Drexler, Judith Z.; Christian S. de Fontaine,; Steven J. Deverel,
2009-01-01
Throughout the world, many extensive wetlands, such as the Sacramento-San Joaquin Delta of California (hereafter, the Delta), have been drained for agriculture, resulting in land-surface subsidence of peat soils. The purpose of this project was to study the in situ effects of wetland drainage on the remaining peat in the Delta. Peat cores were retrieved from four drained, farmed islands and four relatively undisturbed, marsh islands. Core samples were analyzed for bulk density and percent organic carbon. Macrofossils in the peat were dated using radiocarbon age determination. The peat from the farmed islands is highly distinct from marsh island peat. Bulk density of peat from the farmed islands is generally greater than that of the marsh islands at a given organic carbon content. On the farmed islands, increased bulk density, which is an indication of compaction, decreases with depth within the unoxidized peat zone, whereas, on the marsh islands, bulk density is generally constant with depth except near the surface. Approximately 55–80% of the original peat layer on the farmed islands has been lost due to landsurface subsidence. For the center regions of the farmed islands, this translates into an estimated loss of between 2900-5700 metric tons of organic carbon/hectare. Most of the intact peat just below the currently farmed soil layer is over 4000 years old. Peat loss will continue as long as the artificial water table on the farmed islands is held below the land surface.
Drexler, J.Z.; De Fontaine, C. S.; Deverel, S.J.
2009-01-01
Throughout the world, many extensive wetlands, such as the Sacramento-San Joaquin Delta of California (hereafter, the Delta), have been drained for agriculture, resulting in land-surface subsidence of peat soils. The purpose of this project was to study the in situ effects of wetland drainage on the remaining peat in the Delta. Peat cores were retrieved from four drained, farmed islands and four relatively undisturbed, marsh islands. Core samples were analyzed for bulk density and percent organic carbon. Macrofossils in the peat were dated using radiocarbon age determination. The peat from the farmed islands is highly distinct from marsh island peat. Bulk density of peat from the farmed islands is generally greater than that of the marsh islands at a given organic carbon content. On the farmed islands, increased bulk density, which is an indication of compaction, decreases with depth within the unoxidized peat zone, whereas, on the marsh islands, bulk density is generally constant with depth except near the surface. Approximately 5580 of the original peat layer on the farmed islands has been lost due to land-surface subsidence. For the center regions of the farmed islands, this translates into an estimated loss of between 29005700 metric tons of organic carbon/hectare. Most of the intact peat just below the currently farmed soil layer is over 4000 years old. Peat loss will continue as long as the artificial water table on the farmed islands is held below the land surface. ?? 2009 The Society of Wetland Scientists.
NASA Technical Reports Server (NTRS)
Loisel, Julie; Yu, Zicheng; Beilman, David W.; Camill, Philip; Alm, Jukka; Amesbury, Matthew J.; Anderson, David; Andersson, Sofia; Bochicchio, Christopher; Barber, Keith;
2014-01-01
Here, we present results from the most comprehensive compilation of Holocene peat soil properties with associated carbon and nitrogen accumulation rates for northern peatlands. Our database consists of 268 peat cores from 215 sites located north of 45 deg N. It encompasses regions within which peat carbon data have only recently become available, such as the West Siberia Lowlands, the Hudson Bay Lowlands, Kamchatka in Far East Russia, and the Tibetan Plateau. For all northern peatlands, carbon content in organic matter was estimated at 42 +/- 3% (standard deviation) for Sphagnum peat, 51 +/- 2% for non-Sphagnum peat, and at 49 +/- 2% overall. Dry bulk density averaged 0.12 +/- 0.07 g/cu cm, organic matter bulk density averaged 0.11 +/- 0.05 g/cu cm, and total carbon content in peat averaged 47 +/- 6%. In general, large differences were found between Sphagnum and non-Sphagnum peat types in terms of peat properties. Time-weighted peat carbon accumulation rates averaged 23 +/- 2 (standard error of mean) g C/sq m/yr during the Holocene on the basis of 151 peat cores from 127 sites, with the highest rates of carbon accumulation (25-28 g C/sq m/yr) recorded during the early Holocene when the climate was warmer than the present. Furthermore, we estimate the northern peatland carbon and nitrogen pools at 436 and 10 gigatons, respectively. The database is publicly available at https://peatlands.lehigh.edu.
A cost-efficient method to assess carbon stocks in tropical peat soil
NASA Astrophysics Data System (ADS)
Warren, M. W.; Kauffman, J. B.; Murdiyarso, D.; Anshari, G.; Hergoualc'h, K.; Kurnianto, S.; Purbopuspito, J.; Gusmayanti, E.; Afifudin, M.; Rahajoe, J.; Alhamd, L.; Limin, S.; Iswandi, A.
2012-11-01
Estimation of belowground carbon stocks in tropical wetland forests requires funding for laboratory analyses and suitable facilities, which are often lacking in developing nations where most tropical wetlands are found. It is therefore beneficial to develop simple analytical tools to assist belowground carbon estimation where financial and technical limitations are common. Here we use published and original data to describe soil carbon density (kgC m-3; Cd) as a function of bulk density (gC cm-3; Bd), which can be used to rapidly estimate belowground carbon storage using Bd measurements only. Predicted carbon densities and stocks are compared with those obtained from direct carbon analysis for ten peat swamp forest stands in three national parks of Indonesia. Analysis of soil carbon density and bulk density from the literature indicated a strong linear relationship (Cd = Bd × 495.14 + 5.41, R2 = 0.93, n = 151) for soils with organic C content > 40%. As organic C content decreases, the relationship between Cd and Bd becomes less predictable as soil texture becomes an important determinant of Cd. The equation predicted belowground C stocks to within 0.92% to 9.57% of observed values. Average bulk density of collected peat samples was 0.127 g cm-3, which is in the upper range of previous reports for Southeast Asian peatlands. When original data were included, the revised equation Cd = Bd × 468.76 + 5.82, with R2 = 0.95 and n = 712, was slightly below the lower 95% confidence interval of the original equation, and tended to decrease Cd estimates. We recommend this last equation for a rapid estimation of soil C stocks for well-developed peat soils where C content > 40%.
Physical properties of peats as related to degree of decomposition
D.H. Boelter
1969-01-01
Important physical characteristics, such as water retention, water yield coefficient, and hydraulic conductivity, vary greatly for representative northern Minnesota peat materials. The differences are related to the degree of decomposition, which largely determines the porosity and pore size distribution. Fiber content (> 0.1 mm) and bulk density are properties...
Economic characteristics of the peat deposits of Costa Rica: preliminary study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, A.D. Malavassi, L.; Raymond, R. Jr.; Mora, S.
1985-01-01
Recent field and laboratory studies have established the presence of numerous extensive peat deposits in Costa Rica. Three of these were selected for initial investigation: (1) the cloud-forest histosols of the Talamanca Mountain Range; (2) the Rio Medio Queso flood plain deposits near the northern Costa Rican border; and (3) a tropical jungle swamp deposit on the northeastern coastal plain. In the Talamanca area, 29 samples were collected from eight sites. Due to the high moisture and cool temperatures of the cloud forest, the peats in this area form blanket-like deposits (generally <1 meter thick) over a wide area (>150more » km/sup 2/). These peats are all highly decomposed (avg. 28% fiber), high in ash (avg. 21%), and extensively bioturbated. Relative to all other sites visited, these peats are lowest in moisture (avg. 84%), pH (avg. 4.4), fixed carbon (avg. 23%), and sulfur (avg. 0.2%). However, they have the highest bulk densities (avg. 0.22 g/cc), volatile matter contents (avg. 55%), and nitrogen. Their heating value averaged 7700 BTUs/lb., dry. In the Rio Medio Queso area, 28 samples were collected, representing one transect of the 70 km/sup 2/ flood plain. The peats here occurred in several layers (each <1-1/2 meters thick), interfingering with river flood plain sediments. These peats have the highest calorific values (avg. 8000 BTUs/lb., dry), fixed carbon (avg. 30%), and ash (avg. 22%) and have an average pH of 5.4 and a bulk density of 0.20 g/cc. These results represent only the first part of a long-term, extensive survey of Costa Rica's peat resources. However, they suggest that large, economically-significant peat deposits may be present in this country. 5 refs., 8 figs., 4 tabs.« less
R. Kasten Dumroese; Juha Heiskanen; Karl Englund; Arja Tervahauta
2011-01-01
We found that peat moss, amended with various ratios of pellets comprised of equal proportions of biochar and wood flour, generally had chemical and physical properties suitable for service as a substrate during nursery production of plants. High ratios of pellets to peat (>50%) may be less desirable because of high C:N, high bulk density, swelling associated with...
NASA Astrophysics Data System (ADS)
Tfaily, Malak M.; Cooper, William T.; Kostka, Joel E.; Chanton, Patrick R.; Schadt, Christopher W.; Hanson, Paul J.; Iversen, Colleen M.; Chanton, Jeffrey P.
2014-04-01
We characterized peat decomposition at the Marcell Experimental Forest (MEF), Minnesota, USA, to a depth of 2 m to ascertain the underlying chemical changes using Fourier transform infrared (FT IR) and 13C nuclear magnetic resonance (NMR) spectroscopy) and related these changes to decomposition proxies C:N ratio, δ13C and δ15N, bulk density, and water content. FT IR determined that peat humification increased rapidly between 30 and 75 cm, indicating a highly reactive intermediate-depth zone consistent with changes in C:N ratio, δ13C and δ15N, bulk density, and water content. Peat decomposition at the MEF, especially in the intermediate-depth zone, is mainly characterized by preferential utilization of O-alkyl-C, carboxyl-C, and other oxygenated functionalities with a concomitant increase in the abundance of alkyl- and nitrogen-containing compounds. Below 75 cm, less change was observed but aromatic functionalities and lignin accumulated with depth. Significant correlations with humification indices, identified by FT IR spectroscopy, were found for C:N ratios. Incubation studies at 22°C revealed the highest methane production rates, greatest CH4:CO2 production ratios, and significant O-alkyl-C utilization within this 30 and 75 cm zone. Oxygen-containing functionalities, especially O-alkyl-C, appear to serve as excellent proxies for soil decomposition rate and should be a sensitive indicator of the response of the solid phase peat to increased temperatures caused by climate change and the field study manipulations that are planned to occur at this site. Radiocarbon signatures of microbial respiration products in deeper pore waters at the MEF resembled the signatures of more modern dissolved organic carbon rather than solid phase peat, indicating that recently photosynthesized organic matter fueled the bulk of subsurface microbial respiration. These results indicate that carbon cycling at depth at the MEF is not isolated from surface processes.
Peatlands and potatoes; organic wetland soils in Uganda
NASA Astrophysics Data System (ADS)
Farmer, Jenny; Langan, Charlie; Gimona, Alessandro; Poggio, Laura; Smith, Jo
2017-04-01
Land use change in Uganda's wetlands has received very little research attention. Peat soils dominate the papyrus wetlands of the south west of the country, but the areas they are found in have been increasingly converted to potato cultivation. Our research in Uganda set out to (a) document both the annual use of and changes to these soils under potato cultivation, and (b) the extent and condition of these soils across wetland systems. During our research we found it was necessary to develop locally appropriate protocols for sampling and analysis of soil characteristics, based on field conditions and locally available resources. Over the period of one year we studied the use of the peat soil for potato cultivation by smallholder farmers in Ruhuma wetland and measured changes to surface peat properties and soil nutrients in fields over that time. Farmer's use of the fields changed over the year, with cultivation, harvesting and fallow periods, which impacted on soil micro-topography. Measured soil properties changed over the course of the year as a result of the land use, with bulk density, nitrogen content, potassium and magnesium all reducing. Comparison of changes in soil carbon stocks over the study period were difficult to make as it was not possible to reach the bottom of the peat layer. However, a layer of fallow weeds discarded onto the soil prior to preparation of the raised potato beds provided a time marker which gave insight into carbon losses over the year. To determine the peatland extent, a spatial survey was conducted in the Kanyabaha-Rushebeya wetland system, capturing peat depths and key soil properties (bulk density, organic matter and carbon contents). Generalised additive models were used to map peat depth and soil characteristics across the system, and maps were developed for these as well as drainage and land use classes. Comparison of peat cores between the two study areas indicates spatial variability in peat depths and the influence of neighbouring mineral soil hillslopes. Our work provides valuable insight into the condition and use of these tropical peat soils, which are under-researched yet highly depended upon by local communities, with wider climate impacts. Cultivation of these peat soils has implications for their future sustainability and use, and having insight into the impacts of land management on these soils improves local and national level capacity for better soil management.
Gutknecht, J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Kluber, L. A. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Hanson, P. J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Schadt, C. W. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.
2016-06-01
This data set provides the peat water content and peat temperature at time of sampling for peat cores collected before and during the SPRUCE Whole Ecosystem Warming (WEW) study. Cores for the current data set were collected during the following bulk peat sampling events: 13 June 2016 and 23 August 2016. Over time, this dataset will be updated with each new major bulk peat sampling event, and dates/methods will be updated accordingly.
The Characteristics of Peats and Co2 Emission Due to Fire in Industrial Plant Forests
NASA Astrophysics Data System (ADS)
Ratnaningsih, Ambar Tri; Rayahu Prasytaningsih, Sri
2017-12-01
Riau Province has a high threat to forest fire in peat soils, especially in industrial forest areas. The impact of fires will produce carbon (CO2) emissions in the atmosphere. The magnitude of carbon losses from the burning of peatlands can be estimated by knowing the characteristics of the fire peat and estimating CO2 emissions produced. The objectives of the study are to find out the characteristics of fire-burning peat, and to estimate carbon storage and CO2 emissions. The location of the research is in the area of industrial forest plantations located in Bengkalis Regency, Riau Province. The method used to measure peat carbon is the method of lost in ignation. The results showed that the research location has a peat depth of 600-800 cm which is considered very deep. The Peat fiber content ranges from 38 to 75, classified as hemic peat. The average bulk density was 0.253 gram cm-3 (0.087-0,896 gram cm-3). The soil ash content is 2.24% and the stored peat carbon stock with 8 meter peat thickness is 10723,69 ton ha-1. Forest fire was predicted to burn peat to a depth of 100 cm and produced CO2 emissions of 6,355,809 tons ha-1.
NASA Astrophysics Data System (ADS)
Bridgeman, J.; Tornqvist, T. E.; Allison, M. A.; Jafari, N.
2016-12-01
Land-surface subsidence is a major contributor to recent Mississippi Delta land loss. Despite significant research efforts, the primary mechanisms and rates of delta subsidence remain the subject of debate. This has led to a broad range of subsidence rate estimates across the delta, making differentiating between subsidence mechanisms as well as coastal restoration efforts more challenging. New data from a continuous 39 m long, 12 cm diameter core taken during the installation of a subsidence monitoring superstation near the Mississippi River, SW of New Orleans, provides insight into the grain size, bulk density, geochronology, and geotechnical parameters of the entire Holocene succession. The core consists of three major sections. The top 11 m contain a modern marsh peat, followed by a silty clay loam with interspersed humic clays (14C age 1250 BP), a peat bed (14C age 2200-2950 BP), and silt loams. The middle section from 11 to 35 m is dominated by clay and silty clay, with a relative bulk density of 1.5 g/cc, which gradually becomes denser with depth and the bottom section (35 to 39 m) is marked by a high energy, shell-rich sand facies and a basal peat (14C age 9850 BP), which terminates at the core base in a densely packed, blue-gray silty clay loam, characteristic of the Pleistocene. The radiocarbon ages of marsh peat beds, combined with sea-level markers derived from basal peat elsewhere in the delta, enable the reconstruction of the local subsidence history at this site. Notably, the data shows a significant amount of vertical displacement from the dated organics in the top section of the core; 3.5 m in the humic clays and up to 5 m in the peat bed. The subsidence rates measured by the superstation apparatus, and the geotechnical measurements of core sediments, will aid in determining the dominant subsidence mechanisms (shallow vs. deep) in the region.
NASA Astrophysics Data System (ADS)
Chrzanowski, S.; Szajdak, L.
2009-04-01
Organic soils as result of drainage undergo consolidation, mineralization, and subsidence of surface layer, and decline of organic matter. The rate of the subsidence of surface layer depends on a number of factors, such as ground water level, kind of peat, density of thickness of peat layer, drainage depth, climate, land use and drainage duration. These processes are connected with the changes of physical properties and lead to the conversion of organic soils into mineral-organic and mineral. The phenomena are observed in Biebrza, Notec Valley, and Kurpiowska Basin and Wieprz-Krzna channel. During last 42 years, in Kuwasy peatland from 10-13 ton per year was declined and the area of peatland decreased from 53 to 57 cm. It was observed that, peat moorsh soil of the first stadium of moorshification located on a middle decomposed peat transformed into peat-moorh soil of the second stadium of moorshification located on a high decomposed peat. However shallow peat soils were converted into mineral-moorsh and moorsh. Kuwasy peatland was meliorated twice in XX century, first one in the middle of 30 and second one in 50. It led to the farther land surface subsidence and decline of organic matter. The aim of this investigation was to evaluate the rate of land surface subsidence, decline of the area and the transformation of physic-water properties in peat-moorsh soil of different water conditions. The investigations were carried out in Kuwasy peatland, located in Biebrza Basin North-East Poland. In peat soil samples ash contents, porosity, pF curves and bulk density were determined. The analysis of these results allowed to evaluate long-term soil subsidence and to relate it to soil water conditions.
Radiocarbon ages of different fractions of peat on coastal lowland of Bohai Bay: marine influence?
NASA Astrophysics Data System (ADS)
Shang, Zhiwen; Wang, Fu; Fang, Jing; Li, Jianfen; Chen, Yongsheng; Jiang, Xingyu; Tian, Lizhu; Wang, Hong
2018-05-01
Peat in boreholes is the most important 14C dating material used for constructing age framework. 20 bulk peat samples were collected from five boreholes, the 14C ages of two fractions (organic sediment fraction and peat fraction) of the bulk peat samples were investigated by AMS-dating and which fraction is better to help construct an age framework for the boreholes were compared and discussed. The results indicated that the peat fraction give a good dating results sequence in the boreholes, compared with the corresponding organic sediment fraction. And the dating results of organic sediment fraction show 161-6 702 years older than corresponding peat fraction, which was caused by marine influence. Then, we suggest an experience formula as y=0.99x-466.5 by the correlation analysis for correcting the marine influenced organic sediment ages within the conventional ages between 4 000 to 9 000 yrs BP, and more study should be carried out for the AMS 14C dating of the bulk organic sediments.
NASA Astrophysics Data System (ADS)
Tuukkanen, Tapio; Marttila, Hannu; Kløve, Bjørn
2014-05-01
Peatland drainage and peat extraction operations change soil properties and expose bare peat to erosion forces, resulting in increased suspended sediment (SS) loads to downstream water bodies. SS yields from peat extraction areas are known to vary significantly between sites, but the contribution of peat properties and catchment characteristics to this variation is not well understood. In this study, we investigated peat erosion at 20 Finnish peat extraction sites by conducting in situ and laboratory measurements on peat erodibility and associated peat properties (degree of humification, peat type, bulk density, loss on ignition, porosity, moisture content, and shear strength), and by comparing the results with monitored long-term SS concentrations and loads at each catchment outlet. Here, we used a cohesive strength meter (CSM) to measure direct erosion thresholds for undisturbed soil cores collected from each study site. The results suggested that the degree of peat decomposition clearly affects peat erodibility and explains much of the variation in SS concentration between the study sites. According to CSM tests, critical shear stresses for particle entrainment were lowest (on average) in well-decomposed peat samples, while undecomposed, dry and fiber rich peat generally resisted erosion very well. Furthermore, the results indicated that two separate critical shear stresses often exist in moderately decomposed peat. In these cases, the well-decomposed parts of peat samples eroded first at relatively low shear stresses and remaining peat fibers prevented further erosion until a much higher shear stress was reached. In addition to peat soil properties, the study showed that the erosion of mineral subsoil may play a key role in runoff water SS concentration at peat extraction areas with drainage ditches extending into the mineral soil. The interactions between peat properties and peat erodibility found in this study as well as critical shear stress values obtained can be used for several purposes in e.g. water conservation and sediment management planning for peat extraction areas and other bare peat-covered catchments.
Impact of drainage on wettability of fen peat-moorsh soils
NASA Astrophysics Data System (ADS)
Szajdak, L.; Szatyłowicz, J.; Brandyk, T.
2009-04-01
High water retention in peat is attributed to structural voids (macro-pores) due to the partial degradation of the structure of peat-forming plants, and molecular absorption sites (micro-pores) associated with the formation of humic substances. Water retention by the heterogeneously-structured system in peat organic matter depends on the chemical structure of solid surfaces. These naturally wet solids, if dried sufficiently, lose the ability to rewet quickly when immersed in water. The ability of peat surfaces to attract and hold water is attributed to hydrophilic functional groups which characterize the organic substances of peat. The investigations of chemical and physical properties were performed for three different peat-moorsh soils located in the Biebrza River Valley in Poland. All examined soils were used as meadow. Soil samples were taken from two depths: 5-10 cm (moorsh) and 50-80 cm (peat). Total organic carbon (TOC), dissolved organic carbon (DOC) and humic acids (HA) extracted from these samples were analysed. Also basic physical properties such as ash content and bulk density were measured. Wetting behavior of soils was quantified using water drop penetration time test (WDPT) and measured values of the soil-water contact angle using sessile drop method. The measurements were conducted on air-dry soil samples which volumetric moisture content was not exceeding 7%. The significant differences in the concentrations of TOC, DOC and properties of HA between two investigated depth of among peat and moorsh samples were observed. The measured concentrations of total organic carbon in the considered soils ranged from 37.2 to 45.6%. Generally, the decrease of total organic carbon concentration with depth of profiles was observed. The contents of dissolved organic carbon in the soils ranged from 5.3 to 19.4%. The quantities of dissolved organic carbon decreased simultaneously with E4/E6 values and with the depth of the soil profiles. For the investigated peat's, an increase of the depth is accompanied by the decrease in the degree of humification or an increase in chemical maturity of HA. The measured values of the contact angle for investigated soils were in the range from 81.4˚ to 114.3˚ what indicates their high water repellency. The WDPT was positively correlated with total organic carbon, organic matter and humic acids content while ash content, soil bulk density, pH and absorbance were correlated negatively. The highest value of correlation coefficient (statistically significant) was obtained for relation between WDPT and ash content. The soil water contact angle was less correlated with peat-moorsh soil properties in comparison with WDPT with one exception pH. The pH against the contact angle indicates tendency of increasing the contact angle with decreasing pH.
Methane Exchange in a Coastal Fen in the First Year after Flooding - A Systems Shift
Hahn, Juliane; Köhler, Stefan; Glatzel, Stephan; Jurasinski, Gerald
2015-01-01
Background Peatland restoration can have several objectives, for example re-establishing the natural habitat, supporting unique biodiversity attributes or re-initiating key biogeochemical processes, which can ultimately lead to a reduction in greenhouse gas (GHG) emissions. Every restoration measure, however, is itself a disturbance to the ecosystem. Methods Here, we examine an ecosystem shift in a coastal fen at the southern Baltic Sea which was rewetted by flooding. The analyses are based on one year of bi-weekly closed chamber measurements of methane fluxes gathered at spots located in different vegetation stands. During measurement campaigns, we recorded data on water levels, peat temperatures, and chemical properties of peat water. In addition we analyzed the first 20 cm of peat before and after flooding for dry bulk density (DBD), content of organic matter and total amounts of carbon (C), nitrogen (N), sulfur (S), and other nutrients. Results Rewetting turned the site from a summer dry fen into a shallow lake with water levels up to 0.60 m. We observed a substantial die-back of vegetation, especially in stands of sedges (Carex acutiformis Ehrh). Concentrations of total organic carbon and nitrogen in the peat water, as well as dry bulk density and concentrations of C, N and S in the peat increased. In the first year after rewetting, the average annual exchange of methane amounted to 0.26 ± 0.06 kg m-2. This is equivalent to a 190-times increase in methane compared to pre-flooding conditions. Highest methane fluxes occurred in sedge stands which suffered from the heaviest die-back. None of the recorded environmental variables showed consistent relationships with the amounts of methane exchanged. Conclusions Our results suggest that rewetting projects should be monitored not only with regard to vegetation development but also with respect to biogeochemical conditions. Further, high methane emissions that likely occur directly after rewetting by flooding should be considered when forecasting the overall effect of rewetting on GHG exchange. PMID:26461916
Methane Exchange in a Coastal Fen in the First Year after Flooding--A Systems Shift.
Hahn, Juliane; Köhler, Stefan; Glatzel, Stephan; Jurasinski, Gerald
2015-01-01
Peatland restoration can have several objectives, for example re-establishing the natural habitat, supporting unique biodiversity attributes or re-initiating key biogeochemical processes, which can ultimately lead to a reduction in greenhouse gas (GHG) emissions. Every restoration measure, however, is itself a disturbance to the ecosystem. Here, we examine an ecosystem shift in a coastal fen at the southern Baltic Sea which was rewetted by flooding. The analyses are based on one year of bi-weekly closed chamber measurements of methane fluxes gathered at spots located in different vegetation stands. During measurement campaigns, we recorded data on water levels, peat temperatures, and chemical properties of peat water. In addition we analyzed the first 20 cm of peat before and after flooding for dry bulk density (DBD), content of organic matter and total amounts of carbon (C), nitrogen (N), sulfur (S), and other nutrients. Rewetting turned the site from a summer dry fen into a shallow lake with water levels up to 0.60 m. We observed a substantial die-back of vegetation, especially in stands of sedges (Carex acutiformis Ehrh). Concentrations of total organic carbon and nitrogen in the peat water, as well as dry bulk density and concentrations of C, N and S in the peat increased. In the first year after rewetting, the average annual exchange of methane amounted to 0.26 ± 0.06 kg m-2. This is equivalent to a 190-times increase in methane compared to pre-flooding conditions. Highest methane fluxes occurred in sedge stands which suffered from the heaviest die-back. None of the recorded environmental variables showed consistent relationships with the amounts of methane exchanged. Our results suggest that rewetting projects should be monitored not only with regard to vegetation development but also with respect to biogeochemical conditions. Further, high methane emissions that likely occur directly after rewetting by flooding should be considered when forecasting the overall effect of rewetting on GHG exchange.
Esmeijer-Liu, Alice J; Kürschner, Wolfram M; Lotter, André F; Verhoeven, Jos T A; Goslar, Tomasz
2012-06-01
In this study, we test whether the δ(13)C and δ(15)N in a peat profile are, respectively, linked to the recent dilution of atmospheric δ(13)CO(2) caused by increased fossil fuel combustion and changes in atmospheric δ(15)N deposition. We analysed bulk peat and Sphagnum fuscum branch C and N concentrations and bulk peat, S. fuscum branch and Andromeda polifolia leaf δ(13)C and δ(15)N from a 30-cm hummock-like peat profile from an Aapa mire in northern Finland. Statistically significant correlations were found between the dilution of atmospheric δ(13)CO(2) and bulk peat δ(13)C, as well as between historically increasing wet N deposition and bulk peat δ(15)N. However, these correlations may be affected by early stage kinetic fractionation during decomposition and possibly other processes. We conclude that bulk peat stable carbon and nitrogen isotope ratios may reflect the dilution of atmospheric δ(13)CO(2) and the changes in δ(15)N deposition, but probably also reflect the effects of early stage kinetic fractionation during diagenesis. This needs to be taken into account when interpreting palaeodata. There is a need for further studies of δ(15)N profiles in sufficiently old dated cores from sites with different rates of decomposition: These would facilitate more reliable separation of depositional δ(15)N from patterns caused by other processes. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11270-011-1001-8) contains supplementary material, which is available to authorized users.
Jones, Miriam C.; Grosse, Guido; Jones, Benjamin M.; Anthony, Katey Walter
2012-01-01
Thermokarst lakes and peat-accumulating drained lake basins cover a substantial portion of Arctic lowland landscapes, yet the role of thermokarst lake drainage and ensuing peat formation in landscape-scale carbon (C) budgets remains understudied. Here we use measurements of terrestrial peat thickness, bulk density, organic matter content, and basal radiocarbon age from permafrost cores, soil pits, and exposures in vegetated, drained lake basins to characterize regional lake drainage chronology, C accumulation rates, and the role of thermokarst-lake cycling in carbon dynamics throughout the Holocene on the northern Seward Peninsula, Alaska. Most detectable lake drainage events occurred within the last 4,000 years with the highest drainage frequency during the medieval climate anomaly. Peat accumulation rates were highest in young (50–500 years) drained lake basins (35.2 g C m−2 yr−1) and decreased exponentially with time since drainage to 9 g C m−2 yr−1 in the oldest basins. Spatial analyses of terrestrial peat depth, basal peat radiocarbon ages, basin geomorphology, and satellite-derived land surface properties (Normalized Difference Vegetation Index (NDVI); Minimum Noise Fraction (MNF)) from Landsat satellite data revealed significant relationships between peat thickness and mean basin NDVI or MNF. By upscaling observed relationships, we infer that drained thermokarst lake basins, covering 391 km2 (76%) of the 515 km2 study region, store 6.4–6.6 Tg organic C in drained lake basin terrestrial peat. Peat accumulation in drained lake basins likely serves to offset greenhouse gas release from thermokarst-impacted landscapes and should be incorporated in landscape-scale C budgets.
NASA Astrophysics Data System (ADS)
Tuukkanen, T.; Marttila, H.; Kløve, B.
2017-07-01
Organic matter and nutrient export from drained peatlands is affected by complex hydrological and biogeochemical interactions. Here partial least squares regression (PLSR) was used to relate various soil and catchment characteristics to variations in chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) concentrations in runoff. Peat core samples and water quality data were collected from 15 peat extraction sites in Finland. PLSR models constructed by cross-validation and variable selection routines predicted 92, 88, and 95% of the variation in mean COD, TN, and TP concentration in runoff, respectively. The results showed that variations in COD were mainly related to net production (temperature and water-extractable dissolved organic carbon (DOC)), hydrology (topographical relief), and solubility of dissolved organic matter (peat sulfur (S) and calcium (Ca) concentrations). Negative correlations for peat S and runoff COD indicated that acidity from oxidation of organic S stored in peat may be an important mechanism suppressing organic matter leaching. Moreover, runoff COD was associated with peat aluminum (Al), P, and sodium (Na) concentrations. Hydrological controls on TN and COD were similar (i.e., related to topography), whereas degree of humification, bulk density, and water-extractable COD and Al provided additional explanations for TN concentration. Variations in runoff TP concentration were attributed to erosion of particulate P, as indicated by a positive correlation with suspended sediment concentration (SSC), and factors associated with metal-humic complexation and P adsorption (peat Al, water-extractable P, and water-extractable iron (Fe)).
Effect of light Sphagnum peat on odour formation in the early stages of biowaste composting.
Kurola, Jukka M; Arnold, Mona; Kontro, Merja H; Talves, Matti; Romantschuk, Martin
2010-05-01
In the present study, we investigated the effects of two bulking materials, Sphagnum peat and pine wood chips, on the early stages of biowaste composting in two pilot-scale processes. Emphasis was placed on studying the formation conditions of malodorous compost gases in the initial phases of the processes. The results showed that gas emission leaving an open windrow and a closed drum composting system contained elevated concentrations of fermentative microbial metabolites when acid Sphagnum peat (pH 3.2) was used as a bulking material. Moreover, the gas emission of the peat amended drum composter contained a high concentration of odour (up to 450,000oum(-3) of air). The highest odour values in the outlet gas of peat amended composts coincided with the elevated concentrations of volatile organic compounds such as acetoin and buthanedion. We conclude that the acidifying qualities of composting substrates or bulking material may intensify odour emission from biowaste composts and prolong the early stages of the composting process. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Delusina, I.; Verosub, K. L.
2014-12-01
The Sacramento-San Joaquin Delta of California is a critical ecosystem for reconstructing natural and anthropogenic impacts on environmental conditions, understanding stream development, and assessing the fate of artificial levees. Peat formation is influenced by all these processes and represents the combined effects of climatic and hydrographic evolution. In the framework of Project REPEAT, we studied three peat cores using palynological and paleomagnetic methods, focusing on the influence of the general climatic setting and postglacial sea-level changes during the last 6500 years on the process of peat formation and the interplay of local environmental and hydrological conditions. In this report we consider the hypothesis that peat accretion was closely related to general climatic trends, as reflected in atmospheric carbon storage in the Delta sediments, and to general sea-level fluctuation. Based on the fact that the bulk density of the peat is closely correlated with organic carbon content, we examine: 1) whether the pollen concentration is highest when the organic carbon content in the cores is a maximum and corresponds to the warmest episodes; 2) whether organic content is inversely related to the lithic content as determined by paleomagnetic measurements; 3) whether a salinity index based on pollen criteria is highest during the highest stands of sea level; 4) and whether the C3/C4 plant index is a good measure of the carbon content of the peat.
[Distribution of soil organic carbon storage and carbon density in Gahai Wetland ecosystem].
Ma, Wei-Wei; Wang, Hui; Huang, Rong; Li, Jun-Zhen; Li, De-Yu
2014-03-01
The profile distribution and accumulation characteristics of organic carbon of four typical marshes (herbaceous peat, marsh wetland, mountain wetland, subalpine meadow) were studied in Gahai Wetlands of Gannan in July 2011. The results showed that the soil bulk densities of the four typical marshes ranged from 0.22 to 1.29 g x cm(-3). The content of soil organic carbon in the herbaceous peat was higher than in other types, with its average content of organic carbon (286. 80 g x kg(-1)) being about 2.91, 4.99, 7.31 times as much as that of the marsh wetland, mountain wetland and subalpine meadow, respectively. The average organic carbon densities were in order of herbaceous peat > subalpine meadow > marsh wetland > mountain wetland, with the highest in the 0-10 cm layer. The change of organic carbon density along the soil profile was basically in accordance with the organic carbon content in the four typical marshes, but fluctuated with soil depth. There were obviously two carbon storage layers (0-10 and 20-40 cm, respectively) in the four typical marshes. The amounts of organic carbon stored in the 0-60 cm layer of the four typical marshes were 369.46, 278.83, 276.16, 292.23 t x hm(-2), respectively. The total amount of organic carbon stored in the 0-60 cm of the four typical marshes was about 9.50 x 10(6) t.
Soil carbon dioxide emissions from a rubber plantation on tropical peat.
Wakhid, Nur; Hirano, Takashi; Okimoto, Yosuke; Nurzakiah, Siti; Nursyamsi, Dedi
2017-03-01
Land-use change in tropical peatland potentially results in a large amount of carbon dioxide (CO 2 ) emissions owing to drainage, which lowers groundwater level (GWL) and consequently enhances oxidative peat decomposition. However, field information on carbon balance is lacking for rubber plantations, which are expanding into Indonesia's peatlands. To assess soil CO 2 emissions from an eight-year-old rubber plantation established on peat after compaction, soil CO 2 efflux was measured monthly using a closed chamber system from December 2014 to December 2015, in which a strong El Niño event occurred, and consequently GWL lowered deeply. Total soil respiration (SR) and oxidative peat decomposition (PD) were separately quantified by trenching. In addition, peat surface elevation was measured to determine annual subsidence along with GWL. With GWL, SR showed a negative logarithmic relationship (p<0.01), whereas PD showed a strong negative linearity (p<0.001). Using the significant relationships, annual SR and PD were calculated from hourly GWL data to be 3293±1039 and 1408±214gCm -2 yr -1 (mean±1 standard deviation), respectively. PD accounted for 43% of SR on an annual basis. SR showed no significant difference between near and far positions from rubber trees (p>0.05). Peat surface elevation varied seasonally in almost parallel with GWL. After correcting for GWL difference, annual total subsidence was determined at 5.64±3.20 and 5.96±0.43cmyr -1 outside and inside the trenching, respectively. Annual subsidence only through peat oxidation that was calculated from the annual PD, peat bulk density and peat carbon content was 1.50cmyr -1 . As a result, oxidative peat decomposition accounted for 25% of total subsidence (5.96cmyr -1 ) on average on an annual basis. The contribution of peat oxidation was lower than those of previous studies probably because of compaction through land preparation. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Altdorff, Daniel; Bechtold, Michel; van der Kruk, Jan; Tiemeyer, Bärbel; von Hebel, Christian; Huisman, Johan Alexander
2014-05-01
Peatlands represent a huge storage of soil organic carbon (SOC), and there is considerable interest to assess the total amount of carbon stored in these ecosystems. However, reliable field-scale information about peat properties, particularly SOC content and bulk density (BD) necessary to estimate C stocks, remains difficult to obtain. A potential way to acquire information on these properties and its spatial variation is the non-invasive mapping of easily recordable physical variables that correlate with peat properties, such as bulk electrical conductivity (ECa) measured with electromagnetic induction (EMI). However, ECa depends on a range of soil properties, including BD, soil and water chemistry, and water content, and thus results often show complex and site-specific relationships. Therefore, a reliable prediction of SOC and BD from ECa data is not necessarily given. In this study, we aim to explore the usefulness of Multiple Linear Regression (MLR) models to predict the peat soil properties SOC and BD from multi-offset EMI and high-resolution DEM data. The quality of the MLR models is assessed by cross-validation. We use data from a medium-scale disturbed peat relict (approximately 35ha) in Northern Germany. The potential explanatory variables considered in MLR were: EMI data of six different integral depths (approximately 0.25, 0.5, 0.6, 0.9, 1, and 1.80 m), their vertical heterogeneity, as well as several topographical variables extracted from the DEM. Ground truth information for SOC, BD content and peat layer thickness was obtained from 34 soil cores of 1 m depth. Each core was divided into several 5 to 20 cm thick layers so that integral information of the upper 0.25, 0.5, and 1 m as well as from the total peat layer was obtained. For cross-validation of results, we clustered the 34 soil cores into 4 classes using K-means clustering and selected 8 cores for validation from the clusters with a probability that depended on the size of the cluster. With the remaining 26 samples, we performed a stepwise MLR and generated separate models for each depth and soil property. Preliminary results indicate reliable model predictions for SOC and BD (R² = 0.83- 0.95). The RMSE values of the validation ranged between 3.5 and 7.2 vol. % for SOC and 0.13 and 0.37 g/cm³ for BD for the independent samples. This equates roughly the quality of SOC predictions obtained by field application of vis-NIR (visible-near infrared) presented in literature for a similar peatland setting. However, the EMI approach offers the potential to derive information from deeper depths and allows non-invasive mapping of BD variability, which is not possible with vis-NIR. Therefore, this new approach potentially provides a more useful tool for total carbon stock assessment in peatlands.
NASA Astrophysics Data System (ADS)
Drexler, Judith Z.; Fuller, Christopher C.; Orlando, James; Salas, Antonia; Wurster, Frederic C.; Duberstein, Jamie A.
2017-10-01
The purpose of this study was to determine how drainage impacts carbon densities and recent rates (past 50 years) of vertical accretion and carbon accumulation in southeastern forested peatlands. We compared these parameters in drained maple-gum (MAPL), Atlantic white cedar (CDR), and pocosin (POC) communities in the Great Dismal Swamp National Wildlife Refuge (GDS) of Virginia/North Carolina and in an intact (undrained) CDR swamp in the Alligator River National Wildlife Refuge (AR) of North Carolina. Peat cores were analyzed for bulk density, percent organic carbon, and 137Cs and 210Pb. An uncertainty analysis of both 137Cs and 210Pb approaches was used to constrain error at least partially related to mobility of both radioisotopes. GDS peats had lower porosities (89.6% (SD = 1.71) versus 95.3% (0.18)) and higher carbon densities (0.082 (0.021) versus 0.037 (0.009) g C cm-3) than AR. Vertical accretion rates (0.10-0.56 cm yr-1) were used to estimate a time period of 84-362 years for reestablishment of peat lost during the 2011 Lateral West fire at the GDS. Carbon accumulation rates ranged from 51 to 389 g C m-2 yr-1 for all sites. In the drained (GDS) versus intact (AR) CDR sites, carbon accumulation rates were similar with 137Cs (87GDS versus 92AR g C m-2 yr-1) and somewhat less at the GDS than AR as determined with 210Pb (111GDS versus 159AR g C m-2 yr-1). Heightened productivity and high polyphenol content of peat may be responsible for similar rates of carbon accumulation in both drained and intact CDR peatlands.
Controls on boreal peat combustion and resulting emissions of carbon and mercury
NASA Astrophysics Data System (ADS)
Kohlenberg, Andrew J.; Turetsky, Merritt R.; Thompson, Dan K.; Branfireun, Brian A.; Mitchell, Carl P. J.
2018-03-01
Warming in the boreal forest region has already led to changes in the fire regime. This may result in increasing fire frequency or severity in peatlands, which could cause these ecosystems to shift from a net sink of carbon (C) to a net source of C to the atmosphere. Similar to C cycling, peatlands serve as a net sink for mercury (Hg), which binds strongly to organic matter and accumulates in peat over time. This stored Hg is also susceptible to re-release to the atmosphere during peat fires. Here we investigate the physical properties that influence depth of burn in experimental peat columns and the resulting emissions of CO, CO2, CH4, and gaseous and particulate Hg. As expected, bulk density and soil moisture content were important controls on depth of burn, CO2 emissions, and CO emissions. However, our results show that CH4 and Hg emissions are insensitive to combustion temperature or fuel moisture content. Emissions during the burning of peat, across a wide range of moisture conditions, were associated with low particulate Hg and high gaseous Hg release. Due to strong correlations between total Hg and CO emissions and because high Hg emissions occurred despite incomplete combustion of total C, our results suggest that Hg release during peat burning is governed by the thermodynamics of Hg reduction more so than by the release of Hg associated with peat combustion. Our measured emissions ratios, particularly for CH4:CO2, are higher than values typically used in the upscaling of boreal forest or peatland fire emissions. These emission ratios have important implications not only for our understanding of smouldering chemistry, but also for potential influences of peat fires on the Earth’s climate system.
NASA Astrophysics Data System (ADS)
Nater, E. A.; Furman, O.; Toner, B. M.; Sebestyen, S. D.; Tfaily, M. M.; Chanton, J.; Fissore, C.; McFarlane, K. J.; Hanson, P. J.; Iversen, C. M.; Kolka, R. K.
2014-12-01
Climate change has the potential to affect mercury (Hg), sulfur (S) and carbon (C) stores and cycling in northern peatland ecosystems (NPEs). SPRUCE (Spruce and Peatland Responses Under Climate and Environmental change) is an interdisciplinary study of the effects of elevated temperature and CO2 enrichment on NPEs. Peat cores (0-3.0 m) were collected from 16 large plots located on the S1 peatland (an ombrotrophic bog treed with Picea mariana and Larix laricina) in August, 2012 for baseline characterization before the experiment begins. Peat samples were analyzed at depth increments for total Hg, bulk density, humification indices, and elemental composition. Net Hg accumulation rates over the last 10,000 years were derived from Hg concentrations and peat accumulation rates based on peat depth chronology established using 14C and 13C dating of peat cores. Historic Hg deposition rates are being modeled from pre-industrial deposition rates in S1 scaled by regional lake sediment records. Effects of peatland processes and factors (hydrology, decomposition, redox chemistry, vegetative changes, microtopography) on the biogeochemistry of Hg, S, and other elements are being assessed by comparing observed elemental depth profiles with accumulation profiles predicted solely from atmospheric deposition. We are using principal component analyses and cluster analyses to elucidate relationships between humification indices, peat physical properties, and inorganic and organic geochemistry data to interpret the main processes controlling net Hg accumulation and elemental concentrations in surface and subsurface peat layers. These findings are critical to predicting how climate change will affect future accumulation of Hg as well as existing Hg stores in NPE, and for providing reference baselines for SPRUCE future investigations.
NASA Astrophysics Data System (ADS)
Waddington, J. M.; Cagampan, J.; Lucchese, M.; Thompson, D. K.; Duval, T. P.
2009-05-01
The natural carbon storage function of peatland ecosystems can be severely affected by human and natural disturbances such as drainage, peat extraction, drought and wildfire. Cutover peatands, for example, become a large and persistent source of atmospheric CO2 following peat extraction. The recovery (rehabilitation, re- establishment, restoration) of disturbed peatlands to a net carbon sink depends to a large extent on the rate of recovery of the surface peat layer referred to as the acrotelm. The acrotelm serves to stabilize water table variation providing ideal conditions for vegetation re-establishment, particularly peat forming Sphagnum moss. Here we present results from several ecosystem-scale field experiments where we examined the change in hydrophysical properties of peat following peat extraction and subsequent restoration and discuss how this affects peatland-atmosphere CO2. We found that moisture retention properties of a new peat layer at a restored peatland were distinct from near- by natural and naturally regenerated sites. Despite considerable biomass accumulation and increase in peat thickness, the new peat layer differed with respect to its moisture retention properties, an indication that factors other than growth have an impact on the restoration of the returning moss layer. Similarly in an acrotelm transplant experiment we determined that the restored peatland experienced high variability in volumetric moisture content (VMC) in the capitula zone (upper 2 cm) where large diurnal changes in VMC (~30%) were observed, suggesting possible disturbance to the peat matrix structure during the extraction-restoration process. However, soil - water retention analysis and physical peat properties (porosity and bulk density) suggest that no significant differences existed between the natural and restored sites. A simple hydrologic model demonstrated that the new peat layer will become an acrotelm in ~20 years when ~20 cm of peat has accumulated, an approach which may aid in designing a long-term sampling strategy for assessing the long- term effects of restoration of disturbed peatlands on peatland hydrology and ecology. Applications of these findings to a new research collaboration on the effects of wildfire on peatland ecohydrology will be discussed.
NASA Astrophysics Data System (ADS)
van der Linden, M.; van Geel, B.
2006-12-01
With the aim of investigating the effects of climate change and human impact on vegetation and carbon accumulation, we took peat cores of ca. 1 meter depth from four raised bogs situated on a North-South transect, at intervals of c. 500 km, Umeå in Sweden to Angermünde in northern Germany. A number of analyses were conducted (plant macrofossils, pollen/non-pollen microfossils, colorimetric humification, carbon/nitrogen ratios, bulk densities, loss on ignition), and 14C wiggle-match dating was applied to obtain a fine-resolution chronology. The cores from the northern and southern site encompass ca. 1000 years of vegetation history, showing evidence for the end of the Medieval Warm Period (MWP), the Little Ice Age (LIA) and the twentieth century warming. The middle Swedish and German sites are high resolution records of the last 400 years. The end of the MWP and the cooling at the start of the LIA are reflected by a decline in thermophilous tree species. Changes in the macrofossil composition may also represent changes in climate. Shifts in Sphagnum composition, the dominant peat former, reflect changes in precipitation. Evidence for wet conditions and increased carbon accumulation is found during the Little Ice Age. Human activities affected the peat bog and the surrounding vegetation. Sweden suffered many wars during the 16^{th} and 17^{th} century, which caused a decline in population density. Diseases such as the plague and famines caused by crop failures fastened the population decrease. As a consequence, agricultural land was abandoned, resulting in reforestation by Betula. Later, in the modern part of the records, land-use change and planting of trees comprised the major regional vegetation changes. In the southern site, human activities (drainage to facilitate peat cutting) affected the raised bog itself. A part of the peat archive was lost owing to secondary decomposition which resulted in very low carbon accumulation.
NASA Astrophysics Data System (ADS)
Altdorff, Daniel; van der Kruk, Jan; Bechtold, Michel; Tiemeyer, Bärbel; Huismann, Sander
2013-04-01
Intact peatlands are natural sinks of climate-relevant atmospheric CO2 and they are able to store high amounts of organic carbon (C). In addition, intact peatlands are increasingly important given positive effects on biodiversity, hydrological processes and corresponding management issues. Nevertheless, large parts of peatlands in populated areas were modified by human activity during the last centuries. In Germany, more than 90% of the peatlands are drained, mainly for agricultural use. Due to the recent recognition of the positive effects of intact peatlands, there are presently several initiatives for re-wetting parts of these peatlands. However, a restoration to nearly natural conditions needs an evaluation of the current situation as well as an assessment of the restoration potential. Therefore, soil properties like peat layer thickness, bulk density and moisture content need to be known. Non-invasive hydrogeophysical methods offer the possibility for a time and cost-effective characterization of peatlands. In this study, we investigated a medium-scale peatland area (approximately 35 ha) of the 3000 ha large 'Großes Moor' peatland. We present apparent conductivity (ECa) values obtained from Electromagnetic Induction (EMI) measurements representative for three investigation depths (approximately 0.25, 0.5, and 1m). We selected zones with dissimilar ECa to identify areas where strong changes in the subsoil properties with depth are expected (i.e. shallow peat soil on top of sand). Within these areas, additional measurements were made using Ground Penetration Radar (GPR) and soil sampling was performed. In total, six 30 m long GPR profiles and corresponding common midpoint (CMP) measurements were recorded. Additionally, 15 soil cores were taken down to a depth of 0.9 m in order to obtain peat thickness, water content, pore water EC, bulk density (BD), as well as C and N content. Each core was divided into several 5 to 20 cm thick layers to obtain information on the vertical variation of these soil properties with depth. Our results indicate that the peat layer is generally characterized by lower BD, higher pore water EC, higher C content, and higher water contents compared to the underlying sand layer. Preliminary EMI results indicate a ECa - C content correlation that decreases with EMI investigation depth from 0.25 to 1 m. Regarding all soil core properties, the strongest contrast occurs at the peat-sand interface. This contrast also clearly appears in some of the GPR results. The EMI apparent conductivities are positively correlated with soil water content and peat thickness obtained from the soil cores. Preliminary GPR results confirm an increased thickness of the upper layer in areas with increased ECa values. The EMI results also reveal clear patterns linked over several fields with different land use history that represent natural structures in the subsurface.
Drexler, Judith; Fuller, Christopher C.; Orlando, James; Salas, Antonia; Wurster, Frederic C.; Duberstein, Jamie A.
2017-01-01
The purpose of this study was to determine how drainage impacts carbon densities and recent rates (past 50 years) of vertical accretion and carbon accumulation in southeastern forested peatlands. We compared these parameters in drained maple-gum (MAPL), Atlantic white cedar (CDR), and pocosin (POC) communities in the Great Dismal Swamp National Wildlife Refuge (GDS) of Virginia/North Carolina and in an intact (undrained) CDR swamp in the Alligator River National Wildlife Refuge (AR) of North Carolina. Peat cores were analyzed for bulk density, percent organic carbon, and 137Cs and 210Pb. An uncertainty analysis of both 137Cs and 210Pb approaches was used to constrain error at least partially related to mobility of both radioisotopes. GDS peats had lower porosities (89.6% (SD = 1.71) versus 95.3% (0.18)) and higher carbon densities (0.082 (0.021) versus 0.037 (0.009) g C cm−3) than AR. Vertical accretion rates (0.10–0.56 cm yr−1) were used to estimate a time period of ~84–362 years for reestablishment of peat lost during the 2011 Lateral West fire at the GDS. Carbon accumulation rates ranged from 51 to 389 g C m−2 yr−1 for all sites. In the drained (GDS) versus intact (AR) CDR sites, carbon accumulation rates were similar with 137Cs (87GDS versus 92AR g C m−2 yr−1) and somewhat less at the GDS than AR as determined with 210Pb (111GDS versus 159AR g C m−2 yr−1). Heightened productivity and high polyphenol content of peat may be responsible for similar rates of carbon accumulation in both drained and intact CDR peatlands.
NASA Astrophysics Data System (ADS)
Bogacz, A.; Roszkowicz, M.
2009-04-01
SUMMARY The aim of this work was to determine the properties of organic soils modified by man, muddy and fluvial process. Peat horizons were analyzed and classified by types - and species of peat. Three profiles of shallow peat and peaty gley soils identified. Investigation showed that organic soil developed on a sandy weathered sandstone base according to oligotrophic type of sites. Organic horizons were mixed with sand and separated by sandy layers. Those soils were classified as Sapric Histosols Dystric or Sapric Gleysols Histic (WRB 2006). The throphism of organic soil in this object resulted from both natural factors and anthropo-pedogenesis. key words: peat deposit, organic soils, soil properties, muddy process, sandy layers INTRODUCTION The areas of Stolowe Mountains National Park were influenced by forestry management. Many peatlands in the Park area were drained for forestry before World War II. Several amelioration attempts were undertaken as early as in the nineteenth century. The system of forest roads were built on drained areas. The Kragle Mokradlo Peatland is located in the Skalniak plateau. The object is cut by a melioration ditch. This ditch has been recently blocked to rewet the objects. Several forest roads pass in the close neighbourhood of investigated areas. In a border part of Kragle Mokradlo Peatlands, we can observe artificial spruce habitat. Investigated object represents shallow peat soil developed on sandy basement. The early investigations showed that peaty soils were also covered by sandstone - related deposits, several dozen centimeter thick (BOGACZ 2000). Those layers was developed from sandstone weathered material transported by wind and water. The aim of presented works was to determine the stage of evolution of organic soils on the base on their morphological, physical and chemical properties. MATERIAL AND METHODS Peat soils in different locations (3 profiles, 18 samples) were selected for examination. Peat samples were collected from study areas using a 6.0 cm diameter Instorfu peat auger (HORAWSKI 1987). Soil horizons were determined on the basis of colour, degree of organic matter decomposition and the quality of vegetation remains. Cores were taken to the depth where underlying mineral material was encountered. The cores ware sectioned to subsamples at intervals at major stratigrafic breaks. Some physical, chemical properties and botanical composition of peat were determined in this material. Differentiation in botanical composition of peat was analyzed by the microscopic method and subsequently classified according to the Polish standards (Oznaczanie gatunku...1977). Peat humification degree was measured using two methods: SPEC method and half syringe method (LYNN at all. 1974). Ash content was estimated by combusting the material in a muffle furnace at 500oC for 4 hours. The texture of mineral horizons was determined using the Bouyoucos hydrometer method (GEE AND BOUNDER 1986). The specific gravity (W) and bulk density (Z) of organic soils were calculated using the following formula's (ZAWADZKI 1970): W=0.11A+1.451, (1.451) represents the specific gravity of humus, Z =0.004A+0.0913, A is a ash content and constant (0.0913) represents the bulk density of humus. The following chemical properties of organic soil horizons were analyzed: content of total carbon and nitrogen, acidity in H2O and 1mol dm-3 KCl and CECe in CH3COONH4 at pH 7. Base saturation (BS) of soil sorption complex was calculated. The soils were classified to reference groups in WRB Classification System (WRB 2006). RESULTS AND DISSCUSION Based on the cores, -the soils in the border part of Kragle Mokradlo Peatland area were classified as Sapric Histosols Dystric or Sapric Gleysols Histic (WRB 2006). Soils represented ombrogenic type of hydrological conditions. In that site, an ombrogenic type of hydrological input is the predominant mechanism of soil evolution. Soil examined in this study have developed in oligotrophic type of site. Organic soils developed on sandy weathered sandstones. The depth of organic horizons ranged from 40 to 80 cm. The object represented spruce forests habitat introduced by man. Organic horizons were separated by sandy layers. The process of sandstone weathering and forestry management changed morphological features of soils. Presently, the area is under the influence of fluvigenic type of hydrological input, too. Geobotanical analyses of peat layers indicated significant presence of preserved fragments of roots grasses, Sphagnum sp. and Bryales sp. Hemic or sapric material were usually present in organic horizons of this object. Analysis of organic horizons showed that their specific gravity was about 1.58-2.25 g cm-3, the bulk density was 0.14-0.42 g cm-3. The total porosity was in the range 82.0-91.1% and the ash content: in the range 11.74-77.96% of soil dry matter. Organic material consisting of weathered sandstone was likely to move down the profiles, increasing the concentration of sand and silt fractions in organic horizons. The similar phenomenon of residual deposits was reported by KLEMENTOWSKI (1979). The values of bulk density of peatland soils are connected with the high ash content. Ash content was different in situated layers. This is caused by the muddy and fluvial process. This situation was influenced by trophical status of this soils. The pH of sand and peat layers in a border part of Krągłe Mokradło Peatland was strongly acidic: pH H2O 2.92-3.51, pH KCl 2.38-3.07. The acidity was lower in upper horizons than in deeper ones. The ratio C/N in organic horizons ranged between 10:1 to 40:1. Low ratios of C/N in some upper horizons were probably caused by strong mineralization of organic matter. Strongly acidic soil horizons usually exhibited high cation exchange capacity (CECe). In general, the base saturated (BS) did not exceed 50%. Organic surface horizons showed higher content of potassium, calcium and magnesium than lower horizons. CONCLUSIONS Shallow organic soils occupy the ombrotrophic sites of a border part of Kragle Mokradlo Peatland. The variety of organic soil throphism in the object resulted from the placement on the base sandstone, partial mixing of soil horizons as well as from muddy and fluvial processes. Peat horizons present in the studied profiles were generally classified as hemic and sapric, sometimes as fibric. Soil horizons exhibited differed thickness and ash content. Forest management strongly changed the properties of organic soil. REFERENCES Bogacz, A. (2000). Physical properties of organic soil in Stolowe Mountains National Park (Poland). Suo 51,3; pp.105-113. Gee, G.W. and Bauder, J.W. (1986). Particle-size analysis. In: Klute, A.(ed.) Methods of Soil Analysis Part I. Agronomy series No. 9. Am. Soc. Agronomy Soil Sci. Am, Inc., Publ., Madison, WI.pp. 383-411. Horawski, M. (1987). Torfoznawstwo dla meliorantow. Pojecia podstawowe.[Peat science for melioration. Basic definitions.]. Wydawnictwo Akademii Rolniczej w Krakowie. pp.37-39.[In Polish]. Lubliner - Mianowska, K. (1951). Wskazowki do badania torfu. Metody geobotaniczne, polowe i laboratoryjne [Hints to peat research. In: Geobotanical, field and laboratory methods] Państwowe Wydawnictwo Techniczne, Katowice.pp.58-60. [In Polish]. Lynn, W.C., Mc Kinzie, W.E., Grossman, R.B. (1974). Field Laboratory Test for characterization of Histosols. In: Histosols, their characteristics, classification and use. pp. 11-20. Oznaczanie gatunku, rodzaju i typu torfu. (1977). [Peat and peat varies. Determination of classes, sort and types of peat]. Polish standard PN-76/G-02501, [Polish Normalization Commitee]. pp.1-11.[In Polish]. Word Reference Base for Soil Resources. 1998. Word Soil Resources Report, 84. FAO-ISRIC-ISSS, Rome, pp.1-88. Zawadzki, S. (1970). Relationship between the content of organic matter and physical properties of hydrogenic soils. Polish Journal of Soil Science Vol.III, 1; pp.3-9.
Kazamias, Georgios; Roulia, Maria; Kapsimali, Ioanna; Chassapis, Konstantinos
2017-12-01
In the present work, a new simple and quick eco-friendly method is discussed to handle effectively the green wastes and produce a sustainable peat substitute of high quality on the large scale. Principal physicochemical parameters, i.e., temperature, moisture, specific weight, pH, electrical conductivity and, also, microorganisms, organic matter, humic substances, total Kjeldahl nitrogen and total organic carbon, C/N ratio, ash, metal content and phytotoxicity, were monitored systematically. Humic substances content values were interrelated to both C/N ratio and pH values and, similarly, bulk density, TOC, TKN, C/N, GI, ash and organic matter were found interconnected to each other. A novel biocatalyst, extremely rich in soil microorganisms, prepared from compost extracts and peaty lignite, accelerated the biotransformation. Zeolite was also employed. The compost does not demonstrate any phytotoxicity throughout the entire biotransformation process and has increased humic substances content. Both humic substances content and germination index can be employed as maturation indices of the compost. Addition of compost, processed for 60 days only, in cultivations of grass plants led to a significant increase in the stem mass and root size, annotating the significant contribution of the compost to both growth and germination. The product obtained is comparable to peat humus, useful as peat substitute and can be classified as a first class soil conditioner suitable for organic farming. Copyright © 2016 Elsevier Ltd. All rights reserved.
Thermal properties of degraded lowland peat-moorsh soils
NASA Astrophysics Data System (ADS)
Gnatowski, Tomasz
2016-04-01
Soil thermal properties, i.e.: specific heat capacity (c), thermal conductivity (K), volumetric heat capacity (C) govern the thermal environment and heat transport through the soil. Hence the precise knowledge and accurate predictions of these properties for peaty soils with high amount of organic matter are especially important for the proper forecasting of soil temperature and thus it may lead to a better assessment of the greenhouse gas emissions created by microbiological activity of the peatlands. The objective of the study was to develop the predictive models of the selected thermal parameters of peat-moorsh soils in terms of their potential applicability for forecasting changes of soil temperature in degraded ecosystems of the Middle Biebrza River Valley area. Evaluation of the soil thermal properties was conducted for the parameters: specific heat capacity (c), volumetric heat capacities of the dry and saturated soil (Cdry, Csat) and thermal conductivities of the dry and saturated soil (Kdry, Ksat). The thermal parameters were measured using the dual-needle probe (KD2-Pro) on soil samples collected from seven peaty soils, representing total 24 horizons. The surface layers were characterized by different degrees of advancement of soil degradation dependent on intensiveness of the cultivation practises (peaty and humic moorsh). The underlying soil layers contain peat deposits of different botanical composition (peat-moss, sedge-reed, reed and alder) and varying degrees of decomposition of the organic matter, from H1 to H7 (von Post scale). Based on the research results it has been shown that the specific heat capacity of the soils differs depending on the type of soil (type of moorsh and type of peat). The range of changes varied from 1276 J.kg-1.K-1 in the humic moorsh soil to 1944 J.kg-1.K-1 in the low decomposed sedge-moss peat. It has also been stated that in degraded peat soils with the increasing of the ash content in the soil the value of specific heat has decreased in a non-linear manner. Thermal parameters of the dry mass of the studied soils (Kdry, Cdry) were characterised by the mean value of approximately 0.11±0.028 W.m-1.K-1 and 0.781±0.220 MJ.m-3.K-1. The application of the correlation analysis showed that the most significant predictor of these properties of soils is the soil bulk density which, respectively explains: 54.6% and 67.1% of their variation. The increase of the accuracy in determining Kdry and Cdry was obtained by developing regression models, which apart from the bulk density also include the chemical properties of the peat soils. In the fully saturated soil the Ksat value ranged from 0.47 to 0.63 W.m-1.K-1, and the Csat varied from 3.200 to 3.995 MJ.m-3.K-1. The variation coefficients of these soil thermal features are at the level of approx. 5%. The obtained results allowed to conclude that the significant diversity of studied soils doesn't cause the significant differences in thermal soil parameters in fully saturated soils. The developed statistical relationships indicate that parameters Ksat and Csat were poorly correlated with saturated moisture content.
Bao, K; Xia, W; Lu, X; Wang, G
2010-09-01
Radioactive markers are useful in dating lead deposition patterns from industrialization in peat archive. Peat cores were collected in an ombrotrophic peat bog in the Great Hinggan Mountains in Northeast China in September 2008 and dated using (210)Pb and (137)Cs radiometric techniques. The mosses in both cores were examined systematically for dry bulk density, water and ash content. Lead also was measured using atomic emission spectroscopy with inductively coupled plasma (ICP-AES). Both patterned peat profiles were preserved well without evident anthropogenic disturbance. Unsupported (210)Pb and (137)Cs decreased with the depth in both of the two sample cores. The (210)Pb chronologies were established using the constant rate of supply model (CRS) and are in good agreement with the (137)Cs time marker. Recent atmospheric (210)Pb flux in Great Hinggan Mountains peat bog was estimated to be 337 Bq m(-2)y(-1), which is consistent with published data for the region. Lead deposition rate in this region was also derived from these two peat cores and ranged from 24.6 to 55.8 mg m(-2)y(-1) with a range of Pb concentration of 14-262 microg g(-1). The Pb deposition patterns were consistent with increasing industrialization over the last 135-170 y, with a peak of production and coal burning in the last 50 y in Northeast China. This work presents a first estimation of atmospheric Pb deposition rate in peatlands in China and suggests an increasing trend of environmental pollution due to anthropogenic contaminants in the atmosphere. More attention should be paid to current local pollution problems, and society should take actions to seek a balance between economic development and environmental protection. Copyright 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kasymov, D. P.
2017-01-01
The deepening of the center of combustion into peat layers of different botanical compositions (pine-cotton grass and grass-sphagnum peats), typical for the Tomsk region, was investigated experimentally. Peats were ignited from a model ground forest fire initiated by firing of a needle-litter layer. As a result of laboratory investigations, the change in the temperature in the bulk of peat samples with time was determined and analyzed, and the rates of their combustion in the horizontal and vertical directions were estimated. It was established that a fire penetrates deep into a layer of grass-sphagnum peat, containing more than 70% of combustion conductors in its composition, more rapidly as compared to that of pine-cotton grass peat. The rates of combustion of grass-sphagnum peat in the vertical and horizontal directions are larger by 20 and 22%, respectively, than those of pine-cotton grass peat, which is evidently due to the botanical composition of grass-sphagnum peat and the random arrangement of components in its layers.
NASA Astrophysics Data System (ADS)
Gharedaghloo, Behrad; Price, Jonathan S.; Rezanezhad, Fereidoun; Quinton, William L.
2018-06-01
Micro-scale properties of peat pore space and their influence on hydraulic and transport properties of peat soils have been given little attention so far. Characterizing the variation of these properties in a peat profile can increase our knowledge on the processes controlling contaminant transport through peatlands. As opposed to the common macro-scale (or bulk) representation of groundwater flow and transport processes, a pore network model (PNM) simulates flow and transport processes within individual pores. Here, a pore network modeling code capable of simulating advective and diffusive transport processes through a 3D unstructured pore network was developed; its predictive performance was evaluated by comparing its results to empirical values and to the results of computational fluid dynamics (CFD) simulations. This is the first time that peat pore networks have been extracted from X-ray micro-computed tomography (μCT) images of peat deposits and peat pore characteristics evaluated in a 3D approach. Water flow and solute transport were modeled in the unstructured pore networks mapped directly from μCT images. The modeling results were processed to determine the bulk properties of peat deposits. Results portray the commonly observed decrease in hydraulic conductivity with depth, which was attributed to the reduction of pore radius and increase in pore tortuosity. The increase in pore tortuosity with depth was associated with more decomposed peat soil and decreasing pore coordination number with depth, which extended the flow path of fluid particles. Results also revealed that hydraulic conductivity is isotropic locally, but becomes anisotropic after upscaling to core-scale; this suggests the anisotropy of peat hydraulic conductivity observed in core-scale and field-scale is due to the strong heterogeneity in the vertical dimension that is imposed by the layered structure of peat soils. Transport simulations revealed that for a given solute, the effective diffusion coefficient decreases with depth due to the corresponding increase of diffusional tortuosity. Longitudinal dispersivity of peat also was computed by analyzing advective-dominant transport simulations that showed peat dispersivity is similar to the empirical values reported in the same peat soil; it is not sensitive to soil depth and does not vary much along the soil profile.
