapidly determined by direct comparison of the calculated and experimental isotopic peak distributions. The singular value decomposition linear algebra method is used to determine the contributions of compounds in complex spectra containing unresolved peak components. The principles of the approach and typical application examples are presented. The method is most useful for the characterization of complex spectra containing partially resolved peaks and structures with multiisotopic elements.

  2. MAVEN observations of dayside peak electron densities in the ionosphere of Mars

    NASA Astrophysics Data System (ADS)

    Vogt, Marissa F.; Withers, Paul; Fallows, Kathryn; Andersson, Laila; Girazian, Zachary; Mahaffy, Paul R.; Benna, Mehdi; Elrod, Meredith K.; Connerney, John E. P.; Espley, Jared R.; Eparvier, Frank G.; Jakosky, Bruce M.

    2017-01-01

    The peak electron density in the dayside Martian ionosphere is a valuable diagnostic of the state of the ionosphere. Its dependence on factors like the solar zenith angle, ionizing solar irradiance, neutral scale height, and electron temperature has been well studied. The Mars Atmosphere and Volatile EvolutioN spacecraft's September 2015 "deep dip" orbits, in which the orbital periapsis was lowered to 125 km, provided the first opportunity since Viking to sample in situ a complete dayside electron density profile including the main peak. Here we present peak electron density measurements from 37 deep dip orbits and describe conditions at the altitude of the main peak, including the electron temperature and composition of the ionosphere and neutral atmosphere. We find that the dependence of the peak electron density and the altitude of the main peak on solar zenith angle are well described by analytical photochemical theory. Additionally, we find that the electron temperatures at the main peak display a dependence on solar zenith angle that is consistent with the observed variability in the peak electron density. Several peak density measurements were made in regions of large crustal magnetic field, but there is no clear evidence that the crustal magnetic field strength influences the peak electron density, peak altitude, or electron temperature. Finally, we find that the fractional abundance of O2+ and CO2+ at the peak altitude is variable but that the two species together consistently represent 95% of the total ion density.

  3. Peak water limits to freshwater withdrawal and use

    PubMed Central

    Gleick, Peter H.; Palaniappan, Meena

    2010-01-01

    Freshwater resources are fundamental for maintaining human health, agricultural production, economic activity as well as critical ecosystem functions. As populations and economies grow, new constraints on water resources are appearing, raising questions about limits to water availability. Such resource questions are not new. The specter of “peak oil”—a peaking and then decline in oil production—has long been predicted and debated. We present here a detailed assessment and definition of three concepts of “peak water”: peak renewable water, peak nonrenewable water, and peak ecological water. These concepts can help hydrologists, water managers, policy makers, and the public understand and manage different water systems more effectively and sustainably. Peak renewable water applies where flow constraints limit total water availability over time. Peak nonrenewable water is observable in groundwater systems where production rates substantially exceed natural recharge rates and where overpumping or contamination leads to a peak of production followed by a decline, similar to more traditional peak-oil curves. Peak “ecological” water is defined as the point beyond which the total costs of ecological disruptions and damages exceed the total value provided by human use of that water. Despite uncertainties in quantifying many of these costs and benefits in consistent ways, more and more watersheds appear to have already passed the point of peak water. Applying these concepts can help shift the way freshwater resources are managed toward more productive, equitable, efficient, and sustainable use. PMID:20498082

  4. Origin of bombesin-like peptides in human fetal lung.

    PubMed

    Yoshizaki, K; de Bock, V; Solomon, S

    1984-02-27

    Four different forms of bombesin-like immunoreactive peaks were detected in extracts of human fetal lung by the use of reversed-phase high performance liquid chromatography (HPLC). Peaks I, II, III and IV, (increasing retention time), were eluted using a 14-38% of acetonitrile gradient containing 0.1% trifluoroacetic acid (TFA). Peak II was the major material found in the extract of human fetal lung obtained at 16-20 weeks gestation. None of the four compounds contained in the eluted peaks had the same retention time as amphibian bombesin or porcine gastrin releasing peptide (GRP). On reversed-phase HPLC using two different solvent systems TFA or heptafluorobutyric acid (HFBA) as a hydrophobic counter ion, and in gel filtration chromatography, the chromatographic behavior of the main peak (peak II) was the same as that of the carboxyl terminal fragments of GRP, GRP18-27 or GRP19-27. This suggested that the peptide(s) in peak II resembled in composition the carboxy terminal 9 or 10 amino acids of porcine GRP. Following tryptic digestion the material in peak IV was converted to the more polar compound present in peak II. Two other peptide peaks were eluted close to peak II and these were presumed to be a modification of this main peak. One of the possible biosynthetic steps in the formation of bombesin-like peptides in human fetal lung could be a tryptic conversion of a less polar peptide to a more polar form (peak IV to II).

  5. The Correspondence between Convergence Peaks from Weak Lensing and Massive Dark Matter Haloes

    NASA Astrophysics Data System (ADS)

    Wei, Chengliang; Li, Guoliang; Kang, Xi; Liu, Xiangkun; Fan, Zuhui; Yuan, Shuo; Pan, Chuzhong

    2018-05-01

    The convergence peaks, constructed from galaxy shape measurement in weak lensing, is a powerful probe of cosmology as the peaks can be connected with the underlined dark matter haloes. However the capability of convergence peak statistic is affected by the noise in galaxy shape measurement, signal to noise ratio as well as the contribution from the projected mass distribution from the large-scale structures along the line of sight (LOS). In this paper we use the ray-tracing simulation on a curved sky to investigate the correspondence between the convergence peak and the dark matter haloes at the LOS. We find that, in case of no noise and for source galaxies at zs = 1, more than 65% peaks with SNR ≥ 3 (signal to noise ratio) are related to more than one massive haloes with mass larger than 1013M⊙. Those massive haloes contribute 87.2% to high peaks (SNR ≥ 5) with the remaining contributions are from the large-scale structures. On the other hand, the peaks distribution is skewed by the noise in galaxy shape measurement, especially for lower SNR peaks. In the noisy field where the shape noise is modelled as a Gaussian distribution, about 60% high peaks (SNR ≥ 5) are true peaks and the fraction decreases to 20% for lower peaks (3 ≤ SNR < 5). Furthermore, we find that high peaks (SNR ≥ 5) are dominated by very massive haloes larger than 1014M⊙.

  6. Utility of Equations to Estimate Peak Oxygen Uptake and Work Rate From a 6-Minute Walk Test in Patients With COPD in a Clinical Setting.

    PubMed

    Kirkham, Amy A; Pauhl, Katherine E; Elliott, Robyn M; Scott, Jen A; Doria, Silvana C; Davidson, Hanan K; Neil-Sztramko, Sarah E; Campbell, Kristin L; Camp, Pat G

    2015-01-01

    To determine the utility of equations that use the 6-minute walk test (6MWT) results to estimate peak oxygen uptake ((Equation is included in full-text article.)o2) and peak work rate with chronic obstructive pulmonary disease (COPD) patients in a clinical setting. This study included a systematic review to identify published equations estimating peak (Equation is included in full-text article.)o2 and peak work rate in watts in COPD patients and a retrospective chart review of data from a hospital-based pulmonary rehabilitation program. The following variables were abstracted from the records of 42 consecutively enrolled COPD patients: measured peak (Equation is included in full-text article.)o2 and peak work rate achieved during a cycle ergometer cardiopulmonary exercise test, 6MWT distance, age, sex, weight, height, forced expiratory volume in 1 second, forced vital capacity, and lung diffusion capacity. Estimated peak (Equation is included in full-text article.)o2 and peak work rate were estimated from 6MWT distance using published equations. The error associated with using estimated peak (Equation is included in full-text article.)o2 or peak work to prescribe aerobic exercise intensities of 60% and 80% was calculated. Eleven equations from 6 studies were identified. Agreement between estimated and measured values was poor to moderate (intraclass correlation coefficients = 0.11-0.63). The error associated with using estimated peak (Equation is included in full-text article.)o2 or peak work rate to prescribe exercise intensities of 60% and 80% of measured values ranged from mean differences of 12 to 35 and 16 to 47 percentage points, respectively. There is poor to moderate agreement between measured peak (Equation is included in full-text article.)o2 and peak work rate and estimations from equations that use 6MWT distance, and the use of the estimated values for prescription of aerobic exercise intensity would result in large error. Equations estimating peak (Equation is included in full-text article.)o2 and peak work rate are of low utility for prescribing exercise intensity in pulmonary rehabilitation programs.

  7. A novel peak detection approach with chemical noise removal using short-time FFT for prOTOF MS data.

    PubMed

    Zhang, Shuqin; Wang, Honghui; Zhou, Xiaobo; Hoehn, Gerard T; DeGraba, Thomas J; Gonzales, Denise A; Suffredini, Anthony F; Ching, Wai-Ki; Ng, Michael K; Wong, Stephen T C

    2009-08-01

    Peak detection is a pivotal first step in biomarker discovery from MS data and can significantly influence the results of downstream data analysis steps. We developed a novel automatic peak detection method for prOTOF MS data, which does not require a priori knowledge of protein masses. Random noise is removed by an undecimated wavelet transform and chemical noise is attenuated by an adaptive short-time discrete Fourier transform. Isotopic peaks corresponding to a single protein are combined by extracting an envelope over them. Depending on the S/N, the desired peaks in each individual spectrum are detected and those with the highest intensity among their peak clusters are recorded. The common peaks among all the spectra are identified by choosing an appropriate cut-off threshold in the complete linkage hierarchical clustering. To remove the 1 Da shifting of the peaks, the peak corresponding to the same protein is determined as the detected peak with the largest number among its neighborhood. We validated this method using a data set of serial peptide and protein calibration standards. Compared with MoverZ program, our new method detects more peaks and significantly enhances S/N of the peak after the chemical noise removal. We then successfully applied this method to a data set from prOTOF MS spectra of albumin and albumin-bound proteins from serum samples of 59 patients with carotid artery disease compared to vascular disease-free patients to detect peaks with S/N> or =2. Our method is easily implemented and is highly effective to define peaks that will be used for disease classification or to highlight potential biomarkers.

  8. Cardiopulmonary exercise testing and prognosis in heart failure due to systolic left ventricular dysfunction: a validation study of the European Society of Cardiology Guidelines and Recommendations (2008) and further developments.

    PubMed

    Corrà, Ugo; Giordano, Andrea; Mezzani, Alessandro; Gnemmi, Marco; Pistono, Massimo; Caruso, Roberto; Giannuzzi, Pantaleo

    2012-02-01

    The study aims were to validate the cardiopulmonary exercise testing (CPET) parameters recommended by the European Society of Cardiology 2008 Guidelines for risk assessment in heart failure (HF) (ESC-predictors) and to verify the predictive role of 11 supplementary CPET (S-predictors) parameters. We followed 749 HF patients for cardiovascular death and urgent heart transplantation for 3 years: 139 (19%) patients had cardiac events. ESC-predictors - peak oxygen consumption (VO(2)), slope of minute ventilation vs carbon dioxide production (VE/VCO(2)) and exertional oscillatory ventilation - were all related to outcome at univariate and multivariable analysis. The ESC/2008 prototype based on ESC-predictors presented a Harrell's C concordance index of 0.725, with a likely χ2 of 98.31. S-predictors - predicted peak VO(2), peak oxygen pulse, peak respiratory exchange ratio, peak circulatory power, peak VE/VCO(2), VE/VCO(2) slope normalized by peak VO(2), VO(2) efficiency slope, ventilatory anaerobic threshold detection, peak end-tidal CO(2) partial pressure, peak heart rate, and peak systolic arterial blood pressure (SBP) - were all linked to outcome at univariate analysis. When individually added to the ESC/2008 prototype, only peak SBP and peak O(2) pulse significantly improved the model discrimination ability: the ESC + peak SBP prototype had a Harrell's C index 0.750 and reached the highest likely χ2 (127.16, p < 0.0001). We evaluated the longest list of CPET prognostic parameters yet studied in HF: ESC-predictors were independent predictors of cardiovascular events, and the ESC prototype showed a convincing predictive capacity, whereas none of 11 S-predictors enhanced the prognostic performance, except peak SBP.

  9. [Fluorescence characterization of dissolved organic matter in the East China Sea after diatom red tide dispersion].

    PubMed

    Zhuo, Peng-ji; Zhao, Wei-hong

    2009-05-01

    Fluorescence excitation-emission spectroscopy (EEMS) was employed to analyze the 3-dimensional fluorescence of dissolved organic matter in the East China Sea after diatom red tide dispersion. The relationships between fluorescence peak intensity, and salinity and chlorophyll-a were discussed. The centers of protein-like fluorescence peaks dispersed at Exmax/Exmax = 270-280/290-315 nm (Peak B), 220-230/290-305 nm (Peak D), 230-240/335-350 nm (Peak S) and 280/320 nm (Peak T). Two humic-like peaks appeared at 255-270/435-480 nm (Peak A)and 330-350/420-480 nm (Peak C). High tyrosine-like intensity was observed in diatom red tide dispersion area, and tryptophan-like fluorescence was also found which was lower. High FIB/FIS showed that diatom red tide produced much tyrosine-like matter during dispersion. Peaks S, A and C had positive correlation with one another, and their distributions were similar, which decreased with distance increasing away from the shore. Good negative correlations between peaks S, A and C and salinity suggested that Jiangsu-Zhejiang coastal water was the same source of them. Correlations between fluorescence peak intensity and chlorophyll-a were not remarkable enough to clear the relationship between fluorescence and living algal matter. It was supposed that the living algal matter contributed little to the fluorescence intensity of algal dispersion seawater.

  10. Cumulative area of peaks in a multidimensional high performance liquid chromatogram.

    PubMed

    Stevenson, Paul G; Guiochon, Georges

    2013-09-20

    An algorithm was developed to recognize peaks in a multidimensional separation and calculate their cumulative peak area. To find the retention times of peaks in a one dimensional chromatogram, the Savitzky-Golay smoothing filter was used to smooth and find the first through third derivatives of the experimental profiles. Close examination of the shape of these curves informs on the number of peaks that are present and provides starting values for fitting theoretical profiles. Due to the nature of comprehensive multidimensional HPLC, adjacent cut fractions may contain compounds common to more than one cut fraction. The algorithm determines which components were common in adjacent cuts and subsequently calculates the area of a two-dimensional peak profile by interpolating the surface of the 2D peaks between adjacent peaks. This algorithm was tested by calculating the cumulative peak area of a series of 2D-HPLC separations of alkylbenzenes, phenol and caffeine with varied concentrations. A good relationship was found between the concentration and the cumulative peak area. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Assignment of polarization-dependent peaks in carbon K-edge spectra from biogenic and geologic aragonite.

    PubMed

    Zhou, Dong; Metzler, Rebecca A; Tyliszczak, Tolek; Guo, Jinghua; Abrecht, Mike; Coppersmith, Susan N; Gilbert, P U P A

    2008-10-16

    Many biominerals, including mollusk and echinoderm shells, avian eggshells, modern and fossil bacterial sediments, planktonic coccolithophores, and foraminifera, contain carbonates in the form of biogenic aragonite or calcite. Here we analyze biogenic and geologic aragonite using different kinds of surface- and bulk-sensitive X-ray absorption near-edge structure (XANES) spectroscopy at the carbon K-edge, as well as high-resolution scanning transmission X-ray microscopy (STXM). Besides the well-known main pi* and sigma* carbonate peaks, we observed and fully characterized four minor peaks, at energies between the main pi* and sigma* peaks. As expected, the main peaks are similar in geologic and biogenic aragonite, while the minor peaks differ in relative intensity. In this and previous work, the minor peaks appear to be the ones most affected in biomineralization processes, hence the interest in characterizing them. Peak assignment was achieved by correlation of polarization-dependent behavior of the minor peaks with that of the main pi* and sigma* peaks. The present characterization provides the background for future studies of aragonitic biominerals.

  12. Individual vision and peak distribution in collective actions

    NASA Astrophysics Data System (ADS)

    Lu, Peng

    2017-06-01

    People make decisions on whether they should participate as participants or not as free riders in collective actions with heterogeneous visions. Besides of the utility heterogeneity and cost heterogeneity, this work includes and investigates the effect of vision heterogeneity by constructing a decision model, i.e. the revised peak model of participants. In this model, potential participants make decisions under the joint influence of utility, cost, and vision heterogeneities. The outcomes of simulations indicate that vision heterogeneity reduces the values of peaks, and the relative variance of peaks is stable. Under normal distributions of vision heterogeneity and other factors, the peaks of participants are normally distributed as well. Therefore, it is necessary to predict distribution traits of peaks based on distribution traits of related factors such as vision heterogeneity and so on. We predict the distribution of peaks with parameters of both mean and standard deviation, which provides the confident intervals and robust predictions of peaks. Besides, we validate the peak model of via the Yuyuan Incident, a real case in China (2014), and the model works well in explaining the dynamics and predicting the peak of real case.

  13. Effects of acute brainstem compression on auditory brainstem response in the guinea pig.

    PubMed

    Tu, T Y; Yu, L H; Chiu, J H; Shu, C H; Shiao, A S; Lien, C F

    1998-11-01

    The purpose of this study was to establish the norm for parameters of auditory brainstem response (ABR) in the guinea pig and to investigate if acute brainstem compression results in significant changes to these parameters. Thirty-six guinea pigs with positive Preyer's reflex were anesthetized. A craniectomy was performed to remove the right occipital bone and the dura mater was opened to expose the brain, cerebellum and cerebellopontine angle (CPA). A small inflatable balloon was placed into the CPA precisely and slowly. ABR was recorded before incision of the skin as a baseline value, after placement and after inflation of the balloon with water at 0.1-ml intervals. Five stable peaks were recorded in 27 experimental animals. When the balloon was inflated with 0.1 ml water, the absolute latency (AL) of peaks IV and V and the interpeak latency (IPL) of peaks III and IV, and IV and V were prolonged. The amplitude ratios (AR) of peaks II, III, IV and V to peak I decreased. Inflation of the balloon with 0.2 ml of water caused further elongation of ALs of peaks IV and V and decreases in each AR. When the balloon volume increased to 0.3 ml, peak V became unrecognizable and peaks III and IV showed significant elongation of AL; peaks I and II did not show significant change in ALs. Further increase of the balloon volume to 0.4 ml resulted in disappearance of peaks III, IV and V; AL of peak II was also elongated. However, the amplitude and AL of peak I remained unchanged. Similar changes were observed in IPLs. This study establishes the norm of parameters of ABR in guinea pigs and demonstrates that acute brainstem compression causes elongation of ALs and IPLs of peaks II, III, IV and V. This suggests that peaks II, III, IV and V come from the brainstem and that peak I is not generated from the brainstem in the guinea pig.

  14. Automatic peak selection by a Benjamini-Hochberg-based algorithm.

    PubMed

    Abbas, Ahmed; Kong, Xin-Bing; Liu, Zhi; Jing, Bing-Yi; Gao, Xin

    2013-01-01

    A common issue in bioinformatics is that computational methods often generate a large number of predictions sorted according to certain confidence scores. A key problem is then determining how many predictions must be selected to include most of the true predictions while maintaining reasonably high precision. In nuclear magnetic resonance (NMR)-based protein structure determination, for instance, computational peak picking methods are becoming more and more common, although expert-knowledge remains the method of choice to determine how many peaks among thousands of candidate peaks should be taken into consideration to capture the true peaks. Here, we propose a Benjamini-Hochberg (B-H)-based approach that automatically selects the number of peaks. We formulate the peak selection problem as a multiple testing problem. Given a candidate peak list sorted by either volumes or intensities, we first convert the peaks into [Formula: see text]-values and then apply the B-H-based algorithm to automatically select the number of peaks. The proposed approach is tested on the state-of-the-art peak picking methods, including WaVPeak [1] and PICKY [2]. Compared with the traditional fixed number-based approach, our approach returns significantly more true peaks. For instance, by combining WaVPeak or PICKY with the proposed method, the missing peak rates are on average reduced by 20% and 26%, respectively, in a benchmark set of 32 spectra extracted from eight proteins. The consensus of the B-H-selected peaks from both WaVPeak and PICKY achieves 88% recall and 83% precision, which significantly outperforms each individual method and the consensus method without using the B-H algorithm. The proposed method can be used as a standard procedure for any peak picking method and straightforwardly applied to some other prediction selection problems in bioinformatics. The source code, documentation and example data of the proposed method is available at http://sfb.kaust.edu.sa/pages/software.aspx.

  15. Automatic Peak Selection by a Benjamini-Hochberg-Based Algorithm

    PubMed Central

    Abbas, Ahmed; Kong, Xin-Bing; Liu, Zhi; Jing, Bing-Yi; Gao, Xin

    2013-01-01

    A common issue in bioinformatics is that computational methods often generate a large number of predictions sorted according to certain confidence scores. A key problem is then determining how many predictions must be selected to include most of the true predictions while maintaining reasonably high precision. In nuclear magnetic resonance (NMR)-based protein structure determination, for instance, computational peak picking methods are becoming more and more common, although expert-knowledge remains the method of choice to determine how many peaks among thousands of candidate peaks should be taken into consideration to capture the true peaks. Here, we propose a Benjamini-Hochberg (B-H)-based approach that automatically selects the number of peaks. We formulate the peak selection problem as a multiple testing problem. Given a candidate peak list sorted by either volumes or intensities, we first convert the peaks into -values and then apply the B-H-based algorithm to automatically select the number of peaks. The proposed approach is tested on the state-of-the-art peak picking methods, including WaVPeak [1] and PICKY [2]. Compared with the traditional fixed number-based approach, our approach returns significantly more true peaks. For instance, by combining WaVPeak or PICKY with the proposed method, the missing peak rates are on average reduced by 20% and 26%, respectively, in a benchmark set of 32 spectra extracted from eight proteins. The consensus of the B-H-selected peaks from both WaVPeak and PICKY achieves 88% recall and 83% precision, which significantly outperforms each individual method and the consensus method without using the B-H algorithm. The proposed method can be used as a standard procedure for any peak picking method and straightforwardly applied to some other prediction selection problems in bioinformatics. The source code, documentation and example data of the proposed method is available at http://sfb.kaust.edu.sa/pages/software.aspx. PMID:23308147

  16. Method and system for detecting an explosive

    DOEpatents

    Reber, Edward L.; Rohde, Kenneth W.; Blackwood, Larry G.

    2010-12-07

    A method and system for detecting at least one explosive in a vehicle using a neutron generator and a plurality of NaI detectors. Spectra read from the detectors is calibrated by performing Gaussian peak fitting to define peak regions, locating a Na peak and an annihilation peak doublet, assigning a predetermined energy level to one peak in the doublet, and predicting a hydrogen peak location based on a location of at least one peak of the doublet. The spectra are gain shifted to a common calibration, summed for respective groups of NaI detectors, and nitrogen detection analysis performed on the summed spectra for each group.

  17. Extragalactic Peaked-spectrum Radio Sources at Low Frequencies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callingham, J. R.; Gaensler, B. M.; Sadler, E. M.

    We present a sample of 1483 sources that display spectral peaks between 72 MHz and 1.4 GHz, selected from the GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey. The GLEAM survey is the widest fractional bandwidth all-sky survey to date, ideal for identifying peaked-spectrum sources at low radio frequencies. Our peaked-spectrum sources are the low-frequency analogs of gigahertz-peaked spectrum (GPS) and compact-steep spectrum (CSS) sources, which have been hypothesized to be the precursors to massive radio galaxies. Our sample more than doubles the number of known peaked-spectrum candidates, and 95% of our sample have a newly characterized spectral peak.more » We highlight that some GPS sources peaking above 5 GHz have had multiple epochs of nuclear activity, and we demonstrate the possibility of identifying high-redshift ( z > 2) galaxies via steep optically thin spectral indices and low observed peak frequencies. The distribution of the optically thick spectral indices of our sample is consistent with past GPS/CSS samples but with a large dispersion, suggesting that the spectral peak is a product of an inhomogeneous environment that is individualistic. We find no dependence of observed peak frequency with redshift, consistent with the peaked-spectrum sample comprising both local CSS sources and high-redshift GPS sources. The 5 GHz luminosity distribution lacks the brightest GPS and CSS sources of previous samples, implying that a convolution of source evolution and redshift influences the type of peaked-spectrum sources identified below 1 GHz. Finally, we discuss sources with optically thick spectral indices that exceed the synchrotron self-absorption limit.« less

  18. Correlated peak relative light intensity and peak current in triggered lightning subsequent return strokes

    NASA Technical Reports Server (NTRS)

    Idone, V. P.; Orville, R. E.

    1985-01-01

    The correlation between peak relative light intensity L(R) and stroke peak current I(R) is examined for 39 subsequent return strokes in two triggered lightning flashes. One flash contained 19 strokes and the other 20 strokes for which direct measurements were available of the return stroke peak current at ground. Peak currents ranged from 1.6 to 21 kA. The measurements of peak relative light intensity were obtained from photographic streak recordings using calibrated film and microsecond resolution. Correlations, significant at better than the 0.1 percent level, were found for several functional relationships. Although a relation between L(R) and I(R) is evident in these data, none of the analytical relations considered is clearly favored. The correlation between L(R) and the maximum rate of current rise is also examined, but less correlation than between L(R) and I(R) is found. In addition, the peak relative intensity near ground is evaluated for 22 dart leaders, and a mean ratio of peak dart leader to peak return stroke relative light intensity was found to be 0.1 with a range of 0.02-0.23. Using two different methods, the peak current near ground in these dart leaders is estimated to range from 0.1 to 6 kA.

  19. QRS peak detection for heart rate monitoring on Android smartphone

    NASA Astrophysics Data System (ADS)

    Pambudi Utomo, Trio; Nuryani, Nuryani; Darmanto

    2017-11-01

    In this study, Android smartphone is used for heart rate monitoring and displaying electrocardiogram (ECG) graph. Heart rate determination is based on QRS peak detection. Two methods are studied to detect the QRS complex peak; they are Peak Threshold and Peak Filter. The acquisition of ECG data is utilized by AD8232 module from Analog Devices, three electrodes, and Microcontroller Arduino UNO R3. To record the ECG data from a patient, three electrodes are attached to particular body’s surface of a patient. Patient’s heart activity which is recorded by AD8232 module is decoded by Arduino UNO R3 into analog data. Then, the analog data is converted into a voltage value (mV) and is processed to get the QRS complex peak. Heart rate value is calculated by Microcontroller Arduino UNO R3 uses the QRS complex peak. Voltage, heart rate, and the QRS complex peak are sent to Android smartphone by Bluetooth HC-05. ECG data is displayed as the graph by Android smartphone. To evaluate the performance of QRS complex peak detection method, three parameters are used; they are positive predictive, accuracy and sensitivity. Positive predictive, accuracy, and sensitivity of Peak Threshold method is 92.39%, 70.30%, 74.62% and for Peak Filter method are 98.38%, 82.47%, 83.61%, respectively.

  20. Measuring Your Peak Flow Rate

    MedlinePlus

    ... Living with Asthma > Managing Asthma Measuring Your Peak Flow Rate Download Instructions A peak flow meter is ... to use. Who Benefits from Using a Peak Flow Meter? Many healthcare providers believe that people who ...

  1. Comment on ``heating rate effects in thermoluminescent glow-peaks''

    NASA Astrophysics Data System (ADS)

    Horowitz, Y.

    1993-12-01

    In a recent article, Kitis et al. [Nucl. Instr. and Meth. B 73 (1993) 367] discuss the effect of heating rate on three well-known thermoluminescence (TL) glow peaks; the 110°C glow peak of Norwegian quartz, the 210°C "dosimetry" glow peak of LiF:Mg,Ti (peak 5 in TLD-700) and the 250°C glow peak of natural Cap 2 : MBLE. The authors state that they focus their attention on "single, well-separated, glow peaks" in order to "test the theory", presumably charge detrapping kinetic theory. To achieve this rather elusive goal for the 210°C peak in LiF:Mg,Ti, the authors employ a 140°C/60 min post-irradiation anneal to depopulate the low temperature peaks. There is, however, substantial evidence in the TL literature over the past three decades that an anneal of this duration at elevated temperatures induces various thermally activated clustering and precipitation processes leading to trap modification and possible creation of new traps.

  2. Comparison of public peak detection algorithms for MALDI mass spectrometry data analysis.

    PubMed

    Yang, Chao; He, Zengyou; Yu, Weichuan

    2009-01-06

    In mass spectrometry (MS) based proteomic data analysis, peak detection is an essential step for subsequent analysis. Recently, there has been significant progress in the development of various peak detection algorithms. However, neither a comprehensive survey nor an experimental comparison of these algorithms is yet available. The main objective of this paper is to provide such a survey and to compare the performance of single spectrum based peak detection methods. In general, we can decompose a peak detection procedure into three consequent parts: smoothing, baseline correction and peak finding. We first categorize existing peak detection algorithms according to the techniques used in different phases. Such a categorization reveals the differences and similarities among existing peak detection algorithms. Then, we choose five typical peak detection algorithms to conduct a comprehensive experimental study using both simulation data and real MALDI MS data. The results of comparison show that the continuous wavelet-based algorithm provides the best average performance.

  3. Phenomenological study of the ionisation density-dependence of TLD-100 peak 5a.

    PubMed

    Brandan, Maria-Ester; Angeles, Oscar; Mercado-Uribe, Hilda

    2006-01-01

    Horowitz and collaborators have reported evidence on the structure of TLD-100 peak 5. A satellite peak, called 5a, has been singled out as arising from localised electron-hole recombination in a trap/luminescent centre, its emission mechanism would be geminate recombination and, therefore, its population would depend on incident radiation ionisation density. We report a phenomenological study of peak 4, 5a and 5 strengths for glow curves previously measured at UNAM for gammas, electrons and low-energy ions. The deconvolution procedure has followed strict rules to assure that the glow curve, where the presence of peak 5a is not visually noticeable, is decomposed in a consistent fashion, maintaining fixed widths and relative temperature difference between all the peaks. We find no improvement in the quality of the fit after inclusion of peak 5a. The relative contribution of peak 5a with respect to peak 5 does not seem to correlate with the radiation linear energy transfer.

  4. The shape of CMB temperature and polarization peaks on the sphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcos-Caballero, A.; Fernández-Cobos, R.; Martínez-González, E.

    2016-04-01

    We present a theoretical study of CMB temperature peaks, including its effect over the polarization field, and allowing nonzero eccentricity. The formalism is developed in harmonic space and using the covariant derivative on the sphere, which guarantees that the expressions obtained are completely valid at large scales (i.e., no flat approximation). The expected patterns induced by the peak, either in temperature or polarization, are calculated, as well as their covariances. It is found that the eccentricity introduces a quadrupolar dependence in the peak shape, which is proportional to a complex bias parameter b {sub ε}, characterizing the peak asymmetry andmore » orientation. In addition, the one-point statistics of the variables defining the peak on the sphere is reviewed, finding some differences with respect to the flat case for large peaks. Finally, we present a mechanism to simulate constrained CMB maps with a particular peak on the field, which is an interesting tool for analysing the statistical properties of the peaks present in the data.« less

  5. Mobile phase additives for enhancing the chromatographic performance of astaxanthin on nonendcapped polymeric C30-bonded stationary phases.

    PubMed

    Kaiser, Philipp; Surmann, Peter; Fuhrmann, Herbert

    2009-01-01

    Astaxanthin shows peak deformation and reduced peak area response when eluted with methanol and methyl tert-butyl ether on nonendcapped polymeric C30-bonded HPLC phases. The present study tested different column manufacturers, column batches, and ten mobile phase additives including acids, bases, buffers, complexing and antioxidant agents for improvement of peak shape and peak area response. Concerning chromatographic benefits and feasibility, ammonium acetate was found to be the best additive followed by triethylamine for all columns tested. Variation of the mobile phase pH equivalent and the column temperature showed no synergistic effects on peak shape and peak area response. Results indicate that peak tailing and variation of peak area response are due to different on-column effects. Possible mechanisms of the observed phenomenon will be discussed.

  6. The formation of peak rings in large impact craters.

    PubMed

    Morgan, Joanna V; Gulick, Sean P S; Bralower, Timothy; Chenot, Elise; Christeson, Gail; Claeys, Philippe; Cockell, Charles; Collins, Gareth S; Coolen, Marco J L; Ferrière, Ludovic; Gebhardt, Catalina; Goto, Kazuhisa; Jones, Heather; Kring, David A; Le Ber, Erwan; Lofi, Johanna; Long, Xiao; Lowery, Christopher; Mellett, Claire; Ocampo-Torres, Rubén; Osinski, Gordon R; Perez-Cruz, Ligia; Pickersgill, Annemarie; Poelchau, Michael; Rae, Auriol; Rasmussen, Cornelia; Rebolledo-Vieyra, Mario; Riller, Ulrich; Sato, Honami; Schmitt, Douglas R; Smit, Jan; Tikoo, Sonia; Tomioka, Naotaka; Urrutia-Fucugauchi, Jaime; Whalen, Michael; Wittmann, Axel; Yamaguchi, Kosei E; Zylberman, William

    2016-11-18

    Large impacts provide a mechanism for resurfacing planets through mixing near-surface rocks with deeper material. Central peaks are formed from the dynamic uplift of rocks during crater formation. As crater size increases, central peaks transition to peak rings. Without samples, debate surrounds the mechanics of peak-ring formation and their depth of origin. Chicxulub is the only known impact structure on Earth with an unequivocal peak ring, but it is buried and only accessible through drilling. Expedition 364 sampled the Chicxulub peak ring, which we found was formed from uplifted, fractured, shocked, felsic basement rocks. The peak-ring rocks are cross-cut by dikes and shear zones and have an unusually low density and seismic velocity. Large impacts therefore generate vertical fluxes and increase porosity in planetary crust. Copyright © 2016, American Association for the Advancement of Science.

  7. Study on peak shape fitting method in radon progeny measurement.

    PubMed

    Yang, Jinmin; Zhang, Lei; Abdumomin, Kadir; Tang, Yushi; Guo, Qiuju

    2015-11-01

    Alpha spectrum measurement is one of the most important methods to measure radon progeny concentration in environment. However, the accuracy of this method is affected by the peak tailing due to the energy losses of alpha particles. This article presents a peak shape fitting method that can overcome the peak tailing problem in most situations. On a typical measured alpha spectrum curve, consecutive peaks overlap even their energies are not close to each other, and it is difficult to calculate the exact count of each peak. The peak shape fitting method uses combination of Gaussian and exponential functions, which can depict features of those peaks, to fit the measured curve. It can provide net counts of each peak explicitly, which was used in the Kerr method of calculation procedure for radon progeny concentration measurement. The results show that the fitting curve fits well with the measured curve, and the influence of the peak tailing is reduced. The method was further validated by the agreement between radon equilibrium equivalent concentration based on this method and the measured values of some commercial radon monitors, such as EQF3220 and WLx. In addition, this method improves the accuracy of individual radon progeny concentration measurement. Especially for the (218)Po peak, after eliminating the peak tailing influence, the calculated result of (218)Po concentration has been reduced by 21 %. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Contributions of Astronauts Aerobic Exercise Intensity and Time on Change in VO2peak during Spaceflight

    NASA Technical Reports Server (NTRS)

    Downs, Meghan E.; Buxton, Roxanne; Moore, Alan; Ploutz-Snyder, Robert; Ploutz-Snyder, Lori

    2014-01-01

    There is considerable variability among astronauts with respect to changes in maximal aerobic capacity (VO2peak) during International Space Station (ISS) missions, ranging from a 5% increase to 30% decline. Individual differences may be due to in-flight aerobic exercise time and intensity. PURPOSE: To evaluate the effects of in-flight aerobic exercise time and intensity on change in VO2peak during ISS missions. METHODS: Astronauts (N=11) performed peak cycle tests approx 60 days before flight (L-60), on flight day (FD) approx 14, and every approx 30 days thereafter. Metabolic gas analysis and heart rate (HR) were measured continuously during the test using the portable pulmonary function system. HR and duration of each in-flight cycle ergometer and treadmill (TM) session were recorded and averaged in time segments corresponding to each peak test. Mixed effects linear regression with exercise mode (TM or cycle) as a categorical variable was used to assess the contributions of exercise intensity (%time >70% peak HR or %time >90% peak HR) and time (min/wk), adjusted for body weight, on %change in VO2peak during the mission, and incorporating the repeated-measures experimental design. RESULTS: 110 observations were included in the model (4-6 peak cycle tests per astronaut, 2 exercise devices). VO2peak was reduced from preflight throughout the mission (FD14: 13+/-13% and FD 105: 8+/-10%). Exercise intensity (%peak HR: FD14=66+/-14; FD105=75+/-8) and time (min/wk: FD14=82+/-46; FD105=158+/-40) increased during flight. The models showed main effects for exercise time and intensity with no interactions between time, intensity, and device (70% peak HR: time [z-score=2.39; P=0.017], intensity [z-score=3.51; P=0.000]; 90% peak HR: time [zscore= 3.31; P=0.001], intensity [z-score=2.24; P=0.025]). CONCLUSION: Exercise time and intensity independently contribute to %change in VO2peak during ISS missions, indicating that there are minimal values for exercise time and intensity required to maintain VO2peak. As the FD105 average exercise intensity and time did not prevent a decline in VO2peak from preflight, astronauts' exercise prescriptions should target at least 160 min of weekly aerobic exercise at an average above 75% peak HR with increased time at intensities above 90% of peak HR starting early in the mission.

  9. Multiple current peaks in room-temperature atmospheric pressure homogenous dielectric barrier discharge plasma excited by high-voltage tunable nanosecond pulse in air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, De-Zheng; Wang, Wen-Chun; Zhang, Shuai

    2013-05-13

    Room temperature homogenous dielectric barrier discharge plasma with high instantaneous energy efficiency is acquired by using nanosecond pulse voltage with 20-200 ns tunable pulse width. Increasing the voltage pulse width can lead to the generation of regular and stable multiple current peaks in each discharge sequence. When the voltage pulse width is 200 ns, more than 5 organized current peaks can be observed under 26 kV peak voltage. Investigation also shows that the organized multiple current peaks only appear in homogenous discharge mode. When the discharge is filament mode, organized multiple current peaks are replaced by chaotic filament current peaks.

  10. ESR study of free radicals in mango

    NASA Astrophysics Data System (ADS)

    Kikuchi, Masahiro; Hussain, Mohammad S.; Morishita, Norio; Ukai, Mitsuko; Kobayashi, Yasuhiko; Shimoyama, Yuhei

    2010-01-01

    An electron spin resonance (ESR) spectroscopic study of radicals induced in irradiated fresh mangoes was performed. Mangoes in the fresh state were irradiated with γ-rays, lyophilized and then crushed into a powder. The ESR spectrum of the powder showed a strong main peak at g = 2.004 and a pair of peaks centered at the main peak. The main peak was detected from both flesh and skin specimens. This peak height gradually decreased during storage following irradiation. On the other hand, the side peaks showed a well-defined dose-response relationship even at 9 days post-irradiation. The side peaks therefore provide a useful means to define the irradiation of fresh mangoes.

  11. Chromatogram simulation by area reproduction.

    PubMed

    Boe, Bjarne

    2007-01-12

    A modified Poisson function has been developed for the simulation of chromatographic peaks. The proposed model is shown to have the property of exactly recreating the experimentally determined peak area. Model parameters are obtained directly from the experimental peak, and overlapping peaks are deconvoluted such that the area sum of overlapping peaks is kept unchanged. The method was applied to real, complex chromatograms.

  12. The Potential for Energy Storage to Provide Peaking Capacity in California under Increased Penetration of Solar Photovoltaics: Report Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denholm, Paul L; Margolis, Robert M

    Opportunities to provide peaking capacity with low-cost energy storage are emerging. But adding storage changes the ability of subsequent storage additions to meet peak demand. Increasing photovoltaic (PV) deployment also affects storage's ability to provide peak capacity. This study examines storage's potential to replace conventional peak capacity in California.

  13. Bayesian approach for peak detection in two-dimensional chromatography.

    PubMed

    Vivó-Truyols, Gabriel

    2012-03-20

    A new method for peak detection in two-dimensional chromatography is presented. In a first step, the method starts with a conventional one-dimensional peak detection algorithm to detect modulated peaks. In a second step, a sophisticated algorithm is constructed to decide which of the individual one-dimensional peaks have been originated from the same compound and should then be arranged in a two-dimensional peak. The merging algorithm is based on Bayesian inference. The user sets prior information about certain parameters (e.g., second-dimension retention time variability, first-dimension band broadening, chromatographic noise). On the basis of these priors, the algorithm calculates the probability of myriads of peak arrangements (i.e., ways of merging one-dimensional peaks), finding which of them holds the highest value. Uncertainty in each parameter can be accounted by adapting conveniently its probability distribution function, which in turn may change the final decision of the most probable peak arrangement. It has been demonstrated that the Bayesian approach presented in this paper follows the chromatographers' intuition. The algorithm has been applied and tested with LC × LC and GC × GC data and takes around 1 min to process chromatograms with several thousands of peaks.

  14. Evaluation of different time domain peak models using extreme learning machine-based peak detection for EEG signal.

    PubMed

    Adam, Asrul; Ibrahim, Zuwairie; Mokhtar, Norrima; Shapiai, Mohd Ibrahim; Cumming, Paul; Mubin, Marizan

    2016-01-01

    Various peak models have been introduced to detect and analyze peaks in the time domain analysis of electroencephalogram (EEG) signals. In general, peak model in the time domain analysis consists of a set of signal parameters, such as amplitude, width, and slope. Models including those proposed by Dumpala, Acir, Liu, and Dingle are routinely used to detect peaks in EEG signals acquired in clinical studies of epilepsy or eye blink. The optimal peak model is the most reliable peak detection performance in a particular application. A fair measure of performance of different models requires a common and unbiased platform. In this study, we evaluate the performance of the four different peak models using the extreme learning machine (ELM)-based peak detection algorithm. We found that the Dingle model gave the best performance, with 72 % accuracy in the analysis of real EEG data. Statistical analysis conferred that the Dingle model afforded significantly better mean testing accuracy than did the Acir and Liu models, which were in the range 37-52 %. Meanwhile, the Dingle model has no significant difference compared to Dumpala model.

  15. Automatic poisson peak harvesting for high throughput protein identification.

    PubMed

    Breen, E J; Hopwood, F G; Williams, K L; Wilkins, M R

    2000-06-01

    High throughput identification of proteins by peptide mass fingerprinting requires an efficient means of picking peaks from mass spectra. Here, we report the development of a peak harvester to automatically pick monoisotopic peaks from spectra generated on matrix-assisted laser desorption/ionisation time of flight (MALDI-TOF) mass spectrometers. The peak harvester uses advanced mathematical morphology and watershed algorithms to first process spectra to stick representations. Subsequently, Poisson modelling is applied to determine which peak in an isotopically resolved group represents the monoisotopic mass of a peptide. We illustrate the features of the peak harvester with mass spectra of standard peptides, digests of gel-separated bovine serum albumin, and with Escherictia coli proteins prepared by two-dimensional polyacrylamide gel electrophoresis. In all cases, the peak harvester proved effective in its ability to pick similar monoisotopic peaks as an experienced human operator, and also proved effective in the identification of monoisotopic masses in cases where isotopic distributions of peptides were overlapping. The peak harvester can be operated in an interactive mode, or can be completely automated and linked through to peptide mass fingerprinting protein identification tools to achieve high throughput automated protein identification.

  16. Automated identification of ERP peaks through Dynamic Time Warping: an application to developmental dyslexia.

    PubMed

    Assecondi, Sara; Bianchi, A M; Hallez, H; Staelens, S; Casarotto, S; Lemahieu, I; Chiarenza, G A

    2009-10-01

    This article proposes a method to automatically identify and label event-related potential (ERP) components with high accuracy and precision. We present a framework, referred to as peak-picking Dynamic Time Warping (ppDTW), where a priori knowledge about the ERPs under investigation is used to define a reference signal. We developed a combination of peak-picking and Dynamic Time Warping (DTW) that makes the temporal intervals for peak-picking adaptive on the basis of the morphology of the data. We tested the procedure on experimental data recorded from a control group and from children diagnosed with developmental dyslexia. We compared our results with the traditional peak-picking. We demonstrated that our method achieves better performance than peak-picking, with an overall precision, recall and F-score of 93%, 86% and 89%, respectively, versus 93%, 80% and 85% achieved by peak-picking. We showed that our hybrid method outperforms peak-picking, when dealing with data involving several peaks of interest. The proposed method can reliably identify and label ERP components in challenging event-related recordings, thus assisting the clinician in an objective assessment of amplitudes and latencies of peaks of clinical interest.

  17. A NEW METHOD OF PEAK DETECTION FOR ANALYSIS OF COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY MASS SPECTROMETRY DATA.

    PubMed

    Kim, Seongho; Ouyang, Ming; Jeong, Jaesik; Shen, Changyu; Zhang, Xiang

    2014-06-01

    We develop a novel peak detection algorithm for the analysis of comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC-TOF MS) data using normal-exponential-Bernoulli (NEB) and mixture probability models. The algorithm first performs baseline correction and denoising simultaneously using the NEB model, which also defines peak regions. Peaks are then picked using a mixture of probability distribution to deal with the co-eluting peaks. Peak merging is further carried out based on the mass spectral similarities among the peaks within the same peak group. The algorithm is evaluated using experimental data to study the effect of different cut-offs of the conditional Bayes factors and the effect of different mixture models including Poisson, truncated Gaussian, Gaussian, Gamma, and exponentially modified Gaussian (EMG) distributions, and the optimal version is introduced using a trial-and-error approach. We then compare the new algorithm with two existing algorithms in terms of compound identification. Data analysis shows that the developed algorithm can detect the peaks with lower false discovery rates than the existing algorithms, and a less complicated peak picking model is a promising alternative to the more complicated and widely used EMG mixture models.

  18. Pattern-Recognition Algorithm for Locking Laser Frequency

    NASA Technical Reports Server (NTRS)

    Karayan, Vahag; Klipstein, William; Enzer, Daphna; Yates, Philip; Thompson, Robert; Wells, George

    2006-01-01

    A computer program serves as part of a feedback control system that locks the frequency of a laser to one of the spectral peaks of cesium atoms in an optical absorption cell. The system analyzes a saturation absorption spectrum to find a target peak and commands a laser-frequency-control circuit to minimize an error signal representing the difference between the laser frequency and the target peak. The program implements an algorithm consisting of the following steps: Acquire a saturation absorption signal while scanning the laser through the frequency range of interest. Condition the signal by use of convolution filtering. Detect peaks. Match the peaks in the signal to a pattern of known spectral peaks by use of a pattern-recognition algorithm. Add missing peaks. Tune the laser to the desired peak and thereafter lock onto this peak. Finding and locking onto the desired peak is a challenging problem, given that the saturation absorption signal includes noise and other spurious signal components; the problem is further complicated by nonlinearity and shifting of the voltage-to-frequency correspondence. The pattern-recognition algorithm, which is based on Hausdorff distance, is what enables the program to meet these challenges.

  19. Peak experiences of psilocybin users and non-users.

    PubMed

    Cummins, Christina; Lyke, Jennifer

    2013-01-01

    Maslow (1970) defined peak experiences as the most wonderful experiences of a person's life, which may include a sense of awe, well-being, or transcendence. Furthermore, recent research has suggested that psilocybin can produce experiences subjectively rated as uniquely meaningful and significant (Griffiths et al. 2006). It is therefore possible that psilocybin may facilitate or change the nature of peak experiences in users compared to non-users. This study was designed to compare the peak experiences of psilocybin users and non-users, to evaluate the frequency of peak experiences while under the influence of psilocybin, and to assess the perceived degree of alteration of consciousness during these experiences. Participants were recruited through convenience and snowball sampling from undergraduate classes and at a musical event. Participants were divided into three groups, those who reported a peak experience while under the influence of psilocybin (psilocybin peak experience: PPE), participants who had used psilocybin but reported their peak experiences did not occur while they were under the influence of psilocybin (non-psilocybin peak experience: NPPE), and participants who had never used psilocybin (non-user: NU). A total of 101 participants were asked to think about their peak experiences and complete a measure evaluating the degree of alteration of consciousness during that experience. Results indicated that 47% of psilocybin users reported their peak experience occurred while using psilocybin. In addition, there were significant differences among the three groups on all dimensions of alteration of consciousness. Future research is necessary to identify factors that influence the peak experiences of psilocybin users in naturalistic settings and contribute to the different characteristics of peak experiences of psilocybin users and non-users.

  20. Early Impairment of Cardiac Function and Asynchronization of Systemic Amyloidosis with Preserved Ejection Fraction Using Two-Dimensional Speckle Tracking Echocardiography.

    PubMed

    Huang, He; Jing, Xian-chao; Hu, Zhang-xue; Chen, Xi; Liu, Xiao-qin

    2015-12-01

    To observe the ventricular global and regional function of the patients with systemic amyloidosis using two-dimensional speckle tracking echocardiography. The study enrolled 31 consecutive biopsy-proved patients with systemic amyloidosis who underwent echocardiographic examination and EF ≥ 55% and 37 age- and gender-matched healthy controls. We compared systolic strain and strain rate, diastolic strain rate, time to peak strain, peak delay time in longitudinal, radial, circumferential directions in 16 left ventricular segments. The global peak systolic longitudinal and radial strain of left ventricle, peak systolic longitudinal strain and strain rate, diastolic strain rate of right ventricular free wall were also compared. (1) Global peak systolic longitudinal strain (GPSLS), peak systolic longitudinal strain (PSLS) and strain rate (PSLSR), peak early diastolic longitudinal strain rate (PELSR) in 16 segments were decreased in case (P < 0.05). (2) Peak systolic radial strain and strain rate of inferoseptum and inferolateral at the level of papillary muscle were lower (P < 0.05), and peak early diastolic radial strain rate (PERSR) was reduced (P < 0.05). (3) Peak early diastolic circumferential strain rate was lower (P < 0.05). (4) Time to peak systolic longitudinal, radial, circumferential strain was longer, and peak delay time at the same level retarded (P < 0.05). (5) Into right ventricular wall, PSLS and PSLSR at mid-segment, and PSLSR, PELSR, peak atrial systolic longitudinal strain rate (PALSR) at basal were reduced (P < 0.05). (6) Inverse correlation between interventricular septum (IVS) thickness and GPSLS and GPSRS was found (P < 0.05). Systolic and diastolic dysfunction existed in systemic amyloidosis with preserved EF. Mechanical contraction disorder may be one reason for systolic dysfunction. GPLSR and GPRSR were negatively related to IVS thickness. © 2015, Wiley Periodicals, Inc.

  1. Comparison of peak-picking workflows for untargeted liquid chromatography/high-resolution mass spectrometry metabolomics data analysis.

    PubMed

    Rafiei, Atefeh; Sleno, Lekha

    2015-01-15

    Data analysis is a key step in mass spectrometry based untargeted metabolomics, starting with the generation of generic peak lists from raw liquid chromatography/mass spectrometry (LC/MS) data. Due to the use of various algorithms by different workflows, the results of different peak-picking strategies often differ widely. Raw LC/HRMS data from two types of biological samples (bile and urine), as well as a standard mixture of 84 metabolites, were processed with four peak-picking softwares: Peakview®, Markerview™, MetabolitePilot™ and XCMS Online. The overlaps between the results of each peak-generating method were then investigated. To gauge the relevance of peak lists, a database search using the METLIN online database was performed to determine which features had accurate masses matching known metabolites as well as a secondary filtering based on MS/MS spectral matching. In this study, only a small proportion of all peaks (less than 10%) were common to all four software programs. Comparison of database searching results showed peaks found uniquely by one workflow have less chance of being found in the METLIN metabolomics database and are even less likely to be confirmed by MS/MS. It was shown that the performance of peak-generating workflows has a direct impact on untargeted metabolomics results. As it was demonstrated that the peaks found in more than one peak detection workflow have higher potential to be identified by accurate mass as well as MS/MS spectrum matching, it is suggested to use the overlap of different peak-picking workflows as preliminary peak lists for more rugged statistical analysis in global metabolomics investigations. Copyright © 2014 John Wiley & Sons, Ltd.

  2. A non-parametric peak calling algorithm for DamID-Seq.

    PubMed

    Li, Renhua; Hempel, Leonie U; Jiang, Tingbo

    2015-01-01

    Protein-DNA interactions play a significant role in gene regulation and expression. In order to identify transcription factor binding sites (TFBS) of double sex (DSX)-an important transcription factor in sex determination, we applied the DNA adenine methylation identification (DamID) technology to the fat body tissue of Drosophila, followed by deep sequencing (DamID-Seq). One feature of DamID-Seq data is that induced adenine methylation signals are not assured to be symmetrically distributed at TFBS, which renders the existing peak calling algorithms for ChIP-Seq, including SPP and MACS, inappropriate for DamID-Seq data. This challenged us to develop a new algorithm for peak calling. A challenge in peaking calling based on sequence data is estimating the averaged behavior of background signals. We applied a bootstrap resampling method to short sequence reads in the control (Dam only). After data quality check and mapping reads to a reference genome, the peaking calling procedure compromises the following steps: 1) reads resampling; 2) reads scaling (normalization) and computing signal-to-noise fold changes; 3) filtering; 4) Calling peaks based on a statistically significant threshold. This is a non-parametric method for peak calling (NPPC). We also used irreproducible discovery rate (IDR) analysis, as well as ChIP-Seq data to compare the peaks called by the NPPC. We identified approximately 6,000 peaks for DSX, which point to 1,225 genes related to the fat body tissue difference between female and male Drosophila. Statistical evidence from IDR analysis indicated that these peaks are reproducible across biological replicates. In addition, these peaks are comparable to those identified by use of ChIP-Seq on S2 cells, in terms of peak number, location, and peaks width.

  3. Metabolism of 14C-labeled doxylamine succinate (Bendectin) in the rhesus monkey (Macaca mulatta).

    PubMed

    Slikker, W; Holder, C L; Lipe, G W; Korfmacher, W A; Thompson, H C; Bailey, J R

    1986-01-01

    The time-course of the metabolic fate of [14C]doxylamine was determined after the p.o. administration of 13 mg/kg doxylamine succinate as Bendectin plus [14C]doxylamine succinate to the rhesus monkey. Urine and plasma samples were analyzed by reversed-phase high performance liquid chromatography (HPLC), chemical derivatization, and mass spectrometry. The cumulative 48-hr urinary metabolic profile contained 81% of the administered radiolabeled dose and consisted of at least six radiolabeled peaks. They were peak 1: unknown polar metabolites (8% of dose); peak 2: 2-[1-phenyl-1-(2-pyridinyl)ethoxy] acetic acid, 1-[1-phenyl-1(2-pyridinyl)ethoxy] methanol, and another minor metabolite(s) (31%); peak 3: doxylamine-N-oxide (1%); peak 4a: N,N-didesmethyldoxylamine (17%); peak 4b: doxylamine (4%); and peak 5: N-desmethyldoxylamine (20%). The plasma metabolic profile was the same as the urinary profile except for the absence of doxylamine-N-oxide. The maximum plasma concentrations and elapsed time to attain these concentrations were as follows. Peak 1: 540 ng/mL, 4 hr; peak 2: 1700 ng/mL, 1 hr; peak 4a: 430 ng/mL, 4 hr; peak 4b: 930 ng/mL, 2 hr; and peak 5: 790 ng/mL, 2 hr. These data suggest that in the monkey, doxylamine metabolism follows at least four pathways: a minor pathway to the N-oxide; a minor pathway to unknown polar metabolites; a major pathway to mono- and didesmethyldoxylamine via successive N-demethylation; and a major pathway to side-chain cleavage products (peak 2) via direct side-chain oxidation and/or deamination.

  4. Method and system for calibrating acquired spectra for use in spectral analysis

    DOEpatents

    Reber, Edward L.; Rohde, Kenneth W.; Blackwood, Larry G.

    2010-09-14

    A method for calibrating acquired spectra for use in spectral analysis includes performing Gaussian peak fitting to spectra acquired by a plurality of NaI detectors to define peak regions. A Na and annihilation doublet may be located among the peak regions. A predetermined energy level may be applied to one of the peaks in the doublet and a location of a hydrogen peak may be predicted based on the location of at least one of the peaks of the doublet. Control systems for calibrating spectra are also disclosed.

  5. The U.S. Geological Survey Peak-Flow File Data Verification Project, 2008–16

    USGS Publications Warehouse

    Ryberg, Karen R.; Goree, Burl B.; Williams-Sether, Tara; Mason, Robert R.

    2017-11-21

    Annual peak streamflow (peak flow) at a streamgage is defined as the maximum instantaneous flow in a water year. A water year begins on October 1 and continues through September 30 of the following year; for example, water year 2015 extends from October 1, 2014, through September 30, 2015. The accuracy, characterization, and completeness of the peak streamflow data are critical in determining flood-frequency estimates that are used daily to design water and transportation infrastructure, delineate flood-plain boundaries, and regulate development and utilization of lands throughout the United States and are essential to understanding the implications of climate and land-use change on flooding and high-flow conditions.As of November 14, 2016, peak-flow data existed for 27,240 unique streamgages in the United States and its territories. The data, collectively referred to as the “peak-flow file,” are available as part of the U.S. Geological Survey (USGS) public web interface, the National Water Information System, at https://nwis.waterdata.usgs.gov/usa/nwis/peak. Although the data have been routinely subjected to periodic review by the USGS Office of Surface Water and screening at the USGS Water Science Center level, these data were not reviewed in a national, systematic manner until 2008 when automated scripts were developed and applied to detect potential errors in peak-flow values and their associated dates, gage heights, and peak-flow qualification codes, as well as qualification codes associated with the gage heights. USGS scientists and hydrographers studied the resulting output, accessed basic records and field notes, and corrected observed errors or, more commonly, confirmed existing data as correct.This report summarizes the changes in peak-flow file data at a national level, illustrates their nature and causation, and identifies the streamgages affected by these changes. Specifically, the peak-flow data were compared for streamgages with peak flow measured as of November 19, 2008 (before the automated scripts were widely applied) and on November 14, 2016 (after several rounds of corrections). There were 659,332 peak-flow values in the 2008 dataset and 731,965 peak-flow values in the 2016 dataset. When compared to the 2016 dataset, 5,179 (0.79 percent) peak-flow values had changed; 36,506 (5.54 percent) of the peak-flow qualification codes had changed; 1,938 (0.29 percent) peak-flow dates had changed; 18,599 (2.82 percent) of the peak-flow gage heights had changed; and 20,683 (3.14 percent) of the gage-height qualification codes had changed—most as a direct result of the peak-flow file data verification effort led by USGS personnel. The various types of changes are summarized and mapped in this report. In addition to this report, a corresponding USGS data release is provided to identify changes in peak flows at individual streamgages. The data release and the procedures to access the data release are described in this report.

  6. A new peak detection algorithm for MALDI mass spectrometry data based on a modified Asymmetric Pseudo-Voigt model.

    PubMed

    Wijetunge, Chalini D; Saeed, Isaam; Boughton, Berin A; Roessner, Ute; Halgamuge, Saman K

    2015-01-01

    Mass Spectrometry (MS) is a ubiquitous analytical tool in biological research and is used to measure the mass-to-charge ratio of bio-molecules. Peak detection is the essential first step in MS data analysis. Precise estimation of peak parameters such as peak summit location and peak area are critical to identify underlying bio-molecules and to estimate their abundances accurately. We propose a new method to detect and quantify peaks in mass spectra. It uses dual-tree complex wavelet transformation along with Stein's unbiased risk estimator for spectra smoothing. Then, a new method, based on the modified Asymmetric Pseudo-Voigt (mAPV) model and hierarchical particle swarm optimization, is used for peak parameter estimation. Using simulated data, we demonstrated the benefit of using the mAPV model over Gaussian, Lorentz and Bi-Gaussian functions for MS peak modelling. The proposed mAPV model achieved the best fitting accuracy for asymmetric peaks, with lower percentage errors in peak summit location estimation, which were 0.17% to 4.46% less than that of the other models. It also outperformed the other models in peak area estimation, delivering lower percentage errors, which were about 0.7% less than its closest competitor - the Bi-Gaussian model. In addition, using data generated from a MALDI-TOF computer model, we showed that the proposed overall algorithm outperformed the existing methods mainly in terms of sensitivity. It achieved a sensitivity of 85%, compared to 77% and 71% of the two benchmark algorithms, continuous wavelet transformation based method and Cromwell respectively. The proposed algorithm is particularly useful for peak detection and parameter estimation in MS data with overlapping peak distributions and asymmetric peaks. The algorithm is implemented using MATLAB and the source code is freely available at http://mapv.sourceforge.net.

  7. Fast Metabolite Identification in Nuclear Magnetic Resonance Metabolomic Studies: Statistical Peak Sorting and Peak Overlap Detection for More Reliable Database Queries.

    PubMed

    Hoijemberg, Pablo A; Pelczer, István

    2018-01-05

    A lot of time is spent by researchers in the identification of metabolites in NMR-based metabolomic studies. The usual metabolite identification starts employing public or commercial databases to match chemical shifts thought to belong to a given compound. Statistical total correlation spectroscopy (STOCSY), in use for more than a decade, speeds the process by finding statistical correlations among peaks, being able to create a better peak list as input for the database query. However, the (normally not automated) analysis becomes challenging due to the intrinsic issue of peak overlap, where correlations of more than one compound appear in the STOCSY trace. Here we present a fully automated methodology that analyzes all STOCSY traces at once (every peak is chosen as driver peak) and overcomes the peak overlap obstacle. Peak overlap detection by clustering analysis and sorting of traces (POD-CAST) first creates an overlap matrix from the STOCSY traces, then clusters the overlap traces based on their similarity and finally calculates a cumulative overlap index (COI) to account for both strong and intermediate correlations. This information is gathered in one plot to help the user identify the groups of peaks that would belong to a single molecule and perform a more reliable database query. The simultaneous examination of all traces reduces the time of analysis, compared to viewing STOCSY traces by pairs or small groups, and condenses the redundant information in the 2D STOCSY matrix into bands containing similar traces. The COI helps in the detection of overlapping peaks, which can be added to the peak list from another cross-correlated band. POD-CAST overcomes the generally overlooked and underestimated presence of overlapping peaks and it detects them to include them in the search of all compounds contributing to the peak overlap, enabling the user to accelerate the metabolite identification process with more successful database queries and searching all tentative compounds in the sample set.

  8. A new peak detection algorithm for MALDI mass spectrometry data based on a modified Asymmetric Pseudo-Voigt model

    PubMed Central

    2015-01-01

    Background Mass Spectrometry (MS) is a ubiquitous analytical tool in biological research and is used to measure the mass-to-charge ratio of bio-molecules. Peak detection is the essential first step in MS data analysis. Precise estimation of peak parameters such as peak summit location and peak area are critical to identify underlying bio-molecules and to estimate their abundances accurately. We propose a new method to detect and quantify peaks in mass spectra. It uses dual-tree complex wavelet transformation along with Stein's unbiased risk estimator for spectra smoothing. Then, a new method, based on the modified Asymmetric Pseudo-Voigt (mAPV) model and hierarchical particle swarm optimization, is used for peak parameter estimation. Results Using simulated data, we demonstrated the benefit of using the mAPV model over Gaussian, Lorentz and Bi-Gaussian functions for MS peak modelling. The proposed mAPV model achieved the best fitting accuracy for asymmetric peaks, with lower percentage errors in peak summit location estimation, which were 0.17% to 4.46% less than that of the other models. It also outperformed the other models in peak area estimation, delivering lower percentage errors, which were about 0.7% less than its closest competitor - the Bi-Gaussian model. In addition, using data generated from a MALDI-TOF computer model, we showed that the proposed overall algorithm outperformed the existing methods mainly in terms of sensitivity. It achieved a sensitivity of 85%, compared to 77% and 71% of the two benchmark algorithms, continuous wavelet transformation based method and Cromwell respectively. Conclusions The proposed algorithm is particularly useful for peak detection and parameter estimation in MS data with overlapping peak distributions and asymmetric peaks. The algorithm is implemented using MATLAB and the source code is freely available at http://mapv.sourceforge.net. PMID:26680279

  9. A comparison of practical assessment methods to determine treadmill, cycle and elliptical ergometer VO2peak

    PubMed Central

    Mays, Ryan J.; Boér, Nicholas F.; Mealey, Lisa M.; Kim, Kevin H.; Goss, Fredric L.

    2015-01-01

    This investigation compared estimated and predicted peak oxygen consumption (VO2peak) and maximal heart rate (HRmax) among the treadmill, cycle ergometer and elliptical ergometer. Seventeen women (mean ± SE: 21.9 ± .3 yrs) exercised to exhaustion on all modalities. ACSM metabolic equations were used to estimate VO2peak. Digital displays on the elliptical ergometer were used to estimate VO2peak. Two individual linear regression methods were used to predict VO2peak: 1) two steady state heart rate (HR) responses up to 85% of age-predicted HRmax, and 2) multiple steady state/non-steady state HR responses up to 85% of age-predicted HRmax. Estimated VO2peak for the treadmill (46.3 ± 1.3 ml · kg−1 · min−1) and the elliptical ergometer (44.4 ± 1.0 ml · kg−1 · min−1) did not differ. The cycle ergometer estimated VO2peak (36.5 ± 1.0 ml · kg−1 · min−1) was lower (p < .001) than the estimated VO2peak values for the treadmill and elliptical ergometer. Elliptical ergometer VO2peak predicted from steady state (51.4 ± .8 ml · kg−1 · min−1) and steady state/non-steady state (50.3 ± 2.0 ml · kg−1 · min−1) models were higher than estimated elliptical ergometer VO2peak, p < .01. HRmax and estimates of VO2peak were similar between the treadmill and elliptical ergometer, thus cross-modal exercise prescriptions may be generated. The use of digital display estimates of submaximal oxygen uptake for the elliptical ergometer may not be an accurate method for predicting VO2peak. Health-fitness professionals should use caution when utilizing submaximal elliptical ergometer digital display estimates to predict VO2peak. PMID:20393357

  10. [UV-Vis spectrum characteristics of phycocyanin in water from Taihu lake].

    PubMed

    Zhang, Jing; Wei, Yu-Chun; Wang, Guo-Xiang; Cheng, Chun-Mei; Xia, Xiao-Rui

    2014-05-01

    The present paper analyzed the UV-Vis spectrum characteristics of phycocyanin extracted from 75 water samples around Meiliang Bay of Taihu Lake, China in spring, summer and autumn, 2011, taking standard sample of phycocyanin, Micro-cystic aeruginosa and Anabaena cultured indoor as the reference, and discussed the difference and relation of spectrum among water samples, standard sample and single algae samples. According to the number of absorption peak in the wavelength range from 500 to 700 nm, phycocyanin spectrum of water sampling in Taihu Lake can be divided into three patterns: no peak, single peak and two peaks. In the first pattern, the absorbance changed smoothly and no absorption peak was observed around 620 nm. Depending on the absorption difference in the wavelength range from 300 to 450 nm, this pattern can be divided into type I and type II. Type I only had a absorption peak near 260 nm, with the similar spectrum of chromophoric dissolved organic matter (CDOM) in the wavelength range from 250 to 800 nm. Type II had absorption peak respectively near 260 and 330 nm. In single peak pattern and two peaks pattern, significant absorption peak of phycocyanin appeared around 620 nm. Compared to the other patterns, single peak pattern was more similar to that of standard sample and single algae samples, but different in their maximum absorption peaks position and relative absorption intensity in the wavelength range of 250 approximately 300, 300 approximately 450 and 500 approximately 700 nm, because of different algae species and purity after extraction. In the two peaks pattern, another absorption peak appeared at 670nm, with the absorption shoulder from 350 to 450 nm, and shared the absorption characteristics of phycocyanin and chlorophyll complex protein. The research can provide a basic support for the phycocyanin quantitation and blooms monitoring in Taihu Lake.

  11. [Improvement of reproducibility in capillary electrophoretic characterization of rhubarb by normalization of migration time].

    PubMed

    Zhang, Hongyi; Ge, Lijuan; Chen, Hui; Jing, Cong; Shi, Zhihong

    2009-07-01

    The principle of the normalization of migration time and its application on the traditional Chinese medicine (TCM) analysis by capillary electrophoresis (CE) are presented. It is the core of the normalization of migration time that the fluctuation of apparent migration velocity for each component at different runs is attributed to the difference of electroosmotic flow velocity. To transform migration time (t) to normalized migration time, one peak or two peaks in the original electropherogram are selected as internal peak. The normalization of migration time is therefore classified into two types based on the number of selected internal peaks, one-peak and two-peak approaches. The migration times processed by one-peak normalization and by two-peak normalization are conducted by the following equations, respectively: (t'(i))(j) = 1/ [1/(t(i))(j) - [1/(t(istd))(j) - 1/(t(istd))1

  12. PREPARATIVE ISOLATION AND PURIFICATION OF CHEMICAL CONSTITUENTS OF BELAMCANDA BY MPLC, HSCCC AND PREP-HPLC

    PubMed Central

    Wang, Xiaohong; Liang, Yong; Peng, Cuilin; Xie, Huichun; Pan, Man; Zhang, Tianyou; Ito, Yoichiro

    2010-01-01

    Combined with medium-pressure liquid chromatography (MPLC) and preparative high-pressure liquid chromatography (Prep-HPLC), high-speed countercurrent chromatography (HSCCC) was successfully applied for separation and purification of isoflavonoids from the extract of belamcanda. HSCCC separation was performed on a two-phase solvent system composed of methyl tert-butyl ether -ethyl acetate - n-butyl alcohol – acetonitrile −0.1% aqueous trifluoroacetic acid at a volume radio of 1:2:1:1:5. Semi-purified peak fractions from HSCCC separation were further purified by Prep-HPLC. Nine well-separated fractions were analyzed by HPLC-UV absorption spectrometry to determine their purities and characterized with ESI-MSn. Except for peaksland VII (unknown) seven compounds were identified as apocynin (peak II), mangiferin (peak III), 7-O-methylmangiferin (peak IV), hispidulin (peak V), 3′-hydroxyltectoridin (peak VI), iristectorin B (peak VII), isoiridin (peak IX). PMID:21552369

  13. CME productivity associated with Solar Flare peak X-ray emission flux

    NASA Astrophysics Data System (ADS)

    Suryanarayana, G. S.; Balakrishna, K. M.

    2018-05-01

    It is often noticed that the occurrence rate of Coronal Mass Ejections (CMEs) increases with increase in flare duration where peak flux too increase. However, there is no complete association between the duration and peak flux. Distinct characteristics have been reported for active regions (ARs) where flares and CMEs occur in contrast to ARs where flares alone occur. It is observed that peak flux of flares is higher when associated with CMEs compared to peak flux of flares with which CMEs are not associated. In other words, it is likely that flare duration and peak flux are independently affected by distinct active region dynamics. Hence, we examine the relative ability of flare duration and peak flux in enhancing the CME productivity. We report that CME productivity is distinctly higher in association with the enhancement of flare peak flux in comparison to corresponding enhancement of flare duration.

  14. Changes in Manipulative Peak Force Modulation and Time to Peak Thrust among First-Year Chiropractic Students Following a 12-Week Detraining Period.

    PubMed

    Starmer, David J; Guist, Brett P; Tuff, Taylor R; Warren, Sarah C; Williams, Matthew G R

    2016-05-01

    The purpose of this study was to analyze differences in peak force modulation and time-to-peak thrust in posterior-to-anterior (PA) high-velocity-low-amplitude (HVLA) manipulations in first-year chiropractic students prior to and following a 12-week detraining period. Chiropractic students (n=125) performed 2 thrusts prior to and following a 12-week detraining period: total peak force targets were 400 and 600 N, on a force-sensing table using a PA hand contact of the participant's choice (bilateral hypothenar, bilateral thenar, or cross bilateral). Force modulation was compared to defined target total peak force values of 600 and 400 N, and time-to-peak thrust was compared between data sets using 2-tailed paired t-tests. Total peak force for the 600 N intensity varied by 124.11 + 65.77 N during the pre-test and 123.29 + 61.43 N during the post-test compared to the defined target of 600 N (P = .90); total peak force for the 400 N intensity varied by 44.91 + 34.67 N during the pre-test and 44.60 + 32.63 N during the post-test compared to the defined target of 400 N (P = .57). Time-to-peak thrust for the 400 N total peak force was 137.094 + 42.47 milliseconds during the pre-test and 125.385 + 37.46 milliseconds during the post-test (P = .0004); time-to-peak thrust for the 600 N total peak force was 136.835 + 40.48 milliseconds during the pre-test and 125.385 + 33.78 milliseconds during the post-test (P = .03). The results indicate no drop-off in the ability to modulate force for either thrust intensity, but did indicate a statistically significant change in time-to-peak thrust for the 400 N total peak force thrust intensity in first-year chiropractic students following a 12-week detraining period. Copyright © 2016 National University of Health Sciences. Published by Elsevier Inc. All rights reserved.

  15. Titres of biogenic amines and ecdysteroids: effect of octopamine on the production of ecdysteroids in the silkworm Bombyx mori.

    PubMed

    Hirashima, A; Hirokado, S; Ohta, H; Suetsugu, E; Sakaguchi, M; Kuwano, E; Taniguchi, E; Eto, M

    1999-09-01

    At day two, a sharp peak of octopamine (OA) was observed in last instar female Bombyx mori larvae. This peak also appeared in male larvae a day later than in females at day three. An OA peak was also observed before the 3rd ecdysis. However, no OA peaks were observed in 4th instar larvae. At day eight and nine of the 5th instar, another OA peak was observed for male and female, respectively. A peak of tyramine (TA) was found at day one followed by a peak of OA at day two in 3rd instar larvae. At day two, a day before OA peak, a peak of TA was observed for male insects and before the 2nd peak of OA, TA titre was also high in 5th instar larvae. Immediately after 3rd ecdysis, a high titre of DL-beta-(3,4-dihydroxyphenyl)alanine (DOPA) was observed, followed by a peak of dopamine (DA) at day five. A peak of DOPA was found at day one followed by a peak of DA at day two in 3rd instar larvae. Similarly, a small peak of DOPA was observed at day two, followed by an increase of DA at days eight and nine after the 4th ecdysis. Ecdysteroid peaks were observed just before the 3rd and 4th ecdysis and an ecdysteroid titre increased after the start of spinning. The effects of OA and JH on production of ecdysteroids by prothoracic glands (PGs) were examined in order to identify neuromediators responsible for triggering pupation in B. mori larvae. Exogeneous OA (10-100 mM) reduced and 10 &mgr;M OA stimulated the production of ecdysteroids in the presence and absence of brain extracts by PGs in the final instar (day five) of B. mori in vitro. Meanwhile, exogeneous JHI (10 &mgr;g/ml) stimulated and at 5 &mgr;g/ml it reduced production of ecdysteroids in the presence of brain extracts. Gramine, an OA antagonist, delayed pupation when applied in the diet. Thus, OA may produce some biological effects on the programming of larval-pupal development.

  16. Modeled future peak streamflows in four coastal Maine rivers

    USGS Publications Warehouse

    Hodgkins, Glenn A.; Dudley, Robert W.

    2013-01-01

    To safely and economically design bridges and culverts, it is necessary to compute the magnitude of peak streamflows that have specified annual exceedance probabilities (AEPs). Annual precipitation and air temperature in the northeastern United States are, in general, projected to increase during the 21st century. It is therefore important for engineers and resource managers to understand how peak flows may change in the future. This report, prepared in cooperation with the Maine Department of Transportation (MaineDOT), presents modeled changes in peak flows at four basins in coastal Maine on the basis of projected changes in air temperature and precipitation. To estimate future peak streamflows at the four basins in this study, historical values for climate (temperature and precipitation) in the basins were adjusted by different amounts and input to a hydrologic model of each study basin. To encompass the projected changes in climate in coastal Maine by the end of the 21st century, air temperatures were adjusted by four different amounts, from -3.6 degrees Fahrenheit (ºF) (-2 degrees Celsius (ºC)) to +10.8 ºF (+6 ºC) of observed temperatures. Precipitation was adjusted by three different percentage values from -15 percent to +30 percent of observed precipitation. The resulting 20 combinations of temperature and precipitation changes (includes the no-change scenarios) were input to Precipitation-Runoff Modeling System (PRMS) watershed models, and annual daily maximum peak flows were calculated for each combination. Modeled peak flows from the adjusted changes in temperature and precipitation were compared to unadjusted (historical) modeled peak flows. Annual daily maximum peak flows increase or decrease, depending on whether temperature or precipitation is adjusted; increases in air temperature (with no change in precipitation) lead to decreases in peak flows, whereas increases in precipitation (with no change in temperature) lead to increases in peak flows. As the magnitude of air temperatures increase in the four basins, peak flows decrease by larger amounts. If precipitation is held constant (no change from historical values), 17 to 26 percent decreases in peak flow occur at the four basins when temperature is increased by 7.2°F. If temperature is held constant, 26 to 38 percent increases in peak flow result from a 15-percent increase in precipitation. The largest decreases in peak flows at the four basins result from 15-percent decreases in precipitation combined with temperature increases of 10.8°F. The largest increases in peak flows generally result from 30-percent increases in precipitation combined with 3.6 °F decreases in temperatures. In many cases when temperature and precipitation both increase, small increases or decreases in annual daily maximum peak flows result. For likely changes projected for the northeastern United States for the middle of the 21st century (temperature increase of 3.6 °F and precipitation increases of 0 to 15 percent), peak-flow changes at the four coastal Maine basins in this study are modeled to be evenly distributed between increases and decreases of less than 25 percent. Peak flows with 50-percent and 1-percent AEPs (equivalent to 2-year and 100-year recurrence interval peak flows, respectively) were calculated for the four basins in the study using the PRMS-modeled annual daily maximum peak flows. Modeled peak flows with 50-percent and 1-percent AEPs with adjusted temperatures and precipitation were compared to unadjusted (historical) modeled values. Changes in peak flows with 50-percent AEPs are similar to changes in annual daily maximum peak flow; changes in peak flows with 1-percent AEPs are similar in pattern to changes in annual daily maximum peak flow, but some of the changes associated with increasing precipitation are much larger than changes in annual daily maximum peak flow. Substantial decreases in maximum annual winter snowpack water equivalent are modeled to occur with increasing air temperatures at the four basins in the study. (Snowpack is the snow on the ground that accumulates during a winter, and water equivalent is the amount of water in a snowpack if it were melted.) The decrease in modeled peak flows with increasing air temperature, given no change in precipitation amount, is likely caused by these decreases in winter snowpack and resulting decreases in snowmelt runoff. This Scientific Investigations Report, prepared in cooperation with the Maine Department of Transportation, presents a summary of modeled changes in peak flows at four basins in coastal Maine on the basis of projected changes in air temperature and precipitation. The full Fact Sheet (Hodgkins and Dudley, 2013) is available at http://pubs.usgs.gov/fs/2013/3021/.

  17. The composite structure of peak 5 in the glow curve of LiF:Mg,Ti (TLD-100): confirmation of peak 5a arising from a locally trapped electron-hole configuration.

    PubMed

    Horowitz, Y S; Oster, L; Satinger, D; Biderman, S; Einav, Y

    2002-01-01

    The hypothesis that glow peak 5a arises from localised e-h capture is confirmed by the following experimental observations: (i) The high conversion efficiency (CE) (CE5a-->4 = 3 +/- 0.5) of peak 5a to peak 4 (a hole-only trap) deduced from detailed Im-Tstop optical bleaching studies at 310 nm compared to the much lower CE of peak 5 (an electron-only trap) (CE5-->4 = 0.0026+/-0.012). (ii) The lack of an increase in the sensitivity of glow peak 5a following 2.6 MeV and 6.8 MeV He ion irradiation in 'sensitised' material compared to the factor two increase in the sensitivity of peak 5; (S/S0)5a = 0.86+/-0.12, compared to (S/S0)5 = 2.0+/-0.2. (iii) The late entry into saturation of the 2.6 MeV and 6.8 MeV He ion TL-fluence response curves for peak 5a compared to peak 5 in sensitised and normal material resulting in the following values for the track radial saturation parameter: (r50)5a = 100+/-20) Angstroms compared to (r50)5 = 380+/-30 Angstroms. (iv) The low value of 0.1 for the 'track-escape' parameter of peak 5a deduced from the Extended Track Interaction Model analysis of He ion TL fluence response compared to order of magnitude greater values for peaks 5 and 5b.

