Science.gov

Sample records for pearl river basin

  1. Geohydrologic summary of the Pearl River basin, Mississippi and Louisiana

    USGS Publications Warehouse

    Lang, Joseph W.

    1972-01-01

    Fresh water in abundance is contained in large artesian reservoirs in sand and gravel deposits of Tertiary and Quaternary ages in the Pearl River basin, a watershed of 8,760 square miles. Shallow, water-table reservoirs occur in Quarternary deposits (Pleistocene and Holocene) that blanket most of the uplands in .the southern half of the basin and that are present in smaller upland areas and along streams elsewhere. The shallow reservoirs contribute substantially to dry-weather flow of the Strong River and Bogue Chitto and of Holiday, Lower Little, Silver, and Whitesand Creeks, among others. About 3 billion acre-feet of ground water is in storage in the fresh-water section, which extends from the surface to depths ranging from about sea level in the extreme northern part of the basin to more than 3,000 feet below sea level in the southern part of the basin. Variations in low flow for different parts of the river basin are closely related to geologic terrane and occurrence of ground water. The upland terrace belt that crosses the south-central part of the basin is underlain by permeable sand and gravel deposits and yields more than 0.20 cubic feet per second per square mile of drainage area to streamflow, whereas the northern part of the basin, underlain by clay, marl, and fine to medium sand, yields less than 0.05 cubic feet per second per square mile of drainage area (based on 7-day Q2 minimum flow computed from records). Overall, the potential surface-water supplies are large. Because water is available at shallow depths, most of the deeper aquifers have not been developed anywhere in the basin. At many places in the south, seven or more aquifers could be developed either by tapping one sand in each well or by screening two or more sands in a single well. Well fields each capable, of producing several million gallons of water a day are feasible nearly anywhere in the Pearl River basin. Water in nearly all the aquifers is of good to excellent quality and requires

  2. Petroleum geology of the Zhu-1 depression, Pearl River Mouth Basin, People's Republic of China

    SciTech Connect

    Aguilera, C.L.; Huizinga, B.J.; Lomando, A.J. )

    1990-05-01

    The Pearl River Mouth basin, located in the South China Sea between Hainan Island and Taiwan has been the focus of an intense exploration effort during the l980s. In 1979 the international oil industry, acquired over 60,000 km of seismic, gravity, and magnetic data covering an area of approximately 240,000 km{sup 2}. Three major subbasins, Zhu-1, Zhu-2, and Zhu-3 were defined. Chevron in partnership with Texaco and AGIP (ACT group), concentrated their effort on the Zhu-1 depression which was interpreted to contain as much as 7,800 m of sedimentary section. This subbasin, bounded by the Wansha and Donsha massifs to the north and south, is the most inboard of the three depressions, thereby possibly prolonging anoxic lacustrine conditions prior to the Neogene marine incursion. Additionally, the Zhu- 1 depression should have directly received Miocene sediment potentially supplying the subbasin with high-quality reservoirs. Within the Zhu-1 depression, the ACT group focused in on Block 16/08, which covered the deepest part of the Zhu-1 depression. The block was awarded to the consortium in January 1983. Structuring within the block ranges from Paleogene tensional block faulting created during the early formation of the overall Pearl River Mouth basin to draping over basement highs and carbonate buildups during the Neogene. The Pearl River Mouth basin exhibits classic rift basin geometry with early nonmarine continental fluvial/lacustrine deposition (Zhuhai Formation) during the Oligocene and capped by a lower Miocene marine incursion (Zhu Jiang Formation). Integrated interpretations, exploration drilling, and constant refinement of the geological model led to the discovery of two oil fields, Huizhou/21-1 and Huizhou/26-1, both of which are currently under development and will represent the first commercial oil production from the entire Pearl River Mouth basin.

  3. Eddy-entrained Pearl River plume into the oligotrophic basin of the South China Sea

    NASA Astrophysics Data System (ADS)

    He, Xianqiang; Xu, Dongfeng; Bai, Yan; Pan, Delu; Chen, Chen-Tung Arthur; Chen, Xiaoyan; Gong, Fang

    2016-08-01

    The South China Sea (SCS) is the world's largest tropical marginal sea with an oligotrophic basin. In June 2015, a rare large phytoplankton bloom, which is ~500 km long, 100 km wide and lasting more than 19 days, was captured in the northern SCS basin by satellite daily chlorophyll images. Water within the bloom area had a feature of low salinity and high temperature measured by an accidental-passing cruise. Meanwhile, satellite sea level anomaly images and drifter trajectory proved there was a cyclonic eddy nearby. No typhoon and heavy rain happened in this period, so we believed the bloom was triggered by the injection of nutrient-rich Pearl River plume driven by eddy. This is the first report on eddy-entrained Pearl River plume into the SCS, which would raise a new view on irregular transportation of nutrient and carbon and its related biogeochemical influence on the oligotrophic ocean.

  4. Transitional properties of droughts and related impacts of climate indices in the Pearl River basin, China

    NASA Astrophysics Data System (ADS)

    Xiao, Mingzhong; Zhang, Qiang; Singh, Vijay P.; Liu, Lin

    2016-03-01

    Drought is the natural hazard poorly understood so far due to various mechanisms behind. Moreover, disastrous effects of drought on human society necessitate accurate forecasting of drought behaviors. In this case, to improve forecasting of drought in the Pearl River basin, a trivariate copula model has been developed and used to include the El Nino Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), Indian Ocean Dipole (IOD) and Pacific Decadal Oscillation (PDO) into model structure of Markov chain. The Standardized Precipitation Evapotranspiration Index (SPEI) has been used to monitor the drought in this study. Comparison with the preliminary correlation analysis between each month climate index and SPEI series indicated that the trivariate copula performs satisfactorily well in evaluation of influences of climate indices on the transition probabilities of drought. It is considered that the region with the negative vertical velocity is dominated by more precipitation and vice versa. Moreover, field patterns of 500 hPa vertical velocity anomalies related to each climate index have further corroborated the influences of climate indices on the drought behaviors. Besides, the mean extreme drought durations under different conditions of each climate index have also been investigated in this study. Results indicated that the mean extreme drought duration tends to be longer in the western part of the Pearl River basin during positive phase of ENSO while tends to be shorter during the positive phase of NAO and vice versa; in the central part of the Pearl River basin, the mean extreme drought duration tends to be shorter during the positive phase of ENSO, NAO and PDO while tends to be longer during the positive episode of IOD, and vice versa; in the eastern part of the Pearl River basin, the mean extreme drought duration tends to be shorter during the positive episode of ENSO and PDO, and vice versa. This study sheds new light on transitional behaviors of

  5. Linkages among vegetation, topography and climate variations over the Pearl River basin in southern China

    NASA Astrophysics Data System (ADS)

    Chen, J.; Sun, L.

    2008-12-01

    This study explores the relationships among vegetation, topography and climate variations over the Pearl River basin in southern China by analyzing a 25-year (1982-2006) monthly Normalized Difference Vegetation Index (NDVI) dataset. A data mining approach is used to group the NDVI and the topographic information of the Pearl River basin into different ecological zones according to twelve months of a year. It is found that elevation is the predominant factor in every month for grouping ecological zones. The elevation of the first split node of the ecological zones is high for the months from May to September and low in the months of March, April, October and November. In the vegetation leave growing month (April) and falling month (November), the numbers of the ecological zones recognized by the data mining approach are large compared with those detected in other months. This would reveal a respond of seasonal variations of vegetation life cycle. The relationships between the time series of the NDVI and weather variables, including precipitation, temperature and solar radiation from 1982 to 2002, are also analyzed. The correlation coefficients of the NDVI with solar radiation and temperature are positive in most months. However, the correlation coefficient of NDVI and precipitation is always negative. From these correlation coefficients, we found that the solar radiation is a dominate factor for vegetation growth in most area of the Pearl River basin, which matches the study of Nemani et al. (2003). Further, this study reveals that compared with those with low elevations, the ecological zones with high elevations are more sensitive to climate change. Nemani, R. R, C. D. Keeling, H. Hashimoto, and et al. (2003), Climate-driven increases in global terrestrial net primary production from 1982 to 1999, Science, 300, 1560-1563.

  6. Spatiotemporal characteristics of precipitation changes in the Pearl River Basin, China

    NASA Astrophysics Data System (ADS)

    Liu, Bingjun; Chen, Junfan; Lu, Wenxiu; Chen, Xiaohong; Lian, Yanqing

    2016-02-01

    The change structures of precipitation and precipitation intensity and rainy days are analyzed for the Pearl River Basin (from 1959 to 2009) on the basis of a suite of 24 climatic indices derived from daily precipitation data at 62 meteorological stations with the help of the Mann-Kendall test. Contributions of seasonal precipitation and precipitation intensity class to the annual precipitation are also examined using the inverse distance weighted method. The following four conclusions can be drawn: (1) although the average annual precipitation of the entire basin does not show obvious variation, the number of annual rainy days has decreased significantly in 98.3 % of the stations. These two factors result in an obvious increase in precipitation intensity at 64.5 % of the stations. (2) No clear change trend has been found for seasonal precipitation over the entire area; however, the number of rainy days in each season has decreased significantly. In particular, the number of rainy days in the entire year and in the fall season has decreased in 98.3 and 100 % of the stations, respectively. (3) Although the number of rainy days in drizzle has decreased in 83.9 % of the stations, the number of rainy days where heavy rain and extremely heavy rain occurred increased in nearly 75.8 and 82.3 % of the stations, respectively. (4) The number of rainy days in fall and winter contributes more to the change in the number of annual rainy days than the number of rainy days in spring and summer. Heavy rain and extremely heavy rain contribute more to the change in total annual precipitation than drizzle; however, they contribute less to the change in the number of annual rainy days than drizzle. The findings in this study can provide important information for formulating water resource and eco-environment management strategies in the Pearl River Basin to policymakers and stakeholders.

  7. Structural control on lithofacies in the Zhu 1 depression, Pearl River Mouth Basin, South China Sea

    SciTech Connect

    Carnes, J.B.; Novitsky-Evans, J.C.; Schunk, D.J. )

    1994-07-01

    The structural framework of the Zhu 1 depression, Pearl River Mouth Basin, South China Sea, is expressed in terms of a half-graben rifting model, providing foundation for a predictive model of synrift lacustrine source rock distribution. The Zhu 1 depression includes a northern series of linked half grabens, a southern series of linked half grabens, and a central chain of intrabasinal ridges. The central ridge chain includes both horst blocks (termed high-relief accommodation zones or isolation ridges in the model) and antiforms (termed low-relief accommodation zones or interference ridges in the model). Major fluvial input was from the north, funneled into Zhu 1 through gaps (termed platforms in the model) created by offsets in the border faults of the northern series of half grabens. The central ridge chain is interpreted to have controlled sediment distribution within Zhu 1, periodically confining coarse terrigenous clastics within northern half grabens while lacustrine shales accumulated in southern half grabens.

  8. Tectonic Subsidence Analysis of the Pearl River Mouth Basin, Northern South China Sea

    NASA Astrophysics Data System (ADS)

    Tang, X.; Huang, S. S. X. E. C.; Zhuang, W.; LIU, Z.; Duan, W.; Hu, S.

    2015-12-01

    The Pearl River Mouth Basin (PRMB hereafter) in the northern margin of the South China Sea has attracted great attention not only because of its special tectonic location but also for its abundant hydrocarbon resources. Tectonic evolution controls the petroleum geological condition of hydrocarbon-bearing basins. Efforts have been made to understand the tectonic evolution of this basin. However, many issues about the tectonic features and the evolution process of this basin, such as the age of the breakup unconformities and the anomalously accelerated subsidence during the post-rifting stage, remain controversial. Here we employ tectonic subsidence analysis of sedimentary basins, a technique of removing isostatic loading and compaction effects by back-stripping, to investigate the tectonic controls on the basin formation of the PRMB. We performed the analysis on 4 drill wells and 43 synthetic wells constructed based on recently acquired seismic profiles. The result shows that tectonic subsidence in the eastern sags of the PRMB began to decrease at ~30Ma while in the western sags the onset was ~23.8Ma. This suggests that the break-up time i.e. the end of rifting in the PRMB is earlier in the eastern sags than in the western sags. Abnormally accelerated tectonic subsidence occurred between 17.5-16.4Ma during the post-rifting stage, at an average subsidence rate as high as 301.9m/Ma. This phenomenon discriminates the PRMB from the category of classical Atlantic passive continental marginal basins, of which the tectonic subsidence during the post-rifting stage decays exponentially. The main objective of this paper is to provide insights into the geological and geodynamic evolution of the PRMB. The result bears significance to hydrocarbon exploration in this region.

  9. Sediment flux history of Pearl River mouth basin, North margin of South China Sea

    NASA Astrophysics Data System (ADS)

    Wu, S.

    2004-12-01

    This work estimates the solid sediment flux in Pearl River mouth basin from Cenozoic (42Ma). The estimates were derived from isopach maps, seismic reflection profiles and drill holes. Average solid sediment fluxes were calculated for six epochs approximately corresponding to geological periods: Eocene-Lower Oligocene (42-29.3), Upper Oligocene (29.3-23.8), Lower Miocene (23.8-16.4), Middle Miocene (16.4-11.2), Upper Miocene (11.2-5.32), and Pliocene-Pleistocene (5.32-0). The total sediment flux from 42 Ma is 392071.3 km3 and 0.89 km of erosion formed from the onshore drainage basin area. The average erosion rate is 22 m/ Ma. The sediment flux curve shows 3 episodes massive increase in sediment supply, i.e. Upper Oligocene, Middle Miocene and Pliocene-Pleistocene. The first increase related to the break up activity and is the product of elevated rift shoulder. The other two increase peak link to the changing of climate.

  10. Recent changes of water discharge and sediment load in the Zhujiang (Pearl River) Basin, China

    NASA Astrophysics Data System (ADS)

    Zhang, Shurong; Lu, Xi Xi; Higgitt, David L.; Chen, Chen-Tung Arthur; Han, Jingtai; Sun, Huiguo

    2008-02-01

    The paper is concerned with identifying changes in the time series of water and sediment discharge of the Zhujiang (Pearl River), China. The gradual trend test (Mann-Kendall test), and abrupt change test (Pettitt test), have been employed on annual water discharge and sediment load series (from the 1950s-2004) at nine stations in the main channels and main tributaries of the Zhujiang. Both the Mann-Kendall and Pettitt tests indicate that water discharge at all stations in the Zhujiang Basin showed no significant trend or abrupt shift. Annual water discharges are mainly influenced by precipitation variability, while the construction of reservoirs/dams in the Zhujiang Basin had little influence on water discharge. Sediment load, however, showed significant decreasing trends at some stations in the main channel of the Xijiang and Dongjiang. More stations have seen significantly decreasing trends since the 1990s. The decreasing sediment load in the Zhujiang reflects the impacts of reservoir construction in the basin. In contrast, the Liujiang, the second largest tributary of the Xijiang, has experienced a significant upward shift of sediment load around 1991 likely caused by exacerbated rock desertification in the karst regions. The annual sediment load from the Zhujiang (excluding the delta region) to the estuary has declined from 80.4 × 10 6 t averaged for the period 1957-1995 to 54.0 × 10 6 t for the period 1996-2004. More specifically, the sediment load declined steadily since the early 1990s so that in 2004 it was about one-third of the mean level of pre-90s. Water discharge and sediment load of the Zhujiang would be more affected by human activities in the future with the further reservoir developments, especially the completion of the Datengxia hydroelectric project, and an intensification of the afforestation policy in the drainage basin.

  11. Petroleum systems of Zhu III depression in Pearl River Mouth Basin, South China Sea

    SciTech Connect

    Weilin, Zhu; Li Mingbi; Wu Peikang

    1996-12-31

    Zhu III depression is located in the west part of Pearl River Mouth Basin, and covers an area of 11,000 sq km. Until now more than twenty wells have been drilled in the depression and its surrounding area, and all oil-gas fields and oil-gas discoveries are concentrated inside the depression. Integrated study indicates that there are two petroleum systems in Zhu III depression. One is Wenchang - Zhuhai, Zhujiang oil system which is mainly distributed in Wenchang B sag in the southwest part of the depression. Its source rock, the Wenchang formation is mainly composed of dark mudstone of lacustrine facies, with thicknesses up to more than 1000 m. Its reservoir includes tidal sandstone of transitional facies of Zhuhai formation and neritic sandstone of the lower part of Zhujiang formation. Through bounding faults and margin coarse sediment zone, oil generated from the Wenchang formation migrated into overlying sandstone of Zhuhai formation, which was overlaid by mudstone beds of bay facies of Zhuhai formation or neritic facies of Zhujiang formation, and formed oil accumulations. The other system is Enping - Zhuhai gas system, distributed in Wenchang A sag in the northeast part of the depression, whose source rock in the Enping formation deposited in the contracting stage of the lake, dominated by swamp coal measure in lithology and terrestrial plant clastics in kerogen components. The gas generated from Enping formation directly migrated into overlying tidal sandstone of Zhuhai formation and formed gas accumulations. Therefore, exploration in Wenchang A sag in the northeast part of the depression is for gas accumulations, and oil accumulations in Wenchang B sag in the southwest part of the depression, while oil-gas mixed accumulations are likely to be found in the transitional area of two systems.

  12. Petroleum systems of Zhu III depression in Pearl River Mouth Basin, South China Sea

    SciTech Connect

    Weilin, Zhu; Li Mingbi; Wu Peikang )

    1996-01-01

    Zhu III depression is located in the west part of Pearl River Mouth Basin, and covers an area of 11,000 sq km. Until now more than twenty wells have been drilled in the depression and its surrounding area, and all oil-gas fields and oil-gas discoveries are concentrated inside the depression. Integrated study indicates that there are two petroleum systems in Zhu III depression. One is Wenchang - Zhuhai, Zhujiang oil system which is mainly distributed in Wenchang B sag in the southwest part of the depression. Its source rock, the Wenchang formation is mainly composed of dark mudstone of lacustrine facies, with thicknesses up to more than 1000 m. Its reservoir includes tidal sandstone of transitional facies of Zhuhai formation and neritic sandstone of the lower part of Zhujiang formation. Through bounding faults and margin coarse sediment zone, oil generated from the Wenchang formation migrated into overlying sandstone of Zhuhai formation, which was overlaid by mudstone beds of bay facies of Zhuhai formation or neritic facies of Zhujiang formation, and formed oil accumulations. The other system is Enping - Zhuhai gas system, distributed in Wenchang A sag in the northeast part of the depression, whose source rock in the Enping formation deposited in the contracting stage of the lake, dominated by swamp coal measure in lithology and terrestrial plant clastics in kerogen components. The gas generated from Enping formation directly migrated into overlying tidal sandstone of Zhuhai formation and formed gas accumulations. Therefore, exploration in Wenchang A sag in the northeast part of the depression is for gas accumulations, and oil accumulations in Wenchang B sag in the southwest part of the depression, while oil-gas mixed accumulations are likely to be found in the transitional area of two systems.

  13. Origin and occurrence of crude oils in the Zhu1 sub-basin, Pearl River Mouth Basin, China

    NASA Astrophysics Data System (ADS)

    Hu, Yue; Hao, Fang; Zhu, Junzhang; Tian, Jinqiang; Ji, Yubing

    2015-01-01

    The origin of the seventeen major oil fields in the Zhu1 sub-basin, Pearl River Mouth Basin (PRMB) was studied based on the results of Rock-Eval pyrolysis on more than 370 samples and biomarker analysis on 31 source rock samples and 63 oil samples. The two possible source rock intervals have different biomarker assemblages and were deposited in different environments. The Wenchang Formation (E2w, 56.5-32 Ma) is characterized mainly by low C19/C23 tricyclic terpane (<2.0), low C24 tetracyclic terpane/αβC30 hopane (<0.06), low bicadinane-T/αβC30 hopane (<2.0) and high 4-methyl steranes/∑C29 steranes (most >0.4) ratios, and were deposited in anoxic to suboxic environments with important contribution from Pediastrum and Dinoflagellates. The Enping Formation (E3e, 32-30 Ma) has high C19/C23 tricyclic terpane, high C24 tetracyclic terpane/αβC30 hopane, widely variable yet overally high bicadinane-T/αβC30 hopane and low 4-methyl steranes/∑C29 steranes ratios, and were deposited in freshwater lacustrine to swamp conditions with significant terrigenous organic matter input. According to oil-source correlation, three oil classes can be identified in the Zhu1 sub-basin. Class 1 oil is E2w-derived and occurs widely. Class 2 oil is E3e-derived and refers to oils from F field in the north of the Huizhou depression. Class 3 oil is a mixture of oils generated from E2w and E3e, only distributed in the Huizhou depression and on its southern margin. The petroleum distribution pattern is mainly controlled by the distribution of source rocks and the migration pathways of oils. This research has important implications for future exploration.

  14. A geochemical investigation of crude oils from Eastern Pearl River Mouth Basin, South China Sea

    NASA Astrophysics Data System (ADS)

    Jiamo, Fu; Cunmin, Pei; Guoying, Sheng; Dehan, Liu; Sizhong, Chen

    A thorough petroleum exploration of the Pearl River Mouth Basin (PRMB), South China Sea, began in 1983. At present, several oilfields have been found in the PRMB, mainly distributed in Dongsha Massif, Huizhou and Xijiang Depressions as well as Huilu Lowhigh, and one of them has been developed recently. The crude oils found in the basin can be classified into two types. One is normal waxy type, and the other is cyclic type, which may be caused by minor biodegration and is restricted to the Liuhua District of Dongsha Massif. However, on the basis of geochemical characteristics, all the crude oils are thermally mature, indicating that they are derived from source rocks which have entered the main oil generation period but their maturity is not high enough to reach the overmature stage. Moreover, in the biomarker distribution, the oils also share many similarities. Almost all the oils contain abundant C 30 4-methylsteranes with 24-ethyl side chain, ubiquitous oleanane and lower concentration of gammacerane, and possess high ratios of Ni/V, pristane to phytane and C 30 hopane over total C 29 steranes as well as high paraffin wax and low sulphur content, indicating that they originated from terrestrial organic matter deposited in lacustrine and marsh coal-forming environments. However, some characteristics resemble Brazilian offshore oils of salinewater lacustrine environment. The oils found in the PRMB can also be classified into three main genetic types based on the relative values of pristane over phytane ratio, C 29 sterane preference and the composition of the carbon isotope. Type I oils occurred in the Huizhou and the Xijiang Depressions and their adjacent Dongsha Massif. It has higher ratios of pristane to phytane (1.80-5.54 and 3.21 on the average scale) and heavier carbon isotopic composition, indicating that their source rocks contain much more abundant terrestrial higher plant input. Type II, encountered in Huilu Lowhigh and its bounding area of Dongsha Massif

  15. The late Cenozoic deep-water channel system in the Baiyun Sag, Pearl River Mouth Basin: Development and tectonic effects

    NASA Astrophysics Data System (ADS)

    Ma, Benjun; Wu, Shiguo; Sun, Qiliang; Mi, Lijun; Wang, ZhenZhen; Tian, Jie

    2015-12-01

    Twenty modern submarine channels and buried channels were examined using high-resolution 3D/2D seismic data in the Baiyun Sag, Pearl River Mouth Basin. The channels were dominantly straight, sub-parallel with one another, and oriented perpendicular to the slope contours. Four stages of the deep-water channel system (DCS) were identified according to seismic facies and spatial distribution. The stages were controlled by sediment input and tectonic activities. DCS I is distributed in the middle of the Baiyun Sag, with small individual channels. DCS II expanded because of decreasing sediment input and stable subsidence of the Baiyun Sag increased the slope. DCS III had the broadest distribution and nearly covered the entire Baiyun Sag. Further decreases in sediment input and the Dongsha Event increased the gravity flow domain and greatly promoted the development of the DCS. DCS IV narrowed to the southwest because the buried channels in the northeastern Baiyun Sag ceased after 5.5 Ma as the result of active fault activity. This study highlights that the channel system plays an important role in recording the sedimentary evolution of the Pearl River Mouth Basin and affects the deep-water resource (hydrocarbon and gas hydrate) distribution.

  16. Characterization of gas hydrate distribution using conventional 3D seismic data in the Pearl River Mouth Basin, South China Sea

    USGS Publications Warehouse

    Wang, Xiujuan; Qiang, Jin; Collett, Timothy S.; Shi, Hesheng; Yang, Shengxiong; Yan, Chengzhi; Li, Yuanping; Wang, Zhenzhen; Chen, Duanxin

    2016-01-01

    A new 3D seismic reflection data volume acquired in 2012 has allowed for the detailed mapping and characterization of gas hydrate distribution in the Pearl River Mouth Basin in the South China Sea. Previous studies of core and logging data showed that gas hydrate occurrence at high concentrations is controlled by the presence of relatively coarse-grained sediment and the upward migration of thermogenic gas from the deeper sediment section into the overlying gas hydrate stability zone (BGHSZ); however, the spatial distribution of the gas hydrate remains poorly defined. We used a constrained sparse spike inversion technique to generate acoustic-impedance images of the hydrate-bearing sedimentary section from the newly acquired 3D seismic data volume. High-amplitude reflections just above the bottom-simulating reflectors (BSRs) were interpreted to be associated with the accumulation of gas hydrate with elevated saturations. Enhanced seismic reflections below the BSRs were interpreted to indicate the presence of free gas. The base of the BGHSZ was established using the occurrence of BSRs. In areas absent of well-developed BSRs, the BGHSZ was calculated from a model using the inverted P-wave velocity and subsurface temperature data. Seismic attributes were also extracted along the BGHSZ that indicate variations reservoir properties and inferred hydrocarbon accumulations at each site. Gas hydrate saturations estimated from the inversion of acoustic impedance of conventional 3D seismic data, along with well-log-derived rock-physics models were also used to estimate gas hydrate saturations. Our analysis determined that the gas hydrate petroleum system varies significantly across the Pearl River Mouth Basin and that variability in sedimentary properties as a product of depositional processes and the upward migration of gas from deeper thermogenic sources control the distribution of gas hydrates in this basin.

  17. Changes in runoff and eco-flow in the Dongjiang River of the Pearl River Basin, China

    NASA Astrophysics Data System (ADS)

    Lin, Kairong; Lian, Yanqing; Chen, Xiaohong; Lu, Fan

    2014-12-01

    The Dongjiang River, one of the tributaries of the Pearl River, serves as the critical water source for Guangdong Province and the District of Hong Kong in China. In this study, the change trend and change points of flow at three main gaging stations in the Dongjiang River were analyzed using the nonparametric Mann-Kendall test and Pettitt-Mann-Whitney change-point statistics. Flow regime changes in the Dongjiang River were quantified by using both the Indicators of Hydrologic Alteration (IHA) parameters and eco-statistics, such as ecosurplus and ecodeficit. It was found that the change trend for annual median flow in the Dongjiang River increased over the past 60 years, with the major change occurring sometime between 1970 and 1974. IHA analyses showed that the magnitude of monthly flow decreased during the flood period, but increased greatly during the dry period. The median date of the one-day minimum flow moved ahead, and the duration of low pulse for the Dongjiang River was reduced significantly because of reservoir construction and operations. The IHA-based Dundee Hydrological Regime Alteration Method analysis indicated that all three stations have experienced a moderate risk of impact since 1974. The eco-statistical analyses showed that the majority of the flows appeared to be ecosurplus at all three locations after 1974, while flows with less than 30%, or higher exceedance probability, had ecodeficit in the summer flood period due to heavy reservoir operations.

  18. The Pearl River Estuary Pollution Project (PREPP)

    NASA Astrophysics Data System (ADS)

    Chen, Jay-Chung; Heinke, Gary W.; Jiang Zhou, Ming

    2004-10-01

    The Pearl River, or Zhujiang River system is China's third longest river, after the Yangtze and Yellow Rivers. The Pearl River has three principal tributaries, namely, the Xijiang River, Beijiang River and Dongjiang River. It also receives several other small tributaries developed within the Pearl River Delta. Its average annual flow rate approximately 10 , 000m3s-1 is exceeded only by the Yangtze River. Its length is 2 , 214 km and drains an area of 453 , 690km2, most of which is in Southern China and with a small part in Vietnam. Parts of the provinces of Yunnan, Guizhou, Guangxi, Guangdong, Hunan and Jiangxi drain to the Pearl River system.

  19. Comparative characterization of two natural humic acids in the Pearl River Basin, China and their environmental implications.

    PubMed

    Liu, Juan; Wang, Jin; Chen, Yongheng; Lippold, Holger; Lippmann-Pipke, Johanna

    2010-01-01

    Two humic acids (HAs) were isolated from contaminated river sediments present under comparative conditions in the Pearl River Basin, China. YFHA (the HA extracted at an open pyrite mining area in Yunfu) exhibited a lower absorption intensity for certain bands in the Fourier transform infrared spectra, a lower E4/E6 value (the UV absorbances at 465 nm (E4) and 665 nm (E6)), a lower apparent molecular weight, a lower polarity and a lower oxygen functionality in comparison with GZHA (the HA isolated at an urban living area in Guangzhou). All these differences indicated a higher degree of humification of YFHA than GZHA. Overall, the enrichment patterns of permanent heavy metals in the studied HAs were similar to those in corresponding sediments. In particular, YFHA exhibited high enrichment of trace element Tl, a characteristic concomitant from the mining of the pyrite minerals. The adsorption isotherms of two HAs for goethite and pyrolusite, two representative geological materials, conformed to the Langmuir equation. Based on the qualitative relationships between the Langmuir constants of the adsorption isotherms and the chemical characteristics of HAs, the main mechanism of HA adsorption on these materials was suggested to be hydrophobic interaction. This study highlighted the promising use of HA as a peculiar bio-indicator of uncommon trace metal contaminations. The HA adsorption mechanism on representative geological materials further provided a theoretical basis for the study on the unusual metal behavior in complex environmental settings.

  20. The geochemistry characteristic and dating of cold seepage carbonates of the Pearl River Mouth Basin, eastern of South China Sea

    NASA Astrophysics Data System (ADS)

    Fang, Yunxin; Fu, Shaoying

    2015-04-01

    Cold seepage carbonates are usually formed by the interaction of methane oxidizing archaea, sulfate reducing bacteria and cold seepage which contain abundant venting hydrocarbon gases. The presence of cold seepage carbonates on the seabed is one of the evidences that the area exist venting hydrocarbon gases, which are usually result by the dissociation of gas hydrate. The cold seepage property and fluid flow rate can influence the oxidation-deoxidation environment of the bottom water and sediment. Many previous studies focused on the mineral composition, microstructure, elemental composition, isotope composition of the cold seepage carbonates and isotopic dating for the cold seepage carbonates. The isotopic dating for the cold seepage carbonates can provide the information of the gas hydrate formation and dissociation in some area of the South China Sea. High precision TIMS-U dating and 14C dating are used as routine method for the dating of the Quaternary carbonates and fossils. The cold seepage carbonates in the study include the samples collected by ROV on the seabed and the drilling for gas hydrate in the Pearl River Mouth Basin, eastern of the South China Sea. The authigenic carbonate occurred in different depth in the A, B and C drilling site. They may be represent different events of gas hydrate formation and dissociation in the Quaternary. The dating study for all the cold seepage carbonates can provide the relative accurate eras of the gas hydrate dissociation events in certain area of the South China Sea.

  1. 33 CFR 117.683 - Pearl River.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Pearl River. 117.683 Section 117.683 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Mississippi § 117.683 Pearl River. See § 117.486, Pearl...

  2. 33 CFR 117.683 - Pearl River.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Pearl River. 117.683 Section 117.683 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Mississippi § 117.683 Pearl River. See § 117.486, Pearl...

  3. 33 CFR 117.683 - Pearl River.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Pearl River. 117.683 Section 117.683 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Mississippi § 117.683 Pearl River. See § 117.486, Pearl...

  4. 33 CFR 117.683 - Pearl River.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Pearl River. 117.683 Section 117.683 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Mississippi § 117.683 Pearl River. See § 117.486, Pearl...

  5. 33 CFR 117.683 - Pearl River.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Pearl River. 117.683 Section 117.683 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Mississippi § 117.683 Pearl River. See § 117.486, Pearl...

  6. Mesozoic deformation in the Chaoshan Depression of the Pearl River Mouth Basin, northern South China Sea

    NASA Astrophysics Data System (ADS)

    Zhang, Jiangyang; Sun, Zhen; Zhang, Yunfan; Li, Fucheng

    2016-05-01

    Newly collected, high resolution multi-beam sonar data are combined with previous bathymetry data to produce an improved bathymetric map of Shatsky Rise oceanic plateau. Bathymetry data show that two massifs within Shatsky Rise are immense central volcanoes with gentle flank slopes declining from a central summit. Tamu Massif is a slightly elongated, dome-like volcanic edifice; Ori Massif is square shaped and smaller in area. Several down-to-basin normal faults are observed on the western flank of the massifs but they do not parallel the magnetic lineations, indicating that these faults are probably not related to spreading ridge faulting. Moreover, the faults are observed only on one side of the massifs, which is contrary to expectations from a mechanism of differential subsidence around the massif center. Multi-beam data show many small secondary cones with different shapes and sizes that are widely-distributed on Shatsky Rise massifs, which imply small late-stage magma sources scattered across the surface of the volcanoes in the form of lava flows or explosive volcanism. Erosional channels occur on the flanks of Shatsky Rise volcanoes due to mass wasting and display evidence of down-slope sediment movement. These channels are likely formed by sediments spalling off the edges of summit sediment cap.

  7. 33 CFR 117.486 - Pearl River.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Pearl River. 117.486 Section 117.486 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Louisiana § 117.486 Pearl River. (a) The draw of the...

  8. 33 CFR 117.486 - Pearl River.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Pearl River. 117.486 Section 117.486 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Louisiana § 117.486 Pearl River. (a) The draw of the...

  9. 33 CFR 117.486 - Pearl River.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Pearl River. 117.486 Section 117.486 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Louisiana § 117.486 Pearl River. (a) The draw of the...

  10. 33 CFR 117.486 - Pearl River.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Pearl River. 117.486 Section 117.486 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Louisiana § 117.486 Pearl River. (a) The draw of the...

  11. 33 CFR 117.486 - Pearl River.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Pearl River. 117.486 Section 117.486 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Louisiana § 117.486 Pearl River. (a) The draw of the...

  12. 14C as a tool for evaluating riverine POC sources and erosion of the Zhujiang (Pearl River) drainage basin, South China

    NASA Astrophysics Data System (ADS)

    Wei, Xiuguo; Yi, Weixi; Shen, Chengde; Yechieli, Yoseph; Li, Ningli; Ding, Ping; Wang, Ning; Liu, Kexin

    2010-04-01

    Radiocarbon can serve as a powerful tool for identifying sources of organic carbon and evaluating the erosion intensity in river drainage basins. In this paper we present 14C-AMS measurements of particulate organic carbon (POC) collected from the three major tributaries of the Zhujiang (Pearl River) system: the Xijiang (Western River), Beijiang (Northern River) and Dongjiang (Eastern River) rivers. Furthermore, we discuss the distribution of POC 14C apparent ages and the related watersheds erosion of these rivers. Results yield Δ 14C values of -425‰ to -65‰ which indicate that the 14C apparent ages of suspended POC in the entire area are in the range of 540-4445 years. The POC apparent ages from Xijiang are mostly between 2000 and 4000 years, while in Dongjiang they mostly range from 540 to 1010 years. These 14C apparent ages indicate that the watershed erosion of the Xijiang is more severe than that of the Dongjiang. This is in agreement with other data showing deeper erosion in Xijiang due to human activities.

  13. Development of Paleogene depressions and deposition of Lacustrine source rocks in the Pearl River Mouth basin, northern margin of the South China Sea

    SciTech Connect

    Wang, Chunxiu; Sun, Yuxiao

    1994-11-01

    A more accurate, integrated chronostratigraphic framework is applied to the analysis of the development of Paleogene depressions in the Pearl River Mouth basin. The results of our study show that the development of these depressions was characterized by at least three rifting or basin-forming phases occurring during these periods: late Paleocene (Late Cretaceous?)-middle Eocene, late Eocene-early Oligocene, and middle-Oligocene-late Oligocene. The transition from rifting stage to postrifting stage in the basin is about 10 m.y. later than the initial spreading of the South China Sea. The prologue of the spreading of the South China Sea began as early as the end of the middle Eocene. Lacustrine source rocks deposited during the basin`s first rifting phase are thick and of good quality; source rocks deposited during the last two phases, which had a sharp increase in sedimentation rate, are of lesser quality, with the exception being those areas where deposits were out of reach of sediment from the northern mainland.

  14. Geophysical Investigations of Crustal Structure of Cenozoic Rifting Basin in Passive Continental Margin: The Pearl River Mouth Basin, South China Sea

    NASA Astrophysics Data System (ADS)

    Qiu, N.

    2015-12-01

    The Pearl River Mouth Basin (PRMB) initiated in the Cenozoic with rifting, and became a part of the South China Sea (SCS) rifted passive continental margin. Decades of industrial exploration in this proliferous region have produced lots of geological and geophysical data. In order to get the first order crustal scale structure, we integrate well data, multi channel seismic reflection, and the observed gravity field for a joint inversion. The Cenozoic sediment of PRMB comprises of several stratigraphic sequences, including the terrestrial facies, the marine facies and the transitional facies. The sedimentary model takes into account of two main parts that refer to the Paleogene to Neogene unit and the Neogene to Quaternary unit, which were respectively formed during the intercontinental rifting stage and the passive continental margin post-rifting stage. By integrating long cable seismic profiles, interval velocity and performing gravity modelling, we have modelled the sub-sedimentary basement. There are some high-density bodies in the lower part of crust (ρ> 2.8 g/cm3), most of which were probably made up by emplacement from the upper mantle into the lower crust. The crystalline continental crust spans from unstretched domains (as thick as about 25 km) near the continental shelf to extremely thinned domains (of less than 6 km thickness) in the sag center. The presented crust-scale structural model shows that the crystalline crust of the Liwan Sag (LWS) and Baiyun sag (BYS) are thinner than other parts of PRMB, especially, the crystalline crust thickness in BYS is even less than 6 km. we could preliminary infer that the crystalline crust may be more easily stretched and be thinned by the existence of hot and soft substances at the lower crust.

  15. Investigation of Pearl River data collection system

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The reliability of employing NASA developed remote sensing for in situ near real time monitoring of water quality in the Pearl River is evaluated. The placement, operation and maintenance of a number of NASA developed data collection platforms (DCP's) on the Pearl River are described. The reception, processing, and retransmission of water quality data from an ERTS satellite to the Mississippi Air and Water Pollution Control Commission (MAWPCC) via computer linkup are assessed.

  16. 33 CFR 117.511 - West Pearl River.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false West Pearl River. 117.511 Section... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Louisiana § 117.511 West Pearl River. (a) The draw of the Norfolk Southern railroad bridge, mile 22.1 at Pearl River Station, shall open on signal if...

  17. 33 CFR 117.511 - West Pearl River.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false West Pearl River. 117.511 Section... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Louisiana § 117.511 West Pearl River. (a) The draw of the Norfolk Southern railroad bridge, mile 22.1 at Pearl River Station, shall open on signal if...

  18. 33 CFR 117.511 - West Pearl River.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false West Pearl River. 117.511 Section... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Louisiana § 117.511 West Pearl River. (a) The draw of the Norfolk Southern railroad bridge, mile 22.1 at Pearl River Station, shall open on signal if...

  19. Partners in Leadership for Pearl River

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Members of the 2007 class of Partners in Leadership toured NASA Stennis Space Center in Hancock County, Miss., on Jan. 11. They visited the center's B Test Stand, part of the center's rocket engine test complex. The Partners in Leadership training program is designed to teach Pearl River County leaders about their county's government, economic development, health and human services, history and arts, environment and education during a 10-month period. The program, sponsored by the Partners for Pearl River County, helps fulfill the mission of the economic and community development agency.

  20. Middle Miocene reworked turbidites in the Baiyun Sag of the Pearl River Mouth Basin, northern South China Sea margin: Processes, genesis, and implications

    NASA Astrophysics Data System (ADS)

    Gong, Chenglin; Wang, Yingmin; Zheng, Rongcai; Hernández-Molina, F. Javier; Li, Yun; Stow, Dorrik; Xu, Qiang; Brackenridge, Rachel E.

    2016-10-01

    Our understanding of reworked turbidites is still in its infancy, and their flow processes and genesis still remain understudied. Core data from the middle Miocene Zhujiang Formation in the Pearl River Mouth Basin allow us to differentiate reworked turbidites, yielding two main contributions. Firstly, reworked turbidites are distinguished from turbidites by the association of traction structures and tidal signatures, which occur in discrete units rather than forming a classic "Bouma Sequence" for turbidites. Sedimentological characteristics of reworked turbidites proposed here will help to obtain a robust set of diagnostic criteria for the recognition of deep-water non-turbidite deepwater units as reservoirs. Secondly, our results suggest that, in the down-slope direction, classic detritus carried in turbidity flows would synchronously be bidirectionally reworked by internal tides and waves, resulting in tidal signatures seen in the interpreted reworked turbidites. In the along-slope direction, upper parts of dilute turbidity currents would mix vertically with seawater, and muddy fines would be winnowed away by contour currents, whereas lower parts of dilute turbidity currents would probably drop their coarse particles, resulting in traction structures recognized in the documented reworked turbidites. Our work highlights the influence of bottom currents on the development and modification of turbidites and suggests that reworked turbidites were created by the combined action of down-slope transport and reworking and along-slope winnowing and sorting, helping to better understand flow processes and genesis of non-turbidite reservoirs with a great economic interest.

  1. Comprehensive Assessment Report, Pearl River School District.

    ERIC Educational Resources Information Center

    Pearl River Union Free School District, NY.

    The 1986 Comprehensive Assessment Report on the Pearl River (New York) Public School District describes the district's 1,807-student population (grades K through 12), the community, and its schools. Tables provide data on: (1) students' performance on standardized tests, including the California Achievement/Aptitude Tests; New York State Pupil…

  2. Improved correction method for using passive air samplers to assess the distribution of PCNs in the Dongjiang River basin of the Pearl River Delta, South China

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Li, Qilu; Xu, Yue; Luo, Chunling; Liu, Xiang; Li, Jun; Zhang, Gan

    2012-07-01

    An improved correction method was established using passive air samplers to assess the distributions of polychlorinated naphthalenes (PCNs) in the eastern Pearl River Delta, South China. This method was based on a joint correction that used the active air sampling rate and the addition of depuration compounds. As a correction factor, the depuration compounds' properties do not need to be similar to the target compounds. The total PCN air concentrations ranged from 6.4 to 832, with an average of 148 ± 201 pg m-3 in the study area, while the TEQ of the PCNs ranged from 1.2 × 10-4 to 2.6 × 10-2 pg m-3. High concentrations of PCNs were mostly observed in the highly industrialized areas. The PCN air levels were remarkably increased in winter compared with summer. Tri-CNs was the most dominant homologue group, while CN 24 was the most dominant congener. The high proportion of combustion-related PCNs suggests that the contribution of combustion sources to the PCN air burden has been significant recently in comparison with historical emissions.

  3. 33 CFR 117.511 - West Pearl River.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false West Pearl River. 117.511 Section 117.511 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Louisiana § 117.511 West Pearl River. (a) The draw...

  4. 33 CFR 117.511 - West Pearl River.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false West Pearl River. 117.511 Section 117.511 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Louisiana § 117.511 West Pearl River. The draw of...

  5. Rocket Barge on the Pearl River

    NASA Technical Reports Server (NTRS)

    1966-01-01

    During the early 1970's French settlers once cautiously sailed up the beautiful Pearl River in Hancock County looking for a New World home. Later, swashbuckling pirates took refuge in this historic stream in South Mississippi after raiding merchant ships. Today, a different cargo leaves a wake in the blue waters en route to National Aeronautics and Space Administration's Mississippi Test Facility. The huge barge being pushed above contains the free world's largest rocket booster, on its way to the national rocket testing facility for extensive captive firings. Later versions of this huge rocket, first satge of the Apollo/Saturn V, will boost the first Americans to the Moon.

  6. River basin administration

    NASA Astrophysics Data System (ADS)

    Management of international rivers and their basins is the focus of the Centre for Comparative Studies on (International) River Basin Administration, recently established at Delft University of Technology in the Netherlands. Water pollution, sludge, and conflicting interests in the use of water in upstream and downstream parts of a river basin will be addressed by studying groundwater and consumption of water in the whole catchment area of a river.Important aspects of river management are administrative and policy aspects. The Centre will focus on policy, law, planning, and organization, including transboundary cooperation, posing standards, integrated environmental planning on regional scale and environmental impact assessments.

  7. Water quality survey of Mississippi's Upper Pearl River.

    PubMed

    Tagert, Mary Love M; Massey, Joseph H; Shaw, David R

    2014-05-15

    Surface water samples were collected from May 2002 through May 2003 at seven locations within the Upper Pearl River Basin (UPRB) in east-central Mississippi to assess levels of pesticide impairment in the watershed. Depth-integrated samples were collected at three sites from September 2001 through January 2003 for total dissolved solid (TDS) analysis. Samples were extracted via Solid Phase Extraction (SPE) and analyzed for fifteen pesticides: triclopyr, 2,4-D, tebuthiuron, simazine, atrazine, metribuzin, alachlor, metolachlor, cyanazine, norflurazon, hexazinone, pendimethalin, diuron, fluometuron, and the dichlorodiphenyltrichloroethane (DDT) degradation product p,p'-DDE. Of the analyzed compounds, hexazinone was detected in 94% of the samples, followed by metolachlor (76%), tebuthiuron (48%), and atrazine (47%). Metribuzin was detected in 6% of the samples and was the least detected compound of those analyzed. Sediment concentrations ranged from 20.64 mg/L at Burnside to 42.20mg/L at Carthage, which also had the highest cumulative total sediment concentration at 4,009 mg/L.

  8. [Forest biomass and its dynamics in Pearl River Delta].

    PubMed

    Yang, Kun; Guan, Dong-Sheng

    2007-04-01

    Based on the observation data obtained from 69 sampling sites of different age class forests, and by using biomass expansion factor function, the regression equations of stand biomass and volume of the main forest types in Pearl River Delta were built, and the regional forest biomass and its dynamics were estimated on the basis of forest inventory data. The results showed that most of the forests in Pearl River Delta were of young-medium age, which occupied 80% or more of the total forest area, and their undergrowth biomass accounted for about 33% of the total forest biomass, indicating that the regional forest biomass could be estimated more exactly if undergrowth biomass was fully concerned. In the periods of 1989-1993, 1994-1998 and 1999-2003, the forest biomass in Pearl River Delta increased by 14. 67 x 10(6) t in total, among which, Pinus massoniana forest, evergreen broadleaf forest, and conifer and deciduous mixed forest contributed about 80%. Young-medium age forest biomass accounted for 90% of the total, but the proportion was decreased gradually. The forest area in the Delta almost kept unvaried, and the forest biomass was increasing year after year, with an annual increment of about 1.2%. Better fostering and managing the existing forests is very important to have more forest biomass and better environmental effect that regional forests offered.

  9. Freshwater Fossil Pearls from the Nihewan Basin, Early Early Pleistocene

    PubMed Central

    Li, Su-Ping; Yao, Pei-Yi; Li, Jin-Feng; Ferguson, David Kay; Min, Long-Rui; Chi, Zhen-Qing; Wang, Yong; Yao, Jian-Xin; Sha, Jin-Geng

    2016-01-01

    Fossil blister pearls attached to the shells of an Anodonta mollusk from China, early Early Pleistocene, are reported here for the first time. The pearls were investigated in detail using a variety of methods. Micro-CT scanning of the fossil pearls was carried out to discover the inner structure and the pearl nucleus. Using CTAn software, changes in the gray levels of the biggest pearl, which reflect the changing density of the material, were investigated. The results provide us with some clues on how these pearls were formed. Sand grains, shell debris or material with a similar density could have stimulated the development of these pearls. X-ray diffraction analysis of one fossil pearl and the shell to which it was attached reveals that only aragonite exists in both samples. The internal structures of our fossil shells and pearls were investigated using a Scanning Electron Microscope. These investigations throw some light on pearl development in the past. PMID:27760154

  10. River basin management

    SciTech Connect

    Newsome, D.H.; Edwards, A.M.C.

    1984-01-01

    The quality of water is of paramount importance in the management of water resources - including marine waters. A quantitative knowledge of water quality and the factors governing it is required to formulate and implement strategies requiring an inter-disciplinary approach. The overall purpose of this conference was to bring together the latest work on water quality aspects of river basin management. These proceedings are structured on the basis of five themes: problems in international river basins; the contribution of river systems to estuarial and marine pollution; the setting of standards; monitoring; and practical water quality management including use of mathematical models. They are followed by papers from the workshop on advances in the application of mathematical modelling to water quality management, which represent some of the current thinking on the problems and concepts of river basin management.

  11. Antibiotics in riverine runoff of the Pearl River Delta and Pearl River Estuary, China: concentrations, mass loading and ecological risks.

    PubMed

    Xu, Weihai; Yan, Wen; Li, Xiangdong; Zou, Yongde; Chen, Xiaoxiang; Huang, Weixia; Miao, Li; Zhang, Ruijie; Zhang, Gan; Zou, Shichun

    2013-11-01

    Ten antibiotics belonging to three groups (macrolides, fluoroquinolones and sulfonamides) were investigated in riverine runoff of the Pearl River Delta (PRD) and Pearl River Estuary (PRE), South China for assessing the importance of riverine runoff in the transportation of contaminants from terrestrial sources to the open ocean. All antibiotics were detected in the eight outlets with concentrations ranging from 0.7 to 127 ng L(-1). The annual mass loadings of antibiotics from the PRD to the PRE and coast were 193 tons with 102 tons from the fluoroquinolone group. It showed that antibiotics decreased from the riverine outlets to the PRE and open ocean. Risk assessment showed that most of these antibiotics showed various ecological risks to the relevant aquatic organisms, in which ofloxacin (OFL), erythromycin (ETM) and ciprofloxacin (CIP) posed high ecological risks to the studied aquatic environments.

  12. Delaware River Basin

    USGS Publications Warehouse

    Fischer, Jeffrey M.

    1999-01-01

    Assessing the quality of water in every location of the Nation would not be practical. Therefore, NAWQA investigations are conducted within 59 selected areas called study units (fig. 1). These study units encompass important river and aquifer systems in the United States and represent the diverse geographic, waterresource, land-use, and water-use characteristics of the Nation. The Delaware River Basin is one of 15 study units in which work began in 1996. Water-quality sampling in the study unit will begin in 1999. This fact sheet provides a brief overview of the NAWQA program, describes the Delaware River Basin study unit, identifies the major water-quality issues in the basin, and documents the plan of study that will be followed during the study-unit investigation.

  13. Magnetic minerals in three Asian rivers draining into the South China Sea: Pearl, Red, and Mekong Rivers

    NASA Astrophysics Data System (ADS)

    Kissel, Catherine; Liu, Zhifei; Li, Jinhua; Wandres, Camille

    2016-05-01

    The use of the marine sedimentary magnetic properties, as tracers for changes in precipitation rate and in oceanic water masses transport and exchanges, implies to identify and to characterize the different sources of the detrital fraction. This is of particular importance in closed and/or marginal seas such as the South China Sea. We report on the magnetic properties of sedimentary samples collected in three main Asian rivers draining into the South China Sea: the Pearl, Red, and Mekong Rivers. The geological formations as well as the present climatic conditions are different from one catchment to another. The entire set of performed magnetic analyses (low-field magnetic susceptibility, ARM acquisition and decay, IRM acquisition and decay, back-field acquisition, thermal demagnetization of three-axes IRM, hysteresis parameters, FORC diagrams, and low-temperature magnetic measurements) allow us to identify the magnetic mineralogy and the grain-size distribution when magnetite is dominant. Some degree of variability is observed in each basin, illustrating different parent rocks and degree of weathering. On average it appears that the Pearl River is rich in magnetite along the main stream while the Mekong River is rich in hematite. The Red River is a mixture of the two. Compared to clay mineral assemblages and major element contents previously determined on the same samples, these new findings indicate that the magnetic fraction brings complementary information of great interest for environmental reconstructions based on marine sediments from the South China Sea.

  14. Occurrence and distribution of hexabromocyclododecane in sediments from seven major river drainage basins in China.

    PubMed

    Li, Honghua; Shang, Hongtao; Wang, Pu; Wang, Yawei; Zhang, Haidong; Zhang, Qinghua; Jiang, Guibin

    2013-01-01

    The concentrations and geographical distribution of hexabromocyclododecane (HBCD) were investigated in 37 composite surface sediments from seven major river drainage basins in China, including Yangtze River, Yellow River, Pearl River, Liaohe River, Haihe River, Tarim River and Ertix River. The detection frequency of HBCD was 54%, with the concentrations ranged from below limit of detection (LOD) to 206 ng/g dry weight. In general, the geographical distribution showed increasing trends from the upper reaches to the lower reaches of the rivers and from North China to Southeast China. Compared to other regions in the world, the average concentration of HBCD in sediments from Yangtze River drainage basin was at relatively high level, whereas those from other six river drainage basins were at lower or similar level. The highest HBCD concentration in sediment from Yangtze River Delta and the highest detection frequency of HBCD in Pearl River drainage basins suggested that the industrial and urban activities could evidently affect the HBCD distribution. HBCD diastereoisomer profiles showed that gamma-HBCD dominated in most of the sediment samples, followed by alpha- and beta-HBCD, which was consistent with those in the commercial HBCD mixtures. Further risk assessment reflected that the average inventories of HBCD were 18.3, 5.87, 3.92, 2.50, 1.77 ng/cm2 in sediments from Pearl River, Haihe River, Tarim River, Yellow River and Yangtze River, respectively. PMID:23586301

  15. Occurrence and distribution of hexabromocyclododecane in sediments from seven major river drainage basins in China.

    PubMed

    Li, Honghua; Shang, Hongtao; Wang, Pu; Wang, Yawei; Zhang, Haidong; Zhang, Qinghua; Jiang, Guibin

    2013-01-01

    The concentrations and geographical distribution of hexabromocyclododecane (HBCD) were investigated in 37 composite surface sediments from seven major river drainage basins in China, including Yangtze River, Yellow River, Pearl River, Liaohe River, Haihe River, Tarim River and Ertix River. The detection frequency of HBCD was 54%, with the concentrations ranged from below limit of detection (LOD) to 206 ng/g dry weight. In general, the geographical distribution showed increasing trends from the upper reaches to the lower reaches of the rivers and from North China to Southeast China. Compared to other regions in the world, the average concentration of HBCD in sediments from Yangtze River drainage basin was at relatively high level, whereas those from other six river drainage basins were at lower or similar level. The highest HBCD concentration in sediment from Yangtze River Delta and the highest detection frequency of HBCD in Pearl River drainage basins suggested that the industrial and urban activities could evidently affect the HBCD distribution. HBCD diastereoisomer profiles showed that gamma-HBCD dominated in most of the sediment samples, followed by alpha- and beta-HBCD, which was consistent with those in the commercial HBCD mixtures. Further risk assessment reflected that the average inventories of HBCD were 18.3, 5.87, 3.92, 2.50, 1.77 ng/cm2 in sediments from Pearl River, Haihe River, Tarim River, Yellow River and Yangtze River, respectively.

  16. 76 FR 13616 - Picayune Wood Treating Site Picayune, Pearl River County, MS; Notice of Settlement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-14

    ... AGENCY Picayune Wood Treating Site Picayune, Pearl River County, MS; Notice of Settlement AGENCY... Picayune Wood Treating Site located in Picayune, Pearl River County, Mississippi for publication. DATES..., identified by Docket ID No. EPA-RO4- SFUND-2011-0201 or Site name Picayune Wood Treating Superfund Site...

  17. 78 FR 44932 - Notice of Intent To Prepare a Draft Environmental Impact Statement for the Pearl River Section...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-25

    ... Statement for the Pearl River Section 211 Watershed Project for the Pearl River Watershed, Mississippi...: Pursuant to Section 211 of the Water Resources Development Act of 1996, the Rankin-Hinds Pearl River Flood... conducting a re-analysis of all engineering, economic, and environmental factors relative to...

  18. Floodplain influence on carbon speciation and fluxes from the lower Pearl River, Mississippi

    NASA Astrophysics Data System (ADS)

    Cai, Yihua; Shim, Moo-Joon; Guo, Laodong; Shiller, Alan

    2016-08-01

    To investigate the floodplain influence on carbon speciation and export to the northern Gulf of Mexico, water samples were collected monthly from two sites in the East Pearl River (EPR) basin during 2006-2008. Additionally, four spatial surveys in the river basin between those two sites were also conducted. Compared with the upstream sampling site at Bogalusa, MS, dissolved inorganic carbon (DIC) and particulate organic carbon (POC) concentrations were 36% and 55% lower, respectively, and dissolved organic carbon (DOC) concentration was 49% higher at the downstream Stennis Space Center (SSC) site. In addition, the bulk DOC pool at SSC had a higher colloidal fraction than at Bogalusa (75% vs. 68%). Detailed spatial surveys revealed the differences between the upstream and downstream stations resulted both from input from Hobolochitto Creek, a tributary of the EPR, and from influence of the swamp-rich floodplain. The contributions from Hobolochitto Creek to the carbon pool in the EPR basin were lowest during a high flow event and reached a maximum during the dry season. Meanwhile, the floodplain in the EPR basin acted as a significant sink for DOC, POC and particulate nitrogen during summer and for suspended sediment during a high flow event. However, the floodplain was converted into a source of suspended sediment, DOC, and POC to the EPR during winter, revealing a dynamic nature and seasonality in the floodplain influence. Consistent with its dominant forest coverage, abundant wetlands along the river corridor, and mild anthropogenic disturbance, the Pearl River basin above Bogalusa generally had higher yields of DOC and POC (1903 and 1386 kg-C km-2 yr-1, respectively), but a lower yield of DIC (2126 kg-C km-2 yr-1) compared to other North American rivers. An estimation based on a mass balance approach suggests the interactions between floodplain and the main river stem could reduce the annual DIC and POC export fluxes from downstream of the EPR by 24% and 40

  19. Trinity river basin, Texas

    USGS Publications Warehouse

    Ulery, Randy L.; Van Metre, Peter C.; Crossfield, Allison S.

    1993-01-01

    In 1991 the Trinity River Basin National Water-Quality Assessment (NAWQA) will include assessments of surface-water and ground-water quality. Initial efforts have focused on identifying water-quality issues in the basin and on the environmental factors underlying those issues. Physical characteristics described include climate, geology, soils, vegetation, physiography, and hydrology. Cultural characteristics discussed include population distribution, land use and land cover, agricultural practices, water use, an reservoir operations. Major water-quality categories are identified and some of the implications of the environmental factors for water quality are presented.

  20. Taunton River basin

    USGS Publications Warehouse

    Williams, John R.; Willey, Richard E.

    1970-01-01

    This report presents in tabular form selected records of wells, test wells, and borings collected during a study of the basin from 1966 to 1968 in cooperation with the Massachusetts Water Resources Commission, and during earlier studies. This report is released in order to make available to the public and to local, state, and federal agencies basic ground-water information that may aid in planning water-resources development. Basic records contained in this report will complement an interpretative report on the Taunton River basin to be released at a later date.

  1. Estimation of bed shear stresses in the pearl river estuary

    NASA Astrophysics Data System (ADS)

    Liu, Huan; Wu, Jia-xue

    2015-03-01

    Mean and fluctuating velocities were measured by use of a pulse coherent acoustic Doppler profiler (PC-ADP) and an acoustic Doppler velocimeter in the tidal bottom boundary layer of the Pearl River Estuary. The bed shear stresses were estimated by four different methods: log profile (LP), eddy correlation (EC), turbulent kinetic energy (TKE), and inertial dissipation (ID). The results show that (a) all four methods for estimating bed stresses have advantages and disadvantages, and they should be applied simultaneously to obtain reliable frictional velocity and to identify potential sources of errors; (b) the LP method was found to be the most suitable to estimate the bed stresses in non-stratified, quasi-steady, and homogeneous flows; and (c) in the estuary where the semi-diurnal tidal current is dominant, bed shear stresses exhibit a strong quarter-diurnal variation.

  2. [Numerical simulation study of SOA in Pearl River Delta region].

    PubMed

    Cheng, Yan-li; Li, Tian-tian; Bai, Yu-hua; Li, Jin-long; Liu, Zhao-rong; Wang, Xue-song

    2009-12-01

    Secondary organic aerosols (SOA) is an important component of the atmospheric particle pollution, thus, determining the status and sources of SOA pollution is the premise of deeply understanding the occurrence, development law and the influence factors of the atmospheric particle pollution. Based on the pollution sources and meteorological data of Pearl River Delta region, the study used the two-dimensional model coupled with SOA module to stimulate the status and source of SOA pollution in regional scale. The results show: the generation of SOA presents obvious characteristics of photochemical reaction, and the high concentration appears at about 14:00; SOA concentration is high in some areas of Guangshou and Dongguan with large pollution source-emission, and it is also high in some areas of Zhongshan, Zhuhai and Jiangmen which are at downwind position of Guangzhou and Dongguan. Contribution ratios of several main pollution sources to SOA are: biogenic sources 72.6%, mobile sources 30.7%, point sources 12%, solvent and oil paint sources 12%, surface sources less than 5% respectively. PMID:20187369

  3. Temporal variation and regional transfer of heavy metals in the Pearl (Zhujiang) River, China.

    PubMed

    Zhen, Gengchong; Li, Ying; Tong, Yindong; Yang, Lei; Zhu, Yan; Zhang, Wei

    2016-05-01

    Heavy metals are highly persistent in water and have a particular significance in ecotoxicology. Heavy metals loading from the Pearl River are likely to cause significant impacts on the environment in the South China Sea and the West Pacific. In this study, using monthly monitoring data from a water quality monitoring campaign during 2006-2012, the temporal variation and spatial transfer of six heavy metals (lead (Pb), copper (Cu), cadmium (Cd), zinc (Zn), arsenic (As), and mercury (Hg)) in the Pearl River were analyzed, and the heavy metal fluxes into the sea were calculated. During this period, the annual heavy metal loads discharged from the Pearl River into the South China Sea were 5.8 (Hg), 471.7 (Pb), 1524.6 (Cu), 3819.6 (Zn), 43.9 (Cd), and 621.9 (As) tons, respectively. The metal fluxes showed a seasonal variation with the maximum fluxes occurring from June to July. There is a close association between metal fluxes and runoff. The analysis of the heavy metal transfer from the upstream to the downstream revealed that the transfer from the upstream accounted for a major portion of the heavy metals in the Pearl River Delta. Therefore, earlier industry relocation efforts in the Pearl River watershed may have limited effect on the water quality improvement in surrounding areas. It is suggested that watershed-based pollution control measures focusing on wastewater discharge in both upstream and downstream areas should be developed and implemented in the future.

  4. 77 FR 45653 - Yakima River Basin Conservation Advisory Group; Yakima River Basin Water Enhancement Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-01

    ... Bureau of Reclamation Yakima River Basin Conservation Advisory Group; Yakima River Basin Water... on the structure, implementation, and oversight of the Yakima River Basin Water Conservation Program... of the Water Conservation Program, including the applicable water conservation guidelines of...

  5. Assessing impact of urbanization on river water quality in the Pearl River Delta Economic Zone, China.

    PubMed

    Ouyang, Tingping; Zhu, Zhaoyu; Kuang, Yaoqiu

    2006-09-01

    The Pearl River Delta Economic Zone is one of the most developed regions in China. It has been undergoing a rapid urbanization since the reformation and opening of China in 1978. This process plays a significant impact on the urban environment, particularly river water quality. The main goal of this present study is to assess the impact of urban activities especially urbanization on river water quality for the study area. Some Landsat TM images from 2000 were used to map the areas for different pollution levels of urban river sections for the study area. In addition, an improved equalized synthetic pollution index method was utilized to assess the field analytical results. The results indicate that there is a positive correlation between the rapidity of urbanization and the pollution levels of urban river water. Compared to the rural river water, urban river water was polluted more seriously. During the urban development process, urbanization and urban activities had a significant negative impact on the river water quality.

  6. [Community structure of planktonic rotifers in the Pearl River Delta].

    PubMed

    Gao, Yuan; Li, Xin-Hui; Lai, Zi-Ni; Yu, Jing; Wang, Chao; Zeng, Yan-Yi; Liu, Qian-Fu; Yang, Wan-Ling

    2014-07-01

    Four ecological investigations were carried out on planktonic rotifers in Pearl River Delta in 2012. The community structure, including spatial and temporal patterns of species composition, dominant species, biomass and biodiversity, was investigated. The correlation between the community structure of rotifers and the environmental factors was discussed. Moreover, the aggregation structures of rotifers were analyzed. A total of 53 rotifer species were found. Dominant species changed markedly with season and space. Polyarthra trigla had higher dominance. In terms of seasonal changes, the density and biomass were higher in dry season than in wet season, while the biodiversity and evenness indices were vice versa. The biomass and biodiversity of rotifers showed highly significant differences among seasons. In terms of spatial distribution, the average density and the average biomass showed an increase from the southwest to the northeast. The highest density and biomass were recorded in Shiqiao. The biodiversity and evenness indices had an opposite spatial distribution, with the highest values being recorded in Qingqi. The rotifer density was significantly different among the investigated sites, while the biomass and biodiversity were not significantly different. Correlation analysis demonstrated a highly significant positive correlation between rotifer density and biomass, as well as between biodiversity and evenness indices, and a highly negative correlation between biodiversity and biomass. The biodiversity and evenness indices both decreased markedly with the increase of biomass. Principal component analysis indicated that the rotifer density was closely correlated with environment factors, such as water temperature, pH, dissolved oxy- gen, chlorophyll a content, total phosphorus, and total nitrogen, in different seasons. Aggregation analysis based on rotifer density revealed five aggregation structures in the investigated sites, indicating significant differences

  7. Morphotectonic, seismic characteristics and development of the Off Pearl River Mouth Canyon, North South China Sea margin

    NASA Astrophysics Data System (ADS)

    Ding, W.

    2009-12-01

    the paleo-Pearl River mouths. This is indicated by the sedimentary structures with buried fluvial channels in several sequence boundaries with the period corresponding to each lowstand period since the gradient of the slope become ongoing to the present status (16.5Ma). Deep-water fans were figured out in corresponding lowstand system tracts in Baiyun Depression. Periodic sea level falling, abundant sediment supply form the Paleo-Pearl River and long-term thermal subsidence of Baiyun Depression in Pearl River Mouth Basin resulted in the development of the OPRM Canyon and other gullies. The geometry of the Canyon with different orientations was also associated with the structural background. The possible relationship between the changing direction along the canyon and the local tectonics are discussed. We believed that fault-controlled zones of weakness pre-determined the location of the distal canyon and also facilitated erosional downcutting during its formative stages.

  8. Central Nebraska river basins Nebraska

    USGS Publications Warehouse

    Huntzinger, Thomas L.; Ellis, Michael J.

    1993-01-01

    The Central Nebraska Basins (NAWQA) study unit includes the Platte River and two major tributaries, the Loup and Elkhorn Rivers. Platte River flows are variable of diversions, but the Loup and Elkhorn Rivers originate in an area of dune sand covered by grassland that generates consistent base flows. Ground water has no regional confining units and the system is a water table aquifer throughout. Macroinvertebrate and fish taxa were related to stream flow. One of the four wetland complexes includes habitat for threatened and endangered bird species. A water quality assessments will be based on the differences in environmental setting in each of four subunits within the study unit.

  9. EAARL Coastal Topography-Pearl River Delta 2008: First Surface

    USGS Publications Warehouse

    Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Miner, Michael D.; Michael, D.; Yates, Xan; Bonisteel, Jamie M.

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived first surface (FS) topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the University of New Orleans (UNO), Pontchartrain Institute for Environmental Sciences (PIES), New Orleans, LA; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the Pearl River Delta in Louisiana and Mississippi, acquired March 9-11, 2008. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the

  10. EAARL Coastal Topography-Pearl River Delta 2008: Bare Earth

    USGS Publications Warehouse

    Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Miner, Michael D.; Yates, Xan; Bonisteel, Jamie M.

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived bare earth (BE) topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the University of New Orleans (UNO), Pontchartrain Institute for Environmental Sciences (PIES), New Orleans, LA; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the Pearl River Delta in Louisiana and Mississippi, acquired March 9-11, 2008. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the

  11. [Relationship between dissolved organic carbon and DBP in the Pearl River water].

    PubMed

    He, Hong-Wei; Zhou, Da-Cheng; Wang, Bao-Qiang; Liang, Yan-Hong

    2012-09-01

    Dissolved organic carbon (DOC) in the Pearl River system in Guangdong Province was fractioned by using XAD resins into humic substances and other fractions. The concentration and distribution of DOC, SUVA254, trihalomethanes formation potential (THMFP) and relationships between DOC and THMFP were analyzed. The 2-year study demonstrated that the DOC concentration of Pearl River ranged from 0.7 to 33.0 mg x L (-1). On the other hand, the trihalomethanes formation potential (THMFP) in Pearl River was 30.39-1 091.52 microg x L(-1), which showd a linear relationship with the DOC concentration. Spatially, the DOC concentration and THMFP increased downstream along each tributary; however, the humic substances mitigated to the opposite. During the chlorination, humic substances were the main precursors of disinfection by-products (generating 64.6% of THM) in Pearl River and the specific trihalomethanes formation potential (STHMFP) of humic substances was over 2 times higher as the other fractions. In addition, SUVA254 was proved to provide a reference indicator in testing the precursors of disinfection by-products.

  12. Private Challenges to Public Dominance: The Resurgence of Private Education in the Pearl River Delta.

    ERIC Educational Resources Information Center

    Mok, Ka-Ho

    1997-01-01

    Examines the policy context in which private education has emerged in post-Mao China. Uses three case studies of private schools/colleges to explore how intellectuals and educators in the Pearl River Delta (Guangdong province) have persevered to assert their academic independence, offer a new agenda for education, and redefine the private-public…

  13. Sources of excess urban carbonaceous aerosol in the Pearl River delta region, China

    EPA Science Inventory

    Carbonaceous aerosol is one of the important constituents of fine particulate matter (PM2.5) in Southern China, including the Pearl River Delta (PRD) region and Hong Kong (HK). During the study period (October and December of 2002, and March and June of 2003), the monthly average...

  14. Hurricane Katrina impact on water quality in the East Pearl River, Mississippi

    NASA Astrophysics Data System (ADS)

    Shiller, Alan M.; Shim, Moo-Joon; Guo, Laodong; Bianchi, Thomas S.; Smith, Richard W.; Duan, Shuiwang

    2012-01-01

    SummaryHurricanes and other intense storms have previously been reported to cause short-term changes in surface water quality. We examined the water quality of the East Pearl River in southern Mississippi both before and after Hurricane Katrina caused extensive damage to the watershed in 2005. Our post-storm sampling began two months after the hurricane, and thus we missed any immediate short-term consequences. However, sampling over the following two years allowed us to examine whether damage to the watershed resulted in significant longer-term effects on water quality. Interpretation of the time series data is complicated by the natural seasonal and climatic variability of the system. Thus, we utilized chemical property-property plots as well as semi-empirical relationships to compare pre- and post-storm water quality. Our analysis suggests that hurricane-induced vegetative destruction within this river basin has not substantially changed the concentrations of DOC, POC, SPM, pH, or dissolved Fe. However, lignin-phenol analysis of colloidal organic matter did show some significant changes in carbon-normalized concentration as well as in some degradation and source parameters. Nonetheless, even these changes were small and likely temporary. This lack of change may be partly due to the slow degradation of woody materials that occurs only over a period of a few years, even in the sub-tropical climate of this region. Also, transport of DOC material from the land, through the soils, and into the river is not always instantaneous because DOC may stay in soils for a long time. Our work can be examined in the context of other research focused on hurricane effects on different time scales. For instance, shorter term hurricane influences, such as immediate flooding, can cause concurrent, short-lived water quality changes. Likewise, if increased hurricane activity (as might result from climate change) results in permanent landscape or ecosystem changes, then significant long

  15. Long-term NO2 monitoring by satellite in the Pearl River Delta

    NASA Astrophysics Data System (ADS)

    Li, Long; Shi, Runhe; Liu, Pudong; Zhang, Jie

    2013-09-01

    Recently, the air quality has been continuing to deteriorate and threaten public health in the Pearl River Delta. China, the host country for the 2010 Asian Games, faced the great challenge of air quality issues, particularly in the Pearl River Delta, where the Asian Games were held. The major aim of this study is to reveal the spatial and temporal characteristics of NO2 in the Pearl River Delta during October 2004 to December 2010. The long-term characteristics and variations of the NO2 column concentration before and during the 2010 Asian Games were analyzed by using the NO2 product OMNO2e from the Ozone Monitoring Instrument (OMI). Results show that the annual average of the NO2 column concentration has a significant downward trend from 2005 to 2010 in the Pearl River Delta: the total column concentration of NO2 (TotNO2) in the atmosphere decreased from 9.207×1015 molec/cm2 to 8.173×1015 molec/cm2, with an average annual rate of -2.247%; the tropospheric column concentration of NO2 (TropNO2)decreased from 6.685×1015 molec/cm2 to 5.646×1015 molec/cm2, with an average annual rate of -3.109%. The ratio TropNO2/TotNO2 indicating the amount of NO2 exhausted by human activities also decreased from 0.726 in 2005 to 0.691 in 2010. During the 2010 Asian Games, the weekly average of the TropNO2 in Pearl River Delta was maintained at a low level. The NO2 average distribution in the Pearl River Delta is characterized by the maximum in the geometric center, outwardly smaller, and the shrinking areas with high TropNO2 concentration from 2005 to 2010. Foshan, Jiangmen and Kwangchowan were severely polluted cities during the Games. However, the air quality of the Pearl River Delta was improved compared to its historical periods due to governmental preventive/control measures during the 2010 Asian Games.

  16. Major ion chemistry and dissolved inorganic carbon cycling in a human-disturbed mountainous river (the Luodingjiang River) of the Zhujiang (Pearl River), China.

    PubMed

    Zhang, Shurong; Lu, X X; Sun, Huiguo; Han, Jingtai; Higgitt, David Laurence

    2009-04-01

    Major ion chemistry and dissolved inorganic carbon system (DIC, mainly HCO3(-) and gaseous CO2) in the Luodingjiang River, a mountainous tributary of the Zhujiang (Pearl River), China, were examined based on a seasonal and spatial sampling scheme in 2005. The diverse distribution of lithology and anthropogenic impacts in the river basin provided the basic idea to assess the effects of lithology vs. human activities on water chemistry and carbon biogeochemistry in river systems. Major ions showed great spatial variations, with higher concentrations of total dissolved solids (TDS) and DIC in the regions with carbonate rocks and clastic sedimentary rocks, while lower in the regions with metamorphic sandstones and schists as well as granites. pCO2 at all sampling sites was oversaturated in June, ranging with a factor from 1.6 to 18.8 of the atmospheric concentration, reflecting the enhanced contribution from baseflow and interflow influx as well as in situ oxidation of organic matter. However, in April and December, undersaturated pCO2 was found in some shallow, clean rivers in the upstream regions. delta13C of DIC has a narrow range from -9.07 to -13.59 per thousand, which was more depleted in the regions with metamorphic rocks and granites than in the carbonate regions. Seasonally, it was slightly more depleted in the dry season (December) than in the wet season (June). The results suggested that lithological variability had a dominant control on spatial variations of water chemistry and carbon geochemistry in river systems. Besides, anthropogenic activities, such as agricultural and urban activities and in-stream damming, as well as river physical properties, such as water depth and transparency, also indicated their impacts. The seasonal variations likely reflected the changes of hydrological regime, as well as metabolic processes in the river.

  17. Major ion chemistry and dissolved inorganic carbon cycling in a human-disturbed mountainous river (the Luodingjiang River) of the Zhujiang (Pearl River), China.