Dynamics of organic carbon stock of Estonian arable and grassland peat soils
NASA Astrophysics Data System (ADS)
Kauer, Karin; Tammik, Kerttu; Penu, Priit
2016-04-01
Peat soils represent globally a major reserve of soil organic carbon (SOC). Estimation of changes in SOC stocks is important for understanding soil carbon sequestration and dynamics of greenhouse gas emissions. The aim of this study was to estimate the SOC stock of Estonian agricultural peat soils and SOC stock change depending on land use type (arable land and long-term grasslands (over 5 years)). The soils were classified as Histosols according to WRB classification. Generally the arable land was used for growing cereals, oilseed rape, legumes and used as ley in crop rotation. The main technique of soil cultivation was ploughing. During 2002-2015 the soil samples of 0-20 cm soil layer (one average soil sample per 1-5 ha) were collected. The SOC content was measured by NIRS method. The SOC stock was calculated by assuming that soil mean bulk density is 0.3 g cm-3. The SOC stock change in arable land was estimated during 3-13 years (N=91) and in grassland 4-13 year (N=163). The average SOC content of peat soils varied from 150.6 to 549.0 mg g-1. The initial SOC stock of arable land was 271.3 t ha-1 and of grassland 269.3 t ha-1. The SOC stock declined in arable peat soils faster (-2.57 t ha-1 y-1) compared to the changes in grassland peat soils (-0.67 t ha-1 y-1). According to the length of the study period the SOC stock change per year varied from -5.14 to 6.64 t ha-1 y-1 in grasslands and from -14.78 to 0.83 t ha-1 y-1 in arable land, although there was no clear relationship between the SOC stock change and the length of the study period. More detailed information about the properties of agricultural land and land use history is needed to analyse the causes of the SOC stock changes in agricultural peat soils. However, from the current research we can conclude that the SOC stock of arable and grassland peat soils is declining during the cultivation. These decreases are important to specify when considering the role of peat soils in atmospheric greenhouse gas balances considering peat soils spatial variability related to regional and local differences in ecology, hydrology and climate.
Effects of adding bulking agents on the biodrying of kitchen waste and the odor emissions produced.
Yuan, Jing; Li, Yun; Zhang, Hongyu; Zhang, Difang; Chadwick, David; Li, Guoxue; Wang, Guoying; Chi, Menghao; Yang, Fan
2018-05-01
The effects of adding a bulking agent on the performance and odor emissions (ammonia and eight sulfur-containing odorous compounds) when biodrying kitchen waste were investigated. Three treatments were considered: the addition of either cornstalks (CS) or wood peat (WP) to kitchen waste as a bulking agent before biodrying, and a control treatment (CK). The water-removal rates for CK, CS, and WP treatments were 0.35, 0.56, and 0.43kg/kg, respectively. Addition of bulking agents to kitchen waste produced less leachate, higher moisture-removal rates, and lower consumption of volatile solids. The CS treatment had the highest biodrying index (4.07), and those for the WP and CK treatments were 3.67 and 1.97, respectively. Adding cornstalks or wood peat decreased NH 3 emissions by 55.8% and 71.7%, respectively. Total sulfur losses were 3.6%-21.6% after 21days biodrying, and H 2 S and Me 2 SS were the main (>95%) sulfur compounds released. The smallest amounts of sulfur-containing odorous compounds were emitted when cornstalks were added, and adding cornstalks and wood peat decreased total sulfur losses by 50.6%-64.8%. Copyright © 2017. Published by Elsevier B.V.
Jayasinghe, Guttila Y; Tokashiki, Yoshihiro; Kitou, Makato; Kinjo, Kazutoshi
2008-12-01
A study was conducted to assess the characteristics and the prospective utilization of oil palm waste (OP) and synthetic zeolite (SZ) developed by coal fly ash, as an alternative substrate to peat and commercial perlite for lettuce (Lactuca sativa L.) production. The SZ, OP, sphagnum peat (PE), perlite (PL) and two different SZ-OP mixtures (v/v) at the ratio of 1 : 3 and 1 : 10 were utilized as the substrates under this study. The substrates formulated by mixing SZ with OP at the ratio of 1 : 3 and 1 : 10 showed improved substrate physical and chemical properties such as air space, bulk density, particle density, water-holding capacity, pH and electrical conductivity (EC), which were in the ideal substrate range when compared with PL. Furthermore, the water-holding capacity of the substrate having a 1 : 10 mixing ratio of SZ with OP was higher than that of the PL by 28.23%, whereas the bulk density was lower than that of PL by 35%. A greenhouse experiment was carried out to assess the influence of the substrates on the growth and development of lettuce. The shoot fresh weight, shoot dry weight, root fresh weight, root dry weight and number of leaves per plant of the lettuce grown in the 1 : 10 mixing ratio of SZ and OP were the highest, which showed increased values compared with that of PL by 11.56, 9.77, 3.48, 17.35 and 16.53%, respectively. The shoot fresh weight, shoot dry weight, root fresh weight, root dry weight and number of leaves per plant of the lettuce grown in the 1 : 10 mixing ratio of SZ and OP showed increased percentages compared with that of PE by 12.12, 11.37, 3.74, 23.66 and 17.50%, respectively. In addition, the growth and yield parameters of lettuce grown in the 1 : 3 mixing ratio and the OP did not show any significant difference with PL and PE but differed from the 1 : 10 mixing ratio. The results of the study suggest that the SZ-OP-based substrates and OP can be successfully utilized as alternatives to the commercial perlite and to substitute the conventional peat substrate for lettuce cultivation. In addition, this can be proposed as an alternative waste management practice.
Holocene development of Amazonia's oldest peatland
NASA Astrophysics Data System (ADS)
Swindles, Graeme T.; Morris, Paul J.; Whitney, Bronwen; Galka, Mariusz; Galloway, Jennifer M.; Gallego-Sala, Angela; Macumber, Andrew L.; Mullan, Donal; Smith, Mark W.; Amesbury, Matt; Roland, Thomas; Sanei, Hameed; Patterson, R. Timothy; Parry, Lauren; Charman, Dan J.; Lopez, Omar R.; Valderamma, Elvis; Watson, Elizabeth J.; Lähteenoja, Outi; Baird, Andy J.
2017-04-01
Peatlands represent some of the most carbon-dense ecosystems of Amazonia. However, little is known about the mechanisms of Amazonian peatland development and their ecohydrological dynamics over time. We present a comprehensive multiproxy dataset from Aucayacu peat dome, the oldest peatland yet discovered in Amazonia (peat initiation occurred between 8.9 and 5.8 ka cal. BP). Our dataset includes analyses of peat physical properties, carbon and nitrogen, humification, organic matter characteristics, macrofossils, pollen, charcoal and testate amoebae. Sedimentological techniques were applied to minerogenic deposits underneath the peatland to understand the nature of the floodplain environment before peat initiation. A transfer function was used to reconstruct past hydrological conditions from subfossil testate amoeba assemblages and carbon accumulation (CA) rates were determined from bulk density and percentage carbon data. A robust chronology was achieved using 210Pb and 14C (14 radiocarbon dates on a 3-m core) determinations, modelled using a Bayesian approach. We used the datasets to investigate the long-term ecohydrological development and controls on carbon accumulation in an Amazonian peat dome. The peatland developed in three distinct stages; (i) abandoned river channel with standing open water and aquatic plants; (ii) inundated forest swamp; and (iii) ombrotrophic bog ( 3.9 ka cal. BP). Local burning occurred twice during the peatland's development as evidenced by macroscopic charcoal but appears to have become more pronounced in the last 100 years. We present a conceptual model of the role of autogenic and allogenic (climate, floodplain) processes on the long-term development of the peatland and the marked variations in carbon accumulation rates over the Holocene. Amazonian peatlands are important carbon stores and ecosystems, and represent important archives of past climatic and ecological information. They should form key foci for conservation efforts.
Effects of long-term drainage on microbial community composition vary between peatland types
NASA Astrophysics Data System (ADS)
Urbanová, Zuzana; Barta, Jiri
2016-04-01
Peatlands represent an important reservoir of carbon, but their functioning can be threatened by water level drawdown caused by climate or land use change. Knowledge of how microbial communities respond to long-term drainage in different peatland types could help improve predictions of the effect of climate change on these ecosystems. We investigated the effect of long-term drainage on microbial community composition in bog, fen and spruce swamp forests (SSF) in the Sumava Mountains (Czech Republic), using high-throughput barcoded sequencing, in relation to peat biochemical properties. Longterm drainage had substantial effects, which depended strongly on peatland type, on peat biochemical properties and microbial community composition. The effect of drainage was most apparent on fen, followed by SSF, and lowest on bog. Long-term drainage led to lower pH, reduced peat decomposability and increased bulk density, which was reflected by reduced microbial activity. Bacterial diversity decreased and Acidobacteria became the dominant phylum on drained sites, reflecting a convergence in bacterial community composition across peatlands after long-term drainage. The archaeal communities changed very strongly and became similar across drained peatlands. Overall, the characteristic differences between distinct peatland types under natural conditions were diminished by long-term drainage. Bog represented a relatively resilient system while fen seemed to be very sensitive to environmental changes.
NASA Astrophysics Data System (ADS)
Magnan, Gabriel; van Bellen, Simon; Davies, Lauren; Froese, Duane; Garneau, Michelle; Mullan-Boudreau, Gillian; Zaccone, Claudio; Shotyk, William
2018-04-01
Northern boreal peatlands are major terrestrial sinks of organic carbon and these ecosystems, which are highly sensitive to human activities and climate change, act as sensitive archives of past environmental change at various timescales. This study aims at understanding how the climate changes of the last 1000 years have affected peatland vegetation dynamics in the boreal region of Alberta in western Canada. Peat cores were collected from five bogs in the Fort McMurray region (56-57° N), at the southern limit of sporadic permafrost, and two in central Alberta (53° N and 55° N) outside the present-day limit of permafrost peatlands. The past changes in vegetation communities were reconstructed using detailed plant macrofossil analyses combined with high-resolution peat chronologies (14C, atmospheric bomb-pulse 14C, 210Pb and cryptotephras). Peat humification proxies (C/N, H/C, bulk density) and records of pH and ash content were also used to improve the interpretation of climate-related vegetation changes. Our study shows important changes in peatland vegetation and physical and chemical peat properties during the Little Ice Age (LIA) cooling period mainly from around 1700 CE and the subsequent climate warming of the 20th century. In some bogs, the plant macrofossils have recorded periods of permafrost aggradation during the LIA with drier surface conditions, increased peat humification and high abundance of ericaceous shrubs and black spruce (Picea mariana). The subsequent permafrost thaw was characterized by a short-term shift towards wetter conditions (Sphagnum sect. Cuspidata) and a decline in Picea mariana. Finally, a shift to a dominance of Sphagnum sect. Acutifolia (mainly Sphagnum fuscum) occurred in all the bogs during the second half of the 20th century, indicating the establishment of dry ombrotrophic conditions under the recent warmer and drier climate conditions.
Spatial variation of peat soil properties in the oil-producing region of northeastern Sakhalin
NASA Astrophysics Data System (ADS)
Lipatov, D. N.; Shcheglov, A. I.; Manakhov, D. V.; Zavgorodnyaya, Yu. A.; Rozanova, M. S.; Brekhov, P. T.
2017-07-01
Morphology and properties of medium-deep oligotrophic peat, oligotrophic peat gley, pyrogenic oligotrophic peat gley, and peat gley soils on subshrub-cotton grass-sphagnum bogs and in swampy larch forests of northeastern Sakhalin have been studied. Variation in the thickness and reserves of litters in the studied bog and forest biogeocenoses has been analyzed. The profile distribution and spatial variability of moisture, density, ash, and pHKCl in separate groups of peat soils have been described. The content and spatial variability of petroleum hydrocarbons have been considered in relation to the accumulation of natural bitumoids by peat soils and the technogenic pressing in the oil-producing region. Variation of each parameter at different distances (10, 50, and 1000 m) has been estimated using a hierarchical sampling scheme. The spatial conjugation of soil parameters has been studied by factor analysis using the principal components method and Spearman correlation coefficients. Regression equations have been proposed to describe relationships of ash content with soil density and content of petroleum hydrocarbons in peat horizons.
Recent rates of carbon accumulation in montane fens ofYosemite National Park, California, U.S.A.
Drexler, Judith; Fuller, Christopher C.; Orlando, James L.; Moore, Peggy E.
2016-01-01
Little is known about recent rates of carbon storage in montane peatlands, particularly in the western United States. Here we report on recent rates of carbon accumulation (past 50 to 100 years) in montane groundwater-fed peatlands (fens) of Yosemite National Park in central California, U.S.A. Peat cores were collected at three sites ranging in elevation from 2070 to 2500 m. Core sections were analyzed for bulk density, % organic carbon, and 210Pb activities for dating purposes. Organic carbon densities ranged from 0.026 to 0.065 g C cm-3. Mean vertical accretion rates estimated using210Pb over the 50-year period from ∼1960 to 2011 and the 100-year period from ∼1910 to 2011 were 0.28 (standard deviation = ±0.09) and 0.18 (±-0.04) cm yr-1, respectively. Mean carbon accumulation rates over the 50- and 100-year periods were 95.4 (±25.4) and 74.7 (±17.2) g C m-2 yr-1, respectively. Such rates are similar to recent rates of carbon accumulation in rich fens in western Canada, but more studies are needed to definitively establish both the similarities and differences in peat formation between boreal and temperate montane fens.
NASA Astrophysics Data System (ADS)
Vetter, L.; Schreiner, K. M.; Fernandez, A.; Rosenheim, B. E.; Tornqvist, T. E.
2014-12-01
Radiocarbon analyses are a key tool for quantifying the dynamics of carbon cycling and storage in both modern soils and Quaternary paleosols. Frequently, bulk 14C dates of paleosol organic carbon provide ages older than the time of soil burial, and 14C dates of geochemical fractions such as alkali and acid extracts (operationally defined as humic acids) can provide anomalously old ages when compared to coeval plant macrofossil dates. Ramped pyrolysis radiocarbon analysis of sedimentary organic material has been employed as a tool for investigating 14C age spectra in sediments with multiple organic carbon sources. Here we combine ramped pyrolysis 14C analysis and biomarker analysis (lignin-phenols and other cupric oxide products) to provide information on the source and diagenetic state of the paleosol organic carbon. We apply these techniques to immature early Holocene brackish wetland entisols from three sediment cores in southeastern Louisiana, along with overlying basal peats. Surprisingly, we find narrow 14C age spectra across all thermal aliquots from both paleosols and peats. The weighted bulk 14C ages from paleosols and overlying peats are within analytical error, and are comparable to independently analyzed 14C AMS dates from charcoal fragments and other plant macrofossils from each peat bed. Our results suggest high turnover rates of carbon in soils relative to input of exogenous carbon sources. These data raise broader questions about processes within the active soil and during pedogenesis and burial of paleosols that can effectively homogenize radiocarbon content in soils across the thermochemical spectrum. The concurrence of paleosol and peat 14C ages also suggests that, in the absence of peats with identifiable plant macrofossils, ramped pyrolysis 14C analyses of paleosols may be used to provide ages for sea-level indicators.
Hamard, Marie; Cheyne, Susan M; Nijman, Vincent
2010-06-01
Understanding the complex relationship between primates and their habitats is essential for effective conservation plans. Peat-swamp forest has recently been recognized as an important habitat for the Southern Bornean gibbon (Hylobates albibarbis), but information is scarce on the factors that link gibbon density to characteristics of this unique ecosystem. Our aims in this study were firstly to estimate gibbon density in different forest subtypes in a newly protected, secondary peat-swamp forest in the Sabangau Catchment, Indonesia, and secondly to identify which vegetation characteristics correlate with gibbon density. Data collection was conducted in a 37.1 km(2) area, using auditory sampling methods and vegetation "speed plotting". Gibbon densities varied between survey sites from 1.39 to 3.92 groups/km(2). Canopy cover, tree height, density of large trees and food availability were significantly correlated with gibbon density, identifying the preservation of tall trees and good canopy cover as a conservation priority for the gibbon population in the Sabangau forest. This survey indicates that selective logging, which specifically targets large trees and disrupts canopy cover, is likely to have adverse effects on gibbon populations in peat-swamp forests, and calls for greater protection of these little-studied ecosystems. (c) 2010 Wiley-Liss, Inc.
High nitrogen availability reduces polyphenol content in Sphagnum peat.
Bragazza, Luca; Freeman, Chris
2007-05-15
Peat mosses of the genus Sphagnum constitute the bulk of living and dead biomass in bogs. These plants contain peculiar polyphenols which hamper litter peat decomposition through their inhibitory activity on microbial breakdown. In the light of the increasing availability of biologically active nitrogen in natural ecosystems, litter derived from Sphagnum mosses is an ideal substrate to test the potential effects of increased atmospheric nitrogen deposition on polyphenol content in litter peat. To this aim, we measured total nitrogen and soluble polyphenol concentration in Sphagnum litter peat collected in 11 European bogs under a chronic gradient of atmospheric nitrogen deposition. Our results demonstrate that increasing nitrogen concentration in Sphagnum litter, as a consequence of increased exogenous nitrogen availability, is accompanied by a decreasing concentration of polyphenols. This inverse relationship is consistent with reports that in Sphagnum mosses, polyphenol and protein biosynthesis compete for the same precursor. Our observation of modified Sphagnum litter chemistry under chronic nitrogen eutrophication has implications in the context of the global carbon balance, because a lower content of decay-inhibiting polyphenols would accelerate litter peat decomposition.
Treat, C.C.; Jones, Miriam C.; Camill, P.; Gallego-Sala, A.; Garneau, M.; Harden, Jennifer W.; Hugelius, G.; Klein, E.S.; Kokfelt, U.; Kuhry, P.; Loisel, Julie; Mathijssen, J.H.; O'Donnell, J.A.; Oksanen, P.O.; Ronkainen, T.M.; Sannel, A.B.K.; Talbot, J. J.; Tarnocal, C.M.; Valiranta, M.
2016-01-01
Permafrost dynamics play an important role in high-latitude peatland carbon balance and are key to understanding the future response of soil carbon stocks. Permafrost aggradation can control the magnitude of the carbon feedback in peatlands through effects on peat properties. We compiled peatland plant macrofossil records for the northern permafrost zone (515 cores from 280 sites) and classified samples by vegetation type and environmental class (fen, bog, tundra and boreal permafrost, and thawed permafrost). We examined differences in peat properties (bulk density, carbon (C), nitrogen (N) and organic matter content, and C/N ratio) and C accumulation rates among vegetation types and environmental classes. Consequences of permafrost aggradation differed between boreal and tundra biomes, including differences in vegetation composition, C/N ratios, and N content. The vegetation composition of tundra permafrost peatlands was similar to permafrost-free fens, while boreal permafrost peatlands more closely resembled permafrost-free bogs. Nitrogen content in boreal permafrost and thawed permafrost peatlands was significantly lower than in permafrost-free bogs despite similar vegetation types (0.9% versus 1.5% N). Median long-term C accumulation rates were higher in fens (23 g C m−2 yr−1) than in permafrost-free bogs (18 g C m−2 yr−1) and were lowest in boreal permafrost peatlands (14 g C m−2 yr−1). The plant macrofossil record demonstrated transitions from fens to bogs to permafrost peatlands, bogs to fens, permafrost aggradation within fens, and permafrost thaw and reaggradation. Using data synthesis, we have identified predominant peatland successional pathways, changes in vegetation type, peat properties, and C accumulation rates associated with permafrost aggradation.
Mattei, Paola; Gnesini, Alessandro; Gonnelli, Cristina; Marraccini, Chiara; Masciandaro, Grazia; Macci, Cristina; Doni, Serena; Iannelli, Renato; Lucchetti, Stefano; Nicese, Francesco P; Renella, Giancarlo
2018-06-01
Sediments dredged by an industrial port, slightly contaminated by heavy metals and petroleoum hydrocarbons, were phytoremediated and used as peat-free growing media for the red robin photinia (Photinia x fraseri L.). Plants were grown on sediment only (S), sediment mixed with composted pruning residues (S + PR), sediment fertilized with controlled release fertilizers (S + F) and peat-based growing media as control (C). Plant elongation and dry weight, leaf contents of chlorophyll, malondialdehyde (MDA), macronutrients and heavy metals were determined at the end of one growing season. Environmental impact related to the use of sediment-based as compared to peat-based growing media was assessed by the Life Cycle Analysis (LCA). Sediment-based growing media presented significantly higher bulk density, pH and electrical conductivity values, lower C and N contents, and significantly higher total and available P. Red robin photinia grown on S + F growing media showed morphological and chemical parameters similar to those of control plants (C), whereas plants grown on S and S + PR showed lower growth. Leaf concentration of nutrients and heavy metals varied depending on the considered element and growing media, but were all within the common values for ornamental plants, whereas the highest MDA concentrations were found in plants grown on traditional growing media. The LCA indicated the use of sediments as growing media reduced the C footprint of ornamental plant production and the contribute of growing media to the environmental impact per produced plant. We concluded that sediments phytoremediation and use in plant nursery is a practical alternative re-use option for dredged sediments. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Inisheva, L. I.; Szajdak, L.
2009-04-01
Mires, or peatlands belong to the wetlands ecosystems where carbon is bounded in primary production and deposited as peat in water saturated, anoxic conditions. In those conditions, the rate of the supply of new organic matter has exceeded that the decomposition, resulting in carbon accumulation. Place of sampling belongs to an oligotrophic landscapes of the river Klyuch basin in spurs of Vasyugan mire. The catchment represents reference system for Bokchar swampy area (political district of Tomsk region). Landscape profile crosses main kinds of swampy biogeocoenosis (BGC) toward the mire center: paludal tall mixed forest, pine undershrub Sphagnum (high riam, trans-accumulative part of a profile, P2), pine-undershrub Sphagnum (low riam, transit part, P3), sedge-moss swamp (eluvial part, P5). The latter represents an eluvial part of a slope of watershed massif where it is accomplished discharge of excess, surface, soil-mire waters. The depth of peat deposit of sedge-moss swamp reaches 2,5m. To the depth of 0,6m there is a layer of Sphagnum raised bog peat, then it is a mesotrophic Scheuchzeria Sphagnum layer and at the bottom there is a thick layer of low-mire horsetail peat. The samples of peats were taken from two places (P2 and P3), both from the depth 0-75 cm of the great Vasyugan Mire. These materials represent (P2) Sphagnum fuscum peat (ash content ranged from 10.8 to 15.1%), but samples P3 belong to low-moor sedge peat (ash content ranged from 4.5-4.8%). The differences in water level, redox potential, pH, degree of degradation, bulk density, number of microorganisms, activity of enzymes, different kinds of nitrogen and humic substances were studied in two different peat soils characterized by different type of peat. In general in P2 the redox potential changed from 858 to /-140/ mV, higher activity of xanthine oxidase and peroxidase, different kinds of microorganisms (ammonifing bacteria and cellulose decomposing microorganisms) and different kinds of nitrogen (mineral, easily hydrolysable, hardly hydrolysable and non-hydrolyzable), bitumines, 3 fractions of humic acids and 3 fractions of fulvic acids were determined in the deep 0-25 cm than in 50-75 cm. The ratio HA/FA in the depth 0-25 cm was equal to from 1.87, but in the depth 50-75 cm was equal to 7.66. Contrary was observed for P3. For this peat with the increase of the deep of sampling the decrease of total nitrogen, activity of enzymes (xanthine oxidase and peroxidase) is connected with the changes of Fe+2/Fe+3 and lower difference of redox potential than in P2. The ratio HA/FA in the depth 0-25 cm was equal to 0.56, but in the depth 50-70 cm was equal to 0.84.
Sivakumar, S; Song, Y C; Kim, S H; Jang, S H
2015-11-01
Waste activated sludge was aerobically treated to demonstrate multiple uses such as cultivating an oil degrading bacterial consortium; studying the influence of a bulking agent (peat moss) and total petroleum hydrocarbon concentration on bacterial growth and producing a soil conditioner using waste activated sludge. After 30 days of incubation, the concentration of oil-degrading bacteria was 4.3 x 10(8) CFU g(-1) and 4.5 x 10(8) CFU g(-1) for 5 and 10 g of total petroleum hydrocarbon, respectively, in a mixture of waste activated sludge (1 kg) and peat moss (0.1 kg). This accounts for approximately 88.4 and 91.1%, respectively, of the total heterotrophic bacteria (total-HB). The addition of bulking agent enhanced total-HB population and total petroleum hydrocarbon-degrading bacterial population. Over 90% of total petroleum hydrocarbon degradation was achieved by the mixture of waste activated sludge, bulking agent and total petroleum hydrocarbon. The results of physico-chemical parameters of the compost (waste activated sludge with and without added peat moss compost) and a substantial reduction in E. coli showed that the use of this final product did not exhibit risk when used as soil conditioner. Finally, the present study demonstrated that cultivation of total petroleum hydrocarbon-degrading bacterial consortium and production of compost from waste activated sludge by aerobic treatment was feasible.
NASA Astrophysics Data System (ADS)
Nykänen, Hannu; Mpamah, Promise; Rissanen, Antti; Pitkänen, Aki; Turunen, Jukka; Simola, Heikki
2015-04-01
Peatlands form a significant carbon pool in the global carbon cycle. Change in peat hydrology, due to global warming is projected to change microbiological processes and peat carbon pool. We tested if bulk stable carbon and nitrogen isotopes serve as indicators of severe long term drying in peatlands drained for forestry. Depth profile analysis of peat, for their carbon and nitrogen content as well as their carbon and nitrogen stable isotopic signatures, were conducted for peatlands in southern and eastern Finland, having ombrotrophic and minerotrophic natural and corresponding drained pairs or separate drained sites. The selection of sites allowed us to compare changes due to different fertility and changes due to long term artificial drying. Drainage lasting over 40 years has led to changes in hydrology, vegetation, nutrient mineralization and respiration. Furthermore, increased nutrient uptake and possible recycling of peat nitrogen and carbon trough vegetation back to the peat surface, also possibly has an effect on the stable isotopic composition of peat carbon and nitrogen. We think that drainage induced changes somehow correspond to those caused by changed hydrology due to climate change. We will present data from these measurements and discuss their implications for carbon and nitrogen flows in peatlands.
Sequestration of arsenic in ombrotrophic peatlands
NASA Astrophysics Data System (ADS)
Rothwell, James; Hudson-Edwards, Karen; Taylor, Kevin; Polya, David; Evans, Martin; Allott, Tim
2014-05-01
Peatlands can be important stores of arsenic but we are lacking spectroscopic evidence of the sequestration pathways of this toxic metalloid in peatland environments. This study reports on the solid-phase speciation of anthropogenically-derived arsenic in atmospherically contaminated peat from the Peak District National Park (UK). Surface and sub-surface peat samples were analysed by synchrotron X-ray absorption spectroscopy on B18 beamline at Diamond Light Source (UK). The results suggest that there are contrasting arsenic sequestration mechanisms in the peat. The bulk arsenic speciation results, in combination with strong arsenic-iron correlations at the surface, suggest that iron (hydr)oxides are key phases for the immobilisation of arsenic at the peat surface. In contrast, the deeper peat samples are dominated by arsenic sulphides (arsenopyrite, realgar and orpiment). Given that these peats receive inputs solely from the atmosphere, the presence of these sulphide phases suggests an in-situ authigenic formation. Redox oscillations in the peat due to a fluctuating water table and an abundant store of legacy sulphur from historic acid rain inputs may favour the precipitation of arsenic sequestering sulphides in sub-surface horizons. Oxidation-induced loss of these arsenic sequestering sulphur species by water table drawdown has important implications for the mobility of arsenic and the quality of waters draining peatlands.
NASA Astrophysics Data System (ADS)
Opfergelt, S.; Williams, H. M.; Cornelis, J. T.; Guicharnaud, R. A.; Georg, R. B.; Siebert, C.; Gislason, S. R.; Halliday, A. N.; Burton, K. W.
2017-11-01
Incipient warming of peatlands at high latitudes is expected to modify soil drainage and hence the redox conditions, which has implications for Fe export from soils. This study uses Fe isotopes to assess the processes controlling Fe export in a range of Icelandic soils including peat soils derived from the same parent basalt, where Fe isotope variations principally reflect differences in weathering and drainage. In poorly weathered, well-drained soils (non-peat soils), the limited Fe isotope fractionation in soil solutions relative to the bulk soil (Δ57Fesolution-soil = -0.11 ± 0.12‰) is attributed to proton-promoted mineral dissolution. In the more weathered poorly drained soils (peat soils), the soil solutions are usually lighter than the bulk soil (Δ57Fesolution-soil = -0.41 ± 0.32‰), which indicates that Fe has been mobilised by reductive mineral dissolution and/or ligand-controlled dissolution. The results highlight the presence of Fe-organic complexes in solution in anoxic conditions. An additional constraint on soil weathering is provided by Si isotopes. The Si isotope composition of the soil solutions relative to the soil (Δ30Sisolution-soil = 0.92 ± 0.26‰) generally reflects the incorporation of light Si isotopes in secondary aluminosilicates. Under anoxic conditions in peat soils, the largest Si isotope fractionation in soil solutions relative to the bulk soil is observed (Δ30Sisolution-soil = 1.63 ± 0.40‰) and attributed to the cumulative contribution of secondary clay minerals and amorphous silica precipitation. Si supersaturation in solution with respect to amorphous silica is reached upon freezing when Al availability to form aluminosilicates is limited by the affinity of Al for metal-organic complexes. Therefore, the precipitation of amorphous silica in peat soils indirectly supports the formation of metal-organic complexes in poorly drained soils. These observations highlight that in a scenario of decreasing soil drainage with warming high latitude peatlands, Fe export from soils as Fe-organic complexes will increase, which in turn has implications for Fe transport in rivers, and ultimately the delivery of Fe to the oceans.
NASA Astrophysics Data System (ADS)
Lobianco, Daniela; D'Orazio, Valeria; Miano, Teodoro; Zaccone, Claudio
2016-04-01
Floating mires are defined by the occurrence of emergent vegetation rooted in highly organic buoyant mats that rise and fall with changes in water level. Islands floating and moving on a lake naturally were already described by Pliny the Elder in his Naturalis historia almost two millennia ago. Actually, he devoted a whole chapter of Naturalis historia to "Of Islands Ever Floating and Swimming", reporting how certain isles were always waving and never stood still. The status of "flotant" has been defined transitory; in fact, these small isles often disappear, in most of the cases because of a transition from floating island to firm land during decades is likely to happen. That is why most of the floating islands described by Pliny the Elder (e.g., Lacus Fundanus, Lacus Cutiliensis, Lacus Mutinensis, Lacus Statoniensis, Lacus Tarquiniensis, Lydia Calaminae, Lacus Vadimonis) do not exist anymore. In the present study, peat formation and organic matter evolution were investigated in order to understand how these peculiar environments form, and how stable actually they are. In fact, it is hoped that peat-forming floating mires could provide an exceptional tool for environmental studies, since much of their evolution, as well as the changes of the surrounding areas, is recorded in their peat deposits. A complete, 4-m deep peat core was collected in July 2012 from the floating island of Posta Fibreno, a relic mire in the Central Italy. This floating island has a diameter of ca. 30 m, a submerged thickness of about 3 m, and the vegetation is organized in concentric belts, from the Carex paniculata palisade to the Sphagnum centre. Here, some of the southernmost Italian populations of Sphagnum palustre occur. The 14C age dating of organic sediments isolated from the sample at 385 cm of depth revealed that the island formed ca. 700 yrs ago (620±30 yr BP). The top 100 cm, consisting almost exclusively of Sphagnum mosses, show a very low bulk density (avg., 0.03±0.01 g cm-3), an ash content ranging from 0.8 and 7.4%, an average gravimetric water content of 26.6±7.7 gwater gdrypeat-1, and a pH generally increasing with depth (from 4.1 to 7.2). The C content along the profile ranged between 35 and 47% (avg., 41±4%), whereas the N between 0.3 and 1.1% (avg., 0.5±0.1%). Main atomic ratios (C/N, H/C and O/C) and FT-IR spectra seem to confirm what found during the visual inspection of the core, i.e., Sphagnum material so well preserved that it is hard to classify it as "peat". In fact, the 14C age dating suggests that the first 110 cm of Sphagnum material accumulated in ca. 55 yrs, thus resulting in an average growing rate of 2 cm yr-1. The remaining 300 cm (from 100 to 400 cm of depth), i.e., the submerged part of the island, consist of peat showing completely different botanical composition (reed-fen peat and silty peat rich in reeds) and physical and chemical properties. In particular, both bulk density (avg., 0.09±0.05 g cm-3) and ash content increase, reaching their maximum at 300-325 cm of depth (0.27 g cm-3 and 17%, respectively), whereas the average gravimetric water content significantly decreases (17.4±9.0 gwater gdrypeat-1). The pH ranges from 6.6 and 7.4. Both C and N along this section of the profile show higher average contents (44±3 and 1.3±0.6%, respectively) compared to those recorded in the upper 100 cm layer; furthermore, the decrease with depth of C/N, H/C and O/C atomic ratios, as well as main absorption bands of FT-IR spectra, clearly indicate the occurrence of an organic matter highly humified. The estimated accumulation rate for the bottom 300 cm of the island is 0.5 cm yr-1. At the best of our knowledge, this work represents the first characterization of a (4 m) deep floating mire profile. At Posta Fibreno, the deep water layer below the base of the island (7 m) and the movement on the water surface probably avoided the transition from floating island to firm land, thus allowing this island to float during the last centuries. The Authors thank the Municipality of Posta Fibreno (FR), Managing Authority of the Regional Natural Reserve of Lake Posta Fibreno, for allowing peat cores sampling.
Impact of long-term wetting on belowground respiration and methanogenesis in Luther Bog, Ontario
NASA Astrophysics Data System (ADS)
Goebel, Marie; Blodau, Christian
2016-04-01
Peatlands play a major role in the global carbon cycle. They store one-third of total world soil carbon, sequester carbon dioxide (CO2) and release CO2 and methane (CH4). Climate and land-use change are predicted to cause either wetter winters and wetter summers or wetter winters and drier summers in the area where northern peatlands are located. Feedback on processes in the peat is poorly understood on the time scale of decades. In this study, we investigated impacts of long-term wetting and long-term fluctuating water table on potential CO2 and CH4 production rates and organic matter quality of the fractions bulk peat, pore water and leachate. Bulk peat potential CO2 production rates of 2.38 to 25.55 μmol g-1 d-1 (aerobic) and 1.53 to 7.33 μmol g-1 d-1 (anaerobic) decreased with depth along with a decrease in organic matter quality. Potential CH4 production rates (0.002 to 2.60 μmol g-1 d-1) increased with anaerobic conditions and a lack of electron acceptors rather than being dependent on the availability of labile organic matter. This pattern was less evident in solute fraction samples where labile compounds in top layers were probably either too labile to be detected or water movement obscured differences between depths. Bulk peat potential anaerobic CO2 and CH4 production increased through long-term wetting. As wetting did not change organic matter quality or aerobic production rates, increased anaerobic production rates likely originate from microorganisms adapted to anaerobic conditions. All indicators of organic matter quality, FTIR ratios, SUVA254, E2:E3, HIX, FI and PARAFAC, provided similar results. Other than expected, wetting did not result in higher organic matter quality in bulk peat and leachate. Drier conditions in summer led to reduced organic matter quality. In pore water, long-term wetter conditions resulted in a higher organic matter quality. Slow-down of decomposition due to anaerobic conditions is unlikely, as this was not the case with respect to the other fractions. Mixing with groundwater could have transported organic matter of high quality to the wetted site. Potential CO2 production rates were not affected by long-term water table change. Organic matter quality of the wetted site may have been also overestimated in our study as vegetation change may have changed litter and peat quality as well. This study revealed that long-term wetting probably does not change organic matter quality as decisively as expected. Potential anaerobic CO2 and CH4 production rates rather increased as long as conditions were more constantly anoxic. Long-term lowered or fluctuating water table could potentially result in smaller future emissions due to a reduced organic matter quality, but also to less carbon sequestration.
NASA Astrophysics Data System (ADS)
Wells, C. M.; Petrone, R. M.; Sutherland, G.; Price, J. S.
2015-12-01
Linear disturbances such as roads cover vast swaths of northeastern Alberta, the majority of which are wetlands with shallow and local hydrologic connections. Thus, the effects of road construction on wetland hydrological pathways can have significant implications on water movement within the region, and by extension the productivity of vegetation communities and carbon sequestration. However, little is known about the effect that roads have on wetland hydrology. In 2013, a gravel road built within a fen peatland was reclaimed to evaluate hydrologic impacts post removal. Prior to removal, ground and surface water flow was obstructed leading to surface ponding, and vegetation mortality was observed on the up-gradient (wet) side of the road. Rebounding of the peat column was observed throughout the fen immediately following road removal in 2013 (maximum of 12 cm, mean of 2 cm), with modest but slightly smaller expansion in 2014. For both years, peat rebound was greatest in areas where the road was removed. Peat physical properties contrasted sharply between the reclaimed road (RR) peat and the adjacent, unimpacted peatland (UP). Surface bulk densities (pb, 0-10 cm) ranged from 0.1-0.25 g cm-3 along the RR compared to 0.02-0.07 g cm-3 for the UP and on average, pb for all depths were lower at the RR compared to the UP. Similar spatial patterns were observed for peat porosity. Correspondingly low horizontal saturated hydraulic conductivities (Kh) were observed along the RR compared to the UP, averaging 5.7x10-4 m s-1 and 1.7x10-3 m s-1, respectively. The local flow system across the RR and thus subsurface flow was impeded by almost half (0.4 m d-1) compared to flow observed within the UP (0.8 m d-1), leading to ponding on the upgradient side. A marked change in hydrophysical properties and ground and surface water flow patterns post road removal has implications for plant reestablishment and restoration and will form the basis of further study.
Impact of sea-level rise on Everglades carbon storage capacity in the Holocene
NASA Astrophysics Data System (ADS)
Jones, M.; Bernhardt, C. E.; Wingard, G. L. L.; Keller, K.; Stackhouse, B.; Landacre, B.
2017-12-01
Sea-level rise (SLR) and climate have driven environmental changes in South Florida over time. Florida Bay, a shallow carbonate bay located to the south of the Florida Peninsula, contains carbonate islands and mudbanks that formed over the last few thousand years and once comprised the freshwater Everglades. The islands, often ringed with mangroves, provide wildlife habitat, physical barriers to storm surge, tidal flux, and wave development along South Florida's coastline. Because most of South Florida is only 1-2 m above mean sea level, and IPCC AR5 projections of 0.26 to 0.98 m of SLR by 2100, vertical accommodation space could outpace sediment accretion in the southern freshwater Everglades and Florida Bay islands, impacting carbon (C) storage, as well as wildlife habitat and the ability to protect shorelines from coastal storms. We analyzed sediment cores that reached the Plio-Pleistocene limestone bedrock from four islands in Florida Bay to determine how floral and faunal communities and source C change in response to Holocene sea level transgression. We used pollen and mollusk assemblages, δ13C, and C/N ratios, along with radiometric dating, bulk density, and organic C content to calculate changes in C accumulation rates (CAR) over the last 4 ka, as deposition transitioned from freshwater peat to estuarine carbonate mud, to mangrove peat and ultimately to the hyper-saline playa-like carbonate sediments deposited today. Results show that CAR are more than twice as high in the basal freshwater Everglades peat than in the overlying estuarine sediments and slightly greater than the short-lived period of Rhizophora (red mangrove) peat accumulation. Avicennia (black mangrove) and playa-like environments have similar CAR as the estuarine carbonate mud and hypersaline carbonate sediments but accretion rates are less than the current rate of SLR. These results suggest that with current rates of accretion and SLR, these islands could disappear in <200 years, and the C storage capacity of the Florida Everglades could decrease significantly if the freshwater Everglades accretion rate cannot outpace SLR. Further, the expansion and persistence of high-accumulating Rhizophora peat is limited by elevated SLR, impacting coastline stability and wildlife habitat.
NASA Astrophysics Data System (ADS)
Waddington, James; Kettridge, Nick; Sherwood, James; Granath, Gustaf
2015-04-01
Northern peatlands represent a globally significant carbon reservoir, composed largely of legacy carbon which is no longer part of the active carbon cycle. However, it is unclear whether this legacy carbon is vulnerable as a result of enhanced peat smouldering and combustion under the moderate drying conditions predicted for northern peatlands as a result of climate change and/or disturbance from forestry, mining, and associated transport development. A significant loss in legacy carbon as a result of wildfire has already been observed in smaller tropical peatlands where deep peat soils have been destabilized due to severe drainage and a shift in vegetation. Capitalizing on a unique long-term experiment, we quantify the post-wildfire recovery of a northern peatland several decades post drainage. We show that the moderate drop in water table position predicted for most northern regions triggers a shift in vegetation composition, previously observed within only severely disturbed tropical peatlands, when accompanied by wildfire. The combined impact of moderate drainage followed by wildfire resulted in a shift of the peat surface down the peat profile, exposing denser peat at the surface. In undisturbed northern peatlands where depth of burn is typically low, low-density near-surface peats help regulate water-table position and near-surface moisture availability post-fire, both of which are favourable to Sphagnum recolonization. As a result of drainage and fire at the study site, the self-regulating properties of the low-density Sphagnum surface were lost. We demonstrate that changes in peat hydrophysical properties increased hydrological limitations to Sphagnum recovery leading to the conversion to a non-carbon accumulating shrub-grass ecosystem. This new ecosystem is likely to experience a low intensity, high frequency wildfire regime, which will further deplete the legacy carbon stored in the peat.
NASA Astrophysics Data System (ADS)
Yanuarsyah, I.; Suwarno, Y.; Hudjimartsu, S.
2016-11-01
Peat land in Indonesia is currently a matter of interest to economic activity. In addition to having the uniqueness of the ecosystem which is reserve a huge of biodiversity and carbon storage, peat land is grow an alternative expansion of agriculture and plantation. Mensiku miniwatershed is a subset of Kapuas Watershed with the domination of the peat soil type. It located in the upstream from the Kapuas River and supporting for the continuation of the river ecosystem. The research objective is to facilitate peat land degradation by using hotspot spatial clustering and multitemporal satellite imagery. There have three main processes which are image processing, geoprocessing and statistical process using DBSCAN to determine hotspot clustering. The trend of LUC changes for 14 years (2002 to 2016) shows that the downward occurred in secondary peat forest (0.9% per year) and swampy shrub (0.6% per year). The upward occurred in mixed farms (0.6% per year) and plantations (0.8% per year). degradation rate of peat land over 14 years about 4.6 km2 per year. Hotspot predominantly occurrence in secondary peat forest with 200-250 centimeter depth and Saprists type. DBSCAN clustering obtain 2 clusters in 2002, obtain 4 clusters in 2009 and obtain 1 clusters in 2016. Regarding LUC platform, average density value over 14 years about 0.063 hotspot per km2. DBSCAN is common used to examine the cluster and perform the distribution and density with spatial analysis
NASA Astrophysics Data System (ADS)
Mathijssen, Paul; Knorr, Klaus-Holger; Gałka, Mariusz; Borken, Werner
2017-04-01
Peat carbon cycling is controlled by both large scale factors, such as climate and hydrological setting, and small scale factors, such as microtopography, vegetation, litter quality, and rooting depth. These small scale factors commonly vary within peatlands, causing variation in the carbon balance at different locations within the same site. Understanding the relationship between small scale carbon cycling and vegetation helps us to assess the variation of carbon dynamics of peatlands, because vegetation composition acts as an integrator of factors such as microtopography, hydrology, and nutrient level. Variation in vegetation illustrates spatial variation of these underlying factors. Furthermore, the presence of certain plant species affects carbon cycling directly through litter quality or aeration through root tissues. In order to understand these within-site variations in terms of carbon cycling, we investigated carbon accumulation, decomposition, and biogeochemistry of pore waters along a transect of peat cores with changing vegetation and water levels in an ombrotrophic peatland in southern Patagonia. The transect ran from a Sphagnum magellanicum dominated spot with relatively high water table, to intermediately wet spots with mixed Sphagnum/shrubs vegetation, or dominated by Cyperaceae, eventually to a more elevated and drier spot dominated by cushion plants (mainly Astelia pumila). There were large differences in peat accumulation rates and peat densities, with faster peat growth and lower densities under Sphagnum, but overall carbon accumulation rates were quite similar in the various microenvironments. At most plots C/N ratios decreased with depth, concurrent with increasing humification index derived from FT-IR spectra. But under cushion plants this relation was opposite: more humification with depth, but also C/N ratios increases. This reflected the differing source material at depth under the cushion plants, and that the cushion plant peat layers were formed on top of Sphagnum peat. The divergent source material throughout a peat core makes it difficult to use C/N ratios to indicate peat decomposition rates. Although the low peat density and higher C/N ratios indicate that overall carbon turnover is slow at Sphagnum plots, pore water methane concentrations were elevated. At cushion plant plots, however, higher redox potentials exist until greater depths due to aerenchymous roots, inhibiting methane production and release. Our results demonstrate that large variation exists within pristine bogs, in terms of decomposition patterns, organic matter quality, and carbon turnover pathways, corresponding to variation in surface moisture levels and vegetation. Furthermore, variation in carbon cycling properties are maintained in buried peat layers and reflect more the organic material of that layer, than the current surface carbon dynamics.
NASA Astrophysics Data System (ADS)
Ertel, John R.; Hedges, John I.
1984-10-01
Vanillyl, syringyl and cinnamyl phenols occur as CuO oxidation products of humic, fulvic and base-insoluble residual fractions from soils, peat and nearshore marine sediments. However, none of these lignin-derived phenols were released by CuO oxidation of deepsea sediment or its base-extractable organic fractions. Lignin analysis indicated that peat and coastal marine sediments contained significantly higher levels of recognizable vascular plant carbon (20-50%) than soils and offshore marine sediments (0-10%). Although accounting for less than 20% of the total sedimentary (bulk) lignin, lignin components of humic acid fractions compositionally and quantitatively resembled the corresponding bulk samples and baseinsoluble residues. Recognizable lignin, presumably present as intact phenylpropanoid units, accounted for up to 5% of the carbon in peat and coastal humic acids but less than 1% in soil humic acids. Fulvic acid fractions uniformly yielded less lignin-derived phenols in mixtures that were depleted in syringyl and cinnamyl phenols relative to the corresponding humic acid fractions. Within the vanillyl and syringyl families the relative distribution of acidic and aldehydic phenols is a sensitive measure of the degree of oxidative alteration of the lignin component The high acid/aldehyde ratios and the low phenol yields of soils and their humic fractions compared to peat and coastal sediments indicate extensive degradation of the lignin source material. Likewise, the progressively higher acid/aldehyde ratios and lower phenol yields along the sequence: plant tissues (plant debris)-humic acids-fulvic acids suggest that this pattern represents the diagenetic sequence for the aerobic degradation of lignin biopolymers.
NASA Astrophysics Data System (ADS)
Biasi, Christina; Jokinen, Simo; Marushchak, Maija; Trubnikova, Tatiana; Hämäläinen, Kai; Oinonen, Markku; Martikainen, Pertti
2014-05-01
Soil respiration is the second largest C flux between atmosphere and terrestrial ecosystems after gross primary production. Carbon dioxide released from soils is thus a major contributor to the atmospheric CO2 concentration. Despite the global importance, soil respiration and its components (heterotrophic and autotrophic respiration) remain poorly understood and not well constrained fluxes of the terrestrial C cycle. This is particularly true for the Arctic, where huge amounts of the Earth's soil carbon is stored. Here, we report on heterotrophic soil respiration rates from various Arctic tundra microhabitats measured in situ. The study site was Seida (67°07'N, 62°57'E, 100 m a.s.l.) which is characterized by typical sub-arctic permafrost landscape which comprises raised, vegetated permafrost peat plateaus, interspersed with spots of bare peat surfaces (peat circles), and upland mineral soils. We used isotope partitioning approach based on differences in natural abundance of 14C between soil and plants to separate sources of soil-respired CO2. In addition, the tradition trenching approach was employed. Complementary laboratory incubations with homogenized soil were conducted to assess primary decomposability of the soils and to identify age of the CO2 released and thus get more information on the nature of the sources of respiration. The major aim was to link SMR rates with of soil type, land cover class, soil physic-chemical properties (e.g. water content), soil C stocks and age of soil. Results show that, despite profound differences in soil characteristics and primary decomposability of organic matter, surface CO2 fluxes derived from soil microbial respiration rates were rather similar between microhabitats. The only factor which influenced, at least to some extent, the respiration rates was total soil C (and N) stocks in surface soils. There was some evidence for reduced soil-related CO2 emissions from peatlands, though results were not consistent between the methods applied. It seems that the lower decomposability of peat is largely outweighed by higher C stocks at field conditions. Surprisingly, the bare surfaces (peat circles) with 3500 years old C at the surface exhibited about the largest soil microbial respiration rates among all sites as shown by both methods. This is likely due to the immature status of the peat which was during the bulk of its developmental time protected by permafrost, together with high C-densities. The observation is particularly relevant for decomposition of deeper peat at the permafrost-active layer interface in the large vegetated peat plateaus, where soil material similar to the bare surfaces can be found. The results suggest that the chemical nature and high age of the soil SOC in deep peat does not solely guarantee for resistance to decay. Thus, the study highlights risks for potential re-mobilization of C in deep peat soils following thawing. Soil microbial respiration rates need to be better known when predicting the overall carbon sink/source character of tundra ecosystems in a warming climate. Biasi C., Jokinen S., Marushchak M., Hämäläinen K., Trubnikova T., Oinonen M., Martikainen P. (2013). Microbial respiration in Arctic upland and peat soils as source of CO2. Ecosystems. DOI: 10.1007/s10021-013-9710-z.
Buckley, Cara; Nekaris, K A I; Husson, Simon John
2006-10-01
Few data are available on gibbon populations in peat-swamp forest. In order to assess the importance of this habitat for gibbon conservation, a population of Hylobates agilis albibarbis was surveyed in the Sabangau peat-swamp forest, Central Kalimantan, Indonesia. This is an area of about 5,500 km(2) of selectively logged peat-swamp forest, which was formally gazetted as a national park during 2005. The study was conducted during June and July 2004 using auditory sampling methods. Five sample areas were selected and each was surveyed for four consecutive days by three teams of researchers at designated listening posts. Researchers recorded compass bearings of, and estimated distances to, singing groups. Nineteen groups were located. Population density is estimated to be 2.16 (+/-0.46) groups/km(2). Sightings occurring either at the listening posts or that were obtained by tracking in on calling groups yielded a mean group size of 3.4 individuals, hence individual gibbon density is estimated to be 7.4 (+/-1.59) individuals/km(2). The density estimates fall at the mid-range of those calculated for other gibbon populations, thus suggesting that peat-swamp forest is an important habitat for gibbon conservation in Borneo. A tentative extrapolation of results suggests a potential gibbon population size of 19,000 individuals within the mixed-swamp forest habitat sub-type in the Sabangau. This represents one of the largest remaining continuous populations of Bornean agile gibbons. The designation of the Sabangau forest as a national park will hopefully address the problem of illegal logging and hunting in the region. Further studies should note any difference in gibbon density post protection.
The distribution and amount of carbon in the largest peatland complex in Amazonia
NASA Astrophysics Data System (ADS)
Draper, Frederick C.; Roucoux, Katherine H.; Lawson, Ian T.; Mitchard, Edward T. A.; Honorio Coronado, Euridice N.; Lähteenoja, Outi; Torres Montenegro, Luis; Valderrama Sandoval, Elvis; Zaráte, Ricardo; Baker, Timothy R.
2014-12-01
Peatlands in Amazonian Peru are known to store large quantities of carbon, but there is high uncertainty in the spatial extent and total carbon stocks of these ecosystems. Here, we use a multi-sensor (Landsat, ALOS PALSAR and SRTM) remote sensing approach, together with field data including 24 forest census plots and 218 peat thickness measurements, to map the distribution of peatland vegetation types and calculate the combined above- and below-ground carbon stock of peatland ecosystems in the Pastaza-Marañon foreland basin in Peru. We find that peatlands cover 35 600 ± 2133 km2 and contain 3.14 (0.44-8.15) Pg C. Variation in peat thickness and bulk density are the most important sources of uncertainty in these values. One particular ecosystem type, peatland pole forest, is found to be the most carbon-dense ecosystem yet identified in Amazonia (1391 ± 710 Mg C ha-1). The novel approach of combining optical and radar remote sensing with above- and below-ground carbon inventories is recommended for developing regional carbon estimates for tropical peatlands globally. Finally, we suggest that Amazonian peatlands should be a priority for research and conservation before the developing regional infrastructure causes an acceleration in the exploitation and degradation of these ecosystems.
The Effect of Long-term Nutrient Addition on Peat Properties in an Ombrotrophic Bog
NASA Astrophysics Data System (ADS)
Moore, T. R.; Bubier, J. L.; Knorr, K. H.; Roy, C.
2017-12-01
Atmospheric inputs of nutrients, particularly N and P, to ecosystems have increased and may have a significant effect on nutrient-deficient peatlands such as bogs. At the Mer Bleue ombrotrophic bog near Ottawa, Canada, we have conducted an experiment over 10 to 20 years by adding 1.6 to 6.4 g N m-2 yr-1 (as NH4NO3), with/without 6 g P m-2 yr-1 (as K phosphate), to evaluate the effect of increased inputs on ecosystem functions. Increased N and P amendment has changed the vegetation from a mixed shrub-Sphagnum community into one dominated by shrubs with the disappearance of mosses, with changes in plant production and litter input. The largest N and P amendments have resulted in an increase in bulk density at 0-10 cm and a lowering of the peat surface by 10 to 20 cm, creating an effective rise in the water table and an increase in CH4 emission from 15 to 50 mg m-2 d-1. Peat cores to a depth of 40 cm were collected after 10 to 15 yr of amendment and showed little change in soil pH (range 4.1 to 4.5). There were substantial increases in the concentration of N and P in the peat (8 to 14 and 0.5 to 1.5 mg g-1, respectively) and general decreases in Ca and Mg concentration. The von Post humification index increased by about 1 unit in the heavily fertilized plots, with shrub leaves replacing Sphagnum as the primary litterfall. FTIR analysis of the 0-20 cm peat showed significant increases in abundance of phenolic+aliphatic, aromatic, and carboxylic relative to polysaccharide components, revealed by the following ratios of absorbance at the respective wavenumbers: 1420/1090 cm-1, 0.41 to 0.45; 1510/1090 cm-1, 0.23 to 0.30; 1630/1090 cm-1, 0.53 to 0.65; and 1720/1090 cm-1, 0.44 to 0.48, respectively. Laboratory incubations of peat samples showed that potential rates of aerobic CH4 consumption were unaffected by nutrient treatment, apart from position relative to the water table, whereas potential rates of anaerobic CH4 production near the water table increased under the P amendment. Potential rates of aerobic CO2 production generally decreased with depth in the cores, but were not strongly related to decomposition properties (e.g. Von Post, FTIR). This study shows the profound effect of increased N and P addition on the vegetation composition, carbon cycling and peat chemical properties and decomposability of this ombrotrophic mire.
NASA Astrophysics Data System (ADS)
Bechtold, Michel; Tiemeyer, Bärbel; Don, Axel; Altdorff, Daniel; van der Kruk, Jan; Huisman, Johan A.
2013-04-01
Previous studies showed that in-situ visible near-infrared (vis-NIR) spectroscopy can overcome the limitations of conventional soil sampling. Costs can be reduced and spatial resolution enhanced when mapping field-scale variability of soil organic carbon (SOC). Detailed maps can help to improve SOC management and lead to better estimates of field-scale total carbon stocks. Knowledge of SOC field patterns may also help to reveal processes and factors controlling SOC variability. In this study, we apply in situ vis-NIR and apparent electrical conductivity (ECa) mapping to a disturbed bog relict. The major question of this application study was how field-scale in-situ vis-NIR mapping performs for a very heterogeneous area and under difficult grassland conditions and under highly-variable water content conditions. Past intensive peat cutting and deep ploughing in some areas, in combination with a high background heterogeneity of the underlying mineral sediments, have led to a high variability of SOC content (5.6 to 41.3 %), peat layer thickness (25 to 60 cm) and peat degradation states (from nearly fresh to amorphous). Using a field system developed by Veris Technologies (Salina KS, USA), we continuously collected vis-NIR spectra at 10 cm depth (measurement range: 350 nm to 2200 nm) over an area of around 12 ha with a line spacing of about 12 m. The system includes a set of discs for measuring ECa of the first 30 and 90 cm of the soil. The same area was also mapped with a non-invasive electro-magnetic induction (EMI) setup that provided ECa data of the first 25, 50 and 100 cm. For calibration and validation of the spatial data, we took 30 representative soil samples and 15 soil cores of about 90 cm depth, for which peat thickness, water content, pore water EC, bulk density (BD), as well as C and N content were determined for various depths. Preliminary results of the calibration of the NIR spectra to the near-surface SOC contents indicate good data quality despite the challenging site conditions. Bore hole data indicates that the peat layer is characterized by lower BD, higher pore water EC, higher SOC content, and higher water contents compared to the underlying mineral sediments. This ECa contrast at the peat-sand interface is promising for using the various ECa investigation depths as predictors for peat thickness. Preliminary EMI results also show a correlation between ECa and SOC content, most strongly for the 25 cm EMI signal. We evaluate how vis-NIR and ECa data can be used in a joined approach to estimate SOC content as well as SOC stock distribution.
NASA Astrophysics Data System (ADS)
Raharja, Danang S.; Hadiwardoyo, Sigit P.; Rahayu, Wiwik; Zain, Nasuhi
2017-06-01
Geopolymer is binder material that consists of solid material and the activator solution. Geopolymer material has successfully replaced cement in the manufacture of concrete with aluminosilicate bonding system. Geopolymer concrete has properties similar to cement concrete with high compressive strength, low shrinkage value, relatively low creep value, as well as acid-resistant. Based on these, the addition of polymers in peat soils is expected to improve the bearing capacity of peat soils. A study on the influence of geopolymer addition in peat soils was done by comparing before and after the peat soil was mixed with geopolymer using CBR (California Bearing Ratio) test in unsoaked and soaked conditions. 10% mixture content of the peat dry was used, weighted with a variety of curing time 4 hours, 5 days, and 10 days. There were two methods of mixing: first, peat was mixed with fly ash geopolymer activators and mixed solution (waterglass, NaOH, water), and second, peat was mixed with fly ash and mixed geopolymer (waterglass, NaOH, water, fly ash). Changes were observed in specific gravity, dry density, acidity (pH), and the microscopic structure with Scanning Electron Microscope (SEM). Curing time did not significantly affect the CBR value. It even shows a tendency to decline with longer curing time. The first type mixture obtained CBR value of: 5.4% for 4 hours curing, 4.6% for 5 days curing and 3.6% for 10 days curing. The second type mixture obtained CBR value of: 6.1% for 4 hours curing, 5.2% for 5 days curing and 5.2% for 10 days curing. Furthermore, the specific gravity value, dry density, pH near neutral and swelling percentage increased. From both variants, the second type mixture shows better results than the first type mixture. The results of SEM (Scanning Electron Microscopy) show the structure of the peat which became denser with the fly ash particles filling the peat microporous. Also, the reaction of fly ash with geopolymer is indicated by the solid agglomerates that are larger than normal fly ash particle size.
Does oxygen exposure time control the extent of organic matter decomposition in peatlands?
NASA Astrophysics Data System (ADS)
Philben, Michael; Kaiser, Karl; Benner, Ronald
2014-05-01
The extent of peat decomposition was investigated in four cores collected along a latitudinal gradient from 56°N to 66°N in the West Siberian Lowland. The acid:aldehyde ratios of lignin phenols were significantly higher in the two northern cores compared with the two southern cores, indicating peats at the northern sites were more highly decomposed. Yields of hydroxyproline, an amino acid found in plant structural glycoproteins, were also significantly higher in northern cores compared with southern cores. Hydroxyproline-rich glycoproteins are not synthesized by microbes and are generally less reactive than bulk plant carbon, so elevated yields indicated that northern cores were more extensively decomposed than the southern cores. The southern cores experienced warmer temperatures, but were less decomposed, indicating that temperature was not the primary control of peat decomposition. The plant community oscillated between Sphagnum and vascular plant dominance in the southern cores, but vegetation type did not appear to affect the extent of decomposition. Oxygen exposure time appeared to be the strongest control of the extent of peat decomposition. The northern cores had lower accumulation rates and drier conditions, so these peats were exposed to oxic conditions for a longer time before burial in the catotelm, where anoxic conditions prevail and rates of decomposition are generally lower by an order of magnitude.
Iversen, Colleen M.; Childs, Joanne; Norby, Richard J.; ...
2017-03-30
Fine roots contribute to ecosystem carbon, water, and nutrient fluxes through resource acquisition, respiration, exudation, and turnover, but are understudied in peatlands. Here, we aimed to determine how the amount and timing of fine-root growth in a forested, ombrotrophic bog varied across gradients of vegetation density, peat microtopography, and changes in environmental conditions across the growing season and throughout the peat profile. We quantified fine-root peak standing crop and growth using non-destructive minirhizotron technology over a two-year period, focusing on the dominant woody species in the bog: Picea mariana, Larix laricina, Rhododendron groenlandicum, and Chamaedaphne calyculata. The fine roots ofmore » trees and shrubs were concentrated in raised hummock microtopography, with more tree roots associated with greater tree densities and a unimodal peak in shrub roots at intermediate tree densities. Fine-root growth tended to be seasonally dynamic, but shallowly distributed, in a thin layer of nutrient-poor, aerobic peat above the growing season water table level. Finally, the dynamics and distribution of fine roots in this forested ombrotrophic bog varied across space and time in response to biological, edaphic, and climatic conditions, and we expect these relationships to be sensitive to projected environmental changes in northern peatlands.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iversen, Colleen M.; Childs, Joanne; Norby, Richard J.
Fine roots contribute to ecosystem carbon, water, and nutrient fluxes through resource acquisition, respiration, exudation, and turnover, but are understudied in peatlands. Here, we aimed to determine how the amount and timing of fine-root growth in a forested, ombrotrophic bog varied across gradients of vegetation density, peat microtopography, and changes in environmental conditions across the growing season and throughout the peat profile. We quantified fine-root peak standing crop and growth using non-destructive minirhizotron technology over a two-year period, focusing on the dominant woody species in the bog: Picea mariana, Larix laricina, Rhododendron groenlandicum, and Chamaedaphne calyculata. The fine roots ofmore » trees and shrubs were concentrated in raised hummock microtopography, with more tree roots associated with greater tree densities and a unimodal peak in shrub roots at intermediate tree densities. Fine-root growth tended to be seasonally dynamic, but shallowly distributed, in a thin layer of nutrient-poor, aerobic peat above the growing season water table level. Finally, the dynamics and distribution of fine roots in this forested ombrotrophic bog varied across space and time in response to biological, edaphic, and climatic conditions, and we expect these relationships to be sensitive to projected environmental changes in northern peatlands.« less
Comparative study of the thermal properties of mud and peat solutions applied in clinical practice.
Beer, A M; Grozeva, A; Sagorchev, P; Lukanov, J
2003-11-01
Different peloids as e.g. mud and peat have been traditionally used for therapeutic purposes successfully, especially of there thermal actions. It was the aim of the experimental study to compare the thermal properties of two peloids, mud and peat, with a view to assessing their thermal effects when they are applied in clinical practice. The studies were carried out using peat of the marsh type of peats (Hochmoor), and curative Pomorie (Bulgaria) mud. As important parameters were determined the specific thermal capacity at constant pressure (Cp), the density of solutions (rho), the cooling rate (m), the coefficient of temperature transfer (a) of solutions and the coefficient of thermal conductivity (lambda) of solutions of peat and curative mud, compared to water bath. The comparative studies of the thermal properties of water and water solutions of peat and curative mud show that the thermal effect of the water bath is substantially smaller than that of the peat and mud applications. This difference is due to a greater extent to the high values of the dynamic viscosity, not allowing cooling by convection and protecting the surface of the skin upon applications of peloid solutions with a higher temperature.
Area and Carbon Content of Sphagnum Since Last Glacial Maximum
Gajewski, K. [University of Ottawa, Ottawa, Ontario (Canada); Viau, A. [University of Ottawa, Ottawa, Ontario (Canada); Sawada, M. [University of Ottawa, Ottawa, Ontario (Canada); Atkinson, D. [University of Ottawa, Ottawa, Ontario (Canada); Wilson, S. [University of Ottawa, Ottawa, Ontario (Canada)
2002-01-01
The distribution and abundance of Sphagnum spores in North America and Eurasia are mapped for the past 21ka, as described in Gajewski et al. (2002). In summary, spore data were taken from existing pollen data bases, as were radiocarbon chronologies. The abundance of Sphagnum spores was mapped at 2000-year intervals beginning 21000 years BP (before present). The present-day distribution of abundant Sphagnum spores corresponds closely to areas with peatland development, with maximum Sphagnum abundance between 630 and 1300 mm annual precipitation and between -2° and 60°C mean annual air temperature. Carbon content of peatlands was generated from estimated peatland area, calculated values of peat thickness, and specified values of bulk density (112 × 103 g m-3) and fraction of carbon (51.7%).
Computed tomography (CT) imaging has been used to describe and quantify subtidal, benthic animals such as polychaetes, amphipods, and shrimp. Here, for the first time, CT imaging is used to successfully quantify wet mass of coarse roots, rhizomes, and peat in cores collected from...
Computer-aided Tomography (CT) imaging was utilized to quantify wet mass of coarse roots, rhizomes, and peat in cores collected from organic-rich (Jamaica Bay, NY) and mineral (North Inlet, SC) Spartina alterniflora soils. Calibration rods composed of materials with standard dens...
Nitrosation and nitration of fulvic acid, peat and coal with nitric acid
Thorn, Kevin A.; Cox, Larry G.
2016-01-01
Nitrohumic acids, produced from base extraction of coals and peats oxidized with nitric acid, have received considerable attention as soil ammendments in agriculture. The nitration chemistry however is incompletely understood. Moreover, there is a need to understand the reaction of nitric acid with natural organic matter (NOM) in general, in the context of a variety of environmental and biogeochemical processes. Suwannee River NOM, Suwannee River fulvic acid, and Pahokee Peat fulvic acid were treated with 15N-labeled nitric acid at concentrations ranging from 15% to 22% and analyzed by liquid and solid state 15N NMR spectroscopy. Bulk Pahokee peat and Illinois #6 coal were also treated with nitric acid, at 29% and 40% respectively, and analyzed by solid state 15N NMR spectroscopy. In addition to nitro groups from nitration of aromatic carbon, the 15N NMR spectra of all five samples exhibited peaks attributable to nitrosation reactions. These include nitrosophenol peaks in the peat fulvic acid and Suwannee River samples, from nitrosation of phenolic rings, and N-nitroso groups in the peat samples, from nitrosation of secondary amides or amines, the latter consistent with the peat samples having the highest naturally abundant nitrogen contents. Peaks attributable to Beckmann and secondary reactions of the initially formed oximes were present in all spectra, including primary amide, secondary amide, lactam, and nitrile nitrogens. The degree of secondary reaction product formation resulting from nitrosation reactions appeared to correlate inversely with the 13C aromaticities of the samples. The nitrosation reactions are most plausibly effected by nitrous acid formed from the reduction of nitric acid by oxidizable substrates in the NOM and coal samples.