  18. A model to forecast peak spreading.

    DOT National Transportation Integrated Search

    2012-04-01

    As traffic congestion increases, the K-factor, defined as the proportion of the 24-hour traffic volume that occurs during the peak hour, may decrease. This behavioral response is known as peak spreading: as congestion grows during the peak travel tim...

  19. Developing a Peak Wind Probability Forecast Tool for Kennedy Space Center and Cape Canaveral Air Force Station

    NASA Technical Reports Server (NTRS)

    Lambert, WInifred; Roeder, William

    2007-01-01

    This conference presentation describes the development of a peak wind forecast tool to assist forecasters in determining the probability of violating launch commit criteria (LCC) at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) in east-central Florida. The peak winds are an important forecast element for both the Space Shuttle and Expendable Launch Vehicle (ELV) programs. The LCC define specific peak wind thresholds for each launch operation that cannot be exceeded in order to ensure the safety of the vehicle. The 45th Weather Squadron (45 WS) has found that peak winds are a challenging parameter to forecast, particularly in the cool season months of October through April. Based on the importance of forecasting peak winds, the 45 WS tasked the Applied Meteorology Unit (AMU) to develop a short-range peak-wind forecast tool to assist in forecasting LCC violations. The tool will include climatologies of the 5-minute mean and peak winds by month, hour, and direction, and probability distributions of the peak winds as a function of the 5-minute mean wind speeds.

  20. Statistical Short-Range Guidance for Peak Wind Forecasts on Kennedy Space Center/Cape Canaveral Air Force Station, Phase III

    NASA Technical Reports Server (NTRS)

    Crawford, Winifred

    2010-01-01

    This final report describes the development of a peak wind forecast tool to assist forecasters in determining the probability of violating launch commit criteria (LCC) at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). The peak winds are an important forecast element for both the Space Shuttle and Expendable Launch Vehicle (ELV) programs. The LCC define specific peak wind thresholds for each launch operation that cannot be exceeded in order to ensure the safety of the vehicle. The 45th Weather Squadron (45 WS) has found that peak winds are a challenging parameter to forecast, particularly in the cool season months of October through April. Based on the importance of forecasting peak winds, the 45 WS tasked the Applied Meteorology Unit (AMU) to develop a short-range peak-wind forecast tool to assist in forecasting LCC violations.The tool includes climatologies of the 5-minute mean and peak winds by month, hour, and direction, and probability distributions of the peak winds as a function of the 5-minute mean wind speeds.

  1. A Peak Wind Probability Forecast Tool for Kennedy Space Center and Cape Canaveral Air Force Station

    NASA Technical Reports Server (NTRS)

    Crawford, Winifred; Roeder, William

    2008-01-01

    This conference abstract describes the development of a peak wind forecast tool to assist forecasters in determining the probability of violating launch commit criteria (LCC) at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) in east-central Florida. The peak winds are an important forecast element for both the Space Shuttle and Expendable Launch Vehicle (ELV) programs. The LCC define specific peak wind thresholds for each launch operation that cannot be exceeded in order to ensure the safety of the vehicle. The 45th Weather Squadron (45 WS) has found that peak winds are a challenging parameter to forecast, particularly in the cool season months of October through April. Based on the importance of forecasting peak winds, the 45 WS tasked the Applied Meteorology Unit (AMU) to develop a short-range peak-wind forecast tool to assist in forecasting LCC violatioas.The tool will include climatologies of the 5-minute mean end peak winds by month, hour, and direction, and probability distributions of the peak winds as a function of the 5-minute mean wind speeds.

  2. Peak Wind Forecasts for the Launch-Critical Wind Towers on Kennedy Space Center/Cape Canaveral Air Force Station, Phase IV

    NASA Technical Reports Server (NTRS)

    Crawford, Winifred

    2011-01-01

    This final report describes the development of a peak wind forecast tool to assist forecasters in determining the probability of violating launch commit criteria (LCC) at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). The peak winds arc an important forecast clement for both the Space Shuttle and Expendable Launch Vehicle (ELV) programs. The LCC define specific peak wind thresholds for each launch operation that cannot be exceeded in order to ensure the safety of the vehicle. The 45th Weather Squadron (45 WS) has found that peak winds are a challenging parameter to forecast, particularly in the cool season months of October through April. Based on the importance of forecasting peak winds, the 45 WS tasked the Applied Meteorology Unit (AMU) to update the statistics in the current peak-wind forecast tool to assist in forecasting LCC violations. The tool includes onshore and offshore flow climatologies of the 5-minute mean and peak winds and probability distributions of the peak winds as a function of the 5-minute mean wind speeds.

  3. Study on the Multi-marker Components Quantitative HPLC Fingerprint of the Compound Chinese Medicine Wuwei Changyanning Granule

    PubMed Central

    Yang, Xian; Yang, Shui-Ping; Zhang, Xue; Yu, Xiao-Dong; He, Qi-Yi; Wang, Bo-Chu

    2014-01-01

    The aim of this paper is to develop a rapid and highly sensitive quantitative HPLC fingerprint method with multiple indicators by using the Compound Chinese Medicine Wuwei Changyanning granule and 5 herbs in the prescription. The quantitative fingerprint chromatogram with multiple indicators was investigated. і)6 compositions included rutin, gallic acid, chlorogenic acid, atractylenolide Ⅰ, pachymic acid and apigenin, which originated from 5 herbs respectively, were selected as quantitative compositions, and their contents were determined using HPLC from 11 batches granules and the corresponding 5 medicinal materials. ⅱ) The precision, stability and repeatability of fingerprinting were investigated. In addition, common peaks number, the percentage of non-common peaks and similarity were also studied. Among them, 21 common peaks in the granule could find the source of peaks from the 5 herbs, among of 10 peaks from Niuerfeng, 9 peaks from Laliao, 3 peaks from Baishu, 3 peaks from Fuling and 5 peaks from Guanghuoxiang. The results showed that the identification method of fingerprinting was reliable. PMID:25587307

  4. Extended Statistical Short-Range Guidance for Peak Wind Speed Analyses at the Shuttle Landing Facility: Phase II Results

    NASA Technical Reports Server (NTRS)

    Lambert, Winifred C.

    2003-01-01

    This report describes the results from Phase II of the AMU's Short-Range Statistical Forecasting task for peak winds at the Shuttle Landing Facility (SLF). The peak wind speeds are an important forecast element for the Space Shuttle and Expendable Launch Vehicle programs. The 45th Weather Squadron and the Spaceflight Meteorology Group indicate that peak winds are challenging to forecast. The Applied Meteorology Unit was tasked to develop tools that aid in short-range forecasts of peak winds at tower sites of operational interest. A seven year record of wind tower data was used in the analysis. Hourly and directional climatologies by tower and month were developed to determine the seasonal behavior of the average and peak winds. Probability density functions (PDF) of peak wind speed were calculated to determine the distribution of peak speed with average speed. These provide forecasters with a means of determining the probability of meeting or exceeding a certain peak wind given an observed or forecast average speed. A PC-based Graphical User Interface (GUI) tool was created to display the data quickly.

  5. Evolution and impact of the 2016 negative Indian Ocean Dipole

    NASA Astrophysics Data System (ADS)

    Iskandar, I.; Lestari, D. O.; Utari, P. A.; Supardi; Rozirwan; Khakim, M. Y. N.; Poerwono, P.; Setiabudidaya, D.

    2018-03-01

    Strong negative Indian Ocean Dipole (IOD) event took place in the tropical Indian Ocean during 2016. Based on the Dipole Mode Index (DMI), the event has shown two peaks: in July and September. It is shown that the second peak was stronger than the first peak. Evolution of the event has started in May, reached its first peak in July, weaken in August, but rebounded and came to its second peak in September. The event was terminated in November. Robust sea surface temperature (SST) dipole patterns were observed during both peaks. In July, the SST anomaly in the eastern (western) pole of the IOD reached +1°C (-1.5°C). Meanwhile, during the second peak of the event, the SST anomaly in the eastern (western) pole of the IOD rose (fall) to nearly +2.5°C (-1°C). As a consequence, strong convective activities were observed over the maritime continent causing heavy rainfall during the peak of the event. On the other hand, there was a significant reduce of the rainfall over the eastern Africa during the peak of the event.

  6. Identification of the country of growth of Sophora flavescens using direct analysis in real time mass spectrometry (DART-MS).

    PubMed

    Fukuda, Eriko; Uesawa, Yoshihiro; Baba, Masaki; Suzuki, Ryuichiro; Fukuda, Tatsuo; Shirataki, Yoshiaki; Okada, Yoshihito

    2014-11-01

    In order to identify the country of growth of Sophora flavescens by chemical fingerprinting, extracts of plants grown in China and Japan were analyzed using direct analysis in real time mass spectrometry (DART)-MS. The peaks characteristic of each country of growth were statistically analyzed using a volcano plot to summarize the relationship between the p-values of a statistical test and the magnitude of the difference in the peak intensities of the samples in the groups. Peaks with ap value < 0.05 in the t-test and a ≥ 2 absolute difference were defined as characteristic. Peaks characteristic of Chinese S. flavescens were found at m/z 439 and 440. In contrast, peaks characteristic of Japanese S. flavescens were found at m/z 313, 423, 437 and 441. The intensity of the selected peaks was similar in Japanese samples, whereas the m/z 439 peak had a significantly higher intensity than the other peaks in Chinese samples. Therefore, differences in selected peak patterns may allow identification of the country of growth of S. flavescens.

  7. Anomalous satellite inductive peaks in alternating current response of defective carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirai, Daisuke; Watanabe, Satoshi; Yamamoto, Takahiro

    2014-05-07

    AC response of defective metallic carbon nanotubes is investigated from first principles. We found that capacitive peaks appear at electron scattering states. Moreover, we show that satellite inductive peaks are seen adjacent to a main capacitive peak, which is in contrast to the conductance spectra having no satellite features. The appearance of satellite inductive peaks seems to depend on the scattering states. Our analysis with a simple resonant scattering model reveals that the origin of the satellite inductive peaks can be understood by just one parameter, i.e., the lifetime of electrons at a defect state.

  8. Memory Effect Manifested by a Boson Peak in Metallic Glass.

    PubMed

    Luo, P; Li, Y Z; Bai, H Y; Wen, P; Wang, W H

    2016-04-29

    We explore the correlation between a boson peak and structural relaxation in a typical metallic glass. Consistent with enthalpy recovery, a boson peak shows a memory effect in an aging-and-scan procedure. Single-step isothermal aging produces a monotonic decrease of enthalpy and boson peak intensity; for double-step isothermal aging, both enthalpy and boson peak intensity experience, coincidently, an incipient increase to a maximum and a subsequent decrease toward the equilibrium state. Our results indicate a direct link between slow structural relaxation and fast boson peak dynamics, which presents a profound understanding of the two dynamic behaviors in glass.

  9. Improved method for peak picking in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Kempka, Martin; Sjödahl, Johan; Björk, Anders; Roeraade, Johan

    2004-01-01

    A method for peak picking for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) is described. The method is based on the assumption that two sets of ions are formed during the ionization stage, which have Gaussian distributions but different velocity profiles. This gives rise to a certain degree of peak skewness. Our algorithm deconvolutes the peak and utilizes the fast velocity, bulk ion distribution for peak picking. Evaluation of the performance of the new method was conducted using peptide peaks from a bovine serum albumin (BSA) digest, and compared with the commercial peak-picking algorithms Centroid and SNAP. When using the new two-Gaussian algorithm, for strong signals the mass accuracy was equal to or marginally better than the results obtained from the commercial algorithms. However, for weak, distorted peaks, considerable improvement in both mass accuracy and precision was obtained. This improvement should be particularly useful in proteomics, where a lack of signal strength is often encountered when dealing with weakly expressed proteins. Finally, since the new peak-picking method uses information from the entire signal, no adjustments of parameters related to peak height have to be made, which simplifies its practical use. Copyright 2004 John Wiley & Sons, Ltd.

  10. A NEW METHOD OF PEAK DETECTION FOR ANALYSIS OF COMPREHENSIVE TWO-DIMENSIONAL GAS CHROMATOGRAPHY MASS SPECTROMETRY DATA*

    PubMed Central

    Kim, Seongho; Ouyang, Ming; Jeong, Jaesik; Shen, Changyu; Zhang, Xiang

    2014-01-01

    We develop a novel peak detection algorithm for the analysis of comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC-TOF MS) data using normal-exponential-Bernoulli (NEB) and mixture probability models. The algorithm first performs baseline correction and denoising simultaneously using the NEB model, which also defines peak regions. Peaks are then picked using a mixture of probability distribution to deal with the co-eluting peaks. Peak merging is further carried out based on the mass spectral similarities among the peaks within the same peak group. The algorithm is evaluated using experimental data to study the effect of different cut-offs of the conditional Bayes factors and the effect of different mixture models including Poisson, truncated Gaussian, Gaussian, Gamma, and exponentially modified Gaussian (EMG) distributions, and the optimal version is introduced using a trial-and-error approach. We then compare the new algorithm with two existing algorithms in terms of compound identification. Data analysis shows that the developed algorithm can detect the peaks with lower false discovery rates than the existing algorithms, and a less complicated peak picking model is a promising alternative to the more complicated and widely used EMG mixture models. PMID:25264474

  11. Data Dependent Peak Model Based Spectrum Deconvolution for Analysis of High Resolution LC-MS Data

    PubMed Central

    2015-01-01

    A data dependent peak model (DDPM) based spectrum deconvolution method was developed for analysis of high resolution LC-MS data. To construct the selected ion chromatogram (XIC), a clustering method, the density based spatial clustering of applications with noise (DBSCAN), is applied to all m/z values of an LC-MS data set to group the m/z values into each XIC. The DBSCAN constructs XICs without the need for a user defined m/z variation window. After the XIC construction, the peaks of molecular ions in each XIC are detected using both the first and the second derivative tests, followed by an optimized chromatographic peak model selection method for peak deconvolution. A total of six chromatographic peak models are considered, including Gaussian, log-normal, Poisson, gamma, exponentially modified Gaussian, and hybrid of exponential and Gaussian models. The abundant nonoverlapping peaks are chosen to find the optimal peak models that are both data- and retention-time-dependent. Analysis of 18 spiked-in LC-MS data demonstrates that the proposed DDPM spectrum deconvolution method outperforms the traditional method. On average, the DDPM approach not only detected 58 more chromatographic peaks from each of the testing LC-MS data but also improved the retention time and peak area 3% and 6%, respectively. PMID:24533635

  12. Noise peaks influence communication in the operating room. An observational study.

    PubMed

    Keller, Sandra; Tschan, Franziska; Beldi, Guido; Kurmann, Anita; Candinas, Daniel; Semmer, Norbert K

    2016-12-01

    Noise peaks are powerful distractors. This study focuses on the impact of noise peaks on surgical teams' communication during 109 long abdominal surgeries. We related measured noise peaks during 5-min intervals to the amount of observed communication during the same interval. Results show that noise peaks are associated with less case-relevant communication; this effect is moderated by the level of surgical experience; case-relevant communications decrease under high noise peak conditions among junior, but not among senior surgeons. However, case-irrelevant communication did not decrease under high noise level conditions, rather there was a trend to more case-irrelevant communication under high noise peaks. The results support the hypothesis that noise peaks impair communication because they draw on attentional resources rather than impairing understanding of communication. As case-relevant communication is important for surgical performance, exposure to high noise peaks in the OR should be minimised especially for less experienced surgeons. Practitioner Summary: This study investigated whether noise during surgeries influenced the communication within surgical teams. During abdominal surgeries, noise levels were measured and communication was observed. Results showed that high noise peaks reduced the frequency of patient-related communication, but did not reduce patient-irrelevant communication. Noise may negatively affect team coordination in surgeries.

  13. Fast, high peak capacity separations in comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry.

    PubMed

    Fitz, Brian D; Wilson, Ryan B; Parsons, Brendon A; Hoggard, Jamin C; Synovec, Robert E

    2012-11-30

    Peak capacity production is substantially improved for two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC×GC-TOFMS) and applied to the fast separation of a 28 component liquid test mixture, and two complex vapor samples (a 65 component volatile organic compound test mixture, and the headspace of warm ground coffee beans). A high peak capacity is achieved in a short separation time by selecting appropriate experimental conditions based on theoretical modeling of on-column band broadening, and by reducing the off-column band broadening by applying a narrow, concentrated injection pulse onto the primary column using high-speed cryo-focusing injection (HSCFI), referred to as thermal injection. A long, relatively narrow open tubular capillary column (20 m, 100 μm inner diameter (i.d.) with a 0.4 μm film thickness to benefit column capacity) was used as the primary column. The initial flow rate was 2 ml/min (60 cm/s average linear flow velocity) which is slightly below the optimal average linear gas velocity of 83 cm/s, due to the flow rate constraint of the TOFMS vacuum system. The oven temperature programming rate was 30°C/min. The secondary column (1.8m, 100 μm i.d. with a 0.1 μm film thickness) provided a relatively high peak capacity separation, concurrent with a significantly shorter modulation period, P(M), than commonly applied with the commercial instrument. With this GC×GC-TOFMS instrumental platform, compounds in the 28 component liquid test mixture provided a ∼7 min separation (with a ∼6.5 min separation time window), producing average peak widths of ∼600 ms full width half maximum (FWHM), resulting in a peak capacity on the primary column of ∼400 peaks (at unit resolution). Using a secondary column with a 500 ms P(M), average peak widths of ∼20 ms FWHM were achieved, thus providing a peak capacity of 15 peaks on the second dimension. Overall, an ideal orthogonal GC×GC peak capacity of ∼6000 peaks (at unit resolution) was achieved (or a β-corrected orthogonal peak capacity of ∼4400, at an average modulation ratio, M(R), of ∼2). This corresponds to an ideal orthogonal peak capacity production of ∼1000 peaks/min (or ∼700 peaks/min, β-corrected). For comparison, standard split/split-less injection techniques with a 1:100 split, when combined with standard GC×GC conditions typically provide a peak capacity production of ∼100 peaks/min, hence the instrumental platform we report provides a ∼7-fold to 10-fold improvement. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Multiscale peak detection in wavelet space.

    PubMed

    Zhang, Zhi-Min; Tong, Xia; Peng, Ying; Ma, Pan; Zhang, Ming-Jin; Lu, Hong-Mei; Chen, Xiao-Qing; Liang, Yi-Zeng

    2015-12-07

    Accurate peak detection is essential for analyzing high-throughput datasets generated by analytical instruments. Derivatives with noise reduction and matched filtration are frequently used, but they are sensitive to baseline variations, random noise and deviations in the peak shape. A continuous wavelet transform (CWT)-based method is more practical and popular in this situation, which can increase the accuracy and reliability by identifying peaks across scales in wavelet space and implicitly removing noise as well as the baseline. However, its computational load is relatively high and the estimated features of peaks may not be accurate in the case of peaks that are overlapping, dense or weak. In this study, we present multi-scale peak detection (MSPD) by taking full advantage of additional information in wavelet space including ridges, valleys, and zero-crossings. It can achieve a high accuracy by thresholding each detected peak with the maximum of its ridge. It has been comprehensively evaluated with MALDI-TOF spectra in proteomics, the CAMDA 2006 SELDI dataset as well as the Romanian database of Raman spectra, which is particularly suitable for detecting peaks in high-throughput analytical signals. Receiver operating characteristic (ROC) curves show that MSPD can detect more true peaks while keeping the false discovery rate lower than MassSpecWavelet and MALDIquant methods. Superior results in Raman spectra suggest that MSPD seems to be a more universal method for peak detection. MSPD has been designed and implemented efficiently in Python and Cython. It is available as an open source package at .

  15. Response analysis of TLD-300 dosimeters in heavy-particle beams.

    PubMed

    Loncol, T; Hamal, M; Denis, J M; Vynckier, S; Wambersie, A; Scalliet, P

    1996-09-01

    In vivo dosimetry is recommended as part of the quality control procedure for treatment verification in radiation therapy. Using thermoluminescence, such controls are planned in the p(65) + Be neutron and 85 MeV proton beams produced at the cyclotron at Louvain-La-Neuve and dedicated to therapy applications. A preliminary study of the peak 3 (150 degrees C) and peak 5 (250 degrees C) response of CaF2:Tm (TLD-300) to neutron and proton beams aimed to analyse the effect of different radiation qualities on the dosimetric behaviour of the detector irradiated in phantom. To broaden the range of investigation, the study was extended to an experimental 12C heavy ion beam (95 MeV/nucleon). The peak 3 and 5 sensitivities in the neutron beam, compared to 60Co, varied little with depth. A major change of peak 5 sensitivity was observed for samples positioned under five leaves of the multi-leaf collimator. While peak 3 sensitivity was constant with depth in the unmodulated proton beam, peak 5 sensitivity increased by 15%. Near the Bragg peak, peak 3 showed the highest decrease of sensitivity. In the modulated proton beam, the sensitivity values were not significantly smaller than those measured in the unmodulated beam far from the Bragg peak region. The ratio of the heights of peak 3 and peak 5 decreased by 70% from the 60Co reference radiation to the 12C heavy-ion beam. This parameter was strongly correlated with the change of radiation quality.

  16. Raman scattering in single-crystal sapphire at elevated temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thapa, Juddha; Liu, Bo; Woodruff, Steven D.

    Sapphire is a widely used high-temperature material and this work presents thorough characterization of all the measurable Raman scattering modes in sapphire and their temperature dependencies. Here, Raman scattering in bulk sapphire rods is measured from room temperature to 1081 °C and is illustrated as a method of noncontact temperature measurement. A single-line argon ion laser at 488 nm was used to excite the sapphire rods inside a cylindrical furnace. All the anti-Stokes peaks (or lines) were observable through the entire temperature range of interest, while Stokes peaks were observable until they were obscured by background thermal emission. Temperature measurementsmore » were found to be most reliable for A 1g and E g modes using the peaks at ±418, ±379, +578, +645, and, +750 cm -1 (+ and – are designated for Stokes and anti-Stokes peaks respectively). The 418 cm -1 peak was found to be the most intense peak. The temperature dependence of peak position, peak width, and peak area of the ±418 and ±379 peaks is presented. For +578, +645 and +750, the temperature dependence of peak position is presented. The peaks’ spectral positions provide the most precise temperature information within the experimental temperature range. Finally, the resultant temperature calibration curves are given, which indicate that sapphire can be used in high-temperature Raman thermometry with an accuracy of about 1.38°C average standard deviation over the entire >1000°C temperature range.« less

  17. Raman scattering in single-crystal sapphire at elevated temperatures

    DOE PAGES

    Thapa, Juddha; Liu, Bo; Woodruff, Steven D.; ...

    2017-10-25

    Sapphire is a widely used high-temperature material and this work presents thorough characterization of all the measurable Raman scattering modes in sapphire and their temperature dependencies. Here, Raman scattering in bulk sapphire rods is measured from room temperature to 1081 °C and is illustrated as a method of noncontact temperature measurement. A single-line argon ion laser at 488 nm was used to excite the sapphire rods inside a cylindrical furnace. All the anti-Stokes peaks (or lines) were observable through the entire temperature range of interest, while Stokes peaks were observable until they were obscured by background thermal emission. Temperature measurementsmore » were found to be most reliable for A 1g and E g modes using the peaks at ±418, ±379, +578, +645, and, +750 cm -1 (+ and – are designated for Stokes and anti-Stokes peaks respectively). The 418 cm -1 peak was found to be the most intense peak. The temperature dependence of peak position, peak width, and peak area of the ±418 and ±379 peaks is presented. For +578, +645 and +750, the temperature dependence of peak position is presented. The peaks’ spectral positions provide the most precise temperature information within the experimental temperature range. Finally, the resultant temperature calibration curves are given, which indicate that sapphire can be used in high-temperature Raman thermometry with an accuracy of about 1.38°C average standard deviation over the entire >1000°C temperature range.« less

  18. Particle in cell simulation of peaking switch for breakdown evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Umbarkar, Sachin B.; Bindu, S.; Mangalvedekar, H.A.

    2014-07-01

    Marx generator connected to peaking capacitor and peaking switch can generate Ultra-Wideband (UWB) radiation. A new peaking switch is designed for converting the existing nanosecond Marx generator to a UWB source. The paper explains the particle in cell (PIC) simulation for this peaking switch, using MAGIC 3D software. This peaking switch electrode is made up of copper tungsten material and is fixed inside the hermitically sealed derlin material. The switch can withstand a gas pressure up to 13.5 kg/cm{sup 2}. The lower electrode of the switch is connected to the last stage of the Marx generator. Initially Marx generator (withoutmore » peaking stage) in air; gives the output pulse with peak amplitude of 113.75 kV and pulse rise time of 25 ns. Thus, we design a new peaking switch to improve the rise time of output pulse and to pressurize this peaking switch separately (i.e. Marx and peaking switch is at different pressure). The PIC simulation gives the particle charge density, current density, E counter plot, emitted electron current, and particle energy along the axis of gap between electrodes. The charge injection and electric field dependence on ionic dissociation phenomenon are briefly analyzed using this simulation. The model is simulated with different gases (N{sub 2}, H{sub 2}, and Air) under different pressure (2 kg/cm{sup 2}, 5 kg/cm{sup 2}, 10 kg/cm{sup 2}). (author)« less

  19. The Peak Flow Working Group: test of portable peak flow meters by explosive decompression.

    PubMed

    Pedersen, O F; Miller, M R

    1997-02-01

    In 1991, 50 new Vitalograph peak flow meters and 27 previously used mini-Wright peak flow meters were tested at three peak flows by use of a calibrator applying explosive decompression. The mini-Wright peak flow meters were also compared with eight new meters. For both makes of meter there was an excellent within-meter and between-meter variation. The accuracy, however, was poor, with a maximal overestimation of true flows of 50 and 70 L.min-1 in the interval from 200 to 400 L.min-1 for the Vitalograph and mini-Wright meters, respectively. The deviation is explained by the physical characteristics of the variable orifice peak flow meters. They have been supplied with equidistant scales, which give non-linear readings.

  20. ZT Optimization: An Application Focus

    PubMed Central

    Tuley, Richard; Simpson, Kevin

    2017-01-01

    Significant research has been performed on the challenge of improving thermoelectric materials, with maximum peak figure of merit, ZT, the most common target. We use an approximate thermoelectric material model, matched to real materials, to demonstrate that when an application is known, average ZT is a significantly better optimization target. We quantify this difference with some examples, with one scenario showing that changing the doping to increase peak ZT by 19% can lead to a performance drop of 16%. The importance of average ZT means that the temperature at which the ZT peak occurs should be given similar weight to the value of the peak. An ideal material for an application operates across the maximum peak ZT, otherwise maximum performance occurs when the peak value is reduced in order to improve the peak position. PMID:28772668

  1. Effect of gear ratio on peak power and time to peak power in BMX cyclists.

    PubMed

    Rylands, Lee P; Roberts, Simon J; Hurst, Howard T

    2017-03-01

    The aim of this study was to ascertain if gear ratio selection would have an effect on peak power and time to peak power production in elite Bicycle Motocross (BMX) cyclists. Eight male elite BMX riders volunteered for the study. Each rider performed three, 10-s maximal sprints on an Olympic standard indoor BMX track. The riders' bicycles were fitted with a portable SRM power meter. Each rider performed the three sprints using gear ratios of 41/16, 43/16 and 45/16 tooth. The results from the 41/16 and 45/16 gear ratios were compared to the current standard 43/16 gear ratio. Statistically, significant differences were found between the gear ratios for peak power (F(2,14) = 6.448; p = .010) and peak torque (F(2,14) = 4.777; p = .026), but no significant difference was found for time to peak power (F(2,14) = 0.200; p = .821). When comparing gear ratios, the results showed a 45/16 gear ratio elicited the highest peak power,1658 ± 221 W, compared to 1436 ± 129 W and 1380 ± 56 W, for the 43/16 and 41/16 ratios, respectively. The time to peak power showed a 41/16 tooth gear ratio attained peak power in -0.01 s and a 45/16 in 0.22 s compared to the 43/16. The findings of this study suggest that gear ratio choice has a significant effect on peak power production, though time to peak power output is not significantly affected. Therefore, selecting a higher gear ratio results in riders attaining higher power outputs without reducing their start time.

  2. Changes in seasonality and timing of peak streamflow in snow and semi-arid climates of the north-central United States, 1910–2012

    USGS Publications Warehouse

    Ryberg, Karen R.; Akyüz, F. Adnan; Wiche, Gregg J.; Lin, Wei

    2015-01-01

    Changes in the seasonality and timing of annual peak streamflow in the north-central USA are likely because of changes in precipitation and temperature regimes. A source of long-term information about flood events across the study area is the U.S. Geological Survey peak streamflow database. However, one challenge of answering climate-related questions with this dataset is that even in snowmelt-dominated areas, it is a mixed population of snowmelt/spring rain generated peaks and summer/fall rain generated peaks. Therefore, a process was developed to divide the annual peaks into two populations, or seasons, snowmelt/spring, and summer/fall. The two series were then tested for the hypotheses that because of changes in precipitation regimes, the odds of summer/fall peaks have increased and, because of temperature changes, snowmelt/spring peaks happen earlier. Over climatologically and geographically similar regions in the north-central USA, logistic regression was used to model the odds of getting a summer/fall peak. When controlling for antecedent wet and dry conditions and geographical differences, the odds of summer/fall peaks occurring have increased across the study area. With respect to timing within the seasons, trend analysis showed that in northern portions of the study region, snowmelt/spring peaks are occurring earlier. The timing of snowmelt/spring peaks in three regions in the northern part of the study area is earlier by 8.7– 14.3 days. These changes have implications for water interests, such as potential changes in lead-time for flood forecasting or changes in the operation of flood-control dams.

  3. Metabolism of /sup 14/C-labeled doxylamine succinate (Bendectin) in the rhesus monkey (Macaca mulatta)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slikker, W. Jr.; Holder, C.L.; Lipe, G.W.

    The time-course of the metabolic fate of (/sup 14/C)doxylamine was determined after the p.o. administration of 13 mg/kg doxylamine succinate as Bendectin plus (/sup 14/C)doxylamine succinate to the rhesus monkey. Urine and plasma samples were analyzed by reversed-phase high performance liquid chromatography (HPLC), chemical derivatization, and mass spectrometry. The cumulative 48-hr urinary metabolic profile contained 81% of the administered radiolabeled dose and consisted of at least six radiolabeled peaks. They were peak 1: unknown polar metabolites (8% of dose); peak 2: 2-(1-phenyl-1-(2-pyridinyl)ethoxy) acetic acid, 1-(1-phenyl-1(2-pyridinyl)ethoxy) methanol, and another minor metabolite(s) (31%); peak 3: doxylamine-N-oxide (1%); peak 4a: N,N-didesmethyldoxylamine (17%); peakmore » 4b: doxylamine (4%); and peak 5: N-desmethyldoxylamine (20%). The plasma metabolic profile was the same as the urinary profile except for the absence of doxylamine-N-oxide. The maximum plasma concentrations and elapsed time to attain these concentrations were as follows. Peak 1: 540 ng/mL, 4 hr; peak 2: 1700 ng/mL, 1 hr; peak 4a: 430 ng/mL, 4 hr; peak 4b: 930 ng/mL, 2 hr; and peak 5: 790 ng/mL, 2 hr. These data suggest that in the monkey, doxylamine metabolism follows at least four pathways: a minor pathway to the N-oxide; a minor pathway to unknown polar metabolites; a major pathway to mono- and didesmethyldoxylamine via successive N-demethylation; and a major pathway to side-chain cleavage products (peak 2) via direct side-chain oxidation and/or deamination.« less

  4. Morphologic classes of impact basins on Venus

    NASA Technical Reports Server (NTRS)

    Wood, Charles A.; Tam, Wesley

    1993-01-01

    An independent survey of 60% of Venus has resulted in the detection of 35 impact basins and associated transitional rings. Contrary to previous studies central peak basins have been identified, as well as peak ring basins. But no unambiguous multi-ring basins have been detected. A new class of crateriform - expanded peak structure - has been noticed, which is transitional in diameter, but apparently not in structure, between central peak and peak ring basins.

  5. Loading of Hip Measured by Hip Contact Forces at Different Speeds of Walking and Running.

    PubMed

    Giarmatzis, Georgios; Jonkers, Ilse; Wesseling, Mariska; Van Rossom, Sam; Verschueren, Sabine

    2015-08-01

    Exercise plays a pivotal role in maximizing peak bone mass in adulthood and maintaining it through aging, by imposing mechanical loading on the bone that can trigger bone mineralization and growth. The optimal type and intensity of exercise that best enhances bone strength remains, however, poorly characterized, partly because the exact peak loading of the bone produced by the diverse types of exercises is not known. By means of integrated motion capture as an input to dynamic simulations, contact forces acting on the hip of 20 young healthy adults were calculated during walking and running at different speeds. During walking, hip contact forces (HCFs) have a two-peak profile whereby the first peak increases from 4.22 body weight (BW) to 5.41 BW and the second from 4.37 BW to 5.74 BW, by increasing speed from 3 to 6 km/h. During running, there is only one peak HCF that increases from 7.49 BW to 10.01 BW, by increasing speed from 6 to 12 km/h. Speed related profiles of peak HCFs and ground reaction forces (GRFs) reveal a different progression of the two peaks during walking. Speed has a stronger impact on peak HCFs rather than on peak GRFs during walking and running, suggesting an increasing influence of muscle activity on peak HCF with increased speed. Moreover, results show that the first peak of HCF during walking can be predicted best by hip adduction moment, and the second peak of HCF by hip extension moment. During running, peak HCF can be best predicted by hip adduction moment. The present study contributes hereby to a better understanding of musculoskeletal loading during walking and running in a wide range of speeds, offering valuable information to clinicians and scientists exploring bone loading as a possible nonpharmacological osteogenic stimulus. © 2015 American Society for Bone and Mineral Research. © 2015 American Society for Bone and Mineral Research.

  6. Estimating exercise capacity from walking tests in elderly individuals with stable coronary artery disease.

    PubMed

    Mandic, Sandra; Walker, Robert; Stevens, Emily; Nye, Edwin R; Body, Dianne; Barclay, Leanne; Williams, Michael J A

    2013-01-01

    Compared with symptom-limited cardiopulmonary exercise test (CPET), timed walking tests are cheaper, well-tolerated and simpler alternative for assessing exercise capacity in coronary artery disease (CAD) patients. We developed multivariate models for predicting peak oxygen consumption (VO2peak) from 6-minute walk test (6MWT) distance and peak shuttle walk speed for elderly stable CAD patients. Fifty-eight CAD patients (72 SD 6 years, 66% men) completed: (1) CPET with expired gas analysis on a cycle ergometer, (2) incremental 10-meter shuttle walk test, (3) two 6MWTs, (4) anthropometric assessment and (5) 30-second chair stands. Linear regression models were developed for estimating VO2peak from 6MWT distance and peak shuttle walk speed as well as demographic, anthropometric and functional variables. Measured VO2peak was significantly related to 6MWT distance (r = 0.719, p < 0.001) and peak shuttle walk speed (r = 0.717, p < 0.001). The addition of demographic (age, gender), anthropometric (height, weight, body mass index, body composition) and functional characteristics (30-second chair stands) increased the accuracy of predicting VO2peak from both 6MWT distance and peak shuttle walk speed (from 51% to 73% of VO2peak variance explained). Addition of demographic, anthropometric and functional characteristics improves the accuracy of VO2peak estimate based on walking tests in elderly individuals with stable CAD. Implications for Rehabilitation Timed walking tests are cheaper, well-tolerated and simpler alternative for assessing exercise capacity in cardiac patients. Walking tests could be used to assess individual's functional capacity and response to therapeutic interventions when symptom-limited cardiopulmonary exercise testing is not practical or not necessary for clinical reasons. Addition of demographic, anthropometric and functional characteristics improves the accuracy of peak oxygen consumption estimate based on 6-minute walk test distance and peak shuttle walk speed in elderly patients with coronary artery disease.

  7. A new algorithm for reliable and general NMR resonance assignment.

    PubMed

    Schmidt, Elena; Güntert, Peter

    2012-08-01

    The new FLYA automated resonance assignment algorithm determines NMR chemical shift assignments on the basis of peak lists from any combination of multidimensional through-bond or through-space NMR experiments for proteins. Backbone and side-chain assignments can be determined. All experimental data are used simultaneously, thereby exploiting optimally the redundancy present in the input peak lists and circumventing potential pitfalls of assignment strategies in which results obtained in a given step remain fixed input data for subsequent steps. Instead of prescribing a specific assignment strategy, the FLYA resonance assignment algorithm requires only experimental peak lists and the primary structure of the protein, from which the peaks expected in a given spectrum can be generated by applying a set of rules, defined in a straightforward way by specifying through-bond or through-space magnetization transfer pathways. The algorithm determines the resonance assignment by finding an optimal mapping between the set of expected peaks that are assigned by definition but have unknown positions and the set of measured peaks in the input peak lists that are initially unassigned but have a known position in the spectrum. Using peak lists obtained by purely automated peak picking from the experimental spectra of three proteins, FLYA assigned correctly 96-99% of the backbone and 90-91% of all resonances that could be assigned manually. Systematic studies quantified the impact of various factors on the assignment accuracy, namely the extent of missing real peaks and the amount of additional artifact peaks in the input peak lists, as well as the accuracy of the peak positions. Comparing the resonance assignments from FLYA with those obtained from two other existing algorithms showed that using identical experimental input data these other algorithms yielded significantly (40-142%) more erroneous assignments than FLYA. The FLYA resonance assignment algorithm thus has the reliability and flexibility to replace most manual and semi-automatic assignment procedures for NMR studies of proteins.

  8. Combining automated peak tracking in SAR by NMR with structure-based backbone assignment from 15N-NOESY

    PubMed Central

    2012-01-01

    Background Chemical shift mapping is an important technique in NMR-based drug screening for identifying the atoms of a target protein that potentially bind to a drug molecule upon the molecule's introduction in increasing concentrations. The goal is to obtain a mapping of peaks with known residue assignment from the reference spectrum of the unbound protein to peaks with unknown assignment in the target spectrum of the bound protein. Although a series of perturbed spectra help to trace a path from reference peaks to target peaks, a one-to-one mapping generally is not possible, especially for large proteins, due to errors, such as noise peaks, missing peaks, missing but then reappearing, overlapped, and new peaks not associated with any peaks in the reference. Due to these difficulties, the mapping is typically done manually or semi-automatically, which is not efficient for high-throughput drug screening. Results We present PeakWalker, a novel peak walking algorithm for fast-exchange systems that models the errors explicitly and performs many-to-one mapping. On the proteins: hBclXL, UbcH5B, and histone H1, it achieves an average accuracy of over 95% with less than 1.5 residues predicted per target peak. Given these mappings as input, we present PeakAssigner, a novel combined structure-based backbone resonance and NOE assignment algorithm that uses just 15N-NOESY, while avoiding TOCSY experiments and 13C-labeling, to resolve the ambiguities for a one-to-one mapping. On the three proteins, it achieves an average accuracy of 94% or better. Conclusions Our mathematical programming approach for modeling chemical shift mapping as a graph problem, while modeling the errors directly, is potentially a time- and cost-effective first step for high-throughput drug screening based on limited NMR data and homologous 3D structures. PMID:22536902

  9. Peak-flow frequency for tributaries of the Colorado River downstream of Austin, Texas

    USGS Publications Warehouse

    Asquith, William H.

    1998-01-01

    Peak-flow frequency for 38 stations with at least 8 years of data in natural (unregulated and nonurbanized) basins was estimated on the basis of annual peak-streamflow data through water year 1995. Peak-flow frequency represents the peak discharges for recurrence intervals of 2, 5, 10, 25, 50, 100, 250, and 500 years. The peak-flow frequency and drainage basin characteristics for the stations were used to develop two sets of regression equations to estimate peak-flow frequency for tributaries of the Colorado River in the study area. One set of equations was developed for contributing drainage areas less than 32 square miles, and another set was developed for contributing drainage areas greater than 32 square miles. A procedure is presented to estimate the peak discharge at sites where both sets of equations are considered applicable. Additionally, procedures are presented to compute the 50-, 67-, and 90-percent prediction interval for any estimation from the equations.

  10. Probabilistic peak detection for first-order chromatographic data.

    PubMed

    Lopatka, M; Vivó-Truyols, G; Sjerps, M J

    2014-03-19

    We present a novel algorithm for probabilistic peak detection in first-order chromatographic data. Unlike conventional methods that deliver a binary answer pertaining to the expected presence or absence of a chromatographic peak, our method calculates the probability of a point being affected by such a peak. The algorithm makes use of chromatographic information (i.e. the expected width of a single peak and the standard deviation of baseline noise). As prior information of the existence of a peak in a chromatographic run, we make use of the statistical overlap theory. We formulate an exhaustive set of mutually exclusive hypotheses concerning presence or absence of different peak configurations. These models are evaluated by fitting a segment of chromatographic data by least-squares. The evaluation of these competing hypotheses can be performed as a Bayesian inferential task. We outline the potential advantages of adopting this approach for peak detection and provide several examples of both improved performance and increased flexibility afforded by our approach. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. The spanwise spectra in wall-bounded turbulence

    NASA Astrophysics Data System (ADS)

    Wang, Hong-Ping; Wang, Shi-Zhao; He, Guo-Wei

    2017-12-01

    The pre-multiplied spanwise energy spectra of streamwise velocity fluctuations are investigated in this paper. Two distinct spectral peaks in the spanwise spectra are observed in low-Reynolds-number wall-bounded turbulence. The spectra are calculated from direct numerical simulation (DNS) of turbulent channel flows and zero-pressure-gradient boundary layer flows. These two peaks locate in the near-wall and outer regions and are referred to as the inner peak and the outer peak, respectively. This result implies that the streamwise velocity fluctuations can be separated into large and small scales in the spanwise direction even though the friction Reynolds number Re_τ can be as low as 1000. The properties of the inner and outer peaks in the spanwise spectra are analyzed. The locations of the inner peak are invariant over a range of Reynolds numbers. However, the locations of the outer peak are associated with the Reynolds number, which are much higher than those of the outer peak of the pre-multiplied streamwise energy spectra of the streamwise velocity.

  12. A general algorithm for peak-tracking in multi-dimensional NMR experiments.

    PubMed

    Ravel, P; Kister, G; Malliavin, T E; Delsuc, M A

    2007-04-01

    We present an algorithmic method allowing automatic tracking of NMR peaks in a series of spectra. It consists in a two phase analysis. The first phase is a local modeling of the peak displacement between two consecutive experiments using distance matrices. Then, from the coefficients of these matrices, a value graph containing the a priori set of possible paths used by these peaks is generated. On this set, the minimization under constraint of the target function by a heuristic approach provides a solution to the peak-tracking problem. This approach has been named GAPT, standing for General Algorithm for NMR Peak Tracking. It has been validated in numerous simulations resembling those encountered in NMR spectroscopy. We show the robustness and limits of the method for situations with many peak-picking errors, and presenting a high local density of peaks. It is then applied to the case of a temperature study of the NMR spectrum of the Lipid Transfer Protein (LTP).

  13. Simulation of double stage hall thruster with double-peaked magnetic field

    NASA Astrophysics Data System (ADS)

    Ding, Yongjie; Li, Peng; Sun, Hezhi; Wei, Liqiu; Xu, Yu; Peng, Wuji; Su, Hongbo; Li, Hong; Yu, Daren

    2017-07-01

    This study adopts double permanent magnetic rings and four permanent magnetic rings to form two symmetrical magnetic peaks and two asymmetrical magnetic peaks in the channel of a Hall thruster, and uses a 2D-3V PIC-MCC model to analyze the influence of magnetic strength on the discharge characteristic and performance of Hall thrusters with an intermediate electrode and double-peaked magnetic field. As opposed to the two symmetrical magnetic peaks formed by double permanent magnetic rings, increasing the magnetic peak value deep within the channel can cause propellant ionization to occur; with the increase in the magnetic peak deep in the channel, the propellant utilization, thrust, and anode efficiency of the thruster are significantly improved. Double-peaked magnetic field can realize separate control of ionization and acceleration in a Hall thruster, and provide technical means for further improving thruster performance. Contribution to the Topical Issue "Physics of Ion Beam Sources", edited by Holger Kersten and Horst Neumann.

  14. The spanwise spectra in wall-bounded turbulence

    NASA Astrophysics Data System (ADS)

    Wang, Hong-Ping; Wang, Shi-Zhao; He, Guo-Wei

    2018-06-01

    The pre-multiplied spanwise energy spectra of streamwise velocity fluctuations are investigated in this paper. Two distinct spectral peaks in the spanwise spectra are observed in low-Reynolds-number wall-bounded turbulence. The spectra are calculated from direct numerical simulation (DNS) of turbulent channel flows and zero-pressure-gradient boundary layer flows. These two peaks locate in the near-wall and outer regions and are referred to as the inner peak and the outer peak, respectively. This result implies that the streamwise velocity fluctuations can be separated into large and small scales in the spanwise direction even though the friction Reynolds number Re_τ can be as low as 1000. The properties of the inner and outer peaks in the spanwise spectra are analyzed. The locations of the inner peak are invariant over a range of Reynolds numbers. However, the locations of the outer peak are associated with the Reynolds number, which are much higher than those of the outer peak of the pre-multiplied streamwise energy spectra of the streamwise velocity.

  15. Anomalous Electron Spectrum and Its Relation to Peak Structure of Electron Scattering Rate in Cuprate Superconductors

    NASA Astrophysics Data System (ADS)

    Gao, Deheng; Mou, Yingping; Feng, Shiping

    2018-02-01

    The recent discovery of a direct link between the sharp peak in the electron quasiparticle scattering rate of cuprate superconductors and the well-known peak-dip-hump structure in the electron quasiparticle excitation spectrum is calling for an explanation. Within the framework of the kinetic-energy-driven superconducting mechanism, the complicated line-shape in the electron quasiparticle excitation spectrum of cuprate superconductors is investigated. It is shown that the interaction between electrons by the exchange of spin excitations generates a notable peak structure in the electron quasiparticle scattering rate around the antinodal and nodal regions. However, this peak structure disappears at the hot spots, which leads to that the striking peak-dip-hump structure is developed around the antinodal and nodal regions, and vanishes at the hot spots. The theory also confirms that the sharp peak observed in the electron quasiparticle scattering rate is directly responsible for the remarkable peak-dip-hump structure in the electron quasiparticle excitation spectrum of cuprate superconductors.

  16. Thermoluminescence solid-state nanodosimetry—the peak 5A/5 dosemeter

    PubMed Central

    Fuks, E.; Horowitz, Y. S.; Horowitz, A.; Oster, L.; Marino, S.; Rainer, M.; Rosenfeld, A.; Datz, H.

    2011-01-01

    The shape of composite peak 5 in the glow curve of LiF:Mg,Ti (TLD-100) following 90Sr/90Y beta irradiation, previously demonstrated to be dependent on the cooling rate used in the 400°C pre-irradiation anneal, is shown to be dependent on ionisation density in both naturally cooled and slow-cooled samples. Following heavy-charged particle high-ionisation density (HID) irradiation, the temperature of composite peak 5 decreases by ∼5°C and the peak becomes broader. This behaviour is attributed to an increase in the relative intensity of peak 5a (a low-temperature satellite of peak 5). The relative intensity of peak 5a is estimated using a computerised glow curve deconvolution code based on first-order kinetics. The analysis uses kinetic parameters for peaks 4 and 5 determined from ancillary measurements resulting in nearly ‘single-glow peak’ curves for both the peaks. In the slow-cooled samples, owing to the increased relative intensity of peak 5a compared with the naturally cooled samples, the precision of the measurement of the 5a/5 intensity ratio is found to be ∼15 % (1 SD) compared with ∼25 % for the naturally cooled samples. The ratio of peak 5a/5 in the slow-cooled samples is found to increase systematically and gradually through a variety of radiation fields from a minimum value of 0.13±0.02 for 90Sr/90Y low-ionisation density irradiations to a maximum value of ∼0.8 for 20 MeV Cu and I ion HID irradiations. Irradiation by low-energy electrons of energy 0.1–1.5 keV results in values between 1.27 and 0.95, respectively. The increasing values of the ratio of peak 5a/5 with increasing ionisation density demonstrate the viability of the concept of the peak 5a/5 nanodosemeter and its potential in the measurement of average ionisation density in a ‘nanoscopic’ mass containing the trapping centre/luminescent centre spatially correlated molecule giving rise to composite peak 5. PMID:21149323

  17. A modular computational framework for automated peak extraction from ion mobility spectra

    PubMed Central

    2014-01-01

    Background An ion mobility (IM) spectrometer coupled with a multi-capillary column (MCC) measures volatile organic compounds (VOCs) in the air or in exhaled breath. This technique is utilized in several biotechnological and medical applications. Each peak in an MCC/IM measurement represents a certain compound, which may be known or unknown. For clustering and classification of measurements, the raw data matrix must be reduced to a set of peaks. Each peak is described by its coordinates (retention time in the MCC and reduced inverse ion mobility) and shape (signal intensity, further shape parameters). This fundamental step is referred to as peak extraction. It is the basis for identifying discriminating peaks, and hence putative biomarkers, between two classes of measurements, such as a healthy control group and a group of patients with a confirmed disease. Current state-of-the-art peak extraction methods require human interaction, such as hand-picking approximate peak locations, assisted by a visualization of the data matrix. In a high-throughput context, however, it is preferable to have robust methods for fully automated peak extraction. Results We introduce PEAX, a modular framework for automated peak extraction. The framework consists of several steps in a pipeline architecture. Each step performs a specific sub-task and can be instantiated by different methods implemented as modules. We provide open-source software for the framework and several modules for each step. Additionally, an interface that allows easy extension by a new module is provided. Combining the modules in all reasonable ways leads to a large number of peak extraction methods. We evaluate all combinations using intrinsic error measures and by comparing the resulting peak sets with an expert-picked one. Conclusions Our software PEAX is able to automatically extract peaks from MCC/IM measurements within a few seconds. The automatically obtained results keep up with the results provided by current state-of-the-art peak extraction methods. This opens a high-throughput context for the MCC/IM application field. Our software is available at http://www.rahmannlab.de/research/ims. PMID:24450533

  18. A modular computational framework for automated peak extraction from ion mobility spectra.

    PubMed

    D'Addario, Marianna; Kopczynski, Dominik; Baumbach, Jörg Ingo; Rahmann, Sven

    2014-01-22

    An ion mobility (IM) spectrometer coupled with a multi-capillary column (MCC) measures volatile organic compounds (VOCs) in the air or in exhaled breath. This technique is utilized in several biotechnological and medical applications. Each peak in an MCC/IM measurement represents a certain compound, which may be known or unknown. For clustering and classification of measurements, the raw data matrix must be reduced to a set of peaks. Each peak is described by its coordinates (retention time in the MCC and reduced inverse ion mobility) and shape (signal intensity, further shape parameters). This fundamental step is referred to as peak extraction. It is the basis for identifying discriminating peaks, and hence putative biomarkers, between two classes of measurements, such as a healthy control group and a group of patients with a confirmed disease. Current state-of-the-art peak extraction methods require human interaction, such as hand-picking approximate peak locations, assisted by a visualization of the data matrix. In a high-throughput context, however, it is preferable to have robust methods for fully automated peak extraction. We introduce PEAX, a modular framework for automated peak extraction. The framework consists of several steps in a pipeline architecture. Each step performs a specific sub-task and can be instantiated by different methods implemented as modules. We provide open-source software for the framework and several modules for each step. Additionally, an interface that allows easy extension by a new module is provided. Combining the modules in all reasonable ways leads to a large number of peak extraction methods. We evaluate all combinations using intrinsic error measures and by comparing the resulting peak sets with an expert-picked one. Our software PEAX is able to automatically extract peaks from MCC/IM measurements within a few seconds. The automatically obtained results keep up with the results provided by current state-of-the-art peak extraction methods. This opens a high-throughput context for the MCC/IM application field. Our software is available at http://www.rahmannlab.de/research/ims.

  19. 3.0T 1H magnetic resonance spectroscopy for assessment of steatosis in patients with chronic hepatitis C

    PubMed Central

    Zhang, Qian; Zhang, Hui-Mao; Qi, Wen-Qian; Zhang, Yong-Gui; Zhao, Ping; Jiao, Jian; Wang, Jiang-Bin; Zhang, Chun-Yu

    2015-01-01

    AIM: To investigate the utility of 1H magnetic resonance spectroscopy (1H MRS) as a noninvasive test for steatosis in patients infected with hepatitis C virus. METHODS: Ninety patients with chronic hepatitis C and pathology data underwent 3.0T 1H MRS, and the results of MRS and pathological analysis were compared. RESULTS: This group of patients included 26 people with mild fatty liver (28.89%), 16 people with moderate fatty liver (17.78%), 18 people with severe fatty liver (20.0%), and 30 people without fatty liver (33.33%). The water peak was near 4.7 parts per million (ppm), and the lipid peak was near 1.3 ppm. Analysis of variance revealed that differences in the lipid peak, the area under the lipid peak, ratio of the lipid peak to the water peak, and ratio of the area under the lipid peak to the area under the water peak were statistically significant among the groups. Specifically, as the severity of fatty liver increased, the value of each index increased correspondingly. In the pairwise comparisons, the mean lipid peak, area under the lipid peak, ratio of the lipid peak to the water peak, and ratio of the area under the lipid peak to the area under the water peak were significantly different between the no fatty liver and moderate fatty liver groups, whereas no differences were noted between the severe fatty liver group and the mild or moderate fatty liver group. Area under the ROC curve (AUC) of area ratio in lipid and water and ratio in lipid and water in the no fatty liver group to mild fatty liver group, mild fatty liver group to moderate fatty liver group, and moderate fatty liver disease group to severe fatty liver group, were 0.705, 0.900, and 0.975, respectively. CONCLUSION: 1H MRS is a noninvasive technique that can be used to provide information on the effect of liver steatosis on hepatic metabolic processes. This study indicates that the 1H MRS can be used as an indicator of steatosis in patients with chronic hepatitis C. PMID:26074712

  20. The unique contribution of manual chest compression-vibrations to airflow during physiotherapy in sedated, fully ventilated children.

    PubMed

    Gregson, Rachael K; Shannon, Harriet; Stocks, Janet; Cole, Tim J; Peters, Mark J; Main, Eleanor

    2012-03-01

    This study aimed to quantify the specific effects of manual lung inflations with chest compression-vibrations, commonly used to assist airway clearance in ventilated patients. The hypothesis was that force applied during the compressions made a significant additional contribution to increases in peak expiratory flow and expiratory to inspiratory flow ratio over and above that resulting from accompanying increases in inflation volume. Prospective observational study. Cardiac and general pediatric intensive care. Sedated, fully ventilated children. Customized force-sensing mats and a commercial respiratory monitor recorded force and respiration during physiotherapy. Percentage changes in peak expiratory flow, peak expiratory to inspiratory flow ratios, inflation volume, and peak inflation pressure between baseline and manual inflations with and without compression-vibrations were calculated. Analysis of covariance determined the relative contribution of changes in pressure, volume, and force to influence changes in peak expiratory flow and peak expiratory to inspiratory flow ratio. Data from 105 children were analyzed (median age, 1.3 yrs; range, 1 wk to 15.9 yrs). Force during compressions ranged from 15 to 179 N (median, 46 N). Peak expiratory flow increased on average by 76% during compressions compared with baseline ventilation. Increases in peak expiratory flow were significantly related to increases in inflation volume, peak inflation pressure, and force with peak expiratory flow increasing by, on average, 4% for every 10% increase in inflation volume (p < .001), 5% for every 10% increase in peak inflation pressure (p = .005), and 3% for each 10 N of applied force (p < .001). By contrast, increase in peak expiratory to inspiratory flow ratio was only related to applied force with a 4% increase for each 10 N of force (p < .001). These results provide evidence of the unique contribution of compression forces in increasing peak expiratory flow and peak expiratory to inspiratory flow ratio bias over and above that related to accompanying changes from manual hyperinflations. Force generated during compression-vibrations was the single significant factor in multivariable analysis to explain the increases in expiratory flow bias. Such increases in the expiratory bias provide theoretically optimal physiological conditions for cephalad mucus movement in fully ventilated children.

  1. Evaluation of the shape of the specular peak for high glossy surfaces

    NASA Astrophysics Data System (ADS)

    Obein, Gaël.; Ouarets, Shiraz; Ged, Guillaume

    2014-02-01

    Gloss is the second most relevant visual attribute of a surface beside its colour. While the colour originates from the wavelength repartition of the reflected light, gloss originates from its angular distribution. When an observer is asked to evaluate the gloss of a surface, he always first orientate his eyes along the specular direction before lightly tilting the examined sample. This means that gloss is located in and around the specular direction, in a peak that is called the specular peak. On the one hand, this peak is flat and broad on matte surfaces on the other hand, it is narrow and sharp on high gloss surfaces. For the late ones, the FWHM of the specular peak is less than 2° which can be quite difficult to measure. We developed a dedicated facility capable of measuring specular peak with a FWHM up to 0,1 °. We measured the evolution of the peak according to the angle of illumination and the specular gloss of the sample in the restricted field of very glossy surface. The facility and peaks measured are presented in the paper. The next step will be to identify the correlations between the peak and the roughness of the sample.

  2. Comparative analysis of peak-detection techniques for comprehensive two-dimensional chromatography.

    PubMed

    Latha, Indu; Reichenbach, Stephen E; Tao, Qingping

    2011-09-23

    Comprehensive two-dimensional gas chromatography (GC×GC) is a powerful technology for separating complex samples. The typical goal of GC×GC peak detection is to aggregate data points of analyte peaks based on their retention times and intensities. Two techniques commonly used for two-dimensional peak detection are the two-step algorithm and the watershed algorithm. A recent study [4] compared the performance of the two-step and watershed algorithms for GC×GC data with retention-time shifts in the second-column separations. In that analysis, the peak retention-time shifts were corrected while applying the two-step algorithm but the watershed algorithm was applied without shift correction. The results indicated that the watershed algorithm has a higher probability of erroneously splitting a single two-dimensional peak than the two-step approach. This paper reconsiders the analysis by comparing peak-detection performance for resolved peaks after correcting retention-time shifts for both the two-step and watershed algorithms. Simulations with wide-ranging conditions indicate that when shift correction is employed with both algorithms, the watershed algorithm detects resolved peaks with greater accuracy than the two-step method. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. PolyaPeak: Detecting Transcription Factor Binding Sites from ChIP-seq Using Peak Shape Information

    PubMed Central

    Wu, Hao; Ji, Hongkai

    2014-01-01

    ChIP-seq is a powerful technology for detecting genomic regions where a protein of interest interacts with DNA. ChIP-seq data for mapping transcription factor binding sites (TFBSs) have a characteristic pattern: around each binding site, sequence reads aligned to the forward and reverse strands of the reference genome form two separate peaks shifted away from each other, and the true binding site is located in between these two peaks. While it has been shown previously that the accuracy and resolution of binding site detection can be improved by modeling the pattern, efficient methods are unavailable to fully utilize that information in TFBS detection procedure. We present PolyaPeak, a new method to improve TFBS detection by incorporating the peak shape information. PolyaPeak describes peak shapes using a flexible Pólya model. The shapes are automatically learnt from the data using Minorization-Maximization (MM) algorithm, then integrated with the read count information via a hierarchical model to distinguish true binding sites from background noises. Extensive real data analyses show that PolyaPeak is capable of robustly improving TFBS detection compared with existing methods. An R package is freely available. PMID:24608116

  4. Quantitative Metabolome Analysis Based on Chromatographic Peak Reconstruction in Chemical Isotope Labeling Liquid Chromatography Mass Spectrometry.

    PubMed

    Huan, Tao; Li, Liang

    2015-07-21

    Generating precise and accurate quantitative information on metabolomic changes in comparative samples is important for metabolomics research where technical variations in the metabolomic data should be minimized in order to reveal biological changes. We report a method and software program, IsoMS-Quant, for extracting quantitative information from a metabolomic data set generated by chemical isotope labeling (CIL) liquid chromatography mass spectrometry (LC-MS). Unlike previous work of relying on mass spectral peak ratio of the highest intensity peak pair to measure relative quantity difference of a differentially labeled metabolite, this new program reconstructs the chromatographic peaks of the light- and heavy-labeled metabolite pair and then calculates the ratio of their peak areas to represent the relative concentration difference in two comparative samples. Using chromatographic peaks to perform relative quantification is shown to be more precise and accurate. IsoMS-Quant is integrated with IsoMS for picking peak pairs and Zero-fill for retrieving missing peak pairs in the initial peak pairs table generated by IsoMS to form a complete tool for processing CIL LC-MS data. This program can be freely downloaded from the www.MyCompoundID.org web site for noncommercial use.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garimella, Sandilya V. B.; Ibrahim, Yehia M.; Tang, Keqi

    A novel concept for ion spatial peak compression is described, and discussed primarily in the context of ion mobility spectrometry (IMS). Using theoretical and numerical methods, the effects of using non-constant (e.g., linearly varying) electric fields on ion distributions (e.g., an ion mobility peak) is evaluated both in the physical and temporal domains. The application of linearly decreasing electric field in conjunction with conventional drift field arrangements is shown to lead to a reduction in IMS physical peak width. When multiple ion packets in a selected mobility window are simultaneously subjected to such fields, there is ion packet compression, i.e.,more » a reduction in peak widths of all species. This peak compression occurs with a modest reduction of resolution, but which can be quickly recovered as ions drift in a constant field after the compression event. Compression also yields a significant increase in peak intensities. In addition, approaches for peak compression in traveling wave IMS are also discussed. Ion mobility peak compression can be particularly useful for mitigating diffusion driven peak spreading over very long path length separations (e.g., in cyclic multi-pass arrangements), and for achieving higher S/N and IMS resolution over a selected mobility range.« less

  6. Comparison of Peak-Flow Estimation Methods for Small Drainage Basins in Maine

    USGS Publications Warehouse

    Hodgkins, Glenn A.; Hebson, Charles; Lombard, Pamela J.; Mann, Alexander

    2007-01-01

    Understanding the accuracy of commonly used methods for estimating peak streamflows is important because the designs of bridges, culverts, and other river structures are based on these flows. Different methods for estimating peak streamflows were analyzed for small drainage basins in Maine. For the smallest basins, with drainage areas of 0.2 to 1.0 square mile, nine peak streamflows from actual rainfall events at four crest-stage gaging stations were modeled by the Rational Method and the Natural Resource Conservation Service TR-20 method and compared to observed peak flows. The Rational Method had a root mean square error (RMSE) of -69.7 to 230 percent (which means that approximately two thirds of the modeled flows were within -69.7 to 230 percent of the observed flows). The TR-20 method had an RMSE of -98.0 to 5,010 percent. Both the Rational Method and TR-20 underestimated the observed flows in most cases. For small basins, with drainage areas of 1.0 to 10 square miles, modeled peak flows were compared to observed statistical peak flows with return periods of 2, 50, and 100 years for 17 streams in Maine and adjoining parts of New Hampshire. Peak flows were modeled by the Rational Method, the Natural Resources Conservation Service TR-20 method, U.S. Geological Survey regression equations, and the Probabilistic Rational Method. The regression equations were the most accurate method of computing peak flows in Maine for streams with drainage areas of 1.0 to 10 square miles with an RMSE of -34.3 to 52.2 percent for 50-year peak flows. The Probabilistic Rational Method was the next most accurate method (-38.5 to 62.6 percent). The Rational Method (-56.1 to 128 percent) and particularly the TR-20 method (-76.4 to 323 percent) had much larger errors. Both the TR-20 and regression methods had similar numbers of underpredictions and overpredictions. The Rational Method overpredicted most peak flows and the Probabilistic Rational Method tended to overpredict peak flows from the smaller (less than 5 square miles) drainage basins and underpredict peak flows from larger drainage basins. The results of this study are consistent with the most comprehensive analysis of observed and modeled peak streamflows in the United States, which analyzed statistical peak flows from 70 drainage basins in the Midwest and the Northwest.

  7. Usefulness of anaerobic threshold to peak oxygen uptake ratio to determine the severity and pathophysiological condition of chronic heart failure.

    PubMed

    Tomono, Junichi; Adachi, Hitoshi; Oshima, Shigeru; Kurabayashi, Masahiko

    2016-11-01

    Anaerobic threshold (AT) and peak oxygen uptake (V˙O 2 ) are well known as indicators of severity and prognosis of heart failure. Since these parameters are regulated by many factors, multiple organ dysfunction may occur in chronic heart failure, and these two parameters would vary among patients. However, it is not clear whether AT and peak V˙O 2 deteriorate similarly. Therefore, we planned to compare the degree of deterioration of these two parameters using a ratio of AT and peak V˙O 2 (%AT/peak), and evaluated its significance in heart failure subjects. One hundred ninety-four stable heart failure patients who had optimal medical treatment for at least 3 months were enrolled. Cardiopulmonary exercise testing, echocardiography, and blood sampling were examined within one week. Since %AT/peak varied from 50.3% to 108.5%, we divided patients into tertiles of %AT/peak [Group A, 50.1-70.0 (n=112), Group B, 70.1-90.0 (n=64), Group C, 90.1-110.0 (n=18)], and compared factors relating with skeletal muscle and heart failure among these 3 groups. In Group A, ratio of measured AT against predicted value (%AT) and measured peak V˙O 2 against predicted value (%peak V˙O 2 ) were similar (80.3±19.0% and 80.4±17.1%, respectively). Peak V˙O 2 became lower as %AT/peak increased (Group B; 65.6±14.8%, p<0.01 vs. Group A, Group C; 38.3±9.7%, p<0.01 vs. Group B). On the other hand, %AT in Group B (77.1±18.5%) was similar to Group A, and diminished in Group C (58.0±8.2%, p<0.05 vs. Group B). Peak work rate and lean body mass were smaller in Group B than those in Group A. Although, left ventricular ejection fraction and E/E' deteriorated in Group B compared with Group A, plasma B-type natriuretic peptide and estimated glomerular filtration rate stayed constant in Group B and deteriorated in Group C. %AT/peak showed negative correlation with peak V˙O 2 . In chronic heart failure, muscle weakness occurs at an early stage, and this can be evaluated using %AT/peak. Copyright © 2016 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  8. 7 CFR 457.163 - Nursery peak inventory endorsement.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Nursery peak inventory endorsement. 457.163 Section... CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.163 Nursery peak inventory endorsement. Nursery Crop Insurance Peak Inventory Endorsement This endorsement is not continuous and must be...

  9. Peak broadening and peak shift pole figures investigations by STRESS-SPEC diffractometer at FRM II

    NASA Astrophysics Data System (ADS)

    Gan, W. M.; Randau, C.; Hofmann, M.; Brokmeier, H. G.; Mueller, M.; Schreyer, A.

    2012-02-01

    This paper studied for the first time peak intensity, peak position and FHWM pole figures with one time measurement at the neutron diffractometer STRESS-SPEC via in-situ tensile deformation on austenitic steel. Fibre distribution with its evolution from central tensile direction to normal direction of these three kinds of pole figures was obtained. Variation of peak position and FWHM can be correlated to the reorientation of the texture component.

  10. Internal combustion engine cylinder-to-cylinder balancing with balanced air-fuel ratios

    DOEpatents

    Harris, Ralph E.; Bourn, Gary D.; Smalley, Anthony J.

    2006-01-03

    A method of balancing combustion among cylinders of an internal combustion engine. For each cylinder, a normalized peak firing pressure is calculated as the ratio of its peak firing pressure to its combustion pressure. Each cylinder's normalized peak firing pressure is compared to a target value for normalized peak firing pressure. The fuel flow is adjusted to any cylinder whose normalized peak firing pressure is not substantially equal to the target value.

  11. Angiogenesis and Invasiveness in Prostate Cancer Detected with High Spectral and Spatial Resolution MRi

    DTIC Science & Technology

    2006-07-01

    peaks located half of the spectral bandwidth away from the fat peak and the water peak , respectively. We picked the peak with the largest magnitude...cancer. This was described in a published paper (Fan et al, MRM , 2001). SOW4. We demonstrated quantitatively that HiSS provides improved fat...contrast agent. Images of water signal peak height in non-metastatic tumors were smoother in the tumor interior than images of metastatic tumors (p

  12. Lung function parameters improve prediction of VO2peak in an elderly population: The Generation 100 study.

    PubMed

    Hassel, Erlend; Stensvold, Dorthe; Halvorsen, Thomas; Wisløff, Ulrik; Langhammer, Arnulf; Steinshamn, Sigurd

    2017-01-01

    Peak oxygen uptake (VO2peak) is an indicator of cardiovascular health and a useful tool for risk stratification. Direct measurement of VO2peak is resource-demanding and may be contraindicated. There exist several non-exercise models to estimate VO2peak that utilize easily obtainable health parameters, but none of them includes lung function measures or hemoglobin concentrations. We aimed to test whether addition of these parameters could improve prediction of VO2peak compared to an established model that includes age, waist circumference, self-reported physical activity and resting heart rate. We included 1431 subjects aged 69-77 years that completed a laboratory test of VO2peak, spirometry, and a gas diffusion test. Prediction models for VO2peak were developed with multiple linear regression, and goodness of fit was evaluated. Forced expiratory volume in one second (FEV1), diffusing capacity of the lung for carbon monoxide and blood hemoglobin concentration significantly improved the ability of the established model to predict VO2peak. The explained variance of the model increased from 31% to 48% for men and from 32% to 38% for women (p<0.001). FEV1, diffusing capacity of the lungs for carbon monoxide and hemoglobin concentration substantially improved the accuracy of VO2peak prediction when added to an established model in an elderly population.

  13. PICKY: a novel SVD-based NMR spectra peak picking method.

    PubMed

    Alipanahi, Babak; Gao, Xin; Karakoc, Emre; Donaldson, Logan; Li, Ming

    2009-06-15

    Picking peaks from experimental NMR spectra is a key unsolved problem for automated NMR protein structure determination. Such a process is a prerequisite for resonance assignment, nuclear overhauser enhancement (NOE) distance restraint assignment, and structure calculation tasks. Manual or semi-automatic peak picking, which is currently the prominent way used in NMR labs, is tedious, time consuming and costly. We introduce new ideas, including noise-level estimation, component forming and sub-division, singular value decomposition (SVD)-based peak picking and peak pruning and refinement. PICKY is developed as an automated peak picking method. Different from the previous research on peak picking, we provide a systematic study of the proposed method. PICKY is tested on 32 real 2D and 3D spectra of eight target proteins, and achieves an average of 88% recall and 74% precision. PICKY is efficient. It takes PICKY on average 15.7 s to process an NMR spectrum. More important than these numbers, PICKY actually works in practice. We feed peak lists generated by PICKY to IPASS for resonance assignment, feed IPASS assignment to SPARTA for fragments generation, and feed SPARTA fragments to FALCON for structure calculation. This results in high-resolution structures of several proteins, for example, TM1112, at 1.25 A. PICKY is available upon request. The peak lists of PICKY can be easily loaded by SPARKY to enable a better interactive strategy for rapid peak picking.

  14. Origin of weak lensing convergence peaks

    NASA Astrophysics Data System (ADS)

    Liu, Jia; Haiman, Zoltán

    2016-08-01

    Weak lensing convergence peaks are a promising tool to probe nonlinear structure evolution at late times, providing additional cosmological information beyond second-order statistics. Previous theoretical and observational studies have shown that the cosmological constraints on Ωm and σ8 are improved by a factor of up to ≈2 when peak counts and second-order statistics are combined, compared to using the latter alone. We study the origin of lensing peaks using observational data from the 154 deg2 Canada-France-Hawaii Telescope Lensing Survey. We found that while high peaks (with height κ >3.5 σκ , where σκ is the rms of the convergence κ ) are typically due to one single massive halo of ≈1 015M⊙ , low peaks (κ ≲σκ ) are associated with constellations of 2-8 smaller halos (≲1 013M⊙ ). In addition, halos responsible for forming low peaks are found to be significantly offset from the line of sight towards the peak center (impact parameter ≳ their virial radii), compared with ≈0.25 virial radii for halos linked with high peaks, hinting that low peaks are more immune to baryonic processes whose impact is confined to the inner regions of the dark matter halos. Our findings are in good agreement with results from the simulation work by Yang et al. [Phys. Rev. D 84, 043529 (2011)].

  15. Revisiting the accuracy of peak flow meters: a double-blind study using formal methods of agreement.

    PubMed

    Nazir, Z; Razaq, S; Mir, S; Anwar, M; Al Mawlawi, G; Sajad, M; Shehab, A; Taylor, R S

    2005-05-01

    There is widespread use of peak flow meters in both hospitals and general practice. Previous studies to assess peak flow meter accuracy have shown significant differences in the values obtained from different meters. However, many of these studies did not use human subjects for peak flow measurements and did not compare meters of varying usage. In this study human subjects have been used with meters of varying usage. Participants were tested using two new (meters A and C) and one old peak flow meter (meter B) in random order. The study was double-blinded. Participants were recruited from the university campus. Four hundred and nine individuals participated. The difference between peak flow means of A and B was -9.93 l/min (95% CI: -12.37 to -7.48, P<0.0001). The difference between peak flow means of B and C was 20.08 l/min (95% CI: 17.85-22.29, P<0.0001). The difference between peak flow means of A and C was 10.15 l/min (95% CI: 7.68-12.61, P<0.0001). There was a significant difference between the values obtained from the new and old peak flow meters and also between the two new peak flow meters. We conclude that there is need for caution in interchangeably using flow meters in clinical practice.

  16. Verification of 1921 peak discharge at Skagit River near Concrete, Washington, using 2003 peak-discharge data

    USGS Publications Warehouse

    Mastin, M.C.; Kresch, D.L.

    2005-01-01

    The 1921 peak discharge at Skagit River near Concrete, Washington (U.S. Geological Survey streamflow-gaging station 12194000), was verified using peak-discharge data from the flood of October 21, 2003, the largest flood since 1921. This peak discharge is critical to determining other high discharges at the gaging station and to reliably estimating the 100-year flood, the primary design flood being used in a current flood study of the Skagit River basin. The four largest annual peak discharges of record (1897, 1909, 1917, and 1921) were used to determine the 100-year flood discharge at Skagit River near Concrete. The peak discharge on December 13, 1921, was determined by James E. Stewart of the U.S. Geological Survey using a slope-area measurement and a contracted-opening measurement. An extended stage-discharge rating curve based on the 1921 peak discharge was used to determine the peak discharges of the three other large floods. Any inaccuracy in the 1921 peak discharge also would affect the accuracies of the three other largest peak discharges. The peak discharge of the 1921 flood was recalculated using the cross sections and high-water marks surveyed after the 1921 flood in conjunction with a new estimate of the channel roughness coefficient (n value) based on an n-verification analysis of the peak discharge of the October 21, 2003, flood. The n value used by Stewart for his slope-area measurement of the 1921 flood was 0.033, and the corresponding calculated peak discharge was 240,000 cubic feet per second (ft3/s). Determination of a single definitive water-surface profile for use in the n-verification analysis was precluded because of considerable variation in elevations of surveyed high-water marks from the flood on October 21, 2003. Therefore, n values were determined for two separate water-surface profiles thought to bracket a plausible range of water-surface slopes defined by high-water marks. The n value determined using the flattest plausible slope was 0.024 and the corresponding recalculated discharge of the 1921 slope-area measurement was 266,000 ft3/s. The n value determined using the steepest plausible slope was 0.032 and the corresponding recalculated discharge of the 1921 slope-area measurement was 215,000 ft3/s. The two recalculated discharges were 10.8 percent greater than (flattest slope) and 10.4 percent less than (steepest slope) the 1921 peak discharge of 240,000 ft3/s. The 1921 peak discharge was not revised because the average of the two recalculated discharges (240,500 ft3/s) is only 0.2 percent greater than the 1921 peak discharge.

  17. Soft X-Ray Absorption Spectroscopy of High-Abrasion-Furnace Carbon Black

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muramatsu, Yasuji; Harada, Ryusuke; Gullikson, Eric M.

    2007-02-02

    The soft x-ray absorption spectra of high-abrasion-furnace carbon black were measured to obtain local-structure/chemical-states information of the primary particles and/or crystallites. The soft x-ray absorption spectral features of carbon black represent broader {pi}* and {sigma}* peak structures compared to highly oriented pyrolytic graphite (HOPG). The subtracted spectra between the carbon black and HOPG, (carbon black) - (HOPG), show double-peak structures on both sides of the {pi}* peak. The lower-energy peak, denoted as the 'pre-peak', in the subtracted spectra and the {pi}*/{sigma}* peak intensity ratio in the absorption spectra clearly depend on the specific surface area by nitrogen adsorption (NSA). Therefore,more » it is concluded that the pre-peak intensity and the {pi}*/{sigma}* ratio reflect the local graphitic structure of carbon black.« less

  18. Peak data for U.S. Geological Survey gaging stations, Texas network and computer program to estimate peak-streamflow frequency

    USGS Publications Warehouse

    Slade, R.M.; Asquith, W.H.

    1996-01-01

    About 23,000 annual peak streamflows and about 400 historical peak streamflows exist for about 950 stations in the surface-water data-collection network of Texas. These data are presented on a computer diskette along with the corresponding dates, gage heights, and information concerning the basin, and nature or cause for the flood. Also on the computer diskette is a U.S. Geological Survey computer program that estimates peak-streamflow frequency based on annual and historical peak streamflow. The program estimates peak streamflow for 2-, 5-, 10-, 25-, 50-, and 100-year recurrence intervals and is based on guidelines established by the Interagency Advisory Committee on Water Data. Explanations are presented for installing the program, and an example is presented with discussion of its options.

  19. Peak distortion effects in analytical ion chromatography.

    PubMed

    Wahab, M Farooq; Anderson, Jordan K; Abdelrady, Mohamed; Lucy, Charles A

    2014-01-07

    The elution profile of chromatographic peaks provides fundamental understanding of the processes that occur in the mobile phase and the stationary phase. Major advances have been made in the column chemistry and suppressor technology in ion chromatography (IC) to handle a variety of sample matrices and ions. However, if the samples contain high concentrations of matrix ions, the overloaded peak elution profile is distorted. Consequently, the trace peaks shift their positions in the chromatogram in a manner that depends on the peak shape of the overloading analyte. In this work, the peak shapes in IC are examined from a fundamental perspective. Three commercial IC columns AS16, AS18, and AS23 were studied with borate, hydroxide and carbonate as suppressible eluents. Monovalent ions (chloride, bromide, and nitrate) are used as model analytes under analytical (0.1 mM) to overload conditions (10-500 mM). Both peak fronting and tailing are observed. On the basis of competitive Langmuir isotherms, if the eluent anion is more strongly retained than the analyte ion on an ion exchanger, the analyte peak is fronting. If the eluent is more weakly retained on the stationary phase, the analyte peak always tails under overload conditions regardless of the stationary phase capacity. If the charge of the analyte and eluent anions are different (e.g., Br(-) vs CO3(2-)), the analyte peak shapes depend on the eluent concentration in a more complex pattern. It was shown that there are interesting similarities with peak distortions due to strongly retained mobile phase components in other modes of liquid chromatography.

  20. A Massive Central Peak and a Low Peak Ring in Gale Crater - Important Influences on the Formation of Mt. Sharp

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.

    2015-01-01

    The Curiosity rover is exploring 155 km diameter Gale crater and Mt. Sharp, Gale's high central mound. This study addresses the central peak and proposed peak ring, and their influence on the overall morphology of the mountain.

  1. Towards peak pricing in metropolitan areas : modeling network and activity impacts.

    DOT National Transportation Integrated Search

    2011-06-01

    Peak-load pricing has long been seen as a way to internalize externalities and, at the same time, as a set of incentives to shift some peak-hour trips to off-peak periods. The policy has also been viewed as a mechanism to generate revenues. But it is...

  2. Peak groundwater depletion in the High Plains Aquifer, projections from 1930 to 2110

    USDA-ARS?s Scientific Manuscript database

    Peak groundwater depletion from overtapping aquifers beyond recharge rates occurs as the depletion rate increases until a peak occurs followed by a decreasing trend as pumping equilibrates towards available recharge. The logistic equation of Hubbert’s study of peak oil is used to project measurement...

  3. 27 CFR 9.140 - Atlas Peak.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Atlas Peak. 9.140 Section... THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.140 Atlas Peak. (a) Name. The name of the viticultural area described in this section is “Atlas Peak.” (b...