    PubMed

    Zhang, Shurong; Lu, X X; Sun, Huiguo; Han, Jingtai; Higgitt, David Laurence

    2009-04-01

    Major ion chemistry and dissolved inorganic carbon system (DIC, mainly HCO3(-) and gaseous CO2) in the Luodingjiang River, a mountainous tributary of the Zhujiang (Pearl River), China, were examined based on a seasonal and spatial sampling scheme in 2005. The diverse distribution of lithology and anthropogenic impacts in the river basin provided the basic idea to assess the effects of lithology vs. human activities on water chemistry and carbon biogeochemistry in river systems. Major ions showed great spatial variations, with higher concentrations of total dissolved solids (TDS) and DIC in the regions with carbonate rocks and clastic sedimentary rocks, while lower in the regions with metamorphic sandstones and schists as well as granites. pCO2 at all sampling sites was oversaturated in June, ranging with a factor from 1.6 to 18.8 of the atmospheric concentration, reflecting the enhanced contribution from baseflow and interflow influx as well as in situ oxidation of organic matter. However, in April and December, undersaturated pCO2 was found in some shallow, clean rivers in the upstream regions. delta13C of DIC has a narrow range from -9.07 to -13.59 per thousand, which was more depleted in the regions with metamorphic rocks and granites than in the carbonate regions. Seasonally, it was slightly more depleted in the dry season (December) than in the wet season (June). The results suggested that lithological variability had a dominant control on spatial variations of water chemistry and carbon geochemistry in river systems. Besides, anthropogenic activities, such as agricultural and urban activities and in-stream damming, as well as river physical properties, such as water depth and transparency, also indicated their impacts. The seasonal variations likely reflected the changes of hydrological regime, as well as metabolic processes in the river. PMID:19185905

  18. Cenozoic tectonic evolution and petroleum exploration in Perl River Mouth basin, South China Sea

    SciTech Connect

    Chi Yukun; Xu Shice )

    1990-06-01

    The Pearl River Mouth basin is a large Cenozoic continental margin basin that is rich in hydrocarbon potential. Fluvial-lake sequences were deposited before Oligocene, but all were covered by Miocene marine clastic and carbonate rocks. Both paleo-Pearl River delta system and reef/bank carbonate system were widely developed. At the early stage of the evolution, two subsidence belts and one uplift between them distributed in NE regional direction; grabens occurred in the north belt and depressions in the south belt. Tectonic movement was stronger in the east than the west. The main production zones have been drilled both in Miocene sandstone and carbonate rocks. As the exploration activities are developing, the basin will be one of the most significant China offshore oil production areas.

  19. Ratio of nitrogen to phosphorus in the Pearl River and effects on the estuarine coastal waters: Nutrient management strategy in Hong Kong

    NASA Astrophysics Data System (ADS)

    Yin, Kedong; Harrison, Paul J.; Broom, Malcolm; Chung, C. H.

    The Pearl River is the second largest river in China, and has a 454,000 km 2 drainage basin. Excess nutrients can result in algal blooms, or even harmful algal blooms and subsequent dissolved oxygen (DO) consumption can lead to hypoxia. However, not all nutrients are equal; only one nutrient relative to other nutrients is the most limiting for algal biomass production and the other nutrients that are in excess cannot be used to produce a further increase in an algal bloom. Therefore, the strategy of nutrient pollution control is to remove the most limiting nutrient from the sewage effluent to minimize eutrophication impacts on the receiving waters. This, in turn, determines the type and level of sewage treatment. In the Pearl River, nitrogen (N) is very high and phosphorus (P) is relatively low, leading to a very high N:P ratio. The Pearl River flows into coastal waters in the South China Sea and heavily influences Hong Kong waters located to the east of the Pearl River estuary. When the Hong Kong government planned to upgrade the domestic sewage facility to biological treatment, this triggered the scientific question of which nutrient, N or P is the most limiting nutrient and the answer to this question became critical in making the management decision on the treatment facilities for removal of N or P, which bears a huge financial implication. In the past, because N is high in southern waters, it was thought that any addition of N would exceed the environmental assimilation capacity and result in algal blooms. Therefore, N has been typically considered for removal from sewage effluent. However, evidence revealed that P was the most limiting nutrient in the southern waters of Hong Kong and it actually limits phytoplankton biomass accumulation and potentially limits bacterial DO consumption. Hence, the removal of P has been suggested to receive priority over N removal, if there is a need for the future elevation of treatment levels. However, as this conclusion is

  20. Ecological River Basin Management.

    ERIC Educational Resources Information Center

    Smith, Anthony Wayne

    Addressing the Seventh American Water Resources Conference, Washington, D. C., October, 1971, Anthony Wayne Smith, President, National Parks and Conservation Association, presents an expose on how rivers should be managed by methods which restores and preserve the natural life balances of the localities and regions through which they flow. The…

  1. Sectorial Water Use Trends in the Urbanizing Pearl River Delta, China

    PubMed Central

    Yao, Mingtian; Werners, Saskia E.; Hutjes, Ronald W. A.; Kabat, Pavel; Huang, Heqing

    2015-01-01

    Assessing and managing water use is crucial for supporting sustainable river basin management and regional development. The first consistent and comprehensive assessment of sectorial water use in the Pearl River Delta (PRD) is presented by analysing homogenized annual water use data from 2000 to 2010 in relation to socio economic statistics for the same period. An abstraction of water use, using the concept of water use intensity, and based on equations inspired by those used in global water resource models, is developed to explore the driving forces underlying water use changes in domestic, industrial and agricultural sectors. We do this at both the level of the region as a whole, as well as for the nine cities that constitute the PRD separately. We find that, despite strong population and economic growth, the PRD managed to stabilize its absolute water use by significant improvements in industrial water use intensities, and early stabilisation of domestic water use intensities. Results reveal large internal differentiation of sectorial water use among the cities in this region, with industrial water use intensity varying from -80 to +95% and domestic water use intensity by +/- 30% compared to the PRD average. In general, per capita water use is highest in the cities that industrialised first. Yet, all cities except Guangzhou are expected to approach a saturation value of per capita water use much below what is suggested in recent global studies. Therefore, existing global assessments probably have overestimated future domestic water use in developing countries. Although scarce and uncertain input data and model limitations lead to a high level of uncertainty, the presented conceptualization of water use is useful in exploring the underlying driving forces of water use trends. PMID:25714731

  2. Sectorial water use trends in the urbanizing Pearl River Delta, China.

    PubMed

    Yao, Mingtian; Werners, Saskia E; Hutjes, Ronald W A; Kabat, Pavel; Huang, Heqing

    2015-01-01

    Assessing and managing water use is crucial for supporting sustainable river basin management and regional development. The first consistent and comprehensive assessment of sectorial water use in the Pearl River Delta (PRD) is presented by analysing homogenized annual water use data from 2000 to 2010 in relation to socio economic statistics for the same period. An abstraction of water use, using the concept of water use intensity, and based on equations inspired by those used in global water resource models, is developed to explore the driving forces underlying water use changes in domestic, industrial and agricultural sectors. We do this at both the level of the region as a whole, as well as for the nine cities that constitute the PRD separately. We find that, despite strong population and economic growth, the PRD managed to stabilize its absolute water use by significant improvements in industrial water use intensities, and early stabilisation of domestic water use intensities. Results reveal large internal differentiation of sectorial water use among the cities in this region, with industrial water use intensity varying from -80 to +95% and domestic water use intensity by +/- 30% compared to the PRD average. In general, per capita water use is highest in the cities that industrialised first. Yet, all cities except Guangzhou are expected to approach a saturation value of per capita water use much below what is suggested in recent global studies. Therefore, existing global assessments probably have overestimated future domestic water use in developing countries. Although scarce and uncertain input data and model limitations lead to a high level of uncertainty, the presented conceptualization of water use is useful in exploring the underlying driving forces of water use trends. PMID:25714731

  3. Chlorinated and polycyclic aromatic hydrocarbons in riverine and estuarine sediments from Pearl River Delta, China.

    PubMed

    Mai, Bi-Xian; Fu, Jia-Mo; Sheng, Guo-Ying; Kang, Yue-Hui; Lin, Zheng; Zhang, Gan; Min, Yu-Shuan; Zeng, Eddy Y

    2002-01-01

    Spatial distribution of chlorinated hydrocarbons [chlorinated pesticides (CPs) and polychlorinated biphenyls (PCBs)] and polycyclic aromatic hydrocarbons (PAHs) was measured in riverine and estuarine sediment samples from Pearl River Delta, China, collected in 1997. Concentrations of CPs of the riverine sediment samples range from 12 to 158 ng/g, dry weight, while those of PCBs range from 11 to 486 ng/g. The CPs concentrations of the estuarine sediment samples are in the range 6-1658 ng/g, while concentrations of PCBs are in the range 10-339 ng/g. Total PAH concentration ranges from 1168 to 21,329 ng/g in the riverine sediment samples, whereas the PAH concentration ranges from 323 to 14,812 ng/g in the sediment samples of the Estuary. Sediment samples of the Zhujiang River and Macao harbor around the Estuary show the highest concentrations of CPs, PCBs, and PAHs. Possible factors affecting the distribution patterns are also discussed based on the usage history of the chemicals, hydrologic condition, and land erosion due to urbanization processes. The composition of PAHs is investigated and used to assess petrogenic, combustion and naturally derived PAHs of the sediment samples of the Pearl River Delta. In addition, the concentrations of a number of organic compounds of the Pearl River Delta samples indicate that sediments of the Zhujiang river and Macao harbor are most likely to pose biological impairment.

  4. Sediment trapping by haloclines of a river plume in the Pearl River Estuary

    NASA Astrophysics Data System (ADS)

    Ren, Jie; Wu, Jiaxue

    2014-07-01

    Sediment trapping by the halocline of a river plume was investigated over a spring-neap tidal cycle in the 2010 dry season in the Pearl River Estuary. Benthic tripod observations and concurrent shipboard measurements were conducted to examine mean and turbulent flows, and sediment distributions. The field observations showed that suspended particles are apparently concentrated on the halocline of the river plume, forming a patchy high-concentration suspension with larger floc sizes. This sediment trapping occurred only on the neap tide when the estuary was highly stratified. An estimation of the gradient Richardson number indicates that stratification suppression is dominant below the halocline, whereas shear-induced instability occurs above the halocline. The turbulent kinetic energy balance demonstrates that the buoyancy flux dominates over viscous dissipation in turbulence destruction. Therefore, the trapping of suspended sediment with large floc sizes on the halocline is induced by both salinity stratification and buoyancy-induced instability. This finding can explain the role of salinity stratification in the mechanism for estuarine turbidity maxima and long-distance transportation of suspended sediment.

  5. Variations in abundance and size distribution of carbohydrates in the lower Mississippi River, Pearl River and Bay of St Louis

    NASA Astrophysics Data System (ADS)

    Wang, Xuri; Cai, Yihua; Guo, Laodong

    2013-07-01

    Riverine export of dissolved and particulate organic matter to the sea is one of the major components in marine carbon cycles, affecting biogeochemical processes in estuarine and coastal regions. However, the detailed composition of organic material and the relative partitioning among the dissolved, colloidal, and particulate phases are poorly quantified. The abundance of carbohydrate species and their partitioning among dissolved, colloidal, and particulate phases were examined in the waters from the lower Mississippi River (MR), the lower Pearl River (PR), and the Bay of St. Louis (BSL). Particulate carbohydrates (PCHO) represented a small fraction of the particulate organic carbon (POC) pool, with 4.7 ± 3.1%, 4.5 ± 2.4% and 1.8 ± 0.83% in the MR, PR, and BSL, respectively. Dissolved carbohydrates (DCHO) were a major component of the bulk dissolved organic carbon (DOC) pool, comprising 23%, 35%, and 18% in the MR, PR, and BSL, respectively. Differences in the DCHO/DOC ratio between the MR, PR, and BSL were related to their distinct characteristics in drainage basins, anthropogenic impacts, and hydrological conditions, reflecting differences in sources and composition of organic matter in different aquatic environments. Within the total carbohydrates (TCHO) pool, the high-molecular-weight carbohydrates (HMW-CHO, 1 kDa-0.45 μm) were the dominant species, representing 52-71% of the TCHO pool, followed by the low-molecular-weight carbohydrates (LMW-CHO, <1 kDa), representing 14-44% of the TCHO. The PCHO accounted for 4-16% of the bulk TCHO. Variations in the size distribution of carbohydrates among the MR, PR, and BSL were closely linked to the cycling pathway of organic matter and the interactions between different size fractions of the carbohydrates.

  6. [Distribution and sources of polycyclic aromatic hydrocarbons in sediments from rivers of Pearl River Delta and its nearby South China Sea].

    PubMed

    Luo, Xiao-Jun; Chen, She-Jun; Mai, Bi-Xian; Zeng, Yong-Ping; Sheng, Guo-Ying; Fu, Jia-Mo

    2005-07-01

    Polycyclic aromatic hydrocarbons (PAHs) are measured in surface sediments from rivers and estuary of Pearl River Delta and its nearby South China Sea. Total PAH concentration varied from 255.9 - 16 670.3 ng/g and a moderate to low level compare to relevant areas worldwide. The order of PAHs concentration in sediments was: rivers of Pearl River Delta > estuary > South China Sea, and the most significant PAH contamination was at Guangzhou channel of Zhujiang river. A decrease trend for PAHs concentration with distance from estuary to open sea can be sees in South China Sea. Coal and biomass combustion is the major source of PAHs in nearshore of South China Sea, and petroleum combustion is the main source of pyrolytic PAHs in rivers and estuary of Pearl River Delta according to PAHs diagnostic ratios. Petroleum PAHs are revealed have a high contribution to PAHs in Xijiang River, estuary and some stations in Zhujiang River. A comparison of data from study in 1997 with data from present study indicates that there is no clear change in the PAH concentration over time but the source of PAHs in Pearl River Delta have been change from a main coal combustion to petroleum combustion and being reflect in the sediments in rivers and estuary of Pearl River Delta where there have high sedimentation rate.

  7. The biogeochemistry of inorganic carbon and nutrients in the Pearl River estuary and the adjacent Northern South China Sea

    NASA Astrophysics Data System (ADS)

    Cai, Wei-Jun; Dai, Minhan; Wang, Yongchen; Zhai, Weidong; Huang, Tao; Chen, Shuitu; Zhang, Fan; Chen, Zhaozhang; Wang, Zhaohui

    2004-08-01

    The Zhu-jiang (Pearl River) estuary and its adjacent continental shelf in the Northern South China Sea (SCS) is unique in that its drainage basin is located entirely in a subtropical zone with heavy population development, and therefore represents an important regime for biogeochemical studies on how large rivers influence continental shelves. The near-zero salinity end member has high nutrient concentrations (silicate 130-140 μM, nitrate 75-100 μM and phosphate 0.2-1.2 μM) and relatively high total dissolved inorganic carbon (DIC) (1500 μM) and alkalinity (˜1650 μM) values. Water column DIC, alkalinity, and nutrient in the estuary are largely controlled by mixing of waters from different tributaries with different drainage basin chemistry, anthropogenic influence, and degree of estuarine recycling. Biological uptake of nutrients and inorganic carbon occur in the outer estuary and inner shelf areas supported by riverine nutrients. The N/P and Si/P ratios are generally very high within the estuary. The summertime area-integrated biological production rate of 0.8 gC m -2 d -1 is estimated based on the depletion of DIC and alkalinity relative to the conservative mixing line and a plume travel time. This estimate agrees reasonably well with 14C based primary production rates (PP) and with that from effective river phosphate flux. Biological production decreases about 10-fold in the open continental shelf and slope and is largely supported by mixing with subsurface water. A comparison of DIC, phosphate, and nitrate concentrations in the surface mixing layer and at the bottom of the euphotic zone with the 14C-based PP (0.13 gC m -2 d -1) suggests that the surface water residence time in the Northern SCS is ˜1.3 years. The N/P, Si/P, and Si/C ratios are 15, 25, and 0.15, respectively. The subtropical Pearl River study is also compared to other large rivers with regard to differences in both natural processes (i.e., weathering rates) and anthropogenic influences (i

  8. Graptemys pearlensis Ennen, Lovich, Kreiser, Selman, and Qualls 2010 – Pearl River Map Turtle

    USGS Publications Warehouse

    Ennen, Joshua R.; Lovich, Jeffrey E.; Jones, Robert L.; Rhodin, A. G. J.; Pritchard, P. C. H.; van Dijk, P. P.; Saumure, R.A.; Buhlmann, K.A.; Iverson, J.B.; Mittermeier, R.A.

    2016-01-01

    The Pearl River Map Turtle, Graptemys pearlensis (Family Emydidae), is a moderate-sized aquatic turtle endemic to the Pearl River drainage of Louisiana and Mississippi. This taxon has long been a cryptic species, as it was considered part of G. pulchra before 1992 and part of G. gibbonsi until 2010. Graptemys pearlensis exhibits sexual dimorphism, with adult females being considerably larger (carapace length to 295 mm) than adult males (CL to 121 mm). In the 1960s and 1970s, the species was commonly found in higher abundance than the sympatric G. oculifera, a federally listed species. However, due to habitat degradation and the precipitous decline of native mollusks, the species is now found in lower numbers than G. oculifera throughout much of its range. The current IUCN Red List status is Endangered; however, very little is known about the natural history and ecology of the species, which will make conservation efforts challenging.

  9. Benthic foraminiferal assemblages and trace metals reveal the environment outside the Pearl River Estuary.

    PubMed

    Li, Tao; Xiang, Rong; Li, Tuanjie

    2013-10-15

    We investigated the distribution patterns of the benthic foraminiferal assemblages outside the Pearl River Estuary in relation to trace metals, organic carbon and sedimentary particle fractions. The study area is unpolluted to moderately polluted by Cr, Cu, Pb and Zn and is completely polluted by Ni. The highest levels are found in the western coastal zone. Spatial distributions of the measured elements are strongly related to the behavior of the sedimentary clay fraction. The analyses of species abundance and community diversity as well as subsequent canonical correspondence analysis were used to reveal the relationship between foraminifera data and environmental parameters. Four sampling site groups established by factor analysis were distributed from the coastal area to the inner shelf. Their distribution patterns have a strong correlation with Cu, Pb and Ba. This research shows that benthic foraminifera can be used as bioindicators of trace metal pollutants outside the Pearl River Estuary.

  10. The surface sediment distribution and sedimentary environment of the Pearl River Submarine Canyon

    NASA Astrophysics Data System (ADS)

    Han, X.; Chu, F.; Li, J.; Xu, D.; Zhang, W.

    2012-12-01

    The grain size composition, particle size parameters, clay mineral, and detrital mineral of surface sediment of this The Pearl River Submarine Canyon (the PRSC, for short) area have been measured and analyzed, which were took sampling in 2005 and 2006 in the northern South China Sea. The results show that the isolines distribution features of these parameters have very good corresponding relation with the geomorphology of the PRSC. On the continental-shelf slope break of the PRSC head (123m-1500m water depth), the close interval isolines of the surface sediment particle size percentage content and size parameters nearly parallel with the water depth isolines. The data of sand percentage content and mean grain size, sorting coefficient and skewness decreases with the increase of water depth. The other way around, the silt and clay percentage content and kurtosis value increase with deeper water. These show that in the canyon head sediment distribution was controlled by the material source (mainly comes from the Pearl River), slope and the northern South China Sea offshore current. In the main PRSC area, the surface sediment grain size composition content and grain size parameter numerical isolines have become a isoline platform which has the similar shape with the main PRSC and extended to the northeast and southwest deep sea basin. This means that the sedimentary environment of main canyon is apparently different with the head environment, that is affected by the high-temperature and high-salt the South China Sea Branch of by the Kuroshio along the 3500 m water depth isoline and alone the canyon to bending. The 25% percentage content isoline of the calcium biological and 45% percentage content isoline of the light mineral show a broadband distribution along the head and upside of the PRSC, and reduces in the entrance with the water depth isolines, apparently influenced by the South China Sea Branch of the Kuroshio. A high value area of the silt, clay mineral, light

  11. Modern Pearl River Delta and Permian Huainan coalfield, China: A comparative sedimentary facies study

    USGS Publications Warehouse

    Suping, P.; Flores, R.M.

    1996-01-01

    Sedimentary facies types of the Pleistocene deposits of the Modern Pearl River Delta in Guangdong Province, China and Permian Member D deposits in Huainan coalfield in Anhui Province are exemplified by depositional facies of anastomosing fluvial systems. In both study areas, sand/sandstone and mud/mudstone-dominated facies types formed in diverging and converging, coeval fluvial channels laterally juxtaposed with floodplains containing ponds, lakes, and topogenous mires. The mires accumulated thin to thick peat/coal deposits that vary in vertical and lateral distribution between the two study areas. This difference is probably due to attendant sedimentary processes that affected the floodplain environments. The ancestral floodplains of the Modern Pearl River Delta were reworked by combined fluvial and tidal and estuarine processes. In contrast, the floodplains of the Permian Member D were mainly influenced by freshwater fluvial processes. In addition, the thick, laterally extensive coal zones of the Permian Member D may have formed in topogenous mires that developed on abandoned courses of anastomosing fluvial systems. This is typified by Seam 13-1, which is a blanket-like body that thickens to as much as 8 in but also splits into thinner beds. This seam overlies deposits of diverging and converging, coeval fluvial channels of the Sandstone D, and associated overbank-floodplain deposits. The limited areal extent of lenticular Pleistocene peat deposits of the Modern Pearl River Delta is due to their primary accumulation in topogenous mires in the central floodplains that were restricted by contemporaneous anastomosing channels.

  12. Measurement comparison of gas phase pollutants during field campaign in Pearl River Delta, China

    NASA Astrophysics Data System (ADS)

    Shao, M.; Zeng, L.; Hu, M.; Zhang, Y.

    2005-12-01

    Pearl River delta, an economically developed region in Guangdong province China, has been suffering from serious ground-level ozone pollution. To understand the formation mechanisms of the photochemical smog in this area, a field measurement campaign involving 12 separate institutes, was performed from Oct. 1 to Nov. 4, 2004. Measurements of gas phase pollutants, performed by the different research groups using several different methods, were inter-compared. Ambient SO2, O3 and NO were measured by Peking University and Hong Kong Polytechnic University using the same methods: chemiluminescence for NOx, pulsed fluorescence for SO2, and UV photometric method for O3. VOC speciation was accomplished using canister sampling followed by GC-MS measurement by Peking University and on-line GC-FID technology by National Central University in Taiwan. Ambient concentrations of HONO, the photolysis of which is the most important source of OH radical in Pearl River delta, was measured by two wet chemical methods: one from Energy Research Foundation of the Netherlands and one developed in Peking University. Based on these inter-comparisons, the co-variation of O3, NO and VOCs at an urban site and one rural site in Pearl River delta and estimates of the relative contributions to OH production from photolysis of O3, HONO and HCHO will be presented.

  13. Enhanced abundance and diversity of ammonia-oxidizing Archaea in the Pearl River estuary

    NASA Astrophysics Data System (ADS)

    Xie, W.; Zhang, C. L.; Wang, P.; Zhou, X.; Guo, W.

    2014-12-01

    Thaumarchaeota are recently recognized as an important group of Archaea that can perform aerobic oxidation of ammonia in a wide range of environments. The goal of this study was to evaluate changes in abundance and diversity of planktonic ammonia-oxidizing Archaea (e.g., Thaumarchaeota) along a salinity gradient from the lower Pearl River to the northern South China Sea. Quantitative PCR and sequencing of total archaeal 16S rRNA gene and the archaeal amoA gene were performed on suspended particulate organic matter collected in different seasons from the freshwater to the ocean water. Total amoA gene copies and relative abundance of Thaumarchaeota all peaked in the estuary where salinity ranged between 4.5‰ and 26.7‰. The diversity of archaeal amoA gene was also highest in the estuary. Seasonality and SiO32- appear to be two major factors affecting the distribution of subclusters of archaeal amoA genes. For example, Nitrosopumilus subcluster 7.1 was most abundant in winter in fresh water, whereas Nitrososphaera were more abundant in summer. Samples collected from the area around Wanshan Island, which is located at the outermost part of the Pearl River estuary, had high abundance of unclassified archaeal amoA genes, suggesting some new groups of Thaumarchaeota might inhabit this water body. Overall, the high abundance and diversity of Thaumarchaeota in the Pearl River estuary may indicate enhanced role of AOA in nitrogen cycle in this dynamic ecosystem.

  14. The role of class I integrons in the dissemination of sulfonamide resistance genes in the Pearl River and Pearl River Estuary, South China.

    PubMed

    Chen, Baowei; Liang, Ximei; Nie, Xiangping; Huang, Xiaoping; Zou, Shichun; Li, Xiangdong

    2015-01-23

    Antibiotic resistance genes (ARGs), as a newly emerging contaminant, are unique because they are disseminated through horizontal gene transfer in the environment. In the present study, a class 1 integron gene (int1) and various ARGs (sul1, sul2, sul3, qnrS, and ermB) were measured in water and sediment samples from the Pearl River (PR) to the Pearl River Estuary (PRE), where there is a distinct gradient in anthropogenic impact. The int1, sul1, and sul2 genes were detected in all samples, and their concentrations exhibited a clear trend of decline consistent with anthropogenic impact. Both the int1 and sul genes had dynamically migrated between water and sediments. The relative abundance of the int1 gene normalized to the 16S rRNA gene correlated significantly with the total concentrations of antibiotics in water and sediments. Good correlations were also observed between the abundance of int1 and each type of sul gene in the samples. However, the sul1 gene showed a much stronger relationship with int1 in different seasons, probably due to the presence of sul1 in the conserved region of class 1 integron. Our results strongly support that integrons play an important role in the dissemination of ARGs in human-impacted aquatic environments.

  15. Effects of tropical cyclones on river chemistry: A case study of the lower Pearl River during Hurricanes Gustav and Ike

    NASA Astrophysics Data System (ADS)

    Cai, Yihua; Guo, Laodong; Wang, Xuri; Lohrenz, Steven E.; Mojzis, Allison K.

    2013-09-01

    To investigate the effects of tropical cyclones on the water chemistry of Gulf of Mexico coastal rivers, time series samples from the lower Pearl River at Stennis Space Center, Mississippi, were collected on August and September, 2008, during Hurricanes Gustav and Ike. Hurricane Gustav, which landed near the sampling site, caused intensive storm surge and strong seawater intrusion, resulting in an elevated salinity of 7.5 in the lower Pearl River and subsequent flooding induced by heavy rainfall. Hurricane Ike, which passed further away from the sampling site, caused only a mild seawater intrusion with a salinity of 1.2 at the sampling site. The river showed distinct variations in water chemistry corresponding to different hydrographic disturbance of hurricanes. Abrupt increase of suspended particulate matter and associated organic carbon and nitrogen concentrations coincided with the intensive storm surge due to coastal sediment resuspension. A remarkable drop in the concentrations of phosphate and dissolved organic matter was also observed during the intense seawater intrusion, a result of both dilution by seawater and resultant flocculation of dissolved organic matter. During hurricane-induced flooding, the river showed a mild increase in the concentrations of organic matter, reflecting a dominant contribution of terrestrial inputs from the watershed by surface runoffs while the concentrations of inorganic nutrient species in the river water decreased. In contrast, water chemistry in the Pearl River underwent little change in most carbon and nutrient species under the mild seawater intrusion. Overall, tropical cyclones could induce unique variations in coastal river water chemistry and variable material export which would further alter the coastal water quality.

  16. Endocrine-disrupting chemicals in the Pearl River Delta and coastal environment: sources, transfer, and implications.

    PubMed

    Xu, Weihai; Yan, Wen; Huang, Weixia; Miao, Li; Zhong, Lifeng

    2014-12-01

    A study was conducted to investigate the occurrence and behavior of six endocrine-disrupting chemicals (EDCs) in sewage, river water, and seawater from the Pearl River Delta (PRD). The six EDCs under study were 4-nonylphenol (NP), bisphenol A (BPA), 17α-ethynylestradiol (EE2), estrone (E2), 17β-estradiol (E2), and estriol (E3). These EDCs, predominated by BPA, were found in high levels in the influents and the effluents of sewage treatment plants in the area. The relatively high concentrations (0.23-625 ng/L) of the EDCs detected in the receiving river water suggested that the untreated sewage discharge was a major contributor. The EDCs detected in eight outlets of the Pear River and the Pear River Estuary were in the ranges of 1.2-234 and 0.2-178 ng/L, respectively. The estrogen equivalents in the aquatic environments under study ranged from 0.08 to 4.5 ng/L, with E1 and EE2 being the two predominant contributors. As the fluxes of the EDCs from the PRD region to the nearby ocean are over 500 tons each year, the results of this study point to the potential that Pearl River is a significant source of the EDCs to the local environment there.

  17. [Health assessment of river ecosystem in Haihe River Basin, China].

    PubMed

    Hao, Li-Xia; Sun, Ran-Hao; Chen, Li-Ding

    2014-10-01

    With the development of economy, the health of river ecosystem is severely threatened because of the increasing effects of human activities on river ecosystem. In this paper, the authors assessed the river ecosystem health in aspects of chemical integrity and biological integrity, using the criterion in water quality, nutrient, and benthic macroinvertebrates of 73 samples in Haihe River Basin. The research showed that the health condition of river ecosystem in Haihe River Basin was bad overall since the health situation of 72. 6% of the samples was "extremely bad". At the same time, the health situation in Haihe River Basin exhibited obvious regional gathering effect. We also found that the river water quality was closely related to human activities, and the eutrophication trend of water body was evident in Haihe River Basin. The biodiversity of the benthic animal was low and lack of clean species in the basin. The indicators such as ammonia nitrogen, total nitrogen and total phosphorus were the key factors that affected the river ecosystem health in Haihe River Basin, so the government should start to curb the deterioration of river ecosystem health by controlling these nutrients indicators. For river ecosystem health assessment, the multi-factors comprehensive evaluation method was superior to single-factor method.

  18. Dissolved and Particulate Amino Acids in the Lower Mississippi and Pearl Rivers (USA)

    NASA Astrophysics Data System (ADS)

    Duan, S.; Bianchi, T. S.

    2006-12-01

    Seasonal changes (monthly samples) in abundance and composition of dissolved and particulate amino acids were observed at one station in the lower Mississippi and Pearl Rivers (MS, USA) from September 2001 to August 2003. Spatial variability was also observed during a 4 day transmit from river-mile 225 to river mouth (Head of Passes, LA) in the Mississippi River, and a two-day downstream sampling from Jackson (MS) to Stennis Space Center (MS). Temporal data in the lower Mississippi River showed significantly lower concentrations of dissolved combined amino acids (DCAA, 0.45-1.4 μ M) and dissolved amino acids in high molecular weight fraction (HMW DAA, 0.13-0.27 μ M) than in the Pearl River (DCAA, 0.91-2.8 μ M; HMW DAA, 0.25-0.95 μ M). DCAA and HMW DAA in both rivers were generally higher during high-flow periods. DFAA was significantly lower than DCAA in both rivers (0.05-0.08 μ M), and displayed minimal seasonal variability. Total particulate amino acids (PAA) in both rivers were in the same range (0.7-1.4 μ M). A C- normalized yield of PAA (PAA-C/POC) was negatively correlated with suspended particulate matter and positively with chl-a in both rivers. No significant difference in PAA composition was observed in the two rivers. However, PAA in both rivers was relatively enriched in arginine, alanine, methionine and leucine, and depleted in aspartic acid, serine, and non-protein amino acids, compared to DCAA. While DCAA spatial variability in the lower Mississippi River was minimal, decreases in PAA (from 1.06 to 0.43 μ M) were consistent with particulate organic carbon (POC) and particulate nitrogen (PN). Frequent variations in the PAA-C/POC ratio were inversely correlated with suspended particulate matter and PAA (R = -0.7, n = 48), suggesting short- scale sedimentation and resuspension events. A gradual increase in % non-protein AA along with a loss of phytoplankton biomass along the river, suggested was indicative of bacterial utilization of labile

  19. Distribution and sources of the polycyclic aromatic hydrocarbons in the sediments of the Pearl River estuary, China.

    PubMed

    Zhang, Jian-Dong; Wang, You-Shao; Cheng, Hao; Jiang, Zhao-Yu; Sun, Cui-Ci; Wu, Mei-Lin

    2015-10-01

    The Pearl River delta, one of the most prosperous economically region in China, has experienced significant contaminant inputs. However, the dynamics of pollutants in the Pearl River estuary and the adjacent coastal areas are still unclear at present. In the paper, distribution and sources of polycyclic aromatic hydrocarbons (PAHs) were investigated in the surface sediments of the Pearl River estuary. The total PAHs concentrations ranged from 126.08 to 3828.58 ng/g with a mean value of 563.52 ng/g, whereas the highest PAHs were observed in Guangzhou channel. Among the U.S. Environmental Protection Agency's 16 priority PAHs, PAHs with 3-4 rings exhibited relative higher levels. A positive relationship was found between PAHs and total organic carbon. The source analysis further showed that the major sources of PAHs in the Pearl River estuary were originated from the pyrolytic inputs, reflecting a mixed energy structure such as wood, coal and petroleum combustion. In summary, although PAHs in Lingding Bay and the adjacent coastal areas of the Pearl River estuary exhibited a relatively low pollution level, the relatively high pollution level of PAHs in Guangzhou channel will be attended.

  20. Estimating suspended sediment loads in the Pearl River Delta region using sediment rating curves

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Wei, Xiaoyan; Jinhai, Zheng; Yuliang, Zhu; Zhang, Yanjing

    2012-04-01

    In this study, sediment rating curves are employed to study the variations in relationships between water discharge and suspended sediment concentration based on the recent 50 years of monthly data set in the three major rivers of the Pearl River Delta. Results show that sediment rating parameters vary with time. The lowest rating coefficient, ln(a), and the highest rating exponent, b, mostly occur in the 1980s, indicating that sediment transport reached its peak in this decade at the same level as water discharge. This upward shift of sediment load is probably caused by exacerbated karst rocky desertification in the upper reaches of the Pearl River. However, since the beginning of the 1990s sediment loads from the Pearl River to its estuary began to show a dramatically decreasing trend, which is attributed mainly to deposition in the reservoirs, leading to an increase of ln(a) and a decrease of b. Furthermore, the sediment rating curve in 1957 to1970 is applied to estimate potential sediment load (1971 to 2006) in the absence of human influences. It is also estimated quantitatively by the sediment rating curves that in the 1980s, the annual sediment load decreased by 7.59×106 t/yr because of natural factors, while sediment increase induced by human activities was 20.07×106 t/yr, which resulted in an actual increased sediment load of 12.47×106 t/yr compared with the reference level in 1957 to 1970. In the last two decades, the difference between measured and estimated sediment loads became considerable, and the annual deficit sharply increased to 26.80×106 t/yr in the 1990s, and 50.46×106 t/yr in the 2000s, indicating that human activities, mainly referring to dam and reservoir construction, play a dominant role in the decrease of sediment load. The decrease in sediment supply from the Pearl River should be paid special attention because it may cause serious impacts on the river delta and the coastal ocean.

  1. Enantiomeric composition of polycyclic musks in sediments from the Pearl River and Suzhou Creek.

    PubMed

    Song, Han; Zeng, Xiangying; Yu, Zhiqiang; Zhang, Delin; Cao, Shuxia; Shao, Wenlan; Sheng, Guoying; Fu, Jiamo

    2015-02-01

    Due to differences in stereostructure, enantiomeric compositions and enantiomeric ratios (ERs) of chiral compounds can be used to discriminate environmental processes such as abiotic and biotic degradation/transformation. In this study, the ERs of two chiral polycyclic musks, 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta(g)-2-benzopyran (HHCB) and 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene (AHTN), were investigated in the sediments of Zhujiang River and Dongjiang River in the Pearl River Delta (PRD), as well as in those of Suzhou Creek in Shanghai City. The results indicated that ER cis of HHCB varied significantly, ranging from 1.09 to 1.53 and 1.40 to 1.48 in the PRD and Suzhou Creek samples, respectively, whereas ER trans of HHCB exhibited limited variation, ranging from 0.98 to 1.10 and 0.98 to 1.05 for Pearl River and Suzhou Creek samples, respectively. In addition, ERs of AHTN varied substantially from 1.10 to 1.34 and 1.17 to 1.28 in the PRD and Suzhou Creek, respectively. These results suggest that HHCB in the sediment in the study area underwent biotic degradation and the preferential biotransformation isomer was (4R,7S)-HHCB, while AHTN simultaneously underwent a certain degree of biotic degradation/transformation.

  2. Impacts of Hurricane Katrina on floodplain forests of the Pearl River: Chapter 6A in Science and the storms-the USGS response to the hurricanes of 2005

    USGS Publications Warehouse

    Faulkner, Stephen; Barrow, Wylie; Couvillion, Brady R.; Conner, William; Randall, Lori; Baldwin, Michael

    2007-01-01

    Floodplain forests are an important habitat for Neotropical migratory birds. Hurricane Katrina passed through the Pearl River flood plain shortly after making landfall. Field measurements on historical plots and remotely sensed data were used to assess the impact of Hurricane Katrina on the structure of floodplain forests of the Pearl River.

  3. How integrated is river basin management?

    NASA Astrophysics Data System (ADS)

    Downs, Peter W.; Gregory, Kenneth J.; Brookes, Andrew

    1991-05-01

    Land and water management is increasingly focused upon the drainage basin. Thirty-six terms recently used for schemes of “integrated basin management” include reference to the subject or area and to the aims of integrated river basin management, often without allusion to the multiobjective nature. Diversity in usage of terms has occurred because of the involvement of different disciplines, of the increasing coherence of the drainage basin approach, and the problems posed in particular parts of the world. The components included in 21 different approaches are analyzed, and, in addition to showing that components related broadly to water supply, river channel, land, and leisure aspects, it is concluded that there are essentially five interrelated facets of integrated basin management that involved water, channel, land, ecology, and human activity. Two aspects not fully included in many previous schemes concern river channel changes and the dynamic integrity of the fluvial system. To clarify the terminology used, it is suggested that the term comprehensive river basin management should be used where a wide range of components is involved, whereas integrated basin management can signify the interactions of components and the dominance of certain components in the particular area. Holistic river basin management is advocated as a term representing an approach that is both fully comprehensive and integrated but also embraces the energetics of the river system and consideration of changes of river channels and of human impacts throughout the river system. The paradigm of working with the river can be extended to one of working with the river in the holistic basin context.

  4. Epidemiological investigation of Clonorchis sinensis infection in freshwater fishes in the Pearl River Delta.

    PubMed

    Chen, Daixiong; Chen, Jieyun; Huang, Ji; Chen, Xueying; Feng, Dana; Liang, Baofang; Che, Yuchuan; Liu, Xiaodan; Zhu, Cuihua; Li, Xiaomin; Shen, Haoxian

    2010-09-01

    Pearl River Delta region is a high clonorchiasis-endemic area in China. However, no complete epidemiological data exist regarding its infection in freshwater fishes, an important epidemic factor for Clonorchis sinensis. The present study collected freshwater fishes and shrimps from 32 sites of nine cities in the Pearl River Delta, and the encysted metacercariae of C. sinensis were detected by digesting these specimens with artificial gastric juice. The mean infection rate of freshwater fishes was 37.09% (2,160/5,824) with a mean number of 14.269 encysted metacercariae in every infected fish and 0.460 encysted metacercariae in every gram of fish meat. Of these freshwater fishes, 5,219 were domesticated, and the infection rate was 36.69% with a mean number of 10.743 encysted metacercariae in every infected fish and 0.312 encysted metacercariae in every gram of fish meat; the other 605 were wild, and the infection rate was 40.50% with a mean number of 41.829 encysted metacercariae in every infected fish and 8.812 encysted metacercariae in every gram of fish meat. A total of 228 shrimps were examined, and 3.07% of them were infected with a mean number of 1.00 encysted metacercariae in every infected shrimp. Pseudorasbora parva and Ctenopharyngodon idellus had the highest infection rate and degree of infection in the fishes studied. The results demonstrated a high incidence of C. sinensis infection in freshwater fishes and shrimps within Pearl River Delta region and a great difference in the infection rate among different collection sites and different fish species.

  5. Urban growth and environmental impacts in Jing-Jin-Ji, the Yangtze, River Delta and the Pearl River Delta

    NASA Astrophysics Data System (ADS)

    Haas, Jan; Ban, Yifang

    2014-08-01

    This study investigates land cover changes, magnitude and speed of urbanization and evaluates possible impacts on the environment by the concepts of landscape metrics and ecosystem services in China's three largest and most important urban agglomerations: Jing-Jin-Ji, the Yangtze River Delta and the Pearl River Delta. Based on the classifications of six Landsat TM and HJ-1A/B remotely sensed space-borne optical satellite image mosaics with a superior random forest decision tree ensemble classifier, a total increase in urban land of about 28,000 km2 could be detected alongside a simultaneous decrease in natural land cover classes and cropland. Two urbanization indices describing both speed and magnitude of urbanization were derived and ecosystem services were calculated with a valuation scheme adapted to the Chinese market based on the classification results from 1990 and 2010 for the predominant land cover classes affected by urbanization: forest, cropland, wetlands, water and aquaculture. The speed and relative urban growth in Jing-Jin-Ji was highest, followed by the Yangtze River Delta and Pearl River Delta, resulting in a continuously fragmented landscape and substantial decreases in ecosystem service values of approximately 18.5 billion CNY with coastal wetlands and agriculture being the largest contributors. The results indicate both similarities and differences in urban-regional development trends implicating adverse effects on the natural and rural landscape, not only in the rural-urban fringe, but also in the cities' important hinterlands as a result of rapid urbanization in China.

  6. Quality of water in the Pearl River, Jackson to Byram, Mississippi, September 21-22, 1976

    USGS Publications Warehouse

    Bednar, Gene A.

    1980-01-01

    The Pearl River in Mississippi, entering the study reach at site 1 at Jackson, was generally higher in dissolved-oxygen concentrations and lower in dissolved-solids, nutrients, and biochemical oxygen demands than at site 13 at Byram 11.8 miles downstream of site 1 and about 11 river miles downstream of treated sewage inflow. The dissolved oxygen concentrations of the water ranged from 6.4 to 7.8 milligrams per liter at site 1, and from 4.9 to 7.4 milligrams per liter at site 13. The average dissolved-solids concentrations were 60 and 97 milligrams per liter at sites 1 and 13, respectively. The average dissolved-solids load increased downstream about 35 tons per day. The average loads of 5-day biochemical oxygen demand, total phosphorus, and ammonia increased downstream about 2, 0.7, and 0.6 tons per day, respectively. The water in the study reach contained color, total iron, and manganese concentrations that exceeded limits recommended for public water supplies. Trace amounts of some pesticides and minor elements were present in both the water and bottom material at sites 1 and 13. The concentrations of most dissolved constituents were below recommended limits during the study and the Pearl River in the study reach may be considered usable for many purposes. (USGS)

  7. Field monitoring of toxic organic pollution in the sediments of Pearl River estuary and its tributaries.

    PubMed

    Fu, J; Wang, Z; Mai, B; Kang, Y

    2001-01-01

    Field monitoring of the toxic organic compounds (PCBs, PAHs, organochlorine pesticides) in the top sediments of Pearl River Estuary and its up-streams were made. It was found that the highest concentrations of these toxic organic compounds occurred in the sediment sampled at Macau inner harbor (ZB013), which is a sink of suspended fine particles transported from the upstream waterways. Because of the affinity of the hydrophobic organic compounds (PAHs, PCBs) for the solid phase, these fine particle depositions led to accumulation of these compounds in the sediment of Macau. The atmospheric dry deposition may be another source of the toxic organic pollution in the sediment.

  8. [Risk Assessment of Trihalomethane Production Using the Beijiang River and the Pearl River, Guangzhou as Drinking Water Sources].

    PubMed

    Zhong, Hui-zhou; Wei, Chao-hai

    2015-04-01

    In order to investigate the risk of trihalomethane formation potential (THMFP) in finished waters as drinking water sources, 70 samples, 114 samples, and 70 samples were collected in November 2013, April 2014 and July 2014, respectively from different locations in the Beijiang River and the Pearl River. After filtration by 0.45 μm filter membrane, a total of 254 samples were chlorinated using Uniform Formation Condition (UFC) method for determining their THM Formation Potential (THMFP). The cancer risk and non-cancer risk of THMs were estimated using USEPA risk assessment model while dominant factors for total risk potential were estimated using sensitivity analysis. Among four THM species, chloroform( CF) was the highest ranging from 101.92-2 590.85 μg x L(-1), followed by bromodichloromethane (BDCM), dibromochloromethane (DBCM) and bromoform (BF). Chloroform, the major THMs speciation, accounted for 96.17% of total THMs. Non-cancer and cancer risk from ingesting THMs was estimated. The result indicated that non-cancer risk of THMs level ranged from 2.03 x 10(-7) to 1.00 x 10(-5) and was not more than 1.0 x 10(-5), the minimum or negligible non-cancer risk level defined by the USEPA. The average cancer risk of THMs was 2.91 x 10(-4) for male and 3.30 x 10(-4) for female in the two rivers, respectively, exceeding the minimum or negligible risk level defined by the USEPA (1. 0 x 10 ~6). The difference of cancer risk between the two rivers was that BDCM ranging from 2.50 x 10(-5) to 6.37 x 10(-4) was approximately twice that of CF in Beijing River. BDCM played an important role in the total risk in the Beijiang River while CF played an important role in the total risk in the Pearl River, Guangzhou. Sensitivity analysis showed that CF played an important role in the estimation of total risk potential, and that the direct utilization of water sources from Beijiang River and the Pearl River Guangzhou is dangerous, thus pretreatment is necessary before chlorination.

  9. Environmental change in the Mississippi River Basin

    NASA Astrophysics Data System (ADS)

    Xu, X.; Wynn, G.; Hassan, M. A.; Donner, S. D.; Sivapalan, M.

    2010-12-01

    Land use, land cover change and hydrological modification are important factors affecting discharge, sediment yield, nutrient flows and precipitation at small and large scales. This presentation analyses the changes in crop and pasture land as well as dam and reservoir construction from 1900 to the present in the Mississippi River Basin (including six main sub-basins), to assess their influence on sediment and nutrient dynamics in the basin. Total cropland and pastureland from 1900-2007 are characterized at 0.5 degree x 0.5 degree spatial resolution from existing satellite-derived datasets. From 1900s to 2000s, total cropland in the Ohio River Basin and the Tennessee River Basin in the east exhibited a decreasing trend. The other sub-basins and the basin as a whole exhibited an increasing trend. The area under pasture in the Ohio, the Tennessee and the Upper Mississippi river basins decreased; it increased in the other sub-basins. The areas of corn, wheat and soybean, the three dominant crops in the United States, from 1950 to 2000 are characterized at 5’ x 5’ spatial resolution from existing inventory and satellite-data. The fractional coverage of soybean and wheat increased in most sub-basins, whereas the fraction of corn remained constant or decreased in most sub-basins. The distribution of dams and large dams (those with a normal storage capacity of 5000 acre-feet or more) built in each decade was generated from the data published by National Atlas of the United States. The analysis showed that the majority of the dams in Mississippi River Basin were built in 1960s and 1970s, but the majority of the large dams were built before the 1950s. These spatial and temporal changes in land use, land cover and hydrological modifications are linked to sediment, nutrient and environmental change of the basin.

  10. River Basin Standards Interoperability Pilot

    NASA Astrophysics Data System (ADS)

    Pesquer, Lluís; Masó, Joan; Stasch, Christoph

    2016-04-01

    There is a lot of water information and tools in Europe to be applied in the river basin management but fragmentation and a lack of coordination between countries still exists. The European Commission and the member states have financed several research and innovation projects in support of the Water Framework Directive. Only a few of them are using the recently emerging hydrological standards, such as the OGC WaterML 2.0. WaterInnEU is a Horizon 2020 project focused on creating a marketplace to enhance the exploitation of EU funded ICT models, tools, protocols and policy briefs related to water and to establish suitable conditions for new market opportunities based on these offerings. One of WaterInnEU's main goals is to assess the level of standardization and interoperability of these outcomes as a mechanism to integrate ICT-based tools, incorporate open data platforms and generate a palette of interchangeable components that are able to use the water data emerging from the recently proposed open data sharing processes and data models stimulated by initiatives such as the INSPIRE directive. As part of the standardization and interoperability activities in the project, the authors are designing an experiment (RIBASE, the present work) to demonstrate how current ICT-based tools and water data can work in combination with geospatial web services in the Scheldt river basin. The main structure of this experiment, that is the core of the present work, is composed by the following steps: - Extraction of information from river gauges data in OGC WaterML 2.0 format using SOS services (preferably compliant to the OGC SOS 2.0 Hydrology Profile Best Practice). - Model floods using a WPS 2.0, WaterML 2.0 data and weather forecast models as input. - Evaluation of the applicability of Sensor Notification Services in water emergencies. - Open distribution of the input and output data as OGC web services WaterML, / WCS / WFS and with visualization utilities: WMS. The architecture

  11. Study on river regulation measures of dried-up rivers of Haihe River basin, China.

    PubMed

    Peng, Jing; Li, Shaoming; Qi, Lan

    2013-01-01

    In recent years, the ecological environment of plain rivers within Haihe River basin is questionable because of severe water shortages. Most of the rivers dry up regularly and it is therefore necessary to take measures to improve the river ecological environment. Meanwhile, flood control is the principal function for most of the dried-up rivers, so river regulation works for flood control also should be undertaken. In this paper, some measures of river regulation were selected applied to the Haihe River basin, taking these measures not only ensure the river security but also realize its ecological benefit. Examples of the application of selected measures for the representative rivers, Yongding River and Hutuo River, both located within the Haihe River basin, are also assessed. These measures provide practical solutions to ecological and flood control problems of dried-up rivers, are generic in nature, and could therefore be applied to other same type rivers.

  12. Spatial distribution and partition of perfluoroalkyl acids (PFAAs) in rivers of the Pearl River Delta, southern China.

    PubMed

    Liu, Baolin; Zhang, Hong; Xie, Liuwei; Li, Juying; Wang, Xinxuan; Zhao, Liang; Wang, Yanping; Yang, Bo

    2015-08-15

    This study investigated the occurrence of perfluoroalkyl acids (PFAAs) in surface water from 67 sampling sites along rivers of the Pearl River Delta in southern China. Sixteen PFAAs, including perfluoroalkyl carboxylic acids (PFCAs, C5-14, C16 and C18) and perfluoroalkyl sulfonic acids (PFSAs, C4, C6, C8 and C10) were determined by high performance liquid chromatography-negative electrospray ionization-tandem mass spectrometry (HPLC/ESI-MS/MS). Total PFAA concentrations (∑ PFAAs) in the surface water ranged from 1.53 to 33.5 ng·L(-1) with an average of 7.58 ng·L(-1). Perfluorobutane sulfonic acid (PFBS), perfluorooctanoic acid (PFOA), and perfluorooctane sulfonic acid (PFOS) were the three most abundant PFAAs and on average accounted for 28%, 16% and 10% of ∑ PFAAs, respectively. Higher concentrations of ∑ PFAAs were found in the samples collected from Jiangmen section of Xijiang River, Dongguan section of Dongjiang River and the Pearl River flowing the cities which had very well-developed manufacturing industries. PCA model was employed to quantitatively calculate the contributions of extracted sources. Factor 1 (72.48% of the total variance) had high loading for perfluorohexanoic acid (PFHxA), perfluoropentanoic acid (PFPeA), PFBS and PFOS. For factor 2 (10.93% of the total variance), perfluorononanoic acid (PFNA) and perfluoroundecanoic acid (PFUdA) got high loading. The sorption of PFCAs on suspended particulate matter (SPM) increased by approximately 0.1 log units for each additional CF2 moiety and that on sediment was approximately 0.8 log units lower than the SPM logKd values. In addition, the differences in the partition coefficients were influenced by the structure discrepancy of absorbents and influx of fresh river water. These data are essential for modeling the transport and environmental fate of PFAAs.

  13. Ecosystem health assessment in the pearl river estuary of China by considering ecosystem coordination.

    PubMed

    Chen, Xiaoyan; Gao, Huiwang; Yao, Xiaohong; Chen, Zhenhua; Fang, Hongda; Ye, Shufeng

    2013-01-01

    Marine ecosystem is a complex nonlinear system. However, ecosystem health assessment conventionally builds on a linear superposition of changes in ecosystem components and probably fails to evaluate nonlinear interactions among various components. To better reflect the intrinsic interactions and their impacts on ecosystem health, an ecosystem coordination index, defined as the matching level of ecosystem structure/services, is proposed and incorporated into the ecosystem health index for a systematic diagnosis in the Pearl River Estuary, China. The analysis results show that the ecosystem health index over the last three decades decreased from 0.91 to 0.50, indicating deteriorating from healthy to unhealthy status. The health index is 3-16% lower than that calculated using the common method without considering ecosystem coordination. Ecosystem health degradation in the Pearl River Estuary manifested as significant decreases in structure/services and somewhat mismatching among them. Overall, the introduction of coordination in ecosystem health assessment could improve the understanding of the mechanism of marine ecosystem change and facilitate effective restoration of ecosystem health.

  14. Ecosystem Health Assessment in the Pearl River Estuary of China by Considering Ecosystem Coordination

    PubMed Central

    Chen, Xiaoyan; Gao, Huiwang; Yao, Xiaohong; Chen, Zhenhua; Fang, Hongda; Ye, Shufeng

    2013-01-01

    Marine ecosystem is a complex nonlinear system. However, ecosystem health assessment conventionally builds on a linear superposition of changes in ecosystem components and probably fails to evaluate nonlinear interactions among various components. To better reflect the intrinsic interactions and their impacts on ecosystem health, an ecosystem coordination index, defined as the matching level of ecosystem structure/services, is proposed and incorporated into the ecosystem health index for a systematic diagnosis in the Pearl River Estuary, China. The analysis results show that the ecosystem health index over the last three decades decreased from 0.91 to 0.50, indicating deteriorating from healthy to unhealthy status. The health index is 3–16% lower than that calculated using the common method without considering ecosystem coordination. Ecosystem health degradation in the Pearl River Estuary manifested as significant decreases in structure/services and somewhat mismatching among them. Overall, the introduction of coordination in ecosystem health assessment could improve the understanding of the mechanism of marine ecosystem change and facilitate effective restoration of ecosystem health. PMID:23894670

  15. Fluvial Responses to Growth Faulting in the West Pearl River, Louisiana

    NASA Astrophysics Data System (ADS)

    Prosser, S. A.; Yeager, K. M.

    2015-12-01

    The Pearl River Delta (PRD) in southeastern Louisiana is an actively deforming deltaic complex displaying surface and near-surface evidence of growth faulting. Active growth faults in these environments are rarely identified at the surface, in part because the downthrown blocks often experience increased rates of sediment deposition leading to an obscured and low-relief, or entirely absent, surface expression. Faulting can be expressed in fluvial systems as changes in channel gradient, which often result in coincident changes in channel sinuosity, migration rates, planform deflections, and/or ponding features within the deformed zone. The study area is focused on a meander bend of the West Pearl River (WPR). The nature of the meander bend suggests the likely presence of a short growth fault controlling channel morphology. This research tested the hypotheses that active near-surface growth faulting is constraining the tortuous meander bend of the WPR and that growth faults, where present and active, are strongly coupled to channel meander planform changes and marsh vertical accretion rates in the PRD. Tools including shallow lithostratigraphy, use of fallout radionuclides (210Pb, 137Cs, 7Be) to quantify marsh vertical accretion rates, and a ~75 year record of WPR channel migration show that active growth faulting exists along the northern bend of the WPR with resultant lateral channel deflection. Evidence of this growth fault suggests further, eastward extension of the Baton Rouge Fault Zone (BRFZ) into the PRD

  16. Risks posed by trace organic contaminants in coastal sediments in the Pearl River Delta, China.

    PubMed

    Fung, C N; Zheng, G J; Connell, D W; Zhang, X; Wong, H L; Giesy, J P; Fang, Z; Lam, P K S

    2005-10-01

    Local marine environments in China's Pearl River Delta (PRD), the most rapidly developing region in one of the world's fastest growing economies, have been experiencing significant environmental stress during the past decades. This investigation was conducted to determine the status and trends of persistence organic pollutants (POPs) such as polycyclic aromatic hydrocarbons (PAHs), petroleum hydrocarbons (PHCs), polychlorinated biphenyls (PCBs), organochlorine (OC) pesticides and dioxin-related compounds in marine sediments collected from sixteen coastal stations in the Pearl River Delta (PRD) in March 2003. Elevated concentrations of PAHs (94-4300 ng/g), PCBs (6.0-290 ng/g), PHCs (14-150 microg/g), and DDTs (1.4-600 ng/g) were detected in sediment samples. In addition, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-like activities in the sediment samples were estimated to range from 0.3 to 440 pg TCDD-EQ/g. Sediments collected from Xiashan contained the greatest concentrations of trace organic contaminations amongst all the sampling stations in the present study. The degree of trace organic contamination was, in general, more severe at stations situated along the west shores of the PRD than their counterparts in the east. A preliminary assessment was performed to examine the probable risks to the marine ecosystem due to POPs. The results showed that OC pesticide contamination in the PRD was particularly serious and might pose a threat to the health of the marine inhabitants. PMID:16199239

  17. Ecosystem health assessment in the pearl river estuary of China by considering ecosystem coordination.

    PubMed

    Chen, Xiaoyan; Gao, Huiwang; Yao, Xiaohong; Chen, Zhenhua; Fang, Hongda; Ye, Shufeng

    2013-01-01

    Marine ecosystem is a complex nonlinear system. However, ecosystem health assessment conventionally builds on a linear superposition of changes in ecosystem components and probably fails to evaluate nonlinear interactions among various components. To better reflect the intrinsic interactions and their impacts on ecosystem health, an ecosystem coordination index, defined as the matching level of ecosystem structure/services, is proposed and incorporated into the ecosystem health index for a systematic diagnosis in the Pearl River Estuary, China. The analysis results show that the ecosystem health index over the last three decades decreased from 0.91 to 0.50, indicating deteriorating from healthy to unhealthy status. The health index is 3-16% lower than that calculated using the common method without considering ecosystem coordination. Ecosystem health degradation in the Pearl River Estuary manifested as significant decreases in structure/services and somewhat mismatching among them. Overall, the introduction of coordination in ecosystem health assessment could improve the understanding of the mechanism of marine ecosystem change and facilitate effective restoration of ecosystem health. PMID:23894670

  18. Spatial assessment of water quality using chemometrics in the Pearl River Estuary, China

    NASA Astrophysics Data System (ADS)

    Wu, Meilin; Wang, Youshao; Dong, Junde; Sun, Fulin; Wang, Yutu; Hong, Yiguo

    2016-09-01

    A cruise was commissioned in the summer of 2009 to evaluate water quality in the Pearl River Estuary (PRE). Chemometrics such as Principal Component Analysis (PCA), Cluster analysis (CA) and Self-Organizing Map (SOM) were employed to identify anthropogenic and natural influences on estuary water quality. The scores of stations in the surface layer in the first principal component (PC1) were related to NH4-N, PO4-P, NO2-N, NO3-N, TP, and Chlorophyll a while salinity, turbidity, and SiO3-Si in the second principal component (PC2). Similarly, the scores of stations in the bottom layers in PC1 were related to PO4-P, NO2-N, NO3-N, and TP, while salinity, Chlorophyll a, NH4-N, and SiO3-Si in PC2. Results of the PCA identified the spatial distribution of the surface and bottom water quality, namely the Guangzhou urban reach, Middle reach, and Lower reach of the estuary. Both cluster analysis and PCA produced the similar results. Self-organizing map delineated the Guangzhou urban reach of the Pearl River that was mainly influenced by human activities. The middle and lower reaches of the PRE were mainly influenced by the waters in the South China Sea. The information extracted by PCA, CA, and SOM would be very useful to regional agencies in developing a strategy to carry out scientific plans for resource use based on marine system functions.

  19. Transfer of cadmium from soil to vegetable in the Pearl River Delta area, South China.

    PubMed

    Zhang, Huihua; Chen, Junjian; Zhu, Li; Yang, Guoyi; Li, Dingqiang

    2014-01-01

    The purpose of this study was to investigate the regional Cadmium (Cd) concentration levels in soils and in leaf vegetables across the Pearl River Delta (PRD) area; and reveal the transfer characteristics of Cadmium (Cd) from soils to leaf vegetable species on a regional scale. 170 paired vegetables and corresponding surface soil samples in the study area were collected for calculating the transfer factors of Cadmium (Cd) from soils to vegetables. This investigation revealed that in the study area Cd concentration in soils was lower (mean value 0.158 mg kg(-1)) compared with other countries or regions. The Cd-contaminated areas are mainly located in west areas of the Pearl River Delta. Cd concentrations in all vegetables were lower than the national standard of Safe vegetables (0.2 mg kg(-1)). 88% of vegetable samples met the standard of No-Polluted vegetables (0.05 mg kg(-1)). The Cd concentration in vegetables was mainly influenced by the interactions of total Cd concentration in soils, soil pH and vegetable species. The fit lines of soil-to-plant transfer factors and total Cd concentration in soils for various vegetable species were best described by the exponential equation (y = ax(b)), and these fit lines can be divided into two parts, including the sharply decrease part with a large error range, and the slowly decrease part with a low error range, according to the gradual increasing of total Cd concentrations in soils.

  20. Variation of phytoplankton community structure from the Pearl River estuary to South China Sea.

    PubMed

    Jiang, Zhao-Yu; Wang, You-Shao; Cheng, Hao; Sun, Cui-Ci; Wu, Mei-Lin

    2015-10-01

    The Pearl River is located in the northern part of South China Sea. The environment of the Pearl River estuary (PRE) is significantly impacted by nutrients from anthropogenic activities. Along the anthropogenic pollution gradient from the PRE to South China Sea, the phylogenetic diversity and biomass of phytoplankton was examined in relation to physic-chemical variables. The richness of rbcL gene was higher in the open sea than the estuary, while the concentration of chlorophyll a (Chl a) was higher in the estuary than in the open sea. The cluster analysis of the sequences data resulted in seven phytoplankton community types and the dominant species of phytoplankton changed from Cryptophytes and Diatoms to Prymnesiophytes and Diatoms along the gradient. The community structure of phytoplankton was shaped by nutrients and salinity. The phytoplankton biomass was significantly positively affected by phosphorus, nitrite and ammonium (P < 0.01) but negatively by salinity (P < 0.05); the phytoplankton diversity was highly positively affected by salinity (P < 0.05) but negatively by silicate and nitrate (P < 0.01; P < 0.05, respectively). Anthropogenic activities played a critical role in the phytoplankton distribution and biomass of the study area. Further research is necessary to reveal the influence mechanism of environmental factors on the phytoplankton.

  1. Transfer of Cadmium from Soil to Vegetable in the Pearl River Delta area, South China

    PubMed Central

    Zhang, Huihua; Chen, Junjian; Zhu, Li; Yang, Guoyi; Li, Dingqiang

    2014-01-01

    The purpose of this study was to investigate the regional Cadmium (Cd) concentration levels in soils and in leaf vegetables across the Pearl River Delta (PRD) area; and reveal the transfer characteristics of Cadmium (Cd) from soils to leaf vegetable species on a regional scale. 170 paired vegetables and corresponding surface soil samples in the study area were collected for calculating the transfer factors of Cadmium (Cd) from soils to vegetables. This investigation revealed that in the study area Cd concentration in soils was lower (mean value 0.158 mg kg−1) compared with other countries or regions. The Cd-contaminated areas are mainly located in west areas of the Pearl River Delta. Cd concentrations in all vegetables were lower than the national standard of Safe vegetables (0.2 mg kg−1). 88% of vegetable samples met the standard of No-Polluted vegetables (0.05 mg kg−1). The Cd concentration in vegetables was mainly influenced by the interactions of total Cd concentration in soils, soil pH and vegetable species. The fit lines of soil-to-plant transfer factors and total Cd concentration in soils for various vegetable species were best described by the exponential equation (), and these fit lines can be divided into two parts, including the sharply decrease part with a large error range, and the slowly decrease part with a low error range, according to the gradual increasing of total Cd concentrations in soils. PMID:25247431

  2. [Ecological characteristics of phytoplankton in coastal area of Pearl River estuary].

    PubMed

    Dai, Ming; Li, Chunhou; Jia, Xiaoping; Zhang, Hanhua; Chen, Ruiwen

    2004-08-01

    Five cruises of phytoplankton survey were made in costal area of Pearl River estuary in 1998-1999. The results showed that 239 species were identified, 72.4% of which belonging to Bacillariophyta, 23.8% to Pyrrophyta, and 3.8% to others. The dominant species were warm and eurythermic species Thalassiothrix frauenfeldii, Nitzschia delicatissima, Thalassiothrix frauenfeldii and Thalassiosira subtilis, and changed with an obvious seasonal succession. The cell density ranged from 0.2 x 10(4) to 2,767.1 x 10(4) cell x m(-3), with an average of 98.7 x 10(4) cell x m(-3), and the mean cell density was obviously higher in summer and winter than in spring and autumn. The regional variation revealed that the cell density in shore area was visibly higher than that in offshore area, and the largest density area was at the southeast of Shangchuan Island all the year around. The range of mean Shannon-Wiener index, Pielou evenness index and biodiversity threshold was 2.63-3.17, 0.53-0.71 and 1.74-2.23, respectively. According to the diversity index, it was concluded that the diversity level of phytoplankton community in coastal area of Pearl River estuary was relatively high and stable.

  3. Distribution of alkylphenols in the Pearl River Delta and adjacent northern South China Sea, China.

    PubMed

    Chen, Bing; Duan, Jing-Chun; Mai, Bi-xian; Luo, Xiao-Jun; Yang, Qing-Shu; Sheng, Guo-Ying; Fu, Jia-Mo

    2006-04-01

    The occurrence of alkylphenols (APs) was investigated in surface water and sediments from the Pearl River Delta and adjacent northern South China Sea. Most of the water samples contained detectable amounts of APs, ranging up to 0.628 microg l(-1) for nonylphenol (NP) and 0.068 microg l(-1) for octylphenol (OP). APs were found in all of the sediment samples with concentrations ranging from 59 to 7808 microg kg(-1) for NP and from 1 to 93 microg kg(-1) for OP. The Zhujiang River showed the highest concentrations of APs in both water and sediments. Significant decrease of APs concentrations going from the Zhujiang River to the Shiziyang River was observed. The Xijiang River contained concentrations of APs slightly higher in water but relatively lower in sediments than the Lingding Bay, which might be attributed to their different hydrodynamic and sedimentary characteristics. There was a decreasing trend of APs in water from the rivers to the estuary and further to the sea on the whole. In the Lingding Bay and its outer waters, concentrations of APs in sediments increased to a maximum and then decrease seaward, which was consistent with the distribution trend of the sediment organic carbon contents. Linear regression analyses showed the concentrations of APs were markedly correlated with the sediment organic carbon contents, indicating that the sediment organic carbon is an important factor controlling the levels of APs in sediments.

  4. Distribution, sources, and fluxes of heavy metals in the Pearl River Delta, South China.

    PubMed

    Geng, Junjie; Wang, Yiping; Luo, Hanjin

    2015-12-30

    Riverine samples were collected at various locations in the Pearl River Delta (PRD) to determine the concentrations of heavy metals (Cr, Ni, Cu, Mn, Zn, Cd, and Pb) in time and space and to estimate the fluxes of heavy metals to the coastal waters off South China. Most of the elements exhibit clear temporal and spatial trends. Principal component analysis shows that surface erosion is the major factor affecting metal concentrations in particulates in the PRD. Natural geology is an important source of these heavy metals. The annual fluxes of Cr, Ni, Cu, Mn, Zn, Cd, and Pb in upstream and downstream were 445, 256, 241, 3293, 1279, 12, and 317 t/year and 1823, 1144, 1786, 15,634, 6183, 74, and 2017 t/year, respectively. A comparison indicated that the annual fluxes of Mn accounted for 1.3% of the global river fluxes, whereas other elements contribute <1%. PMID:26555797

  5. Tritium hydrology of the Mississippi River basin

    USGS Publications Warehouse

    Michel, R.L.

    2004-01-01

    In the early 1960s, the US Geological Survey began routinely analysing river water samples for tritium concentrations at locations within the Mississippi River basin. The sites included the main stem of the Mississippi River (at Luling Ferry, Louisiana), and three of its major tributaries, the Ohio River (at Markland Dam, Kentucky), the upper Missouri River (at Nebraska City, Nebraska) and the Arkansas River (near Van Buren, Arkansas). The measurements cover the period during the peak of the bomb-produced tritium transient when tritium concentrations in precipitation rose above natural levels by two to three orders of magnitude. Using measurements of tritium concentrations in precipitation, a tritium input function was established for the river basins above the Ohio River, Missouri River and Arkansas River sampling locations. Owing to the extent of the basin above the Luling Ferry site, no input function was developed for that location. The input functions for the Ohio and Missouri Rivers were then used in a two-component mixing model to estimate residence times of water within these two basins. (The Arkansas River was not modelled because of extremely large yearly variations in flow during the peak of the tritium transient.) The two components used were: (i) recent precipitation (prompt outflow) and (ii) waters derived from the long-term groundwater reservoir of the basin. The tritium concentration of the second component is a function of the atmospheric input and the residence times of the groundwaters within the basin. Using yearly time periods, the parameters of the model were varied until a best fit was obtained between modelled and measured tritium data. The results from the model indicate that about 40% of the flow in the Ohio River was from prompt outflow, as compared with 10% for the Missouri River. Mean residence times of 10 years were calculated for the groundwater component of the Ohio River versus 4 years for the Missouri River. The mass flux of

  6. Metabolic principles of river basin organization.

    PubMed

    Rodriguez-Iturbe, Ignacio; Caylor, Kelly K; Rinaldo, Andrea

    2011-07-19

    The metabolism of a river basin is defined as the set of processes through which the basin maintains its structure and responds to its environment. Green (or biotic) metabolism is measured via transpiration and blue (or abiotic) metabolism through runoff. A principle of equal metabolic rate per unit area throughout the basin structure is developed and tested in a river basin characterized by large heterogeneities in precipitation, vegetation, soil, and geomorphology. This principle is suggested to have profound implications for the spatial organization of river basin hydrologic dynamics, including the minimization of energy expenditure known to control the scale-invariant characteristics of river networks over several orders of magnitude. Empirically derived, remarkably constant rates of average transpiration per unit area through the basin structure lead to a power law for the probability distribution of transpiration from a randomly chosen subbasin. The average runoff per unit area, evaluated for subbasins of a wide range of topological magnitudes, is also shown to be remarkably constant independently of size. A similar result is found for the rainfall after accounting for canopy interception. Allometric scaling of metabolic rates with size, variously addressed in the biological literature and network theory under the label of Kleiber's law, is similarly derived. The empirical evidence suggests that river basin metabolic activity is linked with the spatial organization that takes place around the drainage network and therefore with the mechanisms responsible for the fractal geometry of the network, suggesting a new coevolutionary framework for biological, geomorphological, and hydrologic dynamics.

  7. Metabolic principles of river basin organization.

    PubMed

    Rodriguez-Iturbe, Ignacio; Caylor, Kelly K; Rinaldo, Andrea

    2011-07-19

    The metabolism of a river basin is defined as the set of processes through which the basin maintains its structure and responds to its environment. Green (or biotic) metabolism is measured via transpiration and blue (or abiotic) metabolism through runoff. A principle of equal metabolic rate per unit area throughout the basin structure is developed and tested in a river basin characterized by large heterogeneities in precipitation, vegetation, soil, and geomorphology. This principle is suggested to have profound implications for the spatial organization of river basin hydrologic dynamics, including the minimization of energy expenditure known to control the scale-invariant characteristics of river networks over several orders of magnitude. Empirically derived, remarkably constant rates of average transpiration per unit area through the basin structure lead to a power law for the probability distribution of transpiration from a randomly chosen subbasin. The average runoff per unit area, evaluated for subbasins of a wide range of topological magnitudes, is also shown to be remarkably constant independently of size. A similar result is found for the rainfall after accounting for canopy interception. Allometric scaling of metabolic rates with size, variously addressed in the biological literature and network theory under the label of Kleiber's law, is similarly derived. The empirical evidence suggests that river basin metabolic activity is linked with the spatial organization that takes place around the drainage network and therefore with the mechanisms responsible for the fractal geometry of the network, suggesting a new coevolutionary framework for biological, geomorphological, and hydrologic dynamics. PMID:21670259

  8. Phytoplankton dynamics in and near the highly eutrophic Pearl River Estuary, South China Sea

    NASA Astrophysics Data System (ADS)

    Qiu, Dajun; Huang, Liangmin; Zhang, Jianlin; Lin, Senjie

    2010-02-01

    The dynamics of size-fractionated phytoplankton along the salinity gradient in the Pearl River Estuary and the adjacent near-shore oceanic water was investigated using microscopic, flow cytometric, and chlorophyll analyses in the early spring (March) and early autumn (September) of 2005. In the inner part of the estuary where salinity was less than 30, the phytoplankton community was dominated by micro- and nano-sized (3-200 μm) cells, particularly the diatom Skeletonema costatum, both in early spring and early autumn. In areas where salinity >30, including the mixing zone and nearshore oceanic water, micro- and nano-sized cell populations dominated the phytoplankton assemblage during early spring when influence of river discharge was minimal, whereas pico-sized (≤3 μm) cell populations were dominant during early autumn as a result of strong river discharge in the summer, with Synechococcus and pico-eukaryotes being predominant. Picophytoplankton were two orders of magnitude more abundant in early autumn (10 6 cells mL -1) than in early spring in the nearshore oceanic water. Nutrients delivered by freshwater input to the estuary were pushed toward high salinity (>30) areas as a result of short residence time, exerting a strong influence on phytoplankton abundance, especially picophytoplankton in the nearshore, otherwise oligotrophic, water. Influenced by high abundance of DIN and limitation in phosphorus, picophytoplankton in the adjacent nearshore oceanic water rose to prominence seasonally. Our results indicate that eutrophication in the Pearl River Estuary not only stimulates the growth of S. costatum in the nutrient-rich areas of the estuary but also appears to promote the growth of Synechococcus and pico-eukaryotes in the adjacent usually oligotrophic oceanic water at least during our autumn cruise.

  9. The characteristics of nutrients and eutrophication in the Pearl River estuary, South China.

    PubMed

    Huang, X P; Huang, L M; Yue, W Z

    2003-01-01

    In the spring of 1998, 24-h time series and synchronization of vertical profiles of NO(3)-N, NO(2)-N, NH(3)-N, PO(4)-P, chlorophyll a, suspended substance, salinity, temperature and other chemical parameters were taken at 10 stations in the Pearl River estuary in order to analyze the status and characteristics of nutrients and eutrophication. The results indicated that dissolved inorganic nitrogen (DIN) mainly came from the four river channels in the main estuary, and NO(3)-N was the main form of DIN in most area. The concentration of DIN was general above 0.30 mg l(-1) in the estuary, and more than 0.50 mgl(-1) in most part. Phosphate from four river channels was not the main sources, but land-based sources from the area near Shenzhen Bay or along the estuary were obvious, and other land-based sources outside the estuary brought by coastal current and flood tide current were also the main contributions. The concentration of phosphate was generally about 0.015 mg l(-1) except the area near Shenzhen Bay. The ratio of N:P was generally high, and it was higher in the north than in the south. The highest ratio was higher than 300, and the lowest one was over 30. The concentration of chlorophyll a was about 0.8-7.8 mg m(-3), and turbidity and phosphate may be the main two limiting factors for algal bloom in the estuary. The concentration of nutrients decreased slightly in the past decade, but still stayed at a high level. The nutrients mainly came from domestic sewage, industrial wastewater, agriculture fertilizer and marine culture in the Pearl River estuary.

  10. Polycyclic aromatic hydrocarbons in riverine runoff of the Pearl River Delta (China): concentrations, fluxes, and fate.

    PubMed

    Wang, Ji-Zhong; Guan, Yu-Feng; Ni, Hong-Gang; Luo, Xian-Lin; Zeng, Eddy Y

    2007-08-15

    On the basis of a monthly sampling effort from March 2005 to February 2006, the total concentrations of the sums of 27 and 15 polycyclic aromatic hydrocarbons (defined as sigma27PAHs and sigma15PAHs, respectively) in riverine runoff of the Pearl River Delta (PRD), China, and associated fluxes were determined. No clear temporal and spatial trends of PAH concentrations were found at all eight riverine runoff outlets where the samples were collected. The annual fluxes of sigma27PAHs and sigma15PAHs from the PRD to the coastal ocean were 60.2 and 33.9 metric tons, respectively. Assuming that riverine flux was positively related to the regional emission of PAHs, the annual riverine fluxes from five major rivers in China to the global oceans were estimated, which are quite significant relative to other major rivers of the world. On the basis of mass balance considerations, approximately 87% of sigma15PAHs inputting to the Pearl River Estuary and northern South China Sea was derived from riverine runoff from the PRD. In addition, approcimately 22.3 metric tons of sigma15PAHs annually outflow to open seas, which is equivalent to a concentration of 0.34 pg/L in the global oceans if the PAHs are evenly distributed in the upper 200 m of the water column. A comparison with the global background level of PAHs indicated that approximately 0.4% of PAHs in the open oceans may have been contributed by 1-year discharge from the PRD.