Nitrosation and Nitration of Fulvic Acid, Peat and Coal with Nitric Acid
Thorn, Kevin A.; Cox, Larry G.
2016-01-01
Nitrohumic acids, produced from base extraction of coals and peats oxidized with nitric acid, have received considerable attention as soil ammendments in agriculture. The nitration chemistry however is incompletely understood. Moreover, there is a need to understand the reaction of nitric acid with natural organic matter (NOM) in general, in the context of a variety of environmental and biogeochemical processes. Suwannee River NOM, Suwannee River fulvic acid, and Pahokee Peat fulvic acid were treated with 15N-labeled nitric acid at concentrations ranging from 15% to 22% and analyzed by liquid and solid state 15N NMR spectroscopy. Bulk Pahokee peat and Illinois #6 coal were also treated with nitric acid, at 29% and 40% respectively, and analyzed by solid state 15N NMR spectroscopy. In addition to nitro groups from nitration of aromatic carbon, the 15N NMR spectra of all five samples exhibited peaks attributable to nitrosation reactions. These include nitrosophenol peaks in the peat fulvic acid and Suwannee River samples, from nitrosation of phenolic rings, and N-nitroso groups in the peat samples, from nitrosation of secondary amides or amines, the latter consistent with the peat samples having the highest naturally abundant nitrogen contents. Peaks attributable to Beckmann and secondary reactions of the initially formed oximes were present in all spectra, including primary amide, secondary amide, lactam, and nitrile nitrogens. The degree of secondary reaction product formation resulting from nitrosation reactions appeared to correlate inversely with the 13C aromaticities of the samples. The nitrosation reactions are most plausibly effected by nitrous acid formed from the reduction of nitric acid by oxidizable substrates in the NOM and coal samples. PMID:27175784
Towards a conceptual model of hydrological change on an abandoned cutover bog, Quebec
NASA Astrophysics Data System (ADS)
van Seters, Tim E.; Price, Jonathan S.
2002-07-01
Cutover bogs do not return to functional peatland ecosystems after abandonment because re-establishment of peat-forming mosses is poor. This paper presents a conceptual model of bog disturbance caused by peat harvesting (1942-1972), and the hydrological evolution that occurred after abandonment (1973-1998). Two adjacent bogs of similar size and origin, one harvested and the other essentially undisturbed, provide the basis for understanding what changes occurred. The model is based on historical trends evident from previous surveys of land-use, bog ecology and resource mapping; and from recent hydrological and ecological data that characterize the current condition. Water balance data and historical information suggest that runoff increased and evapotranspiration decreased following drainage, but tended towards pre-disturbance levels following abandonment, as vegetation recolonized the surface and drainage became less efficient over time. Dewatering of soil pores after drainage caused shrinkage and oxidation of the peat and surface subsidence of approximately 80 cm over 57 years. Comparisons with a nearby natural bog suggest that bulk density in the upper 50 cm of cutover peat increased from 0·07 to 0·13 g cm-3, specific yield declined from 0·14 to 0·07, water table fluctuations were 67% greater, and mean saturated hydraulic conductivity declined from 4·1 × 10-5 to 1·3 × 10-5 cm s-1. More than 25 years after abandonment, Sphagnum mosses were distributed over broad areas but covered less than 15% of the surface. Areas with good Sphagnum regeneration (>10% cover) were strongly correlated with high water tables (mean -22 cm), especially in zones of seasonal groundwater discharge, artefacts of the extraction history. Forest cover expanded from 5 to 20% of the study area following abandonment. The effect of forest growth (transpiration and interception) and drainage on lowering water levels eventually will be countered by slower water movement through the increasingly dense soil, and by natural ditch deterioration. However, without management intervention, full re-establishment of natural hydrological functions will take a very long time.
NASA Astrophysics Data System (ADS)
Bader, Cédric; Müller, Moritz; Schulin, Rainer; Leifeld, Jens
2018-02-01
Organic soils comprise a large yet fragile carbon (C) store in the global C cycle. Drainage, necessary for agriculture and forestry, triggers rapid decomposition of soil organic matter (SOM), typically increasing in the order forest < grassland < cropland. However, there is also large variation in decomposition due to differences in hydrological conditions, climate and specific management. Here we studied the role of SOM composition on peat decomposability in a variety of differently managed drained organic soils. We collected a total of 560 samples from 21 organic cropland, grassland and forest soils in Switzerland, monitored their CO2 emission rates in lab incubation experiments over 6 months at two temperatures (10 and 20 °C) and related them to various soil characteristics, including bulk density, pH, soil organic carbon (SOC) content and elemental ratios (C / N, H / C and O / C). CO2 release ranged from 6 to 195 mg CO2-C g-1 SOC at 10 °C and from 12 to 423 mg g-1 at 20 °C. This variation occurring under controlled conditions suggests that besides soil water regime, weather and management, SOM composition may be an underestimated factor that determines CO2 fluxes measured in field experiments. However, correlations between the investigated chemical SOM characteristics and CO2 emissions were weak. The latter also did not show a dependence on land-use type, although peat under forest was decomposed the least. High CO2 emissions in some topsoils were probably related to the accrual of labile crop residues. A comparison with published CO2 rates from incubated mineral soils indicated no difference in SOM decomposability between these soil classes, suggesting that accumulation of recent, labile plant materials that presumably account for most of the evolved CO2 is not systematically different between mineral and organic soils. In our data set, temperature sensitivity of decomposition (Q10 on average 2.57 ± 0.05) was the same for all land uses but lowest below 60 cm in croplands and grasslands. This, in turn, indicates a relative accumulation of recalcitrant peat in topsoils.
Holocene Development of Subarctic Permafrost Peatlands in Finnmark, Northern Norway
NASA Astrophysics Data System (ADS)
Sannel, B.; Axelsson, P.; Kjellman, S.; Etzelmuller, B.; Westermann, S.
2017-12-01
Subarctic permafrost peatlands have acted as important carbon sinks throughout the Holocene. An improved knowledge of peat properties and sensitivity to past climate changes in these environments can help us better predict future responses under warmer climatic conditions, and associated permafrost carbon feedbacks. In this study analyses of plant macrofossils, bulk density, organic, carbon and nitrogen content, and AMS radiocarbon dating have been performed for four profiles collected from peat plateaus in Finnmark, northern Norway. Preliminary results suggest that peatland development started around 9800-9200 cal yr BP at the two continental sites, Suossjavri and Iskoras. Here, the long-term net carbon accumulation rates are around 12-17 gC m-2 yr-1, and the total carbon storage c. 113-156 kgC m-2. The other two sites, Lakselv and Karlebotn, are located in maritime settings close to the coast where there has been a time lag between deglaciation of the Fennoscandian Ice Sheet and emergence of land by isostatic uplift. At these sites peatland inception begun around 6200-5200 cal yr BP, and the carbon accumulation rates are c. 7-12 gC m-2 yr-1. Because of a shorter time period available for peat accumulation the carbon storage at these sites is lower, around 56-64 kgC m-2. All four peatlands developed as wet fens, and have remained permafrost-free throughout most of the Holocene. Permafrost aggradation, causing frost heave and a shift in the vegetation assemblage from wet fen to dry bog species, probably did not occur until during the onset of the Little Ice Age c. 1000-800 cal yr BP (at Iskoras and Karlebotn) or even later, around 100 cal yr BP (at Suossjavri and Lakselv). If the permafrost thaws in a future warmer climate, the carbon that has been stored in the frozen peat since the Little Ice Age can become available for decomposition and be emitted to the atmosphere either as carbon dioxide from expanding active layers or as methane from thermokarst lakes and fens.
Colleen M. Iversen; Joanne Childs; Richard J. Norby; Todd A. Ontl; Randall K. Kolka; Deanne J. Brice; Karis J. McFarlane; Paul J. Hanson
2017-01-01
Background and aims. Fine roots contribute to ecosystem carbon, water, and nutrient fluxes through resource acquisition, respiration, exudation, and turnover, but are understudied in peatlands. We aimed to determine how the amount and timing of fine-root growth in a forested, ombrotrophic bog varied across gradients of vegetation density, peat...
Rice husk ash (RHA) as a partial cement replacement in modifying peat soil properties
NASA Astrophysics Data System (ADS)
Daud, Nik Norsyahariati Nik; Daud, Mohd Nazrin Mohd; Muhammed, Abubakar Sadiq
2018-02-01
This paper describes the effect of rice husk ash (RHA) and ordinary Portland cement (OPC) as a potential binder for modifying the properties of peat soil. The amounts RHA and OPC added to the peat soil sample, as percentage of the dry soil mass were in the range of 10-15% and 15%, respectively. Observations were made for the changes in the properties of the soil such as maximum dry density (MDD), optimum moisture content (OMC) and shear strength. Scanning Electron Micrograph-Energy Dispersive X-Ray (SEM-EDX) test were also conducted to observe the microstructure of treated and untreated peat soil. The results show that the modified soil of MDD and OMC values are increased due to the increment amount of binder material. Shear strength values of modified peat showing a good result by assuming that it is relative to the formation of major reaction products such as calcium silicate hydrate (C-S-H). The presence of C-S-H formation is indicated by the results produced from microstructural analysis of peat before and after modification process. This depicts the potential usage of RHA as a partial cement replacement in peat soil which is also improving its engineering properties.
Jones, Miriam C.; Wooller, Matthew J.; Peteet, Dorothy M.
2014-01-01
We used stable oxygen isotopes derived from bulk peat (δ18OTOM), in conjunction with plant macrofossils and previously published carbon accumulation records, in a ∼14,500 cal yr BP peat core (HT Fen) from the Kenai lowlands in south-central Alaska to reconstruct the climate history of the area. We find that patterns are broadly consistent with those from lacustrine records across the region, and agree with the interpretation that major shifts in δ18OTOM values indicate changes in strength and position of the Aleutian Low (AL), a semi-permanent low-pressure cell that delivers winter moisture to the region. We find decreased strength or a more westerly position of the AL (relatively higher δ18OTOM values) during the Bølling-Allerød, Holocene Thermal Maximum (HTM), and late Holocene, which also correspond to warmer climate regimes. These intervals coincide with greater peat preservation and enhanced carbon (C) accumulation rates at the HT Fen and with peatland expansion across Alaska. The HTM in particular may have experienced greater summer precipitation as a result of an enhanced Pacific subtropical high, a pattern consistent with modern δ18O values for summer precipitation. The combined warm summer temperatures and greater summer precipitation helped promote the observed rapid peat accumulation. A strengthened AL (relatively lower δ18OTOM values) is most evident during the Younger Dryas, Neoglaciation, and the Little Ice Age, consistent with lower peat preservation and C accumulation at the HT Fen, suggesting less precipitation reaches the leeward side of the Kenai Mountains during periods of enhanced AL strength. The peatlands on the Kenai Peninsula thrive when the AL is weak and the contribution of summer precipitation is higher, highlighting the importance of precipitation seasonality in promoting peat accumulation. This study demonstrates that δ18OTOM values in peat can be applied toward understand large-scale shifts in atmospheric circulation over millennial timescales.
NASA Astrophysics Data System (ADS)
Jones, Miriam C.; Wooller, Matthew; Peteet, Dorothy M.
2014-03-01
We used stable oxygen isotopes derived from bulk peat (δ18OTOM), in conjunction with plant macrofossils and previously published carbon accumulation records, in a ˜14,500 cal yr BP peat core (HT Fen) from the Kenai lowlands in south-central Alaska to reconstruct the climate history of the area. We find that patterns are broadly consistent with those from lacustrine records across the region, and agree with the interpretation that major shifts in δ18OTOM values indicate changes in strength and position of the Aleutian Low (AL), a semi-permanent low-pressure cell that delivers winter moisture to the region. We find decreased strength or a more westerly position of the AL (relatively higher δ18OTOM values) during the Bølling-Allerød, Holocene Thermal Maximum (HTM), and late Holocene, which also correspond to warmer climate regimes. These intervals coincide with greater peat preservation and enhanced carbon (C) accumulation rates at the HT Fen and with peatland expansion across Alaska. The HTM in particular may have experienced greater summer precipitation as a result of an enhanced Pacific subtropical high, a pattern consistent with modern δ18O values for summer precipitation. The combined warm summer temperatures and greater summer precipitation helped promote the observed rapid peat accumulation. A strengthened AL (relatively lower δ18OTOM values) is most evident during the Younger Dryas, Neoglaciation, and the Little Ice Age, consistent with lower peat preservation and C accumulation at the HT Fen, suggesting less precipitation reaches the leeward side of the Kenai Mountains during periods of enhanced AL strength. The peatlands on the Kenai Peninsula thrive when the AL is weak and the contribution of summer precipitation is higher, highlighting the importance of precipitation seasonality in promoting peat accumulation. This study demonstrates that δ18OTOM values in peat can be applied toward understand large-scale shifts in atmospheric circulation over millennial timescales.
Understanding the Impact of Land Management on Carbon Losses from Peatlands
NASA Astrophysics Data System (ADS)
Savage, A.; Holden, J.; Wainwright, J.
2010-05-01
British peatlands have historically been managed in many different ways to provide an income for rural communities. Such practices involve heather burning on grouse shooting estates, sheep grazing, drainage to increase the area of land available for agriculture and afforestation. Carbon budget calculations for unmanaged peatlands have demonstrated that peatlands are carbon sinks. At present, little is known about how management affects carbon stocks, and whether one strategy might be favoured over another in the future, from a carbon stock preservation perspective. As the need to safeguard carbon stocks rises up the political agenda, questions are being asked about how peatlands should be managed to limit carbon losses. Carbon cycling in peat is governed by four drivers (Laiho, 2006), environmental conditions (e.g. temperature, water table level), substrate quality (e.g. how recalcitrant the peat is), nutrients (e.g. nitrogen required to synthesis the carbon stocks) and microbial community (e.g. are the microbes present able to utilise the available substrate). Changes in one or more of these drivers will influence the carbon budget of a peatland. How land management influences these drivers is unclear at present. Carbon budget calculations carried out by Worrall et al. (2003 and 2009) indicate that carbon dioxide and dissolved organic carbon (DOC) account for the greatest losses of carbon from peatland systems. If climate change predictions are realised, peatlands are expected to become sources of carbon as rising temperatures and falling water tables will result in increased rates of carbon mineralisation and subsequent losses of carbon. By investigating the influence of land management on these key carbon loss pathways, more accurate predictions of the effects of climate change on UK peatlands can be made. A field study was carried out in the British uplands to determine how carbon losses vary between differently managed peatlands, and to identify some of the underlying causes for such variations. The study focused on three of the driving factors identified by Laiho (2006): substrate quality, environmental conditions and nutrients. In addition, the physical properties of the peat - bulk density and air filled porosity which will control rates of gas and water movement within the peat profile, were studied. This paper will present the results of the work which was carried out at the Moor House, National Nature Reserve. The work involved collection of peat cores from burnt, grazed, drained, afforested and unmanaged areas of peat. The chemical and physical properties of the peat that are relevant to carbon cycling (e.g. nutrients, metals, substrate quality, air filled porosity) were analysed and compared between sites, and correlated with carbon losses which were measured on a fortnightly basis; and meteorological and hydrological data which were collected throughout the study period. Based on these results, suggestions for peatland management strategies that preserve carbon stocks will be presented. Laiho, R. (2006) "Decomposition in peatlands: Reconciling seemingly contrasting results on the impacts of lowered water levels." Soil Biology & Biochemistry 38(8): 2011-2024. Worrall, F. et al. (2003) "Carbon budget for a British upland peat catchment." Science of the Total Environment 312(1-3): 133-146. Worrall, F. et al. (2009) "The Multi-Annual Carbon Budget of a Peat-Covered Catchment" Science of the Total Environment 407: 4084-4094
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tfaily, Malak; Cooper, Bill; Kostka,
2014-01-01
A large-scale ecosystem manipulation (Spruce and Peatland Responses under Climatic and Environmental Change, SPRUCE) is being constructed in the Marcell Experimental Forest, Minnesota, USA, to determine the effects of climatic forcing on ecosystem processes in northern peatlands. Prior to the initiation of the manipulation, we characterized the solid-phase peat to a depth of 2 meters using a variety of techniques, including peat C:N ratios, 13C and 15N isotopic composition, Fourier Transform Infrared (FT IR), and 13C Nuclear Magnetic Resonance spectroscopy (13C NMR). FT IR determined peat humification-levels increased rapidly between and 75 cm, indicating a highly reactive zone. We observedmore » a rapid drop in the abundance of O-alkyl-C, carboxyl-C, and other oxygenated functionalities within this zone and a concomitant increase in the abundance of alkyl- and nitrogen-containing compounds. Below 75-cm, minimal change was observed except that aromatic functionalities accumulated with depth. Incubation studies revealed the highest methane production rates and greatest CH4:CO2 ratios within this and 75 cm zone. Hydrology and surface vegetation played a role in belowground carbon cycling. Radiocarbon signatures of microbial respiration products in deeper porewaters resembled the signatures of dissolved organic carbon rather than solid phase peat, indicating that more recently photosynthesized organic matter fueled the bulk of subsurface microbial respiration. Oxygen-containing functionalities, especially O-alkyl-C, appear to serve as an excellent proxy for soil decomposition rate, and in addition should be a sensitive indicator of the response of the solid phase peat to the climatic manipulation.« less
Organic matter evolution throughout a 100-cm ombrotrophic profile from an Italian floating mire
NASA Astrophysics Data System (ADS)
Zaccone, Claudio; D'Orazio, Valeria; Lobianco, Daniela; Miano, Teodoro M.
2015-04-01
The curious sight of an island floating and moving on a lake naturally, already described by Pliny the Elder in his Naturalis historia (AD 77-79), fascinated people from time immemorial. Floating mires are defined by the occurrence of emergent vegetation rooted in highly organic buoyant mats that rise and fall with changes in water level. Peat-forming floating mires could provide an exceptional tool for environmental studies, since much of their evolution, as well as the changes of the surrounding areas, is recorded in their peat deposits. A complete, 4-m deep peat core was collected in July 2012 from the floating island of Posta Fibreno, a relic mire in the Central Italy. This floating island has a diameter of ca. 30 m, a submerged thickness of about 3 m, and the vegetation is organized in concentric belts, from the Carex paniculata palisade to the Sphagnum centre. Here, some of the southernmost Italian populations of Sphagnum palustre occur. The 14C age dating of macrofossils removed from the sample at 360 cm of depth revealed that the island probably formed more than 500 yrs ago (435±20 yr BP). In the present work, we show preliminary results regarding the evolution of the organic matter along the first, ombrotrophic 100 cm of depth, hoping also to provide some insight into the possible mechanism of the evolution of this floating island. The 100 cm monolith was collected using a Wardenaar corer and cut frozen in 1-cm layers. It consists almost exclusively of Sphagnum mosses, often spaced out, in the top 20-30 cm, by leaves of Populus tremula that annually fell off. This section shows a very low bulk density, ranging from 0.017 and 0.059 g cm-3 (avg. value, 0.03±0.01 g cm-3), an average water content of 96.1±1.1%, and a gravimetric water content ranging between 14.3 and 41.5 gwater gdrypeat-1. The pH of porewaters was in the range 5-5.5. The C content along the profile ranged between 35 and 47% (avg., 41±1%), whereas the N between 0.3 and 0.9% (avg., 0.6±0.1%). Main atomic ratios seem to confirm what found during the visual inspection of the core, i.e., Sphagnum material so well preserved that it is hard to classify it as 'peat'. In fact, the F14C age dating suggests that the first 95 cm of Sphagnum material accumulate in less than 55 yrs, thus resulting in an average growing rate of ca. 1.7-1.8 cm yr-1. At the same time, C/N, H/C and O/C ratios show their lowest values between 20 and 55 cm of depth, corresponding to the section with highest bulk density (0.025-0.059 g cm-3). This seems to suggest a slightly more decomposed material. Consequently, the depth of 55-60 cm could represent the emerged (i.e., less anaerobic) section of this floating mire. Finally, the first 100 cm of the core show a great potential to be used as archive of environmental changes, especially considering their high resolution (1 cm = 0.5 yr ca.), although the short time-space covered could be a limiting factor. The Authors thank the Municipality of Posta Fibreno (FR), Managing Authority of the Regional Natural Reserve of Lake Posta Fibreno, for allowing peat cores sampling. C.Z. is indebted to the Staff of the Regional Natural Reserve for the help during samplings and for their continuous feedbacks.
NASA Astrophysics Data System (ADS)
Hanson, P. J.; Chanton, J.; Iversen, C. M.; McFarlane, K. J.; Tfaily, M. M.; Xu, X.
2013-12-01
An ombrotrophic Picea-Sphagnum peatland located on the Marcell Experimental Forest in northern Minnesota is being prepared for experimental manipulations to evaluate carbon cycle responses to warming and elevated CO2. Pretreatment characterization of the peatland, which has a mean peat depth of ~3 meters, showed that belowground carbon (C) stocks were greater than 2200 MgC ha-1. This is easily 10× greater than the combined above- and belowground C stocks found in typical eastern deciduous forests. Carbon has accumulated under saturated, cool to cold conditions since the last glaciers receded some 10,000 years ago. Mean bulk-14C assessments show a modern C signature and decadal turnover time for peat in the raised hummock topography, as well as in the oxic acrotelm layer which extends to a depth of 30-cm below hollow microtopography. Deeper peat layers (below 30-cm depth) have C ages ranging from 1000- to 2000 years for relatively shallow layers, to between 7000 and 8000 years at 2.5 m depth. In contrast, the 14C signatures of dissolved inorganic C (DIC) and dissolved organic C (DOC), which reflect the substrates consumed by microbes, were relatively modern, even at depths of up to 2 meters. The modern 14C signatures indicate that microbial respiration at depth is fueled by surface inputs of DOC. Furthermore, the contrast in δ14C between solid-phase peat and DOC at deeper peat depths will allow researchers to quantify the effects of warming and elevated CO2 on the fate of peat stored in this ombrotrophic peatland for millennia. It is unclear whether C accumulation in peatlands will continue under warmer conditions associated with atmospheric and climatic change. Modeled projections for net peat C turnover throughout the peat profile will be discussed in the context of the planned warming manipulations. Initial hypotheses suggest that peat accumulation may be sustained for low levels of warming, but shift to a pattern of net carbon release as both CO2 and CH4 for warmer future climates.
NASA Astrophysics Data System (ADS)
Johnson, M. S.; Hilbert, I.; Jollymore, A. J.
2012-12-01
Biochar (charcoal derived from waste biomass via pyrolysis) has the potential to be used as part of regional scale carbon sequestration strategies. By providing a stable form of carbon that is resistant to decay in soils, biochar can be utilized in a wide range of applications to improve the sustainability of land use management practices. Due to its high water holding capacity, surface area and charge density, it could provide a substitute for peat that is widely used in horticultural activities. Globally, peat production in 2010 amounted to 23.4 Mt, with more than a third of this used for horticulture. In Canada, essentially all peat produced is used for horticulture, with each ton of peat extracted also contributing about 0.7 t CO2e in combined greenhouse gas emissions related to production, transportation and use of peat. We evaluated biochar produced on farm from red alder as a peat substitute in terms of soil water characteristics and carbon leaching in greenhouse growing media (e.g. potting mix). Biochar mixing ratios of 10% (v/v) and greater provided water holding capacity equivalent to peat-based potting mixes. We also present results from a laboratory wetting experiment in which we characterized leachate for dissolved organic carbon (DOC) concentration and DOC characteristics using spectral methods (uV-Vis and fluorescence spectroscopy).
Anthropogenic degradation of mountainous raised bogs. Case study of the Polish Carpathians
NASA Astrophysics Data System (ADS)
Lajczak, Adam
2016-04-01
Publications on the human impact on peat bogs pay a lot of attention to peat erosion, peat burning and changes in the physical and chemical properties of peat deposits that indicate pollution in the environment, but a more detailed analysis of current changes in the peat bog relief as a result of peat deposit extraction and drying is omitted. Compared to other areas of the world, the level of knowledge on anthropogenic changes in the relief of peat bogs in some areas of Poland may be considered advanced. This applies not only to peat bogs in northern Poland but also southern Poland, where peat bogs in the Carpathians and the Sudetes are also found. The best analyzed peat bogs in southern Poland are the raised bogs in the Orawsko-Nowotarska Basin (Western Carpathians) and in valleys in the Bieszczady Mts. (Eastern Carpathians). Both areas are impacted by deep precipitation shadow. The purpose of this paper is: (1) to assess the rate of shrinkage in the surface area of peat domes in the mentioned areas, (2) to describe the rate of growth in the surface area of older and younger post-peat areas, (3) to explain current changes in peat bogs morphology, (4) to explain changes in water retention in peat deposit, (5) to separate phases in peat bogs relief changes. With that in mind, the direction and rate of change of landforms typical of younger post-peat areas, such as peat extraction scarps, post-extraction hollows, drainage systems including ditches and regulated stream channels, were analyzed. A special emphasis was placed on the period of time when the restoration of such areas has taken place. The paper is based on an analysis of maps produced over the last 230 years as well as on aerial photographs taken since 1965 and on LiDAR data. Fieldwork included the geomorphological and hydrographic mapping of specified landforms within peat bogs using GPS methods. In period prior to human activity peat domes were larger than today and were surrounded by lagg fens and were drained by meandering streams. In period prior to the end of peat extraction and drying the amount of area lost by the peat dome and former wetland fringe can be identified in terms of older and younger post-peat areas. Stream channels in the general area have been regulated and drainage ditches dug. Partial or full peat extraction taking place primarily in the domes' fringe zone has produced major changes in peat bog relief and has substantially reduced peat bog water content. The increased density of drainage ditches in the area surrounding the remnants of peat domes has led to further drying of the peat bogs. An unintended consequence of stream regulation are shallower and wider channels that evolve into braided channels with a local tendency to aggradate material. The current stage of peat bogs development is their restoration which started when peat extraction had been halted in most peat bogs and drainage ditch maintenance had been abandoned.
Earthquake-caused subsidence events of the Duck Flats at the eastern end of the Knik Arm, Alaska
NASA Astrophysics Data System (ADS)
Reeder, J. W.
2012-12-01
A 5 km NS-trending gas pipeline trench, excavated in 1984 across the Duck Flats of the eastern end of the Knik Arm about 50 km NE of Anchorage, Alaska, exposed two continuous buried peat horizons. Two bulk C-14 dates for the upper buried peat horizon were determined to be 790 ± 160 and 775 ± 170 ybp. The depth of this peat horizon varied from 1.0 to 1.8 m. The deeper paleopeat horizon had a single bulk C-14 date of 1190 ± 80 ybp and varied from 1.7 to greater than 2.4 m (depth of trench). A deeper third paleopeat horizon was confirmed in 2012 by hand auger, which was found at a depth of 3.7 m. Turbulent organic (principally grass) mixing with tidal silt and clay immediately above both of the trench paleopeat horizons is interpreted to reflect tsunami flooding. The March 27, 1964, earthquake caused recognized subsidence of up to 0.3 m at the southern end of the trench as based on tidal deposits above 1964 peats. This was caused by consolidation of Matanuska and Knik fluvial deposits immediately to the S and by some tectonic subsidence. The 1964 peat horizon was not recognized for the rest of the trench possibly because of poor near-surface winter exposures or more simply because the 1964 peat horizon is also part of the present surface. The existence of the above continuous paleopeat horizons is significant because they reflect subsidence events not expected with 1964-type megathrust subduction. In fact, the above paleopeat C-14 age dates correlate more with recognized earthquake events of the Castle Mountain fault, an intraplate fault 20 km to the NW, than with recognized 1964-type megathrust events. However, movements on regional crustal faults, such as the Castle Mountain fault, likely would not be enough to account for the large amounts of subsidence observed on the Duck Flats. Instead, these subsidence events probably reflect sudden tectonic movements of the Pacific plate beneath the North American plate in this region. The process would involve flat-slab subduction of the Yakutat microplate coupled to the Pacific plate. Such movements might have extended not only to, but possibly even combined at times with, 1964-type megathrust movements principally to the SE, as well as combined with movements of regional faults such as the Castle Mountain fault. The potential for such continental megathrust earthquakes should be included with any future earthquake hazard considerations for this region.
Physical properties of organic soils. Chapter 5.
Elon S. Verry; Don H. Boelter; Juhani Paivanen; Dale S. Nichols; Tom Malterer; Avi Gafni
2011-01-01
Compared with research on mineral soils, the study of the physical properties of organic soils in the United States is relatively new. A comprehensive series of studies on peat physical properties were conducted by Don Boelter (1959-1975), first at the Marcell Experimental Forest (MEF) and later throughout the northern Lakes States to investigate how to express bulk...
NASA Astrophysics Data System (ADS)
Jankowski, K. L.; Shen, Z.; Tornqvist, T. E.; Steponaitis, E.; Rosenheim, B. E.
2017-12-01
Understanding how natural systems sequester carbon, and at what rates, is critical for planning future climate change mitigation strategies. For the decade from 2006-2015, average annual CO2 emissions to the atmosphere ( 11 Pg C) are not completely offset by atmospheric retention and oceanic uptake ( 5 Pg C and 2.5 Pg C, respectively) (LeQuéré et al., 2016) implying residual terrestrial C sinks that are not fully understood. Rivers are increasingly recognized as playing a complex role in the global C cycle which, beyond acting as a source of CO2to the atmosphere, may act as a C sink. Here, we find that the mechanisms of C transfer through fluviodeltaic systems include various means of C storage and contribute significantly to the global unidentified terrestrial C sink. C sequestration by coastal wetlands - at a globally averaged rate of 200 g C/m2/yr - has been widely recognized as an important mechanism for terrestrial C sequestration, with less attention paid to the role of inland fluvial to deltaic deposition. We sampled three cores in the central Mississippi Delta for C content (using elemental analysis) and bulk density in fluviodeltaic overbank deposits as well as intercalated peat. We also established a flexible, Bayesian age-depth model using Bacon (Blaauw and Christen 2011) in order to calculate sediment accumulation rates from 14C and OSL ages. Peat deposits sequester C at an average rate of 40 g C/m2/yr. The relatively organic-poor overbank sediments sequester C at an average rate of 200 g C/m2/yr including what are likely punctuated periods of very fast deposition. While the episodic nature of overbank deposits make quantifying an annual impact difficult, it is clear that overbank deposition is an important and efficient mechanism for C sequestration in fluviodeltaic systems that deserves continued investigation.
NASA Technical Reports Server (NTRS)
Jones, Miriam C.; Wooller, Matthew; Peteet, Dorothy M.
2014-01-01
We used stable oxygen isotopes derived from bulk peat (delta-O-18(sub TOM) in conjunction with plant macrofossils and previously published carbon accumulation records, in a approximately14,500 cal yr BP peat core (HT Fen) from the Kenai lowlands in south-central Alaska to reconstruct the climate history of the area. We find that patterns are broadly consistent with those from lacustrine records across the region, and agree with the interpretation that major shifts in delta-O-18(sub TOM) values indicate changes in strength and position of the Aleutian Low (AL), a semi-permanent low-pressure cell that delivers winter moisture to the region. We find decreased strength or a more westerly position of the AL (relatively higher delta-O-18(sub TOM) values) during the Bolling-Allerod, Holocene Thermal Maximum (HTM), and late Holocene, which also correspond to warmer climate regimes. These intervals coincide with greater peat preservation and enhanced carbon (C) accumulation rates at the HT Fen and with peatland expansion across Alaska. The HTM in particular may have experienced greater summer precipitation as a result of an enhanced Pacific subtropical high, a pattern consistent with modern delta-O-18 values for summer precipitation. The combined warm summer temperatures and greater summer precipitation helped promote the observed rapid peat accumulation. A strengthened AL (relatively lower delta-O-18(sub TOM) values) is most evident during the Younger Dryas, Neoglaciation, and the Little Ice Age, consistent with lower peat preservation and C accumulation at the HT Fen, suggesting less precipitation reaches the leeward side of the Kenai Mountains during periods of enhanced AL strength. The peatlands on the Kenai Peninsula thrive when the AL is weak and the contribution of summer precipitation is higher, highlighting the importance of precipitation seasonality in promoting peat accumulation. This study demonstrates that delta-O-18(sub TOM) values in peat can be applied toward understand large-scale shifts in atmospheric circulation over millennial timescales.
We used computer-aided tomography (CT) to quantify the wet mass, abundance, and diameter of coarse roots and rhizomes as well as the wet mass and particle density of marsh peat in 7-year fertilized and control creeks in Plum Island (MA). In shallow soils (0 – 10 cm) and at dep...
NASA Astrophysics Data System (ADS)
Elfiana; Fuadi, A.; Diana, S.
2018-04-01
Peat water is water surface that brownish red colour caused by the contained constituents. Solving the peat watercolor problem requires special attention considering the quantity of peat water and suitable to be used to meet the daily needs. This study aims to know the inorganic membrane capability of mix nature zeolite and white Portland cement to purifying the peat water based on turbidity parameter. The study was conducted by varying the composition of nature zeolite (Za) and white Portland cement (Sp) in the ratio of Za: Sp is (25%:75%; 50%:50%; 75%:25%) with zeolite condition activated using HCl 2M and nonactivated zeolite treatments. The result of the characteristic test on membrane morphology using SEM (Scanning Electron Microscope) showed that the pore surface size of the membrane is 2 μm that could classified in microfiltration membrane an organic type. The characteristic test showed also resulted in the density of 0.77 to 0.86 gr/cm3, porosity 26.22% to 35.93%, and permeability 2736.19 to 8428.15. While the water retention capacity is in range of 30.64% to 46.46%, The result of inorganic membrane application on peat water showed turbidity of peat water decreased 94.17%, from 10.3 NTU to 0.6 NTU.
Thermal properties of soils: effect of biochar application
NASA Astrophysics Data System (ADS)
Usowicz, Boguslaw; Lukowski, Mateusz; Lipiec, Jerzy
2014-05-01
Thermal properties (thermal conductivity, heat capacity and thermal diffusivity) have a significant effect on the soil surface energy partitioning and resulting in the temperature distribution. Thermal properties of soil depend on water content, bulk density and organic matter content. An important source of organic matter is biochar. Biochar as a material is defined as: "charcoal for application as a soil conditioner". Biochar is generally associated with co-produced end products of pyrolysis. Many different materials are used as biomass feedstock for biochar, including wood, crop residues and manures. Additional predictions were done for terra preta soil (also known as "Amazonian dark earth"), high in charcoal content, due to adding a mixture of charcoal, bone, and manure for thousands of years i.e. approximately 10-1,000 times longer than residence times of most soil organic matter. The effect of biochar obtained from the wood biomass and other organic amendments (peat, compost) on soil thermal properties is presented in this paper. The results were compared with wetland soils of different organic matter content. The measurements of the thermal properties at various water contents were performed after incubation, under laboratory conditions using KD2Pro, Decagon Devices. The measured data were compared with predictions made using Usowicz statistical-physical model (Usowicz et al., 2006) for biochar, mineral soil and soil with addition of biochar at various water contents and bulk densities. The model operates statistically by probability of occurrence of contacts between particular fractional compounds. It combines physical properties, specific to particular compounds, into one apparent conductance specific to the mixture. The results revealed that addition of the biochar and other organic amendments into the soil caused considerable reduction of the thermal conductivity and diffusivity. The mineral soil showed the highest thermal conductivity and diffusivity that decreased in soil with addition of biochar and pure biochar. The reduction of both properties was mostly due to decrease in both particle density and bulk density. Both biochar and the organic amendments addition resulted in a decrease of the heat capacity of the mixtures in dry state and considerable increase in wet state. The lowest and highest reduction in the thermal conductivity with decreasing water content was obtained for pure biochar and mineral soil, respectively. The thermal diffusivity had a characteristic maximum at higher bulk densities and lower water contents. The wetland soil higher in organic matter content exhibit smaller temporal variation of the thermal properties compared to soils lower in organic matter content in response to changes of water content. The statistical-physical model was found to be useful for satisfactory predicting thermal properties of the soil with addition of biochar and organic amendments. Usowicz B. et al., 2006. Thermal conductivity modelling of terrestrial soil media - A comparative study. Planetary and Space Science 54, 1086-1095.
NASA Astrophysics Data System (ADS)
Koster, Kay; Stouthamer, Esther; Cohen, Kim; Stafleu, Jan; Busschers, Freek; Middelkoop, Hans
2016-04-01
Peat is abundantly present within the Holocene coastal-deltaic sequence of the Netherlands, where it is alternating with clastic fluvial, estuarine and lagoonal deposits. The areas that are rich in peat are vulnerable to land subsidence, resulting from consolidation and oxidation, due to loading by overlying deposits, infrastructure and buildings, as well as excessive artificial drainage. The physical properties of the peat are very heterogeneous, with variable clastic admixture up to 80% of its mass and rapid decrease in porosity with increasing effective stress. Mapping the spatial distribution of the peat properties is essential for identifying areas most susceptible to future land subsidence, as mineral content determines volume loss by oxidation, and porosity influences the rate of consolidation. Here we present the outline of a study focusing on mapping mechanical peat properties in relation to density and amount of admixed clastic constituents of Holocene peat layers (in 3D). In this study we use a staged approach: 1) Identifying soil mechanical properties in two large datasets that are managed by Utrecht University and the Geological Survey. 2) Determining relations between these properties and palaeogeographical development of the area by evaluating these properties against known geological concepts such as distance to clastic source (river, estuary etc.). 3) Implementing the obtained relations in GeoTOP, which is a 3D geological subsurface model of the Netherlands developed by the Geological Survey. The model will be used, among others, to assess the susceptibility of different areas to peat related land subsidence and load bearing capacity of the subsurface. So far, our analysis has focused stage 1, by establishing empirical relations between mechanical peat properties in ~70 paired (piezometer) cone penetration tests and continuously cored boreholes with LOI measurements. Results show strong correlations between net cone resistance (qn), excess pore water (u1-u0), and total vertical stress (σvo), suggesting that the overburden strongly controls the vertical differential susceptibility of peat layers to consolidation.
Ehlers Smith, David A; Ehlers Smith, Yvette C
2013-08-01
Because of the large-scale destruction of Borneo's rainforests on mineral soils, tropical peat-swamp forests (TPSFs) are increasingly essential for conserving remnant biodiversity, particularly in the lowlands where the majority of habitat conversion has occurred. Consequently, effective strategies for biodiversity conservation are required, which rely on accurate population density and distribution estimates as a baseline. We sought to establish the first population density estimates of the endemic red langur (Presbytis rubicunda) in Sabangau TPSF, the largest remaining contiguous lowland forest-block on Borneo. Using Distance sampling principles, we conducted line transect surveys in two of Sabangau's three principle habitat sub-classes and calculated group density at 2.52 groups km⁻² (95% CI 1.56-4.08) in the mixed-swamp forest sub-class. Based on an average recorded group size of 6.95 individuals, population density was 17.51 ind km⁻², the second highest density recorded in this species. The accessible area of the tall-interior forest, however, was too disturbed to yield density estimates representative of the entire sub-class, and P. rubicunda was absent from the low-pole forest, likely as a result of the low availability of the species' preferred foods. This absence in 30% of Sabangau's total area indicates the importance of in situ population surveys at the habitat-specific level for accurately informing conservation strategies. We highlight the conservation value of TPSFs for P. rubicunda given the high population density and large areas remaining, and recommend 1) quantifying the response of P. rubicunda to the logging and burning of its habitats; 2) surveying degraded TPSFs for viable populations, and 3) effectively delineating TPSF sub-class boundaries from remote imagery to facilitate population estimates across the wider peat landscape, given the stark contrast in densities found across the habitat sub-classes of Sabangau. © 2013 Wiley Periodicals, Inc.
Cadillo-Quiroz, Hinsby; Yavitt, Joseph B; Zinder, Stephen H; Thies, Janice E
2010-05-01
Plant root exudates increase nutrient availability and influence microbial communities including archaeal members. We examined the archaeal community inhabiting the rhizoplane of two contrasting vascular plants, Dulichium arundinaceum and Sarracenia purpurea, from an acidic bog in upstate NY. Multiple archaeal 16S rRNA gene libraries showed that methanogenic Archaea were dominant in the rhizoplane of both plants. In addition, the community structure (evenness) of the rhizoplane was found markedly different from the bulk peat. The archaeal community in peat from the same site has been found dominated by the E2 group, meanwhile the rhizoplane communities on both plants were co-dominated by Methanosarcinaceae (MS), rice cluster (RC)-I, and E2. Complementary T-RFLP analysis confirmed the difference between bulk peat and rhizoplane, and further characterized the dominance pattern of MS, RC-I, and E2. In the rhizoplane, MS was dominant on both plants although as a less variable fraction in S. purpurea. RC-I was significantly more abundant than E2 on S. purpurea, while the opposite was observed on D. arundinaceum, suggesting a plant-specific enrichment. Also, the statistical analyses of T-RFLP data showed that although both plants overlap in their community structure, factors such as plant type, patch location, and time could explain nearly a third of the variability in the dataset. Other factors such as water table, plant replicate, and root depth had a low contribution to the observed variance. The results of this study illustrate the general effects of roots and the specific effects of plant types on their nearby archaeal communities which in bog-inhabiting plants were mainly composed by methanogenic groups.
NASA Astrophysics Data System (ADS)
Efremova, T. T.; Avrova, A. F.; Efremov, S. P.
2016-09-01
The approaches of multivariate statistics have been used for the numerical classification of morphogenetic types of moss litters in swampy spruce forests according to their physicochemical properties (the ash content, decomposition degree, bulk density, pH, mass, and thickness). Three clusters of moss litters— peat, peaty, and high-ash peaty—have been specified. The functions of classification for identification of new objects have been calculated and evaluated. The degree of decomposition and the ash content are the main classification parameters of litters, though all other characteristics are also statistically significant. The final prediction accuracy of the assignment of a litter to a particular cluster is 86%. Two leading factors participating in the clustering of litters have been determined. The first factor—the degree of transformation of plant remains (quality)—specifies 49% of the total variance, and the second factor—the accumulation rate (quantity)— specifies 26% of the total variance. The morphogenetic structure and physicochemical properties of the clusters of moss litters are characterized.
Moisture content measurements of moss (Sphagnum spp.) using commercial sensors
Yoshikawa, K.; Overduin, P.P.; Harden, J.W.
2004-01-01
Sphagnum (spp.) is widely distributed in permafrost regions around the arctic and subarctic. The moisture content of the moss layer affects the thermal insulative capacity and preservation of permafrost. It also controls the growth and collapse history of palsas and other peat mounds, and is relevant, in general terms, to permafrost thaw (thermokarst). In this study, we test and calibrate seven different soil moisture sensors for measuring the moisture content of Sphagnum moss under laboratory conditions. The soil volume to which each probe is sensitive is one of the important parameters influencing moisture measurement, particularly in a heterogeneous medium such as moss. Each sensor has a unique response to changing moisture content levels, solution salinity, moss bulk density and to the orientation (structure) of the Sphagnum relative to the sensor. All of the probes examined here require unique polynomial calibration equations to obtain moisture content from probe output. We provide polynomial equations for dead and live Sphagnum moss (R2 > 0.99. Copyright ?? 2004 John Wiley & Sons, Ltd.
Dissolved Organic Carbon in Marginal, Damaged Peatlands: Using 14C to Understand DOC Losses
NASA Astrophysics Data System (ADS)
Luscombe, D.; Grand-Clement, E.; Garnett, M.; Anderson, K.; Gatis, N.; Benaud, P.; Brazier, R.
2013-12-01
Peatlands are widely represented throughout the world and act as an important store of carbon, as well as providing society with a range of other ecosystem services, such as drinking water or the support of rare habitats. However, the combination of historical management practices, and the predicted impact of climate change means that they are now largely under threat. In the shallow peatlands of Exmoor National Park (South West UK), peat cutting and intensive drainage in the 19th and 20th century for agricultural reclamation have changed the hydrological behaviour of the peat. This damage has dried out the upper layers, causing oxidation, erosion and vegetation change. In addition, their location on the southernmost limit of peatlands geographical extent in northern Europe makes them particularly vulnerable to the predicted changes in rainfall and temperature. Recent modelling work has shown that such marginal peatlands may disappear as early as 2050. Restoration programs are currently in place, aiming to restore the hydrological functioning of the peat. However, current dissolved organic carbon (DOC) losses from damaged peatlands are especially of concern, because of the contribution of the aquatic pathways in the C flux, and because of the impact on water quality. DOC has been shown to originate from the drainage of highly-aged organic matter. In stream waters, DOC from low flow tends to contain a larger component of older C compared to that of high flow. Both the impact of extensive drainage on where DOC is originating from and the effect of peatland restoration on this process remain poorly understood. We used 14C dating of DOC from streams and pore water, as well as from damaged peat, in order to gain a better understanding of the process and origin of DOC loss in drained shallow peatlands. This will further help us understand the potential for peatland restoration. Work was carried out in a small intensively monitored catchment in Exmoor. Samples were taken in an area of shallow peat (ca. 20-30 cm depth) drained by a medium size ditch (50 x 50 cm). Samples of DOC from stream water were taken at low and high flow during 3 separate rain events in Winter- Spring 2013 using automatic pump samplers. Samples of DOC in pore water were taken 2 m away from the ditch at 5 and 15 cm depth on two occasions. Finally, matching bulk peat samples were collected at 5 and 15 cm depth. Intensive monitoring data also provides information on water table depth and level in streams. A neighbouring pristine peat area was used as a control, and DOC pore water and bulk peat soil samples were taken at 5, 15 and 45 cm depth on two occasions. Preliminary results show that DOC lost in streams at high flow contains a greater contribution of bomb-14C compared to that at low flow (107 and 101 % modern respectively). Stream water DOC at low flow had a 14C concentration lower than that in pore water at both 5 and 15 cm depth (105 and 102% modern, respectively), suggesting that low flow stream water DOC is predominantly older than that found in pore water at depth.
NASA Astrophysics Data System (ADS)
Furman, O.; Toner, B. M.; Sebestyen, S. D.; Kolka, R. K.; Nater, E. A.
2014-12-01
As part of the "Spruce and Peatland Responses Under Climate and Environmental Change" (SPRUCE) experiment, we made initial measurements of sulfur speciation in peat. These observations represent a "time-zero" relative to the intended soil warming experiment which begins in 2015. Total sulfur and sulfur speciation were measured in peat cores (solid phase) from nine plots (hollows and hummocks) to a depth of 2 m. Peat samples were packed under nitrogen and frozen in the field immediately after collection. All subsequent sample storage, handling, and processing were conducted under inert gas. Sulfur speciation was measured using bulk sulfur 1s X-ray absorption near edge structure (XANES) spectroscopy at the SXRMB instrument at the Canadian Light Source, Saskatoon, SK, Canada and at the 9-BM instrument, Advanced Photon Source, Argonne National Laboratory, IL, USA. Total sulfur concentrations ranged from 968 to 4077 mg sulfur / kg dry peat. Sulfur content increased with depth from 2 g sulfur / m2 in the 0-10 cm increment to a maximum value of 38 g sulfur / m2 in the 50-60 cm increment. These sulfur loadings produced high quality XANES spectra. The nine cores exhibited reproducible trends with depth in both total sulfur and specific sulfur species; however, variability in sulfur speciation was greatest in the top 40 cm. All sulfur detected within the peat solids was in an organic form. The most abundant sulfur species group was composed of organic mono-sulfide and thiol forms, representing approximately half of the total sulfur at all depths. Sulfonate and ester-sulfate species were 10-15 mol% of sulfur and exhibited low variability with depth. A subsurface maximum in organic di-sulfide was observed in the 20-30 cm depth increment, which is the transition zone between transiently oxidized acrotelm and permanently saturated anaerobic catotelm. Quantification of major sulfur pools is important for the SPRUCE experiment as they are likely to be indicators of changes in the oxidation-reduction (redox) status, and mercury methylation potential, of the peat in response to warming and enhanced carbon dioxide.
The effect of temperature on growth and competition between Sphagnum species
Heijmans, Monique M. P. D.; Robroek, Bjorn J. M.; Berendse, Frank
2008-01-01
Peat bogs play a large role in the global sequestration of C, and are often dominated by different Sphagnum species. Therefore, it is crucial to understand how Sphagnum vegetation in peat bogs will respond to global warming. We performed a greenhouse experiment to study the effect of four temperature treatments (11.2, 14.7, 18.0 and 21.4°C) on the growth of four Sphagnum species: S. fuscum and S. balticum from a site in northern Sweden and S. magellanicum and S. cuspidatum from a site in southern Sweden. In addition, three combinations of these species were made to study the effect of temperature on competition. We found that all species increased their height increment and biomass production with an increase in temperature, while bulk densities were lower at higher temperatures. The hollow species S. cuspidatum was the least responsive species, whereas the hummock species S. fuscum increased biomass production 13-fold from the lowest to the highest temperature treatment in monocultures. Nutrient concentrations were higher at higher temperatures, especially N concentrations of S. fuscum and S. balticum increased compared to field values. Competition between S. cuspidatum and S. magellanicum was not influenced by temperature. The mixtures of S. balticum with S. fuscum and S. balticum with S. magellanicum showed that S. balticum was the stronger competitor, but it lost competitive advantage in the highest temperature treatment. These findings suggest that species abundances will shift in response to global warming, particularly at northern sites where hollow species will lose competitive strength relative to hummock species and southern species. PMID:18283501
NASA Astrophysics Data System (ADS)
Smith, T. E. L.; Evers, S.; Yule, C. M.; Gan, J. Y.
2018-01-01
Fires in tropical peatlands account for >25% of estimated total greenhouse gas emissions from deforestation and degradation. Despite significant global and regional impacts, our understanding of specific gaseous fire emission factors (EFs) from tropical peat burning is limited to a handful of studies. Furthermore, there is substantial variability in EFs between sampled fires and/or studies. For example, methane EFs vary by 91% between studies. Here we present new fire EFs for the tropical peatland ecosystem; the first EFs measured for Malaysian peatlands, and only the second comprehensive study of EFs in this crucial environment. During August 2015 (under El Niño conditions) and July 2016, we embarked on field campaigns to measure gaseous emissions at multiple peatland fires burning on deforested land in Southeast Pahang (2015) and oil palm plantations in North Selangor (2016), Peninsula Malaysia. Gaseous emissions were measured using open-path Fourier transform infrared spectroscopy. The IR spectra were used to retrieve mole fractions of 12 different gases present within the smoke (including carbon dioxide and methane), and these measurements used to calculate EFs. Peat samples were taken at each burn site for physicochemical analysis and to explore possible relationships between specific physicochemical properties and fire EFs. Here we present the first evidence to indicate that substrate bulk density affects methane fire EFs reported here. This novel explanation of interplume, within-biome variability, should be considered by those undertaking greenhouse gas accounting and haze forecasting in this region and is of importance to peatland management, particularly with respect to artificial compaction.
Fluvial entrainment of low density peat blocks (block carbon)
NASA Astrophysics Data System (ADS)
Warburton, Jeff
2014-05-01
In many fluvial environments low density materials are transported in significant quantities and these form an important part of the stream load and /or have a distinct impact on sedimentation in these environments. However, there are significant gaps in understanding of how these materials are entrained and transported by streams and rivers. Eroding upland peatland environments in particular, frequently have fluvial systems in which large eroded peat blocks, often exceeding 1 m in length; form an important component of the stream material flux. Transport of this material is significant in determining rates of erosion but also has important impacts in terms of damage to infrastructure and carbon loss. This paper describes a field experiment designed to establish for the first time the conditions under which large peat blocks (c. > 0.1 m b axis) are initially entrained from a rough gravel bed. The field site is Trout Beck, in the North Pennines, Northern England which is an upland wandering river channel with occasional lateral and mid channel bars. Mean low flow stage is typically 0.2 m but during flood can rapidly rise, in one to two hours, to over 1.5 m. To study peat block entrainment a bespoke data acquisition system consisting of two pressure transducers, four release triggers and time lapse camera was set up. The pressure transducers provided a record of local depth and the release triggers were embedded in peat blocks to record initial motion and arranged on the rough stream bed. The time lapse camera provided verification of timing of block entrainment (during daylight hours) and also provided information on the mechanism of initial movement. Peat blocks were cut from a local source and were equidimensional, ranging in size from 0.1 to 0.7 m. The derived entrainment function is related to a critical depth of entrainment. Results demonstrate that peat blocks are entrained when the local depth approximates the height of the peat block. Blocks frequently shift position prior to entrainment but once entrained are rapidly transported downstream. Because of the rough stream bed local depth, measured on the four sides of the block varies markedly and needs to be considered in developing an appropriate entrainment function and; is useful in explaining initial movement prior to entrainment. In some experiments a small accelerometer (HOBO Pendant G data logger) was used to investigate transport dynamics following entrainment. Further work will seek to improve the entrainment function by extending the size range of tests, developing a shear stress related function and investigating the importance of block shape (rounding) on entrainment.
NASA Astrophysics Data System (ADS)
Kuzmin, V. A.; Zagrai, I. A.
2017-11-01
The experimental and theoretical study of combustion products has been carried out for the conditions of pulverized peat combustion in BKZ-210-140F steam boiler. Sampling has been performed in different parts of the boiler system in order to determine the chemical composition, radiative properties and dispersity of slag and ash particles. The chemical composition of particles was determined using the method of x-ray fluorescence analysis. Shapes and sizes of the particles were determined by means of electron scanning microscopy. The histograms and the particle size distribution functions were computed. The calculation of components of the gaseous phase was based on the combustion characteristics of the original fuel. The software package of calculation of thermal radiation of combustion products from peat combustion was used to simulate emission characteristics (flux densities and emissivity factors). The dependence of emission characteristics on the temperature level and on the wavelength has been defined. On the basis of the analysis of emission characteristics the authors give some recommendations how to determine the temperature of peat combustion products in the furnace of BKZ-210-140F steam boiler. The findings can be used to measure the combustion products temperature, support temperature control in peat combustion and solve the problem of boiler furnace slagging.
Sato, Atsuya; Watanabe, Toshihiro; Unno, Yusuke; Purnomo, Erry; Osaki, Mitsuru; Shinano, Takuro
2009-01-01
The diversity of diazotrophic bacteria in the rhizosphere of Melastoma malabathricum L. was investigated by cloning-sequencing of the nifH gene directly amplified from DNA extracted from soil. Samples were obtained from the rhizosphere and bulk soil of M. malabathricum growing in three different soil types (acid sulfate, peat and sandy clay soils) located very close to each other in south Kalimantan, Indonesia. Six clone libraries were constructed, generated from bulk and rhizosphere soil samples, and 300 nifH clones were produced, then assembled into 29 operational taxonomic units (OTUs) based on percent identity values. Our results suggested that nifH gene diversity is mainly dependent on soil properties, and did not differ remarkably between the rhizosphere and bulk soil of M. malabathricum except in acid sulfate soil. In acid sulfate soil, as the Shannon diversity index was lower in rhizosphere than in bulk soil, it is suggested that particular bacterial species might accumulate in the rhizosphere.
CO2 emissions from organic soils under agricultural use
NASA Astrophysics Data System (ADS)
Bader, Cédric; Leifeld, Jens; Müller, Moritz; Schulin, Rainer
2015-04-01
The organic soils of peatlands represent a major global sink for terrestrial carbon. Agricultural use of organic soils requires drainage, changing conditions in these soils from anoxic to oxic. As a consequence, the organic carbon that had been accumulated often over millennia is rapidly mineralized, so that these soils then are no longer a sink but become a source of CO2. The aim of our study is to analyse the amount and origin of CO2 emitted from organic soils under three land-use types (forest, arable cropland and grassland). Our study area is located in the Bernese Lakeland (CH). The peatlands of this region were drained in the 1870ies, and the site as well as the surrounding area are now managed by a state prison. Since decades our study site is under the same land-use. In Oktober 2013 we took 4 replicate soil cores of all land-uses with respect to a certain distance from a major drainage ditch. Each core was analysed for its bulk density and carbon content. 9 soil samples from a depth of 20-30 cm were analysed for their F14C and δ13C values and later divided into 18 subsamples. Half of them were mixed with 0.2-0.4 g of labelled corn stalk enriched in δ13C (δ13C=2000) in order to mimic plant residue inputs in the field. The moisture content of these samples was equilibrated at a pF-value of 2 before incubating the samples in a Respicond VII analyser for several weeks at 20° C. By trapping the respired CO2 in NaOH and precipitating it as BaCO3 we were able to analyse its F14C and δ13C value. This enabled us to determine to what extent the CO2 originated from old peat, young plant residues or the added maize stalk. Generally the cropland samples showed the highest respiration rates, lowest F14C values and highest carbon stocks. The organic soils under the forest were degraded the most and showed low respiration rates. Analyzing the F14C values of the CO2 revealed that peat contributes most to the respiration and its degradation is fastest in the cropland. Our findings suggest that peat respiration must have been more intense under forest during the past 140 years. The addition of fresh plant material resulted in increased respiration rates but supressed the respiration of old peat in the cropland and grassland (negative priming).
Chiou, C.T.; Kile, D.E.; Rutherford, D.W.; Sheng, G.; Boyd, S.A.
2000-01-01
The sorption isotherms of ethylene dibromide (EDB), diuron (DUN), and 3,5-dichlorophenol (DCP) from water on the humic acid and humin fractions of a peat soil and on the humic-acid of a muck soil have been measured. The data were compared with those of the solutes with the whole peat from which the humic-acid (HA) and humin (HM) fractions were derived and on which the sorption of the solutes exhibited varying extents of nonlinear capacities at low relative concentrations (C(e)/S(w)). The HA fraction as prepared by the density-fractionated method is relatively pure and presumably free of high- surface-area carbonaceous material (HSACM) that is considered to be responsible for the observed nonlinear sorption for nonpolar solutes (e.g., EDB) on the peat; conversely, the base-insoluble HM fraction as prepared is presumed to be enriched with HSACM, as manifested by the greatly higher BET- (N2) surface area than that of the whole peat. The sorption of EDB on HA exhibits no visible nonlinear effect, whereas the sorption on HM shows an enhanced nonlinearity over that on the whole peat. The sorption of polar DUN and DCP on HA and HM display nonlinear effects comparable with those on the whole peat; the effects are much more significant than those with nonpolar EDB. These results conform to the hypothesis that adsorption onto a small amount of strongly adsorbing HSACM is largely responsible for the nonlinear sorption of nonpolar solutes on soils and that additional specific interactions with the active groups of soil organic matter are responsible for the generally higher nonlinear sorption of the polar solutes.
Warren, Matthew; Hergoualc'h, Kristell; Kauffman, J Boone; Murdiyarso, Daniel; Kolka, Randall
2017-12-01
A large proportion of the world's tropical peatlands occur in Indonesia where rapid conversion and associated losses of carbon, biodiversity and ecosystem services have brought peatland management to the forefront of Indonesia's climate mitigation efforts. We evaluated peat volume from two commonly referenced maps of peat distribution and depth published by Wetlands International (WI) and the Indonesian Ministry of Agriculture (MoA), and used regionally specific values of carbon density to calculate carbon stocks. Peatland extent and volume published in the MoA maps are lower than those in the WI maps, resulting in lower estimates of carbon storage. We estimate Indonesia's total peat carbon store to be within 13.6 GtC (the low MoA map estimate) and 40.5 GtC (the high WI map estimate) with a best estimate of 28.1 GtC: the midpoint of medium carbon stock estimates derived from WI (30.8 GtC) and MoA (25.3 GtC) maps. This estimate is about half of previous assessments which used an assumed average value of peat thickness for all Indonesian peatlands, and revises the current global tropical peat carbon pool to 75 GtC. Yet, these results do not diminish the significance of Indonesia's peatlands, which store an estimated 30% more carbon than the biomass of all Indonesian forests. The largest discrepancy between maps is for the Papua province, which accounts for 62-71% of the overall differences in peat area, volume and carbon storage. According to the MoA map, 80% of Indonesian peatlands are <300 cm thick and thus vulnerable to conversion outside of protected areas according to environmental regulations. The carbon contained in these shallower peatlands is conservatively estimated to be 10.6 GtC, equivalent to 42% of Indonesia's total peat carbon and about 12 years of global emissions from land use change at current rates. Considering the high uncertainties in peatland extent, volume and carbon storage revealed in this assessment of current maps, a systematic revision of Indonesia's peat maps to produce a single geospatial reference that is universally accepted would improve national peat carbon storage estimates and greatly benefit carbon cycle research, land use management and spatial planning.
Low-frequency electrical properties of peat
NASA Astrophysics Data System (ADS)
Comas, Xavier; Slater, Lee
2004-12-01
Electrical resistivity/induced polarization (0.1-1000 Hz) and vertical hydraulic conductivity (Kv) measurements of peat samples extracted from different depths (0-11 m) in a peatland in Maine were obtained as a function of pore fluid conductivity (σw) between 0.001 and 2 S/m. Hydraulic conductivity increased with σw (Kv ∝ σw0.3 between 0.001 and 2 S/m), indicating that pore dilation occurs due to the reaction of NaCl with organic functional groups as postulated by previous workers. Electrical measurements were modeled by assuming that "bulk" electrolytic conduction through the interconnected pore space and surface conduction in the electrical double layer (EDL) at the organic sediment-fluid interface act in parallel. This analysis suggests that pore space dilation causes a nonlinear relationship between the "bulk" electrolytic conductivity (σel) and σw (σel ∝ σw1.3). The Archie equation predicts a linear dependence of σel on σw and thus appears inappropriate for organic sediments. Induced polarization (IP) measurements of the imaginary part (σ″surf) of the surface conductivity (σ*surf) show that σ″surf is greater and more strongly σw-dependent (σ″surf ∝ σw0.5 between 0.001 and 2 S/m) than observed for inorganic sediments. By assuming a linear relationship between the real (σ'surf) and the imaginary part (σ″surf) of the surface conductivity, we develop an empirical model relating the resistivity and induced polarization measurements to σw in peat. We demonstrate the use of this model to predict (a) σw and (b) the change in Kv due to an incremental change in σw from resistivity and induced polarization measurements on organic sediments. Our study has implications for noninvasive geophysical characterization of σw and Kv with potential to benefit studies of carbon cycling and greenhouse gas fluxes as well as nutrient supply dynamics in peatlands.
Site preparation effects on soil bulk density and pine seedling growth
John J. Stransky
1981-01-01
Soil bulk density was sampled the first and third growing seasons after site preparation and pine planting on three clearcut pine-hardwood forest sites in eastern Texas. Bulk density was measured 10 cm below the surface of mineral soil using a surface moisture-density probe. Plots that had been KG-bladed and chopped had significanlty higher bulk density than those that...
NASA Astrophysics Data System (ADS)
Makovníková, Jarmila; Širáň, Miloš; Houšková, Beata; Pálka, Boris; Jones, Arwyn
2017-10-01
Soil bulk density is one of the main direct indicators of soil health, and is an important aspect of models for determining agroecosystem services potential. By way of applying multi-regression methods, we have created a distributed prediction of soil bulk density used subsequently for topsoil carbon stock estimation. The soil data used for this study were from the Slovakian partial monitoring system-soil database. In our work, two models of soil bulk density in an equilibrium state, with different combinations of input parameters (soil particle size distribution and soil organic carbon content in %), have been created, and subsequently validated using a data set from 15 principal sampling sites of Slovakian partial monitoring system-soil, that were different from those used to generate the bulk density equations. We have made a comparison of measured bulk density data and data calculated by the pedotransfer equations against soil bulk density calculated according to equations recommended by Joint Research Centre Sustainable Resources for Europe. The differences between measured soil bulk density and the model values vary from -0.144 to 0.135 g cm-3 in the verification data set. Furthermore, all models based on pedotransfer functions give moderately lower values. The soil bulk density model was then applied to generate a first approximation of soil bulk density map for Slovakia using texture information from 17 523 sampling sites, and was subsequently utilised for topsoil organic carbon estimation.
Dissolved Organic Carbon Cycling and Transformation Dynamics in A Northern Forested Peatland
NASA Astrophysics Data System (ADS)
Tfaily, M. M.; Lin, X.; Chanton, P. R.; Steinweg, J.; Esson, K.; Kostka, J. E.; Cooper, W. T.; Schadt, C. W.; Hanson, P. J.; Chanton, J.
2013-12-01
Peatlands sequester one-third of all soil carbon and currently act as major sinks of atmospheric carbon dioxide. The ability to predict or simulate the fate of stored carbon in response to climatic disruption remains hampered by our limited understanding of the controls of carbon turnover and the composition and functioning of peatland microbial communities. A combination of advanced analytical chemistry and microbiology approaches revealed that organic matter reactivity and microbial community dynamics were closely coupled in an extensive field dataset compiled at the S1 bog site established for the SPRUCE program, Marcell Experimental Forest (MEF). The molecular composition and decomposition pathways of dissolved organic carbon (DOC) were contrasted using parallel factor (PARAFAC)-modeled excitation emission fluorescence spectroscopy (EEMS) and FT-ICR MS. The specific UV absorbance (SUVA) at 254 nm was calculated as an indicator of aromaticity. Fluorescence intensity ratios (BIX and FI) were used to infer the relative contributions from solid phase decomposition and microbial production. Distributions of bulk DOC, its stable (δ13C) and radioactive (Δ14C) isotopic composition were also utilized to infer information on its dynamics and transformation processes. Strong vertical stratification was observed in organic matter composition, the distribution of mineralization products (CO2, CH4), respiration rates, and decomposition pathways, whereas smaller variations were observed between sites. A decline in the aromaticity of pore water DOC was accompanied by an increase in microbially-produced DOC. Solid phase peat, on the other hand, became more humified and highly aromatic with depth. These observations were consistent with radiocarbon data that showed that the radiocarbon signatures of microbial respiration products in peat porewaters more closely resemble those of DOC rather than solid peat, indicating that carbon from recent photosynthesis is fueling the majority of the decomposition, even in the subsurface. Stable isotope geochemistry paralleled with vertical changes in methanogen community composition to reveal a mid-depth maximum in acetoclastic methanogenesis, while hydrogenotrophic methanogenesis appears to dominate deeper peat layers. Archaea increased in relative abundance with depth, comprising up to 60 % of the microbial community in the deep peat below 75 cm depth. The Crenarchaeota, Archaea that are not known to produce methane, are suggested to play a critical role in the carbon cycle of deeper peat layers. This is corroborated by evidence from a C isotope mass balance, which indicates that processes other than methanogenesis (fermentation, anaerobic respiration) predominate in the deep peat leading to dominance of CO2 production at depth.