  4. Webinar August 11: Analysis Using Fuel Cell MHE for Shaving Peak Building

    Science.gov Websites

    ;Analysis Using Fuel Cell Material Handling Equipment (MHE) for Shaving Peak Building Energy" on offset grid charges associated with peak facility demands. The analyzed scenarios will focus on how the alternative peak-shaving apparatus. View the past webinar. -Sara Havig

  5. Potential for deep basin-centered gas accumulation in Travis Peak (Hosston) Formation, Gulf Coastal Basin

    USGS Publications Warehouse

    Bartberger, Charles E.; Dyman, Thaddeus S.; Condon, Steven M.

    2003-01-01

    The potential of Lower Cretaceous sandstones of the Travis Peak Formation in the northern Gulf Coast Basin to harbor a basin-centered gas accumulation was evaluated by examining (1) the depositional and diagenetic history and reservoir properties of Travis Peak sandstones, (2) the presence and quality of source rocks for generating gas, (3) the burial and thermal history of source rocks and time of gas generation and migration relative to tectonic development of Travis Peak traps, (4) gas and water recoveries from drill-stem and formation tests, (5) the distribution of abnormal pressures based on shut-in-pressure data, and (6) the presence or absence of gas-water contacts associated with gas accumulations in Travis Peak sandstones. The Travis Peak Formation (and correlative Hosston Formation) is a basinward-thickening wedge of terrigenous clastic sedimentary rocks that underlies the northern Gulf Coast Basin from eastern Texas across northern Louisiana to southern Mississippi. Clastic infl ux was focused in two main fl uvial-deltaic depocenters?one located in northeastern Texas and the other in southeastern Mississippi and northeastern Louisiana. Across the main hydrocarbon-productive trend in eastern Texas and northern Louisiana, the Travis Peak Formation is about 2,000 ft thick. Most Travis Peak hydrocarbon production in eastern Texas comes from drilling depths between 6,000 and 10,000 ft. Signifi cant decrease in porosity and permeability occurs through that depth interval. Above 8,000-ft drilling depth in eastern Texas, Travis Peak sandstone matrix permeabilities often are signifi cantly higher than the 0.1-millidarcy (mD) cutoff that characterizes tight-gas reservoirs. Below 8,000 ft, matrix permeability of Travis Peak sandstones is low because of pervasive quartz cementation, but abundant natural fractures impart signifi cant fracture permeability. Although pressure data within the middle and lower Travis Peak Formation are limited in eastern Texas, overpressured reservoirs caused by thermal generation of gas, typical of basin-centered gas accumulations, are not common in the Travis Peak Formation. Signifi cant overpressure was found in only one Travis Peak sandstone reservoir in 1 of 24 oil and gas fi elds examined across eastern Texas and northern Louisiana. The presence of gas-water contacts is perhaps the most defi nitive criterion indicating that a gas accumulation is conventional rather than a ?sweet spot? within a basin-centered gas accumulation. Hydrocarbon-water contacts within Travis Peak sandstone reservoirs were documented in 17 fi elds and probably occur in considerably more fi elds across the productive Travis Peak trend in eastern Texas and northern Louisiana. All known hydrocarbon-water contacts in Travis Peak reservoirs in eastern Texas, however, occur within sandstones in the upper 500 ft of the formation. Although no gas-water contacts have been reported within the lower three-fourths of the Travis Peak Formation in northeastern Texas, gas production from that interval is limited. The best available data suggest that most middle and lower Travis Peak sandstones are water bearing in northeastern Texas. Insuffi cient hydrocarbon charge relative to permeability of Travis Peak reservoirs might be responsible for lack of overpressure and basin-centered gas within the Travis Peak Formation. Shales interbedded with Travis Peak sandstones in eastern Texas are primarily oxidized fl ood-plain deposits with insuffi cient organic-carbon content to be signifi cant sources of oil and gas. The most likely source rocks for hydrocarbons in Travis Peak reservoirs are two stratigraphically lower units, the Jurassic-age Bossier Shale of the Cotton Valley Group, and laminated, lime mudstones of the Jurassic Smackover Formation. Hydrocarbon charge, therefore, might be suffi cient for development of conventional gas accumulations, but it is insuffi cient for

  6. Origins of DNA Replication and Amplification in the Breast Cancer Genome

    DTIC Science & Technology

    2013-09-01

    three peaks from the uncorrected data set remain in the corrected set. As shown in Figure 6, the peak on the left disappears as it was caused by Lexo...distribution (p. 14) Shuffled Inter‐peak distance distribution (p. 15) Peak length distribution (p. 16) Number of features per chromosome (p. 17) Correlation...with G4 ( Chromosomes 1, 3, 6, 7, 11, 19 and genome‐wide)(pp. 18-24 Proximity distribution of peaks near Delino ORC sites (p. 25) GC content of

  7. DETECTORS AND EXPERIMENTAL METHODS: Heuristic approach for peak regions estimation in gamma-ray spectra measured by a NaI detector

    NASA Astrophysics Data System (ADS)

    Zhu, Meng-Hua; Liu, Liang-Gang; You, Zhong; Xu, Ao-Ao

    2009-03-01

    In this paper, a heuristic approach based on Slavic's peak searching method has been employed to estimate the width of peak regions for background removing. Synthetic and experimental data are used to test this method. With the estimated peak regions using the proposed method in the whole spectrum, we find it is simple and effective enough to be used together with the Statistics-sensitive Nonlinear Iterative Peak-Clipping method.

  8. SEISMICITY OF THE LASSEN PEAK AREA, CALIFORNIA: 1981-1983.

    USGS Publications Warehouse

    Walter, Stephen R.; Rojas, Vernonica; Kollmann, Auriel

    1984-01-01

    Over 700 earthquakes occurred in the vicinity of Lassen Peak, California, from February 1981 through December 1983. These earthquakes define a broad, northwest-trending seismic zone that extends from the Sierra Nevada through the Lassen Peak area and either terminates or is offset to the northeast about 20 kilometers northwest of Lassen Peak. Approximately 25% of these earthquakes are associated with the geothermal system south of Lassen Peak. Earthquakes in the geothermal area generally occur at depths shallower than 6 kilometers.

  9. Offset-free rail-to-rail derandomizing peak detect-and-hold circuit

    DOEpatents

    DeGeronimo, Gianluigi; O'Connor, Paul; Kandasamy, Anand

    2003-01-01

    A peak detect-and-hold circuit eliminates errors introduced by conventional amplifiers, such as common-mode rejection and input voltage offset. The circuit includes an amplifier, three switches, a transistor, and a capacitor. During a detect-and-hold phase, a hold voltage at a non-inverting in put terminal of the amplifier tracks an input voltage signal and when a peak is reached, the transistor is switched off, thereby storing a peak voltage in the capacitor. During a readout phase, the circuit functions as a unity gain buffer, in which the voltage stored in the capacitor is provided as an output voltage. The circuit is able to sense signals rail-to-rail and can readily be modified to sense positive, negative, or peak-to-peak voltages. Derandomization may be achieved by using a plurality of peak detect-and-hold circuits electrically connected in parallel.

  10. A wavelet-based Gaussian method for energy dispersive X-ray fluorescence spectrum.

    PubMed

    Liu, Pan; Deng, Xiaoyan; Tang, Xin; Shen, Shijian

    2017-05-01

    This paper presents a wavelet-based Gaussian method (WGM) for the peak intensity estimation of energy dispersive X-ray fluorescence (EDXRF). The relationship between the parameters of Gaussian curve and the wavelet coefficients of Gaussian peak point is firstly established based on the Mexican hat wavelet. It is found that the Gaussian parameters can be accurately calculated by any two wavelet coefficients at the peak point which has to be known. This fact leads to a local Gaussian estimation method for spectral peaks, which estimates the Gaussian parameters based on the detail wavelet coefficients of Gaussian peak point. The proposed method is tested via simulated and measured spectra from an energy X-ray spectrometer, and compared with some existing methods. The results prove that the proposed method can directly estimate the peak intensity of EDXRF free from the background information, and also effectively distinguish overlap peaks in EDXRF spectrum.

  11. Current responsive devices for synchronous generators

    DOEpatents

    Karlicek, Robert F.

    1983-01-01

    A device for detecting current imbalance between phases of a polyphase alternating current generator. A detector responds to the maximum peak current in the generator, and detecting means generates an output for each phase proportional to the peak current of each phase. Comparing means generates an output when the maximum peak current exceeds the phase peak current.

  12. Discrimination of human and nonhuman blood using Raman spectroscopy with self-reference algorithm

    NASA Astrophysics Data System (ADS)

    Bian, Haiyi; Wang, Peng; Wang, Jun; Yin, Huancai; Tian, Yubing; Bai, Pengli; Wu, Xiaodong; Wang, Ning; Tang, Yuguo; Gao, Jing

    2017-09-01

    We report a self-reference algorithm to discriminate human and nonhuman blood by calculating the ratios of identification Raman peaks to reference Raman peaks and choosing appropriate threshold values. The influence of using different reference peaks and identification peaks was analyzed in detail. The Raman peak at 1003 cm-1 was proved to be a stable reference peak to avoid the influencing factors, such as the incident laser intensity and the amount of sample. The Raman peak at 1341 cm-1 was found to be an efficient identification peak, which indicates that the difference between human and nonhuman blood results from the C-H bend in tryptophan. The comparison between self-reference algorithm and partial least square method was made. It was found that the self-reference algorithm not only obtained the discrimination results with the same accuracy, but also provided information on the difference of chemical composition. In addition, the performance of self-reference algorithm whose true positive rate is 100% is significant for customs inspection to avoid genetic disclosure and forensic science.

  13. ASPeak: an abundance sensitive peak detection algorithm for RIP-Seq.

    PubMed

    Kucukural, Alper; Özadam, Hakan; Singh, Guramrit; Moore, Melissa J; Cenik, Can

    2013-10-01

    Unlike DNA, RNA abundances can vary over several orders of magnitude. Thus, identification of RNA-protein binding sites from high-throughput sequencing data presents unique challenges. Although peak identification in ChIP-Seq data has been extensively explored, there are few bioinformatics tools tailored for peak calling on analogous datasets for RNA-binding proteins. Here we describe ASPeak (abundance sensitive peak detection algorithm), an implementation of an algorithm that we previously applied to detect peaks in exon junction complex RNA immunoprecipitation in tandem experiments. Our peak detection algorithm yields stringent and robust target sets enabling sensitive motif finding and downstream functional analyses. ASPeak is implemented in Perl as a complete pipeline that takes bedGraph files as input. ASPeak implementation is freely available at https://sourceforge.net/projects/as-peak under the GNU General Public License. ASPeak can be run on a personal computer, yet is designed to be easily parallelizable. ASPeak can also run on high performance computing clusters providing efficient speedup. The documentation and user manual can be obtained from http://master.dl.sourceforge.net/project/as-peak/manual.pdf.

  14. High resolution spectroscopy of the disk chromosphere. II - Time sequence observations of Ca II H and K emissions.

    NASA Technical Reports Server (NTRS)

    Wilson, P. R.; Rees, D. E.; Beckers, J. M.; Brown, D. R.

    1972-01-01

    Two independent sets of high resolution time series spectra of the Ca II H and K emission obtained at the Solar Tower and at the Big Dome of the Sacramento Peak Observatory on September 11th, 1971 are reported. The evolutionary behavior of the emission first reported by Wilson and Evans is confirmed, but the detail of the evolution is found to be more complex. In one case, a doubly peaked feature showing some K3 emission evolves into a single K2 (red) peak with no K3 emission. Coincidentally, a neighboring doubly peaked feature evolves to a very strong blue peak. In an entirely independent sequence a doubly peaked feature evolves into a single red peak. The K2 emission then fades completely although the continuum threads are still strong. Finally a strong K2 blue peak appears. It is concluded that the observed evolution of the K2 emission is due to temporal variations in the physical conditions which give rise to them.

  15. Annual Peak-Flow Frequency Characteristics and (or) Peak Dam-Pool-Elevation Frequency Characteristics of Dry Dams and Selected Streamflow-Gaging Stations in the Great Miami River Basin, Ohio

    USGS Publications Warehouse

    Koltun, G.F.

    2009-01-01

    This report describes the results of a study to determine frequency characteristics of postregulation annual peak flows at streamflow-gaging stations at or near the Lockington, Taylorsville, Englewood, Huffman, and Germantown dry dams in the Miami Conservancy District flood-protection system (southwestern Ohio) and five other streamflow-gaging stations in the Great Miami River Basin further downstream from one or more of the dams. In addition, this report describes frequency characteristics of annual peak elevations of the dry-dam pools. In most cases, log-Pearson Type III distributions were fit to postregulation annual peak-flow values through 2007 (the most recent year of published peak-flow values at the time of this analysis) and annual peak dam-pool storage values for the period 1922-2008 to determine peaks with recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years. For one streamflow-gaging station (03272100) with a short period of record, frequency characteristics were estimated by means of a process involving interpolation of peak-flow yields determined for an upstream and downstream gage. Once storages had been estimated for the various recurrence intervals, corresponding dam-pool elevations were determined from elevation-storage ratings provided by the Miami Conservancy District.

  16. Peak picking and the assessment of separation performance in two-dimensional high performance liquid chromatography.

    PubMed

    Stevenson, Paul G; Mnatsakanyan, Mariam; Guiochon, Georges; Shalliker, R Andrew

    2010-07-01

    An algorithm was developed for 2DHPLC that automated the process of peak recognition, measuring their retention times, and then subsequently plotting the information in a two-dimensional retention plane. Following the recognition of peaks, the software then performed a series of statistical assessments of the separation performance, measuring for example, correlation between dimensions, peak capacity and the percentage of usage of the separation space. Peak recognition was achieved by interpreting the first and second derivatives of each respective one-dimensional chromatogram to determine the 1D retention times of each solute and then compiling these retention times for each respective fraction 'cut'. Due to the nature of comprehensive 2DHPLC adjacent cut fractions may contain peaks common to more than one cut fraction. The algorithm determined which components were common in adjacent cuts and subsequently calculated the peak maximum profile by interpolating the space between adjacent peaks. This algorithm was applied to the analysis of a two-dimensional separation of an apple flesh extract separated in a first dimension comprising a cyano stationary phase and an aqueous/THF mobile phase as the first dimension and a second dimension comprising C18-Hydro with an aqueous/MeOH mobile phase. A total of 187 peaks were detected.

  17. Peak picking multidimensional NMR spectra with the contour geometry based algorithm CYPICK.

    PubMed

    Würz, Julia M; Güntert, Peter

    2017-01-01

    The automated identification of signals in multidimensional NMR spectra is a challenging task, complicated by signal overlap, noise, and spectral artifacts, for which no universally accepted method is available. Here, we present a new peak picking algorithm, CYPICK, that follows, as far as possible, the manual approach taken by a spectroscopist who analyzes peak patterns in contour plots of the spectrum, but is fully automated. Human visual inspection is replaced by the evaluation of geometric criteria applied to contour lines, such as local extremality, approximate circularity (after appropriate scaling of the spectrum axes), and convexity. The performance of CYPICK was evaluated for a variety of spectra from different proteins by systematic comparison with peak lists obtained by other, manual or automated, peak picking methods, as well as by analyzing the results of automated chemical shift assignment and structure calculation based on input peak lists from CYPICK. The results show that CYPICK yielded peak lists that compare in most cases favorably to those obtained by other automated peak pickers with respect to the criteria of finding a maximal number of real signals, a minimal number of artifact peaks, and maximal correctness of the chemical shift assignments and the three-dimensional structure obtained by fully automated assignment and structure calculation.

  18. Gamma ray-induced small plaque mutants of western equine encephalitis virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simizu, B.; Yamazaki, S.; Suzuki, K.

    1973-12-01

    Small plaque mutants of Western equine encephalitis virus were obtained from the surviving fractions of wild-type virus which was irradiated with gamma rays. The frequency with which small plaque mutants appeared in the surviving fraction increased with the radiation dose. These mutants were not more resistant to radiation than wild-type virus. The growth rate of a mutant, S127, was lower than that of wild-type. Clonally purified mutant virions presented two peaks in a velocity sedimentation profile; peak 1 corresponded to the peak of wild type and peak 2 moved faster than peak 1. Virions of both peaks were infectious andmore » consistently formed small plaques in chicken embryo cells. Virions reisolated from either peak and grown in chicken embryo cells also revealed two peaks in sedimentation analysis. In the electron microscope examination peak 2 proved to consist of giant form particles, each of which contained more than one nucleoid surrounded with a common envelope. Despite this remarkable morphological difference, densities of the wild-type and S127 mutant virions were similar in cesium chloride gradients. The RNAs and proteins of mutant virions could not be distinguished from those of wild types on the basis of size or change. (auth)« less

  19. Running quietly reduces ground reaction force and vertical loading rate and alters foot strike technique.

    PubMed

    Phan, Xuan; Grisbrook, Tiffany L; Wernli, Kevin; Stearne, Sarah M; Davey, Paul; Ng, Leo

    2017-08-01

    This study aimed to determine if a quantifiable relationship exists between the peak sound amplitude and peak vertical ground reaction force (vGRF) and vertical loading rate during running. It also investigated whether differences in peak sound amplitude, contact time, lower limb kinematics, kinetics and foot strike technique existed when participants were verbally instructed to run quietly compared to their normal running. A total of 26 males completed running trials for two sound conditions: normal running and quiet running. Simple linear regressions revealed no significant relationships between impact sound and peak vGRF in the normal and quiet conditions and vertical loading rate in the normal condition. t-Tests revealed significant within-subject decreases in peak sound, peak vGRF and vertical loading rate during the quiet compared to the normal running condition. During the normal running condition, 15.4% of participants utilised a non-rearfoot strike technique compared to 76.9% in the quiet condition, which was corroborated by an increased ankle plantarflexion angle at initial contact. This study demonstrated that quieter impact sound is not directly associated with a lower peak vGRF or vertical loading rate. However, given the instructions to run quietly, participants effectively reduced peak impact sound, peak vGRF and vertical loading rate.

  20. Historical changes in annual peak flows in Maine and implications for flood-frequency analyses

    USGS Publications Warehouse

    Hodgkins, Glenn A.

    2010-01-01

    To safely and economically design bridges, culverts, and other structures that are in or near streams (fig. 1 for example), it is necessary to determine the magnitude of peak streamflows such as the 100-year flow. Flood-frequency analyses use statistical methods to compute peak flows for selected recurrence intervals (100 years, for example). The recurrence interval is the average number of years between peak flows that are equal to or greater than a specified peak flow. Floodfrequency analyses are based on annual peak flows at a stream. It has long been assumed that annual peak streamflows are stationary over very long periods of time, except in river basins subject to urbanization, regulation, and other direct human activities. Stationarity is the concept that natural systems fluctuate within an envelope of variability that does not change over time (Milly and others, 2008). Because of the potential effects of global warming on peak flows, the assumption of peak-flow stationarity has recently been questioned (Milly and others, 2008). Maine has many streamgaging stations with 50 to 105 years of recorded annual peak streamflows. This long-term record has been tested for historical flood-frequency stationarity, to provide some insight into future flood frequency (Hodgkins, 2010). This fact sheet, prepared by the U.S. Geological Survey (USGS) in cooperation with the Maine Department of Transportation (MaineDOT), provides a partial summary of the results of the study by Hodgkins (2010).

  1. Accurate prediction of cardiorespiratory fitness using cycle ergometry in minimally disabled persons with relapsing-remitting multiple sclerosis.

    PubMed

    Motl, Robert W; Fernhall, Bo

    2012-03-01

    To examine the accuracy of predicting peak oxygen consumption (VO(2peak)) primarily from peak work rate (WR(peak)) recorded during a maximal, incremental exercise test on a cycle ergometer among persons with relapsing-remitting multiple sclerosis (RRMS) who had minimal disability. Cross-sectional study. Clinical research laboratory. Women with RRMS (n=32) and sex-, age-, height-, and weight-matched healthy controls (n=16) completed an incremental exercise test on a cycle ergometer to volitional termination. Not applicable. Measured and predicted VO(2peak) and WR(peak). There were strong, statistically significant associations between measured and predicted VO(2peak) in the overall sample (R(2)=.89, standard error of the estimate=127.4 mL/min) and subsamples with (R(2)=.89, standard error of the estimate=131.3 mL/min) and without (R(2)=.85, standard error of the estimate=126.8 mL/min) multiple sclerosis (MS) based on the linear regression analyses. Based on the 95% confidence limits for worst-case errors, the equation predicted VO(2peak) within 10% of its true value in 95 of every 100 subjects with MS. Peak VO(2) can be accurately predicted in persons with RRMS who have minimal disability as it is in controls by using established equations and WR(peak) recorded from a maximal, incremental exercise test on a cycle ergometer. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  2. A comparison of the shuttle and 6 minute walking tests with measured peak oxygen consumption in patients with heart failure.

    PubMed

    Green, D J; Watts, K; Rankin, S; Wong, P; O'Driscoll, J G

    2001-09-01

    This study investigated the use of an incremental, externally-paced 10 m shuttle walk test (SWT) as an objective, reliable and predictive test of functional capacity in patients with heart failure (CHF). The SWT was compared to a 6 minute walk test (6WT) and a maximal symptom-limited treadmill peak oxygen consumption (VO2peak) test. Experiment 1 examined the reproducibility of the SWT. Two SWF trials were performed and distance ambulated (DA), heart rate (HR) and rate of perceived exertion (RPE) results compared. In experiment 2, SWT, 6WT, and VO2 peak tests were performed and HR. RPE and ambulatory VO2 compared. The SWT demonstrated strong test/retest reliability for DA (r = 0.98). HR (r = 0.96) and RPE (r = 0.89). Treadmill VO2 peak was significantly correlated with DA during the SWT (r = 0.83, P < 0.05), but not the 6WT. SWT peak VO2 (18.5 +/- 1.8 ml.kg(-1) x min(-1)) and treadmill VO2 peak (18.3 +/-2.0 ml.kg(-1) x min(-1)) were also highly correlated (r = 0.78, P < 0.05). Conversely, 6WT peak VO2 and treadmill VO2 peak were not significantly correlated. This study suggests the SWT is a reliable, objective test, highly predictive of VO2 peak which may be a more optimal field exercise test than the self paced 6WT.

  3. PICKY: a novel SVD-based NMR spectra peak picking method

    PubMed Central

    Alipanahi, Babak; Gao, Xin; Karakoc, Emre; Donaldson, Logan; Li, Ming

    2009-01-01

    Motivation: Picking peaks from experimental NMR spectra is a key unsolved problem for automated NMR protein structure determination. Such a process is a prerequisite for resonance assignment, nuclear overhauser enhancement (NOE) distance restraint assignment, and structure calculation tasks. Manual or semi-automatic peak picking, which is currently the prominent way used in NMR labs, is tedious, time consuming and costly. Results: We introduce new ideas, including noise-level estimation, component forming and sub-division, singular value decomposition (SVD)-based peak picking and peak pruning and refinement. PICKY is developed as an automated peak picking method. Different from the previous research on peak picking, we provide a systematic study of the proposed method. PICKY is tested on 32 real 2D and 3D spectra of eight target proteins, and achieves an average of 88% recall and 74% precision. PICKY is efficient. It takes PICKY on average 15.7 s to process an NMR spectrum. More important than these numbers, PICKY actually works in practice. We feed peak lists generated by PICKY to IPASS for resonance assignment, feed IPASS assignment to SPARTA for fragments generation, and feed SPARTA fragments to FALCON for structure calculation. This results in high-resolution structures of several proteins, for example, TM1112, at 1.25 Å. Availability: PICKY is available upon request. The peak lists of PICKY can be easily loaded by SPARKY to enable a better interactive strategy for rapid peak picking. Contact: mli@uwaterloo.ca PMID:19477998

  4. Exercise capacity in pediatric patients with inflammatory bowel disease.

    PubMed

    Ploeger, Hilde E; Takken, Tim; Wilk, Boguslaw; Issenman, Robert M; Sears, Ryan; Suri, Soni; Timmons, Brian W

    2011-05-01

    To examine exercise capacity in youth with Crohn's disease (CD) and ulcerative colitis (UC). Eleven males and eight females with CD and six males and four females with UC participated. Patients performed standard exercise tests to assess peak power (PP) and mean power (MP) and peak aerobic mechanical power (W(peak)) and peak oxygen uptake (VO(2peak)). Fitness variables were compared with reference data and also correlated with relevant clinical outcomes. Pediatric patients with inflammatory bowel disease had lower PP (∼90% of predicted), MP (∼88% of predicted), W(peak) (∼91% of predicted), and VO(2peak) (∼75% of predicted) compared with reference values. When patients with CD or UC were compared separately to reference values, W(peak) was significantly lower only in the CD group. No statistically significant correlations were found between any exercise variables and disease duration (r = 0.01 to 0.14, P = .47 to .95) or disease activity (r = -0.19 to -0.31, P = .11 to .38), measured by pediatric CD activity index or pediatric ulcerative colitis activity index. After controlling for chronological age, recent hemoglobin levels were significantly correlated with PP (r = 0.45, P = .049), MP (r = 0.63, P = .003), VO(2peak) (r = 0.62, P = .004), and W(peak) (r = 0.70, P = .001). Pediatric patients with inflammatory bowel disease exhibit impaired aerobic and anaerobic exercise capacity compared with reference values. Copyright © 2011 Mosby, Inc. All rights reserved.

  5. HISTONE ACETYLTRANSFERASE p300 MODULATES GENE EXPRESSION IN AN EPIGENETIC MANNER AT HIGH BLOOD ALCOHOL LEVELS

    PubMed Central

    Bardag-Gorce, Fawzia; French, Barbara A.; Joyce, Michael; Baires, Mercedes; Montgomery, Rosalyn O.; Li, Jun; French., Samuel

    2007-01-01

    When rats are fed ethanol intragastrically at a constant rate for 1 month, the urinary alcohol level (UAL) cycles over 7–9 day intervals. At the peak UAL, the liver is hypoxic shifting from a redox state to a reduced rate. Microarray analysis done on livers at the UAL peaks shows changes in ~1300 gene expression compared to the pair-fed controls. To determine the mechanism of the gene expression changes, histone acetylation regulation was investigated in liver nuclear extracts at the peaks and troughs of the UAL and their pair-fed controls. No change occurred in SirT-1. P300, a histone acetyltransferase (HAT), which acetylates histone H3 on lysine 9, was increased at the peaks. Histone 3 acetylated at lysine 9 was also increased at the peaks. This indicates that the up regulated genes at the UAL peaks resulted from an increase in p300 transcription regulation, epigenetically. P300 activates transcription of numerous genes in response to signal transcription factors such as H1F 1α, increased in the nucleus at UAL peaks. Signal transduction pathways, such as NFκB, AP-1, ERK, JNK, and p38 were not increased at the peaks. β-catenin was increased in the nuclear extract at the UAL peaks and troughs, where increased gene expression was absent. The increase in gene expression at the peaks was due, in part, to increased acetylation of histone 3 at lysine 9. PMID:17208223

  6. Influence of maturation on instep kick biomechanics in female soccer athletes.

    PubMed

    Lyle, Mark A; Sigward, Susan M; Tsai, Liang-Ching; Pollard, Christine D; Powers, Christopher M

    2011-10-01

    The purpose of this study was to compare kicking biomechanics between young female soccer players at two different stages of physical maturation and to identify biomechanical predictors of peak foot velocity. Swing and stance limb kinematics and kinetics were recorded from 20 female soccer players (10 prepubertal, 10 postpubertal) while kicking a soccer ball using an angled two-step approach. Peak foot velocity as well as hip and knee kinematics and kinetics were compared between groups using independent-samples t-tests. Pearson correlation coefficients and stepwise multiple regression were used to identify predictors of peak foot velocity. Peak foot velocity and the peak swing limb net hip flexor moment was significantly greater in the postpubertal group when compared with the prepubertal group (13.4 vs 11.6 m·s(-1), P = 0.003; 1.22 vs 1.07 N·m·kg(-1)·m(-1), P = 0.03). Peak stance limb hip and knee extensor moments were not different between groups. Although the peak swing limb hip and knee flexion angles were similar between groups, the postpubertal group demonstrated significantly less peak stance limb hip and knee flexion angles when compared with the prepubertal group (P < 0.001 and P = 0.045). Using a linear regression model, swing limb peak hip flexor moment and peak swing limb hip extension range of motion combined to explain 65% of the variance in peak foot velocity. Despite a difference in stance limb kinematics, similar swing limb kinematics between groups indicates that the prepubertal female athletes kicked with a mature swing limb kick pattern. The ability to generate a large hip flexor moment of the swing limb seems to be an important factor for improving kicking performance in young female soccer players.

  7. Response analysis of TLD-300 dosimeters in heavy-particle beams

    NASA Astrophysics Data System (ADS)

    Loncol, Th; Hamal, M.; Denis, J. M.; Vynckier, S.; Wambersie, A.; Scalliet, P.

    1996-09-01

    In vivo dosimetry is recommended as part of the quality control procedure for treatment verification in radiation therapy. Using thermoluminescence, such controls are planned in the p(65)+Be neutron and 85 MeV proton beams produced at the cyclotron at Louvain-La-Neuve and dedicated to therapy applications. A preliminary study of the peak 3 (C) and peak 5 (C) response of :Tm (TLD-300) to neutron and proton beams aimed to analyse the effect of different radiation qualities on the dosimetric behaviour of the detector irradiated in phantom. To broaden the range of investigation, the study was extended to an experimental C-12 heavy ion beam (95 MeV/nucleon). The peak 3 and 5 sensitivities in the neutron beam, compared to Co-60, varied little with depth. A major change of peak 5 sensitivity was observed for samples positioned under five leaves of the multi-leaf collimator. While peak 3 sensitivity was constant with depth in the unmodulated proton beam, peak 5 sensitivity increased by 15%. Near the Bragg peak, peak 3 showed the highest decrease of sensitivity. In the modulated proton beam, the sensitivity values were not significantly smaller than those measured in the unmodulated beam far from the Bragg peak region. The ratio of the heights of peak 3 and peak 5 decreased by 70% from the Co-60 reference radiation to the C-12 heavy-ion beam. This parameter was strongly correlated with the change of radiation quality.

  8. Returners Exhibit Greater Jumping Performance Improvements During a Peaking Phase Compared With New Players on a Volleyball Team.

    PubMed

    Bazyler, Caleb D; Mizuguchi, Satoshi; Kavanaugh, Ashley A; McMahon, John J; Comfort, Paul; Stone, Michael H

    2018-06-21

    To determine if jumping-performance changes during a peaking phase differed among returners and new players on a female collegiate volleyball team and to determine which variables best explained the variation in performance changes. Fourteen volleyball players were divided into 2 groups-returners (n = 7) and new players (n = 7)-who completed a 5-wk peaking phase prior to conference championships. Players were tested at baseline before the preseason on measures of the vastus lateralis cross-sectional area using ultrasonography, estimated back-squat 1-repetition maximum, countermovement jump height (JH), and relative peak power on a force platform. Jumping performance, rating of perceived exertion training load, and sets played were recorded weekly during the peaking phase. There were moderate to very large (P < .01, Glass Δ = 1.74) and trivial to very large (P = .07, Δ = 1.09) differences in JH and relative peak power changes in favor of returners over new players, respectively, during the peaking phase. Irrespective of group, 7 of 14 players achieved peak JH 2 wk after the initial overreach. The number of sets played (r = .78, P < .01) and the athlete's preseason relative 1-repetition maximum (r = .54, P = .05) were the strongest correlates of JH changes during the peaking phase. Returners achieved greater improvements in jumping performance during the peaking phase compared with new players, which may be explained by the returners' greater relative maximal strength, time spent competing, and training experience. Thus, volleyball and strength coaches should consider these factors when prescribing training during a peaking phase to ensure their players are prepared for important competitions.

  9. Changing On Diurnal Cycle Of Rainfall In Northern Coastal Of West Java

    NASA Astrophysics Data System (ADS)

    Yulihastin, E.; Hadi, T. W.; Ningsih, N. S.

    2017-12-01

    The floods event in the north of Java was largely due to persistent of rainfall that occurred in the morning which indicated of deviation of diurnal pattern of rainfall. The shift of the phase of diurnal rainfall cycle using TRMM satellite hourly data of 3B41RT on the rainy period of 2000-2016 exhibits over land from Late Afternoon-Early Midnight (LA-EM) to morning. The peak of the cycle changes from diurnal to semidiurnal with a peak occurring in LA-EM and morning. Location of rainfall which usually occurs in the oceans shifted into near coastal area. The classification of diurnal rainfall cycles based on composite analysis shows four types: Normal (N) Type (45.6%) with one peak rainfall occurring in the afternoon until night, Diurnal (D) Type (26%) with one peak and phase opposite to normal type, Semidiurnal (SD) Type (6.5 %) with two peaks and the main peak occurring in the afternoon until night, Third Diurnal (TD) Type (21.7%) with three peaks and the main peak occurs in the morning. The classification was confirmed using the objective method of Empirical Mode Decomposition (EMD) and obtained three IMFs representing three diurnal cycle modes of Type TD (67.8%) with the main rain peak taking place in the afternoon, Type D with rain peak occurring in the early hours (18.9%), and SD type (9.9%) with the first peak occurred in the afternoon. For D Type, the results also prove that the diurnal cycle with significant deviations in amplitude occurred in February 2002, 2004, 2008, 2014, wich is the maximum rainfall occurs in the EM. It also seems that in those years, rainfall intensity is concentrated on the northern coast of West Java while in the Java Sea rainfall was minimum.

  10. Linear MALDI-ToF simultaneous spectrum deconvolution and baseline removal.

    PubMed

    Picaud, Vincent; Giovannelli, Jean-Francois; Truntzer, Caroline; Charrier, Jean-Philippe; Giremus, Audrey; Grangeat, Pierre; Mercier, Catherine

    2018-04-05

    Thanks to a reasonable cost and simple sample preparation procedure, linear MALDI-ToF spectrometry is a growing technology for clinical microbiology. With appropriate spectrum databases, this technology can be used for early identification of pathogens in body fluids. However, due to the low resolution of linear MALDI-ToF instruments, robust and accurate peak picking remains a challenging task. In this context we propose a new peak extraction algorithm from raw spectrum. With this method the spectrum baseline and spectrum peaks are processed jointly. The approach relies on an additive model constituted by a smooth baseline part plus a sparse peak list convolved with a known peak shape. The model is then fitted under a Gaussian noise model. The proposed method is well suited to process low resolution spectra with important baseline and unresolved peaks. We developed a new peak deconvolution procedure. The paper describes the method derivation and discusses some of its interpretations. The algorithm is then described in a pseudo-code form where the required optimization procedure is detailed. For synthetic data the method is compared to a more conventional approach. The new method reduces artifacts caused by the usual two-steps procedure, baseline removal then peak extraction. Finally some results on real linear MALDI-ToF spectra are provided. We introduced a new method for peak picking, where peak deconvolution and baseline computation are performed jointly. On simulated data we showed that this global approach performs better than a classical one where baseline and peaks are processed sequentially. A dedicated experiment has been conducted on real spectra. In this study a collection of spectra of spiked proteins were acquired and then analyzed. Better performances of the proposed method, in term of accuracy and reproductibility, have been observed and validated by an extended statistical analysis.

  11. Trapping state of hydrogen isotopes in carbon and graphite investigated by thermal desorption spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atsumi, H.; Tanabe, T.; Shikama, T.

    Thermal desorption spectrometry (TDS) has been investigated to obtain fundamental information of tritium behavior in graphite and carbon materials especially at high temperatures. 29 brands of graphite, HOPG, glassy carbon and CFC materials charged with deuterium gas are tested up to the temperature of 1735 K with a heating rate of 0.1 K/s. TDS spectra have five peaks at 600-700 K, around 900 K, 1200 K, 1300-1450 K and 1600-1650 K. The amounts of released deuterium have been compared with crystallographic parameters derived from XRD analysis. The results can be summarized as follows. First, TDS spectra of deuterium were quitemore » varied among the samples tested, such as existence of peaks, peak temperatures and release amounts of deuterium. Secondly, TDS spectra may consist of five peaks, which are peak 1 (600-700 K), peak 2 (around 900 K), peak 3 (around 1200 K), peak 4 (1300-1450 K) and peak 5 (1600-1650 K). Thirdly, the correlations between the estimated surface area of edge surface and the total amount of released deuterium could be observed for peaks 4 and 5. Fourthly, high energy trapping site (peak 5) may exist even at edge surface or a near surface region, not only for intercalary. And fifth, in order to obtain the lower tritium retention for graphite and CFC materials, the material should be composed of a filler grain with a smaller crystallite size or having the smaller net edge surface in its structure. It is shown that heat treatment does not reduce originally existing trapping sites but trapping sites generated by neutron irradiation for instance can be reduced in some degree.« less

  12. Evaluation of the magnitude and frequency of floods in urban watersheds in Phoenix and Tucson, Arizona

    USGS Publications Warehouse

    Kennedy, Jeffrey R.; Paretti, Nicholas V.

    2014-01-01

    Flooding in urban areas routinely causes severe damage to property and often results in loss of life. To investigate the effect of urbanization on the magnitude and frequency of flood peaks, a flood frequency analysis was carried out using data from urbanized streamgaging stations in Phoenix and Tucson, Arizona. Flood peaks at each station were predicted using the log-Pearson Type III distribution, fitted using the expected moments algorithm and the multiple Grubbs-Beck low outlier test. The station estimates were then compared to flood peaks estimated by rural-regression equations for Arizona, and to flood peaks adjusted for urbanization using a previously developed procedure for adjusting U.S. Geological Survey rural regression peak discharges in an urban setting. Only smaller, more common flood peaks at the 50-, 20-, 10-, and 4-percent annual exceedance probabilities (AEPs) demonstrate any increase in magnitude as a result of urbanization; the 1-, 0.5-, and 0.2-percent AEP flood estimates are predicted without bias by the rural-regression equations. Percent imperviousness was determined not to account for the difference in estimated flood peaks between stations, either when adjusting the rural-regression equations or when deriving urban-regression equations to predict flood peaks directly from basin characteristics. Comparison with urban adjustment equations indicates that flood peaks are systematically overestimated if the rural-regression-estimated flood peaks are adjusted upward to account for urbanization. At nearly every streamgaging station in the analysis, adjusted rural-regression estimates were greater than the estimates derived using station data. One likely reason for the lack of increase in flood peaks with urbanization is the presence of significant stormwater retention and detention structures within the watershed used in the study.

  13. Flood frequency estimates and documented and potential extreme peak discharges in Oklahoma

    USGS Publications Warehouse

    Tortorelli, Robert L.; McCabe, Lan P.

    2001-01-01

    Knowledge of the magnitude and frequency of floods is required for the safe and economical design of highway bridges, culverts, dams, levees, and other structures on or near streams; and for flood plain management programs. Flood frequency estimates for gaged streamflow sites were updated, documented extreme peak discharges for gaged and miscellaneous measurement sites were tabulated, and potential extreme peak discharges for Oklahoma streamflow sites were estimated. Potential extreme peak discharges, derived from the relation between documented extreme peak discharges and contributing drainage areas, can provide valuable information concerning the maximum peak discharge that could be expected at a stream site. Potential extreme peak discharge is useful in conjunction with flood frequency analysis to give the best evaluation of flood risk at a site. Peak discharge and flood frequency for selected recurrence intervals from 2 to 500 years were estimated for 352 gaged streamflow sites. Data through 1999 water year were used from streamflow-gaging stations with at least 8 years of record within Oklahoma or about 25 kilometers into the bordering states of Arkansas, Kansas, Missouri, New Mexico, and Texas. These sites were in unregulated basins, and basins affected by regulation, urbanization, and irrigation. Documented extreme peak discharges and associated data were compiled for 514 sites in and near Oklahoma, 352 with streamflow-gaging stations and 162 at miscellaneous measurements sites or streamflow-gaging stations with short record, with a total of 671 measurements.The sites are fairly well distributed statewide, however many streams, large and small, have never been monitored. Potential extreme peak-discharge curves were developed for streamflow sites in hydrologic regions of the state based on documented extreme peak discharges and the contributing drainage areas. Two hydrologic regions, east and west, were defined using 98 degrees 15 minutes longitude as the dividing line.

  14. Predictors of Peak Troponin Level in Acute Coronary Syndromes: Prior Aspirin Use and SYNTAX Score

    PubMed Central

    Bhatt, Hemal A.; Sanghani, Dharmesh R.; Lee, David; Julliard, Kell N.; Fernaine, George A.

    2015-01-01

    The peak troponin level has been associated with cardiovascular (CV) mortality and adverse CV events. The association of peak troponin with CV risk factors and severity and complexity of coronary artery disease remains unknown. We assessed the predictors of peak troponin in patients with acute coronary syndrome (ACS). This study aims to determine the predictors of peak troponin in ACS. Cardiac catheterization (CC) reports and electronic medical records from 2010 to 2013 were retrospectively reviewed. A total of 219 patients were eligible for the study. All major CV risk factors, comorbidities, laboratory data, CC indications, and coronary lesion characteristics were included. Univariate and multivariate regression analyses were done. On multivariate linear regression analysis, ST-elevation myocardial infarction (p = 0.001, β = 65.16) and increasing synergy between percutaneous coronary intervention with Taxus and cardiac surgery (SYNTAX) score (p = 0.002, β = 1.15) were associated with higher peak troponin. The Pearson correlation between SYNTAX score and peak troponin was r = 0.257, p = 0.001. History of daily aspirin use was associated with lower peak troponin (p = 0.002, β = −24.32). Prior statin use (p = 0.321, β = −8.98) and the presence of CV risk factors were not associated with peak troponin. Coronary artery disease severity and complexity, urgency of CC, and prior aspirin use are associated with peak troponin levels in ACS. Our findings may help predict patient population with ACS who would be at a greater risk for short- and long-term CV morbidity and mortality due to elevated peak troponin. PMID:26900312

  15. Methods for estimating the magnitude and frequency of peak streamflows for unregulated streams in Oklahoma

    USGS Publications Warehouse

    Lewis, Jason M.

    2010-01-01

    Peak-streamflow regression equations were determined for estimating flows with exceedance probabilities from 50 to 0.2 percent for the state of Oklahoma. These regression equations incorporate basin characteristics to estimate peak-streamflow magnitude and frequency throughout the state by use of a generalized least squares regression analysis. The most statistically significant independent variables required to estimate peak-streamflow magnitude and frequency for unregulated streams in Oklahoma are contributing drainage area, mean-annual precipitation, and main-channel slope. The regression equations are applicable for watershed basins with drainage areas less than 2,510 square miles that are not affected by regulation. The resulting regression equations had a standard model error ranging from 31 to 46 percent. Annual-maximum peak flows observed at 231 streamflow-gaging stations through water year 2008 were used for the regression analysis. Gage peak-streamflow estimates were used from previous work unless 2008 gaging-station data were available, in which new peak-streamflow estimates were calculated. The U.S. Geological Survey StreamStats web application was used to obtain the independent variables required for the peak-streamflow regression equations. Limitations on the use of the regression equations and the reliability of regression estimates for natural unregulated streams are described. Log-Pearson Type III analysis information, basin and climate characteristics, and the peak-streamflow frequency estimates for the 231 gaging stations in and near Oklahoma are listed. Methodologies are presented to estimate peak streamflows at ungaged sites by using estimates from gaging stations on unregulated streams. For ungaged sites on urban streams and streams regulated by small floodwater retarding structures, an adjustment of the statewide regression equations for natural unregulated streams can be used to estimate peak-streamflow magnitude and frequency.

  16. Kerogen maturation and incipient graphitization of hydrocarbon source rocks in the Arkoma Basin, Oklahoma and Arkansas: A combined petrographic and Raman spectrometric study

    USGS Publications Warehouse

    Spotl, C.; Houseknecht, D.W.; Jaques, R.C.

    1998-01-01

    Dispersed kerogen of the Woodford-Chattanooga and Atoka Formations from the subsurface of the Arkoma Basin show a wide range of thermal maturities (0.38 to 6.1% R(o)) indicating thermal conditions ranging from diagenesis to incipient rock metamorphism. Raman spectral analysis reveals systematic changes of both the first- and second-order spectrum with increasing thermal maturity. These changes include a pronounced increase in the D/O peak height ratio accompanied by a narrowing of the D peak, a gradual decrease in the D/O peak width ratio, and a shift of both peaks toward higher wave numbers. Second-order Raman peaks, though less intensive, also show systematic peak shifting as a function of R(o). These empirical results underscore the high potential of Raman spectrometry as a fast and reliable geothermometer of mature to supermature hydrocarbon source rocks, and as an indicator of thermal maturity levels within the anchizone.Dispersed kerogen of the Woodford-Chattanooga and Atoka Formations from the subsurface of the Arkoma Basin show a wide range of thermal maturities (0.38 to 6.1% Ro) indicating thermal conditions ranging from diagenesis to incipient rock metamorphism. Raman spectral analysis reveals systematic changes of both the first- and second-order spectrum with increasing thermal maturity. These changes include a pronounced increase in the D/O peak height ratio accompanied by a narrowing of the D peak, a gradual decrease in the D/O peak width ratio, and a shift of both peaks toward higher wave numbers. Second-order Raman peaks, though less intensive, also show systematic peak shifting as a function of Ro. These empirical results underscore the high potential of Raman spectrometry as a fast and reliable geothermometer of mature to supermature hydrocarbon source rocks, and as an indicator of thermal maturity levels within the anchizone.

  17. Raman spectroscopic characterization of gas mixtures. II. Quantitative composition and pressure determination of the CO2-CH4 system

    USGS Publications Warehouse

    Seitz, J.C.; Pasteris, J.D.; Chou, I.-Ming

    1996-01-01

    Raman spectral parameters were determined for the v1 band of CH4 and the v1 and 2v2 bands (Fermi diad) of CO2 in pure CO2 and CO2-CH4 mixtures at pressures up to 700 bars and room temperature. Peak position, area, height, and width were investigated as functions of pressure and composition. The peak positions of the CH4 and CO2 bands shift to lower relative wavenumbers as fluid pressure is increased. The peak position of the lower-wavenumber member of the Fermi diad for CO2 is sensitive to fluid composition, whereas the peak positions of the CH4 band and the upper Fermi diad member for CO2 are relatively insensitive in the CO2-CH4 system. The magnitude of the shifts in each of the three peak positions (as a function of pressure) is sufficient to be useful as a monitor of fluid pressure. The relative molar proportions in a CO2-CH4 mixture may be determined from the peak areas: the ratio of the peak areas of the CH4 band and the CO2 upper Fermi diad member is very sensitive to composition, whereas above about 100 bars, it is insensitive to pressure. Likewise, the peak height ratio is very sensitive to composition but also to fluid pressure. The individual peak widths of CO2 and CH4, as well as the ratios of the widths of the CH4 peak to the CO2 peaks are a sensitive function of pressure and, to a lesser extent, composition. Thus, upon determination of fluid composition, the peak width ratios may be used as a monitor of fluid pressure. The application of these spectral parameters to a suite of natural CO2-CH4 inclusions has yielded internally-consistent, quantitative determinations of the fluid composition and density.

  18. An Empirical Study on Raman Peak Fitting and Its Application to Raman Quantitative Research.

    PubMed

    Yuan, Xueyin; Mayanovic, Robert A

    2017-10-01

    Fitting experimentally measured Raman bands with theoretical model profiles is the basic operation for numerical determination of Raman peak parameters. In order to investigate the effects of peak modeling using various algorithms on peak fitting results, the representative Raman bands of mineral crystals, glass, fluids as well as the emission lines from a fluorescent lamp, some of which were measured under ambient light whereas others under elevated pressure and temperature conditions, were fitted using Gaussian, Lorentzian, Gaussian-Lorentzian, Voigtian, Pearson type IV, and beta profiles. From the fitting results of the Raman bands investigated in this study, the fitted peak position, intensity, area and full width at half-maximum (FWHM) values of the measured Raman bands can vary significantly depending upon which peak profile function is used in the fitting, and the most appropriate fitting profile should be selected depending upon the nature of the Raman bands. Specifically, the symmetric Raman bands of mineral crystals and non-aqueous fluids are best fit using Gaussian-Lorentzian or Voigtian profiles, whereas the asymmetric Raman bands are best fit using Pearson type IV profiles. The asymmetric O-H stretching vibrations of H 2 O and the Raman bands of soda-lime glass are best fit using several Gaussian profiles, whereas the emission lines from a florescent light are best fit using beta profiles. Multiple peaks that are not clearly separated can be fit simultaneously, provided the residuals in the fitting of one peak will not affect the fitting of the remaining peaks to a significant degree. Once the resolution of the Raman spectrometer has been properly accounted for, our findings show that the precision in peak position and intensity can be improved significantly by fitting the measured Raman peaks with appropriate profiles. Nevertheless, significant errors in peak position and intensity were still observed in the results from fitting of weak and wide Raman bands having unnormalized intensity/FWHM ratios lower than 200 counts/cm -1 .

  19. Peak capacity, peak-capacity production rate, and boiling point resolution for temperature-programmed GC with very high programming rates

    PubMed

    Grall; Leonard; Sacks

    2000-02-01

    Recent advances in column heating technology have made possible very fast linear temperature programming for high-speed gas chromatography. A fused-silica capillary column is contained in a tubular metal jacket, which is resistively heated by a precision power supply. With very rapid column heating, the rate of peak-capacity production is significantly enhanced, but the total peak capacity and the boiling-point resolution (minimum boiling-point difference required for the separation of two nonpolar compounds on a nonpolar column) are reduced relative to more conventional heating rates used with convection-oven instruments. As temperature-programming rates increase, elution temperatures also increase with the result that retention may become insignificant prior to elution. This results in inefficient utilization of the down-stream end of the column and causes a loss in the rate of peak-capacity production. The rate of peak-capacity production is increased by the use of shorter columns and higher carrier gas velocities. With high programming rates (100-600 degrees C/min), column lengths of 6-12 m and average linear carrier gas velocities in the 100-150 cm/s range are satisfactory. In this study, the rate of peak-capacity production, the total peak capacity, and the boiling point resolution are determined for C10-C28 n-alkanes using 6-18 m long columns, 50-200 cm/s average carrier gas velocities, and 60-600 degrees C/min programming rates. It was found that with a 6-meter-long, 0.25-mm i.d. column programmed at a rate of 600 degrees C/min, a maximum peak-capacity production rate of 6.1 peaks/s was obtained. A total peak capacity of about 75 peaks was produced in a 37-s long separation spanning a boiling-point range from n-C10 (174 degrees C) to n-C28 (432 degrees C).

  20. Peak oxygen consumption measured during the stair-climbing test in lung resection candidates.

    PubMed

    Brunelli, Alessandro; Xiumé, Francesco; Refai, Majed; Salati, Michele; Di Nunzio, Luca; Pompili, Cecilia; Sabbatini, Armando

    2010-01-01

    The stair-climbing test is commonly used in the preoperative evaluation of lung resection candidates, but it is difficult to standardize and provides little physiologic information on the performance. To verify the association between the altitude and the V(O2peak) measured during the stair-climbing test. 109 consecutive candidates for lung resection performed a symptom-limited stair-climbing test with direct breath-by-breath measurement of V(O2peak) by a portable gas analyzer. Stepwise logistic regression and bootstrap analyses were used to verify the association of several perioperative variables with a V(O2peak) <15 ml/kg/min. Subsequently, multiple regression analysis was also performed to develop an equation to estimate V(O2peak) from stair-climbing parameters and other patient-related variables. 56% of patients climbing <14 m had a V(O2peak) <15 ml/kg/min, whereas 98% of those climbing >22 m had a V(O2peak) >15 ml/kg/min. The altitude reached at stair-climbing test resulted in the only significant predictor of a V(O2peak) <15 ml/kg/min after logistic regression analysis. Multiple regression analysis yielded an equation to estimate V(O2peak) factoring altitude (p < 0.0001), speed of ascent (p = 0.005) and body mass index (p = 0.0008). There was an association between altitude and V(O2peak) measured during the stair-climbing test. Most of the patients climbing more than 22 m are able to generate high values of V(O2peak) and can proceed to surgery without any additional tests. All others need to be referred for a formal cardiopulmonary exercise test. In addition, we were able to generate an equation to estimate V(O2peak), which could assist in streamlining the preoperative workup and could be used across different settings to standardize this test. Copyright (c) 2010 S. Karger AG, Basel.

  1. Polarization dependence of Brillouin linewidth and peak frequency due to fiber inhomogeneity in single mode fiber and its impact on distributed fiber Brillouin sensing.

    PubMed

    Xie, Shangran; Pang, Meng; Bao, Xiaoyi; Chen, Liang

    2012-03-12

    The dependence of Brillouin linewidth and peak frequency on lightwave state of polarization (SOP) due to fiber inhomogeneity in single mode fiber (SMF) is investigated by using Brillouin optical time domain analysis (BOTDA) system. Theoretical analysis shows fiber inhomogeneity leads to fiber birefringence and sound velocity variation, both of which can cause the broadening and asymmetry of the Brillouin gain spectrum (BGS) and thus contribute to the variation of Brillouin linewidth and peak frequency with lightwave SOP. Due to fiber inhomogeneity both in lateral profile and longitudinal direction, the measured BGS is the superposition of several spectrum components with different peak frequencies within the interaction length. When pump or probe SOP changes, both the peak Brillouin gain and the overlapping area of the optical and acoustic mode profile that determine the peak efficiency of each spectrum component vary within the interaction length, which further changes the linewidth and peak frequency of the superimposed BGS. The SOP dependence of Brillouin linewidth and peak frequency was experimentally demonstrated and quantified by measuring the spectrum asymmetric factor and fitting obtained effective peak frequency respectively via BOTDA system on standard step-index SMF-28 fiber. Experimental results show that on this fiber the Brillouin spectrum asymmetric factor and effective peak frequency vary in the range of 2% and 0.06MHz respectively over distance with orthogonal probe input SOPs. Experimental results also show that in distributed fiber Brillouin sensing, polarization scrambler (PS) can be used to reduce the SOP dependence of Brillouin linewidth and peak frequency caused by fiber inhomogeneity in lateral profile, however it maintains the effects caused by fiber inhomogeneity in longitudinal direction. In the case of non-ideal polarization scrambling using practical PS, the fluctuation of effective Brillouin peak frequency caused by fiber inhomogeneity provides another limit of sensing frequency resolution of distributed fiber Brillouin sensor.

  2. Commonly used reference values underestimate oxygen uptake in healthy, 50-year-old Swedish women.

    PubMed

    Genberg, M; Andrén, B; Lind, L; Hedenström, H; Malinovschi, A

    2018-01-01

    Cardiopulmonary exercise testing (CPET) is the gold standard among clinical exercise tests. It combines a conventional stress test with measurement of oxygen uptake (V O 2 ) and CO 2 production. No validated Swedish reference values exist, and reference values in women are generally understudied. Moreover, the importance of achieved respiratory exchange ratio (RER) and the significance of breathing reserve (BR) at peak exercise in healthy individuals are poorly understood. We compared V O 2 at maximal load (peakV O 2 ) and anaerobic threshold (V O 2@ AT ) in healthy Swedish individuals with commonly used reference values, taking gender into account. Further, we analysed maximal workload and peakV O 2 with regard to peak RER and BR. In all, 181 healthy, 50-year-old individuals (91 women) performed CPET. PeakV O 2 was best predicted using Jones et al. (100·5%), while SHIP reference values underestimated peakV O 2 most: 112·5%. Furthermore, underestimation of peakV O 2 in women was found for all studied reference values (P<0·001) and was largest for SHIP: women had 128% of predicted peakV O 2 , while men had 104%. PeakV O 2 was similar in subjects with peak RER of 1-1·1 and RER > 1·1 (2 328·7 versus 2 176·7 ml min -1 , P = 0·11). Lower BR (≤30%) related to significantly higher peakV O 2 (P<0·001). In conclusion, peakV O 2 was best predicted by Jones. All studied reference values underestimated oxygen uptake in women. No evidence for demanding RER > 1·1 in healthy individuals was found. A lowered BR is probably a normal response to higher workloads in healthy individuals. © 2016 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  3. Unravelling associations between unassigned mass spectrometry peaks with frequent itemset mining techniques.

    PubMed

    Vu, Trung Nghia; Mrzic, Aida; Valkenborg, Dirk; Maes, Evelyne; Lemière, Filip; Goethals, Bart; Laukens, Kris

    2014-01-01

    Mass spectrometry-based proteomics experiments generate spectra that are rich in information. Often only a fraction of this information is used for peptide/protein identification, whereas a significant proportion of the peaks in a spectrum remain unexplained. In this paper we explore how a specific class of data mining techniques termed "frequent itemset mining" can be employed to discover patterns in the unassigned data, and how such patterns can help us interpret the origin of the unexpected/unexplained peaks. First a model is proposed that describes the origin of the observed peaks in a mass spectrum. For this purpose we use the classical correlative database search algorithm. Peaks that support a positive identification of the spectrum are termed explained peaks. Next, frequent itemset mining techniques are introduced to infer which unexplained peaks are associated in a spectrum. The method is validated on two types of experimental proteomic data. First, peptide mass fingerprint data is analyzed to explain the unassigned peaks in a full scan mass spectrum. Interestingly, a large numbers of experimental spectra reveals several highly frequent unexplained masses, and pattern mining on these frequent masses demonstrates that subsets of these peaks frequently co-occur. Further evaluation shows that several of these co-occurring peaks indeed have a known common origin, and other patterns are promising hypothesis generators for further analysis. Second, the proposed methodology is validated on tandem mass spectrometral data using a public spectral library, where associations within the mass differences of unassigned peaks and peptide modifications are explored. The investigation of the found patterns illustrates that meaningful patterns can be discovered that can be explained by features of the employed technology and found modifications. This simple approach offers opportunities to monitor accumulating unexplained mass spectrometry data for emerging new patterns, with possible applications for the development of mass exclusion lists, for the refinement of quality control strategies and for a further interpretation of unexplained spectral peaks in mass spectrometry and tandem mass spectrometry.

  4. Modified Maturity Offset Prediction Equations: Validation in Independent Longitudinal Samples of Boys and Girls.

    PubMed

    Kozieł, Sławomir M; Malina, Robert M

    2018-01-01

    Predicted maturity offset and age at peak height velocity are increasingly used with youth athletes, although validation studies of the equations indicated major limitations. The equations have since been modified and simplified. The objective of this study was to validate the new maturity offset prediction equations in independent longitudinal samples of boys and girls. Two new equations for boys with chronological age and sitting height and chronological age and stature as predictors, and one equation for girls with chronological age and stature as predictors were evaluated in serial data from the Wrocław Growth Study, 193 boys (aged 8-18 years) and 198 girls (aged 8-16 years). Observed age at peak height velocity for each youth was estimated with the Preece-Baines Model 1. The original prediction equations were included for comparison. Predicted age at peak height velocity was the difference between chronological age at prediction and maturity offset. Predicted ages at peak height velocity with the new equations approximated observed ages at peak height velocity in average maturing boys near the time of peak height velocity; a corresponding window for average maturing girls was not apparent. Compared with observed age at peak height velocity, predicted ages at peak height velocity with the new and original equations were consistently later in early maturing youth and earlier in late maturing youth of both sexes. Predicted ages at peak height velocity with the new equations had reduced variation compared with the original equations and especially observed ages at peak height velocity. Intra-individual variation in predicted ages at peak height velocity with all equations was considerable. The new equations are useful for average maturing boys close to the time of peak height velocity; there does not appear to be a clear window for average maturing girls. The new and original equations have major limitations with early and late maturing boys and girls.

  5. Are chirps better than clicks and tonebursts for evoking middle latency responses?

    PubMed

    Atcherson, Samuel R; Moore, Page C

    2014-06-01

    The middle latency response (MLR) is considered a valid clinical tool for assessing the integrity of cortical and subcortical structures. Several investigators have demonstrated that a rising frequency chirp stimulus is capable of eliciting not only larger wave V amplitudes but larger MLR components as well. However, the chirp has never been specifically examined in a hemispheric electrode montage setup that is typical for neurodiagnostic application and site-of-lesion testing. The purpose of this study was to examine the effect of chirp, click, and toneburst stimuli on MLR waveform peak latency and peak-to-peak amplitude in a hemispheric electrode montage setup. This study used a repeated-measures design. A total of 10 young adult participants (3 males, 7 females) with normal hearing were recruited and had negative histories of audiologic, otologic, and neurologic involvement, and no reported language or learning difficulties. MLR latencies (Na, Pa, Nb, and Pb) and peak-to-peak amplitudes (Na-Pa, Pa-Nb, and Nb-Pb) were measured for all conditions and were statistically evaluated for left hemisphere-right ear (C3-A2) and right hemisphere-left ear (C4-A1) recordings. Statistical analyses revealed no significant difference between C3-A2 and C4-A1 peak-to-peak amplitudes; therefore, data were collapsed. Stimulus comparisons revealed that Na evoked by tonebursts were statistically prolonged compared with both chirp and click, and that both Na-Pa and Pa-Nb peak-to-peak amplitudes were statistically larger for chirps compared with both clicks and tonebursts, and for clicks compared with tonebursts. The results of this study support the hypothesis that a chirp would offer a clinical advantage to the click and toneburst in overall peak-to-peak amplitude. As expected, normal-hearing participants did not exhibit hemispheric differences when comparing C3-A2 and C4-A1 peak-to-peak amplitudes demonstrating symmetric auditory brain function. However, chirp-evoked MLRs will require further study to determine its usefulness in clinical practice. American Academy of Audiology.

  6. Identification of a PEAK1/ZEB1 signaling axis during TGFβ/fibronectin-induced EMT in breast cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agajanian, Megan; Runa, Farhana; Kelber, Jonathan A., E-mail: jonathan.kelber@csun.edu

    Transforming Growth Factor beta (TGFβ) is the archetypal member of the TGFβ superfamily of ligands and has pleiotropic functions during normal development, adult tissue homeostasis and pathophysiological processes such as cancer. In epithelial cancers TGFβ signaling can either suppress tumor growth or promote metastasis via the induction of a well-characterized epithelial–mesenchymal transition (EMT) program. We recently reported that PEAK1 kinase mediates signaling cross talk between TGFβ receptors and integrin/Src/MAPK pathways and functions as a critical molecular regulator of TGFβ-induced breast cancer cell proliferation, migration, EMT and metastasis. Here, we examined the breast cancer cell contexts in which TGFβ induces bothmore » EMT and PEAK1, and discovered this event to be unique to oncogene-transformed mammary epithelial cells and triple-negative breast cancer cells. Using the Cancer BioPortal database, we identified PEAK1 co-expressors across multiple malignancies that are also common to the TGFβ response gene signature (TBRS). We then used the ScanSite database to identify predicted protein–protein binding partners of PEAK1 and the PEAK1-TBRS co-expressors. Analysis of the Cytoscape interactome and Babelomics-derived gene ontologies for a novel gene set including PEAK1, CRK, ZEB1, IL11 and COL4A1 enabled us to hypothesize that PEAK1 may be regulating TGFβ-induced EMT via its interaction with or regulation of these other genes. In this regard, we have demonstrated that PEAK1 is necessary for TGFβ to induce ZEB1-mediated EMT in the context of fibronectin/ITGB3 activation. These studies and future mechanistic studies will pave the way toward identifying the context in which TGFβ blockade may significantly improve breast cancer patient outcomes. - Highlights: • PEAK1 is upregulated in mammary epithelial cells during TGFβ-induced EMT. • TGFβ-induced EMT upregulates PEAK1 in triple negative breast cancer. • PEAK1 is necessary for TGFβ/fibronectin-induced ZEB1 expression during EMT. • The PEAK1/CRK/ZEB1 pathway is a novel target for blocking EMT in breast cancer.« less

  7. Ion mobility spectrometric analysis of vaporous chemical warfare agents by the instrument with corona discharge ionization ammonia dopant ambient temperature operation.

    PubMed

    Satoh, Takafumi; Kishi, Shintaro; Nagashima, Hisayuki; Tachikawa, Masumi; Kanamori-Kataoka, Mieko; Nakagawa, Takao; Kitagawa, Nobuyoshi; Tokita, Kenichi; Yamamoto, Soichiro; Seto, Yasuo

    2015-03-20

    The ion mobility behavior of nineteen chemical warfare agents (7 nerve gases, 5 blister agents, 2 lachrymators, 2 blood agents, 3 choking agents) and related compounds including simulants (8 agents) and organic solvents (39) was comparably investigated by the ion mobility spectrometry instrument utilizing weak electric field linear drift tube with corona discharge ionization, ammonia doping, purified inner air drift flow circulation operated at ambient temperature and pressure. Three alkyl methylphosphonofluoridates, tabun, and four organophosphorus simulants gave the intense characteristic positive monomer-derived ion peaks and small dimer-derived ion peaks, and the later ion peaks were increased with the vapor concentrations. VX, RVX and tabun gave both characteristic positive monomer-derived ions and degradation product ions. Nitrogen mustards gave the intense characteristic positive ion peaks, and in addition distinctive negative ion peak appeared from HN3. Mustard gas, lewisite 1, o-chlorobenzylidenemalononitrile and 2-mercaptoethanol gave the characteristic negative ion peaks. Methylphosphonyl difluoride, 2-chloroacetophenone and 1,4-thioxane gave the characteristic ion peaks both in the positive and negative ion mode. 2-Chloroethylethylsulfide and allylisothiocyanate gave weak ion peaks. The marker ion peaks derived from two blood agents and three choking agents were very close to the reactant ion peak in negative ion mode and the respective reduced ion mobility was fluctuated. The reduced ion mobility of the CWA monomer-derived peaks were positively correlated with molecular masses among structurally similar agents such as G-type nerve gases and organophosphorus simulants; V-type nerve gases and nitrogen mustards. The slope values of the calibration plots of the peak heights of the characteristic marker ions versus the vapor concentrations are related to the detection sensitivity, and within chemical warfare agents examined the slope values for sarin, soman, tabun and nitrogen mustards were higher. Some CWA simulants and organic solvents gave the ion peaks eluting at the similar positions of the CWAs, resulting in false positive alarms. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Experimental investigation of the 100 keV X-ray dose response of the high-temperature thermoluminescence in LiF:Mg,Ti (TLD-100): theoretical interpretation using the unified interaction model.

    PubMed

    Livingstone, J; Horowitz, Y S; Oster, L; Datz, H; Lerch, M; Rosenfeld, A; Horowitz, A

    2010-03-01

    The dose response of LiF:Mg,Ti (TLD-100) chips was measured from 1 to 50,000 Gy using 100 keV X rays at the European Synchroton Radiation Facility. Glow curves were deconvoluted into component glow peaks using a computerised glow curve deconvolution (CGCD) code based on first-order kinetics. The normalised dose response, f(D), of glow peaks 4 and 5 and 5b (the major components of composite peak 5), as well as peaks 7 and 8 (two of the major components of the high-temperature thermoluminescence (HTTL) at high levels of dose) was separately determined and theoretically interpreted using the unified interaction model (UNIM). The UNIM is a nine-parameter model encompassing both the irradiation/absorption stage and the thermally induced relaxation/recombination stage with an admixture of both localised and delocalised recombination mechanisms. The effects of radiation damage are included in the present modelling via the exponential removal of luminescent centres (LCs) at high dose levels. The main features of the experimentally measured dose response are: (i) increase in f(D)(max) with glow peak temperature, (ii) increase in D(max) (the dose level at which f(D)(max) occurs) with increasing glow peak temperature, and (iii) decreased effects of radiation damage with increasing glow peak temperature. The UNIM interpretation of this behaviour requires both strongly decreasing values of ks (the relative contribution of localised recombination) as a function of glow peak temperature and, as well, significantly different values of the dose-filling constants of the trapping centre (TC) and LC for peaks 7 and 8 than those used for peaks 4 and 5. This suggests that different TC/LC configurations are responsible for HTTL. The relative intensity of peak 5a (a low-temperature satellite of peak 5 arising from localised recombination) was found to significantly increase at higher dose levels due to preferential electron and hole population of the trapping/recombination complex giving rise to composite glow peak 5. It is also demonstrated that possible changes in the trapping cross section of the LC and the competitive centres due to increasing sample/glow peak temperature do not significantly influence these observations/conclusions.

  9. The effect of intermittent standing or walking during head down tilt bedrest on peak O2 consumption

    NASA Technical Reports Server (NTRS)

    Ertl, A. C.; Dearborn, A. S.; Vernikos, J.

    1992-01-01

    The cardiovascular aspect of bedrest deconditioning is manifested by decreases in peak O2 uptake (VO(sub 2 peak)) during minimal exercise. The effect of intermittent standing (+G(z)) or walking (+G(z)W) during 4 days of 7 degree Head Down Tilt bedrest (HDT) on VO(sub 2 peak) was evaluated. Methods: Five protocols were performed by eight male subjects; control (C) consisting of complete bedrest, and 15 minute periods to total 2 or 4 hours daily of standing (+G(z)(exp 2) and +G(z)(exp 4) respectively) or walking at 3.0 MPH (+G(z)W2 and +G(z)W4 respectively). Subjects performed VO(sub 2 peak) tests prior to and on the final day of HDT. VO(sub 2 peak) was determined using open circuit indirect calorimetry during supine leg cycling ergometry. After a 5 minute warmup, three 2 minute incremental loads of 33 W previously determined to elicit VO(sub 2 peak) were given and the subject cycled to volitional fatigue. Results: The C protocol VO(sub 2 peak) decreased by 16 percent (2.71 plus or minus 0.16 to 2.27 plus or minus 0.14 L/min) and 11 percent in +G(z)(exp 4) (2.72 plus or minus 0.15 to 2.43 plus or minus 0.14 L/min). With +G(z)W2 VO(sub 2 peak) decreased by 9 percent (2.71 plus or minus 0.17 to 2.46 plus or minus 0.14 L/min) and with +G(z)W4, VO(sub 2 peak) decreased by 10 percent (2.71 plus or minus 0.14 to 2.43 plus or minus 0.14 L/min). VO(sub 2 peak) in all protocols decreased with HDT (P less than 0.05). The decrease in C VO(sub 2 peak) was significantly greater (P less than 0.05) than the decreases in either +G(z) or +G(z)W protocols. Conclusion: The deconditioning that occurs after only 4 days of HDT was demonstrated by decreases in VO(sub 2 peak). Intermittent +G(z) or +G(z)W attenuated, but did not prevent, the decrease in VO(sub 2 peak) with HDT.

  10. Achieving high peak capacity production for gas chromatography and comprehensive two-dimensional gas chromatography by minimizing off-column peak broadening.

    PubMed

    Wilson, Ryan B; Siegler, W Christopher; Hoggard, Jamin C; Fitz, Brian D; Nadeau, Jeremy S; Synovec, Robert E

    2011-05-27

    By taking into consideration band broadening theory and using those results to select experimental conditions, and also by reducing the injection pulse width, peak capacity production (i.e., peak capacity per separation time) is substantially improved for one dimensional (1D-GC) and comprehensive two dimensional (GC×GC) gas chromatography. A theoretical framework for determining the optimal linear gas velocity (the linear gas velocity producing the minimum H), from experimental parameters provides an in-depth understanding of the potential for GC separations in the absence of extra-column band broadening. The extra-column band broadening is referred to herein as off-column band broadening since it is additional band broadening not due to the on-column separation processes. The theory provides the basis to experimentally evaluate and improve temperature programmed 1D-GC separations, but in order to do so with a commercial 1D-GC instrument platform, off-column band broadening from injection and detection needed to be significantly reduced. Specifically for injection, a resistively heated transfer line is coupled to a high-speed diaphragm valve to provide a suitable injection pulse width (referred to herein as modified injection). Additionally, flame ionization detection (FID) was modified to provide a data collection rate of 5kHz. The use of long, relatively narrow open tubular capillary columns and a 40°C/min programming rate were explored for 1D-GC, specifically a 40m, 180μm i.d. capillary column operated at or above the optimal average linear gas velocity. Injection using standard auto-injection with a 1:400 split resulted in an average peak width of ∼1.5s, hence a peak capacity production of 40peaks/min. In contrast, use of modified injection produced ∼500ms peak widths for 1D-GC, i.e., a peak capacity production of 120peaks/min (a 3-fold improvement over standard auto-injection). Implementation of modified injection resulted in retention time, peak width, peak height, and peak area average RSD%'s of 0.006, 0.8, 3.4, and 4.0%, respectively. Modified injection onto the first column of a GC×GC coupled with another high-speed valve injection onto the second column produced an instrument with high peak capacity production (500-800peaks/min), ∼5-fold to 8-fold higher than typically reported for GC×GC. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. The Transition from Complex Crater to Peak-Ring Basin on the Moon: New Observations from the Lunar Orbiter Laser Altimeter (LOLA) Instrument

    NASA Technical Reports Server (NTRS)

    Baker, David M. H.; Head, James W.; Fassett, Caleb I.; Kadish, Seth J.; Smith, Dave E.; Zuber, Maria T.; Neumann, Gregory A.

    2012-01-01

    Impact craters on planetary bodies transition with increasing size from simple, to complex, to peak-ring basins and finally to multi-ring basins. Important to understanding the relationship between complex craters with central peaks and multi-ring basins is the analysis of protobasins (exhibiting a rim crest and interior ring plus a central peak) and peak-ring basins (exhibiting a rim crest and an interior ring). New data have permitted improved portrayal and classification of these transitional features on the Moon. We used new 128 pixel/degree gridded topographic data from the Lunar Orbiter Laser Altimeter (LOLA) instrument onboard the Lunar Reconnaissance Orbiter, combined with image mosaics, to conduct a survey of craters >50 km in diameter on the Moon and to update the existing catalogs of lunar peak-ring basins and protobasins. Our updated catalog includes 17 peak-ring basins (rim-crest diameters range from 207 km to 582 km, geometric mean = 343 km) and 3 protobasins (137-170 km, geometric mean = 157 km). Several basins inferred to be multi-ring basins in prior studies (Apollo, Moscoviense, Grimaldi, Freundlich-Sharonov, Coulomb-Sarton, and Korolev) are now classified as peak-ring basins due to their similarities with lunar peak-ring basin morphologies and absence of definitive topographic ring structures greater than two in number. We also include in our catalog 23 craters exhibiting small ring-like clusters of peaks (50-205 km, geometric mean = 81 km); one (Humboldt) exhibits a rim-crest diameter and an interior morphology that may be uniquely transitional to the process of forming peak rings. Comparisons of the predictions of models for the formation of peak-ring basins with the characteristics of the new basin catalog for the Moon suggest that formation and modification of an interior melt cavity and nonlinear scaling of impact melt volume with crater diameter provide important controls on the development of peak rings. In particular, a power-law model of growth of an interior melt cavity with increasing crater diameter is consistent with power-law fits to the peak-ring basin data for the Moon and Mercury. We suggest that the relationship between the depth of melting and depth of the transient cavity offers a plausible control on the onset diameter and subsequent development of peak-ring basins and also multi-ring basins, which is consistent with both planetary gravitational acceleration and mean impact velocity being important in determining the onset of basin morphological forms on the terrestrial planets.

  12. Techniques for Estimating the Magnitude and Frequency of Peak Flows on Small Streams in Minnesota Based on Data through Water Year 2005

    USGS Publications Warehouse

    Lorenz, David L.; Sanocki, Chris A.; Kocian, Matthew J.

    2010-01-01

    Knowledge of the peak flow of floods of a given recurrence interval is essential for regulation and planning of water resources and for design of bridges, culverts, and dams along Minnesota's rivers and streams. Statistical techniques are needed to estimate peak flow at ungaged sites because long-term streamflow records are available at relatively few places. Because of the need to have up-to-date peak-flow frequency information in order to estimate peak flows at ungaged sites, the U.S. Geological Survey (USGS) conducted a peak-flow frequency study in cooperation with the Minnesota Department of Transportation and the Minnesota Pollution Control Agency. Estimates of peak-flow magnitudes for 1.5-, 2-, 5-, 10-, 25-, 50-, 100-, and 500-year recurrence intervals are presented for 330 streamflow-gaging stations in Minnesota and adjacent areas in Iowa and South Dakota based on data through water year 2005. The peak-flow frequency information was subsequently used in regression analyses to develop equations relating peak flows for selected recurrence intervals to various basin and climatic characteristics. Two statistically derived techniques-regional regression equation and region of influence regression-can be used to estimate peak flow on ungaged streams smaller than 3,000 square miles in Minnesota. Regional regression equations were developed for selected recurrence intervals in each of six regions in Minnesota: A (northwestern), B (north central and east central), C (northeastern), D (west central and south central), E (southwestern), and F (southeastern). The regression equations can be used to estimate peak flows at ungaged sites. The region of influence regression technique dynamically selects streamflow-gaging stations with characteristics similar to a site of interest. Thus, the region of influence regression technique allows use of a potentially unique set of gaging stations for estimating peak flow at each site of interest. Two methods of selecting streamflow-gaging stations, similarity and proximity, can be used for the region of influence regression technique. The regional regression equation technique is the preferred technique as an estimate of peak flow in all six regions for ungaged sites. The region of influence regression technique is not appropriate for regions C, E, and F because the interrelations of some characteristics of those regions do not agree with the interrelations throughout the rest of the State. Both the similarity and proximity methods for the region of influence technique can be used in the other regions (A, B, and D) to provide additional estimates of peak flow. The peak-flow-frequency estimates and basin characteristics for selected streamflow-gaging stations and regional peak-flow regression equations are included in this report.

  13. Re-Evaluation of the 1921 Peak Discharge at Skagit River near Concrete, Washington

    USGS Publications Warehouse

    Mastin, M.C.

    2007-01-01

    The peak discharge record at the U.S. Geological Survey (USGS) gaging station at Skagit River near Concrete, Washington, is a key record that has come under intense scrutiny by the scientific and lay person communities in the last 4 years. A peak discharge of 240,000 cubic feet per second for the flood on December 13, 1921, was determined in 1923 by USGS hydrologist James Stewart by means of a slope-area measurement. USGS then determined the peak discharges of three other large floods on the Skagit River (1897, 1909, and 1917) by extending the stage-discharge rating through the 1921 flood measurement. The 1921 estimate of peak discharge was recalculated by Flynn and Benson of the USGS after a channel roughness verification was completed based on the 1949 flood on the Skagit River. The 1949 recalculation indicated that the peak discharge probably was 6.2 percent lower than Stewart's original estimate but the USGS did not officially change the peak discharge from Stewart's estimate because it was not more than a 10-percent change (which is the USGS guideline for revising peak flows) and the estimate already had error bands of 15 percent. All these flood peaks are now being used by the U.S. Army Corps of Engineers to determine the 100-year flood discharge for the Skagit River Flood Study so any method to confirm or improve the 1921 peak discharge estimate is warranted. During the last 4 years, two floods have occurred on the Skagit River (2003, 2006) that has enabled the USGS to collect additional data, do further analysis, and yet again re-evaluate the 1921 peak discharge estimate. Since 1949, an island/bar in the study reach has reforested itself. This has complicated the flow hydraulics and made the most recent recalculation of the 1921 flood based on channel roughness verification that used 2003 and 2006 flood data less reliable. However, this recent recalculation did indicate that the original peak-discharge calculation by Stewart may be high, and it added to a body of evidence that indicates a revision in the 1921 peak discharge estimate is appropriate. The USGS has determined that a lower peak-discharge estimate (5.0 percent lower) similar to the 1949 estimates is most appropriate based on (1) a recalculation of the 1921 flood using a channel roughness verification from the 1949 flood data, (2) a recalculation of the 1921 flood using a channel roughness verification from 2003 and 2006 flood data, and (3) straight-line extension of the stage-discharge relation at the gage based on current-meter discharge measurements. Given the significance of the 1921 flood peak, revising the estimate is appropriate even though it is less than the 10-percent guideline established by the USGS for revision. Revising the peak is warranted because all work subsequent to 1921 point to the 1921 peak being lower than originally published.

  14. Current responsive devices for synchronous generators

    DOEpatents

    Karlicek, R.F.

    1983-09-27

    A device for detecting current imbalance between phases of a polyphase alternating current generator. A detector responds to the maximum peak current in the generator, and detecting means generates an output for each phase proportional to the peak current of each phase. Comparing means generates an output when the maximum peak current exceeds the phase peak current. 11 figs.