  11. Employee Training Needs and Perceived Value of Training in the Pearl River Delta of China: A Human Capital Development Approach

    ERIC Educational Resources Information Center

    Au, Alan Kai Ming; Altman, Yochanan; Roussel, Josse

    2008-01-01

    Purpose: This paper aims to explore Hong Kong firms' training needs in the Pearl River Delta, a booming region in the fast growing People Republic of China economy, by resorting to a human capital approach. Also, to identify the training policies selected by those firms in order to cater for those needs. Design/methodology/approach: A survey based…

  12. The Quality of Student Experiences in Traditionally Scheduled Courses versus Block Scheduled Courses at Pearl River Community College

    ERIC Educational Resources Information Center

    Alsobrooks, David Scott

    2010-01-01

    The purpose of this study was to determine if students at Pearl River Community College (PRCC) achieve significantly different self-reported Quality of Effort levels when enrolled in block scheduled programs than students enrolled in traditionally scheduled programs. This study focuses on Career and Technical Education (CTE) programs at PRCC in…

  13. Role of photoexcited nitrogen dioxide chemistry on ozone formation and emission control strategy over the Pearl River Delta, China

    EPA Science Inventory

    A new hydroxyl radical formation pathway via photo-excited nitrogen dioxide chemistry is incorporated into a chemistry-only box model as well as a 3D air quality model to examine its potential role on ozone formation and emission control strategy over the Pearl River Delta region...

  14. Examining the Impact of Nitrous Acid Chemistry on Ozone and PM over the Pearl River Delta Region

    EPA Science Inventory

    The impact of nitrous acid (HONO) chemistry on regional ozone and particulate matter in Pearl River Delta region was investigated using the community multiscale air quality (CMAQ) modeling system and the CB05 mechanism. Model simulations were conducted for a ten-day period in Oct...

  15. Emergy and Economic Evaluations of Four Fruit Production Systems on Reclaimed Wetlands Surrounding the Pearl River Estuary, China

    EPA Science Inventory

    Emergy and economic methods were used to evaluate and compare a traditional tropical fruit cultivation system, for bananas, and three newly introduced fruit cultivation systems, for papaya, guava and wampee, on reclaimed wetlands of the Pearl River Estuary, China. The evaluations...

  16. Distribution of heavy metals in sediments of the Pearl River Estuary, southern China: implications for sources and historical changes.

    PubMed

    Ye, Feng; Huang, Xiaoping; Zhang, Dawen; Tian, Lei; Zeng, Yanyi

    2012-01-01

    The distribution of heavy metals (Pb, Zn, Cd and As) in sediments of the Pearl River Estuary was investigated. The spatial distribution of heavy metals displayed a decreasing pattern from the turbidity maxima to both upstream and downstream of the estuary, which suggested that suspended sediments played an important role in the trace metal distribution in the Pearl River Estuary. In addition, metal concentrations were higher in the west part of the estuary which received most of the pollutants from the Pearl River. In the sediment cores, fluxes of heavy metals were consistent with a predominant anthropogenic input in the period 1970-1990. From the mid-1990s to the 2000s, there was a significant decline in heavy metal pollution. The observed decline has shown the result of pollution control in the Pearl River Delta. However, it is noteworthy that the metal concentrations in the most recent sediment still remained considerably high. Taken together, the enrichment of heavy metals in sediments was largely controlled by anthropogenic pollution.

  17. Impact of river-tide dynamics on the residual water level slope and residual sediment transport in the Pearl River channel networks

    NASA Astrophysics Data System (ADS)

    Cai, Huayang; Zhang, Zihao; Yang, Qingshu; Ou, Suying

    2016-04-01

    Large-scale delta systems, such as the Rhine-Meuse delta, the Mississippi River delta, the Mekong delta, the Yangtze delta and the Pearl River delta etc., usually feature a typical channel networks, where individual channels are interrelated through a networks system, resulting in both longitudinal and transverse variations of residual water level slope (averaged over a lunar day) caused by the river-tide interplay. Enhancing our insight of river-tide dynamics in these channel networks has vital importance for the protection and management of estuarine environment since river-tide interplay is closely related to sediment transport, water quality, water utilization and estuarine ecosystem. In this study, we investigate the impact of river-tide dynamics on the temporal-spatial changes of flow and suspended sediment load in terms of residual water level slope and residual sediment transport in the Pearl River channel networks, which is one of the complex channel networks in the world. Making use of a nonstationary harmonic analysis (NS_TIDE), the continuous time series observations of velocity covering a spring-neap cycle in 1999 (representing flood season) and 2001 (representing dry season) collected from around 60 stations in the Pearl River channel networks have been used to extract the temporal-spatial changes in residual velocity and tidal properties (including amplitudes and phases) as a function of variable river flow debouching into the delta. On the basis of harmonic analysis, the tidally averaged friction is decomposed into contributions made by riverine forcing alone, river-tide interaction and tidal asymmetry using Chebyshev polynomials approach. It is shown that river flow enhances friction via river-tide interaction, which increases the residual water level slope that influences the distribution of suspended sediment load in the Pearl River channel networks.

  18. Rivers Run Through It: Discovering the Interior Columbia River Basin.

    ERIC Educational Resources Information Center

    Davis, Shelley; Wojtanik, Brenda Lincoln; Rieben, Elizabeth

    1998-01-01

    Explores the Columbia River Basin, its ecosystems, and challenges faced by natural resource managers. By studying the basin's complexity, students can learn about common scientific concepts such as the power of water and effects of rain shadows. Students can also explore social-scientific issues such as conflicts between protecting salmon runs and…

  19. Significance of active growth faulting on marsh accretion processes in the lower Pearl River, Louisiana

    NASA Astrophysics Data System (ADS)

    Yeager, Kevin M.; Brunner, Charlotte A.; Kulp, Mark A.; Fischer, Dane; Feagin, Rusty A.; Schindler, Kimberly J.; Prouhet, Jeremiah; Bera, Gopal

    2012-06-01

    Neotectonic processes influence marsh accretion in the lower Pearl River valley. Active growth faults are suggested by groupings of ponded river channel sections, transverse and linear river channel sections, and down- and across-valley contrasts in channel sinuosity. Seismic profiles identified several likely, fault-induced structural anomalies, two of which parallel the axes of surface distributary networks. Lithostratigraphy and biostratigraphy of six cores from across a suspected fault in the West Middle River, combined with 14C-based age control, yielded evidence of vertical offsets, indicating that this river section is on the plane of a growth fault. These data were used to estimate fault slip rates over two time intervals, 1.2 mm/y over the last 1300 yr, and 0.2 mm yr- 1 over the last 3700 yr, and delineated a sinusoidal pattern of deformation moving distally from the fault, which we interpret as resulting from fault-propagation folding. Higher rates of sediment accumulation (of the order of cm yr- 1 from 210Pbxs and 137Cs activity data) on the down-thrown side are consistent with sedimentary response to increased accommodation space, and mass-based sediment accumulation rates (g cm- 2 yr- 1) exhibit a pattern inverse of that shown by fault-driven sinusoidal deformation. We contend that near-surface growth faults are critically important to driving accretion rates and marsh response to sea-level rise.

  20. Effects of proposed highway embankment modifications on water-surface elevations in the lower Pearl River flood plain near Slidell, Louisiana

    USGS Publications Warehouse

    Gilbert, J.J.; Schuck-Kolben, R. E.

    1987-01-01

    Major flooding in the lower Pearl River basin in recent years has caused extensive damage to homes and highways in the area. In 1980 and 1983, Interstate Highway 10 and U.S. Highway 190 were overtopped. In 1983, the Interstate Highway 10 crossing was seriously damaged by the flood. The U.S. Geological Survey, in cooperation with the Louisiana Department of Transportation and Development, Office of Highways, used a two-dimensional finite-element surface-water flow model to evaluate the effects the proposed embankment modifications at Interstate Highway 10 and U.S. Highway 90 on the water-surface elevations in the lower Pearl River flood plain near Slidell, Louisiana. The proposed modifications that were considered for the 1983 flood are: (1) Removal of all highway embankments, the natural condition, (2) extension of the West Pearl River bridge by 1,000 feet at U.S. Highway 90, (3) construction of a new 250-foot bridge opening in the U.S. Highways 190 and 90, west of the intersection of the highways. The proposed highway bridge modifications also incorporated lowering of ground-surface elevations under the new bridges to sea level. The modification that provided the largest reduction in backwater, about 35 percent, was a new bridge in Interstate Highway 10. The modification of the West Pearl River bridge at U.S. Highway 90 and replacement of the bridge in U.S. Highway 190 provide about a 25% reduction in backwater each. For the other modification conditions that required structural modifications, maximum backwater computed on the west side of the flood plain ranges from 0.0 to 0.8 foot and on the east side from 0.0 to 0.6 foot. Results show that although backwater is greater on the west side of the flood plain than on the east side, upstream of highway embankments, backwater decreases more rapidly in the upstream direction on the west side of the flood plain than on the east side. Analysis of the proposed modifications indicates that backwater would still occur on

  1. Chiral profiling of azole antifungals in municipal wastewater and recipient rivers of the Pearl River Delta, China.

    PubMed

    Huang, Qiuxin; Wang, Zhifang; Wang, Chunwei; Peng, Xianzhi

    2013-12-01

    Enantiomeric compositions and fractions (EFs) of three chiral imidazole (econazole, ketoconazole, and miconazole) and one chiral triazole (tebuconazole) antifungals were investigated in wastewater, river water, and bed sediment of the Pearl River Delta, South China. The imidazole pharmaceuticals in the untreated wastewater were racemic to weakly nonracemic (EFs of 0.450-0.530) and showed weak enantioselectivity during treatment in the sewage treatment plant. The EFs of the dissolved azole antifungals were usually different from those of the sorbed azoles in the suspended particulate matter, suggesting different behaviors for the enantiomers of the chiral azole antifungals in the dissolved and particulate phases of the wastewater. The azole antifungals were widely present in the rivers. The bed sediment was a sink for the imidazole antifungals. The imidazoles were prevalently racemic, whereas tebuconazole was widely nonracemic in the rivers. Seasonal effects were observed on distribution and chirality of the azole antifungals. Concentrations of the azole antifungals in the river water were relatively higher in winter than in spring and summer while the EF of miconazole in the river water was higher in summer. The mechanism of enantiomeric behavior of the chiral azole antifungals in the environment warrants further research.

  2. Fishes of the White River basin, Indiana

    USGS Publications Warehouse

    Crawford, Charles G.; Lydy, Michael J.; Frey, Jeffrey W.

    1996-01-01

    Since 1875, researchers have reported 158 species of fish belonging to 25 families in the White River Basin. Of these species, 6 have not been reported since 1900 and 10 have not been reported since 1943. Since the 1820's, fish communities in the White River Basin have been affected by the alteration of stream habitat, overfishing, the introduction of non-native species, agriculture, and urbanization. Erosion resulting from conversion of forest land to cropland in the 1800's led to siltation of streambeds and resulted in the loss of some silt-sensitive species. In the early 1900's, the water quality of the White River was seriously degraded for 100 miles by untreated sewage from the City of Indianapolis. During the last 25 years, water quality in the basin has improved because of efforts to control water pollution. Fish communities in the basin have responded favorably to the improved water quality.

  3. The spatial-temporal distribution of particulate organic carbon in the Pearl River Estuary

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Zhu, Qiankun; Chen, Jianyu; Gong, Fang; Wei, Ji-An

    2015-10-01

    Particulate Organic Carbon (POC) plays an important role in sink of atmospheric CO2, global carbon cycle, etc. Around river estuary, POC is sourced from terrestrial ecosystem and aquatic ecosystem; its distribution features might be complex and likely to change with time. Based on in-situ samples from four seasonal cruises, we discussed spatial-temporal distribution and remote sensing monitoring of POC concentration in the Pearl River Estuary (PRE). Being affected by larger discharge from the Pearl River, surface POC concentrations in summer were usually higher than those in other three seasons, similar, in the PRE. However, because of sediment resuspension, POC concentrations at the bottom layer were higher than those at the surface layer. Taking the PRE as an example, remote sensing monitoring of POC concentration in case II water around estuary was also discussed. On the one hand, on the basis of Chlorophyll-a (Chl-a) and Total Suspended Matter (TSM) concentrations inversed by published algorithms, we can estimate surface POC concentration through multiple linear regression equation: POC=0.042*Chl-a+0.014*TSM+0.1595, R=0.9156. On the other hand, great relationships between surface POC concentrations and total particle absorption coefficient at 667nm (TPabs(667)) and 678nm (TPabs(678)) were also found: POC=3.813*TPabs(667)+0.0684, R=0.8769 and POC=3.9175*TPabs(678)+0.0624, R=0.8745. They implied the possibility of estuarine POC monitoring from space through remote sensing reflectance at 667nm or 678nm.

  4. Paraguay river basin response to seasonal rainfall

    NASA Astrophysics Data System (ADS)

    Krepper, Carlos M.; García, Norberto O.; Jones, Phil D.

    2006-07-01

    The use of river flow as a surrogate to study climatic variability implies the assumption that changes in rainfall are mirrored and likely amplified in streamflow. This is probably not completely true in large basins, particularly those that encompass different climatic regions, like the Paraguay river basin. Not all the signals present in precipitation are reflected in river flow and vice versa. The complex relationship between precipitation and streamflow could filter some signals and introduce new oscillatory modes in the discharge series. In this study the whole basin (1 095 000 km2) was divided into two sub-basins. The upper basin is upstream of the confluence with the River Apa and the lower basin is between the Apa river confluence and the Puerto Bermejo measuring station. The rainfall contribution shows a clear wet season from October to March and a dry season from April to September. A singular spectrum analysis (SSA) shows that there are trends in rainfall contributions over the upper and lower basins. Meanwhile, the lower basin only presents a near-decadal cycle (T 10 years). To determine the flow response to seasonal rainfall contributions, an SSA was applied to seasonal flow discharges at Puerto Bermejo. The seasonal flows, Q(t)O-M and Q(t)A-S, present high significant modes in the low-frequency band, like positive trends. In addition, Q(t)O-M presents a near-decadal mode, but only significant at the 77% level for short window lengths (M ≤ 15 years). Really, the Paraguay river flow is not a good surrogate to study precipitation variation. The low-frequency signals play an important role in the flow behaviour, especially during extreme events from the second half of the last century onwards.

  5. Contamination profiles of perfluoroalkyl substances in five typical rivers of the Pearl River Delta region, South China.

    PubMed

    Pan, Chang-Gui; Ying, Guang-Guo; Liu, You-Sheng; Zhang, Qian-Qian; Chen, Zhi-Feng; Peng, Feng-Jiao; Huang, Guo-Yong

    2014-11-01

    A survey on contamination profiles of eighteen perfluoroalkyl substances (PFASs) was performed via high performance liquid chromatography-tandem mass spectrometry for surface water and sediments from five typical rivers of the Pearl River Delta region, South China in summer and winter in 2012. The total concentrations of the PFASs in the water phase of the five rivers ranged from 0.14 to 346.72 ng L(-1). The PFAS concentrations in the water phase were correlated positively to some selected water quality parameters such as chemical oxygen demand (COD) (0.7913) and conductivity (0.5642). The monitoring results for the water samples showed significant seasonal variations, while those for the sediment samples showed no obvious seasonal variations. Among the selected 18 PFASs, perfluorooctane sulfonic acid (PFOS) was the dominant PFAS compound both in water and sediment for two seasons with its maximum concentration of 320.5 ng L(-1) in water and 11.4 ng g(-1) dry weight (dw) in sediment, followed by perfluorooctanoic acid (PFOA) with its maximum concentration of 26.48 ng L(-1) in water and 0.99 ng g(-1) dw in sediment. PFOS and PFOA were found at relatively higher concentrations in the Shima River and Danshui River than in the other three rivers (Xizhijiang River, Dongjiang River and Shahe River). The principal component analysis for the PFASs concentrations in water and sediment separated the sampling sites into two groups: rural and agricultural area, and urban and industrial area, suggesting the PFASs in the riverine environment were mainly originated from industrial and urban activities in the region.

  6. In-situ partitioning and bioconcentration of polycyclic aromatic hydrocarbons among water, suspended particulate matter, and fish in the Dongjiang and Pearl Rivers and the Pearl River Estuary, China.

    PubMed

    Li, Haiyan; Lu, Lei; Huang, Wen; Yang, Juan; Ran, Yong

    2014-06-15

    The partitioning and bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) in water, suspended particulate matter (SPM), and fish samples from the Dongjiang River (DR), Pearl River (PR), and the Pearl River Estuary (PRE) were examined. Although PAHs are much lower in PRE than in DR or PR, PAHs in some fish species are significantly higher in PRE than in DR or PR. Aqueous or particulate PAHs respectively show significant correlations with dissolved organic carbon, particulate organic matter, and chlorophyll a, suggesting that biological pumping effect regulates their distribution. The in situ partitioning coefficients (logKoc) for PAHs are one order magnitude higher than the empirical logKoc-logKow correlation. The bioconcentration factor (BCF) is slightly higher for the marine fish than for the freshwater fish. The above phenomena indicate that BCF may vary due to the diversity of fish species, feeding habits, and metabolism of PAHs in fish.

  7. Polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides in water columns from the Pearl River and the Macao harbor in the Pearl River Delta in South China.

    PubMed

    Luo, Xiaojun; Mai, Bixian; Yang, Qingshu; Fu, Jiamo; Sheng, Guoying; Wang, Zhishi

    2004-06-01

    Polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) were measured in suspended particles and dissolved phase from the Baiertang water column and the Macao water column samples as collected from the Guangzhou channel of the Pearl River and the Macao harbor, where the sediments were heavily contaminated with organic pollutants. Total OCPs concentration varies from 23.4 to 61.7 ng/l in Baiertang water column and from 25.2 to 67.8 ng/l in Macao column, while total PAHs concentration varies from 987.1 to 2878.5 ng/l in the Baiertang water column and from 944.0 to 6654.6 ng/l in the Macao column. The vertical distribution profiles of pollutants and the partition of pollutants between particles and dissolved phases indicate that the sediments in Baiertang act as an important source of selected pollutants, and the pollutants in water of this region were mainly originated from the release and re-suspension of contaminants residing in the sediments. The sediments in Macao harbor act as a reservoir for organochlorine pesticides, such as DDTs mainly introduced by river inflow from Xijiang and PAHs input by brackish water from the Lingdingyang estuary. Combustion of fossil fuels and petroleum input are the main sources of PAHs in the Macao water column, while combustion of fossil fuels and coal is responsible for the PAHs in the Baiertang water column. The ratios of DDT/(DDD+DDE) for the Macao water column samples demonstrate that such chemicals were input into this region in recent times.

  8. South Fork Holston River basin 1988 biomonitoring

    SciTech Connect

    Saylor, C.F.; Ahlstedt, S.A.

    1990-06-01

    There is concern over the effects of shifts in land use use practices on the aquatic fauna of streams in the South Fork Holston River basin in northwestern North Carolina and southwestern Virginia. Trout reproduction has noticeably declined in the Watauga River subbasin. The Watauga River and Elk River subbasins have been subjected to commercial and resort development. The Middle fork Holston River and the upper South Fork Holston River subbasins have been affected by agricultural and mining activities, respectively (Cox, 1986). To aid reclamation and management of the South Fork Holston basin, Tennessee Valley Authority (TVA) biologists conducted biomonitoring--including index of biotic integrity and macroinvertebrate sampling--on the Middle Fork Holston, South Fork Holston, Watauga, and Elk Rivers to assess cumulative impairment related to changes in habitat and pollutant loading in these subbasins. Biomonitoring can detect environmental degradation, help document problem areas, and assist in development of strategies for managing water quality. This report discusses the methods and materials and results of the biomonitoring of South Fork Holston River Basin. 13 refs., 5 figs., 12 tabs.

  9. Hotspots within the Transboundary Selenga River Basin

    NASA Astrophysics Data System (ADS)

    Kasimov, Nikolay; Lychagin, Mikhail; Chalov, Sergey

    2013-04-01

    Gathering the efficient information on water pollution of transboundary river systems remains the crucial task in international water management, environmental pollution control and prevention health problems. Countries, located in the low parts of the river basins, depend on the water strategy and water use in the adjacent countries, located upstream. Surface water pollution is considered to be the most serious problem, facing the above-mentioned countries. Large efforts in terms of field measurement campaigns and (numerical) transport modeling are then typically needed for relevant pollution prediction and prevention. Russian rivers take inflow from 8 neighboring countries. Among them there are 2 developing economies - People Republic of China and Mongolia, which are located in water-scarce areas and thus solve their water-related problems through the consumption of international water. Negative change of water runoff and water quality in the foreign part of transboundary river is appeared inside Russian territory with more or less delay. The transboundary river system of Selenga is particularly challenging, being the biggest tributary of Lake Baikal which is the largest freshwater reservoir in the world. Selenga River contributes about 50 % of the total inflow into Baikal. It originates in the mountainous part of Mongolia and then drains into Russia. There are numerous industries and agricultural activities within the Selenga drainage basin that affect the water quality of the river system. Absence of the single monitoring system and predictive tools for pollutants transport in river system requires large efforts in understanding sources of water pollution and implemented data on the relevant numerical systems for the pollution prediction and prevention. Special investigations in the Selenga river basin (Mongolia and Russia) were done to assess hot spots and understand state-of-the art in sediment load, water chemistry and hydrobiology of transboundary systems

  10. Hong Kong at the Pearl River Estuary: A hotspot of microplastic pollution.

    PubMed

    Fok, Lincoln; Cheung, P K

    2015-10-15

    Large plastic (>5mm) and microplastic (0.315-5mm) debris were collected from 25 beaches along the Hong Kong coastline. More than 90% consisted of microplastics. Among the three groups of microplastic debris, expanded polystyrene (EPS) represented 92%, fragments represented 5%, and pellets represented 3%. The mean microplastic abundance for Hong Kong was 5595items/m(2). This number is higher than international averages, indicating that Hong Kong is a hotspot of marine plastic pollution. Microplastic abundance was significantly higher on the west coast than on the east coast, indicating that the Pearl River, which is west of Hong Kong, may be a potential source of plastic debris. The amounts of large plastic and microplastic debris of the same types (EPS and fragments) were positively correlated, suggesting that the fragmentation of large plastic material may increase the quantity of beach microplastic debris.

  11. Cruise observation and numerical modeling of turbulent mixing in the Pearl River estuary in summer

    NASA Astrophysics Data System (ADS)

    Pan, Jiayi; Gu, Yanzhen

    2016-06-01

    The turbulent mixing in the Pearl River estuary and plume area is analyzed by using cruise data and simulation results of the Regional Ocean Model System (ROMS). The cruise observations reveal that strong mixing appeared in the bottom layer on larger ebb in the estuary. Modeling simulations are consistent with the observation results, and suggest that inside the estuary and in the near-shore water, the mixing is stronger on ebb than on flood. The mixing generation mechanism analysis based on modeling data reveals that bottom stress is responsible for the generation of turbulence in the estuary, for the re-circulating plume area, internal shear instability plays an important role in the mixing, and wind may induce the surface mixing in the plume far-field. The estuary mixing is controlled by the tidal strength, and in the re-circulating plume bulge, the wind stirring may reinforce the internal shear instability mixing.

  12. The distribution and partitioning of common antibiotics in water and sediment of the Pearl River Estuary, South China.

    PubMed

    Liang, Ximei; Chen, Baowei; Nie, Xiangping; Shi, Zhen; Huang, Xiaoping; Li, Xiangdong

    2013-09-01

    Antibiotics released into the aquatic environment play an important role in the spread of antibiotic resistance. In the Pearl River Estuary (PRE) and the coastal zone, the concentrations of antibiotics decreased from the Pearl River to the estuary, suggesting that antibiotics primarily originated from river tributaries and terrigenous sources. Within the PRE area, the concentrations of antibiotics in water were higher in the west coast than the east side, reflecting the high density of anthropogenic activities and hydraulic conditions along the west riverbank. Seasonal variations were also observed for most of detected antibiotics in water. The pseudo-partitioning coefficient of norfloxacin had a good correlation with the TOC content of sediments, as did erythromycin-H2O with the pH of water. The results suggest that environmental conditions can significantly affect the distribution of antibiotics between water and sediment.

  13. [Integrated assessment of eco-environmental vulnerability in Pearl River Delta based on RS and GIS].

    PubMed

    Xu, Qing-Yong; Huang, Mei; Liu, Hong-Sheng; Yan, Hui-Min

    2011-11-01

    Based on the remote sensing data and with the help of geographic information system, an integrated assessment was conducted on the eco-environmental vulnerability of Pearl River Delta in 2004-2008. Spatial principal component analysis was used to generate the evaluation indicators, and analytic hierarchy process (AHP) was applied to determine the weights of the evaluation factors. The reasons causing the vulnerability of the eco- environment in Pearl River Delta were discussed. In the study area, its middle part was the most vulnerable region, occupying 34.0% of the total, eastern part was the moderately vulnerable region, accounting for 25.5%, and western part was the lightly and slightly vulnerable areas, accounting for 28.7 and 11.8%, respectively. Totally, the moderately and lightly vulnerable areas occupied 54.2%, indicating that a majority of the Delta was under moderate and light vulnerability. The natural factors affecting the eco-environmental vulnerability of the Delta were altitude, heavy rain days, water and soil erosion rate, flooded infield rate, normalized difference vegetation index (ND VI) and landscape diversity index, whereas the human factors were population density, waste discharge per unit area, exhaust emission per unit area, land use change, chemical fertilization intensity, pesticide application intensity, amount of motor vehicles possessed by ten thousands people, and index of environmental protection investment. The main characteristics of the extremely and heavily vulnerable regions were low altitude, high frequency of flood disaster, large flooded infield, serious vegetation degradation, high pollution level and low environment protection investment index.

  14. Dissolved insecticides and polychlorinated biphenyls in the Pearl River Estuary and South China Sea.

    PubMed

    Zhang, Z; Dai, M; Hong, H; Zhou, J L; Yu, G

    2002-12-01

    Persistent organic pollutants (POPs) such as organochlorine (OCl) insecticides and polychlorinated biphenyls (PCB), together with the new generation of organophosphorus (OP) insecticides, are of global concern, due to their widespread occurrence, persistence, bioaccumulation and hormone disruption potential. This paper represents an attempt to study the source and transportation of such pollutants in estuarine and coastal environments as an integrated ecosystem, by determining the levels of 18 OCl insecticides, 21 PCB congeners, and 17 OP insecticides in the Pearl River Estuary and South China Sea. The total concentrations varied from 126-1198 ng l(-1) for OCl insecticides, 33.38-1064 ng l(-1) for PCB congeners, and 4.44-6356 ng l(-1) for OP insecticides in the Pearl River Estuary. In comparison, their levels in the South China Sea were significantly lower, varying from 57.09-202 ng l(-1) for OCl insecticides, 21.72-144 ng l(-1) for PCBs, and 1.27-122 ng l(-1) for OP insecticides, respectively. The predominance of beta-HCH in HCHs, and DDE in DDTs in all water samples was clearly observed, suggesting beta-HCH and DDE's resistance to further degradation. The PCBs were dominated by those with 3-6 chlorines. The distribution characteristic of OP insecticides shows that five compounds (methamidophos, dimethoate, malathion, dichlorvos and omethoate) accounted for 56% and 72% of the total OP insecticide concentration. The relationship between pollutant concentrations and salinity in the estuary showed that they were all removed during the mixing process, therefore behaving non-conservatively.

  15. Organochlorines in sediments and mussels collected from coastal sites along the Pearl River Delta, South China.

    PubMed

    Fang, Zhan-qiang

    2004-01-01

    The level and pattern of residues of organochlorine pesticide and polychlorinated biphenyls(PCBs) were analyzed in sediment and mussel (Perna viridis) samples from ten coastal sites along the Pearl River Delta, South China. The range of total HCH was < 0.01 to 0.29 ng/g freeze-dried weight in sediment, and < 0.01 to 1.35 ng/g lipid weight in mussels. Average total DDTs concentrations ranged from < 0.01 to 1.04 ng/g in sediment, and < 0.01 to 148.5 ng/g in mussels. Average total PCB concentrations ranged from 16.4 to 198.6 ng/g in sediment, and from 41 to 729.2 ng/g in mussels. Organochlorine pesticide and PCBs in mussels and sediments presented similar distribution patterns. The regression analysis indicated that PCBs concentrations in mussels were significantly correlated (p < 0.01) with concentrations in sediments. However, their concentrations in mussels were several times higher than the concentration detected in surrounding sediments. The major fraction of DDT related compounds measured in mussels and sediments was DDD. Based on average PCB concentrations, penta-, hexa-, and tetrachlorobiphenyls were preferentially accumulated by mussels as compared to the average sediment composition. According to the present results,three organochlorine polluted "hot spot" sites, including Victoria Harbour, Lingding Yang and Huangmao Sea, were found in the Pearl River estuarine zone. HCHs, DDTs and PCBs in all mussel samples were below the limits of 2, 0.2 and 5.0 microg/g wet weight recommended by the Technical Group of Guangdong Coastal Zone Resource Comprehensive Survey and U. S. Food and Drug Administration.

  16. Distribution, source apportionment, and transport of PAHs in sediments from the Pearl River Delta and the northern South China Sea

    SciTech Connect

    Luo, X.J.; Chen, S.J.; Mai, B.X.; Sheng, G.Y.; Fu, J.M.; Zeng, E.Y.

    2008-07-15

    Polycyclic aromatic hydrocarbons (PAHs) were measured in 59 surface sediments from rivers in the Pearl River Delta and the northern continental shelf of the South China Sea. Total PAH concentrations varied from 138 to 6,793 ng/g dry weight. The sources of PAH inputs to sediments in the Pearl River Delta were qualitatively and quantitatively determined by diagnostic ratios and principal components analysis with multiple linear regression. The results showed that on average coal and wood combustion, petroleum spills, vehicle emissions, and nature sources contributed 36%, 27%, 25%, and 12% of total PAHs, respectively. Coal and biomass combustion was the main source of PAHs in sediments of the South China Sea, whereas petroleum combustion was the main source of pyrolytic PAHs in riverine and estuarine sediments of the Pearl River Delta. Perylene was formed in situ in river sediments and then transported to coastal areas along with other PAHs. The relative abundance of perylene from five-ring PAHs can be used to estimate the contribution of riverine-discharged PAHs to coastal sediments.

  17. Distribution, source apportionment, and transport of PAHs in sediments from the Pearl River Delta and the Northern South China Sea.

    PubMed

    Luo, Xiao-Jun; Chen, She-Jun; Mai, Bi-Xian; Sheng, Guo-Ying; Fu, Jia-Mo; Zeng, Eddy Y

    2008-07-01

    Polycyclic aromatic hydrocarbons (PAHs) were measured in 59 surface sediments from rivers in the Pearl River Delta and the northern continental shelf of the South China Sea. Total PAH concentrations varied from 138 to 6,793 ng/g dry weight. The sources of PAH inputs to sediments in the Pearl River Delta were qualitatively and quantitatively determined by diagnostic ratios and principal components analysis with multiple linear regression. The results showed that on average coal and wood combustion, petroleum spills, vehicle emissions, and nature sources contributed 36%, 27%, 25%, and 12% of total PAHs, respectively. Coal and biomass combustion was the main source of PAHs in sediments of the South China Sea, whereas petroleum combustion was the main source of pyrolytic PAHs in riverine and estuarine sediments of the Pearl River Delta. Perylene was formed in situ in river sediments and then transported to coastal areas along with other PAHs. The relative abundance of perylene from five-ring PAHs can be used to estimate the contribution of riverine-discharged PAHs to coastal sediments.

  18. Effects of in-channel sand excavation on the hydrology of the Pearl River Delta, China

    NASA Astrophysics Data System (ADS)

    Luo, Xian-Lin; Zeng, Eddy Y.; Ji, Rong-Yao; Wang, Chao-Pin

    2007-09-01

    SummaryThe hydrology and morphology of the Pearl River Delta (PRD; South China) water system has been predominantly dictated by human activities over the last 20 years. Uncontrolled sand excavation occurred in all 324 tributaries, largely to meet the construction needs arising from the rapid economic growth and urbanization in the region. It was estimated that >8.7 × 10 8 m 3 of sand were excavated from 1986 to 2003 based on field surveys of excavating activities and the river hypsography, resulting in average downcutting depths of 0.59-1.73 m, 0.34-4.43 m, and 1.77-6.48 m in the main channels of the West River, North River, and East River (three major water networks in the PRD), respectively. Consequently, the water levels in upstream of the PRD were decreased by 1.59-3.12 m (Sanshui Station). Uneven sand dredging also caused changes in the divided flow ratio (DFR) between various water courses. For example, the DFR increased by 8.8% at the Sanshui Station on the upper part of the North River network from the early 1980s to 1999. DFRs also increased almost 7.7% at the four major runoff outlets in the eastern side of the PRD. As a result, present brackish-water has intruded upward 10-20 km more than in the 1980s. Apparently, there are two sides to the effects of sand excavation. The positive effects are decreased chances of flooding damages, improved navigating conditions, and more water inputs to rapid economically growing regions. The negative effects include increased grade slope and instability of the riverbank, disruption of navigation in upstream dredging pits during dry seasons, and brackish-water intrusion.

  19. Modified Streamflows 1990 Level of Irrigation : Missouri, Colorado, Peace and Slave River Basin, 1928-1989.

    SciTech Connect

    A.G. Crook Company; United States. Bonneville Power Administration

    1993-07-01

    This report presents data for monthly mean streamflows adjusted for storage change, evaporation, and irrigation, for the years 1928-1990, for the Colorado River Basin, the Missouri River Basin, the Peace River Basin, and the Slave River Basin.

  20. Establishing river basin organisations inVietnam: Red River, Dong Nai River and Lower Mekong Delta.

    PubMed

    Taylor, P; Wright, G

    2001-01-01

    River basin management is receiving considerable attention at present. Part of the debate, now occurring worldwide, concerns the nature of the organisations that are required to manage river basins successfully, and whether special-purpose river basin organisations (RBOs) are always necessary and in what circumstance they are likely to (i) add to the management of the water resources and (ii) be successful. The development of river basin management requires a number of important elements to be developed to a point where the river basin can be managed successfully. These include the relevant laws, the public and non-government institutions, the technical capabilities of the people, the understanding and motivation of people, and the technical capacity and systems, including information. A river basin organisation (or RBO) is taken to mean a special-purpose organisation charged with some part of the management of the water resources of a particular river basin. Generally speaking, such organisations are responsible for various functions related to the supply, distribution, protection and allocation of water, and their boundaries follow the watershed of the river in question. However, the same functions can be carried out by various organisations, which are not configured on the geographical boundaries of a river basin. This paper outlines recent work on river basin organisation in Vietnam, and makes some comparisons with the situation in Australia.

  1. Distribution of organophosphorus flame retardants in sediments from the Pearl River Delta in South China.

    PubMed

    Tan, Xiao-Xin; Luo, Xiao-Jun; Zheng, Xiao-Bo; Li, Zong-Rui; Sun, Run-Xia; Mai, Bi-Xian

    2016-02-15

    Twelve organophosphorus flame retardants (PFRs) were identified in the sediments and the sediment core collected from the rivers and the estuary in the Pearl River Delta, with the aim of investigating their spatial and vertical distributions. The concentrations of PFRs ranged from 8.3 to 470 ng/g dry weight with high levels of PFRs in the urban area and the e-waste recycling region. Generally, TPhP, TCPP, TEHP, TCEP, and TBEP were the dominant compounds of the PFRs, the composition of which varied across the different regions, reflecting the different sources of PFRs. In the estuary, the PFRs mainly derived from the Xijiang River and the Shunde sections. Increased concentrations of halogen-containing PFRs have been observed in the upper layers of the sediment core. Conversely, relatively high concentrations of halogen-free PFRs were observed in the lower layers of the sediment core, indicating different usage patterns or environmental behaviors between the halogen and the non-halogen PFRs in the study area. PMID:26657357

  2. The distribution and speciation of trace metals in surface sediments from the Pearl River Estuary and the Daya Bay, Southern China.

    PubMed

    Yu, Xiujuan; Yan, Yan; Wang, Wen-Xiong

    2010-08-01

    Surface sediments collected from the Pearl River Estuary (PRE) and the Daya Bay (DYB) were analyzed for total metal concentrations and chemical phase partitioning. The total concentrations of Cr, Cu, Ni, Pb, and Zn in the PRE were obviously higher than those in DYB. The maximum concentrations of trace metals in DYB occurred in the four sub-basins, especially in Dapeng Cove, while the concentrations of these metals in the western side of the PRE were higher than those in the east side. Such distribution pattern was primarily due to the different hydraulic conditions and inputs of anthropogenic trace metals. The chemical partitioning of metals analyzed by the BCR sequential extraction method showed that Cr, Ni, and Zn of both areas were present dominantly in the residual fraction, while Pb was found mostly in the non-residual fractions. The partitioning of Cu showed a significant difference between the two areas.

  3. RESERVES IN WESTERN BASINS PART IV: WIND RIVER BASIN

    SciTech Connect

    Robert Caldwell

    1998-04-01

    Vast quantities of natural gas are entrapped within various tight formations in the Rocky Mountain area. This report seeks to quantify what proportion of that resource can be considered recoverable under today's technological and economic conditions and discusses factors controlling recovery. The ultimate goal of this project is to encourage development of tight gas reserves by industry through reducing the technical and economic risks of locating, drilling and completing commercial tight gas wells. This report is the fourth in a series and focuses on the Wind River Basin located in west central Wyoming. The first three reports presented analyses of the tight gas reserves and resources in the Greater Green River Basin (Scotia, 1993), Piceance Basin (Scotia, 1995) and the Uinta Basin (Scotia, 1995). Since each report is a stand-alone document, duplication of language will exist where common aspects are discussed. This study, and the previous three, describe basin-centered gas deposits (Masters, 1979) which contain vast quantities of natural gas entrapped in low permeability (tight), overpressured sandstones occupying a central basin location. Such deposits are generally continuous and are not conventionally trapped by a structural or stratigraphic seal. Rather, the tight character of the reservoirs prevents rapid migration of the gas, and where rates of gas generation exceed rates of escape, an overpressured basin-centered gas deposit results (Spencer, 1987). Since the temperature is a primary controlling factor for the onset and rate of gas generation, these deposits exist in the deeper, central parts of a basin where temperatures generally exceed 200 F and drill depths exceed 8,000 feet. The abbreviation OPT (overpressured tight) is used when referring to sandstone reservoirs that comprise the basin-centered gas deposit. Because the gas resources trapped in this setting are so large, they represent an important source of future gas supply, prompting studies to

  4. Water Quality in the Yukon River Basin

    USGS Publications Warehouse

    Brabets, Timothy P.; Hooper, Rick; Landa, Ed

    2001-01-01

    The Yukon River Basin, which encompasses 330,000 square miles in northwestern Canada and central Alaska (Fig. 1), is one of the largest and most diverse ecosystems in North America. The Yukon River is also fundamental to the ecosystems of the eastern Bering Sea and Chukchi Sea, providing most of the freshwater runoff, sediments, and dissolved solutes. Despite its remoteness and perceived invulnerability, the Yukon River Basin is changing. For example, records of air temperature during 1961-1990 indicate a warming trend of about 0.75 deg C per decade at latitudes where the Yukon River is located. Increases in temperature will have wide-ranging effects on permafrost distribution, glacial runoff and the movement of carbon and nutrients within and from the basin. In addition, Alaska has many natural resources such as timber, minerals, gas, and oil that may be developed in future years. As a consequence of these changes, several issues of scientific and cultural concern have come to the forefront. At present, water quality data for the Yukon River Basin are very limited. This fact sheet describes a program to provide the data that are needed to address these issues.

  5. River basins of the United States: the Colorado

    USGS Publications Warehouse

    ,

    1987-01-01

    This leaflet, one of a series on the river basins of the United States, contains information on the Colorado River Basin, including a brief early history, a description of the physical characteristics, and other statistical data. At present, other river basins included in the series are The Columbia, The Delaware, The Hudson, The Potomac, and The Wabash.

  6. 75 FR 66389 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-28

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub....

  7. 76 FR 61382 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-04

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of public meeting. ] SUMMARY: The Colorado River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control Act of 1974 (Pub....

  8. 76 FR 24515 - Colorado River Basin Salinity Control Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-02

    ... Bureau of Reclamation Colorado River Basin Salinity Control Advisory Council AGENCY: Bureau of... Committee Act, the Bureau of Reclamation announces that the Colorado River Basin Salinity Control Advisory...) 524-3826; e-mail at: kjacobson@usbr.gov . SUPPLEMENTARY INFORMATION: The Colorado River Basin...

  9. The "normal" elongation of river basins

    NASA Astrophysics Data System (ADS)

    Castelltort, Sebastien

    2013-04-01

    The spacing between major transverse rivers at the front of Earth's linear mountain belts consistently scales with about half of the mountain half-width [1], despite strong differences in climate and rock uplift rates. Like other empirical measures describing drainage network geometry this result seems to indicate that the form of river basins, among other properties of landscapes, is invariant. Paradoxically, in many current landscape evolution models, the patterns of drainage network organization, as seen for example in drainage density and channel spacing, seem to depend on both climate [2-4] and tectonics [5]. Hovius' observation [1] is one of several unexplained "laws" in geomorphology that still sheds mystery on how water, and rivers in particular, shape the Earth's landscapes. This narrow range of drainage network shapes found in the Earth's orogens is classicaly regarded as an optimal catchment geometry that embodies a "most probable state" in the uplift-erosion system of a linear mountain belt. River basins currently having an aspect away from this geometry are usually considered unstable and expected to re-equilibrate over geological time-scales. Here I show that the Length/Width~2 aspect ratio of drainage basins in linear mountain belts is the natural expectation of sampling a uniform or normal distribution of basin shapes, and bears no information on the geomorphic processes responsible for landscape development. This finding also applies to Hack's [6] law of river basins areas and lengths, a close parent of Hovius' law. [1]Hovius, N. Basin Res. 8, 29-44 (1996) [2]Simpson, G. & Schlunegger, F. J. Geophys. Res. 108, 2300 (2003) [3]Tucker, G. & Bras, R. Water Resour. Res. 34, 2751-2764 (1998) [4]Tucker, G. & Slingerland, R. Water Resour. Res. 33, 2031-2047 (1997) [5]Tucker, G. E. & Whipple, K. X. J. Geophys. Res. 107, 1-1 (2002) [6]Hack, J. US Geol. Surv. Prof. Pap. 294-B (1957)

  10. Spatial and Seasonal Variations of Total Petroleum Hydrocarbon in Surface Water and Sediment in Pearl River Delta.

    PubMed

    Zhao, Jiandi; Yin, Pinghe; Zhao, Ling; Yu, Qiming; Lu, Gang

    2015-09-01

    A field study in the Pearl River Delta of China was conducted in order to describe to the spatial and seasonal variation of occurrence and concentrations of total petroleum hydrocarbon (TPH) in surface water and sediments. Petroleum hydrocarbons and isoprenoid alkanes were quantified by UV spectroscopy and gas chromatography with a mass selective detector. The concentrations of TPH ranged from 4.3 to 68.7 µg L(-1) in surface water, and from 66.6 to 1445 µg g(-1) in surface sediments. The ratios of pristine to phytane suggested that the main sources of TPH in the sediment were petroleum importation. The highest concentrations of TPH were present in the spring season. When compared with results from previous studies, it can be concluded that the Pearl River Delta was moderately polluted by TPH. No statistically significant correlations were observed between the concentrations of TPH in surface water and sediments.

  11. Temporal trends of hydrocarbons in sediment cores from the Pearl River Estuary and the northern South China Sea.

    PubMed

    Peng, Xianzhi; Wang, Zhendi; Yu, Yiyi; Tang, Caiming; Lu, Hong; Xu, Shiping; Chen, Fanrong; Mai, Bixian; Chen, Shejun; Li, Kechang; Yang, Chun

    2008-11-01

    Concentrations and fluxes of unresolved complex mixture of hydrocarbons (UCM) and polycyclic aromatic hydrocarbons (PAHs) were analyzed for two (210)Pb dated sediment cores from the Pearl River Estuary (PRE) and the adjacent northern South China Sea (NSCS). Compound-specific stable carbon isotopic compositions of individual n-alkanes were also measured for identification of the hydrocarbon sources. The historical records of PAHs in the NSCS reflected the economic development in the Pearl River Delta during the 20th century. PAHs in the NSCS predominantly derive from combustion of coal and biomass, whereas PAHs in the PRE are a mixture of petrogenic and pyrogenic in origins. The isotopic profiles reveal that the petrogenic hydrocarbons in the PRE originate predominantly from local spillage/leakage of lube oil and crude oils. The accumulation rates of pyrogenic PAHs have significantly increased, whereas UCM accumulation has slightly declined in the NSCS in the recent three decades. PMID:18339464

  12. Mercury profiles in sediments of the Pearl River Estuary and the surrounding coastal area of South China.

    PubMed

    Shi, Jian-bo; Ip, Carman C M; Zhang, Gan; Jiang, Gui-bin; Li, Xiang-dong

    2010-05-01

    The spatial and temporal variations of mercury (Hg) in sediments of the Pearl River Estuary (PRE) and the surrounding coastal area (South China Sea) were studied. In surface sediments, the concentrations of Hg ranged from 1.5 to 201ng/g, with an average of 54.4ng/g, displaying a decreasing trend with the distance from the estuary to the open sea. This pattern indicates that the anthropogenic emissions from the Pearl River Delta (PRD) region are probably the main sources of Hg in this coastal region. Using the (210)Pb dating technique, the historical changes in the concentrations and influxes of Hg in the last 100 years were also investigated. The variations in Hg influxes in sediment cores obviously correlate with the economic development and urbanization that has occurred the PRD region, especially in the last three decades.

  13. Temporal trends of hydrocarbons in sediment cores from the Pearl River Estuary and the northern South China Sea.

    PubMed

    Peng, Xianzhi; Wang, Zhendi; Yu, Yiyi; Tang, Caiming; Lu, Hong; Xu, Shiping; Chen, Fanrong; Mai, Bixian; Chen, Shejun; Li, Kechang; Yang, Chun

    2008-11-01

    Concentrations and fluxes of unresolved complex mixture of hydrocarbons (UCM) and polycyclic aromatic hydrocarbons (PAHs) were analyzed for two (210)Pb dated sediment cores from the Pearl River Estuary (PRE) and the adjacent northern South China Sea (NSCS). Compound-specific stable carbon isotopic compositions of individual n-alkanes were also measured for identification of the hydrocarbon sources. The historical records of PAHs in the NSCS reflected the economic development in the Pearl River Delta during the 20th century. PAHs in the NSCS predominantly derive from combustion of coal and biomass, whereas PAHs in the PRE are a mixture of petrogenic and pyrogenic in origins. The isotopic profiles reveal that the petrogenic hydrocarbons in the PRE originate predominantly from local spillage/leakage of lube oil and crude oils. The accumulation rates of pyrogenic PAHs have significantly increased, whereas UCM accumulation has slightly declined in the NSCS in the recent three decades.

  14. Central Mississippi River Basin LTAR site overview

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Central Mississippi River Basin (CMRB) member of the Long-Term Agro-ecosystem Research (LTAR) network is representative of the southern Corn Belt, where subsoil clay content makes tile drainage challenging and make surface runoff and associated erosion problematic. Substantial research infrastru...

  15. Nutrient levels in the Yazoo River Basin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High nitrogen (N) and phosphorus (P) loadings to aquatic ecosystems are linked to environmental problems including harmful algal blooms and hypoxia. Presented is an assessment of accessible data on nutrient sources, sinks and inputs to streams within the Yazoo River Basin of northern Mississippi. Ac...

  16. Picoplankton and virioplankton abundance and community structure in Pearl River Estuary and Daya Bay, South China.

    PubMed

    Ni, Zhixin; Huang, Xiaoping; Zhang, Xia

    2015-06-01

    By using flow cytometry techniques, we investigated the abundance and composition of the heterotrophic prokaryotes, virioplankton and picophytoplankton community in the Pearl River Estuary and Daya Bay in the summer of 2012. We identified two subgroups of prokaryotes, high nucleic acid (HNA) and low nucleic acid (LNA), characterized by different nucleic acid contents. HNA abundance was significantly correlated with larger phytoplankton and Synechococcus (Syn) abundance, which suggested the important role of organic substrates released from primary producers on bacterial growth. Although LNA did not show any association with environmental variables, it was a vital component of the microbial community. In contrast to previous studies, the total virioplankton concentration had a poor relationship with nutrient availability. The positive relationship between large-sized phytoplankton abundance and the V-I population confirmed that V-I was a phytoplankton-infecting viral subgroup. Although the V-II group (bacteriophages) was dominant in the virioplankton community, it was not related with prokaryotic abundance, which indicated factors other than hosts controlling V-II abundance or the uncertainty of virus-host coupling. With respect to the picophytoplankton community, our results implied that river input exerted a strong limitation to Syn distribution in the estuary, while picoeukaryotes (Euk) were numerically less abundant and showed a quite different distribution pattern from that of Syn, and hence presented ecological properties distinct from Syn in our two studied areas.

  17. Heavy metals in oysters, mussels and clams collected from coastal sites along the Pearl River Delta, South China.

    PubMed

    Fang, Zhan-Qiang; Cheung, R Y H; Wong, M H

    2003-01-01

    Concentrations of 8 heavy metals: cadmium (Cd), copper (Cu), zinc (Zn), lead (Pb), nickel (Ni), chromium (Cr), antimony (Sb) and tin (Sn) were examined in 3 species of bivalves ( Perna viridis, Crassostrea rivularis and Ruditapes philippinarum) collected from 25 sites along the Pearl River Delta coastal waters in the South China Sea from July to August 1996. In general, Cd, Cu, Zn and Sn concentrations in the three bivalve species collected from the Estuarine Zone were significantly higher than those collected from the Western and Eastern Zones of the Pearl River Delta, which are related to the existence of various anthropogenic activities in the catchment of the Pearl River Delta. The Western Estuarine Zone is mainly impacted hy Cr, Ni and Cu contamination. In Victoria Harbor, heavy metal contamination is mainly due to Cu and Pb, Cd, Cu and Zn concentrations in oysters were significantly higher than those in mussels and clams. This could be explained by the fact that oysters live mainly in the Estuarine Zone of the Pearl River Delta which receives most of the polluting discharges from the catchment of the Delta. During turbid condition, heavy metals( soluble or adsorbed on suspended particulates) discharged from the Delta are filtered from the water column and subsequently accumulated into the soft body tissues of oysters. Heavy metal concentrations in the three bivalve species were compared with the maximum permissible levels of heavy metals in seafood regulated by the Public Health and Municipal Services Ordinance, Laws of Hong Kong, and it was revealed that Cd and Cr concentrations in the three bivalve species exceeded the upper limits. At certain hotspots in the Delta, the maximum acceptable daily load for Cd was also exceeded.

  18. Hydrological Modelling of Ganga River basin.

    NASA Astrophysics Data System (ADS)

    Anand, J.; Gosain, A. K.; Khosa, R.

    2015-12-01

    Application of a hydrological model, Soil and Water Assessment Tool (SWAT) to the Ganga basin having a total drainage area of around 1.08 M sq. km extending over Tibet, Nepal, India and Bangladesh has been made. The model is calibrated to determine the spatial deviations in runoff at sub-basin level, and to capture the water balance of the river basin. Manual calibration approach was used for calibrating the SWAT model by following multi-step procedure to get to the realistic present situation as close as possible. Simulations were then further made with and without proposed future projects to obtain various scenarios. The various statistical parameters used for the evaluation of the monthly runoff simulation showed that SWAT performed well in mimicking the monthly stream flow for Ganga River basin. The model under predicted the flows in the non-perennial region during non-monsoon season, due to low rainfall and regulated flows and seepage taking place from the reservoirs. The impacts of the interventions, both existing as well as proposed, on the water balance of the basin were evaluated and quantified. The derived results suggest that there is a substantial reduction in overall water resources availability in the study basin on account of the current level of development and further, future developments, as are being proposed, may require a careful study of their potential impact on currently sanctioned water use. The present study showcases that efficacy of the model for simulating the stream flow is admirable.

  19. Bacterial polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenases in the sediments from the Pearl River estuary, China.

    PubMed

    Wu, Peng; Wang, You-Shao; Sun, Fu-Lin; Wu, Mei-Lin; Peng, Ya-lan

    2014-01-01

    Bacterial community compositions were characterized using denaturing gradient gel electrophoresis analysis of bacterial 16S rRNA gene in the sediments of the Pearl River estuary. Sequencing analyses of the excised bands indicated that Gram-negative bacteria, especially Gammaproteobacteria, were dominant in the Pearl River estuary. The diversity of polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenase (PAH-RHD) gene in this estuary was then assessed by clone library analysis. The phylogenetic analyses showed that all PAH-RHD gene sequences of Gram-negative bacteria (PAH-RHD[GN]) were closely related to the nagAc gene described for Ralstonia sp. U2 or nahAc gene for Pseudomonas sp. 9816-4, while the PAH-RHD gene sequences of Gram-positive bacteria (PAH-RHD[GP]) at sampling site A1 showed high sequence similarity to the nidA gene from Mycobacterium species. Meanwhile, molecular diversity of the two functional genes was higher at the upstream of this region, while lower at the downstream. Redundancy analysis indicated that environmental factors, such as NH₄--N, ∑PAHs, pH, SiO₃--Si, and water depth, affected the distribution of the PAH-RHD[GN] gene in the Pearl River estuary.

  20. Variation in abundance and composition of methane-metabolizing microorganisms from the lower Pearl River to the South China Sea

    NASA Astrophysics Data System (ADS)

    Wang, P.

    2015-12-01

    Methane is a significant greenhouse gas, which is regulated by microbial processes in surficial environments. However, the population dynamics of methanogens and methanotrophs in a particular environment has not been well studied. In this project, the variation of methanogens and methanotrophs in the sediment of the Pearl River estuary and coastal South China Sea was examined along a salinity gradient (A:0.8‰; B: 18.1‰; C: 23.9‰: D: 31‰)over a period of one year. Quantitative PCR showed that the variation in archaeal and bacterial 16S rRNA gene abundance at site A in the lower Pearl River (from 3.6×103 to 2.6×105 copies/L for archaea and from 1.2×105 to 2.6×106 copies/L for bacteria) is larger than that in at site D in the coastal South China Sea (from 3.5×104 to 2.9×105 copies/L for archaea and from 8.8×105 to 3.2×106 copies/L for bacteria). High throughput sequencing showed that methanogens and methanotrophs were abundant in the sediment of lower Pearl River and decreased sharply with the increasing salinity. Our results indicate that active methane metabolism is favored in the freshwater environment.

  1. Sediment fluxes in transboundary Selenga river basin

    NASA Astrophysics Data System (ADS)

    Belozerova, Ekaterina

    2013-04-01

    Gathering reliable information on transboundary river systems remains a crucial task for international water management and environmental pollution control. Countries located in the lower parts of the river basins depend on water use and management strategies in adjacent upstream countries. One important issue in this context is sediment transport and associated contaminant fluxes across the state borders. The mass flows of dissolved ions, biogens, heavy metal concentrations, as far as suspended sediment concentration (SSC, mg/l) along upper Selenga river and its tributaries based on the literature review and results of field campaigns 2011-2012 were estimated. Based on the water discharges measurements Q, suspended load WR (t/day) and dissolved loads WL were calculated. In the Selenga basin the minimal WR (1,34-3,74 t/day) were found at small rivers. Maximal sediment loads (WR = 15 000 t/day) were found at the upper Orkhon river during flood event. The downstream point (Mongolia-Russia border) was characterized 2 220 t/day in 2011. Generally the prevalence of the accumulation is found through calculating sediment budget for all rivers (ΔW = WR (downstream) - WR (upstream) < 0). Downstream of Orkhon river (below confluence with Tuul) ΔW = - 1145 t/day. Below Selenga-Orkhon confluence sediment yield reached 2515 t/day, which is corresponded to transboundary sediment flux. Silt sediments (0,001 - 0,05 mm) form the main portion of the transported material. The maximal value of sand flux (302 t/day) was reported for middle stream station of Selenga river (upstream from confluence with Orkhon). The increase of human activities (mining and pastures) increases the portion of clay particles in total sediment load (e.g. at the downstream point of most polluted Orkhon river it reached 207,8 t/day). The existed estimates are compared with distribution of the main matter sources within basin: mining and industry, river-bank erosion and slope wash. The heaviest increase of

  2. Controls on River Longitudinal Profiles: Waipaoa River Basin, New Zealand

    NASA Astrophysics Data System (ADS)

    Livingston, D. M.; Gomez, B.

    2006-12-01

    In a regional sense, rivers adjust their gradient to discharge and the character of the rock or sediment that forms the channel boundary. Accordingly, as J.T. Hack demonstrated, rivers of the same size flowing across similar substrates tend to have similar profiles. The neighboring 222 km2 Mangatu and 239 km2 Upper Waipaoa catchments in the headwaters of the Waipaoa River basin, New Zealand, offer an ideal setting in which to examine the interaction of these and other variables on river longitudinal profiles. These two catchments are not only under laid by similar lithologies, but also have been subjected to a similar climatic regime and have experienced a similar rate of uplift during the past ~15 kyr. There is also little difference in total-relief, drainage density and the frequency distribution of slope angles between the two catchments, or in the median size of sediment present along the main stream channels. Yet, despite these similarities, the longitudinal profiles of the Mangatu and Upper Waipaoa rivers are quite different, and the upper reaches of the main stream in latter catchment are ~100-m lower than adjacent reaches along the neighboring Mangatu River. We attribute the difference in the longitudinal profiles to the way in which discharge increases in a downstream direction along the two rivers. Simply put, in the Mangatu catchment drainage area increases much more slowly with main stream channel length than it does in the Upper Waipaoa catchment. In the absence of obvious differences in the regional environment, the observed difference between the longitudinal profiles of similar sized rivers in neighboring basins serves to emphasize that the distribution of energy in the stream-channel system is dependent on the structure of the drainage network, and that an orderly empirical relationship between drainage basin area and the length of the main stream channel may not always apply.

  3. The Perennial Blooming of MGII and Their Correlation with MGI in the Pearl River Estuary, China

    NASA Astrophysics Data System (ADS)

    Xie, W.

    2015-12-01

    Marine Group (MG) I and MG II Archaea were first reported over two decades ago. While significant progress has been made on MG I, the progress on MG II has been noticeable slower. The common understanding is that while MG I mainly function as chemolithoautotrophs growing on ammonia and live predominantly in deeper water, MG II live heterotrophically and reside mostly in the photic zone. While some MG I lineages that could conduct ammonium oxidation are frequently found in terrestrial environments, MG II are exclusively found in marine environments and thus named Thalassoarchaea. A few studies showed MG IIs were sporadically blooming in coastal waters and may be influenced by the level of eutrophication between seasons, which inhibited the enrichment and cultivation for MGII. In this study, we quantified the abundance of planktonic MGI (represented by archaeal amoA gene) and MGII (16S rRNA gene) using qPCR in the water column of different salinities (A: 0.8‰; B: 18.1‰; C: 23.9‰: D: 31‰) in the Pearl River Estuary over a 12-month period. The results showed that the abundance of MGII in site C (8.5±10.1×107 copies/L) was significantly higher than the other three sites (A: 3.5±8.8×105 copies/L; B: 2.7±4.5×107 copies/L; D: 2.2±4.4×107 copies/L) in all seasons, indicating the perennial blooming of MGII that might be due to the optimal combination of available organic carbon and salinity at this site. We also observed that the correlation between MGI and MGII became better toward the marine water and was significant at site D (R2: A, 0.06; B, 0.1; C, 0.24; D, 0.64), indicating the potential functional relationship between them with increasing salinity. This allowed us to hypothesize that the growth of MGI in the coastal site is more dependent on release of ammonia from organic matter degradation by MGII and other heterotrophic organisms. The Pearl River estuary may be an ideal environment for testing this hypothesis, which may provide insight into the

  4. Yazoo River Basin (Lower Mississippi River) Hydrologic Observatory

    NASA Astrophysics Data System (ADS)

    Cheng, A.; Davidson, G.; Altinakar, M.; Holt, R.

    2004-12-01

    The proposed Yazoo River Basin Hydrologic Observatory consists of the 34,000 square km Yazoo River watershed in northwestern Mississippi and a 320 km segment of the Mississippi River separated from the watershed by a manmade levee. Discharge from the basin flows from the Yazoo River into the Mississippi River north of Vicksburg, MS. Major streams within the basin include the Yazoo, Tallahatchie, Yalobusha, Coldwater, Yocona, and Big Sunflower Rivers. Four large flood control reservoirs (Arkabutla, Enid, Sardis, and Grenada) and two national forests (Delta and Holly Springs) are also located within the basin. The watershed is divided between upland forested hills and intensively cultivated lowlands. The lowland area, locally known as the "Delta", lies on the ancestral floodplain of the Mississippi River. Flooding by the Mississippi River was once a common event, but is now limited by the levee system. Abundant wetlands occupy abandoned stream channels throughout the Delta. The Yazoo River Basin has many unique features that make it an attractive site for an Hydrologic Observatory. Example features and issues of scientific interest include: 1) Extensive system of levees which have altered recharge to the regional aquifer, shifted population centers, and created backwater flooding areas. 2) Abundant wetlands with a century-long history of response to agricultural sediment and chemical fluxes. 3) Erosion of upland streams, and stream sediment loads that are the highest in the nation. 4) Groundwater mining in spite of abundant precipitation due to a regional surface clay layer that limits infiltration. 5) A history of agricultural Best Management Practices enabling evaluation of the effectiveness of such measures. 6) Large scale catfish farming with heavy reliance on groundwater. 7) Near enough to the Gulf coast to be impacted by hurricane events. 8) Already existing network of monitoring stations for stream flow, sediment-load, and weather, including complete coverage

  5. Precipitation and temperature changes in the major Chinese river basins during 1957-2013 and links to sea surface temperature

    NASA Astrophysics Data System (ADS)

    Tian, Qing; Prange, Matthias; Merkel, Ute

    2016-05-01

    The variation characteristics of precipitation and temperature in the three major Chinese river basins (Yellow River, Yangtze River and Pearl River) in the period of 1957-2013 were analyzed on an annual and seasonal basis, as well as their links to sea surface temperature (SST) variations in the tropical Pacific and Indian Ocean on both interannual and decadal time scales. Annual mean temperature of the three river basins increased significantly overall since 1957, with an average warming rate of about 0.19 °C/10a, but the warming was characterized by a staircase form with steps around 1987 and 1998. The significant increase of annual mean temperature could mostly be attributed to the remarkable warming trend in spring, autumn and winter. Warming rates in the northern basins were generally much higher than in the southern basins. However, both the annual precipitation and seasonal mean precipitation of the three river basins showed little change in the study area average, but distinct interannual variations since 1957 and clear regional differences. An overall warming-wetting tendency was found in the northwestern and southeastern river basins in 1957-2013, while the central regions tended to become warmer and drier. Results from a Maximum Covariance Analysis (MCA) showed that the interannual variations of seasonal mean precipitation and surface air temperature over the three river basins were both associated with the El Niño-Southern Oscillation (ENSO) since 1957. ENSO SST patterns affected precipitation and surface air temperature variability throughout the year, but with very different response patterns in the different seasons. For instance, temperature in most of the river basins was positively correlated with central-eastern equatorial Pacific SST in winter and spring, but negatively correlated in summer and autumn. On the decadal time scale, the seasonal mean precipitation and surface air temperature variations were strongly associated with the Pacific

  6. Production of Branched Tetraether Lipids in the Lower Pearl River and Estuary: Effects of Extraction Methods and Impact on bGDGT Proxies

    PubMed Central

    Zhang, Chuanlun L.; Wang, Jinxiang; Wei, Yuli; Zhu, Chun; Huang, Liuqin; Dong, Hailiang

    2012-01-01

    Branched glycerol dibiphytanyl glycerol tetraethers (bGDGTs) are known as bacterial lipids that occur widely in terrestrial environments, particularly in anaerobic peat bogs and soil. We examined the abundance and distribution of bGDGTs in both core (C) and polar (P) lipid fractions from the water column and surface sediments in the lower Pearl River (PR) and its estuary using two extraction methods (sonication vs. Bligh and Dyer). A number of soil samples in the lower PR drainage basin were also collected and extracted for bGDGTs using the sonication method. The results showed aquatic production of bGDGTs as supported by substantial abundances of P-bGDGTs in the water column and sediment samples. The bGDGT-based proxies (BIT, CBT, and MBT) were not affected by the method of extraction when C-bGDGTs were analyzed; in such case, the pHCBT of the sediments reflected the soil pH of the lower PR drainage basin, and the temperature close to the annual mean air temperature (MAT) in the lower PR basin. On the other hand, the P-bGDGT-derived proxies were inconsistent between the two methods. The P-bGDGTs (particularly those extracted using the sonication method) may not be reliable indicators of annual MATs. PMID:22291686

  7. Flood tracking chart, Amite River basin, Louisiana

    USGS Publications Warehouse

    Callender, Lawrence; McCallum, Brian E.; Brazelton, Sebastian R.

    1996-01-01

    The Amite River Basin flood tracking chart is designed to assist emergency response officials and the local public in making informed decisions about the safety of life and property during floods along the Amite and Comite Rivers and Bayou Manchac in southeastern Louisiana. This chart is similar in concept to the charts used to track hurricanes; the user can record the latest river stage information at selected gaging stations and the latest flood crest predictions. The latest stage data can be compared to historical flood peaks as well as to the slab or pier elevation of a threatened property. The chart also discusses how to acquire the latest river stage data from the Internet and a recorded voice message.

  8. Flood tracking chart, Amite River Basin, Louisiana

    USGS Publications Warehouse

    Callender, Lawrence E.; McCallum, Brian E.; Brazelton, Sebastian R.; Anderson, Mary L.; Ensminger, Paul A.

    1998-01-01

    The Amite River Basin flood tracking chart is designed to assist emergency response officials and the local public in making informed decisions about the safety of life and property during floods along the Amite and Comite Rivers and Bayou Manchac in southeastern Louisiana. This chart is similar in concept to the charts used to track hurricanes; the user can record the latest river stage information at selected gaging stations and the latest flood crest predictions. The latest stage data can be compared to historical flood peaks as well as to the slab or pier elevation of a threatened property. The chart also discusses how to acquire the latest river stage data from the Internet and a recorded voice message.

  9. Humpback Dolphins in Hong Kong and the Pearl River Delta: Status, Threats and Conservation Challenges.

    PubMed

    Karczmarski, Leszek; Huang, Shiang-Lin; Or, Carmen K M; Gui, Duan; Chan, Stephen C Y; Lin, Wenzhi; Porter, Lindsay; Wong, Wai-Ho; Zheng, Ruiqiang; Ho, Yuen-Wa; Chui, Scott Y S; Tiongson, Angelico Jose C; Mo, Yaqian; Chang, Wei-Lun; Kwok, John H W; Tang, Ricky W K; Lee, Andy T L; Yiu, Sze-Wing; Keith, Mark; Gailey, Glenn; Wu, Yuping

    2016-01-01

    In coastal waters of the Pearl River Delta (PRD) region, the Indo-Pacific humpback dolphin (Sousa chinensis) is thought to number approximately 2500 individuals. Given these figures, the putative PRD population may appear strong enough to resist demographic stochasticity and environmental pressures. However, living in close proximity to the world's busiest seaport/airport and several densely populated urban centres with major coastal infrastructural developments comes with challenges to the long-term survival of these animals. There are few other small cetacean populations that face the range and intensity of human-induced pressures as those present in the PRD and current protection measures are severely inadequate. Recent mark-recapture analyses of the animals in Hong Kong waters indicate that in the past two decades the population parameters have not been well understood, and spatial analyses show that only a very small proportion of the dolphins' key habitats are given any form of protection. All current marine protected areas within the PRD fail to meet a minimum habitat requirement that could facilitate the population's long-term persistence. Demographic models indicate a continuous decline of 2.5% per annum, a rate at which the population is likely to drop below the demographic threshold within two generations and lose 74% of the current numbers within the lifespan of three generations. In Hong Kong, the case of humpback dolphins represents a particularly explicit example of inadequate management where a complete revision of the fundamental approach to conservation management is urgently needed.

  10. Source apportionment and health effect of NOx over the Pearl River Delta region in southern China.

    PubMed

    Lu, Xingcheng; Yao, Teng; Li, Ying; Fung, Jimmy C H; Lau, Alexis K H

    2016-05-01

    As one of the most notorious atmospheric pollutants, NOx not only promotes the formation of ozone but also has adverse health effects on humans. It is therefore of great importance to study the sources of NOx and its effects on human health. The Comprehensive Air Quality Model (CAMx) modeling system and ozone source apportionment technology (OSAT) were used to study the contribution of NOx from different emission sources over southern China. The results indicate that heavy duty diesel vehicles (HDDVs) and industrial point sources are the two major local NOx sources, accounting for 30.8% and 18.5% of local NOx sources, respectively. In Hong Kong, marine emissions contributed around 43.4% of local NOx in 2011. Regional transport is another important source of this pollutant, especially in February and November, and it can contribute over 30% of ambient NOx on average. Power plant point emission is an significant regional source in Zhuhai, Zhongshan and Foshan. The total emission sources are estimated to cause 2119 (0-4405) respiratory deaths and 991 (0-2281) lung cancer deaths due to long-term exposure to NOx in the Pearl River Delta region. Our results suggest that local governments should combine their efforts and vigorously promote further reduction of NOx emissions, especially for those sources that make a substantial contribution to NOx emissions and affect human health: HDDV, LDGV, industrial point sources and marine sources.

  11. [Health assessment of Qi'ao Island mangrove wetland ecosystem in Pearl River Estuary].

    PubMed

    Wang, Shu-Gong; Zheng, Yao-Hui; Peng, Yi-Sheng; Chen, Gui-Zhu

    2010-02-01

    Based on the theories of wetland ecosystem health and by using "Pressure-State-Response" model, a health assessment indicator system for Qi' ao Island mangrove wetland ecosystem in Pearl River Estuary was built, and the assessment indices, assessment criteria, indices weighted values, assessment grades, and assessment methods were established to assess the health state of this ecosystem. In 2008, the overall health index of this ecosystem was 0.6580, health level was of grade II (healthy), and the pressure, state, and response indices were 0.3469, 0.8718, and 0.7754, respectively, suggesting that this ecosystem was good in state and response, but still had definite pressure. As a provincial nature reserve, this ecosystem was to be further improved in its health level. However, the research on the health assessment of mangrove wetland ecosystem was still young. Further studies should be made on the selection of assessment indices, long-term oriented monitoring of these indices, and quantification of the relations between ecosystem health level and ecosystem services.

  12. Public health and medical care for the world's factory: China's Pearl River Delta Region

    PubMed Central

    2011-01-01

    While the growth of urbanization, worldwide, has improved the lives of migrants from the hinterland, it also raises health risks related to population density, concentrated poverty and the transmission of infectious disease. Will megacity regions evolve into socially infected breeding grounds for the rapid transmission of disease, or can they become critical spatial entities for the protection and promotion of population health? We address this question for the Pearl River Delta Region (PRD) based on recent data from Chinese sources, and on the experience of how New York, Greater London, Tokyo and Paris have grappled with the challenges of protecting population health and providing their populations with access to health care services. In some respects, there are some important lessons from comparative experience for PRD, notably the importance of covering the entire population for health care services and targeting special programs for those at highest risk for disease. In other respects, PRD's growth rate and sheer scale make it a unique megacity region that already faces new challenges and will require new solutions. PMID:21968214

  13. Legacy and emerging halogenated organic pollutants in marine organisms from the Pearl River Estuary, South China.

    PubMed

    Sun, Run-Xia; Luo, Xiao-Jun; Tan, Xiao-Xin; Tang, Bin; Li, Zong-Rui; Mai, Bi-Xian

    2015-11-01

    A suite of legacy and emerging halogenated organic pollutants (HOPs) were measured in marine organisms (coastal fish and invertebrates) from the Pearl River Estuary, South China, to investigate the current contamination status after the Stockholm Convention was implemented in China. Dichlorodiphenyltrichloroethane and its metabolites (DDTs), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs) were detected in all samples at concentrations of 54-1500, 16-700, and 0.56-59ng/g lipid weight, respectively. Dechlorane Plus (DP), decabromodiphenyl ethane (DBDPE), 2,3,5,6-tetrabromo-p-xylene (pTBX), and pentabromotoluene (PBT) were also found at concentrations of ND (non-detectable) to 37ng/g lipid weight. The concentrations of these investigated contaminants in the present study were at moderate levels, as compared with those reported in other regions. Significant interspecies differences were found in the levels of DDTs, PCBs, PBDEs and the alternative halogenated flame retardants (AHFRs). DDTs were the predominant HOPs in those species and represented >50% of the total HOPs, followed by PCBs, PBDEs, and AHFRs. The total estimated daily intakes (EDIs) of DDTs, PCBs, PBDEs, and AHFRs were 28, 12, 1.0, and 0.18 (ng/kg)/d, respectively, via seafood consumption. These concentrations are not expected to pose health risks to humans. PMID:26318119

  14. VOCs and OVOCs distribution and control policy implications in Pearl River Delta region, China

    NASA Astrophysics Data System (ADS)

    Louie, Peter K. K.; Ho, Josephine W. K.; Tsang, Roy C. W.; Blake, Donald R.; Lau, Alexis K. H.; Yu, Jian Zhen; Yuan, Zibing; Wang, Xinming; Shao, Min; Zhong, Liuju

    2013-09-01

    Ambient air measurements of volatile organic compounds (VOCs) and oxygenated volatile organic compounds (OVOCs) were conducted and characterised during a two-year grid study in the Pearl River Delta (PRD) region of southern China. The present grid study pioneered the systematic investigation of the nature and characteristics of complex VOC and OVOC sources at a regional scale. The largest contributing VOCs, accounting over 80% of the total VOCs mixing ratio, were toluene, ethane, ethyne, propane, ethene, butane, benzene, pentane, ethylbenzene, and xylenes. Sub-regional VOC spatial characteristics were identified, namely: i) relatively fresh pollutants, consistent with elevated vehicular and industrial activities, around the PRD estuary; and ii) a concentration gradient with higher mixing ratios of VOCs in the west as compared with the eastern part of PRD. Based on alkyl nitrate aging determination, a high hydroxyl radical (OH) concentration favoured fast hydrocarbon reactions and formation of locally produced ozone. The photochemical reactivity analysis showed aromatic hydrocarbons and alkenes together consisted of around 80% of the ozone formation potential (OFP) among the key VOCs. We also found that the OFP from OVOCs should not be neglected since their OFP contribution was more than one-third of that from VOCs alone. These findings support the choice of current air pollution control policy which focuses on vehicular sources but warrants further controls. Industrial emissions and VOCs emitted by solvents should be the next targets for ground-level ozone abatement.

  15. Regional dynamics of persistent organic pollutants (POPs) in the Pearl River Delta, China: implications and perspectives.

    PubMed

    Zhang, Kai; Zhang, Bao-Zhong; Li, Shao-Meng; Zeng, Eddy Y

    2011-10-01

    The mass transport budgets of 1,1,1-trichloro-2,2-bis(chlorophenyl)ethane (p,p'-DDT) and decabromodiphenyl ether (BDE-209) in the Pearl River Delta, South China were calculated based on previously collected data. Residual p,p'-DDT, mostly related to historical use, has largely settled into soil (780,000 kg), while the soil BDE-209 inventory (44,000 kg) is considerably smaller. Conversely, large amounts of BDE-209 currently used in numerous commercial products have resulted in a much higher atmospheric depositional flux of BDE-209 (28,100 kg/yr) relative to p,p'-DDT (310 kg/yr). The soil inventory of p,p'-DDT is predicted to decrease to half of its current value after 22 years, and the percent area containing soil p,p'-DDT at levels exceeding the effects range-medium (27 ng/g) will decrease from 40% to 20%. Finally, soil BDE-209 inventory will reach an equilibrium value of 940 tons in ~60 years, when BDE-209 levels in 50% of soil will be above an equivalent risk guideline value (125 ng/g). PMID:21669481

  16. Container cargo simulation modeling for measuring impacts of infrastructure investment projects in Pearl River Delta

    NASA Astrophysics Data System (ADS)

    Li, Jia-Qi; Shibasaki, Ryuichi; Li, Bo-Wei

    2010-03-01

    In the Pearl River Delta (PRD), there is severe competition between container ports, particularly those in Hong Kong, Shenzhen, and Guangzhou, for collecting international maritime container cargo. In addition, the second phase of the Nansha terminal in Guangzhou’s port and the first phase of the Da Chang Bay container terminal in Shenzhen opened last year. Under these circumstances, there is an increasing need to quantitatively measure the impact these infrastructure investments have on regional cargo flows. The analysis should include the effects of container terminal construction, berth deepening, and access road construction. The authors have been developing a model for international cargo simulation (MICS) which can simulate the movement of cargo. The volume of origin-destination (OD) container cargo in the East Asian region was used as an input, in order to evaluate the effects of international freight transportation policies. This paper focuses on the PRD area and, by incorporating a more detailed network, evaluates the impact of several infrastructure investment projects on freight movement.