NASA Astrophysics Data System (ADS)
Stelling, J.; Yu, Z.; Beilman, D. W.
2016-12-01
The western Antarctic Peninsula experienced rapid warming in late half of the 20th century in part due to a positive phase of the Southern Annular Mode (SAM) causing poleward expansion of the southern westerly wind belt that brings warmer and moister air to the peninsula. However, we do not know how coastal terrestrial ecosystems have responded to changes in temperature and hydroclimate. Here we present a paleoecological and geochemical record of ecosystem history derived from late Holocene peatbank deposits on Litchfield Island (64°46'S; 64°06'W) to reconstruct terrestrial response to temperature and hydroclimate fluctuations. Chronology of our 80-cm-long peat core from the north-facing slope is constrained by 11 AMS 14C dates covering the last 2500 years. Our macrofossil results show that relative abundance of the two dominant moss species fluctuates between <10 and 90%. Furthermore, the δ13C values of bulk peat range from -26.4 to -22.1‰ that mostly reflects species relative abundance change through time. The periods with C:N values of <20—lower than the expected C:N values (40 to 80) of fresh moss plants—corresponds with intervals containing abundant fine debris (>50%), indicating greater decomposition and selective removal of carbon from peat. Our record shows that periods where moss dominance shifts to Polytrichum, a dry and cold tolerant moss, peat decomposition increases, and coincides with periods of negative SAM. Conversely, dominance shifts to Chorisodontium, a less drought tolerant moss, with decomposition decreased during periods of strong positive SAM. This study demonstrates that ecosystem structure and geochemical signature within these moss peatbanks is sensitive to regional moisture change that can potentially be used to reconstruct shifts in hydroclimate and possibly atmospheric circulation.
NASA Astrophysics Data System (ADS)
Manuri, Solichin; Andersen, Hans-Erik; McGaughey, Robert J.; Brack, Cris
2017-04-01
The airborne lidar system (ALS) provides a means to efficiently monitor the status of remote tropical forests and continues to be the subject of intense evaluation. However, the cost of ALS acquisition can vary significantly depending on the acquisition parameters, particularly the return density (i.e., spatial resolution) of the lidar point cloud. This study assessed the effect of lidar return density on the accuracy of lidar metrics and regression models for estimating aboveground biomass (AGB) and basal area (BA) in tropical peat swamp forests (PSF) in Kalimantan, Indonesia. A large dataset of ALS covering an area of 123,000 ha was used in this study. This study found that cumulative return proportion (CRP) variables represent a better accumulation of AGB over tree heights than height-related variables. The CRP variables in power models explained 80.9% and 90.9% of the BA and AGB variations, respectively. Further, it was found that low-density (and low-cost) lidar should be considered as a feasible option for assessing AGB and BA in vast areas of flat, lowland PSF. The performance of the models generated using reduced return densities as low as 1/9 returns per m2 also yielded strong agreement with the original high-density data. The use model-based statistical inferences enabled relatively precise estimates of the mean AGB at the landscape scale to be obtained with a fairly low-density of 1/4 returns per m2, with less than 10% standard error (SE). Further, even when very low-density lidar data was used (i.e., 1/49 returns per m2) the bias of the mean AGB estimates were still less than 10% with a SE of approximately 15%. This study also investigated the influence of different DTM resolutions for normalizing the elevation during the generation of forest-related lidar metrics using various return densities point cloud. We found that the high-resolution digital terrain model (DTM) had little effect on the accuracy of lidar metrics calculation in PSF. The accuracy of low-density lidar metrics in PSF was more influenced by the density of aboveground returns, rather than the last return. This is due to the flat topography of the study area. The results of this study will be valuable for future economical and feasible assessments of forest metrics over large areas of tropical peat swamp ecosystems.
Soil bulk density changes caused by mechanized harvesting: A case study in central Appalachia
Jingxin Wang; Chris B. LeDoux; Pam Edwards; Mark Jones; Mark Jones
2005-01-01
A mechanized harvesting system consisting of a feller-buncher and a grapple skidder was examined to quantify soil bulk density changes in a central Appalachian hardwood forest site. Soil bulk density was measured using a nuclear gauge pre-harvest and post-harvest systematically across the harvest unit and on transects across skid trails. Bulk density also was measured...
Using the Opposition Effect in Remotely Sensed Data to Assist in the Retrieval of Bulk Density
NASA Astrophysics Data System (ADS)
Ambeau, Brittany L.
Bulk density is an important geophysical property that impacts the mobility of military vehicles and personnel. Accurate retrieval of bulk density from remotely sensed data is, therefore, needed to estimate the mobility on "off-road" terrain. For a particulate surface, the functional form of the opposition effect can provide valuable information about composition and structure. In this research, we examine the relationship between bulk density and angular width of the opposition effect for a controlled set of laboratory experiments. Given a sample with a known bulk density, we collect reflectance measurements on a spherical grid for various illumination and view geometries -- increasing the amount of reflectance measurements collected at small phase angles near the opposition direction. Bulk densities are varied using a custom-made pluviation device, samples are measured using the Goniometer of the Rochester Institute of Technology-Two (GRIT-T), and observations are fit to the Hapke model using a grid-search method. The method that is selected allows for the direct estimation of five parameters: the single-scattering albedo, the amplitude of the opposition effect, the angular width of the opposition effect, and the two parameters that describe the single-particle phase function. As a test of the Hapke model, the retrieved bulk densities are compared to the known bulk densities. Results show that with an increase in the availability of multi-angular reflectance measurements, the prospects for retrieving the spatial distribution of bulk density from satellite and airborne sensors are imminent.
NASA Astrophysics Data System (ADS)
Thomas, B.; Arthur, M. A.; Freeman, K. H.
2007-12-01
Stable isotopic measurements of methane and carbon dioxide are routinely applied to environmental samples to assess the relative importance of methane production by either aceticlastic or hydrogenotrophic methanogenesis. Such estimates rely upon assumptions about isotopic fractionation during methane production and oxidation. Rigorous isotope-based pathway estimates require knowledge of the carbon isotopic composition of both carbon dioxide and acetate. In practice, technical barriers have limited measurements of the isotopic composition of whole acetate in natural samples. Yet, the estimate of whole acetate isotopic values, even when available, may not represent accurately the composition of the methyl carbon, which is, in fact, the precursor to methane. It is exceedingly rare to find carbon isotopic measurements of acetate-methyl in the literature, and, to our knowledge, the d13C of the acetate-methyl precursor to methane has never before been reported from peatland porewater samples. Extremely 13C-depleted methane, -70 permil VPDB, and 13C-enriched carbon dioxide from acidic northern peat bogs are typically interpreted as signatures of hydrogenotrophic methanogenesis. The hypothesized dominance of methane production from hydrogen in acidic bogs contrasts with the vast majority of freshwater wetlands in which aceticlastic methanogenesis dominates. Using a new technique for the online analysis of the intramolecular carbon isotopic composition of acetate in natural samples, we find the acetate-methyl in peat porewaters can be significantly depleted relative to bulk organic matter. In porewater profiles from both winter and summer, acetate is as much as 15 permil depleted relative to bulk carbon. We hypothesize that acetate- methyl isotopic depletion results from conditions that favor autotrophic acetogenesis and subsequent acetate consumption by aceticlastic methanogens. Porewater depth profiles during winter and summer illustrate depth- dependent increases in the fraction of methane derived from carbon dioxide, with deeper peat dominated by hydrogenotrophic methanogenesis, but shallow peat dominated by aceticlastic methanogens. Significant aceticlastic methane production from autotrophically produced acetate challenges the ability of hydrogen isotopic measurements of methane to represent the pathway of methanogenesis. Supplementing our field observations, intramolecular acetate measurements of incubation experiments confirm that an aceticlastic methanogen can facilitate significant acetate-carboxyl exchange with DIC. This novel technique confirms two caveats associated with whole acetate carbon isotopic data: 1, the carboxyl carbon isotopic composition may not accurately reflect the composition of the parent molecule, and 2, the acetate methyl may be derived from inorganic carbon or the fractionation effect of fermentation in acidic porewaters may be significant.
Impact of winter roads on boreal peatland carbon exchange.
Strack, Maria; Softa, Divya; Bird, Melanie; Xu, Bin
2018-01-01
Across Canada's boreal forest, linear disturbances, including cutlines such as seismic lines and roads, crisscross the landscape to facilitate resource exploration and extraction; many of these linear disturbances cross peatland ecosystems. Changes in tree canopy cover and the compression of the peat by heavy equipment alter local thermal, hydrological, and ecological conditions, likely changing carbon exchange on the disturbance, and possibly in the adjacent peatland. We measured bulk density, water table, soil temperature, plant cover, and CO 2 and CH 4 flux along triplicate transects crossing a winter road through a wooded fen near Peace River, Alberta, Canada. Sample plots were located 1, 5, and 10 m from the road on both sides with an additional three plots on the road. Productivity of the overstory trees, when present, was also determined. The winter road had higher bulk density, shallower water table, higher graminoid cover, and thawed earlier than the adjacent peatland. Tree productivity and CO 2 flux varied between the plots, and there was no clear pattern in relation to distance from the road. The plots on the winter road acted as a greater CO 2 sink and greater CH 4 source compared to the adjacent peatland with plots on the winter road emitting on average (standard error) 479 (138) compared to 41 (10) mg CH 4 m -2 day -1 in the adjacent peatland. Considering both gases, global warming potential increased from 70 to 250 g CO 2 e m -2 year -1 in the undisturbed area to 2100 g CO 2 e m -2 year -1 on the winter road. Although carbon fluxes on any given cutline through peatland will vary depending on level of compaction, line width and vegetation community shifts, the large number of linear disturbances in Canada's boreal forest and slow recovery on peatland ecosites suggest they could represent an important anthropogenic greenhouse gas source. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Köchy, M.; Hiederer, R.; Freibauer, A.
2015-04-01
The global soil organic carbon (SOC) mass is relevant for the carbon cycle budget and thus atmospheric carbon concentrations. We review current estimates of SOC stocks and mass (stock × area) in wetlands, permafrost and tropical regions and the world in the upper 1 m of soil. The Harmonized World Soil Database (HWSD) v.1.2 provides one of the most recent and coherent global data sets of SOC, giving a total mass of 2476 Pg when using the original values for bulk density. Adjusting the HWSD's bulk density (BD) of soil high in organic carbon results in a mass of 1230 Pg, and additionally setting the BD of Histosols to 0.1 g cm-3 (typical of peat soils), results in a mass of 1062 Pg. The uncertainty in BD of Histosols alone introduces a range of -56 to +180 Pg C into the estimate of global SOC mass in the top 1 m, larger than estimates of global soil respiration. We report the spatial distribution of SOC stocks per 0.5 arcminutes; the areal masses of SOC; and the quantiles of SOC stocks by continents, wetland types, and permafrost types. Depending on the definition of "wetland", wetland soils contain between 82 and 158 Pg SOC. With more detailed estimates for permafrost from the Northern Circumpolar Soil Carbon Database (496 Pg SOC) and tropical peatland carbon incorporated, global soils contain 1325 Pg SOC in the upper 1 m, including 421 Pg in tropical soils, whereof 40 Pg occurs in tropical wetlands. Global SOC amounts to just under 3000 Pg when estimates for deeper soil layers are included. Variability in estimates is due to variation in definitions of soil units, differences in soil property databases, scarcity of information about soil carbon at depths > 1 m in peatlands, and variation in definitions of "peatland".
NASA Astrophysics Data System (ADS)
Wang, Qingfeng; Yang, Qianqian; Guo, Hong; Xiao, Xiongxin; Jin, Huijun; Li, Lili; Zhang, Tingjun; Wu, Qingbai
2018-06-01
Soil hydrothermal dynamics, resulting from the freezing and thawing processes in the active layer and their influencing factors, were studied in the upper Heihe River Basin (UHRB) in the Qilian Mountains, northeastern Tibetan Plateau. Soil temperature and water content measurements were taken in the active layer of the UHRB in alpine grassland from 2013 to 2014. The results showed that the thaw rate of the active layer was significantly smaller in alpine paludal meadows than the thaw rate in alpine meadows and alpine steppes. This was mainly related to the hydrothermal properties of soils in the active layer, such as moisture content, thermal conductivity, and specific heat. During the thawing process, the active layer soil water content was higher and fluctuated less in alpine paludal meadows. Conversely, the soil water content was lower and fluctuated more significantly in alpine meadows and alpine steppes. These findings could be explained by the prevalence of peat soils, with a low bulk density, and high clay and organic matter content. By contrast, the soil particles in the active layer of alpine meadows and alpine steppes were significantly coarser, with higher bulk density and lower organic matter content. During the freezing process, gravel content and soil texture had a great impact on the unfrozen water content in the frozen soils. However, the factors influencing the soil water retention in frozen soils are complex, and further study is needed. These results provide theoretical support for the evaluation of the hydrological characteristics of the alpine permafrost zone in the Qilian Mountains. Furthermore, the effect of frozen ground on hydrological changes due to climate change in the Heihe River Basin can be simulated and predicted, providing a scientific basis for the ecological conservation of the Qilian Mountains National Park.
Solichin Manuri; Hans-Erik Andersen; Robert J. McGaughey; Cris Brack
2017-01-01
The airborne lidar system (ALS) provides a means to efficiently monitor the status of remote tropical forests and continues to be the subject of intense evaluation. However, the cost of ALS acquisition canvary significantly depending on the acquisition parameters, particularly the return density (i.e., spatial resolution) of the lidar point cloud. This study assessed...
NASA Astrophysics Data System (ADS)
Huang, Huan; Zheng, Jun; Zheng, Botian; Qian, Nan; Li, Haitao; Li, Jipeng; Deng, Zigang
2017-10-01
In order to clarify the correlations between magnetic flux and levitation force of the high-temperature superconducting (HTS) bulk, we measured the magnetic flux density on bottom and top surfaces of a bulk superconductor while vertically moving above a permanent magnet guideway (PMG). The levitation force of the bulk superconductor was measured simultaneously. In this study, the HTS bulk was moved down and up for three times between field-cooling position and working position above the PMG, followed by a relaxation measurement of 300 s at the minimum height position. During the whole processes, the magnetic flux density and levitation force of the bulk superconductor were recorded and collected by a multipoint magnetic field measurement platform and a self-developed maglev measurement system, respectively. The magnetic flux density on the bottom surface reflected the induced field in the superconductor bulk, while on the top, it reveals the penetrated magnetic flux. The results show that the magnetic flux density and levitation force of the bulk superconductor are in direct correlation from the viewpoint of inner supercurrent. In general, this work is instructive for understanding the connection of the magnetic flux density, the inner current density and the levitation behavior of HTS bulk employed in a maglev system. Meanwhile, this magnetic flux density measurement method has enriched present experimental evaluation methods of maglev system.
NASA Astrophysics Data System (ADS)
Krachler, Michael; Mohl, Carola; Emons, Hendrik; Shotyk, William
2002-08-01
A simple, robust and reliable analytical procedure for the determination of 15 elements, namely Ca, V, Cr, Mn, Co, Ni, Cu, Zn, Rb, Ag, Cd, Ba, Tl, Th and U in peat and plant materials by inductively coupled plasma-quadrupole mass spectrometry (ICP-QMS) was developed. Powdered sample aliquots of approximately 220 mg were dissolved with various acid mixtures in a microwave heated high-pressure autoclave capable to digest 40 samples simultaneously. The selection of appropriate amounts of digestion acids (nitric acid, hydrofluoric acid or tetrafluoroboric acid) was crucial to obtain accurate results. The optimized acid mixture for digestion of plant and peat samples consisted of 3 ml HNO 3 and 0.1 ml HBF 4. An ultrasonic nebulizer with an additional membrane desolvation unit was found beneficial for the determination of Co, Ni, Ag, Tl, Th and U, allowing to aspirate a dry sample aerosol into the ICP-QMS. A pneumatic cross flow nebulizer served as sample introduction device for the other elements. Internal standardization was achieved with 103Rh for all elements, except for Th whose ICP-QMS signals were corrected by 103Rh and 185Re. Quality control was ascertained by analysis of the certified plant reference material GBW 07602 Bush Branches and Leaves. In almost all cases HNO 3 alone could not fully liberate the analytes of interest from the peat or plant matrix, probably because of the silicates present. After adding small amounts (0.05-0.1 ml) of either HF or HBF 4 to the digestion mixture, concentrations quantified by ICP-QMS generally increased significantly, in the case of Rb up to 80%. Further increasing the volumes of HF or HBF 4 in turn, resulted in a loss of recoveries of almost all elements, some of which amounted to approximately 60%. The successful analytical procedures were applied to the determination of two bulk peat materials. In general, good agreement between the found concentrations and results from an inter-laboratory trial or from instrumental neutron activation data were obtained, underpinning the suitability of the developed analytical approach.
NASA Astrophysics Data System (ADS)
Davies, L. J.; Froese, D. G.; Appleby, P.; van Bellen, S.; Magnan, G.; Mullan-Boudreau, G.; Noernberg, T.; Shotyk, W.; Zaccone, C.
2016-12-01
Age modelling of recent peat profiles is frequently undertaken for high-resolution modern studies, but the most common techniques applied (e.g. 14C, 210Pb, cryptotephra) are rarely combined and used for testing and inter-comparison. Here, we integrate three age-dating approaches to produce a single age model to comprehensively investigate variations in the chronometers and individual site histories since 1900. OxCal's P_Sequence function is used to model dates produced using 14C (pre- and post-bomb), 210Pb (corroborated with 137Cs and 241Am) from six peat bogs in central and northern Alberta. Physical and chemical characteristics of the cores (e.g. macrofossils, humification, ash content, dry density) provide important constraints for the model by highlighting periods with significant changes in accumulation rate (e.g. fire events, permafrost development, prolonged surficial drying). Sub-cm resolution output shows there are consistent differences in how the 14C and 210Pb signals are preserved in peat profiles, with 14C commonly showing a slight bias toward older ages at the same depth relative to 210Pb data. These methods can successfully be combined in a Bayesian model and used to produce a single age model that more accurately accounts for the uncertainties inherent in each method. Understanding these differences and combining the results of these methods results in a stronger chronology at each site investigated here despite observed differences in ecological setting, accumulation rates, fire events/frequency and permafrost development.
Meteoroid Bulk Density and Ceplecha Types
NASA Technical Reports Server (NTRS)
Blaauw, R. C.; Moser, D. E.; Moorhead, A. V.
2017-01-01
The determination of asteroid bulk density is an important aspect of Near Earth Object (NEO) characterization. A fraction of meteoroids originate from asteroids (including some NEOs), thus in lieu of mutual perturbations, satellites, or expensive spacecraft missions, a study of meteoroid bulk densities can potentially provide useful insights into the densities of NEOs and PHOs (Potentially Hazardous Objects). Meteoroid bulk density is still inherently difficult to measure, and is most often determined by modeling the ablation of the meteoroid. One approach towards determining a meteoroid density distribution entails using a more easily measured proxy for the densities, then calibrating the proxy with known densities from meteorite falls, ablation modelling, and other sources. An obvious proxy choice is the Ceplecha type, KB (Ceplecha, 1958), which is thought to indicate the strength of a meteoroid and often correlated to different bulk densities in literature. KB is calculated using the air density at the beginning height of the meteor, the initial velocity, and the zenith angle of the radiant; quantities more readily determined than meteoroid bulk density itself. Numerical values of K(sub B) are sorted into groups (A, B, C, etc.), which have been matched to meteorite falls or meteor showers with known composition such as the porous Draconids. An extensive survey was conducted to establish the strength of the relationship between bulk density and K(sub B), specifically looking at those that additionally determined K(sub B) for the meteors. In examining the modeling of high-resolution meteor data from Kikwaya et al. (2011), the correlation between K(sub B) and bulk density was not as strong as hoped. However, a distinct split by dynamical type was seen with Jovian Tisserand parameter (T(sub J)), with meteoroids from Halley Type comets (T(sub J) < 2) exhibiting much lower bulk densities than those originating from Jupiter Family comets and asteroids (T(sub J) > 2). Therefore, this work indicates that the dynamical classification of a meteoroid is a better indicator of the density than the strength proxy, a somewhat surprising result.
NASA Astrophysics Data System (ADS)
Chasmer, L.; Flade, L.; Virk, R.; Montgomery, J. S.; Hopkinson, C.; Thompson, D. K.; Petrone, R. M.; Devito, K.
2017-12-01
Landscape changes in the hydrological characteristics of wetlands in some parts of the Boreal region of Canada are occurring as a result of climate-induced feedbacks and anthropogenic disturbance. Wetlands are largely resilient to wildfire, however, natural, climatic and anthropogenic disturbances can change surface water regimes and predispose wetlands to greater depth of peat burn. Over broad areas, peat loss contributes to significant pollution emissions, which can affect community health. In this study, we a) quantify depth of peat burn and relationships to antecedent conditions (species type, topography, surficial geology) within three classified wetlands found in the Boreal Plains ecoregion of western Canada; and b) examine the impacts of wildfire on post-fire ground surface energy balance to determine how peat loss might affect local hydro-climatology and surface water feedbacks. High-resolution optical imagery, pre- and post-burn multi-spectral Light Detection And Ranging (LiDAR), airborne thermal infrared imagery, and field validation data products are integrated to identify multiple complex interactions within the study wetlands. LiDAR-derived depth of peat burn is within 1 cm (average) compared with measured (RMSE = 9 cm over the control surface), demonstrating the utility of LiDAR with high point return density. Depth of burn also correlates strongly with variations in Normalised Burn Ratio (NBR) determined for ground surfaces only. Antecedent conditions including topographic position, soil moisture, soil type and wetland species also have complex interactions with depth of peat loss within wetlands observed in other studies. However, while field measurements are important for validation and understanding eco-hydrological processes, results from remote sensing are spatially continuous. Temporal LiDAR data illustrate the full range of variability in depth of burn and wetland characteristics following fire. Finally, measurements of instantaneous surface temperature indicate that the temperatures of burned wetlands are significantly warmer by up to 10oC compared to non-burned wetlands, altering locally variable sensible vs. latent energy exchanges and implications for further post-fire evaporative losses.
Mixing of Marine and Terrestrial Sources of Strontium in Coastal Environments
NASA Astrophysics Data System (ADS)
Ryan, Saskia; Crowley, Quentin; Deegan, Eileen; Snoeck, Christophe
2017-04-01
87Sr/86Sr from bulk soils, soil extracts and plant material have been used to investigate and quantify the extent of marine-derived Sr in the terrestrial biosphere. Samples were collected along coastal transects and 87Sr/86Sr biosphere values (plant and soil) converge to marine values with increasing proximity to the coast. R2values indicate highly significant trends in certain regions. The National Soils Database (NSDB), TELLUS and TELLUS Border datasets, all of which are geochemical surveys have been employed to further test the extent of marine elemental contribution. Collectively these data cover all of Ireland and Northern Ireland, with varying degrees of sampling density. A strong spatial correlation exists between the Chemical Index of Alteration (CIA; (Al2O3-(CaO*+Na2O)-K2O)) in topsoil (CIA <60; 27% n = 11651) and areas of blanket peat. The enrichment of Ca and Na in these regions would suggest a significant marine geochemical contribution. Topsoil CIA can therefore be used to identify areas likely to feature significant marine inputs and identify regions where the 87Sr/86Sr budget may deviate from bedrock values.
How important are peatlands globally in providing drinking water resources?
NASA Astrophysics Data System (ADS)
Xu, Jiren; Morris, Paul; Holden, Joseph
2017-04-01
The potential role of peatlands as water stores and sources of downstream water resources for human use is often cited in publications setting the context for the importance of peatlands, but is rarely backed up with substantive evidence. We sought to determine the global role of peatlands in water resource provision. We developed the Peat Population Index (PPI) that combines the coverage of peat and the local population density to show focused (hotspot) areas where there is a combination of both large areas of peat and large populations who would potentially use water sourced from those peatlands. We also developed a method for estimating the proportion of river water that interacted with contributing peatlands before draining into rivers and reservoirs used as a drinking water resource. The Peat Reservoir Index (PRI) estimates the contribution of peatlands to domestic water use to be 1.64 km3 per year which is 0.35 % of the global total. The results suggest that although peatlands are widespread, the spatial distribution of the high PPI and PRI river basins is concentrated in European middle latitudes particularly around major conurbations in The Netherlands, northern England, Scotland (Glasgow) and Ireland (Dublin), although there were also some important systems in Florida, the Niger Delta and Malaysia. More detailed research into water resource provision in high PPI areas showed that they were not always also high PRI areas as often water resources were delivered to urban centres from non-peat areas, despite a large area of peat within the catchment. However, particularly in the UK and Ireland, there are some high PRI systems where peatlands directly supply water to nearby urban centres. Thus both indices are useful and can be used at a global level while more local refinement enables enhanced use which supports global and local peatland protection measures. We now intend to study the impacts of peatland degradation and climate change on water resource provision in hotspot PPI and PRI regions.
Soil Bulk Density by Soil Type, Land Use and Data Source: Putting the Error in SOC Estimates
NASA Astrophysics Data System (ADS)
Wills, S. A.; Rossi, A.; Loecke, T.; Ramcharan, A. M.; Roecker, S.; Mishra, U.; Waltman, S.; Nave, L. E.; Williams, C. O.; Beaudette, D.; Libohova, Z.; Vasilas, L.
2017-12-01
An important part of SOC stock and pool assessment is the assessment, estimation, and application of bulk density estimates. The concept of bulk density is relatively simple (the mass of soil in a given volume), the specifics Bulk density can be difficult to measure in soils due to logistical and methodological constraints. While many estimates of SOC pools use legacy data in their estimates, few concerted efforts have been made to assess the process used to convert laboratory carbon concentration measurements and bulk density collection into volumetrically based SOC estimates. The methodologies used are particularly sensitive in wetlands and organic soils with high amounts of carbon and very low bulk densities. We will present an analysis across four database measurements: NCSS - the National Cooperative Soil Survey Characterization dataset, RaCA - the Rapid Carbon Assessment sample dataset, NWCA - the National Wetland Condition Assessment, and ISCN - the International soil Carbon Network. The relationship between bulk density and soil organic carbon will be evaluated by dataset and land use/land cover information. Prediction methods (both regression and machine learning) will be compared and contrasted across datasets and available input information. The assessment and application of bulk density, including modeling, aggregation and error propagation will be evaluated. Finally, recommendations will be made about both the use of new data in soil survey products (such as SSURGO) and the use of that information as legacy data in SOC pool estimates.
Hydrology and Geostatistics of a Vermont, USA Kettlehole Peatland
NASA Astrophysics Data System (ADS)
Mouser, Paula J.; Hession, W. Cully; Rizzo, Donna M.; Gotelli, Nicholas J.
2005-01-01
The ability to predict the response of peatland ecosystems to hydrologic changes is imperative for successful conservation and remediation efforts. We studied a 1.25-ha Vermont kettlehole bog for one year (September 2001-October 2002) to identify hydrologic controls, temporal and spatial variability in flow regimes, and to link hydrologic processes to density of the carnivorous plant ( Sarracenia purpurea), an ombrotrophic bog specialist. Using a spatial array of nested piezometers, we measured surface and subsurface flow in shallow peat and surrounding mineral soil. Our unique sampling array was based on a repeated measures factorial design with: (1) incremental distances from a central kettlehole pond; (2) equal distances between piezometers; and (3) at three depths from the peat surface. Local flow patterns in the peat were controlled by snowpack storage during winter and spring months and by evapotranspiration and pond water elevation during summer and fall months. Hydraulic head values showed a local reversal within the peat during spring months which was reflected in higher chemical constituent concentrations in these wells. On a regional scale, higher permeable soils diverted groundwater beneath the peatland to a nearby wetland complex. Horizontal water gradient magnitudes were larger in zones where the peatland was perched above regional groundwater and smaller in zones where a hydraulic connection existed between the peatland and the regional groundwater. The density of pitcher plants ( S. purpurea) is strongly correlated to the distance from a central pond, [Fe 3+], [Na +], [Cl -], and [SO42-]. The pH, conductivity, and [Ca 2+] had significant effects of depth and time with horizontal distance correlations between 20 and 26 m. The pH samples had temporal correlations between 27 and 79 days. The link between pitcher plants and ion chemistry; significant effects of peatland chemistry on distance, depth, and time; and spatial and temporal correlations are important considerations for peatland restoration strategies.
Temporal soil bulk density following tillage
USDA-ARS?s Scientific Manuscript database
Soil is the medium for air, energy, water, and chemical transport between the atmosphere and the solid earth. Soil bulk density is a key variable impacting the rate at which this transport occurs. Typically, soil bulk density is measured by the gravimetric method, where a sample of known volume is t...
Zhang, Chuan; Chen, Hong-Song; Zhang, Wei; Nie, Yun-Peng; Ye, Ying-Ying; Wang, Ke-Lin
2014-06-01
Surface soil water-physical properties play a decisive role in the dynamics of deep soil water. Knowledge of their spatial variation is helpful in understanding the processes of rainfall infiltration and runoff generation, which will contribute to the reasonable utilization of soil water resources in mountainous areas. Based on a grid sampling scheme (10 m x 10 m) and geostatistical methods, this paper aimed to study the spatial variability of surface (0-10 cm) soil water content, soil bulk density and saturated hydraulic conductivity on a typical shrub slope (90 m x 120 m, projected length) in Karst area of northwest Guangxi, southwest China. The results showed that the surface soil water content, bulk density and saturated hydraulic conductivity had different spatial dependence and spatial structure. Sample variogram of the soil water content was fitted well by Gaussian models with the nugget effect, while soil bulk density and saturated hydraulic conductivity were fitted well by exponential models with the nugget effect. Variability of soil water content showed strong spatial dependence, while the soil bulk density and saturated hydraulic conductivity showed moderate spatial dependence. The spatial ranges of the soil water content and saturated hydraulic conductivity were small, while that of the soil bulk density was much bigger. In general, the soil water content increased with the increase of altitude while it was opposite for the soil bulk densi- ty. However, the soil saturated hydraulic conductivity had a random distribution of large amounts of small patches, showing high spatial heterogeneity. Soil water content negatively (P < 0.01) correlated with the bulk density and saturated hydraulic conductivity, while there was no significant correlation between the soil bulk density and saturated hydraulic conductivity.
NASA Astrophysics Data System (ADS)
Lamentowicz, M.; Slowinski, M. M.; Marcisz, K.; Kolaczek, P.; Neumann, M.; Kaliszan, K.; Lapshina, E.; Gilbert, D.; Buttler, A.; Fialkiewicz-Koziel, B.; Jassey, V.; Laggoun-Defarge, F.
2014-12-01
Northern peatlands are important sinks of carbon. However, ongoing climate change and human impact trigger emission of the stored carbon into the atmosphere. Because of the progressive disturbances there is an urgent need to recognize these processes in space and time. We investigated a profile from a Mukhrino bog located close to the Mukhrino Field Station, about 20 km from Khanty-Mansiysk (60°54' N, 68°42' E). One meter peat core was subsampled in one-centimeter intervals. Pollen, testate amoebae, plant macrofossils, bulk density and carbon content were analyzed in high-resolution to reconstruct hydrology, droughts and carbon accumulation rates during the last 1200 years. We hypothesize that continental bogs of Siberia have been existing in under summer drought stress during the last millennium and hydrological change (dry shift) is also reflected in local fires. Palaeoecological work was accompanied by surface sampling to collect testate amoebae training set for transfer function development. These microorganisms have been scarcely studied in this part of the world. Redundancy analysis (RDA) showed that 23.7% of variance is explained by the model. Furthermore, water table appeared to be the most significant variable for sampled communities. Testate amoebae calibration data set performed the reliably using weighted averaging model (RMSEPboot=7.9, R2boot=0.74). According to our quantitative reconstruction, higher charcoal influx was inferred between AD 1975 and 1990 what suggests higher fire frequency. However, water table was the lowest between AD 1150 and AD 1965. The data show lack of correlation between peatland wetness and regional fires. Consequently, it suggests that peatland hydrological dynamics might be independent from fires frequency, as fires were caused by recent human activities in concomitance with the positive Arctic Oscillation Index during the last decade.
Graham, S.A.; Craft, C.B.; McCormick, P.V.; Aldous, A.
2005-01-01
Forms, amounts, and accumulation of soil phosphorus (P) were measured in natural and recently restored marshes surrounding Upper Klamath Lake located in south-central Oregon, USA to determine rates of P accumulation in natural marshes and to assess changes in P pools caused by long-term drainage in recently restored marshes. Soil cores were collected from three natural marshes and radiometrically dated to determine recent (l37Cs-based) and long-term (210Pb-based) rates of peat accretion and P accumulation. A second set of soil cores collected from the three natural marshes and from three recently restored marshes was analyzed using a modification of the Hedley procedure to determine the forms and amounts of soil P. Total P in the recently restored marshes (222 to 311 ??g cm-3) was 2-3 times greater than in the natural marshes (103 to 117 ??g cm-3), primarily due to greater bulk density caused by soil subsidence, a consequence of long-term marsh drainage. Occluded Fe- and Al-bound Pi, calcium-bound Pi and residual P were 4 times, 22 times, and 5 times greater, respectively, in the recently restored marshes. More than 67% of the P pool in both the natural and recently restored marshes was present in recalcitrant forms (humic-acid P o and residual P) that provide long-term P storage in peat. Phosphorus accumulation in the natural marshes averaged 0.45 g m-2 yr-1 (137Cs) and 0.40 g m-2 yr-1 (210Pb), providing a benchmark for optimizing P sequestration in the recently restored marshes. Effective P sequestration in the recently restored marshes, however, will depend on re-establishing equilibrium between the P-enriched soils and the P concentration of floodwaters and a hydrologie regime similar to the natural marshes. ?? 2005, The Society of Wetland Scientists.
Record of Anthropocene pollution sources of lead in disturbed peatlands from Southern Poland
NASA Astrophysics Data System (ADS)
Fiałkiewicz-Kozieł, Barbara; De Vleeschouwer, François; Mattielli, Nadine; Fagel, Nathalie; Palowski, Bernard; Pazdur, Anna; Smieja-Król, Beata
2018-04-01
The importance of human impacts on Earth has led to the proposal of a new geologic epoch called the Anthropocene. However markers, recognizable in all records, are required to define this period. Here we combine elemental geochemistry with stable lead (Pb) isotopes and mineralogical analyses to decipher the sources of lead in two exploited ombrotrophic peat bogs (Puścizna Mała and Puścizna Krauszowska) from Southern Poland. The most disturbed parts of the cores, distinguished using bulk density and age-depth models (22-45 cm in PM and 22-46 cm in PK), were excluded from the interpretation. The two studied cores record ca. 2000 years of variations in lead accumulation rates and isotopic compositions. In the lowest part of the cores (2nd to 4th century AD for Puścizna Mała and 2nd century BC to 2nd century AD for Puścizna Krauszowska), the 206Pb/207Pb ratios (1.188) are consistent with natural supplies from the erosion of the nearby Tatra Mountains. From the 9th to the 19th century AD, 206Pb/207Pb ratios (1.176-1.179) are similar to the signatures obtained from Polish galena ores. The highest Pb accumulation rates are found around 1950 AD and reflect the primary influence of bituminous coal combustion together with the secondary influence of leaded gasoline. This result agrees with the occurrence and abundance of spheroidal aluminosilicates, an unambiguous marker of human industrial activity and coal burning as well as with the acceleration of Zn, Cd and Fe accumulation rate. Our results provide evidence that similar geochemical patterns exist in both analysed cores despite differences in the history of peatland exploitation. Therefore, given that extra care is taken to identify the disturbed peat layers, exploited peatlands can be used to record past changes in lead isotopic signature during the Anthropocene.
NASA Astrophysics Data System (ADS)
Anshari, G. Z.
2011-12-01
A major portion of tropical peats, approximately between 180,000 and 210,000 km2, occurs in Indonesia. Peat is a water body that preserves and stores enormous organic Carbon of dead biomass vegetation. In a natural state, peat helps to maintain Carbon balance, hydrological cycle, and supply of dissolved and particulate organic matters into adjacent waters. Peat disturbances drive the change from Carbon sink function into Carbon source. This paper aims to discuss variability of tropical peats and peat degradation in West Kalimantan Province. The discussions include extent and formation, biodiversity, Carbon and water storage, major properties, utilization, peat disturbances (i.e. logging, forest conversion, drainage affects, and recurrent peat fires), and peat conservation. Management options for reducing peat fires and developing sustainable peat utilization are also explored. Data were collected from both coastal and inland peats in West Kalimantan Province. This paper declares that degradation of tropical peats in Indonesia is strongly associated with anthropogenic fires, peat forest conversion, and logging. To reduce speeds of peat degradation, the current utilization of peats needs being more intensive than extensive, and preventing water table drop by managing excessive drainage that leads to substantial decline of moisture in the upper peat layer, which is subsequently dry and flammable.
Evidence for a Low Bulk Crustal Density for Mars from Gravity and Topography.
Goossens, Sander; Sabaka, Terence J; Genova, Antonio; Mazarico, Erwan; Nicholas, Joseph B; Neumann, Gregory A
2017-08-16
Knowledge of the average density of the crust of a planet is important in determining its interior structure. The combination of high-resolution gravity and topography data has yielded a low density for the Moon's crust, yet for other terrestrial planets the resolution of the gravity field models has hampered reasonable estimates. By using well-chosen constraints derived from topography during gravity field model determination using satellite tracking data, we show that we can robustly and independently determine the average bulk crustal density directly from the tracking data, using the admittance between topography and imperfect gravity. We find a low average bulk crustal density for Mars, 2582 ± 209 kg m -3 . This bulk crustal density is lower than that assumed until now. Densities for volcanic complexes are higher, consistent with earlier estimates, implying large lateral variations in crustal density. In addition, we find indications that the crustal density increases with depth.
Edvardsson, Johannes; Šimanauskienė, Rasa; Taminskas, Julius; Baužienė, Ieva; Stoffel, Markus
2015-02-01
Over the past century an ongoing establishment of Scots pine (Pinus sylvestris L.), sometimes at accelerating rates, is noted at three studied Lithuanian peat bogs, namely Kerėplis, Rėkyva and Aukštumala, all representing different degrees of tree coverage and geographic settings. Present establishment rates seem to depend on tree density on the bog surface and are most significant at sparsely covered sites where about three-fourth of the trees have established since the mid-1990s, whereas the initial establishment in general was during the early to mid-19th century. Three methods were used to detect, compare and describe tree establishment: (1) tree counts in small plots, (2) dendrochronological dating of bog pine trees, and (3) interpretation of aerial photographs and historical maps of the study areas. In combination, the different approaches provide complimentary information but also weigh up each other's drawbacks. Tree counts in plots provided a reasonable overview of age class distributions and enabled capturing of the most recently established trees with ages less than 50 years. The dendrochronological analysis yielded accurate tree ages and a good temporal resolution of long-term changes. Tree establishment and spread interpreted from aerial photographs and historical maps provided a good overview of tree spread and total affected area. It also helped to verify the results obtained with the other methods and an upscaling of findings to the entire peat bogs. The ongoing spread of trees in predominantly undisturbed peat bogs is related to warmer and/or drier climatic conditions, and to a minor degree to land-use changes. Our results therefore provide valuable insights into vegetation changes in peat bogs, also with respect to bog response to ongoing and future climatic changes. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gao, Jihui; Holden, Joseph; Kirkby, Mike
2014-05-01
Changes to land cover can influence the velocity of overland flow. In headwater peatlands, saturation means that overland flow is a dominant source of runoff, particularly during heavy rainfall events. Human modifications in headwater peatlands may include removal of vegetation (e.g. by erosion processes, fire, pollution, overgrazing) or pro-active revegetation of peat with sedges such as Eriophorum or mosses such as Sphagnum. How these modifications affect the river flow, and in particular the flood peak, in headwater peatlands is a key problem for land management. In particular, the impact of the spatial distribution of land cover change (e.g. different locations and sizes of land cover change area) on river flow is not clear. In this presentation a new fully distributed version of TOPMODEL, which represents the effects of distributed land cover change on river discharge, was employed to investigate land cover change impacts in three UK upland peat catchments (Trout Beck in the North Pennines, the Wye in mid-Wales and the East Dart in southwest England). Land cover scenarios with three typical land covers (i.e. Eriophorum, Sphagnum and bare peat) having different surface roughness in upland peatlands were designed for these catchments to investigate land cover impacts on river flow through simulation runs of the distributed model. As a result of hypothesis testing three land cover principles emerged from the work as follows: Principle (1): Well vegetated buffer strips are important for reducing flow peaks. A wider bare peat strip nearer to the river channel gives a higher flow peak and reduces the delay to peak; conversely, a wider buffer strip with higher density vegetation (e.g. Sphagnum) leads to a lower peak and postpones the peak. In both cases, a narrower buffer strip surrounding upstream and downstream channels has a greater effect than a thicker buffer strip just based around the downstream river network. Principle (2): When the area of change is equal, the size of land cover change patches has no effect on river flow for patch sizes up to 40000m2. Principle (3): Bare peat on gentle slopes gives a faster flow response and higher peak value at the catchment outlet, while high density vegetation or re-vegetation on a gentle slope area has larger positive impact on peak river flow delay when compared with the same practices on steeper slopes. These simple principles should be useful to planners who wish to determine resource efficiency and optimisation for peatland protection and restoration works in headwater systems. If practitioners require further detail on impacts of specific spatial changes to land cover in a catchment then this modelling approach can be applied to new catchments of concern.
Fourth technical contractors' conference on peat
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-01-01
This conference reported the status of the US Department of Energy Peat Program. The papers presented dealt with peat dewatering, international peat programs, environmental and socio-economic factors, peat gasification, peat harvesting, and the state peat surveys for 14 states. Separate abstracts were prepared for the individual papers. (CKK)
Measured acoustic properties of variable and low density bulk absorbers
NASA Technical Reports Server (NTRS)
Dahl, M. D.; Rice, E. J.
1985-01-01
Experimental data were taken to determine the acoustic absorbing properties of uniform low density and layered variable density samples using a bulk absober with a perforated plate facing to hold the material in place. In the layered variable density case, the bulk absorber was packed such that the lowest density layer began at the surface of the sample and progressed to higher density layers deeper inside. The samples were placed in a rectangular duct and measurements were taken using the two microphone method. The data were used to calculate specific acoustic impedances and normal incidence absorption coefficients. Results showed that for uniform density samples the absorption coefficient at low frequencies decreased with increasing density and resonances occurred in the absorption coefficient curve at lower densities. These results were confirmed by a model for uniform density bulk absorbers. Results from layered variable density samples showed that low frequency absorption was the highest when the lowest density possible was packed in the first layer near the exposed surface. The layers of increasing density within the sample had the effect of damping the resonances.
Meteoroid Bulk Density and Ceplecha Types
NASA Technical Reports Server (NTRS)
Blaauw, R. C.; Moser, D. E.; Moorhead, A. V.
2017-01-01
Determination of asteroid bulk density is an important aspect of NEO characterization, yet difficult to measure. As a fraction of meteoroids originate from asteroids (including some NEOs), a study of meteoroid bulk densities can potentially provide useful insights into the densities of NEOs and PHOs in lieu of mutual perturbations, satellite, or expensive spacecraft missions. NASA's Meteoroid Environment Office characterizes the meteoroid environment for the purpose of spacecraft risk and operations. To accurately determine the risk, a distribution of meteoroid bulk densities are needed. This is not trivial to determine. If the particle survives to the ground the bulk density can be directly measured, however only the most dense particles land on the Earth. The next best approach is to model the meteor's ablation, which is not straightforward. Clear deceleration is necessary to do this and there are discrepancies in results between models. One approach to a distribution of bulk density is to use a measured proxy for the densities, then calibrate the proxy with known densities from meteorite falls, ablation modelling, and other sources. An obvious proxy choice is the Ceplecha type, K(sub B), thought to indicate the strength of a meteoroid. KB is frequented cited as a good proxy for meteoroid densities, but we find it is poorly correlated with density. However, a distinct split by dynamical type was seen with Jovian Tisserand parameter, T(sub J), with meteoroids from Halley Type comets (T(sub J less than 2 ) exhibiting much lower densities than those originating from Jupiter and asteroids (T(sub J greater than 2).
NASA Astrophysics Data System (ADS)
Ngabonziza, P.; Wang, Y.; Brinkman, A.
2018-04-01
An important challenge in the field of topological materials is to carefully disentangle the electronic transport contribution of the topological surface states from that of the bulk. For Bi2Te3 topological insulator samples, bulk single crystals and thin films exposed to air during fabrication processes are known to be bulk conducting, with the chemical potential in the bulk conduction band. For Bi2Te3 thin films grown by molecular beam epitaxy, we combine structural characterization (transmission electron microscopy), chemical surface analysis as function of time (x-ray photoelectron spectroscopy) and magnetotransport analysis to understand the low defect density and record high bulk electron mobility once charge is doped into the bulk by surface degradation. Carrier densities and electronic mobilities extracted from the Hall effect and the quantum oscillations are consistent and reveal a large bulk carrier mobility. Because of the cylindrical shape of the bulk Fermi surface, the angle dependence of the bulk magnetoresistance oscillations is two dimensional in nature.
Is the bulk mode conversion important in high density helicon plasma?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isayama, Shogo; Hada, Tohru; Shinohara, Shunjiro
2016-06-15
In a high-density helicon plasma production process, a contribution of Trivelpiece-Gould (TG) wave for surface power deposition is widely accepted. The TG wave can be excited either due to an abrupt density gradient near the plasma edge (surface conversion) or due to linear mode conversion from the helicon wave in a density gradient in the bulk region (bulk mode conversion). By numerically solving the boundary value problem of linear coupling between the helicon and the TG waves in a background with density gradient, we show that the efficiency of the bulk mode conversion strongly depends on the dissipation included inmore » the plasma, and the bulk mode conversion is important when the dissipation is small. Also, by performing FDTD simulation, we show the time evolution of energy flux associated with the helicon and the TG waves.« less
NASA Astrophysics Data System (ADS)
Kanevskiy, M. Z.; Jorgenson, M. T.; Shur, Y.; O'Donnell, J.; Harden, J. W.; Fortier, D.
2012-12-01
Perennially frozen lacustrine sediments containing a large amount of ground ice comprise a significant part of the upper permafrost of the lowlands of west-central Alaska, including Koyukuk Flats and Innoko Flats. Study sites are located in the discontinuous permafrost zone, where permafrost was encountered mainly within uplifted peat plateaus. The upper part of studied sections is formed by frozen peat up to 3 m thick underlain by lacustrine silt, which is mostly ice-rich. Cryogenic structure of lacustrine sediments at different sites has common features: (1) prevalence of layered, braided, and reticulate cryostructures; (2) high variability in the ice content of sediments; (3) high density and low water content of soil aggregates separated by ice lenses. Volume of visible ice in silt reaches at places 40% and more. The thickness of ice lenses generally varies from 1 to 5 cm and occasionally reaches 10 cm. Remnants of peat plateaus are surrounded by unfrozen bogs and fens, formed as a result of thawing and settling of ice-rich lacustrine silt. Modern thermokarst scars initially form at places where ice-rich silt is not protected by a thick layer of organic material. Further development of thermokarst bogs includes lateral enlargement of thaw bulbs and collapsing of the margins of peat plateaus. Lacustrine silt within taliks is covered by woody peat accumulated under forests during the stage of permafrost plateau formation and then by aquatic sphagnum peat accumulated in taliks after collapse. We relate the formation of ice-rich lacustrine sediments to development of lake thermokarst, which affected ice-rich silty yedoma deposits during the transition from Pleistocene to Holocene. Terrain development in lacustrine lowlands of west-central Alaska includes five stages related to permafrost aggradation and degradation from the late Pleistocene to the present time: 1) formation of the ice-rich syngenetic permafrost (yedoma) during the late Pleistocene; 2) yedoma degradation in the yearly Holocene and formation of thaw lakes; 3) complete yedoma degradation under thaw lakes and refreezing of thawed sediments at elevated areas; 4) peat accumulation and freezing of sediments in thaw lake basins; and 5) new cycle of thermokarst and formation of taliks under thaw lakes, bogs and fens. Stages of terrain development of lacustrine lowlands since the Late Pleistocene
Lieffers, Victor J; Caners, Richard T; Ge, Hangfei
2017-07-15
Winter exploration of oil sands deposits underlying wooded fens mostly eliminates the hummock-hollow topography on drilling pads and the ice roads leading to them, after their abandonment in spring. Recovery of black spruce (Picea mariana (P. Mill.) B.S.P.) and tamarack (Larix laricina (Du Roi) K. Koch) on these disturbed peatlands is thought to depend on the recovery of hummock topography. In late winter, numerous large blocks of frozen peat (1.5 × 1.5 m) were lifted out of the flattened drilling pads and positioned beside their excavated hollows; this was done on six temporary pads. Four years later, the condition of the mounds and the regeneration of conifers from natural seed dispersal were assessed on these elevated mounds compared to adjacent flattened areas of the pads. Then, conifer seedling density was more than five times higher on elevated spots than the mostly flat, flood-prone areas between them, and seedling density was positively related to mound height and strength of seed source. Higher mounds tended to have larger seedlings. Mounds on some of the pads were heavily eroded down; these pads had peat with higher humification, and operationally these pads were also treated in late winter when peat was thawing and fractured into pieces during mound construction. Developing a large volume of elevated substrate that persists until natural hummock-forming mosses can establish is thought necessary for tree recruitment and the recovery of the habitat for the threatened woodland caribou of this region. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sample sizes to control error estimates in determining soil bulk density in California forest soils
Youzhi Han; Jianwei Zhang; Kim G. Mattson; Weidong Zhang; Thomas A. Weber
2016-01-01
Characterizing forest soil properties with high variability is challenging, sometimes requiring large numbers of soil samples. Soil bulk density is a standard variable needed along with element concentrations to calculate nutrient pools. This study aimed to determine the optimal sample size, the number of observation (n), for predicting the soil bulk density with a...
40 CFR 721.9675 - Titanate [Ti6O13 (2-)], di-po-tas-sium.
Code of Federal Regulations, 2012 CFR
2012-07-01
... bulk density measurements of the PMN substance in the pure form are less than 0.4 g/cm3 or greater than 0.6 g/cm3. The bulk density of each shipment must be verified, by lot, prior to clearing U.S... method of manufacture and bulk density measurements. (2) Limitations or revocation of certain...
40 CFR 721.9675 - Titanate [Ti6O13 (2-)], di-po-tas-sium.
Code of Federal Regulations, 2014 CFR
2014-07-01
... bulk density measurements of the PMN substance in the pure form are less than 0.4 g/cm3 or greater than 0.6 g/cm3. The bulk density of each shipment must be verified, by lot, prior to clearing U.S... method of manufacture and bulk density measurements. (2) Limitations or revocation of certain...
40 CFR 721.9675 - Titanate [Ti6O13 (2-)], di-po-tas-sium.
Code of Federal Regulations, 2011 CFR
2011-07-01
... bulk density measurements of the PMN substance in the pure form are less than 0.4 g/cm3 or greater than 0.6 g/cm3. The bulk density of each shipment must be verified, by lot, prior to clearing U.S... method of manufacture and bulk density measurements. (2) Limitations or revocation of certain...
NASA Astrophysics Data System (ADS)
Torii, S.; Yuasa, K.
2004-10-01
Various magnetic levitation systems using oxide superconductors are developed as strong pinning forces are obtained in melt-processed bulk. However, the trapped flux of superconductor is moved by flux creep and fluctuating magnetic field. Therefore, to examine the internal condition of superconductor, the authors measure the dynamic surface flux density distribution of YBCO bulk. Flux density measurement system has a structure with the air-core coil and the Hall sensors. Ten Hall sensors are arranged in series. The YBCO bulk, which has 25 mm diameter and 13 mm thickness, is field cooled by liquid nitrogen. After that, magnetic field is changed by the air-core coil. This paper describes about the measured results of flux density distribution of YBCO bulk in the various frequencies of air-core coils currents.
NASA Astrophysics Data System (ADS)
Nguyen, Ha Thanh
Tropical peatlands have some of the highest carbon densities of any ecosystem and are under enormous development pressure. This dissertation aimed to provide better estimates of the scales and trends of ecological impacts from tropical peatland deforestation and degradation across more than 7,000 hectares of both intact and disturbed peatlands in northwestern Borneo. We combined direct field sampling and airborne Light Detection And Ranging (LiDAR) data to empirically quantify forest structures and aboveground live biomass across a largely intact tropical peat dome. The observed biomass density of 217.7 +/- 28.3 Mg C hectare-1 was very high, exceeding many other tropical rainforests. The canopy trees were 65m in height, comprising 81% of the aboveground biomass. Stem density was observed to increase across the 4m elevational gradient from the dome margin to interior with decreasing stem height, crown area and crown roughness. We also developed and implemented a multi-temporal, Landsat resolution change detection algorithm for identify disturbance events and assessing forest trends in aseasonal tropical peatlands. The final map product achieved more than 92% user's and producer's accuracy, revealing that after more than 25 years of management and disturbances, only 40% of the area was intact forest. Using a chronosequence approach, with a space for time substitution, we then examined the temporal dynamics of peatlands and their recovery from disturbance. We observed widespread arrested succession in previously logged peatlands consistent with hydrological limits on regeneration and degraded peat quality following canopy removal. We showed that clear-cutting, selective logging and drainage could lead to different modes of regeneration and found that statistics of the Enhanced Vegetation Index and LiDAR height metrics could serve as indicators of harvesting intensity, impacts, and regeneration stage. Long-term, continuous monitoring of the hydrology and ecology of peatland can provide key insights regarding best management practices, restoration, and conservation priorities for this unique and rapidly disappearing ecosystem.
Drake, Tiffany; Keating, Mia; Summers, Rebecca; Yochikawa, Aline; Pitman, Tom
2016-01-01
Experimental research involving Arabidopsis thaliana often involves the quantification of phenotypic traits during cultivation on compost or other growing media. Many commercially-available growing media contain peat, but peat extraction is not sustainable due to its very slow rate of formation. Moreover, peat extraction reduces peatland biodiversity and releases stored carbon and methane into the atmosphere. Here, we compared the experimental performance of Arabidopsis on peat-based and several types of commercially-available peat-free growing media (variously formed from coir, composted bark, wood-fibre, and domestic compost), to provide guidance for reducing peat use in plant sciences research with Arabidopsis. Arabidopsis biomass accumulation and seed yield were reduced by cultivation on several types of peat-free growing media. Arabidopsis performed extremely poorly on coir alone, presumably because this medium was completely nitrate-free. Some peat-free growing media were more susceptible to fungal contamination. We found that autoclaving of control (peat-based) growing media had no effect upon any physiological parameters that we examined, compared with non-autoclaved control growing media, under our experimental conditions. Overall, we conclude that Arabidopsis performs best when cultivated on peat-based growing media because seed yield was almost always reduced when peat-free media were used. This may be because standard laboratory protocols and growth conditions for Arabidopsis are optimized for peat-based media. However, during the vegetative growth phase several phenotypic traits were comparable between plants cultivated on peat-based and some peat-free media, suggesting that under certain circumstances peat-free media can be suitable for phenotypic analysis of Arabidopsis. PMID:27088495
Depositional environments of the Jurassic Maghara main coal seam in north central Sinai, Egypt
NASA Astrophysics Data System (ADS)
Edress, Nader Ahmed Ahmed; Opluštil, Stanislav; Sýkorová, Ivana
2018-04-01
Twenty-eight channel samples with a cumulative thickness of about 4 m collected from three sections of the Maghara main coal seam in the middle Jurassic Safa Formation have been studied for their lithotype and maceral compositions to reconstruct the character of peat swamp, its hydrological regime and the predominating type of vegetation. Lithotype composition is a combination of dully lithotypes with duroclarain (19% of total cumulative thickness), clarodurain (15%), black durain (15%), and shaly coal (15%) and bright lithotypes represented by clarain (23%), vitrain (12%) and a small proportion of wild fire-generated fusain (1%). Maceral analyses revealed the dominance of vitrinite (70.6% on average), followed by liptinite (25.2%) and inertinite (8.1%). Mineral matter content is ∼9% on average and consists of clay, quartz and pyrite concentrate mostly at the base and the roof of the seam. Dominantly vitrinite composition of coal and extremely low fire- and oxidation-borne inertinite content, together with high Gelification Indices imply predomination of waterlogged anoxic conditions in the precursing mire with water tables mostly above the peat surface throughout most of the time during peat swamp formation. Increases in collotelinite contents and Tissue Preservation Index up the section, followed by a reversal trend in upper third of the coal section, further accompanied by a reversal trend in collodetrinite, liptodetrinite, alginite, sporinite and clay contents records a transition from dominately limnotelmatic and limnic at the lower part to dominately limnotelmatic with increase telmatic condition achieved in the middle part of coal. At the upper part of coal seam an opposite trend marks the return to limnic and limnotelmatic conditions in the final phases of peat swamp history and its subsequent inundation. The proportion of arborescent (mostly coniferous) and herbaceous vegetation varied throughout the section of the coal with tendency of increasing density of arborescent vegetation to the middle part of the coal seam section. The intercalation of coal in shallow marine strata implies that peat swamp precursor formed in a coastal setting, probably on delta plain or lagoon. Its formation was controlled by water table changes driven by sea level fluctuations that created an accommodation space necessary for preservation of peat.
NASA Astrophysics Data System (ADS)
Wei, Xixiong; Deng, Wanling; Fang, Jielin; Ma, Xiaoyu; Huang, Junkai
2017-10-01
A physical-based straightforward extraction technique for interface and bulk density of states in metal oxide semiconductor thin film transistors (TFTs) is proposed by using the capacitance-voltage (C-V) characteristics. The interface trap density distribution with energy has been extracted from the analysis of capacitance-voltage characteristics. Using the obtained interface state distribution, the bulk trap density has been determined. With this method, for the interface trap density, it is found that deep state density nearing the mid-gap is approximately constant and tail states density increases exponentially with energy; for the bulk trap density, it is a superposition of exponential deep states and exponential tail states. The validity of the extraction is verified by comparisons with the measured current-voltage (I-V) characteristics and the simulation results by the technology computer-aided design (TCAD) model. This extraction method uses non-numerical iteration which is simple, fast and accurate. Therefore, it is very useful for TFT device characterization.
Jingxin Wang; Chris B. LeDoux; Pam Edwards
2007-01-01
A harvesting system consisting of chainsaw felling and cable skidder extraction was studied to determine soil bulk density changes in a central Appalachian hardwood forest site. Soil bulk density was measured using a nuclear gauge preharvest and postharvest systematically across the harvest site, on transects across skid trails, and for a subset of skid trail transects...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, L. G., E-mail: lingen.huang@hzdr.de; Kluge, T.; Cowan, T. E.
The dynamics of bulk heating and ionization is investigated both in simulations and theory, which determines the crucial plasma parameters such as plasma temperature and density in ultra-short relativistic laser-solid target interactions. During laser-plasma interactions, the solid density plasma absorbs a fraction of laser energy and converts it into kinetic energy of electrons. A portion of the electrons with relativistic kinetic energy goes through the solid density plasma and transfers energy into the bulk electrons, which results in bulk electron heating. The bulk electron heating is finally translated into the processes of bulk collisional ionization inside the solid target. Amore » simple model based on the Ohmic heating mechanism indicates that the local and temporal profile of bulk return current is essential to determine the temporal evolution of bulk electron temperature. A series of particle-in-cell simulations showing the local heating model is robust in the cases of target with a preplasma and without a preplasma. Predicting the bulk electron heating is then benefit for understanding the collisional ionization dynamics inside the solid targets. The connection of the heating and ionization inside the solid target is further studied using Thomas-Fermi model.« less
Dracaena marginata biofilter: design of growth substrate and treatment of stormwater runoff.
Vijayaraghavan, K; Praveen, R S
2016-01-01
The purpose of this research was to investigate the efficiency of Dracaena marginata planted biofilters to decontaminate urban runoff. A new biofilter growth substrate was prepared using low-cost and locally available materials such as red soil, fine sand, perlite, vermiculite, coco-peat and Sargassum biomass. The performance of biofilter substrate was compared with local garden soil based on physical and water quality parameters. Preliminary analyses indicated that biofilter substrate exhibited desirable characteristics such as low bulk density (1140 kg/m(3)), high water holding capacity (59.6%), air-filled porosity (7.82%) and hydraulic conductivity (965 mm/h). Four different biofilter assemblies, with vegetated and non-vegetated systems, were examined for several artificial rain events (un-spiked and metal-spiked). Results from un-spiked artificial rain events suggested that concentrations of most of the chemical components in effluent were highest at the beginning of rain events and thereafter subsided during the subsequent rain events. Biofilter growth substrate showed superior potential over garden soil to retain metal ions such as Al, Fe, Cu, Cr, Ni, Zn, Cd and Pb during metal-spiked rain events. Significant differences were also observed between non-vegetated and vegetated biofilter assemblies in runoff quality, with the latter producing better results.
Clementson, C L; Ileleji, K E
2010-07-01
Loading railcars with consistent tonnage has immense cost implications for the shipping of distillers' dried grains with soluble (DDGS) product. Therefore, this study was designed to investigate the bulk density variability of DDGS during filling of railcar hoppers. An apparatus was developed similar to a spinning riffler sampler in order to simulate the filling of railcars at an ethanol plant. There was significant difference (P<0.05) between the initial and final measures of bulk density and particle size as the hoppers were emptied in both mass and funnel flow patterns. Particle segregation that takes place during filling of hoppers contributed to the bulk density variation and was explained by particle size variation. This phenomenon is most likely the same throughout the industry and an appropriate sampling procedure should be adopted for measuring the bulk density of DDGS stored silos or transported in railcar hoppers. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zak, Dominik; Reuter, Hendrik; Augustin, Jürgen; Shatwell, Tom; Barth, Martin; Gelbrecht, Jörg; McInnes, Rob
2015-04-01
Artificially drained minerotrophic peatlands, commonly called fens, are being rewetted on a large scale in many European countries, including Germany. The objectives behind rewetting include the reduction of greenhouse gas (GHG) emissions, in particular of carbon dioxide (CO2) via oxidative degradation processes in the aerated peat soil, as well as the recovering of the nutrient sink and ecological habitat functions of pristine fens. As a result of long-term organic soil losses, subsidence and the associated lowering of the land surface, rewetting of these areas often results in shallow lake formation. These developing ecosystems differ considerably from pristine fens. Peat formation cannot occur in the open waterbody; instead the highly degraded submerged peat surface becomes covered by organic sediments which form readily due to the subaqueous decomposition of dying grassland vegetation that is intolerant to permanent flooding and the decomposition of shoot biomass from wetland plants. With regard to lake ontogeny, these sites can be compared to lakes in the process of terrestrialization, where peat formation can follow as infill proceeds to surface levels. These newly formed shallow lakes with a highly degraded peat substrate are characteristically eutrophic and show high mobilisations of nutrients and dissolved organic carbon. Furthermore, extremely high methane (CH4) emissions from rewetted fens have been observed. The GHG emissions in the initial stage after rewetting have even been shown to lead to a net climate impact that exceeds that of drained fens. Another distinct difference of rewetted fens from natural fens in Central Europe is the rapid secondary plant succession. In the initial phase of rewetting, Phalaris arundinacea has been observed to be the dominating plant species; more adapted to wet-dry conditions, this species routinely dies off within the first year of inundation. Helophytes like Typha latifolia in marginal areas and Ceratophyllum demersum in the open waterbody have been observed to colonize the area within one or two years of rewetting. With increasing rewetting time, the peat forming plants Phragmites australis and various Carex species, such as Carex riparia, can become re-established. The influence of these predictable vegetation shifts on CO2 and CH4 emissions has not been studied yet. In this paper, the CO2 and CH4 production due to the subaqueous decomposition of these five most abundant plant species, which are considered to be representative of different rewetting stages, will be presented. Beside continuous gas flux measurements, bulk chemical analysis of plant tissue, including C, N, P, and plant polymer dynamics, were performed in order to gain further insights into changing litter characteristics. With respect to temporal vegetation shifts in rewetted fens, the results provide new insights into the mid-term climate effect of these ecosystems.
Non-grazing and gophers lower bulk density and acidity in annual-plant soil
Raymond D. Ratliff; Stanley E. Westfall
1971-01-01
The effects of non-grazing on Ahwahnee coarse sandy loam were studied at the San Joaquin Experimental Range in central California. An exclosure, on which there had been no livestock grazing for 34 years, had a lower surface bulk density and lower acidity than an adjacent range that had been grazed. Bulk density averaged 1.08 gm./cc. on the ungrazed range, and 1.43 gm./...
Martin F. Jurgensen; Deborah S. Page-Dumroese; Robert E. Brown; Joanne M. Tirocke; Chris A. Miller; James B. Pickens; Min Wang
2017-01-01
Soils with high rock content are common in many US forests, and contain large amounts of stored C. Accurate measurements of soil bulk density and rock content are critical for calculating and assessing changes in both C and nutrient pool size, but bulk density sampling methods have limitations and sources of variability. Therefore, we evaluated the use of small-...
Critical soil bulk density for soybean growth in Oxisols
NASA Astrophysics Data System (ADS)
Keisuke Sato, Michel; Veras de Lima, Herdjania; Oliveira, Pedro Daniel de; Rodrigues, Sueli
2015-10-01
The aim of this study was to evaluate the critical soil bulk density from the soil penetration resistance measurements for soybean root growth in Brazilian Amazon Oxisols. The experiment was carried out in a greenhouse using disturbed soil samples collected from the northwest of Para characterized by different texture. The treatments consisted of a range of soil bulk densities for each soil textural class. Three pots were used for soybean growth of and two for the soil penetration resistance curve. From the fitted model, the critical soil bulk density was determined considering the penetration resistance values of 2 and 3 MPa. After sixty days, plants were cut and root length, dry mass of root, and dry mass of shoots were determined. At higher bulk densities, the increase in soil water content decreased the penetration resistance, allowing unrestricted growth of soybean roots. Regardless of soil texture, the penetration resistance of 2 and 3 MPa had a slight effect on root growth in soil moisture at field capacity and a reduction of 50% in the soybean root growth was achieved at critical soil bulk density of 1.82, 1.75, 1.51, and 1.45 Mg m-3 for the sandy loam, sandy clay loam, clayey, and very clayey soil.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mallow, Anne M; Abdelaziz, Omar; Graham, Samuel
The thermal charging performance of phase change materials, specifically paraffin wax, combined with compressed expanded natural graphite foam is studied under constant heat flux and constant temperature conditions. By varying the heat flux between 0.39 W/cm2 and 1.55 W/cm2 or maintaining a boundary temperature of 60 C for four graphite foam bulk densities, the impact on the rate of thermal energy storage is discussed. Thermal charging experiments indicate that thermal conductivity of the composite is an insufficient metric to compare the influence of graphite foam on the rate of thermal energy storage of the PCM composite. By dividing the latentmore » heat of the composite by the time to melt for various boundary conditions and graphite foam bulk densities, it is determined that bulk density selection is dependent on the applied boundary condition. A greater bulk density is advantageous for samples exposed to a constant temperature near the melting temperature as compared to constant heat flux conditions where a lower bulk density is adequate. Furthermore, the anisotropic nature of graphite foam bulk densities greater than 50 kg/m3 is shown to have an insignificant impact on the rate of thermal charging. These experimental results are used to validate a computational model for future use in the design of thermal batteries for waste heat recovery.« less
Influence of selected physicochemical parameters on microbiological activity of mucks.