  15. Reward Value Effects on Timing in the Peak Procedure

    ERIC Educational Resources Information Center

    Galtress, Tiffany; Kirkpatrick, Kimberly

    2009-01-01

    Three experiments examined the effect of motivational variables on timing in the peak procedure. In Experiment 1, rats received a 60-s peak procedure that was coupled with long-term, between-phase changes in reinforcer magnitude. Increases in reinforcer magnitude produced a leftward shift in the peak that persisted for 20 sessions of training. In…

  16. 40 CFR Appendix E to Part 75 - Optional NOX Emissions Estimation Protocol for Gas-Fired Peaking Units and Oil-Fired Peaking Units

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Optional NOX Emissions Estimation Protocol for Gas-Fired Peaking Units and Oil-Fired Peaking Units E Appendix E to Part 75 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION...

  17. 40 CFR Appendix E to Part 75 - Optional NOX Emissions Estimation Protocol for Gas-Fired Peaking Units and Oil-Fired Peaking Units

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Optional NOX Emissions Estimation Protocol for Gas-Fired Peaking Units and Oil-Fired Peaking Units E Appendix E to Part 75 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION...

  18. 78 FR 25486 - Luminant Generation Company, LLC., Combined License Application for Comanche Peak Nuclear Power...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-01

    ... Company, LLC., Combined License Application for Comanche Peak Nuclear Power Plant, Units 3 and 4... Regulations (10 CFR), for the Comanche Peak Nuclear Power Plant (CPNPP), Units 3 and 4, Combined License (COL... Peak Nuclear Power Plant, Units 3 and 4,'' dated May 13, 2011. Agencies and Persons Consulted On March...

  19. Deconvolution method for accurate determination of overlapping peak areas in chromatograms.

    PubMed

    Nelson, T J

    1991-12-20

    A method is described for deconvoluting chromatograms which contain overlapping peaks. Parameters can be selected to ensure that attenuation of peak areas is uniform over any desired range of peak widths. A simple extension of the method greatly reduces the negative overshoot frequently encountered with deconvolutions. The deconvoluted chromatograms are suitable for integration by conventional methods.

  20. Energetics and timing of the hard and soft X-ray emissions in white light flares

    NASA Technical Reports Server (NTRS)

    Neidig, Donald F.; Kane, Sharad R.

    1993-01-01

    By comparing the light curves in optical, hard X-ray, and soft X-ray wavelengths for eight well-observed flares, we confirm previous results indicating that the white light flare (WLF) is associated with the flare impulsive phase. The WLF emission peaks within seconds after the associated hard X-ray peak, and nearly two minutes before the 1-8 A soft X-ray peak. It is further shown that the peak power in nonthermal electrons above 50 keV is typically an order of magnitude larger, and the power in 1-8 A soft X-rays radiated over 2pi sr, at the time of the WLF peak, is an order of magnitude smaller than the peak WLF power.

  1. Exact extraction method for road rutting laser lines

    NASA Astrophysics Data System (ADS)

    Hong, Zhiming

    2018-02-01

    This paper analyzes the importance of asphalt pavement rutting detection in pavement maintenance and pavement administration in today's society, the shortcomings of the existing rutting detection methods are presented and a new rutting line-laser extraction method based on peak intensity characteristic and peak continuity is proposed. The intensity of peak characteristic is enhanced by a designed transverse mean filter, and an intensity map of peak characteristic based on peak intensity calculation for the whole road image is obtained to determine the seed point of the rutting laser line. Regarding the seed point as the starting point, the light-points of a rutting line-laser are extracted based on the features of peak continuity, which providing exact basic data for subsequent calculation of pavement rutting depths.

  2. Diurnal Course of Evaporation From the Dead Sea in Summer: A Distinct Double Peak Induced by Solar Radiation and Night Sea Breeze

    NASA Astrophysics Data System (ADS)

    Lensky, N. G.; Lensky, I. M.; Peretz, A.; Gertman, I.; Tanny, J.; Assouline, S.

    2018-01-01

    Partitioning between the relative effects of the radiative and aerodynamic components of the atmospheric forcing on evaporation is challenging since diurnal distributions of wind speed and solar radiation typically overlap. The Dead Sea is located about a 100 km off the Eastern Mediterranean coast, where and the Mediterranean Sea breeze front reaches it after sunset. Therefore, in the Dead Sea the peaks of solar radiation and wind speed diurnal cycles in the Dead Sea are distinctly separated in time, offering a unique opportunity to distinguish between their relative impacts on evaporation. We present mid-summer eddy covariance and meteorological measurements of evaporation rate and surface energy fluxes over the Dead Sea. The evaporation rate is characterized by a clear diurnal cycle with a daytime peak, few hours after solar radiation peak, and a nighttime peak coincident with wind speed peak. Evaporation rate is minimum during sunrise and sunset. Measurements of evaporation rate from two other water bodies that are closer to the Mediterranean coast, Eshkol Reservoir, and Lake Kinneret, present a single afternoon peak, synchronous with the sea breeze. The inland diurnal evaporation rate cycle varies with the distance from the Mediterranean coast, following the propagation of sea breeze front: near the coast, wind speed, and radiation peaks are close and consequently a single daily evaporation peak appears in the afternoon; at the Dead Sea, about a 100 km inland, the sea breeze front arrives at sunset, resulting in a diurnal evaporation cycle characterized by a distinct double peak.

  3. Spectral Changes in Metal Halide and High-pressure Sodium Lamps Equipped with Electronic Dimming

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.; Sargis, Raman; Wilson, David

    1995-01-01

    Electronic dimming of high-intensity discharge lamps offers control of photosynthetic photon flux (PPF) but is often characterized as causing significant spectral changes. Growth chambers with 400-W metal halide (MH) and high-pressure sodium (HPS) lamps were equipped with a dimmer system using silicon-controlled rectifiers (SCR) as high-speed switches. Phase control operation turned the line power off for some period of the alternating current cycle. At full power, the electrical input to HPS and MH lamps was 480 W (root mean squared) and could be decreased to 267 W and 428 W, respectively, before the arc was extinguished. Concomitant with this decrease in input power, PPF decreased by 60% in HPS and 50% in MH. The HPS lamp has characteristic spectral peaks at 589 and 595 nm. As power to the HPS lamps was decreased, the 589-nm peak remained constant while the 595-nm peak decreased, equaling the 589-nm peak at 345-W input, and the 589-nm peak was almost absent at 270-W input. The MH lamp has a broader spectral output but also has a peak at 589 nm and another smaller peak at 545 nm. As input power to the MH lamps decreased, the peak at 589 diminished to equal the 545-nm peak. As input power approached 428 W, the 589-nm peak shifted to 570 nm. While the spectrum changed as input power was decreased in the MH and HPS lamps, the phytochrome equilibrium ratio (P(sub fr):P(sub tot)) remains unchanged for both lamp types.

  4. Improved Peak Detection and Deconvolution of Native Electrospray Mass Spectra from Large Protein Complexes.

    PubMed

    Lu, Jonathan; Trnka, Michael J; Roh, Soung-Hun; Robinson, Philip J J; Shiau, Carrie; Fujimori, Danica Galonic; Chiu, Wah; Burlingame, Alma L; Guan, Shenheng

    2015-12-01

    Native electrospray-ionization mass spectrometry (native MS) measures biomolecules under conditions that preserve most aspects of protein tertiary and quaternary structure, enabling direct characterization of large intact protein assemblies. However, native spectra derived from these assemblies are often partially obscured by low signal-to-noise as well as broad peak shapes because of residual solvation and adduction after the electrospray process. The wide peak widths together with the fact that sequential charge state series from highly charged ions are closely spaced means that native spectra containing multiple species often suffer from high degrees of peak overlap or else contain highly interleaved charge envelopes. This situation presents a challenge for peak detection, correct charge state and charge envelope assignment, and ultimately extraction of the relevant underlying mass values of the noncovalent assemblages being investigated. In this report, we describe a comprehensive algorithm developed for addressing peak detection, peak overlap, and charge state assignment in native mass spectra, called PeakSeeker. Overlapped peaks are detected by examination of the second derivative of the raw mass spectrum. Charge state distributions of the molecular species are determined by fitting linear combinations of charge envelopes to the overall experimental mass spectrum. This software is capable of deconvoluting heterogeneous, complex, and noisy native mass spectra of large protein assemblies as demonstrated by analysis of (1) synthetic mononucleosomes containing severely overlapping peaks, (2) an RNA polymerase II/α-amanitin complex with many closely interleaved ion signals, and (3) human TriC complex containing high levels of background noise. Graphical Abstract ᅟ.

  5. Weak Lensing Peaks in Simulated Light-Cones: Investigating the Coupling between Dark Matter and Dark Energy

    NASA Astrophysics Data System (ADS)

    Giocoli, Carlo; Moscardini, Lauro; Baldi, Marco; Meneghetti, Massimo; Metcalf, Robert B.

    2018-05-01

    In this paper, we study the statistical properties of weak lensing peaks in light-cones generated from cosmological simulations. In order to assess the prospects of such observable as a cosmological probe, we consider simulations that include interacting Dark Energy (hereafter DE) models with coupling term between DE and Dark Matter. Cosmological models that produce a larger population of massive clusters have more numerous high signal-to-noise peaks; among models with comparable numbers of clusters those with more concentrated haloes produce more peaks. The most extreme model under investigation shows a difference in peak counts of about 20% with respect to the reference ΛCDM model. We find that peak statistics can be used to distinguish a coupling DE model from a reference one with the same power spectrum normalisation. The differences in the expansion history and the growth rate of structure formation are reflected in their halo counts, non-linear scale features and, through them, in the properties of the lensing peaks. For a source redshift distribution consistent with the expectations of future space-based wide field surveys, we find that typically seventy percent of the cluster population contributes to weak-lensing peaks with signal-to-noise ratios larger than two, and that the fraction of clusters in peaks approaches one-hundred percent for haloes with redshift z ≤ 0.5. Our analysis demonstrates that peak statistics are an important tool for disentangling DE models by accurately tracing the structure formation processes as a function of the cosmic time.

  6. Visual stimulus eccentricity affects human gamma peak frequency.

    PubMed

    van Pelt, Stan; Fries, Pascal

    2013-09-01

    The peak frequency of neuronal gamma-band synchronization has received much attention in recent years. Gamma peak frequency shifts to higher frequency values for higher contrast, faster moving, and attended stimuli. In monkey V1, gamma peak frequency for a drifting grating is higher for a parafoveal as compared to an eccentric stimulus (Lima et al., 2010). This effect might be due to the cortical magnification factor: the higher cortical magnification for parafoveal stimuli increases the velocity with which the cortical representations of the moving grating stripes move across the cortical surface. Since faster moving stimuli lead to higher gamma frequency, a faster moving cortical representation might do the same. This explanation predicts that the eccentricity effect on gamma peak frequency is absent for stationary stimuli. To test this, we investigated the effect of eccentricity on gamma peak frequency by recording magnetoencephalography in human subjects while they viewed moving or stationary gratings. We found that both the moving and the stationary stimuli induced lower peak frequencies for larger eccentricities, arguing against an explanation based on the cortical magnification factor. We further investigated whether this eccentricity effect was explained by differences in the size or the spatial frequency of the expected cortical activation. Neither of those explained the eccentricity effect. We propose that the different stimulus and top-down factors leading to higher gamma peak frequency all result in higher stimulus salience, that salience is translated into gamma peak frequency, and that gamma peak frequency might subserve the preferential processing of neuronal activity induced by salient stimuli. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Theoretical basis to measure the impact of short-lasting control of an infectious disease on the epidemic peak

    PubMed Central

    2011-01-01

    Background While many pandemic preparedness plans have promoted disease control effort to lower and delay an epidemic peak, analytical methods for determining the required control effort and making statistical inferences have yet to be sought. As a first step to address this issue, we present a theoretical basis on which to assess the impact of an early intervention on the epidemic peak, employing a simple epidemic model. Methods We focus on estimating the impact of an early control effort (e.g. unsuccessful containment), assuming that the transmission rate abruptly increases when control is discontinued. We provide analytical expressions for magnitude and time of the epidemic peak, employing approximate logistic and logarithmic-form solutions for the latter. Empirical influenza data (H1N1-2009) in Japan are analyzed to estimate the effect of the summer holiday period in lowering and delaying the peak in 2009. Results Our model estimates that the epidemic peak of the 2009 pandemic was delayed for 21 days due to summer holiday. Decline in peak appears to be a nonlinear function of control-associated reduction in the reproduction number. Peak delay is shown to critically depend on the fraction of initially immune individuals. Conclusions The proposed modeling approaches offer methodological avenues to assess empirical data and to objectively estimate required control effort to lower and delay an epidemic peak. Analytical findings support a critical need to conduct population-wide serological survey as a prior requirement for estimating the time of peak. PMID:21269441

  8. Influence of nitromethane concentration on ignition energy and explosion parameters in gaseous nitromethane/air mixtures.

    PubMed

    Zhang, Qi; Li, Wei; Lin, Da-Chao; He, Ning; Duan, Yun

    2011-01-30

    The aim of this paper is to provide new experimental data of the minimum ignition energy (MIE) of gaseous nitromethane/air mixtures to discuss the explosion pressure and the flame temperature as a function of nitromethane concentration. Observations on the influence of nitromethane concentration on combustion pressure and temperature through the pressure and temperature measure system show that peak temperature (the peak of combustion temperature wave) is always behind peak pressure (the peak of the combustion pressure wave) in arrival time, the peak combustion pressure of nitromethane increases in the range of its volume fraction 10-40% as the concentration of nitromethane increases, and it slightly decreases in the range of 40-50%. The maximum peak pressure is equal to 0.94 MPa and the minimum peak pressure 0.58 MPa. Somewhat similar to the peak pressure, the peak combustion temperature increases with the volume fraction of nitromethane in the range of 10-40%, and slightly decreases in 40-50%. The maximum peak temperature is 1340 °C and the minimum 860 °C. The combustion temperature rise rate increases with the concentration of nitromethane in 10-30%, while decreases in 30-50% and its maximum value of combustion temperature rise rate in 10-50% is 4200 °C/s at the volume fraction of 30%. Influence of the concentration of nitromethane on the combustion pressure rise rate is relatively complicated, and the maximum value of rise rate of combustion pressure wave in 10-50% is 11 MPa/s at the concentration 20%. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Jumping and hopping in elite and amateur orienteering athletes and correlations to sprinting and running.

    PubMed

    Hébert-Losier, Kim; Jensen, Kurt; Holmberg, Hans-Christer

    2014-11-01

    Jumping and hopping are used to measure lower-body muscle power, stiffness, and stretch-shortening-cycle utilization in sports, with several studies reporting correlations between such measures and sprinting and/or running abilities in athletes. Neither jumping and hopping nor correlations with sprinting and/or running have been examined in orienteering athletes. The authors investigated squat jump (SJ), countermovement jump (CMJ), standing long jump (SLJ), and hopping performed by 8 elite and 8 amateur male foot-orienteering athletes (29 ± 7 y, 183 ± 5 cm, 73 ± 7 kg) and possible correlations to road, path, and forest running and sprinting performance, as well as running economy, velocity at anaerobic threshold, and peak oxygen uptake (VO(2peak)) from treadmill assessments. During SJs and CMJs, elites demonstrated superior relative peak forces, times to peak force, and prestretch augmentation, albeit lower SJ heights and peak powers. Between-groups differences were unclear for CMJ heights, hopping stiffness, and most SLJ parameters. Large pairwise correlations were observed between relative peak and time to peak forces and sprinting velocities; time to peak forces and running velocities; and prestretch augmentation and forest-running velocities. Prestretch augmentation and time to peak forces were moderately correlated to VO(2peak). Correlations between running economy and jumping or hopping were small or trivial. Overall, the elites exhibited superior stretch-shortening-cycle utilization and rapid generation of high relative maximal forces, especially vertically. These functional measures were more closely related to sprinting and/or running abilities, indicating benefits of lower-body training in orienteering.

  10. Experimental observation of left polarized wave absorption near electron cyclotron resonance frequency in helicon antenna produced plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barada, Kshitish K.; Chattopadhyay, P. K.; Ghosh, J.

    2013-01-15

    Asymmetry in density peaks on either side of an m = +1 half helical antenna is observed both in terms of peak position and its magnitude with respect to magnetic field variation in a linear helicon plasma device [Barada et al., Rev. Sci. Instrum. 83, 063501 (2012)]. The plasma is produced by powering the m = +1 half helical antenna with a 2.5 kW, 13.56 MHz radio frequency source. During low magnetic field (B < 100 G) operation, plasma density peaks are observed at critical magnetic fields on either side of the antenna. However, the density peaks occurred at differentmore » critical magnetic fields on both sides of antenna. Depending upon the direction of the magnetic field, in the m = +1 propagation side, the main density peak has been observed around 30 G of magnetic field. On this side, the density peak around 5 G corresponding to electron cyclotron resonance (ECR) is not very pronounced, whereas in the m = -1 propagation side, very pronounced ECR peak has been observed around 5 G. Another prominent density peak around 12 G has also been observed in m = -1 side. However, no peak has been observed around 30 G on this m = -1 side. This asymmetry in the results on both sides is explained on the basis of polarization reversal of left hand polarized waves to right hand polarized waves and vice versa in a bounded plasma system. The density peaking phenomena are likely to be caused by obliquely propagating helicon waves at the resonance cone boundary.« less

  11. Role of peak current in conversion of patients with ventricular fibrillation.

    PubMed

    Anantharaman, Venkataraman; Wan, Paul Weng; Tay, Seow Yian; Manning, Peter George; Lim, Swee Han; Chua, Siang Jin Terrance; Mohan, Tiru; Rabind, Antony Charles; Vidya, Sudarshan; Hao, Ying

    2017-07-01

    Peak currents are the final arbiter of defibrillation in patients with ventricular fibrillation (VF). However, biphasic defibrillators continue to use energy in joules for electrical conversion in hopes that their impedance compensation properties will address transthoracic impedance (TTI), which must be overcome when a fixed amount of energy is delivered. However, optimal peak currents for conversion of VF remain unclear. We aimed to determine the role of peak current and optimal peak levels for conversion in collapsed VF patients. Adult, non-pregnant patients presenting with non-traumatic VF were included in the study. All defibrillations that occurred were included. Impedance values during defibrillation were used to calculate peak current values. The endpoint was return of spontaneous circulation (ROSC). Of the 197 patients analysed, 105 had ROSC. Characteristics of patients with and without ROSC were comparable. Short duration of collapse < 10 minutes correlated positively with ROSC. Generally, patients with average or high TTI converted at lower peak currents. 25% of patients with high TTI converted at 13.3 ± 2.3 A, 22.7% with average TTI at 18.2 ± 2.5 A and 18.6% with low TTI at 27.0 ± 4.7 A (p = 0.729). Highest peak current conversions were at < 15 A and 15-20 A. Of the 44 patients who achieved first-shock ROSC, 33 (75.0%) received < 20 A peak current vs. > 20 A for the remaining 11 (25%) patients (p = 0.002). For best effect, priming biphasic defibrillators to deliver specific peak currents should be considered. Copyright: © Singapore Medical Association

  12. Role of peak current in conversion of patients with ventricular fibrillation

    PubMed Central

    Anantharaman, Venkataraman; Wan, Paul Weng; Tay, Seow Yian; Manning, Peter George; Lim, Swee Han; Chua, Siang Jin Terrance; Mohan, Tiru; Rabind, Antony Charles; Vidya, Sudarshan; Hao, Ying

    2017-01-01

    INTRODUCTION Peak currents are the final arbiter of defibrillation in patients with ventricular fibrillation (VF). However, biphasic defibrillators continue to use energy in joules for electrical conversion in hopes that their impedance compensation properties will address transthoracic impedance (TTI), which must be overcome when a fixed amount of energy is delivered. However, optimal peak currents for conversion of VF remain unclear. We aimed to determine the role of peak current and optimal peak levels for conversion in collapsed VF patients. METHODS Adult, non-pregnant patients presenting with non-traumatic VF were included in the study. All defibrillations that occurred were included. Impedance values during defibrillation were used to calculate peak current values. The endpoint was return of spontaneous circulation (ROSC). RESULTS Of the 197 patients analysed, 105 had ROSC. Characteristics of patients with and without ROSC were comparable. Short duration of collapse < 10 minutes correlated positively with ROSC. Generally, patients with average or high TTI converted at lower peak currents. 25% of patients with high TTI converted at 13.3 ± 2.3 A, 22.7% with average TTI at 18.2 ± 2.5 A and 18.6% with low TTI at 27.0 ± 4.7 A (p = 0.729). Highest peak current conversions were at < 15 A and 15–20 A. Of the 44 patients who achieved first-shock ROSC, 33 (75.0%) received < 20 A peak current vs. > 20 A for the remaining 11 (25%) patients (p = 0.002). CONCLUSION For best effect, priming biphasic defibrillators to deliver specific peak currents should be considered. PMID:28741007

  13. KiDS-450: cosmological constraints from weak-lensing peak statistics - II: Inference from shear peaks using N-body simulations

    NASA Astrophysics Data System (ADS)

    Martinet, Nicolas; Schneider, Peter; Hildebrandt, Hendrik; Shan, HuanYuan; Asgari, Marika; Dietrich, Jörg P.; Harnois-Déraps, Joachim; Erben, Thomas; Grado, Aniello; Heymans, Catherine; Hoekstra, Henk; Klaes, Dominik; Kuijken, Konrad; Merten, Julian; Nakajima, Reiko

    2018-02-01

    We study the statistics of peaks in a weak-lensing reconstructed mass map of the first 450 deg2 of the Kilo Degree Survey (KiDS-450). The map is computed with aperture masses directly applied to the shear field with an NFW-like compensated filter. We compare the peak statistics in the observations with that of simulations for various cosmologies to constrain the cosmological parameter S_8 = σ _8 √{Ω _m/0.3}, which probes the (Ωm, σ8) plane perpendicularly to its main degeneracy. We estimate S8 = 0.750 ± 0.059, using peaks in the signal-to-noise range 0 ≤ S/N ≤ 4, and accounting for various systematics, such as multiplicative shear bias, mean redshift bias, baryon feedback, intrinsic alignment, and shear-position coupling. These constraints are ˜ 25 per cent tighter than the constraints from the high significance peaks alone (3 ≤ S/N ≤ 4) which typically trace single-massive haloes. This demonstrates the gain of information from low-S/N peaks. However, we find that including S/N < 0 peaks does not add further information. Our results are in good agreement with the tomographic shear two-point correlation function measurement in KiDS-450. Combining shear peaks with non-tomographic measurements of the shear two-point correlation functions yields a ˜20 per cent improvement in the uncertainty on S8 compared to the shear two-point correlation functions alone, highlighting the great potential of peaks as a cosmological probe.

  14. Structural parameters associated with location of peaks of peripapillary retinal nerve fiber layer thickness in young healthy eyes.

    PubMed

    Yamashita, Takehiro; Asaoka, Ryo; Kii, Yuya; Terasaki, Hiroto; Murata, Hiroshi; Sakamoto, Taiji

    2017-01-01

    The location of the peaks of the circumpapillary retinal nerve fiber layer (cpRNFL) thickness is affected by several ocular parameters. In this study, we have generated equations that can determine the peaks of the cpRNFL. This study was a prospective, observational, cross sectional study of 118 healthy right eyes. The axial length, optic disc tilt, superiortemporal (ST)- and inferiortemporal (IT)-peaks of the cpRNFL thickness, and angles of the ST and IT retinal arteries (RA) and veins (RV) were determined. The correlations between the location of the ST- and IT-peaks and ocular structural parameters and the sex, body height and weight were calculated. The best fit equations to generate the location of the ST/IT-peaks were determined using corrected-Akaike Information Criteria. The location of the ST-peak was 0.72+(0.40 x ST-RA)+(0.27 x ST-RV)+(0.14 x height)-(0.47 x papillo-macular-position)-(0.11 x disc tilt) with a coefficient of correlation of 0.61 (P<0.0001). The location of the IT-peak was 21.88+(0.53 x IT-RA)+(0.15 x IT-RV)+(0.041 x corneal thickness)-(1.00 x axial length) with a coefficient of correlation of 0.59 (P<0.0001). The location of ST/IT peaks is determined by different parameters of the ocular structure. These equations allow clinicians to obtain an accurate location of the peaks for a more accurate diagnosis of glaucoma.

  15. A search for evidence of solar rotation in Super-Kamiokande solar neutrino dataset

    NASA Astrophysics Data System (ADS)

    Desai, Shantanu; Liu, Dawei W.

    2016-09-01

    We apply the generalized Lomb-Scargle (LS) periodogram, proposed by Zechmeister and Kurster, to the solar neutrino data from Super-Kamiokande (Super-K) using data from its first five years. For each peak in the LS periodogram, we evaluate the statistical significance in two different ways. The first method involves calculating the False Alarm Probability (FAP) using non-parametric bootstrap resampling, and the second method is by calculating the difference in Bayesian Information Criterion (BIC) between the null hypothesis, viz. the data contains only noise, compared to the hypothesis that the data contains a peak at a given frequency. Using these methods, we scan the frequency range between 7-14 cycles per year to look for any peaks caused by solar rotation, since this is the proposed explanation for the statistically significant peaks found by Sturrock and collaborators in the Super-K dataset. From our analysis, we do confirm that similar to Sturrock et al, the maximum peak occurs at a frequency of 9.42/year, corresponding to a period of 38.75 days. The FAP for this peak is about 1.5% and the difference in BIC (between pure white noise and this peak) is about 4.8. We note that the significance depends on the frequency band used to search for peaks and hence it is important to use a search band appropriate for solar rotation. However, The significance of this peak based on the value of BIC is marginal and more data is needed to confirm if the peak persists and is real.

  16. Is time to peak effect of neuromuscular blocking agents dependent on dose? Testing the concept of buffered diffusion.

    PubMed

    Proost, J H; Houwertjes, M C; Wierda, J M K H

    2008-07-01

    For neuromuscular blocking agents, an inverse relationship between potency and time to peak effect has been observed. To test the hypothesis that this relationship is due to buffered diffusion, we investigated the influence of dose on time to peak effect. Pharmacokinetic-pharmacodynamic simulations were performed to support the expected relationships between potency, dose, peak effect and time to peak effect. Pigs (20-28 kg body weight) were anaesthetized with ketamine and midazolam, followed by pentobarbital and fentanyl intravenously. Neuromuscular block was measured by stimulating the peroneal nerve supramaximally at 0.1 Hz and measuring the response of the tibialis anterior muscle mechanomyographically. After an initial dose to establish the individual ED90 of a neuromuscular blocking agent (rocuronium, vecuronium, pipecuronium or d-tubocurarine), five different doses of the same compound were administered to each animal, aiming at 20%, 40%, 60%, 75% or 90% block, in a random order. Doses were given 45 min after complete recovery of the twitch response. For rocuronium and pipecuronium, time to peak effect increased with dose, whereas dose did not affect time to peak effect of vecuronium and d-tubocurarine. Simulations predict that time to peak effect decreases with dose if buffered diffusion is taken into account. The results suggest that buffered diffusion does not play a dominant role in the time to peak effect of neuromuscular blocking agents. Therefore it is unlikely that the observed inverse relationship between potency and time to peak effect of neuromuscular blocking agents in the clinical range is due to buffered diffusion.

  17. Uncertainty of the peak flow reconstruction of the 1907 flood in the Ebro River in Xerta (NE Iberian Peninsula)

    NASA Astrophysics Data System (ADS)

    Ruiz-Bellet, Josep Lluís; Castelltort, Xavier; Balasch, J. Carles; Tuset, Jordi

    2017-02-01

    There is no clear, unified and accepted method to estimate the uncertainty of hydraulic modelling results. In historical floods reconstruction, due to the lower precision of input data, the magnitude of this uncertainty could reach a high value. With the objectives of giving an estimate of the peak flow error of a typical historical flood reconstruction with the model HEC-RAS and of providing a quick, simple uncertainty assessment that an end user could easily apply, the uncertainty of the reconstructed peak flow of a major flood in the Ebro River (NE Iberian Peninsula) was calculated with a set of local sensitivity analyses on six input variables. The peak flow total error was estimated at ±31% and water height was found to be the most influential variable on peak flow, followed by Manning's n. However, the latter, due to its large uncertainty, was the greatest contributor to peak flow total error. Besides, the HEC-RAS resulting peak flow was compared to the ones obtained with the 2D model Iber and with Manning's equation; all three methods gave similar peak flows. Manning's equation gave almost the same result than HEC-RAS. The main conclusion is that, to ensure the lowest peak flow error, the reliability and precision of the flood mark should be thoroughly assessed.

  18. Aiding the Detection of QRS Complex in ECG Signals by Detecting S Peaks Independently.

    PubMed

    Sabherwal, Pooja; Singh, Latika; Agrawal, Monika

    2018-03-30

    In this paper, a novel algorithm for the accurate detection of QRS complex by combining the independent detection of R and S peaks, using fusion algorithm is proposed. R peak detection has been extensively studied and is being used to detect the QRS complex. Whereas, S peaks, which is also part of QRS complex can be independently detected to aid the detection of QRS complex. In this paper, we suggest a method to first estimate S peak from raw ECG signal and then use them to aid the detection of QRS complex. The amplitude of S peak in ECG signal is relatively weak than corresponding R peak, which is traditionally used for the detection of QRS complex, therefore, an appropriate digital filter is designed to enhance the S peaks. These enhanced S peaks are then detected by adaptive thresholding. The algorithm is validated on all the signals of MIT-BIH arrhythmia database and noise stress database taken from physionet.org. The algorithm performs reasonably well even for the signals highly corrupted by noise. The algorithm performance is confirmed by sensitivity and positive predictivity of 99.99% and the detection accuracy of 99.98% for QRS complex detection. The number of false positives and false negatives resulted while analysis has been drastically reduced to 80 and 42 against the 98 and 84 the best results reported so far.

  19. The generation of spring peak flows by short-term meteorological events

    Treesearch

    Harold F. Haupt

    1968-01-01

    Spring peak flows recorded over a 25-year period in Benton Creek, a small forested watershed in northern Idaho, were studied in their relation to meteorological events. More peak flows were generated by rain-on-snow than by clear-weather snowmelt; the two types of peaks differ in magnitude and in other characteristics. Two rather simple techniques were used to...

  20. Peak Discharge, Flood Frequency, and Peak Stage of Floods on Big Cottonwood Creek at U.S. Highway 50 Near Coaldale, Colorado, and Fountain Creek below U.S. Highway 24 in Colorado Springs, Colorado, 2016

    DOT National Transportation Integrated Search

    2017-12-14

    The U.S. Geological Survey (USGS), in cooperation with the Colorado Department of Transportation, determined the peak discharge, annual exceedance probability (flood frequency), and peak stage of two floods that took place on Big Cottonwood Creek at ...

  1. Review of Peak Detection Algorithms in Liquid-Chromatography-Mass Spectrometry

    PubMed Central

    Zhang, Jianqiu; Gonzalez, Elias; Hestilow, Travis; Haskins, William; Huang, Yufei

    2009-01-01

    In this review, we will discuss peak detection in Liquid-Chromatography-Mass Spectrometry (LC/MS) from a signal processing perspective. A brief introduction to LC/MS is followed by a description of the major processing steps in LC/MS. Specifically, the problem of peak detection is formulated and various peak detection algorithms are described and compared. PMID:20190954

  2. A Framework for Understanding and Generating Integrated Solutions for Residential Peak Energy Demand

    PubMed Central

    Buys, Laurie; Vine, Desley; Ledwich, Gerard; Bell, John; Mengersen, Kerrie; Morris, Peter; Lewis, Jim

    2015-01-01

    Supplying peak energy demand in a cost effective, reliable manner is a critical focus for utilities internationally. Successfully addressing peak energy concerns requires understanding of all the factors that affect electricity demand especially at peak times. This paper is based on past attempts of proposing models designed to aid our understanding of the influences on residential peak energy demand in a systematic and comprehensive way. Our model has been developed through a group model building process as a systems framework of the problem situation to model the complexity within and between systems and indicate how changes in one element might flow on to others. It is comprised of themes (social, technical and change management options) networked together in a way that captures their influence and association with each other and also their influence, association and impact on appliance usage and residential peak energy demand. The real value of the model is in creating awareness, understanding and insight into the complexity of residential peak energy demand and in working with this complexity to identify and integrate the social, technical and change management option themes and their impact on appliance usage and residential energy demand at peak times. PMID:25807384

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guiochon, Georges A; Shalliker, R. Andrew

    An algorithm was developed for 2DHPLC that automated the process of peak recognition, measuring their retention times, and then subsequently plotting the information in a two-dimensional retention plane. Following the recognition of peaks, the software then performed a series of statistical assessments of the separation performance, measuring for example, correlation between dimensions, peak capacity and the percentage of usage of the separation space. Peak recognition was achieved by interpreting the first and second derivatives of each respective one-dimensional chromatogram to determine the 1D retention times of each solute and then compiling these retention times for each respective fraction 'cut'. Duemore » to the nature of comprehensive 2DHPLC adjacent cut fractions may contain peaks common to more than one cut fraction. The algorithm determined which components were common in adjacent cuts and subsequently calculated the peak maximum profile by interpolating the space between adjacent peaks. This algorithm was applied to the analysis of a two-dimensional separation of an apple flesh extract separated in a first dimension comprising a cyano stationary phase and an aqueous/THF mobile phase as the first dimension and a second dimension comprising C18-Hydro with an aqueous/MeOH mobile phase. A total of 187 peaks were detected.« less

  4. Feature selection and classifier parameters estimation for EEG signals peak detection using particle swarm optimization.

    PubMed

    Adam, Asrul; Shapiai, Mohd Ibrahim; Tumari, Mohd Zaidi Mohd; Mohamad, Mohd Saberi; Mubin, Marizan

    2014-01-01

    Electroencephalogram (EEG) signal peak detection is widely used in clinical applications. The peak point can be detected using several approaches, including time, frequency, time-frequency, and nonlinear domains depending on various peak features from several models. However, there is no study that provides the importance of every peak feature in contributing to a good and generalized model. In this study, feature selection and classifier parameters estimation based on particle swarm optimization (PSO) are proposed as a framework for peak detection on EEG signals in time domain analysis. Two versions of PSO are used in the study: (1) standard PSO and (2) random asynchronous particle swarm optimization (RA-PSO). The proposed framework tries to find the best combination of all the available features that offers good peak detection and a high classification rate from the results in the conducted experiments. The evaluation results indicate that the accuracy of the peak detection can be improved up to 99.90% and 98.59% for training and testing, respectively, as compared to the framework without feature selection adaptation. Additionally, the proposed framework based on RA-PSO offers a better and reliable classification rate as compared to standard PSO as it produces low variance model.

  5. Improved Diagnostic Accuracy in Characterization of Adnexal Masses by Detection of Choline Peak Using 1H MR Spectroscopy in Comparison to Internal Reference at 3 Tesla.

    PubMed

    Malek, Mahrooz; Pourashraf, Maryam; Gilani, Mitra Modares; Gity, Masoumeh

    2015-01-01

    The aim of this study was to assess the role of the presence of a choline peak in 3 Tesla 1H magnetic resonance spectroscopy (MRS) for differentiating benign from malignant adnexal masses. A total of 46 adnexal masses (23 malignant and 23 benign) underwent 1H MRS study prior to surgery to assess the presence of choline peak. A choline peak was detected in 16 malignant masses (69.5%) and was absent in the other 7 (30.5%). A choline peak was only detected in 6 (26%) of the benign adnexal masses. The presence of an MRS choline peak had a sensitivity of 69.5%, a specificity of 74%, a positive predictive value (PPV) of 72.7%, and a negative predictive value (NPV) of 71% for diagnosing malignant adnexal masses. A significant difference between the frequency of mean choline peaks in benign and malignant adnexal masses was observed (P value<0.01). A 1H MRS choline peak is seen in malignant adnexal masses more frequently than the benign masses, and may be helpful for diagnosing malignant adnexal masses.

  6. Inner chromatogram projection (ICP) for resolution of GC-MS data with embedded chromatographic peaks.

    PubMed

    Wang, Zhi-Guo; Chen, Zeng-Ping; Gong, Fan; Wu, Hai-Long; Yu, Ru-Qin

    2002-05-01

    The chromatographic peak located inside another peak in the time direction is called an embedded or inner peak in contradistinction with the embedding peak, which is called an outer peak. The chemical components corresponding to inner and outer peaks are called inner and outer components, respectively. This special case of co-eluting chromatograms was investigated using chemometric approaches taking GC-MS as an example. A novel method, named inner chromatogram projection (ICP), for resolution of GC-MS data with embedded chromatographic peaks is derived. Orthogonal projection resolution is first utilized to obtain the chromatographic profile of the inner component. Projection of the two-way data matrix columnwise-normalized along the time direction to the normalized profile of the inner component found is subsequently performed to find the selective m/z points, if they exist, which represent the chromatogram of the outer component by itself. With the profiles obtained, the mass spectra can easily be found by means of a least-squares procedure. The results for both simulated data and real samples demonstrate that the proposed method is capable of achieving satisfactory resolution performance not affected by the shapes of chromatograms and the relative positions of the components involved.

  7. A framework for understanding and generating integrated solutions for residential peak energy demand.

    PubMed

    Buys, Laurie; Vine, Desley; Ledwich, Gerard; Bell, John; Mengersen, Kerrie; Morris, Peter; Lewis, Jim

    2015-01-01

    Supplying peak energy demand in a cost effective, reliable manner is a critical focus for utilities internationally. Successfully addressing peak energy concerns requires understanding of all the factors that affect electricity demand especially at peak times. This paper is based on past attempts of proposing models designed to aid our understanding of the influences on residential peak energy demand in a systematic and comprehensive way. Our model has been developed through a group model building process as a systems framework of the problem situation to model the complexity within and between systems and indicate how changes in one element might flow on to others. It is comprised of themes (social, technical and change management options) networked together in a way that captures their influence and association with each other and also their influence, association and impact on appliance usage and residential peak energy demand. The real value of the model is in creating awareness, understanding and insight into the complexity of residential peak energy demand and in working with this complexity to identify and integrate the social, technical and change management option themes and their impact on appliance usage and residential energy demand at peak times.

  8. A universal denoising and peak picking algorithm for LC-MS based on matched filtration in the chromatographic time domain.

    PubMed

    Andreev, Victor P; Rejtar, Tomas; Chen, Hsuan-Shen; Moskovets, Eugene V; Ivanov, Alexander R; Karger, Barry L

    2003-11-15

    A new denoising and peak picking algorithm (MEND, matched filtration with experimental noise determination) for analysis of LC-MS data is described. The algorithm minimizes both random and chemical noise in order to determine MS peaks corresponding to sample components. Noise characteristics in the data set are experimentally determined and used for efficient denoising. MEND is shown to enable low-intensity peaks to be detected, thus providing additional useful information for sample analysis. The process of denoising, performed in the chromatographic time domain, does not distort peak shapes in the m/z domain, allowing accurate determination of MS peak centroids, including low-intensity peaks. MEND has been applied to denoising of LC-MALDI-TOF-MS and LC-ESI-TOF-MS data for tryptic digests of protein mixtures. MEND is shown to suppress chemical and random noise and baseline fluctuations, as well as filter out false peaks originating from the matrix (MALDI) or mobile phase (ESI). In addition, MEND is shown to be effective for protein expression analysis by allowing selection of a large number of differentially expressed ICAT pairs, due to increased signal-to-noise ratio and mass accuracy.

  9. Identification of novel serum peptides biomarkers for female breast cancer patients in Western China.

    PubMed

    Yang, Juan; Xiong, Xiaofan; Liu, Siyuan; Zhu, Jiang; Luo, Mai; Liu, Liying; Zhao, Lingyu; Qin, Yannan; Song, Tusheng; Huang, Chen

    2016-03-01

    This study aimed to identify novel serum peptides biomarkers for female breast cancer (BC) patients. We analyzed the serum proteomic profiling of 247 serum samples from 96 BC patients, 48 additional paired pre- and postoperative BC patients, 39 fibroadenoma patients as benign disease controls, and 64 healthy controls, using magnetic-bead-based separation followed by MALDI-TOF MS. ClinProTools software identified 78 m/z peaks that differed among all analyzed groups, ten peaks were significantly different (P < 0.0001), with Peaks 1-6 upregulated and Peaks 7-10 downregulated in BC. Moreover, three peaks of ten (Peak 1, m/z: 2660.11; Peak 2, m/z: 1061.09; Peak 10, m/z: 1041.25) showed a tendency to return to healthy control values after surgery. And these three peptide biomarkers were identified as FGA605-629, ITIH4 347-356, and APOA2 43-52. Methods used in this study could generate serum peptidome profiles of BC, and provide a new approach to identify potential biomarkers for diagnosis as well as prognosis of this malignancy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Thermoluminescence kinetics of pyrite (FeS2)

    NASA Astrophysics Data System (ADS)

    Silverman, A. N.; Levy, P. W.; Kierstead, J. A.

    Thermoluminescence of pyrite (FeS2) was investigated to study the kinetics of single peak glow curves. The material used normally exhibits one large and four small peaks. However a glow curve can be obtained with only the large single peak that is suitable for testing thermoluminescence kinetics. Glow curves from aliquots of a single natural pyrite crystal studied in detail contain two low intensity thermoluminescence (TL) peaks at approximately 90 and 250 C, and two chemiluminescence (CL) peaks at approximately 350 and 430 C. The CL peaks are largely removable by initially heating the sample chamber under vacuum, pumping through liquid nitrogen traps, and recording glow curves immediately after helium is introduced, procedures which reduce system contaminants that react with pyrite. The shape, the variation of the temperature of the peak maximum (T(sub max)) with dose, and the retrapping to recombination cross section ratio (sigma) of the large 250 C peak are better described by the general one trap (GOT) kinetic equation, the basic equation from which the 1st and 2nd order kinetic equations are obtained as special cases, than by the 1st and 2nd order equations.

  11. PeakVizor: Visual Analytics of Peaks in Video Clickstreams from Massive Open Online Courses.

    PubMed

    Chen, Qing; Chen, Yuanzhe; Liu, Dongyu; Shi, Conglei; Wu, Yingcai; Qu, Huamin

    2016-10-01

    Massive open online courses (MOOCs) aim to facilitate open-access and massive-participation education. These courses have attracted millions of learners recently. At present, most MOOC platforms record the web log data of learner interactions with course videos. Such large amounts of multivariate data pose a new challenge in terms of analyzing online learning behaviors. Previous studies have mainly focused on the aggregate behaviors of learners from a summative view; however, few attempts have been made to conduct a detailed analysis of such behaviors. To determine complex learning patterns in MOOC video interactions, this paper introduces a comprehensive visualization system called PeakVizor. This system enables course instructors and education experts to analyze the "peaks" or the video segments that generate numerous clickstreams. The system features three views at different levels: the overview with glyphs to display valuable statistics regarding the peaks detected; the flow view to present spatio-temporal information regarding the peaks; and the correlation view to show the correlation between different learner groups and the peaks. Case studies and interviews conducted with domain experts have demonstrated the usefulness and effectiveness of PeakVizor, and new findings about learning behaviors in MOOC platforms have been reported.

  12. Mountain substitutability and peak load pricing of high alpine peaks as a management tool to reduce environmental damage: a contingent valuation study.

    PubMed

    Loomis, John B; Keske, Catherine M

    2009-04-01

    High alpine peaks throughout the world are under increasing environmental pressure from hikers, trekkers, and climbers. Colorado's "Fourteeners", peaks with summits above 14,000 feet are no exception. Most of these peaks have no entrance fees, and reach ecological and social carrying capacity on weekends. This paper illustrates how a series of dichotomous choice contingent valuation questions can be used to evaluate substitutability between different alpine peaks and quantify the price responsiveness to an entrance fee. Using this approach, we find that peak load pricing would decrease use of popular Fourteeners in Colorado by 22%. This reduction is due almost entirely to substitution, rather than income effects. There is also price inelastic demand, as 60% of the hikers find no substitution for their specific Fourteener at the varying cost increases posed in the survey. The no substitute group has a mean net benefit of $294 per hiker, per trip, considerably higher than visitor net benefits in most recreational use studies.

  13. Statistical Short-Range Guidance for Peak Wind Speed Forecasts at Edwards Air Force Base, CA

    NASA Technical Reports Server (NTRS)

    Dreher, Joseph G.; Crawford, Winifred; Lafosse, Richard; Hoeth, Brian; Burns, Kerry

    2009-01-01

    The peak winds near the surface are an important forecast element for space shuttle landings. As defined in the Flight Rules (FR), there are peak wind thresholds that cannot be exceeded in order to ensure the safety of the shuttle during landing operations. The National Weather Service Spaceflight Meteorology Group (SMG) is responsible for weather forecasts for all shuttle landings, and is required to issue surface average and 10-minute peak wind speed forecasts. They indicate peak winds are a challenging parameter to forecast. To alleviate the difficulty in making such wind forecasts, the Applied Meteorology Unit (AMU) developed a PC-based graphical user interface (GUI) for displaying peak wind climatology and probabilities of exceeding peak wind thresholds for the Shuttle Landing Facility (SLF) at Kennedy Space Center (KSC; Lambert 2003). However, the shuttle occasionally may land at Edwards Air Force Base (EAFB) in southern California when weather conditions at KSC in Florida are not acceptable, so SMG forecasters requested a similar tool be developed for EAFB.

  14. Does team lifting increase the variability in peak lumbar compression in ironworkers?

    PubMed

    Faber, Gert; Visser, Steven; van der Molen, Henk F; Kuijer, P Paul F M; Hoozemans, Marco J M; Van Dieën, Jaap H; Frings-Dresen, Monique H W

    2012-01-01

    Ironworkers frequently perform heavy lifting tasks in teams of two or four workers. Team lifting could potentially lead to a higher variation in peak lumbar compression forces than lifts performed by one worker, resulting in higher maximal peak lumbar compression forces. This study compared single-worker lifts (25-kg, iron bar) to two-worker lifts (50-kg, two iron bars) and to four-worker lifts (100-kg, iron lattice). Inverse dynamics was used to calculate peak lumbar compression forces. To assess the variability in peak lumbar loading, all three lifting tasks were performed six times. Results showed that the variability in peak lumbar loading was somewhat higher in the team lifts compared to the single-worker lifts. However, despite this increased variability, team lifts did not result in larger maximum peak lumbar compression forces. Therefore, it was concluded that, from a biomechanical point of view, team lifting does not result in an additional risk for low back complaints in ironworkers.

  15. Kinetic Features in the Ion Flux Spectrum

    NASA Astrophysics Data System (ADS)

    Vafin, S.; Riazantseva, M.; Yoon, P. H.

    2017-11-01

    An interesting feature of solar wind fluctuations is the occasional presence of a well-pronounced peak near the spectral knee. These peaks are well investigated in the context of magnetic field fluctuations in the magnetosheath and they are typically related to kinetic plasma instabilities. Recently, similar peaks were observed in the spectrum of ion flux fluctuations of the solar wind and magnetosheath. In this paper, we propose a simple analytical model to describe such peaks in the ion flux spectrum based on the linear theory of plasma fluctuations. We compare our predictions with a sample observation in the solar wind. For the given observation, the peak requires ˜10 minutes to grow up to the observed level that agrees with the quasi-linear relaxation time. Moreover, our model well reproduces the form of the measured peak in the ion flux spectrum. The observed lifetime of the peak is about 50 minutes, which is relatively close to the nonlinear Landau damping time of 30-40 minutes. Overall, our model proposes a plausible scenario explaining the observation.

  16. Timing of population peaks of Norway lemming in relation to atmospheric pressure: A hypothesis to explain the spatial synchrony.

    PubMed

    Selås, Vidar

    2016-06-01

    Herbivore cycles are often synchronized over larger areas than what could be explained by dispersal. In Norway, the 3-4 year lemming cycle usually show no more than a one-year time lag between different regions, despite distances of up to 1000 km. If important food plants are forced to reallocate defensive proteins in years with high seed production, spatially synchronized herbivore outbreaks may be due to climate-synchronized peaks in flowering. Because lemming peaks are expected to occur one year after a flowering peak, and the formation of flower buds is induced in the year before flowering, a two-year time lag between flower-inducing climate events and lemming peaks is predicted. At Hardangervidda, South Norway, the probability that a year was a population peak year of lemming during 1920-2014 increased with increasing midsummer atmospheric pressure two years earlier, even when the number of years since the previous peak was accounted for.

  17. Universal link between the boson peak and transverse phonons in glass.

    PubMed

    Shintani, Hiroshi; Tanaka, Hajime

    2008-11-01

    The physical properties of a topologically disordered amorphous material (glass), such as heat capacity and thermal conductivity, are markedly different from those of its ordered crystalline counterpart. The understanding of these phenomena is a notoriously complex problem. One of the universal features of disordered glasses is the 'boson peak', which is observed in neutron and Raman scattering experiments. The boson peak is typically ascribed to an excess density of vibrational states. Here, we study the nature of the boson peak, using numerical simulations of several glass-forming systems. We discovered evidence suggestive of the equality of the boson peak frequency to the Ioffe-Regel limit for 'transverse' phonons, above which transverse phonons no longer propagate. Our results indicate a possibility that the origin of the boson peak is transverse vibrational modes associated with defective soft structures in the disordered state. Furthermore, we suggest a possible link between slow structural relaxation and fast boson peak dynamics in glass-forming systems.

  18. Automated protein NMR structure determination using wavelet de-noised NOESY spectra.

    PubMed

    Dancea, Felician; Günther, Ulrich

    2005-11-01

    A major time-consuming step of protein NMR structure determination is the generation of reliable NOESY cross peak lists which usually requires a significant amount of manual interaction. Here we present a new algorithm for automated peak picking involving wavelet de-noised NOESY spectra in a process where the identification of peaks is coupled to automated structure determination. The core of this method is the generation of incremental peak lists by applying different wavelet de-noising procedures which yield peak lists of a different noise content. In combination with additional filters which probe the consistency of the peak lists, good convergence of the NOESY-based automated structure determination could be achieved. These algorithms were implemented in the context of the ARIA software for automated NOE assignment and structure determination and were validated for a polysulfide-sulfur transferase protein of known structure. The procedures presented here should be commonly applicable for efficient protein NMR structure determination and automated NMR peak picking.

  19. Comparative Analysis of Mass Spectral Similarity Measures on Peak Alignment for Comprehensive Two-Dimensional Gas Chromatography Mass Spectrometry

    PubMed Central

    2013-01-01

    Peak alignment is a critical procedure in mass spectrometry-based biomarker discovery in metabolomics. One of peak alignment approaches to comprehensive two-dimensional gas chromatography mass spectrometry (GC×GC-MS) data is peak matching-based alignment. A key to the peak matching-based alignment is the calculation of mass spectral similarity scores. Various mass spectral similarity measures have been developed mainly for compound identification, but the effect of these spectral similarity measures on the performance of peak matching-based alignment still remains unknown. Therefore, we selected five mass spectral similarity measures, cosine correlation, Pearson's correlation, Spearman's correlation, partial correlation, and part correlation, and examined their effects on peak alignment using two sets of experimental GC×GC-MS data. The results show that the spectral similarity measure does not affect the alignment accuracy significantly in analysis of data from less complex samples, while the partial correlation performs much better than other spectral similarity measures when analyzing experimental data acquired from complex biological samples. PMID:24151524

  20. Peak-flow frequency estimates through 1994 for gaged streams in South Dakota

    USGS Publications Warehouse

    Burr, M.J.; Korkow, K.L.

    1996-01-01

    Annual peak-flow data are listed for 250 continuous-record and crest-stage gaging stations in South Dakota. Peak-flow frequency estimates for selected recurrence intervals ranging from 2 to 500 years are given for 234 of these 250 stations. The log-Pearson Type III procedure was used to compute the frequency relations for the 234 stations, which in 1994 included 105 active and 129 inactive stations. The log-Pearson Type III procedure is recommended by the Hydrology Subcommittee of the Interagency Advisory Committee on Water Data, 1982, "Guidelines for Determining Flood Flow Frequency."No peak-flow frequency estimates are given for 16 of the 250 stations because: (1) of extreme variability in data set; (2) more than 20 percent of years had no flow; (3) annual peak flows represent large outflow from a spring; (4) of insufficient peak-flow record subsequent to reservoir regulation; and (5) peak-flow records were combined with records from nearby stations.

  1. A semi-empirical analysis of strong-motion peaks in terms of seismic source, propagation path, and local site conditions

    NASA Astrophysics Data System (ADS)

    Kamiyama, M.; Orourke, M. J.; Flores-Berrones, R.

    1992-09-01

    A new type of semi-empirical expression for scaling strong-motion peaks in terms of seismic source, propagation path, and local site conditions is derived. Peak acceleration, peak velocity, and peak displacement are analyzed in a similar fashion because they are interrelated. However, emphasis is placed on the peak velocity which is a key ground motion parameter for lifeline earthquake engineering studies. With the help of seismic source theories, the semi-empirical model is derived using strong motions obtained in Japan. In the derivation, statistical considerations are used in the selection of the model itself and the model parameters. Earthquake magnitude M and hypocentral distance r are selected as independent variables and the dummy variables are introduced to identify the amplification factor due to individual local site conditions. The resulting semi-empirical expressions for the peak acceleration, velocity, and displacement are then compared with strong-motion data observed during three earthquakes in the U.S. and Mexico.

  2. Acceleration characteristics of human ocular accommodation.

    PubMed

    Bharadwaj, Shrikant R; Schor, Clifton M

    2005-01-01

    Position and velocity of accommodation are known to increase with stimulus magnitude, however, little is known about acceleration properties. We investigated three acceleration properties: peak acceleration, time-to-peak acceleration and total duration of acceleration to step changes in defocus. Peak velocity and total duration of acceleration increased with response magnitude. Peak acceleration and time-to-peak acceleration remained independent of response magnitude. Independent first-order and second-order dynamic components of accommodation demonstrate that neural control of accommodation has an initial open-loop component that is independent of response magnitude and a closed-loop component that increases with response magnitude.

  3. Introducing the concept of centergram. A new tool to squeeze data from separation techniques-mass spectrometry couplings.

    PubMed

    Erny, Guillaume L; Simó, Carolina; Cifuentes, Alejandro; Esteves, Valdemar I

    2014-02-21

    In separation techniques hyphenated to mass spectrometry (MS) the bulk from the separation step is continuously flowing into the mass spectrometer where the compounds, arriving at each separation time, are ionized and further separated based on their m/z ratio. An MS detector is recognized as being a universal detector, although it can also be a very selective instrument. In spite of these advantages, classical two dimensional representations from these hyphenated systems, such as those based on the base peak of electropherogram/chromatogram or on the total ion of electropherogram/chromatogram, usually hide a large number of features that if correctly assessed will show the presence of co-migrating species and/or the low abundant ones. The uses of peak picking algorithms to detect and measure as many peaks as possible from a dataset allow extracting much more information. However, a single migrating compound usually produces a multiplicity of ions, making difficult to differentiate peaks generated by the same compound from other peaks due e.g., to closely co-migrating/eluting species. In this work, a new representation is proposed and its usefulness demonstrated with experimental data from capillary electrophoresis-hyphenated to a time of flight mass spectrometer via an electrospray interface. This representation, called centergram, is obtained after using a peak picking methodology that detects electrophoretic peaks of single ions and measure their positions. The centergram is the histogram (i.e. the count of the number of observations that fall into each one of the intervals, known as bins, as determined by the user) of the measured positions. The intensity of the bars in this histogram will indicate the amount of peaks in the whole dataset whose centers are within each interval. As a compound that has been separated and has entered the MS instrument will produce multiple images at the same position along the m/z dimension, the centergram will exhibit a series of intense bars around the migration time. Those bars will allow defining a centergram peak whose area will be proportional to the number of different types of ions that have been generated in the ionization chamber, the position will be equal to the migration/retention time of the parent compounds and the width will depend on the precision in the measurement of the peak positions. The efficiency of this peak is determined to be up to thirty times higher than the equivalent peak in the classical base peak electropherogram allowing detecting easily co-migrating peaks or the presence of compounds at very low abundance. The number of peaks detected by using this new tool called centergram was increased by more than a factor of 3 compared to the standard representations. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Use of a Bacterial Luciferase Monitoring System To Estimate Real-Time Dynamics of Intracellular Metabolism in Escherichia coli.

    PubMed

    Shimada, Tomohiro; Tanaka, Kan

    2016-10-01

    Regulation of central carbon metabolism has long been an important research subject in every organism. While the dynamics of metabolic flows during changes in available carbon sources have been estimated based on changes in metabolism-related gene expression, as well as on changes in the metabolome, the flux change itself has scarcely been measured because of technical difficulty, which has made conclusions elusive in many cases. Here, we used a monitoring system employing Vibrio fischeri luciferase to probe the intracellular metabolic condition in Escherichia coli Using a batch culture provided with a limited amount of glucose, we performed a time course analysis, where the predominant carbon source shifts from glucose to acetate, and identified a series of sequential peaks in the luciferase activity (peaks 1 to 4). Two major peaks, peaks 1 and 3, were considered to correspond to the glucose and acetate consuming phases, respectively, based on the glucose, acetate, and dissolved oxygen concentrations in the medium. The pattern of these peaks was changed by the addition of a different carbon source or by an increasing concentration of glucose, which was consistent with the present model. Genetically, mutations involved in glycolysis or the tricarboxylic acid (TCA) cycle/gluconeogenesis specifically affected peak 1 or peak 3, respectively, as expected from the corresponding metabolic phase. Intriguingly, mutants for the acetate excretion pathway showed a phenotype of extended peak 2 and delayed transition to the TCA cycle/gluconeogenesis phase, which suggests that peak 2 represents the metabolic transition phase. These results indicate that the bacterial luciferase monitoring system is useful to understand the real-time dynamics of metabolism in living bacterial cells. Intracellular metabolic flows dynamically change during shifts in available carbon sources. However, because of technical difficulty, the flux change has scarcely been measured in living cells. Here, we used a Vibrio fischeri luciferase monitoring system to probe the intracellular metabolic condition in Escherichia coli Using a limited amount of glucose batch culture, a series of sequential peaks (peaks 1 to 4) in the luciferase activity was observed. Changes in the pattern of these peaks by the addition of extra carbon sources and in mutant strains involved in glycolysis or the TCA cycle/gluconeogenesis gene assigned the metabolic phase corresponding to peak 1 as the glycolysis phase and peak 3 as the TCA cycle/gluconeogenesis phase. Intriguingly, the acetate excretion pathway engaged in peak 2 represents the metabolic transition phase. These results indicate that the bacterial luciferase monitoring system is useful to understand the real-time dynamics of metabolism in living bacterial cells. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  5. Which is the best predictor of excessive hip internal rotation in women with patellofemoral pain: Rearfoot eversion or hip muscle strength? Exploring subgroups.

    PubMed

    Ferreira, Amanda Schenatto; de Oliveira Silva, Danilo; Briani, Ronaldo Valdir; Ferrari, Deisi; Aragão, Fernando Amâncio; Pazzinatto, Marcella Ferraz; de Azevedo, Fábio Mícolis

    2018-03-26

    Patellofemoral pain (PFP) has been linked to increased patellofemoral joint stress as a result of excessive hip internal rotation. Lower hip strength and/or excessive rearfoot eversion have been used to explain such altered movement pattern; however, it is unknown which one is the best predictor of excessive hip internal rotation. To investigate if peak rearfoot eversion and/or peak concentric hip abductor strength can predict peak hip internal rotation during stair ascent in women with PFP. This cross-sectional study included thirty-seven women with PFP which underwent three-dimensional kinematic analysis during stair ascent and hip abductor strength analysis in an isokinetic dynamometer. A forced entry linear regression model analysis was carried out to determine which independent variables present the best capability to predict the hip internal rotation. Peak concentric hip abductor strength significantly predicted peak hip internal rotation during stair ascent (R 2  = 0.27, p = 0.001). Peak rearfoot eversion did not predict peak hip internal rotation during stair ascent (R 2  < 0.01, p = 0.62). A Post-hoc analysis was conducted to explore if a subgroup with excessive rearfoot eversion would predict hip internal rotation. Based on a previous reported cut-off point, 48.6% of the participants were classified as excessive rearfoot eversion. For the subgroup with excessive rearfoot eversion, peak concentric hip abductor strength and peak rearfoot eversion significantly predicted peak hip internal rotation during stair ascent (R 2  = 0.26, p = 0.02; R 2  = 0.42, p = 0.003, respectively). For non-excessive rearfoot eversion subgroup, peak concentric hip abductor strength significantly predicted peak hip internal rotation during stair ascent (R 2  = 0.53; p < 0.001); and peak rearfoot eversion did not (R 2  = 0.01; p = 0.65). Findings indicate that hip muscle strength seems to be related with hip internal rotation in all women with PFP. Rearfoot eversion seems to be related with hip internal rotation only in a subgroup with excessive rearfoot eversion. Copyright © 2018. Published by Elsevier B.V.

  6. Infant BMI peak as a predictor of overweight and obesity at age 2 years in a Chinese community-based cohort

    PubMed Central

    Sun, Jie; Nwaru, Bright I; Hua, Jing; Li, Xiaohong; Wu, Zhuochun

    2017-01-01

    Objectives Infant body mass index (BMI) peak has proven to be a useful indicator for predicting childhood obesity risk in American and European populations. However, it has not been assessed in China. We characterised infant BMI trajectories in a Chinese longitudinal cohort and evaluated whether BMI peak can predict overweight and obesity at age 2 years. Methods Serial measurements (n=6–12) of weight and length were taken from healthy term infants (n=2073) in a birth cohort established in urban Shanghai. Measurements were used to estimate BMI growth curves from birth to 13.5 months using a polynomial regression model. BMI peak characteristics, including age (in months) and magnitude (BMI, in kg/m2) at peak and prepeak velocities (in kg/m2/month), were estimated. The relationship between infant BMI peak and childhood BMI at age 2 years was examined using binary logistic analysis. Results Mean age at peak BMI was 7.61 months, with a magnitude of 18.33 kg/m2. Boys (n=1022) had a higher average peak BMI (18.60 vs 18.07 kg/m2, p<0.001) and earlier average achievement of peak value (7.54 vs 7.67 months, p<0.05) than girls (n=1051). With 1 kg/m2 increase in peak BMI and 1 month increase in peak time, the risk of overweight at age 2 years increased by 2.11 times (OR 3.11; 95% CI 2.64 to 3.66) and 35% (OR 1.35; 95% CI 1.21 to 1.50), respectively. Similarly, higher BMI magnitude (OR 2.69; 95% CI 2.00 to 3.61) and later timing of infant BMI peak (OR 1.35; 95% CI 1.08 to 1.68) were associated with an increased risk of childhood obesity at age 2 years. Conclusions We have shown that infant BMI peak is valuable for predicting early childhood overweight and obesity in urban Shanghai. Because this is the first Chinese community-based cohort study of this nature, future research is required to examine infant populations in other areas of China. PMID:28988164

  7. Abundance patterns of the light neutron-capture elements in very and extremely metal-poor stars

    NASA Astrophysics Data System (ADS)

    Spite, F.; Spite, M.; Barbuy, B.; Bonifacio, P.; Caffau, E.; François, P.

    2018-03-01

    Aims: The abundance patterns of the neutron-capture elements in metal-poor stars provide a unique record of the nucleosynthesis products of the earlier massive primitive objects. Methods: We measured new abundances of so-called light neutron-capture of first peak elements using local thermodynamic equilibrium (LTE) 1D analysis; this analysis resulted in a sample of 11 very metal-poor stars, from [Fe/H] = -2.5 to [Fe/H] = -3.4, and one carbon-rich star, CS 22949-037 with [Fe/H] = -4.0. The abundances were compared to those observed in two classical metal-poor stars: the typical r-rich star CS 31082-001 ([Eu/Fe] > +1.0) and the r-poor star HD 122563 ([Eu/Fe] < 0.0), which are known to present a strong enrichment of the first peak neutron-capture elements relative to the second peak. Results: Within the first peak, the abundances are well correlated in analogy to the well-known correlation inside the abundances of the second-peak elements. In contrast, there is no correlation between any first peak element with any second peak element. We show that the scatter of the ratio of the first peak abundance over second peak abundance increases when the mean abundance of the second peak elements decreases from r-rich to r-poor stars. We found two new r-poor stars that are very similar to HD 122563. A third r-poor star, CS 22897-008, is even more extreme; this star shows the most extreme example of first peak elements enrichment to date. On the contrary, another r-poor star (BD-18 5550) has a pattern of first peak elements that is similar to the typical r-rich stars CS 31082-001, however this star has some Mo enrichment. Conclusions: The distribution of the neutron-capture elements in our very metal-poor stars can be understood as the combination of at least two mechanisms: one that enriches the forming stars cloud homogeneously through the main r-process and leads to an element pattern similar to the r-rich stars, such as CS 31082-001; and another that forms mainly lighter, first peak elements. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme 165.N-0276(A), (PI R.Cayrel).

  8. Derived Equivalence Relations of Geometry Skills in Students with Autism: An Application of the PEAK-E Curriculum

    ERIC Educational Resources Information Center

    Dixon, Mark R.; Belisle, Jordan; Stanley, Caleb R.; Daar, Jacob H.; Williams, Leigh Anne

    2016-01-01

    The present study evaluated the efficacy of equivalence-based instruction (EBI) as described in the PEAK-E curriculum (Dixon, 2015) for promoting the emergence of derived geometry skills in two children with high-functioning autism. The results suggested that direct training of shape name (A) to shape property (B) (i.e., A-B relations) was…

  9. Can Horizontal Hydraulic Fracturing Lead to Less Expensive Achievement of More Natural River Flows?

    NASA Astrophysics Data System (ADS)

    Kern, J.; Characklis, G. W.

    2014-12-01

    High ramp rates and low costs make hydropower an extremely valuable resource for meeting "peak" hourly electricity demands, but dams that employ variable, stop-start reservoir releases can have adverse impacts on downstream riverine ecosystems. In recent years, efforts to mitigate the environmental impacts of hydropower peaking have relied predominantly on the use of ramp rate restrictions, or limits on the magnitude of hour-to-hour changes in reservoir discharge. These restrictions shift some hydropower production away from peak hours towards less valuable off-peak hours and impose a financial penalty on dam owners that is a function of: 1) the "spread" (difference) between peak and off-peak electricity prices; and 2) the total amount of generation shifted from peak to off-peak hours. In this study, we show how variability in both the price spread and reservoir inflows can cause large swings in the financial cost of ramp rate restrictions on a seasonal and annual basis. Of particular interest is determining whether current low natural gas prices (largely attributable to improvements in hydraulic fracturing) have reduced the cost of implementing ramp rate restrictions at dams by narrowing the spread between peak and off-peak electricity prices. We also examine the role that large year-to-year fluctuations in the cost of ramp rate restrictions may play in precluding downstream stakeholders (e.g., conservation trusts) from "purchasing" more natural streamflow patterns from dam owners. In recent years, similar arrangements between conservation trusts and consumptive water users have been put into practice in the U.S. for the purposes of supplementing baseflows in rivers. However, significant year-to-year uncertainty in the size of payments necessary to compensate hydropower producers for lost peaking production (i.e., uncertainty in the cost of ramp rate restrictions) makes transactions that aim to mitigate the environmental impacts of hydropower peaking untenable. In order to reduce this financial uncertainty, we propose the use of "collar" agreements between a downstream stakeholder and a third party insurer that would provide a stable price for parties "buying" more natural flows.

  10. Statistical Short-Range Guidance for Peak Wind Speed Forecasts at Edwards Air Force Base, CA

    NASA Technical Reports Server (NTRS)

    Dreher, Joseph; Crawford, Winifred; Lafosse, Richard; Hoeth, Brian; Burns, Kerry

    2008-01-01

    The peak winds near the surface are an important forecast element for Space Shuttle landings. As defined in the Shuttle Flight Rules (FRs), there are peak wind thresholds that cannot be exceeded in order to ensure the safety of the shuttle during landing operations. The National Weather Service Spaceflight Meteorology Group (SMG) is responsible for weather forecasts for all shuttle landings. They indicate peak winds are a challenging parameter to forecast. To alleviate the difficulty in making such wind forecasts, the Applied Meteorology Unit (AMTJ) developed a personal computer based graphical user interface (GUI) for displaying peak wind climatology and probabilities of exceeding peak-wind thresholds for the Shuttle Landing Facility (SLF) at Kennedy Space Center. However, the shuttle must land at Edwards Air Force Base (EAFB) in southern California when weather conditions at Kennedy Space Center in Florida are not acceptable, so SMG forecasters requested that a similar tool be developed for EAFB. Marshall Space Flight Center (MSFC) personnel archived and performed quality control of 2-minute average and 10-minute peak wind speeds at each tower adjacent to the main runway at EAFB from 1997- 2004. They calculated wind climatologies and probabilities of average peak wind occurrence based on the average speed. The climatologies were calculated for each tower and month, and were stratified by hour, direction, and direction/hour. For the probabilities of peak wind occurrence, MSFC calculated empirical and modeled probabilities of meeting or exceeding specific 10-minute peak wind speeds using probability density functions. The AMU obtained and reformatted the data into Microsoft Excel PivotTables, which allows users to display different values with point-click-drag techniques. The GUT was then created from the PivotTables using Visual Basic for Applications code. The GUI is run through a macro within Microsoft Excel and allows forecasters to quickly display and interpret peak wind climatology and likelihoods in a fast-paced operational environment. A summary of how the peak wind climatologies and probabilities were created and an overview of the GUT will be presented.

  11. Normalization for peak oxygen uptake increases the prognostic power of the ventilatory response to exercise in patients with chronic heart failure.

    PubMed

    Guazzi, Marco; De Vita, Stefano; Cardano, Paola; Barlera, Simona; Guazzi, Maurizio D

    2003-09-01

    Peak exercise oxygen uptake (peak VO2) and ventilation to CO2 production (VE/VCO2) slope are established prognostic indicators in patients with chronic heart failure (CHF). A high VE/VCO2 slope, however, does not take into account the level of physical performance as expressed by peak VO2. We hypothesized that the prognostic value of a high VE/VCO2 slope may be improved by normalization for peak VO2 (VE/VCO2/VO2). One hundred patients with CHF underwent pulmonary function tests at rest (spirometry and lung diffusion capacity) and maximal cardiopulmonary exercise testing. The prognostic value of VE/VCO2 slope, peak VO2 and VE/VCO2/VO2 was probed prospectively. Twenty-one patients died from cardiac reasons during a mean follow-up of 26 +/- 19 months. Nonsurvivors, compared to survivors, showed a lower peak VO2 (13.6 +/- 4.0 vs 17.5 +/- 4.1 mL x min(-1) x kg(-1), P <.01) and a steeper VE/VCO2 slope (43 +/- 11 vs 31.6 +/- 5.0, P <.01). Nonetheless, in patients whose VE/VCO2 slope exceeded 34 (upper normal limit), there was no correlation with peak VO2 (r = -35, P = not significant). Interestingly 35% of them showed a normal exercise performance (peak VO2 > or =18 mL x min(-1) x kg(-1)). At multivariate analysis, the VE/VCO2 slope showed a prognostic power stronger than that of peak VO2; however, the VE/VCO2/VO2 index retained a prognostic power greater than that of both VE/VCO2 slope and peak VO2. A VE/VCO2/VO2 > or =2.4 signaled cases at higher risk. Discrepancies between VE/VCO2 slope and peak VO2 may generate uncertainty. Normalization of the former by the latter improves outcome prediction and may be considered a simple and effective way for maximizing the clinical applicability of these 2 indicators.

  12. WaVPeak: picking NMR peaks through wavelet-based smoothing and volume-based filtering.

    PubMed

    Liu, Zhi; Abbas, Ahmed; Jing, Bing-Yi; Gao, Xin

    2012-04-01

    Nuclear magnetic resonance (NMR) has been widely used as a powerful tool to determine the 3D structures of proteins in vivo. However, the post-spectra processing stage of NMR structure determination usually involves a tremendous amount of time and expert knowledge, which includes peak picking, chemical shift assignment and structure calculation steps. Detecting accurate peaks from the NMR spectra is a prerequisite for all following steps, and thus remains a key problem in automatic NMR structure determination. We introduce WaVPeak, a fully automatic peak detection method. WaVPeak first smoothes the given NMR spectrum by wavelets. The peaks are then identified as the local maxima. The false positive peaks are filtered out efficiently by considering the volume of the peaks. WaVPeak has two major advantages over the state-of-the-art peak-picking methods. First, through wavelet-based smoothing, WaVPeak does not eliminate any data point in the spectra. Therefore, WaVPeak is able to detect weak peaks that are embedded in the noise level. NMR spectroscopists need the most help isolating these weak peaks. Second, WaVPeak estimates the volume of the peaks to filter the false positives. This is more reliable than intensity-based filters that are widely used in existing methods. We evaluate the performance of WaVPeak on the benchmark set proposed by PICKY (Alipanahi et al., 2009), one of the most accurate methods in the literature. The dataset comprises 32 2D and 3D spectra from eight different proteins. Experimental results demonstrate that WaVPeak achieves an average of 96%, 91%, 88%, 76% and 85% recall on (15)N-HSQC, HNCO, HNCA, HNCACB and CBCA(CO)NH, respectively. When the same number of peaks are considered, WaVPeak significantly outperforms PICKY. WaVPeak is an open source program. The source code and two test spectra of WaVPeak are available at http://faculty.kaust.edu.sa/sites/xingao/Pages/Publications.aspx. The online server is under construction. statliuzhi@xmu.edu.cn; ahmed.abbas@kaust.edu.sa; majing@ust.hk; xin.gao@kaust.edu.sa.

  13. WaVPeak: picking NMR peaks through wavelet-based smoothing and volume-based filtering

    PubMed Central

    Liu, Zhi; Abbas, Ahmed; Jing, Bing-Yi; Gao, Xin

    2012-01-01

    Motivation: Nuclear magnetic resonance (NMR) has been widely used as a powerful tool to determine the 3D structures of proteins in vivo. However, the post-spectra processing stage of NMR structure determination usually involves a tremendous amount of time and expert knowledge, which includes peak picking, chemical shift assignment and structure calculation steps. Detecting accurate peaks from the NMR spectra is a prerequisite for all following steps, and thus remains a key problem in automatic NMR structure determination. Results: We introduce WaVPeak, a fully automatic peak detection method. WaVPeak first smoothes the given NMR spectrum by wavelets. The peaks are then identified as the local maxima. The false positive peaks are filtered out efficiently by considering the volume of the peaks. WaVPeak has two major advantages over the state-of-the-art peak-picking methods. First, through wavelet-based smoothing, WaVPeak does not eliminate any data point in the spectra. Therefore, WaVPeak is able to detect weak peaks that are embedded in the noise level. NMR spectroscopists need the most help isolating these weak peaks. Second, WaVPeak estimates the volume of the peaks to filter the false positives. This is more reliable than intensity-based filters that are widely used in existing methods. We evaluate the performance of WaVPeak on the benchmark set proposed by PICKY (Alipanahi et al., 2009), one of the most accurate methods in the literature. The dataset comprises 32 2D and 3D spectra from eight different proteins. Experimental results demonstrate that WaVPeak achieves an average of 96%, 91%, 88%, 76% and 85% recall on 15N-HSQC, HNCO, HNCA, HNCACB and CBCA(CO)NH, respectively. When the same number of peaks are considered, WaVPeak significantly outperforms PICKY. Availability: WaVPeak is an open source program. The source code and two test spectra of WaVPeak are available at http://faculty.kaust.edu.sa/sites/xingao/Pages/Publications.aspx. The online server is under construction. Contact: statliuzhi@xmu.edu.cn; ahmed.abbas@kaust.edu.sa; majing@ust.hk; xin.gao@kaust.edu.sa PMID:22328784

  14. Estimation of peak-discharge frequency of urban streams in Jefferson County, Kentucky

    USGS Publications Warehouse

    Martin, Gary R.; Ruhl, Kevin J.; Moore, Brian L.; Rose, Martin F.

    1997-01-01

    An investigation of flood-hydrograph characteristics for streams in urban Jefferson County, Kentucky, was made to obtain hydrologic information needed for waterresources management. Equations for estimating peak-discharge frequencies for ungaged streams in the county were developed by combining (1) long-term annual peakdischarge data and rainfall-runoff data collected from 1991 to 1995 in 13 urban basins and (2) long-term annual peak-discharge data in four rural basins located in hydrologically similar areas of neighboring counties. The basins ranged in size from 1.36 to 64.0 square miles. The U.S. Geological Survey Rainfall- Runoff Model (RRM) was calibrated for each of the urban basins. The calibrated models were used with long-term, historical rainfall and pan-evaporation data to simulate 79 years of annual peak-discharge data. Peak-discharge frequencies were estimated by fitting the logarithms of the annual peak discharges to a Pearson-Type III frequency distribution. The simulated peak-discharge frequencies were adjusted for improved reliability by application of bias-correction factors derived from peakdischarge frequencies based on local, observed annual peak discharges. The three-parameter and the preferred seven-parameter nationwide urban-peak-discharge regression equations previously developed by USGS investigators provided biased (high) estimates for the urban basins studied. Generalized-least-square regression procedures were used to relate peakdischarge frequency to selected basin characteristics. Regression equations were developed to estimate peak-discharge frequency by adjusting peak-dischargefrequency estimates made by use of the threeparameter nationwide urban regression equations. The regression equations are presented in equivalent forms as functions of contributing drainage area, main-channel slope, and basin development factor, which is an index for measuring the efficiency of the basin drainage system. Estimates of peak discharges for streams in the county can be made for the 2-, 5-, 10-, 25-, 50-, and 100-year recurrence intervals by use of the regression equations. The average standard errors of prediction of the regression equations ranges from ? 34 to ? 45 percent. The regression equations are applicable to ungaged streams in the county having a specific range of basin characteristics.

  15. Thermoluminescence of α-Al2O3:C,Mg annealed at 1200 °C

    NASA Astrophysics Data System (ADS)

    Kalita, J. M.; Chithambo, M. L.

    2018-05-01

    Stimulated luminescence in α-Al2O3:C,Mg has thus far been studied for samples annealed at temperature no higher than 900 °C as can be seen by an examination of the literature. We report the thermoluminescence (TL) features of α-Al2O3:C,Mg annealed at 1200 °C. A glow curve measured at 1 °C/s from the samples annealed at 1200 °C shows eight peaks at 54, 80, 102, 173, 238, 290, 330 and 387 °C. Kinetic analyses show that the peak at 54 °C follows general order kinetics (b = 1.3) whereas the rest follow first order kinetics. The values of the activation energy of the peaks are between 0.77 eV and 1.90 eV and the frequency factors are of the order of 1010-1014 s-1. The intensity of the peaks at 54, 80, 102 and 173 °C increase with heating rate whereas those of the peaks at 238 and 290 °C decrease with heating rate. The decrease of intensity of the peaks at 238 and 290 °C with heating rate is due to thermal quenching whereas the increase of intensity of the peaks with heating rate indicates an inverse thermal-quenching-like behaviour. Interestingly this behaviour is observed only after annealing at 1200 °C. The activation energy for thermal quenching as calculated using the peaks at 238 and 290 °C are (1.02 ± 0.16) eV and (1.33 ± 0.15) eV respectively. Regarding the dosimetric features, the dose response of the peaks at 54, 80 and 102 °C are sublinear within 1-10 Gy and the peak at 54 °C saturates above 6 Gy. In contrast, the response of the peak at 173 °C is sublinear with 1-4 Gy and superlinear between 4 and 10 Gy. The peaks are found to fade at different rates and the rate of fading is also affected by annealing.

  16. Emergence of patterns in random processes

    NASA Astrophysics Data System (ADS)

    Newman, William I.; Turcotte, Donald L.; Malamud, Bruce D.

    2012-08-01

    Sixty years ago, it was observed that any independent and identically distributed (i.i.d.) random variable would produce a pattern of peak-to-peak sequences with, on average, three events per sequence. This outcome was employed to show that randomness could yield, as a null hypothesis for animal populations, an explanation for their apparent 3-year cycles. We show how we can explicitly obtain a universal distribution of the lengths of peak-to-peak sequences in time series and that this can be employed for long data sets as a test of their i.i.d. character. We illustrate the validity of our analysis utilizing the peak-to-peak statistics of a Gaussian white noise. We also consider the nearest-neighbor cluster statistics of point processes in time. If the time intervals are random, we show that cluster size statistics are identical to the peak-to-peak sequence statistics of time series. In order to study the influence of correlations in a time series, we determine the peak-to-peak sequence statistics for the Langevin equation of kinetic theory leading to Brownian motion. To test our methodology, we consider a variety of applications. Using a global catalog of earthquakes, we obtain the peak-to-peak statistics of earthquake magnitudes and the nearest neighbor interoccurrence time statistics. In both cases, we find good agreement with the i.i.d. theory. We also consider the interval statistics of the Old Faithful geyser in Yellowstone National Park. In this case, we find a significant deviation from the i.i.d. theory which we attribute to antipersistence. We consider the interval statistics using the AL index of geomagnetic substorms. We again find a significant deviation from i.i.d. behavior that we attribute to mild persistence. Finally, we examine the behavior of Standard and Poor's 500 stock index's daily returns from 1928-2011 and show that, while it is close to being i.i.d., there is, again, significant persistence. We expect that there will be many other applications of our methodology both to interoccurrence statistics and to time series.