  17. Influence of climate factors on Vibrio cholerae dynamics in the Pearl River estuary, South China.

    PubMed

    Yue, Yujuan; Gong, Jianhua; Wang, Duochun; Kan, Biao; Li, Baisheng; Ke, Changwen

    2014-06-01

    Current research has seldom focused on the quantitative relationships between Vibrio cholerae (V. cholerae) and climate factors owing to the complexities and high cost of field observation in the aquatic environment. This study has focused on the relationships between V. cholerae and climate factors based on linear regression method and data partition method. Data gathered from 2008 to 2009 in the Pearl River estuary, South China, were adopted. Positive rate of V. cholerae was correlated closely with monthly climate factors of water temperature and air temperature, respectively in 2009. Quarterly data analysis from 2008 to 2009 showed that there existed seasonal characteristic for V. cholerae. Positive rate of V. cholerae was correlated positively with quarterly climate factors of land surface temperature, pH, water temperature, air temperature and rainfall, respectively and negatively with quarterly air pressure. Partition data analysis in 2009 showed that there existed geography region characteristic for V. cholerae. V. cholerae dynamics was closely correlated to climate factors in the downstream area. However, it was more greatly affected by human geography factors in the urban area. Positive annual rate of V. cholerae was higher in the downstream area than in the urban area both in 2008 and 2009. At last, a cellular automaton model was used to simulate V. cholerae diffusion downstream, and the distribution of V. cholerae obtained from this model was similar to that obtained from the field observations.

  18. Legacy and emerging halogenated organic pollutants in marine organisms from the Pearl River Estuary, South China.

    PubMed

    Sun, Run-Xia; Luo, Xiao-Jun; Tan, Xiao-Xin; Tang, Bin; Li, Zong-Rui; Mai, Bi-Xian

    2015-11-01

    A suite of legacy and emerging halogenated organic pollutants (HOPs) were measured in marine organisms (coastal fish and invertebrates) from the Pearl River Estuary, South China, to investigate the current contamination status after the Stockholm Convention was implemented in China. Dichlorodiphenyltrichloroethane and its metabolites (DDTs), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs) were detected in all samples at concentrations of 54-1500, 16-700, and 0.56-59ng/g lipid weight, respectively. Dechlorane Plus (DP), decabromodiphenyl ethane (DBDPE), 2,3,5,6-tetrabromo-p-xylene (pTBX), and pentabromotoluene (PBT) were also found at concentrations of ND (non-detectable) to 37ng/g lipid weight. The concentrations of these investigated contaminants in the present study were at moderate levels, as compared with those reported in other regions. Significant interspecies differences were found in the levels of DDTs, PCBs, PBDEs and the alternative halogenated flame retardants (AHFRs). DDTs were the predominant HOPs in those species and represented >50% of the total HOPs, followed by PCBs, PBDEs, and AHFRs. The total estimated daily intakes (EDIs) of DDTs, PCBs, PBDEs, and AHFRs were 28, 12, 1.0, and 0.18 (ng/kg)/d, respectively, via seafood consumption. These concentrations are not expected to pose health risks to humans.

  19. Source apportionment and health effect of NOx over the Pearl River Delta region in southern China.

    PubMed

    Lu, Xingcheng; Yao, Teng; Li, Ying; Fung, Jimmy C H; Lau, Alexis K H

    2016-05-01

    As one of the most notorious atmospheric pollutants, NOx not only promotes the formation of ozone but also has adverse health effects on humans. It is therefore of great importance to study the sources of NOx and its effects on human health. The Comprehensive Air Quality Model (CAMx) modeling system and ozone source apportionment technology (OSAT) were used to study the contribution of NOx from different emission sources over southern China. The results indicate that heavy duty diesel vehicles (HDDVs) and industrial point sources are the two major local NOx sources, accounting for 30.8% and 18.5% of local NOx sources, respectively. In Hong Kong, marine emissions contributed around 43.4% of local NOx in 2011. Regional transport is another important source of this pollutant, especially in February and November, and it can contribute over 30% of ambient NOx on average. Power plant point emission is an significant regional source in Zhuhai, Zhongshan and Foshan. The total emission sources are estimated to cause 2119 (0-4405) respiratory deaths and 991 (0-2281) lung cancer deaths due to long-term exposure to NOx in the Pearl River Delta region. Our results suggest that local governments should combine their efforts and vigorously promote further reduction of NOx emissions, especially for those sources that make a substantial contribution to NOx emissions and affect human health: HDDV, LDGV, industrial point sources and marine sources. PMID:26845361

  20. Tidal Flux Variation in the Lower Pearl River and Lake Pontchartrain Estuaries of Mississippi and Louisiana

    USGS Publications Warehouse

    Turnipseed, D.P.; ,

    2002-01-01

    Three tidal gages were constructed to collect hydraulic and water-quality properties that could be used to compute the tidal flux of the Pearl River and Lake Pontchartrain estuarine systems in Mississippi and Louisiana. The gages record continuous tidal stage, velocity, water temperature, specific conductance, and salinity, and transmit these data via the GOES satellite for output to a USGS real-time Internet portal. A 25-hour tidal study was completed during a maximum slack tide period in September 2001, which measured hydraulic and water-quality properties. These data were correlated with data recorded by the gages. Relations were developed for stage and area, and for an index acoustic velocity signal and average velocity. Continuous tidal inflow/outflow was computed for all three gages. Tidal effects were attenuated using a ninth-order Butterworth low-pass filter. Net inflows were recorded at two of three sites during the tidal study. The data will be used to help calibrate a regional RMA2 flow model.

  1. Delaying precipitation and lightning by air pollution over the Pearl River Delta. Part I: Observational analyses

    NASA Astrophysics Data System (ADS)

    Guo, Jianping; Deng, Minjun; Lee, Seoung Soo; Wang, Fu; Li, Zhanqing; Zhai, Panmao; Liu, Huan; Lv, Weitao; Yao, Wen; Li, Xiaowen

    2016-06-01

    The radiative and microphysical effects of aerosols can affect the development of convective clouds. The objective of this study is to reveal if the overall aerosol effects have any discernible impact on the diurnal variations in precipitation and lightning by means of both observational analysis and modeling. As the first part of two companion studies, this paper is concerned with analyzing hourly PM10, precipitation, and lightning data collected during the summers of 2008-2012 in the Pearl River Delta region. Daily PM10 data were categorized as clean, medium, or polluted so that any differences in the diurnal variations in precipitation and lightning could be examined. Heavy precipitation and lightning were found to occur more frequently later in the day under polluted conditions than under clean conditions. Analyses of the diurnal variations in several meteorological factors such as air temperature, vertical velocity, and wind speed were also performed. They suggest that the influence of aerosol radiative and microphysical effects serve to suppress and enhance convective activities, respectively. Under heavy pollution conditions, the reduction in solar radiation reaching the surface delays the occurrence of strong convection and postpones heavy precipitation to late in the day when the aerosol invigoration effect more likely comes into play. Although the effect of aerosol particles can be discernible on the heavy precipitation through the daytime, the influence of concurrent atmospheric dynamics and thermodynamics cannot be ruled out.

  2. Tidally averaged water and salt transport velocities and their distributions in the Pearl River Estuary

    NASA Astrophysics Data System (ADS)

    Zhu, Shouxian; Sheng, Jinyu; Ji, Xiaomei

    2016-09-01

    Tidally averaged transports of water and substance are important physical quantities over estuarine, coastal, and shelf waters, but they have been indistinguishably expressed in terms of the Eulerian residual current (ERC) or Lagrangian residual current (LRC) in many previous studies. In this study, the tidally averaged transport velocities for water (TA-WTV) and substance (TA-STV) are considered based on residual fluxes. The main advantage of these newly defined transport velocities is that they can be used to quantify differences in amplitude and direction between the tidally averaged water and substance transports. The two-dimensional TA-STV is interpreted as the transport due to the residual flow of water, tidal pumping, and vertical shear. The three-dimensional TA-STV includes transports from the residual flow of water and tidal pumping. Numerical results of sea surface elevations, currents, and salinity produced by a triply nested coastal ocean model for the Pearl River Estuary (PRE) are used to calculate the TA-WTV and TA-STV for salt (TA-STVsa). The general features of the TA-WTV and TA-STVsa are similar over the most part of the PRE but differ significantly in amplitude and direction over the salinity frontal zone. The ERC and LRC calculated from model results are also significantly different from the TA-STVsa over the salinity frontal zone.

  3. Humpback Dolphins in Hong Kong and the Pearl River Delta: Status, Threats and Conservation Challenges.

    PubMed

    Karczmarski, Leszek; Huang, Shiang-Lin; Or, Carmen K M; Gui, Duan; Chan, Stephen C Y; Lin, Wenzhi; Porter, Lindsay; Wong, Wai-Ho; Zheng, Ruiqiang; Ho, Yuen-Wa; Chui, Scott Y S; Tiongson, Angelico Jose C; Mo, Yaqian; Chang, Wei-Lun; Kwok, John H W; Tang, Ricky W K; Lee, Andy T L; Yiu, Sze-Wing; Keith, Mark; Gailey, Glenn; Wu, Yuping

    2016-01-01

    In coastal waters of the Pearl River Delta (PRD) region, the Indo-Pacific humpback dolphin (Sousa chinensis) is thought to number approximately 2500 individuals. Given these figures, the putative PRD population may appear strong enough to resist demographic stochasticity and environmental pressures. However, living in close proximity to the world's busiest seaport/airport and several densely populated urban centres with major coastal infrastructural developments comes with challenges to the long-term survival of these animals. There are few other small cetacean populations that face the range and intensity of human-induced pressures as those present in the PRD and current protection measures are severely inadequate. Recent mark-recapture analyses of the animals in Hong Kong waters indicate that in the past two decades the population parameters have not been well understood, and spatial analyses show that only a very small proportion of the dolphins' key habitats are given any form of protection. All current marine protected areas within the PRD fail to meet a minimum habitat requirement that could facilitate the population's long-term persistence. Demographic models indicate a continuous decline of 2.5% per annum, a rate at which the population is likely to drop below the demographic threshold within two generations and lose 74% of the current numbers within the lifespan of three generations. In Hong Kong, the case of humpback dolphins represents a particularly explicit example of inadequate management where a complete revision of the fundamental approach to conservation management is urgently needed. PMID:26790887

  4. An ozone episode over the Pearl River Delta in October 2008

    NASA Astrophysics Data System (ADS)

    Shen, Jin; Zhang, Yuanhang; Wang, Xuesong; Li, Jinfeng; Chen, Hao; Liu, Run; Zhong, Liuju; Jiang, Ming; Yue, Dingli; Chen, Duohong; Lv, Wei

    2015-12-01

    The north and east Pearl River Delta (PRD) is usually a clean, upwind area in autumn. Serious ozone pollution there in mid-late October 2008 was first discovered and then analyzed. Trajectory analysis, process analysis, ozone source apportionment technology, and sensitivity analysis were used to study this episode. Under the influence of a weak south wind, the precursors emitted in Guangzhou and Foshan were transported to the north and northeast PRD and formed ozone there, which resulted in high ozone concentration (>100 ppb). As the wind direction later transited to northerly, the precursors in the northeast PRD that originated from the central and west PRD were transported to the south, and caused severe ozone pollution in the southeast PRD. The ozone contributed by chemical processes reached >20 ppb/h in Jinguowan. More than 40 ppb ozone was contributed by the precursor emission in the central and west PRD during the episode. The ozone concentration was highly sensitive to the precursor emission in the PRD region in the high-ozone situations. This episode showed the complexity of regional pollution in the PRD. When the PRD is controlled by a low air pressure system and then cold air moves from northern China to the south, the risk of ozone pollution in the north and southeast PRD increases.

  5. Regional dynamics of persistent organic pollutants (POPs) in the Pearl River Delta, China: implications and perspectives.

    PubMed

    Zhang, Kai; Zhang, Bao-Zhong; Li, Shao-Meng; Zeng, Eddy Y

    2011-10-01

    The mass transport budgets of 1,1,1-trichloro-2,2-bis(chlorophenyl)ethane (p,p'-DDT) and decabromodiphenyl ether (BDE-209) in the Pearl River Delta, South China were calculated based on previously collected data. Residual p,p'-DDT, mostly related to historical use, has largely settled into soil (780,000 kg), while the soil BDE-209 inventory (44,000 kg) is considerably smaller. Conversely, large amounts of BDE-209 currently used in numerous commercial products have resulted in a much higher atmospheric depositional flux of BDE-209 (28,100 kg/yr) relative to p,p'-DDT (310 kg/yr). The soil inventory of p,p'-DDT is predicted to decrease to half of its current value after 22 years, and the percent area containing soil p,p'-DDT at levels exceeding the effects range-medium (27 ng/g) will decrease from 40% to 20%. Finally, soil BDE-209 inventory will reach an equilibrium value of 940 tons in ~60 years, when BDE-209 levels in 50% of soil will be above an equivalent risk guideline value (125 ng/g).

  6. Remotely sensed assessment of water quality levels in the Pearl River Estuary, China.

    PubMed

    Chen, Chuqun; Tang, Shiling; Pan, Zhilin; Zhan, Haigang; Larson, Magnus; Jönsson, Lennart

    2007-08-01

    In this paper, a method of assessing water quality from satellite data is introduced. The composite pollution index (CPI) was calculated from measured chemical oxygen demand (COD) and nutrient concentration. The relationships between CPI and 240 band combinations of SeaWiFS water-leaving radiance were analyzed and the optimal band combination for estimating CPI was chosen from the 240 band combinations. An algorithm for retrieval of CPI was developed using the optimal band combination, (L(443)xL(510))/(L(412)+L(490)). The CPI was estimated from atmospherically corrected SeaWiFS data by employing the algorithm. Furthermore, the CPI value range for each water quality level was determined based on data obtained from 850 samples taken in the Pearl River Estuary. The remotely sensed CPIs were then transferred to water quality levels and appropriate maps were derived. The remotely sensed water quality level maps displayed a similar distribution of levels based on in situ investigation issued by the State Ocean Administration, China. This study demonstrates that remote sensing can play an important role in water quality assessment.

  7. Mercury distribution, speciation and bioavailability in sediments from the Pearl River Estuary, Southern China.

    PubMed

    Yu, Xiujuan; Li, Hengxiang; Pan, Ke; Yan, Yan; Wang, Wen-Xiong

    2012-08-01

    Surface sediments and sediment cores collected from the Pearl River Estuary (PRE) were analyzed for total mercury (THg) concentrations and speciation using a sequential extraction method. The mobility of Hg in sediments was also assessed using a series of single extraction methods. The surface sediments from the PRE showed slightly elevated levels of Hg, with concentrations ranging from 109 to 453 ng/g. The vertical profile of THg in sediment cores indicated an accelerated input of Hg over the past decades. The organo-chelated and strong-complexed Hg species were the dominant Hg species in the sediments, while the more mobile phases of Hg made up less than 0.5% of THg. Less than 10% of the Hg in the sediments was extracted by single extraction, depending on the extractant employed. Significant relationships were found between the total organic carbon and THg, geochemical speciation, and extractability, indicating the important role of organic matter in controlling the distribution, mobility, and bioavailability of Hg in sediments.

  8. Mississippi River, Yazoo Basin, Memphis, TN

    NASA Technical Reports Server (NTRS)

    1973-01-01

    This section of the lower Mississippi River (34.0N, 90.0W) known as the Yazoo Basin, is characterized by a wide expanse of rich river bottomland with many oxbow lakes, the remains of the many changes in the riverbed over the course of many thousands of years. This soil is very fertile and productive but the region is prone to flooding. In this view, some of the back areas around the Delta National Forest show the effects of heavy spring rains.

  9. Beryllium isotope geochemistry in tropical river basins

    SciTech Connect

    Brown, E.T.; Edmond, J.M. ); Raisbeck, G.M.; Bourles, D.L.; Yiou, F. ); Measures, C.I. )

    1992-04-01

    The distributions of beryllium-9 and beryllium-10 in rivers within the Orinoco and Amazon basins have been examined to extend the understanding of their geochemical cycles and to develop their use both in geochronometry, and in studying erosional processes. Analyses of {sup 9}Be in dissolved and suspended material from rivers with a wide range of chemical compositions indicate that its geochemistry is primarily controlled by two major factors: (1) its abundance in the rocks of the watershed and (2) the extent of its adsorption onto particle surfaces. The relative importance of these parameters in individual rivers is determined by the extent of interaction with flood-plain sediments and the riverine pH. This understanding of {sup 9}Be geochemistry forms a basis for examination of the geochemical cycling of {sup 10}Be. In rivers which are dominated by interaction with sediments, the riverine concentration of dissolved {sup 10}Be is far lower than that in the incoming rainwater, indicating that a substantial proportion of it is retained within the soils of the basin or is adsorbed onto riverine particles. However, in acidic rivers in which the stable dissolved Be concentration is determined by the Be level in the rocks of the drainage basin, dissolved {sup 10}Be has essentially the same concentration as in precipitation. These observations imply that the soil column in such regions must be saturated with respect to {sup 10}Be, and that the ratio of the inventory to the flux does not represent an age, as may be the case in temperate latitudes, but rather a residence time.

  10. Effects of Human Activities on Submarine Topography in Lingding Bay of the Pearl River Estuary During the Last Decade

    NASA Astrophysics Data System (ADS)

    WU, Z. Y.; Saito, Y.; Milliman, J. D.; Zhao, D.; Zhou, J.

    2015-12-01

    Estuaries have been the site of intensive human activities. During the past century, decreased fluvial water and sediment discharge, increasing land reclamation, changing climate, and rising sea level have had an ever-increasing impact on river deltas, particularly those deltas bordering Southeast Asia. Using six stages of navigational and bathymetric chart data from 1906 to 2013 and 2 years (2012,2013) single-beam bathymetric data, together with more than 50 years of fluvial discharge data, we document the impact of human activities on the Pearl River Delta and its estuary at Lingding Bay. Between 1906 and 2010, land reclamation decreased the bay's water area by ~300 km2 (>17%), mostly at the expense of the shrinking intertidal and shallow subtidal mudflats. Before 1980, the estuary was mainly governed by natural processes with slight net deposition, whereas after 1980 dredging in the estuary and large port engineering projects changed the estuarine topography by shallowing the shoals and deepening the troughs. From 1955 to 2010, the water volume of Lingding Bay decreased by 536 × 106 m3 for a net decrease of 9.7 × 106 m3 a year, which indicates that approximately 9.7 Mt/yr of sediment was deposited in Lingding Bay during that period. In 2012 and 2013, large-scale human activities within Lingding Bay included continued dredging plus a surge of sand excavation that changed local water depths by ±5 m/yr, far exceeding the range of natural topographic evolution in the estuary. The impacts of various human activities have significantly changed submarine topography in Lingding Bay of the complex Pearl River Estuary. With continuing economic expansion in the Pearl River Delta, Lingding Bay should continue to shrink in both area and water volume.

  11. Distribution of polybrominated diphenyl ethers in sediments of the Pearl River Delta and adjacent South China Sea.

    PubMed

    Mai, Bixian; Chen, Shejun; Luo, Xiaojun; Chen, Laiguo; Yang, Qingshu; Sheng, Guoying; Peng, Pingan; Fu, Jiamo; Zeng, Eddy Y

    2005-05-15

    Spatial and temporal distributions of polybrominated diphenyl ethers (PBDEs) in sediments of the Pearl River Delta (PRD) and adjacent South China Sea (SCS) of southern China were examined. A total of 66 surface sediment samples were collected and analyzed to determine the concentrations of 10 PBDE congeners (BDE-28, -47, -66, -100, -99, -154, -153, -138, -183, and -209). The concentrations of BDE-209 and SigmaPBDEs (defined as the sum of all targeted PBDE congeners except for BDE-209) ranged from 0.4 to 7340 and from 0.04 to 94.7 ng/g, respectively. The SigmaPBDEs concentrations were mostly < 50 ng/g, within the range for riverine and coastal sediments around the world, whereas the BDE-209 concentrations at the most contaminated sites were at the high end of the worldwide figures. Congener compositions were dominated by BDE-209 (72.6 - 99.7%), with minor contributions from penta- and octa-BDEs. Slightly different PBDE compositions were observed among samples collected from different locations, attributable to possible decomposition of highly brominated congeners and/or redistribution between particles of various sizes during atmospheric or fluvial transportation. The PBDE patterns in the SCS and Pearl River Estuary sediments were similar to those in sediments of the Zhujiang and Dongjiang Rivers, reflecting the widespread influence from local inputs. Analyses of two short sediment cores collected from the Pearl River Estuary showed that concentrations of BDE-209 rapidly increased in the upper layers of both cores, coincident with the growth of the electronics manufacturing capacities in the PRD region. The major sources of PBDEs were probably waste discharges from the cities of Guangzhou, Dongguan, and Shenzhen, the three fastest growing urban centers in the PRD.

  12. Concentrations and inventories of polycyclic aromatic hydrocarbons and organochlorine pesticides in watershed soils in the Pearl River Delta, China.

    PubMed

    Ma, Xiaoxuan; Ran, Yong; Gong, Jian; Zou, Mengyao

    2008-10-01

    The concentration levels, source, and inventories of polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) in 55 surface vegetable soils in the watershed of the Pearl River Delta (PRD) were analyzed and compared with those of the surface sediments in the Pearl River Estuary (PRE) and northern South China Sea (SCS). The 16 priority PAHs on US EPA list range from 58 to 3,077 microg/kg (average: 315 microg/kg). The concentrations of DDTs and HCHs range from 3.58 to 831 microg/kg (average: 82.1 microg/kg) and from 0.19 to 42.3 microg/kg (average: 4.42 microg/kg). The ratios of DDT/ (DDD+DDE) are higher than 2 in majority of the soil samples, suggesting that DDT contamination still exists. The PAH ratios suggest that the source of PAHs is petroleum, and combustion of fossil fuel, biomass, and coal. The average concentrations of PAHs and the linear regression slope between PAHs and TOC for the soils and the sediments are quite similar. It was estimated that the soil mass inventories at 0-20 cm depth are 1,292 metric tons for PAHs and 356 metric tons for OCPs in the studied region. The average PAHs inventory per unit area for the soil samples investigated in PRD is about 0.86 time that of surface sediments in the Pearl River Estuary, and about 2.43 times that of surface sediments in the northern South China Sea. PAHs in the soils in PRD have similar source to those of the surface sediments in PRE. All of those may suggest that PAHs in PRE and SCS are probably mainly inputted from the soils in PRD via soil erosion and river transport.

  13. Source of atmospheric moisture and precipitation over China's major river basins

    NASA Astrophysics Data System (ADS)

    Zhao, Tongtiegang; Zhao, Jianshi; Hu, Hongchang; Ni, Guangheng

    2016-03-01

    Oceanic evaporation via the East Asian Monsoon (EAM) has been regarded as the major source of precipitation over China, but a recent study estimated that terrestrial evaporation might contribute up to 80% of the precipitation in the country. To explain the contradiction, this study presents a comprehensive analysis of the contribution of oceanic and terrestrial evaporation to atmospheric moisture and precipitation in China's major river basins. The results show that from 1980 to 2010, the mean annual atmospheric moisture (precipitable water) over China was 13.7 mm, 39% of which originates from oceanic evaporation and 61% from terrestrial evaporation. The mean annual precipitation was 737 mm, 43% of which originates from oceanic evaporation and 57% from terrestrial evaporation. Oceanic evaporation makes a greater contribution to atmospheric moisture and precipitation in the East Asian Monsoon Region in South and East China than terrestrial evaporation does. Particularly, for the Pearl River and southeastern rivers, oceanic evaporation contributes approximately 65% of annual precipitation and more than 70% of summer precipitation. Meanwhile, terrestrial evaporation contributes more precipitation in northwest China due to the westerly wind. For the northwestern rivers, terrestrial evaporation from the Eurasian continents contributes more than 70% of precipitation. There is a linear relation between mean annual precipitation and the contribution of oceanic evaporation to precipitation, with a correlation coefficient of 0.92, among the ten major river basins in China.

  14. Susquehanna River Basin Hydrologic Observing System (SRBHOS)

    NASA Astrophysics Data System (ADS)

    Reed, P. M.; Duffy, C. J.; Dressler, K. A.

    2004-12-01

    In response to the NSF-CUAHSI initiative for a national network of Hydrologic Observatories, we propose to initiate the Susquehanna River Basin Hydrologic Observing System (SRBHOS), as the northeast node. The Susquehanna has a drainage area of 71, 410 km2. From the headwaters near Cooperstown, NY, the river is formed within the glaciated Appalachian Plateau physiographic province, crossing the Valley and Ridge, then the Piedmont, before finishing its' 444 mile journey in the Coastal Plain of the Chesapeake Bay. The Susquehanna is the major source of water and nutrients to the Chesapeake. It has a rich history in resource development (logging, mining, coal, agriculture, urban and heavy industry), with an unusual resilience to environmental degradation, which continues today. The shallow Susquehanna is one of the most flood-ravaged rivers in the US with a decadal regularity of major damage from hurricane floods and rain-on-snow events. As a result of this history, it has an enormous infrastructure for climate, surface water and groundwater monitoring already in place, including the nations only regional groundwater monitoring system for drought detection. Thirty-six research institutions have formed the SRBHOS partnership to collaborate on a basin-wide network design for a new scientific observing system. Researchers at the partner universities have conducted major NSF research projects within the basin, setting the stage and showing the need for a new terrestrial hydrologic observing system. The ultimate goal of SRBHOS is to close water, energy and solute budgets from the boundary layer to the water table, extending across plot, hillslope, watershed, and river basin scales. SRBHOS is organized around an existing network of testbeds (legacy watershed sites) run by the partner universities, and research institutions. The design of the observing system, when complete, will address fundamental science questions within major physiographic regions of the basin. A nested

  15. Compositional Dynamics of Organic Carbon in Surface Sediments from the Lower Pearl River to the Coastal South China Sea

    NASA Astrophysics Data System (ADS)

    Li, X.; Zhang, C.; Wade, T.

    2015-12-01

    As the second largest river in China, the Pearl River discharges ˜7×107 tons of sediment annually to the South China Sea (SCS). About 80% of the sediment was deposited within the Pearl River Estuary; however, the compositional dynamics of organic carbon (OC) at this land-ocean interface is poorly known. This study aimed to delineate the sources, effect of the dam construction and the fate of sedimentary OC from the Feilaixia Dam to the Pearl River estuary and coastal SCS. Surface sediment was collected during a cruise in January 2012 for elemental, and stable carbon/nitrogen isotope analyses. Preliminary data showed that total OC increased from 0.6% at the Feilaixia Dam to 3.1% at Sihui city (100 km downstream from the dam), with the C/N ratio increasing from 10.4 to 18.9; the δ13C of OC, on the other hand, decreased from -20.57‰ to -29.04‰. From Sihui city to the edge of the Pearl River estuary (202 km from the dam), total OC (1.2± 0.6), C/N ratio (11.5 ± 1.0) and the δ13C of OC (-25.89 ± 0.69 ‰) all remained relatively constant. From the estuary towards the coastal SCS, the total OC decreased from 1.3 to 0.4%, with the C/N ratio also decreasing from 10.5 to 7.5; the δ13C of OC, on the other hand, increased from -26.24 to -21.20‰. These data indicate that the composition of riverine OC in general reflects terrestrial vascular plants (higher C/N ratio and more negative δ13C), which can be compounded by in situ primary production (lower C/N ratio and more positive δ13C) in the dam-created reservoir water body. The riverine organic matter, however, appears to regain its terrestrial signature before entering the estuary, which then is in balance with marine primary production (lower C/N ratio and more positive δ13C). The impact of soil and aquatic microbial processes on organic matter degradation also will be examined by analyzing their signature biomarkers and relationship to OC composition.

  16. Sprague River geomorphology studies, Klamath Basin, Oregon

    NASA Astrophysics Data System (ADS)

    McDowell, P. F.; O'Connor, J. E.; Lind, P.

    2005-12-01

    The Sprague River drains 4050 square kilometers with a mean annual discharge of 16.3 m3/s before emptying into the Williamson River and then upper Klamath Lake in southcentral Oregon. The alternating wide alluvial segments and narrow canyon reaches of this 135-km-long westward flowing river provide for a variety of valued ecologic conditions and human uses along the river corridor, notably fisheries (including two endangered species of suckers, and formerly salmon), timber harvest, agriculture, and livestock grazing. The complex history of land ownership and landuse, water control and diversion structures, and fishery alterations, provides several targets for attributing historic changes to channel and floodplain conditions. Recently, evolving societal values (as well as much outside money) are inspiring efforts by many entities to 'restore' the Sprague River watershed. In cooperation with the U.S. Fish and Wildlife Service, the Klamath Tribes, and many local landowners, we are launching an analysis of Sprague River channel and floodplain processes. The overall objective is to guide restoration activities by providing sound understanding of local geomorphic processes and conditions. To do this we are identifying key floodplain and channel processes, and investigating how they have been affected by historic floodplain activites and changes to the watershed. This is being accomplished by analysis of historic aerial photographs and maps, stratigraphic analysis of floodplain soils and geologic units, mapping of riparian vegetation conditions and changes, and quantitative analysis of high resolution LiDAR topography acquired for the entire river course in December 2004. Preliminary results indicate (1) much of the coarser (and more erodible) floodplain soils are largely composed of pumice deposited in the basin by the 7700 year BP eruption of Mount Mazama; and (2) the LiDAR digital elevation models provide a ready means of subdividing the river into segments with

  17. Occurrence and distribution of synthetic musks and organic UV filters from riverine and coastal sediments in the Pearl River estuary of China.

    PubMed

    Huang, Weixia; Xie, Zhiyong; Yan, Wen; Mi, Wenying; Xu, Weihai

    2016-10-15

    This study reports the occurrence and distribution of synthetic musks (SMs) and organic UV filters (UVFs) in sediment samples collected in 8 riverine runoffs from the Pearl River and Pearl River estuary (PRE). Here, 6 of the 8 target compounds were detected in all sediments with concentrations ranging from 0.35ngg(-1) to 456ngg(-1). Higher concentrations of SMs and UVFs were evident in the eastern outlets compared to the western suggesting greater input of these contaminants from the Pearl River Delta (PRD) region. All the compounds showed a decreasing trend toward the seaward side which confirming that riverine runoff was the most important source of SMs and UVFs to the coastal environment. Notably, high levels of SMs and UVFs were detected in two fishing harbors in the PRE area. In comparison to UVFs, the SM compounds exhibited a significant correlation with TOC content in the sediments. PMID:27431750

  18. Occurrence and distribution of synthetic musks and organic UV filters from riverine and coastal sediments in the Pearl River estuary of China.

    PubMed

    Huang, Weixia; Xie, Zhiyong; Yan, Wen; Mi, Wenying; Xu, Weihai

    2016-10-15

    This study reports the occurrence and distribution of synthetic musks (SMs) and organic UV filters (UVFs) in sediment samples collected in 8 riverine runoffs from the Pearl River and Pearl River estuary (PRE). Here, 6 of the 8 target compounds were detected in all sediments with concentrations ranging from 0.35ngg(-1) to 456ngg(-1). Higher concentrations of SMs and UVFs were evident in the eastern outlets compared to the western suggesting greater input of these contaminants from the Pearl River Delta (PRD) region. All the compounds showed a decreasing trend toward the seaward side which confirming that riverine runoff was the most important source of SMs and UVFs to the coastal environment. Notably, high levels of SMs and UVFs were detected in two fishing harbors in the PRE area. In comparison to UVFs, the SM compounds exhibited a significant correlation with TOC content in the sediments.

  19. An ozone episode in the Pearl River Delta: Field observation and model simulation

    NASA Astrophysics Data System (ADS)

    Jiang, F.; Guo, H.; Wang, T. J.; Cheng, H. R.; Wang, X. M.; Simpson, I. J.; Ding, A. J.; Saunders, S. M.; Lam, S. H. M.; Blake, D. R.

    2010-11-01

    In the fall of 2007 concurrent air sampling field measurements were conducted for the first time in Guangzhou (at Wan Qing Sha (WQS)) and Hong Kong (at Tung Chung (TC)), two cities in the rapidly developing Pearl River Delta region of China that are only 62 km apart. This region is known to suffer from poor air quality, especially during the autumn and winter months, when the prevailing meteorological conditions bring an outflow of continental air to the region. An interesting multiday O3 pollution event (daily maximum O3 > 122 ppbv) was captured during 9-17 November at WQS, while only one O3 episode day (10 November) was observed at TC during this time. The mean O3 mixing ratios at TC and WQS during the episode were 38 ± 3 (mean ± 95% confidence interval) and 51 ± 7 ppbv, respectively, with a mean difference of 13 ppbv and a maximum hourly difference of 150 ppbv. We further divided this event into two periods: 9-11 November as Period 1 and 12-17 November as Period 2. The mixing ratios of O3 and its precursors (NOx and CO) showed significant differences between the two periods at TC. By contrast, no obvious difference was found at WQS, indicating that different air masses arrived at TC for the two periods, as opposed to similar air masses at WQS for both periods. The analysis of VOC ratios and their relationship with O3 revealed strong O3 production at WQS during Period 2, in contrast to relatively weak photochemical O3 formation at TC. The weather conditions implied regional transport of O3 pollution during Period 1 at both sites. Furthermore, a comprehensive air quality model system (Weather Research and Forecasting-Community Multiscale Air Quality model (WRF-CMAQ)) was used to simulate this O3 pollution event. The model system generally reproduced the variations of weather conditions, simulated well the continuous high O3 episode event at WQS, and captured fairly well the elevated O3 mixing ratios in Period 1 and low O3 levels in Period 2 at TC. The modeled

  20. Use of Reflectance Ratios as a Proxy for Coastal Water Constituent Monitoring in the Pearl River Estuary

    PubMed Central

    Fang, Li-Gang; Chen, Shui-Sen; Li, Dong; Li, Hong-Li

    2009-01-01

    Spectra, salinity, total suspended solids (TSS, in mg/L) and colored dissolved organic matter (CDOM, ag(400) at 400 nm) sampled in stations in 44 different locations on December 18, 19 and 21, in 2006 were measured and analyzed. The studied field covered a large variety of optically different waters, the absorption coefficient of CDOM ([ag(400)] in m-1) varied between 0.488 and 1.41 m-1, and the TSS concentrations (mg/L) varied between 7.0 and 241.1 mg/L. In order to detect salinity of the Pearl River Estuary, we analyzed the spectral properties of TSS and CDOM, and the relationships between field water reflectance spectra and water constituents' concentrations based on the synchronous in-situ and satellite hyper-spectral image analysis. A good correlation was discovered (the positive correlation by linear fit), between in-situ reflectance ratio R680/R527 and TSS concentrations (R2 = 0.65) for the salinity range of 1.74-22.12. However, the result also showed that the absorption coefficient of CDOM was not tightly correlated with reflectance. In addition, we also observed two significant relationships (R2 > 0.77), one between TSS concentrations and surface salinity and the other between the absorption coefficient of CDOM and surface salinity. Finally, we develop a novel method to understand surface salinity distribution of estuarine waters from the calibrated EO-1 Hyperion reflectance data in the Pearl River Estuary, i.e. channels with high salinity and shoals with low salinity. The EO-1 Hyperion derived surface salinity and TSS concentrations were validated using in-situ data that were collected on December 21, 2006, synchronous with EO-1 Hyperion satellite imagery acquisition. The results showed that the semi-empirical relationships are capable of predicting salinity from EO-1 Hyperion imagery in the Pearl River Estuary (RMSE < 2‰). PMID:22389623

  1. Scaling issues in sustainable river basin management

    NASA Astrophysics Data System (ADS)

    Timmerman, Jos; Froebich, Jochen

    2014-05-01

    Sustainable river basin management implies considering the whole river basin when managing the water resources. Management measures target at dividing the water over different uses (nature, agriculture, industry, households) thereby avoiding calamities like having too much, too little or bad quality water. Water management measures are taken at the local level, usually considering the sub-national and sometimes national effects of such measures. A large part of the world's freshwater resources, however, is contained in river basins and groundwater systems that are shared by two or more countries. Sustainable river basin management consequently has to encompass local, regional, national and international scales. This requires coordination over and cooperation between these levels that is currently compressed into the term 'water governance' . Governance takes into account that a large number of stakeholders in different regimes (the principles, rules and procedures that steer management) contribute to policy and management of a resource. Governance includes the increasing importance of basically non-hierarchical modes of governing, where non-state actors (formal organizations like NGOs, private companies, consumer associations, etc.) participate in the formulation and implementation of public policy. Land use determines the run-off generation and use of irrigation water. Land use is increasingly determined by private sector initiatives at local scale. This is a complicating factor in the governance issue, as in comparison to former developments of large scale irrigation systems, planning institutions at state level have then less insight on actual water consumption. The water management regime of a basin consequently has to account for the different scales of water management and within these different scales with both state and non-state actors. The central elements of regimes include the policy setting (the policies and water management strategies), legal setting

  2. Black carbon measurements in the Pearl River Delta region of China

    NASA Astrophysics Data System (ADS)

    Huang, X.; Gao, R.; Schwarz, J. P.; Ling-Yan, H.; Fahey, D. W.; Laurel A, W.; Zeng, L.

    2009-12-01

    The Pearl River Delta (PRD) region in southeastern China is one of the most polluted industrial/metropolitan areas in the world. The 3C-STAR campaign (Synthesized Prevention Techniques for Air Pollution Complex and Integrated Demonstration in Key City-Cluster Region), carried out in October-November, 2008, was aimed at improving the understanding and quantification of air pollution in the region, while developing technical capacity for regional air quality monitoring and modeling. We report single-particle soot photometer (SP2) measurements and analyses of refractory black carbon (rBC) at Kaiping, a rural site downwind of the major pollution sources in the PRD area. The rBC mass loadings varied between 0.5 and 10 µg-rBC kg-air-1, and averaged 2.8 µg-rBC kg-air-1. These values are roughly an order of magnitude higher than those measured in the Houston, Texas, a major US metropolitan area. The rBC mass distributions show a primary lognormal peak with a median mass diameter of 0.22 µm volume-equivalent diameter (VED), which is similar to those observed in Houston and other regions with the SP2 instrument. A second mode with a mass median diameter of 0.69 µm VED, has not been observed before. Coatings are found on over 50% of rBC particles, suggesting that they are aged and/or of biomass-burning origin. The high rBC loadings cause significant heating of the atmosphere due to direct solar absorption. A diurnal heating rate of over 0.5 K day-1. is estimated for the average of entire dataset with a maximum heating rate near 3 K day-1.

  3. [Influence of Burning Fireworks on Air Quality During the Spring Festival in the Pearl River Delta].

    PubMed

    Zhao, Wei; Fan, Shao-jia; Xie, Wen-zhang; Sun, Jia-ren

    2015-12-01

    Based on data from the air quality monitoring stations in the Pearl River Delta during the 2015 Spring Festival, the regional air quality was investigated and the impact of burning fireworks on urban air quality was assessed. The results showed that: Zhaoqing was the worst polluted city in PM₁₀, PM₂.₅, SO₂ and CO in terms of concentrations in the region during the period, Huizhou was the worst polluted city in O₃ and Guangzhou was the most polluted city in NO₂ at the same time. Compared to the data of last year, the SO₂, NO₂, CO, PM₁₀ and PM₂.₅ concentrations had decreased significantly, but the O₃ concentration had increased during the Spring Festival. Burning fireworks during the Spring Festival were mainly concentrated in the suburbs. The concentrated discharge of fireworks made the SO₂, PM₁₀ and PM₂.₅ concentrations increased significantly in the New Year's Eve night, even multiplied, but had no significant effect on CO, O₃ and NO₂. The rapid decline in PM₂.₅/PM₁₀ proportion was caused by the discharge of fireworks, and the ratio of PM₂.₅/PM₁₀ reached the minimum when concentration of particles reached the peak. By assessing, the maximum contribution of hourly concentration from burning fireworks in each city was between 16 µg · m⁻³ and 65 µg · m⁻³ for PM₂.₅, between 28 µg · m⁻³ and 138 µg · m⁻³ for PM₁₀ and between 9 µg · m⁻³ and 43 µg · m⁻³ for SO₂.

  4. Arsenic contamination in the freshwater fish ponds of Pearl River Delta: bioaccumulation and health risk assessment.

    PubMed

    Cheng, Zhang; Chen, Kun-Ci; Li, Kai-Bin; Nie, Xiang-Ping; Wu, Sheng Chun; Wong, Chris Kong-Chu; Wong, Ming-Hung

    2013-07-01

    This study investigated the extent of arsenic (As) contamination in five common species of freshwater fish (northern snakehead [Channa argus], mandrarin fish [Siniperca chuatsi], largemouth bass [Lepomis macrochirous], bighead carp [Aristichthys nobilis] and grass carp [Ctenopharyngodon idellus]) and their associated fish pond sediments collected from 18 freshwater fish ponds around the Pearl River Delta (PRD). The total As concentrations detected in fish muscle and sediment in freshwater ponds around the PRD were 0.05-3.01 mg kg(-1) wet weight (w. wt) and 8.41-22.76 mg kg(-1) dry weight (d. wt), respectively. In addition, the As content was positively correlated (p < 0.05) to total organic carbon (TOC) contents in sediments. Biota sediment accumulation factor (BSAF) showed that omnivorous fish and zooplankton accumulated higher concentrations of heavy metals from the sediment than carnivorous fish. In addition, feeding habits of fish also influence As accumulation in different fish species. In this study, two typical food chains of the aquaculture ponds were selected for investigation: (1) omnivorous food chain (zooplankton, grass carp and bighead carp) and (2) predatory food chain (zooplankton, mud carp and mandarin fish). Significant linear relationships were obtained between log As and δ (15)N. The slope of the regression (-0.066 and -0.078) of the log transformed As concentrations and δ (15)N values, as biomagnifications power, indicated there was no magnification or diminution of As from lower trophic levels (zooplankton) to fish in the aquaculture ponds. Consumption of largemouth bass, northern snakehead and bighead carp might impose health risks of Hong Kong residents consuming these fish to the local population, due to the fact that its cancer risk (CR) value exceeded the upper limit of the acceptable risk levels (10(-4)) stipulated by the USEPA.

  5. Arsenic contamination in the freshwater fish ponds of Pearl River Delta: bioaccumulation and health risk assessment.

    PubMed

    Cheng, Zhang; Chen, Kun-Ci; Li, Kai-Bin; Nie, Xiang-Ping; Wu, Sheng Chun; Wong, Chris Kong-Chu; Wong, Ming-Hung

    2013-07-01

    This study investigated the extent of arsenic (As) contamination in five common species of freshwater fish (northern snakehead [Channa argus], mandrarin fish [Siniperca chuatsi], largemouth bass [Lepomis macrochirous], bighead carp [Aristichthys nobilis] and grass carp [Ctenopharyngodon idellus]) and their associated fish pond sediments collected from 18 freshwater fish ponds around the Pearl River Delta (PRD). The total As concentrations detected in fish muscle and sediment in freshwater ponds around the PRD were 0.05-3.01 mg kg(-1) wet weight (w. wt) and 8.41-22.76 mg kg(-1) dry weight (d. wt), respectively. In addition, the As content was positively correlated (p < 0.05) to total organic carbon (TOC) contents in sediments. Biota sediment accumulation factor (BSAF) showed that omnivorous fish and zooplankton accumulated higher concentrations of heavy metals from the sediment than carnivorous fish. In addition, feeding habits of fish also influence As accumulation in different fish species. In this study, two typical food chains of the aquaculture ponds were selected for investigation: (1) omnivorous food chain (zooplankton, grass carp and bighead carp) and (2) predatory food chain (zooplankton, mud carp and mandarin fish). Significant linear relationships were obtained between log As and δ (15)N. The slope of the regression (-0.066 and -0.078) of the log transformed As concentrations and δ (15)N values, as biomagnifications power, indicated there was no magnification or diminution of As from lower trophic levels (zooplankton) to fish in the aquaculture ponds. Consumption of largemouth bass, northern snakehead and bighead carp might impose health risks of Hong Kong residents consuming these fish to the local population, due to the fact that its cancer risk (CR) value exceeded the upper limit of the acceptable risk levels (10(-4)) stipulated by the USEPA. PMID:23247527

  6. Halocarbons in the atmosphere of the industrial-related Pearl River Delta region of China

    NASA Astrophysics Data System (ADS)

    Chan, L. Y.; Chu, K. W.

    2007-02-01

    In a study conducted in 2000, 19 halocarbons from 78 canister air samples were measured in five industrial cities in the Pearl River Delta (PRD), one of the fastest growing industrial regions in China. Preliminary year 2000 halocarbon levels have been derived using available data and information. Comparisons have been made between the data obtained in this study and the corresponding estimated global/tropical surface mixing ratios obtained from the literature. With the exception of CFC-114 and halon-2402, the halocarbons had significant enhancements, presumably due to their recent increased production and extensive industrial uses. In contrast to the small enhancements (<7%) for two chlorofluorocarbons (CFC-11 and CFC-12), large enhancements (>30%) for three HCFC replacements (HCFC-22, -141b, -142b) were observed. In general, HCFCs have virtually replaced CFCs, except for some localized usage. The median of HFC-134a also had a 36% enhancement; however, 23% of the samples were near or at the global background level. These contradictory results could not give a clear situation of uses of this new chemical in the region. Our data also indicate that halocarbon-based cleaning solvents, including CFC-113, methyl chloroform, trichloroethene and tetrachloroethene, were still frequently used in PRD industries. High mixing ratios of these halogenated solvents were frequently measured in Dongguan, a city with light industry. Higher atmospheric levels of the three methyl halides (-Cl, -Br, and -I) were found in a coastal city, Jiangmen. These may be contributed to by industrial emissions and coastal terrestrial and coastal seawater sources.

  7. Emission patterns and spatiotemporal variations of halocarbons in the Pearl River Delta region, southern China

    NASA Astrophysics Data System (ADS)

    Zhang, Y. L.; Guo, H.; Wang, X. M.; Simpson, I. J.; Barletta, B.; Blake, D. R.; Meinardi, S.; Rowland, F. S.; Cheng, H. R.; Saunders, S. M.; Lam, S. H. M.

    2010-08-01

    On 8 selected days between 25 October and 1 December 2007, 198 whole air samples were simultaneously collected at two sites in the greater Pearl River Delta (PRD), namely, Wan Qing Sha (WQS) in inland PRD and Tung Chung (TC) in Hong Kong, for the evaluation of halocarbons including chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs) and other chlorinated compounds. The mean mixing ratios of CFC-12, CH3CCl3, CH3Br, C2HCl3, and C2Cl4 at WQS were much higher than those at TC (p < 0.001), while HCFC-22 was higher at TC (p < 0.01). Long-lived species such as CFC-11, CFC-12, and CFC-113 showed similar temporal patterns on most sampling days with small daily variation, whereas the main species used as solvents such as C2HCl3 and C2Cl4 presented large daily variations though with consistent temporal patterns. Source profile analysis revealed that although there was no remarkable change in emission sources between 2001-2002 and 2007, the emissions of CFCs and CCl4 from the production of refrigeration in 2007 were 1.4-2.0 times those in 2001-2002, and the use of HCFC-22 has significantly increased in these years while the use of C2HCl3 and C2Cl4 in the electronics industry showed a remarkable reduction. By comparing the halocarbon data collected in this study with those observed by other research teams in recent years, we found that the levels of CFCs have declined since 2001, while their substitute HCFC-22 has increased in emissions in recent years, especially in Hong Kong. The annual trends are consistent with the implementation of the Montreal Protocol. The results obtained in this study provide useful information to local government on effective control of halocarbon emissions in this region.

  8. High resolution of black carbon and organic carbon emissions in the Pearl River Delta region, China.

    PubMed

    Zheng, Junyu; He, Min; Shen, Xingling; Yin, Shasha; Yuan, Zibing

    2012-11-01

    A high-resolution regional black carbon (BC) and organic carbon (OC) emission inventory for the year 2009 was developed for the Pearl River Delta (PRD) region, China, based on the collected activity data and the latest emission factors. PM(2.5), BC and OC emissions were estimated to be 303 kt, 39 kt and 31 kt, respectively. Industrial processes were major contributing sources to PM(2.5) emissions. BC emissions were mainly from mobile sources, accounting for 65.0%, while 34.1% of OC emissions were from residential combustion. The primary OC/BC ratios for individual cities in the PRD region were dependent on the levels of economic development due to differences in source characteristics, with high ratios in the less developed cities and low ratios in the central and southern developed areas. The preliminary temporal profiles were established, showing the highest OC emissions in winter and relatively constant BC emissions throughout the year. The emissions were spatially allocated into grid cells with a resolution of 3 km × 3 km. Large amounts of BC emissions were distributed over the central-southern PRD city clusters, while OC emissions exhibited a relatively even spatial distribution due to the significant biomass burning emissions from the outlying area of the PRD region. Uncertainties in carbonaceous aerosol emissions were usually higher than in other primary pollutants like SO(2), NO(x), and PM(10). One of the key uncertainty sources was the emission factor, due to the absence of direct measurements of BC and OC emission rates. PMID:22995707

  9. Measurement and Analysis of a Multiday Photochemical Smog Episode in the Pearl River Delta of China.

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Kwok, Joey Y. H.

    2003-03-01

    Recent measurements of a photochemical episode in September of 2001 in the Pearl River delta (PRD) were analyzed to gain insight into the meteorological and chemical processes affecting ozone (O3) concentrations in the subtropical southern China coast. High concentrations (>120 ppbv) of O3 were observed at a rural coastal site in western Hong Kong for six consecutive days, with maximum 1-h O3 concentration reaching 191 ppbv and visibility decreasing to 1.8 km. Comparison with O3 data obtained from six other sites in the region indicated the regional nature of the O3 pollution. Examination of synoptic charts showed that this unusually severe and prolonged pollution episode was induced by a quasi-stationary tropical cyclone in the East China Sea that caused air subsidence and stagnation over the PRD. Weak northerly winds were observed from radiosonde and at a mountaintop site, but surface winds showed a complex pattern owing to land-sea breezes and the topography effects. The measurements of O3, carbon monoxide (CO), sulfur dioxide (SO2), nitric oxide (NO), and total reactive nitrogen (NOy) at the western Hong Kong site were analyzed to show the possible sources and emission characteristics of O3-laden plumes. The daytime high concentrations of O3 and other pollutants were caused by the diffusion/advection of urban plumes under light north-northeast winds; and their reduced concentrations in the late afternoon were due to the stronger sea breezes. The large values of CO/NOy and SO2/NOy on some days implied the contribution of regional emissions to the high O3 in western Hong Kong. The data from the western site were compared with those from an eastern site to illustrate the spatial variability of air pollutants in the coastal environment of the study region.

  10. Heavy metal pollution in surface soils of Pearl River Delta, China.

    PubMed

    Jinmei, Bai; Xueping, Liu

    2014-12-01

    Heavy metal pollution is an increasing environmental problem in Chinese regions undergoing rapid economic and industrial development, such as the Pearl River Delta (PRD), southern China. We determined heavy metal concentrations in surface soils from the PRD. The soils were polluted with heavy metals, as defined by the Chinese soil quality standard grade II criteria. The degree of pollution decreased in the order Cd > Cu > Ni > Zn > As > Cr > Hg > Pb. The degree of heavy metal pollution by land use decreased in the order waste treatment plants (WP) > urban land (UL) > manufacturing industries (MI) > agricultural land (AL) > woodland (WL) > water sources (WS). Pollution with some of the metals, including Cd, Cu, Ni, and Zn, was attributed to the recent rapid development of the electronics and electroplating industries. Cd, Hg, and Pb (especially Cd) pose high potential ecological risks in all of the zones studied. The soils posing significantly high and high potential ecological risks from Cd covered 73.3 % of UL, 50 % of MI and WP land, and 48.5 % of AL. The potential ecological risks from heavy metals by land use decreased in the order UL > MI > AL > WP > WL > WS. The control of Cd, Hg, and Pb should be prioritized in the PRD, and emissions in wastewater, residue, and gas discharges from the electronics and electroplating industry should be decreased urgently. The use of chemical fertilizers and pesticides should also be decreased. PMID:25252793

  11. Importance of NOx control for peak ozone reduction in the Pearl River Delta region

    NASA Astrophysics Data System (ADS)

    Li, Ying; Lau, Alexis K. H.; Fung, Jimmy C. H.; Zheng, Junyu; Liu, Shawchen

    2013-08-01

    As major air pollutants and key precursors of several secondary air pollutants, nitrogen oxide (NOx) emissions are regulated in many countries. However, NOx control increases ozone concentrations when the ozone formation regime is volatile organic compound (VOC) limited. Although many studies have shown that NOx regulation reduces ozone levels over the long term, it is still of concern that NOx regulation increases short-term ozone levels in metropolitan regions, where ozone formation is found to be predominantly VOC-limited. The Pearl River Delta (PRD) in China is such a region. Our modeling sensitivity study shows that while NOx reduction in the PRD region may raise the mean ozone concentration, it can also decrease peak ozone levels. Similar changes are observed in the NOx and ozone data of the PRD regional air quality monitoring network (2006-2012), lending further credence to our results. In the model, this NOx control effect is a result of the complicated spatial and diurnal variations of the ozone formation regime. In most of the PRD region, the formation regime is VOC-limited in the morning and becomes NOx-limited during peak ozone hours. Although some areas are always VOC-limited, their ozone concentrations are relatively low, and the ozone increases caused by NOx reduction generally do not cause higher ozone levels than the region's original ozone maxima. Several control scenarios are simulated to evaluate the effects of various possible control regulations. Our results show that in addition to VOC control, NOx control can be effective for reducing peak ozone concentrations in the PRD region.

  12. [Abundance and biomass of meiobenthos in Lingdingyang Bay of Pearl River Estuary].

    PubMed

    Zhang, Jing-huai; Gao, Yang; Fang, Hong-da

    2011-10-01

    An investigation was conducted on the meiobenthic abundance and biomass in the Lingdingyang Bay of Pearl River Estuary in July-August 2006 (summer), April 2007 (spring), and October 2007 (autumn). A total of 15 meiobenthic groups were recorded, including Nematoda, Copepoda, Polychaeta, Ostracoda, Kinorhyncha, Amphipoda, Cumacea, Tanaidacea, Gnathostomulida, Nemertea, Gastropoda, Bivalvia, Sipuncula, Echiura, and other unidentified taxa. The average abundance of the meiobenthos in spring, summer, and autumn was 272.1 +/- 281.9, 165.1 +/- 147.1 and 246. 4 +/- 369.3 ind 10 cm(-2), and Nematoda was the most dominant group in abundance, accounting for 86.8%, 83.5%, and 93.4% of the total, respectively, followed by Polychaeta, and benthic Copepoda. The meiobenthic abundance had an uneven vertical distribution. 54.1% of the meibenthos were in 0-2 cm sediments, 35.2% were in 2-5 cm sediments, and 10.8% were in 5-10 cm sediments. 87.4% of nematodes were distributed in 0-5 cm sediments. The average biomass of the meiobenthos in spring, summer, and autumn was 374.6 +/- 346.9, 274.1 +/- 352.2, and 270.8 +/- 396.0 microg 10 cm(-2), and Polychaeta was the most dominant group in biomass, accounting for 30.1%, 46.7% and 46.0%, respectively, followed by Nematoda (25.2%, 20.1%, and 34.0%), and Ostracoda (20.6%, 15.3%, and 14.8%). The horizontal distribution of the meiobenthos had a trend of increasing from north to south, and being higher at east than at west. The meiobenthic abundance and biomass had significant positive correlations with water depth.

  13. [Study on critical loads of sulfur and nitrogen in the Pearl River Delta].

    PubMed

    Sun, Cheng-Ling; Xie, Shao-Dong

    2014-04-01

    Supported by the geographical information system (ArcGIS), critical loads and exceedances of critical loads of sulfur and nitrogen in the Pearl River Delta (PRD) were calculated using Steady-state Mass Balance method with current deposition data, vegetation data and soil data obtained by field sampling and laboratory analysis. Results showed that the present critical loads of sulfur were high in the eastern PRD and low in the west. Higher critical loads occurred in most of Huizhou, north-central Guangzhou, Dongguan and south Zhongshan. The critical loads of these regions were mostly larger than 15 keq x (hm2 x a)(-1). Regions with lower critical loads included most of Jiangmen, most of Zhaoqing and part of Shenzhen with critical loads less than 2 keq x (hm2 x a)(-1). Critical loads of nitrogen were mainly in the range of 1.0-2.5 keq x (hm2 x a)(-1) while values lower than 1.0 keq x (hm2 x a)(-1) were found in Zhaoqing. According to the results of critical load exceedances, in several regions the sulfur deposition exceeded the critical loads whereas in most regions the nitrogen deposition exceeded the critical loads. With the reduction of particulate concentrations in atmosphere in the future, critical loads of sulfur would decrease and sulfur depositions in most regions would exceed their critical loads. Therefore, the control over nitrogen deposition should be strengthened in the present situation and special attention should be paid to the control of sulfur deposition with the reduction of particulate concentrations in the future.

  14. Residues of fluoroquinolones in marine aquaculture environment of the Pearl River Delta, South China.

    PubMed

    He, Xiuting; Wang, Zhaohui; Nie, Xiangping; Yang, Yufen; Pan, Debo; Leung, Anna O W; Cheng, Zhang; Yang, Yongtao; Li, Kaibin; Chen, Kunci

    2012-06-01

    Concentrations and distributions of selected fluoroquinolones (norfloxacin, ciprofloxacin and enrofloxacin) in water, sediments and nine kinds of fish species collected from 6 sites in two marine aquaculture regions of the Pearl River Delta, China, were analyzed by using high-performance liquid chromatography with fluorescence detector (HPLC). The results showed that the concentrations of ciprofloxacin and enrofloxacin were below the limits of quantification (LOQ) in all water samples except for norfloxacin. Norfloxacin and ciprofloxacin concentrations ranged from 1.88 to 11.20 ng g(-1) dry wt, 0.76-2.42 ng g(-1) dry wt in sediments collected from the Dapeng'ao region (sites 1-3) and ranged from 2.31 to 4.75 ng g(-1) dry wt, 1.26-1.76 ng g(-1) dry wt in sediments collected from the Hailing Island region (sites 4-6), respectively. However, no enrofloxacin was found in all sediment samples. The three fluoroquinolones (FQs) were detected in all fish samples, and the concentrations were higher in liver tissues than those in muscle tissues. The levels of norfloxacin were higher than ciprofloxacin and enrofloxacin in both liver and muscle tissues. Among the nine marine fish species, Siganus fuscescens from Hailing Island had a significantly high level of norfloxacin in liver tissue (254.58 ng g(-1) wet wt), followed by Sparus macrocephalus (133.15 ng g(-1) wet wt) from Dapeng'ao, and the lowest value was Lutianus argentimaculatus (5.18 ng g(-1) wet wt) from Hailing Island. The obtained results of FQs in present study do not represent a risk to the human health in Guangdong coastal area, based on the maximum residue limits (MRLs) established by Chinese Government and the acceptable daily intake (ADI) recommended by the Food and Agriculture Organization and World Health Organization (FAO/WHO).

  15. [Influence of Burning Fireworks on Air Quality During the Spring Festival in the Pearl River Delta].

    PubMed

    Zhao, Wei; Fan, Shao-jia; Xie, Wen-zhang; Sun, Jia-ren

    2015-12-01

    Based on data from the air quality monitoring stations in the Pearl River Delta during the 2015 Spring Festival, the regional air quality was investigated and the impact of burning fireworks on urban air quality was assessed. The results showed that: Zhaoqing was the worst polluted city in PM₁₀, PM₂.₅, SO₂ and CO in terms of concentrations in the region during the period, Huizhou was the worst polluted city in O₃ and Guangzhou was the most polluted city in NO₂ at the same time. Compared to the data of last year, the SO₂, NO₂, CO, PM₁₀ and PM₂.₅ concentrations had decreased significantly, but the O₃ concentration had increased during the Spring Festival. Burning fireworks during the Spring Festival were mainly concentrated in the suburbs. The concentrated discharge of fireworks made the SO₂, PM₁₀ and PM₂.₅ concentrations increased significantly in the New Year's Eve night, even multiplied, but had no significant effect on CO, O₃ and NO₂. The rapid decline in PM₂.₅/PM₁₀ proportion was caused by the discharge of fireworks, and the ratio of PM₂.₅/PM₁₀ reached the minimum when concentration of particles reached the peak. By assessing, the maximum contribution of hourly concentration from burning fireworks in each city was between 16 µg · m⁻³ and 65 µg · m⁻³ for PM₂.₅, between 28 µg · m⁻³ and 138 µg · m⁻³ for PM₁₀ and between 9 µg · m⁻³ and 43 µg · m⁻³ for SO₂. PMID:27011968

  16. Process analysis of regional aerosol pollution during spring in the Pearl River Delta region, China

    NASA Astrophysics Data System (ADS)

    Fan, Qi; Lan, Jing; Liu, Yiming; Wang, Xuemei; Chan, Pakwai; Hong, Yingying; Feng, Yerong; Liu, Yexin; Zeng, Yanjun; Liang, Guixiong

    2015-12-01

    A numerical simulation analysis was performed for three air pollution episodes in the Pearl River Delta (PRD) region during March 2012 using the third-generation air quality modeling system Models-3/CMAQ. The results demonstrated that particulate matter was the primary pollutant for all three pollution episodes and was accompanied by relatively low visibility in the first two episodes. Weather maps indicate that the first two episodes occurred under the influence of warm, wet southerly air flow systems that led to high humidity throughout the region. The liquid phase reaction of gaseous pollutants resulted in the generation of fine secondary particles, which were identified as the primary source of pollution in the first two episodes. The third pollution episode occurred during a warming period following a cold front. Relative humidity was lower during this episode, and coarse particles were the major pollution contributor. Results of process analysis indicated that emissions sources, horizontal transport and vertical transport were the primary factors affecting pollutant concentrations within the near-surface layer during all three episodes, while aerosol processes, cloud processes, horizontal transport and vertical transport had greater influence at approximately 900 m above ground. Cloud processes had a greater impact during the first two pollution episodes because of the higher relative humidity. In addition, by comparing pollution processes from different cities (Guangzhou and Zhongshan), the study revealed that the first two pollution episodes were the result of local emissions within the PRD region and transport between surrounding cities, while the third episode exhibited prominent regional pollution characteristics and was the result of regional pollutant transport.

  17. Landscape ecological security assessment based on projection pursuit in Pearl River Delta.

    PubMed

    Gao, Yang; Wu, Zhifeng; Lou, Quansheng; Huang, Huamei; Cheng, Jiong; Chen, Zhangli

    2012-04-01

    Regional landscape ecological security is an important issue for ecological security, and has a great influence on national security and social sustainable development. The Pearl River Delta (PRD) in southern China has experienced rapid economic development and intensive human activities in recent years. This study, based on landscape analysis, provides a method to discover the alteration of character among different landscape types and to understand the landscape ecological security status. Based on remotely sensed products of the Landsat 5 TM images in 1990 and the Landsat 7 ETM+ images in 2005, landscape classification maps of nine cities in the PRD were compiled by implementing Remote Sensing and Geographic Information System technology. Several indices, including aggregation, crush index, landscape shape index, Shannon's diversity index, landscape fragile index, and landscape security adjacent index, were applied to analyze spatial-temporal characteristics of landscape patterns in the PRD. A landscape ecological security index based on these outcomes was calculated by projection pursuit using genetic algorithm. The landscape ecological security of nine cities in the PRD was thus evaluated. The main results of this research are listed as follows: (1) from 1990 to 2005, the aggregation index, crush index, landscape shape index, and Shannon's diversity index of nine cities changed little in the PRD, while the landscape fragile index and landscape security adjacent index changed obviously. The landscape fragile index of nine cities showed a decreasing trend; however, the landscape security adjacent index has been increasing; (2) from 1990 to 2005, landscape ecology of the cities of Zhuhai and Huizhou maintained a good security situation. However, there was a relatively low value of ecological security in the cities of Dongguan and Foshan. Except for Foshan and Guangzhou, whose landscape ecological security situation were slightly improved, the cities had reduced

  18. Bioactive and total endotoxins in atmospheric aerosols in the Pearl River Delta region, China

    NASA Astrophysics Data System (ADS)

    Cheng, Jessica Y. W.; Hui, Esther L. C.; Lau, Arthur P. S.

    2012-02-01

    Endotoxin, a toxic and pyrogenic substance in gram-negative bacteria in atmospheric aerosols was measured over a period of one year at Nansha, Guangzhou and Hong Kong in the Pearl River Delta region, China. Atmospheric aerosols were collected by high-volume samplers. The bioactive endotoxin levels in the samples were determined using the Limulus Amebocyte Lysate (LAL) assay after extraction with pyrogen-free water while the total endotoxin levels were measured by quantifying the biomarker, 3-hydroxy fatty acids (3-OHFAs) with GC-MS. Results showed that there was no significant difference (0.19 < p < 0.81) in the bioactive endotoxin level in PM 10 among sites (average concentrations ranged from 0.34 to 0.39 EU m -3). However, Hong Kong showed a significantly lower ( p < 0.05) total endotoxin level in PM 10 (average of 17.4 ng m -3) compared with Nansha's 29.4 ng m -3 and Guangzhou's 32.7 ng m -3. The bioactive endotoxins were found to be associated with the coarse mode (PM 2.5-10) of the particulates of natural origins while the total endotoxins were associated more with the fine mode (PM 2.5) of the particulates of anthropogenic origins. When normalized with particulate mass, the endotoxin loading is much higher in summer as a result of the increased growth of the bacteria when climatic conditions are favorable. The chemically determined total endotoxins were 3-4 orders of magnitude higher than the bioactive endotoxins quantified using the LAL assay. Correlation analyses between the bioactive endotoxins and 3-OHFAs with different carbon length were analyzed. Results showed that the correlations detected vary among sites and particulate sizes. Although no generalization between the total and bioactive endotoxins can be drawn from the study, the levels reported in this study suggests that the discrepancies between the two measurement approaches, and the bioactive potential of 3-OHFAs with individual carbon chains deserve further investigation.

  19. Characteristics and applications of size-segregated biomass burning tracers in China's Pearl River Delta region

    NASA Astrophysics Data System (ADS)

    Zhang, Zhisheng; Gao, Jian; Engling, Guenter; Tao, Jun; Chai, Fahe; Zhang, Leiming; Zhang, Renjian; Sang, Xuefang; Chan, Chuen-yu; Lin, Zejian; Cao, Junji

    2015-02-01

    Biomass burning activities in China are ubiquitous and the resulting smoke emissions may pose considerable threats to human health and the environment. In the present study, size-segregated biomass burning tracers, including anhydrosugars (levoglucosan (LG) and mannosan (MN)) and non-sea-salt potassium (nss-K+), were determined at an urban and a suburban site in the Pearl River Delta (PRD) region. The size distributions of biomass burning tracers were generally characterized by a unimodal pattern peaking in the particle size range of 0.44-1.0 μm, except for MN during the wet season, for which a bimodal pattern (one in fine and one in coarse mode) was observed. These observed biomass burning tracers in the PRD region shifted towards larger particle sizes compared to the typical size distributions of fresh biomass smoke particles. Elevated biomass burning tracers were observed during the dry season when biomass burning activities were intensive and meteorological conditions favored the transport of biomass smoke particles from the rural areas in the PRD and neighboring areas to the sampling sites. The fine mode biomass burning tracers significantly correlated with each other, confirming their common sources. Rather high ΔLG/ΔMN ratios were observed at both sites, indicating limited influence from softwood combustion. High Δnss-K+/ΔLG ratios further suggested that biomass burning aerosols in the PRD were predominately associated with burning of crop residues. Using a simplified receptor-oriented approach with an emission factor of 0.075 (LG/TC) obtained from several chamber studies, average contributions of biomass burning emissions to total carbon in fine particles were estimated to be 23% and 16% at the urban and suburban site, respectively, during the dry season. In contrast, the relative contributions to total carbon were lower than 8% at both sites during the wet season.

  20. Heavy metals in agricultural soils of the Pearl River Delta, South China.

    PubMed

    Wong, S C; Li, X D; Zhang, G; Qi, S H; Min, Y S

    2002-01-01

    There is a growing public concern over the potential accumulation of heavy metals in agricultural soils in China owing to rapid urban and industrial development and increasing reliance on agrochemicals in the last several decades. Excessive accumulation of heavy metals in agricultural soils may not only result in environmental contamination, but elevated heavy metal uptake by crops may also affect food quality and safety. The present study is aimed at studying heavy metal concentrations of crop, paddy and natural soils in the Pearl River Delta, one of the most developed regions in China. In addition, some selected soil samples were analyzed for chemical partitioning of Co, Cu, Pb and Zn. The Pb isotopic composition of the extracted solutions was also determined. The analytical results indicated that the crop, paddy and natural soils in many sampling sites were enriched with Cd and Pb. Furthermore, heavy metal enrichment was most significant in the crop soils, which might be attributed to the use of agrochemicals. Flooding of the paddy soils and subsequent dissolution of Mn oxides may cause the loss of Cd and Co through leaching and percolation, resulting in low Cd and Co concentrations of the paddy soils. The chemical partitioning patterns of Pb, Zn and Cu indicated that Pb was largely associated with the Fe-Mn oxide and residual fractions, while Zn was predominantly found in the residual phase. A significant percent fraction of Cu was bound in the organic/sulphide and residual phases. Based on the 206Pb/207Pb ratios of the five fractions, it was evident that some of the soils were enriched with anthropogenic Pb, such as industrial and automobile Pb. The strong associations between anthropogenic Pb and the Fe-Mn oxide and organic/sulphide phases suggested that anthropogenic Pb was relatively stable after deposition in soils. PMID:12125727

  1. Aerosol optical properties and mixing state of black carbon in the Pearl River Delta, China

    NASA Astrophysics Data System (ADS)

    Tan, Haobo; Liu, Li; Fan, Shaojia; Li, Fei; Yin, Yan; Cai, Mingfu; Chan, P. W.

    2016-04-01

    Aerosols contribute the largest uncertainty to the total radiative forcing estimate, and black carbon (BC) that absorbs solar radiation plays an important role in the Earth's energy budget. This study analysed the aerosol optical properties from 22 February to 18 March 2014 at the China Meteorological Administration Atmospheric Watch Network (CAWNET) station in the Pearl River Delta (PRD), China. The representative values of dry-state particle scattering coefficient (σsp), hemispheric backscattering coefficient (σhbsp), absorption coefficient (σabsp), extinction coefficient (σep), hemispheric backscattering fraction (HBF), single scattering albedo (SSA), as well as scattering Ångström exponent (α) were presented. A comparison between a polluted day and a clean day shows that the aerosol optical properties depend on particle number size distribution, weather conditions and evolution of the mixing layer. To investigate the mixing state of BC at the surface, an optical closure study of HBF between measurements and calculations based on a modified Mie model was employed for dry particles. The result shows that the mixing state of BC might be between the external mixture and the core-shell mixture. The average retrieved ratio of the externally mixed BC to the total BC mass concentration (rext-BC) was 0.58 ± 0.12, and the diurnal pattern of rext-BC can be found. Furthermore, considering that non-light-absorbing particles measured by a Volatility-Tandem Differential Mobility Analyser (V-TDMA) exist independently with core-shell and homogenously internally mixed BC particles, the calculated optical properties were just slightly different from those based on the assumption that BC exist in each particle. This would help understand the influence of the BC mixing state on aerosol optical properties and radiation budget in the PRD.

  2. Landscape ecological security assessment based on projection pursuit in Pearl River Delta.

    PubMed

    Gao, Yang; Wu, Zhifeng; Lou, Quansheng; Huang, Huamei; Cheng, Jiong; Chen, Zhangli

    2012-04-01

    Regional landscape ecological security is an important issue for ecological security, and has a great influence on national security and social sustainable development. The Pearl River Delta (PRD) in southern China has experienced rapid economic development and intensive human activities in recent years. This study, based on landscape analysis, provides a method to discover the alteration of character among different landscape types and to understand the landscape ecological security status. Based on remotely sensed products of the Landsat 5 TM images in 1990 and the Landsat 7 ETM+ images in 2005, landscape classification maps of nine cities in the PRD were compiled by implementing Remote Sensing and Geographic Information System technology. Several indices, including aggregation, crush index, landscape shape index, Shannon's diversity index, landscape fragile index, and landscape security adjacent index, were applied to analyze spatial-temporal characteristics of landscape patterns in the PRD. A landscape ecological security index based on these outcomes was calculated by projection pursuit using genetic algorithm. The landscape ecological security of nine cities in the PRD was thus evaluated. The main results of this research are listed as follows: (1) from 1990 to 2005, the aggregation index, crush index, landscape shape index, and Shannon's diversity index of nine cities changed little in the PRD, while the landscape fragile index and landscape security adjacent index changed obviously. The landscape fragile index of nine cities showed a decreasing trend; however, the landscape security adjacent index has been increasing; (2) from 1990 to 2005, landscape ecology of the cities of Zhuhai and Huizhou maintained a good security situation. However, there was a relatively low value of ecological security in the cities of Dongguan and Foshan. Except for Foshan and Guangzhou, whose landscape ecological security situation were slightly improved, the cities had reduced

  3. [Abundance and biomass of meiobenthos in Lingdingyang Bay of Pearl River Estuary].

    PubMed

    Zhang, Jing-huai; Gao, Yang; Fang, Hong-da

    2011-10-01

    An investigation was conducted on the meiobenthic abundance and biomass in the Lingdingyang Bay of Pearl River Estuary in July-August 2006 (summer), April 2007 (spring), and October 2007 (autumn). A total of 15 meiobenthic groups were recorded, including Nematoda, Copepoda, Polychaeta, Ostracoda, Kinorhyncha, Amphipoda, Cumacea, Tanaidacea, Gnathostomulida, Nemertea, Gastropoda, Bivalvia, Sipuncula, Echiura, and other unidentified taxa. The average abundance of the meiobenthos in spring, summer, and autumn was 272.1 +/- 281.9, 165.1 +/- 147.1 and 246. 4 +/- 369.3 ind 10 cm(-2), and Nematoda was the most dominant group in abundance, accounting for 86.8%, 83.5%, and 93.4% of the total, respectively, followed by Polychaeta, and benthic Copepoda. The meiobenthic abundance had an uneven vertical distribution. 54.1% of the meibenthos were in 0-2 cm sediments, 35.2% were in 2-5 cm sediments, and 10.8% were in 5-10 cm sediments. 87.4% of nematodes were distributed in 0-5 cm sediments. The average biomass of the meiobenthos in spring, summer, and autumn was 374.6 +/- 346.9, 274.1 +/- 352.2, and 270.8 +/- 396.0 microg 10 cm(-2), and Polychaeta was the most dominant group in biomass, accounting for 30.1%, 46.7% and 46.0%, respectively, followed by Nematoda (25.2%, 20.1%, and 34.0%), and Ostracoda (20.6%, 15.3%, and 14.8%). The horizontal distribution of the meiobenthos had a trend of increasing from north to south, and being higher at east than at west. The meiobenthic abundance and biomass had significant positive correlations with water depth. PMID:22263483

  4. Species diversity and distribution for phytoplankton of the Pearl River estuary during rainy and dry seasons.

    PubMed

    Huang, Liangmin; Jian, Weijun; Song, Xingyu; Huang, Xiaoping; Liu, Sheng; Qian, Peiyuan; Yin, Kedong; Wu, Madeline

    2004-10-01

    Based on data collected at 31 stations and 1 continuous station in the Pearl River estuary during cruises of July 1999 (rainy season) and January 2001 (dry season), this study examined taxonomic composition, abundance, and spatial distribution of phytoplankton. Results indicated 130 species of phytoplankton in the samples from the rainy season, and 132 species in the dry season. Among them, in the rainy season, 82 species of diatom, 39 fresh-water and half-fresh-water species and 41 species of red tide organisms were found. Within these, there were 54 tropical and sub-tropical species, 47 cosmopolitan species and 17 temperate species. The abundance of phytoplankton in the rainy season was higher than that of the dry season, with an average of 6.3 x 10(5) cells x L(-1) and 1.4 x 10(5) cells x L(-1), respectively. Diversity index (H') and evenness (J) were 2.47 and 0.57 in the rainy season, and 2.01 and 0.54 in the dry season. The dominant phytoplankton species in the rainy season was Skeletonema costatum with an average of 2.8 x 10(5) cells x L(-1) and 45.0% of the total phytoplankton abundance. In the dry season, Eucampia zoodiacus became the key dominant species (5.9 x 10(4) cells x L(-1)) when it was 43.47% of the total phytoplankton abundance. Distribution of the dominant species varied with salinity of sea-water, and their amounts correlated negatively with nutrients and zooplankton.