NASA Astrophysics Data System (ADS)
Całka, A.; Sokołowska, Z.; Warchulska, P.; Dąbek-Szreniawska, M.
2009-04-01
One of the basic factor decided about soil fertility are microorganisms that together with flora, determine trend and character of biochemical processes as well totality of fundamental transformations connected with biogeochemistry and physicochemical properties of soil. Determination of general bacteria number, quantity of selected groups of microorganisms and investigation of respiration intensity let estimate microbiological activity of soil. Intensity of microbiological processes is directly connected with physicochemical soil parameters. In that case, such structural parameters as bulk density, porosity, surface or carbon content play significant role. Microbiological activity also changes within the bounds of mucks with different stage of humification and secondary transformation. Knowledge of relations between structural properties, microorganism activity and degree of transformation and humification can lead to better understanding microbiological processes as well enable to estimate microbiological activity at given physicochemical conditions and at progressing process of soil transformation. The study was carried out on two peaty-moorsh (muck) soils at different state of secondary transformation and humification degree. Soil samples were collected from Polesie Lubelskie (layer depth: 5 - 25 cm). Investigated mucks originated from soils formed from low peatbogs. Soil sample marked as I belonged to muck group weakly secondary transformed. Second sample (II) represented soil group with middle stage of secondary transformation. The main purpose of the research was to examine the relations between some physicochemical and surface properties and their biological activity. Total number and respiration activity of microorganisms were determined. The effectiveness of utilizing the carbon substances from the soil by the bacteria increased simultaneously with the transformation state of the peat-muck soils. Quantity of organic carbon decreased distinctly in the soil at the higher stage of secondary transformation and it influenced quantity and activity of soil microorganisms. Bulk density and surface increased with increasing secondary transformation degree. On the other hand, porosity decreased with increasing secondary transformation index. Process of secondary transformation influenced the soil environment for the microbes by changing the physicochemical properties. This way it influenced the number of microorganisms and caused changes of biological activity in the soils.
Lim Kim Choo, Liza Nuriati; Ahmed, Osumanu Haruna
2014-01-01
Pineapples (Ananas comosus (L.) Merr.) cultivation on drained peats could affect the release of carbon dioxide (CO2) into the atmosphere and also the leaching of dissolved organic carbon (DOC). Carbon dioxide emission needs to be partitioned before deciding on whether cultivated peat is net sink or net source of carbon. Partitioning of CO2 emission into root respiration, microbial respiration, and oxidative peat decomposition was achieved using a lysimeter experiment with three treatments: peat soil cultivated with pineapple, bare peat soil, and bare peat soil fumigated with chloroform. Drainage water leached from cultivated peat and bare peat soil was also analyzed for DOC. On a yearly basis, CO2 emissions were higher under bare peat (218.8 t CO2 ha/yr) than under bare peat treated with chloroform (205 t CO2 ha/yr), and they were the lowest (179.6 t CO2 ha/yr) under cultivated peat. Decreasing CO2 emissions under pineapple were attributed to the positive effects of photosynthesis and soil autotrophic activities. An average 235.7 mg/L loss of DOC under bare peat suggests rapid decline of peat organic carbon through heterotrophic respiration and peat decomposition. Soil CO2 emission depended on moderate temperature fluctuations, but it was not affected by soil moisture. PMID:25215335
The impact of fire on the Late Paleozoic Earth system
Glasspool, Ian J.; Scott, Andrew C.; Waltham, David; Pronina, Natalia; Shao, Longyi
2015-01-01
Analyses of bulk petrographic data indicate that during the Late Paleozoic wildfires were more prevalent than at present. We propose that the development of fire systems through this interval was controlled predominantly by the elevated atmospheric oxygen concentration (p(O2)) that mass balance models predict prevailed. At higher levels of p(O2), increased fire activity would have rendered vegetation with high-moisture contents more susceptible to ignition and would have facilitated continued combustion. We argue that coal petrographic data indicate that p(O2) rather than global temperatures or climate, resulted in the increased levels of wildfire activity observed during the Late Paleozoic and can, therefore, be used to predict it. These findings are based upon analyses of charcoal volumes in multiple coals distributed across the globe and deposited during this time period, and that were then compared with similarly diverse modern peats and Cenozoic lignites and coals. Herein, we examine the environmental and ecological factors that would have impacted fire activity and we conclude that of these factors p(O2) played the largest role in promoting fires in Late Paleozoic peat-forming environments and, by inference, ecosystems generally, when compared with their prevalence in the modern world. PMID:26442069
The impact of fire on the Late Paleozoic Earth system.
Glasspool, Ian J; Scott, Andrew C; Waltham, David; Pronina, Natalia; Shao, Longyi
2015-01-01
Analyses of bulk petrographic data indicate that during the Late Paleozoic wildfires were more prevalent than at present. We propose that the development of fire systems through this interval was controlled predominantly by the elevated atmospheric oxygen concentration (p(O2)) that mass balance models predict prevailed. At higher levels of p(O2), increased fire activity would have rendered vegetation with high-moisture contents more susceptible to ignition and would have facilitated continued combustion. We argue that coal petrographic data indicate that p(O2) rather than global temperatures or climate, resulted in the increased levels of wildfire activity observed during the Late Paleozoic and can, therefore, be used to predict it. These findings are based upon analyses of charcoal volumes in multiple coals distributed across the globe and deposited during this time period, and that were then compared with similarly diverse modern peats and Cenozoic lignites and coals. Herein, we examine the environmental and ecological factors that would have impacted fire activity and we conclude that of these factors p(O2) played the largest role in promoting fires in Late Paleozoic peat-forming environments and, by inference, ecosystems generally, when compared with their prevalence in the modern world.
Zhang, Difang; Luo, Wenhai; Yuan, Jing; Li, Guoxue; Luo, Yuan
2017-10-01
This study investigated the effect of calcium superphosphate on compost maturity and gaseous emissions during pig manure composting with woody peat as the bulking agent. Two treatments were conducted with or without the addition of calcium superphosphate (10% dry weight of the composting mass), which were denoted as the control and superphosphate-amended treatment, respectively. Results show that the composting temperature of both treatments was higher than 50°C for more than 5days, which is typically required for pathogen destruction during manure composting. Compared to the control treatment, the superphosphate-amended treatment increased the emission of nitrogen oxide, but reduced the emission of methane, ammonia and hydrogen sulfide by approximately 35.5%, 37.9% and 65.5%, respectively. As a result, the total greenhouse gas (GHG) emission during manure composting was reduced by nearly 34.7% with the addition of calcium superphosphate. The addition of calcium superphosphate increased the content of humic acid (indicated by E 4 /E 6 ratio). Nevertheless, the superphosphate-amended treatment postponed the biological degradation of organic matter and produced the mature compost with a higher electrical conductivity in comparison with the control treatment. Copyright © 2017. Published by Elsevier Ltd.
Compaction of AWBA fuel pellets without binders (AWBA Development Program)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, R.G.R.
1982-08-01
Highly active oxide fuel powders, composed of UO/sub 2/, UO/sub 2/-ThO/sub 2/, or ThO/sub 2/, were compacted into ultra-high density pellets without the use of binders. The objective of the study was to select the optimum die lubricant for compacting these powders into pellets in preparation for sintering to densities in excess of 97% Theoretical Density. The results showed that sintered density was a function of both the lubricant bulk density and concentration with the lowest bulk density lubricant giving the highest sintered densities with a lubricant concentration of 0.1 weight percent. Five calcium and zinc stearates were evaluated withmore » a calcium stearate with a 15 lb/ft/sup 3/ bulk density being the best lubricant.« less
USDA-ARS?s Scientific Manuscript database
Effects of varying bulk densities of steam-flaked corn (SFC) and level of inclusion of roughage in feedlot diets were evaluated in three experiments. In Experiment 1, 128 beef steers were used in a 2 x 2 factorial arrangement to evaluate effects of bulk density of SFC (335 or 386 g/L) and roughage...
Applications of peat-based sorbents for removal of metals from water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, A.D.; Stack, E.M.; Eltayeb, S.
1995-12-31
The results reported in this paper are derived from one part of an ongoing investigation of peat sorption properties, in particular, the capacities of acid-treated peats to adsorb chromium, nickel, zinc, copper, and cadmium from water. Acid treatment was done to remove as much previously adsorbed metal as possible before testing. Four peat types were selected for study, two highly decomposed types (a woody, Taxodium-dominated peat from the Okefenokee Swamp of Georgia and a sedge-dominated, charcoal-rich peat from the Tamiami Trail region of Florida) and two less decomposed ones (a Sphagnum moss-dominated peat from Maine and a Nymphaea-dominated peat frommore » the Okefenokee Swamp of Georgia). Single metal and mixed metal solutions were tested in slurry experiments with each peat type. Solutions were analyzed using a Perkin-Elmer model 305B Flame Atomic Absorption Spectrophotometer. In single metal tests, chromium and copper tended to be adsorbed to a greater extent than the other metals. Three of the peats were found to be capable of adsorbine more copper ions than zince ions, while a fourth type adsorbed approximately the same amounts of each. Degree of decomposition of the peats tended to affect sorption properties for certain metals. The results of batch studies revealed that chromium was always preferentially adsorbed regardless of the peat type tested. The results of these studies further confirm that remediation of metal-contaminated waters using peats will require selection of specific peats to match the contaminants.« less
Peat deposits of North Carolina: Bulletin 88
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ingram, R.L.
1987-01-01
Fuel-grade peat is an accumulation of partially decomposed plant material that has less than 25% non-combustible material (ash). In eastern North Carolina peat has formed in the past 10,000 years in swamps or pocosins (coastal swamps), Carolina bays, and river floodplains. Most of the peat is found at the surface with no over-burden and usually ranges in thickness from 1 to 15 ft with an average of 4-1/2 ft. The mean ash content of the fuel-grade peats is about 7.4%, but ash contents of less than 5% are common in most peat deposits. Heating values average 10,100 Btu/lb on amore » moisture-free basis. Fuel-grade peat deposits cover about 677,000 acres (1060 sq mi) in coastal North Carolina with total resources of about 500 million tons of moisture-free peat. Of this total, about 284,000 acres (444 sq mi) with 319 million tons are underlain by peat greater than 4 ft thick. Peat resources are concentrated in the pocosins or coastal swamps of northeastern North Carolina with the Albemarle-Pamlico peninsula having 55% of the resources and the Dismal Swamp, 11%. The remaining coastal swamp deposits are small but significant. Although 96 Carolina bays have peat, only 46 have peat greater than 4 ft thick; and only one has more than 1 million tons of peat. None of the river floodplain peats located were very large, continuous, or of high quality. 75 refs.« less
Interdependence of peat and vegetation in a tropical peat swamp forest.
Page, S E; Rieley, J O; Shotyk, W; Weiss, D
1999-01-01
The visual uniformity of tropical peat swamp forest masks the considerable variation in forest structure that has evolved in response to differences and changes in peat characteristics over many millennia. Details are presented of forest structure and tree composition of the principal peat swamp forest types in the upper catchment of Sungai Sebangau, Central Kalimantan, Indonesia, in relation to thickness and hydrology of the peat. Consideration is given to data on peat geochemistry and age of peat that provide evidence of the ombrotrophic nature of this vast peatland and its mode of formation. The future sustainability of this ecosystem is predicted from information available on climate change and human impact in this region. PMID:11605630
Bulk density of small meteoroids
NASA Astrophysics Data System (ADS)
Kikwaya, J.-B.; Campbell-Brown, M.; Brown, P. G.
2011-06-01
Aims: Here we report on precise metric and photometric observations of 107 optical meteors, which were simultaneously recorded at multiple stations using three different intensified video camera systems. The purpose is to estimate bulk meteoroid density, link small meteoroids to their parent bodies based on dynamical and physical density values expected for different small body populations, to better understand and explain the dynamical evolution of meteoroids after release from their parent bodies. Methods: The video systems used had image sizes ranging from 640 × 480 to 1360 × 1036 pixels, with pixel scales from 0.01° per pixel to 0.05° per pixel, and limiting meteor magnitudes ranging from Mv = +2.5 to +6.0. We find that 78% of our sample show noticeable deceleration, allowing more robust constraints to be placed on density estimates. The density of each meteoroid is estimated by simultaneously fitting the observed deceleration and lightcurve using a model based on thermal fragmentation, conservation of energy and momentum. The entire phase space of the model free parameters is explored for each event to find ranges of parameters which fit the observations within the measurement uncertainty. Results: (a) We have analysed our data by first associating each of our events with one of the five meteoroid classes. The average density of meteoroids whose orbits are asteroidal and chondritic (AC) is 4200 kg m-3 suggesting an asteroidal parentage, possibly related to the high-iron content population. Meteoroids with orbits belonging to Jupiter family comets (JFCs) have an average density of 3100 ± 300 kg m-3. This high density is found for all meteoroids with JFC-like orbits and supports the notion that the refractory material reported from the Stardust measurements of 81P/Wild 2 dust is common among the broader JFC population. This high density is also the average bulk density for the 4 meteoroids with orbits belonging to the Ecliptic shower-type class (ES) also related to JFCs. Both categories we suggest are chondritic based on their high bulk density. Meteoroids of HT (Halley type) orbits have a minimum bulk density value of 360+400-100 kg m-3 and a maximum value of 1510+400-900 kg m-3. This is consistent with many previous works which suggest bulk cometary meteoroid density is low. SA (Sun-approaching)-type meteoroids show a density spread from 1000 kg m-3 to 4000 kg m-3, reflecting multiple origins. (b) We found two different meteor showers in our sample: Perseids (10 meteoroids, ~11% of our sample) with an average bulk density of 620 kg m-3 and Northern Iota Aquariids (4 meteoroids) with an average bulk density of 3200 kg m-3, consistent with the notion that the NIA derive from 2P/Encke.
Peat Soil Stabilization using Lime and Cement
NASA Astrophysics Data System (ADS)
Zambri, Nadhirah Mohd; Ghazaly, Zuhayr Md.
2018-03-01
This paper presents a study of the comparison between two additive Lime and Cement for treating peat soil in term of stabilization. Peat and organic soils are commonly known for their high compressibility, extremely soft, and low strength. The aim of this paper is to determine the drained shear strength of treated peat soil from Perlis for comparison purposes. Direct Shear Box Test was conducted to obtain the shear strength for all the disturbed peat soil samples. The quick lime and cement was mixed with peat soil in proportions of 10% and 20% of the dry weight peat soil. The experiment results showed that the addition of additives had improved the strength characteristics of peat soil by 14% increment in shear strength. In addition, the mixture of lime with peat soil yield higher result in shear strength compared to cement by 14.07% and 13.5% respectively. These findings indicate that the lime and cement is a good stabilizer for peat soil, which often experienced high amount of moisture content.
Geophysical survey for groundwater potential investigation in peat land area, Riau, Indonesia
NASA Astrophysics Data System (ADS)
Islami, N.; Irianti, M.; Azhar; Nor, M.; Fakhrudin
2018-04-01
Tropical forests, especially peat lands, are particularly vulnerable to forest fires. Fires are the most common disasters in peat lands in the dry season, especially in Riau Province, Indonesia. In the process of extinguishing the peat fire, several substantial problems arise to stop peat fires during this period. This study aims to determine the possibility of using ground water as a source of water to anticipate the early mitigation of peat land fires disaster. The geoelectrical resistivity surveys were used to predict the subsurface geological data including peat thickness and depth of aquifers. The geometry of peat lands was determined using geostatistics based on geoelectrical resistivity interpretation data. Peat Land thickness varies up to 4 m in the north and is thinner to the south. A shallower and deeper aquifer is available at a depth of 13 m to 18 m and 70 m to 90 m respectively. In general, the potential of groundwater in the shallow aquifer is predicted to be sufficient for peat land watering anytime.
NASA Astrophysics Data System (ADS)
Hickson, Dylan; Boivin, Alexandre; Daly, Michael G.; Ghent, Rebecca; Nolan, Michael C.; Tait, Kimberly; Cunje, Alister; Tsai, Chun An
2018-05-01
The variations in near-surface properties and regolith structure of asteroids are currently not well constrained by remote sensing techniques. Radar is a useful tool for such determinations of Near-Earth Asteroids (NEAs) as the power of the reflected signal from the surface is dependent on the bulk density, ρbd, and dielectric permittivity. In this study, high precision complex permittivity measurements of powdered aluminum oxide and dunite samples are used to characterize the change in the real part of the permittivity with the bulk density of the sample. In this work, we use silica aerogel for the first time to increase the void space in the samples (and decrease the bulk density) without significantly altering the electrical properties. We fit various mixing equations to the experimental results. The Looyenga-Landau-Lifshitz mixing formula has the best fit and the Lichtenecker mixing formula, which is typically used to approximate planetary regolith, does not model the results well. We find that the Looyenga-Landau-Lifshitz formula adequately matches Lunar regolith permittivity measurements, and we incorporate it into an existing model for obtaining asteroid regolith bulk density from radar returns which is then used to estimate the bulk density in the near surface of NEA's (101955) Bennu and (25143) Itokawa. Constraints on the material properties appropriate for either asteroid give average estimates of ρbd = 1.27 ± 0.33g/cm3 for Bennu and ρbd = 1.68 ± 0.53g/cm3 for Itokawa. We conclude that our data suggest that the Looyenga-Landau-Lifshitz mixing model, in tandem with an appropriate radar scattering model, is the best method for estimating bulk densities of regoliths from radar observations of airless bodies.
The temporal changes in saturated hydraulic conductivity of forest soils
NASA Astrophysics Data System (ADS)
Kornél Szegedi, Balázs
2015-04-01
I investigated the temporal variability of forest soils infiltration capacity through compaction. I performed the measurements of mine in The Botanical Garden of Sopron between 15.09.2014 - 15.10.2014. I performed the measurements in 50-50 cm areas those have been cleaned of vegetation, where I measured the bulk density and volume of soil hydraulic conductivity with Tension Disk Infiltrometer (TDI) in 3-3 repetitions. I took undisturbed 160 cm3 from the upper 5 cm layer of the cleaned soil surface for the bulk density measurements. Then I loosened the top 10-15 cm layer of the soil surface with spade. After the cultivation of the soil I measured the bulk density and volume of water conductivity also 3-3 repetitions. Later I performed the hydraulic conductivity (Ksat) using the TDI and bulk density measurements on undisturbed samples on a weekly basis in the study area. I illustrated the measured hydraulic conductivity and bulk density values as a function of cumulative rainfall by using simple graphical and statistical methods. The rate of the soil compaction pace was fast and smooth based on the change of the measured bulk density values. There was a steady downward trend in hydraulic conductivity parallel the compaction. The cultivation increased the hydraulic conductivity nearly fourfold compared to original, than decreased to half by 1 week. In the following the redeposition rate declined, but based on the literature data, almost 3-4 months enough to return the original state before cultivation of the soil hydraulic conductivity and bulk density values. This publication has been supported by AGRARKLIMA.2 VKSZ_12-1-2013-0034 project.
Physical Quality Indicators and Mechanical Behavior of Agricultural Soils of Argentina.
Imhoff, Silvia; da Silva, Alvaro Pires; Ghiberto, Pablo J; Tormena, Cássio A; Pilatti, Miguel A; Libardi, Paulo L
2016-01-01
Mollisols of Santa Fe have different tilth and load support capacity. Despite the importance of these attributes to achieve a sustainable crop production, few information is available. The objectives of this study are i) to assess soil physical indicators related to plant growth and to soil mechanical behavior; and ii) to establish relationships to estimate the impact of soil loading on the soil quality to plant growth. The study was carried out on Argiudolls and Hapludolls of Santa Fe. Soil samples were collected to determine texture, organic matter content, bulk density, water retention curve, soil resistance to penetration, least limiting water range, critical bulk density for plant growth, compression index, pre-consolidation pressure and soil compressibility. Water retention curve and soil resistance to penetration were linearly and significantly related to clay and organic matter (R2 = 0.91 and R2 = 0.84). The pedotransfer functions of water retention curve and soil resistance to penetration allowed the estimation of the least limiting water range and critical bulk density for plant growth. A significant nonlinear relationship was found between critical bulk density for plant growth and clay content (R2 = 0.98). Compression index was significantly related to bulk density, water content, organic matter and clay plus silt content (R2 = 0.77). Pre-consolidation pressure was significantly related to organic matter, clay and water content (R2 = 0.77). Soil compressibility was significantly related to initial soil bulk density, clay and water content. A nonlinear and significantly pedotransfer function (R2 = 0.88) was developed to predict the maximum acceptable pressure to be applied during tillage operations by introducing critical bulk density for plant growth in the compression model. The developed pedotransfer function provides a useful tool to link the mechanical behavior and tilth of the soils studied.
Physical Quality Indicators and Mechanical Behavior of Agricultural Soils of Argentina
Pires da Silva, Alvaro; Ghiberto, Pablo J.; Tormena, Cássio A.; Pilatti, Miguel A.; Libardi, Paulo L.
2016-01-01
Mollisols of Santa Fe have different tilth and load support capacity. Despite the importance of these attributes to achieve a sustainable crop production, few information is available. The objectives of this study are i) to assess soil physical indicators related to plant growth and to soil mechanical behavior; and ii) to establish relationships to estimate the impact of soil loading on the soil quality to plant growth. The study was carried out on Argiudolls and Hapludolls of Santa Fe. Soil samples were collected to determine texture, organic matter content, bulk density, water retention curve, soil resistance to penetration, least limiting water range, critical bulk density for plant growth, compression index, pre-consolidation pressure and soil compressibility. Water retention curve and soil resistance to penetration were linearly and significantly related to clay and organic matter (R2 = 0.91 and R2 = 0.84). The pedotransfer functions of water retention curve and soil resistance to penetration allowed the estimation of the least limiting water range and critical bulk density for plant growth. A significant nonlinear relationship was found between critical bulk density for plant growth and clay content (R2 = 0.98). Compression index was significantly related to bulk density, water content, organic matter and clay plus silt content (R2 = 0.77). Pre-consolidation pressure was significantly related to organic matter, clay and water content (R2 = 0.77). Soil compressibility was significantly related to initial soil bulk density, clay and water content. A nonlinear and significantly pedotransfer function (R2 = 0.88) was developed to predict the maximum acceptable pressure to be applied during tillage operations by introducing critical bulk density for plant growth in the compression model. The developed pedotransfer function provides a useful tool to link the mechanical behavior and tilth of the soils studied. PMID:27099925
NASA Astrophysics Data System (ADS)
Raudina, Tatiana V.; Loiko, Sergey V.; Lim, Artyom G.; Krickov, Ivan V.; Shirokova, Liudmila S.; Istigechev, Georgy I.; Kuzmina, Daria M.; Kulizhsky, Sergey P.; Vorobyev, Sergey N.; Pokrovsky, Oleg S.
2017-07-01
Mobilization of dissolved organic carbon (DOC) and related trace elements (TEs) from the frozen peat to surface waters in the permafrost zone is expected to enhance under ongoing permafrost thaw and active layer thickness (ALT) deepening in high-latitude regions. The interstitial soil solutions are efficient tracers of ongoing bio-geochemical processes in the critical zone and can help to decipher the intensity of carbon and metals migration from the soil to the rivers and further to the ocean. To this end, we collected, across a 640 km latitudinal transect of the sporadic to continuous permafrost zone of western Siberia peatlands, soil porewaters from 30 cm depth using suction cups and we analyzed DOC, dissolved inorganic carbon (DIC), and 40 major elements and TEs in 0.45 µm filtered fraction of 80 soil porewaters. Despite an expected decrease in the intensity of DOC and TE mobilization from the soil and vegetation litter to the interstitial fluids with the increase in the permafrost coverage and a decrease in the annual temperature and ALT, the DOC and many major and trace elements did not exhibit any distinct decrease in concentration along the latitudinal transect from 62.2 to 67.4° N. The DOC demonstrated a maximum of concentration at 66° N, on the border of the discontinuous/continuous permafrost zone, whereas the DOC concentration in peat soil solutions from the continuous permafrost zone was equal to or higher than that in the sporadic/discontinuous permafrost zone. Moreover, a number of major (Ca, Mg) and trace (Al, Ti, Sr, Ga, rare earth elements (REEs), Zr, Hf, Th) elements exhibited an increasing, not decreasing, northward concentration trend. We hypothesize that the effects of temperature and thickness of the ALT are of secondary importance relative to the leaching capacity of peat, which is in turn controlled by the water saturation of the peat core. The water residence time in peat pores also plays a role in enriching the fluids in some elements: the DOC, V, Cu, Pb, REEs, and Th were a factor of 1.5 to 2.0 higher in mounds relative to hollows. As such, it is possible that the time of reaction between the peat and downward infiltrating waters essentially controls the degree of peat porewater enrichments in DOC and other solutes. A 2° northward shift in the position of the permafrost boundaries may bring about a factor of 1.3 ± 0.2 decrease in Ca, Mg, Sr, Al, Fe, Ti, Mn, Ni, Co, V, Zr, Hf, Th, and REE porewater concentration in continuous and discontinuous permafrost zones, and a possible decrease in DOC, specific ultraviolet absorbency (SUVA), Ca, Mg, Fe, and Sr will not exceed 20 % of their current values. The projected increase in ALT and vegetation density, northward migration of the permafrost boundary, or the change of hydrological regime is unlikely to modify chemical composition of peat porewater fluids larger than their natural variations within different micro-landscapes, i.e., within a factor of 2. The decrease in DOC and metal delivery to small rivers and lakes by peat soil leachate may also decrease the overall export of dissolved components from the continuous permafrost zone to the Arctic Ocean. This challenges the current paradigm on the increase in DOC export from the land to the ocean under climate warming in high latitudes.
Laser ultrasonics for bulk-density distribution measurement on green ceramic tiles
NASA Astrophysics Data System (ADS)
Revel, G. M.; Cavuto, A.; Pandarese, G.
2016-10-01
In this paper a Laser Ultrasonics (LUT) system is developed and applied to measure bulk density distribution of green ceramic tiles, which are porous materials with low heat conductivity. Bulk density of green ceramic bodies is a fundamental parameter to be kept under control in the industrial production of ceramic tiles. The LUT system proposed is based on a Nd:YAG pulsed laser for excitation and an air-coupled electro-capacitive transducer for detection. The paper reports experimental apparent bulk-density measurements on white ceramic bodies after a calibration procedures. The performances observed are better than those previously achieved by authors using air-coupled ultrasonic probes for both emission and detection, allowing to reduce average uncertainty down to about ±6 kg/m3 (±0.3%), thanks to the increase in excitation efficiency and lateral resolution, while maintaining potential flexibility for on-line application. The laser ultrasonic procedure proposed is available for both on-line and off-line application. In this last case it is possible to obtain bulk density maps with high spatial resolution by a 2D scan without interrupting the production process.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Peat moss. 148.290 Section 148.290 Shipping COAST GUARD... SPECIAL HANDLING Special Requirements for Certain Materials § 148.290 Peat moss. (a) Before shipment, peat... handling or coming into contact with peat moss must wear gloves, a dust mask, and goggles. ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rother, Gernot; Vlcek, Lukas; Gruszkiewicz, Miroslaw
2014-01-01
Adsorption of supercritical CO2 in nanoporous silica aerogel was investigated by a combination of experiments and molecular-level computer modeling. High-pressure gravimetric and vibrating tube densimetry techniques were used to measure the mean pore fluid density and excess sorption at 35 C and 50 C and pressures of 0-200 bar. Densification of the pore fluid was observed at bulk fluid densities below 0.7 g/cm3. Far above the bulk fluid density, near-zero sorption or weak depletion effects were measured, while broad excess sorption maxima form in the vicinity of the bulk critical density region. The CO2 sorption properties are very similar formore » two aerogels with different bulk densities of 0.1 g/cm3 and 0.2 g/cm3, respectively. The spatial distribution of the confined supercritical fluid was analyzed in terms of sorption- and bulk-phase densities by means of the Adsorbed Phase Model (APM), which used data from gravimetric sorption and small-angle neutron scattering experiments. To gain more detailed insight into supercritical fluid sorption, large-scale lattice gas GCMC simulations were utilized and tuned to resemble the experimental excess sorption data. The computed three-dimensional pore fluid density distributions show that the observed maximum of the excess sorption near the critical density originates from large density fluctuations pinned to the pore walls. At this maximum, the size of these fluctuations is comparable to the prevailing pore sizes.« less
Global latitudinal trends in peat recalcitrance quantified with calibrated FTIR spectroscopy
NASA Astrophysics Data System (ADS)
Hodgkins, S. B.; Richardson, C. J.; Dommain, R.; Wang, H.; Glaser, P. H.; Verbeke, B. A.; Rogers, K.; Winkler, B. R.; Missilmani, M.; Flanagan, N. E.; Ho, M.; Hoyt, A.; Harvey, C. F.; Cobb, A.; Rich, V. I.; Vining, S. R.; Hough, M.; Saleska, S. R.; Podgorski, D. C.; Tfaily, M. M.; Wilson, R.; Holmes, B.; de La Cruz, F.; Toufaily, J.; Hamdan, R.; Cooper, W. T.; Chanton, J.
2017-12-01
Peatlands are a major global carbon reservoir (528-600 Pg). Most peat is found at high latitudes, where organic matter decomposition is slowed by cold temperatures and water-saturated conditions. Nonetheless, a significant portion of global peatland carbon (10-30%) is in tropical peatlands. The factors that allow peat accumulation in warm climates remain uncertain, raising the question of whether these factors may preserve peat in boreal regions as they warm. In this study, we examined peat and plant chemistry across a latitudinal transect from the Arctic to the tropics. Carbohydrate and aromatic contents were estimated based on a newly-developed analysis method for Fourier transform infrared (FTIR) spectra. In this method, peaks are baseline-corrected and normalized to the integrated spectral area using an automated R script, then calibrated to known concentrations using standards. This technique showed trends that were in agreement with those seen with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and 13C-NMR spectroscopy. Along the latitudinal transect, we found that near-surface (sub)tropical peat has lower carbohydrate and greater aromatic content than near-surface high-latitude peat, leading to recalcitrance that allows (sub)tropical peat to persist despite warm temperatures. The chemistry of (sub)tropical peat reflects a combination of recalcitrant plant inputs, and more extensive humification driven by higher temperatures. Because we observed similar declines in carbohydrate content with depth in high-latitude peat deposits, our data explain recent field-scale deep peat warming experiments in which catotelm (deeper) peat remained stable in the face of temperature increases up to 9 °C. We suggest that high-latitude deep peat reservoirs may be stabilized in the face of climate change by their ultimately lower carbohydrate and higher aromatic composition, similar to tropical peats.
Examining boreal peatland vulnerability to wildfire: a cross-scale perspective (Invited)
NASA Astrophysics Data System (ADS)
Thompson, D. K.; Waddington, J. M.; Parisien, M.; Simpson, B. N.; Morris, P. J.; Kettridge, N.
2013-12-01
The contemporary state of peatlands in boreal western Canada is largely a reflection of the equilibrium between peat accumulation and a natural wildfire disturbance regime. However, additional disturbances of climate change and direct anthropogenic impacts are compounding natural wildfire disturbance, leading to the potential of more severe fire and in cases complete ecosystem shifts away from peatlands altogether. Here we present a cross-scale perspective on the vulnerability of peatlands to wildfire in the context of cumulative anthropogenic impacts. At the plot scale, laboratory burning and modelling has identified the exposure of high density humified peat at the surface as being more vulnerable to deep combustion compared to low-density features such as hummock microforms. At the stand scale, studies of tree impacts on moss light availability has identified critically high tree densities where combustion-resistant Sphagnum mosses are out-competed by drier and more flammable feathermosses. Widespread resource development has created seismic lines, cutlines, and associated linear disturbances at densities approaching 1.5 km km-2 in some areas. Our modelling of wind and solar radiation across varying linear disturbance widths and canopy heights reveals increased risk of wildfire ignition and spread at specific width-height ratios. Regionally, we show that streamflow observations can offer insight into drought and seasonal wildfire risk in peatland-dominated portions of the boreal plain. Integrated wildfire management in the boreal forest can benefit from the inclusion of these cross-scale processes and feedbacks we have identified when balancing the often competing interests of ecosystem integrity, economics, and community protection.
Seth Ex; Frederick Smith; Tara Keyser; Stephanie Rebain
2017-01-01
The Forest Vegetation Simulator Fire and Fuels Extension (FFE-FVS) is often used to estimate canopy bulk density (CBD) and canopy base height (CBH), which are key indicators of crown fire hazard for conifer stands in the Western United States. Estimated CBD from FFE-FVS is calculated as the maximum 4 m running mean bulk density of predefined 0.3 m thick canopy layers (...
The structure of the microbial communities in low-moor and high-moor peat bogs of Tomsk oblast
NASA Astrophysics Data System (ADS)
Dobrovol'skaya, T. G.; Golovchenko, A. V.; Kukharenko, O. S.; Yakushev, A. V.; Semenova, T. A.; Inisheva, L. A.
2012-03-01
The number, structure, and physical state of the microbial communities in high-moor and low-moor peat bogs were compared. Distinct differences in these characteristics were revealed. The microbial biomass in the high-moor peat exceeded that in the low-moor peat by 2-9 times. Fungi predominated in the high-moor peat, whereas bacteria were the dominant microorganisms in the low-moor peat. The micromycetal complexes of the high-moor peat were characterized by a high portion of dark-colored representatives; the complexes of the low-moor peat were dominated by fast-growing fungi. The species of the Penicillum genus were dominant in the high-moor peat; the species of Trichoderma were abundant in the low-moor peat. In the former, the bacteria were distinguished as minor components; in the latter, they predominated in the saprotrophic bacterial complex. In the high-moor peat, the microorganisms were represented by bacilli, while, in the low-moor peat, by cytophages, myxobacteria, and actinobacteria. The different physiological states of the bacteria in the studied objects reflecting the duration of the lag phase and the readiness of the metabolic system to consume different substrates were demonstrated for the first time. The relationships between the trophic characteristics of bacterial habitats and the capacity of the bacteria to consume substrates were established.
Deformation behaviors of peat with influence of organic matter.
Yang, Min; Liu, Kan
2016-01-01
Peat is a kind of special material rich in organic matter. Because of the high content of organic matter, it shows different deformation behaviors from conventional geotechnical materials. Peat grain has a non-negligible compressibility due to the presence of organic matter. Biogas can generate from peat and can be trapped in form of gas bubbles. Considering the natural properties of peat, a special three-phase composition of peat is described which indicates the existence of organic matter and gas bubbles in peat. A stress-strain-time model is proposed for the compression of organic matter, and the surface tension effect is considered in the compression model of gas bubbles. Finally, a mathematical model has been developed to simulate the deformation behavior of peat considering the compressibility of organic matter and entrapped gas bubbles. The deformation process is the coupling of volume variation of organic matter, gas bubbles and water drainage. The proposed model is used to simulate a series of peat laboratory oedometer tests, and the model can well capture the test results with reasonable model parameters. Effects of model parameters on deformation of peat are also analyzed.
Effects of spatial heterogeneity in moisture content on the horizontal spread of peat fires.
Prat-Guitart, Nuria; Rein, Guillermo; Hadden, Rory M; Belcher, Claire M; Yearsley, Jon M
2016-12-01
The gravimetric moisture content of peat is the main factor limiting the ignition and spread propagation of smouldering fires. Our aim is to use controlled laboratory experiments to better understand how the spread of smouldering fires is influenced in natural landscape conditions where the moisture content of the top peat layer is not homogeneous. In this paper, we study for the first time the spread of peat fires across a spatial matrix of two moisture contents (dry/wet) in the laboratory. The experiments were undertaken using an open-top insulated box (22×18×6cm) filled with milled peat. The peat was ignited at one side of the box initiating smouldering and horizontal spread. Measurements of the peak temperature inside the peat, fire duration and longwave thermal radiation from the burning samples revealed important local changes of the smouldering behaviour in response to sharp gradients in moisture content. Both, peak temperatures and radiation in wetter peat (after the moisture gradient) were sensitive to the drier moisture condition (preceding the moisture gradient). Drier peat conditions before the moisture gradient led to higher temperatures and higher radiation flux from the fire during the first 6cm of horizontal spread into a wet peat patch. The total spread distance into a wet peat patch was affected by the moisture content gradient. We predicted that in most peat moisture gradients of relevance to natural ecosystems the fire self-extinguishes within the first 10cm of horizontal spread into a wet peat patch. Spread distances of more than 10cm are limited to wet peat patches below 160% moisture content (mass of water per mass of dry peat). We found that spatial gradients of moisture content have important local effects on the horizontal spread and should be considered in field and modelling studies. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Volumes and bulk densities of forty asteroids from ADAM shape modeling
NASA Astrophysics Data System (ADS)
Hanuš, J.; Viikinkoski, M.; Marchis, F.; Ďurech, J.; Kaasalainen, M.; Delbo', M.; Herald, D.; Frappa, E.; Hayamizu, T.; Kerr, S.; Preston, S.; Timerson, B.; Dunham, D.; Talbot, J.
2017-05-01
Context. Disk-integrated photometric data of asteroids do not contain accurate information on shape details or size scale. Additional data such as disk-resolved images or stellar occultation measurements further constrain asteroid shapes and allow size estimates. Aims: We aim to use all the available disk-resolved images of approximately forty asteroids obtained by the Near-InfraRed Camera (Nirc2) mounted on the W.M. Keck II telescope together with the disk-integrated photometry and stellar occultation measurements to determine their volumes. We can then use the volume, in combination with the known mass, to derive the bulk density. Methods: We downloaded and processed all the asteroid disk-resolved images obtained by the Nirc2 that are available in the Keck Observatory Archive (KOA). We combined optical disk-integrated data and stellar occultation profiles with the disk-resolved images and use the All-Data Asteroid Modeling (ADAM) algorithm for the shape and size modeling. Our approach provides constraints on the expected uncertainty in the volume and size as well. Results: We present shape models and volume for 41 asteroids. For 35 of these asteroids, the knowledge of their mass estimates from the literature allowed us to derive their bulk densities. We see a clear trend of lower bulk densities for primitive objects (C-complex) and higher bulk densities for S-complex asteroids. The range of densities in the X-complex is large, suggesting various compositions. We also identified a few objects with rather peculiar bulk densities, which is likely a hint of their poor mass estimates. Asteroid masses determined from the Gaia astrometric observations should further refine most of the density estimates.
NASA Astrophysics Data System (ADS)
Hickson, D. C.; Boivin, A.; Daly, M. G.; Ghent, R. R.; Nolan, M. C.; Tait, K.; Cunje, A.; Tsai, C. A.
2017-12-01
Planetary radar is widely used to survey the Near-Earth Asteroid (NEA) population and can provide insight into target shapes, sizes, and spin states. The dual-polarization reflectivity is sensitive to surface roughness as well as material properties, specifically the real part of the complex permittivity, or dielectric constant. Knowledge of the behavior of the dielectric constant of asteroid regolith analogue material with environmental parameters can be used to inversely solve for such parameters, such as bulk density, from radar observations. In this study laboratory measurements of the complex permittivity of powdered aluminum oxide and dunite samples are performed in a low-pressure environment chamber using a coaxial transmission line from roughly 1 GHz to 8.5 GHz. The bulk densities of the samples are varied across the measurements by incrementally adding silica aerogel, a low-density material with a very low dielectric constant. This allows the alteration of the proportions of void space to solid particle grains to achieve microgravity-relevant porosities without significantly altering the dielectric properties of the powder sample. The data are then modeled using various electromagnetic mixing equations to characterize the change in dielectric constant with increasing volume fractions of void space (decreasing bulk density). Using spectral analogues as constraints on the composition of NEAs allows us to calculate the range in bulk densities in the near surface of NEAs that have been observed by planetary radar. Utilizing existing radar data from Arecibo Observatory we calculate the bulk density in the near-surface on (101955) Bennu, the target of NASA's OSIRIS-Rex mission, to be ρ = 1.27 ± 0.33 g cm-3 based on an average of the likely range in particle density and dielectric constant of the regolith material.
46 CFR 151.03-21 - Filling density.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Filling density. 151.03-21 Section 151.03-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-21 Filling density. The ratio, expressed as...
46 CFR 151.03-21 - Filling density.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Filling density. 151.03-21 Section 151.03-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-21 Filling density. The ratio, expressed as...
46 CFR 151.03-21 - Filling density.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Filling density. 151.03-21 Section 151.03-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-21 Filling density. The ratio, expressed as...
46 CFR 151.03-21 - Filling density.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Filling density. 151.03-21 Section 151.03-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-21 Filling density. The ratio, expressed as...
46 CFR 151.03-21 - Filling density.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Filling density. 151.03-21 Section 151.03-21 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-21 Filling density. The ratio, expressed as...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Obando A, L.; Malavassi R, L.; Ramirez E, O.
The objectives of this investigation were: (1) to locate potential peat deposits in Costa Rica; (2) to estimate as closely as possible by representative sampling the amount of peat present in each deposit, and (3) to make a preliminary evaluation of the quality of the peat in each deposit. With information from soil maps and a 3-week survey of Costa Rica, it is estimated that a potential area of about 1000 km{sup 2} is covered by peat. Most of the peat area (about 830 km{sup 2}) is in northeastern Costa Rica in the Tortuguero area. An aerial survey identified themore » potential peat areas by the exclusive presence of the Yolillo palm. The next largest potential area of peat (about 175 km{sup 2}) is in the cloud-covered areas of the Talamanca Mountains. Some reconnaissance has been done in the Talamanca Mountains, and samples of the peat indicate that it is very similar to the sphagnum peat moss found in Canada and the northern US. Smaller bogs have been discovered at Medio Queso, El Cairo, Moin, and the Limon airport. Two bogs of immediate interest are Medio Queso and El Cairo. The Medio Queso bog has been extensively sampled and contains about 182,000 metric tons (dry) of highly decomposed peat, which is being used as a carrier for nitrogen-fixing bacteria. The El Cairo bog is sparsely sampled and contains about 1,300,000 metric tons of slightly decomposed dry peat. Plans are to use this peat in horticultural applications on nearby farms. 10 refs., 11 figs., 7 tabs.« less
Reduction of trichloroethylene and nitrate by zero-valent iron with peat.
Min, Jee-Eun; Kim, Meejeong; Pardue, John H; Park, Jae-Woo
2008-02-01
The feasibility of using zero-valent iron (ZVI) and peat mixture as in situ barriers for contaminated sediments and groundwater was investigated. Trichloroethylene (TCE) and nitrate (NO(3)(-)), redox sensitive contaminants were reduced by ZVI and peat soil mixture under anaerobic condition. Peat was used to support the sorption of TCE, microbial activity for biodegradation of TCE and denitrification while TCE and nitrate were reduced by ZVI. Decreases in TCE concentrations were mainly due to ZVI, while peat supported denitrifying microbes and further affected the sorption of TCE. Due to the competition of electrons, nitrate reduction was inhibited by TCE, while TCE reduction was not affected by nitrate. From the results of peat and sterilized peat, it can be concluded that peat was involved in both dechlorination and denitrification but biological reduction of TCE was negligible compared to that of nitrate. The results from hydrogen and methane gas analyses confirmed that hydrogen utilization by microbes and methanogenic process had occurred in the ZVI-peat system. Even though effect of the peat on TCE reduction were quantitatively small, ZVI and peat contributed to the removal of TCE and nitrate independently. The 16S rRNA analysis revealed that viable bacterial diversity was narrow and the most frequently observed genera were Bacillus and Staphylococcus spp.
Microbial Activity in Peat Soil Treated With Ordinary Portland Cement (OPC) and Coal Ashes
NASA Astrophysics Data System (ADS)
Rahman, J. A.; Mohamed, R. M. S. R.; Al-Gheethi, A. A.
2018-04-01
Peat soil is a cumulative of decayed plant fragment which developed as a result of microbial activity. The microbes degrade the organic matter in the peat soils by the production of hydrolysis enzyme. The least decomposed peat, known as fibric peat has big particles and retain lots of water. This made peat having high moisture content, up to 1500 %. The most decomposed peat known as sapric peat having fines particles and less void ratio. The present study aimed to understand the effects of solidification process on the bacterial growth and cellulase (CMCase) enzyme activity. Two types of mixing were designed for fibric, hemic and sapric peats; (i) Ordinary Portland cement (OPC) at an equal amount of dry peat, with 25 % of fly ash (FA) and total of coarse particle, a combination of bottom ash and fibre of 22 – 34 %, (ii) fibric peat was using water-to-binder ratio (w/b) = 1, 50% OPC, 25 % bottom ash (BA) and 25 % FA. For hemic and sapric peat, w/b=3 with 50 % OPC and 50 % BA were used. All samples were prepared triplicates, and were cured for 7, 14, 28 and 56 days in a closed container at room temperature. The results revealed that the first mix design giving a continuous strength development. However, the second mix design shows a decreased in strength pattern after day 28. The influence of the environment factors such as alkaline pH, reduction of the water content and peat temperature has no significant on the reduction amount of native microbes in the peat. The microbes survived in the solidified peat but the amount of microbes were found reduced for all types of mixing Fibric Mixed 1 (FM1), Hemic Mixed 1(HM1) and Sapric Mixed 1 (SM1) were having good strength increment for about 330 – 1427 % with enzymatic activity recorded even after D56. Nevertheless, with increase in the strength development through curing days, the enzymatic activities were reduced. For the time being, it can be concluded that the microbes have the ability to adapt with new environment. The reactivity of the microbes relates with the strength of solidified peat.
NASA Astrophysics Data System (ADS)
Beilman, D. W.; Kallstrom, R.; Elison Timm, O.; Nichols, J. E.; Massa, C.
2016-12-01
A core raised from a windward mountain bog on the Island of Molokai, Hawaii was studied to reconstruct changes in hydroclimate and ecosystem response. The 250-cm radiocarbon-dated profile shows that formation of peat (organic matter greater than 90% and bulk density below 0.2 g cm-3) began around 10,000 years ago, in response to wetter conditions needed to waterlog and stabilize soil organic matter, and has continued through the Holocene. A previously-published pollen record from this site has no chronological information, but suggests that the dominant forest species have been present throughout but varied substantially in their relative abundance over Holocene time. The stable carbon isotope value of organic matter (δ13COM) showed a pattern of increasingly more-positive values from 10,000 to 8000 years ago, consistent with decreased stomatal conductance in woody vegetation and an early Holocene drying trend. An overall Holocene decrease in rainfall over the Pacific near Hawaii is also observed in transient model simulations forced by insolation, greenhouse gases and ice. Between 4000 and 2000 years ago, more-negative δ13COM values and a maximum in organic carbon accumulation suggest a period of somewhat wetter climate that seems to have ended around 2,000 years ago. The distribution and abundance of leaf wax compounds including alkyl lipids in the profile suggests a lower relative abundance of woody species 8000 to 3000 years ago and a shift towards more woody inputs preceding the arrival of humans. Taken together, evidence from this windward location shows an overall decrease in rainfall during the Holocene in general agreement with other Hawaii proxy data and model simulations. But these new data also show important millennial-scale changes in hydroclimate and ecosystem responses. Comparison to proxy records at leeward Hawaii locations revealed an onset of peat formation at around the same time at a similar elevation in the early Holocene, but both similarities and differences in hydroclimate trends, and overall complex pattern relative to reconstructions of Holocene El Nino variation, suggesting influence of both tropical and extratropical Pacific circulation.
Comparison of Shear Strength Properties for Undisturbed and Reconstituted Parit Nipah Peat, Johor
NASA Astrophysics Data System (ADS)
Azhar, A. T. S.; Norhaliza, W.; Ismail, B.; Abdullah, M. E.; Zakaria, M. N.
2016-11-01
Shear strength of soil is required to determine the soil stability and design the foundations. Peat is known as a soil with complex natural formations which also contributes problems to the researchers, developers, engineers and contractors in constructions and infrastructures. Most researchers conducted experiment and investigation of shear strength on peat using shear box test and simple shear test, but only a few had discovered the behavior of peat using triaxial consolidated undrained test. The aim of this paper is to determine the undrained shear strength properties of reconstituted peat and undisturbed peat of Parit Nipah, Johor for comparison purposes. All the reconstituted peat samples were formed with the size that passed opening sieve 3.35 mm and preconsolidation pressure at 100 kPa. The result of undrained shear strength of reconstituted peat was 21kPa for cohesion with the angle of friction, 41° compare to the undisturbed peat with cohesion 10 kPa and angle of friction, 16°. The undrained shear strength properties result obtained shows that the reconstituted peat has higher strength than undisturbed peat. For relationship deviator stress-strain, σd max and excess pore pressure, Δu, it shows that both of undisturbed and reconstituted gradually increased when σ’ increased, but at the end of the test, the values are slightly dropped. The physical properties of undisturbed and reconstituted peat were also investigated to correlate with the undrained shear strength results.
Organo, C; Lee, E M; Menezes, G; Finch, E C
2005-12-01
Annually, approximately 15% of Ireland's electricity requirement is provided through the combustion of 3 x 10(6) tonnes of peat. While the literature on coal-fired power generation is quite abundant, studies on the peat-fired power generation industry from a radiological point of view are scarce. A study of the largest Irish peat-fired power plant was initiated to review the potential occupational radiation exposures arising from the occurrence of naturally occurring radioactive material (NORM) at different stages of the industrial process and to investigate any radiological health consequences that may arise should peat fly ash be used as a component of building materials. Ambient gamma dose rate measurements, radon measurements, quantification of the occupational exposure from inhalation of airborne particles (personal air sampling) and gamma spectrometry analysis of peat, peat ash and effluent samples from the ash ponds were undertaken. The results indicate that the radiation dose received by any worker involved in the processing of the peat and the handling of the ash resulting from peat combustion does not exceed 150 microSv per annum. Regulatory control of the peat-fired power generation is therefore unnecessary according to the Irish legislation with regards to NORM. The potential use of peat fly ash as a by-product in the building industry was also found to have a negligible radiological impact for construction workers and for members of the public.
A Permeable Active Amendment Concrete (PAAC) for Contaminant Remediation and Erosion Control
2012-06-01
124: 131 -143. SRNL-STI-2012-00356 70 Tessier, A., Campbell, P.G.C., and Bisson, M. 1979. Sequential extraction procedure for the speciation of...Bulk Density, Dry, (AI( C-D)]* p, pcf 134.85 Bulk Dens ity after Immersion, [BI(C-D)]* p, pcf 146.65 Bulk Density after Immersion & Boiling1 jCI (C
Removal of metal(oid)s from contaminated water using iron-coated peat sorbent.
Kasiuliene, Alfreda; Carabante, Ivan; Bhattacharya, Prosun; Caporale, Antonio Giandonato; Adamo, Paola; Kumpiene, Jurate
2018-05-01
This study aimed at combining iron and peat to produce a sorbent suitable for a simultaneous removal of cations and anions from a solution. Peat powder, an industrial residue, was coated with iron by immersing peat into iron salt solutions. The adsorption efficiency of the newly produced sorbent towards As, Cr, Cu and Zn was tested by means of batch adsorption experiments at a constant pH value of 5. Coating of Fe on peat significantly increased the adsorption of As (from <5% to 80%) and Cr (from <3% to 25%) in comparison to uncoated peat. Removal of cations on coated peat slightly decreased (by 10-15%), yet remained within acceptable range. Electron Microscopy combined with X-Ray Energy Dispersive Spectroscopy revealed that iron coating on the peat was rather homogenous and As and Cr were abundantly adsorbed on the surface. By contrast, Cu and Zn displayed a sparing distribution on the surface of the iron coated peat. These results indicate that iron-peat simultaneously target sufficient amounts of both cations and anions and can be used for a one-step treatment of contaminated groundwater. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Relationship between peat geochemistry and depositional environments, Cranberry Island, Maine
Raymond, R.; Cameron, C.C.; Cohen, A.D.
1987-01-01
The Heath, Great Cranberry Island, Maine, offers a unique locality for studying lateral and vertical relationships between radically different peat types within 1 km2. The majority of The Heath is a Sphagnum moss-dominated raised bog. Surrounding the raised bog is a swamp/marsh complex containing grass, sedge, Sphagnum moss, alder, tamarack, and skunk cabbage. Swamp/ marsh-deposited peat occurs both around the margins of The Heath and under Sphagnum-dominated peat, which was deposited within the raised bog. A third peat type, dominated by herbaceous aquatics, is present underlying the swamp/marsh-dominated peat but is not present as a dominant botanical community of The Heath. The three peat types have major differences in petrographic characteristics, ash contents, and associated minerals. Sulfur contents range from a low of 0.19 wt.% (dry) within the raised bog to a high of 4.44 wt% (dry) near the west end of The Heath, where swamp/marsh peat occurring directly behind a storm beach berm has been influenced by marine waters. The presence of major geochemical variations within a 1-km2 peat deposit suggests the need for in-depth characterization of potential peat resources prior to use. ?? 1987.
NASA Astrophysics Data System (ADS)
Swails, E.; Jaye, D.; Verchot, L. V.; Hergoualc'h, K.; Wahyuni, N. S.; Borchard, N.; Lawrence, D.
2015-12-01
In Indonesia, peatlands are a major and growing source of greenhouse gas emissions due to increasing pressure from oil palm and pulp wood plantations. We are using a combination of field measures, laboratory experiments, and remote sensing to investigate relationships among land use, climatic factors and biogeochemical controls, and their influence on trace gas fluxes from tropical peat soils. Analysis of soils collected from peat sites on two major islands indicated substantial variation in peat substrate quality and nutrient content among land uses and geographic location. We conducted laboratory incubations to test the influence of substrate quality and nutrient availability on CO2 production from peat decomposition. Differences in peat characteristics attributable to land use change were tested by comparison of forest and oil palm peat samples collected from the same peat dome in Kalimantan. Regional differences in peat characteristics were tested by comparison of samples from Sumatra with samples from Kalimantan. We conducted additional experiments to test the influence of N and P availability and labile carbon on CO2 production. Under moisture conditions typical of oil palm plantations, CO2 production was higher from peat forest samples than from oil palm samples. CO2 production from Sumatra and Kalimantan oil palm samples was not different, despite apparent differences in nutrient content of these soils. N and P treatments representative of fertilizer application rates raised CO2 production from forest samples but not oil palm samples. Labile carbon treatments raised CO2 production in all samples. Our results suggest that decomposition of peat forest soils is nutrient limited, while substrate quality controls decomposition of oil palm soils post-conversion. Though fertilizer application could accelerate peat decomposition initially, fertilizer application may not influence long-term CO2 emissions from oil palm on peat.
Dumont, Eric; Cabral, Flavia Da Silva; Le Cloirec, Pierre; Andrès, Yves
2013-01-01
This study aims to evaluate the feasibility of using a nutritional synthetic material (UP20) combined with fibrous peat as a packing material in treating H2S (up to 280 ppmv). Three identical laboratory-scale biofilters with different packing material configurations (peat only; peat + UP20 in a mixture; peat + UP20 in two layers) were used to determine the biofilter performances. The superficial velocity of the polluted gas on each biofilter was 65 m/h (gas flow rate 0.5 Nm3 /h) corresponding to an empty bed residence time = 57 s. Variations in elimination capacity, removal efficiency, temperature and pH were tracked during 111 d. A removal efficiency of 100% was obtained for loading rates up to 6 g/m3/h for the biofilter filled with 100% peat, and up to 10 g/m3/h for both biofilters using peat complemented with UP20. For higher loading rates (up to 25.5 g/m3/h), the configuration ofpeat-UP20 in a mixture provided the best removal efficiencies (around 80% compared to 65% for the configuration of peat-UP20 in two layers and 60% for peat only). Microbial characterization highlighted that peat is able to provide sulfide-oxidizing bacteria. Through kinetic analysis (Ottengrafand Michaelis-Menten models were applied), it appeared that the configuration peat-UP20 in two layers (80/20 v/v) did not show significant improvement compared with peat alone. Although the configuration of peat-UP20 in a mixture (80/20 v/v) offered a real advantage in improving H2S treatment, it was shown that this benefit was related to the bed configuration rather than the nutritional properties of UP20.
The Paradox of Excess Nitrogen in Boreal Peatlands: Biogeochemical Gaps in Nitrogen Cycling Revealed
NASA Astrophysics Data System (ADS)
Vile, M. A.; Prsa, T.; Wieder, R.; Lamers, L. P.
2011-12-01
Globally, peatlands cover 3-4 % of the Earth's land surface (over 4 million km 2, yet they store 25-30 % of the world's soil carbon (C) and 9-16% of the world's soil nitrogen (N, 8-15 Pg) in peat. As in other terrestrial ecosystems, the cycling of C and N is closely linked, especially for ombrotrophic bogs. Bogs receive nutrient and water exclusively from the atmosphere, which ensures an N-limited, nutrient-poor habitat. In Alberta, NW Canada, peatlands have received exceptionally low atmospheric inputs of N (< 1 7 kg/ha/yr) from their first introduction on the landscape ~ 7000 yrs bp, up to the present time. Paradoxically, despite these low inputs of atmospheric N deposition, bases on 210-fixation Pb dating of peat cores, we have shown that over the past 50 years these bogs have accumulated approximately 11-21 times more N in peat than can be explained by inputs of atmospheric N. A likely missing input is N2-fixation from cyanobacteria associated with Sphagnum mosses, however this process has been largely overlooked in boreal peatlands. Here we demonstrate the importance of N2-fixation in explaining the high accumulation rates of N found in unpolluted, boreal bogs of western Canada. Calibrated (using theoretical ratio of 1.5-3:1) rates of N2-fixation for 4 bogs in northern Alberta ranged from 1.6 to 8.0 ± 0.7 kg/ha/yr, indicating that 42-58 % of the N accumulated over in peat, can be attributed to biological N2-fixation. Although most of northern Alberta's peatlands continue to receive exceptionally low atmospheric N deposition rates, over the last 3 decades, rapid development and industrial expansion of Alberta's Oil Sands Mining (OSM) potentially threaten the pristine nature of peatlands through regionally elevated deposition of N-compounds (NOx). Prior to OSM, N inputs to bogs were limited exclusively to (1) biological N fixation, and (2) bulk background deposition. We examined the response of peatlands located in the OSM area to enhanced N deposition. Despite the large accumulation rates of N in peat, mean N:P ratios in Sphagnum moss capitula (11.0 ± 3.4; mean ± stdev) suggest that peat of boreal western Canada is still severely N limited and not limited by phosphorus. Collectively, these data underscore the severity of N-limitation in pristine bogs and their potential sensitivity to increased N inputs from oils sands mining. Additionally, because the majority of the data generated for N stress in peatlands is from eastern Canada and western Europe, we stress the need to encompass the response of bogs to N deposition within the bounds of the low N deposition gradient. We postulate the loss of symbiosis between Sphagnum and N-fixing microorganisms (cyanobacteria, bacteria) in nitrogen-polluted areas, and indicate its consequences at the species level (trade-off) and ecosystem level (including C sequestration).
Huet, J; Druilhe, C; Trémier, A; Benoist, J C; Debenest, G
2012-06-01
This study aimed to experimentally acquire evolution profiles between depth, bulk density, Free Air Space (FAS), air permeability and thermal conductivity in initial composting materials. The impact of two different moisture content, two particle size and two types of bulking agent on these four parameters was also evaluated. Bulk density and thermal conductivity both increased with depth while FAS and air permeability both decreased with it. Moreover, depth and moisture content had a significant impact on almost all the four physical parameters contrary to particle size and the type of bulking agent. Copyright © 2012 Elsevier Ltd. All rights reserved.
Properties of medium-density fiberboard related to hardwood specific gravity
George E. Woodson
1976-01-01
Boards of acceptable quality were made from barky material, pressure-refined from 14 species of southern hardwoods. Static bending and tensile properties (parallel to surface) of specimens were negatively correlated to stem specific gravity (wood plus bark), chip bulk density, and fiber bulk density. Bending and tensile properties increased with increasing...
Bulk densities of materials from selected pine-site hardwoods
Clyde Vidrine; George E. Woodson
1982-01-01
Bulk densities of hardwood materials from low and high density species were determined for green and air-dry conditions. Materials consisted of whole-tree chips, bark-free chips, bark as collected from three types of debarkers (ring, rosser head, and drum debarkers) sawdust, planer shavings, flakes, logging residues, baled branchwood, steel-strapped firewood, and...
Soil water retention of a bare soil with changing bulk densities
USDA-ARS?s Scientific Manuscript database
Tillage changes the bulk density of the soil, lowering the density initially after which it increases as the soil settles. Implications of this for soil water content and soil water potential are obvious, but limited efforts have been made to monitor these changes continuously. We present in-situ me...
A Study on Factors Affecting Strength of Solidified Peat through XRD and FESEM Analysis
NASA Astrophysics Data System (ADS)
Rahman, J. A.; Napia, A. M. A.; Nazri, M. A. A.; Mohamed, R. M. S. R.; Al-Geethi, A. S.
2018-04-01
Peat is soft soil that often causes multiple problems to construction. Peat has low shear strength and high deformation characteristics. Thus, peat soil needs to be stabilized or treated. Study on peat stabilization has been conducted for decades with various admixtures and mixing formulations. This project intends to provide an overview of the solidification of peat soil and the factors that affecting the strength of solidified peat soil. Three types of peats which are fabric, hemic and sapric were used in this study to understand the differences on the effect. The understanding of the factors affecting strength of solidified peat in this study is limited to XRD and FESEM analysis only. Peat samples were collected at Pontian, Johor and Parit Raja, Johor. Peat soil was solidified using fly ash, bottom ash and Portland cement with two mixing formulation following literature review. The solidified peat were cured for 7 days, 14 days, 28 days and 56 days. All samples were tested using Unconfined Compressive Strength Test (UCS), X-ray diffraction (XRD) and Field Emission Scanning Electron Microscope (FESEM). The compressive strength test of solidified peat had shown consistently increase of sheer strength, qu for Mixing 1 while decrease of its compressive strength value for Mixing 2. All samples were tested and compared for each curing days. Through XRD, it is found that all solidified peat are dominated with pargasite and richterite. The highest qu is Fabric Mixing 1(FM1) with the value of 105.94 kPa. This sample were proven contain pargasite. Samples with high qu were observed to be having fly ash and bottom ash bound together with the help of pargasite. Sample with decreasing strength showed less amount of pargasite in it. In can be concluded that XRD and FESEM findings are in line with UCS values.
Monitoring the effect of restoration measures in Indonesian peatlands by radar satellite imagery.
Jaenicke, J; Englhart, S; Siegert, F
2011-03-01
In the context of the ongoing climate change discussions the importance of peatlands as carbon stores is increasingly recognised in the public. Drainage, deforestation and peat fires are the main reasons for the release of huge amounts of carbon from peatlands. Successful restoration of degraded tropical peatlands is of high interest due to their huge carbon store and sequestration potential. The blocking of drainage canals by dam building has become one of the most important measures to restore the hydrology and the ecological function of the peat domes. This study investigates the capability of using multitemporal radar remote sensing imagery for monitoring the hydrological effects of these measures. The study area is the former Mega Rice Project area in Central Kalimantan, Indonesia, where peat drainage and forest degradation is especially intense. Restoration measures started in July 2004 by building 30 large dams until June 2008. We applied change detection analysis with more than 80 ENVISAT ASAR and ALOS PALSAR images, acquired between 2004 and 2009. Radar signal increases of up to 1.36 dB show that high frequency multitemporal radar satellite imagery can be used to detect an increase in peat soil moisture after dam construction, especially in deforested areas with a high density of dams. Furthermore, a strong correlation between cross-polarised radar backscatter coefficients and groundwater levels above -50 cm was found. Monitoring peatland rewetting and quantifying groundwater level variations is important information for vegetation re-establishment, fire hazard warning and making carbon emission mitigation tradable under the voluntary carbon market or REDD (Reducing Emissions from Deforestation and Degradation) mechanism. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ono, Eisuke; Umemura, Mitsutoshi; Ishida, Takuya; Takenaka, Chisato
2015-12-01
Seven gouge cores in the middle Sepik Plain (northern Papua New Guinea) were bored to clarify the depositional age and the chemical characteristics of the tropical peat. The weakly-acidic peat layer (3-4 m thick) is distributed around the south bank of the Blackwater Lakes. The peat layer consists mainly of sago palm and grass remains within a mineral matrix of very fine sand and clay. Radiocarbon dating indicates that the peat's formation had commenced by 3,710-3,560 cal BP. Nitrogen and exchangeable potassium reach their highest values in the upper 60 cm of the peat column. Conversely, exchangeable sodium, calcium and magnesium, as well as carbon, increase their values with depth in the peat. These differences in the exchangeable cations' contribution suggest changes in the plant species, which were decomposed during the peat's formation.
Apodaca, Lori E.
2013-01-01
The article looks at the U.S. peat market as of July 2013. Peat is produced from deposits of plant organic materials in wetlands and includes varieties such as reed-sedge, sphagnum moss, and humus. Use for peat include horticultural soil additives, filtration, and adsorbents. Other topics include effects of environmental protection regulations on peat extraction, competition from products such as coir, composted organic waste, and wood products, and peatland carbon sinks.
A Model for Partitioning CO2 Flux and Calculating Transformation of Soil C Fractions
NASA Astrophysics Data System (ADS)
Zhang, S.; Noormets, A.; Tu, C.; King, J.
2011-12-01
It has been recognized that mechanistic understanding of soil organic carbon (SOC) mineralization requires partitioning of SOM to different sub-pools, whose turnover kinetics differ. Different fractionation methods have been developed to separate and analyze SOC fractions with different turnover rates, but some recent studies have called to questions earlier assumptions about chemical structure of C compounds and their recalcitrance to decomposition. To our knowledge, there is also no model that would bring together the information on various indicators of recalcitrance in a kinetic model framework . Here we deploy an analytical framework to partition soil net CO2 emissions to three density fractions (F1, F2, and F3, in the order of increasing density) in a peat soil and follow mineralization-related transformations (from lighter to heavier fractions). We followed the changes in total C content [C] and 13C of each three density fractions through a 3-month incubation study. We partitioned the CO2 produced by the soil between the different fractions using 13C and [C] change data. Applying this approach to a factorial experiment, we found that partitioning of CO2 emission and transformation rates among fractions differed between the organic top soil and deeper sandy soil. At depth of 45-75cm, almost no C was released through CO2 emission for all three fractions, while at 0-30cm, emission reached 0.2 g C/g soil over the incubation period, an average of 99% of which was from F2. Mineralization-related transformation rate at 45-75cm was 0.02 g soil/g soil with no significant differences among fractions. At 0-30cm, out of one gram of initial bulk soil, an average of 0.31g F1 transformed to F2, whereas no F2 was transformed to F3. Although the current study was carried out on a high-organic soil, the partitioning method is applicable to all soil types.