  17. A specific prediction equation is necessary to estimate peak oxygen uptake in obese patients with metabolic syndrome.

    PubMed

    Debeaumont, D; Tardif, C; Folope, V; Castres, I; Lemaitre, F; Tourny, C; Dechelotte, P; Thill, C; Darmon, A; Coquart, J B

    2016-06-01

    The aims were to: (1) compare peak oxygen uptake ([Formula: see text]peak) predicted from four standard equations to actual [Formula: see text]peak measured from a cardiopulmonary exercise test (CPET) in obese patients with metabolic syndrome (MetS), and (2) develop a new equation to accurately estimate [Formula: see text]peak in obese women with MetS. Seventy-five obese patients with MetS performed a CPET. Anthropometric data were also collected for each participant. [Formula: see text]peak was predicted from four prediction equations (from Riddle et al., Hansen et al., Wasserman et al. or Gläser et al.) and then compared with the actual [Formula: see text]peak measured during the CPET. The accuracy of the predictions was determined with the Bland-Altman method. When accuracy was low, a new prediction equation including anthropometric variables was proposed. [Formula: see text]peak predicted from the equation of Wasserman et al. was not significantly different from actual [Formula: see text]peak in women. Moreover, a significant correlation was found between the predicted and actual values (p < 0.001, r = 0.69). In men, no significant difference was noted between actual [Formula: see text]peak and [Formula: see text]peak predicted from the prediction equation of Gläser et al., and these two values were also correlated (p = 0.03, r = 0.44). However, the LoA95% was wide, whatever the prediction equation or gender. Regression analysis suggested a new prediction equation derived from age and height for obese women with MetS. The methods of Wasserman et al. and Gläser et al. are valid to predict [Formula: see text]peak in obese women and men with MetS, respectively. However, the accuracy of the predictions was low for both methods. Consequently, a new prediction equation including age and height was developed for obese women with MetS. However, new prediction equation remains to develop in obese men with MetS.

  18. Association between Infancy BMI Peak and Body Composition and Blood Pressure at Age 5–6 Years

    PubMed Central

    Hof, Michel H. P.; Vrijkotte, Tanja G. M.; de Hoog, Marieke L. A.; van Eijsden, Manon; Zwinderman, Aeilko H.

    2013-01-01

    Introduction The development of overweight is often measured with the body mass index (BMI). During childhood the BMI curve has two characteristic points: the adiposity rebound at 6 years and the BMI peak at 9 months of age. In this study, the associations between the BMI peak and body composition measures and blood pressure at age 5–6 years were investigated. Methods Measurements from the Amsterdam Born Children and their Development (ABCD) study were available for this study. Blood pressure (systolic and diastolic) and body composition measures (BMI, waist-to-height ratio, fat percentage) were gathered during a health check at about 6 years of age (n = 2822). All children had multiple BMI measurements between the 0–4 years of age. For boys and girls separately, child-specific BMI peaks were extracted from mixed effect models. Associations between the estimated BMI peak and the health check measurements were analysed with linear models. In addition, we investigated the potential use of the BMI at 9 months as a surrogate measure for the magnitude of the BMI peak. Results After correction for the confounding effect of fetal growth, both timing and magnitude of the BMI peak were significantly and positively associated (p<0.001) with all body composition measures at the age of 5–6 years. The BMI peak showed no direct association with blood pressure at the age 5–6 year, but was mediated by the current BMI. The correlation between the magnitude of the BMI peak and BMI at 9 months was approximately 0.93 and similar associations with the measures at 5–6 years were found. Conclusion The magnitude of the BMI peak was associated with body composition measures at 5–6 years of age. Moreover, the BMI at 9 months could be used as surrogate measure for the magnitude of the BMI peak. PMID:24324605

  19. Resolution Quality and Atom Positions in Sub-Angstrom Electron Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Keefe, Michael A.; Allard, Lawrence F.; Blom, Douglas A.

    2005-02-15

    Ability to determine whether an image peak represents one single atom or several depends on resolution of the HR-(S)TEM. Rayleigh's resolution criterion, an accepted standard in optics, was derived as a means for judging when two image intensity peaks from two sources of light (stars) are distinguishable from a single source. Atom spacings closer than the Rayleigh limit have been resolved in HR-TEM, suggesting that it may be useful to consider other limits, such as the Sparrow resolution criterion. From the viewpoint of the materials scientist, it is important to be able to use the image to determine whether anmore » image feature represents one or more atoms (resolution), and where the atoms (or atom columns) are positioned relative to one another (resolution quality). When atoms and the corresponding image peaks are separated by more than the Rayleigh limit of the HR-(S)TEM, it is possible to adjust imaging parameters so that relative peak positions in the image correspond to relative atom positions in the specimen. When atoms are closer than the Rayleigh limit, we must find the relationship of the peak position to the atom position by peak fitting or, if we have a suitable model, by image simulation. Our Rayleigh-Sparrow parameter QRS reveals the ''resolution quality'' of a microscope image. QRS values greater than 1 indicate a clearly resolved twin peak, while values between 1 and 0 mean a lower-quality resolution and an image with peaks displaced from the relative atom positions. The depth of the twin-peak minimum can be used to determine the value of QRS and the true separation of the atom peaks that sum to produce the twin peak in the image. The Rayleigh-Sparrow parameter can be used to refine relative atom positions in defect images where atoms are closer than the Rayleigh limit of the HR-(S)TEM, reducing the necessity for full image simulations from large defect models.« less

  20. Antiplatelet Agents Can Promote Two-Peaked Thrombin Generation in Platelet Rich Plasma: Mechanism and Possible Applications

    PubMed Central

    Tarandovskiy, Ivan D.; Artemenko, Elena O.; Panteleev, Mikhail A.; Sinauridze, Elena I.; Ataullakhanov, Fazoil I.

    2013-01-01

    Background Thrombin generation assay is a convenient and widely used method for analysis of the blood coagulation system status. Thrombin generation curve (TGC) is usually bell-shaped with a single peak, but there are exceptions. In particular, TGC in platelet-rich plasma (PRP) can sometimes have two peaks. Objective We sought to understand the mechanism underlying the occurrence of two peaks in the PRP thrombin generation curve. Methods Tissue factor-induced thrombin generation in PRP and platelet-poor plasma (PPP) was monitored using continuous measurement of the hydrolysis rate of the thrombin-specific fluorogenic substrate Z-Gly-Gly-Arg-AMC. Expression of phosphatidylserine (PS) and CD62P on the surface of activated platelets was measured by flow cytometry using corresponding fluorescently labeled markers. Results The addition of the P2Y12 receptor antagonist MeS-AMP (160 µM), 83 nM prostaglandin E1 (PGE1), or 1.6% DMSO to PRP caused the appearance of two peaks in the TGC. The PS exposure after thrombin activation on washed platelets in a suspension supplemented with DMSO, PGE1 or MeS-AMP was delayed, which could indicate mechanism of the second peak formation. Supplementation of PRP with 1.6% DMSO plus 830 nM PGE1 mediated the disappearance of the second peak and decreased the amplitude of the first peak. Increasing the platelet concentration in the PRP promoted the consolidation of the two peaks into one. Conclusions Procoagulant tenase and prothrombinase complexes in PRP assemble on phospholipid surfaces containing PS of two types - plasma lipoproteins and the surface of activated platelets. Thrombin generation in the PRP can be two-peaked. The second peak appears in the presence of platelet antagonists as a result of delayed PS expression on platelets, which leads to delayed assembly of the membrane-dependent procoagulant complexes and a second wave of thrombin generation. PMID:23405196

  1. Comparison of oscillations of skin blood flow and deoxygenation in vastus lateralis in light exercise.

    PubMed

    Yano, T; Lian, C-S; Afroundeh, R; Shirakawa, K; Yunoki, T

    2014-03-01

    The purpose of the present study was to compare oscillation of skin blood flow with that of deoxygenation in muscle during light exercise in order to determine the physiological significance of oscillations in deoxygenation. Prolonged exercise with 50% of peak oxygen uptake was performed for 60 min. Skin blood flow (SBF) was measured using a laser blood flow meter on the right vastus lateralis muscle. Deoxygenated haemoglobin/myoglobin (DHb/Mb) concentration in the left vastus lateralis were measured using a near-infrared spectroscopy system. SBF and DHb/Mb during exercise were analysed by fast Fourier transform. We classified frequency bands according to previous studies (Kvernmo et al. 1999, Kvandal et al. 2006) into phase I (0.005-0.0095 and 0.0095-0.02 Hz), phase II (0.02-0.06 Hz: phase II) and phase III (0.06-0.16 Hz). The first peak of power spectra density (PSD) in SBF appeared at 0.0078 Hz in phase I. The second peak of PSD in SBF appeared at 0.035 Hz. The third peak of PSD in SBF appeared at 0.078 Hz. The first peak of PSD in DHb/Mb appeared at 0.0039 Hz, which was out of phase I. The second peak of PSD in DHb/Mb appeared at 0.016 Hz. The third peak of PSD in DHb/Mb appeared at 0.035 Hz. The coefficient of cross correlation was very low. Cross power spectra density showed peaks of 0.0039, 0.016 and 0.035 Hz. It is concluded that a peak of 0.016 Hz in oscillations of DHb/Mb observed in muscle during exercise is associated with endothelium-dependent vasodilation (phase I) and that a peak of 0.035 Hz in DHb/Mb is associated with sympathetic nerve activity (phase II). It is also confirmed that each peak of SBF oscillations is observed in each phase.

  2. Estimation of cardiac reserve by peak power: validation and initial application of a simplified index

    NASA Technical Reports Server (NTRS)

    Armstrong, G. P.; Carlier, S. G.; Fukamachi, K.; Thomas, J. D.; Marwick, T. H.

    1999-01-01

    OBJECTIVES: To validate a simplified estimate of peak power (SPP) against true (invasively measured) peak instantaneous power (TPP), to assess the feasibility of measuring SPP during exercise and to correlate this with functional capacity. DESIGN: Development of a simplified method of measurement and observational study. SETTING: Tertiary referral centre for cardiothoracic disease. SUBJECTS: For validation of SPP with TPP, seven normal dogs and four dogs with dilated cardiomyopathy were studied. To assess feasibility and clinical significance in humans, 40 subjects were studied (26 patients; 14 normal controls). METHODS: In the animal validation study, TPP was derived from ascending aortic pressure and flow probe, and from Doppler measurements of flow. SPP, calculated using the different flow measures, was compared with peak instantaneous power under different loading conditions. For the assessment in humans, SPP was measured at rest and during maximum exercise. Peak aortic flow was measured with transthoracic continuous wave Doppler, and systolic and diastolic blood pressures were derived from brachial sphygmomanometry. The difference between exercise and rest simplified peak power (Delta SPP) was compared with maximum oxygen uptake (VO(2)max), measured from expired gas analysis. RESULTS: SPP estimates using peak flow measures correlated well with true peak instantaneous power (r = 0.89 to 0.97), despite marked changes in systemic pressure and flow induced by manipulation of loading conditions. In the human study, VO(2)max correlated with Delta SPP (r = 0.78) better than Delta ejection fraction (r = 0.18) and Delta rate-pressure product (r = 0.59). CONCLUSIONS: The simple product of mean arterial pressure and peak aortic flow (simplified peak power, SPP) correlates with peak instantaneous power over a range of loading conditions in dogs. In humans, it can be estimated during exercise echocardiography, and correlates with maximum oxygen uptake better than ejection fraction or rate-pressure product.

  3. SU-E-T-146: Beam Energy Spread Estimate Based On Bragg Peak Measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anferov, V; Derenchuk, V; Moore, R

    2015-06-15

    Purpose: ProNova is installing and commissioning a two room proton therapy system in Knoxville, TN. Beam energy out of the 230MeV cyclotron was measured on Jan 24, 2015. Cyclotron beam was delivered into a Zebra multi layered IC detector calibrated in terms of penetration range in water. The analysis of the measured Bragg peak determines penetration range in water which can be subsequently converted into proton beam energy. We extended this analysis to obtain an estimate of the beam energy spread out of the cyclotron. Methods: Using Monte Carlo simulations we established the correlation between Bragg peak shape parameters (widthmore » at 50% and 80% dose levels, distal falloff) and penetration range for a monoenergetic proton beam. For large uniform field impinging on a small area detector, we observed linear dependence of each Bragg peak parameter on beam penetration range as shown in Figure A. Then we studied how this correlation changes when the shape of Bragg peak is distorted by the beam focusing conditions. As shown in Figure B, small field size or diverging beam cause Bragg peak deformation predominantly in the proximal region. The distal shape of the renormalized Bragg peaks stays nearly constant. This excludes usage of Bragg peak width parameters for energy spread estimates. Results: The measured Bragg peaks had an average distal falloff of 4.86mm, which corresponds to an effective range of 35.5cm for a monoenergetic beam. The 32.7cm measured penetration range is 2.8cm less. Passage of a 230MeV proton beam through a 2.8cm thick slab of water results in a ±0.56MeV energy spread. As a final check, we confirmed agreement between shapes of the measured Bragg peak and one generated by Monte-Carlo code for proton beam with 0.56 MeV energy spread. Conclusion: Proton beam energy spread can be estimated using Bragg peak analysis.« less

  4. Difference in peak weight transfer and timing based on golf handicap.

    PubMed

    Queen, Robin M; Butler, Robert J; Dai, Boyi; Barnes, C Lowry

    2013-09-01

    Weight shift during the golf swing has been a topic of discussion among golf professionals; however, it is still unclear how weight shift varies in golfers of different performance levels. The main purpose of this study was to examine the following: (a) the changes in the peak ground reaction forces (GRF) and the timing of these events between high (HHCP) and low handicap (LHCP) golfers and (b) the differences between the leading and trailing legs. Twenty-eight male golfers were recruited and divided based on having an LHCP < 9 or HHCP > 9. Three-dimensional GRF peaks and the timing of the peaks were recorded bilaterally during a golf swing. The golf swing was divided into different phases: (a) address to the top of the backswing, (b) top of the backswing to ball contact, and (c) ball contact to the end of follow through. Repeated measures analyses of variance (α = 0.05) were completed for each study variable: the magnitude and the timing of peak vertical GRF, peak lateral GRF, and peak medial GRF (α = 0.05). The LHCP group had a greater transfer of vertical force from the trailing foot to the leading foot in phase 2 than the HHCP group. The LHCP group also demonstrated earlier timing of peak vertical force throughout the golf swing than the HHCP group. The LHCP and HHCP groups demonstrated different magnitudes of peak lateral force. The LHCP group had an earlier timing of peak lateral GRF in phase 2 and earlier timing of peak medial GRF in phases 1 and 2 than the HHCP group. In general, LHCP golfers demonstrated greater and earlier force generation than HHCP golfers. It may be relevant to consider both the magnitude of the forces and the timing of these events during golf-specific training to improve performance. These data reveal weight shifting differences that can be addressed by teaching professionals to help their students better understand weight transfer during the golf swing to optimize performance.

  5. GRAIL gravity observations of the transition from complex crater to peak-ring basin on the Moon: Implications for crustal structure and impact basin formation

    NASA Astrophysics Data System (ADS)

    Baker, David M. H.; Head, James W.; Phillips, Roger J.; Neumann, Gregory A.; Bierson, Carver J.; Smith, David E.; Zuber, Maria T.

    2017-08-01

    High-resolution gravity data from the Gravity Recovery and Interior Laboratory (GRAIL) mission provide the opportunity to analyze the detailed gravity and crustal structure of impact features in the morphological transition from complex craters to peak-ring basins on the Moon. We calculate average radial profiles of free-air anomalies and Bouguer anomalies for peak-ring basins, protobasins, and the largest complex craters. Complex craters and protobasins have free-air anomalies that are positively correlated with surface topography, unlike the prominent lunar mascons (positive free-air anomalies in areas of low elevation) associated with large basins. The Bouguer gravity anomaly profiles of complex craters are highly irregular, with central positive anomalies that are generally absent or not clearly tied to interior morphology. In contrast, gravity profiles for peak-ring basins (∼200 km to 580 km) are much more regular and are highly correlated with surface morphology. A central positive Bouguer anomaly is confined within the peak ring and a negative Bouguer anomaly annulus extends from the edge of the positive anomaly outward to about the rim crest. A number of degraded basins lacking interior peak rings have diameters and gravity patterns similar to those of well-preserved peak-ring basins. If these structures represent degraded peak-ring basins, the number of peak-ring basins on the Moon would increase by more than a factor of two to 34. The gravity anomalies within basins are interpreted to be due to uplift of the mantle confined within the peak ring and an annulus of thickened crust between the peak ring and rim crest. We hypothesize that mantle uplift is influenced by interaction between the transient cavity and the mantle. Further, mascon formation is generally disconnected from the number of basin rings formed and occurs over a wide range of basin sizes. These observations have important implications for models of basin and mascon formation on the Moon and other planetary bodies.

  6. Peak Exercise Oxygen Uptake Predicts Recurrent Admissions in Heart Failure With Preserved Ejection Fraction.

    PubMed

    Palau, Patricia; Domínguez, Eloy; Núñez, Eduardo; Ramón, José María; López, Laura; Melero, Joana; Sanchis, Juan; Bellver, Alejandro; Santas, Enrique; Bayes-Genis, Antoni; Chorro, Francisco J; Núñez, Julio

    2018-04-01

    Heart failure with preserved ejection fraction (HFpEF) is a highly prevalent syndrome with an elevated risk of morbidity and mortality. To date, there is scarce evidence on the role of peak exercise oxygen uptake (peak VO 2 ) for predicting the morbidity burden in HFpEF. We sought to evaluate the association between peak VO 2 and the risk of recurrent hospitalizations in patients with HFpEF. A total of 74 stable symptomatic patients with HFpEF underwent a cardiopulmonary exercise test between June 2012 and May 2016. A negative binomial regression method was used to determine the association between the percentage of predicted peak VO 2 (pp-peak VO 2 ) and recurrent hospitalizations. Risk estimates are reported as incidence rate ratios. The mean age was 72.5 ± 9.1 years, 53% were women, and all patients were in New York Heart Association functional class II to III. Mean peak VO 2 and median pp-peak VO 2 were 10 ± 2.8mL/min/kg and 60% (range, 47-67), respectively. During a median follow-up of 276 days [interquartile range, 153-1231], 84 all-cause hospitalizations in 31 patients (41.9%) were registered. A total of 15 (20.3%) deaths were also recorded. On multivariate analysis, accounting for mortality as a terminal event, pp-peak VO 2 was independently and linearly associated with the risk of recurrent admission. Thus, and modeled as continuous, a 10% decrease of pp-peak VO 2 increased the risk of recurrent hospitalizations by 32% (IRR, 1.32; 95%CI, 1.03-1.68; P = .028). In symptomatic elderly patients with HFpEF, pp-peak VO 2 predicts all-cause recurrent admission. Copyright © 2017 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  7. Hemodynamic exercise testing. A valuable tool in the selection of cardiac transplantation candidates.

    PubMed

    Chomsky, D B; Lang, C C; Rayos, G H; Shyr, Y; Yeoh, T K; Pierson, R N; Davis, S F; Wilson, J R

    1996-12-15

    Peak exercise oxygen consumption (Vo2), a noninvasive index of peak exercise cardiac output (CO), is widely used to select candidates for heart transplantation. However, peak exercise Vo2 can be influenced by noncardiac factors such as deconditioning, motivation, or body composition and may yield misleading prognostic information. Direct measurement of the CO response to exercise may avoid this problem and more accurately predict prognosis. Hemodynamic and ventilatory responses to maximal treadmill exercise were measured in 185 ambulatory patients with chronic heart failure who had been referred for cardiac transplantation (mean left ventricular ejection fraction, 22 +/- 7%; mean peak Vo2, 12.9 +/- 3.0 mL. min-1.kg-1). CO response to exercise was normal in 83 patients and reduced in 102. By univariate analysis, patients with normal CO responses had a better 1-year survival rate (95%) than did those with reduced CO responses (72%) (P < .0001). Survival in patients with peak Vo2 of > 14 mL.min-1.kg-1 (88%) was not different from that of patients with peak Vo2 of < or = 14 mL.min-1.kg-1 (79%) (P = NS). However, survival was worse in patients with peak Vo2 of < or = 10 mL.min-1.kg-1 (52%) versus those with peak Vo2 of > 10 mL.min-1.kg-1 (89%) (P < .0001). By Cox regression analysis, exercise CO response was the strongest independent predictor of survival (risk ratio, 4.3), with peak Vo2 dichotomized at 10 mL. min-1.kg-1 (risk ratio, 3.3) as the only other independent predictor. Patients with reduced CO responses and peak Vo2 of < or = 10 mL.min-1.kg-1 had an extremely poor 1-year survival rate (38%). Both CO response to exercise and peak exercise Vo2 provide valuable independent prognostic information in ambulatory patients with heart failure. These variables should be used in combination to select potential heart transplantation candidates.

  8. SU-FF-T-668: A Simple Algorithm for Range Modulation Wheel Design in Proton Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nie, X; Nazaryan, Vahagn; Gueye, Paul

    2009-06-01

    Purpose: To develop a simple algorithm in designing the range modulation wheel to generate a very smooth Spread-Out Bragg peak (SOBP) for proton therapy.Method and Materials: A simple algorithm has been developed to generate the weight factors in corresponding pristine Bragg peaks which composed a smooth SOBP in proton therapy. We used a modified analytical Bragg peak function based on Monte Carol simulation tool-kits of Geant4 as pristine Bragg peaks input in our algorithm. A simple METLAB(R) Quad Program was introduced to optimize the cost function in our algorithm. Results: We found out that the existed analytical function of Braggmore » peak can't directly use as pristine Bragg peak dose-depth profile input file in optimization of the weight factors since this model didn't take into account of the scattering factors introducing from the range shifts in modifying the proton beam energies. We have done Geant4 simulations for proton energy of 63.4 MeV with a 1.08 cm SOBP for variation of pristine Bragg peaks which composed this SOBP and modified the existed analytical Bragg peak functions for their peak heights, ranges of R{sub 0}, and Gaussian energies {sigma}{sub E}. We found out that 19 pristine Bragg peaks are enough to achieve a flatness of 1.5% of SOBP which is the best flatness in the publications. Conclusion: This work develops a simple algorithm to generate the weight factors which is used to design a range modulation wheel to generate a smooth SOBP in protonradiation therapy. We have found out that a medium number of pristine Bragg peaks are enough to generate a SOBP with flatness less than 2%. It is potential to generate data base to store in the treatment plan to produce a clinic acceptable SOBP by using our simple algorithm.« less

  9. Application of the stochastic resonance algorithm to the simultaneous quantitative determination of multiple weak peaks of ultra-performance liquid chromatography coupled to time-of-flight mass spectrometry.

    PubMed

    Deng, Haishan; Shang, Erxin; Xiang, Bingren; Xie, Shaofei; Tang, Yuping; Duan, Jin-ao; Zhan, Ying; Chi, Yumei; Tan, Defei

    2011-03-15

    The stochastic resonance algorithm (SRA) has been developed as a potential tool for amplifying and determining weak chromatographic peaks in recent years. However, the conventional SRA cannot be applied directly to ultra-performance liquid chromatography/time-of-flight mass spectrometry (UPLC/TOFMS). The obstacle lies in the fact that the narrow peaks generated by UPLC contain high-frequency components which fall beyond the restrictions of the theory of stochastic resonance. Although there already exists an algorithm that allows a high-frequency weak signal to be detected, the sampling frequency of TOFMS is not fast enough to meet the requirement of the algorithm. Another problem is the depression of the weak peak of the compound with low concentration or weak detection response, which prevents the simultaneous determination of multi-component UPLC/TOFMS peaks. In order to lower the frequencies of the peaks, an interpolation and re-scaling frequency stochastic resonance (IRSR) is proposed, which re-scales the peak frequencies via linear interpolating sample points numerically. The re-scaled UPLC/TOFMS peaks could then be amplified significantly. By introducing an external energy field upon the UPLC/TOFMS signals, the method of energy gain was developed to simultaneously amplify and determine weak peaks from multi-components. Subsequently, a multi-component stochastic resonance algorithm was constructed for the simultaneous quantitative determination of multiple weak UPLC/TOFMS peaks based on the two methods. The optimization of parameters was discussed in detail with simulated data sets, and the applicability of the algorithm was evaluated by quantitative analysis of three alkaloids in human plasma using UPLC/TOFMS. The new algorithm behaved well in the improvement of signal-to-noise (S/N) compared to several normally used peak enhancement methods, including the Savitzky-Golay filter, Whittaker-Eilers smoother and matched filtration. Copyright © 2011 John Wiley & Sons, Ltd.

  10. Focused ultrasound transducer spatial peak intensity estimation: a comparison of methods

    NASA Astrophysics Data System (ADS)

    Civale, John; Rivens, Ian; Shaw, Adam; ter Haar, Gail

    2018-03-01

    Characterisation of the spatial peak intensity at the focus of high intensity focused ultrasound transducers is difficult because of the risk of damage to hydrophone sensors at the high focal pressures generated. Hill et al (1994 Ultrasound Med. Biol. 20 259-69) provided a simple equation for estimating spatial-peak intensity for solid spherical bowl transducers using measured acoustic power and focal beamwidth. This paper demonstrates theoretically and experimentally that this expression is only strictly valid for spherical bowl transducers without a central (imaging) aperture. A hole in the centre of the transducer results in over-estimation of the peak intensity. Improved strategies for determining focal peak intensity from a measurement of total acoustic power are proposed. Four methods are compared: (i) a solid spherical bowl approximation (after Hill et al 1994 Ultrasound Med. Biol. 20 259-69), (ii) a numerical method derived from theory, (iii) a method using measured sidelobe to focal peak pressure ratio, and (iv) a method for measuring the focal power fraction (FPF) experimentally. Spatial-peak intensities were estimated for 8 transducers at three drive powers levels: low (approximately 1 W), moderate (~10 W) and high (20-70 W). The calculated intensities were compared with those derived from focal peak pressure measurements made using a calibrated hydrophone. The FPF measurement method was found to provide focal peak intensity estimates that agreed most closely (within 15%) with the hydrophone measurements, followed by the pressure ratio method (within 20%). The numerical method was found to consistently over-estimate focal peak intensity (+40% on average), however, for transducers with a central hole it was more accurate than using the solid bowl assumption (+70% over-estimation). In conclusion, the ability to make use of an automated beam plotting system, and a hydrophone with good spatial resolution, greatly facilitates characterisation of the FPF, and consequently gives improved confidence in estimating spatial peak intensity from measurement of acoustic power.

  11. Prediction of Cardiorespiratory Fitness by the Six-Minute Step Test and Its Association with Muscle Strength and Power in Sedentary Obese and Lean Young Women: A Cross-Sectional Study

    PubMed Central

    Bonjorno Junior, José Carlos; de Oliveira, Cláudio Ricardo; Luporini, Rafael Luís; Mendes, Renata Gonçalves; Zangrando, Katiany Thais Lopes; Trimer, Renata; Arena, Ross

    2015-01-01

    Impaired cardiorespiratory fitness (CRF) is a hallmark characteristic in obese and lean sedentary young women. Peak oxygen consumption (VO2peak) prediction from the six-minute step test (6MST) has not been established for sedentary females. It is recognized that lower-limb muscle strength and power play a key role during functional activities. The aim of this study was to investigate cardiorespiratory responses during the 6MST and CPX and to develop a predictive equation to estimate VO2peak in both lean and obese subjects. Additionally we aim to investigate how muscle function impacts functional performance. Lean (LN = 13) and obese (OB = 18) women, aged 20–45, underwent a CPX, two 6MSTs, and isokinetic and isometric knee extensor strength and power evaluations. Regression analysis assessed the ability to predict VO2peak from the 6MST, age and body mass index (BMI). CPX and 6MST main outcomes were compared between LN and OB and correlated with strength and power variables. CRF, functional capacity, and muscle strength and power were lower in the OB compared to LN (<0.05). During the 6MST, LN and OB reached ~90% of predicted maximal heart rate and ~80% of the VO2peak obtained during CPX. BMI, age and number of step cycles (NSC) explained 83% of the total variance in VO2peak. Moderate to strong correlations between VO2peak at CPX and VO2peak at 6MST (r = 0.86), VO2peak at CPX and NSC (r = 0.80), as well as between VO2peak, NSC and muscle strength and power variables were found (p<0.05). These findings indicate the 6MST, BMI and age accurately predict VO2peak in both lean and obese young sedentary women. Muscle strength and power were related to measures of aerobic and functional performance. PMID:26717568

  12. Physical activity as a long-term predictor of peak oxygen uptake: the HUNT Study.

    PubMed

    Aspenes, Stian Thoresen; Nauman, Javaid; Nilsen, Tom Ivar Lund; Vatten, Lars Johan; Wisløff, Ulrik

    2011-09-01

    A physically active lifestyle and a relatively high level of cardiorespiratory fitness are important for longevity and long-term health. No population-based study has prospectively assessed the association of physical activity levels with long-term peak oxygen uptake (VO(2peak)). 1843 individuals (906 women and 937 men) who were between 18 and 66 yr at baseline and were free from known lung or heart diseases at both baseline (1984-1986) and follow-up (2006-2008) were included in the study. Self-reported physical activity was recorded at both occasions, and VO(2peak) was measured at follow-up. The association of physical activity levels and VO(2peak) was adjusted for age, level of education, smoking status, and weight change from baseline to follow-up, using ANCOVA statistics. The level of physical activity at baseline was strongly associated with VO(2peak) at follow-up 23 yr later in both men and women (Ptrends < 0.001). Compared with individuals who were inactive at baseline, women and men who were highly active at baseline had higher (3.3 and 4.6 mL·kg(-1)·min(-1)) VO(2peak) at follow-up. Women who were inactive at baseline but highly active at follow-up had 3.7 mL·kg(-1)·min(-1) higher VO(2peak) compared with women who were inactive both at baseline and at follow-up. The corresponding comparison in men showed a difference of 5.2 mL·kg(-1)·min(-1) (95% confidence interval = 3.1-7.3) in VO(2peak). Physical activity level at baseline was positively associated with directly measured cardiorespiratory fitness (VO(2peak)) 23 yr later. People who changed from low to high activity during the observation period had substantially higher V˙O(2peak) at follow-up compared with people whose activity remained low.

  13. Peak and end effects in patients' daily recall of pain and fatigue: a within-subjects analysis.

    PubMed

    Schneider, Stefan; Stone, Arthur A; Schwartz, Joseph E; Broderick, Joan E

    2011-02-01

    Clinical research often relies on retrospective recall of symptom levels, but the information contained in these ratings is not well understood. The "peak-and-end rule" suggests that the most intense (peak) and final (end) moments of an experience disproportionately influence retrospective judgments, which may bias self-reports of somatic symptoms. This study examined the extent to which peak and end symptom levels systematically affect patients' day-to-day recall of pain and fatigue. Rheumatology patients (N = 97) completed 5 to 6 momentary ratings of pain and fatigue per day as well as a daily recall rating of these symptoms for 28 consecutive days. For pain, peak and end momentary ratings predicted daily recall of average pain beyond the actual average of momentary ratings. This effect was small, yet was confirmed in both between-person and within-person (repeated measures) analyses. For fatigue, neither peak nor end momentary symptoms significantly contributed to daily recall. Of note, the evidence for peak- and end-effects in recall of pain and fatigue varied significantly between individual patients. These findings suggest that peak- and end-effects create a small bias in recall reports of pain, but not fatigue. However, there are considerable individual differences in susceptibility to peak and end heuristics. The peak-end cognitive heuristic could bias end-of-day recall of pain and fatigue. An effect was shown for pain, but not for fatigue. The effects were small and were unlikely to substantially bias end-of-day assessments. Individuals were shown to differ in the degree that the heuristic was associated with recall. Copyright © 2011 American Pain Society. Published by Elsevier Inc. All rights reserved.

  14. FTIR spectroscopy of multiwalled carbon nanotubes: a simple approach to study the nitrogen doping.

    PubMed

    Misra, Abha; Tyagi, Pawan K; Rai, Padmnabh; Misra, D S

    2007-06-01

    The nitrogen doped multiwalled carbon nanotubes (MWNTs) were synthesized by microwave plasma chemical vapor deposition (MPCVD) technique. In this paper, we report the results of FTIR, Raman, and TGA studies to confirm the presence of N-doping inside carbon nanotubes. Fourier transform infrared (FTIR) studies were carried out in the range 400-4000 cm(-1) to study the attachment of nitrogen impurities on carbon nanotubes. FTIR spectra of the virgin sample of MWNTs show dominant peaks which are corresponding to Si-O, C-N, N-CH3, CNT, C-O, and C-Hx, respectively. The Si-O peak has its origin in silicon substrate whereas the other peaks are due to the precursor gases present in the gas mixture. The peaks are sharp and highly intense showing the chemisorption nature of the dipole bond. The intensity of the peaks due to N-CH3, C-N, and C-H reduces after annealing. It is interesting to note that these peaks vanish on annealing at high temperature (900 degrees C). The presence of C-N peak may imply the doping of the MWNTs with N in substitution mode. The position of this intense peak is in agreement with the reported peak in carbon nitride samples prepared by plasma CVD process, since the Raman modes are also expected to be delocalized over both carbon and nitrogen sites it was found that the intensity ratio of the D and G peaks, I(D)/I(G), varies as a function of ammonia concentration. The TGA measurements, carried out under argon flow, show that the dominant weight loss of the sample occurs in the temperature range 400-600 degrees C corresponding to the removal of the impurities and amorphous carbon.

  15. Supernovae with two peaks in the optical light curve and the signature of progenitors with low-mass extended envelopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakar, Ehud; Piro, Anthony L.

    2014-06-20

    Early observations of supernova light curves are powerful tools for shedding light on the pre-explosion structures of their progenitors and their mass-loss histories just prior to explosion. Some core-collapse supernovae that are detected during the first days after the explosion prominently show two peaks in the optical bands, including the R and I bands, where the first peak appears to be powered by the cooling of shocked surface material and the second peak is clearly powered by radioactive decay. Such light curves have been explored in detail theoretically for SN 1993J and 2011dh, where it was found that they maymore » be explained by progenitors with extended, low-mass envelopes. Here, we generalize these results. We first explore whether any double-peaked light curve of this type can be generated by a progenitor with a 'standard' density profile, such as a red supergiant or a Wolf-Rayet star. We show that a standard progenitor (1) cannot produce a double-peaked light curve in the R and I bands and (2) cannot exhibit a fast drop in the bolometric luminosity as is seen after the first peak. We then explore the signature of a progenitor with a compact core surrounded by extended, low-mass material. This may be a hydrostatic low-mass envelope or material ejected just prior to the explosion. We show that it naturally produces both of these features. We use this result to provide simple formulae to estimate (1) the mass of the extended material from the time of the first peak, (2) the extended material radius from the luminosity of the first peak, and (3) an upper limit on the core radius from the luminosity minimum between the two peaks.« less

  16. SWIFT OBSERVATIONS OF GAMMA-RAY BURST PULSE SHAPES: GRB PULSE SPECTRAL EVOLUTION CLARIFIED

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hakkila, Jon; Lien, Amy; Sakamoto, Takanori

    Isolated Swift gamma-ray burst (GRB) pulses, like their higher-energy BATSE counterparts, emit the bulk of their pulsed emission as a hard-to-soft component that can be fitted by the Norris et al. empirical pulse model. This signal is overlaid by a fainter, three-peaked signal that can be modeled by the residual fit of Hakkila and Preece: the two fits combine to reproduce GRB pulses with distinctive three-peaked shapes. The precursor peak appears on or before the pulse rise and is often the hardest component, the central peak is the brightest, and the decay peak converts exponentially decaying emission into a long,more » soft, power-law tail. Accounting for systematic instrumental differences, the general characteristics of the fitted pulses are remarkably similar. Isolated GRB pulses are dominated by hard-to-soft evolution; this is more pronounced for asymmetric pulses than for symmetric ones. Isolated GRB pulses can also exhibit intensity tracking behaviors that, when observed, are tied to the timing of the three peaks: pulses with the largest maximum hardnesses are hardest during the precursor, those with smaller maximum hardnesses are hardest during the central peak, and all pulses can re-harden during the central peak and/or during the decay peak. Since these behaviors are essentially seen in all isolated pulses, the distinction between “hard-to-soft and “intensity-tracking” pulses really no longer applies. Additionally, the triple-peaked nature of isolated GRB pulses seems to indicate that energy is injected on three separate occasions during the pulse duration: theoretical pulse models need to account for this.« less

  17. Speckle Tracking Imaging in Normal Stress Echocardiography.

    PubMed

    Leitman, Marina; Tyomkin, Vladimir; Peleg, Eli; Zyssman, Izhak; Rosenblatt, Simcha; Sucher, Edgar; Gercenshtein, Vered; Vered, Zvi

    2017-04-01

    Exercise stress echocardiography is a widely used modality for the diagnosis and follow-up of patients with coronary artery disease. During the last decade, speckle tracking imaging has been used increasingly for accurate evaluation of cardiac function. This work aimed to assess speckle-tracking imaging parameters during nonischemic exercise stress echocardiography. During 2011 to 2014 we studied 46 patients without history of coronary artery disease, who completed exercise stress echocardiography protocol, had normal left ventricular function, a nonischemic response, and satisfactory image quality. These exams were analyzed with speckle-tracking imaging software at rest and at peak exercise. Peak strain and time-to-peak strain were measured at rest and after exercise. Clinical follow-up included a telephone contact 1 to 3 years after stress echo exam, confirming freedom from coronary events during this time. Global and regional peak strain increased following exercise. Time-to-peak global and regional strain and time-to-peak strain adjusted to the heart rate were significantly shorter in all segments after exercise. Rest-to-stress ratio of time-to-peak strain adjusted to the heart rate was 2.0 to 2.8. Global and regional peak strain rise during normal exercise echocardiography. Peak global and regional strain occur before or shortly after aortic valve closure at rest and after exercise, and the delay is more apparent at the basal segments. Time-to-peak strain normally shortens significantly during exercise; after adjustment to heart rate it shortens by a ratio of 2.0 to 2.8. These data may be useful for interpretation of future exercise stress speckle-tracking echocardiography studies. © 2016 by the American Institute of Ultrasound in Medicine.

  18. Error of the modelled peak flow of the hydraulically reconstructed 1907 flood of the Ebro River in Xerta (NE Iberian Peninsula)

    NASA Astrophysics Data System (ADS)

    Lluís Ruiz-Bellet, Josep; Castelltort, Xavier; Carles Balasch, J.; Tuset, Jordi

    2016-04-01

    The estimation of the uncertainty of the results of the hydraulic modelling has been deeply analysed, but no clear methodological procedures as to its determination have been formulated when applied to historical hydrology. The main objective of this study was to calculate the uncertainty of the resulting peak flow of a typical historical flood reconstruction. The secondary objective was to identify the input variables that influenced the result the most and their contribution to peak flow total error. The uncertainty of 21-23 October 1907 flood of the Ebro River (NE Iberian Peninsula) in the town of Xerta (83,000 km2) was calculated with a series of local sensitivity analyses of the main variables affecting the resulting peak flow. Besides, in order to see to what degree the result depended on the chosen model, the HEC-RAS resulting peak flow was compared to the ones obtained with the 2D model Iber and with Manning's equation. The peak flow of 1907 flood in the Ebro River in Xerta, reconstructed with HEC-RAS, was 11500 m3·s-1 and its total error was ±31%. The most influential input variable over HEC-RAS peak flow results was water height; however, the one that contributed the most to peak flow error was Manning's n, because its uncertainty was far greater than water height's. The main conclusion is that, to ensure the lowest peak flow error, the reliability and precision of the flood mark should be thoroughly assessed. The peak flow was 12000 m3·s-1 when calculated with the 2D model Iber and 11500 m3·s-1 when calculated with the Manning equation.

  19. Bimodal Formation Time Distribution for Infall Dark Matter Halos

    NASA Astrophysics Data System (ADS)

    Shi, Jingjing; Wang, Huiyuan; Mo, H. J.; Xie, Lizhi; Wang, Xiaoyu; Lapi, Andrea; Sheth, Ravi K.

    2018-04-01

    We use a 200 {h}-1 {Mpc} a-side N-body simulation to study the mass accretion history (MAH) of dark matter halos to be accreted by larger halos, which we call infall halos. We define a quantity {a}nf}\\equiv (1+{z}{{f}})/(1+{z}peak}) to characterize the MAH of infall halos, where {z}peak} and {z}{{f}} are the accretion and formation redshifts, respectively. We find that, at given {z}peak}, their MAH is bimodal. Infall halos are dominated by a young population at high redshift and by an old population at low redshift. For the young population, the {a}nf} distribution is narrow and peaks at about 1.2, independent of {z}peak}, while for the old population, the peak position and width of the {a}nf} distribution both increase with decreasing {z}peak} and are both larger than those of the young population. This bimodal distribution is found to be closely connected to the two phases in the MAHs of halos. While members of the young population are still in the fast accretion phase at z peak, those of the old population have already entered the slow accretion phase at {z}peak}. This bimodal distribution is not found for the whole halo population, nor is it seen in halo merger trees generated with the extended Press–Schechter formalism. The infall halo population at {z}peak} are, on average, younger than the whole halo population of similar masses identified at the same redshift. We discuss the implications of our findings in connection to the bimodal color distribution of observed galaxies and to the link between central and satellite galaxies.

  20. Cardiorespiratory Responses and Prediction of Peak Oxygen Uptake during the Shuttle Walking Test in Healthy Sedentary Adult Men

    PubMed Central

    Neves, Camila D. C.; Lacerda, Ana Cristina Rodrigues; Lage, Vanessa K. S.; Lima, Liliana P.; Fonseca, Sueli F.; de Avelar, Núbia C. P.; Teixeira, Mauro M.; Mendonça, Vanessa A.

    2015-01-01

    Background The application of the Shuttle Walking Test (SWT) to assess cardiorespiratory fitness and the intensity of this test in healthy participants has rarely been studied. This study aimed to assess and correlate the cardiorespiratory responses of the SWT with the cardiopulmonary exercise testing (CEPT) and to develop a regression equation for the prediction of peak oxygen uptake (VO2 peak) in healthy sedentary adult men. Methods In the first stage of this study, 12 participants underwent the SWT and the CEPT on a treadmill. In the second stage, 53 participants underwent the SWT twice. In both phases, the VO2 peak, respiratory exchange ratio (R), and heart rate (HR) were evaluated. Results Similar results in VO2 peak (P>0.05), R peak (P>0.05) and predicted maximum HR (P>0.05) were obtained between the SWT and CEPT. Both tests showed strong and significant correlations of VO2 peak (r = 0.704, P = 0.01) and R peak (r = 0.737, P<0.01), as well as the agreement of these measurements by Bland-Altman analysis. Body mass index and gait speed were the variables that explained 40.6% (R2 = 0.406, P = 0.001) of the variance in VO2 peak. The results obtained by the equation were compared with the values obtained by the gas analyzer and no significant difference between them (P>0.05) was found. Conclusions The SWT produced maximal cardiorespiratory responses comparable to the CEPT, and the developed equation showed viability for the prediction of VO2 peak in healthy sedentary men. PMID:25659094

  1. Computer vision-based automated peak picking applied to protein NMR spectra.

    PubMed

    Klukowski, Piotr; Walczak, Michal J; Gonczarek, Adam; Boudet, Julien; Wider, Gerhard

    2015-09-15

    A detailed analysis of multidimensional NMR spectra of macromolecules requires the identification of individual resonances (peaks). This task can be tedious and time-consuming and often requires support by experienced users. Automated peak picking algorithms were introduced more than 25 years ago, but there are still major deficiencies/flaws that often prevent complete and error free peak picking of biological macromolecule spectra. The major challenges of automated peak picking algorithms is both the distinction of artifacts from real peaks particularly from those with irregular shapes and also picking peaks in spectral regions with overlapping resonances which are very hard to resolve by existing computer algorithms. In both of these cases a visual inspection approach could be more effective than a 'blind' algorithm. We present a novel approach using computer vision (CV) methodology which could be better adapted to the problem of peak recognition. After suitable 'training' we successfully applied the CV algorithm to spectra of medium-sized soluble proteins up to molecular weights of 26 kDa and to a 130 kDa complex of a tetrameric membrane protein in detergent micelles. Our CV approach outperforms commonly used programs. With suitable training datasets the application of the presented method can be extended to automated peak picking in multidimensional spectra of nucleic acids or carbohydrates and adapted to solid-state NMR spectra. CV-Peak Picker is available upon request from the authors. gsw@mol.biol.ethz.ch; michal.walczak@mol.biol.ethz.ch; adam.gonczarek@pwr.edu.pl Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Understanding Human Motion Skill with Peak Timing Synergy

    NASA Astrophysics Data System (ADS)

    Ueno, Ken; Furukawa, Koichi

    The careful observation of motion phenomena is important in understanding the skillful human motion. However, this is a difficult task due to the complexities in timing when dealing with the skilful control of anatomical structures. To investigate the dexterity of human motion, we decided to concentrate on timing with respect to motion, and we have proposed a method to extract the peak timing synergy from multivariate motion data. The peak timing synergy is defined as a frequent ordered graph with time stamps, which has nodes consisting of turning points in motion waveforms. A proposed algorithm, PRESTO automatically extracts the peak timing synergy. PRESTO comprises the following 3 processes: (1) detecting peak sequences with polygonal approximation; (2) generating peak-event sequences; and (3) finding frequent peak-event sequences using a sequential pattern mining method, generalized sequential patterns (GSP). Here, we measured right arm motion during the task of cello bowing and prepared a data set of the right shoulder and arm motion. We successfully extracted the peak timing synergy on cello bowing data set using the PRESTO algorithm, which consisted of common skills among cellists and personal skill differences. To evaluate the sequential pattern mining algorithm GSP in PRESTO, we compared the peak timing synergy by using GSP algorithm and the one by using filtering by reciprocal voting (FRV) algorithm as a non time-series method. We found that the support is 95 - 100% in GSP, while 83 - 96% in FRV and that the results by GSP are better than the one by FRV in the reproducibility of human motion. Therefore we show that sequential pattern mining approach is more effective to extract the peak timing synergy than non-time series analysis approach.

  3. Hourly peak concentration measuring the PM2.5-mortality association: Results from six cities in the Pearl River Delta study

    NASA Astrophysics Data System (ADS)

    Lin, Hualiang; Ratnapradipa, Kendra; Wang, Xiaojie; Zhang, Yonghui; Xu, Yanjun; Yao, Zhenjiang; Dong, Guanghui; Liu, Tao; Clark, Jessica; Dick, Rebecca; Xiao, Jianpeng; Zeng, Weilin; Li, Xing; Qian, Zhengmin (Min); Ma, Wenjun

    2017-07-01

    Compared with daily mean concentration of air pollution, hourly peak concentration may be more directly relevant to the acute health effects due to the high concentration levels, however, few have analyzed the acute mortality effects of hourly peak levels of air pollution. We examined the associations of hourly peak concentration of fine particulate matter air pollution (PM2.5) with mortality in six cities in Pearl River Delta, China. We used generalized additive Poisson models to examine the associations with adjustment for potential confounders in each city. We further applied random-effects meta-analyses to estimate the regional overall effects. We further estimated the mortality burden attributable to hourly peak and daily mean PM2.5. We observed significant associations between hourly peak PM2.5 and mortality. Each 10 μg/m3 increase in 4-day averaged (lag03) hourly peak PM2.5 corresponded to a 0.9% [95% confidence interval (CI): 0.7%, 1.1%] increase in total mortality, 1.2% (95% CI: 1.0%, 1.5%) in cardiovascular mortality, and 0.7% (95% CI: 0.2%, 1.1%) in respiratory mortality. We observed a greater mortality burden using hourly peak PM2.5 than daily mean PM2.5, with an estimated 12915 (95% CI: 9922, 15949) premature deaths attributable to hourly peak PM2.5, and 7951 (95% CI: 5067, 10890) to daily mean PM2.5 in the Pearl River Delta (PRD) region during the study period. This study suggests that hourly peak PM2.5 might be one important risk factor of mortality in PRD region of China; the finding provides important information for future air pollution management and epidemiological studies.

  4. Gait biomechanics of skipping are substantially different than those of running.

    PubMed

    McDonnell, Jessica; Willson, John D; Zwetsloot, Kevin A; Houmard, Joseph; DeVita, Paul

    2017-11-07

    The inherit injury risk associated with high-impact exercises calls for alternative ways to achieve the benefits of aerobic exercise while minimizing excessive stresses to body tissues. Skipping presents such an alternative, incorporating double support, flight, and single support phases. We used ground reaction forces (GRFs), lower extremity joint torques and powers to compare skipping and running in 20 healthy adults. The two consecutive skipping steps on each limb differed significantly from each other, and from running. Running had the longest step length, the highest peak vertical GRF, peak knee extensor torque, and peak knee negative and positive power and negative and positive work. Skipping had the greater cadence, peak horizontal GRF, peak hip and ankle extensor torques, peak ankle negative power and work, and peak ankle positive power. The second vs first skipping step had the shorter step length, higher cadence, peak horizontal GRF, peak ankle extensor torque, and peak ankle negative power, negative work, and positive power and positive work. The first skipping step utilized predominately net negative joint work (eccentric muscle action) while the second utilized predominately net positive joint work (concentric muscle action). The skipping data further highlight the persistence of net negative work performed at the knee and net positive work performed at the ankle across locomotion gaits. Evidence of step segregation was seen in distribution of the braking and propelling impulses and net work produced across the hip, knee, and ankle joints. Skipping was substantially different than running and was temporally and spatially asymmetrical with successive foot falls partitioned into a dominant function, either braking or propelling whereas running had a single, repeated step in which both braking and propelling actions were performed equally. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Peak power in the hexagonal barbell jump squat and its relationship to jump performance and acceleration in elite rugby union players.

    PubMed

    Turner, Thomas S; Tobin, Daniel P; Delahunt, Eamonn

    2015-05-01

    Recent research suggests that jump squats with a loaded hexagonal barbell are superior for peak power production to comparable loads in a traditional barbell loaded jump squat. The aim of this study was to investigate the relationship between relative peak power output during performance of the hexagonal barbell jump squat (HBJS), countermovement jump (CMJ) height, and linear acceleration speed in rugby union players. Seventeen professional rugby union players performed 10- and 20-m sprints, followed by a set of 3 unloaded CMJs and a set of 3 HBJS at a previously determined optimal load corresponding with peak power output. The relationship between HBJS relative peak power output, 10- and 20-m sprint time, and CMJ height was investigated using correlation analysis. The contribution of HBJS relative peak power output and CMJ height to 10- and 20-m sprint time was investigated using standard multiple regression. Strong, significant, inverse correlations were observed between HBJS relative peak power output, 10-m sprint time (r = -0.70, p < 0.01), and 20-m sprint time (r = -0.75, p < 0.01). A strong, significant, positive correlation was observed between HBJS relative peak power output and CMJ height (r = 0.80, p < 0.01). Together, HBJS relative peak power output and CMJ height explained 46% of the variance in 10-m sprint time while explaining 59% of the variance in 20-m sprint time. The findings of the current study demonstrate a significant relationship between relative peak power in the HBJS and athletic performance as quantified by CMJ height and 10- and 20-m sprint time.

  6. Fracture Energy-Based Brittleness Index Development and Brittleness Quantification by Pre-peak Strength Parameters in Rock Uniaxial Compression

    NASA Astrophysics Data System (ADS)

    Munoz, H.; Taheri, A.; Chanda, E. K.

    2016-12-01

    Brittleness is a fundamental mechanical rock property critical to many civil engineering works, mining development projects and mineral exploration operations. However, rock brittleness is a concept yet to be investigated as there is not any unique criterion available, widely accepted by rock engineering community able to describe rock brittleness quantitatively. In this study, new brittleness indices were developed based on fracture strain energy quantities obtained from the complete stress-strain characteristics of rocks. In doing so, different rocks having unconfined compressive strength values ranging from 7 to 215 MPa were examined in a series of quasi-static uniaxial compression tests after properly implementing lateral-strain control in a closed-loop system to apply axial load to rock specimen. This testing method was essential to capture post-peak regime of the rocks since a combination of class I-II or class II behaviour featured post-peak stress-strain behaviour. Further analysis on the post-peak strain localisation, stress-strain characteristics and the fracture pattern causing class I-II and class II behaviour were undertaken by analysing the development of field of strains in the rocks via three-dimensional digital image correlation. Analysis of the results demonstrated that pre-peak stress-strain brittleness indices proposed solely based on pre-peak stress-strain behaviour do not show any correlation with any of pre-peak rock mechanical parameters. On the other hand, the proposed brittleness indices based on pre-peak and post-peak stress-strain relations were found to competently describe an unambiguous brittleness scale against rock deformation and strength parameters such as the elastic modulus, the crack damage stress and the peak stress relevant to represent failure process.

  7. Reversed aqueductal cerebrospinal fluid net flow in idiopathic normal pressure hydrocephalus.

    PubMed

    Yin, L K; Zheng, J J; Zhao, L; Hao, X Z; Zhang, X X; Tian, J Q; Zheng, K; Yang, Y M

    2017-11-01

    The changes of CSF flow dynamics in idiopathic normal pressure hydrocephalus (iNPH) are not fully elucidated. Most previous studies took the whole cardiac cycle as a unit. In this work, it is divided into systole and diastole phase and compared between iNPH patients and normal elderly and paid special attention to the change of netflow direction. Twenty iNPH patients according to international guideline and twenty healthy volunteers were included in this study and examined by MRI. Three categories of CSF flow parameters were measured: peak velocity (V peak ), stroke volume (SV), and minute flow volume (MinV) covering the whole cycle; peak velocity (V peak-s , V peak-d ) and flow volume (Vol s , Vol d ) of the systole and diastole, respectively; net flow. Evans index (EI) was also measured and compared statistically between the two groups. EI, V peak , SV, MinV, Vol s , Vol d , and V peak-d significantly increased in iNPH group (P<0.05). V peak-s of the two groups were not significantly different (P>0.05). The net flow of 16 iNPH patients (16/20) was in the caudo-cranial direction, while 15 volunteers (15/20) were in the opposite direction, which showed statistically significant differences (P=.001). INPH patients present hyperdynamic flow with increased velocity and volume both in systole and diastole phase. Degree of rising in diastole phase exceeds that of systole phase. The resulting reversal of netflow direction may play a key role in the occurrence of ventriculomegaly in iNPH patients. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Allometric modelling of peak oxygen uptake in male soccer players of 8-18 years of age.

    PubMed

    Valente-Dos-Santos, João; Coelho-E-Silva, Manuel J; Tavares, Óscar M; Brito, João; Seabra, André; Rebelo, António; Sherar, Lauren B; Elferink-Gemser, Marije T; Malina, Robert M

    2015-03-01

    Peak oxygen uptake (VO2peak) is routinely scaled as mL O2 per kilogram body mass despite theoretical and statistical limitations of using ratios. To examine the contribution of maturity status and body size descriptors to age-associated inter-individual variability in VO2peak and to present static allometric models to normalize VO2peak in male youth soccer players. Total body and estimates of total and regional lean mass were measured with dual energy X-ray absorptiometry in a cross-sectional sample of Portuguese male soccer players. The sample was divided into three age groups for analysis: 8-12 years, 13-15 years and 16-18 years. VO2peak was estimated using an incremental maximal exercise test on a motorized treadmill. Static allometric models were used to normalize VO2peak. The independent variables with the best statistical fit explained 72% in the younger group (lean body mass: k = 1.07), 52% in mid-adolescent players (lean body mass: k = 0.93) and 31% in the older group (body mass: k = 0.51) of variance in VO2peak. The inclusion of the exponential term pubertal status marginally increased the explained variance in VO2peak (adjusted R(2 )= 36-75%) and provided statistical adjustments to the size descriptors coefficients. The allometric coefficients and exponents evidenced the varying inter-relationship among size descriptors and maturity status with aerobic fitness from early to late-adolescence. Lean body mass, lean lower limbs mass and body mass combined with pubertal status explain most of the inter-individual variability in VO2peak among youth soccer players.

  9. The Boson peak in supercooled water.

    PubMed

    Kumar, Pradeep; Wikfeldt, K Thor; Schlesinger, Daniel; Pettersson, Lars G M; Stanley, H Eugene

    2013-01-01

    We perform extensive molecular dynamics simulations of the TIP4P/2005 model of water to investigate the origin of the Boson peak reported in experiments on supercooled water in nanoconfined pores, and in hydration water around proteins. We find that the onset of the Boson peak in supercooled bulk water coincides with the crossover to a predominantly low-density-like liquid below the Widom line TW. The frequency and onset temperature of the Boson peak in our simulations of bulk water agree well with the results from experiments on nanoconfined water. Our results suggest that the Boson peak in water is not an exclusive effect of confinement. We further find that, similar to other glass-forming liquids, the vibrational modes corresponding to the Boson peak are spatially extended and are related to transverse phonons found in the parent crystal, here ice Ih.

  10. REVERSING CYCLIC ELASTO-PLASTIC DEMANDS ON STRUCTURES DURING STRONG MOTION EARTHQUAKE EXCITATION.

    USGS Publications Warehouse

    Perez, V.; Brady, A.G.; Safak, E.

    1986-01-01

    Using the horizontal components from El Centro 1940, Taft 1952, and 4 accelerograms from the San Fernando earthquake of 2/9/71, the time history of the elasto-plastic displacement response was calculated for oscillators having periods within the range of 1 to 6 s and ductility factors within the range of 3 to 6. The Nth largest peak of the elasto-plastic response (N equals 2,4,8,16), when expressed as a percentage of maximum response (that is, N equals 1), is fairly independent of period within our period range. When considering only plastic peaks occurring, sometimes in a one-directional group of peaks, in the reverse direction from the preceding plastic peak, the amplitude of the Nth reversing plastic peak is similar to the Nth elastic peak, regardless of the ductility factor.

  11. Longitudinal structure of the equatorial ionosphere: Time evolution of the four-peaked EIA structure

    NASA Astrophysics Data System (ADS)

    Lin, C. H.; Hsiao, C. C.; Liu, J. Y.; Liu, C. H.

    2007-12-01

    Longitudinal structure of the equatorial ionosphere during the 24 h local time period is observed by the FORMOSAT-3/COSMIC (F3/C) satellite constellation. By binning the F3/C radio occultation observations during September and October 2006, global ionospheric total electron content (TEC) maps at a constant local time map (local time TEC map, referred as LT map) can be obtained to monitor the development and subsidence of the four-peaked longitudinal structure of the equatorial ionosphere. From LT maps, the four-peaked structure starts to develop at 0800-1000 LT and becomes most prominent at 1200-1600 LT. The longitudinal structure starts to subside after 2200-2400 LT and becomes indiscernible after 0400-0600 LT. In addition to TEC, ionospheric peak altitude also shows a four-peaked longitudinal structure with variation very similar to TEC during daytime. The four-peaked structure of the ionospheric peak altitude is indiscernible at night. With global local time maps of ionospheric TEC and peak altitude, we compare temporal variations of the longitudinal structure with variations of E × B drift from the empirical model. Our results indicate that the observations are consistent with the hypothesis that the four-peaked longitudinal structure is caused by the equatorial plasma fountain modulated by the E3 nonmigrating tide. Additionally, the four maximum regions show a tendency of moving eastward with propagation velocity of several 10 s m/s.

  12. Sample dimensionality: a predictor of order-disorder in component peak distribution in multidimensional separation.

    PubMed

    Giddings, J C

    1995-05-26

    While the use of multiple dimensions in separation systems can create very high peak capacities, the effectiveness of the enhanced peak capacity in resolving large numbers of components depends strongly on whether the distribution of component peaks is ordered or disordered. Peak overlap is common in disordered distributions, even with a very high peak capacity. It is therefore of great importance to understand the origin of peak order/disorder in multidimensional separations and to address the question of whether any control can be exerted over observed levels of order and disorder and thus separation efficacy. It is postulated here that the underlying difference between ordered and disordered distributions of component peaks in separation systems is related to sample complexity as measured by a newly defined parameter, the sample dimensionality s, and by the derivative dimensionality s'. It is concluded that the type and degree of order and disorder is determined by the relationship of s (or s') to the dimensionality n of the separation system employed. Thus for some relatively simple samples (defined as having small s values), increased order and a consequent enhancement of resolution can be realized by increasing n. The resolution enhancement is in addition to the normal gain in resolving power resulting from the increased peak capacity of multidimensional systems. However, for other samples (having even smaller s values), an increase in n provides no additional benefit in enhancing component separability.

  13. Propulsion strategy in the gait of primary school children; the effect of age and speed.

    PubMed

    Lye, Jillian; Parkinson, Stephanie; Diamond, Nicola; Downs, Jenny; Morris, Susan

    2016-12-01

    The strategy used to generate power for forward propulsion in walking and running has recently been highlighted as a marker of gait maturation and elastic energy recycling. This study investigated ankle and hip power generation as a propulsion strategy (PS) during the late stance/early swing phases of walking and running in typically developing (TD) children (15: six to nine years; 17: nine to 13years) using three-dimensional gait analysis. Peak ankle power generation at push-off (peakA2), peak hip power generation in early swing (peakH3) and propulsion strategy (PS) [peakA2/(peakA2+peakH3)] were calculated to provide the relative contribution of ankle power to total propulsion. Mean PS values decreased as speed increased for comfortable walking (p<0.001), fast walking (p<0.001) and fast running (p<0.001), and less consistently during jogging (p=0.054). PS varied with age (p<0.001) only during fast walking. At any speed of fast walking, older children generated more peakA2 (p=0.001) and less peakH3 (p=0.001) than younger children. While the kinetics of running propulsion appear to be developed by age six years, the skills of fast walking appeared to require additional neuromuscular maturity. These findings support the concept that running is a skill that matures early for TD children. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Effect of injection matrix concentration on peak shape and separation efficiency in ion chromatography.

    PubMed

    Zhang, Ya; Lucy, Charles A

    2014-12-05

    In HPLC, injection of solvents that differ from the eluent can result in peak broadening due to solvent strength mismatch or viscous fingering. Broadened, distorted or even split analyte peaks may result. Past studies of this injection-induced peak distortion in reversed phase (RPLC) and hydrophilic interaction (HILIC) liquid chromatography have led to the conclusion that the sample should be injected in the eluent or a weaker solvent. However, there have been no studies of injection-induced peak distortion in ion chromatography (IC). To address this, injection-induced effects were studied for six inorganic anions (F-, Cl-, NO2-, Br-, NO3- and SO4(2-)) on a Dionex AS23 IC column using a HCO3-/CO3(2-) eluent. The VanMiddlesworth-Dorsey injection sensitivity parameter (s) showed that IC of anions has much greater tolerance to the injection matrix (HCO3-/CO3(2-) herein) mismatch than RPLC or HILIC. Even when the injection contained a ten-fold greater concentration of HCO3-/CO3(2-) than the eluent, the peak shapes and separation efficiencies of six analyte ions did not change significantly. At more than ten-fold greater matrix concentrations, analyte anions that elute near the system peak of the matrix were distorted, and in the extreme cases exhibited a small secondary peak on the analyte peak front. These studies better guide the degree of dilution needed prior to IC analysis of anions. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Optimizing ChIP-seq peak detectors using visual labels and supervised machine learning

    PubMed Central

    Goerner-Potvin, Patricia; Morin, Andreanne; Shao, Xiaojian; Pastinen, Tomi

    2017-01-01

    Motivation: Many peak detection algorithms have been proposed for ChIP-seq data analysis, but it is not obvious which algorithm and what parameters are optimal for any given dataset. In contrast, regions with and without obvious peaks can be easily labeled by visual inspection of aligned read counts in a genome browser. We propose a supervised machine learning approach for ChIP-seq data analysis, using labels that encode qualitative judgments about which genomic regions contain or do not contain peaks. The main idea is to manually label a small subset of the genome, and then learn a model that makes consistent peak predictions on the rest of the genome. Results: We created 7 new histone mark datasets with 12 826 visually determined labels, and analyzed 3 existing transcription factor datasets. We observed that default peak detection parameters yield high false positive rates, which can be reduced by learning parameters using a relatively small training set of labeled data from the same experiment type. We also observed that labels from different people are highly consistent. Overall, these data indicate that our supervised labeling method is useful for quantitatively training and testing peak detection algorithms. Availability and Implementation: Labeled histone mark data http://cbio.ensmp.fr/~thocking/chip-seq-chunk-db/, R package to compute the label error of predicted peaks https://github.com/tdhock/PeakError Contacts: toby.hocking@mail.mcgill.ca or guil.bourque@mcgill.ca Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27797775

  16. Ground Reaction Forces of the Lead and Trail Limbs when Stepping Over an Obstacle

    PubMed Central

    Bovonsunthonchai, Sunee; Khobkhun, Fuengfa; Vachalathiti, Roongtiwa

    2015-01-01

    Background Precise force generation and absorption during stepping over different obstacles need to be quantified for task accomplishment. This study aimed to quantify how the lead limb (LL) and trail limb (TL) generate and absorb forces while stepping over obstacle of various heights. Material/Methods Thirteen healthy young women participated in the study. Force data were collected from 2 force plates when participants stepped over obstacles. Two limbs (right LL and left TL) and 4 conditions of stepping (no obstacle, stepping over 5 cm, 20 cm, and 30 cm obstacle heights) were tested for main effect and interaction effect by 2-way ANOVA. Paired t-test and 1-way repeated-measure ANOVA were used to compare differences of variables between limbs and among stepping conditions, respectively. The main effects on the limb were found in first peak vertical force, minimum vertical force, propulsive peak force, and propulsive impulse. Results Significant main effects of condition were found in time to minimum force, time to the second peak force, time to propulsive peak force, first peak vertical force, braking peak force, propulsive peak force, vertical impulse, braking impulse, and propulsive impulse. Interaction effects of limb and condition were found in first peak vertical force, propulsive peak force, braking impulse, and propulsive impulse. Conclusions Adaptations of force generation in the LL and TL were found to involve adaptability to altered external environment during stepping in healthy young adults. PMID:26169293

  17. Binding of dicamba to soluble and bound extracellular polymeric substances (EPS) from aerobic activated sludge: a fluorescence quenching study.

    PubMed

    Pan, Xiangliang; Liu, Jing; Zhang, Daoyong; Chen, Xi; Song, Wenjuan; Wu, Fengchang

    2010-05-15

    Binding of dicamba to soluble EPS (SEPS) and bound EPS (BEPS) from aerobic activated sludge was investigated using fluorescence spectroscopy. Two protein-like fluorescence peaks (peak A with Ex/Em=225 nm/342-344 nm and peak B with Ex/Em=275/340-344 nm) were identified in SEPS and BEPS. Humic-like fluorescence peak C (Ex/Em=270-275 nm/450-460 nm) was only found in BEPS. Fluorescence of the peaks A and B for SEPS and peak A for BEPS were markedly quenched by dicamba at all temperatures whereas fluorescence of peaks B and C for BEPS was quenched only at 298 K. A dynamic process dominated the fluorescence quenching of peak A of both SEPS and BEPS. Fluorescence quenching of peak B and C was governed a static process. The effective quenching constants (logK(a)) were 4.725-5.293 for protein-like fluorophores of SEPS and 4.23-5.190 for protein-like fluorophores of BEPS, respectively. LogK(a) for humic-like substances was 3.85. Generally, SEPS had greater binding capacity for dicamba than BEPS, and protein-like substances bound dicamba more strongly than humic-like substances. Binding of dicamba to SEPS and BEPS was spontaneous and exothermic. Electrostatic force and hydrophobic interaction forces play a crucial role in binding of dicamba to EPS. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Can You Hear That Peak? Utilization of Auditory and Visual Feedback at Peak Limb Velocity.

    PubMed

    Loria, Tristan; de Grosbois, John; Tremblay, Luc

    2016-09-01

    At rest, the central nervous system combines and integrates multisensory cues to yield an optimal percept. When engaging in action, the relative weighing of sensory modalities has been shown to be altered. Because the timing of peak velocity is the critical moment in some goal-directed movements (e.g., overarm throwing), the current study sought to test whether visual and auditory cues are optimally integrated at that specific kinematic marker when it is the critical part of the trajectory. Participants performed an upper-limb movement in which they were required to reach their peak limb velocity when the right index finger intersected a virtual target (i.e., a flinging movement). Brief auditory, visual, or audiovisual feedback (i.e., 20 ms in duration) was provided to participants at peak limb velocity. Performance was assessed primarily through the resultant position of peak limb velocity and the variability of that position. Relative to when no feedback was provided, auditory feedback significantly reduced the resultant endpoint variability of the finger position at peak limb velocity. However, no such reductions were found for the visual or audiovisual feedback conditions. Further, providing both auditory and visual cues concurrently also failed to yield the theoretically predicted improvements in endpoint variability. Overall, the central nervous system can make significant use of an auditory cue but may not optimally integrate a visual and auditory cue at peak limb velocity, when peak velocity is the critical part of the trajectory.

  19. Optimizing ChIP-seq peak detectors using visual labels and supervised machine learning.

    PubMed

    Hocking, Toby Dylan; Goerner-Potvin, Patricia; Morin, Andreanne; Shao, Xiaojian; Pastinen, Tomi; Bourque, Guillaume

    2017-02-15

    Many peak detection algorithms have been proposed for ChIP-seq data analysis, but it is not obvious which algorithm and what parameters are optimal for any given dataset. In contrast, regions with and without obvious peaks can be easily labeled by visual inspection of aligned read counts in a genome browser. We propose a supervised machine learning approach for ChIP-seq data analysis, using labels that encode qualitative judgments about which genomic regions contain or do not contain peaks. The main idea is to manually label a small subset of the genome, and then learn a model that makes consistent peak predictions on the rest of the genome. We created 7 new histone mark datasets with 12 826 visually determined labels, and analyzed 3 existing transcription factor datasets. We observed that default peak detection parameters yield high false positive rates, which can be reduced by learning parameters using a relatively small training set of labeled data from the same experiment type. We also observed that labels from different people are highly consistent. Overall, these data indicate that our supervised labeling method is useful for quantitatively training and testing peak detection algorithms. Labeled histone mark data http://cbio.ensmp.fr/~thocking/chip-seq-chunk-db/ , R package to compute the label error of predicted peaks https://github.com/tdhock/PeakError. toby.hocking@mail.mcgill.ca or guil.bourque@mcgill.ca. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  20. Relaxation-induced anxiety: Effects of peak and trajectories of change on treatment outcome for generalized anxiety disorder.

    PubMed

    Newman, Michelle G; Lafreniere, Lucas S; Jacobson, Nicholas C

    2018-07-01

    Evidence is mixed regarding whether relaxation-induced anxiety (RIA) impedes relaxation training (RT) efficacy. Unlike past studies that averaged RIA across sessions, we examined peak RIA, change in RIA level across sessions, and timing of peak RIA with outcome. This was a secondary analysis of Borkovec, Newman, Pincus, and Lytle [2002. A component analysis of cognitive-behavioral therapy for generalized anxiety disorder and the role of interpersonal problems. Journal of Consulting and Clinical Psychology, 70, 288-298. doi: 10.1037/0022-006X.70.2.288 ]. Forty-one GAD participants were assigned randomly to CBT (n = 22) or BT (n = 19). Both treatments contained RT and RIA ratings within 13/14 sessions. Analyses used generalized additive mixed models (GAMMs), which accounted for longitudinal nonindependence and examined nonlinear trajectories of change. All participants improved significantly regardless of RIA. "Change trajectory of RIA level did not predict outcome". Instead, lower peak RIA predicted fewer GAD symptoms at post-treatment and greater likelihood to continue to improve during follow-up. Also, timing of peak was important. Whereas lower peak early in therapy did not predict outcome, lower peak during the last third of treatment did. Peak RIA's effect was neither accounted for by baseline symptom severity, treatment condition, comorbidity, nor by preceding or concurrent anxiety symptom change. People with consistently low peak RIA and/or who fully habituate to RIA by the end of therapy respond optimally to relaxation-based treatments.

  1. An Evaluation of Selected Extraordinary Floods in the United States Reported by the U.S. Geological Survey and Implications for Future Advancement of Flood Science

    USGS Publications Warehouse

    Costa, John E.; Jarrett, Robert D.

    2008-01-01

    Thirty flood peak discharges determine the envelope curve of maximum floods documented in the United States by the U.S. Geological Survey. These floods occurred from 1927 to 1978 and are extraordinary not just in their magnitude, but in their hydraulic and geomorphic characteristics. The reliability of the computed discharge of these extraordinary floods was reviewed and evaluated using current (2007) best practices. Of the 30 flood peak discharges investigated, only 7 were measured at daily streamflow-gaging stations that existed when the flood occurred, and 23 were measured at miscellaneous (ungaged) sites. Methods used to measure these 30 extraordinary flood peak discharges consisted of 21 slope-area measurements, 2 direct current-meter measurements, 1 culvert measurement, 1 rating-curve extension, and 1 interpolation and rating-curve extension. The remaining four peak discharges were measured using combinations of culvert, slope-area, flow-over-road, and contracted-opening measurements. The method of peak discharge determination for one flood is unknown. Changes to peak discharge or rating are recommended for 20 of the 30 flood peak discharges that were evaluated. Nine floods retained published peak discharges, but their ratings were downgraded. For two floods, both peak discharge and rating were corrected and revised. Peak discharges for five floods that are subject to significant uncertainty due to complex field and hydraulic conditions, were re-rated as estimates. This study resulted in 5 of the 30 peak discharges having revised values greater than about 10 percent different from the original published values. Peak discharges were smaller for three floods (North Fork Hubbard Creek, Texas; El Rancho Arroyo, New Mexico; South Fork Wailua River, Hawaii), and two peak discharges were revised upward (Lahontan Reservoir tributary, Nevada; Bronco Creek, Arizona). Two peak discharges were indeterminate because they were concluded to have been debris flows with peak discharges that were estimated by an inappropriate method (slope-area) (Big Creek near Waynesville, North Carolina; Day Creek near Etiwanda, California). Original field notes and records could not be found for three of the floods, however, some data (copies of original materials, records of reviews) were available for two of these floods. A rating was assigned to each of seven peak discharges that had no rating. Errors identified in the reviews include misidentified flow processes, incorrect drainage areas for very small basins, incorrect latitude and longitude, improper field methods, arithmetic mistakes in hand calculations, omission of measured high flows when developing rating curves, and typographical errors. Common problems include use of two-section slope-area measurements, poor site selection, uncertainties in Manning's n-values, inadequate review, lost data files, and insufficient and inadequately described high-water marks. These floods also highlight the extreme difficulty in making indirect discharge measurements following extraordinary floods. Significantly, none of the indirect measurements are rated better than fair, which indicates the need to improve methodology to estimate peak discharge. Highly unsteady flow and resulting transient hydraulic phenomena, two-dimensional flow patterns, debris flows at streamflow-gaging stations, and the possibility of disconnected flow surfaces are examples of unresolved problems not well handled by current indirect discharge methodology. On the basis of a comprehensive review of 50,000 annual peak discharges and miscellaneous floods in California, problems with individual flood peak discharges would be expected to require a revision of discharge or rating curves at a rate no greater than about 0.10 percent of all floods. Many extraordinary floods create complex flow patterns and processes that cannot be adequately documented with quasi-steady, uniform one-dimensional analyses. These floods are most accura

  2. Magnitudes and timing of seasonal peak snowpack water equivalents in Arizona: A preliminary study of the possible effects of recent climatic change

    Treesearch

    Peter F. Ffolliott; Gerald J. Gottfried

    2010-01-01

    Field measurements and computer-based predictions suggest that the magnitudes of seasonal peak snowpack water equivalents are becoming less and the timing of these peaks is occurring earlier in the snowmelt-runoff season of the western United States. These changes in peak snowpack conditions have often been attributed to a warming of the regional climate. To determine...

  3. Diagnostic System for Decomposition Studies of Energetic Materials

    DTIC Science & Technology

    2017-10-03

    transition states and reaction pathways are sought. The overall objective for these combined experimental studies and quantum mechanics investigations...peak-to-peak 1 min: 50,000:1 ( 8.6×10-6 AU noise) peak-to-peak Interferometer UltraScan linear air bearing scanner with True -Alignment Aperture... True 24 bit dynamic range for all scan velocities, dual channel data acquisition Validation Internal validation unit, 6 positions, certified

  4. Shape Optimisation of Holes in Loaded Plates by Minimisation of Multiple Stress Peaks

    DTIC Science & Technology

    2015-04-01

    UNCLASSIFIED UNCLASSIFIED Shape Optimisation of Holes in Loaded Plates by Minimisation of Multiple Stress Peaks Witold Waldman and Manfred...minimising the peak tangential stresses on multiple segments around the boundary of a hole in a uniaxially-loaded or biaxially-loaded plate . It is based...RELEASE UNCLASSIFIED UNCLASSIFIED Shape Optimisation of Holes in Loaded Plates by Minimisation of Multiple Stress Peaks Executive Summary Aerospace

  5. Low Level Chemical Toxicity: Relevance to Chemical Agent Defense

    DTIC Science & Technology

    2005-07-01

    elevation in stress hormones in the blood serum. Electron microscropy indicated no damage to cochlear tissues of the ear (not shown). At the...neural activity occurring primarily in the cochlear nucleus of the brainstem auditory pathway. Peak II is usually the last major peak to disappear...IV). Peak II is generally the strongest peak and is regarded as a putative indicator of neural activity occurring primarily in the cochlear nucleus

  6. Approaches to characterise chromatographic column performance based on global parameters accounting for peak broadening and skewness.

    PubMed

    Baeza-Baeza, J J; Pous-Torres, S; Torres-Lapasió, J R; García-Alvarez-Coque, M C

    2010-04-02

    Peak broadening and skewness are fundamental parameters in chromatography, since they affect the resolution capability of a chromatographic column. A common practice to characterise chromatographic columns is to estimate the efficiency and asymmetry factor for the peaks of one or more solutes eluted at selected experimental conditions. This has the drawback that the extra-column contributions to the peak variance and skewness make the peak shape parameters depend on the retention time. We propose and discuss here the use of several approaches that allow the estimation of global parameters (non-dependent on the retention time) to describe the column performance. The global parameters arise from different linear relationships that can be established between the peak variance, standard deviation, or half-widths with the retention time. Some of them describe exclusively the column contribution to the peak broadening, whereas others consider the extra-column effects also. The estimation of peak skewness was also possible for the approaches based on the half-widths. The proposed approaches were applied to the characterisation of different columns (Spherisorb, Zorbax SB, Zorbax Eclipse, Kromasil, Chromolith, X-Terra and Inertsil), using the chromatographic data obtained for several diuretics and basic drugs (beta-blockers). Copyright (c) 2010 Elsevier B.V. All rights reserved.

  7. New Raman-peak at 1850 cm(-1) observed in multiwalled carbon nanotubes produced by hydrogen arc discharge.

    PubMed

    Chen, B; Kadowaki, Y; Inoue, S; Ohkohchi, M; Zhao, X; Ando, Y

    2010-06-01

    The new peak (near 1850 cm(-1)) assigned to carbon linear chain included in the centre of very thin innermost multiwalled carbon nanotubes (MWNTs) has been verified by Raman spectroscopy. These MWNTs were produced by dc arc discharge of pure graphite rods in pure hydrogen gas and existed in the cathode deposit. In this paper, we clarified that the new Raman-peaks could also be observed in the cathode deposit including MWNTs produced by hydrogen dc arc discharge using graphite electrode with added Y or La. By changing the quantity of addition (Y or La), dc arc current and pressure of ambient hydrogen gas, the optimum condition to get maximum intensity of the new Raman-peaks was obtained. For the case of 1 wt% La, dc 50 A, H2 pressure of 50 Torr was found to be optimum, and the intensity of new Raman-peak was even higher than the G-band peak. For the case of 1 wt% Y, dc 50 A, H2 pressure of 50 Torr was optimum, but the intensity of new Raman-peak was weaker than the G-band peak. Transmission electron microscopy observation revealed that the crystallinity of MWNTs produced with pure graphite rod was better than those produced with added Y or La.