  5. Frost risks in the Mantaro river basin

    NASA Astrophysics Data System (ADS)

    Trasmonte, G.; Chavez, R.; Segura, B.; Rosales, J. L.

    2008-04-01

    As part of the study on the Mantaro river basin's (central Andes of Perú) current vulnerability to climate change, the temporal and spatial characteristics of frosts were analysed. These characteristics included intensity, frequency, duration, frost-free periods, area distribution and historical trends. Maps of frost risk were determined for the entire river basin, by means of mathematical algorithms and GIS (Geographic Information Systems) tools, using minimum temperature - 1960 to 2002 period, geomorphology, slope, land-use, types of soils, vegetation and life zones, emphasizing the rainy season (September to April), when the impacts of frost on agriculture are most severe. We recognized four categories of frost risks: low, moderate, high and critical. The critical risks (with a very high probability of occurrence) were related to high altitudes on the basin (altitudes higher than 3800 m a.s.l.), while the low (or null) probability of occurring risks were found in the lower zones (less than 2500 m a.s.l.). Because of the very intense agricultural activity and the high sensitivity of the main crops (Maize, potato, artichoke) in the Mantaro valley (altitudes between 3100 and 3300 m a.s.l.), moderate to high frost risks can be expected, with a low to moderate probability of occurrence. Another significant result was a positive trend of 8 days per decade in the number of frost days during the rainy season.

  6. Tracing anthropogenic contamination in the Pearl River estuarine and marine environment of South China Sea using sterols and other organic molecular markers.

    PubMed

    Peng, Xianzhi; Zhang, Gan; Mai, Bixian; Hu, Jianfang; Li, Kechang; Wang, Zhendi

    2005-08-01

    5beta-Coprostanol together with eight other sterols and unresolved complex mixtures (UCMs) were quantitatively investigated for surficial sediments and surface waters to assess the impacts of anthropogenic activities on the Pearl River estuarine and marine environment of South China Sea. The studied area extends from the Pearl River Estuary southward to the open sea. 5beta-Coprostanol concentrations ranged from trace amounts to 53 microgg(-1) TOC in surficial sediments. The highest levels and highest percentages of coprostanol were found in the Pearl River estuary, especially in the inner estuary and those sites close to the submarine outfalls of Hong Kong. For waters, only in estuarine samples was coprostanol quantitatively detected, ranging from 11 to 299 ngL(-1). Bimodal UCM "humps" were observed for most sediment samples, with concentrations ranging from 215 to 10,491 microg g(-1) TOC in sediments and from 2 to 26 mcirogL(-1) in waters, respectively. Progressive seaward declines in concentrations were found for both 5beta-coprostanol and UCM in surficial sediments. Trace or no 5beta-coprostanol was found in open-sea samples. Concentrations of coprostanol and UCM in surficial sediments are correlated. These results imply that there are obvious anthropogenic contaminations in the Pearl River estuary. The submarine outfalls in Hong Kong represent important sources of the sewage pollution to the Pearl River estuarine sediments evidenced by a combination of coprostanol concentration, diagnostic indices, sterol profiles and UCM. No obvious dispersion or transport of the sewage contamination occurred from the Pearl River estuary to the open South China Sea indicated by fecal sterol biomarkers.

  7. Distribution of polycyclic musks in surface sediments from the Pearl River Delta and Macao Coastal Region, South china.

    PubMed

    Zeng, Xiangying; Mai, Bixian; Sheng, Guoying; Luo, Xiaojun; Shao, Wenlan; An, Taicheng; Fu, Jiamo

    2008-01-01

    Polycyclic musks were measured in surface sediments collected from the Pearl River Delta and Macao coastal region, South China, to investigate contamination from domestic sewage. Three polycyclic musk compounds-4-acetyl-1,1-dimethyl-6-tert-butylindan, 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta(g)-2-benzopyran (HHCB), and 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene (AHTN)-were detected in sediment samples. Two polycyclic musks, HHCB and AHTN, were dominant components in sediment, consistent with the use pattern of polycyclic musks by perfume industries in the Pearl River Delta region. The concentrations of total polycyclic musks ranged from 5.76 to 167 microg/kg. Because of the large amount of domestic sewage and industrial wastewater discharged from the city of Guangzhou, the highest concentration of polycyclic musks was found in sediments from the Zhujiang River. The significant positive correlation between the HHCB to AHTN ratios and the concentrations of polycyclic musks suggested that the HHCB to AHTN ratio could be used as a tracer for source discrimination and for the degree of degradation in the environment.

  8. Spatial and temporal variability in nitrous oxide and methane emissions in urban riparian zones of the Pearl River Delta.

    PubMed

    Zhang, Taiping; Huang, Xinyu; Yang, Yue; Li, Yuelin; Dahlgren, Randy A

    2016-01-01

    Spatial and temporal variability in nitrous oxide and methane emissions were quantified in three seasons using closed chambers in three riparian zone locations of three branches of the Pearl River, Guangzhou, China. The sampling sites were selected in a rapidly developing urban area of Guangzhou and represented a pollution gradient. The results show that urban riparian landscapes can be large source areas for CH4 and N2O, with fluxes of -0.035∼32.30 mg m(-2) h(-1) and -5.49∼37.31 μg m(-2) h(-1), respectively. River water quality, sediment texture, and NH4-N and NO3-N concentrations correlated with N2O and CH4 emission rates. The riparian zones of the more seriously polluted tributaries showed higher greenhouse gas fluxes than that of the less polluted main stem of the Pearl River. Rain events increased emissions of CH4 by 6.5∼21.3 times and N2O by 2.2∼5.7 times. The lower concentrations of heavy metals increased the activity of denitrifying enzymes while inhibited the methane producing pathways. This work demonstrates that rapidly developing urban areas are an important source of greenhouse gas emissions, which is conditioned by various environmental factors.

  9. Spatial and temporal variability in nitrous oxide and methane emissions in urban riparian zones of the Pearl River Delta.

    PubMed

    Zhang, Taiping; Huang, Xinyu; Yang, Yue; Li, Yuelin; Dahlgren, Randy A

    2016-01-01

    Spatial and temporal variability in nitrous oxide and methane emissions were quantified in three seasons using closed chambers in three riparian zone locations of three branches of the Pearl River, Guangzhou, China. The sampling sites were selected in a rapidly developing urban area of Guangzhou and represented a pollution gradient. The results show that urban riparian landscapes can be large source areas for CH4 and N2O, with fluxes of -0.035∼32.30 mg m(-2) h(-1) and -5.49∼37.31 μg m(-2) h(-1), respectively. River water quality, sediment texture, and NH4-N and NO3-N concentrations correlated with N2O and CH4 emission rates. The riparian zones of the more seriously polluted tributaries showed higher greenhouse gas fluxes than that of the less polluted main stem of the Pearl River. Rain events increased emissions of CH4 by 6.5∼21.3 times and N2O by 2.2∼5.7 times. The lower concentrations of heavy metals increased the activity of denitrifying enzymes while inhibited the methane producing pathways. This work demonstrates that rapidly developing urban areas are an important source of greenhouse gas emissions, which is conditioned by various environmental factors. PMID:26377967

  10. Quality of water, Quillayute River basin, Washington

    USGS Publications Warehouse

    Fretwell, M.O.

    1984-01-01

    Groundwater in Quillayute River basin is generally of the calcium bicarbonate type, although water from some wells is affected by seawater intrusion and is predominantly of the sodium chloride type. The water is generally of excellent quality for most uses. River-water quality was generally excellent, as evaluated against Washington State water-use and water-quality criteria. Fecal coliform concentrations in all major tributaries met State water-quality criteria; water temperatures occasionally exceeded criteria maximum during periods of warm weather and low streamflow. Nutrient concentrations were generally low to very low. The four largest lakes in the basin were temperature-stratified in summer and one had an algal bloom. The Quillayute estuary had salt-wedge mixing characteristics; pollutants entering the salt wedge tended to spread to the toe of the wedge. Upwelling ocean water was the major cause of the low dissolved-oxygen concentrations observed in the estuary; ammonia concentrations in the estuary, however, were increased by the upwelling ocean waters. As in the rivers, total-coliform bacteria concentrations in the estuary were greater than fecal-coliform concentrations, indicating that many of the bacteria were of nonfecal origin and probably originated from soils. (USGS)

  11. Variations in Branched Tetraether Lipids in the Lower Pearl River and Estuary: Impact on bGDGT Proxies

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Wang, J.; Wei, Y.; Zhu, C.; Huang, L.; Dong, H.

    2011-12-01

    Branched glycerol dibiphytanyl glycerol tetraethers (bGDGTs) are known as bacterial lipids that occur widely in terrestrial environments, particularly in peat bogs and soil. A number of proxies have been developed using bGDGTs, which have been applied to marine sediments as terrestrial signals. We examined the abundance and distribution of bGDGTs in both core- (C) and polar- (P) lipid (L) fractions from the water column and surface sediments in the lower Pearl River (PR) and estuary. A number of soil samples in the lower PR drainage basin were also collected. The results showed in situ production of bGDGTs and difference in abundance and structure of bGDGTs between the water column and surface sediments. The average PL accounted for over 50% of total bGDGTs in the former but less than 10% in the latter, suggesting that the water column contains a significant population of living organisms that produce bGDGTs whereas the surface sediment contains mostly bGDGTs from nonliving cells. The soil samples also showed predominance of C-bGDGTs with average P-bGDGTs accounting for about 8% of total bGDGTs. The abundance of C-bGDGTs and P-bGDGTs decreased sharply from the lower PR to the estuary in the water column; whereas in surface sediments, only C-bGDGTs showed significant decrease. The bGDGT-based proxies (BIT, CBT, and MBT) showed different patterns of variation with BIT decreasing in both C- and P- lipid fractions from the lower PR to estuary and MBT in the C- lipid fraction remaining constant. These results indicate that the lower PR and estuary is a dynamic system, which experiences considerable changes in the abundance and structure of bGDGTs. This study also indicates the complexity of the estuary system and cautions need to be excised when using bGDGT-based proxies for paleo-continental or soil pH studies in continental margins.

  12. The Piracicaba River basin: isotope hydrology of a tropical river basin under anthropogenic stress.

    PubMed

    Martinelli, Luiz A; Gat, Joel R; de Camargo, Plínio B; Lara, Lucienne L; Ometto, Jean P H B

    2004-03-01

    The stable isotope content of samples of precipitation and of the river water throughout the Piracicaba basin in Brazil was measured over a two-year period. The isotope values of precipitation follow a consistent pattern of relatively depleted values of both deuterium and oxygen 18 during the rainy summers and enriched ones during the dry winters, with all values aligned slightly above the Global Meteoric Water Line. The isotopic composition of the river water throughout the basin shows a remarkable spatial coherence and much smaller scatter of data than those of the precipitation. The isotope composition of river water is close to that of the precipitation in the rainy season, however, with a consistent lower d-excess value by 1/1000-2/1000. This is attributed to evaporative water loss in the basin, in part an expression of the recycling of water due to the anthropogenic activity in the region. The more divergent values are recorded during high-water stages in the rivers. In many cases, the floods during the beginning of the rainy season are characterized by an enrichment of the heavy isotopes and lower d-excess values when compared to the precipitation, with the opposite situation later in the rainy season. This is interpreted as resulting from the watershed/riverflow interaction pattern, and it thus suggests that the isotope composition can monitor the hydrologic situation in the basin and its changes.

  13. Powder River Basin: new energy frontier

    SciTech Connect

    Richards, B.

    1981-02-01

    The Powder River Basin in Wyoming represents a new energy frontier, where traditional ranch styles are giving way to boomtown development around new coal mines. Plans for extensive strip mining, coal trains and pipelines, and synthetic fuels plants will transform a 12,000 square mile area. The environmental and social impacts of trailer villages and the influx of new mores and life styles are already following traditional patterns for newcomers and long-time residents alike. Some local residents, however, are optimistic about the opportunities energy development will have. (DCK)

  14. Modeling the mass flux budgets of water and suspended sediments for the river network and estuary in the Pearl River Delta, China

    NASA Astrophysics Data System (ADS)

    Hu, Jiatang; Li, Shiyu; Geng, Bingxu

    2011-11-01

    A coupled physical and sediment transport model was used to study the mass flux budgets of water and suspended sediments in the Pearl River Delta (PRD). The coupled model incorporates the Pearl River network, the Pearl River Estuary (PRE) and adjacent coastal waters in one overall modeling system. The results indicate that the river network and the PRE both have pronounced temporal and spatial variability in water and sediment fluxes, in hydrodynamic features and in sediment depositional patterns. In the river network, the riverine fluxes of water and suspended sediments are dominated by the West River, and those that are exported to the PRE (defined as the estuarine fluxes) are primarily contributed by Modaomen. The river outlets are highly responsive to the main tributaries in terms of water and sediment fluxes, revealing a close coupling between the upstream and the downstream boundaries. Most of the annual riverine and estuarine fluxes occur in the wet season, approximately 74% of the water flux and riverine and estuarine fluxes of suspended sediments of 94% and 87%, respectively. Although the water and sediment transport is dominated by river discharge, the tides are also an important factor, especially in regulating the structures of seasonal deposits in the river network (deposition in the wet season and erosion in the dry season). In the PRE, various types of physical forcing, including river discharge, monsoon winds, tides, coastal currents and the gravitational circulation associated with a density gradient, operate in concert to control the water and sediment transport in the estuary. Most of the oceanic fluxes of water and suspended sediments entering the South China Sea take place in the dry season and are primarily conveyed by strong western coastal currents. The PRE is a sedimentary system characterized by intricate depositional structures in space and time. Several depositional patterns and the associated driving mechanisms were identified. A fan

  15. Phthalate esters in water and surface sediments of the Pearl River Estuary: distribution, ecological, and human health risks.

    PubMed

    Li, Xiaohui; Yin, Pinghe; Zhao, Ling

    2016-10-01

    The Pearl River Estuary (PRE) is vulnerable due to the increasingly serious environmental pollution, such as phthalate esters (PAEs) contaminants, from the Pearl River Delta (PRD). The concentrations of six US Environmental Protection Agency (USEPA) priority PAEs in water and surface sediments collected from the PRD's six main estuaries in spring, summer, and winter 2013 were measured by GC-MS. Total PAEs (∑6PAEs) concentrations were from 0.5 to 28.1 μg/L and from 0.88 to 13.6 μg/g (dry weight (DW)) in water and surface sediments, respectively. The highest concentration was detected in summer. Higher concentrations of PAEs were found in Yamen (YM) and Humen (HM) areas than the other areas. Bis(2-ethylhexyl)phthalate (DEHP) and dibutyl phthalate (DBP) were the dominant PAEs in the investigated areas, contributing between 61 and 95 % of the PAEs in water and from 85 to 98 % in surface sediments. Based on risk quotients (RQs), DEHP posed greater ecological risks to the studied aquatic environments than other measured compounds. Little human health risk from the target PAEs was identified. PMID:27370535

  16. Role of pulsed winds on detachment of low salinity water from the Pearl River Plume: Upwelling and mixing processes

    NASA Astrophysics Data System (ADS)

    Chen, Zhaoyun; Pan, Jiayi; Jiang, Yuwu

    2016-04-01

    The detachment of low salinity water (LSW) from the Pearl River plume occurs frequently as revealed by in situ observations and satellite images, and plays an important role in cross-shore transport of the nutrient-rich plume water. In this study, the Regional Ocean Modeling System (ROMS) is used to simulate the LSW detachment process forced by realistic and idealized winds, and to explore its dynamical mechanisms. Modeling results show that the LSW detachment appears under a pulsed southwesterly wind, while tidal mixing modifies the size and salinity of the detached LSW. Strong pulsed wind causes the LSW to separate from the plume and move offshore quickly after the detachment. Under a pulsed northeasterly wind, however, the plume without separation of the LSW moves shoreward, indicating that the LSW detachment is sensitive to wind direction. In the plume region, upwelling develops under the forcing of the pulsed southwesterly wind, which transports high salinity bottom water to the surface layer, while the shear mixing in the upper layer further enhances the surface buoyancy flux, leading to appearance of high salinity water in the surface layer off the Pearl River estuary mouth, cutting off the eastward-spreading plume water, and resulting in the plume LSW detachment. Further analysis shows that the pulsed southwesterly wind induces positive local salinity change rate in the LSW detachment area. The pulsed upwelling-favorable wind with duration of 2-5 days is responsible for the detachment process.

  17. Long-Term Water and Sediment Change Detection in a Small Mountainous Tributary of the Lower Pearl River, China

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Lu, X. X.

    Hydrological regimes of river systems have been changing both qualitatively and quantitatively due to the profound human disturbances, such as river diversions, damming, and land use change. In this study, a mountainous tributary (the Luodingjiang River) of the lower Pearl River, China, was investigated to illustrate the impacts from human activities on river systems during the period 1959-2002. Mann-Kendall test and Spearman test for gradual trend and Pettitt test for abrupt change were employed to investigate the hydrological characteristics of the Luodingjiang River. Annual minimum water discharge and annual sediment yield series have significant increasing and decreasing trends, respectively, and also significant upward and downward shifts were detected by abrupt change tests, respectively, for these two data series. Neither statistically significant trends nor abrupt shift were found for annual maximum water discharge and annual mean water discharge series. The detected changes both in water and sediment point to the impacts of reservoir constructions, water diversion programs as well as land use change. However, the sediment-increasing impacts from other anthropogenic disturbances, such as road construction and mining, cannot be discerned from the recent hydrological responses.

  18. New vitrinite reflectance data for the Wind River Basin, Wyoming

    USGS Publications Warehouse

    Pawlewicz, Mark J.; Finn, Thomas M.

    2013-01-01

    The Wind River Basin is a large Laramide (Late Cretaceous through Eocene) structural and sedimentary basin that encompasses about 7,400 square miles in central Wyoming. The basin is bounded by the Washakie Range and Owl Creek and southern Bighorn Mountains on the north, the Casper arch on the east and northeast, and the Granite Mountains on the south, and Wind River Range on the west. The purpose of this report is to present new vitrinite reflectance data collected mainly from Cretaceous marine shales in the Wind River Basin to better characterize their thermal maturity and hydrocarbon potential.

  19. Improving Seasonal Precipitation Predictions over the East River Basin, South China by Using Bias-corrected CFSv2 Forecasts

    NASA Astrophysics Data System (ADS)

    Wang, D.; Zhu, C.; Wu, Y.; Lin, K.; Liu, B.; Chen, Z.; Xinjun, T.; Huang, M.

    2015-12-01

    East River is one the major tributaries of Peal River, the third largest river over China. It is the most important water resource for agriculture, industry, and commerce in the Pearl River Delta. The water demand has dramatically increased with rapid population growth and booming economic development in this region. To meet the demand of water supply, the East River basin administration has conducted the water quantity operation over the basin since 2008. However, the operation target has been hardly achieved largely due to poor precipitation predictions. We try to improve seasonal precipitation predictions by correcting the bias of the NCEP CFSv2 forecasts. A variety of bias correction methods are applied to correct CFSv2 forecasts based on a long term datasets of gauge observations and CFSv2 reforecasts. The proper bias methods are selected for the flood and the dry season respectively based on evaluation results. The CFSv2 based predictions would help in making a reasonable water quantity operation plan and improving operational performance over the East River basin.

  20. Extreme value analysis in typhoon prone areas: case study of the Pearl River estuary

    NASA Astrophysics Data System (ADS)

    Moerman, E.; de Graaff, R.; Rego, J. L.

    2014-12-01

    Extreme events such as tropical storms and typhoons are often the determining factor for the extreme values of wind, wave and water level conditions. The storm track, its propagation speed, the air pressure drop and the wind speed intensity of a typhoon determine the maximum occurring wave heights, water levels and currents. The stochastic behaviour of typhoons and tropical storms, however, lead to uncertainty in the extreme value analysis, because a slight variation of the typhoon track, propagation speed or wind speed intensity can have a significant impact on these local extreme hydrodynamic conditions. To determine the significance of the stochastic behaviour of typhoons a model assessment is performed comparing standard extreme value analysis values of measured water levels (e.g. values of 1/10, 1/50, and 1/100 year return periods) against model results of artificial typhoons. In the model assessment, making use of Delft3D, various artificial typhoons are modelled in which the typhoon tracks, propagation speeds and wind speed intensities are varied within realistic ranges (based on observed historical typhoons). The study focusses on the Pearl River estuary (China) where typically about 5 to 10 tropical storms or typhoons are observed every year. Once every few years an extreme typhoon hits the area. By quantifying the potential impact of artificial typhoons the uncertainty in the extreme water level values in such a typhoon prone area are better assessed. The model is validated simulating several historic typhoons. Subsequently the typhoons tracks, their propagation speeds and wind speed intensities are varied. The extreme water level values (extreme surge height + mean high water value) that follow from the artificial typhoon modelling are compared against values from a standard extreme value analysis, making use of the central limit theorem for the extreme values in a sample. A Peaks over Threshold approach is applied and the extremes are fitted and

  1. [Distribution of Regional Pollution and the Characteristics of Vertical Wind Field in the Pearl River Delta].

    PubMed

    Liu, Jian; Wu, Dui; Fan, Shao-jia

    2015-11-01

    Based on the data of hourly PM2.5 concentration of 56 environmental monitoring stations and 9 cities over the Pearl River Delta (PRD) region, the distributions of PM2.5 pollution in PRD region were analyzed by systematic cluster analysis and correlational analysis. It was found that the regional pollution could be divided into 3 types. The first type was the pollution occurred in Dongguan, Guangzhou, Foshan and Jiangmen (I type), and the second type was the pollution occurred in Zhongshan, Zhuhai, Shenzhen and Huizhou (II type), while the last type was the pollution only occurred in Zhaoqing (III type). During the study period, they occurred 47, 7 and 128 days, respectively. During events of pollution type I, except Zhuhai, Shenzhen and Huizhou, the PM2.5 concentrations of other cities were generally high, while the PM2.5 concentration in whole PRD region was over 50.0 μg x m(-3) during events of pollution type II. The regions with higher PM2.5 concentration was mainly concentrated in Zhaoqing, Guangzhou and Foshan during events of pollution type III. The wind data from 4 wind profile radars located in PRD region was used to study the characteristics of vertical wind field of these 3 pollution types. It was found that the wind profiles of type I and III were similar that low layer and high layer were controlled by the southeast wind and the southwest wind, respectively. For type II, the low layer and high layer were influenced by northerly wind and westerly wind, respectively. Compared with other types, the wind speed and ventilation index of type II. were much higher, and the variation of wind direction at lower-middle-layer was much smaller. When PRD region was influenced by northerly winds, the PM2.5 concentration in the entire PRD region was higher. When PRD region was controlled by southeast wind, the PM2.5 concentrations of I and II areas were relatively lower, while the pollution in III area was relatively heavier.

  2. Bacterial Investigation of Ammonium-rich Sediment in the Pearl River Delta, China

    NASA Astrophysics Data System (ADS)

    Liu, K.; Chunbo, H.; Jiao, J. J.; Jidong, G.

    2011-12-01

    High ammonium loading of groundwater is a major concern because of the potential toxicity to ecosystem and human health. As one of the most complex large-scale delta systems in China, Pearl River Delta (PRD) was reported to have the highest ammonium concentration for natural groundwater ever reported globally. In this research, borehole SD14 was drilled through the aquitard into the basal aquifer in the PRD. 16S rRNA gene library construction and Denaturing Gradient Gel Electrophoresis (DGGE) analysis were conducted to reveal bacterial community variation of different geology strata. A total of 161 clones from three 16S rRNA libraries were sequenced and clustered into 55 distinct operational taxonomic units (OTU) at 3% cutoff. The phylogenetic analysis indicated that the predominant bacterial phylum was Proteobacteria (50.9%), followed by Chloroflexi (16.8%), Acidobacteria (4.38%) and Firmicutes (3.73%). In the sediment samples from SD14 at the depths of 6.9m, 22.5m and 37.4m, Proteobacteria made up 60.3%, 42.0% and 35.3% of the communities respectively, showing a declining ratio with the depth. Most of the bacteria in all the samples were previously discovered in marine environments, indicating that SD14 used to be in a marine sedimentary environment. Bacteria associated with iron oxidation and nitrogen fixing were found in the sample at 6.9 m, while in the other two samples there existed bacteria which were associated with methane cycling, sulfate reducing and denitrifying. The DGGE results showed that microbial community structures varied significantly with the increase of depth, and that Delftia acidovorans, a species of Proteobacteria which was able to reduce nitrate to nitrite, was the predominant species in samples at 22.5 and 37.4 m, suggesting ammonium as a control factor shaping the bacterial community. The results of this research provided important information of the bacteria in the PRD sediments. High bacterial diversity was observed in samples, and

  3. Light Absorption of Brown Carbon Aerosol in the Pearl River Delta Region of China

    NASA Astrophysics Data System (ADS)

    Huang, X.

    2015-12-01

    X.F. Huang, J.F. Yuan, L.M. Cao, J. Cui, C.N. Huang, Z.J. Lan and L.Y. He Key Laboratory for Urban Habitat Environmental Science and Technology, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, ChinaCorresponding author. Tel.: +86 755 26032532; fax: +86 755 26035332. E-mail address: huangxf@pku.edu.cn (X. F. Huang). Abstract: The strong spectral dependence of light absorption of brown carbon (BrC) aerosol has been recognized in recent decades. The Absorption Angstrom Exponent (AAE) of ambient aerosol was widely used in previous studies to attribute light absorption of brown carbon at shorter wavelengths, with a theoretical assumption that the AAE of black carbon (BC) aerosol equals to unit. In this study, the AAE method was improved by statistical extrapolation based on ambient measurements in the polluted seasons in typical urban and rural areas in the Pearl River Delta (PRD) region of China. A three-wavelength photoacoustic soot spectrometer (PASS-3) and an aerosol mass spectrometer (AMS) were used to explore the relationship between the ambient measured AAE and the ratio of organic aerosol to BC aerosol, in order to extract the more realistic AAE by pure BC aerosol, which were found to be 0.86, 0.82 and 1.02 at 405nm and 0.70, 0.71, and 0.86 at 532nm in the campaigns of urban-winter, urban-fall, and rural-fall, respectively. Roadway tunnel experiment results further supported the effectiveness of the obtained AAE for pure BC aerosol. In addition, biomass burning experiments proved higher spectral dependence of more-BrC environment and further verified the reliability of the instruments' response. Then, the average light absorption contribution of BrC aerosol was calculated to be 11.7, 6.3 and 12.1% (with total relative uncertainty of 7.5, 6.9 and 10.0%) at 405nm and 10.0, 4.1 and 5.5% (with total relative uncertainty of 6.5, 8.6 and 15.4%) at 532nm of the three campaigns, respectively. These results indicate that the

  4. Mercury speciation and emission from municipal solid waste incinerators in the Pearl River Delta, South China.

    PubMed

    Chen, Laiguo; Liu, Ming; Fan, Ruifang; Ma, Shexia; Xu, Zhencheng; Ren, Mingzhong; He, Qiusheng

    2013-03-01

    The potential for Hg release during municipal solid waste incineration (MSWI) is attracting increased attention due to high volume of municipal waste being treated by incineration in China. Emission amounts have been estimated using emission factors developed for other countries. To fine tune our emission estimate total mercury (THg) and mercury speciation were measured using isokinetic sampling in eight plants, of which six used grate furnace combustor (GFC) and two circulation fluidized bed combustors (CFBCs). Results showed that average THg concentration (19.5 ± 13.6 μg/Nm) in flue gas at the facilities that used CFBC was significantly lower than that at those using GFC (51.4 ± 28.3 μg/Nm, p=0.002). Gaseous oxidized mercury (GOM), gaseous elemental mercury (GEM, Hg), and particulate mercury (Hg) represented 95.5 ± 3.8%, 4.1 ± 3.9% and 0.4 ± 0.3% in GFC, and 63.8 ± 8.6%, 33.6 ± 10.5% and 2.6 ± 1.9% in CFBC, respectively. The measured average THg emission factor for the 8 MSWI plants was 208 ± 130 mg/t in the Pearl River Delta (PRD) region, with 217 ± 158 mg/t and 188 ± 17.7 mg/t were from GFC and CFBC, respectively. Using the average emission factor the estimated total mercury emissions from MSWI were 4.67 ± 2.91 t in China, and 770 ± 65.5 kg in the PRD region in 2010. Of these, 4240 ± 210 kg, 408 ± 231 kg and 14.8 ± 14.1 kg, and 688 ± 37 kg, 78.9 ± 40.6 kg and 3.2 ± 3.0 kg were GOM, Hg, and Hg, respectively. Mercury emissions will continue to increase as the amounts of MSW being incinerated increases. PMID:23410861

  5. Non-methane hydrocarbon characteristics of motor vehicular emissions in the Pearl River Delta region

    NASA Astrophysics Data System (ADS)

    Tsai, Wai Yan

    2007-12-01

    Air pollution problem in Hong Kong and the Pearl River Delta (PRD) region has raised much concern from the public in recent years. The primary aim of this research is to use field measurement data to characterize non-methane hydrocarbons (NMHCs) in emission from motor vehicles. Fuel vapor compositions for several commonly used vehicular fuels in Hong Kong, Macau, Guangzhou and Zhuhai were analyzed in 2003, and they are believed to be the first one reported for the PRD region. These profiles were used to study the impact of evaporative loss of the fuels on air quality. From the roadside and tunnel samples collected in the four cities mentioned above from 2000 to 2003, results showed that vehicular engine combustion was a main NMHC source, while gasoline evaporative losses also contributed much to the total NMHC emission, besides, LPG leakage was also found to be significant from the tunnel measurement data collected in Hong Kong. Characteristics of vehicular engine exhaust emissions were also studied. Measurements of diesel emission showed a large influence on the emission profile due to the change of diesel compositions. The E/E ratios implied that gasoline-powered vehicles in Hong Kong were equipped with well functioning catalysts, while those in Guangzhou and Zhuhai, especially the motorcycles, were found dirtier in NMHC emission. Although the E/E ratios showed that private cars in Hong Kong had high combustion efficiency, the existence of significant amounts of unburned gasoline in their exhaust stream pointed out that they still had low fuel economy. From the results of a simple model, it was found that the evaporative losses of gasoline and LPG contributed much to the total NMHC pollution from vehicle. The preliminary results from the dynamometer study conducted in Hong Kong showed large variations of exhaust characteristics for private cars and taxis during different driving speeds. The results can be used as scientific basis for regulatory parties in

  6. Aerosol size distribution characteristics of organosulfates in the Pearl River Delta region, China

    NASA Astrophysics Data System (ADS)

    Kuang, Bin Yu; Lin, Peng; Hu, Min; Yu, Jian Zhen

    2016-04-01

    Organosulfates (OSs) have been detected in various atmospheric environments, but their particle size distribution characteristics are unknown. In this work, we examined their size distributions in ambient aerosols to gain insights into the formation processes. Size-segregated aerosol samples in the range of 0.056-18 μm were collected using a ten-stage impactor at a receptor site in Hong Kong in both summer and winter and in Nansha in the Pearl River Delta in winter. The humic-like substances fraction in the size-segregated samples was isolated and analyzed using electrospray ionization coupled with an Orbitrap Ultra High Resolution Mass Spectrometer. Through accurate mass measurements, ∼190 CHOS and ∼90 CHONS formulas were tentatively identified to be OS compounds. Among them, OS compounds derived from isoprene, α-/β-pinene, and limonene and alkyl OSs having low double bond equivalents (DBE = 0,1) and 0-2 extra O beyond those in -OSO3 were found with high intensity. The biogenic volatile organic compounds-derived OS formulas share a common characteristic with sulfate in that the droplet mode dominated, peaking in either 0.56-1.0 or 1.0-1.8 μm size bin, reflecting sulfate as their common precursor. Most of these OSs have a minor coarse mode, accounting for 0-45%. The presence of OSs on the coarse particles is hypothesized to be a result of OSs on small particle (<0.32 μm) coagulating with coarse particles, as the abundance ratios of OS to non-sea-salt sulfate present on the coarse particles were similar to those on particles <0.32 μm. Among a few pairs of CHONS and CHOS that could be linked up through hydrolysis of a nitrooxy group in the CHONS form (e.g., m/z 294: C10H16O7NS- vs. m/z 249 C10H17O5S- from α/β-pinene, differing by (+H2O-HNO3)), the CHONS compounds had an enhanced coarse mode presence. This could be interpreted as a result of slower hydrolysis of the CHONS compounds on the alkali coarse particles. The low DBE alkyl OS compounds have a

  7. Mercury biomagnification in the aquaculture pond ecosystem in the Pearl River Delta.

    PubMed

    Cheng, Zhang; Liang, Peng; Shao, Ding-Ding; Wu, Sheng-Chun; Nie, Xiang-Ping; Chen, Kun-Ci; Li, Kai-Bin; Wong, Ming-Hung

    2011-10-01

    This is the first study to investigate the rate of mercury (Hg) biomagnification in the aquaculture pond ecosystem of the Pearl River Delta (PRD), China, by analyzing total mercury (THg) and methyl mercury (MeHg) concentrations in various species of fish at different trophic levels (TLs). Species representing a gradient of trophic positions in the aquaculture pond food chains were chosen for analyzing THg and MeHg concentrations. In this study, there were two kinds of the aquaculture pond food chains: (1) omnivorous (fish feeds, zooplankton, grass carp [Ctenopharyngodon idellus], and bighead carp [Aristichthys nobilis]) and (2) predatory (zooplankton, mud carp [Cirrhina molitorella], and mandarin fish [Siniperca kneri]). Bighead carp and mandarin fish had the highest MeHg and THg concentrations, i.e., an order of magnitude higher than other species, in their respective food chains. More than 90% of the THg concentrations detected in bighead carp, mandarin fish, and mud carp were in the methylated form. In this study, %MeHg increased with TLs and MeHg concentrations, reflecting that MeHg is the dominant chemical species of Hg accumulated in higher concentrations in biota, especially biota associated with higher TLs in the food chains. The trophic magnification factors were 2.32 and 2.60 for MeHg and 1.94 and 2.03 for THg in omnivorous and predatory food chains, respectively, in PRD. Hg concentrations in fish tissue correlated to Hg levels in the ambient environment, and sediment seemed to be the major source for Hg accumulated in fish. In addition, feeding habit also affected Hg accumulation in different fish species. Four significant linear relationships were obtained between log-THg and δ(15)N and between log-MeHg and δ(15)N. The slope of the regression equations, as biomagnification power, was smaller in magnitude compared with those reported for temperate and arctic marine and freshwater ecosystems, indicating that THg and MeHg biomagnifications were lower in

  8. Impacts of urbanization on nitrogen deposition in the Pearl River Delta region, China

    NASA Astrophysics Data System (ADS)

    Wang, X.; Fan, Q.

    2015-12-01

    The Pearl River Delta (PRD) region is one of the most advanced economic districts in China, which has experienced remarkable economic development and urbanization in the past two decades. Accompanied with the rapid economy development and urbanization, the PRD region encountered both severe nitrogen pollution and deposition. In this study, the characteristics of nitrogen deposition and impacts of urbanization on nitrogen deposition in the PRD region were investigated by combining the methods of field study and numerical model. According to the field measurements, the total dry and wet atmospheric deposition of reactive N at a urban site (SYSU) was up to 55.0 kg ha-1 yr-1 in 2010, slightly lower than the results at a rural forest site (DHS) (57.6 kg ha-1 yr-1). Wet deposition was the main form of the total deposition (64-76%). Organic nitrogen (ON) was found to be dominant in the total N deposition, with a contribution of 53% at DHS and 42% at SYSU. NH4+-N and NO3--N accounted for a similar portion of the total N deposition (23-29%). Atmospheric nitrogen deposition was further simulated by using the improved WRF-Chem model. The simulated N deposition flux was high in the north of PRD (i.e., Guangzhou, Foshan, Zhaoqing) and relative low in the east (Huizhou) and south (Zhuhai), with an average N deposition flux of about 24 kg ha-1 yr-1 for the whole PRD. The distribution of N dry deposition was mainly controlled by the concentration of reactive N compounds and precipitation governed the wet deposition distribution. The modeling results also indicate that the PRD area is the source region in which the emissions exceed the deposition while the outside area of the PRD is the receptor region in which the deposition exceeds emissions. The impact of emission change and land use change due to urbanization was also investigated using the WRF-Chem model. The results showed that atmospheric N deposition exhibits a direct response to emission change while the land use change

  9. [Faunal characteristics and distribution pattern of crustaceans in the vicinity of Pearl River estuary].

    PubMed

    Huang, Zi-Rong; Sun, Dian-Rong; Chen, Zuo-Zhi; Zhang, Han-Hua; Wang, Xue-Hui; Wang, Yue-Zhong; Fang, Hong-Da; Dong, Yan-Hong

    2009-10-01

    Based on the data of bottom trawl surveys in the vicinity of Pearl River estuary in August (summer), October (autumn), December (winter) 2006, and April (spring) 2007, the faunal characteristics and distribution pattern of crustaceans were analyzed. A total of 54 species belonging to 25 genera, 17 families, and 2 orders were collected, including 22 species of shrimps, 22 species of crabs, and 10 species of squills. Most of the crustaceans were tropical-subtropical warm-water species, a few of them were eurythermal species, and no warm-water and cold-water species occurred. Euryhaline species were most abundant, followed by halophile species, and the low-salinity species were the least. Most of the crustacean species belonged to the fauna of Indian Ocean-western Pacific Ocean. The faunal assemblages were closer to those of the East China Sea, Philippine Sea, Indonesia Sea, and the Japan Sea, and estranger with those of the Yellow Sea, Bohai Sea, and Korea Sea. The dominant species were Metapenaeus joyner, Oratosquilla oratoria, Charybdis miles, Portunus sanguinolentus, Harpiosquilla harpax, Charybdis feriatus, Charybdis japonica, Oratosquilla nepa, Solenocera crassicornis, Portunus trituberculatus, and Calappa philargius. The crustaceans had the largest species number (33) in autumn and the least one (26) in spring, and the highest stock density at the water depth of < 40 m, especially at 10-20 m. The average stock density of the crustaceans was estimated to be 99.60 kg x km(-2), with the highest (198.93 kg x km(-2)) in summer and the lowest (42.35 kg x km(-2)) in spring. Of the 3 species groups, crabs had the highest stock density (41.81 kg x km(-2)), followed by shrimps (38.91 kg x km(-2)), and squills (18.88 kg x km(-2)). The stock densities of the 3 species groups showed an obvious seasonal variation. Shrimps had the highest stock density (120.32 kg x km(-2)) in summer and the lowest density (0.67 kg x km(-2)) in spring, while crabs and squills had the highest

  10. Water - Essential Resource of the Southern Flint River Basin, Georgia

    USGS Publications Warehouse

    Warner, Debbie; Norton, Virgil

    2004-01-01

    Introduction Abundant water resources of the Flint River Basin have played a major role in the history and development of southwestern Georgia. The Flint River-along with its tributaries, wetlands, and swamps-and the productive aquifers of the river basin are essential components of the area's diverse ecosystems. These resources also are necessary for sustained agricultural, industrial, and municipal activities. Increasing, and in some cases conflicting, demand for water makes careful monitoring and wise planning and management of southwestern Georgia's water resources critical to the ecological and economic future of the area. This poster presents the major issues associated with increasing competition for water resources in the southern Flint River Basin.

  11. South Platte River Basin - Colorado, Nebraska, and Wyoming

    USGS Publications Warehouse

    Dennehy, Keuin F.; Litke, David W.; Tate, Cathy M.; Heiny, Janet S.

    1993-01-01

    The South Platte River Basin was one of 20 study units selected in 1991 for investigation under the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) program. One of the initial tasks undertaken by the study unit team was to review the environmental setting of the basin and assemble ancillary data on natural and anthropogenic factors in the basin. The physical, chemical, and biological quality of the water in the South Platte River Basin is explicitly tied to its environmental setting. The resulting water quality is the product of the natural conditions and human factors that make up the environmental setting of the basin.

  12. Reserves in western basins: Part 1, Greater Green River basin

    SciTech Connect

    Not Available

    1993-10-01

    This study characterizes an extremely large gas resource located in low permeability, overpressured sandstone reservoirs located below 8,000 feet drill depth in the Greater Green River basin, Wyoming. Total in place resource is estimated at 1,968 Tcf. Via application of geologic, engineering and economic criteria, the portion of this resource potentially recoverable as reserves is estimated. Those volumes estimated include probable, possible and potential categories and total 33 Tcf as a mean estimate of recoverable gas for all plays considered in the basin. Five plays (formations) were included in this study and each was separately analyzed in terms of its overpressured, tight gas resource, established productive characteristics and future reserves potential based on a constant $2/Mcf wellhead gas price scenario. A scheme has been developed to break the overall resource estimate down into components that can be considered as differing technical and economic challenges that must be overcome in order to exploit such resources: in other words, to convert those resources to economically recoverable reserves. Total recoverable reserves estimates of 33 Tcf do not include the existing production from overpressured tight reservoirs in the basin. These have estimated ultimate recovery of approximately 1.6 Tcf, or a per well average recovery of 2.3 Bcf. Due to the fact that considerable pay thicknesses can be present, wells can be economic despite limited drainage areas. It is typical for significant bypassed gas to be present at inter-well locations because drainage areas are commonly less than regulatory well spacing requirements.

  13. The water footprint of agricultural products in European river basins

    NASA Astrophysics Data System (ADS)

    Vanham, D.; Bidoglio, G.

    2014-05-01

    This work quantifies the agricultural water footprint (WF) of production (WFprod, agr) and consumption (WFcons, agr) and the resulting net virtual water import (netVWi, agr) of 365 European river basins for a reference period (REF, 1996-2005) and two diet scenarios (a healthy diet based upon food-based dietary guidelines (HEALTHY) and a vegetarian (VEG) diet). In addition to total (tot) amounts, a differentiation is also made between the green (gn), blue (bl) and grey (gy) components. River basins where the REF WFcons, agr, tot exceeds the WFprod, agr, tot (resulting in positive netVWi, agr, tot values), are found along the London-Milan axis. These include the Thames, Scheldt, Meuse, Seine, Rhine and Po basins. River basins where the WFprod, agr, tot exceeds the WFcons, agr, tot are found in Western France, the Iberian Peninsula and the Baltic region. These include the Loire, Ebro and Nemunas basins. Under the HEALTHY diet scenario, the WFcons, agr, tot of most river basins decreases (max -32%), although it was found to increase in some basins in northern and eastern Europe. This results in 22 river basins, including the Danube, shifting from being net VW importers to being net VW exporters. A reduction (max -46%) in WFcons, agr, tot is observed for all but one river basin under the VEG diet scenario. In total, 50 river basins shift from being net VW importers to being net exporters, including the Danube, Seine, Rhone and Elbe basins. Similar observations are made when only the gn + bl and gn components are assessed. When analysing only the bl component, a different river basin pattern is observed.

  14. Distribution and pollution, toxicity and risk assessment of heavy metals in sediments from urban and rural rivers of the Pearl River delta in southern China.

    PubMed

    Xiao, Rong; Bai, Junhong; Huang, Laibin; Zhang, Honggang; Cui, Baoshan; Liu, Xinhui

    2013-12-01

    Sediments were collected from the upper, middle and lower reaches of both urban and rural rivers in a typical urbanization zone of the Pearl River delta. Six heavy metals (Cd, Cr, Cu, Ni, Pb and Zn) were analyzed in all sediment samples, and their spatial distribution, pollution levels, toxicity and ecological risk levels were evaluated to compare the characteristics of heavy metal pollution between the two rivers. Our results indicated that the total contents of the six metals in all samples exceeded the soil background value in Guangdong province. Based on the soil quality thresholds of the China SEPA, Cd levels at all sites exceeded class III criteria, and other metals exhibited pollution levels exceeding class II or III criteria at both river sites. According to the sediment quality guidelines of the US EPA, all samples were moderately to heavily polluted by Cr, Cu, Ni, Pb and Zn. Compared to rural river sites, urban river sites exhibited heavier pollution. Almost all sediment samples from both rivers exhibited moderate to serious toxicity to the environment, with higher contributions from Cr and Ni. A "hot area" of heavy metal pollution being observed in the upper and middle reaches of the urban river area, whereas a "hot spot" was identified at a specific site in the middle reach of the rural river. Contrary metal distribution patterns were also observed along typical sediment profiles from urban and rural rivers. However, the potential ecological risk indices of rural river sediments in this study were equal to those of urban river sediments, implying that the ecological health issues of the rivers in the undeveloped rural area should also be addressed. Sediment organic matter and grain size might be important factors influencing the distribution profiles of these heavy metals.

  15. Lake Murray, Fly and Strickland River Basins, Papua, New Guinea

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Lake Murray, a manmade reservoir, lies between the Fly and Strickland River Basins, Papua, New Guinea (7.0S, 141.5E). The region, photographed in sunglint, shows the water level in the reservoir and the full extent of the drainage basins of both river systems as the rivers meander through wide alluvial floodplains. Some forest clearing can be seen in places throughout the region, but most of the area remains in closed canopy forest.

  16. Analysis of the temporal and spatial distribution of water quality in China's major river basins, and trends between 2005 and 2010

    NASA Astrophysics Data System (ADS)

    Li, Jinjian; Meng, Xiaojie; Zhang, Yan; Li, Juan; Xia, Linlin; Zheng, Hongmei

    2015-09-01

    In this study, based on environmental quality monitoring data on 22 pollutants from 490 control sections, we analyzed the spatial distribution and temporal changes of water quality in ten Chinese river basins (watersheds) to reveal the trends from 2005 to 2010. We used a comprehensive water pollution index (WPI) and the proportions of this index accounted for by the three major pollutants to analyze how economic development has influenced water quality. Higher values of the index represent more serious pollution. We found that WPI was much higher for the Hai River Basin (1.83 to 5.60 times the averages in other regions). In the Yangtze River Basin, WPI increased from upstream to downstream. The indices of some provinces toward the middle of a basin, such as Hebei Province in the Hai River Basin, Shanxi Province in the Yellow River Basin, and Anhui Province in the Huai River Basin, were higher than those of upstream and downstream provinces. In the Songhua, Liao, and Southeast river basins, WPI decreased during the study period: in 2010, it decreased by 33.9%, 44.3%, and 67.2%, respectively, compared with the 2005 value. In the Pearl River, Southwest, and Inland river basins, WPI increased by 23.1%, 47.7%, and 38.5% in 2010, compared with 2005. A comparison of WPI with the GDP of each province showed that the water pollution generated by economic development was lightest in northwestern, southwestern, and northeastern China, and highest in central and eastern China, and that the water environment in some coastal regions were improving. However, some provinces (e.g., Shanxi Province) were seriously polluted.

  17. Modelling sediment input in large river basins

    NASA Astrophysics Data System (ADS)

    Scherer, U.

    2012-04-01

    Erosion and sediment redistribution play a pivotal role in the terrestrial ecosystem as they directly influence soil functions and water quality. In particular surface waters are threatened by emissions of nutrients and contaminants via erosion. The sustainable management of sediments is thus a key challenge in river basin management. Beside the planning and implementation of mitigation measures typically focusing on small and mesoscale catchments, the knowledge of sediment emissions and associated substances in large drainage basins is of utmost importance for water quality protection of large rivers and the seas. The objective of this study was thus to quantify the sediment input into the large drainage basins of Germany (Rhine, Elbe, Odra, Weser, Ems, Danube) as a basis for nutrient and contaminant emissions via erosion. The sediment input was quantified for all watersheds of Germany and added up along the flow paths of the river systems. Due to the large scale, sediment production within the watersheds was estimated based on the USLE for cultivated land and naturally covered areas and on specific erosion rates for mountainous areas without vegetation cover. To quantify the sediment delivery ratio a model approach was developed using data on calculated sediment production rates and long term sediment loads observed at monitoring stations of 13 watersheds located in different landscape regions of Germany. A variety of morphological parameters and catchment properties such as slope, drainage density, share of morphological sinks, hypsometric integral, flow distance between sediment source areas and the next stream as well as soil and land use properties were tested to explain the variation in the sediment delivery ratios for the 13 watersheds. The sediment input into streams is mainly controlled by the location of sediment source areas and the morphology along the flow pathways to surface waters. Thus, this complex interaction of spatially distributed catchment

  18. Changes in sea level, water salinity and wetland habitat linked to the late agricultural development in the Pearl River delta plain of China

    NASA Astrophysics Data System (ADS)

    Zong, Yongqiang; Zheng, Zhuo; Huang, Kangyou; Sun, Yiying; Wang, Ning; Tang, Min; Huang, Guangqing

    2013-06-01

    Environmental change plays a significant role in the development of agriculture worldwide. The availability of wetland habitats and freshwater supply has been particularly important to the expansion and sustainability of rice-based economies. Some studies have emphasized the connections between societal changes and climatic fluctuations. However, recently emerged evidence has indicated the prevalence of human's initiatives. To tackle this complex issue, we employ a multi-proxy approach applying microfossil diatom/pollen and organic carbon isotopes collected from sediment cores of multiple locations to the reconstructions of palaeo-environment and identification of agricultural activity in the northern part of the Pearl River delta. Our study confirms the importance of environmental conditions, but also reveals initiatives taken by the agricultural communities in site selection for cultivation and settlements. Our results also show that freshwater wetland conditions became available in the most landward part of the deltaic plain along the West/North Rivers as early as 7000 years ago, since which wetland habitats expanded seawards as the deltaic shoreline advanced. By 2500 years ago, extensive freshwater wetlands already emerged in northwest part of the deltaic plain. However, before this time, economic activity within the deltaic basin was still predominantly based on fishing and gathering. This is possibly because the Neolithic communities did not need to adapt the labour-intensive cultivation due to the abundance of natural resources in the deltaic region, a strong contrast to what the communities in the Yangtze valley did 5000 years earlier. The agriculture was finally expanded about 2500-2200 years ago in a small area of marsh wetlands along a small river on the northern edge of the deltaic plain by a community migrated from the Yangtze basin. The agricultural activity was spread across the deltaic plain by about 1000 years ago, again as a result of the influx

  19. The agricultural water footprint of EU river basins

    NASA Astrophysics Data System (ADS)

    Vanham, Davy

    2014-05-01

    This work analyses the agricultural water footprint (WF) of production (WFprod,agr) and consumption (WFcons,agr) as well as the resulting net virtual water import (netVWi,agr) for 365 EU river basins with an area larger than 1000 km2. Apart from total amounts, also a differentiation between the green, blue and grey components is made. River basins where the WFcons,agr,tot exceeds WFprod,agr,tot values substantially (resulting in positive netVWi,agr,tot values), are found along the London-Milan axis. River basins where the WFprod,agr,totexceeds WFcons,agr,totare found in Western France, the Iberian Peninsula and the Baltic region. The effect of a healthy (HEALTHY) and vegetarian (VEG) diet on the WFcons,agr is assessed, as well as resulting changes in netVWi,agr. For HEALTHY, the WFcons,agr,tot of most river basins decreases (max 32%), although in the east some basins show an increase. For VEG, in all but one river basins a reduction (max 46%) in WFcons,agr,tot is observed. The effect of diets on the WFcons,agrof a river basin has not been carried out so far. River basins and not administrative borders are the key geographical entity for water management. Such a comprehensive analysis on the river basin scale is the first in its kind. Reduced river basin WFcons,agrcan contribute to sustainable water management both within the EU and outside its borders. They could help to reduce the dependency of EU consumption on domestic and foreign water resources.

  20. Developing a Science-based River Basin Management Plan for the Kharaa River Basin, Mongolia

    NASA Astrophysics Data System (ADS)

    Karthe, Daniel

    2013-04-01

    The Kharaa River Basin (KRB), which is located north of Mongolia's capital Ulaanbaatar and south of Lake Baikal, was chosen as a model region for the development and implementation of an integrated water resources management consisting of a monitoring concept, technical measures and a capacity development program (Karthe et al. 2012a). The basin of the Kharaa River covers an area of 14534 km² that is partly mountaineous and largely covered by taiga and steppe. At its outlet, the 362 km Kharaa River has a mean long-term annual discharge of 12.1 m³/s (MoMo Consortium 2009). A highly continental climate results in limited water resources, and rising water consumption coupled with the effects of climate and land use change may in the future exacerbate this water scarcity (Malsy et al. 2012; Karthe et al. 2013). Whereas the environment in the upper part of the catchment is in a relatively pristine state, the mid- and downstream sections of the river are characterized by nearby industry, mining activities and intensive agriculture (Menzel et al. 2011), resulting in declining water quality and ultimately a degradation of aquatic ecosystems (Hofmann et al. 2010; Hartwig et al. 2012). Moreover, it is a problem for the supply of major cities like Darkhan which largely rely on alluvial aquifers containing shallow-depth groundwater (Mun et al. 2008). Currently, there are alarming signs of water quality deterioration. With regard to water provision, a major problem is the poor state of distribution infrastructures which were often built in the 1960s and 70s (Scharaw & Westerhoff 2011). Rather little is currently known about the water quality supplied to end users; the latter is even more dubious in the city's informal ger districts (Karthe et al. 2012b). One important goal of the research and development project "Integrated Water Resources Management in Central Asia: Model Region Mongolia" lies in the implementation of a holistic concept for water resources monitoring and

  1. Zinc and Its Isotopes in the Loire River Basin, France

    NASA Astrophysics Data System (ADS)

    Millot, R.; Desaulty, A. M.; Bourrain, X.

    2014-12-01

    The contribution of human activities such as industries, agriculture and domestic inputs, becomes more and more significant in the chemical composition of the dissolved load of rivers. Human factors act as a supplementary key process. Therefore the mass-balance for the budget of catchments and river basins include anthropogenic disturbances. The Loire River in central France is approximately 1010 km long and drains an area of 117,800 km2. In the upper basin, the bedrock is old plutonic rock overlain by much younger volcanic rocks. The intermediate basin includes three major tributaries flowing into the Loire River from the left bank: the Cher, the Indre and the Vienne rivers; the main stream flows westward and its valley stretches toward the Atlantic Ocean. Here, the Loire River drains the sedimentary series of the Paris Basin, mainly carbonate deposits. The lower Loire basin drains pre-Mesozoic basement of the Armorican Massif and its overlying Mesozoic to Cenozoic sedimentary deposits. The Loire River is one of the main European riverine inputs to the Atlantic ocean. Here we are reporting concentration and isotope data for Zn in river waters and suspended sediments from the Loire River Basin. In addition, we also report concentration and isotope data for the different industrial sources within the Loire Basin, as well as data for biota samples such as mussels and oysters from the Bay of Biscay and North Brittany. These organisms are known to be natural accumulators of metal pollutants. Zinc isotopic compositions are rather homogeneous in river waters with δ66Zn values ranging from 0.21 to 0.39‰. This range of variation is very different from anthropogenic signature (industrial and/or agriculture release) that displays δ66Zn values between 0.02 to 0.14‰. This result is in agreement with a geogenic origin and the low Zn concentrations in the Loire River Basin (from 0.8 to 6 µg/L).

  2. Floods in the Skagit River basin, Washington

    USGS Publications Warehouse

    Stewart, James E.; Bodhaine, George Lawrence

    1961-01-01

    According to Indian tradition, floods of unusually great magnitude harassed the Skagit River basin about 1815 and 1856. The heights of these floods were not recorded at the time; so they are called historical floods. Since the arrival of white men about 1863, a number of large and damaging floods have been witnessed and recorded. Data concerning and verifying the early floods, including those of 1815 and 1856, were collected prior to 1923 by James E. Stewart. He talked with many of the early settlers in the valley who had listened to Indians tell about the terrible floods. Some of these settlers had referenced the maximum stages of floods they had witnessed by cutting notches at or measuring to high-water marks on trees. In order to verify flood stages Stewart spent many weeks finding and levelling to high-water marks such as drift deposits, sand layers in coves, and silt in the bark of certain types of trees. Gaging stations have been in operation at various locations on the Skagit River and its tributaries since 1909, so recorded peak stages are available at certain sites for floods occurring since that date. All peak discharge data available for both historical and recorded floods have been listed in this report. The types of floods as to winter and summer, the duration of peaks, and the effect of reservoirs are discussed. In 1899 Sterling Dam was constructed at the head of Gages Slough near Sedro Woolley. This was the beginning of major diking in the lower reaches of the Skagit River. Maps included in the report show the location of most of the dike failures that have occurred during the last 73 years and the area probably inundated by major floods. The damage resulting from certain floods is briefly discussed. The report is concluded with a brief discussion of the U.S. Geological Survey method of computing flood-frequency curves as applied to the Skagit River basin. The treatment of single-station records and a means of combining these records for expressing

  3. Resistivity sections, upper Arkansas River basin, Colorado

    USGS Publications Warehouse

    Zohdy, Adel A.R.; Hershey, Lloyd A.; Emery, Philip A.; Stanley, William D.

    1971-01-01

    A reconnaissance investigation of ground-water resources in the upper Arkansas River basin from Pueblo to Leadville is being made by the U.S. Geological Survey in cooperation with the Southeastern Colorado Water Conservancy District, and the Colorado Division of Water Resources, Colorado State Engineer. As part of the investigation, surface geophysical electrical resistivity surveys were made during the summer and fall of 1970 near Buena Vista and Westcliffe, Colo. (p1.1). The resistivity surveys were made to verify a previous gravity survey and to help locate areas where ground-water supplies might be developed. This report presents the results of the surveys in the form of two resistivity sections.

  4. Upper Colorado River Basin Climate Effects Network

    USGS Publications Warehouse

    Belnap, Jayne; Campbell, Donald; Kershner, Jeff

    2011-01-01

    The Upper Colorado River Basin (UCRB) Climate Effects Network (CEN) is a science team established to provide information to assist land managers in future decision making processes by providing a better understanding of how future climate change, land use, invasive species, altered fire cycles, human systems, and the interactions among these factors will affect ecosystems and the services they provide to human communities. The goals of this group are to (1) identify science needs and provide tools to assist land managers in addressing these needs, (2) provide a Web site where users can access information pertinent to this region, and (3) provide managers technical assistance when needed. Answers to the team's working science questions are intended to address how interactions among climate change, land use, and management practices may affect key aspects of water availability, ecosystem changes, and societal needs within the UCRB.

  5. Paleogeography of Paleocene Wind River basin

    SciTech Connect

    Flemings, P.B.; Jordan, T.E.

    1986-08-01

    The Paleocene Fort Union Formation in the Wind River basin was deposited in response to Laramide deformation between south-verging faults to the north (Owl Creek and Casper thrusts) and south (Wind River and Granite thrusts). Exposures in this asymmetric basin include a lower fluvial member overlain by the Waltman (lacustrine) and time-equivalent Shotgun (fluvial) members in the northeast and a single fluvial unit in the southeast. In the northeast, low sinuosity, ribbon channel sandstones (northwest paleoflow, about 40 m thick) are overlain by sheet-sand deposits interspersed with channel sandstones (southwest paleoflow, about 700 m thick), which are in turn overlain by the Waltman Member. The basal channel sands are wide (about 100 m perpendicular to flow), thick (5 to 10 m), and trough cross-bedded. The sheet-sand deposits consist of upward-fixing cycles 1 to 10 m thick. These facies are interpreted to be the product of longitudinal drainage flowing parallel to the Casper thrust, overlain by fan-delta sediments prograding perpendicular to the thrust. Palynology suggests a nearly complete Paleocene record for this sequence. To the south along the Rattlesnake Hills, trough cross-bedded sheet sandstones and gravel channel deposits (northward, 140 m thick) are overlain by layered mudstones and siltstones (180 m thick). The top of these high-energy braided-stream deposits and overlying low-energy delta-plain sediments are equivalent in age to the Waltman Member. A topographic low paralleled the Casper arch thrust during the earliest Paleocene. Prograding alluvial-fan sedimentation gradually shifted this topographic low away from the Casper thrust. Southern exposures record drainage toward, and ponding in, the topographic low.

  6. Flexural analysis of two broken foreland basins; Late Cenozoic Bermejo basin and Early Cenozoic Green River basin

    SciTech Connect

    Flemings, P.B.; Jordan, T.E.; Reynolds, S.

    1986-05-01

    Lithospheric flexure that generates basin in a broke foreland setting (e.g., the Laramide foreland of Wyoming) is a three-dimensional system related to shortening along basin-bounding faults. The authors modeled the elastic flexure in three dimensions for two broken foreland basins: the early Cenozoic Green River basin and the analogous late Cenozoic Bermejo basin of Argentina. Each basin is located between a thrust belt and a reverse-fault-bounded basement uplift. Both basins are asymmetric toward the basement uplifts and have a central basement high: the Rock Springs uplift and the Pie de Palo uplift, respectively. The model applies loads generated by crustal thickening to an elastic lithosphere overlying a fluid mantle. Using the loading conditions of the Bermejo basin based on topography, limited drilling, and reflection and earthquake seismology, the model predicts the current Bermejo basin geometry. Similarly, flexure under the loading conditions in the Green River basin, which are constrained by stratigraphy, well logs, and seismic profiling and summed for Late Cretaceous (Lance Formation) through Eocene (Wasatch Formation), successfully models the observed geometry of the pre-Lance surface. Basin depocenters (> 4 km for the Green River basin; > 7 km for the Bermejo basin) and central uplifts are predicted to result from constructive interference of the nonparallel applied loads. Their Bermejo model implies that instantaneous basin geometry is successfully modeled by crustal loading, whereas the Green River basin analysis suggests that basin evolution can be modeled over large time steps (e.g., 20 Ma). This result links instantaneous basin geometry to overall basin evolution and is a first step in predicting stratigraphic development.

  7. InSAR Detection of Ground Deformation in Megalopolises of Pearl River Delta

    NASA Astrophysics Data System (ADS)

    Zhao, Qing

    Megalopolises in the Pearl River Delta, including Guangzhou and Hong Kong, have experienced various degree of ground subsidence. The causes can be divided into two categories: natural subsidence and the human-induced subsidence. Monitoring the ground subsidence can not only help people to find out the distributions in both spatial and temporal fields, but also guide people to minimize the hazard ahead. Thus, it is significant to monitor the ground subsidence accurately, timely and frequently. This dissertation research uses the Environmental Satellite Advanced Synthetic Aperture Radar (ENVISAT ASAR) data received at the Chinese University of Hong Kong Satellite Remote Sensing Receiving Station and SAR Interferometry (InSAR) technology as a powerful tool for large-scale ground deformation monitoring in Guangzhou and Hong Kong areas. Persistent Scatterer Interferometry (PSI) method is used to detect ground deformation in the urban area of Guangzhou city. A ground deformation rate map with scattered distribution of point targets shows the maximum subsidence (rise) rate as high as -26 to -20 mma-1 (16-21 mma-1 ), implying that the study area is an active zone for ground deformation. Based on the point target map, a contour ground deformation rate map is generated. All the six ground collapse accidents that occurred in 2007-2008 fall within the subsidence zones, qualitatively validating the IPTA results. Ground subsidence and geological conditions on Datansha Island are examined. The results indicate that the local geological conditions and underground engineering projects are responsible for ground subsidence and ground collapse accidents occurred there. To interpret the distribution of active ground subsidence zones, a local geological map is used as a reference for generating a series of thematic maps. The results show that geological faults, rock distribution, over-development, and underground engineering projects may be four factors leading to the distribution of

  8. Nighttime observation and chemistry of HOx in the Pearl River Delta and Beijing in summer 2006

    NASA Astrophysics Data System (ADS)

    Lu, K. D.; Rohrer, F.; Holland, F.; Fuchs, H.; Brauers, T.; Oebel, A.; Dlugi, R.; Hu, M.; Li, X.; Lou, S. R.; Shao, M.; Zhu, T.; Wahner, A.; Zhang, Y. H.; Hofzumahaus, A.

    2014-05-01

    Nighttime HOx chemistry was investigated in two ground-based field campaigns (PRIDE-PRD2006 and CAREBEIJING2006) in summer 2006 in China by comparison of measured and modeled concentration data of OH and HO2. The measurement sites were located in a rural environment in the Pearl River Delta (PRD) under urban influence and in a suburban area close to Beijing, respectively. In both locations, significant nighttime concentrations of radicals were observed under conditions with high total OH reactivities of about 40-50 s-1 in PRD and 25 s-1 near Beijing. For OH, the nocturnal concentrations were within the range of (0.5-3) × 106 cm-3, implying a significant nighttime oxidation rate of pollutants on the order of several ppb per hour. The measured nighttime concentration of HO2 was about (0.2-5) × 108 cm-3, containing a significant, model-estimated contribution from RO2 as an interference. A chemical box model based on an established chemical mechanism is capable of reproducing the measured nighttime values of the measured peroxy radicals and kOH, but underestimates in both field campaigns the observed OH by about 1 order of magnitude. Sensitivity studies with the box model demonstrate that the OH discrepancy between measured and modeled nighttime OH can be resolved, if an additional ROx production process (about 1 ppb h-1) and additional recycling (RO2 → HO2 → OH) with an efficiency equivalent to 1 ppb NO is assumed. The additional recycling mechanism was also needed to reproduce the OH observations at the same locations during daytime for conditions with NO mixing ratios below 1 ppb. This could be an indication that the same missing process operates at day and night. In principle, the required primary ROx source can be explained by ozonolysis of terpenoids, which react faster with ozone than with OH in the nighttime atmosphere. However, the amount of these highly reactive biogenic volatile organic compounds (VOCs) would require a strong local source, for which

  9. Nighttime observation and chemistry of HOx in the Pearl River Delta and Beijing in summer 2006

    NASA Astrophysics Data System (ADS)

    Lu, K.; Rohrer, F.; Holland, F.; Fuchs, H.; Brauers, T.; Oebel, A.; Dlugi, R.; Hu, M.; Li, X.; Lou, S.; Shao, M.; Zhu, T.; Wahner, A.; Zhang, Y.; Hofzumahaus, A.

    2013-12-01

    Nighttime HOx chemistry was investigated in two ground-based field campaigns (PRIDE-PRD2006 and CAREBEIJING2006) in summer 2006 in China by comparison of measured and modelled concentration data of OH and HO2. The measurement sites were located in a rural environment in the Pearl River Delta (PRD) under urban influence and in a suburban area close to Beijing, respectively. In both locations, significant nighttime concentrations of radicals were observed under conditions with high total OH reactivities of about 40-50 s-1 in PRD and 25 s-1 near Beijing. For OH, the nocturnal concentrations were within the range of (0.5-3) × 106 cm s-3 implying a signficant nighttime oxidation rate of pollutants in the order of several ppb per hour. The measured nighttime concentration of HO2 was about (0.2-5) × 108 cm -3 containing a significant, model-estimated contribution from RO2 as an interference. A chemical box model based on an established chemical mechanism is capable to reproduce the measured nighttime values of the measured peroxy radicals and kOH, but underestimates in both field campaigns the observed OH by about one order of magnitude. Sensitivity studies with the box model demonstrate that the OH discrepancy between measured and modelled nighttime OH can be resolved, if an additional \\chem{RO_x} production process (about 1 ppb h s-1) and additional recycling (RO2 → HO2 → OH) with an efficiency equivalent to 1 ppb NO is assumed. The additional recycling mechanism was also needed to reproduce the OH observations at the same locations during daytime for conditions with NO mixing ratios below 1 ppb. This could be an indication that the same missing process operates at day and night. In principle, the required primary c source can be explained by ozonolysis of terpenoids, which react faster with ozone than with OH in the nighttime atmosphere. However, the amount of these highly reactive biogenic VOC would require a strong local source, for which there is no direct

  10. Geochemical characteristics and fluxes of organic carbon in a human-disturbed mountainous river (the Luodingjiang River) of the Zhujiang (Pearl River), China.

    PubMed

    Zhang, Shurong; Lu, X X; Sun, Huiguo; Han, Jingtai; Higgitt, David Laurence

    2009-01-01

    This study aims to investigate the state of the riverine organic carbon in the Luodingjiang River under human impacts, such as reforestation, construction of reservoirs and in-stream damming. Seasonal and spatial characteristics of total suspended sediment (TSS), dissolved organic carbon (DOC) and particulate organic carbon (POC), as well as C/N ratios and the stable carbon isotopic signatures of POC (delta(13)C(POC)) were examined based on a one-year study (2005) in the basin-wide scale. More frequent sampling was conducted in the outlet of the river basin at Guanliang hydrological station. DOC and POC concentrations showed flush effects with increasing water discharge and sediment load in the basin-wide scale. Atomic C/N ratio of POC had a positive relationship with TSS in the outlet of the basin, indicating the reduced aquatic sources and enhanced terrestrial sources during the high flood season. However, the similar relationship was not observed in the basin-wide scale mainly due to the spatial distributions of soil organic carbon and TSS. delta(13)C(POC) showed obvious seasonal variations with enriched values in the period with high TSS concentration, reflecting the increased contribution from C(4) plants with enhanced soil erosion. The specific flux of the total organic carbon (2.30 t km(-)(2) year(-1)) was smaller than the global average level. The ratio of DOC to POC was 1.17, which is higher than most rivers under Asian monsoon climate regime. The organic carbon flux was estimated to decline with decreasing sediment load as a result of reforestation, reservoir construction and in-stream damming, which demonstrates the impacts of human disturbances on the global carbon cycle.

  11. Geochemical characteristics and fluxes of organic carbon in a human-disturbed mountainous river (the Luodingjiang River) of the Zhujiang (Pearl River), China.

    PubMed

    Zhang, Shurong; Lu, X X; Sun, Huiguo; Han, Jingtai; Higgitt, David Laurence

    2009-01-01

    This study aims to investigate the state of the riverine organic carbon in the Luodingjiang River under human impacts, such as reforestation, construction of reservoirs and in-stream damming. Seasonal and spatial characteristics of total suspended sediment (TSS), dissolved organic carbon (DOC) and particulate organic carbon (POC), as well as C/N ratios and the stable carbon isotopic signatures of POC (delta(13)C(POC)) were examined based on a one-year study (2005) in the basin-wide scale. More frequent sampling was conducted in the outlet of the river basin at Guanliang hydrological station. DOC and POC concentrations showed flush effects with increasing water discharge and sediment load in the basin-wide scale. Atomic C/N ratio of POC had a positive relationship with TSS in the outlet of the basin, indicating the reduced aquatic sources and enhanced terrestrial sources during the high flood season. However, the similar relationship was not observed in the basin-wide scale mainly due to the spatial distributions of soil organic carbon and TSS. delta(13)C(POC) showed obvious seasonal variations with enriched values in the period with high TSS concentration, reflecting the increased contribution from C(4) plants with enhanced soil erosion. The specific flux of the total organic carbon (2.30 t km(-)(2) year(-1)) was smaller than the global average level. The ratio of DOC to POC was 1.17, which is higher than most rivers under Asian monsoon climate regime. The organic carbon flux was estimated to decline with decreasing sediment load as a result of reforestation, reservoir construction and in-stream damming, which demonstrates the impacts of human disturbances on the global carbon cycle. PMID:19004473

  12. Trophic relationships and health risk assessments of trace metals in the aquaculture pond ecosystem of Pearl River Delta, China.

    PubMed

    Cheng, Zhang; Man, Yu Bon; Nie, Xiang Ping; Wong, Ming Hung

    2013-02-01

    Cadmium, lead, zinc, Chromium, copper, nickel and manganese in sediments and in aquatic organisms were collected from the aquaculture pond ecosystem of the Pearl River Delta (PRD), China and analyzed to evaluate bioaccumulation and trophic transfer in food chains, as well as the potential health risk of exposure to the Hong Kong residents via dietary intake of these aquatic products. The results revealed that based on the biota-sediment accumulation factor, omnivorous fish and zooplankton accumulated more trace metals from sediment than carnivorous fish. Concentrations of seven trace metals in aquaculture pond of PRD significantly decreased with increasing trophic levels, showing that these trace metals were trophically diluted in predatory and omnivorous food chains. The hazard index values of all fish species were smaller than 1 for adults and children, indicating there was no health risk from the multiple metals via ingestion of the freshwater fish for the inhabitants.

  13. Progress in understanding the formation of fine particulate matter and ground-level ozone in Pearl River Delta region, China

    NASA Astrophysics Data System (ADS)

    Wang, Xuemei; Wang, Tao; Zheng, Junyu; Shao, Min; Wang, Xinming

    2015-12-01

    In the past three decades, the Pearl River Delta of China has been suffered from severe air pollution due to the rapid increase in energy consumption associated with industrialization and urbanization of the region. The number of hazy days, increased from below 20 days in a year before 1970, to more than 150 days a year during 1980 and 2000. The ground-level ozone levels have also on the rise, with hourly concentration of 160 ppbv being observed in Guangzhou and 201 ppbv in nearby Hong Kong (Zhang et al., 2008). The ozone pollution has been difficult to reduce even in air quality improvement program for the Guangzhou Asian Games (Liu et al., 2013).

  14. Numerical model to quantify biogenic volatile organic compound emissions: The Pearl River Delta region as a case study.

    PubMed

    Wang, Xuemei; Situ, Shuping; Chen, Weihua; Zheng, Junyu; Guenther, Alex; Fan, Qi; Chang, Ming

    2016-08-01

    This article compiles the actual knowledge of the biogenic volatile organic compound (BVOC) emissions estimated using model methods in the Pearl River Delta (PRD) region, one of the most developed regions in China. The developed history of BVOC emission models is presented briefly and three typical emission models are introduced and compared. The results from local studies related to BVOC emissions have been summarized. Based on this analysis, it is recommended that local researchers conduct BVOC emission studies systematically, from the assessment of model inputs, to compiling regional emission inventories to quantifying the uncertainties and evaluating the model results. Beyond that, more basic researches should be conducted in the future to close the gaps in knowledge on BVOC emission mechanisms, to develop the emission models and to refine the inventory results. This paper can provide a perspective on these aspects in the broad field of research associated with BVOC emissions in the PRD region. PMID:27521938

  15. Spatial distribution of gut juice extractable Cu, Pb and Zn in sediments from the Pearl River Estuary, Southern China.

    PubMed

    Wang, Fei; Wang, Wen-Xiong; Huang, Xiao-Ping

    2012-06-01

    In this study, we compared the spatial distribution of total metals (Cu, Pb, and Zn) and bioaccessible metals, which were quantified by incubating sediments with the digestive fluid of sipunculans Sipunculus nudus, in natural sediments of the Pearl River Estuary (PRE). The spatial distribution of bioaccessible metal was not the same as that of total metals in PRE sediments, which were mainly controlled by fine-grained size, total organic carbon (TOC) and Fe. Geochemical factors were important in interpreting this different spatial variation. The similar spatial variations of bioaccessible Cu and total Cu were related to TOC in PRE sediments. Differently from the total Zn, a higher bioaccessible Zn was detected near the West Channel of PRE because of a lower TOC. However, the distribution of bioaccessible Pb was not significantly related to any sediment geochemistry. This study provides a more accurate view of metal pollution in the PRE natural sediments.

  16. Non-aromatic hydrocarbons in surface sediments near the Pearl River estuary in the South China Sea.

    PubMed

    Gao, Xuelu; Chen, Shaoyong; Xie, Xueliang; Long, Aimin; Ma, Fujun

    2007-07-01

    Surface sediment samples at 4 sites along an offshore transect from outer continental shelf off the Pearl River estuary to the shelf slope region of the northern South China Sea, have been analyzed for total organic carbon (TOC), total nitrogen (TN), solvent extractable organic matter (EOM) and non-aromatic hydrocarbons. TOC, TN and EOM show distinct spatial variations. Their highest values are all recorded at the shelf slope region. EOM varies from 18.70-38.58 microgg(-1) dry sediment and accounts for 0.20-0.72% of the TOC contents. The non-aromatic hydrocarbons are an important fraction of EOM. Their contents range from 3.43-7.06 microgg(-1) dry sediment. n-Alkanes with carbon number ranging from 15-38 are identified. They derive from both biogenic and petrogenic sources in different proportions. Results of isoprenoid hydrocarbons, hopanes and steranes also suggest possible petroleum contamination.