NASA Astrophysics Data System (ADS)
Packalen, M. S.; Finkelstein, S. A.; McLaughlin, J.
2015-12-01
Global peatlands currently store more than 650 Pg of carbon (C) that has accumulated over millennia, and contributed to a net climatic cooling. However, controls on spatial-temporal C dynamics may differ regionally. With at least 30 Pg C sequestered in the Hudson Bay Lowlands Canada (HBL), the vulnerability of this globally significant peat C reservoir remains uncertain under conditions of a changing climate and enhanced anthropogenic pressure. Here, we synthesize our current understanding of controls on C dynamics in the HBL using detailed peat records. Our data reveal that widespread bog-fen patterning across the HBL is related to the distribution of peat C in space and time, indicating that topographic and ecohydroclimatic controls are potentially important determinants of C mass accretion. We find that while peat age is closely related to timing of land emergence and peat depth in the HBL, considerable variation in the total C mass among sites of similar peat age suggests that additional factors may further explain trends in peat C dynamics. Among these factors, we find that temperature, precipitation, and potential evapotranspiration in the HBL account for up to half of the variation in the distribution of the peat C mass, whereby regions with warmer and wetter conditions support larger peat C masses. Moreover, we find that the rate of C accumulation is greatest for young fen peatlands developing during warmer mid-Holocene climates; but that long-term C stores are greatest in association with bog peatlands. Although nearly two-thirds of HBL peat C is of late Holocene age, most of the reconstructed potential C losses also occurred during the late Holocene, as previously accrued peat decayed. Our findings support the hypothesis that both climate and ecohydrological factors are important drivers of peat C dynamics in the HBL, alongside geophysical controls on the timing of peat initiation. As the HBL peat complex continues to rapidly expand, it may remain a globally significant C reservoir. However, conservative climate scenarios predict warmer and wetter conditions in the next century, beyond the range of past climate variability. Ongoing elucidation of controls on peat C dynamics may further inform our understanding of the response of the HBL peat C reservoir to future climate and resource management scenarios.
The wettability of selected organic soils in Poland
NASA Astrophysics Data System (ADS)
Całka, A.; Hajnos, M.
2009-04-01
The wettability was measured in the laboratory by means of two methods: Water Drop Penetration Time (WDPT) test and Thin Column Wicking (TCW) method. WDPT is fast and simple method and was used to investigate potential water repellency of analyzed samples. TCW is an indirect method and was used to determine contact angles and surface free energy components. The measurement was performed in horizontal teflon chambers for thin-layer chromatography, adapted for tubes 10 cm long. The experiment was carried out on muck soils (samples were taken from two levels of soil profile: 0-20 cm and 20-40 cm) and peat soils. There were two types of peats: low-moor peats and high moor peats. Samples of low-moor peats were taken from level 25-75 cm (alder peat) and 75-125cm (sedge peat) and 25-75 cm (peloid peat). Samples of high moor peats from level 25-175 cm (sphagnum peat) and 175-225 cm (sphagnum peat with Eriophorum). There was found no variability in persistence of potential water repellency but there were differences in values of contact angles of individual soil samples. Both muck and peat samples are extremely water repellent soils. Water droplets persisted on the surface of soils for more than 24 hours. Contact angles and surface free energy components for all samples were differentiated. Ranges of water contact angles for organic soils are from 27,54o to 96,50o. The highest values of contact angles were for sphagnum peats, and the lowest for muck soil from 20-40 cm level. It means, that there are differences in wettability between these samples. Muck soil is the best wettable and sphagnum peats is the worst wettable soil. If the content of organic compounds in the soil exceeds 40% (like in peats), the tested material displays only dispersion-type interactions. Therefore for peat soils, the technique of thin column wicking could only be used to determine the dispersive component γiLW. For muck soils it was also determined electron-acceptor (Lewis acid) γ+ and electron-donor (Lewis base) γ- surface free energy components. The authors gratefully acknowledge the Ministry of Science and Higher Education for financial support of this work (grant No. N N310 149335).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, A.B.; Malavassi, L.; Ramirez, O.
1989-05-01
As a part of the Agency for International Development-funded cooperative project between Los Alamos and Costa Rica, the burning characteristics of Costa Rican peat were to be tested in an application. The cement plant owned by Industria National de Cemento in Cartago has a capability to handle solid fuel and was chosen for the burn demonstration. The Jungle No. 1 Peat Deposit near El Cairo was chosen as the site of the peat excavation. This peat production methodology study covers project site selection, installation of an access road and clearing of the jungle vegetation, removal of an upper layer ofmore » organic peat, excavation of fuel-grade peat, transport of the peat to the drying site, and drying and stockpiling of the finished product. As of this date the peat removal for the demonstration project has been started, and a description of the operation is included as an appendix to this paper. 10 figs.« less
Investigation of bacterial communities in peat land of the Gahai Lake natural conservation area
NASA Astrophysics Data System (ADS)
Bai, Yani; Wang, Jinchang; Zhan, Zhigao; Guan, Limei; Jin, Liang; Zheng, Guohua
2017-10-01
Peat is involved in the global carbon cycle and water conservation; therefore, it is implicated in global environmental change. Microorganisms play an important role in the function of peat. To investigate the bacterial communities in peat of Gahai Lake, different locations and depths were sampled and Illumina Miseq sequencing was used to analyze the microbial community. Chemical properties of peat samples were analyzed by China state standard methods (GB methods). The results showed that bacterial communities were affected by depth, with bacterial diversity and community structure at 90 and 120 cm significantly different from that at 10, 30 and 50 cm depth from the peat surface. Chemical properties of peat land including organic matter, total nitrogen and humus content did not significantly influence bacterial community structure in peat, with only one group from genus Rhizomicrobium that was significantly correlated with total nitrogen. A substantial proportion of the bacterial sequences were unclassified (1.4%), which indicates the great application potential of peat in the Gahai Lake natural conservation area in the future.
Physical and chemical characteristics of fibrous peat
NASA Astrophysics Data System (ADS)
Sutejo, Yulindasari; Saggaff, Anis; Rahayu, Wiwik; Hanafiah
2017-11-01
Banyuasin is one of the regency in South Sumatera which has an area of 200.000 Ha of peat land. Peat soil are characterized by high compressibility parameters and low initial shear strength. Block sampling method was used to obtain undisturbed sample. The results of this paper describe the characteristics of peat soil from physical and chemical testing. The physical and chemical characteristics of peat include water content (ω), specific gravity (Gs), Acidity (pH), unit weight (γ), and ignition loss tests. SEM and EDS test was done to determine the differences in fiber content and to analyze chemical elements of the specimen. The average results ω, Gs, and pH are 263.538 %, 1.847, and 3.353. Peat is classified in H4 (by Von Post). The results of organic content (OC), ash content (AC), and fiber content (FC) are found 78.693 %, 21.310 %, and 73.703 %. From the results of physical and chemical tests, the peat in Banyuasin is classified as fibrous peat. All the results of the characteristics and classification of fibrous peat compared with published data were close.
NASA Astrophysics Data System (ADS)
Byun, E.; Finkelstein, S. A.; Cowling, S. A.; Badiou, P.
2017-12-01
Organic matter accumulation often exceeds total respiration in wetlands, which makes them a sink in the global carbon cycle. Efforts are ongoing to inventory global wetland carbon stocks, but there remain non-negligible uncertainties for the present day as well as for the Holocene. Recent work compiling regional data for global-scale estimations is likely to be conservative as there are still poorly evaluated sites. In temperate regions, wetland conversion for other land uses has been so prevalent that accurate estimates of the extent of natural wetlands prior to disturbance have been difficult to achieve. Most studies of long-term peat carbon accumulation address boreal/subarctic bogs and fens, and more recently, tropical peat swamps. Temperate swamps and marshes are often categorized as non-peat forming wetlands and have not been explicitly considered in Holocene carbon storage. This study aims to reassess wetlands in southern Ontario as an example of an underestimated organic carbon stock. By combining two wetland maps, one for pre-settlement (before 1850 AD) extent and the other for current land cover, pre-settlement wetland cover was reconstructed and assigned to one of five wetland classes (bog, fen, tree/shrub swamp, and marsh). Carbon density for each wetland class was obtained from a peatland inventory for southeastern Ontario, including peat core data from swamp and marsh sites. Potential organic carbon stock in each wetland class was quantified by the product of the extent and the carbon density, resulting in an estimate of 3.3 PgC for pre-settlement wetlands in the study area, and 1.3 PgC stored in present-day wetlands. The difference gives 2 PgC loss for the past 150 years, but this represents a maximum potential as 56-81% of the original wetlands were converted to croplands that will retain some carbon. This study highlights the importance of temperate wetlands not included in syntheses of global peatland carbon over the Holocene. Southern Ontario is only a part of the enormous landmass in the temperate Northern Hemisphere, which suggests potentially high carbon storage when scaling up globally. Future work is needed to better quantify all the potential wetland carbon through more studies of organic carbon stocks in swamps and marshes, the most common wetland types in this region of the temperate zone.
NASA Astrophysics Data System (ADS)
Dommain, René; Couwenberg, John; Joosten, Hans
2011-04-01
Tropical peatlands of SE-Asia represent a significant terrestrial carbon reservoir of an estimated 65 Gt C. In this paper we present a comprehensive data synthesis of radiocarbon dated peat profiles and 31 basal dates of ombrogenous peat domes from the lowlands of Peninsular Malaysia, Sumatra and Borneo and integrate our peatland data with records of past sea-level and climate change in the region. Based on their developmental features three peat dome regions were distinguished: inland Central Kalimantan (Borneo), Kutai basin (Borneo) and coastal areas across the entire region. With the onset of the Holocene the first peat domes developed in Central Kalimantan as a response to rapid post-glacial sea-level rise over the Sunda Shelf and intensification of the Asian monsoon. Peat accumulation rates in Central Kalimantan strongly declined after 8500 cal BP in close relation to the lowering rate of the sea-level rise and possibly influenced by the regional impact of the 8.2 ka event. Peat growth in Central Kalimantan apparently ceased during the Late Holocene in association with amplified El Niño activity as exemplified by several truncated peat profiles. Peat domes from the Kutai basin are all younger than ˜8300 cal BP. Peat formation and rates of peat accumulation were driven by accretion rates of the Mahakam River and seemingly independent of climate. Most coastal peat domes, the largest expanse of SE-Asian peatlands, initiated between 7000 and 4000 cal BP as a consequence of a Holocene maximum in regional rainfall and the stabilisation and subsequent regression of the sea-level. These boundary conditions induced the highest rates of peat accumulation of coastal peat domes. The Late Holocene sea-level regression led to extensive new land availability that allowed for continued coastal peat dome formation until the present. The time weighted mean Holocene peat accumulation rate is 0.54 mm yr -1 for Central Kalimantan, 1.89 mm yr -1 for Kutai and 1.77 mm yr -1 for coastal domes of Sumatra and Borneo. The mean Holocene carbon sequestration rates amount to 31.3 g C m -2 yr -1 for Central Kalimantan and 77.0 g C m -2 yr -1 for coastal sites, which makes coastal peat domes of south-east Asia the spatially most efficient terrestrial ecosystem in terms of long term carbon sequestration.
Chen, Weixiao; Wang, Hui; Gao, Qian; Chen, Yin; Li, Senlin; Yang, Yu; Werner, David; Tao, Shu; Wang, Xilong
2017-11-01
To elucidate the environmental fate of polycyclic aromatic hydrocarbons (PAHs) once released into soil, sixteen humic acids (HAs) and one humin (HM) fractions were sequentially extracted from a peat soil, and sixteen priority PAHs in these humic substances (HSs) were analyzed. It was found that the total concentration of 16 PAHs (∑16PAHs) increased evidently from HA1 to HA16, and then dramatically reached the highest value in HM. The trend of ∑16PAHs in HAs relates to surface carbon and C-H/C-C contents, the bulk aliphatic carbon content and aliphaticity, as well as the condensation enhancement of carbon domains, which were derived from elemental composition, XPS, 13 C NMR, as well as thermal analyses. HM was identified to be the dominant sink of 16 PAHs retention in soil, due to its aliphatic carbon-rich chemical composition and the highly condensed physical makeup of its carbon domains. This study highlights the joint roles of the physical and chemical properties of HSs in retention of PAHs in soil and the associated mechanisms; the results are of significance for PAH-polluted soil risk assessment and remediation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mercury evasion from a boreal peatland shortens the timeline for recovery from legacy pollution.
Osterwalder, Stefan; Bishop, Kevin; Alewell, Christine; Fritsche, Johannes; Laudon, Hjalmar; Åkerblom, Staffan; Nilsson, Mats B
2017-11-22
Peatlands are a major source of methylmercury that contaminates downstream aquatic food webs. The large store of mercury (Hg) in peatlands could be a source of Hg for over a century even if deposition is dramatically reduced. However, the reliability of Hg mass balances can be questioned due to missing long-term land-atmosphere flux measurements. We used a novel micrometeorological system for continuous measurement of Hg peatland-atmosphere exchange to derive the first annual Hg budget for a peatland. The evasion of Hg (9.4 µg m -2 yr -1 ) over the course of a year was seven times greater than stream Hg export, and over two times greater than wet bulk deposition to the boreal peatland. Measurements of dissolved gaseous Hg in the peat pore water also indicate Hg evasion. The net efflux may result from recent declines in atmospheric Hg concentrations that have turned the peatland from a net sink into a source of atmospheric Hg. This net Hg loss suggests that open boreal peatlands and downstream ecosystems can recover more rapidly from past atmospheric Hg deposition than previously assumed. This has important implications for future levels of methylmercury in boreal freshwater fish and the estimation of historical Hg accumulation rates from peat profiles.
Jasinski, S.M.
2006-01-01
In 2005, peat was harvested in 15 US states. Florida, Michigan and Minnesota accounted for more than 80% of the US production. Reed-sedge was the dominant variety of peat harvested in the United States. More than 56% of all peat used in the US was imported from Canada. With the growing interest in gardening, landscaping related to home construction and golf courses, peat usage is expected to remain near current levels during the next several years.
Influence of peat formation conditions on the transformation of peat deposit organic matter
NASA Astrophysics Data System (ADS)
Serebrennikova, O. V.; Strelnikova, E. B.; Preis, Yu I.; Duchko, M. A.
2015-11-01
The paper studies the individual composition of n-alkanes, polycycloaromatic hydrocarbons, steroids, bi-, tri-, and pentacyclic terpenoids of two peat deposits of rich fen Kirek located in Western Siberia. Considering the individual n-alkanes concentrations, some indexes were calculated to estimate the humidity during peat formation. It was shown that the pH of peat medium primarily affects steroids, tri- and pentacyclic terpenoids transformations.
Content of radionuclides in the peat deposit of swamps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nifontova, M.G.; Makovskii, V.I.
1995-11-01
The results are given of comparative analysis of the content and transformation of {sup 90}Sr and {sup 137}Cs over a peat deposit of swamps. During radioecological study, account was taken of the quantitative composition and physicochemical properties of the peat, as well as of the specific nature of the entry of radioactive products to peat deposits. Considering the increased capacity of peat for accumulating radionuclides and the specific features of sorption processes in a peat deposit, it is expedient to utilize swamps as a convenient natural object for continuous monitoring of radioactive contamination of the environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corvinus, D.A.
1982-01-01
The Okefenokee Swamp, over 400,000 acres, is a swamp-marsh complex dominated by Taxodium-swamp vegetaion on its west side and Nymphaea-marsh vegetation onits east side. The Albemarle-Pamlico Peninsular Swamps primarily support a pocosin-bay vegetation. The Taxodium-dominated peats of the Okefenokee are more similar botanically to the Albemarle-Pamlico bay peats than are the Okefenokee Nymphaea-dominated peats. Some petrographic characteristics are common to all three peat types. The majority of cell walls in the peat exhibit colors (yellow to orange to red) which they did not display in their living state. This is believed to be from impregnation by the various cell fillingsmore » present in the peats. Unoxidized fragmented (granular) material in all three peat types usually occurs in larger amounts than oxidized (darkened) material. In Taxodium-dominated and bay peats the fragmented matrix is also usually more prevalent than the preserved material (intact cell walls and cell fillings). On the other hand, preserved material is most common in Nymphaea-dominated peats. It is believed that the majority of fragmented material is derived from the surface litter and that swamp vegetation contributes more surface litter than does marsh vegetation.« less
Emissions of volatile organic compounds and particulate matter from small-scale peat fires
NASA Astrophysics Data System (ADS)
George, I. J.; Black, R.; Walker, J. T.; Hays, M. D.; Tabor, D.; Gullett, B.
2013-12-01
Air pollution emitted from peat fires can negatively impact regional air quality, visibility, climate, and human health. Peat fires can smolder over long periods of time and, therefore, can release significantly greater amounts of carbon into the atmosphere per unit area compared to burning of other types of biomass. However, few studies have characterized the gas and particulate emissions from peat burning. To assess the atmospheric impact of peat fires, particulate matter (PM) and volatile organic compounds (VOCs) were quantified from controlled small-scale peat fire experiments. Major carbon emissions (i.e. CO2, CO, methane and total hydrocarbons) were measured during the peat burn experiments. Speciated PM mass was also determined from the peat burns from filter and polyurethane foam samples. Whole air samples were taken in SUMMA canisters and analyzed by gas chromatography-mass spectrometry to measure 82 trace VOCs. Additional gaseous carbonyl species were measured by sampling with dinitrophenylhydrazine-coated cartridges and analyzed with high performance liquid chromatography. VOCs with highest observed concentrations measured from the peat burns were propylene, benzene, chloromethane and toluene. Gas-phase carbonyls with highest observed concentrations included acetaldehyde, formaldehyde and acetone. Emission factors of major pollutants will be compared with recommended values for peat and other biomass burning.
Revised Thickness of the Lunar Crust from GRAIL Data: Implications for Lunar Bulk Composition
NASA Technical Reports Server (NTRS)
Taylor, G. Jeffrey; Wieczorek, Mark A.; Neumann, Gregory A.; Nimmo, Francis; Kiefer, Walter S.; Melosh, H. Jay; Phillips, Roger J.; Solomon, Sean C.; Andrews-Hanna, Jeffrey C.; Asmar, Sami W.;
2013-01-01
High-resolution gravity data from GRAIL have yielded new estimates of the bulk density and thickness of the lunar crust. The bulk density of the highlands crust is 2550 kg m-3. From a comparison with crustal composition measured remotely, this density implies a mean porosity of 12%. With this bulk density and constraints from the Apollo seismic experiment, the average global crustal thickness is found to lie between 34 and 43 km, a value 10 to 20 km less than several previous estimates. Crustal thickness is a central parameter in estimating bulk lunar composition. Estimates of the concentrations of refractory elements in the Moon from heat flow, remote sensing and sample data, and geophysical data fall into two categories: those with refractory element abundances enriched by 50% or more relative to Earth, and those with abundances the same as Earth. Settling this issue has implications for processes operating during lunar formation. The crustal thickness resulting from analysis of GRAIL data is less than several previous estimates. We show here that a refractory-enriched Moon is not required
NASA Astrophysics Data System (ADS)
Manocha, S.; Manocha, L. M.; Joshi, Parth; Patel, Bhavesh; Dangi, Gaurav; Verma, Narendra
2013-06-01
Activated carbon are unique and versatile adsorbents having extended surface area, micro porous structure, universal adsorption effect, high adsorption capacity and high degree of surface reactivity. Activated carbons are synthesized from variety of materials. Most commonly used on a commercial scale are cellulosic based precursors such as peat, coal, lignite wood and coconut shell. Variation occurs in precursors in terms of structure and carbon content. Coir having very low bulk density and porous structure is found to be one of the valuable raw materials for the production of highly porous activated carbon and other important factor is its high carbon content. Exploration of good low cost and non conventional adsorbent may contribute to the sustainability of the environment and offer promising benefits for the commercial purpose in future. Carbonization of biomass was carried out in a horizontal muffle furnace. Both carbonization and activation were performed in inert nitrogen atmosphere in one step to enhance the surface area and to develop interconnecting porosity. The types of biomass as well as the activation conditions determine the properties and the yield of activated carbon. Activated carbon produced from biomass is cost effective as it is easily available as a waste biomass. Activated carbon produced by combination of chemical and physical activation has higher surface area of 2442 m2/gm compared to that produced by physical activation (1365 m2/gm).
Cirque glacier on South Georgia shows centennial variability over the last 7000 years
NASA Astrophysics Data System (ADS)
Oppedal, Lea T.; Bakke, Jostein; Paasche, Øyvind; Werner, Johannes P.; van der Bilt, Willem G. M.
2018-02-01
A 7000 year-long cirque glacier reconstruction from South Georgia, based on detailed analysis of fine-grained sediments deposited downstream in a bog and a lake, suggests continued presence during most of the Holocene. Glacier activity is inferred from various sedimentary properties including magnetic susceptibility (MS), dry bulk density (DBD), loss-on-ignition (LOI) and geochemical elements (XRF), and tallied to a set of terminal moraines. The two independently dated sediment records document concurring events of enhanced glacigenic sediment influx to the bog and lake, whereas the upstream moraines afford the opportunity to calculate past Equilibrium Line Altitudes (ELA) which has varied in the order of 70 m altitude. Combined, the records provide new evidence of cirque glacier fluctuations on South Georgia. Based on the onset of peat formation, the study site was deglaciated prior to 9900±250 years ago when Neumayer tidewater glacier retreated up-fjord. Changes in the lake and bog sediment properties indicate that the cirque glacier was close to its maximum Holocene extent between 7200±400 and 4800±200 cal BP, 2700±150 and 2000±200 cal BP, 500±150-300±100 cal BP, and in the 20th century (likely 1930s). The glacier fluctuations are largely in-phase with reconstructed Patagonian glaciers, implying that they respond to centennial climate variability possibly connected to corresponding modulations of the Southern Westerly Winds.
The peats of Costa Rica (in English; Spanish)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thayer, G.R.
Peat has been identified in Cost Rica, and an economic analysis of energy applications for peat has been done. About 1000 km{sup 2} of Cost Rica has the potential of being covered by peat. The Talamanca Mountains and the northeastern plains contain most of the Costa Rican peat. Specific bogs have been identified by the Medio Queso River in north-central Costa Rica and near El Cairo, Moin, and the Limon airport in northeastern Costa Rica. The Medio Queso bog, which is supplying peat for use as a carrier for nitrogen-fixing bacteria, and the El Cairo bog, which has been identifiedmore » as a source of horticultural peat for nearby ornamental plant farms, are of special interest. The economics of three energy applications of peat were examined -- as a fuel in large boilers, as a fuel in small boilers, and as an oil substitute in a cement plant. A facility using coal would have the same total costs as one using peat if coal prices were $45 and $30 per metric ton (used for large boilers and a cement plant, respectively). A facility using Bunker C or diesel would have the same total cost as one using peat if oil prices were $0.11, $0.08, and $0.06 per liter (used for large boilers, small boilers, and a cement plant, respectively). In all three cases, the costs for peat were comparable or less than the costs for coal and oil at 1987 prices. 6 refs., 8 figs.« less
Healey, D.L.
1971-01-01
Gravity observations were made on the ground surface and at a depth of 5,854 feet in drill hole UA-1. Two attempts to measure the free-air gradient utilizing the headframe over the drill hole were unsuccessful owing to mechanical vibrations in the structure. Because of the uncertainty in the measured free-air gradients these values were discarded and the average value (0.09406 mgal/ft) was used in the calculations. The calculated in situ bulk density is 2.36 g/cc. The weighted average bulk density determined from 47 core samples taken in the adjacent UAE-1 drill hole is also 2.36 g/cc. An analysis of selected portions of density logs provides an in situ bulk density of 2.37 g/cc.
NASA Astrophysics Data System (ADS)
Yule, Catherine; Lim, Yau; Lim, Tse
2016-04-01
Indo-Malaysian tropical peat swamp forests (PSF) sequester enormous stores of carbon in the form of phenolic compounds, particularly lignin as well as tannins. These phenolic compounds are crucial for ecosystem functioning in PSF through their inter-related roles in peat formation and plant defenses. Disturbance of PSF causes destruction of the peat substrate, but the specific impact of disturbance on phenolic compounds in peat and its associated vegetation has not previously been examined. A scale was developed to score peatland degradation based on the three major human impacts that affect tropical PSF - logging, drainage and fire. The objectives of this study were to compare the amount of phenolic compounds in Macaranga pruinosa, a common PSF tree, and in the peat substrate along a gradient of peatland degradation from pristine peat swamp forest to cleared, drained and burnt peatlands. We examined phenolic compounds in M. pruinosa and in peat and found that levels of total phenolic compounds and total tannins decrease in the leaves of M.pruinosa and also in the surface peat layers with an increase in peatland degradation. We conclude that waterlogged conditions preserve the concentration of phenolic compounds in peat, and that even PSF that has been previously logged but which has recovered a full canopy cover will have high levels of total phenolic content (TPC) in peat. High levels of TPC in peat and in the flora are vital for the inhibition of decomposition of organic matter and this is crucial for the accretion of peat and the sequestration of carbon. Thus regional PSF flourish despite the phenolic rich, toxic, waterlogged, nutrient poor, conditions, and reversal of such conditions is a sign of degradation.
Landscape-scale changes in forest canopy structure across a partially logged tropical peat swamp
NASA Astrophysics Data System (ADS)
Wedeux, B. M. M.; Coomes, D. A.
2015-07-01
Forest canopy structure is strongly influenced by environmental factors and disturbance, and in turn influences key ecosystem processes including productivity, evapotranspiration and habitat availability. In tropical forests increasingly modified by human activities, the interplaying effects of environmental factors and disturbance legacies on forest canopy structure across landscapes are practically unexplored. We used high-fidelity airborne laser scanning (ALS) data to measure the canopy of old-growth and selectively logged peat swamp forest across a peat dome in Central Kalimantan, Indonesia, and quantified how canopy structure metrics varied with peat depth and under logging. Several million canopy gaps in different height cross-sections of the canopy were measured in 100 plots of 1 km2 spanning the peat dome, allowing us to describe canopy structure with seven metrics. Old-growth forest became shorter and had simpler vertical canopy profiles on deeper peat, consistently with previous work linking deep peat to stunted tree growth. Gap Size Frequency Distributions (GSFDs) indicated fewer and smaller canopy gaps on the deeper peat (i.e. the scaling exponent of pareto functions increased from 1.76 to 3.76 with peat depth). Areas subjected to concessionary logging until 2000, and informal logging since then, had the same canopy top height as old-growth forest, indicating the persistence of some large trees, but mean canopy height was significantly reduced; the total area of canopy gaps increased and the GSFD scaling exponent was reduced. Logging effects were most evident on the deepest peat, where nutrient depletion and waterlogged conditions restrain tree growth and recovery. A tight relationship exists between canopy structure and the peat deph gradient within the old-growth tropical peat swamp. This relationship breaks down after selective logging, with canopy structural recovery being modulated by environmental conditions.
Neoh, Kok-Boon; Bong, Lee-Jin; Muhammad, Ahmad; Itoh, Masayuki; Kozan, Osamu; Takematsu, Yoko; Yoshimura, Tsuyoshi
2016-10-01
Tropical peat swamp forests in Southeast Asia account for approximately 72% of global peatland. However, extensive forest exploitation following peat drainage for agricultural expansion has been leading to catastrophic peat fires. In this study, we compared the termite assemblage in burnt and unburnt peats in Sumatra, Indonesia. We also identified which taxonomic group is particularly resistant to fire disturbance and the traits that correlate with its persistence in fire-impacted peatlands. Overall, the termite species richness in fire-impacted peats was up to 40% lower than that of the total species found in peat swamp forests. Although the estimated species richness values in fire-impacted peats and peat swamp forests were not significantly different, fire changed termite community structure significantly. Only termites of the family Rhinotermitidae survived in the fire event, whereas members of the Termitidae that were reportedly resilient to fire and open habitats elsewhere disappeared during the fire events. The rhinotermitids found in the burnt sites were exclusively wood nesters. This suggests that the desiccation tolerance of termites in open habitat is not the simple underlying survival strategy, but tree branches and barks might have provided a refuge from heat during fire. The result also suggests that the high similarity in species composition in recently burnt peats and long burnt peats implies low species turnover. Thus, regardless of how much time had passed since the fire-impacted peats were abandoned or cultivated, the increase in habitat complexity did not favor colonization by the forest-dependent group. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Landscape-scale changes in forest canopy structure across a partially logged tropical peat swamp
NASA Astrophysics Data System (ADS)
Wedeux, B. M. M.; Coomes, D. A.
2015-11-01
Forest canopy structure is strongly influenced by environmental factors and disturbance, and in turn influences key ecosystem processes including productivity, evapotranspiration and habitat availability. In tropical forests increasingly modified by human activities, the interplay between environmental factors and disturbance legacies on forest canopy structure across landscapes is practically unexplored. We used airborne laser scanning (ALS) data to measure the canopy of old-growth and selectively logged peat swamp forest across a peat dome in Central Kalimantan, Indonesia, and quantified how canopy structure metrics varied with peat depth and under logging. Several million canopy gaps in different height cross-sections of the canopy were measured in 100 plots of 1 km2 spanning the peat dome, allowing us to describe canopy structure with seven metrics. Old-growth forest became shorter and had simpler vertical canopy profiles on deeper peat, consistent with previous work linking deep peat to stunted tree growth. Gap size frequency distributions (GSFDs) indicated fewer and smaller canopy gaps on the deeper peat (i.e. the scaling exponent of Pareto functions increased from 1.76 to 3.76 with peat depth). Areas subjected to concessionary logging until 2000, and illegal logging since then, had the same canopy top height as old-growth forest, indicating the persistence of some large trees, but mean canopy height was significantly reduced. With logging, the total area of canopy gaps increased and the GSFD scaling exponent was reduced. Logging effects were most evident on the deepest peat, where nutrient depletion and waterlogged conditions restrain tree growth and recovery. A tight relationship exists between canopy structure and peat depth gradient within the old-growth tropical peat swamp forest. This relationship breaks down after selective logging, with canopy structural recovery, as observed by ALS, modulated by environmental conditions. These findings improve our understanding of tropical peat swamp ecology and provide important insights for managers aiming to restore degraded forests.
The paleoecology, peat chemistry and carbon storage of a discontinuous permafrost peatland
NASA Astrophysics Data System (ADS)
Talbot, Julie; Pelletier, Nicolas; Olefeldt, David; Turetsky, Merritt; Blodau, Christian; Sonnentag, Oliver; Quinton, William
2017-04-01
Permafrost in peatlands strongly influences ecosystem biogeochemical functioning, vegetation composition and hydrological functions. Permafrost peatlands of northwestern Canada store large amounts of carbon but the peatlands located at the southern margin of the permafrost zone are thawing rapidly. This thaw triggers changes in vegetation, hydrology and peat characteristics, and may affect carbon stocks. We present data from a permafrost plateau to thermokarst bog chronosequence located in the southern portion of the Scotty Creek watershed near Fort Simpson, Northwest Territories, Canada. We assessed changes in plant communities, hydrology, biogeochemistry and permafrost status over 9000 years of peatland development using plant macrofossil, testate amoeba and peat chemical characteristics. Peat accumulation started after the infilling of a lake 8500 cal. yr BP. Minerotrophic peat prevailed at the site until permafrost formed around 5000 cal. yr BP. Permafrost apparently formed three times, although there is spatial variability in the permafrost aggradation - degradation cycles. Permafrost thawed 550 cal. yr BP in the center of the thermokarst bog. Ombrotrophic peat is a fairly recent feature of the peat profiles, only appearing after the most recent permafrost thaw event. Both allogenic (temperature/precipitation/snow cover changes and wildfire) and autogenic (peat accumulation, Sphagnum growth) processes likely influenced permafrost aggradation and thaw. While apparent carbon accumulation rates were lower during present and past permafrost periods than during non-permafrost periods, long term carbon accumulation remained similar between cores with different permafrost period lengths. Deep peat was more decomposed in the thermokarst bog peat profile than in the permafrost plateau profile, highlighting the importance of considering potential deep peat carbon losses to project the fate of thawing permafrost peat carbon stores. Average long-term carbon accumulation derived from the peat cores (n=3, 20.6 ± 1.9 g C m-2 a-1) is in the same range than the contemporary landscape-scale carbon balance measured from eddy covariance at the site ( 15 g C m-2 a-1). While the carbon to nitrogen ratio tends to decrease with peat depth, the carbon to phosphorus ratio tends to increase, perhaps indicating a preferential uptake of phosphorus over nitrogen by plants.
Influence of peat on Fenton oxidation.
Huling, S G; Arnold, R G; Sierka, R A; Miller, M R
2001-05-01
A diagnostic probe was used to estimate the activity of Fenton-derived hydroxyl radicals (.OH), reaction kinetics, and oxidation efficiency in batch suspensions comprised of silica sand, crushed goethite (alpha-FeOOH) ore, peat, and H2O2 (0.13 mM). A simple method of kinetic analysis is presented and used to estimate the rate of .OH production (POH) and scavenging term (ks), which were used to establish the influence of organic matter (Pahokee peat) in Fenton systems. POH was greater in the peat-amended systems than in the unamended control, and ks was approximately the same. Any increase in scavenging of .OH that resulted from the addition of peat was insignificant in comparison to radical scavenging by reaction with H2O2. Also, treatment efficiency, defined as the ratio of probe conversion to H2O2 consumption over the same period was greater in the peat-amended system. Results suggest that .OH production is enhanced in the presence of peat by one or more peat-dependent mechanisms. Fe concentration and availability in the peat, reduction of Fe(III) to Fe(II) by the organic matter, and reduction of organic-complexed Fe(III) to Fe(II) are discussed in the context of the Fenton mechanism.
Isotopic evidence for nitrogen mobility in peat bogs
NASA Astrophysics Data System (ADS)
Novak, Martin; Stepanova, Marketa; Jackova, Ivana; Vile, Melanie A.; Wieder, R. Kelman; Buzek, Frantisek; Adamova, Marie; Erbanova, Lucie; Fottova, Daniela; Komarek, Arnost
2014-05-01
Elevated nitrogen (N) input may reduce carbon (C) storage in peat. Under low atmospheric deposition, most N is bound in the moss layer. Under high N inputs, Sphagnum is not able to prevent penetration of dissolved N to deeper peat. Nitrogen may become available to the roots of invading vascular plants. The concurrent oxygenation of deeper peat layers, along with higher supply of labile organic C, may enhance microbial decomposition and lead to peat thinning. The resulting higher emissions of greenhouse gases may accelerate global warming. Seepage of N to deeper peat has never been quantified. Here we present evidence for post-depositional mobility of atmogenic N in peat, based on natural-abundance N isotope ratios. We conducted a reciprocal peat transplant experiment between two Sphagnum-dominated peat bogs in the Czech Republic (Central Europe), differing in anthropogenic N inputs. The northern site VJ received as much as 33 kg N ha-1 yr-1 via spruce canopy throughfall. The southern site was less polluted (17.6 kg N ha-1 yr-1). Isotope signatures of living moss differed between the two sites (δ15N of -3‰ and -7‰ at VJ and CB, respectively). After 18 months, an isotope mass balance was constructed. In the CB-to-VJ transplant, a significant portion of original CB nitrogen (98-31%) was removed and replaced by nitrogen of the host site throughout the top 10 cm of the profile. Nitrogen, deposited at VJ, was immobilized in imported CB peat that was up to 20 years old. Additionally, we compared N concentration and N accumulation rates in 210Pb-dated peat profiles with well-constrained data on historical atmospheric N pollution. Nationwide N emissions peaked in 1990, while VJ exhibited the highest N content in peat that formed in 1930. This de-coupling of N inputs and N retention in peat might be interpreted as a result of translocation of dissolved pollutant N downcore, corroborating our δ15N results at VJ and CB. Data from a variety of peat bogs along pollution and climatic gradients would be needed to test to what extent the record of atmospheric N inputs in peat is overprinted by variable, locally-controlled decomposition rates.
Facies development in the Lower Freeport coal bed, west-central Pennsylvania, U.S.A.
Pierce, B.S.; Stanton, R.W.; Eble, C.F.
1991-01-01
The Lower Freeport coal bed in west-central Pennsylvania is interpreted to have formed within a lacustrine-mire environment. Conditions of peat formation, caused by the changing chemical and physical environments, produced five coal facies and two mineral-rich parting facies within the coal bed. The coal bed facies are compositionally unique, having developed under varying conditions, and are manifested by megascopic, petrographic, palynologic and quality characteristics. The initial environment of the Lower Freeport peat resulted in a coal facies that is relatively high in ash yield and contains large amounts of lycopod miospores and moderate abundances of cryptotelinite, crypto-gelocollinite, inertinite and tree fern miospores. This initial Lower Freeport peat is interpreted to have been a topogenous body that was low lying, relatively nutrient rich (mesotrophic to eutrophic), and susceptible to ground water and to sediment influx from surface water. The next facies to form was a ubiquitous, clay-rich durain parting which is attributed to a general rise in the water table accompanied by widespread flooding. Following formation of the parting, peat accumulation resumed within an environment that inhibited clastic input. Development of doming in this facies restricted deposition of the upper shale parting to the margins of the mire and allowed low-ash peat to form in the interior of the mire. Because this environment was conducive to preservation of cellular tissue, this coal facies also contains large amounts of crypto-telinite. This facies development is interpreted to have been a transitional phase from topogenous, planar peat formation to slightly domed, oligotrophic (nutrient-poor) peat formation. As domed peat formation continued, fluctuations in the water table enabled oxidation of the peat surface and produced high inertinite concentrations toward the top of the coal bed. Tree ferns became an increasingly important peat contributor in the e upper facies, based on the palynoflora. This floral change is interpreted to have resulted from the peat surface becoming less wet or better drained, a condition that inhibited proliferation of lycopod trees. Accumulation of the peat continued until rising water levels formed a freshwater lake within which clays and silts were deposited. The development of the Lower Freeport peat from a planar mire through transitional phases toward domed peat formation may be an example of the type of peat formation of other upper Middle and Upper Pennsylvanian coal beds. ?? 1991.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-14
... Texts for Use in the International Conference on Harmonisation Regions; Annex 13 on Bulk Density and... guidance entitled ``Q4B Evaluation and Recommendation of Pharmacopoeial Texts for Use in the ICH Regions... evaluation of the Bulk Density and Tapped Density of Powders General Chapter harmonized text from each of the...
NASA Astrophysics Data System (ADS)
MigdaŁ, Wojciech; Orlikowski, Leszek B.; Ptaszek, Magdalena; Gryczka, Urszula
2012-08-01
Very extensive production procedure, especially in plants growing under covering, require methods, which would allow quick elimination or substantial reduction of populations of specific pathogens without affecting the growth and development of the cultivated plants. Among soil-borne pathogens, the Phytophthora species are especially dangerous for horticultural plants. In this study, irradiation with electron beam was applied to control Phytophthora cinnamomi. The influence of irradiation dose on the reduction of in vitro growth and the population density of the pathogen in treated peat and its mixture with composted pine bark (1:1), as well as the health of Chamaecyparis lawsoniana and Lavandula angustifolia plants were evaluated. Application of irradiation at a dose of 1.5 kGy completely inhibited the in vitro development of P. cinnamomi. This irradiation effect was connected with the disintegration of the hyphae and spores of the species. Irradiation of peat and its mixture with composted pine bark with 10 kGy resulted in the inhibition of stem base rot development in Ch. lawsoniana. Symptoms of the disease were not observed when the substrates were treated with 15 kGy. In the case of L. angustifolia, stem root rot was not observed on cuttings transplanted to infected peat irradiated at a dose of 10 kGy. Irradiation of the horticultural substrates did not affect plant growth.
Barrett, Sophie E; Watmough, Shaun A
2015-11-01
The objective of this research was to assess factors controlling peat and plant chemistry, and vegetation composition in 18 peatlands surrounding Sudbury after more than 30 years of large (>95%) pollution emission reductions. Sites closer to the main Copper Cliff smelter had more humified peat and the surface horizons were greatly enriched in copper (Cu) and nickel (Ni). Copper and Ni concentrations in peat were significantly correlated with that in the plant tissue of Chamaedaphne calyculata. The pH of peat was the strongest determining factor for species richness, diversity, and community composition, although percent vascular plant cover was strongly negatively correlated with surface Cu and Ni concentrations in peat. Sphagnum frequency was also negatively related to peat Cu and Ni concentrations indicating sites close to Copper Cliff smelter remain adversely impacted by industrial activities. Copyright © 2015 Elsevier Ltd. All rights reserved.
Excavating and loading equipment for peat mining
NASA Astrophysics Data System (ADS)
Mikhailov, A. V.; Zhigulskaya, A. I.; Yakonovskaya, T. B.
2017-10-01
Recently, the issues of sustainable development of Russian regions, related to ensuring energy security, are more urgent than ever. To achieve sustainable development, an integrated approach to the use of local natural resources is needed. Practically in all north regions of the Russian Federation, peat as a local natural resource is widespread, which has a practical application in the area of housing services. The paper presents the evaluation of technologies for open-pit peat mining, as well as analysis of technological equipment for peat production. Special attention is paid to a question of peat materials excavating and loading. The problem of equipment selection in a peat surface mine is complex. Many features, restrictions and criteria need to be considered. Use of low and ultra-low ground pressure excavators and low ground pressure front-end loaders with full-range tires to provide the necessary floatation in the peat bog environment is offered.
NASA Technical Reports Server (NTRS)
1986-01-01
Humics, Inc. already had patented their process for separating wet peat into components and processing it when they consulted NERAC regarding possible applications. The NERAC search revealed numerous uses for humic acid extracted from peat. The product improves seed germination, stimulates root development, and improves crop yields. There are also potential applications in sewage disposal and horticultural peat, etc.
Growing reforestation conifer stock: Utilizing peat/sawdust medium
Janice K. Schaefer
2009-01-01
Western Forest Systems, Incorporated (WFS) (Lewiston, ID) has been utilizing a peat/sawdust blended mix as our growing medium for the past 10 years. Our decision to change from a peat/vermiculite blend to a peat/Douglas-fir (Pseudotsuga menziesii) sawdust blend involved worker health and safety issues, seedling culture, seedling production, and...
Peat resources of Maine. Volume 2. Penobscot County
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cameron, C.C.; Mullen, M.K.; Lepage, C.A.
1984-01-01
In July 1979, the Maine Office of Energy Resources, in conjunction with the Maine Geological Survey, began the Maine Peat Resource Evaluation Program. The Program, which was funded by the US Department of Energy (DOE), was undertaken to determine the amount and location of fuel-grade peat in Maine. Two hundred thirty-three areas containing peat deposits were evaluated under the Program. A total of 47 deposits covering 21,666 acres and containing 40,923,000 short tons (dry weight) of peat in Penobscot County have been evaluated under the Maine Peat Resource Evaluation Program. These deposits range in size from 35 to 3301 acresmore » and in estimated resources from 45,000 to 6,994,000 short tons. Maps of individual deposits showing the distribution and depth of peat, core sites, and the surficial geology of the area adjacent to the deposits are shown in Figures 4 to 46. Cores showing the vertical distribution of peat and sediment as well as sample locations, and the results of laboratory analyses are also included. 22 references, 46 figures, 3 tables.« less
NASA Astrophysics Data System (ADS)
Semenova, T. A.; Golovchenko, A. V.
2017-07-01
The population density and taxonomic structure of micromycetes were monitored for six months in a model experiment with natural and mechanically fragmented (fine and coarse) samples of sphagnum. Sphagnum fragmentation favored an increase in the number of micromycetes only during the first week of the experiment. On the average, the number of micromycetes in fine-fragmented samples was two times greater than that in the coarse-fragmented samples. The diversity of micromycetes increased in the fragmented samples of sphagnum owing to the activation of some species, which remained in the inactive state as spores in the peat before fragmentation.
Plant extracts in the control of Phytophthora cryptogea.
Orlikowski, L B
2001-01-01
Grapefruit extract at dose 40 micrograms/cm3 inhibited Phytophtora cryptogea linear growth about 50% and almost completely suppressed zoosporangia formation. Drenching of gerbera plants with the extract at dose 165 micrograms/cm3 reduced population density of the pathogen about 70% and this high efficacy was noted at least one month after application. Treatment of gerberas with grapefruit extract resulted in protection of about 50% of plants against the pathogen. Biological activity of purple coneflower extract was lower than extract from grapefruit. Significant decrease of population density of the pathogen during the first 5 days and increase of gerbera healthy stand was observed, however, in peat treated with that extract.
Investigation of smoldering combustion propagation of dried peat
NASA Astrophysics Data System (ADS)
Palamba, Pither; Ramadhan, M. L.; Imran, F. A.; Kosasih, E. A.; Nugroho, Y. S.
2017-03-01
Smoldering is a form of combustion characterised by flameless burning of porous materials. Smoldering combustion of porous and organic soil such as peat, is considered as a major contributor to haze problem during wildland fires in Sumatra and Kalimantan, Indonesia. With almost half of tropical peatland worldwide, and vast area that resulted in its rich agricultural diversity, Indonesia possessed many variants of peat throughout the region. Thus, further highlighting the importance of characterizing the thermal properties of different varieties of peats for further analysis. An experimental test method was built to analyse the differences of varying peats from different parts of Indonesia, regarding its smoldering combustion propagation. In this case, peat from Papua and South Sumatera were analysed. A cylindrical wire meshed container of 190 cm3 in volume, was filled with dried peat. The temperature data and mass loss during the smoldering combustion was gathered using thermocouples and a DAQ system. After the experimental apparatus was set, a smoldering combustion of the dried peats was initiated at the top of the container using an electric heater. The results of the experiment showed a smoldering temperature of about 600°C and with a smoldering propagation rate of about 4.50 to 4.75 cm/h for both peat samples.
NASA Astrophysics Data System (ADS)
Mursito, Anggoro Tri; Hirajima, T.; Listiyowati, L. N.
2018-02-01
Mempawah peat of West Kalimantan was selected as raw material for studying the physicochemical properties of peat fuel products and their characteristic in the hydrothermal upgrading process at a temperature range of 150°C to 380°C at an average heating rate of 6.6°C/min for 30 minutes. The 13C NMR spectra revealed changes in the effect of temperature on carbon aromaticity of raw peat and peat fuel products which were in 0.39 to 0.63 as the temperature increased. Other phenomenon occurring during the experiment was hydrophilicity index of peat fuel surface decreases of about 1.7 and 1.4 with increased treatment temperature. We also found that hydrothermal upgrading also affected the combustion properties of peat fuel products. Ignition temperature of raw peat and solid products were at 175°C and between 188°C to 285°C respectively. Temperature at the maximum combustion rate of raw peat and solid products was at 460°C, and between 477°C to 509°C were suggested to the increasing of reactivity of solid products respectively. Here, we discussed several phenomenon of the peat fuel product during hydrothermal process with a respect to the change in the physicochemical properties as determined by Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric and Differential Thermal Analysis (TG-DTA) analyses, 13C NMR and also other supporting analytical equipment.
Age Determination of the Remaining Peat in the Sacramento-San Joaquin Delta, California, USA
Drexler, Judith Z.; de Fontaine, Christian S.; Knifong, Donna L.
2007-01-01
Introduction The Sacramento-San Joaquin Delta of California was once a 1,400 square kilometer (km2) tidal marsh, which contained a vast layer of peat ranging up to 15 meters (m) thick (Atwater and Belknap, 1980). Because of its favorable climate and highly fertile peat soils, the majority of the Delta was drained and reclaimed for agriculture during the late 1800s and early 1900s. Drainage of the peat soils changed the conditions in the surface layers of peat from anaerobic (having no free oxygen present) to aerobic (exposed to the atmosphere). This change in conditions greatly increased the decomposition rate of the peat, which consists largely of organic (plant) matter. Thus began the process of land-surface subsidence, which initially was a result of peat shrinkage and compaction, and later largely was a result of oxidation by which organic carbon in the peat essentially vaporized to carbon dioxide (Deverel and others, 1998; Ingebritsen and Ikehara, 1999). Because of subsidence, the land-surface elevation on farmed islands in the Delta has decreased from a few meters to as much as 8 m below local mean sea level (California Department of Water Resources, 1995; Steve Deverel, Hydrofocus, Inc., written commun., 2007). The USGS, in collaboration with the University of California at Davis, and Hydrofocus Inc. of Davis, California, has been studying the formation of the Delta and the impact of wetland reclamation on the peat column as part of a project called Rates and Evolution of Peat Accretion through Time (REPEAT). The purpose of this report is to provide results on the age of the remaining peat soils on four farmed islands in the Delta.
The thin brown line: The crucial role of peat in protecting permafrost in Arctic Alaska
NASA Astrophysics Data System (ADS)
Gaglioti, B.; Mann, D. H.; Farquharson, L. M.; Baughman, C. A.; Jones, B. M.; Romanovsky, V. E.; Williams, A. P.; Andreu-Hayles, L.
2017-12-01
Ongoing warming threatens to thaw Arctic permafrost and release its stored carbon, which could trigger a permafrost-carbon feedback capable of augmenting global warming. The effects of warming air temperatures on permafrost are complicated by the fact that across much of the Arctic and Subarctic a mat of living plants and decaying litter cover the ground and buffer underlying permafrost from air temperatures. For simplicity here, we refer to this organic mat as "peat". Because this peat modifies heat flow between ground and air, the rate and magnitude of permafrost responses to changing climate - and hence the permafrost-carbon feedback - are partly slaved to the peat layer's slower dynamics. To explore this relationship, we used 14C-age offsets within lake sediments in Alaskan watersheds underlain by yedoma deposits to track the changing responses of permafrost thaw to fluctuating climate as peat accumulated over the last 14,000 years. As the peat layer built up, warming events became less effective at thawing permafrost and releasing ancient carbon. Consistent with this age-offset record, the geological record shows that early in post-glacial times when the peat cover was still thin and limited in extent, warm intervals triggered extensive thermokarst that resulted in rapid aggradation of floodplains. Today in contrast, hillslopes and floodplains remain stable despite rapid warming, probably because of the buffering effects of the extensive peat cover. Another natural experiment is provided by tundra fires like the 2007 Anaktuvuk River fire that removed the peat cover from tundra underlain by continuous permafrost and resulted in widespread thermkarsting. Further support for peat's critical role in protecting permafrost comes from the results of modeling how permafrost temperatures under different peat thicknesses respond to warming air temperature. Although post-industrial warming has not yet surpassed the buffering capacity of 14,000 years of peat buildup in Arctic Alaska, modeling suggests that a threshold is imminent.
Revegetation processes and environmental conditions in abandoned peat production fields in Estonia
NASA Astrophysics Data System (ADS)
Orru, M.; Orru, H.
2009-04-01
As a result of peat extraction, peat production has been finished in Estonia at different times in 154 peat production areas and 9,500 ha (~1% of peatlands) are abandoned, although the peat reserves are not exhausted yet; besides, several areas are not properly recultivated. In addition 12,000 ha of fens (oligotrophic peat layers) are drained and used as grasslands. If the abandoned and non-recultivated peat production areas are not vegetated, their CO2 emission is considerable and peat mineralises in such areas. The aim of the study was to find out specific ecological and geological factors, which affect recovering of peatlands and influence the recultivation. During the revision the amount and quality of the remained reserves, as well as the state of water regime, drainage network and revegetation was assessed in all 154 abandoned peat production areas. The study showed that the state of them is very variable. Some of them are covered with forest, prevailingly with birches at former drainage ditches, later supplemented by pine trees. In the others predominate grasses among plants, and various species of moss (Cladonia rei, Bryum caespiticum, Sphagnum ripariuma, Sphagnum squarrosum) occur as well. Besides, some abandoned areas are completely overgrown with cotton grass. Open abandoned peat areas, which are not covered by vegetation, are much rarer. We found out, that water regime among the factors plays most important role. Moreover abandoned peat production fields, where the environmental conditions have changed - are appropriate for growth of several moss species, which cannot inhabit the areas already occupied by other species. The most interesting discovers were: second growing site of Polia elongata in West-Estonia and Ephemerum serratum, last found in Estonia in the middle of the 19th century, was identified in central Estonia. Also Campylopus introflexus, what was unknown in Estonia. However, the changes in environmental conditions influence the peat layers structure and technical characteristics of organic soils that affect the vegetation of peatlands.
NASA Astrophysics Data System (ADS)
Sander, Michael; Getzinger, Gordon; Walpen, Nicolas
2017-04-01
Peat organic matter contains redox-active functional groups that can accept and/or donate electrons from and to biotic and abiotic reaction partners present in peatlands. Several studies have provided evidence that electron accepting quinone moieties in the peat organic matter may act as terminal electron acceptors for anaerobic microbial respiration. This respiration pathway may competitively suppress methanogenesis and thereby lead to excess carbon dioxide to methane formation in peatlands. Electron donating phenolic moieties in peat organic matter have long been considered to inhibit microbial and enzymatic activities in peatlands, thereby contributing to carbon stabilization and accumulation in these systems. Phenols are expected to be comparatively stable in anoxic parts of the peats as phenoloxidases, a class of enzymes capable of oxidatively degrading phenols, require molecular oxygen as co-substrate. Despite the general recognition of the importance of redox-active moieties in peat organic matter, the abundance, redox properties and reactivities of these moieties remain poorly studied and understood, in large part due to analytical challenges. This contribution will, in a first part, summarize recent advances in our research group on the analytical chemistry of redox-active moieties in peat organic matter. We will show how mediated electrochemical analysis can be used to quantify the capacities of electron accepting and donating moieties in both dissolved and particulate peat organic matter. We will link these capacities to the physicochemical properties of peat organic matter and provide evidence for quinones and phenols as major electron accepting and donating moieties, respectively. The second part of this contribution will highlight how these electroanalytical techniques can be utilized to advance a more fundamental understanding of electron transfer processes involving peat organic matter. These processes include the redox cycling (i.e., repeated reduction and re-oxidation) of peat organic matter under alternating anoxic-oxic conditions as well as the oxidation of phenolic moieties in peat organic matter by phenol oxidases in the presence of molecular oxygen. Overall, this contribution will attempt to link molecular-level insights into the redox properties of peat organic matter to larger scale redox processes that are important to carbon cycling in peatlands.
Walton-Day, K.; Filipek, L.H.; Papp, C.S.E.
1990-01-01
Filson Creek Fen, located in northeastern Minnesota, overlies a Cu-Ni sulfide deposit. A site in the fen was studied to evaluate the hydrogeochemical mechanisms governing the development of Fe, Mn, Co, and Cu profiles in the peat. At the study site, surface peat approximately 1 m thick is separated from the underlying mineralized bedrock by a 6-12 m thickness of lake and glaciofluvial sediments and till. Concentrations of Fe, Mn, Co, and Cu in peat and major elements in pore water delineate a shallow, relatively oxidized, Cu-rich zone overlying a deeper, reduced, Fe-, Mn-, and Co-rich zone within the peat. Sequential metal extractions from peat samples reveal that 40-55% of the Cu in the shallow zone is associated with organic material, whereas the remaining Cu is distributed between iron-oxide, sulfide, and residual fractions. Sixty to seventy percent of the Fe, Mn, and Co concentrated in the deeper zone occur in the residual phase. The metal profiles and associations probably result from non-steady-state input of metals and detritus into the fen during formation of the peat column. The enrichment of organic-associated Cu in the upper, oxidized zone represents a combination of Cu transported into the fen with detrital plant fragments and soluble Cu, derived from weathering of outcrop and subcrop of the mineral deposit, transported into the fen, and fixed onto organic matter in the peat. The variable stratigraphy of the peat indicates that weathering processes and surface vegetation have changed through time in the fen. The Fe, Mn, and Co maxima at the base of the peat are associated with a maximum in detrital matter content of the peat resulting from a transition between the underlying inorganic sedimentary environment to an organic sedimentary environment. The chemistry of sediments and ground water collected beneath the peat indicate that mobilization of metals from sulfide minerals in the buried mineral deposit or glacial deposits is minimal. Therefore, the primary source of Cu to the peat at the study site is outcrops and shallow subcrops of the mineral deposit adjacent to the fen. ?? 1990.
NASA Astrophysics Data System (ADS)
Stepanova, V. A.; Mironycheva-Tokareva, N. P.; Pokrovsky, O. S.
2012-04-01
Global climate changes impact the status of wetland ecosystems shifting the balances of the carbon, macro-, and microelements cycles. This study aims to establish the features of accumulation and distribution of major- and trace elements in the organic layer of peat bog soils, belonging to different ecosystems of the oligotrophic bog complex located in the middle taiga of Western Siberia (Khanty-Mansiysk region, Russia). Key areas which are selected for this study include the following bog conjugate elementary ecosystems: higher ryam, lower ryam, ridge-hollow complex, and oligotrophic poor fen as characterized previously [1]. We have sampled various peat types along the entire length of the soil column (every 10 cm down to 3 m). Peat samples were analyzed for a wide range of macro- and microelements using an ICP-MS technique following full acid digestion in a microwave oven. These measurements allowed quantitative estimates of major- and trace elements in the peat deposits within the whole bog complex and individual elementary landscapes. Based on the data obtained, the lateral and radial geochemical structures of the bog landscapes were determined and clarified for the first time for middle taiga of the West Siberian plain. The similar regime of mineral nutrition during the complete bog landscape formation was detected for the peat deposits based on the measurements of some major- and trace elements (Ca, Fe, Mg, etc.). The vertical distribution of some major and some trace elements along the profile of peat column is rather uniform with relatively strong increase in the bottom organic layers. This strongly suggests the similarity of the processes of element accumulation in the peat and relatively weak post depositional redistribution of elements within the peat soil profile. Overall, obtained corroborate the existing view on chemical composition of peats being determined by botanical peat's components (which forms this peat deposit), atmospheric precipitation, position of ecosystems in the landscape (lateral migration) and types of bedrocks [2]. The results allow better understanding of the coupling between biogeochemical cycles of carbon and major and trace elements in peat soils in order to predict the future changes in both concentrations and stocks of chemical elements in the Western Siberia peat bog systems under climate warming.
Tangled history of the European uses of Sphagnum moss and sphagnol.
Drobnik, Jacek; Stebel, Adam
2017-09-14
Sphagnum mosses and peat could have been utilized as wound dressings for centuries, however reliable data on this subject are ambiguous; sometimes even no distinction between peat moss (Sphagnum spp.) and peat is made or these terms become confused. The first scientific account on surgical use of peat comes from 1882: a peat digger who successfully, by himself and in the way unknown to the then medicine, cured an open fracture of his forearm with peat. The peat, and very soon the peat moss itself (which is the major constituent of peat) drew attention of the 19th-century surgeons. We search for reliable information on: (1) inspirations for Sphagnum usage for medical purposes and its beginnings in the 19th century, (2) substances or products named sphagnol and their connections with (1); (3) on the origin of this name, (4) and on the occurrence of this name in medical sources. We have identified and studied published sources on the uses of peat-based and Sphagnum-based preparations and products of any processing level (including herbal stock, distillate, isolated pure or impure active principle, or a mixture of such) in surgery, pharmacy or cosmetics. A special attention was paid to the name sphagnol, which appeared many a time, in more than one context since 1899. Source publications were critically analysed from the taxonomical, pharmacognostical and ethnopharmacological points of view. Gathered data were cross-checked with the modern knowledge of the biologically active principles of Sphagnum and the prospects of their medical use. The application of peat in surgery started 1882. The use of peat moss as dressings was developed in the 1880's. It returned to surgical practice during WW1. The name sphagnol has two meanings: (1) A chemical substance isolated from the cell walls of Sphagnum mosses in 1899. A post-1950 research showed it to be a mixture of phenols dominated by sphagnum acid. (2) A product of dry distillation of peat contains solid and liquid fractions and was applied in skin diseases due to antiseptic properties. It was added to ointments and medicated soaps manufactured up to the late 1960's. Today none of these two sphagnols is in use. Surgical application of peat had an ethnopharmacological origin: a case of wound treatment with peat as a remedy rather than a dressing (1880, published 1882) shortly shifted the surgeons' attention to peat moss as an absorptive dressing. The 1880's tests of antiseptic properties of peat and peat moss failed, the sterilization methods overrode the physiological effects of Sphagnum dressings. Sphagnan, a polysaccharide from Sphagnum cell walls, discovered 1983, inhibits microbial growth, tans the collagen and removes ammonia from microbial environments. Portions of raw peat could be sterile. The isolation of sphagnol (1899) from Sphagnum cell walls was not inspired by old surgery. Main component of sphagnol, the sphagnic acid, was used clinically during WW2, but was proved a weak antimicrobial agent. A homonymous name sphagnol appeared independently for a product of dry distillation of peat, introduced commercially probably about 1899, too, which gave rise to confusions: a) the commercial, "distilled" sphagnol was not the crystalline principle of Sphagnum cell walls. 2) the "distilled" sphagnol was hardly defined technologically or pharmacologically, never standardized in terms of the substrate (a variety of peat rather than Sphagnum herb) and the production process. This sphagnol, resembling pitch or tar, was an additive to medicated soaps and ointments for skin treatment and care. It must have been a low-scale product although advertised worldwide. Neither sphagnum acid nor sphagnan are used medicinally today. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
A Few Issues on the Peat Research in the Altai Mountains
NASA Astrophysics Data System (ADS)
Inisheva, Lydia I.; Larina, Galina; Shurova, Maya
2010-05-01
At the present time we carry out complex research of marsh ecosystems in various areas of Gorny Altai to reveal the perspective deposits of peat in the Altai Mountains with the purpose of its use in the medical and recreational spheres. The peat deposits of the Northeastern Altai, Central Altai, and Southeastern Altai are surveyed; the selective chemical analysis of peat and marsh waters is carried out. The group structure of organic substance of various samples of peat is investigated by the method of Institutes of Peat. The toxic metals of Cd, Pb, Hg, Cu, Zn, and As were defined by the method of stripping voltammetry. The region of the Altai Mountains is characterized by the contrastive distribution of some heavy metals and arsenic in a soil cover. This is caused by a variety of petrography and granulometry of soil forming material, and also by a landscape and geochemical situation in the system of vertical zoning. The sources of natural accumulation of heavy metals in the ground might be the deposits of polymetals. In this connection the content of the specified toxic elements in the peat under research has been identified. The peat of the Turochak deposit is characterized by a significant ash content - up to 41,9%; the increased ash content is typical of the Kutyush deposit: from 6,1% up to 19, %. The peat of the Northeastern Altai is referred to non-bitumunous: the content of bitumen makes up less than 5%. In comparison with the European peat the peat under study of the transitive and lowland type is characterized by the significant content of easy hydrolysable substances in the amount of 24,8-41,1%. The amount of the non-hydrolysable rest makes up around 4,3 - 7,4 %. The total content of fulvic acids is less than the content of humic acids by 2,9 - 5,8 times. The high content of humic acids which can reach up to 58 % is characteristic of certain deposits. Humic acids extracted from the peat are characterized, as a rule, by similar IR-spectra. The distinctions are shown in an unequal intensity of characteristic absorption bands, in their spreading and some shifts. It is revealed that humic acids of peat with the increase in a degree of decomposition are exposed to transformation; therefore the increase in their structure of functional groups is observed. As a result of the research which was carried out the following elements among heavy metals in the lowland peat of the Altai Mountains are revealed: Cd (2,7 - 30)> Hg (0,67)> Zn (0,22) ~Pb (0,21)> Cu (0,13)> As (0,03). The degree of mobility of chemical elements in the peat varies within the limits of 1,3 - 36%. According to the degree of their mobility these elements form the following line: Zn (36 %)> Pb (18,1 %)> Cd (9,6 %)> Cu (1,3 %). The content and the character of distribution of the heavy metals under study and arsenic in the peat of the Altai Mountains have their unique features in comparison with the same valley analogues. The mountain peat of the Central Altai contains much less Hg than the West Siberian one: 0,078 mg/g and 0,69 mg/g accordingly. Cd represents itself as the concentrator in the lowland peat of the Northeastern and Central Altai, its content is actually the same and makes up approximately 0,3 mg/kg. The lowland Altai and West Siberian peat has the same amount of Pb: 4-5 mg/kg; they have smaller amounts of Zn and Cu in comparison with the European and West Siberian peat. The revealed features of distribution of some toxic metals are the display of specificity of peat genesis in the conditions of a mountain relief. The complex of the data received by us allows to consider the peat of the Altai Mountains as a non-polluting raw source concerning the amount of some natural toxic substances. The possible perspective directions of practical application of the mountain peat can be medicine, veterinary science, and agriculture.
Low-rank coal study: national needs for resource development. Volume 6. Peat
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-11-01
The requirements and potential for development of US peat resources for energy use are reviewed. Factors analyzed include the occurrence and properties of major peat deposits; technologies for extraction, dewatering, preparation, combustion, and conversion of peat to solid, liquid, or gaseous fuels; environmental, regulatory, and market constraints; and research, development, and demonstration (RD and D) needs. Based on a review of existing research efforts, recommendations are made for a comprehensive national RD and D program to enhance the use of peat as an energy source.
Kluber, Lauren A. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Phillips, Jana R. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Hanson, Paul J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Schadt, Christopher W. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.
2016-01-01
This data set provides the peat water content and peat temperature at time of sampling for peat cores collected before and during the SPRUCE Deep Peat Heating (DPH) study. Cores were collected during three sampling events: 03 June 2014, 09 September 2014, and 16 June 2015. Two cores were extracted from hollow locations in each of the 10 experimental plots (4, 6, 8, 10, 11, 13, 16, 17, 19, and 20). Cores were partitioned into samples at 11 depth increments: 0-10, 10-20, 20-30, 30-40, 40-50, 50-75, 75-100, 100-125, 125-150, 150-175, and 175-200 cm below surface of the hollow.
NASA Astrophysics Data System (ADS)
Moorhead, Althea V.; Blaauw, Rhiannon C.; Moser, Danielle E.; Campbell-Brown, Margaret D.; Brown, Peter G.; Cooke, William J.
2017-12-01
The bulk density of a meteoroid affects its dynamics in space, its ablation in the atmosphere, and the damage it does to spacecraft and lunar or planetary surfaces. Meteoroid bulk densities are also notoriously difficult to measure, and we are typically forced to assume a density or attempt to measure it via a proxy. In this paper, we construct a density distribution for sporadic meteoroids based on existing density measurements. We considered two possible proxies for density: the KB parameter introduced by Ceplecha and Tisserand parameter, TJ. Although KB is frequently cited as a proxy for meteoroid material properties, we find that it is poorly correlated with ablation-model-derived densities. We therefore follow the example of Kikwaya et al. in associating density with the Tisserand parameter. We fit two density distributions to meteoroids originating from Halley-type comets (TJ < 2) and those originating from all other parent bodies (TJ > 2); the resulting two-population density distribution is the most detailed sporadic meteoroid density distribution justified by the available data. Finally, we discuss the implications for meteoroid environment models and spacecraft risk assessments. We find that correcting for density increases the fraction of meteoroid-induced spacecraft damage produced by the helion/antihelion source.