  8. Irradiation effect on luminescence properties of fluoroperovskite single crystal (LiBaF3:Eu2+)

    NASA Astrophysics Data System (ADS)

    Daniel, D. Joseph; Madhusoodanan, U.; Nithya, R.; Ramasamy, P.

    2014-03-01

    Single crystals of pure and Eu2+ doped LiBaF3 have been grown from melt by using a vertical Bridgman-Stockbarger method. Effects induced by irradiation on europium doped LiBaF3 (lithium barium fluoride) single crystals were monitored by optical absorption, photoluminescence and thermoluminescence studies. The absorption bands of Eu2+ ions with peaks at 240, 290 and 320 nm were observed in the LiBaF3:Eu2+ crystal. Drastic increase in absorption was noted below 600 nm after gamma irradiation, which was dependent on the radiation dose. The additional absorption peak at around 570 nm was observed in irradiated crystal due to the ionization process Eu2+(-)e-→Eu3+. Photoluminescence of Eu2+ doped LiBaF3 single crystal shows sharp line peaked at ~359 nm and a broad band extending between 370 and 450 nm which shows a considerable reduction in Eu2+ PL intensity after gamma irradiation. Irradiated LiBaF3:Eu2+ sample has revealed three intense TL glow peaks at 128 °C (peak-1), 281 °C (peak-2) and 407 °C (peak-3). Activation energy (E) and frequency factor (s) of the latter two peaks were determined by various heating rate (VHR) method and graphical method.

  9. Two density peaks in low magnetic field helicon plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Y.; Zhao, G.; Ouyang, J. T., E-mail: jtouyang@bit.edu.cn, E-mail: lppmchenqiang@hotmail.com

    2015-09-15

    In this paper, we report two density peaks in argon helicon plasma under an axial magnetic field from 0 G to 250 G with Boswell-type antenna driven by radio frequency (RF) power of 13.56 MHz. The first peak locates at 40–55 G and the second one at 110–165 G, as the RF power is sustainably increased from 100 W to 250 W at Ar pressure of 0.35 Pa. The absorbed power of two peaks shows a linear relationship with the magnetic field. End views of the discharge taken by intensified charge coupled device reveal that, when the first peak appeared, the discharge luminance moves to the edge ofmore » the tube as the magnetic field increases. For the second peak, the strong discharge area is centered at the two antenna legs after the magnetic field reaches a threshold value. Comparing with the simulation, we suggest that the efficient power absorption of two peaks at which the efficient power absorption mainly appears in the near-antenna region is due to the mode conversion in bounded non-uniform helicon plasma. The two low-field peaks are caused, to some extent, by the excitation of Trivelpiece-Gould wave through non-resonance conversion.« less

  10. Peak clustering in two-dimensional gas chromatography with mass spectrometric detection based on theoretical calculation of two-dimensional peak shapes: the 2DAid approach.

    PubMed

    van Stee, Leo L P; Brinkman, Udo A Th

    2011-10-28

    A method is presented to facilitate the non-target analysis of data obtained in temperature-programmed comprehensive two-dimensional (2D) gas chromatography coupled to time-of-flight mass spectrometry (GC×GC-ToF-MS). One main difficulty of GC×GC data analysis is that each peak is usually modulated several times and therefore appears as a series of peaks (or peaklets) in the one-dimensionally recorded data. The proposed method, 2DAid, uses basic chromatographic laws to calculate the theoretical shape of a 2D peak (a cluster of peaklets originating from the same analyte) in order to define the area in which the peaklets of each individual compound can be expected to show up. Based on analyte-identity information obtained by means of mass spectral library searching, the individual peaklets are then combined into a single 2D peak. The method is applied, amongst others, to a complex mixture containing 362 analytes. It is demonstrated that the 2D peak shapes can be accurately predicted and that clustering and further processing can reduce the final peak list to a manageable size. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Significance of activity peaks in fruit flies, Drosophila melanogaster, under seminatural conditions.

    PubMed

    De, Joydeep; Varma, Vishwanath; Saha, Soham; Sheeba, Vasu; Sharma, Vijay Kumar

    2013-05-28

    Studies on circadian entrainment have traditionally been performed under controlled laboratory conditions. Although these studies have served the purpose of providing a broad framework for our understanding of regulation of rhythmic behaviors under cyclic conditions, they do not reveal how organisms keep time in nature. Although a few recent studies have attempted to address this, it is not yet clear which environmental factors regulate rhythmic behaviors in nature and how. Here, we report the results of our studies aimed at examining (i) whether and how changes in natural light affect activity/rest rhythm and (ii) what the functional significance of this rhythmic behavior might be. We found that wild-type strains of fruit flies, Drosophila melanogaster, display morning (M), afternoon (A), and evening (E) peaks of activity under seminatural conditions (SN), whereas under constant darkness in otherwise SN, they exhibited M and E peaks, and under constant light in SN, only the E peak occurred. Unlike the A peak, which requires exposure to bright light in the afternoon, light information is dispensable for the M and E peaks. Visual examination of behaviors suggests that the M peak is associated with courtship-related locomotor activity and the A peak is due to an artifact of the experimental protocol and largely circadian clock independent.

  12. True ion pick (TIPick): a denoising and peak picking algorithm to extract ion signals from liquid chromatography/mass spectrometry data.

    PubMed

    Ho, Tsung-Jung; Kuo, Ching-Hua; Wang, San-Yuan; Chen, Guan-Yuan; Tseng, Yufeng J

    2013-02-01

    Liquid Chromatography-Time of Flight Mass Spectrometry has become an important technique for toxicological screening and metabolomics. We describe TIPick a novel algorithm that accurately and sensitively detects target compounds in biological samples. TIPick comprises two main steps: background subtraction and peak picking. By subtracting a blank chromatogram, TIPick eliminates chemical signals of blank injections and reduces false positive results. TIPick detects peaks by calculating the S(CC(INI)) values of extracted ion chromatograms (EICs) without considering peak shapes, and it is able to detect tailing and fronting peaks. TIPick also uses duplicate injections to enhance the signals of the peaks and thus improve the peak detection power. Commonly seen split peaks caused by either saturation of the mass spectrometer detector or a mathematical background subtraction algorithm can be resolved by adjusting the mass error tolerance of the EICs and by comparing the EICs before and after background subtraction. The performance of TIPick was tested in a data set containing 297 standard mixtures; the recall, precision and F-score were 0.99, 0.97 and 0.98, respectively. TIPick was successfully used to construct and analyze the NTU MetaCore metabolomics chemical standards library, and it was applied for toxicological screening and metabolomics studies. Copyright © 2013 John Wiley & Sons, Ltd.

  13. Do the peak and mean force methods of assessing vertical jump force asymmetry agree?

    PubMed

    Lake, Jason P; Mundy, Peter D; Comfort, Paul; Suchomel, Timothy J

    2018-05-21

    The aim of this study was to assess agreement between peak and mean force methods of quantifying force asymmetry during the countermovement jump (CMJ). Forty-five men performed four CMJ with each foot on one of two force plates recording at 1,000 Hz. Peak and mean were obtained from both sides during the braking and propulsion phases. The dominant side was obtained for the braking and propulsion phase as the side with the largest peak or mean force and agreement was assessed using percentage agreement and the kappa coefficient. Braking phase peak and mean force methods demonstrated a percentage agreement of 84% and a kappa value of 0.67 (95% confidence limits: 0.45-0.90), indicating substantial agreement. Propulsion phase peak and mean force methods demonstrated a percentage agreement of 87% and a kappa value of 0.72 (95% confidence limits: 0.51-0.93), indicating substantial agreement. While agreement was substantial, side-to-side differences were not reflected equally when peak and mean force methods of assessing CMJ asymmetry were used. These methods should not be used interchangeably, but rather a combined approach should be used where practitioners consider both peak and mean force to obtain the fullest picture of athlete asymmetry.

  14. The effects of target distance on pivot hip, trunk, pelvis, and kicking leg kinematics in Taekwondo roundhouse kicks.

    PubMed

    Kim, Jae-Woong; Kwon, Moon-Seok; Yenuga, Sree Sushma; Kwon, Young-Hoooo

    2010-06-01

    The study purpose was to investigate the effects of target distance on pivot hip, trunk, pelvis, and kicking leg movements in Taekwondo roundhouse kick. Twelve male black-belt holders executed roundhouse kicks for three target distances (Normal, Short, and Long). Linear displacements of the pivot hip and orientation angles of the pelvis, trunk, right thigh, and right shank were obtained through a three-dimensional video motion analysis. Select displacements, distances, peak orientation angles, and angle ranges were compared among the conditions using one-way repeated measure ANOVA (p < 0.05). Several orientation angle variables (posterior tilt range, peak right-tilted position, peak right-rotated position, peak left-rotated position, and left rotation range of the pelvis; peak hyperextended position and peak right-flexed position of the trunk; peak flexed position, flexion range and peak internal-rotated position of the hip) as well as the linear displacements of the pivot hip and the reach significantly changed in response to different target distances. It was concluded that the adjustment to different target distances was mainly accomplished through the pivot hip displacements, hip flexion, and pelvis left rotation. Target distance mainly affected the reach control function of the pelvis and the linear balance function of the trunk.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruth, M.; Pratt, A.; Lunacek, M.

    The combination of distributed energy resources (DER) and retail tariff structures to provide benefits to both utility consumers and the utilities is not well understood. To improve understanding, an Integrated Energy System Model (IESM) is being developed to simulate the physical and economic aspects of DER technologies, the buildings where they reside, and feeders servicing them. The IESM was used to simulate 20 houses with home energy management systems on a single feeder under a time-of-use (TOU) tariff to estimate economic and physical impacts on both the households and the distribution utilities. Home energy management systems (HEMS) reduce consumers’ electricmore » bills by precooling houses in the hours before peak electricity pricing. Utilization of HEMS reduce peak loads during high price hours but shifts it to hours with off-peak and shoulder prices, resulting in a higher peak load. used to simulate 20 houses with home energy management systems on a single feeder under a time-of-use (TOU) tariff to estimate economic and physical impacts on both the households and the distribution utilities. Home energy management systems (HEMS) reduce consumers’ electric bills by precooling houses in the hours before peak electricity pricing. Utilization of HEMS reduce peak loads during high price hours but shifts it to hours with off-peak and shoulder prices, resulting in a higher peak load.« less

  16. Timing of floods in southeastern China: Seasonal properties and potential causes

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Gu, Xihui; Singh, Vijay P.; Shi, Peijun; Luo, Ming

    2017-09-01

    Flood hazards and flood risks in southeastern China have been causing increasing concerns due to dense population and highly-developed economy. This study attempted to address changes of seasonality, timing of peak floods and variability of occurrence date of peak floods using circular statistical methods and the modified Mann-Kendall trend detection method. The causes of peak flood changes were also investigated. Results indicated that: (1) floods were subject to more seasonality and temporal clustering when compared to precipitation extremes. However, seasonality of floods and extreme precipitation was subject to spatial heterogeneity in northern Guangdong. Similar changing patterns of peak floods and extreme precipitation were found in coastal regions; (2) significant increasing/decreasing seasonality, but no confirmed spatial patterns, were observed for peak floods and extreme precipitation. Peak floods in northern Guangdong province had decreasing variability, but had larger variability in coastal regions; (3) tropical cyclones had remarkable impacts on extreme precipitation changes in coastal regions of southeastern China, and peak floods as well. The landfalling of tropical cyclones was decreasing and concentrated during June-September; this is the major reason for earlier but enhanced seasonality of peak floods in coastal regions. This study sheds new light on flood behavior in coastal regions in a changing environment.

  17. Determination of triterpenic acids in fruits by a novel high performance liquid chromatography method with high sensitivity and specificity.

    PubMed

    Zhang, Shijuan; Sun, Yuanpeng; Sun, Zhiwei; Wang, Xiaoyan; You, Jinmao; Suo, Yourui

    2014-03-01

    A novel and interesting pre-column derivatisation method was developed for the analysis of triterpenic acids by high-performance liquid chromatography (HPLC) with fluorescence detection. Each triterpenic acid produced two HPLC peaks with similar peak areas after derivatising with chiral 1-(9H-carbazol-9-yl) propan-2-yl-methanesulfonate (CPMS), while the fatty acid derivative of CPMS had only one peak. This phenomenon greatly increased the confidence in analyte confirmation. Compound with only one peak or two peaks differing greatly in their peak areas could be excluded from the target compound list. CPMS was compared with five other derivatising reagents, four of which produced only one peak for one triterpenic acid, to study the possible mechanism. Analytes with different behaviours were also studied to better interpret the mechanism. The proposed method also showed the merits of high sensitivity and less sample consumption. It was successfully applied to the analysis of triterpenic acids in fruit peels and flesh. There is no prior report on the two peak phenomenon of triterpenic acids. The information provided in this study will be helpful for those who are also engaged in derivatisation study. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Feature Selection and Classifier Parameters Estimation for EEG Signals Peak Detection Using Particle Swarm Optimization

    PubMed Central

    Adam, Asrul; Mohd Tumari, Mohd Zaidi; Mohamad, Mohd Saberi

    2014-01-01

    Electroencephalogram (EEG) signal peak detection is widely used in clinical applications. The peak point can be detected using several approaches, including time, frequency, time-frequency, and nonlinear domains depending on various peak features from several models. However, there is no study that provides the importance of every peak feature in contributing to a good and generalized model. In this study, feature selection and classifier parameters estimation based on particle swarm optimization (PSO) are proposed as a framework for peak detection on EEG signals in time domain analysis. Two versions of PSO are used in the study: (1) standard PSO and (2) random asynchronous particle swarm optimization (RA-PSO). The proposed framework tries to find the best combination of all the available features that offers good peak detection and a high classification rate from the results in the conducted experiments. The evaluation results indicate that the accuracy of the peak detection can be improved up to 99.90% and 98.59% for training and testing, respectively, as compared to the framework without feature selection adaptation. Additionally, the proposed framework based on RA-PSO offers a better and reliable classification rate as compared to standard PSO as it produces low variance model. PMID:25243236

  19. Regional equations for estimation of peak-streamflow frequency for natural basins in Texas

    USGS Publications Warehouse

    Asquith, William H.; Slade, Raymond M.

    1997-01-01

    Peak-streamflow frequency for 559 Texas stations with natural (unregulated and rural or nonurbanized) basins was estimated with annual peak-streamflow data through 1993. The peak-streamflow frequency and drainage-basin characteristics for the Texas stations were used to develop 16 sets of equations to estimate peak-streamflow frequency for ungaged natural stream sites in each of 11 regions in Texas. The relation between peak-streamflow frequency and contributing drainage area for 5 of the 11 regions is curvilinear, requiring that one set of equations be developed for drainage areas less than 32 square miles and another set be developed for drainage areas greater than 32 square miles. These equations, developed through multiple-regression analysis using weighted least squares, are based on the relation between peak-streamflow frequency and basin characteristics for streamflow-gaging stations. The regions represent areas with similar flood characteristics. The use and limitations of the regression equations also are discussed. Additionally, procedures are presented to compute the 50-, 67-, and 90-percent confidence limits for any estimation from the equations. Also, supplemental peak-streamflow frequency and basin characteristics for 105 selected stations bordering Texas are included in the report. This supplemental information will aid in interpretation of flood characteristics for sites near the state borders of Texas.

  20. Reduction in peak oxygen uptake after prolonged bed rest

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Kozlowski, S.

    1982-01-01

    The hypothesis that the magnitude of the reduction in peak oxygen uptake (VO2) after bed rest is directly proportional to the level of pre-bed rest peak VO2 is tested. Complete pre and post-bed rest working capacity and body weight data were obtained from studies involving 24 men (19-24 years old) and 8 women (23-34 years old) who underwent bed rest for 14-20 days with no remedial treatments. Results of regression analyses of the present change in post-bed rest peak VO2 on pre-bed rest peak VO2 with 32 subjects show correlation coefficients of -0.03 (NS) for data expressed in 1/min and -0.17 for data expressed in ml/min-kg. In addition, significant correlations are found that support the hypothesis only when peak VO2 data are analyzed separately from studies that utilized the cycle ergometer, particularly with subjects in the supine position, as opposed to data obtained from treadmill peak VO2 tests. It is concluded that orthostatic factors, associated with the upright body position and relatively high levels of physical fitness from endurance training, appear to increase the variability of pre and particularly post-bed rest peak VO2 data, which would lead to rejection of the hypothesis.

  1. The influence of cricket fast bowlers' front leg technique on peak ground reaction forces.

    PubMed

    Worthington, Peter; King, Mark; Ranson, Craig

    2013-01-01

    High ground reaction forces during the front foot contact phase of the bowling action are believed to be a major contributor to the high prevalence of lumbar stress fractures in fast bowlers. This study aimed to investigate the influence of front leg technique on peak ground reaction forces during the delivery stride. Three-dimensional kinematic data and ground reaction forces during the front foot contact phase were captured for 20 elite male fast bowlers. Eight kinematic parameters were determined for each performance, describing run-up speed and front leg technique, in addition to peak force and time to peak force in the vertical and horizontal directions. There were substantial variations between bowlers in both peak forces (vertical 6.7 ± 1.4 body weights; horizontal (braking) 4.5 ± 0.8 body weights) and times to peak force (vertical 0.03 ± 0.01 s; horizontal 0.03 ± 0.01 s). These differences were found to be linked to the orientation of the front leg at the instant of front foot contact. In particular, a larger plant angle and a heel strike technique were associated with lower peak forces and longer times to peak force during the front foot contact phase, which may help reduce the likelihood of lower back injuries.

  2. Integration of neutron time-of-flight single-crystal Bragg peaks in reciprocal space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultz, Arthur J; Joergensen, Mads; Wang, Xiaoping

    2014-01-01

    The intensity of single crystal Bragg peaks obtained by mapping neutron time-of-flight event data into reciprocal space and integrating in various ways are compared. These include spherical integration with a fixed radius, ellipsoid fitting and integrating of the peak intensity and one-dimensional peak profile fitting. In comparison to intensities obtained by integrating in real detector histogram space, the data integrated in reciprocal space results in better agreement factors and more accurate atomic parameters. Furthermore, structure refinement using integrated intensities from one-dimensional profile fitting is demonstrated to be more accurate than simple peak-minus-background integration.

  3. Accurate LC peak boundary detection for ¹⁶O/¹⁸O labeled LC-MS data.

    PubMed

    Cui, Jian; Petritis, Konstantinos; Tegeler, Tony; Petritis, Brianne; Ma, Xuepo; Jin, Yufang; Gao, Shou-Jiang S J; Zhang, Jianqiu Michelle

    2013-01-01

    In liquid chromatography-mass spectrometry (LC-MS), parts of LC peaks are often corrupted by their co-eluting peptides, which results in increased quantification variance. In this paper, we propose to apply accurate LC peak boundary detection to remove the corrupted part of LC peaks. Accurate LC peak boundary detection is achieved by checking the consistency of intensity patterns within peptide elution time ranges. In addition, we remove peptides with erroneous mass assignment through model fitness check, which compares observed intensity patterns to theoretically constructed ones. The proposed algorithm can significantly improve the accuracy and precision of peptide ratio measurements.

  4. Characterizing the Peak in the Cosmic Microwave Background Angular Power Spectrum

    NASA Astrophysics Data System (ADS)

    Knox, Lloyd; Page, Lyman

    2000-08-01

    A peak has been unambiguously detected in the cosmic microwave background angular spectrum. Here we characterize its properties with fits to phenomenological models. We find that the TOCO and BOOM/NA data determine the peak location to be in the range 175-243 and 151-259, respectively (at 95% confidence) and determine the peak amplitude to be between ~70 and 90 μK. The peak shape is consistent with inflation-inspired flat, cold dark matter plus cosmological constant models of structure formation with adiabatic, nearly scale invariant initial conditions. It is inconsistent with open models and presents a great challenge to defect models.

  5. Characterizing the peak in the cosmic microwave background angular power spectrum

    PubMed

    Knox; Page

    2000-08-14

    A peak has been unambiguously detected in the cosmic microwave background angular spectrum. Here we characterize its properties with fits to phenomenological models. We find that the TOCO and BOOM/NA data determine the peak location to be in the range 175-243 and 151-259, respectively (at 95% confidence) and determine the peak amplitude to be between approximately 70 and 90 &mgr;K. The peak shape is consistent with inflation-inspired flat, cold dark matter plus cosmological constant models of structure formation with adiabatic, nearly scale invariant initial conditions. It is inconsistent with open models and presents a great challenge to defect models.

  6. Accurate LC Peak Boundary Detection for 16 O/ 18 O Labeled LC-MS Data

    PubMed Central

    Cui, Jian; Petritis, Konstantinos; Tegeler, Tony; Petritis, Brianne; Ma, Xuepo; Jin, Yufang; Gao, Shou-Jiang (SJ); Zhang, Jianqiu (Michelle)

    2013-01-01

    In liquid chromatography-mass spectrometry (LC-MS), parts of LC peaks are often corrupted by their co-eluting peptides, which results in increased quantification variance. In this paper, we propose to apply accurate LC peak boundary detection to remove the corrupted part of LC peaks. Accurate LC peak boundary detection is achieved by checking the consistency of intensity patterns within peptide elution time ranges. In addition, we remove peptides with erroneous mass assignment through model fitness check, which compares observed intensity patterns to theoretically constructed ones. The proposed algorithm can significantly improve the accuracy and precision of peptide ratio measurements. PMID:24115998

  7. Reducing Conservatism of Analytic Transient Response Bounds via Shaping Filters

    NASA Technical Reports Server (NTRS)

    Kwan, Aiyueh; Bedrossian, Nazareth; Jan, Jiann-Woei; Grigoriadis, Karolos; Hua, Tuyen (Technical Monitor)

    1999-01-01

    Recent results show that the peak transient response of a linear system to bounded energy inputs can be computed using the energy-to-peak gain of the system. However, analytically computed peak response bound can be conservative for a class of class bounded energy signals, specifically pulse trains generated from jet firings encountered in space vehicles. In this paper, shaping filters are proposed as a Methodology to reduce the conservatism of peak response analytic bounds. This Methodology was applied to a realistic Space Station assembly operation subject to jet firings. The results indicate that shaping filters indeed reduce the predicted peak response bounds.

  8. Peak oxygen uptake in Paralympic sitting sports: A systematic literature review, meta- and pooled-data analysis.

    PubMed

    Baumgart, Julia Kathrin; Brurok, Berit; Sandbakk, Øyvind

    2018-01-01

    Peak oxygen uptake (VO2peak) in Paralympic sitting sports athletes represents their maximal ability to deliver energy aerobically in an upper-body mode, with values being influenced by sex, disability-related physiological limitations, sport-specific demands, training status and how they are tested. To identify VO2peak values in Paralympic sitting sports, examine between-sports differences and within-sports variations in VO2peak and determine the influence of sex, age, body-mass, disability and test-mode on VO2peak. Systematic literature review and meta-analysis. PubMed, CINAHL, SPORTDiscusTM and EMBASE were systematically searched in October 2016 using relevant medical subject headings, keywords and a Boolean. Studies that assessed VO2peak values in sitting sports athletes with a disability in a laboratory setting were included. Data was extracted and pooled in the different sports disciplines, weighted by the Dersimonian and Laird random effects approach. Quality of the included studies was assessed with a modified version of the Downs and Black checklist by two independent reviewers. Meta-regression and pooled-data multiple regression analyses were performed to assess the influence of sex, age, body-mass, disability, test mode and study quality on VO2peak. Of 6542 retrieved articles, 57 studies reporting VO2peak values in 14 different sitting sports were included in this review. VO2peak values from 771 athletes were used in the data analysis, of which 30% participated in wheelchair basketball, 27% in wheelchair racing, 15% in wheelchair rugby and the remaining 28% in the 11 other disciplines. Fifty-six percent of the athletes had a spinal cord injury and 87% were men. Sports-discipline-averaged VO2peak values ranged from 2.9 L∙min-1 and 45.6 mL∙kg-1∙min-1 in Nordic sit skiing to 1.4 L∙min-1 and 17.3 mL∙kg-1∙min-1 in shooting and 1.3 L∙min-1 and 18.9 mL∙kg-1∙min-1 in wheelchair rugby. Large within-sports variation was found in sports with few included studies and corresponding low sample sizes. The meta-regression and pooled-data multiple regression analyses showed that being a man, having an amputation, not being tetraplegic, testing in a wheelchair ergometer and treadmill mode, were found to be favorable for high absolute and body-mass normalized VO2peak values. Furthermore, high body mass was favourable for high absolute VO2peak values and low body mass for high body-mass normalized VO2peak values. The highest VO2peak values were found in Nordic sit skiing, an endurance sport with continuously high physical efforts, and the lowest values in shooting, a sport with low levels of displacement, and in wheelchair rugby where mainly athletes with tetraplegia compete. However, VO2peak values need to be interpreted carefully in sports-disciplines with few included studies and large within-sports variation. Future studies should include detailed information on training status, sex, age, test mode, as well as the type and extent of disability in order to more precisely evaluate the effect of these factors on VO2peak.

  9. Peak oxygen uptake in Paralympic sitting sports: A systematic literature review, meta- and pooled-data analysis

    PubMed Central

    Brurok, Berit; Sandbakk, Øyvind

    2018-01-01

    Background Peak oxygen uptake (VO2peak) in Paralympic sitting sports athletes represents their maximal ability to deliver energy aerobically in an upper-body mode, with values being influenced by sex, disability-related physiological limitations, sport-specific demands, training status and how they are tested. Objectives To identify VO2peak values in Paralympic sitting sports, examine between-sports differences and within-sports variations in VO2peak and determine the influence of sex, age, body-mass, disability and test-mode on VO2peak. Design Systematic literature review and meta-analysis. Data sources PubMed, CINAHL, SPORTDiscusTM and EMBASE were systematically searched in October 2016 using relevant medical subject headings, keywords and a Boolean. Eligibility criteria Studies that assessed VO2peak values in sitting sports athletes with a disability in a laboratory setting were included. Data synthesis Data was extracted and pooled in the different sports disciplines, weighted by the Dersimonian and Laird random effects approach. Quality of the included studies was assessed with a modified version of the Downs and Black checklist by two independent reviewers. Meta-regression and pooled-data multiple regression analyses were performed to assess the influence of sex, age, body-mass, disability, test mode and study quality on VO2peak. Results Of 6542 retrieved articles, 57 studies reporting VO2peak values in 14 different sitting sports were included in this review. VO2peak values from 771 athletes were used in the data analysis, of which 30% participated in wheelchair basketball, 27% in wheelchair racing, 15% in wheelchair rugby and the remaining 28% in the 11 other disciplines. Fifty-six percent of the athletes had a spinal cord injury and 87% were men. Sports-discipline-averaged VO2peak values ranged from 2.9 L∙min-1 and 45.6 mL∙kg-1∙min-1 in Nordic sit skiing to 1.4 L∙min-1 and 17.3 mL∙kg-1∙min-1 in shooting and 1.3 L∙min-1 and 18.9 mL∙kg-1∙min-1 in wheelchair rugby. Large within-sports variation was found in sports with few included studies and corresponding low sample sizes. The meta-regression and pooled-data multiple regression analyses showed that being a man, having an amputation, not being tetraplegic, testing in a wheelchair ergometer and treadmill mode, were found to be favorable for high absolute and body-mass normalized VO2peak values. Furthermore, high body mass was favourable for high absolute VO2peak values and low body mass for high body-mass normalized VO2peak values. Conclusion The highest VO2peak values were found in Nordic sit skiing, an endurance sport with continuously high physical efforts, and the lowest values in shooting, a sport with low levels of displacement, and in wheelchair rugby where mainly athletes with tetraplegia compete. However, VO2peak values need to be interpreted carefully in sports-disciplines with few included studies and large within-sports variation. Future studies should include detailed information on training status, sex, age, test mode, as well as the type and extent of disability in order to more precisely evaluate the effect of these factors on VO2peak. PMID:29474386

  10. Infant body mass index peak and early childhood cardio-metabolic risk markers in a multi-ethnic Asian birth cohort

    PubMed Central

    Aris, Izzuddin M; Bernard, Jonathan Y; Chen, Ling-Wei; Tint, Mya Thway; Pang, Wei Wei; Lim, Wai Yee; Soh, Shu E; Saw, Seang-Mei; Godfrey, Keith M; Gluckman, Peter D; Chong, Yap-Seng; Yap, Fabian; Kramer, Michael S; Lee, Yung Seng

    2017-01-01

    Abstract Background: Infant body mass index (BMI) peak has received much interest recently as a potential predictor of future obesity and metabolic risk. No studies, however, have examined infant BMI peak in Asian populations, in whom the risk of metabolic disease is higher. Methods: We utilized data among 1020 infants from a mother-offspring cohort, who were Singapore citizens or permanent residents of Chinese, Malay or Indian ethnicity with homogeneous parental ethnic backgrounds, and did not receive chemotherapy, psychotropic drugs or have diabetes mellitus. Ethnicity was self-reported at recruitment and later confirmed using genotype analysis. Subject-specific BMI curves were fitted to infant BMI data using natural cubic splines with random coefficients to account for repeated measures in each child. We estimated characteristics of the child’s BMI peak [age and magnitude at peak, average pre-peak velocity (aPPV)]. Systolic (SBP) and diastolic blood pressure (DBP), BMI, sum of skinfolds (SSF) and fat-mass index (FMI) were measured during a follow-up visit at age 48 months. Weighted multivariable linear regression was used to assess the predictors (maternal BMI, gestational weight gain, ethnicity, infant sex, gestational age, birthweight-for-gestational age and breastfeeding duration) of infant BMI peak and its associations with outcomes at 48 months. Comparisons between ethnicities were tested using Bonferroni post-hoc correction. Results: Of 1020 infants, 80.5% were followed up at the 48-month visit. Mean (SD) BMI, SSF and FMI at 48 months were 15.6 (1.8) kg/m2, 16.5 (5.3) mm and 3.8 (1.3) kg/m2, respectively. Mean (SD) age at peak BMI was 6.0 (1.6) months, with a magnitude of 17.2 (1.4) kg/m2 and pre-peak velocity of 0.7 (0.3) kg/m2/month. Compared with Chinese infants, the peak occurred later in Malay {B [95% confidence interval (CI): 0.64 mo (0.36, 0.92)]} and Indian infants [1.11 mo (0.76, 1.46)] and was lower in magnitude in Indian infants [–0.45 kg/m2 (–0.69, –0.20)]. Adjusting for maternal education, BMI, gestational weight gain, ethnicity, infant sex, gestational age, birthweight-for-gestational-age and breastfeeding duration, higher peak and aPPV were associated with greater BMI, SSF and FMI at 48 months. Age at peak was positively associated with BMI at 48 months [0.15 units (0.09, 0.22)], whereas peak magnitude was associated with SBP [0.17 units (0.05, 0.30)] and DBP at 48 months [0.10 units (0.01, 0.22)]. Older age and higher magnitude at peak were associated with increased risk of overweight at 48 months [Relative Risk (95% CI): 1.35 (1.12–1.62) for age; 1.89 (1.60–2.24) for magnitude]. The associations of BMI peak with BMI and SSF at 48 months were stronger in Malay and Indian children than in Chinese children. Conclusions: Ethnic-specific differences in BMI peak characteristics, and associations of BMI peak with early childhood cardio-metabolic markers, suggest an important impact of early BMI development on later metabolic outcomes in Asian populations. PMID:27649801

  11. Infant body mass index peak and early childhood cardio-metabolic risk markers in a multi-ethnic Asian birth cohort.

    PubMed

    Aris, Izzuddin M; Bernard, Jonathan Y; Chen, Ling-Wei; Tint, Mya Thway; Pang, Wei Wei; Lim, Wai Yee; Soh, Shu E; Saw, Seang-Mei; Godfrey, Keith M; Gluckman, Peter D; Chong, Yap-Seng; Yap, Fabian; Kramer, Michael S; Lee, Yung Seng

    2017-04-01

    : Infant body mass index (BMI) peak has received much interest recently as a potential predictor of future obesity and metabolic risk. No studies, however, have examined infant BMI peak in Asian populations, in whom the risk of metabolic disease is higher. : We utilized data among 1020 infants from a mother-offspring cohort, who were Singapore citizens or permanent residents of Chinese, Malay or Indian ethnicity with homogeneous parental ethnic backgrounds, and did not receive chemotherapy, psychotropic drugs or have diabetes mellitus. Ethnicity was self-reported at recruitment and later confirmed using genotype analysis. Subject-specific BMI curves were fitted to infant BMI data using natural cubic splines with random coefficients to account for repeated measures in each child. We estimated characteristics of the child's BMI peak [age and magnitude at peak, average pre-peak velocity (aPPV)]. Systolic (SBP) and diastolic blood pressure (DBP), BMI, sum of skinfolds (SSF) and fat-mass index (FMI) were measured during a follow-up visit at age 48 months. Weighted multivariable linear regression was used to assess the predictors (maternal BMI, gestational weight gain, ethnicity, infant sex, gestational age, birthweight-for-gestational age and breastfeeding duration) of infant BMI peak and its associations with outcomes at 48 months. Comparisons between ethnicities were tested using Bonferroni post-hoc correction. : Of 1020 infants, 80.5% were followed up at the 48-month visit. Mean (SD) BMI, SSF and FMI at 48 months were 15.6 (1.8) kg/m 2 , 16.5 (5.3) mm and 3.8 (1.3) kg/m 2 , respectively. Mean (SD) age at peak BMI was 6.0 (1.6) months, with a magnitude of 17.2 (1.4) kg/m 2 and pre-peak velocity of 0.7 (0.3) kg/m 2 /month. Compared with Chinese infants, the peak occurred later in Malay {B [95% confidence interval (CI): 0.64 mo (0.36, 0.92)]} and Indian infants [1.11 mo (0.76, 1.46)] and was lower in magnitude in Indian infants [-0.45 kg/m 2 (-0.69, -0.20)]. Adjusting for maternal education, BMI, gestational weight gain, ethnicity, infant sex, gestational age, birthweight-for-gestational-age and breastfeeding duration, higher peak and aPPV were associated with greater BMI, SSF and FMI at 48 months. Age at peak was positively associated with BMI at 48 months [0.15 units (0.09, 0.22)], whereas peak magnitude was associated with SBP [0.17 units (0.05, 0.30)] and DBP at 48 months [0.10 units (0.01, 0.22)]. Older age and higher magnitude at peak were associated with increased risk of overweight at 48 months [Relative Risk (95% CI): 1.35 (1.12-1.62) for age; 1.89 (1.60-2.24) for magnitude]. The associations of BMI peak with BMI and SSF at 48 months were stronger in Malay and Indian children than in Chinese children. : Ethnic-specific differences in BMI peak characteristics, and associations of BMI peak with early childhood cardio-metabolic markers, suggest an important impact of early BMI development on later metabolic outcomes in Asian populations. © The Author 2016; all rights reserved. Published by Oxford University Press on behalf of the International Epidemiological Association

  12. U.S. Northern Command > Newsroom > Speeches

    Science.gov Websites

    . Boccardi speaks at the Pikes Peak Veterans Council Memorial Day ceremony May 29, 2017. May 31, 2017 Pikes Peak Veterans Council, Memorial Day Speech PETERSON AFB, Colo. - Special Thanks to the Pikes Peak

  13. 27 CFR 9.184 - Trinity Lakes.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... Provisional Edition 1986; (2) Whisky Bill Peak, Calif. Provisional Edition 1986; (3) Damnation Peak, Calif...) Proceed due east on township line T37N/T36N onto the Whisky Bill Peak, California quadrangle map to the...

  14. 27 CFR 9.184 - Trinity Lakes.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... Provisional Edition 1986; (2) Whisky Bill Peak, Calif. Provisional Edition 1986; (3) Damnation Peak, Calif...) Proceed due east on township line T37N/T36N onto the Whisky Bill Peak, California quadrangle map to the...

  15. Relationship between inflammatory markers of cardiovascular disease and VO2peak in asymptomatic females.

    PubMed

    Omran Simin, F; Narges, Z; Sajad, A; Parisa, Y; Omrani Vahid, F

    2013-04-01

    The objective of this study was to investigate the relationship between inflammatory markers of cardiovascular disease (IL-6 and acute-phase reactants) and VO2peak in asymptomatic females. Study subjects were females not affected by coronary heart diseases. Forty healthy female subjects (age, 45±4.2 years; height, 161±3.5 cm; weight, 65±3.1 kg; history of regular physical activity, 5.2±0.45 years) participated in this study Analysis of data was carried out by Pearson's correlation. Statistical analysis of data indicated a negative significant relationship between IL-6 and VO2peak (r=-0.48, r2=0.23, P<0.048), CRP and VO2peak (r=-0.40, r2= 0.16, P<0.002), fibrinogen and VO2peak (r=-0.42, r2=0.17, P<0.001), and WBC and VO2peak (r=-0.22, r2=0.04, P<0.044). In conclusion higher circulating levels of IL-6, CRP and fibrinogen are associated with lower VO2peak in females.

  16. Optical absorption of zigzag single walled boron nitride nanotubes in axial magnetic field

    NASA Astrophysics Data System (ADS)

    Chegel, Raad; Behzad, Somayeh

    2013-11-01

    We have investigated the effect of axial magnetic field on the band structure, dipole matrix elements and absorption spectrum in different energy ranges, using tight binding approximation. It is found that magnetic field breaks the degeneracy in the band structure and creates new allowed transitions in the dipole matrix which leads to creation of new peaks in the absorption spectrum. It is found that, unlike to CNTs which show metallic-semiconductor transition, the BNNTs remain semiconductor in any magnetic field strength. By calculation the diameter dependence of peak positions, we found that the positions of three first peaks in the lower energy region (E <5.3 eV) are proportional to n-2. In the middle energy region (7 < E < 7.5 eV) all (n, 0) zigzag BNNTs, with even and odd nanotube index, have two distinct peaks in the absence of magnetic field which these peaks may be used to identify zigzag BNNTs from other tube chiralities. For odd (even) tubes, in the middle energy region, applying the magnetic field leads to splitting of these two peaks into three (five) distinct peaks.

  17. Peptide Peak Detection for Low Resolution MALDI-TOF Mass Spectrometry.

    PubMed

    Yao, Jingwen; Utsunomiya, Shin-Ichi; Kajihara, Shigeki; Tabata, Tsuyoshi; Aoshima, Ken; Oda, Yoshiya; Tanaka, Koichi

    2014-01-01

    A new peak detection method has been developed for rapid selection of peptide and its fragment ion peaks for protein identification using tandem mass spectrometry. The algorithm applies classification of peak intensities present in the defined mass range to determine the noise level. A threshold is then given to select ion peaks according to the determined noise level in each mass range. This algorithm was initially designed for the peak detection of low resolution peptide mass spectra, such as matrix-assisted laser desorption/ionization Time-of-Flight (MALDI-TOF) mass spectra. But it can also be applied to other type of mass spectra. This method has demonstrated obtaining a good rate of number of real ions to noises for even poorly fragmented peptide spectra. The effect of using peak lists generated from this method produces improved protein scores in database search results. The reliability of the protein identifications is increased by finding more peptide identifications. This software tool is freely available at the Mass++ home page (http://www.first-ms3d.jp/english/achievement/software/).

  18. A wavelet transform algorithm for peak detection and application to powder x-ray diffraction data.

    PubMed

    Gregoire, John M; Dale, Darren; van Dover, R Bruce

    2011-01-01

    Peak detection is ubiquitous in the analysis of spectral data. While many noise-filtering algorithms and peak identification algorithms have been developed, recent work [P. Du, W. Kibbe, and S. Lin, Bioinformatics 22, 2059 (2006); A. Wee, D. Grayden, Y. Zhu, K. Petkovic-Duran, and D. Smith, Electrophoresis 29, 4215 (2008)] has demonstrated that both of these tasks are efficiently performed through analysis of the wavelet transform of the data. In this paper, we present a wavelet-based peak detection algorithm with user-defined parameters that can be readily applied to the application of any spectral data. Particular attention is given to the algorithm's resolution of overlapping peaks. The algorithm is implemented for the analysis of powder diffraction data, and successful detection of Bragg peaks is demonstrated for both low signal-to-noise data from theta-theta diffraction of nanoparticles and combinatorial x-ray diffraction data from a composition spread thin film. These datasets have different types of background signals which are effectively removed in the wavelet-based method, and the results demonstrate that the algorithm provides a robust method for automated peak detection.

  19. Peptide Peak Detection for Low Resolution MALDI-TOF Mass Spectrometry

    PubMed Central

    Yao, Jingwen; Utsunomiya, Shin-ichi; Kajihara, Shigeki; Tabata, Tsuyoshi; Aoshima, Ken; Oda, Yoshiya; Tanaka, Koichi

    2014-01-01

    A new peak detection method has been developed for rapid selection of peptide and its fragment ion peaks for protein identification using tandem mass spectrometry. The algorithm applies classification of peak intensities present in the defined mass range to determine the noise level. A threshold is then given to select ion peaks according to the determined noise level in each mass range. This algorithm was initially designed for the peak detection of low resolution peptide mass spectra, such as matrix-assisted laser desorption/ionization Time-of-Flight (MALDI-TOF) mass spectra. But it can also be applied to other type of mass spectra. This method has demonstrated obtaining a good rate of number of real ions to noises for even poorly fragmented peptide spectra. The effect of using peak lists generated from this method produces improved protein scores in database search results. The reliability of the protein identifications is increased by finding more peptide identifications. This software tool is freely available at the Mass++ home page (http://www.first-ms3d.jp/english/achievement/software/). PMID:26819872

  20. Saturation analysis of ChIP-seq data for reproducible identification of binding peaks

    PubMed Central

    Hansen, Peter; Hecht, Jochen; Ibrahim, Daniel M.; Krannich, Alexander; Truss, Matthias; Robinson, Peter N.

    2015-01-01

    Chromatin immunoprecipitation coupled with next-generation sequencing (ChIP-seq) is a powerful technology to identify the genome-wide locations of transcription factors and other DNA binding proteins. Computational ChIP-seq peak calling infers the location of protein–DNA interactions based on various measures of enrichment of sequence reads. In this work, we introduce an algorithm, Q, that uses an assessment of the quadratic enrichment of reads to center candidate peaks followed by statistical analysis of saturation of candidate peaks by 5′ ends of reads. We show that our method not only is substantially faster than several competing methods but also demonstrates statistically significant advantages with respect to reproducibility of results and in its ability to identify peaks with reproducible binding site motifs. We show that Q has superior performance in the delineation of double RNAPII and H3K4me3 peaks surrounding transcription start sites related to a better ability to resolve individual peaks. The method is implemented in C+l+ and is freely available under an open source license. PMID:26163319

  1. User's Manual for Program PeakFQ, Annual Flood-Frequency Analysis Using Bulletin 17B Guidelines

    USGS Publications Warehouse

    Flynn, Kathleen M.; Kirby, William H.; Hummel, Paul R.

    2006-01-01

    Estimates of flood flows having given recurrence intervals or probabilities of exceedance are needed for design of hydraulic structures and floodplain management. Program PeakFQ provides estimates of instantaneous annual-maximum peak flows having recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years (annual-exceedance probabilities of 0.50, 0.20, 0.10, 0.04, 0.02, 0.01, 0.005, and 0.002, respectively). As implemented in program PeakFQ, the Pearson Type III frequency distribution is fit to the logarithms of instantaneous annual peak flows following Bulletin 17B guidelines of the Interagency Advisory Committee on Water Data. The parameters of the Pearson Type III frequency curve are estimated by the logarithmic sample moments (mean, standard deviation, and coefficient of skewness), with adjustments for low outliers, high outliers, historic peaks, and generalized skew. This documentation provides an overview of the computational procedures in program PeakFQ, provides a description of the program menus, and provides an example of the output from the program.

  2. New dye-labeled terminators for improved DNA sequencing patterns.

    PubMed Central

    Rosenblum, B B; Lee, L G; Spurgeon, S L; Khan, S H; Menchen, S M; Heiner, C R; Chen, S M

    1997-01-01

    We have used two new dye sets for automated dye-labeled terminator DNA sequencing. One set consists of four, 4,7-dichlororhodamine dyes (d-rhodamines). The second set consists of energy-transfer dyes that use the 5-carboxy-d-rhodamine dyes as acceptor dyes and the 5- or 6-carboxy isomers of 4'-aminomethylfluorescein as the donor dye. Both dye sets utilize a new linker between the dye and the nucleotide, and both provide more even peak heights in terminator sequencing than the dye-terminators consisting of unsubstituted rhodamine dyes. The unsubstituted rhodamine terminators produced electropherograms in which weak G peaks are observed after A peaks and occasionally C peaks. The number of weak G peaks has been reduced or eliminated with the new dye terminators. The general improvement in peak evenness improves accuracy for the automated base-calling software. The improved signal-to-noise ratio of the energy-transfer dye-labeled terminators combined with more even peak heights results in successful sequencing of high molecular weight DNA templates such as bacterial artificial chromosome DNA. PMID:9358158

  3. Preparative Isolation and Purification of Flavone C-Glycosides from the Leaves of Ficus microcarpa L. f by Medium-Pressure Liquid Chromatography, High-Speed Countercurrent Chromatography, and Preparative Liquid Chromatography

    PubMed Central

    Wang, Xiaohong; Liang, Yong; Zhu, Licai; Xie, Huichun; Li, Hang; He, Junting; Pan, Man; Zhang, Tianyou; Ito, Yoichiro

    2009-01-01

    Combined with medium-pressure liquid chromatography (MPLC) and preparative high-performance liquid chromatography (perp-HPLC), high-speed countercurrent chromatography (HSCCC) was applied for separation and purification of flavone C-glycosides from the crude extract of leaves of Ficus microcarpae L. f. HSCCC separation was performed on a two-phase solvent system composed of methyl tert- butyl ether - ethyl acetate – 1-butanol – acetonitrile – 0.1% aqueous trifluoroacetic acid at a volume ratio of 1:3:1:1:5. Partially resolved peak fractions from HSCCC separation were further purified by preparative HPLC. Four well-separated compounds were obtained and their purities were determined by HPLC. The purities of these peaks were 97.28%, 97.20%, 92.23%, and 98.40%.. These peaks were characterized by ESI-MSn. According to the reference, they were identified as orientin (peak I), isovitexin-3″-O-glucopyranoside (peak II), isovitexin (peak III), and vitexin (peak IV), yielded 1.2 mg, 4.5 mg, 3.3 mg, and 1.8 mg, respectively. PMID:20190866

  4. Proteomic patterns for classification of ovarian cancer and CTCL serum samples utilizing peak pairs indicative of post-translational modifications.

    PubMed

    Liu, Chenwei; Shea, Nancy; Rucker, Sally; Harvey, Linda; Russo, Paul; Saul, Richard; Lopez, Mary F; Mikulskis, Alvydas; Kuzdzal, Scott; Golenko, Eva; Fishman, David; Vonderheid, Eric; Booher, Susan; Cowen, Edward W; Hwang, Sam T; Whiteley, Gordon R

    2007-11-01

    Proteomic patterns as a potential diagnostic technology has been well established for several cancer conditions and other diseases. The use of machine learning techniques such as decision trees, neural networks, genetic algorithms, and other methods has been the basis for pattern determination. Cancer is known to involve signaling pathways that are regulated through PTM of proteins. These modifications are also detectable with high confidence using high-resolution MS. We generated data using a prOTOF mass spectrometer on two sets of patient samples: ovarian cancer and cutaneous t-cell lymphoma (CTCL) with matched normal samples for each disease. Using the knowledge of mass shifts caused by common modifications, we built models using peak pairs and compared this to a conventional technique using individual peaks. The results for each disease showed that a small number of peak pairs gave classification equal to or better than the conventional technique that used multiple individual peaks. This simple peak picking technique could be used to guide identification of important peak pairs involved in the disease process.

  5. Improving automatic peptide mass fingerprint protein identification by combining many peak sets.

    PubMed

    Rögnvaldsson, Thorsteinn; Häkkinen, Jari; Lindberg, Claes; Marko-Varga, György; Potthast, Frank; Samuelsson, Jim

    2004-08-05

    An automated peak picking strategy is presented where several peak sets with different signal-to-noise levels are combined to form a more reliable statement on the protein identity. The strategy is compared against both manual peak picking and industry standard automated peak picking on a set of mass spectra obtained after tryptic in gel digestion of 2D-gel samples from human fetal fibroblasts. The set of spectra contain samples ranging from strong to weak spectra, and the proposed multiple-scale method is shown to be much better on weak spectra than the industry standard method and a human operator, and equal in performance to these on strong and medium strong spectra. It is also demonstrated that peak sets selected by a human operator display a considerable variability and that it is impossible to speak of a single "true" peak set for a given spectrum. The described multiple-scale strategy both avoids time-consuming parameter tuning and exceeds the human operator in protein identification efficiency. The strategy therefore promises reliable automated user-independent protein identification using peptide mass fingerprints.

  6. Observation of radiative surface plasmons in metal-oxide-metal tunnel junctions

    NASA Technical Reports Server (NTRS)

    Donohue, J. F.; Yang, E. Y.

    1986-01-01

    A peak in the UV region of the spectrum of light emitted from metal-oxide-metal (MOM) tunnel junctions has been observed at room temperature. Both the amplitude and wavelength of the peak are sensitive to applied junction bias. The UV peak corresponds to the normal or radiative surface plasmon mode while a visible peak, also present in the present spectra and reported in past MOM literature, is due to the tangential or nonradiative mode. The radiative mode requires no surface roughness or gratings for photon coupling. The results show that it is possible to obtain radiative surface plasmon production followed by a direct decay into photons with MOM tunnel diodes. A MOM diode with a double anode structure is found to emit light associated only with the nonradiative mode. The thickness dependence of the UV peak, along with the experimental results of the double anode MOM diode and the ratio of the UV peak to visible peak, support the contention that the UV light emission is indeed due to the radiative surface plasmon.

  7. An in-situ Raman study on pristane at high pressure and ambient temperature

    NASA Astrophysics Data System (ADS)

    Wu, Jia; Ni, Zhiyong; Wang, Shixia; Zheng, Haifei

    2018-01-01

    The Csbnd H Raman spectroscopic band (2800-3000 cm-1) of pristane was measured in a diamond anvil cell at 1.1-1532 MPa and ambient temperature. Three models are used for the peak-fitting of this Csbnd H Raman band, and the linear correlations between pressure and corresponding peak positions are calculated as well. The results demonstrate that 1) the number of peaks that one chooses to fit the spectrum affects the results, which indicates that the application of the spectroscopic barometry with a function group of organic matters suffers significant limitations; and 2) the linear correlation between pressure and fitted peak positions from one-peak model is more superior than that from multiple-peak model, meanwhile the standard error of the latter is much higher than that of the former. It indicates that the Raman shift of Csbnd H band fitted with one-peak model, which could be treated as a spectroscopic barometry, is more realistic in mixture systems than the traditional strategy which uses the Raman characteristic shift of one function group.

  8. Evidence of equilibrium peak runoff rates in steep tropical terrain on the island of Dominica during Tropical Storm Erika, August 27, 2015

    NASA Astrophysics Data System (ADS)

    Ogden, Fred L.

    2016-11-01

    Tropical Storm Erika was a weakly organized tropical storm when its center of circulation passed more than 150 km north of the island of Dominica on August 27, 2015. Hurricane hunter flights had difficulty finding the center of circulation as the storm encountered a high shear environment. Satellite and radar observations showed gyres imbedded within the broader circulation. Radar observations from Guadeloupe show that one of these gyres formed in convergent mid-level flow triggered by orographic convection over the island of Dominica. Gauge-adjusted radar rainfall data indicated between 300 and 750 mm of rainfall on Dominica, most of it over a four hour period. The result was widespread flooding, destruction of property, and loss of life. The extremity of the rainfall on steep watersheds covered with shallow soils was hypothesized to result in near-equilibrium runoff conditions where peak runoff rates equal the watershed-average peak rainfall rate minus a small constant loss rate. Rain gauge adjusted radar rainfall estimates and indirect peak discharge (IPD) measurements from 16 rivers at watershed areas ranging from 0.9 to 31.4 km2 using the USGS Slope-Area method allowed testing of this hypothesis. IPD measurements were compared against the global envelope of maximum observed flood peaks versus drainage area and against simulations using the U.S. Army Corps of Engineers Gridded Surface/Subsurface Hydrologic Analysis (GSSHA) model to detect landslide-affected peak flows. Model parameter values were estimated from the literature. Reasonable agreement was found between GSSHA simulated peak flows and IPD measurements in some watersheds. Results showed that landslide dam failure affected peak flows in 5 of the 16 rivers, with peak flows significantly greater than the envelope curve values for the flood of record for like-sized watersheds on the planet. GSSHA simulated peak discharges showed that the remaining 11 peak flow values were plausible. Simulations of an additional 24 watersheds ranging in size from 2.2 to 75.4 km2 provided confirmation that the IPD measurements varied from 40 to nearly 100% of the envelope curve value depending on storm-total rainfall. Results presented in this paper support the hypothesis that on average, the peak discharges scaled linearly with drainage area, and the constant of proportionality was equivalent to 134 mm h-1, or a unit discharge of 37.22 m3 s-1 km-2. The results also indicate that after the available watershed storage was filled after approximately 450-500 mm of rain fell, runoff efficiencies exceeded 50-60%, and peak runoff rates were more than 80% of the peak rainfall rate minus a small constant loss rate of 20 mm h-1. These findings have important implications for design of resilient infrastructure, and means that rainfall rate was the primary determinant of peak flows once the available storage was filled in the absences of landslide dam failure.

  9. Flux-lattice melting, anisotropy, and the role of interlayer coupling in Bi-Sr-Ca-Cu-O single crystals

    NASA Astrophysics Data System (ADS)

    Duran, C.; Yazyi, J.; de La Cruz, F.; Bishop, D. J.; Mitzi, D. B.; Kapitulnik, A.

    1991-10-01

    We have used the high-Q mechanical-oscillator technique to probe the vortex-lattice structure in high-quality Bi-Sr-Ca-Cu-O single crystals over a wide range of magnetic fields (200 Oe to 40 kOe), and relative orientations θ between the magnetic field and the crystalline c^ axis. In addition to the large softening and dissipation peak previously observed and interpreted as due to flux-lattice melting, another distinctly different peak at higher temperatures is seen. The temperatures where the dissipation peaks take place are solely defined by the parallel component of the field cosθ, while the restoring force on the oscillator is due to both field components. We suggest that the two peaks are due to the softening of interplanar coupling at the low-temperature peak, and melting or depinning of the two-dimensional pancake vortices at the higher-temperature peak.

  10. The signalling of German rising-falling intonation categories--the interplay of synchronization, shape, and height.

    PubMed

    Niebuhr, Oliver

    2007-01-01

    Based on the phonology of the Kiel Intonation Model (KIM), a tripartite opposition of German intonation is investigated: early, medial, and late peaks. These intonation categories, which can be projected onto H + L*, H*, and L* + H in the AM framework, are described in the KIM as rising-falling F(0) peak patterns differentiated by their synchronization with the accented-vowel onset. Perception experiments were carried out, showing that the function-based identification of the peak categories is not only influenced by peak synchronization, but also by peak shape and height. While the complete spectrum of findings is not covered by the current phonological modelling, the findings corroborate the existence of all three categories in German intonation and support the idea that the timing of the peak movements with regard to the accented vowel is important for their perceptual differentiation.

  11. Rattler model of the boson peak at silica surfaces.

    PubMed

    Steurer, Wolfram; Tosatti, Erio

    2012-10-28

    Recent experiments unveiled two new aspects of the low-energy excitation spectrum of silica glass--commonly termed as the "boson peak" region. The first is that at low temperature the silica surface exhibits a different, softer boson peak than the bulk. The second is a giant thermal blueshift of the surface boson peak frequency causing it to cross and overcome the bulk peak with increasing temperature. Here we present a simple lattice model that reproduces this behavior in all its aspects. Each site consists of rigid tetrahedral units softly connected so as to be able to rotate anharmonically as "rattlers" in their cages. As shown by simulations, the model dynamics exhibits a boson-like peak, which has lower frequency at the surface where rattlers have a weaker restoring force. Upon heating however the larger angular freedom of surface units allows them to rattle more than in the bulk, leading to a steeper frequency increase similar to experiment.

  12. [A method for the analysis of overlapped peaks in the high performance liquid chromatogram based on spectrum analysis].

    PubMed

    Liu, Bao; Fan, Xiaoming; Huo, Shengnan; Zhou, Lili; Wang, Jun; Zhang, Hui; Hu, Mei; Zhu, Jianhua

    2011-12-01

    A method was established to analyse the overlapped chromatographic peaks based on the chromatographic-spectra data detected by the diode-array ultraviolet detector. In the method, the three-dimensional data were de-noised and normalized firstly; secondly the differences and clustering analysis of the spectra at different time points were calculated; then the purity of the whole chromatographic peak were analysed and the region were sought out in which the spectra of different time points were stable. The feature spectra were extracted from the spectrum-stable region as the basic foundation. The nonnegative least-square method was chosen to separate the overlapped peaks and get the flow curve which was based on the feature spectrum. The three-dimensional divided chromatographic-spectrum peak could be gained by the matrix operations of the feature spectra with the flow curve. The results displayed that this method could separate the overlapped peaks.

  13. Feasibility of ballistic strengthening exercises in neurologic rehabilitation.

    PubMed

    Williams, Gavin; Clark, Ross A; Hansson, Jessica; Paterson, Kade

    2014-09-01

    Conventional methods for strength training in neurologic rehabilitation are not task specific for walking. Ballistic strength training was developed to improve the functional transfer of strength training; however, no research has investigated this in neurologic populations. The aim of this pilot study was to evaluate the feasibility of applying ballistic principles to conventional leg strengthening exercises in individuals with mobility limitations as a result of neurologic injuries. Eleven individuals with neurologic injuries completed seated and reclined leg press using conventional and ballistic techniques. A 2 × 2 repeated-measures analysis of variance was used to compare power measures (peak movement height and peak velocity) between exercises and conditions. Peak jump velocity and peak jump height were greater when using the ballistic jump technique rather than the conventional concentric technique (P < 0.01). These findings suggest that when compared with conventional strengthening exercises, the incorporation of ballistic principles was associated with increased peak height and peak velocities.

  14. Flooding in the Northeastern United States, 2011

    USGS Publications Warehouse

    Suro, Thomas P.; Roland, Mark A.; Kiah, Richard G.

    2015-12-31

    The annual exceedance probability (AEP) for 327 streamgages in the Northeastern United States were computed using annual peak streamflow data through 2011 and are included in this report. The 2011 peak streamflow for 129 of those streamgages was estimated to have an AEP of less than or equal to 1 percent. Almost 100 of these peak streamflows were a result of the flooding associated with Hurricane Irene in late August 2011. More extreme than the 1-percent AEP, is the 0.2-percent AEP. The USGS recorded peak streamflows at 31 streamgages that equaled or exceeded the estimated 0.2-percent AEP during 2011. Collectively, the USGS recorded peak streamflows having estimated AEPs of less than 1 percent in Connecticut, Delaware, Maine, Maryland, Massachusetts, Ohio, Pennsylvania, New Hampshire, New Jersey, New York, and Vermont and new period-of-record peak streamflows were recorded at more than 180 streamgages resulting from the floods of 2011.

  15. A High Peak Current Source for the CEBAF Injector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yunn, Byung; Sinclair, Charles; Krafft, Geoffrey

    1992-07-01

    The CEBAF accelerator can drive high power IR and UV FELs, if a high peak current source is added to the existing front end. We present a design for a high peak current injector which is compatible with simultaneous operation of the accelerator for cw nulear physics (NP) beam. The high peak current injector provides 60 A peak current in 2 psec long bunches carrying 120 pC charge at 7.485 MHz. At 10 MeV that beam is combined with 5 MeV NP beam (0.13pC, 2 psec long bunches at 1497 MHz) in an energy combination chicane for simultaneous acceleration inmore » the injector linac. The modifications to the low-energy NP transport are described. Results of optical and beam dynamics calculations for both high peak current and NP beams in combined operation are presented.« less

  16. Fine Structure of Beta Decay Strength Function and Anisotropy of Isovector Nuclear Dencity Component Oscillations in Deformed Nuclei

    NASA Astrophysics Data System (ADS)

    Izosimov, I. N.; Solnyshkin, A. A.; Khushvaktov, J. H.; Vaganov, Yu. A.

    2018-05-01

    The experimental measurement data on the fine structure of beta-decay strength function S β( E) in spherical, transitional, and deformed nuclei are analyzed. Modern high-resolution nuclear spectroscopy methods made it possible to identify the splitting of peaks in S β( E) for deformed nuclei. By analogy with splitting of the peak of E1 giant dipole resonance (GDR) in deformed nuclei, the peaks in S β( E) are split into two components from the axial nuclear deformation. In this report, the fine structure of S β( E) is discussed. Splitting of the peaks connected with the oscillations of neutrons against protons (E1GDR), of proton holes against neutrons (peaks in S β( E) of β+/ EC-decay), and of protons against neutron holes (peaks in S β( E) of β--decay) is discussed.

  17. Photoluminescence of amorphous and crystalline silicon nanoclusters in silicon nitride and oxide superlattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shuleiko, D. V., E-mail: shuleyko.dmitriy@physics.msu.ru; Zabotnov, S. V.; Zhigunov, D. M.

    2017-02-15

    The photoluminescence properties of silicon nitride and oxide superlattices fabricated by plasmaenhanced chemical vapor deposition are studied. In the structures annealed at a temperature of 1150°C, photoluminescence peaks at about 1.45 eV are recorded. The peaks are defined by exciton recombination in silicon nanocrystals formed upon annealing. Along with the 1.45-eV peaks, a number of peaks defined by recombination at defects at the interface between the nanocrystals and silicon-nitride matrix are detected. The structures annealed at 900°C exhibit a number of photoluminescence peaks in the range 1.3–2.0 eV. These peaks are defined by both the recombination at defects and excitonmore » recombination in amorphous silicon nanoclusters formed at an annealing temperature of 900°C. The observed features of all of the photoluminescence spectra are confirmed by the nature of the photoluminescence kinetics.« less

  18. Analysis of read-out heating rate effects on the glow peaks of TLD-100 using WinGCF software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauk, Sabar, E-mail: sabar@usm.my; Hussin, Siti Fatimah; Alam, Md. Shah

    This study was done to analyze the effects of the read-out heating rate on the LiF:Mg,Ti (TLD-100) thermoluminescent dosimeters (TLD) glow peaks using WinGCF computer software. The TLDs were exposed to X-ray photons with a potential difference of 72 kVp and 200 mAs in air and were read-out using a Harshaw 3500 TLD reader. The TLDs were read-out using four read-out heating rates at 10, 7, 4 and 1 °C s{sup −1}. It was observed that lowering the heating rate could separate more glow peaks. The activation energy for peak 5 was found to be lower than that for peakmore » 4. The peak maximum temperature and the integral value of the main peak decreased as the heating rate decreases.« less

  19. Dependence of Brillouin Light Scattering Spectra on the number of Bilayers in Fe/Ag Multilayer Specimens

    NASA Astrophysics Data System (ADS)

    From, Milton; Cheng, Li; Altounian, Zaven

    2001-03-01

    We have measured the Brillouin Light Scattering (BLS) spectra of [Fe/Ag] x N sputtered multilayers as a function of N, the number of bilayers in the multilayer. The thickness of the Fe and Ag layers was 1.5 nm and data was collected for samples with N = 5, 10, 25, and 40.The BLS instrument used was a 4-pass Fabry-Perot interferometer operated in the back-scattering geometry with 514.5 nm laser light. The number of peaks seen in the BLS spectra are seen to increase with N. Two peaks are seen for N=5, and four peaks are seen for N=10 and 25. For N = 40, we see two broad manifold peaks and a sharp surface mode peak. This N dependence and the detailed dependence of peak frequency on applied magnetic field are in good agreement with theoretical calculations.

  20. Shallow Carrier Trap Levels in GaAsN Investigated by Photoluminescence

    NASA Astrophysics Data System (ADS)

    Inagaki, Makoto; Suzuki, Hidetoshi; Suzuki, Akio; Mutaguchi, Kazumasa; Fukuyama, Atsuhiko; Kojima, Nobuaki; Ohshita, Yoshio; Yamagichi, Masafumi

    2011-04-01

    Shallow carrier trap levels in GaAs1-xNx (0.0010≤x≤0.0038) were investigated by photoluminescence (PL) and photoreflectance (PR) ranging from 4.2 to 300 K. The band gap energies of the GaAsN were clearly determined in the whole temperature range by the PR fitting analysis. It is clarified by peak decomposing that there were three emission peaks in the near-band-edge PL spectra of GaAsN. One of them was originated from band-to-band transition. The energies of two emission peaks were located at approximately 6 and 17 meV below the band edge. The existence of these peaks is evidence of carrier localization at the near-band-edge. The intensity ratio of the peak at the low energy side to other peaks increases with increasing N composition. This behavior is similar to the degradation of electrical properties.

  1. Prognostic value of cardiac power output to left ventricular mass in patients with left ventricular dysfunction and dobutamine stress echo negative by wall motion criteria.

    PubMed

    Cortigiani, Lauro; Sorbo, Simone; Miccoli, Mario; Scali, Maria Chiara; Simioniuc, Anca; Morrone, Doralisa; Bovenzi, Francesco; Marzilli, Mario; Dini, Frank Lloyd

    2017-02-01

    Cardiac power output to left ventricular mass (power/mass) is an index of myocardial efficiency reflecting the rate at which cardiac work is delivered with respect to the potential energy stored in the left ventricular mass. In the present study, we sought to investigate the capability of power/mass assessed at peak of dobutamine stress echocardiography to predict mortality in patients with ischaemic cardiomyopathy and no inducible ischaemia. One-hundred eleven patients (95 males; age 68 ± 10 years) with 35 ± 7% mean left ventricular ejection fraction and a dobutamine stress echocardiography (up to 40 µg/kg/min) negative by wall motion criteria formed the study population. Power/mass at peak stress was obtained as the product of a constant (K = 2.22 × 10 -1 ) with cardiac output and the mean arterial pressure divided by left ventricular mass to convert the units to W/100 g. Patients were followed up for a median of 29 months (inter-quartile range 16-72 months). All-cause mortality was the only accepted clinical end point. Mean peak-stress power/mass was 0.70 ± 0.31 W/100 g. During follow-up, 29 deaths (26%) were registered. With a receiver operating characteristic analysis, a peak-stress power/mass ≤0.50 W/100 g [area under curve 0.72 (95% CI 0.63; 0.80), sensitivity 59%, specificity 80%] was the best value for predicting mortality. Univariate prognostic indicators were age, male sex, peak-stress ejection fraction, peak-stress stroke volume, peak-stress cardiac output, peak-stress cardiac power output ≤1.48 W, and peak-stress power/mass ≤0.50 W/100 g. At multivariate analysis, age (HR 1.08, 95% CI 1.04; 1.14; P = 0.004) and peak-stress power/mass ≤0.50 W/100 g (HR 4.05, 95% CI 1.36; 12.00; P = 0.01) provided independent prognostic information. Three-year mortality was 14% in patients with peak-stress power/mass >0.50 W/100 g and 47% in those with peak-stress power/mass ≤0.50 W/100 g (log-rank 20.4; P < 0.0001). Power/mass assessed at peak of dobutamine stress echocardiography allows effective prognostication in patients with ischaemic cardiomyopathy and test result negative by wall motion criteria. In particular, a peak-stress power/mass ≤50 W/100 g is a strong and multivariable predictor of mortality. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.

  2. Effect of dynamic exercise on human carotid-cardiac baroreflex latency

    NASA Technical Reports Server (NTRS)

    Potts, J. T.; Raven, P. B.

    1995-01-01

    We compared the beat-to-beat responses of heart rate (HR) after brief activation of carotid baroreceptors in resting humans with the responses obtained during mild-to-moderate levels of dynamic exercise [25 and 50% of peak O2 uptake (VO2peak)] to investigate the effect of exercise on baroreflex latency. Carotid baroreceptors were activated by a pressure pulse (5 s) of neck suction (NS, -80 Torr) and neck pressure (NP, +40 Torr) during held expiration. At rest the peak change in HR to NS/NP occurred during the first several heartbeats (1st-3rd beat), whereas during mild and moderate exercise peak HR responses occurred near the end of the NS/NP pulse (6th-8th beat). In contrast, time (s) to the peak change in HR was not different between rest and exercise (P > 0.05). Reflex tachycadia to NP progressively decreased during exercise (17 +/- 3, 10 +/- 1, and 4 +/- 1% of control, rest vs. 25% VO2peak, vs. 50% VO2peak, respectively, P < 0.05), and a strong positive correlation was found between the magnitude of the reflex tachycardia and a measure of HR variability (cardiac vagal tone index, r = 0.74, P < 0.0001). Reflex bradycardia to NS gradually increased during exercise (13 +/- 2, 17 +/- 2, and 18 +/- 2% of control, rest vs. 25% VO2peak, vs. 50% VO2peak, respectively, P = 0.10) and was negatively correlated with cardiac vagal tone (r = 0.42, P < 0.06).(ABSTRACT TRUNCATED AT 250 WORDS).

  3. Analyses of flood-flow frequency for selected gaging stations in South Dakota

    USGS Publications Warehouse

    Benson, R.D.; Hoffman, E.B.; Wipf, V.J.

    1985-01-01

    Analyses of flood flow frequency were made for 111 continuous-record gaging stations in South Dakota with 10 or more years of record. The analyses were developed using the log-Pearson Type III procedure recommended by the U.S. Water Resources Council. The procedure characterizes flood occurrence at a single site as a sequence of annual peak flows. The magnitudes of the annual peak flows are assumed to be independent random variables following a log-Pearson Type III probability distribution, which defines the probability that any single annual peak flow will exceed a specified discharge. By considering only annual peak flows, the flood-frequency analysis becomes the estimation of the log-Pearson annual-probability curve using the record of annual peak flows at the site. The recorded data are divided into two classes: systematic and historic. The systematic record includes all annual peak flows determined in the process of conducting a systematic gaging program at a site. In this program, the annual peak flow is determined for each and every year of the program. The systematic record is intended to constitute an unbiased and representative sample of the population of all possible annual peak flows at the site. In contrast to the systematic record, the historic record consists of annual peak flows that would not have been determined except for evidence indicating their unusual magnitude. Flood information acquired from historical sources almost invariably refers to floods of noteworthy, and hence extraordinary, size. Although historic records form a biased and unrepresentative sample, they can be used to supplement the systematic record. (Author 's abstract)

  4. [Oxygen peak consumption is a better predictor of cardiovascular risk than handgrip strength in older Chilean women].

    PubMed

    Farías-Valenzuela, Claudio; Pérez-Luco, Cristian; Ramírez-Campillo, Rodrigo; Álvarez, Cristian; Castro-Sepúlveda, Mauricio

    Handgrip strength (HS) and peak oxygen consumption (Vo2peak) are powerful predictors of cardiovascular risk, although it is unknown which of the two variables is the better predictor. The objective of the following study was to relate HS and Vo2peak to cardiovascular risk markers in older Chilean women. Physically active adult women (n=51; age, 69±4.7years) participated in this study. The HS and Vo2peak were evaluated and related to the anthropometric variables of body mass, body mass index (BMI), waist circumference (WC), hip circumference (HC), waist ratio (WR), and waist height ratio (WHR), as well as with the cardiovascular variables systolic (SBP) and diastolic (DBP) and cardiac recovery in one minute (RHR1). A multilinear regression model was used for the analysis of the associated variables (P<.05). The cardiovascular risk markers associated (P<.05) with the handgrip strength of the dominant limb (HS DL ) were body mass, BMI, WR, and WHR. The handgrip strength of the non-dominant limb (HS NDL ) was associated with body mass. Vo2peak was associated with body mass, BMI, HC and RHR1. The multilinear regression model showed a value of r=0.43 in HS DL , r=0.39 in HS NDL and r=0.69 in peak Vo2. Although HS and Vo2peak were related to cardiovascular risk markers, Vo2peak offers greater associative power with these cardiovascular risk factors. Copyright © 2017 SEGG. Publicado por Elsevier España, S.L.U. All rights reserved.

  5. Isomers in the excited state of electron-transferring flavoprotein from Megasphaera elsdenii: spectral resolution from the time-resolved fluorescence spectra.

    PubMed

    Sato, Kyosuke; Nishina, Yasuzo; Shiga, Kiyoshi; Tanaka, Fumio

    2008-02-27

    Electron-transferring flavoprotein (Holo-ETF) from Megasphaera elsdenii contains two FAD's, one of which easily dissociates to form Iso-ETF (contains one FAD). Time-resolved fluorescence of FAD in Iso-ETF, and Holo-ETF were measured at 5 degrees C and 25 degrees C. Wavelength-dependent fluorescence decays of the both ETF at 5 degrees C and 25 degrees C were analyzed to resolve them into two independent spectra. It was found that Iso-ETF displayed two spectra with lifetime of 0.605 ns (emission peak, 508 nm) and with lifetime of 1.70 ns (emission peak, 540 nm) at 5 degrees C, and with lifetime of 0.693 ns (emission peak, 508 nm) and with lifetime of 2.75 ns (emission peak, 540 nm) at 25 degrees C. Holo-ETF displayed two spectra with lifetime of 0.739 ns (emission peak, 508 nm) and with lifetime of 2.06 ns (emission peak, 545 nm) at 5 degrees C, and with lifetime of 0.711 ns (emission peak, 527 nm) and with lifetime of 3.08 ns (emission peak, 540 nm) at 25 degrees C. Thus fluorescence lifetimes of every spectrum increased upon elevating temperature. Emission peaks Iso-ETF did not change much upon elevating temperature. Activation enthalpy changes, activation entropy changes and activation Gibbs energy changes of quenching rates all displayed negative. Two emission species in the both ETF may be hydrogen-bonding isomers, because isoalloxazine ring of FAD contains four hydrogen acceptors and one donor.

  6. Application of second derivative spectroscopy for increasing molecular specificity of Fourier transform infrared spectroscopic imaging of articular cartilage.

    PubMed

    Rieppo, L; Saarakkala, S; Närhi, T; Helminen, H J; Jurvelin, J S; Rieppo, J

    2012-05-01

    Fourier transform infrared (FT-IR) spectroscopic imaging is a promising method that enables the analysis of spatial distribution of biochemical components within histological sections. However, analysis of FT-IR spectroscopic data is complicated since absorption peaks often overlap with each other. Second derivative spectroscopy is a technique which enhances the separation of overlapping peaks. The objective of this study was to evaluate the specificity of the second derivative peaks for the main tissue components of articular cartilage (AC), i.e., collagen and proteoglycans (PGs). Histological bovine AC sections were measured before and after enzymatic removal of PGs. Both formalin-fixed sections (n = 10) and cryosections (n = 6) were investigated. Relative changes in the second derivative peak heights caused by the removal of PGs were calculated for both sample groups. The results showed that numerous peaks, e.g., peaks located at 1202 cm(-1) and 1336 cm(-1), altered less than 5% in the experiment. These peaks were assumed to be specific for collagen. In contrast, two peaks located at 1064 cm(-1) and 1376 cm(-1) were seen to alter notably, approximately 50% or more. These peaks were regarded to be specific for PGs. The changes were greater in cryosections than formalin-fixed sections. The results of this study suggest that the second derivative spectroscopy offers a practical and more specific method than routinely used absorption spectrum analysis methods to obtain compositional information on AC with FT-IR spectroscopic imaging. Copyright © 2012 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  7. Identification of authentic and adulterated Aquilariae Lignum Resinatum by Fourier transform infrared (FT-IR) spectroscopy and two-dimensional correlation analysis

    NASA Astrophysics Data System (ADS)

    Qu, Lei; Chen, Jian-bo; Zhou, Qun; Zhang, Gui-jun; Sun, Su-qin; Guo, Yi-zhen

    2016-11-01

    As a kind of expensive perfume and valuable herb, the commercial Aquilariae Lignum Resinatum (ALR) is often adulterated for economic motivations. In this research, Fourier transform infrared (FT-IR) spectroscopy and two-dimensional (2D) correlation analysis are employed to establish a simple and quick identification method for the authentic and adulterated ALR. In the conventional infrared spectra, the standard ALR has a strong peak at 1658 cm-1 referring to the conjugated carbonyl of resin, while this peak is absent in the adulterated samples. The position, intensity, and shape of the auto-peaks and cross-peaks of the authentic and adulterated ALR are much different in the synchronous 2D correlation spectra with thermal perturbation. In the range of 1700-1500 cm-1, the standard ALR has four obvious auto-peaks, while the strongest one is at 1659 cm-1. The adulterated sample w-1 has three obvious auto-peaks and the strongest one is at 1647 cm-1. The adulterated sample w-2 has three obvious auto-peaks and the strongest one is at 1519 cm-1. The adulterated sample w-3 has four obvious auto-peaks and the strongest one is at 1690 cm-1. The above auto-peaks confirm that the standard ALR contains a certain content of resin compounds, while the three counterfeits contain little or different resins. The results show the potential of FT-IR spectroscopy and 2D correlation analysis in the simple and quick identification of authentic and adulterated ALR.

  8. Computation of distribution of minimum resolution for log-normal distribution of chromatographic peak heights.

    PubMed

    Davis, Joe M

    2011-10-28

    General equations are derived for the distribution of minimum resolution between two chromatographic peaks, when peak heights in a multi-component chromatogram follow a continuous statistical distribution. The derivation draws on published theory by relating the area under the distribution of minimum resolution to the area under the distribution of the ratio of peak heights, which in turn is derived from the peak-height distribution. Two procedures are proposed for the equations' numerical solution. The procedures are applied to the log-normal distribution, which recently was reported to describe the distribution of component concentrations in three complex natural mixtures. For published statistical parameters of these mixtures, the distribution of minimum resolution is similar to that for the commonly assumed exponential distribution of peak heights used in statistical-overlap theory. However, these two distributions of minimum resolution can differ markedly, depending on the scale parameter of the log-normal distribution. Theory for the computation of the distribution of minimum resolution is extended to other cases of interest. With the log-normal distribution of peak heights as an example, the distribution of minimum resolution is computed when small peaks are lost due to noise or detection limits, and when the height of at least one peak is less than an upper limit. The distribution of minimum resolution shifts slightly to lower resolution values in the first case and to markedly larger resolution values in the second one. The theory and numerical procedure are confirmed by Monte Carlo simulation. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Site-specific estimation of peak-streamflow frequency using generalized least-squares regression for natural basins in Texas

    USGS Publications Warehouse

    Asquith, William H.; Slade, R.M.

    1999-01-01

    The U.S. Geological Survey, in cooperation with the Texas Department of Transportation, has developed a computer program to estimate peak-streamflow frequency for ungaged sites in natural basins in Texas. Peak-streamflow frequency refers to the peak streamflows for recurrence intervals of 2, 5, 10, 25, 50, and 100 years. Peak-streamflow frequency estimates are needed by planners, managers, and design engineers for flood-plain management; for objective assessment of flood risk; for cost-effective design of roads and bridges; and also for the desin of culverts, dams, levees, and other flood-control structures. The program estimates peak-streamflow frequency using a site-specific approach and a multivariate generalized least-squares linear regression. A site-specific approach differs from a traditional regional regression approach by developing unique equations to estimate peak-streamflow frequency specifically for the ungaged site. The stations included in the regression are selected using an informal cluster analysis that compares the basin characteristics of the ungaged site to the basin characteristics of all the stations in the data base. The program provides several choices for selecting the stations. Selecting the stations using cluster analysis ensures that the stations included in the regression will have the most pertinent information about flooding characteristics of the ungaged site and therefore provide the basis for potentially improved peak-streamflow frequency estimation. An evaluation of the site-specific approach in estimating peak-streamflow frequency for gaged sites indicates that the site-specific approach is at least as accurate as a traditional regional regression approach.

  10. Clinic value of two-dimensional speckle tracking combined with adenosine stress echocardiography for assessment of myocardial viability.