  17. Toxaphene levels in retail food from the Pearl River Delta area of South China and an assessment of dietary intake.

    PubMed

    Jiang, YouSheng; Liu, ZhiBin; Wu, DongTing; Zhang, JianQing; Zhou, Jian; Li, ShengNong; Lu, LinGeng; Lin, XiaoShi; Lu, ShaoYou; Peng, JinLing

    2016-06-01

    Limited literature exists on toxaphene contamination in food worldwide, particularly in mainland China. In this study, three toxaphene congeners, Parlar 26 (B8-1413), Parlar 50 (B9-1679) and Parlar 62 (B9-1025), were analyzed in five different food categories from the Pearl River Delta Area in China using isotope dilution high-resolution gas chromatography/high-resolution mass spectrometry (HRGC/HRMS), and toxaphene levels in food were reported and toxaphene dietary intake by local residents estimated. The results showed that fish contained the highest toxaphene level with a median of 12.87 pg/g wet weight (ww), followed by poultry meat, egg products, livestock meat and vegetable, which had median levels of 5.8, 2.2, 1.89 and 0.67 pg/g ww, respectively. Parlar 50 and Parlar 26 were the predominant characteristic congeners in fish, and Parlar 26 was the predominant congener not only in poultry products and eggs, but also in livestock and vegetable. The estimated average daily intake found by local residents was 35.57 pg/kg body weight/day. Overall toxaphene levels and estimated dietary intake in the Pearl River Delta Area of South China are far lower than the European Maximum Residue Limits (EU MRLs), the German MRL for fish, and other international literature data. Therefore, the risk of adverse health effects from dietary intakes of toxaphene for the local residents is not considerable at the current time, but follow-ups are warranted to study dynamic changes of toxaphene in food in this area. PMID:26991380

  18. Abundances, depositional fluxes, and homologue patterns of polychlorinated biphenyls in dated sediment cores from the Pearl River Delta, China.

    PubMed

    Mai, Bixian; Zeng, Eddy Y; Luo, Xiaojun; Yang, Qingshu; Zhang, Gan; Li, Xiangdong; Sheng, Guoying; Fu, Jiamo

    2005-01-01

    Despite the recent efforts to investigate the distribution and fate of persistent organic pollutants in the tropical and subtropical regions of Asia, very little was known about the temporal change of polychlorinated biphenyls (PCBs) in the environmental ecosystem of China. In this study, three dated sediment cores collected from the Pearl River Delta of southern China were analyzed for a large suite of PCB congeners, from which the temporal profiles of PCB abundances, fluxes, and homologue patterns were constructed. The sedimentary inventories of total PCBs at the sampling sites ranged from 480 to 1310 ng/cm2, at the low end of the worldwide figures. Although production and use of PCBs have been banned or highly restricted in China since the early 1980s, the fluxes of total PCBs continued to increase in the Pearl River Delta sediments. There was a concurrent increase of PCB fluxes and gross domestic product per capita in the region from 1980 to 1997, and a decline of agricultural land use was evident at the same time. Apparently, large-scale land transform since the early 1980s as well as emissions from the PCB-containing electrical equipments were responsible for the sharp rise of PCB fluxes in the recent sediments. The difference in the PCB homologue patterns from 1940 to the mid-1970s was probably indicative of the different timelines of PCB usage in Macao/Hong Kong and mainland China and the differenttypes of technical PCBs commercially used. PCBs were detectable in sediments deposited well before the time frame when production of PCBs began (before 1930) and were relatively enriched in the less chlorinated homologue groups (3Cl and 4Cl PCBs), suggesting the downward mobility of lightly chlorinated PCB congeners in the sediment column.

  19. Spatial design principles for sustainable hydropower development in river basins

    DOE PAGESBeta

    Jager, Henriëtte I.; Efroymson, Rebecca A.; Opperman, Jeff J.; Kelly, Michael R.

    2015-02-27

    How can dams be arranged within a river basin such that they benefit society? Recent interest in this question has grown in response to the worldwide trend toward developing hydropower as a source of renewable energy in Asia and South America, and the movement toward removing unnecessary dams in the US. Environmental and energy sustainability are important practical concerns, and yet river development has rarely been planned with the goal of providing society with a portfolio of ecosystem services into the future. We organized a review and synthesis of the growing research in sustainable river basin design around four spatialmore » decisions: Is it better to build fewer mainstem dams or more tributary dams? Should dams be clustered or distributed among distant subbasins? Where should dams be placed along a river? At what spatial scale should decisions be made? We came up with the following design principles for increasing ecological sustainability: (i) concentrate dams within a subset of tributary watersheds and avoid downstream mainstems of rivers, (ii) disperse freshwater reserves among the remaining tributary catchments, (iii) ensure that habitat provided between dams will support reproduction and retain offspring, and (iv) formulate spatial decision problems at the scale of large river basins. Based on our review, we discuss trade-offs between hydropower and ecological objectives when planning river basin development. We hope that future testing and refinement of principles extracted from our review will define a path toward sustainable river basin design.« less

  20. Spatial design principles for sustainable hydropower development in river basins

    SciTech Connect

    Jager, Henriëtte I.; Efroymson, Rebecca A.; Opperman, Jeff J.; Kelly, Michael R.

    2015-02-27

    How can dams be arranged within a river basin such that they benefit society? Recent interest in this question has grown in response to the worldwide trend toward developing hydropower as a source of renewable energy in Asia and South America, and the movement toward removing unnecessary dams in the US. Environmental and energy sustainability are important practical concerns, and yet river development has rarely been planned with the goal of providing society with a portfolio of ecosystem services into the future. We organized a review and synthesis of the growing research in sustainable river basin design around four spatial decisions: Is it better to build fewer mainstem dams or more tributary dams? Should dams be clustered or distributed among distant subbasins? Where should dams be placed along a river? At what spatial scale should decisions be made? We came up with the following design principles for increasing ecological sustainability: (i) concentrate dams within a subset of tributary watersheds and avoid downstream mainstems of rivers, (ii) disperse freshwater reserves among the remaining tributary catchments, (iii) ensure that habitat provided between dams will support reproduction and retain offspring, and (iv) formulate spatial decision problems at the scale of large river basins. Based on our review, we discuss trade-offs between hydropower and ecological objectives when planning river basin development. We hope that future testing and refinement of principles extracted from our review will define a path toward sustainable river basin design.

  1. LANDSCAPE ECOLOGY ASSESSMENT OF THE TENSAS RIVER BASIN, MISSISSIPPI RIVER DELTA REGION, AND GULF OF MEXICO

    EPA Science Inventory

    A group of landscape ecological indicators were applied to biophysical data masked to the Tensas River Basin. The indicators were use to identify and prioritize sources of nutrients in a
    Mississippi River System sub-basin. Remotely sensed data were used for change detection a...

  2. 18. YAZOO BACKWATER PUMPING STATION MODEL, YAZOO RIVER BASIN. CIVIL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. YAZOO BACKWATER PUMPING STATION MODEL, YAZOO RIVER BASIN. CIVIL ENGINEERING AIDE AT CONTROL BOX. - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

  3. Atmospheric circulation and snowpack in the Gunnison River Basin

    USGS Publications Warehouse

    McCabe, Gregory J.

    1994-01-01

    Winter mean 700-millibar height anomalies over the eastern North Pacific Ocean and the western United States are related to variability in snowpack accumulations measured on or about April 1 in the Gunnison River Basin in Colorado. Higher-than-average snowpack accumulations are associated with negative 700-millibar height anomalies (anomalous cyclonic circulation) over the western United States and over most of the eastern North Pacific Ocean. The anomalous cyclonic circulation enhances the movement of moisture from the eastern North Pacific Ocean into the southwestern United States. Variability in winter mean 700-millibar height anomalies explain over 50 percent of the variability in snowpack accumulations in the Gunnison River Basin. The statistically significant linear relations between 700-millibar height anomalies and snowpack accumulations in the Gunnison River Basin can be used with general-circulation-model simulations of future 700-millibar height anomalies to estimate changes in snowpack accumulations in the Gunnison River Basin for future climatic conditions.

  4. ALTERNATIVE FUTURES FOR THE WILLAMETTE RIVER BASIN, OREGON

    EPA Science Inventory

    Alternative futures analysis is an assessment approach designed to inform community decisions regarding land and water use. We conducted an alternative futures analysis in the Willamette River Basin in western Oregon. Based on detailed input from local stakeholders, three alter...

  5. 19. YAZOO BACKWATER PUMPING STATION MODEL, YAZOO RIVER BASIN. ELECTRONICS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. YAZOO BACKWATER PUMPING STATION MODEL, YAZOO RIVER BASIN. ELECTRONICS ENGINEER AT DATA COLLECTION COMPUTER ROOM. - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

  6. Water resources of Wisconsin, Pecatonica-Sugar River basin

    USGS Publications Warehouse

    Hindall, S.M.; Skinner, Earl L.

    1973-01-01

    The purpose of this report is to describe the physical environment, availability, characteristics, distribution, movement, and quailty of water in the Pecatonica-Sugar River basin.  In addition, water use and water problems are summarized to give an understanding of man's management of water within the basin.

  7. Greater Green River Basin Production Improvement Project

    SciTech Connect

    DeJarnett, B.B.; Lim, F.H.; Calogero, D.

    1997-10-01

    The Greater Green River Basin (GGRB) of Wyoming has produced abundant oil and gas out of multiple reservoirs for over 60 years, and large quantities of gas remain untapped in tight gas sandstone reservoirs. Even though GGRB production has been established in formations from the Paleozoic to the Tertiary, recent activity has focused on several Cretaceous reservoirs. Two of these formations, the Ahnond and the Frontier Formations, have been classified as tight sands and are prolific producers in the GGRB. The formations typically naturally fractured and have been exploited using conventional well technology. In most cases, hydraulic fracture treatments must be performed when completing these wells to to increase gas production rates to economic levels. The objectives of the GGRB production improvement project were to apply the concept of horizontal and directional drilling to the Second Frontier Formation on the western flank of the Rock Springs Uplift and to compare production improvements by drilling, completing, and testing vertical, horizontal and directionally-drilled wellbores at a common site.

  8. Identification of heavy metal sources in the reclaimed farmland soils of the pearl river estuary in China using a multivariate geostatistical approach.

    PubMed

    Gu, Yang Guang; Li, Qu Sheng; Fang, Jian Hong; He, Bao Yan; Fu, Hong Bo; Tong, Ze Jun

    2014-07-01

    Heavy metals in the reclaimed farmland soils of the Pearl River Estuary in China have attracted much attention because of the health risk posed to local residents. The identification of heavy metal sources in these soils is necessary to reduce their health risk. Reclaimed farmland soil samples were collected from 144 sites in the Pearl River Estuary and the contents of heavy metals (Cd, Pb, Cr, Ni, Cu, and Zn) were determined. All these heavy metals showed concentrations substantially higher than their background values, indicating possible anthropogenic pollution. The results of a multivariate geostatistical method demonstrate that grouped Cd, Cr, and Cu were mainly controlled by chemical fertilizers. Grouped Pb and Zn were the most severely impacted by atmospheric deposition from Guangzhou and Foshan, and Ni was primarily impacted by electroplating factories' wastewater discharge. PMID:24780227

  9. Identification of heavy metal sources in the reclaimed farmland soils of the pearl river estuary in China using a multivariate geostatistical approach.

    PubMed

    Gu, Yang Guang; Li, Qu Sheng; Fang, Jian Hong; He, Bao Yan; Fu, Hong Bo; Tong, Ze Jun

    2014-07-01

    Heavy metals in the reclaimed farmland soils of the Pearl River Estuary in China have attracted much attention because of the health risk posed to local residents. The identification of heavy metal sources in these soils is necessary to reduce their health risk. Reclaimed farmland soil samples were collected from 144 sites in the Pearl River Estuary and the contents of heavy metals (Cd, Pb, Cr, Ni, Cu, and Zn) were determined. All these heavy metals showed concentrations substantially higher than their background values, indicating possible anthropogenic pollution. The results of a multivariate geostatistical method demonstrate that grouped Cd, Cr, and Cu were mainly controlled by chemical fertilizers. Grouped Pb and Zn were the most severely impacted by atmospheric deposition from Guangzhou and Foshan, and Ni was primarily impacted by electroplating factories' wastewater discharge.

  10. Water loss in the Potomac River basin during droughts

    USGS Publications Warehouse

    Hagen, E.R.; Kiang, J.E.; Dillow, J.J.A.; ,

    2004-01-01

    The water loss phenomena in the Washington DC metropoliton area's (WMA) Potomac River water supply basin during droughts was analyzed. Gage errors, permitted withdrawals, evaporation, and transpiration by trees along the river were investigated to account for loss. The Interstate Commission on the Potomac River Basin (ICPRB) calculated potential gage error and examined permits to determine permitted levels of consumption withdrawals from the Potomac. The result of a single slug test indicated that the soil transmissivity may not be adequate to allow passage of enough water to account for all of the calculated water loss.

  11. Vitrinite Reflectance Data for the Wind River Basin, Central Wyoming

    USGS Publications Warehouse

    Finn, Thomas M.; Roberts, Laura N.R.; Pawlewicz, Mark J.

    2006-01-01

    Introduction: The Wind River Basin is a large Laramide (Late Cretaceous through Eocene) structural and sedimentary basin that encompasses about 7,400 mi2 in central Wyoming. The basin boundaries are defined by fault-bounded Laramide uplifts that surround it, including the Owl Creek and Bighorn Mountains to the north, Wind River Range to the west, Granite Mountains to the south, and Casper Arch to the east. The purpose of this report is to present new vitrinite reflectance data to be used in support of the U.S Geological Survey assessment of undiscovered oil and gas resources of the Wind River Basin. One hundred and nineteen samples were collected from Jurassic through Tertiary rocks, mostly coal-bearing strata, in an effort to better understand and characterize the thermal maturation and burial history of potential source rocks.

  12. Distribution, possible sources, and health risk assessment of SVOC pollution in small streams in Pearl River Delta, China.

    PubMed

    Sun, Hongwei; An, Taicheng; Li, Guiying; Qiao, Meng; Wei, Dongbin

    2014-09-01

    The pollution levels of typical semivolatile organic compounds (SVOCs) consisting of 15 polycyclic aromatic hydrocarbons (PAHs), 20 organic chlorinated pesticides (OCPs), and 15 phthalate esters (PAEs) were investigated in small rivers running through the flourishing cities in Pearl River Delta region, China. The concentrations of ∑15PAHs were 2.0-48 ng/L and 29-1.2 × 10(3) ng/g in the water and sediment samples, respectively. The ∑20OCPs were 6.6-57 ng/L and 9.3-6.0 × 10(2) ng/g in the water and sediment samples, respectively. The concentrations of ∑15PAEs were much higher both in the water and sediments. The partition process of the detected SVOCs between the water and sediment did not reach the equilibrium state at most of the sites when sampling. The combustion of petroleum products and coal was the major source of the detected PAHs. The OCPs were mainly historical residue, whereas the new inputs of dichlorodiphenyltrichloroethane (DDT), chlordane, and endosulfan were possible at several sites. The industrial and domestic sewage were the major source for the PAEs; storm water runoff accelerated the input of PAEs. No chronic risk of the SVOCs was identified by a health risk assessment through daily water consumption, except for the ∑20OCPs that might cause cancer at several sites. Nevertheless, the integrated health risk of the SVOCs should not be neglected and need intensive investigations.

  13. Accessing the Relationship between archaeal and bacterial Tetraethers in the Pearl River Estuary and Coastal South China Sea

    NASA Astrophysics Data System (ADS)

    Wang, J. X.

    2015-12-01

    Microbial intact polar GDGTs with phosphate head groups (phospho IP-GDGTs) are powerful biomarkers for tracing interactions between living cells and their environments. The goal of this study was to examine the relationship between archaeal isoprenoid (iso-) GDGTs and bacterial branched (br-) in the Pearl River estuary and coastal South China Sea. Suspended particulate matter (SPM) was collected using 0.7 μm- and 0.2 μm-filters in winter and summer of 2012. The results exhibited that 1) the abundance of phospho IP-isoGDGTs is lower than phospho IP-brGDGTs in different seasons, and 2) phospho IP-brGDGTs collected from 0.2 μm-filter in winter are significantly higher than the summer. Linear regression analysis showed that the abundance of phospho IP-isoGDGTs and phospho IP-brGDGTs are significantly correlated, suggesting that the source archaea of the isoGDGTs may have functional relationship with the brGDGT-producing bacteria in the study area. Furthermore, the seasonal highest abundances of iso- and br-GDGTs always occurred in the transitional zone between river and estuary, indicating that the transitional area is a highly productive environment for the GDGT-producing organisms.

  14. Water and Benefit Sharing in Transboundary River Basins

    NASA Astrophysics Data System (ADS)

    Arjoon, D.; Tilmant, A.; Herrmann, M.

    2015-12-01

    Growing water scarcity underlies the importance of cooperation for the effective management of river basins, particularly in the context of international rivers in which unidirectional externalities can lead to asymmetric relationships between riparian countries. Studies have shown that significant economic benefits can be expected through basin-wide cooperation, however, the equitable partitioning of these benefits over the basin is less well studied and tends to overlook the importance of stakeholder input in the definition of equitability. In this study, an institutional arrangement to maximize welfare and then share the scarcity cost in a river basin is proposed. A river basin authority plays the role of a bulk water market operator, efficiently allocating bulk water to the users and collecting bulk water charges which are then equitably redistributed among water users. This highly regulated market restrains the behaviour of water users to control externalities and to ensure basin-wide coordination, enhanced efficiency, and the equitable redistribution of the scarcity cost. The institutional arrangement is implemented using the Eastern Nile River basin as a case study. The importance of this arrangement is that it can be adopted for application in negotiations to cooperate in trans-boundary river basins. The benefit sharing solution proposed is more likely to be perceived as equitable because water users help define the sharing rule. As a result, the definition of the sharing rule is not in question, as it would be if existing rules, such as bankruptcy rules or cooperative game theory solutions, are applied, with their inherent definitions of fairness. Results of the case study show that the sharing rule is predictable. Water users can expect to receive between 93.5% and 95% of their uncontested benefits (benefits that they expect to receive if water was not rationed), depending on the hydrologic scenario.

  15. Remote sensing and DEM-based approach for updating acid sulphate soil distribution: an example in Pearl River Estuary, South China

    NASA Astrophysics Data System (ADS)

    Chen, Shuisen; Liu, Qinhuo; Chen, Liangfu; Wang, Juan

    2004-11-01

    There is more population but less cultivated land in the Pearl River estuary region South China. The commissariat provision in the region is not enough for a long amount of time. The distribution of acid sulphate soil (ASS) is constantly changing for the Pearl River Delta as it expands seaward. It is important to research the ASS for land use planning and crop potentiality in appraising the Pearl River estuary. As more than 20 years have passed since the soil type maps and reports of the 2nd national soil investigation were made, soil quality problems have appeared. These problems can be solved by modern remote sensing and GIS techniques. The ASS units are updated by the analysis of the new remote sensing images and the application of digital elevation model (DEM). Changes in the ASS area are also produced by GIS. Finally, a practical distribution of ASS is presented in the map. The authors found out that the results of remote sensing and the GIS methods are of high reliability and spatial conclusiveness by comparing the result data with the past investigation report of soil and some field exploration data.

  16. Influence of the Pearl River estuary and vertical mixing in Victoria Harbor on water quality in relation to eutrophication impacts in Hong Kong waters.

    PubMed

    Yin, Kedong; Harrison, Paul J

    2007-06-01

    This study presents water quality parameters such as nutrients, phytoplankton biomass and dissolved oxygen based on 11 years of water quality data in Victoria Harbor and examined how the Pearl River estuary discharge in summer and year round sewage discharge influenced these parameters. Nutrients in Victoria Harbor were strongly influenced by both the Pearl River and sewage effluent, as indicated by the high NO(3) inputs from the Pearl River in summer and higher NH(4) and PO(4) in Victoria Harbor than both its sides. N:P ratios were low in the dry season, but increased to >16:1 in the wet season, suggesting that P is potentially the most limiting nutrient in this area during the critical period in the summer. Although there were generally high nutrients, the phytoplankton biomass was not as high as one would expect in Victoria Harbor. In fact, there were high concentrations of chl near the bottom well below the photic zone. Salinity near the bottom was lower in Victoria Harbor than at the two entrances to Victoria Harbor, suggesting strong vertical mixing within Victoria Harbor. Therefore, strong vertical mixing and horizontal advection appear to play an important role in significantly reducing eutrophication impacts in Victoria Harbor. Consequently, dissolved oxygen near the bottom was low in summer, but only occasionally dipped to 2 mgL(-1) despite the high organic loading from sewage effluent.

  17. M-Area basin closure, Savannah River Site

    SciTech Connect

    McMullin, S.R.; Horvath, J.G.

    1991-12-31

    M-Area, on the Savannah River Site, processes raw materials and manufactures fuel and target rods for reactor use. Effluent from these processes were discharged into the M-Area settling basin and Lost Lake, a natural wetland. The closure of this basin began in 1988 and included the removal and stabilization of basin fluids, excavation of all contaminated soils from affected areas and Lost Lake, and placement of all materials in the bottom of the emptied basin. These materials were covered with a RCRA style cap, employing redundant barriers of kaolin clay and geosynthetic material. Restoration of excavated uplands and wetlands is currently underway.

  18. M-Area basin closure, Savannah River Site

    SciTech Connect

    McMullin, S.R.; Horvath, J.G.

    1991-01-01

    M-Area, on the Savannah River Site, processes raw materials and manufactures fuel and target rods for reactor use. Effluent from these processes were discharged into the M-Area settling basin and Lost Lake, a natural wetland. The closure of this basin began in 1988 and included the removal and stabilization of basin fluids, excavation of all contaminated soils from affected areas and Lost Lake, and placement of all materials in the bottom of the emptied basin. These materials were covered with a RCRA style cap, employing redundant barriers of kaolin clay and geosynthetic material. Restoration of excavated uplands and wetlands is currently underway.

  19. Implication of drainage basin parameters of a tropical river basin of South India

    NASA Astrophysics Data System (ADS)

    Babu, K. J.; Sreekumar, S.; Aslam, Arish

    2016-03-01

    Drainage morphometry provides quantitative description of the drainage system which is an important aspect of the characterisation of watersheds. Chalakudi River is one of the important rivers of the South India which has attracted attention of many environmental scientists recently because of the proposed Athirapally Hydel Project across the river. SRTM (Shuttle Radar Topographic Mission) data were used for preparing DEM (Digital Elevation Model), Aspect Map and Slope Map. Geographical Information System (GIS) was used for the evaluation of linear, areal and relief aspects of morphometric parameters. The study reveals that the terrain exhibits dentritic and trellis pattern of drainage. The Chalakudi River Basin has a total area of 1,448.73 km2 and is designated as seventh-order basin. The drainage density of the basin is estimated as 2.54 and the lower-order streams mostly dominate the basin. The high basin relief indicates high runoff and sediment transport. The elongation ratio of the Chalakudi Basin is estimated as 0.48 and indicates that the shape of the basin is elongated. The development of stream segments in the basin area is more or less effected by rainfall. Relief ratio indicates that the discharge capability of watershed is very high and the groundwater potential is meagre. The low value of drainage density in spite of mountainous relief indicates that the area is covered by dense vegetation and resistant rocks permeated by fractures and joints. These studies are helpful in watershed development planning and wise utilization of natural resources.

  20. Assessment of Anthropogenic Impacts in La Plata River Basin

    NASA Astrophysics Data System (ADS)

    Garcia, N. O.; Venencio, M.

    2006-12-01

    An assessment of the variability of the streamflows in La Plata Basin (LPB), particularly in its major tributaries Paraná and Uruguay, is presented in this work. The La Plata Basin, the fifth largest basin in the world and second only to the Amazon in South America, is 3.6 million km2 and covers portions of 5 countries: Argentina, Brazil, Bolivia, Paraguay, and Uruguay. Sub-basins include the Bermejo, Paraná, Paraguay, Pilcomayo, and Uruguay. Major rivers of the basin are the Paraguay, the Uruguay and the Paraná. Streamflows in the LPB have been above normal in the last decades, e.g. the mean flow in the Paraná river during the 1971-1994 period was 34% higher than the mean flow during the 1931-1970 period. A similar analysis carried out on the precipitation records for the La Plata basin showed only a 14% increase during the same periods for the Upper Paraná basin and a 20% increase for the Uruguay basin. In this paper it is postulated that the increase in the streamflows, not explained by precipitation increases, is due to the changes in cultivation patterns in the upper basins of the Paraná and Uruguay. Particularly, the substitution of coffee plantations for annual crops, mainly soybeans, has produced a change in the infiltration patterns that influenced the discharges.

  1. Nighttime HOx chemistry in the Pearl River Delta and Beijing in summer 2006: intense oxidation without sunlight

    NASA Astrophysics Data System (ADS)

    Lu, K. D.; Rohrer, F.; Hofzumahaus, A.; Holland, F.; Fuchs, H.; Brauers, T.; Dlugi, R.; Li, X.; Lou, S. R.; Shao, M.; Zhu, T.; Wahner, A.; Zhang, Y. H.

    2012-04-01

    Due to the absence of sunlight, unexpected high nighttime OH concentrations reported in previous field studies are of high interest for in-depth understanding of trace gas removal and reaction kinetics. In summer 2006, within the framework of PRIDE-PRD2006 and CAREBEIJING2006, we performed intensive in-situ measurements for HOx radicals and ancillary parameters at two non-urban sites in Pearl River Delta and Beijing, respectively. During nighttime, quite similar features for both campaigns were observed. Measured nighttime OH and HO2 concentrations were about 0.5 - 3-106cm-3 and 0.2 - 5-108cm-3, respectively. A box model with the established chemical mechanism (RACM-MIM-GK) underestimated these observed OH concentrations by an order of magnitude while reproduced the observed HO2 taking into account the known interference from ambient RO2 radicals (Fuchs et al. 2011). By testing the recently proposed recycling mechanisms applied for daytime chemistry, we found both a small primary source and a secondary source of OH radicals, the last one comparable to daytime observations (Lu et al., 2011, Hofzumahaus et al., 2009). Interestingly, the widely applied LIM0 and MIM2+ showed marginal impacts on the modeled nighttime OH concentrations under high isoprene concentrations. With the help of a simple 1 d simulation, we found that direct input of ROx radicals by vertical transport was negligible while the input of PAN and MPAN could be of significance. Averaged nighttime pollutant turnover rates by OH were as high as 8 ppb/h and 4 ppb/h for PRD and Beijing, respectively, dominating nighttime oxidation processes. Fuchs, H., et al. Detection of HO2 by laser-induced fluorescence: calibration and interferences from RO2 radicals, Atmos. Meas. Tech., 4, 1209-1225, 2011. Hofzumahaus, A. et al. Amplified Trace Gas Removal in the Troposphere, Science, 324, 1702-1704, 2009. Lu, K. D. et al. Observation and modelling of OH and HO2 concentrations in the Pearl River Delta 2006: a missing

  2. Quantifying the extent of river fragmentation by hydropower dams in the Sarapiqui River Basin, Costa Rica

    USGS Publications Warehouse

    Anderson, Elizabeth P.; Pringle, C.M.; Freeman, Mary C.

    2008-01-01

    1. Costa Rica has recently experienced a rapid proliferation of dams for hydropower on rivers draining its northern Caribbean slope. In the Sarapiqui River Basin, eight hydropower plants were built between 1990 and 1999 and more projects are either under construction or proposed. The majority of these dams are small (< 15 m tall) and operate as water diversion projects. 2. While the potential environmental effects of individual projects are evaluated prior to dam construction, there is a need for consideration of the basin-scale ecological consequences of hydropower development. This study was a first attempt to quantify the extent of river fragmentation by dams in the Sarapiqui River Basin. 3. Using simple spatial analyses, the length of river upstream from dams and the length of de-watered reaches downstream from dams was measured. Results indicated that there are currently 306.8 km of river (9.4% of the network) upstream from eight existing dams in the Sarapiqui River Basin and 30.6 km of rivers (0.9% of the network) with significantly reduced flow downstream from dams. Rivers upstream from dams primarily drain two life zones: Premontane Rain Forest (107.9km) and Lower Montane Rain Forest (168.2km). 4. Simple spatial analyses can be used as a predictive or planning tool for considering the effects of future dams in a basin-scale context. In the Sarapiqui River Basin, we recommend that future dam projects be constructed on already dammed rivers to minimize additional river fragmentation and to protect remaining riverine connectivity.

  3. Assessment of sampling designs to measure riverine fluxes from the Pearl River Delta, China to the South China Sea.

    PubMed

    Ni, Hong-Gang; Lu, Feng-Hui; Luo, Xian-Lin; Tian, Hui-Yu; Wang, Ji-Zhong; Guan, Yu-Feng; Chen, She-Jun; Luo, Xiao-Jun; Zeng, Eddy Y

    2008-08-01

    The Pearl River Delta (PRD), located in South China and adjacent to the South China Sea, is comprised of a complicated hydrological system; therefore, it was a great challenge to sample adequately to measure fluxes of organic and inorganic materials to the coastal ocean. In this study, several sampling designs, including five-point (the number of sampling points along the river cross-section and three samples collected at the upper, middle, and bottom parts at each vertical line), three-point (at the middle and two other profiles), one-point (at the middle profile), and single-point (upper, middle, or bottom sub-sampling point at the middle profile) methods, were assessed using total organic carbon (TOC) and suspended particulate matter (SPM) as the measurables. Statistical analysis showed that the three- and five-point designs were consistent with one another for TOC measurements (p > 0.05). The three- and one-point sampling methods also yielded similar TOC results (95% of the differences within 10%). Single-point sampling yielded considerably larger errors than the three- and one-point designs, relative to the results from the five-point design, but sampling at the middle sub-point from the middle profile of a river achieved a relatively smaller error than sampling at the upper or bottom sub-point. Comparison of the sampling frequencies of 12 times a year, four times a year, and twice a year indicated that the frequency of twice a year was sufficient to acquire representative TOC data, but larger sample size and higher sampling frequency were deemed necessary to characterize SPM.

  4. Floods in the Raccoon River basin, Iowa

    USGS Publications Warehouse

    Heinitz, Albert J.

    1980-01-01

    Evaluation of flood hazards, and the planning, design, and operation of various facilities on flood plains requires information on floods. This report provides information on flood stages and discharges, flood magnitude and frequency, bench mark data, and flood profiles for the Raccoon River and some of its tributaries. Ir covers the Raccoon River, the North Raccoon River to the northern boundary of Sac County and the lower reaches of the Middle and South Raccoon Rivers.

  5. Feasible optimality of vegetation patterns in river basins

    NASA Astrophysics Data System (ADS)

    Caylor, K. K.; Scanlon, T. M.; Rodriguez-Iturbe, I.

    2004-05-01

    We examine the mechanisms leading to the maintenance of organized vegetation patterns within the network structure of a semiarid New Mexico river basin due to the controlling influence of water stress. A recently formulated analytical framework for the water balance at the daily level is used to link the distribution of climate, soils and vegetation within the basin to patterns growing season water stress. We compare the actual patterns of water stress within the basin to the distribution of water stress that results from vegetation patterns distributed according to two algorithms of local optimization. We demonstrate that a model which maintains local optimization within the network flow path exhibits a better agreement with the patterns of actual basin water stress than a model that allows for neutral local interactions that ignore the network structure of the river basin. These results suggest that the pattern of actual vegetation observed within the basin may correspond to a condition of feasible optimality in which large-scale organization is constrained by the stochastic nature of local interactions mediated by the network configuration. The principles of such organization have important consequences regarding the impact of land cover change on hydrological dynamics in river basins, as well as the geomorphological and biogeographical evolution of landscapes under varying climate and disturbance regimes.

  6. Floods in the English River basin, Iowa

    USGS Publications Warehouse

    Heinitz, A.J.; Riddle, D.E.

    1981-01-01

    Information describing floods is essential for proper planning, design, and operation of bridges and other structures on or over streams and their flood plains. This report provides information on flood stages and discharges, flood magnitude and frequency, bench mark data, and flood profiles for the English River and some of its tributaries. It covers the English River, the North English River to near Guernsey, the south Eaglish River to Barnes City and the lower reaches of the Biddle English and Deep Rivers

  7. Drought in the Klamath River Basin

    NASA Technical Reports Server (NTRS)

    2002-01-01

    For more than 100 years groups in the western United States have fought over water. During the 1880s, sheep ranchers and cattle ranchers argued over drinking water for their livestock on the high plains. In 1913, the city of Los Angeles began to draw water away from small agricultural communities in the Owen Valley, leaving a dusty dry lake bed. In the late 1950s, construction of the Glen Canyon Dam catalyzed the American environmental movement. Today, farmers are fighting fishermen, environmentalists, and Native American tribes over the water in the Upper Klamath River Basin. A below-average winter snowpack and low rainfall throughout the year have caused an extreme drought in the area along the California/Oregon border. In April 2001 a U.S. District Court stopped water deliveries to farms in the Klamath Irrigation District to preserve adequate water levels in Upper Klamath Lake to protect two endangered species of Mullet fish (called suckers). Water was also reserved for the threatened Coho Salmon which need enough water to swim downstream from their spawning grounds to the ocean. In addition, several Native American tribes have rights to Klamath River water. Further complicating the situation are a handful of wildlife refuges which usually receive enough irrigation wastewater to support upwards of a million migratory birds and 900 Bald Eagles. This year, however, several of the refuges may not have enough water for the birds which begin arriving in early fall. The severity of this year's drought is underscored by the town of Bonanza, Oregon. Famous for its natural springs, and entirely dependent on wells for drinking water, the town's water supply is now contaminated with pesticides, fertilizer, and manure. The water quality is so bad it's not even safe to bathe in, much less drink. The problem stems from a very low water table. The drop in underground water levels is caused directly by the drought, and indirectly from the increased irrigation from underground

  8. Drought in the Klamath River Basin

    NASA Technical Reports Server (NTRS)

    2002-01-01

    For more than 100 years groups in the western United States have fought over water. During the 1880s, sheep ranchers and cattle ranchers argued over drinking water for their livestock on the high plains. In 1913, the city of Los Angeles began to draw water away from small agricultural communities in the Owen Valley, leaving a dusty dry lake bed. In the late 1950s, construction of the Glen Canyon Dam catalyzed the American environmental movement. Today, farmers are fighting fishermen, environmentalists, and Native American tribes over the water in the Upper Klamath River Basin. A below-average winter snowpack and low rainfall throughout the year have caused an extreme drought in the area along the California/Oregon border. In April 2001 a U.S. District Court stopped water deliveries to farms in the Klamath Irrigation District to preserve adequate water levels in Upper Klamath Lake to protect two endangered species of Mullet fish (called suckers). Water was also reserved for the threatened Coho Salmon which need enough water to swim downstream from their spawning grounds to the ocean. In addition, several Native American tribes have rights to Klamath River water. Further complicating the situation are a handful of wildlife refuges which usually receive enough irrigation wastewater to support upwards of a million migratory birds and 900 Bald Eagles. This year, however, several of the refuges may not have enough water for the birds which begin arriving in early fall. The severity of this year's drought is underscored by the town of Bonanza, Oregon. Famous for its natural springs, and entirely dependent on wells for drinking water, the town's water supply is now contaminated with pesticides, fertilizer, and manure. The water quality is so bad it's not even safe to bathe in, much less drink. The problem stems from a very low water table. The drop in underground water levels is caused directly by the drought, and indirectly from the increased irrigation from underground

  9. Thermal profiles for selected river reaches in the Stillaguamish River basin, Washington, August 2011

    USGS Publications Warehouse

    Gandaszek, Andrew S.

    2011-01-01

    Watershed Sciences, LLC, 2002, Aerial surveys in the Stillaguamish and Skagit River Basins-Thermal infrared and color videography: Corvallis, Oreg., Water Sciences, for Washington Department of Ecology, 28 p.

  10. An integrated multiscale river basin observing system in the Heihe River Basin, northwest China

    NASA Astrophysics Data System (ADS)

    Li, X.; Liu, S.; Xiao, Q.; Ma, M.; Jin, R.; Che, T.

    2015-12-01

    Using the watershed as the unit to establish an integrated watershed observing system has been an important trend in integrated eco-hydrologic studies in the past ten years. Thus far, a relatively comprehensive watershed observing system has been established in the Heihe River Basin, northwest China. In addition, two comprehensive remote sensing hydrology experiments have been conducted sequentially in the Heihe River Basin, including the Watershed Allied Telemetry Experimental Research (WATER) (2007-2010) and the Heihe Watershed Allied Telemetry Experimental Research (HiWATER) (2012-2015). Among these two experiments, an important result of WATER has been the generation of some multi-scale, high-quality comprehensive datasets, which have greatly supported the development, improvement and validation of a series of ecological, hydrological and quantitative remote-sensing models. The goal of a breakthrough for solving the "data bottleneck" problem has been achieved. HiWATER was initiated in 2012. This project has established a world-class hydrological and meteorological observation network, a flux measurement matrix and an eco-hydrological wireless sensor network. A set of super high-resolution airborne remote-sensing data has also been obtained. In addition, there has been important progress with regard to the scaling research. Furthermore, the automatic acquisition, transmission, quality control and remote control of the observational data has been realized through the use of wireless sensor network technology. The observation and information systems have been highly integrated, which will provide a solid foundation for establishing a research platform that integrates observation, data management, model simulation, scenario analysis and decision-making support to foster 21st-century watershed science in China.

  11. Water resources inventory of Connecticut Part 1: Quinebaug River basin

    USGS Publications Warehouse

    Randall, Allan D.; Thomas, Mendall P.; Thomas, Chester E.; Baker, John A.

    1966-01-01

    The Quinebaug River basin is blessed with a relatively abundant supply of water of generally good quality which is derived from precipitation that has fallen on the basin. Annual precipitation has ranged from about 30 to 67 inches and has averaged about 45 inches over a 44-year period. Approximately 21 inches of water are returned to the atmosphere each year by evaporation and transpiration; the remainder of the annual precipitation either flows overland to streams or percolates downward to the water table and ultimately flows out of the basin in the Quinebaug River. During the autumn and winter months precipitation normally is sufficient to cause a substantial increase in the amount of water stored underground and in surface reservoirs within the basin, whereas in the summer most of the precipitation is lost through evaporation and transpiration, resulting in sharply reduced streamflow and lowered ground-water levels.

  12. Challenges of river basin management: Current status of, and prospects for, the River Danube from a river engineering perspective.

    PubMed

    Habersack, Helmut; Hein, Thomas; Stanica, Adrian; Liska, Igor; Mair, Raimund; Jäger, Elisabeth; Hauer, Christoph; Bradley, Chris

    2016-02-01

    In the Danube River Basin multiple pressures affect the river system as a consequence of river engineering works, altering both the river hydrodynamics and morphodynamics. The main objective of this paper is to identify the effects of hydropower development, flood protection and engineering works for navigation on the Danube and to examine specific impacts of these developments on sediment transport and river morphology. Whereas impoundments are characterised by deposition and an excess of sediment with remobilisation of fine sediments during severe floods, the remaining five free flowing sections of the Danube are experiencing river bed erosion of the order of several centimetres per year. Besides the effect of interruption of the sediment continuum, river bed degradation is caused by an increase in the sediment transport capacity following an increase in slope, a reduction of river bed width due to canalisation, prohibition of bank erosion by riprap or regressive erosion following base level lowering by flood protection measures and sediment dredging. As a consequence, the groundwater table is lowered, side-arms are disconnected, instream structures are lost and habitat quality deteriorates affecting the ecological status of valuable floodplains. The lack of sediments, together with cutting off meanders, leads also to erosion of the bed of main arms in the Danube Delta and coastal erosion. This paper details the causes and effects of river engineering measures and hydromorphological changes for the Danube. It highlights the importance of adopting a basin-wide holistic approach to river management and demonstrates that past management in the basin has been characterised by a lack of integration. To-date insufficient attention has been paid to the wide-ranging impacts of river engineering works throughout the basin: from the basin headwaters to the Danube Delta, on the Black Sea coast. This highlights the importance of new initiatives that seek to advance knowledge

  13. Challenges of river basin management: Current status of, and prospects for, the River Danube from a river engineering perspective.

    PubMed

    Habersack, Helmut; Hein, Thomas; Stanica, Adrian; Liska, Igor; Mair, Raimund; Jäger, Elisabeth; Hauer, Christoph; Bradley, Chris

    2016-02-01

    In the Danube River Basin multiple pressures affect the river system as a consequence of river engineering works, altering both the river hydrodynamics and morphodynamics. The main objective of this paper is to identify the effects of hydropower development, flood protection and engineering works for navigation on the Danube and to examine specific impacts of these developments on sediment transport and river morphology. Whereas impoundments are characterised by deposition and an excess of sediment with remobilisation of fine sediments during severe floods, the remaining five free flowing sections of the Danube are experiencing river bed erosion of the order of several centimetres per year. Besides the effect of interruption of the sediment continuum, river bed degradation is caused by an increase in the sediment transport capacity following an increase in slope, a reduction of river bed width due to canalisation, prohibition of bank erosion by riprap or regressive erosion following base level lowering by flood protection measures and sediment dredging. As a consequence, the groundwater table is lowered, side-arms are disconnected, instream structures are lost and habitat quality deteriorates affecting the ecological status of valuable floodplains. The lack of sediments, together with cutting off meanders, leads also to erosion of the bed of main arms in the Danube Delta and coastal erosion. This paper details the causes and effects of river engineering measures and hydromorphological changes for the Danube. It highlights the importance of adopting a basin-wide holistic approach to river management and demonstrates that past management in the basin has been characterised by a lack of integration. To-date insufficient attention has been paid to the wide-ranging impacts of river engineering works throughout the basin: from the basin headwaters to the Danube Delta, on the Black Sea coast. This highlights the importance of new initiatives that seek to advance knowledge

  14. Northern Powder River basin coal, Montana. Final environmental statement, regional analysis

    SciTech Connect

    Not Available

    1980-01-01

    This environmental statement is in two parts: a regional analysis and a site-specific analysis of coal development in the northern Powder River basin region of Montana. The regional analysis addresses cumulative impacts of coal development in the region by 1990, with emphasis on industry proposals that now require or have recently required action by Federal and state authorities. A site-specific analysis of the proposed mining and reclamation plan for the Pearl mine makes up volumes 2 and 4 of this FES. Total annual coal production from the designated region of southeastern Montana is estimated at about 39 million tons by 1980, 50 million tons by 1985, and 53 million tons by 1990. The Big Sky, Pearl, and Spring Creek mines would collectively produce approximately 15% of the total by 1980, 26.5% by 1985, and 25% by 1990. Three impacts were determined to be locally significant. The National Ambient Air Quality Standards for total suspended particulates would frequently be exceeded near all three minesites during mine life. Degradation of air quality would cause subtle injury to vegetation within about 1 mile of the mines and about 4 miles of the generating units, slightly reducing vegetative productivity. Wildlife populations, primarily antelope, mule deer, and sage grouse, would be significantly reduced during mine life and probably for several decades after mining. No threatened or endangered species would be adversely affected.Social impacts would be significant in Colstrip and Forsyth - comparable to those experienced during the construction of Colstrip units 1 and 2. At least during the 2 or 3 years of most rapid growth, local governments, formal and informal institutions, and social networks in Colstrip and Forsyth would not be able to meet the demands placed on them. Comment letters and responses are included.

  15. Backwater effects in the Amazon River basin of Brazil

    USGS Publications Warehouse

    Meade, R.H.; Rayol, J.M.; Da Conceicao, S.C.; Natividade, J.R.G.

    1991-01-01

    The Amazon River mainstem of Brazil is so regulated by differences in the timing of tributary inputs and by seasonal storage of water on floodplains that maximum discharges exceed minimum discharges by a factor of only 3. Large tributaries that drain the southern Amazon River basin reach their peak discharges two months earlier than does the mainstem. The resulting backwater in the lowermost 800 km of two large southern tributaries, the Madeira and Puru??s rivers, causes falling river stages to be as much as 2-3 m higher than rising stages at any given discharge. Large tributaries that drain the northernmost Amazon River basin reach their annual minimum discharges three to four months later than does the mainstem. In the lowermost 300-400 km of the Negro River, the largest northern tributary and the fifth largest river in the world, the lowest stages of the year correspond to those of the Amazon River mainstem rather than to those in the upstream reaches of the Negro River. ?? 1991 Springer-Verlag New York Inc.

  16. Dynamic water accounting in heavily committed river basins

    NASA Astrophysics Data System (ADS)

    Tilmant, Amaury; Marques, Guilherme

    2014-05-01

    Many river basins throughout the world are increasingly under pressure as water demands keep rising due to population growth, industrialization, urbanization and rising living standards. In the past, the typical answer to meet those demands focused on the supply-side and involved the construction of hydraulic infrastructures to capture more water from surface water bodies and from aquifers. As river basins were being more and more developed, downstream water users and ecosystems have become increasingly dependant on the management actions taken by upstream users. The increased interconnectedness between water users, aquatic ecosystems and the built environment is further compounded by climate change and its impact on the water cycle. Those pressures mean that it has become increasingly important to measure and account for changes in water fluxes and their corresponding economic value as they progress throughout the river system. Such basin water accounting should provide policy makers with important information regarding the relative contribution of each water user, infrastructure and management decision to the overall economic value of the river basin. This paper presents a dynamic water accounting approach whereby the entire river basin is considered as a value chain with multiple services including production and storage. Water users and reservoirs operators are considered as economic agents who can exchange water with their hydraulic neighbors at a price corresponding to the marginal value of water. Effective water accounting is made possible by keeping track of all water fluxes and their corresponding transactions using the results of a hydro-economic model. The proposed approach is illustrated with the Eastern Nile River basin in Africa.

  17. Assessing Long-Term Trend of Particulate Matter Pollution in the Pearl River Delta Region Using Satellite Remote Sensing.

    PubMed

    Li, Ying; Lin, Changqing; Lau, Alexis K H; Liao, Chenghao; Zhang, Yongbo; Zeng, Wutao; Li, Chengcai; Fung, Jimmy C H; Tse, Tim K T

    2015-10-01

    Serious particulate matter (PM) pollution problems in many polluted regions of China have been frequently reported in recent years. Long-term exposure to ambient PM pollution is significantly associated with adverse health effects. Characterizing the long-term trends and variation in PM pollution is a basic requirement for evaluating long-term exposure and for guiding future policies to reduce the effects of air pollution on health. However, long-term, ground-based PM measurements are only available at a few fixed stations. In this study, an algorithm is developed and validated to estimate PM concentrations based on the satellite atmospheric optical depth with 1 km spatial resolution. The long-term trends of PM10 concentrations in the entire Pearl River Delta (PRD) region and different cities are quantified and discussed. From 2001 to 2013, the PM10 pollution of the entire PRD region was dominated by a decreasing trend of -0.15 ± 0.23 μg/m(3)·yr. This decreasing PM10 trend was apparent over 75% of the PRD area, with the most significant decreases observed in the center of the region. However, the remaining 25%, mostly located in the outskirts of the region, showed an increasing PM10 trend. This overall decreasing trend indicates the effectiveness of the control measures applied in the past decade for the primary pollutants. PMID:26302450

  18. Source attributions of hazardous aromatic hydrocarbons in urban, suburban and rural areas in the Pearl River Delta (PRD) region.

    PubMed

    Zhang, Yanli; Wang, Xinming; Barletta, Barbara; Simpson, Isobel J; Blake, Donald R; Fu, Xiaoxin; Zhang, Zhou; He, Quanfu; Liu, Tengyu; Zhao, Xiuying; Ding, Xiang

    2013-04-15

    Aromatic hydrocarbons (AHs) are both hazardous air pollutants and important precursors to ozone and secondary organic aerosols. Here we investigated 14 C6-C9 AHs at one urban, one suburban and two rural sites in the Pearl River Delta region during November-December 2009. The ratios of individual aromatics to acetylene were compared among these contrasting sites to indicate their difference in source contributions from solvent use and vehicle emissions. Ratios of toluene to benzene (T/B) in urban (1.8) and suburban (1.6) were near that of vehicle emissions. Higher T/B of 2.5 at the rural site downwind the industry zones reflected substantial contribution of solvent use while T/B of 0.8 at the upwind rural site reflected the impact of biomass burning. Source apportionment by positive matrix factorization (PMF) revealed that solvent use, vehicle exhaust and biomass burning altogether accounted for 89-94% of observed AHs. Vehicle exhaust was the major source for benzene with a share of 43-70% and biomass burning in particular contributed 30% to benzene in the upwind rural site; toluene, C8-aromatics and C9-aromatics, however, were mainly from solvent use, with contribution percentages of 47-59%, 52-59% and 41-64%, respectively.

  19. Assessment of transboundary environmental effects in the Pearl River Delta Region: Is there a role for strategic environmental assessment?

    SciTech Connect

    Marsden, Simon

    2011-11-15

    China's EIA Law does not require transboundary proposals to be assessed, despite recognition of this globally, for example in the Espoo Convention and Kiev Protocol, and in the European EIA and SEA Directives. In a transboundary context assessment within a state is unusual, as regulating these effects is primarily about the relationship between states. However where a state has more than one legal system such as in the Pearl River Delta (PRD) Region of southern China, transboundary effects should also be addressed. Yet despite the geographical connections between Guangdong Province in mainland China (where the EIA Law applies) and the Hong Kong and Macau Special Administrative Regions (which have their own provisions, neither of which requires transboundary assessments), EIA and SEA are carried out separately. Coordinated or joint approaches to transboundary assessment are generally absent, with the legal autonomy of Hong Kong and Macau a major constraint. As a result institutional responses at the policy level have developed. The article considers global experiences with regulating transboundary EIA and SEA, and analyses potential application to land use, transport and air and water planning in the PRD Region. If applied, benefits may include prevention or mitigation of cumulative effects, broader public participation, and improvements to environmental governance. The PRD Region experience may encourage China to conduct and coordinate EIA and SEA processes with neighbouring states, which has been non-existent or extremely limited to date.

  20. Spatial trend and pollution assessment of total mercury and methylmercury pollution in the Pearl River Delta soil, South China.

    PubMed

    Chen, Laiguo; Xu, Zhencheng; Ding, Xiaoyong; Zhang, Weidong; Huang, Yumei; Fan, Ruifang; Sun, Jiaren; Liu, Ming; Qian, Donglin; Feng, Yongbin

    2012-07-01

    Total mercury (THg) and methylmercury (MeHg) were measured in large number of soil samples collected from areas with different types of land use, different depth in the Pearl River Delta (PRD) of South China. THg and MeHg concentrations ranged from 16.7 to 3320ngg(-1) and 0.01 to 1.34ngg(-1), respectively. THg levels are highest in the top 0-20cm soil layer, and decrease from the surface to bottom layer soil. Spatial variation was observed with different types of land use. Urban parks had the highest concentrations and the other areas tended to decrease in the order of residential areas, industrial areas, vegetable fields, cereal fields, and woodlands. Temporal variation was also noted, and two relatively high THg contamination zones located in the northwestern part of the PRD have significantly expanded over the last two decades. Both THg and MeHg concentrations were correlated significantly with soil organic matter (OM), but not with soil pH. THg pollution status was evaluated using two assessment methods.

  1. Brominated flame retardants in mangrove sediments of the Pearl River Estuary, South China: spatial distribution, temporal trend and mass inventory.

    PubMed

    Zhang, Zai-Wang; Sun, Yu-Xin; Sun, Kai-Feng; Xu, Xiang-Rong; Yu, Shen; Zheng, Tian-Ling; Luo, Xiao-Jun; Tian, Yun; Hu, Yong-Xia; Diao, Zeng-Hui; Mai, Bi-Xian

    2015-03-01

    Sediments were collected from three mangrove wetlands in the Pearl River Estuary (PRE) of South China to investigate spatial and temporal distributions of polybrominated diphenyl ethers (PBDEs), decabromodiphenyl ethane (DBDPE) and 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE). Concentrations of ΣPBDEs, DBDPE and BTBPE in mangrove sediments of the PRE ranged from 1.25-206, 0.364-34.9, and not detected-0.794 ng g(-1) dry weight, respectively. The highest concentrations of ΣPBDEs, DBDPE and BTBPE were found at the mangrove wetland from Shenzhen, followed by Zhuhai and Guangzhou, showing the dependence on the proximity to urban areas. PBDEs were the predominant brominated flame retardants (BFRs) in mangrove sediments. The concentrations of ΣPBDEs, DBDPE and BTBPE in sediment cores showed an increasing trend from the bottom to top layers, reflecting the increasing usage of these BFRs. The inventories of ΣPBDEs, DBDPE and BTBPE in mangrove sediments were 1962, 245, and 4.10 ng cm(-2), respectively. This is the first study to report the occurrence of DBDPE and BTBPE in mangrove ecosystems.

  2. Partitioning behavior of perfluorinated compounds between sediment and biota in the Pearl River Delta of South China.

    PubMed

    Zhao, Y G; Wan, H T; Wong, M H; Wong, Chris K C

    2014-06-15

    Surface sediment and biota were collected from 12 sampling sites - seven along the Pearl River Delta and five along the Hong Kong coastline. Perfluorinated compound (PFC) concentrations were detected using a high-performance-liquid-chromatogram-tandem-mass-spectrometry system. Analytical results indicated that the total PFC concentrations were in the range of 0.15-3.11 ng/g dry weight in sediments, while the total PFC concentrations in oyster and mussel samples were between 0.46-1.96 and 0.66-3.43 ng/g wet weight, respectively. The major types of PFCs detected in the sediment samples were perfluorooctanesulfonic acid (PFOS) and perfluorobutanoic acid (PFBA), with concentrations ranging from low limits of quantification to 0.86±0.12 ng/g dry weight and 1.50±0.26 ng/g dry weight, respectively. In bivalve samples, PFOS was the dominant contaminant with concentrations ranging from 0.25±0.09 to 0.83±0.12 ng/g wet weight in oysters and 0.41±0.14 to 1.47±0.25 ng/g wet weight in mussels. An increase in PFC concentration was found to be correlated with increased human population density in the study areas. PMID:24775068

  3. Occurrence and geochemical behavior of arsenic in a coastal aquifer-aquitard system of the Pearl River Delta, China.

    PubMed

    Wang, Ya; Jiao, Jiu Jimmy; Cherry, John A

    2012-06-15

    Elevated concentrations of arsenic, up to 161 μg/L, have been identified in groundwater samples from the confined basal aquifer underlying the aquitard of the Pearl River Delta (PRD). Both aquatic arsenic in pore water and solid arsenic in the sediments in the basal aquifer and aquitard were identified. Arsenic speciation of groundwater in the basal aquifer was elucidated on a pH-Eh diagram. In the PRD, arsenic is enriched in groundwater having both low and high salinity, and arsenic enriched groundwater is devoid of dissolved oxygen, has negative Eh values, is slightly alkaline, and has abnormally high concentrations of ammonium and dissolved organic carbon, but low concentrations of nitrate and nitrite. Results of geochemical and hydrochemical analyses and sequential extraction analysis suggest that reductive dissolution of iron oxyhydroxide could be one of the important processes that mobilized solid arsenic. We speculate that mineralization of sedimentary organic matter could also contribute to aquatic arsenic. Scanning electron microscope analysis confirms that abundant authigenic pyrite is present in the sediments. Sulphate derived from paleo-seawater served as the important sulfur source for authigenic pyrite formation. Co-precipitation of arsenic with authigenic pyrite significantly controlled concentrations of aquatic arsenic in the coastal aquifer-aquitard system.

  4. Impacts of thermal circulations induced by urbanization on ozone formation in the Pearl River Delta region, China

    NASA Astrophysics Data System (ADS)

    Li, Mengmeng; Song, Yu; Mao, Zhichun; Liu, Mingxu; Huang, Xin

    2016-02-01

    Thermal circulations induced by urbanization could exert important effects on regional ozone (O3) formation through regulating the chemical transformations and transport of O3 and its precursors. In this study, the Weather Research and Forecasting/Chemistry (WRF/Chem) model combined with remote sensing are used to investigate the impacts of urbanization-induced circulations on O3 formation in the Pearl River Delta (PRD) region, China. The urban heat island (UHI) effect in PRD significantly enhances turbulent mixing and modifies local circulations, i.e., initiates the UHI circulation and strengthens the sea breeze, which in turn cause a detectable decrease of daytime O3 concentration (-1.3 ppb) and an increase of O3 (+5.2 ppb) around the nocturnal rush-hours. The suppressed O3 titration destruction due to NOx dilution into the deeper urban boundary layer (200-400 m) is the main reason for elevated nocturnal O3 levels. In the daytime, however, the upward transport of O3 precursors weakens near-surface O3 photochemical production and conversely enhances upper-level O3 generation. Furthermore, the surface UHI convergence flow and intensified sea breeze act to effectively trap O3 at the suburban and coastal regions.

  5. Brominated flame retardants in mangrove sediments of the Pearl River Estuary, South China: spatial distribution, temporal trend and mass inventory.

    PubMed

    Zhang, Zai-Wang; Sun, Yu-Xin; Sun, Kai-Feng; Xu, Xiang-Rong; Yu, Shen; Zheng, Tian-Ling; Luo, Xiao-Jun; Tian, Yun; Hu, Yong-Xia; Diao, Zeng-Hui; Mai, Bi-Xian

    2015-03-01

    Sediments were collected from three mangrove wetlands in the Pearl River Estuary (PRE) of South China to investigate spatial and temporal distributions of polybrominated diphenyl ethers (PBDEs), decabromodiphenyl ethane (DBDPE) and 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE). Concentrations of ΣPBDEs, DBDPE and BTBPE in mangrove sediments of the PRE ranged from 1.25-206, 0.364-34.9, and not detected-0.794 ng g(-1) dry weight, respectively. The highest concentrations of ΣPBDEs, DBDPE and BTBPE were found at the mangrove wetland from Shenzhen, followed by Zhuhai and Guangzhou, showing the dependence on the proximity to urban areas. PBDEs were the predominant brominated flame retardants (BFRs) in mangrove sediments. The concentrations of ΣPBDEs, DBDPE and BTBPE in sediment cores showed an increasing trend from the bottom to top layers, reflecting the increasing usage of these BFRs. The inventories of ΣPBDEs, DBDPE and BTBPE in mangrove sediments were 1962, 245, and 4.10 ng cm(-2), respectively. This is the first study to report the occurrence of DBDPE and BTBPE in mangrove ecosystems. PMID:25482977

  6. Bioaccumulation and biomagnification of halogenated organic pollutants in mangrove biota from the Pearl River Estuary, South China.

    PubMed

    Sun, Yu-Xin; Zhang, Zai-Wang; Xu, Xiang-Rong; Hu, Yong-Xia; Luo, Xiao-Jun; Cai, Ming-Gang; Mai, Bi-Xian

    2015-10-15

    Four biota species were collected from mangrove ecosystems of the Pearl River Estuary to investigate the bioaccumulation and biomagnification of polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane (DDT), polybrominated diphenyl ethers (PBDEs), dechlorane plus (DP), and decabromodiphenyl ethane (DBDPE). Concentrations of ΣPCBs, ΣDDTs, ΣPBDEs, DP, DBDPE and anti-Cl11-DP (the dechlorination product of anti-DP) in mangrove biota ranged from 32.1-466, 153-3819, 3.88-59.8, 0.18-6.88, not detected (nd)-30.6 and nd-2.65 ng/g lipid weight, respectively. Daggertooth pike conger (Muraenesox cinereus) had higher concentrations of contaminants than the other three biota species. Significant positive relationship between anti-Cl11-DP and anti-DP levels was observed in mangrove biota. DDTs were the predominant HOPs in all biota species, followed by PCBs and PBDEs. All the target compounds exhibited biomagnification, with biomagnification factors greater than 1 in the studied feeding relationships. Food web magnification was found for ΣPCBs, ΣDDTs, ΣPBDEs and DP, with trophic magnification factors of 2.76, 2.61, 2.20 and 2.31, respectively. PMID:26209127

  7. Polychlorinated dibenzo-p-dioxin and dibenzofuran concentrations in common fish species in the Pearl River Delta area, China.

    PubMed

    Zhang, Jianqing; Zhou, Jian; Jiang, Yousheng; Jiang, Jie; Zhuang, Zhixiong; Liu, Xiaoli; Wu, Yongning

    2007-01-01

    Polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/Fs) concentrations in 31 fish samples from 19 commonly consumed freshwater and saltwater species from the Pearl River Delta Area were analyzed. The PCDD/Fs dietary intake from fish for the local population was evaluated to provide a database for setting the national PCDD/F limits in fish for the People's Republic of China. The median concentration from the 31 fish samples was 1.27 pg/g wet weight for the total of PCDD/Fs, and the median WHO-TEQ was 0.26 pg/g wet weight, and ranged from 0.063 to 1.30 pg WHO-TEQ/g wet weight. The dominant contributors to the WHO-TEQ were 1,2,3,7,8-PeCDD and 2,3,4,7,8-PeCDF, which accounted for 38% and 28%, respectively. The dietary intake of PCDD/Fs from fish for local people was estimated to be 0.47 pg WHO-TEQ/kg bw x day. In view of the findings, the dietary of PCDD/Fs from other foods of animal origins in China should be studied in more detail as soon as possible in order that standards can be put forward to protect human health.

  8. Atmospheric depositional fluxes and sources apportionment of organochlorine pesticides in the Pearl River Delta region, South China.

    PubMed

    Huang, Qiang; Song, Jianzhong; Zhong, Ying; Peng, Ping'an; Huang, Weilin

    2014-01-01

    Organochlorine pesticides (OCPs) have variously been phased out in agricultural activities, but they are still widely detected in air, water, and soil systems due to their recalcitrant nature in the environment. The purposes of this study were to assess potential OCP pollution via dry and wet deposition over the fast developing Pearl River Delta area with 41,700 km(2), where the main effort has been focused on emerging pollutants such as petroleum hydrocarbons and PM2.5. We quantified both the dry and wet deposition fluxes of 19 OCPs including dichlorodiphenyltrichloroethanes (DDTs), endosulfans (Endos), and hexachlorocyclohexanes (HCHs). The results showed that each year about 67.4, 42.0, 15.0, and 8.07 kg of total OCPs, DDTs, Endos, and HCHs were returned to the ground, among which 11.7, 10.4, 0.84, and 0.16 kg were in the dry deposition forms. The large spatial variations in OCP deposition fluxes indicated that OCP pollution in the air is mainly influenced on local scales because evaporation from local soil is likely the major source of the phased out OCPs. Source analysis indicated that DDTs may be still in use as antifouling agent and/or dicofol, but Endos and HCHs were mainly derived from the residual of historical usage. The study suggests that the historical OCP pollutants are persistent at high levels in this area and should not be overlooked, while we tackle emerging pollutants. PMID:23943243

  9. Using mercury isotopes to understand the bioaccumulation of Hg in the subtropical Pearl River Estuary, South China.

    PubMed

    Yin, Runsheng; Feng, Xinbin; Zhang, Junjun; Pan, Ke; Wang, Wenxiong; Li, Xiangdong

    2016-03-01

    Coastal and estuarine regions are important areas of mercury pollution. Therefore, it is important to properly characterize the sources and bioaccumulation processes of mercury in these regions. Here, we present mercury stable isotopic compositions in 18 species of wild marine fish collected from the Pearl River Estuary (PRE), south China. Our results showed variations in mass-independent fractionation (Δ(199)Hg: +0.05 ± 0.10‰ to +0.59 ± 0.30‰) with a Δ(199)Hg/Δ(201)Hg of ∼1.26, suggesting that aqueous MeHg underwent photo-degradation prior to incorporation into the food chain. For the results, we discovered small but significant differences of Δ(199)Hg values among herbivorous, demersal, and carnivorous fish, indicating that different feeding guilds of fish may have incorporated MeHg with various degrees of photo-demethylation. The consistent mercury isotope compositions between fish feeding habitat and mercury sources in the estuary provide potentially important findings on the transformation and bioaccumulation of this toxic metal in subtropical coastal environments. PMID:26766353

  10. [Prediction and simulation of urban area expansion in Pearl River Delta Region under the RCPs climate scenarios].

    PubMed

    Jiang, Oun-ou; Deng, Xiang-zheng; Ke, Xin-li; Zhao, Chun-hong; Zhang, Wei

    2014-12-01

    The sizes and number of cities in China are increasing rapidly and complicated changes of urban land use system have occurred as the social economy develops rapidly. This study took the urban agglomeration of Pearl River Delta Region as the study area to explore the driving mechanism of dynamic changes of urban area in the urbanization process under the joint influence of natural environment and social economic conditions. Then the CA (cellular automata) model was used to predict and simulate the urban area changes until 2030 under the designed scenarios of planning and RCPs (representative concentration pathways). The results indicated that urbanization was mainly driven by the non-agricultural population growth and social-economic development, and the transportation had played a fundamental role in the whole process, while the areas with high elevation or steep slope restricted the urbanization. Besides, the urban area would keep an expanding trend regardless of the scenarios, however, the expanding speed would slow down with different inflection points under different scenarios. The urban expansion speed increased in the sequence of the planning scenario, MESSAGE scenario and AIM scenario, and that under the MESSAGE climate scenario was more consistent with the current urban development trend. In addition, the urban expansion would mainly concentrate in regions with the relatively high urbanization level, e.g., Guangzhou, Dongguan, Foshan, Shenzhen, Zhanjiang and Chaoshan.

  11. Which emission sources are responsible for the volatile organic compounds in the atmosphere of Pearl River Delta?

    PubMed

    Guo, H; Cheng, H R; Ling, Z H; Louie, P K K; Ayoko, G A

    2011-04-15

    A field measurement study of volatile organic compounds (VOCs) was simultaneously carried out in October-December 2007 at an inland Pearl River Delta (PRD) site and a Hong Kong urban site. A receptor model i.e. positive matrix factorization (PMF) was applied to the data for the apportionment of pollution sources in the region. Five and six sources were identified in Hong Kong and the inland PRD region, respectively. The major sources identified in the region were vehicular emissions, solvent use and biomass burning, whereas extra sources found in inland PRD included liquefied petroleum gas and gasoline evaporation. In Hong Kong, the vehicular emissions made the most significant contribution to ambient VOCs (48 ± 4%), followed by solvent use (43 ± 2%) and biomass burning (9 ± 2%). In inland PRD, the largest contributor to ambient VOCs was solvent use (46 ± 1%), and vehicular emissions contributed 26 ± 1% to ambient VOCs. The percentage contribution of vehicular emission in Hong Kong in 2007 is close to that obtained in 2001-2003, whereas in inland PRD the contribution of solvent use to ambient VOCs in 2007 was at the upper range of the results obtained in previous studies and twice the 2006 PRD emission inventory. The findings advance our knowledge of ozone precursors in the PRD region. PMID:21316844

  12. Assessing Long-Term Trend of Particulate Matter Pollution in the Pearl River Delta Region Using Satellite Remote Sensing.

    PubMed

    Li, Ying; Lin, Changqing; Lau, Alexis K H; Liao, Chenghao; Zhang, Yongbo; Zeng, Wutao; Li, Chengcai; Fung, Jimmy C H; Tse, Tim K T

    2015-10-01

    Serious particulate matter (PM) pollution problems in many polluted regions of China have been frequently reported in recent years. Long-term exposure to ambient PM pollution is significantly associated with adverse health effects. Characterizing the long-term trends and variation in PM pollution is a basic requirement for evaluating long-term exposure and for guiding future policies to reduce the effects of air pollution on health. However, long-term, ground-based PM measurements are only available at a few fixed stations. In this study, an algorithm is developed and validated to estimate PM concentrations based on the satellite atmospheric optical depth with 1 km spatial resolution. The long-term trends of PM10 concentrations in the entire Pearl River Delta (PRD) region and different cities are quantified and discussed. From 2001 to 2013, the PM10 pollution of the entire PRD region was dominated by a decreasing trend of -0.15 ± 0.23 μg/m(3)·yr. This decreasing PM10 trend was apparent over 75% of the PRD area, with the most significant decreases observed in the center of the region. However, the remaining 25%, mostly located in the outskirts of the region, showed an increasing PM10 trend. This overall decreasing trend indicates the effectiveness of the control measures applied in the past decade for the primary pollutants.

  13. Bioaccumulation and biomagnification of halogenated organic pollutants in mangrove biota from the Pearl River Estuary, South China.

    PubMed

    Sun, Yu-Xin; Zhang, Zai-Wang; Xu, Xiang-Rong; Hu, Yong-Xia; Luo, Xiao-Jun; Cai, Ming-Gang; Mai, Bi-Xian

    2015-10-15

    Four biota species were collected from mangrove ecosystems of the Pearl River Estuary to investigate the bioaccumulation and biomagnification of polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane (DDT), polybrominated diphenyl ethers (PBDEs), dechlorane plus (DP), and decabromodiphenyl ethane (DBDPE). Concentrations of ΣPCBs, ΣDDTs, ΣPBDEs, DP, DBDPE and anti-Cl11-DP (the dechlorination product of anti-DP) in mangrove biota ranged from 32.1-466, 153-3819, 3.88-59.8, 0.18-6.88, not detected (nd)-30.6 and nd-2.65 ng/g lipid weight, respectively. Daggertooth pike conger (Muraenesox cinereus) had higher concentrations of contaminants than the other three biota species. Significant positive relationship between anti-Cl11-DP and anti-DP levels was observed in mangrove biota. DDTs were the predominant HOPs in all biota species, followed by PCBs and PBDEs. All the target compounds exhibited biomagnification, with biomagnification factors greater than 1 in the studied feeding relationships. Food web magnification was found for ΣPCBs, ΣDDTs, ΣPBDEs and DP, with trophic magnification factors of 2.76, 2.61, 2.20 and 2.31, respectively.

  14. Spatial and Vertical Distribution of Dechlorane Plus in Mangrove Sediments of the Pearl River Estuary, South China.

    PubMed

    Sun, Yu-Xin; Zhang, Zai-Wang; Xu, Xiang-Rong; Hao, Qin-Wei; Hu, Yong-Xia; Zheng, Xiao-Bo; Luo, Xiao-Jun; Diao, Zeng-Hui; Mai, Bi-Xian

    2016-10-01

    Thirty surface sediments and three sediment cores were collected from mangrove wetlands in the Pearl River Estuary of South China to investigate the spatial and vertical distribution of Dechlorane Plus (DP). DP concentrations in the mangrove surface sediments ranged from 0.0130 to 1.504 ng/g dry weight (dw). DP concentrations in sediments from Shenzhen were significantly greater than those from Guangzhou and Zhuhai. Anti-Cl11-DP, the dechlorinated product of anti-DP, was also detected in the mangrove sediments with concentrations ranged from not detected to 0.0198 ng/g dw. Significant positive relationship between anti-Cl11-DP and anti-DP levels was observed in the mangrove sediments, suggesting that photo and/or microbial degradation of anti-DP might occur in the sediments. The f anti values in the mangrove sediments were close to those in the technical DP products, suggesting that stereoselective enrichment of anti-DP may not exist in the mangrove sediments. DP concentrations in the mangrove sediment cores generally showed an increasing trend from the bottom to top layers. This is the first study to report the occurrence of DP and its degradation product in the mangrove wetlands.

  15. Top-down estimates of benzene and toluene emissions in the Pearl River Delta and Hong Kong, China

    NASA Astrophysics Data System (ADS)

    Fang, Xuekun; Shao, Min; Stohl, Andreas; Zhang, Qiang; Zheng, Junyu; Guo, Hai; Wang, Chen; Wang, Ming; Ou, Jiamin; Thompson, Rona L.; Prinn, Ronald G.

    2016-03-01

    Benzene (C6H6) and toluene (C7H8) are toxic to humans and the environment. They are also important precursors of ground-level ozone and secondary organic aerosols and contribute substantially to severe air pollution in urban areas in China. Discrepancies exist between different bottom-up inventories for benzene and toluene emissions in the Pearl River Delta (PRD) and Hong Kong (HK), which are emission hot spots in China. This study provides top-down estimates of benzene and toluene emissions in the PRD and HK using atmospheric measurement data from a rural site in the area, Heshan, an atmospheric transport model, and an inverse modeling method. The model simulations captured the measured mixing ratios during most pollution episodes. For the PRD and HK, the benzene emissions estimated in this study for 2010 were 44 (12-75) and 5 (2-7) Gg yr-1 for the PRD and HK, respectively, and the toluene emissions were 131 (44-218) and 6 (2-9) Gg yr-1, respectively. Temporal and spatial differences between the inversion estimate and four different bottom-up emission estimates are discussed, and it is proposed that more observations at different sites are urgently needed to better constrain benzene and toluene (and other air pollutant) emissions in the PRD and HK in the future.

  16. Polycyclic aromatic hydrocarbons in upstream riverine runoff of the Pearl River Delta, China: an assessment of regional input sources.

    PubMed

    Zhang, Kai; Liang, Bo; Wang, Ji-Zhong; Guan, Yu-Feng; Zeng, Eddy Y

    2012-08-01

    Water samples collected from upstream tributaries of the Pearl River Delta (PRD) and from locations within the PRD (South China) were analyzed for 27 polycyclic aromatic hydrocarbons (PAHs). Average concentrations (aqueous plus particulate) of total 27 PAHs (Σ(27)PAH), 16 priority PAHs designated by the United States Environmental Protection Agency (USEPA) except naphthalene (Σ(15)PAH), and the seven carcinogenic PAHs (Σ(7)PAH) classified by the USEPA were 260 ± 410, 130 ± 310, and 15 ± 12 ng/L, respectively. Riverine PAHs were predominantly generated from coal and vegetation combustion, coke production, vehicle exhausts, and petroleum residues, accounting for 28%, 25%, 22% and 21%, respectively, on average. Upstream riverine fluxes of Σ(27)PAH and Σ(15)PAH amounted to 38.9 and 12.9 tons/year, respectively. The net contributions of Σ(27)PAH and Σ(15)PAH from sources within the PRD were estimated at 21.4 and 21.0 tons/year, respectively.

  17. Metabolic and phylogenetic profile of bacterial community in Guishan coastal water (Pearl River Estuary), South China Sea

    NASA Astrophysics Data System (ADS)

    Hu, Xiaojuan; Liu, Qing; Li, Zhuojia; He, Zhili; Gong, Yingxue; Cao, Yucheng; Yang, Yufeng

    2014-10-01

    Characteristics of a microbial community are important as they indicate the status of aquatic ecosystems. In the present study, the metabolic and phylogenetic profile of the bacterioplankton community in Guishan coastal water (Pearl River Estuary), South China Sea, at 12 sites (S1-S12) were explored by community-level physiological profiling (CLPP) with BIOLOG Eco-plate and denaturing gradient gel electrophoresis (DGGE). Our results showed that the core mariculture area (S6, S7 and S8) and the sites associating with human activity and sewage discharge (S11 and S12) had higher microbial metabolic capability and bacterial community diversity than others (S1-5, S9-10). Especially, the diversity index of S11 and S12 calculated from both CLPP and DGGE data ( H>3.2) was higher than that of others as sewage discharge may increase water nitrogen and phosphorus nutrient. The bacterial community structure of S6, S8, S11 and S12 was greatly influenced by total phosphorous, salinity and total nitrogen. Based on DGGE fingerprinting, proteobacteria, especially γ- and α-proteobacteria, were found dominant at all sites. In conclusion, the aquaculture area and wharf had high microbial metabolic capability. The structure and composition of bacterial community were closely related to the level of phosphorus, salinity and nitrogen.

  18. Spatial and Vertical Distribution of Dechlorane Plus in Mangrove Sediments of the Pearl River Estuary, South China.

    PubMed

    Sun, Yu-Xin; Zhang, Zai-Wang; Xu, Xiang-Rong; Hao, Qin-Wei; Hu, Yong-Xia; Zheng, Xiao-Bo; Luo, Xiao-Jun; Diao, Zeng-Hui; Mai, Bi-Xian

    2016-10-01

    Thirty surface sediments and three sediment cores were collected from mangrove wetlands in the Pearl River Estuary of South China to investigate the spatial and vertical distribution of Dechlorane Plus (DP). DP concentrations in the mangrove surface sediments ranged from 0.0130 to 1.504 ng/g dry weight (dw). DP concentrations in sediments from Shenzhen were significantly greater than those from Guangzhou and Zhuhai. Anti-Cl11-DP, the dechlorinated product of anti-DP, was also detected in the mangrove sediments with concentrations ranged from not detected to 0.0198 ng/g dw. Significant positive relationship between anti-Cl11-DP and anti-DP levels was observed in the mangrove sediments, suggesting that photo and/or microbial degradation of anti-DP might occur in the sediments. The f anti values in the mangrove sediments were close to those in the technical DP products, suggesting that stereoselective enrichment of anti-DP may not exist in the mangrove sediments. DP concentrations in the mangrove sediment cores generally showed an increasing trend from the bottom to top layers. This is the first study to report the occurrence of DP and its degradation product in the mangrove wetlands. PMID:27421724

  19. Hotspot of glyoxal over the Pearl River delta seen from the OMI satellite instrument: implications for emissions of aromatic hydrocarbons

    NASA Astrophysics Data System (ADS)

    Miller, Christopher Chan; Jacob, Daniel J.; González Abad, Gonzalo; Chance, Kelly

    2016-04-01

    The Pearl River delta (PRD) is a densely populated hub of industrial activity located in southern China. OMI (Ozone Monitoring Instrument) satellite observations reveal a large hotspot of glyoxal (CHOCHO) over the PRD that is almost twice as large as any other in Asia. Formaldehyde (HCHO) and NO2 observed by OMI are also high in the PRD but no more than in other urban/industrial areas of China. The CHOCHO hotspot over the PRD can be explained by industrial paint and solvent emissions of aromatic volatile organic compounds (VOCs), with toluene being a dominant contributor. By contrast, HCHO in the PRD originates mostly from VOCs emitted by combustion (principally vehicles). By applying a plume transport model to wind-segregated OMI data, we show that the CHOCHO and HCHO enhancements over the PRD observed by OMI are consistent with current VOC emission inventories. Prior work using CHOCHO retrievals from the SCIAMACHY satellite instrument suggested that emission inventories for aromatic VOCs in the PRD were too low by a factor of 10-20; we attribute this result in part to bias in the SCIAMACHY data and in part to underestimated CHOCHO yields from oxidation of aromatics. Our work points to the importance of better understanding CHOCHO yields from the oxidation of aromatics in order to interpret space-based CHOCHO observations in polluted environments.