46 CFR 98.25-65 - Filling density.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Filling density. 98.25-65 Section 98.25-65 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS SPECIAL CONSTRUCTION, ARRANGEMENT, AND OTHER PROVISIONS FOR CERTAIN DANGEROUS CARGOES IN BULK Anhydrous Ammonia in Bulk...
46 CFR 98.25-65 - Filling density.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Filling density. 98.25-65 Section 98.25-65 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS SPECIAL CONSTRUCTION, ARRANGEMENT, AND OTHER PROVISIONS FOR CERTAIN DANGEROUS CARGOES IN BULK Anhydrous Ammonia in Bulk...
46 CFR 98.25-65 - Filling density.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Filling density. 98.25-65 Section 98.25-65 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS SPECIAL CONSTRUCTION, ARRANGEMENT, AND OTHER PROVISIONS FOR CERTAIN DANGEROUS CARGOES IN BULK Anhydrous Ammonia in Bulk...
46 CFR 98.25-65 - Filling density.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Filling density. 98.25-65 Section 98.25-65 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS SPECIAL CONSTRUCTION, ARRANGEMENT, AND OTHER PROVISIONS FOR CERTAIN DANGEROUS CARGOES IN BULK Anhydrous Ammonia in Bulk...
46 CFR 98.25-65 - Filling density.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Filling density. 98.25-65 Section 98.25-65 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS SPECIAL CONSTRUCTION, ARRANGEMENT, AND OTHER PROVISIONS FOR CERTAIN DANGEROUS CARGOES IN BULK Anhydrous Ammonia in Bulk...
Radical re-appraisal of water structure in hydrophilic confinement.
Soper, Alan K
2013-12-18
The structure of water confined in MCM41 silica cylindrical pores is studied to determine whether confined water is simply a version of the bulk liquid which can be substantially supercooled without crystallisation. A combination of total neutron scattering from the porous silica, both wet and dry, and computer simulation using a realistic model of the scattering substrate is used. The water in the pore is divided into three regions: core, interfacial and overlap. The average local densities of water in these simulations are found to be about 20% lower than bulk water density, while the density in the core region is below, but closer to, the bulk density. There is a decrease in both local and core densities when the temperature is lowered from 298 K to 210 K. The radical proposal is made here that water in hydrophilic confinement is under significant tension, around -100 MPa, inside the pore.
The crust of the Moon as seen by GRAIL.
Wieczorek, Mark A; Neumann, Gregory A; Nimmo, Francis; Kiefer, Walter S; Taylor, G Jeffrey; Melosh, H Jay; Phillips, Roger J; Solomon, Sean C; Andrews-Hanna, Jeffrey C; Asmar, Sami W; Konopliv, Alexander S; Lemoine, Frank G; Smith, David E; Watkins, Michael M; Williams, James G; Zuber, Maria T
2013-02-08
High-resolution gravity data obtained from the dual Gravity Recovery and Interior Laboratory (GRAIL) spacecraft show that the bulk density of the Moon's highlands crust is 2550 kilograms per cubic meter, substantially lower than generally assumed. When combined with remote sensing and sample data, this density implies an average crustal porosity of 12% to depths of at least a few kilometers. Lateral variations in crustal porosity correlate with the largest impact basins, whereas lateral variations in crustal density correlate with crustal composition. The low-bulk crustal density allows construction of a global crustal thickness model that satisfies the Apollo seismic constraints, and with an average crustal thickness between 34 and 43 kilometers, the bulk refractory element composition of the Moon is not required to be enriched with respect to that of Earth.
NASA Astrophysics Data System (ADS)
Melekhina, E. N.; Markarova, M. Yu.; Shchemelinina, T. N.; Anchugova, E. M.; Kanev, V. A.
2015-06-01
The effects of different bioremediation methods on restoration of the oil-polluted peat soil (Histosol) in the northernmost taiga subzone of European Russia was studied. The population dynamics of microorganisms belonging to different trophic groups (hydrocarbon-oxidizing, ammonifying, nitrifying, and oligonitrophilic) were analyzed together with data on the soil enzyme (catalase and dehydrogenase) activities, population densities of soil microfauna groups, their structures, and states of phytocenoses during a sevenyear-long succession. The remediation with biopreparations Roder composed of oil-oxidizing microorganisms-Roder with Rhodococcus rubber and R. erythropolis and Universal with Rhodotorula glutinis and Rhodococcus sp.-was more efficient than the agrochemical and technical remediation. It was concluded that the biopreparations activate microbiological oil destruction, thereby accelerating restoration succession of phytocenosis and zoocenosis. The succession of dominant microfauna groups was observed: the dipteran larvae and Mesostigmata mites predominant at the early stages were replaced by collembolans at later stages. The pioneer oribatid mite species were Tectocepheus velatus, Oppiella nova, Liochthonius sellnicki, Oribatula tibialis, and Eupelops sp.
NASA Astrophysics Data System (ADS)
Kim, Sora; Bahk, Jang-Jun; Kim, Daechoul; Lee, Gwang Soo; Kim, Seong-Pil
2017-04-01
A total of 288 piston and box core samples were collected and analyzed to characterize the physical properties and geoacoustic provinces of surficial sediments in the southern part of the East Sea. Based on in-situ condition sound velocity (converted laboratory sound velocity to in-situ condition sound velocity) and sediment properties (sediment textures and physical properties), the study area was divided into eight provinces (Province IA, IB, IC, II, III, IV, VA, and VB) : (1) Province IA : hemi-pelagic mud partially mixed with intermittent sandy sediments originating from the outer shelf due to slide/slump or mass flows (in-situ condition sound velocity: 1439 m/s, mean grain size: 8.5Φ, bulk density: 1.24 g/cm3,and porosity: 84%); (2) Province IB : Holocene muddy sediments are dominant, but in some area that is influenced by the surrounding land and coast (in-situ condition sound velocity: 1448 m/s, mean grain size: 8.3Φ, bulk density: 1.32 g/cm3, and porosity: 79%); (3) Province IC : muddy sediments that were deposited during the Holocene (in-situ condition sound velocity: 1457 m/s, mean grain size: 7.8Φ, bulk density: 1.36 g/cm3, and porosity: 78%); (4) Province II : mixed recent and relict sediments (in-situ condition sound velocity: 1493 m/s, mean grain size: 5.9Φ, bulk density: 1.53 g/cm3, and porosity: 68%); (5) Province III (Pohang) : there is a mixture of muddy sediments and sandy sediments and sediments from Hyeongsan River are mostly deposited (in-situ condition sound velocity: 1586 m/s, mean grain size: 4.1Φ, bulk density: 1.74 g/cm3, and porosity: 57%); (6) Province IV : coarse-grained relict sediments formed during the Pleistocene (in-situ condition sound velocity: 1572 m/s, mean grain size: 4.1Φ, bulk density: 1.76 g/cm3, and porosity: 55%); (7) Province VA : relict sand with some gravel, show marked differences from the area in which muddy sediments are deposited (in-situ condition sound velocity: 1662 m/s, mean grain size: 3.3Φ, bulk density: 1.82 g/cm3, and porosity: 51%), and (8) Province VB : similar to but coarser sediments than Province IV (in-situ condition sound velocity: 1667 m/s, mean grain size: 3.2Φ, bulk density: 1.87 g/cm3, and porosity: 46%). The in-situ condition sound velocity, mean grain size, and bulk density increased from Province IA to Province VB, whereas the porosity and water content decrease. Variability of the physical and acoustic properties tended to follow the general of the mean grain size. The classification of each province using the in-situ condition sound velocity corrected with the temperature and sediment type provides a better reflection of the sediment properties and sedimentary environment.
Chen, Yanhui; Xie, Tuanhui; Liang, Qiaofeng; Liu, Mengjiao; Zhao, Mingliu; Wang, Mingkuang; Wang, Guo
2016-04-01
In paddy soils, amendments and moisture play important role in the immobilization of cadmium (Cd). The effects of applying lime, peat, and a combination of both on soil Eh, pH, and Cd availability in contaminated soils were investigated under wetted (80 ± 5 % of water holding capacity) and flooded (completely submerged) conditions. In wetted soils, there was little change in Eh, compared to flooded soils where Eh reduced rapidly. Amendments of lime only or in a mixture with peat increased soil pH to different degrees, depending on the lime application rate. However, peat addition only slightly affected soil pH. The decreased Cd availability in flooded soils was related to submergence duration and was significantly lower than that in wetted soils after 14 days. Liming wetted and flooded soils decreased exchangeable Cd and increased carbonates or Fe-Mn oxides bound fractions, while peat addition transformed Cd from carbonates to organic matter bound fractions. The combined application of peat and lime generally showed better inhibitory effects on the availability of Cd than separately application of lime or peat. Higher application rates of lime, peat, or their mixture were more effective at reducing Cd contamination in flooded soil. This indicates that application of peat and lime mixture under flooded conditions was most effective for in situ remediation of Cd-contaminated soils. Further studies are required to assess the long-term effectiveness of the peat and lime mixture on Cd availability in paddy soils.
NASA Astrophysics Data System (ADS)
Prat-Guitart, Nuria; Belcher, Claire M.; Hadden, Rory M.; Rein, Guillermo; Yearsley, Jon M.
2015-04-01
In shallow layers of peat, the transition between moss species causes a step-change of the horizontal distribution of peat moisture content. Post-fire studies in peatlands have reported shallow layers being consumed in irregular distributions. The unburned areas were found to be patches of wet Sphagnum moss. Our laboratory scale study analyses the effect of a horizontal step-change in moisture content on the spread of smouldering. We designed a laboratory-scale experiment (20×18×5 cm) within an insulated box filled with milled peat. Peat was ignited on one side of the box from which the smouldering fire horizontally self-propagates through a region of dry peat (MC1) and then through a wetter region of peat (MC2). An infrared camera, a webcam and thermocouples monitor the position of the smouldering fire spreading horizontally. The experiment was repeated with peats at different moisture content combinations to analyse the smouldering behaviour on a range of moisture content step-change conditions. The data analysis estimates the burned area and examines smouldering fire behaviour across a wide range of moisture content combinations reproducing realistic scenarios. We found that the area burned depends on peat moisture content before the step-change (MC1) as well as the increase in moisture of the step-change itself (difference between MC1 and MC2). Our study assists in researching the influence of peat moisture content on the spread of smouldering in peatland fire and contributes to a better understanding of the post-fire peatland landscape, helping to reconstruct smouldering fire events.
Microwave sensing of moisture content and bulk density in flowing grain
USDA-ARS?s Scientific Manuscript database
Moisture content and bulk density were determined from measurement of the dielectric properties of flowing wheat kernels at a single microwave frequency (5.8 GHz). The measuring system consisted of two high-gain microwave patch antennas mounted on opposite sides of rectangular chute and connected to...
Uncertainty in peat volume and soil carbon estimated using ground-penetrating radar and probing
Andrew D. Parsekian; Lee Slater; Dimitrios Ntarlagiannis; James Nolan; Stephen D. Sebestyen; Randall K. Kolka; Paul J. Hanson
2012-01-01
Estimating soil C stock in a peatland is highly dependent on accurate measurement of the peat volume. In this study, we evaluated the uncertainty in calculations of peat volume using high-resolution data to resolve the three-dimensional structure of a peat basin based on both direct (push probes) and indirect geophysical (ground-penetrating radar) measurements. We...
Economics of selected energy applications of peat in Panama and Costa Rica
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thayer, G.R.; Ramirez E., O.; Ramirez, A.
Studies were performed to determine the economic competitiveness of peat in Costa Rica and Panama. The cases examined were (1) electrical production in Panama, and (2) industrial boilers and cement plants in Costa Rica. Based on estimates of peat mining costs and the end-use costs we calculated for each application, the price of coal and oil at which the levelized life cycle cost of energy using peat was the same as that when coal or oil was used. We found that a peat-fueled power plant in Panama would be economic if the price of fuel oil was above $0.10 permore » liter and the cost of coal was above $40.00 per metric ton delivered. In Costa Rica, peat was competitive with fuel oil for large boilers (34,000 kg of steam per hour) when the cost of oil was above $0.10 per liter. For smaller boilers (5,000 kg of steam per hour) peat was cheaper than fuel oil when oil was above $0.08 per liter. Peat would be competitive in a cement plant when fuel oil prices were above $0.075 per liter. 5 figs.« less
Singh, Ravendra; Román-Ospino, Andrés D; Romañach, Rodolfo J; Ierapetritou, Marianthi; Ramachandran, Rohit
2015-11-10
The pharmaceutical industry is strictly regulated, where precise and accurate control of the end product quality is necessary to ensure the effectiveness of the drug products. For such control, the process and raw materials variability ideally need to be fed-forward in real time into an automatic control system so that a proactive action can be taken before it can affect the end product quality. Variations in raw material properties (e.g., particle size), feeder hopper level, amount of lubrication, milling and blending action, applied shear in different processing stages can affect the blend density significantly and thereby tablet weight, hardness and dissolution. Therefore, real time monitoring of powder bulk density variability and its incorporation into the automatic control system so that its effect can be mitigated proactively and efficiently is highly desired. However, real time monitoring of powder bulk density is still a challenging task because of different level of complexities. In this work, powder bulk density which has a significant effect on the critical quality attributes (CQA's) has been monitored in real time in a pilot-plant facility, using a NIR sensor. The sensitivity of the powder bulk density on critical process parameters (CPP's) and CQA's has been analyzed and thereby feed-forward controller has been designed. The measured signal can be used for feed-forward control so that the corrective actions on the density variations can be taken before they can influence the product quality. The coupled feed-forward/feed-back control system demonstrates improved control performance and improvements in the final product quality in the presence of process and raw material variations. Copyright © 2015 Elsevier B.V. All rights reserved.
The Fall and Recovery of the Tagish Lake Meteorite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hildebrand, Alan R.; McCausland, Phil J.; Brown, Peter G.
2006-03-01
The Tagish Lake C2 (ungrouped) carbonaceous chondrite fall of January 18, 2000 delivered >10 kg of one of the most primitive and physically weak meteorites yet studied. In this paper we report the detailed circumstances of the fall and the recovery of all documented Tagish Lake fragments. We also provide measurements of bulk physical properties (mass, grain and bulk density), bulk triple oxygen-isotope ratios, and short-lived cosmogenic radionuclides counts for several fragments. Ground eyewitnesses and recorded observations of the Tagish Lake fireball event provide a refined estimate of the fireball trajectory, and hence, its pre-atmospheric orbit. From its calculated orbitmore » and its similarity to the remotely-sensed properties of the D and P-class asteroids, the Tagish Lake carbonaceous chondrite represents these outer belt asteroids, and is not of cometary origin. The bulk oxygen-isotope compositions reported here are among the highest known for meteorites. These data plot just below the Terrestrial Fractionation Line, following a trend similar to the CM meteorite mixing line. The bulk density of the Tagish Lake material (1.66 ±0.02 g/cm3) is the same, within error, as the total bulk densities of many C-class and especially D- and P-class asteroids. The high microporosity of Tagish Lake samples (~40%) provides an obvious candidate material for the composition of low bulk density primitive asteroids such as Phobos, Deimos and the P-class binary 87 Sylvia, without requiring a substantial contribution from macroporosity in the form of ice, thick regolith or “rubble pile” assemblages with large interior voids.« less
Biochemical processes of oligotrophic peat deposits of Vasyugan Mire
NASA Astrophysics Data System (ADS)
Inisheva, L. I.; Sergeeva, M. A.
2009-04-01
The problem of peat and mire ecosystems functioning and their rational use is the main problem of biosphere study. This problem also refers to forecasting of biosphere changes results which are global and anthropogenic. According to many scientists' research the portion of mires in earth carbon balance is about 15% of world's stock. The aim of this study is to investigate biochemical processes in oligotrophic deposits in North-eastern part of Vasyugan Mire. The investigations were made on the territory of scientific-research ground (56Ë 03´ and 56Ë 57´ NL, 82Ë 22´ and 82Ë 42´ EL). It is situated between two rivers Bakchar and Iksa (in outskirts of the village Polynyanka, Bakchar region, Tomsk oblast). Evolution of investigated mire massif began with the domination of eutrophic phytocenosis - Filicinae, then sedge. Later transfer into oligotrophic phase was accompanied by formation of meter high-moor peat deposit. The age of three-meter peat deposit reaches four thousand years. Biochemical processes of carbon cycle cover the whole peat deposit, but the process activity and its direction in different layers are defined by genesis and duration of peat formation. So, the number of cellulose-fermenting aerobes in researched peat deposits ranges from 16.8 to 75.5 million CFU/g, and anaerobic bacteria from 9.6 to 48.6 million CFU/g. The high number of aerobes is characteristic for high water levels, organizing by raised bog peats. Their number decreases along the profile in 1.7 - 2 times. The number of microflora in peat deposit is defined by the position in the landscape profile (different geneses), by the depth, by hydrothermic conditions of years and individual months. But microflora activity shows along all depth of peat deposit. We found the same in the process of studying of micromycete complex structure. There was revealed either active component micromycete complex - mycelium, or inert one - spores in a meter layer of peat deposit. If mushrooms spores are observed in all deposit layers, mycelium of mushrooms deepens into the peat deposit (to 2 meters) within the limits of aerobic (meter) zone and only in particular months of dry years. The existence of seasonal dynamics of eukaryotic cells, and also capability of yeast and other groups of micromycetes for growth, testifies about vital activity of a number of eukaryotic cells at a depth of 2 meters. Researched peat deposits are biochemically active along the whole profile. But they are different in a microflora number of individual physiological groups either in items of the landscape, or in deposit depth. The largest quantity of aerobic cellulose-fermenting microorganisms is marked during dry years. Anaerobic cellulose-fermenting microorganisms dominate during wet years. The quantity of microbe biomass increases in bottom lifts of peat deposits. This fact testifies about viable condition of microbe complex at depth. The formation process of carbon dioxide in peat deposits of Vasyugan Mire actively occurs during dry years and is defined by hydrothermic conditions of a meter layer of peat deposit. The intensity of CO2 isolation for certain correlates with the temperature in horizon of 0 - 50 sm. and with bog waters level. The study of gas composition for the three years showed that the largest concentration of carbon dioxide in peat soils is marked along the whole profile during a dryer year (0.08 - 2.65 millimole/l), increasing other years' level in about 1.5 0 2 times. Emission of carbon dioxide in peat
Statistical and Multifractal Evaluation of Soil Compaction in a Vineyard
NASA Astrophysics Data System (ADS)
Marinho, M.; Raposo, J. R.; Mirás Avalos, J. M.; Paz González, A.
2012-04-01
One of the detrimental effects caused by agricultural machines is soil compaction, which can be defined by an increase in soil bulk density. Soil compaction often has a negative impact on plant growth, since it reduces the macroporosity and soil permeability and increases resistance to penetration. Our research explored the effect of the agricultural machinery on soil when trafficking through a vineyard at a small spatial scale, based on the evaluation of the soil compaction status. The objectives of this study were: i) to quantify soil bulk density along transects following wine row, wheel track and outside track, and, ii) to characterize the variability of the bulk density along these transects using multifractal analysis. The field work was conducted at the experimental farm of EVEGA (Viticulture and Enology Centre of Galicia) located in Ponte San Clodio, Leiro, Orense, Spain. Three parallel transects were marked on positions with contrasting machine traffic effects, i.e. vine row, wheel-track and outside-track. Undisturbed samples were collected in 16 points of each transect, spaced 0.50 m apart, for bulk density determination using the cylinder method. Samples were taken in autumn 2011, after grape harvest. Since soil between vine rows was tilled and homogenized beginning spring 2011, cumulative effects of traffic during the vine growth period could be evaluated. The distribution patterns of soil bulk density were characterized by multifractal analysis carried out by the method of moments. Multifractality was assessed by several indexes derived from the mass exponent, τq, the generalized dimension, Dq, and the singularity spectrum, f(α), curves. Mean soil bulk density values determined for vine row, outside-track and wheel-track transects were 1.212 kg dm-3, 1.259 kg dm-3and 1.582 kg dm-3, respectively. The respective coefficients of variation (CV) for these three transects were 7.76%, 4.82% and 2.03%. Therefore mean bulk density under wheel-track was 30.5% higher than along the vine row. Vine row and outside-track positions showed not significant differences between means. The bulk density of the wheel-track transect also showed the lowest CV. The multifractal spectra of the three transects were asymmetric curves, rather short toward the left and much longer toward the right. The width of the right deviating shaped multifractal spectra was ranked as: wine row > outside-track ≈ wheel-track. Entropy dimension, D1, was 0.998, 0.992 and 0.992 for vine row, outside-track and track transects, respectively. These results show different patterns of variability of bulk density for parallel transects. They also suggest that multifractal parameters may be useful in assessing the variability of other soil properties such as soil particle density, soil porosity or soil water content, at different spatial scales as well. Acknowledgments. This work was funded in part by Spanish Ministry of Science and Innovation (MICINN) in the frame of project CGL2009-13700-C02. Financial support from CAPES/GOV., Brazil, is also acknowledged by Prof. M. Marinho.
NASA Astrophysics Data System (ADS)
Jungerius, Pieter Dirk; van den Ancker, Hanneke; Wevers, Nina
2013-04-01
Geodiversity is the natural and cultural range of geological, geomorphological and soil features. We analysed the large database of 19th and early 20th century paintings of Simonis and Buunk (www.Simonis-Buunk.com) to track changes in the geodiversity of Dutch peatlands since pre-photographic times. Peat dominated in two of the eight main landscapes of the Netherlands: the Lowland peats in the Holocene west and the Highland peats in the sandy Pleistocene eastern parts. Painters were mainly attracted by the lowland peats. Since more than thousand years, peat plays a major role in Dutch military security, economy, ecology and cultural life. Natural variety and cultural use resulted in a geodiversity that is unique in Europe. There are more than 100 place names with 'veen' (= peat), and surnames with 'veen' are common. Proof of the exploitation of peat for salt and fuel exists from the Roman times onwards. In the 9th century, peatlands were drained and reclaimed for growing wheat. Already in the 11th century, it was necessary to build dikes to prevent flooding, to control waterlevels to avoid further oxidation, and to convert landuse to grassland. But subsidence continued, and in the 14th century windmills were needed to drain the lands and pump the water out. In the 16th century industrial peat exploitation fuelled the rise of industries and cities. All this draining and digging caused the peat surface to shrink. The few remaining living peats are conserved by nature organisations. Geodiversity and landscape paintings In the peat landscapes, popular painting motives were high water levels, the grasslands of the 'Green Heart', the winding streams and remaining lakes. The paintings of landscapes where peat had been removed, show watermanagement adaptations: wind mills, different water levels, canals made for the transport of fuel, bridges, tow paths and the 'plassen', i.e. the lakes left after peat exploitation. The droogmakerijen (reclaimed lakes), now 2 to 5 m below sealevel, were less inspiring. Examples of geodiversity changes illustrated by the landscape paintings • Peat extraction stopped • Land use changed e.g. the deforestation of the 'Bovenlanden' • Erosion by waves and boats caused the collapse of peat islands in the artificial lakes • Peat polders of the Green Heart were sacrificed for building projects • 90% of the original wind mills were replaced by electrical and motor pumps • Horse traction was replaced by motor vehicles, which made tow paths and high wooden bridges redundant. • Dam burst risk increased and skating scenes disappeared with climate change, References Jungerius, P.D., 2010. Sea level rise and the response of the Dutch people - Adaptive strategies based on geomorphologic principles give sustainable solutions. In: Martini I.P.& Chesworth, W.(eds.) Landscapes and Societies. Springer Verlag.
NASA Astrophysics Data System (ADS)
Hergoualc'h, Kristell; Verchot, Louis V.
2011-06-01
The increasing and alarming trend of degradation and deforestation of tropical peat swamp forests may contribute greatly to climate change. Estimates of carbon (C) losses associated with land use change in tropical peatlands are needed. To assess these losses we examined C stocks and peat C fluxes in virgin peat swamp forests and tropical peatlands affected by six common types of land use. Phytomass C loss from the conversion of virgin peat swamp forest to logged forest, fire-damaged forest, mixed croplands and shrublands, rice field, oil palm plantation, and Acacia plantation were calculated using the stock difference method and estimated at 116.9 ± 39.8, 151.6 ± 36.0, 204.1 ± 28.6, 214.9 ± 28.4, 188.1 ± 29.8, and 191.7 ± 28.5 Mg C ha-1, respectively. Total C loss from uncontrolled fires ranged from 289.5 ± 68.1 Mg C ha-1 in rice fields to 436.2 ± 77.0 Mg C ha-1 in virgin peat swamp forest. We assessed the effects of land use change on C stocks in the peat by looking at how the change in vegetation cover altered the main C inputs (litterfall and root mortality) and outputs (heterotrophic respiration, CH4 flux, fires, and soluble and physical removal) before and after conversion. The difference between the soil input-output balances in the virgin peat swamp forest and in the oil palm plantation gave an estimate of peat C loss of 10.8 ± 3.5 Mg C ha-1 yr-1. Peat C loss from other land use conversions could not be assessed due to lack of data, principally on soil heterotrophic respiration rates. Over 25 years, the conversion of tropical virgin peat swamp forest into oil palm plantation represents a total C loss from both biomass and peat of 427.2 ± 90.7 Mg C ha-1 or 17.1 ± 3.6 Mg C ha-1 yr-1. In all situations, peat C loss contributed more than 63% to total C loss, demonstrating the urgent need in terms of the atmospheric greenhouse gas burden to protect tropical virgin peat swamp forests from land use change and fires.
Genesis of peat-bog soils in the northern taiga spruce forests of the Kola Peninsula
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikonov, V.V.
1981-01-01
The characteristics of soil formation processes in the Peat-Bog soils of waterlogged spruce phytocenoses on the Kola Peninsula are investigated. It is found that the ash composition of the peat layer is determined primarily by the composition of the buried plant residues. The effect of the chemical composition of water feeding the peat bogs is determined. (Refs. 7).
Zak, Dominik; Wagner, Carola; Payer, Brian; Augustin, Jürgen; Gelbrecht, Jörg
2010-07-01
Rewetting of drained fens is necessary to stop further soil degradation and to reestablish important ecological functions. However, substantial changes of peat characteristics in the upper soil layers, due to drainage and land use, could counteract their recovery as nutrient-poor systems for an unknown period. We assessed the importance of altered peat properties, such as the degree of peat decomposition and the amount of redox-sensitive phosphorus (P) compounds, for P mobilization in different degraded fens. An experimental design involving 63 intact peat cores from fens with varying drainage and land-use histories was developed to quantify the mobilization of P, as well as that of iron (Fe), ammonium, carbon dioxide, and methane, all indicators of organic-matter decomposition and/or P-releasing processes. We found that net P release rates in peat cores with highly decomposed peat (range: 0.1-52.3 mg P x m(-2) x d(-1)) were significantly correlated to the amount of P bound to redox-sensitive compounds and the molar Fe:P as well as Al:P ratios of peat. We conclude that the following general rules apply for P mobilization in rewetted fens: (1) elevated levels of P release rates and P concentrations in pore water up to three orders of magnitude larger than under natural reference conditions can only be expected for rewetted fens whose surface soil layers consist of highly decomposed peat; (2) peat characteristics, such as the amount of P bound to redox-sensitive Fe(III) compounds (positive correlation) and molar ratios of Fe:P or Al:P (negative correlations), explain the high range of P release rates; and (3) a critical P export to adjacent lakes or rivers can only be expected if molar Fe:P ratios of highly decomposed peat are less than 10.
NASA Astrophysics Data System (ADS)
Smidt, Geerd; Tänzer, Detlef
2013-04-01
The new European Competence Centre for Moor and Climate (EFMK) is an initiative by different local communities, environmental protection NGOs, agricultural services, and partners from the peat and other industries in Lower Saxony (Germany). The Centre aims to integrate practical peat bog conservation with a focus on green house gas emission after drainage and after water logging activities. Together with our partners we want to break new ground to protect the remaining bogs in the region. Sphagnum mosses will be produced in paludiculture on-site in cooperation with the local peat industry to provide economic and ecologic alternatives for peat products used in horticulture business. Land-use changes are needed in the region and will be stimulated in cooperation with agricultural services via compensation money transfers from environmental protection funds. On a global scale the ideas of Carbon Credit System have to be discussed to protect the peat bogs for climate protection issues. Environmental education is an important pillar of the EFMK. The local society is invited to explore the unique ecosystem and to participate in peat bog protection activities. Future generations will be taught to understand that the health of our peat bogs is interrelated with the health of the local and global climate. Besides extracurricular classes for schools the centre will provide infrastructure for Master and PhD students, as well for senior researchers for applied research in the surrounding moor. International partners in the scientific and practical fields of peat bog ecology, renaturation, green house gas emissions from peat bogs, and environmental policy are invited to participate in the European Competence Center for Moor and Climate.
NASA Astrophysics Data System (ADS)
Olivia, Monita; Ismeddiyanto, Wibisono, Gunawan; Sitompul, Iskandar R.
2017-09-01
Construction in peatland has faced scarce water sources for mixing and curing concrete. It is known that peat water has high organic content and low pH that can be harmful to concrete in the environment. In some remote areas in Riau Province, contractors used peat water directly without sufficient treatments to comply with SKSNI requirements of concrete mixing water. This paper presents a study of compressive strength, porosity and sorptivity of Ordinary Portland Cement (OPC) and blended OPC-Palm Oil Fuel Ash (OPC-POFA) concrete. The specimens were mixed using natural water and peat water, then some of them were cured in fresh water and peat water. Six mixtures were investigated using a variation of cement, mixing water and curing water. Tap water is used as control mixing and curing water for all specimens. The compressive strength, porosity and sorptivity were calculated at seven and 28 days. Results indicate that the use of peat water will cause low compressive strength, high porosity and sorptivity for both OPC and OPC-POFA concrete. Using peat water and curing the specimens in tap water could improve the early strength, porosity and sorptivity of OPC concrete; however, it has an adverse effect on OPC-POFA specimens. The properties of early age concrete of both types (OPC and OPC-POFA) using peat water were as good as those with tap water. Therefore, it is suggested that peat water should be considered as mixing and curing water for concrete where tap water resources are scarce. Investigation of its long-term properties, as well as extending the observed age of concrete is recommended before any use of peat water.
Long-term purification efficiency of a wetland constructed to treat runoff from peat extraction.
Karjalainen, Satu M; Heikkinen, Kaisa; Ihme, Raimo; Kløve, Bjørn
2016-01-01
Peat extraction increases the phosphorus, nitrogen, organic matter, suspended solids, and iron concentrations in runoff, resulting in negative effects on downstream water bodies. Wetlands are commonly used as natural cost-effective solutions to mitigate these negative effects. This study analyzed changes in the quality of runoff water from peat extraction areas and the long-term efficiency of constructed wetlands. The results indicate that the quality of runoff water changed after the initial drainage and during peat extraction. Nitrogen leached at high concentrations in the early stages of peat extraction following drainage, whereas the leaching of iron and phosphorus increased after peat extraction from deeper layers. Comparison of water quality and impurities retained immediately after treatment wetland construction and 14 years later showed that the treatment wetland remained functional, with good retention capacity, over a long period.
Investigation of metal ions sorption of brown peat moss powder
NASA Astrophysics Data System (ADS)
Kelus, Nadezhda; Blokhina, Elena; Novikov, Dmitry; Novikova, Yaroslavna; Chuchalin, Vladimir
2017-11-01
For regularities research of sorptive extraction of heavy metal ions by cellulose and its derivates from aquatic solution of electrolytes it is necessary to find possible mechanism of sorption process and to choice a model describing this process. The present article investigates the regularities of aliovalent metals sorption on brown peat moss powder. The results show that sorption isotherm of Al3+ ions is described by Freundlich isotherm and sorption isotherms of Na+ i Ni2+ are described by Langmuir isotherm. To identify the mechanisms of brown peat moss powder sorption the IR-spectra of the initial brown peat moss powder samples and brown peat moss powder samples after Ni (II) sorption were studied. Metal ion binding mechanisms by brown peat moss powder points to ion exchange, physical adsorption, and complex formation with hydroxyl and carboxyl groups.
In situ fluidization for peat bed rupture, and preliminary economic analysis.
Niven, R K; Khalili, N
2002-11-01
This study concerns in situ fluidization (ISF), a new remediation method with potential application to the remediation of NAPL and heavy metal contaminants, by their release from the fluidized zone generated by a water jet. The present study examines the effect of ISF on layers of peat, of significance owing to its role as an important NAPL and metal contaminant trap. Once trapped, such contaminants are not readily accessible by most remedial methods, due to the low permeability and diffusivity of the peat. A simple tank experiment is used to demonstrate rupture of a peat layer by ISF, with removal of the peat as elutriated fines and segregated peat chunks. The application of ISF in the field is then examined by three field trials in uncontaminated sands, in both saturated and unsaturated conditions. Fluidized depths of up to 1.9 m in the saturated zone (with refusal on a peat layer) and 2.5 m in the unsaturated zone (no refusal) were attained, using a 1.9-m-long, 50 mm diameter jet operated at 5-13 1 s(-1). Pulses of dark turbidity and shell fragments in the effluent indicated the rupture of peat and shelly layers. The experiments demonstrate the hydraulic viability of ISF in the field, and its ability to remove peat-based contaminants. The issues of appropriate jet design and water generation during ISF are discussed, followed by a preliminary economic analysis of ISF relative to existing remediation methods.
Joy, Jordan M; Falcone, Paul H; Vogel, Roxanne M; Mosman, Matt M; Kim, Michael P; Moon, Jordan R
2015-11-01
Adenosine-5'-triphosphate (ATP) is primarily known as a cellular source of energy. Increased ATP levels may have the potential to enhance body composition. A novel, proprietary blend of ancient peat and apple extracts has been reported to increase ATP levels, potentially by enhancing mitochondrial ATP production. Therefore, the purpose of this investigation was to determine the supplement's effects on body composition when consumed during 12 weeks of resistance training. Twenty-five healthy, resistance-trained, male subjects (age, 27.7 ± 4.8 years; height, 176.0 ± 6.5 cm; body mass, 83.2 ± 12.1 kg) completed this study. Subjects supplemented once daily with either 1 serving (150 mg) of a proprietary blend of ancient peat and apple extracts (TRT) or placebo (PLA). Supervised resistance training consisted of 8 weeks of daily undulating periodized training followed by a 2-week overreach and a 2-week taper phase. Body composition was assessed using dual-energy X-ray absorptiometry and ultrasound at weeks 0, 4, 8, 10, and 12. Vital signs and blood markers were assessed at weeks 0, 8, and 12. Significant group × time (p < 0.05) interactions were present for ultrasound-determined cross-sectional area, which increased in TRT (+0.91 cm(2)) versus PLA (-0.08 cm(2)), as well as muscle thickness (TRT: +0.46; PLA: +0.04 cm). A significant group × time (p < 0.05) interaction existed for creatinine (TRT: +0.06; PLA: +0.15 mg/dL), triglycerides (TRT: +24.1; PLA: -20.2 mg/dL), and very-low-density lipoprotein (TRT: +4.9; PLA: -3.9 mg/dL), which remained within clinical ranges. Supplementation with a proprietary blend of ancient peat and apple extracts may enhance resistance training-induced skeletal muscle hypertrophy without affecting fat mass or blood chemistry in healthy males.
Dielectric properties-based method for rapid and nondestructive moisture sensing in almonds
USDA-ARS?s Scientific Manuscript database
A dielectric-based method is presented for moisture determination in almonds independent of bulk density. The dielectric properties of almond were measured between 5 and 15 GHz, with a 1-GHz increments, for samples with moisture contents ranging from 4.8% to 16.5%, wet basis, bulk densities ranging ...
Soil compaction and initial height growth of planted ponderosa pine.
P. H. Cochran; Terry. Brock
1985-01-01
Early height growth of ponderosa pine (Pinus ponderosa Dougl. ex Laws.) seedlings planted in clearcuts in central Oregon was negatively correlated with increasing soil bulk density. Change in bulk density accounted for less than half the total variation in height growth. Although many other factors affect the development of seedlings, compaction...
Scheduling Accessory Assists Patients with Cognitive Disorders
NASA Technical Reports Server (NTRS)
2007-01-01
Recom Technologies Inc. received initial funding from NASA to research the commercial potential of an artificially intelligent planning reaction model to serve as a tool to help individuals suffering from various forms and levels of brain impairment. In 1993, the chief of the Artificial Intelligence Research Branch at Ames Research Center suggested collaborative research with Santa Clara Valley Medical Center. This partnership led to further development of the technology and funding to support clinical research from the U.S. Department of Education's National Institute on Disability and Rehabilitation Research. In 1996, Attention Control Systems Inc. was founded to market the finished device, called the Planning and Execution Assistant and Trainer (PEAT). PEAT is a pocket-sized PDA-like device with a graphical display, touchscreen controls, an electronic calendar, an address book, and a built-in phone, that cues users to start or stop scheduled activities, monitors their progress, and adjusts schedules as necessary in response to delays or calendar changes. It uses an automatic planning model developed for NASA to adjust daily plans when a situation changes. PEAT is sold as a complete system that includes software, hardware, documentation, and technical support. In addition to the flagship Pocket PEAT device, there is PEAT Phone, PC PEAT, and PEAT Link. Clinical studies of PEAT continue at Santa Clara Valley Medical Center
Heat transport in the Red Lake Bog, Glacial Lake Agassiz Peatlands
McKenzie, J.M.; Siegel, D.I.; Rosenberry, D.O.; Glaser, P.H.; Voss, C.I.
2007-01-01
We report the results of an investigation on the processes controlling heat transport in peat under a large bog in the Glacial Lake Agassiz Peatlands. For 2 years, starting in July 1998, we recorded temperature at 12 depth intervals from 0 to 400 cm within a vertical peat profile at the crest of the bog at sub-daily intervals. We also recorded air temperature 1 m above the peat surface. We calculate a peat thermal conductivity of 0.5 W m-1 ??C-1 and model vertical heat transport through the peat using the SUTRA model. The model was calibrated to the first year of data, and then evaluated against the second year of collected heat data. The model results suggest that advective pore-water flow is not necessary to transport heat within the peat profile and most of the heat is transferred by thermal conduction alone in these waterlogged soils. In the spring season, a zero-curtain effect controls the transport of heat through shallow depths of the peat. Changes in local climate and the resulting changes in thermal transport still may cause non-linear feedbacks in methane emissions related to the generation of methane deeper within the peat profile as regional temperatures increase. Copyright ?? 2006 John Wiley & Sons, Ltd.
Shuhada, Siti Noor; Salim, Sabiha; Nobilly, Frisco; Zubaid, Akbar; Azhar, Badrul
2017-09-01
Intensive land expansion of commercial oil palm agricultural lands results in reducing the size of peat swamp forests, particularly in Southeast Asia. The effect of this land conversion on macrofungal biodiversity is, however, understudied. We quantified macrofungal biodiversity by identifying mushroom sporocarps throughout four different habitats; logged peat swamp forest, large-scale oil palm plantation, monoculture, and polyculture smallholdings. We recorded a total of 757 clusters of macrofungi belonging to 127 morphospecies and found that substrates for growing macrofungi were abundant in peat swamp forest; hence, morphospecies richness and macrofungal clusters were significantly greater in logged peat swamp forest than converted oil palm agriculture lands. Environmental factors that influence macrofungi in logged peat swamp forests such as air temperature, humidity, wind speed, soil pH, and soil moisture were different from those in oil palm plantations and smallholdings. We conclude that peat swamp forests are irreplaceable with respect to macrofungal biodiversity. They host much greater macrofungal biodiversity than any of the oil palm agricultural lands. It is imperative that further expansion of oil palm plantation into remaining peat swamp forests should be prohibited in palm oil producing countries. These results imply that macrofungal distribution reflects changes in microclimate between habitats and reduced macrofungal biodiversity may adversely affect decomposition in human-modified landscapes.
NASA Astrophysics Data System (ADS)
Aminudin, A.; Hasanah, T. R.; Iryati, M.
2018-05-01
The Electrical and physical properties can be used as indicators for measuring soil conditions. One of the methods developed in agricultural systems to obtain information on soil conditions is through measuring of electrical conductivity. Peat soil is one of the natural resources that exist in Indonesia. This study aims to determine the characteristics of peat soil in Rasau village, West Kalimantan. This research was conducted by the properties of electrical conductivity and water content using 5TE Water Contents and EC Sensor equipment, but also to know the change of physical nature of peat soil covering peat soil and peat type. The results showed that the electrical conductivity value of 1-4 samples was 0.02 -0.29 dS/m and the volume water content value (VWC) was 0.255-0.548 m3/m3 and the physical characteristics obtained were peat colour brown to dark brown that allegedly the soil still has a very high content of organic material derived from weathering plants and there are discovery of wood chips, wood powder and leaf powder on the ground. Knowing the information is expected to identify the land needs to be developed to be considered for future peat soil utilization.
Petrophysical Properties of Twenty Drill Cores from the Los Azufres, Mexico, Geothermal Field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iglesias, E.R.; Contreras L., E.; Garcia G., A.
1987-01-20
For this study we selected 20 drill cores covering a wide range of depths (400-3000 m), from 15 wells, that provide a reasonable coverage of the field. Only andesite, the largely predominant rock type in the field, was included in this sample. We measured bulk density, grain (solids) density, effective porosity and (matrix) permeability on a considerable number of specimens taken from the cores; and inferred the corresponding total porosity and fraction of interconnected total porosity. We characterized the statistical distributions of the measured and inferred variables. The distributions of bulk density and grain density resulted approximately normal; the distributionsmore » of effective porosity, total porosity and fraction of total porosity turned out to be bimodal; the permeability distribution resulted highly skewed towards very small (1 mdarcy) values, though values as high as 400 mdarcies were measured. We also characterized the internal inhomogeneity of the cores by means of the ratio (standard deviation/mean) corresponding to the bulk density in each core (in average there are 9 specimens per core). The cores were found to present clearly discernible inhomogeneity; this quantitative characterization will help design new experimental work and interpret currently available and forthcoming results. We also found statistically significant linear correlations between total density and density of solids, effective porosity and total density, total porosity and total density, fraction of interconnected total porosity and the inverse of the effective porosity, total porosity and effective porosity; bulk density and total porosity also correlate with elevation. These results provide the first sizable and statistically detailed database available on petrophysical properties of the Los Azufres andesites. 1 tab., 16 figs., 4 refs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nigam, Sandeep, E-mail: snigam@barc.gov.in; Sudarsan, V., E-mail: vsudar@barc.gov.in; Majumder, C.
Present manuscript deals with the structural changes associated with transformation of bulk Y{sub 2}Sn{sub 2}O{sub 7} into nanoparticles of Y{sub 2}Sn{sub 2}O{sub 7}. Nanoparticles of Y{sub 2}Sn{sub 2}O{sub 7} both undoped and Eu{sup 3+} doped, were prepared at a relatively low temperature (700 °C) and investigated for their structural and luminescence properties and compared them with that of bulk Y{sub 2}Sn{sub 2}O{sub 7} sample prepared by the solid-state method at 1300 °C. Significant distortion in geometry and electron density distribution around Y{sup 3+}/Eu{sup 3+} ions in nanoparticles are confirmed from the Rietveld refinement of the powder X-ray diffraction patterns andmore » theoretical calculations based on the density functional theory (DFT). The SnO{sub 6} octahedron in Y{sub 2}Sn{sub 2}O{sub 7} is more expanded in nanoparticles compared to bulk. Iso-surface density distribution reveals that while bulk sample shows typical ionic feature in Y/Eu--O bonds, nanoparticle sample shows sharing of electron density along bond axis pertaining to covalent character. These inferences are further supported by the doped Eu{sup 3+} luminescence and calculated Ω{sub 2} and Ω{sub 4} parameters. - Graphical abstract: YO{sub 8} scalenohedron present in bulk and nanoparticles of Y{sub 2}Sn{sub 2}O{sub 7}.Variation of the electron density around Y{sup 3+} ions in YO{sub 8} polyhedron is also shown in bulk and nanoparticles of Y{sub 2}Sn{sub 2}O{sub 7}. The difference in the extent of ionic/covalent nature of the Y--O bond is clearly seen the contour plot of electron density. Highlights: ► YO{sub 8} scalenohedron is axially and equatorially distorted in Y{sub 2}Sn{sub 2}O{sub 7} nanoparticles. ► Enlargement of SnO{sub 6} octahedron in nanoparticles of Y{sub 2}Sn{sub 2}O{sub 7} compared to bulk. ► Less symmetric charge distribution around Y{sup 3+} ions in Y{sub 2}Sn{sub 2}O{sub 7} nanoparticles.« less
Chen, Weifeng; Wu, Weijing; Zhou, Lei; Xu, Miao; Wang, Lei; Peng, Junbiao
2018-01-01
A semi-analytical extraction method of interface and bulk density of states (DOS) is proposed by using the low-frequency capacitance–voltage characteristics and current–voltage characteristics of indium zinc oxide thin-film transistors (IZO TFTs). In this work, an exponential potential distribution along the depth direction of the active layer is assumed and confirmed by numerical solution of Poisson’s equation followed by device simulation. The interface DOS is obtained as a superposition of constant deep states and exponential tail states. Moreover, it is shown that the bulk DOS may be represented by the superposition of exponential deep states and exponential tail states. The extracted values of bulk DOS and interface DOS are further verified by comparing the measured transfer and output characteristics of IZO TFTs with the simulation results by a 2D device simulator ATLAS (Silvaco). As a result, the proposed extraction method may be useful for diagnosing and characterising metal oxide TFTs since it is fast to extract interface and bulk density of states (DOS) simultaneously. PMID:29534492
Influence of Biodegradation on the Organic Compounds Composition of Peat.
NASA Astrophysics Data System (ADS)
Serebrennikova, Olga; Svarovskaya, Lidiya; Duchko, Maria; Strelnikova, Evgeniya; Russkikh, Irina
2016-06-01
Largest wetland systems are situated on the territory of the Tomsk region. They are characterized by the high content of organic matter (OM), which undergoes transformation as a result of physical, chemical and biological processes. The composition of peat OM is determined by the nature of initial peat-forming plants, their transformation products and bacteria. An experiment in stimulated microbial impact was carried out for estimating the influence of biodegradation on the composition of peat lipids. The composition of the functional groups in the bacterial biomass, initial peat and peat after biodegradation was determined by IR-spectroscopy using the spectrometer NICOLET 5700. The IR spectra of peat and bacteria organic matter are characterized by the presence of absorption bands in ranges: 3400-3200 cm-1, which refers to the stretching vibrations of OH-group of carboxylic acids and various types of hydrogen bonds; 1738-1671 cm-1 - characteristic stretching vibrations of the C = O group of carboxylic acids and ketones; 1262 cm-1 - stretching vibrations of C-O of carboxylic acids. Group and individual composition of organic compounds in studied samples was determined by gas chromatography-mass-spectrometry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thayer, G.R.; Williamson, K.D. Jr.; Ramirez, O.
The authors compare the competitive position of peat for energy with coal, oil, and cogenerative systems in gasifiers and solid-fuel boilers. They also explore the possibility for peat use in industry. To identify the major factors, they analyze costs using a Los Alamos levelized cost code, and they study parametric costs, comparing peat production in constant dollars with interest rates and return on investment. They consider costs of processing plant construction, sizes and kinds of boilers, retrofitting, peat drying, and mining methods. They examine mining requirements for Moin, Changuinola, and El Cairo and review wet mining and dewatering methods. Peatmore » can, indeed, be competitive with other energy sources, but this depends on the ratio of fuel costs to boiler costs. This ratio is nearly constant in comparison with cogeneration in a steam-only production system. For grate boilers using Costa Rican high-ash peat, and for small nonautomatic boilers now used in Costa Rica, the authors recommend combustion tests. An appendix contains a preliminary mining plan and cost estimate for the El Cairo peat deposit. 8 refs., 43 figs., 19 tabs.« less
Flow path oscillations in transient ground-water simulations of large peatland systems
Reeve, A.S.; Evensen, R.; Glaser, P.H.; Siegel, D.I.; Rosenberry, D.
2006-01-01
Transient numerical simulations of the Glacial Lake Agassiz Peatland near the Red Lakes in Northern Minnesota were constructed to evaluate observed reversals in vertical ground-water flow. Seasonal weather changes were introduced to a ground-water flow model by varying evapotranspiration and recharge over time. Vertical hydraulic reversals, driven by changes in recharge and evapotranspiration were produced in the simulated peat layer. These simulations indicate that the high specific storage associated with the peat is an important control on hydraulic reversals. Seasonally driven vertical flow is on the order of centimeters in the deep peat, suggesting that seasonal vertical advective fluxes are not significant and that ground-water flow into the deep peat likely occurs on decadal or longer time scales. Particles tracked within the ground-water flow model oscillate over time, suggesting that seasonal flow reversals will enhance vertical mixing in the peat column. The amplitude of flow path oscillations increased with increasing peat storativity, with amplitudes of about 5 cm occurring when peat specific storativity was set to about 0.05 m-1. ?? 2005 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hurkuck, Miriam; Brümmer, Christian; Spott, Oliver; Flessa, Heinz; Kutsch, Werner L.
2014-05-01
Large areas of natural peat bogs in Northwestern Germany have been converted to arable land and were subjected to draining and peat cutting in the past. The few protected peatland areas remaining are affected by high nitrogen (N) deposition. Our study site - a moderately drained raised bog - is surrounded by highly fertilized agricultural land and livestock production. In this study, we used a 15N pool dilution technique called 'Integrated Total Nitrogen Input' (ITNI) to quantify annual deposition of atmospheric N into biomonitoring pots over a two-year period. Since it considers direct N uptake by plants, it was expected to result in higher N input than conventional methods for determination of N deposition (e.g. micrometeorological approaches, bulk N samplers). Using Lolium multiflorum and Eriophorum vaginatum as monitor plants and low, medium and high levels of fertilization, we aimed to simulate increasing N deposition to planted pots and to allocate airborne N after its uptake by the soil-plant system in aboveground biomass, roots and soil. Increasing N fertilization was positively correlated with biomass production of Eriophorum vaginatum, whereas atmospheric plant N uptake decreased and highest airborne N input of 899.8 ± 67.4 µg N d-1 pot-1 was found for low N fertilization. In contrast, Lolium multiflorum showed a clear dependency of N supply on plant N uptake and was highest (688.7 ± 41.4 µg N d-1 pot-1) for highly fertilized vegetation pots. Our results suggest that grass species respond differently to increasing N input. While crop grasses such as Lolium multiflorum take up N according to N availability, species adopted to nutrient-limited conditions like Eriophorum vaginatum show N saturation effects with increasing N supply. Total airborne N input ranged from about 24 to 66 kg N ha-1 yr-1 dependent on the used indicator plant and the amount of added fertilizer. Parallel determination of atmospheric N deposition using a micrometeorological approach complemented with bulk samplers was about 24 kg N ha-1 yr-1 during both years of experiments and was thus at the lower range of results obtained by the ITNI method. The low 15N recovery rate of about 50 % during some experiments indicated an underestimation of the applied ITNI approach, resulting in a maximum possible N uptake of twice as high as the determined N input. Most likely, the intensive agricultural land management of the surrounding areas leads to this high N deposition into the protected peatland area. As a result, increasing sensitivity of ombrotrophic vegetation with a subsequent change in plant species composition and a decline in bog-specific vegetation cannot be excluded.
Spatial variability of shelf sediments in the STRATAFORM natural laboratory, Northern California
Goff, J.A.; Wheatcroft, R.A.; Lee, H.; Drake, D.E.; Swift, D.J.P.; Fan, S.
2002-01-01
The "Correlation Length Experiment", an intensive box coring effort on the Eel River shelf (Northern California) in the summer of 1997, endeavored to characterize the lateral variability of near-surface shelf sediments over scales of meters to kilometers. Coring focused on two sites, K60 and S60, separated by ??? 15 km along the 60 m isobath. The sites are near the sand-to-mud transition, although K60 is sandier owing to its proximity to the Eel River mouth. Nearly 140 cores were collected on dip and strike lines with core intervals from < 10m to 1 km. Measurements on each core included bulk density computed from gamma-ray attenuation, porosity converted from resistivity measurements, and surficial grain size. Grain size was also measured over the full depth range within a select subset of cores. X-radiograph images were also examined. Semi-variograms were computed for strike, dip, and down-hole directions at each site. The sand-to-mud transition exerts a strong influence on all measurements: on average, bulk density increases and porosity decreases with regional increases in mean grain size. Analysis of bulk density measurements indicates very strong contrasts in the sediment variability at K60 and S60. No coherent bedding is seen at K60; in the strike direction, horizontal variability is "white" (fully uncorrelated) from the smallest scales examined (a few meters) to the largest (8 km), with a variance equal to that seen within the cores. In contrast, coherent bedding exists at S60 related to the preservation of the 1995 flood deposit. A correlatable structure is found in the strike direction with a decorrelation distance of ??? 800 m, and can be related to long-wavelength undulations in the topography and/or thickness of the flood layer or overburden. We hypothesize that the high degree of bulk density variability at K60 is a result of more intense physical reworking of the seabed in the sandier environment. Without significant averaging, the resistivity-based porosity measurements are only marginally correlated to gamma-ray-bulk density measurements, and are largely independent of mean grain size. Furthermore, porosity displays a high degree of incoherent variability at both sites. Porosity, with a much smaller sample volume than bulk density, may therefore resolve small-scale biogenic variability which is filtered out in the bulk density measurement. ?? 2002 Elsevier Science Ltd. All rights reserved.
Tian, Lei; Ma, Lina; Luo, Shasha; Zhang, Jianfeng; Li, Xiujun
2017-01-01
Peatlands in the Sanjiang Plain could be more vulnerable to global warming because they are located at the southernmost boundary of northern peatlands. Unlike bacteria, fungi are often overlooked, even though they play important roles in substance circulation in the peatland ecosystems. Accordingly, it is imperative that we deepen our understanding of fungal community structure and diversity in the peatlands. In this study, high-throughput Illumina sequencing was used to study the fungal communities in three fens in the Sanjiang Plain, located at the southern edge of northern peatlands. Peat soil was collected from the three fens which developed during different periods. A total of 463,198 fungal ITS sequences were obtained, and these sequences were classified into at least six phyla, 21 classes, more than 60 orders and over 200 genera. The fungal community structures were distinct in the three sites and were dominated by Ascomycota and Basidiomycota. However, there were no significant differences between these three fens in any α-diversity index (p > 0.05). Soil age and the carbon (C) accumulation rate, as well as total carbon (TC), total nitrogen (TN), C/N ratio, and bulk density were found to be closely related to the abundance of several dominant fungal taxa. We captured a rich fungal community and confirmed that the dominant taxa were those which were frequently detected in other northern peatlands. Soil age and the C accumulation rate were found to play important roles in shaping the fungal community structure. PMID:29236715
NASA Technical Reports Server (NTRS)
Israelsson, Ulf E. (Inventor); Strayer, Donald M. (Inventor)
1992-01-01
A contact-less method for determining transport critical current density and flux penetration depth in bulk superconductor material. A compressor having a hollow interior and a plunger for selectively reducing the free space area for distribution of the magnetic flux therein are formed of superconductor material. Analytical relationships, based upon the critical state model, Maxwell's equations and geometrical relationships define transport critical current density and flux penetration depth in terms of the initial trapped magnetic flux density and the ratio between initial and final magnetic flux densities whereby data may be reliably determined by means of the simple test apparatus for evaluating the current density and flux penetration depth.
Method of altering the effective bulk density of solid material and the resulting product
Kool, Lawrence B.; Nolen, Robert L.; Solomon, David E.
1983-01-01
A method of adjustably tailoring the effective bulk density of a solid material in which a mixture comprising the solid material, a film-forming polymer and a volatile solvent are sprayed into a drying chamber such that the solvent evaporates and the polymer dries into hollow shells having the solid material captured within the shell walls. Shell density may be varied as a function of solid/polymer concentration, droplet size and drying temperature.
Colloid-facilitated metal transport in peat filters.
Kalmykova, Yuliya; Rauch, Sebastien; Strömvall, Ann-Margret; Morrison, Greg; Stolpe, Björn; Hasselliöv, Martin
2010-06-01
The effect of colloids on metal retention in peat columns was studied, with the focus on colloids from two sources-organic matter leached from peat, and introduced organic and hydrous ferric oxide (HFO) colloids. A significant fraction of metals was found to be associated with peat-produced organic colloids; however the concentrations of organic colloids leached are low (trace concentrations) and temporal and have a limited effect on the efficiency of peat filters. In contrast, the presence of organic and HFO colloids in the input water causes a significant decrease in the performance of peat filters. Organic colloids were identified as the main vector of cadmium, copper, nickel, and zinc, while lead is transported by both organic and HFO colloids. The colloidal distribution of metals obtained in this study has important implications for the mobility of trace metals in porous media. The occurrence of colloids in the input waters and their characteristics must be considered when designing water treatment facilities.
NASA Astrophysics Data System (ADS)
Stolarczyk, Mateusz
2016-04-01
Wetland ecosystems, including raised peat bogs are characterized by a specific water conditions and unique vegetation, which makes peatland highly important habitats due to protection of biodiversity. Transformation of peat bog areas is particularly related to changes in the environment e.g. according to reclamation works. Drainage of peatlands is directly associated to the decrease of groundwater levels and lead to a number of changes in the chemical and physical properties of peat material, included contents of exchangeable cations in the surface layers of peat soils in the decession phase of peat development and release above compounds from the soil to ground or surface waters. The aim of the research was to determine the impact of extended drainage works on chemical composition of sorption complex of raised peat bog organic soils and identification the potential environmental effects of alkaline cations leaching to the surface waters. Research was carried out on the peat bogs located in the Upper San valley in Polish Bieszczady Mts. (Eastern Carpathians). Soil samples used in this study were collected from 3 soil profiles in 10 or 20 cm intervals to the approximately 130 cm depth. Laboratory analyses included determination of basic properties of organic material such as the degree of peat decomposition, ash content, soil pH and carbon, hydrogen, nitrogen concentrations. Additionally the amount of alkaline cations, exchangeable and extractable acidity was determined. Furthermore, the degree of saturation of the sorption complex with alkaline cations (V) and cation exchange capacity (CEC) are calculated. In order to evaluate the impact of the examined peat bog to the environment, also water samples were collected and ions composition was measured. The obtained results show that studied organic soils are oligotrophic and strongly acidic. In the case of organic material related to decession phase of peat development, as a result of the lengthy drainage works, increased pH values, changes in the morphology of the peat, high nitrogen contents and lower values of C/N ratios are noticed. The increased contents of calcium, occurred in soil layers comprised of moorsh forming process are probably the effect of peat mineralization process or changes in the chemistry and fluctuations of groundwater levels. As a result of above factors, increased calcium and magnesium concentrations in surface waters in the immediate vicinity of investigated bogs are observed.
NASA Astrophysics Data System (ADS)
Zak, Dominik; Roth, Cyril; Gelbrecht, Jörg; Fenner, Nathalie; Reuter, Hendrik
2015-04-01
Recently, more than 30,000 ha of drained minerotrophic peatlands (= fens) in NE Germany were rewetted to restore their ecological functions. Due to an extended drainage history, a re-establishment of their original state is not expected in the short-term. Elevated concentrations of dissolved organic carbon, ammonium and phosphate have been measured in the soil porewater of the upper degraded peat layers of rewetted fens at levels of one to three orders higher than the values in pristine systems; an indicator of increased microbial activity in the upper degraded soil layers. On the other hand there is evidence that the substrate availability within the degraded peat layer is lowered since the organic matter has formerly been subject to intense decomposition over the decades of drainage and intense agricultural use of the areas. Previously however, it was suggested that inhibition of hydrolytic enzymes by polyphenolic substances is suspended during aeration of peat soils mainly due to the decomposition of the inhibiting polyphenols by oxidising enzymes such as phenol oxidase. Accordingly we hypothesised a lack of enzyme inhibiting polyphenols in degraded peat soils of rewetted fens compared to less decomposed peat of more natural fens. We collected both peat samples at the soil surface (0-20 cm) and fresh roots of dominating vascular plants and mosses (as peat parent material) from five formerly drained rewetted sites and five more natural sites of NE Germany and NW Poland. Less decomposed peat and living roots were used to obtain an internal standard for polyphenol analysis and to run enzyme inhibition tests. For all samples we determined the total phenolic contents and in addition we distinguished between the contents of hydrolysable and condensed tannic substances. From a methodical perspective the advantage of internal standards compared to the commercially available standards cyanidin chloride and tannic acid became apparent. Quantification with cyanidin or tannic acid led to a considerable underestimation (up to 90%) of polyphenolic concentrations in peat soils. As hypothesised we found that highly degraded peat contains far lower levels of total polyphenolics (factor 8) and condensed tannins (factor 50) than less decomposed peat. In addition we detected large differences between different plant species with highest polyphenolic contents for the roots of Carex appropinquata that were more than 10-fold higher than Sphagnum spp. (450 mg/g dry mass vs. 39 mg/g dry mass). Despite these differences, we did not find a significant correlation between enzyme activities and peat degradation state, indicating that there is no simple linear relationship between polyphenolic contents and microbial activity.
Decoding the Secrets of Carbon Preservation and GHG Flux in Lower-Latitude Peatlands
NASA Astrophysics Data System (ADS)
Richardson, C. J.; Flanagan, N. E.; Wang, H.; Ho, M.; Hodgkins, S. B.; Cooper, W. T.; Chanton, J.; Winton, S.
2017-12-01
The mechanisms regulating peat decomposition and C carbon storage in peatlands are poorly understood, particularly with regard to the importance of the biochemical compounds produced by different plant species and in turn peat quality controls on C storage and GHG flux. To examine the role of carbon quality in C accretion in northern compared to tropical peatlands we completed field and lab studies on bog peats collected in Minnesota, North Carolina, Florida and Peru to answer three fundamental questions; 1) is tropical peat more recalcitrant than northern peat 2) does the addition of aromatic and phenolic C compounds increase towards the tropics 3) do differences in the chemical structure of organic matter explain variances in carbon storage and GHG flux in tropical versus northern peatlands? Our main hypothesize is that high concentrations of phenolics and aromatic C compounds produced in shrub and tree plant communities in peatlands coupled with the fire production of biochar aromatics in peatlands may provide a dual biogeochemical latch mechanism controlling microbial decomposition of peat even under higher temperatures and seasonal drought. By comparing the peat bog soil cores collected from the MN peat bogs, NC Pocosins, FL Everglades and Peru palm swamps we find that the soils in the shrub-dominant Pocosin contain the highest phenolics, which microbial studies indicate have the strongest resistance to microbial decomposition. A chemical comparison of plant driven peat carbon quality along a north to south latitudinal gradient indicates that tropical peatlands have higher aromatic compounds, and enhanced phenolics, especially after light fires, which enhances C storage and affect GHG flux across the latitudinal gradient.
Insights and issues with estimating Holocene peatland carbon stocks: a synthesis and review
NASA Astrophysics Data System (ADS)
Loisel, Julie; Yu, Zicheng
2014-05-01
Of all terrestrial ecosystems, peatlands are arguably the most efficient at sequestering carbon (C) over long time scales. However, ongoing and projected climate change could shift the balance between peat production and organic matter decomposition, potentially impacting the peat C sink capacity and modifying peat C fluxes to the atmosphere. Yet, the sign and magnitude of the peatland - C - climate feedback remain uncertain and difficult to assess because of large uncertainties in regional peat C stocks and limited understanding of peatland responses to climate change. Here we present results from the most comprehensive compilation of Holocene peat soil properties with associated carbon (C) and nitrogen (N) accumulation rates for northern peatlands. Our database consists of 268 peat cores from 215 sites located north of 45N. It encompasses regions within which peat C data have only recently become available, such as the West Siberia Lowlands, the Hudson Bay Lowlands, Kamchatka in Far East Russia, and the Tibetan Plateau. The database is publicly available at https://peatlands.lehigh.edu. Several scaling-up methods for estimating present-day peatland C stocks are presented, and uncertainties associated with each one of them are addressed. Likewise, the assumptions for calculating peat C volumes are discussed in light of conceptual models of spatial heterogeneity in peatland structure and function. We also examine the theoretical basis and underlying assumptions for the models of peatland lateral expansion and peat vertical growth used in estimating paleo peatland C stocks. Finally, we explore the importance of the fen-to-bog transition and of permafrost aggradation on C sequestration.
Estimating canopy bulk density and canopy base height for interior western US conifer stands
Seth A. Ex; Frederick W. Smith; Tara L. Keyser; Stephanie A. Rebain
2016-01-01
Crown fire hazard is often quantified using effective canopy bulk density (CBD) and canopy base height (CBH). When CBD and CBH are estimated using nonlocal crown fuel biomass allometries and uniform crown fuel distribution assumptions, as is common practice, values may differ from estimates made using local allometries and nonuniform...
Estimating forest canopy bulk density using six indirect methods
Robert E. Keane; Elizabeth D. Reinhardt; Joe Scott; Kathy Gray; James Reardon
2005-01-01
Canopy bulk density (CBD) is an important crown characteristic needed to predict crown fire spread, yet it is difficult to measure in the field. Presented here is a comprehensive research effort to evaluate six indirect sampling techniques for estimating CBD. As reference data, detailed crown fuel biomass measurements were taken on each tree within fixed-area plots...
BDEN: A timesaving computer program for calculating soil bulk density and water content.
Lynn G. Starr; Michael J. Geist
1983-01-01
This paper presents an interactive computer program written in BASIC language that will calculate soil bulk density and moisture percentage by weight and volume. Coarse fragment weights are required. The program will also summarize the resulting data giving mean, standard deviation, and 95-percent confidence interval on one or more groupings of data.
Susceptibility of volcanic ash-influenced soil in northern Idaho to mechanical compaction
Deborah S. Page-Dumroese
1993-01-01
Timber harvesting and mechanical site preparation can reduce site productivity if they excessively disturb or compact the soil. Volcanic ash-influenced soils with low undisturbed bulk densities and rock content are particularly susceptible. This study evaluates the effects of harvesting and site preparation on changes in the bulk density of ash-influenced forest soils...
Soil Compaction Absent in Plantation Thinning
Tony King; Sharon Haines
1979-01-01
We examine the effects on soil bulk density by using a TH-105 Thinner Harvester and two forwarders in a mechanically thinned slash pine (Pinus elliottii Engelm.) plantation. Points in the machine tracks were sampled before and after harvesting at depths of 5 and 10 cm (2 and 4 in) for moisture and bulk density. Both the standard gravimetric method...
Experimental investigation of fire propagation in single live shrubs
Jing Li; Shankar Mahalingam; David R. Weise
2017-01-01
This work focuses broadly on individual, live shrubs and, more specifically, it examines bulk density in chaparral and its combined effects with wind and ignition location on the resulting fire behaviour. Empirical functions to predict bulk density as a function of height for 4-year-old chaparral were developed for two typical species of shrub fuels in southern...