    PubMed

    Ran, Hong; Zhang, Ping-Yang; Fang, Ling-Ling; Ma, Xiao-Wu; Wu, Wen-Fang; Feng, Wang-Fei

    2012-07-01

    To evaluate whether myocardial strain under adenosine stress calculated from two-dimensional echocardiography by automatic frame-by-frame tracking of natural acoustic markers enables objective description of myocardial viability in clinic. Two-dimensional echocardiography and two-dimensional speckle tracking imaging (2D STI) at rest were performed first and once again after adenosine was infused at 140 ug/kg/min over a period of 6 minutes in 36 stable patients with previous myocardial infarction. Then radionuclide myocardial perfusion/metabolic imaging served as the "gold standard" to define myocardial viability was given in all patients within 1 day. Two-dimensional speckle tracking images were acquired at rest and after adenosine administration. An automatic frame-by-frame tracking system of natural acoustic echocardiographic markers was used to calculate 2D strain variables including peak-systolic circumferential strain (CS(peak-sys)), radial strain (RS(peak-sys)), and longitudinal strain (LS(peak-sys)). Those segments with abnormal motion from visual assessment of two-dimensional echocardiography were selected for further study. As a result, 126 regions were viable whereas 194 were nonviable among 320 abnormal motion segments in 36 patients according to radionuclide imaging. At rest, there were no significant changes of 2D strain between the viable and nonviable myocardium. After adenosine administration (140 ug/kg/min), CS(peak-sys) had a little change of the viable myocardium while RS(peak-sys) and LS(peak-sys) increased significantly compared with those at rest. In nonviable group, CS(peak-sys), RS(peak-sys), and LS(peak-sys) had no significant changes during adenosine administration. After adenosine administration, RS(peak-sys) and LS(peak-sys) in viable group increased significantly compared with nonviable group. Obtained strain data were highly reproducible and affected in small intraobserver and interobserver variabilities. A change of radial strain more than 9.5% has a sensitivity of 83.9% and a specificity of 81.4% for viable whereas a change of longitudinal strain more than 14.6% allowed a sensitivity of 86.7% and a specificity of 90.2%. 2D STI combined with adenosine stress echocardiography could provide a new and reliable method to identify myocardium viability. © 2012, Wiley Periodicals, Inc.

  11. Annual exceedance probabilities of the peak discharges of 2011 at streamgages in Vermont and selected streamgages in New Hampshire, western Massachusetts, and northeastern New York

    USGS Publications Warehouse

    Olson, Scott A.; Bent, Gardner C.

    2013-01-01

    The U.S. Geological Survey, in cooperation with the Federal Emergency Management Agency, determined annual exceedance probabilities for peak discharges occurring during the 2011 water year (October 1 to September 30) at streamgages in Vermont and selected streamgages in New Hampshire, western Massachusetts, and northeastern New York. This report presents the 2011 water year peak discharges at 145 streamgages in the study area and provides the results of the analyses of the 50-, 20-, 10-, 4-, 2-, 1-, and 0.2-percent annual exceedance probability discharges at 135 of the 145 streamgages. The annual exceedance probabilities for the 2011 water year peak discharges also are presented. Snowmelt and near record rainfall led to flooding across northern Vermont on April 27 and 28, 2011. At three streamgages with more than 10 years of record, the April rain event resulted in the peak discharge of record. At seven streamgages, the peak discharge resulting from this event had an annual exceedance probability less than or equal to 1 percent. In early May 2011, new peak stage records were set at two Lake Champlain gages with more than 100 years of record. At the Lake Champlain at Burlington, Vermont, gage, the water surface reached 102.79 feet (ft) (North American Vertical Datum of 1988 (NAVD 88)) on May 6, 2011, and at the Richelieu River (Lake Champlain) at Rouses Point, New York, gage, the water surface reached 102.75 ft NAVD 88. Record-breaking rainfall in late May produced additional flooding across northern Vermont on May 26 and 27, 2011. Four streamgages in northwestern Vermont recorded peak-of-record discharges as a result of this flooding. At three streamgages, the peak discharges from this event had an annual exceedance probability less than or equal to 1 percent. From August 28 to 29, 2011, Tropical Storm Irene delivered rainfall totals ranging from about 3 to more than 10 inches, which resulted in extensive flooding and new period-of-record peak discharges at 37 streamgages in the study area. The peak discharges as a result of Tropical Storm Irene had an annual exceedance probability of less than or equal to 1 percent at 36 streamgages. At 11 of these 36 streamgages, the annual exceedance probability of the peak discharges was less than or equal to 0.2 percent.

  12. Is the 6-minute walk test a reliable substitute for peak oxygen uptake in patients with dilated cardiomyopathy?

    PubMed

    Zugck, C; Krüger, C; Dürr, S; Gerber, S H; Haunstetter, A; Hornig, K; Kübler, W; Haass, M

    2000-04-01

    The 6-min walk test may serve as a more simple clinical tool to assess functional capacity in congestive heart failure than determination of peak oxygen uptake by cardiopulmonary exercise testing. The purpose of the study was to prospectively examine whether the distance ambulated during a 6-min walk test (i) correlates with peak oxygen uptake, (ii) allows peak oxygen uptake to be predicted, and (iii) provides prognostic information similar to peak oxygen uptake in patients with dilated cardiomyopathy and left ventricular ejection fraction < or = 35%. In 113 patients (age: 54+/-12 years, NYHA: 2.2+/-0.8) with dilated cardiomyopathy (left ventricular ejection fraction 19+/-7%) a 6-min walk test and cardiopulmonary exercise testing were performed. The 6-min walk test and peak oxygen uptake were closely correlated at the initial visit (r=0.68, n=113), as well as after 263+/-114 (r=0.71, n=28) and 381+/-170 days (r=0.74, n=14). During serial exercise testing the 6-min walk test allowed peak oxygen uptake to be reliably predicted (r=0.76 between calculated and real peak oxygen uptake). After 528+/-234 days, 42 patients were hospitalized due to worsening heart failure and/or died from cardiovascular causes. Compared to clinically stable patients, these 42 patients walked a shorter distance (423+/-104 vs 501+/-95 m, P<0.001) and had a lower peak oxygen uptake (12.7+/-4.0 vs 17.4 + 5.6 ml x min(-1) x kg(-1), P<0.001). By univariate analysis the 6-min walk test outperformed other prognostic parameters such as left ventricular ejection fraction, cardiac index and plasma norepinephrine concentration and conferred a prognostic power similar to peak oxygen uptake. This predictive value could be further improved in a multivariate model, by combining the 6-min walk test with independent variables, such as left ventricular ejection fraction or cardiac index. The 6-min walk test correlated with peak oxygen uptake when tested serially over the course of the disease. Although both tests define two distinct domains of functional capacity, the 6-min walk test provides prognostic information very similar to peak oxygen uptake in congestive heart failure patients with dilated cardiomyopathy.

  13. Detecting spatiotemporal changes of peak foliage coloration in deciduous and mixedforests across the Central and Eastern United States

    NASA Astrophysics Data System (ADS)

    Liu, Lingling; Zhang, Xiaoyang; Yu, Yunyue; Donnelly, Alison

    2017-02-01

    The timing of fall foliage coloration, especially peak coloration, is of great importance to the climate change research community as it has implications for carbon storage in forests. However, its long-term variation and response to climate change are poorly understood. To address this issue, we examined the long-term trends and breakpoints in satellite derived peak coloration onset from 1982 to 2014 using an innovative approach that combines Singular Spectrum Analysis (SSA) with Breaks for Additive Seasonal and Trend (BFAST). The peak coloration trend was then evaluated using both field foliage coloration observations and flux tower measurements. Finally, interannual changes in peak coloration onset were correlated with temperature and precipitation variation. Results showed that temporal trends in satellite-derived peak coloration onset were comparable with both field observations and flux tower measurements of gross primary productivity. Specifically, a breakpoint in long-term peak coloration onset was detected in 25% of pixels which were mainly distributed at latitudes north of 37°N. The breakpoint tended to occur between 1998 and 2004. Peak coloration onset was delayed before the breakpoint while it was transformed to an early trend after the breakpoint in nearly all pixels. The remaining 75% of pixels exhibited monotonic trends, 35% of which revealed a late trend and 40% an early trend. The results indicate that the onset of peak coloration experienced a late trend during the 1980s and 1990s in most deciduous and mixed forests. However, the trend was reversed during the most recent decade when the timing of peak coloration became earlier. The onset of peak coloration was significantly correlated with late summer and autumn temperature in 55.5% of pixels from 1982 to 2014. This pattern of temperature impacts was also verified using field observations and flux tower measurements. In the remaining 44.5% of pixels, 12.2% of pixels showed significantly positive correlation between the onset of peak coloration and cumulative precipitation during late summer and autumn period from 1982 to 2014. Our findings can improve understanding of the impact of changes in autumn phenology on carbon uptake in forests, which in turn facilitate more reliable measures of carbon dynamics in vegetation-climate interactions models.

  14. Peak capacity and peak capacity per unit time in capillary and microchip zone electrophoresis.

    PubMed

    Foley, Joe P; Blackney, Donna M; Ennis, Erin J

    2017-11-10

    The origins of the peak capacity concept are described and the important contributions to the development of that concept in chromatography and electrophoresis are reviewed. Whereas numerous quantitative expressions have been reported for one- and two-dimensional separations, most are focused on chromatographic separations and few, if any, quantitative unbiased expressions have been developed for capillary or microchip zone electrophoresis. Making the common assumption that longitudinal diffusion is the predominant source of zone broadening in capillary electrophoresis, analytical expressions for the peak capacity are derived, first in terms of migration time, diffusion coefficient, migration distance, and desired resolution, and then in terms of the remaining underlying fundamental parameters (electric field, electroosmotic and electrophoretic mobilities) that determine the migration time. The latter expressions clearly illustrate the direct square root dependence of peak capacity on electric field and migration distance and the inverse square root dependence on solute diffusion coefficient. Conditions that result in a high peak capacity will result in a low peak capacity per unit time and vice-versa. For a given symmetrical range of relative electrophoretic mobilities for co- and counter-electroosmotic species (cations and anions), the peak capacity increases with the square root of the electric field even as the temporal window narrows considerably, resulting in a significant reduction in analysis time. Over a broad relative electrophoretic mobility interval [-0.9, 0.9], an approximately two-fold greater amount of peak capacity can be generated for counter-electroosmotic species although it takes about five-fold longer to do so, consistent with the well-known bias in migration time and resolving power for co- and counter-electroosmotic species. The optimum lower bound of the relative electrophoretic mobility interval [μ r,Z , μ r,A ] that provides the maximum peak capacity per unit time is a simple function of the upper bound, but its direct application is limited to samples with analytes whose electrophoretic mobilities can be varied independently of electroosmotic flow. For samples containing both co- and counter-electroosmotic ions whose electrophoretic mobilities cannot be easily manipulated, comparable levels of peak capacity and peak capacity per unit time for all ions can be obtained by adjusting the EOF to devote the same amount of time to the separation of each class of ions; this corresponds to μ r,Z =-0.5. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. The effect of external magnetic field on the Raman peaks in manganites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahu, A. K., E-mail: ajitsahu@seemantaengg.ac.in; Rout, G. C.

    2014-04-24

    We report here a microscopic theoretical model study exhibiting the effect of external magnetic field on the Raman excitation peaks in the CMR manganite system. The Hamiltonian consists of Jahn-Teller (J-T) distortion in e{sub g} band, the double exchange interaction and the Heisenberg spin-spin interaction. Further the phonons are coupled to e{sub g} band electrons, J-T distorted e{sub g} band and the double exchange interaction. The Raman spectral intensity is calculated from the imaginary part of the phonon Green function. The spectra exhibits three peaks besides a very weak high energy peak. The magnetic field effect on these peaks aremore » reported.« less

  16. Chromaligner: a web server for chromatogram alignment.

    PubMed

    Wang, San-Yuan; Ho, Tsung-Jung; Kuo, Ching-Hua; Tseng, Yufeng J

    2010-09-15

    Chromaligner is a tool for chromatogram alignment to align retention time for chromatographic methods coupled to spectrophotometers such as high performance liquid chromatography and capillary electrophoresis for metabolomics works. Chromaligner resolves peak shifts by a constrained chromatogram alignment. For a collection of chromatograms and a set of defined peaks, Chromaligner aligns the chromatograms on defined peaks using correlation warping (COW). Chromaligner is faster than the original COW algorithm by k(2) times, where k is the number of defined peaks in a chromatogram. It also provides alignments based on known component peaks to reach the best results for further chemometric analysis. Chromaligner is freely accessible at http://cmdd.csie.ntu.edu.tw/~chromaligner.

  17. The visual framing of graphics when used in preventative health digital news packages: exploring the use of a narrative structure as the message infrastructure.

    PubMed

    Sontag, Jennah M; Barnes, Spencer R

    2017-09-26

    Visual framing can improve health-message effectiveness. Narrative structure provides a template needed for determining how to frame visuals to maximise message effectiveness. Participants (N = 190) were assigned to a message condition determined by segments (establisher, initial, peak), graphic (static, animated) and cancer (lung, melanoma). ANOVAs revealed that melanoma was more believable than lung cancer with static graphics at the establisher and peak; narratives were more believable with animated graphics at the peak segment; melanoma elicited greater positive attitudes; graphics in the peak influenced greatest intentions. Animated graphics visually framed to emphasise information at the establisher and peak segments suggest maximum effectiveness.

  18. Peak Doctor v 1.0.0 Labview Version

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garner, Scott

    2014-05-29

    PeakDoctor software works interactively with its user to analyze raw gamma-ray spectroscopic data. The goal of the software is to produce a list of energies and areas of all of the peaks in the spectrum, as accurately as possible. It starts by performing an energy calibration, creating a function that describes how energy can be related to channel number. Next, the software determines which channels in the raw histogram are in the Compton continuum and which channels are parts of a peak. Then the software fits the Compton continuum with cubic polynomials. The last step is to fit all ofmore » the peaks with Gaussian functions, thus producing the list.« less

  19. Sample Introduction Using the Hildebrand Grid Nebulizer for Plasma Spectrometry

    DTIC Science & Technology

    1988-01-01

    linear dynamic ranges, precision, and peak width were de- termined for elements in methanol and acetonitrile solutions. , (1)> The grid nebulizer was...FIA) with ICP-OES detection were evaluated. Detec- tion limits, linear dynamic ranges, precision, and peak width were de- termined for elements in...Concentration vs. Log Peak Area for Mn, 59 Cd, Zn, Au, Ni in Methanol (CMSC) 3-28 Log Concentration vs. Log Peak Area for Mn, 60 Cd, Au, Ni in

  20. Cardiorespiratory responses to Yo-yo Intermittent Endurance Test in nonelite youth soccer players.

    PubMed

    Castagna, Carlo; Impellizzeri, Franco M; Belardinelli, Romualdo; Abt, Grant; Coutts, Aaron; Chamari, Karim; D'Ottavio, Stefano

    2006-05-01

    This study examined the validity of the Yo-yo Intermittent Endurance Test (Level 1; YYIET) as indicator of aerobic power in youth soccer players. Cardiorespiratory responses were determined in 18 moderately trained nonelite youth soccer players (age, 16.6 +/- 0.8 years; height, 178.7 +/- 6.2 cm; body mass, 69.8 +/- 6.0 kg; VO2peak, 52.8 +/- 7.4 ml x kg(-1) x min(-1)) while performing the YYIET and an incremental treadmill test. Maximal heart rate (HRmax), respiratory exchange ratio (RER), O2 pulse, VO2peak, and maximal ventilation (VEmax) were measured. Group YYIET VO2peak, HRmax, RER, and O2 pulse were not significantly different from treadmill responses (p > 0.05). VEmax was significantly lower (p < 0.05) during the YYIET compared to the treadmill condition. No significant correlation was found between treadmill VO2peak and YYIET performance (p > 0.05). This study showed that the YYIET elicits peak VO2 and HR responses. However, YYIET performance results were not related to VO2peak measured in laboratory. Furthermore, the individual VO2peak reached during the TM did not reflect the VO2peak obtained during the YYIET, as shown by the large limits of agreement. As a consequence, compared to other shuttle run field tests, YYIET seems to be a weak indicator of aerobic power in youth moderately trained youth soccer player.

  1. Big data prediction of durations for online collective actions based on peak's timing

    NASA Astrophysics Data System (ADS)

    Nie, Shizhao; Wang, Zheng; Pujia, Wangmo; Nie, Yuan; Lu, Peng

    2018-02-01

    Peak Model states that each collective action has a life circle, which contains four periods of "prepare", "outbreak", "peak", and "vanish"; and the peak determines the max energy and the whole process. The peak model's re-simulation indicates that there seems to be a stable ratio between the peak's timing (TP) and the total span (T) or duration of collective actions, which needs further validations through empirical data of collective actions. Therefore, the daily big data of online collective actions is applied to validate the model; and the key is to check the ratio between peak's timing and the total span. The big data is obtained from online data recording & mining of websites. It is verified by the empirical big data that there is a stable ratio between TP and T; furthermore, it seems to be normally distributed. This rule holds for both the general cases and the sub-types of collective actions. Given the distribution of the ratio, estimated probability density function can be obtained, and therefore the span can be predicted via the peak's timing. Under the scenario of big data, the instant span (how long the collective action lasts or when it ends) will be monitored and predicted in real-time. With denser data (Big Data), the estimation of the ratio's distribution gets more robust, and the prediction of collective actions' spans or durations will be more accurate.

  2. Validation of one-mile walk equations for the estimation of aerobic fitness in British military personnel under the age of 40 years.

    PubMed

    Lunt, Heather; Roiz De Sa, Daniel; Roiz De Sa, Julia; Allsopp, Adrian

    2013-07-01

    To provide an accurate estimate of peak oxygen uptake (VO2 peak) for British Royal Navy Personnel aged between 18 and 39, comparing a gold standard treadmill based maximal exercise test with a submaximal one-mile walk test. Two hundred military personnel consented to perform a treadmill-based VO2 peak test and two one-mile walk tests round an athletics track. The estimated VO2 peak values from three different one-mile walk equations were compared to directly measured VO2 peak values from the treadmill-based test. One hundred participants formed a validation group from which a new equation was derived and the other 100 participants formed the cross-validation group. Existing equations underestimated the VO2 peak values of the fittest personnel and overestimated the VO2 peak of the least aerobically fit by between 2% and 18%. The new equation derived from the validation group has less bias, the highest correlation with the measured values (r = 0.83), and classified the most people correctly according to the Royal Navy's Fitness Test standards, producing the fewest false positives and false negatives combined (9%). The new equation will provide a more accurate estimate of VO2 peak for a British military population aged 18 to 39. Reprint & Copyright © 2013 Association of Military Surgeons of the U.S.

  3. Influence of body mass index on the growth hormone response to provocative testing in short children without growth hormone deficiency.

    PubMed

    Lee, Jieun; Yoon, Juyoung; Kang, Min Jae; Lee, Young Ah; Lee, Seong Yong; Shin, Choong Ho; Yang, Sei Won

    2013-09-01

    Obesity and its related factors are known to suppress the secretion of growth hormone (GH). We aimed to evaluate the influence of body mass index (BMI) on the peak GH response to provocative testing in short children without GH deficiency. We conducted a retrospective review of medical records of 88 children (2-15 yr old) whose height was less than 3 percentile for one's age and sex, with normal results (peak GH level > 10 ng/mL) of GH provocative testing with clonidine and dopamine. Peak stimulated GH level, height, weight, pubertal status and serum IGF-1 level were measured. Univariate analysis showed that the BMI standard deviation score (SDS) correlated negatively with the natural log (ln) of the peak stimulated GH level (ln peak GH). BMI SDS did not correlate significantly with sex, age, pubertal status, or ln IGF-1 level. BMI SDS correlated negatively with ln peak GH level induced by clonidine but not by dopamine. In stepwise multivariate regression analysis, BMI SDS was the only significant predictor of ln peak GH level in the combination of tests and the clonidine test, but not in the dopamine test. In children without GH deficiency, BMI SDS correlates negatively with the peak GH level. BMI SDS should be included in the analysis of the results of GH provocation tests, especially tests with clonidine.

  4. Rotational biomechanics of the elite golf swing: benchmarks for amateurs.

    PubMed

    Meister, David W; Ladd, Amy L; Butler, Erin E; Zhao, Betty; Rogers, Andrew P; Ray, Conrad J; Rose, Jessica

    2011-08-01

    The purpose of this study was to determine biomechanical factors that may influence golf swing power generation. Three-dimensional kinematics and kinetics were examined in 10 professional and 5 amateur male golfers. Upper-torso rotation, pelvic rotation, X-factor (relative hip-shoulder rotation), O-factor (pelvic obliquity), S-factor (shoulder obliquity), and normalized free moment were assessed in relation to clubhead speed at impact (CSI). Among professional golfers, results revealed that peak free moment per kilogram, peak X-factor, and peak S-factor were highly consistent, with coefficients of variation of 6.8%, 7.4%, and 8.4%, respectively. Downswing was initiated by reversal of pelvic rotation, followed by reversal of upper-torso rotation. Peak X-factor preceded peak free moment in all swings for all golfers, and occurred during initial downswing. Peak free moment per kilogram, X-factor at impact, peak X-factor, and peak upper-torso rotation were highly correlated to CSI (median correlation coefficients of 0.943, 0.943, 0.900, and 0.900, respectively). Benchmark curves revealed kinematic and kinetic temporal and spatial differences of amateurs compared with professional golfers. For amateurs, the number of factors that fell outside 1-2 standard deviations of professional means increased with handicap. This study identified biomechanical factors highly correlated to golf swing power generation and may provide a basis for strategic training and injury prevention.

  5. Relationships Between Potentiation Effects After Ballistic Half-Squats and Bilateral Symmetry.

    PubMed

    Suchomel, Timothy J; Sato, Kimitake; DeWeese, Brad H; Ebben, William P; Stone, Michael H

    2016-05-01

    The purposes of this study were to examine the effect of ballistic concentric-only half-squats (COHS) on subsequent squat-jump (SJ) performances at various rest intervals and to examine the relationships between changes in SJ performance and bilateral symmetry at peak performance. Thirteen resistance-trained men performed an SJ immediately and every minute up to 10 min on dual force plates after 2 ballistic COHS repetitions at 90% of their 1-repetition-maximum COHS. SJ peak force, peak power, net impulse, and rate of force development (RFD) were compared using a series of 1-way repeated-measures ANOVAs. The percent change in performance at which peak performance occurred for each variable was correlated with the symmetry index scores at the corresponding time point using Pearson correlation coefficients. Statistical differences in peak power (P = .031) existed between rest intervals; however, no statistically significant pairwise comparisons were present (P > .05). No statistical differences in peak force (P = .201), net impulse (P = .064), and RFD (P = .477) were present between rest intervals. The relationships between changes in SJ performance and bilateral symmetry after the rest interval that produced the greatest performance for peak force (r = .300, P = .319), peak power (r = -.041, P = .894), net impulse (r = -.028, P = .927), and RFD (r = -.434, P = .138) were not statistically significant. Ballistic COHS may enhance SJ performance; however, the changes in performance were not related to bilateral symmetry.

  6. Thermoluminescence kinetic features of Lithium Iodide (LiI) single crystal grown by vertical Bridgman technique

    NASA Astrophysics Data System (ADS)

    Daniel, D. Joseph; Kim, H. J.; Kim, Sunghwan; Khan, Sajid

    2017-08-01

    Single crystal of pure Lithium Iodide (LiI) has been grown from melt by using the vertical Bridgman technique. Thermoluminescence (TL) Measurements were carried out at 1 K/s following X-ray irradiation. The TL glow curve consists of a dominant peak at (peak-maximum Tm) 393 K and one low temperature peak of weaker intensity at 343 K. The order of kinetics (b), activation energy (E), and the frequency factor (S) for a prominent TL glow peak observed around 393 K for LiI crystals are reported for the first time. The peak shape analysis of the glow peak indicates the kinetics to be of the first order. The value of E is calculated using various standard methods such as initial rise (IR), whole glow peak (WGP), peak shape (PS), computerized glow curve deconvolution (CGCD) and Variable Heating rate (VHR) methods. An average value of 1.06 eV is obtained in this case. In order to validate the obtained parameters, numerically integrated TL glow curve has been generated using experimentally determined kinetic parameters. The effective atomic number (Zeff) for this material was determined and found to be 52. X-ray induced emission spectra of pure LiI single crystal are studied at room temperature and it is found that the sample exhibit sharp emission at 457 nm and broad emission at 650 nm.

  7. Are the triple surface plasmon resonances in Zn nanoparticles true?

    PubMed

    Amekura, H; Shinotsuka, H; Yoshikawa, H

    2017-12-08

    It has been experimentally and numerically confirmed that zinc (Zn) nanoparticles (NPs) dispersed in silica exhibit two optical extinction peaks around ∼250 nm (1st peak) and ∼1050 nm (2nd peak), both of which were ascribed to surface plasmon resonances (SPRs) in the broad sense, i.e., the dual SPRs. Recently, Kuiri and Majhi (KM) observed the 3rd peak around ∼900 nm by calculations, and proposed the triple SPRs for Zn NPs without any experimental confirmation. This paper claims that the 3rd peak has never been observed in any experiments nor in any calculations except given by KM. They justified the triple resonances from an approximated SPR criterion, ε 1 Zn (ω) + 2ε 1 SiO 2 (ω) = 0, which is not valid for non-idealized metals like Zn, because the imaginary part of the dielectric function ε 2 Zn (ω) is not negligible. Instead, a rigorous SPR criterion predicts the dual resonances only. From comparisons with ab initio band calculations, the 1st and 2nd extinction peak are ascribed to resonantly enhanced inter-band transitions (so-called electronic resonance) and intra-band transitions (SPR in the narrow sense), respectively. Since either of the peaks arises from the resonant enhancement due to the dielectric function, both the peaks are regarded as SPRs in the broad sense, i.e. the dual SPRs.

  8. Dependence of the Peak Fluxes of Solar Energetic Particles on CME 3D Parameters from STEREO and SOHO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jinhye; Moon, Y.-J.; Lee, Harim, E-mail: jinhye@khu.ac.kr

    We investigate the relationships between the peak fluxes of 18 solar energetic particle (SEP) events and associated coronal mass ejection (CME) 3D parameters (speed, angular width, and separation angle) obtained from SOHO , and STEREO-A / B for the period from 2010 August to 2013 June. We apply the STEREO CME Analysis Tool (StereoCAT) to the SEP-associated CMEs to obtain 3D speeds and 3D angular widths. The separation angles are determined as the longitudinal angles between flaring regions and magnetic footpoints of the spacecraft, which are calculated by the assumption of a Parker spiral field. The main results are asmore » follows. (1) We find that the dependence of the SEP peak fluxes on CME 3D speed from multiple spacecraft is similar to that on CME 2D speed. (2) There is a positive correlation between SEP peak flux and 3D angular width from multiple spacecraft, which is much more evident than the relationship between SEP peak flux and 2D angular width. (3) There is a noticeable anti-correlation ( r = −0.62) between SEP peak flux and separation angle. (4) The multiple-regression method between SEP peak fluxes and CME 3D parameters shows that the longitudinal separation angle is the most important parameter, and the CME 3D speed is secondary on SEP peak flux.« less

  9. Moderate acoustic changes can disrupt the sleep of very preterm infants in their incubators.

    PubMed

    Kuhn, Pierre; Zores, Claire; Langlet, Claire; Escande, Benoît; Astruc, Dominique; Dufour, André

    2013-10-01

    To evaluate the impact of moderate noise on the sleep of very early preterm infants (VPI). Observational study of 26 VPI of 26-31 weeks' gestation, with prospective measurements of sound pressure level and concomitant video records. Sound peaks were identified and classified according to their signal-to-noise ratio (SNR) above background noise. Prechtl's arousal states during sound peaks were assessed by two observers blinded to the purpose of the study. Changes in sleep/arousal states following sound peaks were compared with spontaneous changes during randomly selected periods without sound peaks. We identified 598 isolated sound peaks (5 ≤ SNR < 10 decibel slow response A (dBA), n = 518; 10 ≤ SNR < 15 dBA, n = 80) during sleep. Awakenings were observed during 33.8% (95% CI, 24-43.7%) of exposures to sound peaks of 5-10 dBA SNR and 39.7% (95% CI, 26-53.3%) of exposures to sound peaks of SNR 10-15 dBA, but only 11.7% (95% CI, 6.2-17.1%) of control periods. The proportions of awakenings following sound peaks were higher than the proportions of arousals during control periods (p < 0.005). Moderate acoustic changes can disrupt the sleep of VPI, and efficient sound abatement measures are needed. ©2013 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  10. Pre-impact lower extremity posture and brake pedal force predict foot and ankle forces during an automobile collision.

    PubMed

    Hardin, E C; Su, A; van den Bogert, A J

    2004-12-01

    The purpose of this study was to determine how a driver's foot and ankle forces during a frontal vehicle collision depend on initial lower extremity posture and brake pedal force. A 2D musculoskeletal model with seven segments and six right-side muscle groups was used. A simulation of a three-second braking task found 3647 sets of muscle activation levels that resulted in stable braking postures with realistic pedal force. These activation patterns were then used in impact simulations where vehicle deceleration was applied and driver movements and foot and ankle forces were simulated. Peak rearfoot ground reaction force (F(RF)), peak Achilles tendon force (FAT), peak calcaneal force (F(CF)) and peak ankle joint force (F(AJ)) were calculated. Peak forces during the impact simulation were 476 +/- 687 N (F(RF)), 2934 +/- 944 N (F(CF)) and 2449 +/- 918 N (F(AJ)). Many simulations resulted in force levels that could cause fractures. Multivariate quadratic regression determined that the pre-impact brake pedal force (PF), knee angle (KA) and heel distance (HD) explained 72% of the variance in peak FRF, 62% in peak F(CF) and 73% in peak F(AJ). Foot and ankle forces during a collision depend on initial posture and pedal force. Braking postures with increased knee flexion, while keeping the seat position fixed, are associated with higher foot and ankle forces during a collision.

  11. Multispectra CWT-based algorithm (MCWT) in mass spectra for peak extraction.

    PubMed

    Hsueh, Huey-Miin; Kuo, Hsun-Chih; Tsai, Chen-An

    2008-01-01

    An important objective in mass spectrometry (MS) is to identify a set of biomarkers that can be used to potentially distinguish patients between distinct treatments (or conditions) from tens or hundreds of spectra. A common two-step approach involving peak extraction and quantification is employed to identify the features of scientific interest. The selected features are then used for further investigation to understand underlying biological mechanism of individual protein or for development of genomic biomarkers to early diagnosis. However, the use of inadequate or ineffective peak detection and peak alignment algorithms in peak extraction step may lead to a high rate of false positives. Also, it is crucial to reduce the false positive rate in detecting biomarkers from ten or hundreds of spectra. Here a new procedure is introduced for feature extraction in mass spectrometry data that extends the continuous wavelet transform-based (CWT-based) algorithm to multiple spectra. The proposed multispectra CWT-based algorithm (MCWT) not only can perform peak detection for multiple spectra but also carry out peak alignment at the same time. The author' MCWT algorithm constructs a reference, which integrates information of multiple raw spectra, for feature extraction. The algorithm is applied to a SELDI-TOF mass spectra data set provided by CAMDA 2006 with known polypeptide m/z positions. This new approach is easy to implement and it outperforms the existing peak extraction method from the Bioconductor PROcess package.

  12. Bond strength of etch-and-rinse and self-etch adhesive systems to enamel and dentin irradiated with a novel CO2 9.3 μm short-pulsed laser for dental restorative procedures.

    PubMed

    Rechmann, Peter; Bartolome, N; Kinsel, R; Vaderhobli, R; Rechmann, B M T

    2017-12-01

    The objective of this study was to evaluate the influence of CO 2 9.3 μm short-pulsed laser irradiation on the shear bond strength of composite resin to enamel and dentin. Two hundred enamel and 210 dentin samples were irradiated with a 9.3 µm carbon dioxide laser (Solea, Convergent Dental, Inc., Natick, MA) with energies which either enhanced caries resistance or were effective for ablation. OptiBond Solo Plus [OptiBondTE] (Kerr Corporation, Orange, CA) and Peak Universal Bond light-cured adhesive [PeakTE] (Ultradent Products, South Jordan, UT) were used. In addition, Scotchbond Universal [ScotchbondSE] (3M ESPE, St. Paul, MN) and Peak SE self-etching primer with Peak Universal Bond light-cured adhesive [PeakSE] (Ultradent Products) were tested. Clearfil APX (Kuraray, New York, NY) was bonded to the samples. After 24 h, a single plane shear bond test was performed. Using the caries preventive setting on enamel resulted in increased shear bond strength for all bonding agents except for self-etch PeakSE. The highest overall bond strength was seen with PeakTE (41.29 ± 6.04 MPa). Etch-and-rinse systems achieved higher bond strength values to ablated enamel than the self-etch systems did. PeakTE showed the highest shear bond strength with 35.22 ± 4.40 MPa. OptiBondTE reached 93.8% of its control value. The self-etch system PeakSE presented significantly lower bond strength. The shear bond strength to dentin ranged between 19.15 ± 3.49 MPa for OptiBondTE and 43.94 ± 6.47 MPa for PeakSE. Etch-and-rinse systems had consistently higher bond strength to CO 2 9.3 µm laser-ablated enamel. Using the maximum recommended energy for dentin ablation, the self-etch system PeakSE reached the highest bond strength (43.9 ± 6.5 MPa).

  13. Heart rate response and functional capacity in patients with chronic heart failure with preserved ejection fraction.

    PubMed

    Domínguez, Eloy; Palau, Patricia; Núñez, Eduardo; Ramón, José María; López, Laura; Melero, Joana; Bellver, Alejandro; Santas, Enrique; Chorro, Francisco J; Núñez, Julio

    2018-03-24

    The mechanisms of exercise intolerance in heart failure with preserved ejection fraction (HFpEF) are not yet elucidated. Chronotropic incompetence has emerged as a potential mechanism. We aimed to evaluate whether heart rate (HR) response to exercise is associated to functional capacity in patients with symptomatic HFpEF. We prospectively studied 74 HFpEF patients [35.1% New York Heart Association Class III, 53% female, age (mean ± standard deviation) 72.5 ± 9.1 years, and 59.5% atrial fibrillation]. Functional performance was assessed by peak oxygen consumption (peak VO 2 ). The mean (standard deviation) peak VO 2 was 10 ± 2.8 mL/min/kg. The following chronotropic parameters were calculated: Delta-HR (HR at peak exercise - HR at rest), chronotropic index (CI) = (HR at peak exercise - resting HR)/[(220 - age) - resting HR], and CI according to the equation developed by Keteyian et al. (CIK) (HR at peak exercise - HR at rest)/[119 + (HR at rest/2) - (age/2) - 5 - HR at rest]. In a bivariate setting, peak VO 2 was positively and significantly correlated with Delta-HR (r = 0.35, P = 0.003), CI (r = 0.27, P = 0.022), CIK (r = 0.28, P = 0.018), and borderline with HR at peak exercise (r = 0.22, P = 0.055). In a multivariable linear regression analysis that included clinical, analytical, echocardiographic, and functional capacity covariates, the chronotropic parameters were positively associated with peak VO 2 . We found a linear relationship between Delta-HR and peak VO 2 (β coefficient of 0.03; 95% confidence interval: 0.004-0.05; P = 0.030); conversely, the association among CIs and peak VO 2 was exponentially shaped. In patients with chronic HFpEF, the HR response to exercise was positively associated to patient's functional capacity. © 2018 The Authors. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of the European Society of Cardiology.

  14. Partial purification and characterization of protection-inducing antigens from the muscle larva of Trichinella spiralis by molecular sizing chromatography and preparative flatbed isoelectric focusing.

    PubMed

    Despommier, D D

    1981-01-01

    The soluble portion of a large particle fraction which was derived from the muscle larva of T. spiralis was subjected to molecular sizing column chromatography using Sephacryl S-200. Five major peaks of 280 nm absorbing material were obtained. Analysis by immunoelectrophoresis revealed that each peak contained antigens, with the majority of them occurring in peaks 3, 4 and 5. Preliminary studies indicated that peak 4(mol. wt range 20 000--10 000) contained protection-inducing antigens. Crossed-immunoelectrophoretic and single-dimension electrophoretic analysis of peak 4 revealed a minimum of 10 antigens, while analytical isoelectric focusing demonstrated the presence of proteins with widely different pl, ranging from 4.0 to 9.0. Peak 4 was fractionated by preparative flatbed isoelectric focusing (PIEF) using two gradients: one from 3.5 to 9.5 and the other from 3.5 to 5.5. Fused rocket immunoelectrophoretic (FRIEP) analysis of both runs indicated that several antigens were separated from the others: one at pl 4.0 and the other at pl 9.0. The remaining antigens focused between pl 4.3 and 4.9. One hundred micrograms of whole peak 4, pl 9.0 antigen and the group of antigens at pl 4.3--4.9 were each separately injected, along with Freund's complete adjuvant, into mice. In addition, a portion of the pl 4.0 antigen was also assayed for protection. All antigenic preparations induced significant levels of protection. The pl 4.0 was further analysed on high-performance liquid chromatography (HPLC). Two sharp peaks of antigen, as detected by FRIEP, were eluted isocratically with 65% acetonitrile from a C-18 (aliphatic) column. Both peaks of antigen showed complete cross-reactivity on FRIEP and absorbed at 220 nm. Amino acid analysis of each HPLC peak revealed no detectable differences in composition. Each peak contained predominance of aspartic (13 mol%) and glutamic (18 mol%) acid. This antigen did not contain significant quantities of aromatic amino acids, and absorbed strongly at 206 nm. Neither the pl 4.0 or pl 9.0 antigen stained positively with the PAS reaction.

  15. Maturation of cortical auditory evoked potentials (CAEPs) to speech recorded from frontocentral and temporal sites: three months to eight years of age.

    PubMed

    Shafer, Valerie L; Yu, Yan H; Wagner, Monica

    2015-02-01

    The goal of the current analysis was to examine the maturation of cortical auditory evoked potentials (CAEPs) from three months of age to eight years of age. The superior frontal positive-negative-positive sequence (P1, N2, P2) and the temporal site, negative-positive-negative sequence (possibly, Na, Ta, Tb of the T-complex) were examined. Event-related potentials were recorded from 63 scalp sites to a 250-ms vowel. Amplitude and latency of peaks were measured at left and right frontal sites (near Fz) and at left and right temporal sites (T7 and T8). In addition, the largest peak (typically corresponding to P1) was selected from global field power (GFP). The results revealed a large positive peak (P1) easily identified at frontal sites across all ages. The N2 emerged after 6 months of age and the following P2 between 8 and 30 months of age. The latencies of these peaks decreased exponentially with the most rapid decrease observed for P1. For amplitude, only P1 showed a clear relationship with age, becoming more positive in a somewhat linear fashion. At the temporal sites only a negative peak, which might be Na, was clearly observed at both left and right sites in children older than 14 months and peaking between 100 and 200 ms. P1 measures at frontal sites and Na peak latencies were moderately correlated. The temporal negative peak latency showed a different maturational timecourse (linear in nature) than the P1 peak, suggesting at least partial independence. Distinct Ta (positive) and Tb (negative) peaks, following Na and peaking between 120 and 220 ms were not consistently found in most age groups of children, except Ta which was present in 7 year olds. Future research, which includes manipulation of stimulus factors, and use of modeling techniques will be needed to explain the apparent, protracted maturation of the temporal site measures in the current study. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiangkun; Pan, Chuzhong; Fan, Zuhui

    With numerical simulations, we analyze in detail how the bad data removal, i.e., the mask effect, can influence the peak statistics of the weak-lensing convergence field reconstructed from the shear measurement of background galaxies. It is found that high peak fractions are systematically enhanced because of the presence of masks; the larger the masked area is, the higher the enhancement is. In the case where the total masked area is about 13% of the survey area, the fraction of peaks with signal-to-noise ratio ν ≥ 3 is ∼11% of the total number of peaks, compared with ∼7% of the mask-freemore » case in our considered cosmological model. This can have significant effects on cosmological studies with weak-lensing convergence peak statistics, inducing a large bias in the parameter constraints if the effects are not taken into account properly. Even for a survey area of 9 deg{sup 2}, the bias in (Ω {sub m}, σ{sub 8}) is already intolerably large and close to 3σ. It is noted that most of the affected peaks are close to the masked regions. Therefore, excluding peaks in those regions in the peak statistics can reduce the bias effect but at the expense of losing usable survey areas. Further investigations find that the enhancement of the number of high peaks around the masked regions can be largely attributed to the smaller number of galaxies usable in the weak-lensing convergence reconstruction, leading to higher noise than that of the areas away from the masks. We thus develop a model in which we exclude only those very large masks with radius larger than 3' but keep all the other masked regions in peak counting statistics. For the remaining part, we treat the areas close to and away from the masked regions separately with different noise levels. It is shown that this two-noise-level model can account for the mask effect on peak statistics very well, and the bias in cosmological parameters is significantly reduced if this model is applied in the parameter fitting.« less

  17. GRAIL Gravity Observations of the Transition from Complex Crater to Peak-Ring Basin on the Moon: Implications for Crustal Structure and Impact Basin Formation

    NASA Technical Reports Server (NTRS)

    Baker, David M. H.; Head, James W.; Phillips, Roger J.; Neumann, Gregory A.; Bierson, Carver J.; Smith, David E.; Zuber, Maria T.

    2017-01-01

    High-resolution gravity data from the Gravity Recovery and Interior Laboratory (GRAIL) mission provide the opportunity to analyze the detailed gravity and crustal structure of impact features in the morphological transition from complex craters to peak-ring basins on the Moon. We calculate average radial profiles for free-air anomalies and Bouguer anomalies for peak-ring basins, proto-basins, and the largest complex craters. Complex craters and proto-basins have free-air anomalies that are positively correlated with surface topography, unlike the prominent lunar mascons (positive free-air anomalies in areas of low elevation) associated with large basins. The Bouguer gravity anomaly profiles of complex craters are highly irregular, with central positive anomalies that are generally absent or not clearly tied to interior morphology. In contrast, gravity profiles for peak-ring basins (approx. 200 km to 580 km) are much more regular and are highly correlated with surface morphology. A central positive Bouguer anomaly is confined within the peak ring and a negative Bouguer anomaly annulus extends from the edge of the positive anomaly outward to about the rim crest. A number of degraded basins lacking interior peak rings have diameters and gravity patterns similar to those of well-preserved peak-ring basins. If these structures represent degraded peak-ring basins, the number of peak-ring basins on the Moon would increase by more than a factor of two to 34. The gravity anomalies within basins are interpreted to be due to uplift of the mantle confined within the peak ring and an annulus of thickened crust between the peak ring and rim crest. We hypothesize that mantle uplift is influenced by interaction between the transient cavity and the mantle. Further, mascon formation is generally disconnected from the number of basin rings formed and occurs over a wide range of basin sizes. These observations have important implications for models of basin and mascon formation on the Moon and other planetary bodies.

  18. Evidence for a Peak Shift in a Humoral Response to Helminths: Age Profiles of IgE in the Shuar of Ecuador, the Tsimane of Bolivia, and the U.S. NHANES

    PubMed Central

    Blackwell, Aaron D.; Gurven, Michael D.; Sugiyama, Lawrence S.; Madimenos, Felicia C.; Liebert, Melissa A.; Martin, Melanie A.; Kaplan, Hillard S.; Snodgrass, J. Josh

    2011-01-01

    Background The peak shift model predicts that the age-profile of a pathogen's prevalence depends upon its transmission rate, peaking earlier in populations with higher transmission and declining as partial immunity is acquired. Helminth infections are associated with increased immunoglobulin E (IgE), which may convey partial immunity and influence the peak shift. Although studies have noted peak shifts in helminths, corresponding peak shifts in total IgE have not been investigated, nor has the age-patterning been carefully examined across populations. We test for differences in the age-patterning of IgE between two South American forager-horticulturalist populations and the United States: the Tsimane of Bolivia (n = 832), the Shuar of Ecuador (n = 289), and the U.S. NHANES (n = 8,336). We then examine the relationship between total IgE and helminth prevalences in the Tsimane. Methodology/Principal Findings Total IgE levels were assessed in serum and dried blood spots and age-patterns examined with non-linear regression models. Tsimane had the highest IgE (geometric mean  = 8,182 IU/ml), followed by Shuar (1,252 IU/ml), and NHANES (52 IU/ml). Consistent with predictions, higher population IgE was associated with steeper increases at early ages and earlier peaks: Tsimane IgE peaked at 7 years, Shuar at 10 years, and NHANES at 17 years. For Tsimane, the age-pattern was compared with fecal helminth prevalences. Overall, 57% had detectable eggs or larva, with hookworm (45.4%) and Ascaris lumbricoides (19.9%) the most prevalent. The peak in total IgE occurred around the peak in A. lumbricoides, which was associated with higher IgE in children <10, but with lower IgE in adolescents. Conclusions The age-patterning suggests a peak shift in total IgE similar to that seen in helminth infections, particularly A. lumbricoides. This age-patterning may have implications for understanding the effects of helminths on other health outcomes, such as allergy, growth, and response to childhood vaccination. PMID:21738813

  19. Evidence for a peak shift in a humoral response to helminths: age profiles of IgE in the Shuar of Ecuador, the Tsimane of Bolivia, and the U.S. NHANES.

    PubMed

    Blackwell, Aaron D; Gurven, Michael D; Sugiyama, Lawrence S; Madimenos, Felicia C; Liebert, Melissa A; Martin, Melanie A; Kaplan, Hillard S; Snodgrass, J Josh

    2011-06-01

    The peak shift model predicts that the age-profile of a pathogen's prevalence depends upon its transmission rate, peaking earlier in populations with higher transmission and declining as partial immunity is acquired. Helminth infections are associated with increased immunoglobulin E (IgE), which may convey partial immunity and influence the peak shift. Although studies have noted peak shifts in helminths, corresponding peak shifts in total IgE have not been investigated, nor has the age-patterning been carefully examined across populations. We test for differences in the age-patterning of IgE between two South American forager-horticulturalist populations and the United States: the Tsimane of Bolivia (n=832), the Shuar of Ecuador (n=289), and the U.S. NHANES (n=8,336). We then examine the relationship between total IgE and helminth prevalences in the Tsimane. Total IgE levels were assessed in serum and dried blood spots and age-patterns examined with non-linear regression models. Tsimane had the highest IgE (geometric mean =8,182 IU/ml), followed by Shuar (1,252 IU/ml), and NHANES (52 IU/ml). Consistent with predictions, higher population IgE was associated with steeper increases at early ages and earlier peaks: Tsimane IgE peaked at 7 years, Shuar at 10 years, and NHANES at 17 years. For Tsimane, the age-pattern was compared with fecal helminth prevalences. Overall, 57% had detectable eggs or larva, with hookworm (45.4%) and Ascaris lumbricoides (19.9%) the most prevalent. The peak in total IgE occurred around the peak in A. lumbricoides, which was associated with higher IgE in children <10, but with lower IgE in adolescents. The age-patterning suggests a peak shift in total IgE similar to that seen in helminth infections, particularly A. lumbricoides. This age-patterning may have implications for understanding the effects of helminths on other health outcomes, such as allergy, growth, and response to childhood vaccination.

  20. Estimating peak discharges, flood volumes, and hydrograph shapes of small ungaged urban streams in Ohio

    USGS Publications Warehouse

    Sherwood, J.M.

    1986-01-01

    Methods are presented for estimating peak discharges, flood volumes and hydrograph shapes of small (less than 5 sq mi) urban streams in Ohio. Examples of how to use the various regression equations and estimating techniques also are presented. Multiple-regression equations were developed for estimating peak discharges having recurrence intervals of 2, 5, 10, 25, 50, and 100 years. The significant independent variables affecting peak discharge are drainage area, main-channel slope, average basin-elevation index, and basin-development factor. Standard errors of regression and prediction for the peak discharge equations range from +/-37% to +/-41%. An equation also was developed to estimate the flood volume of a given peak discharge. Peak discharge, drainage area, main-channel slope, and basin-development factor were found to be the significant independent variables affecting flood volumes for given peak discharges. The standard error of regression for the volume equation is +/-52%. A technique is described for estimating the shape of a runoff hydrograph by applying a specific peak discharge and the estimated lagtime to a dimensionless hydrograph. An equation for estimating the lagtime of a basin was developed. Two variables--main-channel length divided by the square root of the main-channel slope and basin-development factor--have a significant effect on basin lagtime. The standard error of regression for the lagtime equation is +/-48%. The data base for the study was established by collecting rainfall-runoff data at 30 basins distributed throughout several metropolitan areas of Ohio. Five to eight years of data were collected at a 5-min record interval. The USGS rainfall-runoff model A634 was calibrated for each site. The calibrated models were used in conjunction with long-term rainfall records to generate a long-term streamflow record for each site. Each annual peak-discharge record was fitted to a Log-Pearson Type III frequency curve. Multiple-regression techniques were then used to analyze the peak discharge data as a function of the basin characteristics of the 30 sites. (Author 's abstract)

  1. Analysis of the Magnitude and Frequency of Peak Discharge and Maximum Observed Peak Discharge in New Mexico and Surrounding Areas

    USGS Publications Warehouse

    Waltemeyer, Scott D.

    2008-01-01

    Estimates of the magnitude and frequency of peak discharges are necessary for the reliable design of bridges, culverts, and open-channel hydraulic analysis, and for flood-hazard mapping in New Mexico and surrounding areas. The U.S. Geological Survey, in cooperation with the New Mexico Department of Transportation, updated estimates of peak-discharge magnitude for gaging stations in the region and updated regional equations for estimation of peak discharge and frequency at ungaged sites. Equations were developed for estimating the magnitude of peak discharges for recurrence intervals of 2, 5, 10, 25, 50, 100, and 500 years at ungaged sites by use of data collected through 2004 for 293 gaging stations on unregulated streams that have 10 or more years of record. Peak discharges for selected recurrence intervals were determined at gaging stations by fitting observed data to a log-Pearson Type III distribution with adjustments for a low-discharge threshold and a zero skew coefficient. A low-discharge threshold was applied to frequency analysis of 140 of the 293 gaging stations. This application provides an improved fit of the log-Pearson Type III frequency distribution. Use of the low-discharge threshold generally eliminated the peak discharge by having a recurrence interval of less than 1.4 years in the probability-density function. Within each of the nine regions, logarithms of the maximum peak discharges for selected recurrence intervals were related to logarithms of basin and climatic characteristics by using stepwise ordinary least-squares regression techniques for exploratory data analysis. Generalized least-squares regression techniques, an improved regression procedure that accounts for time and spatial sampling errors, then were applied to the same data used in the ordinary least-squares regression analyses. The average standard error of prediction, which includes average sampling error and average standard error of regression, ranged from 38 to 93 percent (mean value is 62, and median value is 59) for the 100-year flood. The 1996 investigation standard error of prediction for the flood regions ranged from 41 to 96 percent (mean value is 67, and median value is 68) for the 100-year flood that was analyzed by using generalized least-squares regression analysis. Overall, the equations based on generalized least-squares regression techniques are more reliable than those in the 1996 report because of the increased length of record and improved geographic information system (GIS) method to determine basin and climatic characteristics. Flood-frequency estimates can be made for ungaged sites upstream or downstream from gaging stations by using a method that transfers flood-frequency data at the gaging station to the ungaged site by using a drainage-area ratio adjustment equation. The peak discharge for a given recurrence interval at the gaging station, drainage-area ratio, and the drainage-area exponent from the regional regression equation of the respective region is used to transfer the peak discharge for the recurrence interval to the ungaged site. Maximum observed peak discharge as related to drainage area was determined for New Mexico. Extreme events are commonly used in the design and appraisal of bridge crossings and other structures. Bridge-scour evaluations are commonly made by using the 500-year peak discharge for these appraisals. Peak-discharge data collected at 293 gaging stations and 367 miscellaneous sites were used to develop a maximum peak-discharge relation as an alternative method of estimating peak discharge of an extreme event such as a maximum probable flood.

  2. Sex-related differences and age of peak performance in breaststroke versus freestyle swimming

    PubMed Central

    2013-01-01

    Background Sex-related differences in performance and in age of peak performance have been reported for freestyle swimming. However, little is known about the sex-related differences in other swimming styles. The aim of the present study was to compare performance and age of peak performance for elite men and women swimmers in breaststroke versus freestyle. Methods Race results were analyzed for swimmers at national ranked in the Swiss high score list (during 2006 through 2010) and for international swimmers who qualified for the finals of the FINA World Swimming Championships (during 2003 through 2011). Results The sex-related difference in swimming speed was significantly greater for freestyle than for breaststroke over 50 m, 100 m, and 200 m race distances for Swiss swimmers, but not for FINA finalists. The sex-related difference for both freestyle and breaststroke swimming speeds decreased significantly with increasing swimming distance for both groups. Race distance did not affect the age of peak performance by women in breaststroke, but age of peak performance was four years older for FINA women than for Swiss women. Men achieved peak swimming performance in breaststroke at younger ages for longer race distances, and the age of peak swimming performance was six years older for FINA men than for Swiss men. In freestyle swimming, race distance did not affect the age of peak swimming performance for Swiss women, but the age of peak swimming performance decreased with increasing race distance for Swiss men and for both sexes at the FINA World Championships. Conclusions Results of the present study indicate that (i) sex-related differences in swimming speed were greater for freestyle than for breaststroke for swimmers at national level, but not for swimmers at international level, and (ii) both female and male swimmers achieved peak swimming speeds at younger ages in breaststroke than in freestyle. Further studies are required to better understand differences between trends at national and international levels. PMID:24351335

  3. TRMM-Based Lightning Climatology

    NASA Technical Reports Server (NTRS)

    Cecil, Daniel J.; Buechler, Dennis E.; Blakeslee, Richard J.

    2011-01-01

    Gridded climatologies of total lightning flash rates seen by the spaceborne Optical Transient Detector (OTD) and Lightning Imaging Sensor (LIS) have been updated. OTD collected data from May 1995 to March 2000. LIS data (equatorward of about 38 deg) has been added for 1998-2010. Flash counts from each instrument are scaled by the best available estimates of detection efficiency. The long LIS record makes the merged climatology most robust in the tropics and subtropics, while the high latitude data is entirely from OTD. The mean global flash rate from the merged climatology is 46 flashes per second. The peak annual flash rate at 0.5 deg scale is 160 fl/square km/yr in eastern Congo. The peak monthly average flash rate at 2.5 scale is 18 fl/square km/mo, from early April to early May in the Brahmaputra Valley of far eastern India. Lightning decreases in this region during the monsoon season, but increases further north and west. A monthly average peak from early August to early September in northern Pakistan also exceeds any monthly averages from Africa, despite central Africa having the greatest yearly average. Most continental regions away from the equator have an annual cycle with lightning flash rates peaking in late spring or summer. The main exceptions are India and southeast Asia, with springtime peaks in April and May. For landmasses near the equator, flash rates peak near the equinoxes. For many oceanic regions, the peak flash rates occur in autumn. This is particularly noticeable for the Mediterranean and North Atlantic. Landmasses have a strong diurnal cycle of lightning, with flash rates generally peaking between 3-5 pm local solar time. The central United States flash rates peak later, in late evening or early night. Flash rates peak after midnight in northern Argentina. These regions are known for large, intense, long-lived mesoscale convective systems.

  4. On use of CO{sub 2} chemiluminescence for combustion metrics in natural gas fired reciprocating engines.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, S. B.; Bihari, B.; Biruduganti, M.

    Flame chemiluminescence is widely acknowledged to be an indicator of heat release rate in premixed turbulent flames that are representative of gas turbine combustion. Though heat release rate is an important metric for evaluating combustion strategies in reciprocating engine systems, its correlation with flame chemiluminescence is not well studied. To address this gap an experimental study was carried out in a single-cylinder natural gas fired reciprocating engine that could simulate turbocharged conditions with exhaust gas recirculation. Crank angle resolved spectra (266-795 nm) of flame luminosity were measured for various operational conditions by varying the ignition timing for MBT conditions andmore » by holding the speed at 1800 rpm and Brake Mean effective Pressure (BMEP) at 12 bar. The effect of dilution on CO*{sub 2}chemiluminescence intensities was studied, by varying the global equivalence ratio (0.6-1.0) and by varying the exhaust gas recirculation rate. It was attempted to relate the measured chemiluminescence intensities to thermodynamic metrics of importance to engine research -- in-cylinder bulk gas temperature and heat release rate (HRR) calculated from measured cylinder pressure signals. The peak of the measured CO*{sub 2} chemiluminescence intensities coincided with peak pressures within {+-}2 CAD for all test conditions. For each combustion cycle, the peaks of heat release rate, spectral intensity and temperature occurred in that sequence, well separated temporally. The peak heat release rates preceded the peak chemiluminescent emissions by 3.8-9.5 CAD, whereas the peak temperatures trailed by 5.8-15.6 CAD. Such a temporal separation precludes correlations on a crank-angle resolved basis. However, the peak cycle heat release rates and to a lesser extent the peak cycle temperatures correlated well with the chemiluminescent emission from CO*{sub 2}. Such observations point towards the potential use of flame chemiluminescence to monitor peak bulk gas temperatures as well as peak heat release rates in natural gas fired reciprocating engines.« less

  5. Peak-flow frequency relations and evaluation of the peak-flow gaging network in Nebraska

    USGS Publications Warehouse

    Soenksen, Philip J.; Miller, Lisa D.; Sharpe, Jennifer B.; Watton, Jason R.

    1999-01-01

    Estimates of peak-flow magnitude and frequency are required for the efficient design of structures that convey flood flows or occupy floodways, such as bridges, culverts, and roads. The U.S. Geological Survey, in cooperation with the Nebraska Department of Roads, conducted a study to update peak-flow frequency analyses for selected streamflow-gaging stations, develop a new set of peak-flow frequency relations for ungaged streams, and evaluate the peak-flow gaging-station network for Nebraska. Data from stations located in or within about 50 miles of Nebraska were analyzed using guidelines of the Interagency Advisory Committee on Water Data in Bulletin 17B. New generalized skew relations were developed for use in frequency analyses of unregulated streams. Thirty-three drainage-basin characteristics related to morphology, soils, and precipitation were quantified using a geographic information system, related computer programs, and digital spatial data.For unregulated streams, eight sets of regional regression equations relating drainage-basin to peak-flow characteristics were developed for seven regions of the state using a generalized least squares procedure. Two sets of regional peak-flow frequency equations were developed for basins with average soil permeability greater than 4 inches per hour, and six sets of equations were developed for specific geographic areas, usually based on drainage-basin boundaries. Standard errors of estimate for the 100-year frequency equations (1percent probability) ranged from 12.1 to 63.8 percent. For regulated reaches of nine streams, graphs of peak flow for standard frequencies and distance upstream of the mouth were estimated.The regional networks of streamflow-gaging stations on unregulated streams were analyzed to evaluate how additional data might affect the average sampling errors of the newly developed peak-flow equations for the 100-year frequency occurrence. Results indicated that data from new stations, rather than more data from existing stations, probably would produce the greatest reduction in average sampling errors of the equations.

  6. Can We Distinguish Emotions from Faces? Investigation of Implicit and Explicit Processes of Peak Facial Expressions.

    PubMed

    Xiao, Ruiqi; Li, Xianchun; Li, Lin; Wang, Yanmei

    2016-01-01

    Most previous studies on facial expression recognition have focused on the moderate emotions; to date, few studies have been conducted to investigate the explicit and implicit processes of peak emotions. In the current study, we used transiently peak intense expression images of athletes at the winning or losing point in competition as materials, and investigated the diagnosability of peak facial expressions at both implicit and explicit levels. In Experiment 1, participants were instructed to evaluate isolated faces, isolated bodies, and the face-body compounds, and eye-tracking movement was recorded. The results revealed that the isolated body and face-body congruent images were better recognized than isolated face and face-body incongruent images, indicating that the emotional information conveyed by facial cues was ambiguous, and the body cues influenced facial emotion recognition. Furthermore, eye movement records showed that the participants displayed distinct gaze patterns for the congruent and incongruent compounds. In Experiment 2A, the subliminal affective priming task was used, with faces as primes and bodies as targets, to investigate the unconscious emotion perception of peak facial expressions. The results showed that winning face prime facilitated reaction to winning body target, whereas losing face prime inhibited reaction to winning body target, suggesting that peak facial expressions could be perceived at the implicit level. In general, the results indicate that peak facial expressions cannot be consciously recognized but can be perceived at the unconscious level. In Experiment 2B, revised subliminal affective priming task and a strict awareness test were used to examine the validity of unconscious perception of peak facial expressions found in Experiment 2A. Results of Experiment 2B showed that reaction time to both winning body targets and losing body targets was influenced by the invisibly peak facial expression primes, which indicated the unconscious perception of peak facial expressions.

  7. Can We Distinguish Emotions from Faces? Investigation of Implicit and Explicit Processes of Peak Facial Expressions

    PubMed Central

    Xiao, Ruiqi; Li, Xianchun; Li, Lin; Wang, Yanmei

    2016-01-01

    Most previous studies on facial expression recognition have focused on the moderate emotions; to date, few studies have been conducted to investigate the explicit and implicit processes of peak emotions. In the current study, we used transiently peak intense expression images of athletes at the winning or losing point in competition as materials, and investigated the diagnosability of peak facial expressions at both implicit and explicit levels. In Experiment 1, participants were instructed to evaluate isolated faces, isolated bodies, and the face-body compounds, and eye-tracking movement was recorded. The results revealed that the isolated body and face-body congruent images were better recognized than isolated face and face-body incongruent images, indicating that the emotional information conveyed by facial cues was ambiguous, and the body cues influenced facial emotion recognition. Furthermore, eye movement records showed that the participants displayed distinct gaze patterns for the congruent and incongruent compounds. In Experiment 2A, the subliminal affective priming task was used, with faces as primes and bodies as targets, to investigate the unconscious emotion perception of peak facial expressions. The results showed that winning face prime facilitated reaction to winning body target, whereas losing face prime inhibited reaction to winning body target, suggesting that peak facial expressions could be perceived at the implicit level. In general, the results indicate that peak facial expressions cannot be consciously recognized but can be perceived at the unconscious level. In Experiment 2B, revised subliminal affective priming task and a strict awareness test were used to examine the validity of unconscious perception of peak facial expressions found in Experiment 2A. Results of Experiment 2B showed that reaction time to both winning body targets and losing body targets was influenced by the invisibly peak facial expression primes, which indicated the unconscious perception of peak facial expressions. PMID:27630604

  8. Changes in peak oxygen uptake and plasma volume in fit and unfit subjects following exposure to a simulation of microgravity

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.

    1998-01-01

    To test the hypothesis that the magnitude of reduction in plasma volume and work capacity following exposure to simulated microgravity is dependent on the initial level of aerobic fitness, peak oxygen uptake (VO2peak) was measured in a group of physically fit subjects and compared with VO2peak in a group of relatively unfit subjects before and after 10 days of continuous 6 degrees head-down tilt (HDT). Ten fit subjects (40 +/- 2 year) with mean +/- SE VO2peak = 48.9 +/- 1.7 mL kg-1 min-1 were matched for age, height, and lean body weight with 10 unfit subjects (VO2peak = 37.7 +/- 1.6 mL kg-1 min-1). Before and after HDT, plasma, blood, and red cell volumes and body composition were measured and all subjects underwent a graded supine cycle ergometer test to determine VO2peak period needed. Reduced VO2peak in fit subjects (-16.2%) was greater than that of unfit subjects (-6.1%). Similarly, reductions in plasma (-18.3%) and blood volumes (-16.0%) in fit subjects were larger than those of unfit subjects (blood volume = -5.6%; plasma volume = -6.6%). Reduced plasma volume was associated with greater negative body fluid balance during the initial 24 h of HDT in the fit group (912 +/- 154 mL) compared with unfit subjects (453 +/- 200 mL). The percentage change for VO2peak correlated with percentage change in plasma volume (r = +0.79). Following exposure to simulated microgravity, fit subjects demonstrated larger reductions in VO2peak than unfit subjects which was associated with larger reductions in plasma and blood volume. These data suggest that the magnitude of physical deconditioning induced by exposure to microgravity without intervention of countermeasures was influenced by the initial fitness of the subjects.

  9. Inter-study reproducibility of left ventricular torsion and torsion rate quantification using MR myocardial feature tracking.

    PubMed

    Kowallick, Johannes T; Morton, Geraint; Lamata, Pablo; Jogiya, Roy; Kutty, Shelby; Lotz, Joachim; Hasenfuß, Gerd; Nagel, Eike; Chiribiri, Amedeo; Schuster, Andreas

    2016-01-01

    To determine the inter-study reproducibility of MR feature tracking (MR-FT) derived left ventricular (LV) torsion and torsion rates for a combined assessment of systolic and diastolic myocardial function. Steady-state free precession (SSFP) cine LV short-axis stacks were acquired at 9:00 (Exam A), 9:30 (Exam B), and 14:00 (Exam C) in 16 healthy volunteers at 3 Tesla. SSFP images were analyzed offline using MR-FT to assess rotational displacement in apical and basal slices. Global peak torsion, peak systolic and peak diastolic torsion rates were calculated using different definitions ("twist", "normalized twist" and "circumferential-longitudinal (CL) shear angle"). Exam A and B were compared to assess the inter-study reproducibility. Morning and afternoon scans were compared to address possible diurnal variation. The different methods showed good inter-study reproducibility for global peak torsion (intraclass correlation coefficient [ICC]: 0.90-0.92; coefficient of variation [CoV]: 19.0-20.3%) and global peak systolic torsion rate (ICC: 0.82-0.84; CoV: 25.9-29.0%). Conversely, global peak diastolic torsion rate showed little inter-study reproducibility (ICC: 0.34-0.47; CoV: 40.8-45.5%). Global peak torsion as determined by the CL shear angle showed the best inter-study reproducibility (ICC: 0.90;CoV: 19.0%). MR-FT results were not measurably affected by diurnal variation between morning and afternoon scans (CL shear angle: 4.8 ± 1.4°, 4.8 ± 1.5°, and 4.1 ± 1.6° for Exam A, B, and C, respectively; P = 0.21). MR-FT based derivation of myocardial peak torsion and peak systolic torsion rate has high inter-study reproducibility as opposed to peak diastolic torsion rate. The CL shear angle was the most reproducible parameter independently of cardiac anatomy and may develop into a robust tool to quantify cardiac rotational mechanics in longitudinal MR-FT patient studies. © 2015 Wiley Periodicals, Inc.

  10. Reliability of Peak Exercise Stroke Volume Assessment by Impedance Cardiography in Patients with Residual Right Outflow Tract Lesions After Congenital Heart Disease Repair.

    PubMed

    Legendre, Antoine; Bonnet, D; Bosquet, L

    2018-01-01

    Global ventricular response to exercise may be useful in follow-up of patients with residual right outflow tract lesions after congenital heart disease repair. In this context, impedance cardiography is considered accurate for stroke volume (SV) measurement during exercise testing, however, to date, only partial assessment of its reliability has been reported. We retrospectively evaluated relative and absolute reliability of peak SV by impedance cardiography during exercise using intraclass correlation (ICC) and standard error of measurement (SEM) in this population. Peak SV was measured in 30 young patients (mean age 14.4 years ± 2.1) with right ventricular outflow tract reconstruction who underwent two cardiopulmonary exercise tests at a mean one-year interval. SV was measured using a signal morphology impedance cardiography analysis device (PhysioFlow ® ) and was indexed to body surface area. ICC of peak indexed SV measurement was 0.80 and SEM was 10.5%. High heterogeneity was seen when comparing patients according to peak indexed SV; in patients with peak SV < 50 ml/m 2 (15 patients), ICC rose to 0.95 and SEM dropped to 2.7%, while in patients with a peak SV > 50 ml/m 2 relative and absolute reliability decreased (ICC = 0.45, SEM = 12.2%). Peak exercise SV assessment by a PhysioFlow ® device represents a highly reliable method in patients with residual right outflow tract lesions after congenital heart disease repair, especially in patients with peak SV < 50 ml/m 2 . In this latter group, a peak SV decrease > 7.3% (corresponding to the minimum "true" difference) should be considered a clinically-relevant decrease in global ventricular performance and taken into account when deciding whether to perform residual lesion removal.

  11. Effect of Endurance Training on the Determinants of Peak Exercise Oxygen Consumption in Elderly Patients with Stable Compensated Heart Failure and Preserved Ejection Fraction

    PubMed Central

    Haykowsky, Mark J.; Brubaker, Peter H.; Stewart, Kathryn P.; Morgan, Timothy M.; Eggebeen, Joel; Kitzman, Dalane W.

    2012-01-01

    Objective Evaluate the mechanism(s) for improved exercise capacity after endurance exercise training (ET) in elderly patients with heart failure and preserved ejection fraction (HFPEF). Background: Exercise intolerance, measured objectively by reduced peak oxygen consumption (VO2), is the primary chronic symptom in HFPEF and is improved by ET. However, the mechanism(s) are unknown. Methods Forty stable, compensated HFPEF outpatients (mean age 69 ± 6 yrs) were examined at baseline and after 4 months of ET (n=22) or attention control (n=18). VO2 and its determinants were assessed during rest and peak upright cycle exercise. Results Following ET, peak VO2 was higher than controls (16.3 ± 2.6 vs. 13.1 ± 3.4 ml/kg/min; p=0.002). This was associated with higher peak heart rate (139 ± 16 vs. 131 ± 20 beats/min; p=0.03), but no difference in peak end-diastolic volume (77 ± 18 vs. 77 ± 17 ml; p=0.51), stroke volume (48 ± 9 vs. 46 ± 9 ml; p=0.83), or cardiac output (6.6 ± 1.3 vs. 5.9 ± 1.5 L/min; p=0.32). However, estimated peak arterial-venous oxygen difference (A-VO2 Diff) was significantly higher in ET (19.8 ± 4.0 vs. 17.3 ± 3.7 ml/dl; p=0.03). The effect of ET on cardiac output was responsible for < 15% of the improvement in peak VO2. Conclusions In elderly stable compensated HFPEF patients, peak A-VO2 Diff was higher following ET and was the primary contributor to improved peak VO2. This suggests that peripheral mechanisms (improved microvascular and/or skeletal muscle function) contribute to the improved exercise capacity after ET in HFPEF. PMID:22766338

  12. Effect of External Loading on Force and Power Production During Plyometric Push-ups.

    PubMed

    Hinshaw, Taylour J; Stephenson, Mitchell L; Sha, Zhanxin; Dai, Boyi

    2018-04-01

    Hinshaw, TJ, Stephenson, ML, Sha, Z, and Dai, B. Effect of external loading on force and power production during plyometric push-ups. J Strength Cond Res 32(4): 1099-1108, 2018-One common exercise to train upper-body strength and power is the push-up. Training at the loads that would produce the greatest power is an effective way to increase peak power. The purpose of the current study was to quantify the changes in peak force, peak power, and peak velocity among a modified plyometric push-up and plyometric push-ups with or without external loading in physically active young adults. Eighteen male and 17 female participants completed 4 push-ups: (a) modified plyometric push-up on the knees, (b) plyometric push-up without external loading, (c) plyometric push-up with an external load of 5% of body weight, and (d) plyometric push-up with an external load of 10% of body weight. Two force platforms were set up to collect vertical ground reaction forces at the hands and feet. The modified plyometric push-up demonstrated the lowest force, power, and velocity (5.4≥ Cohen's dz ≥1.2). Peak force and force at peak velocity increased (3.8≥ Cohen's dz ≥0.3) and peak velocity and velocity at peak power decreased (1.4≥ Cohen's dz ≥0.8) for the push-up without external loading compared with the 2 push-ups with external loading. No significant differences were observed for peak power among the push-ups with or without external loading (0.4≥ Cohen's dz ≥0.1). Although peak power is similar with or without external loading, push-ups without external loading may be more beneficial for a quick movement, and push-ups with external loading may be more beneficial for a greater force production.

  13. Spatiotemporal phenological changes in fall foliage peak coloration in deciduous forest and the responses to climatic variation

    NASA Astrophysics Data System (ADS)

    Xie, Y.; Wilson, A. M.

    2017-12-01

    Plant phenology studies typically focus on the beginning and end of the growing season in temperate forests. We know too little about fall foliage peak coloration, which is a bioindicator of plant response in autumn to environmental changes, an important visual cue in fall associated with animal activities, and a key element in fall foliage ecotourism. Spatiotemporal changes in timing of fall foliage peak coloration of temperate forests and the associated environmental controls are not well understood. In this study, we examined multiple color indices to estimate Land Surface Phenology (LSP) of fall foliage peak coloration of deciduous forest in the northeastern USA using Moderate Resolution Imaging Spectroradiometer (MODIS) daily imagery from 2000 to 2015. We used long term phenology ground observations to validate our estimated LSP, and found that Visible Atmospherically Resistant Index (VARI) and Plant Senescence Reflectance Index (PSRI) were good metrics to estimate peak and end of leaf coloration period of deciduous forest. During the past 16 years, the length of period with peak fall foliage color of deciduous forest at southern New England and northern Appalachian forests regions became longer (0.3 7.7 days), mainly driven by earlier peak coloration. Northern New England, southern Appalachian forests and Ozark and Ouachita mountains areas had shorter period (‒0.2 ‒9.2 days) mainly due to earlier end of leaf coloration. Changes in peak and end of leaf coloration not only were associated with changing temperature in spring and fall, but also to drought and heat in summer, and heavy precipitation in both summer and fall. The associations between leaf peak coloration phenology and climatic variations were not consistent among ecoregions. Our findings suggested divergent change patterns in fall foliage peak coloration phenology in deciduous forests, and improved our understanding in the environmental control on timing of fall foliage color change.

  14. IsoMS: automated processing of LC-MS data generated by a chemical isotope labeling metabolomics platform.

    PubMed

    Zhou, Ruokun; Tseng, Chiao-Li; Huan, Tao; Li, Liang

    2014-05-20

    A chemical isotope labeling or isotope coded derivatization (ICD) metabolomics platform uses a chemical derivatization method to introduce a mass tag to all of the metabolites having a common functional group (e.g., amine), followed by LC-MS analysis of the labeled metabolites. To apply this platform to metabolomics studies involving quantitative analysis of different groups of samples, automated data processing is required. Herein, we report a data processing method based on the use of a mass spectral feature unique to the chemical labeling approach, i.e., any differential-isotope-labeled metabolites are detected as peak pairs with a fixed mass difference in a mass spectrum. A software tool, IsoMS, has been developed to process the raw data generated from one or multiple LC-MS runs by peak picking, peak pairing, peak-pair filtering, and peak-pair intensity ratio calculation. The same peak pairs detected from multiple samples are then aligned to produce a CSV file that contains the metabolite information and peak ratios relative to a control (e.g., a pooled sample). This file can be readily exported for further data and statistical analysis, which is illustrated in an example of comparing the metabolomes of human urine samples collected before and after drinking coffee. To demonstrate that this method is reliable for data processing, five (13)C2-/(12)C2-dansyl labeled metabolite standards were analyzed by LC-MS. IsoMS was able to detect these metabolites correctly. In addition, in the analysis of a (13)C2-/(12)C2-dansyl labeled human urine, IsoMS detected 2044 peak pairs, and manual inspection of these peak pairs found 90 false peak pairs, representing a false positive rate of 4.4%. IsoMS for Windows running R is freely available for noncommercial use from www.mycompoundid.org/IsoMS.

  15. Physiological correlates of pulmonary function in children with cystic fibrosis.

    PubMed

    Wells, Greg D; Wilkes, Donna L; Schneiderman, Jane E; Thompson, Sara; Coates, Allan L; Ratjen, Felix

    2014-09-01

    Although peak aerobic capacity (VO(2peak)) has been linked to outcome in patients with cystic fibrosis (CF), measuring is time consuming, and requires expensive equipment and expertise that is not readily available in all centers. Other fitness parameters such as peak anaerobic power, measures of power and strength may be simpler to deliver in the clinic. The relationship between these measures and established outcomes such as forced expiratory volume in one second (FEV(1)) and peak aerobic power (VO(2peak)) in CF remains unclear. Therefore we evaluated (a) aerobic fitness, (b) anaerobic fitness, and (c) upper and lower body muscle strength to determine their relationship to FEV(1) and VO(2peak) in children with CF. Eighty-two patients (7-18 years) with CF (40 female) from the CF clinic at The Hospital for Sick Children in Toronto performed a maximal incremental cycling test to exhaustion. Anaerobic power (W) for 10 and 30 sec cycling trials as well as vertical jump (VJ) and hand grip strength (HG) were compared to FEV(1) and VO(2peak). Absolute VO(2peak) (R(2)  = 0.16, P < 0.001), anaerobic power (R(2)  = 0.21, P < 0.001), and hand grip strength (R(2)  = 0.10, P = 0.003) were significantly correlated to lung function whereas measures of explosive lower body strength (VJ) were not. Anaerobic power (R(2)  = 0.16, P = 0.001) and hand grip strength (R(2)  = 0.08, P = 0.01) were related to VO(2peak). Vertical jump was correlated with VO(2peak) (R(2)  = 0.29, P < 0.001) but not FEV(1). Simple fitness tests such as hand grip strength and anaerobic cycle tests may be useful indicators of lung health and fitness. © 2013 Wiley Periodicals, Inc.

  16. On the suitability of the copula types for the joint modelling of flood peaks and volumes along the Danube River

    NASA Astrophysics Data System (ADS)

    Kohnová, Silvia; Papaioannou, George; Bacigál, Tomáš; Szolgay, Ján; Hlavčová, Kamila; Loukas, Athanasios; Výleta, Roman

    2017-04-01

    Flood frequency analysis is often performed as a univariate analysis of flood peaks using a suitable theoretical probability distribution of the annual maximum flood peaks or peak over threshold values. However, also other flood attributes, such as flood volume and duration, are often necessary for the design of hydrotechnical structures and projects. In this study, the suitability of various copula families for a bivariate analysis of peak discharges and flood volumes has been tested on the streamflow data from gauging stations along the whole Danube River. Kendall's rank correlation coefficient (tau) quantifies the dependence between flood peak discharge and flood volume settings. The methodology is tested on two different data samples: 1) annual maximum flood (AMF) peaks with corresponding flood volumes, which is a typical choice for engineering studies and 2). annual maximum flood (AMF) peaks combined with annual maximum flow volumes of fixed durations at 5, 10, 15, 20, 25, 30 and 60 days, which can be regarded as a regime analysis of the dependence between the extremes of both variables in a given year. The bivariate modelling of the peak discharge - flood volume couples is achieved with the use of the the following copulas: Ali-Mikhail-Haq (AMH), Clayton, Frank, Joe, Gumbel, HuslerReiss, Galambos, Tawn, Normal, Plackett and FGM, respectively. Scatterplots of the observed and simulated peak discharge - flood volume pairs and goodness-of-fit tests have been used to assess the overall applicability of the copulas as well as observing any changes in suitable models along the Danube River. The results indicate that, almost all of the considered Archimedean class copulas (e.g. Frank, Clayton and Ali-Mikhail-Haq) perform better than the other copula families selected for this study, and that for the second data samples mostly the upper-tail-flat copulas were suitable.

  17. Correlation and the mechanism of lithium ion diffusion with the crystal structure of Li7La3Zr2O12 revealed by an internal friction technique.

    PubMed

    Wang, X P; Gao, Y X; Xia, Y P; Zhuang, Z; Zhang, T; Fang, Q F

    2014-04-21

    The correlation and transport mechanism of lithium ions with the crystal structure of a fast lithium ion conductor Li7La3Zr2O12 are mainly investigated by internal friction (IF) and AC impedance spectroscopy techniques. Compared with the poor conductivity of tetragonal Li7La3Zr2O12, the Al stabilized cubic phase exhibits a good ionic conductivity that can be up to 1.9 × 10(-4) S cm(-1) at room temperature, which can be ascribed to the disordered distribution of lithium ions in the cubic phase. A well-pronounced relaxation IF peak (labeled as peak PC) is observed in the cubic phase while a very weak IF peak (labeled as PT) is observed in the tetragonal phase, further evidencing the difference in lithium ion migration in the two phases. Peak PC can be decomposed into two sub-peaks with the activation energy and the pre-exponential factor of relaxation time being E1 = 0.41 eV and τ01 = 1.2 × 10(-14) s for the lower temperature peak PC1 and E2 = 0.35 eV and τ02 = 1.9 × 10(-15) s for the higher temperature PC2 peak, respectively. Based on the crystalline structure of a cubic garnet-type Li7La3Zr2O12 compound, an atomistic mechanism of lithium ion diffusion via vacancies is suggested, i.e. 48g(96h) ↔ 48g(96h) for peak PC1 and 48g(96h) ↔ 24d for peak PC2, respectively. The weak PT peak in the tetragonal phase is preliminarily interpreted as due to the short jump process among neighboring octahedral sites and vacant tetrahedral sites.