  20. Chloride as tracer of solute transport in the aquifer-aquitard system in the Pearl River Delta, China

    NASA Astrophysics Data System (ADS)

    Kuang, Xingxing; Jiao, Jiu Jimmy; Wang, Ya

    2016-08-01

    A 1D numerical model is constructed to investigate the impact of sedimentation and sea level changes on transport of Cl- in the aquifer-aquitard system in the Pearl River Delta (PRD), China. The model simulates the evolution of the vertical Cl- concentration profiles during the Holocene. Sedimentation is modeled as a moving boundary problem. Chloride concentration profiles are reconstructed for nine boreholes, covering a wide area of the PRD, from northwest to southeast. Satisfactory agreement is obtained between simulated and measured Cl- concentration profiles. Diffusion solely is adequate to reproduce the vertical Cl- concentration profiles, which indicates that diffusion is the regionally dominant vertical transport mechanism across the aquitards in the PRD. The estimated effective diffusion coefficients of the aquitards range from 2.0 × 10-11 to 2.0 × 10-10 m2/s. The effective diffusion coefficients of the aquifers range from 3.0 × 10-11 to 4.0 × 10-10 m2/s. Advective transport tends to underestimate Cl- concentrations in the aquitard and overestimate Cl- concentrations in the basal aquifer. The results of this study will help understand the mechanisms of solute transport in the PRD and other deltas with similar geological and hydrogeological characteristics.

  1. Potential submarine geologic hazards at the entrance of the Pearl River Estuary in the northern South China Sea

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiqiang; Wei, Zhiqiang; He, Huizhong; Wei, Wei; Qian, Libing; Li, Tuanjie

    2016-08-01

    The potential submarine geologic hazards were distinguished and categorized at the entrance of the Pearl River Estuary in the northern South China Sea, based upon the analysis of side scan sonar and sub-bottom profiler surveying data of about 2500 km long, in an area about 2000 km2 around the Wanshan Archipelago. The data obtained in the survey has the highest spatial resolution by far, which could reveal more detailed distributions and characteristics of the geologic hazards than before. In the study region, three paleo-channels that were buried about 10-30 m below the seabed were found; more than 10 shallow gas areas were discovered. The sand waves found in the region were generally small and located near the islands, and twenty pockmarks found on the seabed were mostly concentrated to north of Zhuzhou island. There are also many man-made obstacles in the region, such as wreckages, pipeline, etc. In this paper we provide a detailed distribution map of the submarine geologic hazards in this region for the first time, and discuss their formation and harmfulness, which will provide a scientific basis for marine engineering construction, marine geologic disaster prevention and mitigation.

  2. Policy change driven by an AIS-assisted marine emission inventory in Hong Kong and the Pearl River Delta

    NASA Astrophysics Data System (ADS)

    Ng, Simon K. W.; Loh, Christine; Lin, Chubin; Booth, Veronica; Chan, Jimmy W. M.; Yip, Agnes C. K.; Li, Ying; Lau, Alexis K. H.

    2013-09-01

    A new exhaust emission inventory of ocean-going vessels (OGVs) was compiled for Hong Kong by using Automatic Identification System (AIS) data for the first time to determine typical main engine load factors, through vessel speed and operation mode characterization. It was found that in 2007, container vessel was the top emitting vessel type, contributing 9,886, 11,480, 1,173, 521 and 1166 tonnes of SO2, NOx, PM10, VOC and CO, respectively, or about 80%-82% of the emissions. The top five, which also included ocean cruise, oil tanker, conventional cargo vessel and dry bulk carrier, accounted for about 98% of emissions. Emission maps, which add a new spatial dimension to the inventory, show the key emission hot spots in Hong Kong and suggest that a significant portion of emissions were emitted at berth. Scientific evidence about the scale and distribution of ship emissions has contributed in raising public awareness and facilitating stakeholder engagement about the issue. Fair Winds Charter, the world's first industry-led voluntary emissions reduction initiative, is a perfect example of how careful scientific research can be used in public engagement and policy deliberation to help drive voluntary industry actions and then government proposals to control and regulate marine emissions in Hong Kong and the Pearl River Delta region.

  3. Atmospheric depositional fluxes and sources apportionment of organochlorine pesticides in the Pearl River Delta region, South China.

    PubMed

    Huang, Qiang; Song, Jianzhong; Zhong, Ying; Peng, Ping'an; Huang, Weilin

    2014-01-01

    Organochlorine pesticides (OCPs) have variously been phased out in agricultural activities, but they are still widely detected in air, water, and soil systems due to their recalcitrant nature in the environment. The purposes of this study were to assess potential OCP pollution via dry and wet deposition over the fast developing Pearl River Delta area with 41,700 km(2), where the main effort has been focused on emerging pollutants such as petroleum hydrocarbons and PM2.5. We quantified both the dry and wet deposition fluxes of 19 OCPs including dichlorodiphenyltrichloroethanes (DDTs), endosulfans (Endos), and hexachlorocyclohexanes (HCHs). The results showed that each year about 67.4, 42.0, 15.0, and 8.07 kg of total OCPs, DDTs, Endos, and HCHs were returned to the ground, among which 11.7, 10.4, 0.84, and 0.16 kg were in the dry deposition forms. The large spatial variations in OCP deposition fluxes indicated that OCP pollution in the air is mainly influenced on local scales because evaporation from local soil is likely the major source of the phased out OCPs. Source analysis indicated that DDTs may be still in use as antifouling agent and/or dicofol, but Endos and HCHs were mainly derived from the residual of historical usage. The study suggests that the historical OCP pollutants are persistent at high levels in this area and should not be overlooked, while we tackle emerging pollutants.

  4. [Preliminary studies on the occurrence of antibiotic resistance genes in typical aquaculture area of the Pearl River Estuary].

    PubMed

    Liang, Xi-Mei; Nie, Xiang-Ping; Shi, Zhen

    2013-10-01

    Traditional and quantitative PCR techniques were used to determine the occurrence and quantities of ARGs, including three types of genes resistant to sulfonamide, seven for tetracycline resistance and one for quinolone resistance, as well as one integron gene in typical aquaculture of the Pearl River Estuary. The results showed that all genes except for tetW were detectable in the aquaculture environment, and sull, sul2 and int1 were the most frequently detected genes (detectable percentage, 100% ). Relative abundances of ARGs increased with the prolongation of rearing time under the same aquaculture pattern, suggesting a cumulative effect. Moreover, the occurrences of ARGs in the ponds were different with different aquaculture patterns, indicating that the aquaculture pattern might play an important role in the abundances and distributions of ARGs. Relative abundances of intl, as a horizontal mobile genetic element, were significantly correlated to the levels of sull and the total ARGs (P < 0. 05). The total concentration of antibiotics exhibited a good positive correlation with the total concentration of ARGs in sediments (P <0. 05). All results elucidated that extensive residues of antibiotics in the aquaculture substantially increased the abundances of ARGs probably owning to the induction of horizontal gene transfer of ARGs among bacteria.

  5. The changes in trace metal contamination over the last decade in surface sediments of the Pearl River Estuary, South China.

    PubMed

    Chen, Baowei; Liang, Ximei; Xu, Weihai; Huang, Xiaoping; Li, Xiangdong

    2012-11-15

    Surface sediments can provide useful information on the recent pollution status of an estuary. One recent field survey was carried out in the Pearl River Estuary (PRE), South China in 2011. The comparisons with previous surveys demonstrated that the concentrations of Ni and Pb in the PRE declined over the last decade, but the concentration of Cu increased in the same time frame. The significant decreases in the concentrations of Ni and Pb were probably due to a reduction of anthropogenic inputs, such as industrial wastewater, into the PRE environment, and the ban imposed on leaded gasoline. Statistical analyses have consistently demonstrated that the process of the sedimentation of fine particles was the dominant factor in controlling the transport and distribution of trace metals in the PRE. The riverine trace metals generally displayed a pattern of diffusion from the northwest to the southeast in the estuary. However, the riparian industrial activities at the east bank of the inner PRE caused significant metal contamination in sediments. In general, effective pollution control measures in the PRD region have decreased the levels of some trace metals in the entire PRE over the last decade with the exception of Cu.

  6. [Source and distribution characteristic of atmospheric organochlorine pesticides in the Pearl River Estuary and adjacent South China Sea].

    PubMed

    Liu, Guo-qing; Zhang, Gan; Li, Jun; Liu, Xiang; Peng, Xian-zhi; Zou, Shi-chun; Qi, Shi-hua

    2008-12-01

    Ship-board air samples were collected during the winter and spring cruise to the Pearl River Estuary (PRE) and adjacent South China Sea (SCS) in 2003 and were analyzed for organochlorine pesticides (OCPs). Meanwhile, air samples were collected at land-based sites in Guangzhou and Zhongshan for comparison. Results indicated that the detected OCPs were mainly of HCHs, DDTs and chlordane, its concentration ranged between 13-99, 73-390, 63-224 pg/m3 and 10-106, 429-1003, 1724-9638 pg/m3 during the winter and spring cruise, respectively. In general, the concentrations of OCPs were higher during spring cruise than in winter cruise. The measured OCPs concentration in the atmosphere over the PRE and adjacent SCS were found higher at sites close to continent and lower in outer sea, it is suggested that land-based source were to play a key role in the delivery of atmospheric OCPs. The alpha-HCH concentrations had significantly declined, higher gamma-HCH level may attribute to the present usage of lindane. Dicofol application and antifouling paints for fishing ships was suggested to be the important current "fresh" DDT source. The observed high level of chlordane during spring cruise could be related to the large amount usage of chlordane for termite control, as well as the long range transport from the west pacific region.

  7. Trace metal distribution in sediments of the Pearl River Estuary and the surrounding coastal area, South China.

    PubMed

    Ip, Carman C M; Li, Xiang-Dong; Zhang, Gan; Wai, Onyx W H; Li, Yok-Sheung

    2007-05-01

    Surface sediments and sediment cores collected at the Pearl River Estuary (PRE) and its surrounding coastal area were analysed for total metal concentrations, chemical partitioning, and Pb isotopic compositions. The distribution of Cu, Cr, Pb, and Zn demonstrated a typical diffusion pattern from the land to the direction of the sea. Two hotspots of trace metal contamination were located at the mixed zone between freshwater and marine waters. The enrichment of metals in the sediments could be attributed to the deposition of the dissolved and particulate trace metals in the water column at the estuarine area. The similar Pb isotopic signatures of the sediments at the PRE and its surrounding coastal area offered strong evidence that the PRE was a major source of trace metals to the adjacent coastal area. Slightly lower (206)Pb/(207)Pb ratios in the coastal sediments may indicate other inputs of Pb in addition to the PRE sources, including the inputs from Hong Kong and other parts of the region.

  8. Chemical character of streams in the Delaware River basin

    USGS Publications Warehouse

    Anderson, Peter W.; McCarthy, Leo T.

    1963-01-01

    The water chemistry of streams in the Delaware River basin falls into eight general groups, when mapped according to the prevalent dissolved-solids content and the predominant ions normally found in the water. The approximate regions representing each of these iso-chemical quality groups are shown on the accompanying base map of the drainage basin.

  9. Transport of diazinon in the San Joaquin River Basin, California

    USGS Publications Warehouse

    Kratzer, C.R.

    1999-01-01

    Most of the application of the organophosphate insecticide diazinon in the San Joaquin River Basin occurs in winter to control wood-boring insects in dormant almond orchards. A federal-state collaborative study found that diazinon accounted for most of the observed toxicity of San Joaquin River water in February 1993. Previous studies focused mainly on west-side inputs to the San Joaquin River. In this 1994 study, the three major east-side tributaries to the San Joaquin River - the Merced, Tuolumne, and Stanislaus rivers - and a downstream site on the San Joaquin River were sampled throughout the hydrographs of a late January and an early February storm. In both storms, the Tuolumne River had the highest concentrations of diazinon and transported the largest load of the three tributaries. The Stanislaus River was a small source in both storms. On the basis of previous storm sampling and estimated travel times, ephemeral west-side creeks probably were the main diazinon source early in the storms, whereas the Tuolumne and Merced rivers and east-side drainages directly to the San Joaquin River were the main sources later. Although 74 percent of diazinon transport in the San Joaquin River during 1991-1993 occurred in January and February, transport during each of the two 1994 storms was only 0.05 percent of the amount applied during preceding dry periods. Nevertheless, some of the diazinon concentrations in the San Joaquin River during the January storm exceeded 0.35 ??g/L, a concentration shown to be acutely toxic to water fleas. On the basis of this study and previous studies, diazinon concentrations and streamflow are highly variable during January and February storms, and frequent sampling is required to evaluate transport in the San Joaquin River Basin.

  10. Sediment Transport in Streams in the Umpqua River Basin, Oregon

    USGS Publications Warehouse

    Onions, C. A.

    1969-01-01

    This report presents tables of suspended-sediment data collected from 1956 to 1967 at 10 sites in the Umpqua River basin. Computations based on these data indicate that average annual suspended-sediment yields at these sites range from 137 to 822 tons per square mile. Because available data for the Umpqua River basin are generally inadequate for accurate determinations of sediment yield and for the definition of characteristics of fluvial sediments, recommendations are made for the collection and analysis of additional sediment data.

  11. Groundwater quality in the Colorado River basins, California

    USGS Publications Warehouse

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Four groundwater basins along the Colorado River make up one of the study areas being evaluated. The Colorado River study area is approximately 884 square miles (2,290 square kilometers) and includes the Needles, Palo Verde Mesa, Palo Verde Valley, and Yuma groundwater basins (California Department of Water Resources, 2003). The Colorado River study area has an arid climate and is part of the Sonoran Desert. Average annual rainfall is about 3 inches (8 centimeters). Land use in the study area is approximately 47 percent (%) natural (mostly shrubland), 47% agricultural, and 6% urban. The primary crops are pasture and hay. The largest urban area is the city of Blythe (2010 population of 21,000). Groundwater in these basins is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay deposited by the Colorado River or derived from surrounding mountains. The primary aquifers in the Colorado River study area are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in the Colorado River basins are completed to depths between 230 and 460 feet (70 to 140 meters), consist of solid casing from the land surface to a depth of 130 of 390 feet (39 to 119 meters), and are screened or perforated below the solid casing. The main source of recharge to the groundwater systems in the Needles, Palo Verde Mesa, and Palo Verde Valley basins is the Colorado River; in the Yuma basin, the main source of recharge is from

  12. Water quality of streams and springs, Green River Basin, Wyoming

    USGS Publications Warehouse

    DeLong, L.L.

    1986-01-01

    Data concerning salinity, phosphorus, and trace elements in streams and springs within the Green River Basin in Wyoming are summarized. Relative contributions of salinity are shown through estimates of annual loads and average concentrations at 11 water quality measurements sites for the 1970-77 water years. A hypothetical diversion of 20 cu ft/sec from the Big Sandy River was found to lower dissolved solids concentration in the Green River at Green River, Wyoming. This effect was greatest during the winter months, lowering dissolved solids concentration as much as 13%. Decrease in dissolved solids concentrations during the remainder of the year was generally less than 2%. Unlike the dilution effect that overland runoff has on perennial streams, runoff in ephemeral and intermittent streams within the basin was found to be enriched by the flushing of salts from normally dry channels and basin surfaces. Relative concentrations of sodium and sulfate in streams within the basin appear to be controlled by solubility. A downstream trend of increasing relative concentrations of sodium, sulfate, or both with increasing dissolved solids concentration was evident in all streams sampled. Estimates of total phosphorus concentration at water quality measurement sites indicate that phosphorus is removed from the Green River water as it passes through Fontenelle and Flaming Gorge Reservoirs. Total phosphorus concentration at some stream sites is directly or inversely related to streamflow, but at most sites a simple relation between concentration and streamflow is not discernable. (USGS)

  13. Regionalization of flood hydrograph parameters in the Kolubara River Basin

    NASA Astrophysics Data System (ADS)

    Drobnjak, Aleksandar; Zlatanovic, Nikola; Bozovic, Nikola; Stojkovic, Milan; Orlic Momcilovic, Aleksandra; Jelovac, Milena; Prohaska, Stevan

    2016-04-01

    The Kolubara River basin is located in the western part of Serbia. There are several hydrological and rainfall gauging stations in the basin, while a large part of the basin is ungauged. In recent years in this area floods have been a common occurrence, so it is necessary to improve the system of flood protection. The research that is presented in this study represents a hydrological aspect to strengthening flood protection. This study presents the procedure of regionalization of basic flood hydrograph parameters in the Kolubara river basin. All significant observed flood waves in the basin over the past 50 years were collected, assimilated and analyzed. In this research, the method applied was based on the separation of flood hydrograph parameters, for each hydrological station: time to peak (time from the beginning of the hydrograph to its peak) (Tp), time of recession (time from the peak to the end of the recession limb) (Tr), retention time of rainfall in the catchment (tp) and time of concentration (Tc). Using these parameters and morphological characteristics of the basin, such as catchment area, the distance weighted channel slope, length of the main stream, the distance of the center of basin to the profile of each hydrological stations, regional dependencies were established. Parameters of flood hydrograph were analyzed as dependent variables, while the morphological characteristics of the basin represent independent variables. The final goal of this work is to use the obtained regional dependence for flood hydrograph parameter estimation at ungauged locations, with the end goal of improving flood protection in the Kolubara river basin.

  14. Magnetic properties of agricultural soil in the Pearl River Delta, South China - Spatial distribution and influencing factor analysis

    NASA Astrophysics Data System (ADS)

    Bian, Yong; Ouyang, Tingping; Zhu, Zhaoyu; Huang, Ningsheng; Wan, Hongfu; Li, Mingkun

    2014-08-01

    Environmental magnetism has been widely applied to soil science due to its speediness, non-destructiveness and cost-effectiveness. However, the magnetic investigation of agricultural soil, so closely related to human activity, is limited, most probably because of its complexity. Here we present a magnetic investigation of 301 agricultural soil samples collected from the Pearl River Delta (PRD, 112°E-115°E and 22°N-24°N), China. The results showed that both low and high coercivity magnetic minerals coexist in agricultural soil. The values of concentration-dependent parameters, low-field susceptibility (χlf), anhysteretic remanence magnetization susceptibility (χARM), and saturation isothermal remanence magnetization (SIRM) were much higher in the PRD plain than in the surrounding areas. The S-ratio (S- 300) showed a similar spatial pattern to the aforementioned parameters. By contrast, frequency-dependent susceptibility (χfd%) and χARM/SIRM were higher in the surrounding hilly and mountainous areas than in the PRD plain. Natural and anthropogenic factors such as parent material, soil type and cultivation methods play important roles in determining agricultural soil magnetic properties. Magnetic minerals were coarser grained and overall indicated higher concentrations in soils from river alluvium and deposited materials. Soils which had suffered long-term water submergence have the lowest magnetic mineral concentration, a result consistent with previous studies. The magnetic properties of agricultural soils are strongly influenced by cultivation methods. Other human activities, such as industrial development and concomitant emitted pollutants, might have had an additional impact on the magnetic properties of agricultural soil.

  15. River-aquifer exchanges in the Yakima River basin, Washington

    USGS Publications Warehouse

    Vaccaro, J.J.

    2011-01-01

    Five categories of data are analyzed to enhance understanding of river-aquifer exchanges-the processes by which water moves between stream channels and the adjacent groundwater system-in the Yakima River basin. The five datasets include (1) results of chemical analyses of water for tritium (3H, a radioactive isotope of hydrogen) and the ratios of the stable isotopes of hydrogen (2H/1H) and oxygen (18O/16O), (2) series of stream discharge measurements within specified reaches (seepage investigations or 'runs'), (3) vertical hydraulic gradients (between stream stage and hydraulic heads the underlying aquifer) measured using mini-piezometers, (4) groundwater levels and water temperature in shallow wells near stream channels, and (5) thermal profiles (continuous records of water temperature along river reaches). Exchanges are described in terms of streamflow, vertical hydraulic gradients, groundwater temperature and levels, and streamflow temperature, and where appropriate, the exchanges are discussed in terms of their relevance to and influence on salmonid habitat. The isotope data shows that the ultimate source of surface and groundwater is meteoric water derived from atmospheric precipitation. Water from deep wells has a different isotopic composition than either shallow groundwater or surface water, indicating that the deep groundwater system contributes, at most, only a small component of the surface-water discharge. The isotope data confirms that river-aquifer exchanges involve primarily modern streamflow and modern, shallow groundwater. Net exchanges of water for 46 stream sections investigated with seepage runs ranged from nearly zero to 1,071 ft3/s for 28 gaining sections, and -3 to -242 ft3/s for 18 losing sections. The magnitude of the upper 50 percent of the net gains is an order of magnitude larger than those for net losses. The sections have a normalized net exchange (as absolute value) that fully ranged from near 0 to 65.6 (ft3/s)/mi. Gaining

  16. Selected streamflow data for the Delaware River basin

    USGS Publications Warehouse

    Schopp, Robert D.; Gillespie, Brian D.

    1979-01-01

    Selected streamflow data for the Delaware River basin include runoff-precipitation relationships for 28 selected subbasins for the period 1941-70; low-flow frequency curves for four mainstem Delaware River sites; monthly comparative duration curves and twenty year hydrographs at Montague and Trenton, New Jersey; and flow duration tables based on observed daily streamflow for gaging stations near 21 proposed dam sites. (Woodard-USGS)

  17. Persistent halogenated compounds in fish from rivers in the Pearl River Delta, South China: Geographical pattern and implications for anthropogenic effects on the environment.

    PubMed

    Sun, Runxia; Luo, Xiaojun; Tang, Bin; Li, Zongrui; Wang, Tao; Tao, Lin; Mai, Bixian

    2016-04-01

    Three fish species, mud carp (Cirrhinus molitorella), tilapia (Tilapia nilotica), and plecostomus (Hypostomus plecostomus), from rivers in the Pearl River Delta (PRD) were analyzed for dichlorodiphenyltrichloroethane and its metabolites (DDTs), hexachlorocyclohexanes (HCHs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), decabromodiphenyl ethane (DBDPE), and Dechlorane Plus (DP). The concentrations of DDTs, HCHs, PCBs, PBDEs, DBDPE, and DP ranged from 380-57,000, 5.5-100, 30-4200, 6.9-690, 0.29-460, and 0.09-20ng/g lipid weight, respectively. Congener profiles or chemical compositions of PBDEs, DPs, DDTs, and HCHs in plecostomus differed significantly from those in the other two fish species, which can be ascribed to species-specific metabolism. DDTs derived from historical residue and land erosion remained the predominant pollutants in the PRD, while industrial and urban activities resulted in elevated levels of PCBs and PBDEs in the metropolitan area. E-waste recycling activities have greatly impacted on the adjacent aquatic environment, and the potential point source for DBDPE was also revealed. PMID:26821261

  18. Persistent halogenated compounds in fish from rivers in the Pearl River Delta, South China: Geographical pattern and implications for anthropogenic effects on the environment.

    PubMed

    Sun, Runxia; Luo, Xiaojun; Tang, Bin; Li, Zongrui; Wang, Tao; Tao, Lin; Mai, Bixian

    2016-04-01

    Three fish species, mud carp (Cirrhinus molitorella), tilapia (Tilapia nilotica), and plecostomus (Hypostomus plecostomus), from rivers in the Pearl River Delta (PRD) were analyzed for dichlorodiphenyltrichloroethane and its metabolites (DDTs), hexachlorocyclohexanes (HCHs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), decabromodiphenyl ethane (DBDPE), and Dechlorane Plus (DP). The concentrations of DDTs, HCHs, PCBs, PBDEs, DBDPE, and DP ranged from 380-57,000, 5.5-100, 30-4200, 6.9-690, 0.29-460, and 0.09-20ng/g lipid weight, respectively. Congener profiles or chemical compositions of PBDEs, DPs, DDTs, and HCHs in plecostomus differed significantly from those in the other two fish species, which can be ascribed to species-specific metabolism. DDTs derived from historical residue and land erosion remained the predominant pollutants in the PRD, while industrial and urban activities resulted in elevated levels of PCBs and PBDEs in the metropolitan area. E-waste recycling activities have greatly impacted on the adjacent aquatic environment, and the potential point source for DBDPE was also revealed.

  19. 77 FR 47331 - Regulated Navigation Area-New Haven Harbor, Quinnipiac River, Mill River, New Haven, CT; Pearl...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-08

    .... SUPPLEMENTARY INFORMATION: Table of Acronyms COTP Captain of the Port DHS Department of Homeland Security FR... Federal Register (73 FR 3316). 4. Public Meeting We do not now plan to hold a public meeting. But you may... River and Mill River. The current RNA pertains only to the operation of tugs and barges. The...

  20. 77 FR 67563 - Regulated Navigation Area-New Haven Harbor, Quinnipiac River, Mill River, New Haven, CT; Pearl...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-13

    ... DHS Department of Homeland Security FR Federal Register NPRM Notice of Proposed Rulemaking A... Harbor Memorial Bridge (Interstate 95) Construction, in the Federal Register (77 FR 47331). One comment... navigation area in the navigable waters of New Haven Harbor, Quinnipiac River and Mill River. The current...

  1. Abnormally high ammonium of natural origin in a coastal aquifer-aquitard system in the Pearl River Delta, China.

    PubMed

    Jiao, Jiu Jimmy; Wang, Ya; Cherry, John A; Wang, Xusheng; Zhi, Bingfa; Du, Haiyan; Wen, Dongguang

    2010-10-01

    High-nitrogen loadings of rivers and aquifers systems are a major concern because of potential effects on human health and water quality impacts such as eutrophication of lakes and coastal zones. This nitrogen enrichment is commonly attributed to anthropogenic sources such as sewage and agricultural and industrial wastes. The aims of this study were to delineate spatial distribution of groundwater ammonium in the coastal aquifer system in Pearl River Delta (PRD), China and to identify the origin of the abnormally high ammonium. A total of 40 boreholes were drilled to collect core samples of the aquitard and groundwater samples in the basal aquifer. The core samples were used for extraction of pore water for centrifugation and bulk chemical analyses in laboratory. Unlike previous studies which focused mainly on the aquifer, this study treated the aquifer-aquitard system as a hydrogeochemical continuum. The results show that the aquifer-aquitard system contains an exceptionally large total ammonium mass. Ammonium occurred at concentrations up to 390 mg/L in the basal sand Pleistocene aquifer 20-50 m deep, the largest concentration reported for groundwater globally. This ammonium was natural, areally extensive (1600 km(2)) and originated in the overlying Holocene-Pleistocene aquitard and entered the aquifer by groundwater transport and diffusion. Total ammonium in the aquifer (190 × 10(6) kg) was exceeded by total ammonium in the aquitard (8600 × 10(6) kg) by a factor of 45. Much organic nitrogen remained in the aquitard available for conversion to ammonium. This natural ammonium in the aquifer was slowly transported into the PRD river channels and the estuary of the South China Sea. The rate of this contribution will likely be greatly increased by sand dredging in the river channels and estuary. Although the ammonium in PRD groundwater occurred in the largest concentrations and mass reported globally, the literature shows no reports of other delta aquitards having

  2. Floods in the Rock River basin, Iowa

    USGS Publications Warehouse

    Heinitz, Albert J.

    1973-01-01

    Flood profiles for the Rock River include those for the 1962, 1964, 1965, 1969, and the computed 25- and 50-year floods. On the Little Rock River and Otter Creek, profiles include those for the 1969 flood and the computed 25- and 50-year floods. Low-water profiles are shown for all reaches.

  3. Nitrogen Removal by Streams and Rivers of the Upper Mississippi River Basin

    EPA Science Inventory

    Our study, based on chemistry and channel dimensions data collected at 893 randomly-selected stream and river sites in the Mississippi River basin, demonstrated the interaction of stream chemistry, stream size, and NO3-N uptake metrics across a range of stream sizes and across re...

  4. An environmental streamflow assessment for the Santiam River basin, Oregon

    USGS Publications Warehouse

    Risley, John C.; Wallick, J. Rose; Mangano, Joseph F.; Jones, Krista L.

    2012-01-01

    The Santiam River is a tributary of the Willamette River in northwestern Oregon and drains an area of 1,810 square miles. The U.S. Army Corps of Engineers (USACE) operates four dams in the basin, which are used primarily for flood control, hydropower production, recreation, and water-quality improvement. The Detroit and Big Cliff Dams were constructed in 1953 on the North Santiam River. The Green Peter and Foster Dams were completed in 1967 on the South Santiam River. The impacts of the structures have included a decrease in the frequency and magnitude of floods and an increase in low flows. For three North Santiam River reaches, the median of annual 1-day maximum streamflows decreased 42–50 percent because of regulated streamflow conditions. Likewise, for three reaches in the South Santiam River basin, the median of annual 1-day maximum streamflows decreased 39–52 percent because of regulation. In contrast to their effect on high flows, the dams increased low flows. The median of annual 7-day minimum flows in six of the seven study reaches increased under regulated streamflow conditions between 60 and 334 percent. On a seasonal basis, median monthly streamflows decreased from February to May and increased from September to January in all the reaches. However, the magnitude of these impacts usually decreased farther downstream from dams because of cumulative inflow from unregulated tributaries and groundwater entering the North, South, and main-stem Santiam Rivers below the dams. A Wilcox rank-sum test of monthly precipitation data from Salem, Oregon, and Waterloo, Oregon, found no significant difference between the pre-and post-dam periods, which suggests that the construction and operation of the dams since the 1950s and 1960s are a primary cause of alterations to the Santiam River basin streamflow regime. In addition to the streamflow analysis, this report provides a geomorphic characterization of the Santiam River basin and the associated conceptual

  5. 75 FR 64752 - Amended Columbia River Basin Fish and Wildlife Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-20

    ... POWER AND CONSERVATION PLANNING COUNCIL Amended Columbia River Basin Fish and Wildlife Program AGENCY... Council's Columbia River Basin Fish and Wildlife Program. SUMMARY: Pursuant to Section 4(h) of the Northwest Power Act, the Council has amended its Columbia River Basin Fish and Wildlife Program to add...

  6. 77 FR 16558 - Yakima River Basin Conservation Advisory Group Charter Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-21

    ... Yakima River Basin Water Conservation Program. The basin conservation program is structured to provide... implementation of structural and nonstructural cost-effective water conservation measures in the Yakima River... Bureau of Reclamation Yakima River Basin Conservation Advisory Group Charter Renewal AGENCY: Bureau...

  7. 18 CFR 706.413 - Submission of statements by River Basin Commission Chairmen.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... statements by River Basin Commission Chairmen. 706.413 Section 706.413 Conservation of Power and Water... Financial Interests § 706.413 Submission of statements by River Basin Commission Chairmen. A statement of employment and financial interest is not required under this part from Chairmen of River Basin...

  8. 18 CFR 706.413 - Submission of statements by River Basin Commission Chairmen.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... statements by River Basin Commission Chairmen. 706.413 Section 706.413 Conservation of Power and Water... Financial Interests § 706.413 Submission of statements by River Basin Commission Chairmen. A statement of employment and financial interest is not required under this part from Chairmen of River Basin...

  9. Grande Ronde Basin Supplementation Program; Lostine River, 2001 Annual Report.

    SciTech Connect

    Onjukka, Sam T.; Harbeck, Jim

    2003-03-01

    The Northwest Power Planning Council (NPPC) identified supplementation as a high priority to achieve its goal of increasing runs of anadromous fish in the Columbia Basin. Supplementation activities in the Lostine River and associated monitoring and evaluation conducted by the Nez Perce Tribe relate directly to the needs addressed in the Columbia River Basin Fish and Wildlife Program (NPPC 1994). Measure 7.4L.1 of the Program mandates that appropriate research accompany any proposed supplementation. In addition, measure 7.3B.2 of the Program stresses the need for evaluating supplementation projects to assess their ability to increase production. Finally, Section 7.4D.3 encourages the study of hatchery rearing and release strategies to improve survival and adaptation of cultured fish. In 1997, Oregon Department of Fisheries and Wildlife (ODFW) requested a modification of Permit 1011 to allow the take of adult spring chinook salmon. In 1998, the Nez Perce Tribe also requested a permit specific to activities on Lostine River. The permit was issued in 2000. A special condition in the permits required the development of a long term management plan for the spring chinook salmon of the Grande Ronde Basin. The Nez Perce Tribe, ODFW, and the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) completed a formal long range plan entitled ''Grande Ronde Basin Endemic Spring Chinook Salmon Supplementation Program''. The program proposes to increase the survival of spring chinook salmon in the Grand Ronde Basin through hatchery intervention. Adult salmon from the Lostine River, Catherine Creek, and the Upper Grande Ronde River are used for a conventional supplementation program in the basin. The Nez Perce program currently operates under the ESA Section 10 Permit 1149.

  10. Grande Ronde Basin Supplementation Program; Lostine River, 2000 Annual Report.

    SciTech Connect

    Onjukka, Sam T.; Harbeck, Jim

    2003-03-01

    The Northwest Power Planning Council (NPPC) identified supplementation as a high priority to achieve its goal of increasing runs of anadromous fish in the Columbia Basin. Supplementation activities in the Lostine River and associated monitoring and evaluation conducted by the Nez Perce Tribe relate directly to the needs addressed in the Columbia River Basin Fish and Wildlife Program (NPPC 1994). Measure 7.4L.1 of the Program mandates that appropriate research accompany any proposed supplementation. In addition, measure 7.3B.2 of the Program stresses the need for evaluating supplementation projects to assess their ability to increase production. Finally, Section 7.4D.3 encourages the study of hatchery rearing and release strategies to improve survival and adaptation of cultured fish. In 1997, Oregon Department of Fisheries and Wildlife (ODFW) requested a modification of Permit 1011 to allow the take of adult spring chinook salmon. In 1998, the Nez Perce Tribe also requested a permit specific to activities on Lostine River. The permit was issued in 2000. A special condition in the permits required the development of a long term management plan for the spring chinook salmon of the Grande Ronde Basin. The Nez Perce Tribe, ODFW, and the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) completed a formal long range plan entitled ''Grande Ronde Basin Endemic Spring Chinook Salmon Supplementation Program''. The program proposes to increase the survival of spring chinook salmon in the Grand Ronde Basin through hatchery intervention. Adult salmon from the Lostine River, Catherine Creek, and the Upper Grande Ronde River are used for a conventional supplementation program in the basin. The Nez Perce program currently operates under the ESA Section 10 Permit 1149.

  11. Effects of livestock wastes on small illinois streams: Lower Kaskaskia river basin and upper little wabash river basins, summer 1991

    SciTech Connect

    Hite, R.L.; Bickers, C.A.; King, M.M.; Brockamp, D.W.

    1992-07-01

    In early 1991, the Illinois Environmental Protection Agency (IEPA) initiated an investigation to evaluate livestock waste runoff in southern Illinois. The primary objectives of this survey were to document stream quality impairments caused by livestock waste runoff, and ultimately, the need for better waste management practices, waste management systems, and funding for such systems. Information provided by Soil Conservation Service (SCS) and IEPA Agricultural staff identified an area in Clinton and Bond Counties in the Kaskaskia River basin and several upper Little Wabash River basin tributaries in Effingham and Cumberland Counties as candidate project areas.

  12. Morphometric Characters of a Himalayan River Basin-Pindari river of Pindari Glacier

    NASA Astrophysics Data System (ADS)

    Patel, L. K.; Pillai, J.

    2011-12-01

    Himalayan region consist many glaciers and glacier-fed rivers. About 17% of the Indian Himalayan Region (IHR) is under permanent cover of Ice and snow and have more than 9000 glaciers and high altitude fresh water lakes. Stream runoff originating from the glaciers has direct implication in geomorphology of the region. Present study is an attempt to find out the stages in the geomorphic development of a higher altitudinal river basin, Pindari river basin. Development of a landscape is equal to the some total of the development of each individual drainage basin of which it is composed. Morphometric parameters of the river basin had been identified viz. linear, areal and relief aspect and examined. Pindari river basin is a 5th order high altitudinal, sub-dendratic, parallel and perennial tributary of Alaknanda River, formed by three main tributaries (Sunderdhunga, Pindari and Kafini). It has the catchment area above 557.63 Km2. This river originates from combined action of rain and snow fall from Pindari glacier which is part of Nanda Devi Biosphere Reserve (a world heritage site). Pindari river basin is located between 1600 m to 6880 m elevation ,and 300 03' 23" -300 19' 04" N Latitude and 790 45' 59" - 80 0 04' 13"E Longitude. Due to microclimatic conditions Pindari river basin generally dry with low annual precipitation. There is heavy rainfall during monsoon season. The approximate variation in the precipitation is from 750 mm to 2000 mm. For estimating the Morphometric parameter SOI toposheet on 1:50000 scale and Landsat data (ETM+) having 15m resolution were georectified in RS and GIS environment. SRTM data was used in analysis of elevation and slope range of the study area. Extensive field study was held on during the year 2010. Morphometric parameters (linear, aerial and relief) of the study area had been estimated. It is observed that Pindari river basin is a sub-dendratic, higher relief, youth, fine texture; elongated basin has peak flow, high discharge, and

  13. Long-term tritium monitoring to study river basin dynamics: case of the Danube River basin

    NASA Astrophysics Data System (ADS)

    Aggarwal, Pradeep; Araguas, Luis; Groening, Manfred; Newman, Brent; Kurttas, Turker; Papesch, Wolfgang; Rank, Dieter; Suckow, Axel; Vitvar, Tomas

    2010-05-01

    During the last five decades, isotope concentrations (O-18, D, tritium) have been extensively measured in precipitation, surface- and ground-waters to derive information on residence times of water in aquifers and rivers, recharge processes, and groundwater dynamics. The unique properties of the isotopes of the water molecule as tracers are especially useful for understanding the retention of water in river basins, which is a key parameter for assessing water resources availability, addressing quality issues, investigating interconnections between surface- and ground-waters, and for predicting possible hydrological shifts related to human activities and climate change. Detailed information of the spatial and temporal changes of isotope contents in precipitation at a global scale was one of the initial aims of the Global Network of Isotopes in Precipitation (GNIP), which has provided a detailed chronicle of tritium and stable isotope contents in precipitation since the 1960s. Accurate information of tritium contents resulting of the thermonuclear atmospheric tests in the 1950s and 1960s is available in GNIP for stations distributed world-wide. Use of this dataset for hydrological dating or as an indicator of recent recharge has been extensive in shallow groundwaters. However, its use has been more limited in surface waters, due to the absence of specific monitoring programmes of tritium and stable isotopes in rivers, lakes and other surface water bodies. The IAEA has recently been compiling new and archival isotope data measured in groundwaters, rivers, lakes and other water bodies as part of its web based Water Isotope System for Data Analysis, Visualization and Electronic Retrieval (WISER). Recent additions to the Global Network of Isotopes in Rivers (GNIR) contained within WISER now make detailed studies in rivers possible. For this study, we are re-examining residence time estimates for the Danube in central Europe. Tritium data are available in GNIR from 15

  14. Mid-Holocene variability of the East Asian monsoon based on bulk organic δ13C and C/N records from the Pearl River estuary, southern China

    NASA Astrophysics Data System (ADS)

    Yu, F.; Lloyd, J. M.; Zong, Y.; Leng, M. J.; Switzer, A. D.; Yim, W. W.; Huang, G.

    2010-12-01

    Understanding the mid-Holocene dynamics of the East Asian monsoon (EAM) is integral to modelling the Holocene development of the global climate system (Webster et al., 1998). Thus the mid-Holocene EAM history was reconstructed using bulk organic carbon isotopes (δ13C), total carbon to total nitrogen (C/N) ratios and total organic carbon (TOC) from a sediment core (UV1), at a mean resolution of 10 years, from the Pearl River estuary, southern China. Sedimentary δ13C, C/N and TOC from the Pearl River estuary is a good indicator of changes in monsoonal precipitation strength (Zong et al., 2006; Yang et al., 2010), eg sediments buried during a period of high precipitation exhibit a high proportion of terrigenous sediments, and have low δ13C and high C/N, and vice versa (Yu et al., 2010). Results suggest a general decreasing trend in monsoonal precipitation from 6650-2215 cal yr BP due to the weakening insolation over northern hemisphere most likely related to the current precession circle (An, 2000). Superimposed on this trend are apparent dry-wet oscillations at centennial to millennial timescales most likely in response to solar activity. Mismatch between δ13C and results from the Dongge Cave in southern China at millennial-timescale oscillations (Wang et al., 2005), may indicate that the δ13C from the Pearl River estuary reveals changes in precipitation in a broader area than the δ18O from Dongge Cave does. Reference An Z (2000) The history and variability of the East Asian paleomonsoon climate. Quaternary Science Reviews 19: 171-187. Wang Y, Cheng H, Edwards RL, He Y, Kong X, An Z, Wu J, Kelly MJ, Dykoski CA and Li X (2005) The Holocene Asian Monsoon: Links to Solar Changes and North Atlantic Climate. Science 308: 854-857. Webster PJ, Magaña VO, Palmer TN, Shukla J and Tomas RA (1998) Monsoons: Processes, predictability, and the prospects for prediction. Journal of Geophysical Research 103(C7): 14451-14510. Yang S, Tang M, Yim WWS, Zong Y, Huang G, Switzer

  15. Mid-Holocene variability of the East Asian monsoon based on bulk organic δ13C and C/N records from the Pearl River estuary, southern China

    NASA Astrophysics Data System (ADS)

    Yu, F.; Zong, Y.; Lloyd, J. M.; Leng, M. J.; Switzer, A. D.; Yim, W. W.; Huang, G.

    2012-12-01

    Understanding the mid-Holocene dynamics of the East Asian monsoon (EAM) is integral to modelling the Holocene development of the global climate system (Webster et al., 1998). Thus the mid-Holocene EAM history was reconstructed using bulk organic carbon isotopes (δ13C), total carbon to total nitrogen (C/N) ratios and total organic carbon (TOC) from a sediment core (UV1), at a mean resolution of 7-10 years, from the Pearl River estuary, southern China. Sedimentary δ13C, C/N and TOC from the Pearl River estuary is a good indicator of changes in monsoonal precipitation strength (Zong et al., 2006; Yang et al., 2010; Yu et al., 2010), eg sediments buried during a period of high precipitation exhibit a high proportion of terrigenous sediments, and have low δ13C and high C/N, and vice versa (Yu et al., 2010). Results suggest a general decreasing trend in monsoonal precipitation from 6650 to 2215 cal yr BP because of the weakening Northern Hemisphere insolation most likely related to the current precession circle (An, 2000). Superimposed on this trend are apparent dry-wet oscillations at centennial to millennial timescales most likely in response to solar activity. Mismatch between δ13C and results from the Dongge Cave in southern China at millennial-timescale oscillations (Wang et al., 2005), may indicate that the δ13C from the Pearl River estuary reveals changes in precipitation in a broader area than the δ18O from Dongge Cave does. Reference An Z (2000) The history and variability of the East Asian paleomonsoon climate. Quaternary Science Reviews 19: 171-187. Wang Y, Cheng H, Edwards RL, He Y, Kong X, An Z, Wu J, Kelly MJ, Dykoski CA and Li X (2005) The Holocene Asian Monsoon: Links to Solar Changes and North Atlantic Climate. Science 308: 854-857. Webster PJ, Magaña VO, Palmer TN, Shukla J and Tomas RA (1998) Monsoons: Processes, predictability, and the prospects for prediction. Journal of Geophysical Research 103(C7): 14451-14510. Yang S, Tang M, Yim WWS, Zong

  16. Floods in the Skunk River basin, Iowa

    USGS Publications Warehouse

    Heinitz, Albert J.; Wiitala, Sulo Werner

    1978-01-01

    Evaluation of flood hazards, and the planning, design, and operation of various facilities on flood plains require information on floods. This report provides information on flood stages and discharges, flood magnitudes and frequency, and flood profiles for the Skunk River and some of its tributaries. It covers the Skunk -- South Skunk Rivers to Ames, and the lower reaches of tributaries as flows: Squaw Creek, 8.2 miles; Indian Creek, 11.6 miles; North Skunk River, 83.2 miles; Cedar Creek, 55.8 miles; and Big Creek, 21.7 miles.

  17. Work plan for the Sangamon River basin, Illinois

    USGS Publications Warehouse

    Stamer, J.K.; Mades, Dean M.

    1983-01-01

    The U.S. Geological Survey, in cooperation with the Division of Water Resources of the Illinois Department of Transportation and other State agencies, recognizes the need for basin-type assessments in Illinois. This report describes a plan of study for a water-resource assessment of the Sangamon River basin in central Illinois. The purpose of the study would be to provide information to basin planners and regulators on the quantity, quality, and use of water to guide management decisions regarding basin development. Water quality and quantity problems in the Sangamon River basin are associated primarily with agricultural and urban activities, which have contributed high concentrations of suspended sediment, nitrogen, phosphorus, and organic matter to the streams. The impact has resulted in eutrophic lakes, diminished capacity of lakes to store water, low concentrations of dissolved oxygen, and turbid stream and lake waters. The four elements of the plan of study include: (1) determining suspended sediment and nutrient transport, (2) determining the distribution of selected inorganic and organic residues in streambed sediments, (3) determining the waste-load assimilative capacity of the Sangamon River, and (4) applying a hydraulic model to high streamflows. (USGS)

  18. Digital Atlas of the Upper Washita River Basin, Southwestern Oklahoma

    USGS Publications Warehouse

    Becker, Carol J.; Masoner, Jason R.; Scott, Jonathon C.

    2008-01-01

    Numerous types of environmental data have been collected in the upper Washita River basin in southwestern Oklahoma. However, to date these data have not been compiled into a format that can be comprehensively queried for the purpose of evaluating the effects of various conservation practices implemented to reduce agricultural runoff and erosion in parts of the upper Washita River basin. This U.S. Geological Survey publication, 'Digital atlas of the upper Washita River basin, southwestern Oklahoma' was created to assist with environmental analysis. This atlas contains 30 spatial data sets that can be used in environmental assessment and decision making for the upper Washita River basin. This digital atlas includes U.S. Geological Survey sampling sites and associated water-quality, biological, water-level, and streamflow data collected from 1903 to 2005. The data were retrieved from the U.S. Geological Survey National Water Information System database on September 29, 2005. Data sets are from the Geology, Geography, and Water disciplines of the U.S. Geological Survey and cover parts of Beckham, Caddo, Canadian, Comanche, Custer, Dewey, Grady, Kiowa, and Washita Counties in southwestern Oklahoma. A bibliography of past reports from the U.S. Geological Survey and other State and Federal agencies from 1949 to 2004 is included in the atlas. Additionally, reports by Becker (2001), Martin (2002), Fairchild and others (2004), and Miller and Stanley (2005) are provided in electronic format.

  19. AEROBIC DENITRIFICATION: IMPLICATIONS FOR THE MOM RIVER BASIN

    EPA Science Inventory

    Each year about 1.6 million metric tons of nitrogen, mostly from agriculture, is discharged from the lower Mississippi/Atchafalaya River Basin into the Gulf of Mexico, and each spring this excess nitrogen fuels the formation of a huge hypoxic zone in the Gulf. In the Mississippi...

  20. Geothermal resources of the Southern Powder River Basin, Wyoming

    SciTech Connect

    Heasler, H.P.; Buelow, K.L.; Hinckley, B.S.

    1985-06-13

    This report describes the geothermal resources of the Southern Powder River Basin. The report contains a discussion of the hydrology as it relates to the movement of heated water, a description and interpretation of the thermal regime, and four maps: a generalized geological map, a structure contour map, a thermal gradient contour map, and a ground water temperature map. 10 figs. (ACR)

  1. Water Temperature changes in the Mississippi River Basin

    EPA Science Inventory

    In this study, we demonstrate the transfer of a physically based semi-Lagrangian water temperature model (RBM) to EPA, its linkage with the Variable Infiltration Capacity (VIC) hydrology model, and its calibration to and demonstration for the Mississippi River Basin (MRB). The r...

  2. 75 FR 38833 - Walker River Basin Acquisition Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-06

    ... by the recipient to acquire from willing sellers land, water appurtenant to the land, and related interests in the Walker River Basin, Nevada. Acquired water rights would be transferred to provide water for... 156 feet. The decrease has resulted in extremely poor water quality and deteriorated lake ecology....

  3. Summary of Seepage Investigations in the Yakima River Basin, Washington

    USGS Publications Warehouse

    Magirl, C.S.; Julich, R.J.; Welch, W.B.; Curran, C.R.; Mastin, M.C.; Vaccaro, J.J.

    2009-01-01

    Discharge data collected by the U.S. Geological Survey, Washington State Department of Ecology, and Yakama Nation for seepage investigations in the Yakima River basin are made available as downloadable Microsoft Excel files. These data were collected for more than a century at various times for several different studies and are now available in one location to facilitate future analysis by interested parties.

  4. Sharing water and benefits in transboundary river basins

    NASA Astrophysics Data System (ADS)

    Arjoon, Diane; Tilmant, Amaury; Herrmann, Markus

    2016-06-01

    The equitable sharing of benefits in transboundary river basins is necessary to solve disputes among riparian countries and to reach a consensus on basin-wide development and management activities. Benefit-sharing arrangements must be collaboratively developed to be perceived not only as efficient, but also as equitable in order to be considered acceptable to all riparian countries. The current literature mainly describes what is meant by the term benefit sharing in the context of transboundary river basins and discusses this from a conceptual point of view, but falls short of providing practical, institutional arrangements that ensure maximum economic welfare as well as collaboratively developed methods for encouraging the equitable sharing of benefits. In this study, we define an institutional arrangement that distributes welfare in a river basin by maximizing the economic benefits of water use and then sharing these benefits in an equitable manner using a method developed through stakeholder involvement. We describe a methodology in which (i) a hydrological model is used to allocate scarce water resources, in an economically efficient manner, to water users in a transboundary basin, (ii) water users are obliged to pay for water, and (iii) the total of these water charges is equitably redistributed as monetary compensation to users in an amount determined through the application of a sharing method developed by stakeholder input, thus based on a stakeholder vision of fairness, using an axiomatic approach. With the proposed benefit-sharing mechanism, the efficiency-equity trade-off still exists, but the extent of the imbalance is reduced because benefits are maximized and redistributed according to a key that has been collectively agreed upon by the participants. The whole system is overseen by a river basin authority. The methodology is applied to the Eastern Nile River basin as a case study. The described technique not only ensures economic efficiency, but may

  5. Impacts of urbanization on river system structure: a case study on Qinhuai River Basin, Yangtze River Delta.

    PubMed

    Ji, Xiaomin; Xu, Youpeng; Han, Longfei; Yang, Liu

    2014-01-01

    Stream structure is usually dominated by various human activities over a short term. An analysis of variation in stream structure from 1979 to 2009 in the Qinhuai River Basin, China, was performed based on remote sensing images and topographic maps by using ArcGIS. A series of river parameters derived from river geomorphology are listed to describe the status of river structure in the past and present. Results showed that urbanization caused a huge increase in the impervious area. The number of rivers in the study area has decreased and length of rivers has shortened. Over the 30 years, there was a 41.03% decrease in river length. Complexity and stability of streams have also changed and consequently the storage capacities of river channels in intensively urbanized areas are much lower than in moderately urbanized areas, indicating a greater risk of floods. Therefore, more attention should be paid to the urban disturbance to rivers. PMID:25116497

  6. Impacts of urbanization on river system structure: a case study on Qinhuai River Basin, Yangtze River Delta.

    PubMed

    Ji, Xiaomin; Xu, Youpeng; Han, Longfei; Yang, Liu

    2014-01-01

    Stream structure is usually dominated by various human activities over a short term. An analysis of variation in stream structure from 1979 to 2009 in the Qinhuai River Basin, China, was performed based on remote sensing images and topographic maps by using ArcGIS. A series of river parameters derived from river geomorphology are listed to describe the status of river structure in the past and present. Results showed that urbanization caused a huge increase in the impervious area. The number of rivers in the study area has decreased and length of rivers has shortened. Over the 30 years, there was a 41.03% decrease in river length. Complexity and stability of streams have also changed and consequently the storage capacities of river channels in intensively urbanized areas are much lower than in moderately urbanized areas, indicating a greater risk of floods. Therefore, more attention should be paid to the urban disturbance to rivers.

  7. Hydrogeologic data in the Quinebaug River basin, Connecticut

    USGS Publications Warehouse

    Thomas, Chester E.; Randall, Allan D.; Thomas, Mendall P.

    1966-01-01

    This report presents hydrologic and geologic data collected by the U.S. Geological Survey during an investigation of water resources in the Quinebaug River basin of Connecticut in cooperation with the Connecticut Water Resources Commission. The Quinebaug River basin occupies about 425 square miles in the northeastern part of the State, including the towns of Brooklyn, Griswold, Killingly, Plainfield, Pomfret, Putnam, Sterling, and Thompson, and parts of Canterbury, Hampton, Lisbon, North Stonington, Preston, Voluntown, and Woodstock. A companion interpretive report evaluating the water resources of the basin will be published as Connecticut Water Resources Bulletin 8. The data on the following pages serve to document and supplement that report, and should be especially useful in planning the development of water resources at specific localities.

  8. A GIS based estimation of loss of particulate nitrogen and phosphorus in typical drainage area of Pearl River Delta

    NASA Astrophysics Data System (ADS)

    Liu, Xiaonan; Wu, Zhifeng; Cheng, Jiong; Liu, Ping

    2008-10-01

    The output of nitrogen and phosphorus from agricultural activities is the main source for water eutrophication. The fully developed agriculture in vegetables, fruits and flowers in Pearl River Delta gives rise to excessive use of chemical matter such as fertilizer and pesticide and thus bring about the serious water pollution because of the loss of nitrogen (N) and phosphorus (P) from the farmland in the region. Based on Geographic Information System (GIS) and soil pollution data, Universal Soil Loss Equation (USLE) and source type method are used to estimate the loads of particulate N and P from the soil of different land use types in the drainage area of Liuxi River in Guangzhou, China. So the key regions those the NPS pollution occurred can be confirmed and the technical support for the pollution control target and the capital flow concentration can be provided by the results. The study shows that, (1) The total loss of particulate N and P in the drainage area is 582.49 t/a and 424.74 t/a respectively. Among them the loss of particulate N from paddy soil occupies 40.02% and that of forest 6.31%, while the loss of particulate P from the soil of dry-land accounts for 28.75% and that of paddy soil 26.31%. (2) There are significantly different losses of particulate N and P per unit area from the soils of different source land use types in the drainage area. The losses of particulate N and P per unit area are both the highest from the soil of dry-land, which is 7.72 kg/hm2 and 9.50 kg/hm2 respectively, followed by those of orchard, which is 7.20 kg/hm2 and 6.56 kg/hm2 respectively. The causes are excessive use of chemical matter, unreasonable cultivation pattern, and the soil erosion of different land use. (3) The excessive N and P come from the loss of particulate N and P from the fertilization in agricultural production, and they are the main source of the pollutants in Liuxi River water.

  9. Contaminants in suspended sediment from the Fraser River basin

    SciTech Connect

    Sekela, M.; Baldazzi, C.; Moyle, G.; Brewer, R.

    1995-12-31

    The concentrations of trace organic contaminants were measured in suspended sediment samples collected upstream and downstream of six pulp mills located in the Fraser River basin. Sampling occurred at three hydrological periods; fall low flow, winter base flow (under ice) and spring freshet. Suspended sediments were analyzed for dioxins, furans, chlorinated phenolics and polycyclic aromatic hydrocarbons. Initial results indicate that (i) trace organic contaminants are detectable in suspended sediments collected over 265 river kilometers downstream of the nearest pulp mill; (ii) the 1992 to 1994 levels of 2,3,7,8-TCD-dioxin and 2,3,7,8-TCD-furan in Fraser river suspended sediments are lower than the levels measured in 1990; (iii) there is a measurable increase in trace organic contaminant levels in Fraser River suspended sediments associated with the initial rise in the Fraser River hydrograph at freshet.

  10. Isotopic fingerprint of the middle Olt River basin, Romania.

    PubMed

    Popescu, Raluca; Costinel, Diana; Ionete, Roxana Elena; Axente, Damian

    2014-01-01

    One of the most important tributaries of the Danube River in Romania, the Olt River, was characterized in its middle catchment in terms of the isotopic composition using continuous flow-isotope ratio mass spectrometry (CF-IRMS). Throughout a period of 10 months, from November 2010 to August 2011, water samples from the Olt River and its more important tributaries were collected in order to investigate the seasonal and spatial isotope patterns of the basin waters. The results revealed a significant difference between the Olt River and its tributaries, by the fact that the Olt River waters show smaller seasonal variations in the stable isotopic composition and are more depleted in (18)O and (2)H. The waters present an overall enrichment in heavy isotopes during the warm seasons.

  11. Water Balance Change in Xia Ying River Basin, Qinghai Province, China

    NASA Astrophysics Data System (ADS)

    Cuo, L.; Zhou, B.; Li, J.

    2010-12-01

    Yellow River, Yangtze River and Lan Cang River are major river systems supporting billions of people in South East Asia and China. Source region of Yellow River, Yangtze River and Lan Cang River (Three Rivers) is located in Qinghai Province, China. Recently, Chinese government started a conservation project in the source region of the Three Rivers called “Convert Agricultural Field to Forest and Grassland”. Xia Ying River Basin is a sub-basin located in the source region of the Three River Basin. The upper Xia Ying River Basin has experienced dramatic land cover change since 2006. Before 2006, upper Xia Ying River Basin hill slope was agricultural field. Coniferous trees and bush vegetation were planted on the slope greater than 70 degree in the upper Xia Ying River Basin in 2006. The objective of the study is to investigate the water balance term change in the Xia Ying River Basin because of the conservation project. This study will use Landsat and MODIS imagery to classify and quantify land cover classes before and after land cover conversion. Water balance terms including runoff and evaportranspiration will be simulated using a land surface model to investigate water balance term change due to land cover change. The study serves as a pilot study for the investigation of hydrological change in the entire source region of the Three River Basin during the past 50 years.

  12. Feasible optimality of vegetation patterns in river basins

    NASA Astrophysics Data System (ADS)

    Caylor, Kelly K.; Scanlon, Todd M.; Rodriguez-Iturbe, Ignacio

    2004-07-01

    We examine mechanisms leading to organization of vegetation patterns within the channel network structure of a semi-arid New Mexico river basin under the controlling influence of water stress. We compare the actual pattern of water stress within the basin to patterns resulting from two algorithms of local stress optimization which proceed from an initial fully random vegetation distribution. Here we show that the distribution of vegetation and basin water stress derived from an algorithm that maintains local optimization within the network flow path exhibits considerably better agreement with the actual distribution than one that ignores the network structure of the basin. These results suggest the pattern of actual vegetation observed within the basin corresponds to a condition of feasible optimality in which organization is constrained by the stochastic nature of local interactions mediated by the network configuration. The principles of such organization have important consequences regarding the interaction between land cover change and hydrological dynamics in river basins, as well as the biogeographical evolution of landscapes.

  13. Quantifying the extent of river fragmentation by hydropower dams in the Sarapiquí River Basin, Costa Rica

    USGS Publications Warehouse

    Anderson, Elizabeth P.; Pringle, Catherine M.; Freeman, Mary C.

    2008-01-01

    Simple spatial analyses can be used as a predictive or planning tool for considering the effects of future dams in a basin-scale context. In the Sarapiquí River Basin, we recommend that future dam projects be constructed on already dammed rivers to minimize additional river fragmentation and to protect remaining riverine connectivity.

  14. Selected basin characteristics and water-quality data of the Minnesota River basin

    USGS Publications Warehouse

    Winterstein, T.A.; Payne, G.A.; Miller, R.A.; Stark, J.R.

    1993-01-01

    Selected basin characteristics and water-quality dam for the Minnesota River Basin are presented in this report as 71 maps, 22 graphs, and 8 tables. The data were compiled as part of a four-year study to identify non-point sources of pollution and the effect of this pollution on water quality. The maps were prepared from geographic information system data bases. Federal, State, and local agencies, and colleges and universities collected and assembled these data as part of the Minnesota River Assessment Project.

  15. Nitrogen flux and sources in the Mississippi River Basin

    USGS Publications Warehouse

    Goolsby, D.A.; Battaglin, W.A.; Aulenbach, Brent T.; Hooper, R.P.

    2000-01-01

    Nitrogen from the Mississippi River Basin is believed to be at least partly responsible for the large zone of oxygen-depleted water that develops in the Gulf of Mexico each summer. Historical data show that concentrations of nitrate in the Mississippi River and some of its tributaries have increased by factors of 2 to more than 5 since the early 1900s. We have used the historical streamflow and concentration data in regression models to estimate the annual flux of nitrogen (N) to the Gulf of Mexico and to determine where the nitrogen originates within the Mississippi Basin. Results show that for 1980-1996 the mean annual total N flux to the Gulf of Mexico was 1568000 t/year. The flux was approximately 61% nitrate as N, 37% organic N, and 2% ammonium as N. The flux of nitrate to the Gulf has approximately tripled in the last 30 years with most of the increase occurring between 1970 and 1983. The mean annual N flux has changed little since the early 1980s, but large year-to-year variations in N flux occur because of variations in precipitation. During wet years the N flux can increase by 50% or more due to flushing of nitrate that has accumulated in the soils and unsaturated zones in the basin. The principal source areas of N are basins in southern Minnesota, Iowa, Illinois, Indiana, and Ohio that drain agricultural land. Basins in this region yield 800 to more than 3100 kg total N/km2 per year to streams, several times the N yield of basins outside this region. Assuming conservative transport of N in the Mississippi River, streams draining Iowa and Illinois contribute on average approximately 35% of the total N discharged by the Mississippi River to the Gulf of Mexico. In years with high precipitation they can contribute a larger percentage. Copyright (C) 2000 Elsevier Science B.V.

  16. Hydrologic reconnaissance of the Noatak River basin, Alaska, 1978

    USGS Publications Warehouse

    Childers, Joseph M.; Kernodle, Donald R.

    1981-01-01

    Hydrologic data were collected in 1978 described water resources of the Noatak River basin, Alaska. Streamflow varies seasonally. No flow was observed from the upper part of the basin in late winter (April). In the lower part of the basin springs support perennial flow in the Kugururok River and downstream along the Noatak. The discharge of the Noatak was 150 cubic feet per second in April 1978. During the summer, rainstorms are common, and runoff produces high flow. During August 1978, flow was normal in the basin; unit runoff averaged about 1 cubic foot per second per square mile. The Noatak is a gravel-bed stream of moderate slope. It drops about 1,800 feet in elevation from a point near the head waters to the mouth, a distance of 400 miles. Streambed material in most places is gravel, cobbles, and boulders, maximum riffle depths and pool widths increase in a downstream direction. Stream velocity in August 1978 increased from about 1 foot per second in the upper basin to about 4 feet per second in the lower reaches. High-water marks of the maximum evident flood were found at elevations from bankfull to 5 feet above bankfull. Maximum evident flood unit runoff rates were estimated to be less than 50 cubic feet per second per square mile. Scars produced by ice jams were seldom seen above bankfull. Bank erosion appears to be most active in the lowlands. Water in the Noatak River basin is virtually unaffected by man 's activity. Water quality varies with location, weather, season, and source; the water is normally clear, cool, and hard. During late winter sea water intrudes into the Lower Noatak Canyon. Benthic invertebrate community composition and variability suggest the river 's undiminished natural quality. (USGS)

  17. Hydroclimatic and water quality trends across three Mediterranean river basins.

    PubMed

    Lutz, Stefanie R; Mallucci, Stefano; Diamantini, Elena; Majone, Bruno; Bellin, Alberto; Merz, Ralf

    2016-11-15

    Water resources are under pressure from multiple anthropogenic stressors such as changing climate, agriculture and water abstraction. This holds, in particular, for the Mediterranean region, where substantial changes in climate are expected throughout the 21st century. Nonetheless, little attention has been paid to linkages between long-term trends in climate, streamflow and water quality in Mediterranean river basins. In the present study, we perform a comparative analysis of recent trends in hydroclimatic parameters and nitrate pollution in three climatologically different Mediterranean watersheds (i.e., the Adige, Ebro and Sava River Basins). Mann-Kendall trend analyses of annual mean temperature, precipitation and streamflow (period 1971 to 2010) and monthly nitrate concentrations, mass fluxes and flow-adjusted concentrations (period 1996 to 2012) were performed in these river basins. Temperature is shown to have increased the most in the Ebro followed by the Sava, whereas minor increases are observed in the Adige. Precipitation presents, overall, a negative trend in the Ebro and a positive trend in both the Adige and Sava. These climatic trends thus suggest the highest risk of increasing water scarcity for the Ebro and the lowest risk for the Adige. This is confirmed by trend analyses of streamflow time series, which indicate a severe decline in streamflow for the Ebro and a substantial decline in the Sava, as opposed to the Adige showing no prevailing trend. Concerning surface water quality, nitrate pollution appears to have decreased in all study basins. Overall, these findings emphasize progressive reduction of water resources availability in river basins characterized by continental climate (i.e., Ebro and Sava). This study thus underlines the need for adapted river management in the Mediterranean region, particularly considering strong feedbacks between hydroclimatic trends, freshwater ecosystem services and water resources availability for agriculture

  18. Understanding Socio-Hydrology System in the Kissimmee River Basin

    NASA Astrophysics Data System (ADS)

    Chen, X.; Wang, D.; Tian, F.; Sivapalan, M.

    2014-12-01

    This study is to develop a conceptual socio-hydrology model for the Kissimmee River Basin. The Kissimmee River located in Florida was channelized in mid-20 century for flood protection. However, the environmental issues caused by channelization led Floridians to conduct a restoration project recently, focusing on wetland recovery. As a complex coupled human-water system, Kissimmee River Basin shows the typical socio-hydrology interactions. Hypothetically, the major reason to drive the system from channelization to restoration is that the community sensitivity towards the environment has changed from controlling to restoring. The model developed in this study includes 5 components: water balance, flood risk, wetland area, crop land area, and community sensitivity. Furthermore, urban population and rural population in the basin have different community sensitivities towards the hydrologic system. The urban population, who live further away from the river are more sensitive to wetland restoration; while the rural population, who live closer to the river are more sensitive to flood protection. The power dynamics between the two groups and its impact on management decision making is described in the model. The model is calibrated based on the observed watershed outflow, wetland area and crop land area. The results show that the overall focus of community sensitivity has changed from flood protection to wetland restoration in the past 60 years in Kissimmee River Basin, which confirms the study hypothesis. There are two main reasons for the community sensitivity change. Firstly, people's flood memory is fading because of the effective flood protection, while the continuously shrinking wetland and the decreasing bird and fish population draw more and more attention. Secondly, in the last 60 years, the urban population in Florida drastically increased compared with a much slower increase of rural population. As a result, the community sensitivity of urban population towards

  19. Occurrence of nonylphenol and nonylphenol monoethoxylate in soil and vegetables from vegetable farms in the Pearl River Delta, South China.

    PubMed

    Cai, Quan-Ying; Huang, Hui-Juan; Lü, Huixiong; Mo, Ce-Hui; Zhang, Jun; Zeng, Qiao-Yun; Tian, Jun-Jian; Li, Yan-Wen; Wu, Xiao-Lian

    2012-07-01

    Low molecular-mass nonylphenol ethoxylates (NPEOs) and 4-nonylphenol (NP) are biodegradation products of higher molecular mass NPEOs used as surface active agents, and they are endocrine-disrupting contaminants. In this study, surface soil (0-20 cm) samples and different vegetable samples were collected from 27 representative vegetable farms located in Shenzhen, Dongguan, and Huizhou within the Pearl River Delta region, South China, and NP and nonylphenol monoethoxylate (NP(1)EO) were analyzed using high-performance liquid chromatography with ultraviolet detection. The results show that NP and NP(1)EO were detected in soil and vegetable samples. The concentrations of NP and NP(1)EO in soil samples ranged from nondetectable (ND) to 7.22 μg kg(-1) dry weight (dw) and from ND to 8.24 μg kg(-1) dw, respectively. The average concentrations of both NP and NP(1)EO in soil samples decreased in the following order: Dongguan > Huizhou > Shenzhen. The levels of NP and NP(1)EO in vegetable samples varied from 1.11 to 4.73 μg kg(-1) dw and from 1.32 to 5.33 μg kg(-1) dw, respectively. The greatest levels of both NP and NP(1)EO were observed in water spinach, and the lowest levels of NP and NP(1)EO were recorded in cowpea. The bioconcentration factors (the ratio of contaminant concentration in plant tissue to soil concentration) of NP and NP(1)EO were <1.0 (mean 0.535 and 0.550, respectively). The occurrences of NP and NP(1)EO in this study are compared with other studies, and their potential sources are discussed. PMID:22203462

  20. Impacts of seasonal and regional variability in biogenic VOC emissions on surface ozone in the Pearl River Delta region, China

    SciTech Connect

    Situ, S.; Guenther, Alex B.; Wang, X. J.; Jiang, X.; Turnipseed, A.; Wu, Z.; Bai, J.; Wang, X.

    2013-12-05

    In this study, the BVOC emissions in November 2010 over the Pearl River Delta (PRD) region in southern China have been estimated by the latest version of a Biogenic Volatile Organic Compound (BVOC) emission model (MEGAN v2.1). The evaluation of MEGAN performance at a representative forest site within this region indicates MEGAN can estimate BVOC emissions reasonably well in this region except overestimating isoprene emission in autumn for reasons that are discussed in this manuscript. Along with the output from MEGAN, the Weather Research and Forecasting model with chemistry (WRF-Chem) is used to estimate the impacts of BVOC emissions on surface ozone in the PRD region. The results show BVOC emissions increase the daytime ozone peak by *3 ppb on average, and the max hourly impacts of BVOC emissions on the daytime ozone peak is 24.8 ppb. Surface ozone mixing ratios in the central area of Guangzhou- Foshan and the western Jiangmen are most sensitive to BVOC emissions BVOCs from outside and central PRD influence the central area of Guangzhou-Foshan and the western Jiangmen significantly while BVOCs from rural PRD mainly influence the western Jiangmen. The impacts of BVOC emissions on surface ozone differ in different PRD cities, and the impact varies in different seasons. Foshan and Jiangmen being most affected in autumn, result in 6.0 ppb and 5.5 ppb increases in surface ozone concentrations, while Guangzhou and Huizhou become more affected in summer. Three additional experiments concerning the sensitivity of surface ozone to MEGAN input variables show that surface ozone is more sensitive to landcover change, followed by emission factors and meteorology.

  1. Investigation of polycyclic aromatic hydrocarbon level in blood and semen quality for residents in Pearl River Delta Region in China.

    PubMed

    Song, Xiao Fei; Chen, Zhi Yuan; Zang, Zhi Jun; Zhang, Ya Nan; Zeng, Feng; Peng, Yen Ping; Yang, Chen

    2013-10-01

    This study is the first one investigating the correlation between the concentration of polycyclic aromatic hydrocarbon (PAHs) in blood and semen qualities for residents in the Pearl River Delta (PRD) region in China. Blood samples from 53 infertile volunteers were studied for measures of semen quality and 16 PAHs. Information on the study subjects' living habits (such as smoking, drinking and preference of consumption for food) and general information (age, body-mass-index (BMI) and educational background) were also collected. Statistical results showed that age and BMI were significantly and negatively related to semen motilities. The total concentrations of PAHs (∑16 PAHs) in the blood were 12,010, 7493, 9105 and 8647ng/g for factory workers, office workers, technicians and salespersons, respectively. In addition, ∑16 PAHs in the blood of smokers, drinkers and heavy-taste food consumers were 11,950, 11,266 and 12,141ng/g, which were higher than those observed in nonsmokers (10,457ng/g), nondrinkers (10,920ng/g) and light-taste food consumers (9202ng/g), individually. Furthermore, the Pearson correlation analysis results showed significant positive correlations between BMI and ∑16 PAHs in the blood. Statistically significant correlations were observed between semen motilities and ∑16 PAHs in the blood as well. Logistic regression results showed that for each 1ng/g increase in ∑16 PAHs in blood samples, the log odds of experiencing a pregnancy decrease by 0.039 on average. However, more evidences are needed to clarify the impact of PAHs in the blood to male infertility. PMID:24021720

  2. [Distribution Characteristics and Risk Assessment of Organochlorine residues in Surface Soil of Pearl River Delta Economic Zone].

    PubMed

    Dou, Lei; Yang, Guo-yi

    2015-08-01

    The contents of 17 Organochlorine pesticides (OCPs) of 605 samples collected from the surface of agriculture land from Pearl River Delta Economic Zone were determined by gas chromatography with electron capture detector (GC-ECD). The residual characteristics, sources and ecological risk of OCPs were also analyzed. The results showed that the detection rate of OCPs was 97.85%. The mean value of residue level was 20.67 microg x kg(-1), with the highest value of 649.33 microg x kg(-1). The main contaminants included DDTs, HCHs, endosulfan sulfate and methoxychlor. Compared with the soils of other cities, the levels of HCHs and DDTs in the studied area were arranged from low to middle levels. The OCPs were obviously regionally distributed. High content areas were mainly distributed in the central area with dense population, intense industrial and agricultural activities. The residue levels in different types of lands were significantly different: the arable land > garden land > woodland. Especially, the residue level was the highest in the vegetable land. Source analysis indicated that the HCHs might come from the use of lindane. DDTs in soil mainly came from early residues, but the dicofol might be the important source in partial area. Comparing the contents of HCHs and DDTs with our National Standard (GB 15618-2008), the qualified rates of the first and second standard of HCHs were 97.5% and 100%, respectively, and the DDTs were 95.5% and 97.7%, respectively. According to the risk assessment, DDTs may still have some potential ecological impact on the studied area. PMID:26592027

  3. Photochemical evolution of organic aerosols observed in urban plumes from Hong Kong and the Pearl River Delta of China

    NASA Astrophysics Data System (ADS)

    Zhou, Shengzhen; Wang, Tao; Wang, Zhe; Li, Weijun; Xu, Zheng; Wang, Xinfeng; Yuan, Chao; Poon, C. N.; Louie, Peter K. K.; Luk, Connie W. Y.; Wang, Wenxing

    2014-05-01

    Organic aerosols influence human health and global radiative forcing. However, their sources and evolution processes in the atmosphere are not completely understood. To study the aging and production of organic aerosols in a subtropical environment, we measured hourly resolved organic carbon (OC) and element carbon (EC) in PM2.5 at a receptor site (Tung Chung, TC) in Hong Kong from August 2011 to May 2012. The average OC concentrations exhibited the highest values in late autumn and were higher during the daytime than at night. The secondary organic carbon (SOC) concentrations, which were estimated using an EC-tracer method, comprised approximately half of the total OC on average. The SOC showed good correlation with odd oxygen (Ox = O3 + NO2) in the summer and autumn seasons, suggestive of contribution of photochemical activities to the formation of secondary organic aerosols (SOA). We calculated production rates of SOA using the photochemical age (defined as -Log10(NOx/NOy)) in urban plumes from the Pearl River Delta (PRD) region and Hong Kong during pollution episodes in summer and autumn. The CO-normalized SOC increased with the photochemical age, with production rates ranging from 1.31 to 1.82 μg m-3 ppmv-1 h-1 in autumn and with a larger rate in summer (3.86 μg m-3 ppmv-1 h-1). The rates are in the range of the rates observed in the outflow from Mexico City, the eastern U.S. and Los Angeles. Microscopic analyses of the individual aerosol particles revealed large contrasts of aerosol physico-chemical properties on clean and smoggy days, with thick organic coatings internally mixed with inorganic sulfate for all particle sizes in the aged plumes from the PRD region.

  4. [Characterizing spatial patterns of NO(x), SO2 and O3 in Pearl River Delta by passive sampling].