  18. Hard X-ray spectral investigations of gamma-ray bursts 120521C and 130606A at high-redshift z ˜ 6

    NASA Astrophysics Data System (ADS)

    Yasuda, T.; Urata, Y.; Enomoto, J.; Tashiro, M. S.

    2017-04-01

    This study presents a temporal and spectral analysis of the prompt emission of two high-redshift gamma-ray bursts (GRBs), 120521C at z ˜ 6 and 130606A at z ˜ 5.91, using data obtained from the Swift-XRT/BAT and the Suzaku-WAM simultaneously. Based on follow-up XRT observations, the longest durations of the prompt emissions were approximately 80 s (120521C) and 360 s (130606A) in the rest-frames of the two GRBs. These objects are thus categorized as long-duration GRBs; however, the durations are short compared with the predicted duration of GRBs originating from first-generation stars. Because of the wide bandpass of the instruments, covering the ranges 15 keV-5 MeV (BAT-WAM) and 0.3 keV-5.0 MeV (XRT-BAT-WAM), we could successfully determine the νFν peak energies E_peak^src in the rest-frame and isotropic-equivalent radiated energies Eiso; E^src_peak = 682^{+845}_{-207} keV and E_iso = (8. 25^{+2.24}_{-1.96}) × 10^{52} erg for 120521C, and E^src_peak = 1209^{+553}_{-304} keV and E_iso = (2.82^{+0.17}_{-0.71}) × 10^{53} erg for 130606A. These obtained characteristic parameters are in accordance with the well-known relationship between E_peak^src and Eiso (Amati relationship). In addition, we examined the relationships between E_peak^src and the 1-s peak luminosity, Lp, and between E_peak^src and the geometrical corrected radiated energy, Eγ, and confirmed the E_peak^src-Lp (Yonetoku) and E_peak^src-Eγ (Ghirlanda) relationships. The results imply that these high-redshift GRBs at z ˜ 6, which are expected to have radiated during the reionization epoch, have properties similar to those of low-redshift GRBs regarding X-ray prompt emission.

  19. Sleep spindle alterations in patients with Parkinson's disease

    PubMed Central

    Christensen, Julie A. E.; Nikolic, Miki; Warby, Simon C.; Koch, Henriette; Zoetmulder, Marielle; Frandsen, Rune; Moghadam, Keivan K.; Sorensen, Helge B. D.; Mignot, Emmanuel; Jennum, Poul J.

    2015-01-01

    The aim of this study was to identify changes of sleep spindles (SS) in the EEG of patients with Parkinson's disease (PD). Five sleep experts manually identified SS at a central scalp location (C3-A2) in 15 PD and 15 age- and sex-matched control subjects. Each SS was given a confidence score, and by using a group consensus rule, 901 SS were identified and characterized by their (1) duration, (2) oscillation frequency, (3) maximum peak-to-peak amplitude, (4) percent-to-peak amplitude, and (5) density. Between-group comparisons were made for all SS characteristics computed, and significant changes for PD patients vs. control subjects were found for duration, oscillation frequency, maximum peak-to-peak amplitude and density. Specifically, SS density was lower, duration was longer, oscillation frequency slower and maximum peak-to-peak amplitude higher in patients vs. controls. We also computed inter-expert reliability in SS scoring and found a significantly lower reliability in scoring definite SS in patients when compared to controls. How neurodegeneration in PD could influence SS characteristics is discussed. We also note that the SS morphological changes observed here may affect automatic detection of SS in patients with PD or other neurodegenerative disorders (NDDs). PMID:25983685

  20. PeakCaller: an automated graphical interface for the quantification of intracellular calcium obtained by high-content screening.

    PubMed

    Artimovich, Elena; Jackson, Russell K; Kilander, Michaela B C; Lin, Yu-Chih; Nestor, Michael W

    2017-10-16

    Intracellular calcium is an important ion involved in the regulation and modulation of many neuronal functions. From regulating cell cycle and proliferation to initiating signaling cascades and regulating presynaptic neurotransmitter release, the concentration and timing of calcium activity governs the function and fate of neurons. Changes in calcium transients can be used in high-throughput screening applications as a basic measure of neuronal maturity, especially in developing or immature neuronal cultures derived from stem cells. Using human induced pluripotent stem cell derived neurons and dissociated mouse cortical neurons combined with the calcium indicator Fluo-4, we demonstrate that PeakCaller reduces type I and type II error in automated peak calling when compared to the oft-used PeakFinder algorithm under both basal and pharmacologically induced conditions. Here we describe PeakCaller, a novel MATLAB script and graphical user interface for the quantification of intracellular calcium transients in neuronal cultures. PeakCaller allows the user to set peak parameters and smoothing algorithms to best fit their data set. This new analysis script will allow for automation of calcium measurements and is a powerful software tool for researchers interested in high-throughput measurements of intracellular calcium.

  1. R Peak Detection Method Using Wavelet Transform and Modified Shannon Energy Envelope

    PubMed Central

    2017-01-01

    Rapid automatic detection of the fiducial points—namely, the P wave, QRS complex, and T wave—is necessary for early detection of cardiovascular diseases (CVDs). In this paper, we present an R peak detection method using the wavelet transform (WT) and a modified Shannon energy envelope (SEE) for rapid ECG analysis. The proposed WTSEE algorithm performs a wavelet transform to reduce the size and noise of ECG signals and creates SEE after first-order differentiation and amplitude normalization. Subsequently, the peak energy envelope (PEE) is extracted from the SEE. Then, R peaks are estimated from the PEE, and the estimated peaks are adjusted from the input ECG. Finally, the algorithm generates the final R features by validating R-R intervals and updating the extracted R peaks. The proposed R peak detection method was validated using 48 first-channel ECG records of the MIT-BIH arrhythmia database with a sensitivity of 99.93%, positive predictability of 99.91%, detection error rate of 0.16%, and accuracy of 99.84%. Considering the high detection accuracy and fast processing speed due to the wavelet transform applied before calculating SEE, the proposed method is highly effective for real-time applications in early detection of CVDs. PMID:29065613

  2. R Peak Detection Method Using Wavelet Transform and Modified Shannon Energy Envelope.

    PubMed

    Park, Jeong-Seon; Lee, Sang-Woong; Park, Unsang

    2017-01-01

    Rapid automatic detection of the fiducial points-namely, the P wave, QRS complex, and T wave-is necessary for early detection of cardiovascular diseases (CVDs). In this paper, we present an R peak detection method using the wavelet transform (WT) and a modified Shannon energy envelope (SEE) for rapid ECG analysis. The proposed WTSEE algorithm performs a wavelet transform to reduce the size and noise of ECG signals and creates SEE after first-order differentiation and amplitude normalization. Subsequently, the peak energy envelope (PEE) is extracted from the SEE. Then, R peaks are estimated from the PEE, and the estimated peaks are adjusted from the input ECG. Finally, the algorithm generates the final R features by validating R-R intervals and updating the extracted R peaks. The proposed R peak detection method was validated using 48 first-channel ECG records of the MIT-BIH arrhythmia database with a sensitivity of 99.93%, positive predictability of 99.91%, detection error rate of 0.16%, and accuracy of 99.84%. Considering the high detection accuracy and fast processing speed due to the wavelet transform applied before calculating SEE, the proposed method is highly effective for real-time applications in early detection of CVDs.

  3. Reflex effects on components of synchronized renal sympathetic nerve activity.

    PubMed

    DiBona, G F; Jones, S Y

    1998-09-01

    The effects of peripheral thermal receptor stimulation (tail in hot water, n = 8, anesthetized) and cardiac baroreceptor stimulation (volume loading, n = 8, conscious) on components of synchronized renal sympathetic nerve activity (RSNA) were examined in rats. The peak height and peak frequency of synchronized RSNA were determined. The renal sympathoexcitatory response to peripheral thermal receptor stimulation was associated with an increase in the peak height. The renal sympathoinhibitory response to cardiac baroreceptor stimulation was associated with a decrease in the peak height. Although heart rate was significantly increased with peripheral thermal receptor stimulation and significantly decreased with cardiac baroreceptor stimulation, peak frequency was unchanged. As peak height reflects the number of active fibers, reflex increases and decreases in synchronized RSNA are mediated by parallel increases and decreases in the number of active renal nerve fibers rather than changes in the centrally based rhythm or peak frequency. The increase in the number of active renal nerve fibers produced by peripheral thermal receptor stimulation reflects the engagement of a unique group of silent renal sympathetic nerve fibers with a characteristic response pattern to stimulation of arterial baroreceptors, peripheral and central chemoreceptors, and peripheral thermal receptors.

  4. PREDICTION OF VO2PEAK USING OMNI RATINGS OF PERCEIVED EXERTION FROM A SUBMAXIMAL CYCLE EXERCISE TEST

    PubMed Central

    Mays, Ryan J.; Goss, Fredric L.; Nagle-Stilley, Elizabeth F.; Gallagher, Michael; Schafer, Mark A.; Kim, Kevin H.; Robertson, Robert J.

    2015-01-01

    Summary The primary aim of this study was to develop statistical models to predict peak oxygen consumption (VO2peak) using OMNI Ratings of Perceived Exertion measured during submaximal cycle ergometry. Men (mean ± standard error: 20.90 ± 0.42 yrs) and women (21.59 ± 0.49 yrs) participants (n = 81) completed a load-incremented maximal cycle ergometer exercise test. Simultaneous multiple linear regression was used to develop separate VO2peak statistical models using submaximal ratings of perceived exertion for the overall body, legs, and chest/breathing as predictor variables. VO2peak (L·min−1) predicted for men and women from ratings of perceived exertion for the overall body (3.02 ± 0.06; 2.03 ± 0.04), legs (3.02 ± 0.06; 2.04 ± 0.04) and chest/breathing (3.02 ± 0.05; 2.03 ± 0.03) were similar with measured VO2peak (3.02 ± 0.10; 2.03 ± 0.06, ps > .05). Statistical models based on submaximal OMNI Ratings of Perceived Exertion provide an easily administered and accurate method to predict VO2peak. PMID:25068750

  5. Strong photoluminescence characteristics of sulforhodamine B attached on photonic crystal

    NASA Astrophysics Data System (ADS)

    Kim, Byoung-Ju; Kang, Kwang-Sun

    2014-10-01

    The optical properties of sulforhodamine B (SRH) impregnated in photonic crystal by two step synthetic processes including a urethane bond formation between a 3-isocyanatopropyl triethoxysilane (ICPTES, -N=C=O) and a SRH with elevated temperature in pyridine and hydrolysis-condensation reactions between synthesized ICPTES/SRH (ICPSRH) and tetraethoxyorthosilicate (TEOS) in NH4OH. The monodisperse silica spheres impregnated the ICPSRH (ICPSRHS) are fabricated. The reduction of the absorption peak at 2270 cm-1 representing asymmetric stretching vibration of -N=C=O indicates the progress of the reaction and new absorption peak at 1712 cm-1 characterizing -C=O stretching vibration indicates the formation of urethane bond. The UV-visible absorption spectra show the broadened spectral line width by intermolecular interaction. The photoluminescence (PL) peak of the SRH in methanol shows a hypsochromic shift with the increase the excitation wavelength. However, the PL peak for the ICPSRH exhibits a bathochromic shift as the excitation wavelength increases. The PL peak for the ICPSRH shows no hypsochromic or bathochromic shift. The PL peaks for SRH in methanol, ICPSRH and ICPSRHS are at 568, 598 and 572 nm, respectively. The main cause of the PL peak shift is due to the intermolecular interaction.

  6. Petrographic Analysis and Geochemical Source Correlation of Pigeon Peak, Sutter Buttes, CA

    NASA Astrophysics Data System (ADS)

    Novotny, N. M.; Hausback, B. P.

    2013-12-01

    The Sutter Buttes are a volcanic complex located in the center of the Great Valley north of Sacramento. They are comprised of numerous inter-intruding andesite and rhyolite lava domes of varying compositions surrounded by a shallow rampart of associated tephras. The Pigeon Peak block-and-ash flow sequence is located in the rampart and made up of a porphyritic Biotite bearing Hornblende Andesite. The andesite blocks demonstrate a high degree of propylization in hornblende crystals, highly zoned plagioclase, trace olivine, and display a red to gray color gradation. DAR is an andesite dome located less than one mile from Pigeon Peak. Of the 15 to 25 andesite lava domes within four miles from Pigeon Peak, only DAR displays trace olivine, red to grey color stratification, low biotite content, and propylitized hornblende. These characteristic similarities suggest that DAR may be the source for Pigeon Peak. My investigation used microprobe analysis of the DAR and Pigeon Peak feldspar crystals to identify the magmatic history of the magma body before emplacement. Correlation of the anorthite zoning within the feldspars from both locations support my hypothesis that DAR is the source of the Pigeon Peak block-and-ash flow.

  7. [The assessment of ultrasonic measurement of superior vena cava blood flow for the volume responsiveness of patients with mechanical ventilation].

    PubMed

    Guo, Zhe; He, Wei; Hou, Jing; Li, Tong; Zhou, Hua; Xu, Yuan; Xi, Xiuming

    2014-09-01

    To approach the evaluative effect of respiratory variation of superior vena cava peak flow velocity measured using transthoracic echocardiography (TTE) on fluid responsiveness in patients with mechanical ventilation. A prospective cohort study was conducted. All mechanical ventilated critically ill patients whose fluid therapy was planned due to hypovolemia in Department of Critical Care Medicine of Beijing Tongren Hospital of Capital Medical University from April 2011 to April 2013 were enrolled. Volume expansion was performed with 500 mL Linger solution within 30 minutes. Patients were classified as responders if pulse pressure variation (PPV) increased ≥ 13% before volume expansion. The respiratory variation in superior vena cava peak velocity was calculated as the difference between maximum and minimum values of velocity in peak A, peak S and peak D over a single respiratory circle, and their variations (ΔA, ΔS, ΔD) were also calculated. The receiver operating characteristic curve (ROC curve) was plotted to assess the evaluative effect of respiratory variation of superior vena cava peak velocity on fluid responsiveness. Twenty-seven patients were enrolled in this study. Volume expansion increased PPV ≥ 13% happened in 14 patients (responders). The velocity of superior vena cava in peak A, peak S, peak D was significantly increased after volume expansion compared with that before volume expansion in responders [peak A (cm/s): 34.6 ± 2.2 vs. 31.3 ± 2.1, t=-2.493, P=0.027; peak S (cm/s): 39.1 ± 1.3 vs. 35.3 ± 2.1, t=-2.564, P=0.024; peak D (cm/s): 28.1 ± 1.2 vs. 23.3 ± 1.4, t=-4.995, P=0.000], but there was no significant difference in ΔA, ΔS and ΔD between before and after volume expansion. The ΔA, ΔS and ΔD were positively correlated with PPV (r=0.040, P=0.854; r=0.350, P=0.074; r=0.749, P=0.000). The area under ROC curve (AUC) of peak S was 0.36 [95% confidence interval (95%CI): 0.11-0.52], but the AUC of ΔS was 0.68 (95%CI 0.47-0.89), the AUC of peak D was 0.41 (95%CI 0.19-0.63), but the AUC of ΔD was 0.95 (95%CI 0.86-1.00), so the aberration rate of superior vena cava in respiration was better than the flow rate in superior vena cava. When the cut-off value of ΔS was 20.7% for predicting fluid responsiveness, the sensitivity was 78.6% and the specificity was 61.5%. When the cut-off value of ΔD was 12.7% for predicting fluid responsiveness, the sensitivity was 92.0% and the specificity was 92.3%. Respiratory variations in superior vena cava peak velocity measured by TTE could assess fluid responsiveness in patients with mechanical ventilation.

  8. Peak Experience Project

    ERIC Educational Resources Information Center

    Scott, Daniel G.; Evans, Jessica

    2010-01-01

    This paper emerges from the continued analysis of data collected in a series of international studies concerning Childhood Peak Experiences (CPEs) based on developments in understanding peak experiences in Maslow's hierarchy of needs initiated by Dr Edward Hoffman. Bridging from the series of studies, Canadian researchers explore collected…

  9. Data for floods of May 1978 in northeastern Wyoming and southeastern Montana

    USGS Publications Warehouse

    Parrett, Charles; Carlson, D.D.; Craig, G.S.; Hull, J.A.

    1978-01-01

    Severe flooding in northeastern Wyoming and southeastern Montana in May 1978 is described by tables of data, graphs, and photographs. Flood peaks were determined at 162 sites in the flooded area. At most of the sites, peak discharges were determined from existing stage-discharge relationship curves, and at 30 of the sites indirect flow measurements were made. At 19 sites, the May 1978 peak discharge exceeded the previous peak of record and also exceeded the computed 100-year frequency flood. (Woodard-USGS)

  10. Passive radio frequency peak power multiplier

    DOEpatents

    Farkas, Zoltan D.; Wilson, Perry B.

    1977-01-01

    Peak power multiplication of a radio frequency source by simultaneous charging of two high-Q resonant microwave cavities by applying the source output through a directional coupler to the cavities and then reversing the phase of the source power to the coupler, thereby permitting the power in the cavities to simultaneously discharge through the coupler to the load in combination with power from the source to apply a peak power to the load that is a multiplication of the source peak power.

  11. Effects of Caffeine on Countermovement-Jump Performance Variables in Elite Male Volleyball Players.

    PubMed

    Zbinden-Foncea, Hermann; Rada, Isabel; Gomez, Jesus; Kokaly, Marco; Stellingwerff, Trent; Deldicque, Louise; Peñailillo, Luis

    2018-02-01

    To examine the effects of a moderate dose of caffeine in elite male volleyball players on countermovement-jump (CMJ) performance, as well as temporal concentric- and eccentric-phase effects. Ten elite male volleyball players took part in 2 experimental days via a randomized crossover trial 1 wk apart in which they ingested either 5 mg/kg of caffeine or a placebo in double-blind fashion. Heart rate and blood pressure were measured at rest and 60 min postingestion. Afterward, subjects also performed 3 CMJ trials 60 min postingestion, of which the average was used for further analysis. They filled out a questionnaire on possible side effects 24 h posttrial. Caffeine intake, compared with placebo, increased CMJ peak concentric force (6.5% ± 6.4%; P = .01), peak power (16.2% ± 8.3%; P < .01), flight time (5.3% ± 3.4%; P < .01), velocity at peak power (10.6% ± 8.0%; P < .01), peak displacement (10.8% ± 6.5%; P < .01), peak velocity (12.6% ± 7.4%; P < .01), peak acceleration (13.5% ± 8.5%; P < .01), and the force developed at peak power (6.0% ± 4.0%; P < .01) and reduced the time between peak power and peak force (16.7% ± 21.6%, P = .04). Caffeine increased diastolic blood pressure by 13.0% ± 8.9% (P < .05), whereas no adverse side effects were found. The ingestion of 5 mg/kg of anhydrous caffeine improves overall CMJ performance without inducing side effects.

  12. A new assessment method of outdoor tobacco smoke (OTS) exposure

    NASA Astrophysics Data System (ADS)

    Cho, Hyeri; Lee, Kiyoung

    2014-04-01

    Outdoor tobacco smoke (OTS) is concerned due to potential health effects. An assessment method of OTS exposure is needed to determine effects of OTS and validate outdoor smoking policies. The objective of this study was to develop a new method to assess OTS exposure. This study was conducted at 100 bus stops including 50 centerline bus stops and 50 roadside bus stops in Seoul, Korea. Using real-time aerosol monitor, PM2.5 was measured for 30 min at each bus stop in two seasons. ‘Peak analysis' method was developed to assess short term PM2.5 exposure by OTS. The 30-min average PM2.5 exposure at each bus stop was associated with season and bus stop location but not smoking activity. The PM2.5 peak occurrence rate by the peak analysis method was significantly associated with season, bus stop location, observed smoking occurrence, and the number of buses servicing a route. The PM2.5 peak concentration was significantly associated with season, smoking occurrence, and the number of buses servicing a route. When a smoker was standing still at the bus stop, magnitude of peak concentrations were significantly higher than when the smoker walking-through the bus stop. People were exposed to high short-term PM2.5 peak levels at bus stops, and the magnitude of peak concentrations were highest when a smoker was located close to the monitor. The magnitude of peak concentration was a good indicator helped distinguish nearby OTS exposure. Further research using ‘peak analysis' is needed to measure smoking-related exposure to PM2.5 in other outdoor locations.

  13. Influence of human body composition on serum peak thyrotropin (TSH) after recombinant human TSH administration in patients with differentiated thyroid carcinoma.

    PubMed

    Castagna, Maria Grazia; Pinchera, Aldo; Marsili, Alessandro; Giannetti, Monica; Molinaro, Eleonora; Fierabracci, Paola; Grasso, Lucia; Pacini, Furio; Santini, Ferruccio; Elisei, Rossella

    2005-07-01

    In this study, we evaluated the influence of height, weight, body mass index (BMI), body surface area, and body composition [total lean body mass (LBM) and fat body mass] on serum peak TSH levels obtained after recombinant human (rh)TSH. Furthermore, to verify whether the serum peak TSH influenced the efficacy of radioiodine ((131)I), we compared the rate of thyroid remnant ablation according to the patients' BMI. We studied 105 patients with differentiated thyroid carcinoma who underwent rhTSH stimulation test. Serum TSH measurements were performed before and 24, 48, and 72 h after rhTSH administration. We also compared the rate of thyroid remnant ablation among 70 differentiated thyroid carcinoma patients with different BMI. The serum peak TSH after rhTSH was significantly lower in overweight and obese subjects compared with normal-weight subjects (92.1 +/- 41.8, 82.4 +/- 24.2, and 112.7 +/- 46.3 microU/ml, respectively; P = 0.01) and in males compared with females (74.6 +/- 22.3 and 105.0 +/- 43.0 microU/ml, respectively; P = 0.0002). By univariate analysis, serum peak TSH was negatively related to weight, height, body surface area, BMI, LBM, and fat body mass, but only LBM was independently associated with serum peak TSH levels. Although it was confirmed that overweight and obese patients had a lower serum peak TSH, the rate of ablation did not differ among normal-weight, overweight, and obese patients. With this study we demonstrated that LBM is the only parameter independently associated with serum peak TSH after rhTSH administration. However, the serum peak TSH does not influence the rate of (131)I remnant ablation.

  14. Peak leg muscle power, peak VO2 and its correlates with physical activity in 57 to 70-year-old women.

    PubMed

    Boussuge, P-Y; Rance, M; Bedu, M; Duche, P; Praagh, E Van

    2006-01-01

    The two aims of this study were first to measure short-term muscle power (STMP) by means of a cycling force-velocity test (cycling peak power: CPP) and a vertical jump test (jumping peak performance: JPP) and second, to examine the relationships between physical activity (PA) level, peak oxygen uptake (peak VO2) and STMP in healthy elderly women. Twenty-three independent community-dwelling elderly women (mean age: 64+/-4.4) performed on separate days, a peak oxygen uptake test on cycle ergometer, a cycling force-velocity test and a vertical jump test. A questionnaire (QUANTAP) was used to assess lifespan exercise habits. Four indices expressed in kJ day(-1) kg(-1) were calculated. Two indices represented average past PA level: 1/quantity of habitual physical activity (QHPA), 2/quantity of sports activities (QSA). Two indices represented the actual PA level: 3/actual quantity of habitual physical activity (AQHPA), 4/actual quantity of sports activities (AQSA). CPP (6.3+/-1.2 W kg(-1)) was closely correlated to JPP (14.8+/-3.4 cm) (r=0.80, P<0.001). AQHPA and AQSA were only positively associated with peak VO2 (ml min(-1) kg(-1)) (r=0.49; r=0.50, P<0.05, respectively). Past PA level was not related to fitness measurements. Results show that in this population: (1) jumping peak performance was closely related to CPP measured in the laboratory; (2) the cardio-respiratory fitness was related to the actual habitual physical activity level; (3) only age and anthropometric variables explained the actual performances in multivariate analysis.

  15. High-intensity Interval Training Dosage for Heart Failure and Coronary Artery Disease Cardiac Rehabilitation. A Systematic Review and Meta-analysis.

    PubMed

    Ballesta García, Ismael; Rubio Arias, Jacobo Ángel; Ramos Campo, Domingo Jesús; Martínez González-Moro, Ignacio; Carrasco Poyatos, María

    2018-04-09

    High-interval intensity training (HIT) has been suggested to improve peak VO 2 in cardiac rehabilitation programs. However, the optimal HIT protocol is unknown. The objective of this study was to identify the most effective doses of HIT to optimize peak VO 2 in coronary artery disease (CAD) and heart failure (HF) patients. A search was conducted in 6 databases (MEDLINE, Web of Science, LILACS, CINAHL, Academic Search Complete, and SportDiscus). Studies using a HIT protocol in CAD or HF patients and measuring peak VO 2 were included. The PEDro Scale and Cochrane Collaboration tools were used. Analyses reported significant improvements in peak VO 2 after HIT in both diseases (P = .000001), with a higher increase in HF patients (P = .03). Nevertheless, in HF patients, there were no improvements when the intensity recovery was ≤ 40% of peak VO 2 (P = .19) and the frequency of training was ≤ 2 d/wk (P = .07). There were significant differences regarding duration in CAD patients, with greater improvements in peak VO 2 when the duration was < 12 weeks (P = .05). In HF, programs lasting < 12 weeks did not significantly improve peak VO 2 (P = .1). The HIT is an effective method for improving peak VO 2 in HF and CAD, with a significantly greater increase in HF patients. The recovery intervals should be active and be between 40% and 60% of peak VO 2 in HF patients. Training frequency should be ≥ 2 d/wk for CAD patients and ≥ 3 d/wk for HF patients. Copyright © 2018 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  16. Decreased knee adduction moment does not guarantee decreased medial contact force during gait.

    PubMed

    Walter, Jonathan P; D'Lima, Darryl D; Colwell, Clifford W; Fregly, Benjamin J

    2010-10-01

    Excessive contact force is believed to contribute to the development of medial compartment knee osteoarthritis. The external knee adduction moment (KAM) has been identified as a surrogate measure for medial contact force during gait, with an abnormally large peak value being linked to increased pain and rate of disease progression. This study used in vivo gait data collected from a subject with a force-measuring knee implant to assess whether KAM decreases accurately predict corresponding decreases in medial contact force. Changes in both quantities generated via gait modification were analyzed statistically relative to the subject's normal gait. The two gait modifications were a "medial thrust" gait involving knee medialization during stance phase and a "walking pole" gait involving use of bilateral walking poles. Reductions in the first (largest) peak of the KAM (32-33%) did not correspond to reductions in the first peak of the medial contact force. In contrast, reductions in the second peak and angular impulse of the KAM (15-47%) corresponded to reductions in the second peak and impulse of the medial contact force (12-42%). Calculated reductions in both KAM peaks were highly sensitive to rotation of the shank reference frame about the superior-inferior axis of the shank. Both peaks of medial contact force were best predicted by a combination of peak values of the external KAM and peak absolute values of the external knee flexion moment (R(2) = 0.93). Future studies that evaluate the effectiveness of gait modifications for offloading the medial compartment of the knee should consider the combined effect of these two knee moments. Published by Wiley Periodicals, Inc. J Orthop Res 28:1348-1354, 2010.

  17. Two-Pole Caustic Model for High-Energy Lightcurves of Pulsars

    NASA Technical Reports Server (NTRS)

    Dyks, J.; Rudak, B.

    2003-01-01

    We present a new model of high-energy lightcurves from rotation powered pulsars. The key ingredient of the model is the gap region (i.e. the region where particle acceleration is taking place and high-energy photons originate) which satisfies the following assumptions: i) the gap region extends from each polar cap to the light cylinder; ii) the gap is thin and confined to the surface of last open magnetic-field lines; iii) photon emissivity is uniform within the gap region. The model lightcurves are dominated by strong peaks (either double or single) of caustic origin. Unlike in other pulsar models with caustic effects, the double peaks arise due to crossing two caustics, each of which is associated with a different magnetic pole. The generic features of the lightcurves are consistent with the observed characteristics of pulsar lightcurves: 1) the most natural (in terms of probability) shape consists of two peaks (separated by 0.4 to 0.5 in phase for large viewing angles); 2) the peaks possess well developed wings; 3) there is a bridge (inter-peak) emission component; 4) there is a non-vanishing off-pulse emission level; 5) the radio pulse occurs before the leading high-energy peak. The model is well suited for four gamma-ray pulsars - Crab, Vela, Geminga and B1951+32 - with double-peak lightcurves exhibiting the peak separation of 0.4 to 0.5 in phase. Hereby, we apply the model to the Vela pulsar. Moreover, we indicate the limitation of the model in accurate reproducing of the lightcurves with single pulses and narrowly separated (about 0.2 in phase) pulse peaks. We also discuss the optical polarization properties for the Crab pulsar in the context of the two-pole caustic model.

  18. Monte Carlo Simulations of Photospheric Emission in Relativistic Outflows

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Mukul; Lu, Wenbin; Kumar, Pawan; Santana, Rodolfo

    2018-01-01

    We study the spectra of photospheric emission from highly relativistic gamma-ray burst outflows using a Monte Carlo code. We consider the Comptonization of photons with a fast-cooled synchrotron spectrum in a relativistic jet with a realistic photon-to-electron number ratio {N}γ /{N}{{e}}={10}5, using mono-energetic protons that interact with thermalized electrons through Coulomb interaction. The photons, electrons, and protons are cooled adiabatically as the jet expands outward. We find that the initial energy distributions of the protons and electrons do not have any appreciable effect on the photon peak energy {E}γ ,{peak} and the power-law spectrum above {E}γ ,{peak}. The Coulomb interaction between the electrons and the protons does not affect the output photon spectrum significantly as the energy of the electrons is elevated only marginally. {E}γ ,{peak} and the spectral indices for the low- and high-energy power-law tails of the photon spectrum remain practically unchanged even with electron-proton coupling. Increasing the initial optical depth {τ }{in} results in a slightly shallower photon spectrum below {E}γ ,{peak} and fewer photons at the high-energy tail, although {f}ν \\propto {ν }-0.5 above {E}γ ,{peak} and up to ∼1 MeV, independent of {τ }{in}. We find that {E}γ ,{peak} determines the peak energy and the shape of the output photon spectrum. Finally, we find that our simulation results are quite sensitive to {N}γ /{N}{{e}}, for {N}{{e}}=3× {10}3. For almost all our simulations, we obtain an output photon spectrum with a power-law tail above {E}γ ,{peak} extending up to ∼1 MeV.

  19. Peak fitting and integration uncertainties for the Aerodyne Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Corbin, J. C.; Othman, A.; Haskins, J. D.; Allan, J. D.; Sierau, B.; Worsnop, D. R.; Lohmann, U.; Mensah, A. A.

    2015-04-01

    The errors inherent in the fitting and integration of the pseudo-Gaussian ion peaks in Aerodyne High-Resolution Aerosol Mass Spectrometers (HR-AMS's) have not been previously addressed as a source of imprecision for these instruments. This manuscript evaluates the significance of these uncertainties and proposes a method for their estimation in routine data analysis. Peak-fitting uncertainties, the most complex source of integration uncertainties, are found to be dominated by errors in m/z calibration. These calibration errors comprise significant amounts of both imprecision and bias, and vary in magnitude from ion to ion. The magnitude of these m/z calibration errors is estimated for an exemplary data set, and used to construct a Monte Carlo model which reproduced well the observed trends in fits to the real data. The empirically-constrained model is used to show that the imprecision in the fitted height of isolated peaks scales linearly with the peak height (i.e., as n1), thus contributing a constant-relative-imprecision term to the overall uncertainty. This constant relative imprecision term dominates the Poisson counting imprecision term (which scales as n0.5) at high signals. The previous HR-AMS uncertainty model therefore underestimates the overall fitting imprecision. The constant relative imprecision in fitted peak height for isolated peaks in the exemplary data set was estimated as ~4% and the overall peak-integration imprecision was approximately 5%. We illustrate the importance of this constant relative imprecision term by performing Positive Matrix Factorization (PMF) on a~synthetic HR-AMS data set with and without its inclusion. Finally, the ability of an empirically-constrained Monte Carlo approach to estimate the fitting imprecision for an arbitrary number of known overlapping peaks is demonstrated. Software is available upon request to estimate these error terms in new data sets.

  20. Convective and Diffusive O2 Transport Components of Peak Oxygen Uptake Following Long-duration Spaceflight

    NASA Technical Reports Server (NTRS)

    Ade, Carl J.; Moore, A. D.

    2014-01-01

    Spaceflight reduces aerobic capacity and may be linked with maladaptations in the O2 transport pathway. The aim was to 1) evaluate the cardiorespiratory adaptations following 6 months aboard the International Space Station and 2) model the contributions of convective (Q (raised dot) O2) and peripheral diffusive (DO2) components of O2 transport to changes in peak O2 uptake (V (raised dot) O2PEAK). To date, 1 male astronaut (XX yrs) completed an incremental exercise test to measure V (raised dot) O2PEAK prior to and 2 days post-flight. Cardiac output (Q (raised dot) ) was measured at three submaximal work rates via carbon dioxide rebreathing. The Q (raised dot) :V (raised dot) O2 relationship was extrapolated to V (raised dot) O2PEAK to determine Q (raised dot) PEAK. Hemoglobin concentration was measured at rest via a venous blood sample. These measurements were used to model the changes in Q (raised dot) O2 and DO2 using Fick's principle of mass conservation and Law of Diffusion as established by Wagner and colleagues (Annu. Rev. Physiol 58: 21-50, 1996 and J. Appl. Physiol. 73: 1067-1076, 1992). V (raised dot) O2PEAK decreased postflight from 3.72 to 3.45 l min-1, but Q (raised dot) PEAK increased from 24.5 to 27.7 l min-1. The decrease in V (raised dot) O2PEAK post-flight was associated with a 21.2% decrease in DO2, an 18.6% decrease in O2 extraction, but a 3.4% increase in Q (raised dot) O2. These preliminary data suggest that long-duration spaceflight reduces peripheral diffusing capacity and that it largely contributes to the post-flight decrease in aerobic capacity.

  1. Dual-cycle ergometry as an exercise modality during prebreathe with 100 percent oxygen

    NASA Technical Reports Server (NTRS)

    Heaps, Cristine L.; Fischer, Michele D.; Webb, James T.

    1994-01-01

    In an effort to reduce prebreathe time requirements prior to extravehicular activities and high-altitude flights, a combined arm and leg exercise task proposes to enhance denitrogenation by incorporation of both upper and lower body musculature at a moderately high work intensity during prebreathe with 100% oxygen. Preliminary findings indicated peak oxygen consumption (VO2peak) levels attained on the dual-cycle ergometer do not differ significantly from those levels attained on the treadmill. Eight male subjects were exercised to VO2peak using leg-only cycle ergometry and dual-cycle ergometry on separate days. Preliminary data during dual-cycle ergometry showed arm work equaling 30% of the leg workrate at each stage of the incremental test resulted in arm fatigue in several subjects and a reduced VO2peak compared to dual-cycle ergometry with arm work at 20%. Thus, the 20% workrate was used during the dual-cycle VO2peak trial. On a third experimental day, subjects performed a 10 minute exercise test at a workrate required to elicit 75% of VO2peak for each subject on the dual-cycle ergometer. Blood lactate response to the exercise was monitored as an objective measure of fatigue. Peak VO2 levels attained on the leg-only and the dual-cycle ergometry tasks were not significantly different. Blood lactate levels were significantly elevated following the dual-cycle ergometry at 75% VO2peak. However, lactate levels show the expected rate of decline during recovery and, as demonstrated in the literature, should return to baseline levels within 30 minutes following exercise cessation. Thus, dual-cycle ergometry at 75% VO2peak appears to be a valid exercise for use during prebreathe and should not contribute to fatigue during subsequent EVA's.

  2. In situ quantitative analysis of individual H2O-CO2 fluid inclusions by laser Raman spectroscopy

    USGS Publications Warehouse

    Azbej, T.; Severs, M.J.; Rusk, B.G.; Bodnar, R.J.

    2007-01-01

    Raman spectral parameters for the Raman ??1 (1285??cm- 1) and 2??2 (1388??cm- 1) bands for CO2 and for the O-H stretching vibration band of H2O (3600??cm- 1) were determined in H2O-CO2 fluid inclusions. Synthetic fluid inclusions containing 2.5 to 50??mol% CO2 were analyzed at temperatures equal to or greater than the homogenization temperature. The results were used to develop an empirical relationship between composition and Raman spectral parameters. The linear peak intensity ratio (IR = ICO2/(ICO2 + IH2O)) is related to the CO2 concentration in the inclusion according to the relation:Mole % C O2 = e- 3.959 IR2 + 8.0734 IRwhere ICO2 is the intensity of the 1388 cm- 1 peak and IH2O is the intensity of the 3600 cm- 1 peak. The relationship between linear peak intensity and composition was established at 350????C for compositions ranging from 2.5 to 50??mol% CO2. The CO2-H2O linear peak intensity ratio (IR) varies with temperature and the relationship between composition and IR is strictly valid only if the inclusions are analyzed at 350????C. The peak area ratio is defined as AR = ACO2/(ACO2 + AH2O), where ACO2 is the integrated area under the 1388??cm- 1 peak and AH2O is the integrated area under the 3600??cm- 1 peak. The relationship between peak area ratio (AR) and the CO2 concentration in the inclusions is given as:Mole % C O2 = 312.5 AR. The equation relating peak area ratio and composition is valid up to 25??mol% CO2 and from 300 to 450????C. The relationship between linear peak intensity ratio and composition should be used for inclusions containing ??? 50??mol% CO2 and which can be analyzed at 350????C. The relationship between composition and peak area ratios should be used when analyzing inclusions at temperatures less than or greater than 350????C (300-450) but can only be used for compositions ??? 25??mol% CO2. Note that this latter relationship has a somewhat larger standard deviation compared to the intensity ratio relationship. Calibration relationships employing peak areas for both members of the Fermi diad (??1 at 1285??cm- 1 and 2??2 at 1388??cm- 1) were slightly poorer than those using only the 2??2 (1388??cm- 1) member owing to interference from quartz peak at approximately 1160??cm- 1. The technique has been applied to natural low-salinity H2O-CO2 inclusions from the Butte, Montana, porphyry copper-molybdenum deposit. Carbon dioxide concentrations obtained range from below detection to 4.2??mol% CO2, and are in good agreement with concentrations determined previously based on microthermometric and petrographic observations. ?? 2007 Elsevier B.V. All rights reserved.

  3. Peak power ratio generator

    DOEpatents

    Moyer, Robert D.

    1985-01-01

    A peak power ratio generator is described for measuring, in combination with a conventional power meter, the peak power level of extremely narrow pulses in the gigahertz radio frequency bands. The present invention in a preferred embodiment utilizes a tunnel diode and a back diode combination in a detector circuit as the only high speed elements. The high speed tunnel diode provides a bistable signal and serves as a memory device of the input pulses for the remaining, slower components. A hybrid digital and analog loop maintains the peak power level of a reference channel at a known amount. Thus, by measuring the average power levels of the reference signal and the source signal, the peak power level of the source signal can be determined.

  4. Peak power ratio generator

    DOEpatents

    Moyer, R.D.

    A peak power ratio generator is described for measuring, in combination with a conventional power meter, the peak power level of extremely narrow pulses in the gigahertz radio frequency bands. The present invention in a preferred embodiment utilizes a tunnel diode and a back diode combination in a detector circuit as the only high speed elements. The high speed tunnel diode provides a bistable signal and serves as a memory device of the input pulses for the remaining, slower components. A hybrid digital and analog loop maintains the peak power level of a reference channel at a known amount. Thus, by measuring the average power levels of the reference signal and the source signal, the peak power level of the source signal can be determined.

  5. Peak oil and health in low- and middle-income countries: impacts and potential responses.

    PubMed

    Winch, Peter; Stepnitz, Rebecca

    2011-09-01

    Peak oil refers to the predicted peak and subsequent decline in global production of petroleum products over the coming decades. We describe how peak oil will affect health, nutrition, and health systems in low- and middle-income countries along 5 pathways. The negative effects of peak oil on health and nutrition will be felt most acutely in the 58 low-income countries experiencing minimal or negative economic growth because of their patterns of sociopolitical, geographic, and economic vulnerability. The global health community needs to take additional steps to build resilience among the residents of low- and middle-income countries and maintain access to maternal and other health services in the face of predicted changes in availability and price of fossil fuels.

  6. Is vacuum ultraviolet detector a concentration or a mass dependent detector?

    PubMed

    Liu, Huian; Raffin, Guy; Trutt, Guillaume; Randon, Jérôme

    2017-12-29

    The vacuum ultraviolet detector (VUV) is a very effective tool for chromatogram deconvolution and peak identification, and can also be used for quantification. To avoid quantitative issues in relation to time drift, such as variation of peak area or peak height, the detector response type has to be well defined. Due to the make-up flow and pressure regulation of make-up, the detector response (height of the peak) and peak area appeared to be dependent on experimental conditions such as inlet pressure and make-up pressure. Even if for some experimental conditions, VUV looks like mass-flow sensitive detector, it has been demonstrated that VUV is a concentration sensitive detector. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Corona discharge ionization of paracetamol molecule: Peak assignment

    NASA Astrophysics Data System (ADS)

    Bahrami, H.; Farrokhpour, H.

    2015-01-01

    Ionization of paracetamol was investigated using ion mobility spectrometry equipped with a corona discharge ionization source. The measurements were performed in the positive ion mode and three peaks were observed in the ion mobility spectrum. Experimental evidence and theoretical calculations were used to correlate the peaks to related ionic species of paracetamol. Two peaks were attributed to protonated isomers of paracetamol and the other peak was attributed to paracetamol fragment ions formed by dissociation of the N-C bond after protonation of the nitrogen atom. It was observed that three sites of paracetamol compete for protonation and their relative intensities, depending on the sample concentration. The ratio of ion products could be predicted from the internal proton affinity of the protonation sites at each concentration.

  8. Note: A kinematic shaker system for high amplitude, low frequency vibration testing

    NASA Astrophysics Data System (ADS)

    Swaminathan, Anand; Poese, Matthew E.; Smith, Robert W. M.; Garrett, Steven L.

    2015-11-01

    This note describes a shaker system capable of high peak-velocity, large amplitude, low frequency, near-sinusoidal excitation that has been constructed and employed in experiments on the inhibition of Rayleigh-Bénard convection using acceleration modulation. The production of high peak-velocity vibration is of interest in parametric excitation problems of this type and reaches beyond the capabilities of standard electromagnetic shakers. The shaker system described employs a kinematic linkage to two counter-rotating flywheels, driven by a variable-speed electrical motor, producing peak-to-peak displacements of 15.24 cm to a platform mounted on two guide rails. In operation, this shaker has been demonstrated to produce peak speeds of up to 3.7 m/s without failure.

  9. Energy and public health: the challenge of peak petroleum.

    PubMed

    Frumkin, Howard; Hess, Jeremy; Vindigni, Stephen

    2009-01-01

    Petroleum is a unique and essential energy source, used as the principal fuel for transportation, in producing many chemicals, and for numerous other purposes. Global petroleum production is expected to reach a maximum in the near future and to decline thereafter, a phenomenon known as "peak petroleum." This article reviews petroleum geology and uses, describes the phenomenon of peak petroleum, and reviews the scientific literature on the timing of this transition. It then discusses how peak petroleum may affect public health and health care, by reference to four areas: medical supplies and equipment, transportation, energy generation, and food production. Finally, it suggests strategies for anticipating and preparing for peak petroleum, both general public health preparedness strategies and actions specific to the four expected health system impacts.

  10. 77 FR 75836 - Establishment of Class E Airspace; Walsenburg, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-26

    ... at Spanish Peaks Airfield, Walsenburg, CO, to accommodate aircraft using new Area Navigation (RNAV... controlled airspace at Spanish Peaks Airfield, Walsenburg, CO (77 FR 55776). Interested parties were invited... Spanish Peaks Airfield, Walsenburg, CO, to accommodate IFR aircraft executing new RNAV (GPS) standard...

  11. 42. Peaks of Otter, Abbott Lake. View across lake to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. Peaks of Otter, Abbott Lake. View across lake to peaks of Outter Lodge, completed in 1964. Construction of the lake got underway in 1964. Looking east-northeast. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  12. Low-temperature protein dynamics: a simulation analysis of interprotein vibrations and the boson peak at 150 k.

    PubMed

    Kurkal-Siebert, Vandana; Smith, Jeremy C

    2006-02-22

    An understanding of low-frequency, collective protein dynamics at low temperatures can furnish valuable information on functional protein energy landscapes, on the origins of the protein glass transition and on protein-protein interactions. Here, molecular dynamics (MD) simulations and normal-mode analyses are performed on various models of crystalline myoglobin in order to characterize intra- and interprotein vibrations at 150 K. Principal component analysis of the MD trajectories indicates that the Boson peak, a broad peak in the dynamic structure factor centered at about approximately 2-2.5 meV, originates from approximately 10(2) collective, harmonic vibrations. An accurate description of the environment is found to be essential in reproducing the experimental Boson peak form and position. At lower energies other strong peaks are found in the calculated dynamic structure factor. Characterization of these peaks shows that they arise from harmonic vibrations of proteins relative to each other. These vibrations are likely to furnish valuable information on the physical nature of protein-protein interactions.

  13. THz spectra of cortisone and the related medicine

    NASA Astrophysics Data System (ADS)

    Ma, Shihua; Ge, Min; Liu, Guifeng; Song, Xiyu; Zhang, Peng; Wang, Wenfeng

    2009-07-01

    THz-TDS are used to study four kinds of drug: cortisone, hydrocortisone, prednisone and prednisolone. The THz spectra of them are obtained and analyzed from 0.2 - 1.6 THz. The experimental results shows the four samples have the different THz spectra. Cortisone has a peak at 1.5 THz and a broad absorption peak at 0.96 THz, while hydrocortisone has a weak absorption peak that lies at 1.27 THz. At the same time the prednisone has the stronger absorption peaks than the others, and its two peaks shows at 1.24 THz and 1.5 THz. Prednisolone has a weak broad peak at 1.43 THz. The results of the theoretical calculation were performed using Gaussian 03 software with Density Functional Theory at the basis set of 6-31+G (d, p). The theoretical vibrational frequencies are compared with the experimental results, and the deviations are discussed. The THz spectra of the medicine show THz technique may be help to distinguish some different chemical bond and functional group.

  14. Temperature peaking at beginning of breakdown in 2.45 GHz pulsed off-resonance electron cyclotron resonance ion source hydrogen plasma

    NASA Astrophysics Data System (ADS)

    Cortázar, O. D.; Megía-Macías, A.; Vizcaíno-de-Julián, A.

    2012-10-01

    An experimental study of temperature and density evolution during breakdown in off-resonance ECR hydrogen plasma is presented. Under square 2.45 GHz microwave excitation pulses with a frequency of 50 Hz and relative high microwave power, unexpected transient temperature peaks that reach 18 eV during 20 μs are reported at very beginning of plasma breakdown. Decays of such peaks reach final stable temperatures of 5 eV at flat top microwave excitation pulse. Evidence of interplay between incoming power and duty cycle giving different kind of plasma parameters evolutions engaged to microwave coupling times is observed. Under relative high power conditions where short microwave coupling times are recorded, high temperature peaks are measured. However, for lower incoming powers and longer coupling times, temperature evolves gradually to a higher final temperature without peaking. On the other hand, the early instant where temperature peaks are observed also suggest a possible connection with preglow processes during breakdown in ECRIS plasmas.

  15. Weld bead reinforcement removal: A method of improving the strength and ductility of peaked welds in 2219-T87 aluminum alloy plate

    NASA Technical Reports Server (NTRS)

    Lovoy, C. V.

    1979-01-01

    The results of a study to determine the degree to which the ductility and tensile properties of peaked welds could be enhanced by removing the reinforcing bead and fairing the weld nugget into the adjacent parent metal are presented. The study employed 2219-T87 aluminum alloy plate, tungsten inert gas (TIG) welding, and 2319 filler wire. The study concluded that significant improvements in peak weld, ultimate strength, and ductility can be obtained through removal and fairing of the weld reinforcing bead. The specimens so treated and tested in this program exhibited ultimate strength improvements of 2 to 3 percent for peak angles of 5.8 to 10 degrees and 10 to 22 percent for welds with peak angles of 11.7 to 16.9 degrees. It was also determined that removal of the weld bead enhanced the ability of peaked welds to straighten when exposed to cyclic loading at stress levels above the yield strength.

  16. Imaging surface nanobubbles at graphite-water interfaces with different atomic force microscopy modes.

    PubMed

    Yang, Chih-Wen; Lu, Yi-Hsien; Hwang, Ing-Shouh

    2013-05-08

    We have imaged nanobubbles on highly ordered pyrolytic graphite (HOPG) surfaces in pure water with different atomic force microscopy (AFM) modes, including the frequency-modulation, the tapping, and the PeakForce techniques. We have compared the performance of these modes in obtaining the surface profiles of nanobubbles. The frequency-modulation mode yields a larger height value than the other two modes and can provide more accurate measurement of the surface profiles of nanobubbles. Imaging with PeakForce mode shows that a nanobubble appears smaller and shorter with increasing peak force and disappears above a certain peak force, but the size returns to the original value when the peak force is reduced. This indicates that imaging with high peak forces does not cause gas removal from the nanobubbles. Based on the presented findings and previous AFM observations, the existing models for nanobubbles are reviewed and discussed. The model of gas aggregate inside nanobubbles provides a better explanation for the puzzles of the high stability and the contact angle of surface nanobubbles.

  17. Chemometric strategy for automatic chromatographic peak detection and background drift correction in chromatographic data.

    PubMed

    Yu, Yong-Jie; Xia, Qiao-Ling; Wang, Sheng; Wang, Bing; Xie, Fu-Wei; Zhang, Xiao-Bing; Ma, Yun-Ming; Wu, Hai-Long

    2014-09-12

    Peak detection and background drift correction (BDC) are the key stages in using chemometric methods to analyze chromatographic fingerprints of complex samples. This study developed a novel chemometric strategy for simultaneous automatic chromatographic peak detection and BDC. A robust statistical method was used for intelligent estimation of instrumental noise level coupled with first-order derivative of chromatographic signal to automatically extract chromatographic peaks in the data. A local curve-fitting strategy was then employed for BDC. Simulated and real liquid chromatographic data were designed with various kinds of background drift and degree of overlapped chromatographic peaks to verify the performance of the proposed strategy. The underlying chromatographic peaks can be automatically detected and reasonably integrated by this strategy. Meanwhile, chromatograms with BDC can be precisely obtained. The proposed method was used to analyze a complex gas chromatography dataset that monitored quality changes in plant extracts during storage procedure. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Calculation of the detection limits for radionuclides identified in gamma-ray spectra based on post-processing peak analysis results.

    PubMed

    Korun, M; Vodenik, B; Zorko, B

    2018-03-01

    A new method for calculating the detection limits of gamma-ray spectrometry measurements is presented. The method is applicable for gamma-ray emitters, irrespective of the influences of the peaked background, the origin of the background and the overlap with other peaks. It offers the opportunity for multi-gamma-ray emitters to calculate the common detection limit, corresponding to more peaks. The detection limit is calculated by approximating the dependence of the uncertainty in the indication on its value with a second-order polynomial. In this approach the relation between the input quantities and the detection limit are described by an explicit expression and can be easy investigated. The detection limit is calculated from the data usually provided by the reports of peak-analyzing programs: the peak areas and their uncertainties. As a result, the need to use individual channel contents for calculating the detection limit is bypassed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Optical absorption and thermally stimulated depolarization current studies of nickel chloride-doped poly(vinyl alcohol) irradiated with low-level fast neutron doses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abd El-Kader, F.H.; Ibrahim, S.S.; Attia, G.

    1993-11-15

    The influence of neutron irradiation on ultraviolet/visible absorption and thermally stimulated depolarization current in nickel chloride-poly(vinyl alcohol) (PVA) cast films has been investigated. The spectral measurements indicate the responsibility of the Ni[sup 2][sup +] ion in its octahedral symmetry. Dopant concentrations higher than 10 wt % NiCl[sub 2] are found to make the samples more resistant to a degradation effect caused by neutron irradiation. The thermally stimulated depolarization currents (TSDC) of pure PVA revealed the existence of the glass transition T[sub g] and space charge relaxation peaks, whereas doped-PVA samples show a new sub-T[sub g] relaxation peak. A proposed mechanismmore » is introduced to account for the neutron effects on both glass transition and space charge relaxation peaks. The peak positions, peak currents, and stored charges of the sub-T[sub g] relaxation peak are strongly affected by both the concentration of the dopant and neutron exposure doses.« less

  20. Measurement and Modeling of Acoustic Fields in a Gel Phantom at High Intensities

    NASA Astrophysics Data System (ADS)

    Canney, Michael S.; Bailey, Michael R.; Khokhlova, Vera A.; Crum, Lawrence A.

    2006-05-01

    The goal of this work was to compare measured and numerically predicted HIFU pressure waveforms in water and a tissue-mimicking phantom. Waveforms were measured at the focus of a 2-MHz HIFU transducer with a fiber optic hydrophone. The transducer was operated with acoustic powers ranging from 2W to 300W. A KZK-type equation was used for modeling the experimental conditions. Strongly asymmetric nonlinear waves with peak positive pressure up to 80 MPa and peak negative pressure up to 20 MPa were measured in water, while waves up to 50 MPa peak positive pressure and 15 MPa peak negative pressure were measured in tissue phantoms. The values of peak negative pressure corresponded well with numerical simulations and were significantly smaller than predicted by linear extrapolation from low-level measurements. The values of peak positive pressures differed only at high levels of excitation where bandwidth limitations of the hydrophone failed to fully capture the predicted sharp shock fronts.

  1. GLAST answers about high-energy peaked BL Lacs: double-humped {gamma}-ray peak and extreme accelerators?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costamante, L.; Aharonian, F.; Khangulyan, D.

    2007-07-12

    An often overlooked fact is that the MeV-GeV emission from High-energy peaked BL Lacs (HBL) is basically unknown: there are only 3 objects of this type among all EGRET identified blazars with measured spectra. GLAST will be able to measure the spectrum for many of them, in particular TeV-blazars, and surprises are expected. GLAST will tell if the {gamma}-ray peak in some HBL is actually a ''double peak'', as suggested by the comparison of EGRET and HESS data in PKS 2155-304, We also remind and argue that a new class of BL Lacs could exist, where particles are shock-accelerated nearmore » the maximum possible rate, characterized by the synchrotron emission peaking in the GLAST band (100 MeV - few GeV). Such objects could easily have escaped detection or identification so far, and could now be unveiled by GLAST.« less

  2. Protein assignments without peak lists using higher-order spectra.

    PubMed

    Benison, Gregory; Berkholz, Donald S; Barbar, Elisar

    2007-12-01

    Despite advances in automating the generation and manipulation of peak lists for assigning biomolecules, there are well-known advantages to working directly with spectra: the eye is still superior to computer algorithms when it comes to picking out peak relationships from contour plots in the presence of confounding factors such as noise, overlap, and spectral artifacts. Here, we present constructs called higher-order spectra for identifying, through direct visual examination, many of the same relationships typically identified by searching peak lists, making them another addition to the set of tools (alongside peak picking and automated assignment) that can be used to solve the assignment problem. The technique is useful for searching for correlated peaks in any spectrum type. Application of this technique to novel, complete sequential assignment of two proteins (AhpFn and IC74(84-143)) is demonstrated. The program "burrow-owl" for the generation and display of higher-order spectra is available at (http://sourceforge.net/projects/burrow-owl) or from the authors.

  3. Increased presentations to emergency departments for asthma associated with rye grass pollen season in inland NSW.

    PubMed

    Hayden, Timothy J; Muscatello, David J

    2011-09-01

    This study measured the frequency and geographical extent of peaks in asthma presentations to emergency departments in inland NSW; it assessed the characteristics of patients who presented at peak presentation times during the rye grass pollination season (October-November) and at other times of the year. Data describing over 13 years of daily emergency department presentations with a provisional diagnosis of asthma at nine inland NSW base hospitals were assembled. Days of counts in the top 0.1 percentile for each emergency department were classified as peak asthma count days. While the rye grass pollen season accounts for only 17% of days in the year, 53% of peak asthma count days fell within that period. Patients aged over 14 years represented 74% of visits on peak asthma count days during the pollen season and 50% on peak days at other times of the year. Under the right climatic conditions, rye grass pollen may be responsible for presentations for acute asthma to emergency departments in inland NSW.

  4. Variable threshold method for ECG R-peak detection.

    PubMed

    Kew, Hsein-Ping; Jeong, Do-Un

    2011-10-01

    In this paper, a wearable belt-type ECG electrode worn around the chest by measuring the real-time ECG is produced in order to minimize the inconvenient in wearing. ECG signal is detected using a potential instrument system. The measured ECG signal is transmits via an ultra low power consumption wireless data communications unit to personal computer using Zigbee-compatible wireless sensor node. ECG signals carry a lot of clinical information for a cardiologist especially the R-peak detection in ECG. R-peak detection generally uses the threshold value which is fixed. There will be errors in peak detection when the baseline changes due to motion artifacts and signal size changes. Preprocessing process which includes differentiation process and Hilbert transform is used as signal preprocessing algorithm. Thereafter, variable threshold method is used to detect the R-peak which is more accurate and efficient than fixed threshold value method. R-peak detection using MIT-BIH databases and Long Term Real-Time ECG is performed in this research in order to evaluate the performance analysis.

  5. The statistics of peaks of Gaussian random fields. [cosmological density fluctuations

    NASA Technical Reports Server (NTRS)

    Bardeen, J. M.; Bond, J. R.; Kaiser, N.; Szalay, A. S.

    1986-01-01

    A set of new mathematical results on the theory of Gaussian random fields is presented, and the application of such calculations in cosmology to treat questions of structure formation from small-amplitude initial density fluctuations is addressed. The point process equation is discussed, giving the general formula for the average number density of peaks. The problem of the proper conditional probability constraints appropriate to maxima are examined using a one-dimensional illustration. The average density of maxima of a general three-dimensional Gaussian field is calculated as a function of heights of the maxima, and the average density of 'upcrossing' points on density contour surfaces is computed. The number density of peaks subject to the constraint that the large-scale density field be fixed is determined and used to discuss the segregation of high peaks from the underlying mass distribution. The machinery to calculate n-point peak-peak correlation functions is determined, as are the shapes of the profiles about maxima.

  6. Step Detection Robust against the Dynamics of Smartphones

    PubMed Central

    Lee, Hwan-hee; Choi, Suji; Lee, Myeong-jin

    2015-01-01

    A novel algorithm is proposed for robust step detection irrespective of step mode and device pose in smartphone usage environments. The dynamics of smartphones are decoupled into a peak-valley relationship with adaptive magnitude and temporal thresholds. For extracted peaks and valleys in the magnitude of acceleration, a step is defined as consisting of a peak and its adjacent valley. Adaptive magnitude thresholds consisting of step average and step deviation are applied to suppress pseudo peaks or valleys that mostly occur during the transition among step modes or device poses. Adaptive temporal thresholds are applied to time intervals between peaks or valleys to consider the time-varying pace of human walking or running for the correct selection of peaks or valleys. From the experimental results, it can be seen that the proposed step detection algorithm shows more than 98.6% average accuracy for any combination of step mode and device pose and outperforms state-of-the-art algorithms. PMID:26516857

  7. The relationship between hippocampal EEG theta activity and locomotor behaviour in freely moving rats: effects of vigabatrin.

    PubMed

    Bouwman, B M; van Lier, H; Nitert, H E J; Drinkenburg, W H I M; Coenen, A M L; van Rijn, C M

    2005-01-30

    The relationship between hippocampal electroencephalogram (EEG) theta activity and locomotor speed in both spontaneous and forced walking conditions was studied in rats after vigabatrin injection (500 mg/kg i.p.). Vigabatrin increased the percentage of time that rats spent being immobile. During spontaneous walking in the open field, the speed of locomotion was increased by vigabatrin, while theta peak frequency was decreased. Vigabatrin also reduced the theta peak frequency during forced (speed controlled) walking. There was only a weak positive correlation (r=0.22) between theta peak frequency and locomotor speed for the saline condition. Furthermore, vigabatrin abolishes the weak relationship between speed of locomotion and theta peak frequency. Vigabatrin and saline did not differ in the slope of the regression line, but showed different offset points at the theta peak frequency axis. Thus, other factors than speed of locomotion seem to be involved in determination of the theta peak frequency.

  8. New Morphometric Measurements of Peak-Ring Basins on Mercury and the Moon: Results from the Mercury Laser Altimeter and Lunar Orbiter Laser Altimeter

    NASA Technical Reports Server (NTRS)

    Baker, David M. H.; Head, James W.; Prockter, Louise M.; Fassett, Caleb I.; Neumann, Gregory A.; Smith, David E.; Solomon, Sean C.; Zuber, Maria T.; Oberst, Juergen; Preusker, Frank; hide

    2012-01-01

    Peak-ring basins (large impact craters exhibiting a single interior ring) are important to understanding the processes controlling the morphological transition from craters to large basins on planetary bodies. New image and topography data from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) and Lunar Reconnaissance Orbiter (LRO) spacecraft have helped to update the catalogs of peak-ring basins on Mercury and the Moon [1,2] and are enabling improved calculations of the morphometric properties of these basins. We use current orbital altimeter measurements from the Mercury Laser Altimeter (MLA) [3] and the Lunar Orbiter Laser Altimeter (LOLA) [4], as well as stereo-derived topography [5], to calculate the floor depths and peak-ring heights of peak-ring basins on Mercury and the Moon. We present trends in these parameters as functions of rim-crest diameter, which are likely to be related to processes controlling the onset of peak rings in these basins.

  9. Impulse Excitation Internal Friction Study of Dislocation and Point Defect Interactions in Ultra-Low Carbon Bake-Hardenable Steel

    NASA Astrophysics Data System (ADS)

    Jung, Il-Chan; Kang, Deok-Gu; De Cooman, Bruno C.

    2014-04-01

    The simultaneous presence of interstitial solutes and dislocations in an ultra-low carbon bake-hardenable steel gives rise to two characteristic peaks in the internal friction (IF) spectrum: the dislocation-enhanced Snoek peak and the Snoek-Kê-Köster peak. These IF peaks were used to study the dislocation structure developed by the pre-straining and the static strain aging effect of C during the bake-hardening process. A Ti-stabilized interstitial-free steel was used to ascertain the absence of a γ-peak in the IF spectrum of the deformed ultra-low carbon steel. The analysis of the IF data shows clearly that the bake-hardening effect in ultra-low carbon steel is entirely due to atmosphere formation, with the dislocation segment length being the main parameter affecting the IF peak amplitude. Recovery annealing experiments showed that the rearrangement of the dislocation structure lead to the elimination of the C atmosphere.

  10. Nodding syndrome in Kitgum District, Uganda: association with conflict and internal displacement

    PubMed Central

    Landis, Jesa L; Palmer, Valerie S; Spencer, Peter S

    2014-01-01

    Objectives To test for any temporal association of Nodding syndrome with wartime conflict, casualties and household displacement in Kitgum District, northern Uganda. Methods Data were obtained from publicly available information reported by the Ugandan Ministry of Health (MOH), the Armed Conflict Location & Event Data (ACLED) Project of the University of Sussex in the UK, peer-reviewed publications in professional journals and other sources. Results Reports of Nodding syndrome began to appear in 1997, with the first recorded cases in Kitgum District in 1998. Cases rapidly increased annually beginning in 2001, with peaks in 2003–2005 and 2008, 5–6 years after peaks in the number of wartime conflicts and deaths. Additionally, peaks of Nodding syndrome cases followed peak influxes 5–7 years earlier of households into internal displacement camps. Conclusions Peaks of Nodding syndrome reported by the MOH are associated with, but temporally displaced from, peaks of wartime conflicts, deaths and household internment, where infectious disease was rampant and food insecurity rife. PMID:25371417

  11. Relation between flows and dissolved oxygen in the Roanoke River between Roanoke Rapids Dam and Jamesville, North Carolina, 2005-2009

    USGS Publications Warehouse

    Wehmeyer, Loren L.; Wagner, Chad R.

    2011-01-01

    The relation between dam releases and dissolved-oxygen concentration, saturation and deficit, downstream from Roanoke Rapids Dam in North Carolina was evaluated from 2005 to 2009. Dissolved-oxygen data collected at four water-quality monitoring stations downstream from Roanoke Rapids Dam were used to determine if any statistical relations or discernible quantitative or qualitative patterns linked Roanoke River in-stream dissolved-oxygen levels to hydropower peaking at Roanoke Rapids Dam. Unregulated tributaries that inundate and drain portions of the Roanoke River flood plain are crucial in relation to in-stream dissolved oxygen. Hydropower peaking from 2005 to 2009 both inundated and drained portions of the flood plain independently of large storms. The effects of these changes in flow on dissolved-oxygen dynamics are difficult to isolate, however, because of (1) the variable travel time for water to move down the 112-mile reach of the Roanoke River from Roanoke Rapids Dam to Jamesville, North Carolina, and (2) the range of in-situ conditions, particularly inundation history and water temperature, in the flood plain. Statistical testing was conducted on the travel-time-adjusted hourly data measured at each of the four water-quality stations between May and November 2005-2009 when the weekly mean flow was 5,000-12,000 cubic feet per second (a range when Roanoke Rapids Dam operations likely affect tributary and flood-plain water levels). Results of this statistical testing indicate that at the 99-percent confidence interval dissolved-oxygen levels downstream from Roanoke Rapids Dam were lower during peaking weeks than during non-peaking weeks in three of the five years and higher in one of the five years; no data were available for weeks with peaking in 2007. For the four years of statistically significant differences in dissolved oxygen between peaking and non-peaking weeks, three of the years had statistically signficant differences in water temperature. Years with higher water temperature during peaking had lower dissolved oxygen during peaking. Only 2009 had no constistent statistically significant water-temperature difference at all sites, and dissolved-oxygen levels downstream from Roanoke Rapids Dam during peaking weeks that year were lower than during non-peaking weeks. Between 2005 and 2009, daily mean dissolved-oxygen concentrations below the State standard occurred during only 1 of the 17 (6 percent) peaking weeks, with no occurrence of instantaneous dissolved-oxygen concentrations below the State standard. This occurrence was during a 9-day period in July 2005 when the daily maximum air temperatures approached or exceeded 100 degrees Fahrenheit, and the draining of the flood plains from peaking operations was followed by consecutive days of low flows.

  12. Estimation of peak discharge quantiles for selected annual exceedance probabilities in northeastern Illinois

    USGS Publications Warehouse

    Over, Thomas M.; Saito, Riki J.; Veilleux, Andrea G.; Sharpe, Jennifer B.; Soong, David T.; Ishii, Audrey L.

    2016-06-28

    This report provides two sets of equations for estimating peak discharge quantiles at annual exceedance probabilities (AEPs) of 0.50, 0.20, 0.10, 0.04, 0.02, 0.01, 0.005, and 0.002 (recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years, respectively) for watersheds in Illinois based on annual maximum peak discharge data from 117 watersheds in and near northeastern Illinois. One set of equations was developed through a temporal analysis with a two-step least squares-quantile regression technique that measures the average effect of changes in the urbanization of the watersheds used in the study. The resulting equations can be used to adjust rural peak discharge quantiles for the effect of urbanization, and in this study the equations also were used to adjust the annual maximum peak discharges from the study watersheds to 2010 urbanization conditions.The other set of equations was developed by a spatial analysis. This analysis used generalized least-squares regression to fit the peak discharge quantiles computed from the urbanization-adjusted annual maximum peak discharges from the study watersheds to drainage-basin characteristics. The peak discharge quantiles were computed by using the Expected Moments Algorithm following the removal of potentially influential low floods defined by a multiple Grubbs-Beck test. To improve the quantile estimates, regional skew coefficients were obtained from a newly developed regional skew model in which the skew increases with the urbanized land use fraction. The drainage-basin characteristics used as explanatory variables in the spatial analysis include drainage area, the fraction of developed land, the fraction of land with poorly drained soils or likely water, and the basin slope estimated as the ratio of the basin relief to basin perimeter.This report also provides the following: (1) examples to illustrate the use of the spatial and urbanization-adjustment equations for estimating peak discharge quantiles at ungaged sites and to improve flood-quantile estimates at and near a gaged site; (2) the urbanization-adjusted annual maximum peak discharges and peak discharge quantile estimates at streamgages from 181 watersheds including the 117 study watersheds and 64 additional watersheds in the study region that were originally considered for use in the study but later deemed to be redundant.The urbanization-adjustment equations, spatial regression equations, and peak discharge quantile estimates developed in this study will be made available in the web application StreamStats, which provides automated regression-equation solutions for user-selected stream locations. Figures and tables comparing the observed and urbanization-adjusted annual maximum peak discharge records by streamgage are provided at https://doi.org/10.3133/sir20165050 for download.

  13. Scenario analysis on the goal of carbon emission peaking around 2030 of China proposed in the China-U.S. joint statement on climate change

    NASA Astrophysics Data System (ADS)

    Zheng, T.

    2015-12-01

    A goal of carbon (C) emission peaking around 2030 of China was declared in the China-U.S. joint statement on climate change, and emphasized in China's intended nationally determined contributions (INDC). Here, we predicted the carbon emission of China during the period 2011~2050 under seven scenarios, and analyzed the scientific and social implications of realizing the goal. Our results showed that: (1) C emissions of China will reach their peaks at 2022~2045 (with peak values 3.15~5.10 Pg C), and the predicted decay rates of C intensity were 2.1~4.2% in 2011~2050; (2) the precondition that the national C emission reaches the peak before 2030 is that the annual decay rates of C intensity must exceed 3.3% , as decay rates under different scenarios were predicted higher than that except for Past G8 scenario; (3) the national C emission would reach the peak before 2030, if the government of China should realize the C emissions reduction goals of China's 12th five-year plan, climate commitments of Copenhagen and INDC; (4) Chinese government could realize the goal of C emission peaking around 2030 from just controlling C emission intensity , but associated with relatively higher government's burden. In summary, China's C emission may well peak before 2030, meanwhile the combination of emissions reduction and economic macro-control would be demanded to avoid heavier social pressure of C emissions reduction occurred.

  14. The statistical overlap theory of chromatography using power law (fractal) statistics.

    PubMed

    Schure, Mark R; Davis, Joe M

    2011-12-30

    The chromatographic dimensionality was recently proposed as a measure of retention time spacing based on a power law (fractal) distribution. Using this model, a statistical overlap theory (SOT) for chromatographic peaks is developed that estimates the number of peak maxima as a function of the chromatographic dimension, saturation and scale. Power law models exhibit a threshold region whereby below a critical saturation value no loss of peak maxima due to peak fusion occurs as saturation increases. At moderate saturation, behavior is similar to the random (Poisson) peak model. At still higher saturation, the power law model shows loss of peaks nearly independent of the scale and dimension of the model. The physicochemical meaning of the power law scale parameter is discussed and shown to be equal to the Boltzmann-weighted free energy of transfer over the scale limits. The scale is discussed. Small scale range (small β) is shown to generate more uniform chromatograms. Large scale range chromatograms (large β) are shown to give occasional large excursions of retention times; this is a property of power laws where "wild" behavior is noted to occasionally occur. Both cases are shown to be useful depending on the chromatographic saturation. A scale-invariant model of the SOT shows very simple relationships between the fraction of peak maxima and the saturation, peak width and number of theoretical plates. These equations provide much insight into separations which follow power law statistics. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Comparative Analysis of Peak Ground Acceleration Before and After Padang Earthquake 2009 Using Mc. Guirre Method

    NASA Astrophysics Data System (ADS)

    Ayu Rahmalia, Diah; Nilamprasasti, Hesti

    2017-04-01

    We have analyzed the earthquakes data in West Sumatra province to determine peak ground acceleration value. The peak ground acceleration is a parameter that describes the strength of the tremor that ever happened. This paper aims to compare the value of the peak ground acceleration by considering the b-value before and after the Padang earthquake 2009. This research was carried out in stages, starting by taking the earthquake data in West Sumatra province with boundary coordinates 0.923° LU - 2.811° LS and 97.075° - 102.261° BT, before and after the 2009 Padang earthquake with a magnitude ≥ 3 and depth of ≤ 300 km, calculation of the b-value, and ended by creating peak ground acceleration map based on Mc. Guirre empirical formula with Excel and Surfer software. Based on earthquake data from 2002 until before Padang earthquake 2009, the b-value is 0.874 while the b-value after the Padang earthquake in 2009 to 2016 is 0.891. Considering b value, it can be known that peak ground acceleration before and after the 2009 Padang earthquake might be different. Based on the seismic data before 2009, the peak ground acceleration value of West Sumatra province is ranged from 7,002 to 308.875 gal. This value will be compared by the value of the peak ground acceleration after the Padang earthquake in 2009 which ranged from 7,946 to 372,736 gal.

  16. Spectral Changes in Metal Halide and High-Pressure Sodium Lamps Equipped with Electronic Dimming

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.; Sargis, Raman; Wilson, David

    1995-01-01

    Electronic dimming of high-intensity discharge lamps offers control of Photosynthetic Photon Flux (PPF) but is often characterized as causing significant spectral changes. Growth chambers with 400-W Metal Halide (MH) and High-Pressure Sodium (HPS) lamps were equipped with a dimmer system using Silicon-Controlled Rectifiers (SCR) as high-speed switches. Phase control operation turned the line power off for some period of the alternating current cycle. At full power, the electrical input to HPS and MH lamps was 480 W (root mean squared) and could be decreased to 267 W and 428 W, respectively, before the arc was extinguished. Concomitant with this decrease in input power, PPF decreased by 60% in HPS and 50% in MH. The HPS lamp has characteristic spectral peaks at 589 and 595 nm. As power to the HPS lamps was decreased, the 589-nm peak remained constant while the 595-nm peak decreased, equaling the 589-nm peak at 345-W input, and 589-nm peak was almost absent at 270-W input. The MH lamp has a broader spectral output but also has a peak at 589 nm and another smaller peak at 545 nm. As input power approached 428 W, the 589-nm peak shifted to 570 nm. While the spectrum changed as input power was decreased in the MH and HPS lamps, the phytochrome equilibrium ratio (P(sub ft):P(sub tot)) remains unchanged for both lamp types.

  17. Local properties of the large-scale peaks of the CMB temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcos-Caballero, A.; Martínez-González, E.; Vielva, P., E-mail: marcos@ifca.unican.es, E-mail: martinez@ifca.unican.es, E-mail: vielva@ifca.unican.es

    2017-05-01

    In the present work, we study the largest structures of the CMB temperature measured by Planck in terms of the most prominent peaks on the sky, which, in particular, are located in the southern galactic hemisphere. Besides these large-scale features, the well-known Cold Spot anomaly is included in the analysis. All these peaks would contribute significantly to some of the CMB large-scale anomalies, as the parity and hemispherical asymmetries, the dipole modulation, the alignment between the quadrupole and the octopole, or in the case of the Cold Spot, to the non-Gaussianity of the field. The analysis of the peaks ismore » performed by using their multipolar profiles, which characterize the local shape of the peaks in terms of the discrete Fourier transform of the azimuthal angle. In order to quantify the local anisotropy of the peaks, the distribution of the phases of the multipolar profiles is studied by using the Rayleigh random walk methodology. Finally, a direct analysis of the 2-dimensional field around the peaks is performed in order to take into account the effect of the galactic mask. The results of the analysis conclude that, once the peak amplitude and its first and second order derivatives at the centre are conditioned, the rest of the field is compatible with the standard model. In particular, it is observed that the Cold Spot anomaly is caused by the large value of curvature at the centre.« less

  18. Transrectal real-time tissue elastography targeted biopsy coupled with peak strain index improves the detection of clinically important prostate cancer.

    PubMed

    Ma, Qi; Yang, Dong-Rong; Xue, Bo-Xin; Wang, Cheng; Chen, Han-Bin; Dong, Yun; Wang, Cai-Shan; Shan, Yu-Xi

    2017-07-01

    The focus of the present study was to evaluate transrectal real-time tissue elastography (RTE)-targeted two-core biopsy coupled with peak strain index for the detection of prostate cancer (PCa) and to compare this method with 10-core systematic biopsy. A total of 141 patients were enrolled for evaluation. The diagnostic value of peak strain index was assessed using a receiver operating characteristic curve. The cancer detection rates of the two approaches and corresponding positive cores and Gleason score were compared. The cancer detection rate per core in the RTE-targeted biopsy (44%) was higher compared with that in systematic biopsy (30%). The peak strain index value of PCa was higher compared with that of the benign lesion. PCa was detected with the highest sensitivity (87.5%) and specificity (85.5%) using the threshold value of a peak strain index of ≥5.97 with an area under the curve value of 0.95. When the Gleason score was ≥7, RTE-targeted biopsy coupled with peak strain index detected 95.6% of PCa cases, but 84.4% were detected using systematic biopsy. Peak strain index as a quantitative parameter may improve the differentiation of PCa from benign lesions in the prostate peripheral zone. Transrectal RTE-targeted biopsy coupled with peak strain index may enhance the detection of clinically significant PCa, particularly when combined with systematic biopsy.

  19. Cloud-to-ground lightning flash characteristics from June 1984 through May 1985

    NASA Technical Reports Server (NTRS)

    Orville, Richard E.; Weisman, Robert A.; Pyle, Richard B.; Henderson, Ronald W.; Orville, Richard E., Jr.

    1987-01-01

    A magnetic direction-finding network for the detection of lightning cloud-to-ground strikes has been installed along the east coast of the United States. Time, location, flash polarity, stroke count, and peak signal amplitude are recorded in real time. The data were recorded from Maine to North Carolina and as far west as Ohio; analyses were restricted to flashes within 300 km of a direction finder. Measurements of peak signal strength have been obtained from 720,284 first return strokes lowering negative charge. The resulting distribution indicates that few negative strokes have peak currents exceeding 100 kA. Measurements have also been obtained of peak signal strength from 17,694 first return strokes lowering positive charge. These strokes have a median peak current of 45 kA, with some peak currents reaching 300-400 kA. The median peak signal strength and the peak current, double from summer to winter for both negative and positive first return strokes. The polarity of ground flashes is observed to be less than 5 percent positive throughout the summer and early fall, then increases to over 50 percent during the winter, and returns to less than 10 percent in early spring. The percent of positive flashes with one stroke is observed to be approximately 90 percent throughout the year. The percent of negative flashes with one stroke is observed to increase from 40 percent in the summer to approximately 80 percent in January, returning to less than 50 percent in the spring.

  20. Echolocation signals and transmission beam pattern of a false killer whale (Pseudorca crassidens).

    PubMed

    Au, W W; Pawloski, J L; Nachtigall, P E; Blonz, M; Gisner, R C

    1995-07-01

    The echolocation transmission beam pattern of a false killer whale (Pseudorca crassidens) was measured in the vertical and horizontal planes. A vertical array of seven broadband miniature hydrophones was used to measure the beam pattern in the vertical plane and a horizontal array of the same hydrophones was used in the horizontal plane. The measurements were performed in the open waters of Kaneohe Bay, Oahu, Hawaii, while the whale performed a target discrimination task. Four types of signals, characterized by their frequency spectra, were measured. Type-1 signals had a single low-frequency peak at 40 +/- 9 kHz and a low-amplitude shoulder at high frequencies. Type-2 signals had a bimodal frequency characteristic with a primary peak at 46 +/- 7 kHz and a secondary peak at 88 +/- 13 kHz. Type-3 signals were also bimodal but with a primary peak at 100 +/- 7 kHz and a secondary peak at 49 +/- 9 kHz. Type-4 signals had a single high-frequency peak at 104 +/- 7 kHz. The center frequency of the signals were found to be linearly correlated to the peak-to-peak source level, increasing with increasing source level. The major axis of the vertical beam was directed slightly downward between 0 and -5 degrees, in contrast to the +5 to 10 degrees for Tursiops and Delphinapterus. The beam in the horizontal plane was directed forward between 0 degrees and -5 degrees.(ABSTRACT TRUNCATED AT 250 WORDS)

Top