    PubMed

    Zhao, Yang; Shao, Min; Wang, Chen; Wang, Bo-Guang; Lu, Si-Hua; Zhong, Liu-Ju

    2011-02-01

    Concentrations of NO(x), SO2 and O3 were measured by passive sampling within 200km x 200km grid in Pearl River Delta (PRD). Sampling period was two weeks in November, 2009. Spatial distributions of NO(x), SO2 and O3 were obtained by Kriging interpolation method. The results were compared with emission inventories and modeling results. The transportations of O3 were evaluated by using backward trajectories of air parcels. During the sampling period, the mean concentrations of NO(x), SO2 and O3 were 75.9 microg/m3, 37.3 microg/m3 and 36.2 microg/m3, respectively. And the highest concentrations of NO(x), SO2 and O3 were 195.7 microg/m3, 95.9 microg/m3 and 81.8 microg/m3. Comparing with routine measurements from the regional monitoring network in PRD, the results by passive method were 18.6%, 33.5% and 37.5% lower for NO(x), SO2 and O3, respectively. The spatial patterns demonstrated that higher NO(x) concentrations often appeared in cities such as Guangzhou, Foshan and Shenzhen. SO2 concentrations were higher in west and lower in east. High SO2 concentrations are mainly from emission of power plants and industrial sources. Concentrations of O3 showed the highest levels in the south of PRD. Backward trajectory analysis for higher ozone areas indicated that 53% of the air masses were from the region with high concentration of NO(x). The horizontal transportation caused higher ozone in the south while lower in north in PRD.

  5. [Wastewater pollution characteristics from typical intensive pig farms in the Pearl River Delta and its ecological risk assessment].

    PubMed

    Li, Wen-Ying; Peng, Zhi-Ping; Yu, Jun-Hong; Huang, Ji-Chuan; Xu, Pei-Zhi; Yang, Shao-Hai

    2013-10-01

    Based on the wastewater quality investigation data from March 2009 to November 2011, wastewater qualities from typical intensive pig farms were assessed in the Pearl River Delta by single and comprehensive pollution index model. The results showed that key pollutants of piggery wastewater were fecal coliform (FC), total phosphorus (TP), chemical oxygen demand (COD) and biochemical oxygen demand (BOD), with their average mass concentrations of 1.98 x 10(9) CFU.L-1, 158.61 mg.L-1, 5 608.68 mg.L-1 and 1984.34 mg.L-1, respectively; key pollutants of biogas slurry were FC, TP, ammonia nitrogen (NH+4 -N) and suspended substance (SS), with their average mass concentrations of 8. 10 x 10(6) CFU.L-1, 81.76 mg.L-1, 476.24 mg.L-1 and 464.58 mg.L-1, respectively. Under the effect of wastewater pollutants, environment surrounding of typical intensive pig farms was seriously polluted, which decreased gradually from piggery wastewater to biogas slurry, and comprehensive pollution indices were 11.41, 6.91, 5.27, respectively. The risk analysis showed that the high-risk wastewater could never be discharged directly and irrigated crops. After the anaerobic treatment, FC, TP, NH+4 -N and SS were still strong factors with the potential ecological risk in the biogas slurry. In the long run, the ecological risk still exists for direct discharge or irrigation of them, and it is necessary to apply further treatment.

  6. Estimated emissions of chlorofluorocarbons, hydrochlorofluorocarbons, and hydrofluorocarbons based on an interspecies correlation method in the Pearl River Delta region, China.

    PubMed

    Wu, Jing; Fang, Xuekun; Martin, Jonathan W; Zhai, Zihan; Su, Shenshen; Hu, Xia; Han, Jiarui; Lu, Sihua; Wang, Chen; Zhang, Jianbo; Hu, Jianxin

    2014-02-01

    Although many studies have been conducted in recent years on the emissions of chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), and hydrofluorocarbons (HFCs) at the large regional (such as East Asia) and national scales, relatively few studies have been conducted for cities or metropolitan areas. In this study, 192 air samples were collected in the Pearl River Delta (PRD) region of China in November 2010. The atmospheric mixing ratios of six halocarbons were analyzed, including trichlorofluoromethane (CFC-11, CCl3F), dichlorodifluoromethane (CFC-12, CCl2F2), monochlorodifluoromethane (HCFC-22, CHClF2), 1,1-dichloro-1-fluoroethane (HCFC-141b, CH3CCl2F), 1-dichloro-1,1-fluoroethane (HCFC-142b, CH3CClF2), and 1,1,1,2-tetrafluoroethane (HFC-134a, CH2FCF3), and their emissions were estimated based on an interspecies correlation method using HCFC-22 as the reference species. The results showed no significant change in the regional concentration and emission of CFC in the past 10years, suggesting that the continuous regional emission of CFC has had no significant effect on the CFC regional concentration in the PRD region. Concentrations and emissions of HCFCs and HFCs are significantly higher compared to previous research in the PRD region (P<0.05). The largest emission was for HCFC-22, most likely due to its substitution for CFC-12 in the industrial and commercial refrigeration subsector, and the rapid development of the room air-conditioner and extruded polystyrene subsectors. The PRD's ODP-weighted emissions of the target HCFCs provided 9% (7-12%) of the national emissions for the corresponding species. The PRD's GWP-weighted emissions of the target HCFCs and HFC-134a account for 10% (7-12%) and 8% (7-9%), respectively, of the national emissions for the corresponding species, and thus are important contributions to China's total emissions. PMID:24189105

  7. [Wastewater pollution characteristics from typical intensive pig farms in the Pearl River Delta and its ecological risk assessment].

    PubMed

    Li, Wen-Ying; Peng, Zhi-Ping; Yu, Jun-Hong; Huang, Ji-Chuan; Xu, Pei-Zhi; Yang, Shao-Hai

    2013-10-01

    Based on the wastewater quality investigation data from March 2009 to November 2011, wastewater qualities from typical intensive pig farms were assessed in the Pearl River Delta by single and comprehensive pollution index model. The results showed that key pollutants of piggery wastewater were fecal coliform (FC), total phosphorus (TP), chemical oxygen demand (COD) and biochemical oxygen demand (BOD), with their average mass concentrations of 1.98 x 10(9) CFU.L-1, 158.61 mg.L-1, 5 608.68 mg.L-1 and 1984.34 mg.L-1, respectively; key pollutants of biogas slurry were FC, TP, ammonia nitrogen (NH+4 -N) and suspended substance (SS), with their average mass concentrations of 8. 10 x 10(6) CFU.L-1, 81.76 mg.L-1, 476.24 mg.L-1 and 464.58 mg.L-1, respectively. Under the effect of wastewater pollutants, environment surrounding of typical intensive pig farms was seriously polluted, which decreased gradually from piggery wastewater to biogas slurry, and comprehensive pollution indices were 11.41, 6.91, 5.27, respectively. The risk analysis showed that the high-risk wastewater could never be discharged directly and irrigated crops. After the anaerobic treatment, FC, TP, NH+4 -N and SS were still strong factors with the potential ecological risk in the biogas slurry. In the long run, the ecological risk still exists for direct discharge or irrigation of them, and it is necessary to apply further treatment. PMID:24364317

  8. Contribution of the aquitard to the regional groundwater hydrochemistry of the underlying confined aquifer in the Pearl River Delta, China.

    PubMed

    Wang, Ya; Jiao, Jiu Jimmy; Cherry, John A; Lee, Chun Ming

    2013-09-01

    Aquitards are capable of generating and preserving large amounts of chemicals. The release of the chemicals from the aquitards poses a potential contamination risk to groundwater that may be used as a drinking water source. This work aimed to identify the contribution of hydrogeochemical processes in the aquitards to groundwater hydrochemistry in the underlying confined basal aquifer by studying the coastal Quaternary aquifer-aquitard system of the Pearl River Delta, China. The system was submerged by paleo-seawater in the early Holocene and mainly receives infiltration of precipitation at present, as indicated by investigations on stable isotopes (δ(2)H, δ(18)O), water chemistry (SO4(2-) and Cl(-)) and salinity. Significant correlations between total dissolved solids in the basal aquifer and the thickness of the overlying aquitard further suggested the contribution of the aquitard to the groundwater hydrochemistry in the aquifer. Significant correlations between the chloride concentrations in aquitard porewater and that in groundwater in the aquifer, and between the thickness of the aquitard and the chloride concentrations in groundwater indicated the strong influence of the aquitard on the chloride in the aquifer. This is probably because the low-permeability aquitard is capable of preserving the paleo-seawater in the aquifer and releasing the salinity from the aquitard down to the aquifer via downward flow or diffusion. Isotopic and geochemical studies revealed that the aquitard is also responsible for generating and preserving large amounts of naturally occurring ammonium. Analysis between the concentrations of ammonium in groundwater in the basal aquifer and the total available ammonium in aquitard sediments suggested that the former is significantly controlled by the latter.

  9. Assessing ecosystem response to phosphorus and nitrogen limitation in the Pearl River plume using the Regional Ocean Modeling System (ROMS)

    NASA Astrophysics Data System (ADS)

    Gan, Jianping; Lu, Zhongming; Cheung, Anson; Dai, Minhan; Liang, Linlin; Harrison, Paul J.; Zhao, Xiaozheng

    2014-12-01

    The effect of phosphorus limitation on the Pearl River plume ecosystem, where large gradients in both nitrogen (N) and phosphorus (P) concentrations exist, is investigated in this process-oriented study by coupling the Regional Ocean Modeling System (ROMS) model with a new nitrogen, phosphorus, phytoplankton, zooplankton, and detritus (NPPZD) ecosystem model. The results of the N-based only model of Gan et al. (2010) were compared with those of the new NP-based model for the plume. The inclusion of P-limitation noticeably reduces the total phytoplankton production in the plume in the P-limited near and midfield regions of the plume. However, the nitrate in the plume extends farther downstream and forms a broad area of phytoplankton bloom in the N-limited far field. Moreover, it changes the photosynthetically active radiation and strengthens the subsurface chlorophyll maximum in the near and midfields, but weakens it in the far field. A high N:P ratio of ˜120 in the near field decreases quickly to a low N:P ratio of <13.3 in the far field due to a higher N:P consumption ratio and mixing with ambient waters with a lower N:P ratio. Mortality and coagulation acts as major sinks for phytoplankton production in the near and midfield during the developmental stage of the bloom, but grazing gradually becomes the most important sink for phytoplankton production in the entire plume during the mature stage. It was shown that the magnitudes of the difference between the NP-based and N-based cases decrease sequentially for nutrients, phytoplankton, and zooplankton.

  10. Enrichment and mechanisms of heavy metal mobility in a coastal quaternary groundwater system of the Pearl River Delta, China.

    PubMed

    Wang, Ya; Jiao, Jiu Jimmy; Zhang, Ke; Zhou, Yongzhang

    2016-03-01

    The risks posed by heavy metal mobilization strongly depend on the pathways that the metals follow, with the sediment-water pathway representing a direct risk to groundwater contamination. Monitoring and sequential extraction experiments in the laboratory generally have limitations with respect to understanding the mechanisms of heavy metal mobilization in the field. The Quaternary coastal groundwater system of the Pearl River Delta, China was chosen as the study area to understand heavy metal enrichment and mobility. Heavy metals including V, Cr, Co, Ni, Cu, Zn, Ba, Pb, Mo, Cd, Sr, Ga, Ge, Rb, and Cs in both sediments and groundwater were analyzed. Geochemical parameters including Fe2O3, MnO, sedimentary organic matter, and carbonate content as well as hydrochemical parameters including K(+), Na(+), Ca(2+), Mg(2+), NH4(+), SO4(2-), Cl(-), HCO3(-), pH, TDS, and dissolved organic carbon were also measured. The enrichment of heavy metals in the solid sediment phase as well as the mobilization mechanisms of heavy metals in groundwater are discussed as informed by Pearson's correlation analysis. Hydrochemical analyses demonstrated that the mobility of V, Ba, Cr, Rb, and Cs is closely related to the decomposition of buried sedimentary organic matter; the mobility of Co, Ni, Cu, Zn, Pb, and Cd is closely linked with the reductive dissolution of Fe-Mn oxides; and the mobility of Co, Ni, Cu, Ba, Zn, Pb, Cd, Mn, Sr and Ga is probably controlled by ion exchange processes. This study demonstrates that heavy metal mobility in the field is not entirely consistent with the potential mobility as indicated by sediment analysis, due to the complicated hydrogeochemical conditions in the groundwater system, and suggests that comprehensive geochemical and hydrochemical studies are useful ways to understand the mobility mechanisms of heavy metals in the field.

  11. Sources of C₂-C₄ alkenes, the most important ozone nonmethane hydrocarbon precursors in the Pearl River Delta region.

    PubMed

    Zhang, Yanli; Wang, Xinming; Zhang, Zhou; Lü, Sujun; Huang, Zhonghui; Li, Longfeng

    2015-01-01

    Surface ozone is becoming an increasing concern in China's megacities such as the urban centers located in the highly industrialized and densely populated Pearl River Delta (PRD) region, where previous studies suggested that ozone production is sensitive to VOC emissions with alkenes being important precursors. However, little was known about sources of alkenes. Here we present our monitoring of ambient volatile organic compounds at four representative urban, suburban and rural sites in the PRD region during November-December 2009, which experienced frequent ozone episodes. C2-C4 alkenes, whose total mixing ratios were 11-20% of non-methane hydrocarbons (NMHCs) quantified, accounted for 38-64% of ozone formation potentials (OFPs) and 30-50% of the total hydroxyl radical (OH) reactivity by NMHCs. Ethylene was the most abundant alkene, accounting for 8-15% in total mixing ratios of NMHCs and contributed 25-46% of OFPs. Correlations between C2-C4 alkenes and typical source tracers suggested that ethylene might be largely related to vehicle exhausts and industry activities, while propene and butenes were much more LPG-related. Positive Matrix Factorization (PMF) confirmed that vehicle exhaust and liquefied petroleum gas (LPG) were two major sources that altogether accounted for 52-62%, 58-77%, 73-83%, 68-79% and 73-84% for ethylene, propene, 1-butene, trans-2-butene and cis-2-butene, respectively. Vehicle exhausts alone contributed 32-49% ethylene and 35-41% propene. Industry activities contributed 13-23% ethylene and 7-20% propene. LPG instead contributed the most to butenes (38-65%) and substantially to propene (23-36%). Extensive tests confirmed high fractions of propene and butenes in LPG then used in Guangzhou and in LPG combustion plumes; therefore, limiting alkene contents in LPG would benefit regional ozone control.

  12. Estimation of health and economic costs of air pollution over the Pearl River Delta region in China.

    PubMed

    Lu, Xingcheng; Yao, Teng; Fung, Jimmy C H; Lin, Changqing

    2016-10-01

    The Pearl River Delta region (PRD) is the economic growth engine of China and also one of the most urbanized regions in the world. As a two-sided sword, rapid economic development causes air pollution and poses adverse health effects to the citizens in this area. This work estimated the negative health effects in the PRD caused by the four major ambient pollutants (SO2, NO2, O3 and PM10) from 2010 to 2013 by using a log linear exposure-response function and the WRF-CMAQ modeling system. Economic loss due to mortality and morbidity was evaluated by the value of statistical life (VSL) and cost of illness (COI) methods. The results show that the overall possible short-term all-cause mortality due to NO2, O3 and PM10 reached the highest in 2013 with the values being 13,217-22,800. The highest total economic loss, which ranged from 14,768 to 25,305million USD, occurred in 2013 and was equivalent to 1.4%-2.3% of the local gross domestic product. The monthly profile of cases of negative health effects varied by city and the types of ambient pollutants. The ratio of mortality attributed to air pollutants to total population was higher in urban areas than in rural areas. People living in the countryside should consider the possible adverse health effects of urban areas before they plan a move to the city. The results show that the health burden caused by the ambient pollutants over this region is serious and suggest that tighter control policies should be implemented in the future to reduce the level of air pollution.

  13. Characterization of environmental Vibrio cholerae serogroups O1 and O139 in the Pearl River Estuary, China.

    PubMed

    Li, Xiujun; Wang, Duochun; Li, Baisheng; Zhou, Haijian; Liang, Song; Ke, Changwen; Deng, Xiaoling; Kan, Biao; Morris, J Glenn; Cao, Wuchun

    2016-02-01

    Toxigenic isolates of Vibrio cholerae serogroups O1 and O139 from aquatic reservoirs are a key source for recurrent epidemics of cholera in human populations. However, we do not have an optimal understanding of the microbiology of the strains within these reservoirs, particularly outside of the time periods when there are active cholera cases in the surrounding community. The main objective of the present study was to identify and characterize V. cholerae O1 and O139 in the Pearl River Estuary at a time when active disease was not being identified, despite prior occurrence of epidemic cholera in the region. Water samples were collected at 24 sites in the research area at monthly intervals between 2007 and 2010, and screened for the presence of V. cholerae O1 and O139. All isolates were screened for the presence of ctxAB, ompW, toxR, and tcpA genes. Multilocus variable number tandem repeat analysis (MLVA) was used to assess possible relationships among strains. The results show that Vibrio cholerae O1 or O139 was isolated, on average, from 6.7% of the sites screened at each time point. All V. cholerae O1 and O139 isolates were ctxAB negative, and 37% were positive for tcpA. Isolation was most common in the oldest, most urbanized district compared with other districts, and was associated with lower pH. Despite year-to-year variability in isolation rates, there was no evidence of seasonality. MLVA of 27 selected isolates showed evidence of high genetic diversity, with no evidence of clustering by year or geographic location. In this region where cholera has been epidemic in the past, there is evidence of environmental persistence of V. cholerae O1 and O139 strains. However, environmental strains were consistently nontoxigenic, with a high level of genetic diversity; their role as current or future agents of human disease remains uncertain. PMID:26674584

  14. Assessment of motor vehicle emission control policies using Model-3/CMAQ model for the Pearl River Delta region, China

    NASA Astrophysics Data System (ADS)

    Che, Wenwei; Zheng, Junyu; Wang, Shuisheng; Zhong, Liuju; Lau, Alexis

    2011-03-01

    In recent decades, the Pearl River Delta (PRD) region located in south China has been experiencing severe air pollution, arising from the rapid increase in industry and motor vehicles. As a major contributing source to VOCs and NO x emissions, control of vehicular emissions plays a very important role in improving regional air quality. By taking 2015 as a target year, this paper assessed the impacts of five possible motor vehicle emission control measures and a combined policy scenario on ambient air quality in the PRD region, with the use of the Model-3/CMAQ (Community Multi-scale Air Quality) model. The results show: (1) an overall decreasing pattern in SO 2, NO 2 and PM 10 concentrations was found in central-south metropolitan areas of the PRD region for all measures, but increased O 3 concentrations may occur in these areas as well. The exception to this is that a slight decrease was observed for the cases of motorcycle restriction and introduction of HEV; (2) upgrading to National IV emission standards is the most effective individual measure and can reduce daily averaged NO 2 and PM 10 concentrations by 11.7 ppbV and 21.3 μg m -3, respectively; but involves an increase (at maximum) of 10.3ppbV in O 3 concentration. Evaluation of the combined scenario indicates that solely controlling motor vehicle emissions is not sufficient to improve PRD regional air quality significantly. O 3 and PM 10 concentrations under the same VOC/NO x reduction ratios exhibit differently at different locations, suggesting that integrated and location-specific pollution control strategies, considering co-control of multi-pollutants, are needed in this region in order to decrease primary and secondary pollutant concentrations simultaneously.

  15. Estimated emissions of chlorofluorocarbons, hydrochlorofluorocarbons, and hydrofluorocarbons based on an interspecies correlation method in the Pearl River Delta region, China.

    PubMed

    Wu, Jing; Fang, Xuekun; Martin, Jonathan W; Zhai, Zihan; Su, Shenshen; Hu, Xia; Han, Jiarui; Lu, Sihua; Wang, Chen; Zhang, Jianbo; Hu, Jianxin

    2014-02-01

    Although many studies have been conducted in recent years on the emissions of chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), and hydrofluorocarbons (HFCs) at the large regional (such as East Asia) and national scales, relatively few studies have been conducted for cities or metropolitan areas. In this study, 192 air samples were collected in the Pearl River Delta (PRD) region of China in November 2010. The atmospheric mixing ratios of six halocarbons were analyzed, including trichlorofluoromethane (CFC-11, CCl3F), dichlorodifluoromethane (CFC-12, CCl2F2), monochlorodifluoromethane (HCFC-22, CHClF2), 1,1-dichloro-1-fluoroethane (HCFC-141b, CH3CCl2F), 1-dichloro-1,1-fluoroethane (HCFC-142b, CH3CClF2), and 1,1,1,2-tetrafluoroethane (HFC-134a, CH2FCF3), and their emissions were estimated based on an interspecies correlation method using HCFC-22 as the reference species. The results showed no significant change in the regional concentration and emission of CFC in the past 10years, suggesting that the continuous regional emission of CFC has had no significant effect on the CFC regional concentration in the PRD region. Concentrations and emissions of HCFCs and HFCs are significantly higher compared to previous research in the PRD region (P<0.05). The largest emission was for HCFC-22, most likely due to its substitution for CFC-12 in the industrial and commercial refrigeration subsector, and the rapid development of the room air-conditioner and extruded polystyrene subsectors. The PRD's ODP-weighted emissions of the target HCFCs provided 9% (7-12%) of the national emissions for the corresponding species. The PRD's GWP-weighted emissions of the target HCFCs and HFC-134a account for 10% (7-12%) and 8% (7-9%), respectively, of the national emissions for the corresponding species, and thus are important contributions to China's total emissions.

  16. Measuring natural phytoplankton fluorescence and biomass: a case study of algal bloom in the Pearl River estuary.

    PubMed

    Zhao, Jun; Cao, Wenxi; Yang, Yuezhong; Wang, Guifen; Zhou, Wen; Sun, Zhaohua

    2008-10-01

    A moored optical buoy was deployed in the Pearl River estuarine waters for a 15-day period. A four-day algal bloom event occurred during this study period. Both chlorophyll a concentration and algal cell density (a proxy for biomass) changed dramatically before and after the event. The chlorophyll concentration at a 2.3m depth rose from 5.15 mg/m(-3) at 15:00 h on August 19 to 23.62 mg/m(-3) at 9:00 h on August 21, and then decreased to 3.24 mg/m(-3) at 15:00 h on August 24. The corresponding cell density ranged from 1.57 x 10(5) to 1.76 x 10(6)cells/L. We used normalized fluorescence line height (NFLH) and normalized fluorescence intensity (NFI) in order to determine fluorescence activity. Combined with the in situ sampling dataset, we were able to correlate natural fluorescence (NFLH and NFI) with chlorophyll a concentrations, and found correlation coefficients of 0.72 and 0.75, respectively. We also found correlations between natural fluorescence and cell density, with correlation coefficients of 0.71 and 0.65, respectively. These results indicate that applying continuous time series of natural fluorescence can reflect changes in biomass. This technique will prove extremely useful for in situ and real-time observations using an optical buoy. Although there are still problems to solve in the real-time observation of natural fluorescence in algal bloom events, we discuss the primary factors affecting fluorescence signals and suggest possible methods for mitigating these issues.

  17. Aquatic risk assessment of priority and other river basin specific pesticides in surface waters of Mediterranean river basins.

    PubMed

    Silva, Emília; Daam, Michiel A; Cerejeira, Maria José

    2015-09-01

    To meet good chemical and ecological status, Member States are required to monitor priority substances and chemicals identified as substances of concern at European Union and local/river-basin/national level, respectively, in surface water bodies, and to report exceedances of the environmental quality standards (EQSs). Therefore, standards have to be set at national level for river basin specific pollutants. Pesticides used in dominant crops of several agricultural areas within the catchment of Mediterranean river basins ('Mondego', 'Sado' and 'Tejo', Portugal) were selected for monitoring, in addition to the pesticides included in priority lists defined in Europe. From the 29 pesticides and metabolites selected for the study, 20 were detected in surface waters of the river basins, seven of which were priority substances: alachlor, atrazine, chlorfenvinphos, chlorpyrifos, endosulfan, simazine and terbutryn, all of which exceeded their respective EQS values. QSs for other specific pollutants were calculated using different extrapolation techniques (i.e. deterministic or probabilistic) largely based on the method described in view of the Water Framework Directive. Non-acceptable aquatic risks were revealed for molinate, oxadiazon, pendimethalin, propanil, terbuthylazine, and the metabolite desethylatrazine. Implications of these findings for the classification of the ecological status of surface water bodies in Portugal and at the European level are discussed.

  18. Estimation of environmental flow requirements for the river ecosystem in the Haihe River Basin, China.

    PubMed

    Yang, Tao; Liu, Jingling; Chen, Qiuying; Zhang, Jing; Yang, Yi

    2013-01-01

    The temporal and spatial environmental flow requirements (EFRs) for the river ecosystem of the Haihe River Basin were analyzed based mainly on the eco-functional regionalization of available water resources. The annual EFRs for the river ecosystem of the Haihe River Basin were 47.71 × 10(8) m(3), which accounted for 18% of the average annual flow (263.9 × 10(8) m(3)). The EFRs for river reaches, wetlands, and estuaries were 22.67, 15.32 and 9.72 × 10(8) m(3), respectively. Moreover, the EFRs for the river ecosystem during the wet (June to October), normal (April, May, November), and dry (December to March) periods were 29.99, 9.51 and 8.21 × 10(8) m(3), respectively. Thus, toward a more integrated water resource allocation in the Haihe River Basin, the primary effort should focus on meeting the EFRs for river systems located in protected areas during the dry period.

  19. The Portland Basin: A (big) river runs through it

    USGS Publications Warehouse

    Evarts, Russell C.; O'Connor, Jim E.; Wells, Ray E.; Madin, Ian P.

    2009-01-01

    Metropolitan Portland, Oregon, USA, lies within a small Neogene to Holocene basin in the forearc of the Cascadia subduction system. Although the basin owes its existence and structural development to its convergent-margin tectonic setting, the stratigraphic architecture of basin-fill deposits chiefly reflects its physiographic position along the lower reaches of the continental-scale Columbia River system. As a result of this globally unique setting, the basin preserves a complex record of aggradation and incision in response to distant as well as local tectonic, volcanic, and climatic events. Voluminous flood basalts, continental and locally derived sediment and volcanic debris, and catastrophic flood deposits all accumulated in an area influenced by contemporaneous tectonic deformation and variations in regional and local base level.

  20. A Two-dimensional finite-element model study of backwater and flow distribution at the I-10 crossing of the Pearl River near Slidell, Louisiana

    USGS Publications Warehouse

    Lee, J.K.; Froelich, D.C.; Gilbert, J.J.; Wiche, G.J.

    1982-01-01

    A two-dimensional finite-element surface-water flow modeling system was used to study the effect of Interstate Highway 10 on water-surface elevations and flow distribution during the flood on the Pearl River on April 2, 1980, near Slidell, La. A finite-element network was designed to represent the topography and vegetative cover of the study reach. Hydrographic data collected for the 1980 flood were used to calibrate the flow model. The finite-element network was then modified to represent conditions prior to roadway construction, and the hydraulic impact of I-10 was determined by comparing ' before ' and ' after ' results. Upstream from the roadway, maximum backwater at the west edge of the flood plain (1.5 ft) is greater than maximum backwater at the east edge (1.1 ft). Backwater ranging from 0.6 to 0.2 ft. extends more than a mile downstream from the Pearl River bridge opening in I-10 at the east edge of the flood plain, and drawdown of 0.2 ft. or more occurs along approximately 2 miles of the west edge of the flood plain downstream from I-10. The capability of the modeling system to simulate the significant features of steady-state flow in a complicated multi-channel river-flood-plain system with variable topography and vegetative was successfully demonstrated in this study. (USGS)

  1. Spatial-temporal distribution and potential ecological risk assessment of nonylphenol and octylphenol in riverine outlets of Pearl River Delta, China.

    PubMed

    Chen, Ru; Yin, Pinghe; Zhao, Ling; Yu, Qiming; Hong, Aihua; Duan, Shunshan

    2014-11-01

    The aquatic environments of the Pearl River Delta in Southern China are subjected to contamination with various industrial chemicals from local industries. In this paper, the occurrence, seasonal variation and spatial distribution of alkylphenol octylphenol (OP) and nonylphenol (NP) in river surface water and sediments in the runoff outlets of the Pearl River Delta were investigated. NP and OP were detected in all water and sediment samples and their mean concentrations in surface water during the dry season ranged from 810 to 3366 ng/L and 85.5 to 581 ng/L, respectively, and those in sediments ranged from 14.2 to 95.2 ng/g dw and 0.4 to 3.0 ng/g dw, respectively. In surface water, much higher concentrations were detected in the dry season than those in the wet season. In sediments, the concentrations in the dry season were also mostly higher. High concentrations of NP and OP were found in Humen outlet, likely due to high levels of domestic and industrial wastewater discharges. An ecological risk assessment with the use of hazard quotient (HQ) was also carried out and the HQ values ranged from 3.6×10(-5) to 35 and 64% of samples gave a HQ>1, indicating that the current levels of NP and OP pose a significant risk to the relevant aquatic organisms in the region. PMID:25458690

  2. Research on the influence of site factors on the expansion of construction land in the Pearl River Delta, China: By using GIS and remote sensing

    NASA Astrophysics Data System (ADS)

    Ye, Yuyao; Zhang, Hongou; Liu, Kai; Wu, Qitao

    2013-04-01

    Landsat TM images of the Pearl River Delta taken in 1988, 1998 and 2006 are used to explore the site factors that influence the construction land expansion in this study. Several site factors, including landscape types and the distances to roads, coastlines, or city centers, had significant impacts on the expansion of construction land, influencing the direction, scale and intensity of the expansion. The site factors serve as important natural and spatial indicators of the preferable locales for construction land expansion, describing tendencies to expand to locations in suburbs, plains and areas near roads or coastlines.

  3. Chemical analyses of surface water in Illinois, 1958-74; Volume II, Illinois River basin and Mississippi River tributaries north of Illinois River basin

    USGS Publications Warehouse

    Healy, R.W.; Toler, L.G.

    1978-01-01

    Samples of surface water were collected and analyzed by the Illinois Environmental Protection Agency and its predecessor, the Stream Pollution Control Bureau of the Illinois Department of Public Health. The results for the period 1958 to 1974 are presented in tabular form and the history of sampling and analytical methods are included for all sites where samples were collected at gaging stations or near enough that reliable discharge estimates could be made. The report is contained in three volumes. This volume (Volume II) includes Illinois River basin and Mississippi River tributaries north of Illinois River basin. (See also W78-10034 and W78-10036) (Woodard-USGS)

  4. Chemical analyses of surface water in Illinois, 1975-77; Volume 2, Illinois River basin and Mississippi River tributaries north of Illinois River basin

    USGS Publications Warehouse

    Grason, David; Healy, R.W.

    1979-01-01

    Samples of surface water were collected and analyzed by the Illinois Environmental Protection Agency. The results from water years 1975 to 1977 are presented in three volumes. The history of sampling and analytical methods used during that period are summarized. Stream discharge data from records of the U.S. Geological Survey are included for all sites where samples were collected at gaging stations or near enough that reliable discharge estimates could be made. Volume II includes the Illinois River basin and Mississippi River tributaries north of Illinois River basin. (Woodard-USGS)

  5. Salinity-dominated change in community structure and ecological function of Archaea from the lower Pearl River to coastal South China Sea.

    PubMed

    Xie, Wei; Zhang, Chuanlun; Zhou, Xuedan; Wang, Peng

    2014-09-01

    Archaea have multiple roles in global biogeochemical cycles. However, we still have limited knowledge about how environmental factors affect the diversity and function of different archaeal lineages. The goal of this study was to examine the change in the abundance and community structure of Archaea in the sediments collected from the lower Pearl River (mainly North River tributary), its estuary, and coastal South China Sea (SCS) in order to evaluate how archaeal ecological function might change along the salinity gradient. Pyrosequencing of the 16S rDNA gene of Archaea was performed on sediment samples from Feilaixia Dam on the North River tributary to Wanshan islands, which have a salinity range of 0.1 to 31.2‰. Consistent with the salt tolerance of cultivated representatives, methanogens in the genera Methanoregula, Methanosaeta, and Methanosarcina and Nitrososphaera within Thaumarchaeota of the ammonia-oxidizing Archaea (AOA) were abundant in freshwater sediments of the North River tributary, whereas the marine-associated genera Methanococcoides and Nitrosopumilus were the most abundant methanogens and AOA, respectively, in the estuary and coastal SCS. However, the percentages of total methanogens decreased and Thaumarchaeota increased with salinity, respectively. The phylum Crenarchaeota was largely represented by class-level lineages with no cultivated representatives, which collectively were more abundant in the estuary and coastal SCS in comparison to freshwater sites. This study indicates that salinity is the dominating factor affecting archaeal community structure and ecological function from the North River tributary of the Pearl River, its estuary, and coastal SCS, which is consistent with salinity control on microbial diversity in other regions of the world.

  6. Transport of diazinon in the San Joaquin River basin, California

    USGS Publications Warehouse

    Kratzer, Charles R.

    1997-01-01

    Most of the application of the organophosphate insecticide diazinon in the San Joaquin River Basin occurs in winter to control wood boring insects in dormant almond orchards. A federal-state collaborative study found that diazinon accounted for most of the observed toxicity of San Joaquin River water to water fleas in February 1993. Previous studies focussed mainly on west-side inputs to the San Joaquin River. In this 1994 study, the three major east-side tributaries to the San Joaquin River, the Merced, Tuolumne, and Stanislaus Rivers, and a downstream site on the San Joaquin River were sampled throughout the hydrographs of a late January and an early February storm. In both storms, the Tuolumne River had the highest concentrations of diazinon and transported the largest load of the three tributaries. The Stanislaus River was a small source in both storms. On the basis of previous storm sampling and estimated traveltimes, ephemeral west-side creeks were probably the main diazinon source early in the storms, while the Tuolumne and Merced Rivers and east-side drainage directly to the San Joaquin River were the main sources later. Although 74 percent of diazinon transport in the San Joaquin River during 199193 occurred in January and February, transport during each of the two 1994 storms was only 0.05 percent of the amount applied during preceeding dry periods. Nevertheless, some of the diazinon concentrations in the San Joaquin River during the January storm exceeded 0.35 micrograms per liter, a concentration shown to be acutely toxic to water fleas. Diazinon concentrations were highly variable during the storms and frequent sampling was required to adequately describe the concentration curves and to estimate loads.

  7. Estimation of the Water Budget for Major Canadian River Basins

    NASA Astrophysics Data System (ADS)

    Wang, S.; Huang, J.; Li, J.; Rivera, A.; Russell, H.

    2012-12-01

    Understanding regional water budgets is essential in water resources management, particularly for irrigation planning, drought, flood and pollution control, drainage system design, and climate modelling. A water budget for a drainage basin is needed to determine the magnitude of the impacts of climate change and anthropogenic disturbances on terrestrial water cycle and to evaluate possible mitigation actions. In this study, the monthly and 30-year (1979-2008) average water budgets were calculated for large Canadian river basins with an area > 90,000 km2. The total area studied takes about 58% of the entire Canadian landmass. The datasets used include two gridded precipitation products based on measurement, the land surface evapotranspiration product derived from the EALCO model, the river discharge measured from hydrometric stations, and the total water (surface water+groundwater) storage anomaly derived from GRACE satellite observations. These datasets are deemed as the best-available long-term national scale datasets that meet the requirement of this study. Our objectives are to characterise the spatial and temporal variations of water budget across the vast Canadian landmass and to answer the questions of (1) how well can we close the water budget at both long-term and monthly time scales for the major Canadian river basins and (2) which component(s) of the water budget (i.e., precipitation, evapotranspiration, river discharge, or total water storage change) and in which season and which region contribute the main error source to the water budget imbalance? We also examined the decadal change in total water storage in the major Canadian river basins and quantified the bias in evapotranspiration estimation by using the widely-accepted surface water budget approach. Our results show that the national scale water budget imbalance is very close to 0 (-0.2 mm year-1) due to the offset of positive and negative imbalances among the studies basins. Basins with positive

  8. Information technology and decision support tools for stakeholder-driven river basin salinity management

    SciTech Connect

    Quinn, N.W.T; Cozad, D.B.; Lee, G.

    2010-01-01

    Innovative strategies for effective basin-scale salinity management have been developed in the Hunter River Basin of Australia and more recently in the San Joaquin River Basin of California. In both instances web-based stakeholder information dissemination has been a key to achieving a high level of stakeholder involvement and the formulation of effective decision support salinity management tools. A common element to implementation of salinity management strategies in both river basins has been the concept of river assimilative capacity for controlling export salt loading and the potential for trading of the right to discharge salt load to the river - the Hunter River in Australia and the San Joaquin River in California. Both rivers provide basin drainage and the means of exporting salt to the ocean. The paper compares and contrasts the use of monitoring, modeling and information dissemination in the two basins to achieve environmental compliance and sustain irrigated agriculture in an equitable and socially and politically acceptable manner.

  9. Geothermal resources of the Wind River Basin, Wyoming

    SciTech Connect

    Hinckley, B.S.; Heasler, H.P.

    1985-01-01

    The geothermal resources of the Wind River Basin were investigated. Oil-well bottom-hole temperatures, thermal logs of wells, and heat flow data have been interpreted within a framework of geologic and hydrologic constraints. Basic thermal data, which includes the background thermal gradient and the highest recorded temperature and corresponding depth for each basin, is tabulated. Background heat flow in the Wind River Basin is generally insufficient to produce high conductive gradients. Only where hydrologic systems re-distribute heat through mass movement of water will high temperatures occur at shallow depths. Aquifers which may have the confinement and structural characteristics necessary to create such geothermal systems are the Lance/Fort Union, Mesa Verde, Frontier, Muddy, Cloverly, Sundance, Nugget, Park City, Tensleep, Amsden, Madison, Bighorn, and Flathead Formations. Of these the Tensleep Sandstone and Madison Limestone are the most attractive in terms of both productivity and water quality. Most of the identified geothermal anomalies in the Wind River Basin occur along complex structures in the southwest and south. The most attractive geothermal prospects identified are anomalous Areas 2 and 3 north of Lander, Sweetwater Station Springs west of Jeffrey City, and the thermal springs southwest of Dubois. Even in these areas, it is unlikely temperatures in excess of 130 to 150/sup 0/F can be developed. 16 refs., 7 figs., 7 tabs. (ACR)

  10. Water resources of the upper Big Wood River basin, Idaho

    USGS Publications Warehouse

    Frenzel, S.A.

    1989-01-01

    Mean annual water yields, estimated using a water-budget method, for the upper Big Wood River basin above Glendale Road and for Trail Creek, Warm Springs Creek, and East Fork Big Wood River, Idaho were 410,000, 50,000, 60,000 and 50,000 acre-ft, respectively. Yields also were estimated for 1986 and 1987 water years when data were collected for comparison with long-term average values. During 1986, yields estimated for upper Big Wood River basin, Trail Creek, Warm Springs Creek, and East Fork Big Wood were 580,000, 61,000, 83,000 and 60,000 acre-ft, respectively. During 1987, yields estimated for the respective basins were 230,000, 26,000, 32,000 and 28,000 acre-ft. Availability of surface and groundwater varies seasonally; the greatest quantity is available during spring snowmelt, and the least is available during mid-winter to late winter. Nutrient concentrations in sampled ground and surface water were near or below detection levels throughout the basin, which indicates that water quality has not been impaired by increased development. Fluoride concentrations were elevated in Warm Springs Creek, probably due to inflow of thermal water.

  11. Environmental Setting of the Lower Merced River Basin, California

    USGS Publications Warehouse

    Gronberg, Jo Ann M.; Kratzer, Charles R.

    2006-01-01

    In 1991, the U.S. Geological Survey began to study the effects of natural and anthropogenic influences on the quality of ground water, surface water, biology, and ecology as part of the National Water-Quality Assessment (NAWQA) Program. As part of this program, the San Joaquin-Tulare Basins study unit is assessing parts of the lower Merced River Basin, California. This report provides descriptions of natural and anthropogenic features of this basin as background information to assess the influence of these and other factors on water quality. The lower Merced River Basin, which encompasses the Mustang Creek Subbasin, gently slopes from the northeast to the southwest toward the San Joaquin River. The arid to semiarid climate is characterized by hot summers (highs of mid 90 degrees Fahrenheit) and mild winters (lows of mid 30 degrees Fahrenheit). Annual precipitation is highly variable, with long periods of drought and above normal precipitation. Population is estimated at about 39,230 for 2000. The watershed is predominately agricultural on the valley floor. Approximately 2.2 million pounds active ingredient of pesticides and an estimated 17.6 million pounds active ingredient of nitrogen and phosphorus fertilizer is applied annually to the agricultural land.

  12. Evolving water management institutions in the Red River Basin.

    PubMed

    Hearne, Robert R

    2007-12-01

    Institutions are the rules and norms that guide societal behavior. As societies evolve-with more diverse economies, increased populations and incomes, and more water scarcity-new and more complex water management institutions need to be developed. This evolution of water management institutions may also be observed across different constituencies, with different societal needs, in the same time period. The Red River of the North basin is particularly well suited for research on water management issues. A key feature of water management in the Red River Basin is the presence of three completely different sets of water law. Minnesota's water law is based upon riparian rights. North Dakota's water law is based upon prior appropriation. Manitoba has a system of water allocation that features provincial control. Because the basin is fairly homogeneous in terms of land use and geographic features, its institutional diversity makes this an excellent case study for the analysis of local water institutions. This article reviews the local water management institutions in the Red River Basin and assesses the ongoing institutional evolution of local water management.

  13. Carbon-Water-Energy Relations for Selected River Basins

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.

    1998-01-01

    A biophysical process-based model was run using satellite, assimilated and ancillary data for four years (1987-1990) to calculate components of total evaporation (transpiration, interception, soil and snow evaporation), net radiation, absorbed photosynthetically active radiation and net primary productivity over the global land surface. Satellite observations provided fractional vegetation cover, solar and photosynthetically active radiation incident of the surface, surface albedo, fractional cloud cover, air temperature and vapor pressure. The friction velocity and surface air pressure are obtained from a four dimensional data assimilation results, while precipitation is either only surface observations or a blended product of surface and satellite observations. All surface and satellite data are monthly mean values; precipitation has been disaggregated into daily values. All biophysical parameters of the model are prescribed according to published records. From these global land surface calculations results for river basins are derived using digital templates of basin boundaries. Comparisons with field observations (micrometeorologic, catchment water balance, biomass production) and atmospheric water budget analysis for monthly evaporation from six river basins have been done to assess errors in the calculations. Comparisons are also made with previous estimates of zonal variations of evaporation and net primary productivity. Efficiencies of transpiration, total evaporation and radiation use, and evaporative fraction for selected river basins will be presented.

  14. Quality of surface waters in the lower Columbia River Basin

    USGS Publications Warehouse

    Santos, John F.

    1965-01-01

    This report, made during 1959-60, provides reconnaissance data on the quality of waters in the lower Columbia River basin ; information on present and future water problems in the basin; and data that can be employed both in water-use studies and in planning future industrial, municipal, and agricultural expansion within this area. The lower Columbia River basin consists of approximately 46,000 square miles downstream from the confluence of the Snake and Columbia Rivers The region can be divided into three geographic areas. The first is the heavily forested, sparsely populated mountain regions in which quality of water in general is related to geologic and climatological factors. The second is a semiarid plateau east of the Cascade Mountains; there differences in geology and precipitation, together with more intensive use of available water for irrigation, bring about marked differences in water quality. The third is the Willamette-Puget trough area in which are concentrated most of the industry and population and in which water quality is influenced by sewage and industrial waste disposal. The majority of the streams in the lower Columbia River basin are calcium magnesium bicarbonate waters. In general, the rivers rising in the. Coast Range and on the west slope of the Cascade Range contain less than 100 parts per million of dissolved solids, and hardness of the water is less than 50 parts per million. Headwater reaches of the streams on the east slope of the Cascade Range are similar to those on the west slope; but, downstream, irrigation return flows cause the dissolved-solids content and hardness to increase. Most of the waters, however, remain calcium magnesium bicarbonate in type. The highest observed dissolved-solids concentrations and also some changes in chemical composition occur in the streams draining the more arid parts of the area. In these parts, irrigation is chiefly responsible for increasing the dissolved-solids concentration and altering the

  15. Seasonal variation in sources and processing of particulate organic carbon in the Pearl River estuary, South China

    NASA Astrophysics Data System (ADS)

    Guo, Wei; Ye, Feng; Xu, Shendong; Jia, Guodong

    2015-12-01

    Particulate organic carbon (POC) in the Pearl River estuary (PRE), South China, along a salinity gradient from freshwater to seawater in four months was studied in order to determine its temporal and spatial changes in source and processing. Analytical parameters included chlorophyll-a (Chl-a), POC, and carbon isotopic composition of POC and the dissolved inorganic carbon (DIC) (δ13CPOC, δ13CDIC). POC varied greatly from freshwater to seawater, exhibiting a significant power law distribution with a rapid decrease (from >2.5 mg l-1 to <0.9 mg l-1) in a narrow salinity range of 0-5 and then a slow decline to ˜0.4 mg l-1 along the large salinity gradient in the estuary. POC was sourced predominantly from in situ phytoplankton, and hence largely reflective of primary production, in February, August, and November as indicated by mostly lower POC/Chl-a values (<200), and significant correlation between POC and Chl-a, as well as between δ13CPOC and δ13CDIC. But in May, soil-derived OC was dominant in freshwater and low salinity estuarine water, as suggested by low POC% in total suspended substance, low Chl-a values and high POC/Chl-a ratios, and higher δ13CPOC values that was not in parallel with δ13CDIC excursion. The offset between δ13CPOC and phytoplankton δ13C (inferred from δ13CDIC) was trivial or positive in salinity <12, but then became negative downstream, which was likely suggestive of biogeochemical change from net respiration in the upper estuary to net production in the lower and outer estuary. Our results demonstrated that in situ phytoplankton was the dominant source to the estuarine POC pool during most seasons of a year, except in May in the first phase of wet season when rainfall and river flux increased abruptly causing intensive flushing effect. We further suggested that POC may be undergone intensive processing within the PRE, which is important for understanding organic carbon delivery in this vigorous land-ocean interface.

  16. Analysis of thematic mapper simulator data acquired during winter season over Pearl River, Mississippi, test site

    NASA Technical Reports Server (NTRS)

    Anderson, J. E.; Kalcic, M. T. (Principal Investigator)

    1982-01-01

    Digital processed aircraft-acquired thematic mapping simulator (TMS) data collected during the winter season over a forested site in southern Mississippi are presented to investigate the utility of TMS data for use in forest inventories and monitoring. Analyses indicated that TMS data are capable of delineating the mixed forest land cover type to an accuracy of 92.5 % correct. The accuracies associated with river bottom forest and pine forest were 95.5 and 91.5 % correct. The accuracies associated with river bottom forest and pine forest were 95.5 and 91.5 % correct, respectively. The figures reflect the performance for products produced using the best subset of channels for each forest cover type. It was found that the choice of channels (subsets) has a significant effect on the accuracy of classification produced, and that the same channels are not the most desirable for all three forest types studied. Both supervised and unsupervised spectral signature development techniques are evaluated; the unsupervised methods proved unacceptable for the three forest types considered.

  17. Riparian vegetation assessment of Cauvery River Basin of South India.

    PubMed

    Sunil, C; Somashekar, R K; Nagaraja, B C

    2010-11-01

    The Cauvery river basin of South India has a large phyto-floristic wealth, rightfully enough to constitute a separate phyto-geographic unit. Increase in the anthropogenic pressures within the river basin and surrounding landscapes have persistently stressed the riparian ecosystem structure adversely, besides altering its composition. The objective of this study was to examine the present status of riparian vegetation along the Cauvery river basin, in response to anthropogenic pressures. For vegetation analysis, the riparian forest coming in the middle stretch of Cauvery river was categorized into two zones, viz., forest zone covering ~54 km stretch and agroecosystem zone covering ~80 km stretch. In each zone, tree species were quantified using transects at 8-km interval. Overall tree species accounting for both forest and agroecosystem were recorded and compared. The results indicate that the mean density and basal area of trees per plot were higher in the forest zone than agroecosystem zone. The Shannon-Weiner diversity of forest zone is 4.6, which is higher than agroecosystem. In addition, species composition indicated a relatively low or poor similarity between the two zones. The vegetation density and site disturbance scores for all the study sites reveals that sand mining and grazing areas have exerted negative impact on riparian forest. The results of the present study clearly brought out the need for preparing and implementing site-specific conservation plans for riparian ecosystem.

  18. [Effect of hydrochemistry characteristics under impact of human activity: a case study in the upper reaches of the Xijiang River basin].

    PubMed

    Yu, Shil; Sun, Ping-an; Du, Wen-yue; He, Shi-yi; Li, Rui

    2015-01-01

    In this paper, observation and sampling were taken three times a month in a hydrological year for three typical sections of the middle and upper reaches of the Xijiang River basin, based on the data of hydrochemistry and flow, the article mainly discusses the evolution process of hydrochemistry in river under natural process and impact of human activity. Hydrochemical characteristics of 116. samples were analyzed in the study area. The hydrochemistry type in the middle and upper reaches of the Xijiang River basin belonged to HCO3- -Ca2+ type, and the chemical weathering type mainly came from carbonate rock weathering. Ca2+ and HCO3- were the main cations and anions, which reflected that hydrochemical characteristics of river in karst area mainly affected by the dissolution of carbonate rock. Na, Mg2, Ca2+ and Cl- mainly affected by natural conditions, the impact of human activity was little. K+, NO3-, SO4(2-) and HCO3- were affected by human activity in different degrees, and it showed different influence ways. This study had an important significance for the change of river hydrochemistry, water quality characteristics, and the effect on substance transported fluxes in the downstream of Pearl River and water quality protection in South China Monsoon Area.

  19. Integrated Watershed Assessment: The Northern River Basins Study

    NASA Astrophysics Data System (ADS)

    Wrona, F. J.; Gummer, W. D.

    2001-05-01

    Begun in 1991 and completed in 1996, the Northern River Basins Study (NRBS) was a \\$12 M initiative established by the governments of Canada, Alberta, and the Northwest Territories to assess the cumulative impacts of development, particularly pulp mill related effluent discharges, on the health of the Peace, Athabasca and Slave river basins. The NRBS was launched in response to concerns expressed by northern residents following the 1991 approval of the Alberta Pacific Pulp Mill in Athabasca. Although initiated by governments, the NRBS was set-up to be `arms-length' and was managed by a 25 member Study Board that represented the many interests in the basins, including industry, environmental groups, aboriginal peoples, health, agriculture, education, municipalities, and the federal, territorial and provincial governments. Overseen by an independent Science Advisory Committee, an integrated research program was designed covering eight scientific components: fate and distribution of contaminants, food chain impacts, nutrients, hydrology/hydraulics and sediment transport, uses of the water resources, drinking water quality, traditional knowledge, and synthesis/modeling. Using a 'weight of evidence' approach with a range of ecological and sociological indicators, cumulative impacts from pulp and paper-related discharges and other point and non-point sources of pollution were determined in relation to the health and contaminant levels of aquatic biota, nutrient and dissolved oxygen-related stress, hydrology and climate related changes, and human health and use of the river basins. Based on this assessment and Study Board deliberations, site-specific and basin-wide scientific and management-related recommendations were made to Ministers regarding regulatory and policy changes, basin management and monitoring options, and future research. The Study reinforces the importance of conducting ecosystem-based , interdisciplinary science and the need for public involvement in

  20. Water resources planning for a river basin with recurrent wildfires.

    PubMed

    Santos, R M B; Sanches Fernandes, L F; Pereira, M G; Cortes, R M V; Pacheco, F A L

    2015-09-01

    Situated in the north of Portugal, the Beça River basin is subject to recurrent wildfires, which produce serious consequences on soil erosion and nutrient exports, namely by deteriorating the water quality in the basin. In the present study, the ECO Lab tool embedded in the Mike Hydro Basin software was used for the evaluation of river water quality, in particular the dissolved concentration of phosphorus in the period 1990-2013. The phosphorus concentrations are influenced by the burned area and the river flow discharge, but the hydrologic conditions prevail: in a wet year (2000, 16.3 km(2) of burned area) with an average flow of 16.4 m(3)·s(-1) the maximum phosphorus concentration was as low as 0.02 mg·L(-1), while in a dry year (2005, 24.4 km(2) of burned area) with an average flow of 2 m(3)·s(-1) the maximum concentration was as high as 0.57 mg·L(-1). Phosphorus concentrations in the water bodies exceeded the bounds of good ecological status in 2005 and between 2009 and 2012, water for human consumption in 2009 and water for multiple uses in 2010. The River Covas, a right margin tributary of Beça River, is the most appropriate stream as regards the use of water for human consumption, because it presents the biggest water potential with the best water quality. Since wildfires in the basin result essentially from natural causes and climate change forecasts indicate an increase in their frequency and intensity in the near future, forestry measures are proposed to include as a priority the conversion of stands of maritime pine in mixed stands of conifer and hardwood species.

  1. Bioaccumulation and risk assessment of per- and polyfluoroalkyl substances in wild freshwater fish from rivers in the Pearl River Delta region, South China.

    PubMed

    Pan, Chang-Gui; Zhao, Jian-Liang; Liu, You-Sheng; Zhang, Qian-Qian; Chen, Zhi-Feng; Lai, Hua-Jie; Peng, Feng-Jiao; Liu, Shuang-Shuang; Ying, Guang-Guo

    2014-09-01

    Per- and polyfluoroalkyl substances (PFASs) are used in various industries, which results in their ubiquitous occurrence in the environment. This study determined the concentrations of eighteen PFASs in muscle and liver of nine wild freshwater fish species collected from rivers in the Pearl River Delta (PRD) region, South China, and assessed their bioaccumulation and potential health risks to local people. The results showed that eight and twelve PFASs were detected in the fish muscle and liver samples, respectively. Perfluorooctane sulfonate (PFOS) was found to be the predominant PFAS both in muscle and liver with its highest concentrations of 79ng/g wet weight (ww) in muscle and 1500ng/g ww in liver, followed by Perfluoroundecanoic acid (PFUnDA) and Perfluorotridecanoic acid (PFTrDA) with trace concentrations. The mean PFOS concentrations in fish muscle and liver tissues of the nine collected species ranged from 0.40ng/g in mud carp to 25ng/g in snakehead, and from 5.6ng/g in mud carp to 1100ng/g in snakehead, respectively. Significant positive correlations were found among PFASs both in water and fish, indicating a similar pollution source for these PFASs. In tilapia samples, PFOS concentrations showed an increasing trend with increasing length and weight, but no significant difference between genders. Bioaccumulation factors (logBAF) in fish for the PFASs were in the range from 2.1 to 5.0. The calculated hazard ratios (HR) of PFOS for all fishes were in the range of 0.05-2.8, with four out of nine species (tilapia, chub, leather catfish and snakehead) having their HR values more than 1.0. The results suggest that frequent consumption of these four fish species may pose health risks to local population.

  2. Development of river flood model in lower reach of urbanized river basin

    NASA Astrophysics Data System (ADS)

    Yoshimura, Kouhei; Tajima, Yoshimitsu; Sanuki, Hiroshi; Shibuo, Yoshihiro; Sato, Shinji; Lee, SungAe; Furumai, Hiroaki; Koike, Toshio

    2014-05-01

    Japan, with its natural mountainous landscape, has demographic feature that population is concentrated in lower reach of elevation close to the coast, and therefore flood damage with large socio-economic value tends to occur in low-lying region. Modeling of river flood in such low-lying urbanized river basin is complex due to the following reasons. In upstream it has been experienced urbanization, which changed land covers from natural forest or agricultural fields to residential or industrial area. Hence rate of infiltration and runoff are quite different from natural hydrological settings. In downstream, paved covers and construct of sewerage system in urbanized areas affect direct discharges and it enhances higher and faster flood peak arrival. Also tidal effect from river mouth strongly affects water levels in rivers, which must be taken into account. We develop an integrated river flood model in lower reach of urbanized areas to be able to address above described complex feature, by integrating model components: LSM coupled distributed hydrological model that models anthropogenic influence on river discharges to downstream; urban hydrological model that simulates run off response in urbanized areas; Saint Venant's equation approximated river model that integrates upstream and urban hydrological models with considering tidal effect from downstream. These features are integrated in a common modeling framework so that model interaction can be directly performed. The model is applied to the Tsurumi river basin, urbanized low-lying river basin in Yokohama and model results show that it can simulate water levels in rivers with acceptable model errors. Furthermore the model is able to install miscellaneous water planning constructs, such as runoff reduction pond in urbanized area, flood control field along the river channel, levee, etc. This can be a useful tool to investigate cost performance of hypothetical water management plan against impact of climate change in

  3. Groundwater quality in the Mohawk River Basin, New York, 2011

    USGS Publications Warehouse

    Nystrom, Elizabeth A.; Scott, Tia-Marie

    2013-01-01

    Water samples were collected from 21 production and domestic wells in the Mohawk River Basin in New York in July 2011 to characterize groundwater quality in the basin. The samples were collected and processed using standard U.S. Geological Survey procedures and were analyzed for 148 physiochemical properties and constituents, including dissolved gases, major ions, nutrients, trace elements, pesticides, volatile organic compounds (VOCs), radionuclides, and indicator bacteria. The Mohawk River Basin covers 3,500 square miles in New York and is underlain by shale, sandstone, carbonate, and crystalline bedrock. The bedrock is overlain by till in much of the basin, but surficial deposits of saturated sand and gravel are present in some areas. Nine of the wells sampled in the Mohawk River Basin are completed in sand and gravel deposits, and 12 are completed in bedrock. Groundwater in the Mohawk River Basin was typically neutral or slightly basic; the water typically was very hard. Bicarbonate, chloride, calcium, and sodium were the major ions with the greatest median concentrations; the dominant nutrient was nitrate. Methane was detected in 15 samples. Strontium, iron, barium, boron, and manganese were the trace elements with the highest median concentrations. Four pesticides, all herbicides or their degradates, were detected in four samples at trace levels; three VOCs, including chloroform and two solvents, were detected in four samples. The greatest radon-222 activity, 2,300 picocuries per liter, was measured in a sample from a bedrock well, but the median radon activity was higher in samples from sand and gravel wells than in samples from bedrock wells. Coliform bacteria were detected in five samples with a maximum of 92 colony-forming units per 100 milliliters. Water quality in the Mohawk River Basin is generally good, but concentrations of some constituents equaled or exceeded current or proposed Federal or New York State drinking-water standards. The standards

  4. Anastomosed river deposits, sedimentation rates, basin subsidence and locations in proximal molasse basins

    SciTech Connect

    Smith, D.G.

    1984-07-01

    Recent research on large sized modern anastomosing river systems (upper Columbia River, British Columbia, Canada, and Magdalena River, Colombia, South America) has recognized six depositional environments: channel, levee, crevasse-splay, lacustrine, marsh, and peat bog or swamp. Average sedimentation rates in both river systems are 5 mm/yr and 3.8 mm/yr, respectively. Such rapid sedimentation rates (vertical accretion) are keeping pace with equivalent rates of basin subsidence. High rates of sedimentation and basin subsidence are most likely to be found at proximal locations in molasse basins during major orogenic pulses. Such conditions were present during the Columbian and Laramide orogenies during the early Cretaceous and Tertiary in the foreland adjacent to the Rocky Mountain system. Thus, channel and crevasse-splay shale-encased sandstone reservoirs and coal, common in anastomosed fluvial rock sequences in proximal molasse settings, should be encountered in parts of the Western Interior sedimentary basin. Such deposits probably have been interpreted as deltaic or alluvial plain and should be reexamined to better predict sandstone trends for hydrocarbon exploration.

  5. Role of river bank erosion in sediment budgets of catchments within the Loire river basin (France)

    NASA Astrophysics Data System (ADS)

    Gay, Aurore; Cerdan, Olivier; Poisvert, Cecile; Landemaine, Valentin

    2014-05-01

    Quantifying volumes of sediments produced on hillslopes or in channels and transported or stored within river systems is necessary to establish sediment budgets. If research efforts on hillslope erosion processes have led to a relatively good understanding and quantification of local sources, in-channel processes remain poorly understood and quasi inexistent in global budgets. However, profound landuse changes and agricultural practices have altered river functioning, caused river bank instability and stream incision. During the past decades in France, river channelization has been perfomed extensively to allow for new agricultural practices to take place. Starting from a recent study on the quantification of sediment fluxes for catchments within the Loire river basin (Gay et al. 2013), our aim is to complete sediment budgets by taking into account various sources and sinks both on hillslope and within channel. The emphasis of this study is on river bank erosion and how bank erosion contributes to global budgets. A model of bank retreat is developed for the entire Loire river basin. In general, our results show that bank retreat is on average quite low with approximately 1 cm.yr-1. However, a strong variability exists within the study area with channels displaying values of bank retreat up to ~10 cm.yr-1. Our results corroborate those found by Landemaine et al. in 2013 on a small agricultural catchment. From this first step, quantification of volumes of sediment eroded from banks and available for transport should be calculated and integrated in sediment budgets to allow for a better understanding of basin functioning. Gay A., Cerdan O., Delmas M., Desmet M., Variability of sediment yields in the Loire river basin (France): the role of small scale catchments (under review). Landemaine V., Gay A., Cerdan O., Salvador-Blanes S., Rodriguez S. Recent morphological evolution of a headwater stream in agricultural context after channelization in the Ligoire river (France

  6. Channeling in Paleocene coals, northern Powder River basin, Montana

    SciTech Connect

    Hansen, W.B.

    1983-08-01

    Interpretation of 1,200 geophysical logs in the northern Powder River basin, Montana, reveals the paleodrainages influencing coal deposition during the deposition of the Tongue River member (Paleocene, Fort Union Formation). Four channels with associated crevasse splay deposits are recognized: (1) an east-west rosebud drainage near Colstrip, (2) a north-south wall channel near Birney, (3) a north-south Dietz drainage near Tongue River Reservoir, and (4) a north-south Anderson channel in the vicinity of Moorhead. These channels support the concept of a major northeast-flowing drainage system during deposition of the Tongue River Member. Identification of these channels serves as a guide to future coal exploration.

  7. Coho Salmon Master Plan, Clearwater River Basin.

    SciTech Connect

    Nez Perce Tribe; FishPro

    2004-10-01

    The Nez Perce Tribe has a desire and a goal to reintroduce and restore coho salmon to the Clearwater River Subbasin at levels of abundance and productivity sufficient to support sustainable runs and annual harvest. Consistent with the Clearwater Subbasin Plan (EcoVista 2003), the Nez Perce Tribe envisions developing an annual escapement of 14,000 coho salmon to the Clearwater River Subbasin. In 1994, the Nez Perce Tribe began coho reintroduction by securing eggs through U.S. v. Oregon; by 1998 this agreement provided an annual transfer of 550,000 coho salmon smolts from lower Columbia River hatchery facilities for release in the Clearwater River Subbasin. In 1998, the Northwest Power and Conservation Council authorized the Bonneville Power Administration to fund the development of a Master Plan to guide this reintroduction effort. This Master Plan describes the results of experimental releases of coho salmon in the Clearwater River Subbasin, which have been ongoing since 1995. These data are combined with results of recent coho reintroduction efforts by the Yakama Nation, general coho life history information, and historical information regarding the distribution and life history of Snake River coho salmon. This information is used to assess a number of alternative strategies aimed at restoring coho salmon to historical habitats in the Clearwater River subbasin. These data suggest that there is a high probability that coho salmon can be restored to the Clearwater River subbasin. In addition, the data also suggest that the re-establishment of coho salmon could be substantially aided by: (1) the construction of low-tech acclimation facilities; (2) the establishment of a 'localized' stock of coho salmon; and (3) the construction of hatchery facilities to provide a source of juvenile coho salmon for future supplementation activities. The Nez Perce Tribe recognizes that there are factors which may limit the success of coho reintroduction. As a result of these

  8. Drought Analysis for River Basins, Using the Hydrological Model SIMGRO

    NASA Astrophysics Data System (ADS)

    Querner, E.; van Lanen, H.; Rhebergen, W.

    2009-05-01

    Drought is a recurring and worldwide phenomenon, with spatial and temporal characteristics that vary significantly from one region to another. Drought has major impacts on society and affects among others the environment and the economy. Impacts are likely to increase with time as societies demands higher services for water and the environment. This will even be more pronounced in the coming decades with the projected climate change, i.e. droughts are becoming more severe in large parts of the world. The prediction of droughts is an essential part of impact assessment for current and future conditions, as part of integrated land and water management. An important question is how changes in meteorological drought will propagate into hydrological droughts in terms of changes in the groundwater system or in the river flow. The objective of our study is to develop and test tools that quantify the space-time development of droughts in a river basin. The spatial aspect of a hydrological drought (spatially-distributed recharge and groundwater heads), in a river basin brings different challenges with respect to describing the characteristics of a drought, such as: onset, duration, severity and extend. We used the regional hydrological model SIMGRO as a basis to generate the necessary data for the drought analysis. SIMGRO is a distributed physically-based model that simulates regional transient saturated groundwater flow, unsaturated flow, actual evapotranspiration, sprinkler irrigation, stream flow, groundwater and surface water levels as a response to rainfall, reference evapotranspiration, and groundwater abstraction. The model is used within the GIS environment Arc-View, which enables the use of digital data, such as soil map, land use, watercourses, as input data for the model. It is also a tool for analysis, because interactively data and results can be presented, as will be shown. Droughts in different hydrological variables (recharge, groundwater heads, river flow

  9. Water balance of the Drini i Bardh River Basin, Kosova

    NASA Astrophysics Data System (ADS)

    Avdullahi, Sabri; Fejza, Isalm

    2010-05-01

    Republic of Kosova lines on the highlands (500-600 m above sea level) surrounded by the mountains reaching the altitude of more than 2000m. Lower mountains divide the highland plain into four watershed areas, from where waters flow to there different seas, namely to the Adriatic Sea, the Aegean Sea and the Black Sea. In the present day world, the problems of too much, too little or too polluted water are increasing at a rapid rate. These problems have become particularly severe for the developing countries, adversely affecting their agriculture, drinking water supply and sanitation. Water recourse management is no more just a challenger it is a declared crises. Water resources in Kosova are relatively small, total amount of water in our country is small around 1600 m3/inhabitant /year Drini i Bardhë river basin is in the western part of Kosova, it is the biggest river basin with surface of 4.289 km2. Drini i Bardhë discharges its water to Albania and finally to the Adriatic Sea. The area consist of several small stream from the mountains, water flows into tributaries and Drini i Bardhë River. In this river basin are based 12 hydrometric stations, 27 manual and 5 automatic rainfall measurements Drini i Bardhe River main basin contain a big number of sub basins from which the most important are: Lumëbardhi i Pejës (503.5km2), Lumëbardhi i Deçanit (278.3km2), Erenikut (515.5km2), Burimi (446.7km2), Klinës (439.0km2), Mirushes (334.5km2), Toplluges (498.2km2), Bistrica e Prizrenit (266.0 km2) and Plava (309 km2) fig 2. For evapotranspiration measurement we have applied four methods: the method of BLANEY - CRIDDLE, radiation, SCHENDELE and Turk. Protecting from pollution is a very important issue having in consideration that this river discharges its water and outside the territory. Hydrometeorology Institute of Kosova is in charge for monitoring of water quality. Key works: rainfall, flow, evaporation, river, evaporation coefficient (Ke) and feeding coefficient

  10. Incentive compatibility and conflict resolution in international river basins: A case study of the Nile Basin

    NASA Astrophysics Data System (ADS)

    Wu, Xun; Whittington, Dale

    2006-02-01

    Nation-states rarely go to war over water, but it is equally rare that water conflicts in an international river basin are resolved through cooperation among the riparian countries that use the shared resources. Gains from cooperation will mean little to individual riparians unless the required cooperative behaviors are incentive compatible. Cooperative game theory offers useful insights for assessing cooperative solutions for water conflicts in international river basins. Applying cooperative game theory concepts such as core, nucleolus, and Shapley value to Nile water conflicts, we examine the incentive structure of both cooperative and noncooperative strategies for different riparian countries and establish some baseline conditions for incentive-compatible cooperation in the Nile basin.

  11. River enhancement in the Upper Mississippi River basin: Approaches based on river uses, alterations, and management agencies

    USGS Publications Warehouse

    O'Donnell, T. K.; Galat, D.L.

    2007-01-01

    The Upper Mississippi River is characterized by a series of locks and dams, shallow impoundments, and thousands of river channelization structures that facilitate commercial navigation between Minneapolis, Minnesota, and Cairo, Illinois. Agriculture and urban development over the past 200 years have degraded water quality and increased the rate of sediment and nutrient delivery to surface waters. River enhancement has become an important management tool employed to address causes and effects of surface water degradation and river modification in the Upper Mississippi River Basin. We report information on individual river enhancement projects and contrast project densities, goals, activities, monitoring, and cost between commercially non-navigated and navigated rivers (Non-navigated and Navigated Rivers, respectively). The total number of river enhancement projects collected during this effort was 62,108. Cost of all projects reporting spending between 1972 and 2006 was about US$1.6 billion. Water quality management was the most cited project goal within the basin. Other important goals in Navigated Rivers included in-stream habitat improvement and flow modification. Most projects collected for Non-navigated Rivers and their watersheds originated from the U.S. Department of Agriculture (USDA). The U.S. Army Corps of Engineers and the USDA were important sources for projects in Navigated Rivers. Collaborative efforts between agencies that implement projects in Non-navigated and Navigated Rivers may be needed to more effectively address river impairment. However, the current state of data sources tracking river enhancement projects deters efficient and broad-scale integration. ?? Journal compilation ?? 2007 Society for Ecological Restoration International.

  12. Occurrence and sources of perfluoroalkyl acids in Italian river basins.

    PubMed

    Valsecchi, Sara; Rusconi, Marianna; Mazzoni, Michela; Viviano, Gaetano; Pagnotta, Romano; Zaghi, Carlo; Serrini, Giuliana; Polesello, Stefano

    2015-06-01

    This paper presents a survey on the occurrence and sources of 11 perfluoroalkyl acids (PFAA) in the main river basins in Italy, covering about 40% of the Italian surface area and 45% of the Italian population. Total concentrations of PFAA ranged fromrivers impacted by industrial discharges. Among the rivers directly flowing into the sea, Brenta, Po and Arno present significant concentrations, while concentrations in Tevere and Adige, which are not impacted by relevant industrial activities, are almost all below the detection limits. The total estimated PFAA load of the five rivers was 7.5ty(-1) with the following percentage distribution: 39% PFBS, 32% PFOA, 22% short chain perfluorocarboxylic acids (PFCA), 6% PFOS and 1% long chain PFCA. PFOA and PFOS loads, evaluated in the present work, represent 10% and 2% of the estimated European loads, respectively. In Italy the most important sources of PFAA are two chemical plants which produce fluorinated polymers and intermediates, sited in the basin of rivers Po and Brenta, respectively, whose overall emission represents 57% of the total estimated PFAA load. Both rivers flow into the Adriatic Sea, raising concern for the marine ecosystem also because a significant PFOS load (0.3ty(-1)) is still present. Among the remaining activities, tanneries and textile industries are relevant sources of respectively PFBS and PFOA, together with short chain PFCA. As an example, the total PFAA load (0.12ty(-1)) from the textile district of Prato is equivalent to the estimated domestic emission of the whole population in all the studied basins. PMID:25108894

  13. Assessing Vulnerability under Uncertainty in the Colorado River Basin: The Colorado River Basin Water Supply and Demand Study

    NASA Astrophysics Data System (ADS)

    Jerla, C.; Adams, P.; Butler, A.; Nowak, K.; Prairie, J. R.

    2013-12-01

    Spanning parts of the seven states, of Arizona, California, Colorado, New Mexico, Nevada, Utah, and Wyoming, the Colorado River is one of the most critical sources of water in the western United States. Colorado River allocations exceed the long-term supply and since the 1950s, there have been a number of years when the annual water use in the Colorado River Basin exceeded the yield. The Basin is entering its second decade of drought conditions which brings challenges that will only be compounded if projections of climate change are realized. It was against this backdrop that the Colorado River Basin Water Supply and Demand Study was conducted. The Study's objectives are to define current and future imbalances in the Basin over the next 50 years and to develop and analyze adaptation and mitigation strategies to resolve those imbalances. Long-term planning in the Basin involves the integration of uncertainty with respect to a changing climate and other uncertainties such as future demand and how policies may be modified to adapt to changing reliability. The Study adopted a scenario planning approach to address this uncertainty in which thousands of scenarios were developed to encompass a wide range of plausible future water supply and demand conditions. Using Reclamation's long-term planning model, the Colorado River Simulation System, the reliability of the system to meet Basin resource needs under these future conditions was projected both with and without additional future adaptation strategies in place. System reliability metrics were developed in order to define system vulnerabilities, the conditions that lead to those vulnerabilities, and sign posts to indicate if the system is approaching a vulnerable state. Options and strategies that reduce these vulnerabilities and improve system reliability were explored through the development of portfolios. Four portfolios, each with different management strategies, were analyzed to assess their effectiveness at

  14. River and Reservoir Operations Model, Truckee River basin, California and Nevada, 1998

    USGS Publications Warehouse

    Berris, Steven N.; Hess, Glen W.; Bohman, Larry R.

    2001-01-01

    The demand for all uses of water in the Truckee River Basin, California and Nevada, commonly is greater than can be supplied. Storage reservoirs in the system have a maximum effective total capacity equivalent to less than two years of average river flows, so longer-term droughts can result in substantial water-supply shortages for irrigation and municipal users and may stress fish and wildlife ecosystems. Title II of Public Law (P.L.) 101-618, the Truckee?Carson?Pyramid Lake Water Rights Settlement Act of 1990, provides a foundation for negotiating and developing operating criteria, known as the Truckee River Operating Agreement (TROA), to balance interstate and interbasin allocation of water rights among the many interests competing for water from the Truckee River. In addition to TROA, the Truckee River Water Quality Settlement Agreement (WQSA), signed in 1996, provides for acquisition of water rights to resolve water-quality problems during low flows along the Truckee River in Nevada. Efficient execution of many of the planning, management, or environmental assessment requirements of TROA and WQSA will require detailed water-resources data coupled with sound analytical tools. Analytical modeling tools constructed and evaluated with such data could help assess effects of alternative operational scenarios related to reservoir and river operations, water-rights transfers, and changes in irrigation practices. The Truckee?Carson Program of the U.S. Geological Survey, to support U.S. Department of the Interior implementation of P.L. 101-618, is developing a modeling system to support efficient water-resources planning, management, and allocation. The daily operations model documented herein is a part of the modeling system that includes a database management program, a graphical user interface program, and a program with modules that simulate river/reservoir operations and a variety of hydrologic processes. The operations module is capable of simulating lake

  15. Integrated water resources management in the Ruhr River Basin, Germany.

    PubMed

    Bode, H; Evers, P; Albrecht, D R

    2003-01-01

    The Ruhr, with an average flow of 80.5 m3/s at its mouth, is a comparatively small tributary to the Rhine River that has to perform an important task: to secure the water supply of more than 5 million people and of the industry in the densely populated region north of the river. The complex water management system and network applied by the Ruhrverband in the natural Ruhr River Basin has been developed step by step, over decades since 1913. And from the beginning, its major goal has been to achieve optimal conditions for the people living in the region. For this purpose, a functional water supply and wastewater disposal infrastructure has been built up. The development of these structures required and still requires multi-dimensional planning and performance. Since the river serves as receiving water and at the same time as a source of drinking water, the above-standard efforts of Ruhrverband for cleaner water also help to conserve nature and wildlife. Ruhrverband has summed up its environmental awareness in the slogan: "For the people and for the environment". This basic water philosophy, successfully applied to the Ruhr for more than 80 years, will be continued in accordance with the new European Water Framework Directive, enacted in 2000, which demands integrated water resources management in natural river basins, by including the good ecological status of surface waterbodies as an additional goal.

  16. Red River play, Gulf Canada deal boost Williston basin

    SciTech Connect

    1997-01-20

    High levels of activity in the Williston basin are assured this year with an expanding horizontal drilling play for oil in Ordovician Red River. The Red River play, like the Mississippian Lodgepole mound play, is centered in North Dakota. But the Red River play is much larger, extending into eastern Montana and northwestern South Dakota. More than 500 Red River B wells have been staked. One of the most recent companies to position itself in both plays is Gulf Canada Resources Ltd. The company forged an agreement with the Assiniboine and Sioux Indian tribes. The agreement initially provides Gulf access to about 800,000 acres on the Fort Peck Indian Reservation, mostly in Roosevelt County, Mont., on