Controls on Methanogenesis in Organic-Rich Anaerobic Environments
NASA Astrophysics Data System (ADS)
Wilson, R.; Tfaily, M.; Chanton, J.; Rich, V. I.; Saleska, S. R.; Holmes, B.; Langford, L.; Hanson, P. J.; Bridgham, S. D.; Hopple, A.; Keller, J.; Cory, A.; Kostka, J. E.
2017-12-01
Peatlands contain an amount of C equal to half the CO2 in the atmosphere. That C is stored as organic C (OC) in peat deposits which form when plant productivity exceeds heterotrophic respiration. This balance has been attributed to cold, anaerobic, low pH conditions which slow microbial respiration rates, high aromatic content which may inhibit microbial decomposition, and recalcitrance of OC under terminal electron-acceptor (TEA) depleted conditions. Peat has been described as a potential C bomb which could release Gt of C into the atmosphere if rising global temperatures shifted this balance in favor of increased microbial respiration. At the Spruce and Peatlands Responses Under Changing Environments (SPRUCE) experimental site in Minnesota, U.S.A., peat up to 2 m deep was heated (+2.25°C to +9°C above ambient) both in situ and in laboratory incubations to test the response of microbial respiration to increasing temperatures. Our results demonstrated (1) that temperature did not influence CO2 or CH4 production rates in deep anaerobic peat, (2) that microbial decomposition was dominated by dissolved OC rather than the solid phase peat, and (3) that microbial decomposition in surface peat may become more methanogenic with warming. This shift towards higher CH4 production relative to CO2 has significant climate change implications since CH4 is a much stronger greenhouse gas than CO2. Under TEA-poor, anaerobic conditions, such as peat deposits, thermodynamic principles dictate that cellulose, the dominant OC form in Sphagnum peat, should be mineralized into equimolar CO2 and CH4. However, deviations from this predicted ratio abound. The literature of rumen, a system similar to peat in many ways, revealed a potential mechanism for sustaining elevated CO2 production without accumulating inhibitory H2. Using FTICRMS, we found ubiquitous hydrogenation of unsaturated OC which could be acting as TEAs in peat deposits. This mechanism has the further advantages of alleviating the toxicity of aromatic compounds and potentially making otherwise recalcitrant aromatic molecules susceptible to anaerobic decomposition thereby providing a critical step in the diagenesis of peat. Incubation experiments adding H2 support these findings and incubations of irradiated peat suggest an abiotic contribution to CO2 production.
Li, Jonathan G.; Liu, Chihray; Olivier, Kenneth R.; Dempsey, James F.
2009-01-01
The aim of this study was to investigate the relative accuracy of megavoltage photon‐beam dose calculations employing either five bulk densities or independent voxel densities determined by calibration of the CT Houndsfield number. Full‐resolution CT and bulk density treatment plans were generated for 70 lung or esophageal cancer tumors (66 cases) using a commercial treatment planning system with an adaptive convolution dose calculation algorithm (Pinnacle3, Philips Medicals Systems). Bulk densities were applied to segmented regions. Individual and population average densities were compared to the full‐resolution plan for each case. Monitor units were kept constant and no normalizations were employed. Dose volume histograms (DVH) and dose difference distributions were examined for all cases. The average densities of the segmented air, lung, fat, soft tissue, and bone for the entire set were found to be 0.14, 0.26, 0.89, 1.02, and 1.12 g/cm3, respectively. In all cases, the normal tissue DVH agreed to better than 2% in dose. In 62 of 70 DVHs of the planning target volume (PTV), agreement to better than 3% in dose was observed. Six cases demonstrated emphysema, one with bullous formations and one with a hiatus hernia having a large volume of gas. These required the additional assignment of density to the emphysemic lung and inflammatory changes to the lung, the regions of collapsed lung, the bullous formations, and the hernia gas. Bulk tissue density dose calculation provides an accurate method of heterogeneous dose calculation. However, patients with advanced emphysema may require high‐resolution CT studies for accurate treatment planning. PACS number: 87.53.Tf
Ritchie, S A; Addison, D S; van Essen, F
1992-03-01
The distribution of Aedes taeniorhynchus eggshells in Florida mangrove basin forests was determined and used to design a sampling plan. Eggshells were found in 10/11 sites (91%), with a mean +/- SE density of 1.45 +/- 0.75/cc; density did not change significantly year to year. Highest densities were located on the sloping banks of hummocks, ponds and potholes. Eggshells were less clumped in distribution than eggs and larvae and thus required a smaller sample size for a given precision level. While eggshells were flushed from compact soil that was subject to runoff during heavy rain, mangrove peat, the dominant soil of eggshell-bearing sites, was less dense and had little runoff or eggshell flushing. We suggest that eggshell surveys could be used to identify Ae. taeniorhynchus oviposition sites and oviposition patterns.
See, Siao Wei; Balasubramanian, Rajasekhar; Rianawati, Elisabeth; Karthikeyan, Sathrugnan; Streets, David G
2007-05-15
An intensive field study was conducted in Sumatra, Indonesia, during a peat fire episode to investigate the physical and chemical characteristics of particulate emissions in peat smoke and to provide necessary data for source-receptor analyses. Ambient air sampling was carried out at three different sites located at varying distances from the peatfires to determine changes in mass and number concentrations of PM2.5 and its chemical composition (carbonaceous and nitrogenous materials, polycyclic aromatic hydrocarbons, water-soluble inorganic and organic ions, and total and water-soluble metals). The three sites represent a rural site directly affected by the local peat combustion, a semirural site, and an urban site situated downwind of the peat fires. The mass concentration of PM2.5 and the number concentration of airborne particles were as high as 1600 microg/m3 and 1.7 x 10(5) cm(-3), respectively, in the vicinity of peat fires. The major components of PM2.5 in peat smoke haze were carbonaceous particles, particularly organic carbon, NO3-, and SO4(2-), while the less abundant constituents included ions such as NH4+, NO2-, Na+, K+, organic acids, and metals such as Al, Fe, and Ti. Source apportionment by chemical mass balance receptor modeling indicates that peat smoke can travel long distances and significantly affect the air quality at locations downwind.
Nogueira, Dália Santos; Ferreira, Pedro Lopes; Reis, Elizabeth Azevedo; Lopes, Inês Sousa
2015-10-01
The purpose of this study was to evaluate the validity and the reliability of the European Portuguese version of the EAT-10 (P-EAT-10). This research was conducted in three phases: (i) cultural and linguistic adaptation; (ii) feasibility and reliability test; and (iii) validity tests. The final sample was formed by a cohort of 520 subjects. The P-EAT-10 index was compared for socio-demographic and clinic variables. It was also compared for both dysphagic and non-dysphagic groups as well as for the results of the 3Oz wst. Lastly, the P-EAT-10 scores were correlated with the EuroQol Group Portuguese EQ-5D index. The Cronbach's α obtained for the P-EAT-10 scale was 0.952 and it remained excellent even if any item was deleted. The item-total and the intraclass correlation coefficients were very good. The P-EAT-10 mean of the non-dysphagic cohort was 0.56 and that of the dysphagic cohort was 14.26, the mean comparison between the 3Oz wst groups and the P-EAT-10 scores were significant. A significant higher perception of QoL was also found among the non-dysphagic subjects. P-EAT-10 is a valid and reliable measure that may be used to document dysphagia which makes it useful both for screening in clinical practice and in research.
Thermomagnetic properties of peat-soil layers from Sag pond near Lembang Fault, West Java, Indonesia
NASA Astrophysics Data System (ADS)
Iryanti, Mimin; Wibowo, Dimas Maulana; Bijaksana, Satria
2015-09-01
Sag pond is a body of water near fault system as water flows blocked by the fault. Sag pond is a special type of environment for peat formation as peat layers in were deposited as the fault moves in episodic fashion. Depending on the history of the fault, peat layers are often interrupted by soil layers. In this study, core of peat-soil layers from a Sag pond in Karyawangi Village near Lembang Fault was obtained and analyzed for its magnetic properties. The 5 m core was obtained using a hand auger. Individual samples were obtained every cm and measured for their magnetic susceptibility. In general, there are three distinct magnetic susceptibility layers that were associated with peat and soil layers. The upper first 1 m is unconsolidated mud layer with its relatively high magnetic susceptibility. Between 1-2.81 m, there is consolidated mud layer and the lowest part (2.82-5) m is basically peat layer. Six samples were then measured for their thermomagnetic properties by measuring their susceptibility during heating and cooling from room temperature to 700°C. The thermomagnetic profiles provide Curie temperatures for various magnetic minerals in the cores. It was found that the upper part (unconsolidated mud) contains predominantly iron-oxides, such as magnetite while the lowest part (peat layer) contains significant amount of iron-sulphides, presumably greigite.
Agricultural management impact on physical and chemical functions of European peat soils.
NASA Astrophysics Data System (ADS)
Piayda, Arndt; Tiemeyer, Bärbel; Dettmann, Ullrich; Bechtold, Michel; Buschmann, Christoph
2017-04-01
Peat soils offer numerous functions from the global to the local scale: they constitute the biggest terrestrial carbon storage on the globe, form important nutrient filters for catchments and provide hydrological buffer capacities for local ecosystems. Peat soils represent a large share of soils suitable for agriculture in temperate and boreal Europe, pressurized by increasing demands for production. Cultivated peat soils, however, show extreme mineralization rates of the organic substance and turn into hotspots for green house gas emissions, are highly vulnerable to land surface subsidence, soil and water quality deterioration and thus crop failure. The aim of this study is to analyse the impact of past agricultural management on soil physical and chemical functions of peat soils in six European countries. We conducted standardized soil mapping, soil physical/chemical analysis, ground water table monitoring and farm business surveys across 7 to 10 sites in Germany, The Netherlands, Denmark, Estonia, Finland and Sweden. The results show a strong impact of past agricultural management on peat soil functions across Europe. Peat soil under intensive arable land use consistently offer lowest bearing capacities in the upper 10 cm compared to extensive and intensive grassland use, which is a major limiting factor for successful agricultural practice on peat soils. The difference can be explained by root mat stabilization solely, since soil compaction in the upper 25cm is highest under arable land use. A strong decrease of available water capacity and saturated hydraulic conductivity is consequently observed under arable land use, further intensifying hydrological problems like ponding, drought stress and reductions of hydrological buffer capacities frequently present on cultivated peat soils. Soil carbon stocks clearly decrease with increasing land use intensity, showing highest carbon stocks on extensive grassland. This is supported by the degree of decomposition, which is lowest for extensive grass land. Both findings indicate a strong impact of land use intensity and management on soil carbon losses and peat conservation on the European scale. This study provides evidence how functions of peat soils, valuable for successful agricultural production and relevant for climate change mitigation, are impacted by agricultural management.
NASA Astrophysics Data System (ADS)
Stockwell, Chelsea E.; Jayarathne, Thilina; Cochrane, Mark A.; Ryan, Kevin C.; Putra, Erianto I.; Saharjo, Bambang H.; Nurhayati, Ati D.; Albar, Israr; Blake, Donald R.; Simpson, Isobel J.; Stone, Elizabeth A.; Yokelson, Robert J.
2016-09-01
Peat fires in Southeast Asia have become a major annual source of trace gases and particles to the regional-global atmosphere. The assessment of their influence on atmospheric chemistry, climate, air quality, and health has been uncertain partly due to a lack of field measurements of the smoke characteristics. During the strong 2015 El Niño event we deployed a mobile smoke sampling team in the Indonesian province of Central Kalimantan on the island of Borneo and made the first, or rare, field measurements of trace gases, aerosol optical properties, and aerosol mass emissions for authentic peat fires burning at various depths in different peat types. This paper reports the trace gas and aerosol measurements obtained by Fourier transform infrared spectroscopy, whole air sampling, photoacoustic extinctiometers (405 and 870 nm), and a small subset of the data from analyses of particulate filters. The trace gas measurements provide emission factors (EFs; grams of a compound per kilogram biomass burned) for up to ˜ 90 gases, including CO2, CO, CH4, non-methane hydrocarbons up to C10, 15 oxygenated organic compounds, NH3, HCN, NOx, OCS, HCl, etc. The modified combustion efficiency (MCE) of the smoke sources ranged from 0.693 to 0.835 with an average of 0.772 ± 0.053 (n = 35), indicating essentially pure smoldering combustion, and the emissions were not initially strongly lofted. The major trace gas emissions by mass (EF as g kg-1) were carbon dioxide (1564 ± 77), carbon monoxide (291 ± 49), methane (9.51 ± 4.74), hydrogen cyanide (5.75 ± 1.60), acetic acid (3.89 ± 1.65), ammonia (2.86 ± 1.00), methanol (2.14 ± 1.22), ethane (1.52 ± 0.66), dihydrogen (1.22 ± 1.01), propylene (1.07 ± 0.53), propane (0.989 ± 0.644), ethylene (0.961 ± 0.528), benzene (0.954 ± 0.394), formaldehyde (0.867 ± 0.479), hydroxyacetone (0.860 ± 0.433), furan (0.772 ± 0.035), acetaldehyde (0.697 ± 0.460), and acetone (0.691 ± 0.356). These field data support significant revision of the EFs for CO2 (-8 %), CH4 (-55 %), NH3 (-86 %), CO (+39 %), and other gases compared with widely used recommendations for tropical peat fires based on a lab study of a single sample published in 2003. BTEX compounds (benzene, toluene, ethylbenzene, xylenes) are important air toxics and aerosol precursors and were emitted in total at 1.5 ± 0.6 g kg-1. Formaldehyde is probably the air toxic gas most likely to cause local exposures that exceed recommended levels. The field results from Kalimantan were in reasonable agreement with recent lab measurements of smoldering Kalimantan peat for "overlap species," lending importance to the lab finding that burning peat produces large emissions of acetamide, acrolein, methylglyoxal, etc., which were not measurable in the field with the deployed equipment and implying value in continued similar efforts. The aerosol optical data measured include EFs for the scattering and absorption coefficients (EF Bscat and EF Babs, m2 kg-1 fuel burned) and the single scattering albedo (SSA) at 870 and 405 nm, as well as the absorption Ångström exponents (AAE). By coupling the absorption and co-located trace gas and filter data we estimated black carbon (BC) EFs (g kg-1) and the mass absorption coefficient (MAC, m2 g-1) for the bulk organic carbon (OC) due to brown carbon (BrC). Consistent with the minimal flaming, the emissions of BC were negligible (0.0055 ± 0.0016 g kg-1). Aerosol absorption at 405 nm was ˜ 52 times larger than at 870 nm and BrC contributed ˜ 96 % of the absorption at 405 nm. Average AAE was 4.97 ± 0.65 (range, 4.29-6.23). The average SSA at 405 nm (0.974 ± 0.016) was marginally lower than the average SSA at 870 nm (0.998 ± 0.001). These data facilitate modeling climate-relevant aerosol optical properties across much of the UV/visible spectrum and the high AAE and lower SSA at 405 nm demonstrate the dominance of absorption by the organic aerosol. Comparing the Babs at 405 nm to the simultaneously measured OC mass on filters suggests a low MAC ( ˜ 0.1) for the bulk OC, as expected for the low BC/OC ratio in the aerosol. The importance of pyrolysis (at lower MCE), as opposed to glowing (at higher MCE), in producing BrC is seen in the increase of AAE with lower MCE (r2 = 0.65).
Organic matter loss from cultivated peat soils in Sweden
NASA Astrophysics Data System (ADS)
Berglund, Örjan; Berglund, Kerstin
2015-04-01
The degradation of drained peat soils in agricultural use is an underestimated source of loss of organic matter. Oxidation (biological degradation) of agricultural peat soils causes a loss of organic matter (OM) of 11 - 22 t ha-1 y-1 causing a CO2 emission of 20 - 40 t ha-1 y-1. Together with the associated N2O emissions from mineralized N this totals in the EU to about 98.5 Mton CO2 eq per year. Peat soils are very prone to climate change and it is expected that at the end of this century these values are doubled. The degradation products pollute surface waters. Wind erosion of peat soils in arable agriculture can cause losses of 3 - 30 t ha-1 y-1 peat also causing air pollution (fine organic particles). Subsidence rates are 1 - 2 cm per year which leads to deteriorating drainage effect and make peat soils below sea or inland water levels prone to flooding. Flooding agricultural peat soils is in many cases not possible without high costs, high GHG emissions and severe water pollution. Moreover sometimes cultural and historic landscapes are lost and meadow birds areas are lost. In areas where the possibility to regulate the water table is limited the mitigation options are either to increase biomass production that can be used as bioenergy to substitute some fossil fuel, try to slow down the break-down of the peat by different amendments that inhibit microbial activity, or permanent flooding. The negative effects of wind erosion can be mitigated by reducing wind speed or different ways to protect the soil by crops or fiber sheets. In a newly started project in Sweden a typical peat soil with and without amendment of foundry sand is cropped with reed canary grass, tall fescue and timothy to investigate the yield and greenhouse gas emissions from the different crops and how the sand effect the trafficability and GHG emissions.
NASA Astrophysics Data System (ADS)
Schoning, Kristian; Sohlenius, Gustav
2016-04-01
In this investigation we have studied patterns in peat accumulation and changes in mire status since the early 1900s for two areas in Sweden. In the early 1900s the Geological Survey of Sweden collected a vast amount of peat and peatland data, including information on vegetation and land-use. We have used this archive data to evaluate changes in mire vegetation, mire wetness and surface peat properties, rates of peat accumulation, succession in young wetlands and the effects of cultivation on peatlands. In total 156 mires in an uplift area of eastern middle Sweden were included in the data-set, including both pristine mires and peatlands used for agricultural purposes. In this area new peatlands have continuously been formed during the past 7 000 years making it possible to evaluate changes in peat accumulation over time. The other study area is situated in the south Swedish Uplands where we have revisited some larger bogs. The results from our investigation show that many of the peatlands have underwent major changes since the early 1900s. In most of the small peatlands we have found important changes in vegetation where mire vegetation has been replaced by nutrient demanding and/or dry species flora while the tree stand on large mires in south Sweden have increased. In some mires humification has increased in the uppermost peat-layers and the mire surface have become drier compared to the early 1900s. In eastern middle Sweden there are indications that the peat accumulation is lower 0,5 mm/year in older peatlands compared with younger ones 1,2 mm/year, although the mire vegetation in the older peatlands is dominated by sphagnum. The peat depth of the cultivated mires in this area shows a mean decrease of 40 cm since the early 1900s.
Palmer, Katharina; Biasi, Christina; Horn, Marcus A
2012-01-01
Cryoturbated peat circles (that is, bare surface soil mixed by frost action; pH 3–4) in the Russian discontinuous permafrost tundra are nitrate-rich ‘hotspots' of nitrous oxide (N2O) emissions in arctic ecosystems, whereas adjacent unturbated peat areas are not. N2O was produced and subsequently consumed at pH 4 in unsupplemented anoxic microcosms with cryoturbated but not in those with unturbated peat soil. Nitrate, nitrite and acetylene stimulated net N2O production of both soils in anoxic microcosms, indicating denitrification as the source of N2O. Up to 500 and 10 μ nitrate stimulated denitrification in cryoturbated and unturbated peat soils, respectively. Apparent maximal reaction velocities of nitrite-dependent denitrification were 28 and 18 nmol N2O gDW−1 h−1, for cryoturbated and unturbated peat soils, respectively. Barcoded amplicon pyrosequencing of narG, nirK/nirS and nosZ (encoding nitrate, nitrite and N2O reductases, respectively) yielded ≈49 000 quality-filtered sequences with an average sequence length of 444 bp. Up to 19 species-level operational taxonomic units were detected per soil and gene, many of which were distantly related to cultured denitrifiers or environmental sequences. Denitrification-associated gene diversity in cryoturbated and in unturbated peat soils differed. Quantitative PCR (inhibition-corrected per DNA extract) revealed higher copy numbers of narG in cryoturbated than in unturbated peat soil. Copy numbers of nirS were up to 1000 × higher than those of nirK in both soils, and nirS nirK−1 copy number ratios in cryoturbated and unturbated peat soils differed. The collective data indicate that the contrasting N2O emission patterns of cryoturbated and unturbated peat soils are associated with contrasting denitrifier communities. PMID:22134649
Mycobacterium avium subsp. hominissuis infection in swine associated with peat used for bedding.
Johansen, Tone Bjordal; Agdestein, Angelika; Lium, Bjørn; Jørgensen, Anne; Djønne, Berit
2014-01-01
Mycobacterium avium subsp. hominissuis is an environmental bacterium causing opportunistic infections in swine, resulting in economic losses. Additionally, the zoonotic aspect of such infections is of concern. In the southeastern region of Norway in 2009 and 2010, an increase in condemnation of pig carcasses with tuberculous lesions was seen at the meat inspection. The use of peat as bedding in the herds was suspected to be a common factor, and a project examining pigs and environmental samples from the herds was initiated. Lesions detected at meat inspection in pigs originating from 15 herds were sampled. Environmental samples including peat from six of the herds and from three peat production facilities were additionally collected. Samples were analysed by culture and isolates genotyped by MLVA analysis. Mycobacterium avium subsp. hominissuis was detected in 35 out of 46 pigs, in 16 out of 20 samples of peat, and in one sample of sawdust. MLVA analysis demonstrated identical isolates from peat and pigs within the same farms. Polyclonal infection was demonstrated by analysis of multiple isolates from the same pig. To conclude, the increase in condemnation of porcine carcasses at slaughter due to mycobacteriosis seemed to be related to untreated peat used as bedding.
Mycobacterium avium subsp. hominissuis Infection in Swine Associated with Peat Used for Bedding
Johansen, Tone Bjordal; Lium, Bjørn; Jørgensen, Anne; Djønne, Berit
2014-01-01
Mycobacterium avium subsp. hominissuis is an environmental bacterium causing opportunistic infections in swine, resulting in economic losses. Additionally, the zoonotic aspect of such infections is of concern. In the southeastern region of Norway in 2009 and 2010, an increase in condemnation of pig carcasses with tuberculous lesions was seen at the meat inspection. The use of peat as bedding in the herds was suspected to be a common factor, and a project examining pigs and environmental samples from the herds was initiated. Lesions detected at meat inspection in pigs originating from 15 herds were sampled. Environmental samples including peat from six of the herds and from three peat production facilities were additionally collected. Samples were analysed by culture and isolates genotyped by MLVA analysis. Mycobacterium avium subsp. hominissuis was detected in 35 out of 46 pigs, in 16 out of 20 samples of peat, and in one sample of sawdust. MLVA analysis demonstrated identical isolates from peat and pigs within the same farms. Polyclonal infection was demonstrated by analysis of multiple isolates from the same pig. To conclude, the increase in condemnation of porcine carcasses at slaughter due to mycobacteriosis seemed to be related to untreated peat used as bedding. PMID:25431762
NASA Astrophysics Data System (ADS)
Lipatov, D. N.; Shcheglov, A. I.; Manakhov, D. V.; Karpukhin, M. M.; Zavgorodnyaya, Yu. A.; Tsvetnova, O. B.
2018-05-01
The contents and profile distributions of Cr, Ni, Cu, Zn, Cd, Hg, Pb, and benzo[a]pyrene in oligotrophic peat soils, oligotrophic peat gley soils (Dystric Fibric Histosols), humus-impregnated peat gleyzems (Dystric Histic Gleysols), and mucky gleyzems (Dystric Gleysols) have been analyzed with consideration for their degree of oligotrophicity and anthropogenic loads. Horizons with the accumulation (O, Tpyr, TT) and removal (Ghi,e) of heavy metals have been revealed. The increase in the content of heavy metals and benzo[ a]pyrene in the upper layer of oligotrophic peat soils under technogenic fallouts in the impact zone of flare and motor transport has been considered. Statistical parameters of the spatial variation of parameters in organic and gley horizons have been calculated. The variation coefficients of pollutant elements (Pb and Zn) in the surface horizons of soils increase to 100-125%. Positive correlations revealed between the content of some heavy metals in litter indicate their bioaccumulation and possible joint input with aerotechnogenic fallouts. No correlations are found between the contents of benzo[ a]pyrene and heavy metals, but a reliable negative correlation with the ash content is noted in the peat horizon.
Effect of Peat on Physicomechanical Properties of Cemented Brick
Hashim, Roslan; Kurnia, Ryan
2014-01-01
The popularity of low cost, lightweight, and environmentally affable masonry unit in building industry carries the need to investigate more flexible and adaptable brick component as well as to retain the requirements confirmed in building standards. In this study, potential use of local materials used as lightweight building materials in solving the economic problems of housing has been investigated. Experimental studies on peat added bricks have been carried out. It demonstrates the physicomechanical properties of bricks and investigates the influence of peat, sand, and cement solid bricks to the role of various types of constructional applications. The achieved compressive strength, spitting strength, flexural strength, unit weight, and ultrasonic pulse velocity are significantly reduced and the water absorption is increased with percentage wise replacement of peat as aggregate in the samples. The maximum 20% of (% mass) peat content meets the requirements of relevant well-known international standards. The experimental values illustrate that, the 44% volumetric replacement with peat did not exhibit any sudden brittle fracture even beyond the ultimate loads and a comparatively smooth surface is found. The application of peat as efficient brick substance shows a potential to be used for wall and a viable solution in the economic buildings design. PMID:24982941
NASA Astrophysics Data System (ADS)
Kukharenko, O. S.; Pavlova, N. S.; Dobrovol'Skaya, T. G.; Golovchenko, A. V.; Pochatkova, T. N.; Zenova, G. M.; Zvyagintsev, D. G.
2010-05-01
The number and taxonomic structure of the heterotrophic block of aerobic and facultative anaerobic bacteria were studied in monoliths from a high-moor peat (stored at room temperature and in a refrigerator) and in the peat horizons mixed in laboratory vessels. The monitoring lasted for a year. In the T0 horizon, spirilla predominated at room and low temperatures; in the T1 and T2 horizons, bacilli were the dominants. The continuous mixing of the peat layers increased the oxygen concentration and the peat decomposition; hence, the shares of actinomycetes and bacilli (bacteria of the hydrolytic complex) increased. In the peat studied, the bacilli were in the active state; i.e., vegetative cells predominated, whose amount ranged from 65 to 90%. The representatives of the main species of bacilli (the facultative anaerobic forms prevailed) hydrolyzed starch, pectin, and carboxymethylcellulose. Thus, precisely sporiferous bacteria can actively participate in the decomposition of plant polysaccharides in high-moor peat soils that are characterized by low temperatures and an oxygen deficit. The development of actinomycetes is inhibited by low temperatures; they can develop only under elevated temperature and better aeration.
Ferreiro-Rangel, Carlos A; Gelb, Lev D
2013-06-13
Structural and mechanical properties of silica aerogels are studied using a flexible coarse-grained model and a variety of simulation techniques. The model, introduced in a previous study (J. Phys. Chem. C 2007, 111, 15792-15802), consists of spherical "primary" gel particles that interact through weak nonbonded forces and through microscopically motivated interparticle bonds that may break and form during the simulations. Aerogel models are prepared using a three-stage protocol consisting of separate simulations of gelation, aging, and a final relaxation during which no further bond formation is permitted. Models of varying particle size, density, and size dispersity are considered. These are characterized in terms of fractal dimensions and pore size distributions, and generally good agreement with experimental data is obtained for these metrics. The bulk moduli of these materials are studied in detail. Two different techniques for obtaining the bulk modulus are considered, fluctuation analysis and direct compression/expansion simulations. We find that the fluctuation result can be subject to systematic error due to coupling with the simulation barostat but, if performed carefully, yields results equivalent with those of compression/expansion experiments. The dependence of the bulk modulus on density follows a power law with an exponent between 3.00 and 3.15, in agreement with reported experimental results. The best correlate for the bulk modulus appears to be the volumetric bond density, on which there is also a power law dependence. Polydisperse models exhibit lower bulk moduli than comparable monodisperse models, which is due to lower bond densities in the polydisperse materials.
NASA Astrophysics Data System (ADS)
Weijers, J. W. H.; Steinmann, P.; Hopmans, E. C.; Basiliko, N.; Finkelstein, S. A.; Johnson, K. R.; Schouten, S.; Sinninghe Damsté, J. S.
2012-04-01
Branched glycerol dialkyl glycerol tetraether (brGDGT) membrane lipids occur ubiquitously in peat and soil. In soil, the degree of methylation and cyclisation of branched tetraethers (MBT index and CBT ratio, respectively) has shown to relate to both soil pH and annual mean air temperature (MAT). Using this relation, past annual MATs can be reconstructed by analysing brGDGTs in marine sediment records near large river outflows. More recently, the potential of this MBT/CBT proxy is also being explored in lakes. Despite being more abundant in peat than soils, however, the utility of the proxy has not yet been fully explored in peat records. Present day peat records generally extent back to the early Holocene, but if the MBT/CBT proxy were shown to be applicable in peat deposits, there is also potential to apply it to immature coal deposits like lignites, which could provide valuable snapshots of continental climate back to the early Cenozoic. Here results are presented of analyses of different peats in south eastern Canada, showing that the pH of peat along a nutrient gradient is rather well reflected by the CBT. Annual MAT reconstructions based on the MBT/CBT soil calibration, however, tend to overestimate measured MAT. This is also the case for peat analysed from the surface of Etang de la Gruère peat bog in the Swiss Jura Mountains. Along the 6m depth profile of this bog (~13ka), CBT-reconstructed pH is compared with in-situ measured pore water pH showing that the brGDGT composition does not reflect present-day in-situ conditions. Instead, it reflects a stratigraphic boundary between Carex and Sphagnum dominated peat at 4 m depth that is not present in the pore water profile, testifying to a 'fossil' nature of the brGDGTs down the peat bog. Analyses of three immature coals of the Argonne Premium Coal Series reveal that branched GDGTs are present in the most immature coal, the Beulah Zap lignite (Ro = 0.25%), and only just above detection limit in the Wyodak Anderson coal (Ro = 0.32%), both of about the same age (Late Palaeocene). In the more mature Illinois #6 coal (Ro = 0.46%), brGDGTs are completely absent. In the Denver Basin, a comparison is made between outcrop and drilled core samples of Palaeocene lignites. BrGDGTs are preserved in the core samples, although in low quantities compared to peat. Outcrop samples are clearly overprinted by modern soil derived brGDGTs, despite digging a meters deep trench, which shows the need to obtain fresh non-weathered samples by coring. Reconstructed annual MAT for both the Beulah Zap and the Denver Basin lignites are several degrees higher than estimates based on leaf margin and oxygen isotope analyses from the same sites. Both reconstructions do testify, nevertheless, to the warm continental conditions during the early Cenozoic of the central U.S.A.. Although further validation is required, potentially in the form of a specific peat calibration, these results do show potential for application of the MBT/CBT temperature proxy in peat and lignite deposits.
Production of fuel ethanol from cellulosic peat for future transportation systems.
DOT National Transportation Integrated Search
2007-12-01
The production of bioethanol from peat is proposed. A search of the available : literature yields no prior information on the use of peat as a carbon source for : bioethanol. This proposal addresses the production in the most cost-effective manner : ...
SPRUCE S1 Bog Vegetation Survey and Peat Depth Data: 2009
Hanson, P. J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A
2009-12-31
This data set reports the results of a field survey of the S1 Bog to characterize the vegetation and to determine peat depth. The survey was conducted on September 21 and 22, 2009. The initial survey of vegetation and peat depth characteristics of the target bog was conducted to evaluate the logical locations for installing replicated experimental blocks for SPRUCE. The goal was to identify multiple locations of uniform aboveground vegetation and belowground peat depth for positioning experimental units within the bog.
Neuzil, Sandra G.; Supardi,; Cecil, C. Blaine; Kane, Jean S.; Soedjono, Kadar
1993-01-01
The inorganic geochemistry of three domed ombrogenous peat deposits in Riau and West Kalimantan provinces, Indonesia, was investigated as a possible modern analogue for certain types of low-ash, low-sulfur coal. Mineral matter entering the deposits is apparently limited to small amounts from the allogenic sources of dryfall, rainfall, and diffusion from substrate pore water. In the low-ash peat in the interior of the deposits, a large portion of the mineral matter is authigenic and has been mobilized and stabilized by hydrological, chemical, and biological processes and conditions.Ash yield and sulfur content are low through most of the peat deposits and average 1.1% and 0.14%, respectively, on a moisture-free basis. Ash and sulfur contents only exceed 5% and 0.3%, respectively, near the base of the deposits, with maximum concentrations of 19.9% ash and 0.56% sulfur. Peat water in all three deposits has a low pH, about 4 units, and low dissolved cation concentration, averaging 14 ppm. Near the base, in the geographic interior of each peat deposit, pH is about two units higher and dissolved cation concentration averages 110 ppm. Relative concentrations of the inorganic constituents vary, resulting in chemical facies in the peat. In general, Si, Al, and Fe are the abundant inorganic constituents, although Mg, Ca, and Na dominate in the middle horizon in the geographic interior of coastal peat deposits.The composition of the three deposits reported in this paper indicates that domed ombrogenous peat deposits will result in low ash and sulfur coal, probably less than 10% ash and 1% sulfur, even if marine rocks are laterally and vertically adjacent to the coal.
Heterotrophic respiration in drained tropical peat temperatures influenced by shading gradient
NASA Astrophysics Data System (ADS)
Jauhiainen, Jyrki; Kerojoki, Otto; Silvennoinen, Hanna; Limin, Suwido; Vasander, Harri
2015-04-01
Lowland peatlands in Southeast Asia constitute a highly concentrated carbon (C) pool of global significance. These peatlands have formed over periods of several millennia by forest vegetation tolerant to flooding and poor substrates. Uncontrollable drainage and reoccurring wild fires in lack of management after removal of forest cover has impaired the C-storing functions in large reclaimed areas. Intergovernmental Panel on Climate Change (IPCC) reporting sees drained tropical organic soils as one of the largest greenhouse gas emissions releasing terrestrial systems. Vast areas of deforested tropical peatlands do not receive noteworthy shading by vegetation, which increases the amount of solar radiation reaching the peat surface. We studied heterotrophic carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) fluxes in tropical peat in conditions, where; (i) peat temperatures were modified by artificial shading (no shade, 28%, 51% and 90% from the full sun exposure), (ii) root respiration was minimized, (iii) nutrient availability for peat decomposer community was changed (NPK fertilization of 0 and 313 kg ha-1). The experiment was repeated at two over 20 years ago drained fallow agricultural- and degraded sites in Central Kalimantan, Indonesia. Enhanced shading created a lasting decrease in peat temperatures, and decreased diurnal temperature fluctuations, in comparison to less shaded plots. The largest peat temperature difference was between the unshaded and 90% shaded peat surface, where the average temperatures within the topmost 50-cm peat profile differed 3 °C, and diurnal temperatures at 5 cm depth varied up to 4.2 °C in the unshaded and 0.4 °C in the 90% shaded conditions. Highest impacts on the heterotrophic CO2 fluxes caused by the treatments were on agricultural land, where 90% shading from the full exposure resulted in a 33% lower CO2 emission average on the unfertilised plots and a 66% lower emission average on the fertilised plots. Correlation between peat temperature and CO2 flux suggested an approximately 8% (unfertilised) and 25% (fertilised) emissions change for each 1 °C temperature change at 5 cm depth on the agricultural land. CO2 flux responses to the treatments remained low or were inconsistent over the peat temperature range.. Fertilised conditions negatively correlated with N2O efflux with increases in temperature, suggesting a 12-36% lower efflux for each 1 °C increase in peat temperature (at 5 cm depth) at the sites. Despite the apparently similar landscapes of fallow agricultural land and degraded peatland sites, the differences in greenhouse gas dynamics are expected to be an outcome of the long-term management differences. Based on the results it is possible to seek management practices that prolong timespan for using drained tropical peat for cultivation, simultaneously reduce negative climate impacts created from peat substrate carbon loss, and also improve greenhouse gas monitoring techniques at field.
Randy Kolka; Aaron Steber; Ken Brooks; Charles H. Perry; Matt Powers
2012-01-01
Although a number of harvesting studies have assessed compaction, no study has considered the interacting relationships of harvest season, soil texture, and landscape position on soil bulk density and surface soil strength for harvests in the western Lake States. In 2005, we measured bulk density and surface soil strength in recent clearcuts of predominantly aspen...
Dennis M. Dudley; Kenneth W. Tate; Neil K. McDougald; Melvin R. George
2002-01-01
The objectives of this study were to compare soil-surface bulk density between rangeland pastures not grazed since 1935, 1975, and 1995 to grazed areas with a 15-year record of light (>1,000 lbs ac-1 RDM), moderate (600-800 lbs ac-1 RDM), and heavy (-1 RDM) grazing by beef cattle; and...
Michael P. Amaranthus; David E. Steinfeld
1997-01-01
This study evaluated the effect on soil bulk density of yarding small-diameter Douglas-fir (Pseudosuga menziesii var. glauca (Beissn.) Franco) with a small tractor. Levels of compaction were measured before yarding and after one trip, three trips, and six trips by the tractor. Bulk densities in the surface (10 cm) and...
Soil bulk density and soil moisture calculated with a FORTRAN 77 program.
G.L. Starr; J.M. Geist
1988-01-01
This paper presents an improved version of BDEN, an interactive computer program written in FORTRAN 77 that will calculate soil bulk density and moisture percentage by weight and volume. Calculations allow for deducting coarse fragment weight and volume. The program will also summarize the resulting data by giving the mean, standard deviation, and 95-percent confidence...
Foam concrete of increased strength with the thermomodified peat additives
NASA Astrophysics Data System (ADS)
Kudyakov, A. I.; Kopanitsa, N. O.; Sarkisov, Ju S.; Kasatkina, A. V.; Prischepa, I. A.
2015-01-01
The paper presents the results of research of foam concrete with thermomodified peat additives. The aim of the research was to study the effect of modifying additives on cement stone and foam concrete properties. Peat additives are prepared by heat treatment of peat at 600 °C. Two approaches of obtaining additives are examined: in condition of open air access (TMT-600) and in condition of limited air access (TMT-600-k). Compressive strength of a cement stone with modifiers found to be increased by 28.9 - 65.2%. Introducing peat modifiers into foam concrete mix leads to increase of compressive strength by 44-57% at 28- day age and heat conductivity of foam concrete decreases by 0.089 W/(m·°C).
Alfred P. Dachnowski and the scientific study of peats
Landa, E.R.; Cohen, K.M.
2011-01-01
Botanist Alfred Paul Dachnowski (1875–1949) was a major contributor to efforts at mapping organic soils in the United States during the early 20th century. He began his career at The Ohio State University, and spent most of his professional life at the U.S. Department of Agriculture in Washington, DC. His work spanned a diversity of topics, including bog ecology and the ecosystem services provided by wetlands, the mapping and chemical characterization of peat, and the commercial applications of peat. We present a biography and overview of his work. Dachnowski is best known today for the peat sampler that bears his name. The details of its operation are described here, and its place in modern peat studies is discussed.
Preparation and Characterization of Ato Nanoparticles by Coprecipitation with Modified Drying Method
NASA Astrophysics Data System (ADS)
Liu, Shimin; Liang, Dongdong; Liu, Jindong; Jiang, Weiwei; Liu, Chaoqian; Ding, Wanyu; Wang, Hualin; Wang, Nan
Antimony-doped tin oxide (ATO) nanoparticles were prepared by coprecipitation by packing drying and traditional direct drying (for comparison) methods. The as-prepared ATO nanoparticles were characterized by TG, XRD, EDS, TEM, HRTEM, BET, bulk density and electrical resistivity measurements. Results indicated that the ATO nanoparticles obtained by coprecipitation with direct drying method featured hard-agglomerated morphology, high bulk density, low surface area and low electrical resistivity, probably due to the direct liquid evaporation during drying, the fast shrinkage of the precipitate, the poor removal efficiency of liquid molecules and the hard agglomerate formation after calcination. Very differently, the ATO product obtained by the packing and drying method featured free-agglomerated morphology, low bulk density, high surface area and high electrical resistivity ascribed probably to the formed vapor cyclone environment and liquid evaporation-resistance, avoiding fast liquid removal and improving the removal efficiency of liquid molecules. The intrinsic formation mechanism of ATO nanoparticles from different drying methods was illustrated based on the dehydration process of ATO precipitates. Additionally, the packing and drying time played key roles in determining the bulk density, morphology and electrical conductivity of ATO nanoparticles.
Influence of wood-derived biochar on the compactibility and strength of silt loam soil
NASA Astrophysics Data System (ADS)
Ahmed, Ahmed; Gariepy, Yvan; Raghavan, Vijaya
2017-04-01
Biochar is proven to enhance soil fertility and increase crop productivity. Given that the influence of biochar on soil compaction remains unclear, selected physico-mechanical properties of soil amended with wood-derived biochar were assessed. For unamended silt loam, the bulk density, maximum bulk density, optimum moisture content, plastic limit, liquid limit, and plasticity index were 1.05 Mg m-3, 1.69 Mg m-3, 16.55, 17.1, 29.3, and 12.2%, respectively. The penetration resistance and shear strength of the unamended silt loam compacted in the standard compaction Proctor mold and at its optimum moisture content were 1800 kPa and 850 kPa, respectively. Results from amending the silt loam with 10% particle size ranges (0.5-212 μm) led to relative decreases of 18.1, 17.75, 66.66, and 97.4% in bulk density, maximum bulk density, penetration resistance, and shear strength, respectively; a 26.8% relative increase in optimum moisture content; along with absolute increases in plastic limit, liquid limit, and plasticity index of 5.3, 13.7, and 8.4%, respectively. While the biochar-amended silt loam soil was more susceptible to compaction, however, soil mechanical impedance enhanced.
The thermal and physical characteristics of the Gao-Guenie (H5) meteorite
NASA Astrophysics Data System (ADS)
Beech, Martin; Coulson, Ian M.; Nie, Wenshuang; McCausland, Phil
2009-06-01
Measurements of the bulk density, grain density, porosity, and magnetic susceptibility of 19 Gao-Guenie H5 chondrite meteorite samples are presented. We find average values of bulk density < ρbulk>=3.46±0.07 g/cm 3, grain density < ρgrain>=3.53±0.08 g/cm 3, porosity < P(%)>=2.46±1.39, and bulk mass magnetic susceptibility
Measurement of carrier transport and recombination parameter in heavily doped silicon
NASA Technical Reports Server (NTRS)
Swanson, Richard M.
1986-01-01
The minority carrier transport and recombination parameters in heavily doped bulk silicon were measured. Both Si:P and Si:B with bulk dopings from 10 to the 17th and 10 to the 20th power/cu cm were studied. It is shown that three parameters characterize transport in bulk heavily doped Si: the minority carrier lifetime tau, the minority carrier mobility mu, and the equilibrium minority carrier density of n sub 0 and p sub 0 (in p-type and n-type Si respectively.) However, dc current-voltage measurements can never measure all three of these parameters, and some ac or time-transient experiment is required to obtain the values of these parameters as a function of dopant density. Using both dc electrical measurements on bipolar transitors with heavily doped base regions and transients optical measurements on heavily doped bulk and epitaxially grown samples, lifetime, mobility, and bandgap narrowing were measured as a function of both p and n type dopant densities. Best fits of minority carrier mobility, bandgap narrowing and lifetime as a function of doping density (in the heavily doped range) were constructed to allow accurate modeling of minority carrier transport in heavily doped Si.
Volatile and semivolatile organic compounds in laboratory peat fire emissions
Speciated volatile organic compounds (VOCs) and organic fine particulate matter (PM2.5) mass emission factors were determined from laboratory peat fire experiments. Peat samples originated from two wildlife reserves located near the coast of North Carolina, U.S. Gas and particula...
Ceglie, Francesco Giovanni; Bustamante, Maria Angeles; Ben Amara, Mouna; Tittarelli, Fabio
2015-01-01
Peat replacement is an increasing demand in containerized and transplant production, due to the environmental constraints associated to peat use. However, despite the wide information concerning the use of alternative materials as substrates, it is very complex to establish the best materials and mixtures. This work evaluates the use of mixture design and surface response methodology in a peat substitution experiment using two alternative materials (green compost and palm fibre trunk waste) for transplant production of tomato (Lycopersicon esculentum Mill.); melon, (Cucumis melo L.); and lettuce (Lactuca sativa L.) in organic farming conditions. In general, the substrates showed suitable properties for their use in seedling production, showing the best plant response the mixture of 20% green compost, 39% palm fibre and 31% peat. The mixture design and applied response surface methodology has shown to be an useful approach to optimize substrate formulations in peat substitution experiments to standardize plant responses. PMID:26070163
Degradation potentials of dissolved organic carbon (DOC) from thawed permafrost peat
Panneer Selvam, Balathandayuthabani; Lapierre, Jean-François; Guillemette, Francois; Voigt, Carolina; Lamprecht, Richard E.; Biasi, Christina; Christensen, Torben R.; Martikainen, Pertti J.; Berggren, Martin
2017-01-01
Global warming can substantially affect the export of dissolved organic carbon (DOC) from peat-permafrost to aquatic systems. The direct degradability of such peat-derived DOC, however, is poorly constrained because previous permafrost thaw studies have mainly addressed mineral soil catchments or DOC pools that have already been processed in surface waters. We incubated peat cores from a palsa mire to compare an active layer and an experimentally thawed permafrost layer with regard to DOC composition and degradation potentials of pore water DOC. Our results show that DOC from the thawed permafrost layer had high initial degradation potentials compared with DOC from the active layer. In fact, the DOC that showed the highest bio- and photo-degradability, respectively, originated in the thawed permafrost layer. Our study sheds new light on the DOC composition of peat-permafrost directly upon thaw and suggests that past estimates of carbon-dioxide emissions from thawed peat permafrost may be biased as they have overlooked the initial mineralization potential of the exported DOC. PMID:28378792
First-principles studies of electronic, transport and bulk properties of pyrite FeS2
NASA Astrophysics Data System (ADS)
Banjara, Dipendra; Malozovsky, Yuriy; Franklin, LaShounda; Bagayoko, Diola
2018-02-01
We present results from first principle, local density approximation (LDA) calculations of electronic, transport, and bulk properties of iron pyrite (FeS2). Our non-relativistic computations employed the Ceperley and Alder LDA potential and the linear combination of atomic orbitals (LCAO) formalism. The implementation of the LCAO formalism followed the Bagayoko, Zhao, and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF). We discuss the electronic energy bands, total and partial densities of states, electron effective masses, and the bulk modulus. Our calculated indirect band gap of 0.959 eV (0.96), using an experimental lattice constant of 5.4166 Å, at room temperature, is in agreement with the measured indirect values, for bulk samples, ranging from 0.84 eV to 1.03 ± 0.05 eV. Our calculated bulk modulus of 147 GPa is practically in agreement with the experimental value of 145 GPa. The calculated, partial densities of states reproduced the splitting of the Fe d bands to constitute the dominant upper most valence and lower most conduction bands, separated by the generally accepted, indirect, experimental band gap of 0.95 eV.
Reeve, A.S.; Glaser, P.H.; Rosenberry, Donald O.
2013-01-01
Northern peatlands appear to hold large volumes of free-phase gas (e.g., CH4 and CO2), which has been detected by surface deformations, pore pressure profiles, and electromagnetic surveys. Determining the gas content and its impact in peat is challenging because gas storage depends on both the elastic properties of the peat matrix and the buoyant forces exerted by pore fluids. We therefore used a viscoelastic deformation model to estimate these variables by adjusting model runs to reproduce observed changes in peat surface elevation within a 1300 km2 peatland. A local GPS network documented significant changes in surface elevations throughout the year with the greatest vertical displacements associated with rapid changes in peat water content and unloadings due to melting of the winter snowpack. These changes were coherent with changes in water table elevation and also abnormal pore pressure changes measured by nests of instrumented piezometers. The deformation model reproduced these changes when the gas content was adjusted to 10% of peat volume, and Young's modulus was varied between 5 and 100 kPa as the peat profile shifted from tension to compression. In contrast, the model predicted little peat deformation when the gas content was 3% or lower. These model simulations are consistent with previous estimates of gas volume in northern peatlands and suggest an upper limit of gas storage controlled by the elastic moduli of the peat fabric.
Net ecosystem CO2 exchange of a primary tropical peat swamp forest in Sarawak, Malaysia
NASA Astrophysics Data System (ADS)
Tang Che Ing, A.; Stoy, P. C.; Melling, L.
2014-12-01
Tropical peat swamp forests are widely recognized as one of the world's most efficient ecosystems for the sequestration and storage of carbon through both their aboveground biomass and underlying thick deposits of peat. As the peat characteristics exhibit high spatial and temporal variability as well as the structural and functional complexity of forests, tropical peat ecosystems can act naturally as both carbon sinks and sources over their life cycles. Nonetheless, few reports of studies on the ecosystem-scale CO2 exchange of tropical peat swamp forests are available to-date and their present roles in the global carbon cycle remain uncertain. To quantify CO2 exchange and unravel the prevailing factors and potential underlying mechanism regulating net CO2 fluxes, an eddy covariance tower was erected in a tropical peat swamp forest in Sarawak, Malaysia. We observed that the diurnal and seasonal patterns of net ecosystem CO2 exchange (NEE) and its components (gross primary productivity (GPP) and ecosystem respiration (RE)) varied between seasons and years. Rates of NEE declined in the wet season relative to the dry season. Conversely, both the gross primary productivity (GPP) and ecosystem respiration (RE) were found to be higher during the wet season than the dry season, in which GPP was strongly negatively correlated with NEE. The average annual NEE was 385 ± 74 g C m-2 yr-1, indicating the primary peat swamp forest functioned as net source of CO2 to the atmosphere over the observation period.
[Study on nano-CaCO3 applicated in Xin Yue Shu Capsules preliminarily].
Jiang, Yan-Rong; Zhang, Zhen-Hai; Cui, Li; He, Jun-Jie; Hu, Shao-Ying; Jia, Xiao-Bin
2012-11-01
To investigate the characteristics of nano-CaCO3 applicated in Xin Yue Shu Capsules. Studied the effect of different dosages of aerosil or nano-CaCO3 on fluidity, bulk density, moisture absorption of Xin Yue Shu capsules spray drying powder. In vitro dissolution and ferulic acid stability of Xin Yue Shu capsules was observed. It significantly improved powder fluidity and bulk density of Xin Yue Shu spray drying powder when aerosil or nano-CaCO3 was added. But there was no significant effect on powder moisture absorption, ferulic acid in vitro dissolution and ferulic acid stability. The effect of Nano-CaCO3 on improving powder fluidity and bulk density applicated in the spray drying powder of traditional Chinese medicine deserves studying further.
Fracture Toughness Properties of Gd123 Superconducting Bulks
NASA Astrophysics Data System (ADS)
Fujimoto, H.; Murakami, A.
Fracture toughness properties of melt growth GdBa2Cu3Ox (Gd123) large single domain superconducting bulks with Ag2O of 10 wt% and Pt of 0.5 wt%; 45 mm in diameter and 25 mm in thickness with low void density were evaluated at 77 K through flexural tests of specimens cut from the bulks, and compared to those of a conventional Gd123 with voids. The densified Gd123 bulks were prepared with a seeding and temperature gradient method; first melt processed in oxygen, then crystal growth in air; two-step regulated atmosphere heat treatment. The plane strain fracture toughness, KIC was obtained by the three point flexure test of the specimens with through precrack, referring to the single edge pre-cracked beam (SEPB) method, according to the JIS-R-1607, Testing Methods for Fracture Toughness of High Performance Ceramics. The results show that the fracture toughness of the densified Gd123 bulk with low void density was higher than that of the standard Gd123 bulk with voids, as well as the flexural strength previously reported. We also compared the fracture toughness of as-grown bulks with that of annealed bulks. The relation between the microstructure and the fracture toughness of the Gd123 bulk was clearly shown.
Emissions of volatile organic compounds and particulate matter from small-scale peat fire
Air pollution emitted from peat fires can negatively impact regional air quality, visibility, climate, and human health. Peat fires can smolder over long periods of time and, therefore, can release significantly greater amounts of carbon into the atmosphere per unit area compared...
Emissions of volatile organic compounds and particulate matter from small-scale peat fires
Air pollution emitted from peat fires can negatively impact regional air quality, visibility, climate, and human health. Peat fires can smolder over long periods of time and, therefore, can release significantly greater amounts of carbon into the atmosphere per unit area compared...
Peat Depth Assessment Using Airborne Geophysical Data for Carbon Stock Modelling
NASA Astrophysics Data System (ADS)
Keaney, Antoinette; McKinley, Jennifer; Ruffell, Alastair; Robinson, Martin; Graham, Conor; Hodgson, Jim; Desissa, Mohammednur
2013-04-01
The Kyoto Agreement demands that all signatory countries have an inventory of their carbon stock, plus possible future changes to this store. This is particularly important for Ireland, where some 16% of the surface is covered by peat bog. Estimates of soil carbon stores are a key component of the required annual returns made by the Irish and UK governments to the Intergovernmental Panel on Climate Change. Saturated peat attenuates gamma-radiation from underlying rocks. This effect can be used to estimate the thickness of peat, within certain limits. This project examines this relationship between peat depth and gamma-radiation using airborne geophysical data generated by the Tellus Survey and newly acquired data collected as part of the EU-funded Tellus Border project, together encompassing Northern Ireland and the border area of the Republic of Ireland. Selected peat bog sites are used to ground truth and evaluate the use of airborne geophysical (radiometric and electromagnetic) data and validate modelled estimates of soil carbon, peat volume and depth to bedrock. Data from two test line sites are presented: one in Bundoran, County Donegal and a second line in Sliabh Beagh, County Monaghan. The plane flew over these areas at different times of the year and at a series of different elevations allowing the data to be assessed temporally with different soil/peat saturation levels. On the ground these flight test lines cover varying surface land use zones allowing future extrapolation of data from the sites. This research applies spatial statistical techniques, including uncertainty estimation in geostatistical prediction and simulation, to investigate and model the use of airborne geophysical data to examine the relationship between reduced radioactivity and peat depth. Ground truthing at test line locations and selected peat bog sites involves use of ground penetrating radar, terrestrial LiDAR, peat depth probing, magnetometry, resistivity, handheld gamma-ray spectrometry, moisture content and rainfall monitoring combined with a real-time Differential Global Positioning System (DGPS) to monitor temporal and spatial variability of bog elevations. This research will assist in determining the accuracy and limitations of modelling soil carbon and changes in peat stocks by investigating the attenuation of gamma-radiation from underlying rocks. Tellus Border is supported by the EU INTERREG IVA programme, which is managed by the Special EU Programmes Body in Northern Ireland, the border Region of Ireland and western Scotland. The Tellus project was funded by the Northern Ireland Development of Enterprise Trade and Investment and by the Rural Development Programme through the Northern Ireland Programme for Building Sustainable Prosperity.
Elucidating carbon sources driving microbial metabolism during oil sands reclamation.
Bradford, Lauren M; Ziolkowski, Lori A; Goad, Corey; Warren, Lesley A; Slater, Gregory F
2017-03-01
Microbial communities play key roles in remediation and reclamation of contaminated environments via biogeochemical cycling of organic and inorganic components. Understanding the trends in in situ microbial community abundance, metabolism and carbon sources is therefore a crucial component of effective site management. The focus of this study was to use radiocarbon analysis to elucidate the carbon sources driving microbial metabolism within the first pilot wetland reclamation project in the Alberta oil sands region where the observation of H 2 S had indicated the occurrence of microbial sulphate reduction. The reclamation project involved construction of a three compartment system consisting of a freshwater wetland on top of a sand cap overlying a composite tailings (CT) deposit. Radiocarbon analysis demonstrated that both dissolved and sediment associated organic carbon associated with the deepest compartments (the CT and sand cap) was primarily fossil (Δ 14 C = -769 to -955‰) while organic carbon in the overlying peat was hundreds to thousands of years old (Δ 14 C = -250 to -350‰). Radiocarbon contents of sediment associated microbial phospholipid fatty acids (PLFA) were consistent with the sediment bulk organic carbon pools (Peat: Δ 14 C PLFA = -257‰; Sand cap Δ 14 C PLFA = -805‰) indicating that these microbes were using sediment associated carbon. In contrast, microbial PLFA grown on biofilm units installed in wells within the deepest compartments contained much more modern carbon that the associated bulk carbon pools. This implied that the transfer of relatively more modern carbon was stimulating the microbial community at depth within the system. Correlation between cellular abundance estimates based on PLFA concentrations and the Δ 14 C PLFA indicated that the utilization of this more modern carbon was stimulating the microbial community at depth. These results highlight the importance of understanding the occurrence and potential outcomes of the introduction of relatively bioavailable carbon to mine wastes in order to predict and manage the performance of reclamation strategies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Preparation and characterization of starch-based loose-fill packaging foams
NASA Astrophysics Data System (ADS)
Fang, Qi
Regular and waxy corn starches were blended in various ratios with biodegradable polymers including polylactic acid (PLA), Eastar Bio Copolyester 14766 (EBC) and Mater-Bi ZF03U (MBI) and extruded with a C. W. Brabender laboratory twin screw extruder using a 3-mm die nozzle at 150°C and 150 rev/min. Physical characteristics including radial expansion, unit density and bulk density and water solubility index, water absorption characteristics, mechanical properties including compressibility, Young's modulus, spring index, bulk compressibility and bulk spring index and abrasion resistance were investigated as affected by the ingredient formulations, i.e. type of polymers, type of starches, polymer to starch ratio and starch moisture content. A completely randomized factorial blocking experimental design was used. Fifty-four treatments resulted. Each treatment was replicated three times. SAS statistical software package was used to analyze the data. Foams made of waxy starch had better radial expansion, lower unit density and bulk density than did foams made of regular starch. Regular starch foams had significantly lower water solubility index than did the waxy starch foams. PLA-starch foams had the lowest compressibility and Young's modulus. MBI-starch foams were the most rigid. All foams had excellent spring indices and bulk spring indices which were comparable to the spring index of commercial expanded polystyrene foam. Correlations were established between the foam mechanical properties and the physical characteristics. Foam compressibility and Young's modulus decreased as increases in radial expansion and decreases in unit and bulk densities. Their relationships were modeled with power law equations. No correlation was observed between spring index and bulk spring index and foam physical characteristics. MBI-starch foams had the highest equilibrium moisture content. EBC-starch and PLA-starch foams had similar water absorption characteristics. No significant difference existed in water absorption characteristics between foams made of regular and waxy starches. Empirical models were developed to correlate foam water absorption characteristics with relative humidity and polymer content. The developed models fit the data well with relatively small standard errors and uniformly scattered residual plots. Foams with higher polymer content had better abrasion resistance than did foams with lower polymer content.
Bulk density and compaction behavior of knife mill chopped switchgrass,wheat straw, and corn stover
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chevanan, Nehru; Womac, A.R.; Bitra, V.S.P.
2009-08-01
Bulk density of comminuted biomass significantly increased by vibration during handling and transportation, and by normal pressure during storage. Compaction characteristics affecting the bulk density of switchgrass, wheat straw, and corn stover chopped in a knife mill at different operating conditions and using four different classifying screens were studied. Mean loose-filled bulk densities were 67.5 18.4 kg/m3 for switchgrass, 36.1 8.6 kg/m3 for wheat straw, and 52.1 10.8 kg/m3 for corn stover. Mean tapped bulk densities were 81.8 26.2 kg/m3 for switchgrass, 42.8 11.7 kg/m3 for wheat straw, and 58.9 13.4 kg/m3 for corn stover. Percentage changes in compressibility duemore » to variation in particle size obtained from a knife mill ranged from 64.3 to 173.6 for chopped switchgrass, 22.2 51.5 for chopped wheat straw and 42.1 117.7 for chopped corn stover within the tested consolidation pressure range of 5 120 kPa. Pressure and volume relationship of chopped biomass during compression with application of normal pressure can be characterized by the Walker model and Kawakita and Ludde model. Parameter of Walker model was correlated to the compressibility with Pearson correlation coefficient greater than 0.9. Relationship between volume reduction in chopped biomass with respect to number of tappings studied using Sone s model indicated that infinite compressibility was highest for chopped switchgrass followed by chopped wheat straw and corn stover. Degree of difficulty in packing measured using the parameters of Sone s model indicated that the chopped wheat straw particles compacted very rapidly by tapping compared to chopped switchgrass and corn stover. These results are very useful for solving obstacles in handling bulk biomass supply logistics issues for a biorefinery.« less
Chevanan, Nehru; Womac, Alvin R; Bitra, Venkata S P; Igathinathane, C; Yang, Yuechuan T; Miu, Petre I; Sokhansanj, Shahab
2010-01-01
Bulk density of comminuted biomass significantly increased by vibration during handling and transportation, and by normal pressure during storage. Compaction characteristics affecting the bulk density of switchgrass, wheat straw, and corn stover chopped in a knife mill at different operating conditions and using four different classifying screens were studied. Mean loose-filled bulk densities were 67.5+/-18.4 kg/m(3) for switchgrass, 36.1+/-8.6 kg/m(3) for wheat straw, and 52.1+/-10.8 kg/m(3) for corn stover. Mean tapped bulk densities were 81.8+/-26.2 kg/m(3) for switchgrass, 42.8+/-11.7 kg/m(3) for wheat straw, and 58.9+/-13.4 kg/m(3) for corn stover. Percentage changes in compressibility due to variation in particle size obtained from a knife mill ranged from 64.3 to 173.6 for chopped switchgrass, 22.2-51.5 for chopped wheat straw and 42.1-117.7 for chopped corn stover within the tested consolidation pressure range of 5-120 kPa. Pressure and volume relationship of chopped biomass during compression with application of normal pressure can be characterized by the Walker model and Kawakita and Ludde model. Parameter of Walker model was correlated to the compressibility with Pearson correlation coefficient greater than 0.9. Relationship between volume reduction in chopped biomass with respect to number of tappings studied using Sone's model indicated that infinite compressibility was highest for chopped switchgrass followed by chopped wheat straw and corn stover. Degree of difficulty in packing measured using the parameters of Sone's model indicated that the chopped wheat straw particles compacted very rapidly by tapping compared to chopped switchgrass and corn stover. These results are very useful for solving obstacles in handling bulk biomass supply logistics issues for a biorefinery.
USDA-ARS?s Scientific Manuscript database
Soilless substrates are primarily used in the production of containerized greenhouse and nursery crops, with sphagnum peat moss being a primary constituent of most substrates. We are examining biochars for several horticultural applications, including as peat moss replacements. Biochar was prepared ...
Characterisation of VOC, SVOC, and PM emissions from peat burnt in laboratory simulations
Peat, or organic soil, is a vast store of organic carbon, widely distributed from polar temperate to equatorial regions. Drainage for agriculture and drought are drying vast areas of peat, exposing it to increasing fire risk, which may be exacerbated by climate change. This has ...
Development of a Palliative Education Assessment Tool for Medical Student Education.
ERIC Educational Resources Information Center
Meekin, Sharon Abele; Klein, Jason E.; Fleischman, Alan R.; Fins, Joseph J.
2000-01-01
Describes the Palliative Education Assessment Tool (PEAT), an innovative assessment to facilitate curricular mapping of palliative care education. The PEAT comprises seven palliative care domains, each of which details specific objectives of knowledge, skills, and attitudes. PEAT enables educators to describe a specific multidimensional aspect of…
Posidonia oceanica (L.) based compost as substrate for potted basil production.
Mininni, Carlo; Grassi, Francesco; Traversa, Andreina; Cocozza, Claudio; Parente, Angelo; Miano, Teodoro; Santamaria, Pietro
2015-08-15
Peat is the main component of growing media but is also a non-renewable resource; therefore European policy strongly encourages the use of peat alternatives such as compost. Posidonia is a Mediterranean seagrass that produces very conspicuous onshore deposits that can be composted. In this study, a commercial green compost and a Posidonia residue-based compost were tested in order to assess their potential use as substitutes or complements to peat. All macro and micro-element concentrations of the substrates were positively and significantly related to the percentage of composts in the growing media. Plant grown on peat showed higher content of P, Ca, K, Na, Cu, Mn, Zn and Fe, and a slightly higher biomass production in comparison to compost-based growing media. In contrast, plants grown on compost-based substrates showed lower uptake of Cd and Cr than peat. The results indicate that both composts can be used as a complement to the peat for substrate preparation, especially at a rate of 30%. The Posidonia-based compost showed better productive results in comparison to the green one. Basil grown on the two compost-based media showed reduced absorption level of potentially toxic metals in comparison to peat. © 2014 Society of Chemical Industry.
Saprophytic and Potentially Pathogenic Fusarium Species from Peat Soil in Perak and Pahang
Karim, Nurul Farah Abdul; Mohd, Masratulhawa; Nor, Nik Mohd Izham Mohd; Zakaria, Latiffah
2016-01-01
Isolates of Fusarium were discovered in peat soil samples collected from peat swamp forest, waterlogged peat soil, and peat soil from oil palm plantations. Morphological characteristics were used to tentatively identify the isolates, and species confirmation was based on the sequence of translation elongation factor-1α (TEF-1α) and phylogenetic analysis. Based on the closest match of Basic Local Alignment Search Tool (BLAST) searches against the GenBank and Fusarium-ID databases, five Fusarium species were identified, namely F. oxysporum (60%), F. solani (23%), F. proliferatum (14%), F. semitectum (1%), and F. verticillioides (1%). From a neighbour-joining tree of combined TEF-1α and β-tubulin sequences, isolates from the same species were clustered in the same clade, though intraspecies variations were observed from the phylogenetic analysis. The Fusarium species isolated in the present study are soil inhabitants and are widely distributed worldwide. These species can act as saprophytes and decomposers as well as plant pathogens. The presence of Fusarium species in peat soils suggested that peat soils could be a reservoir of plant pathogens, as well-known plant pathogenic species such F. oxysporum, F. solani, F. proliferatum, and F. verticillioides were identified. The results of the present study provide knowledge on the survival and distribution of Fusarium species. PMID:27019679
Resilient modulus characteristics of soil subgrade with geopolymer additive in peat
NASA Astrophysics Data System (ADS)
Zain, Nasuhi; Hadiwardoyo, Sigit Pranowo; Rahayu, Wiwik
2017-06-01
Resilient modulus characteristics of peat soil are generally very low with high potential of deformation and low bearing capacity. The efforts to improve the peat subgrade resilient modulus characteristics is required, one among them is by adding the geopolymer additive. Geopolymer was made as an alternative to replace portland cement binder in the concrete mix in order to promote environmentally friendly, low shrinkage value, low creep value, and fire resistant material. The use of geopolymer to improve the mechanical properties of peat as a road construction subgrade, hence it becomes important to identify the effect of geopolymer addition on the resilient modulus characteristics of peat soil. This study investigated the addition of 0% - 20% geopolymer content on peat soil derived from Ogan Komering Ilir, South Sumatera Province. Resilient modulus measurement was performed by using cyclic triaxial test to determine the resilience modulus model as a function of deviator stresses and radial stresses. The test results showed that an increase in radial stresses did not necessarily lead to an increase in modulus resilient, and on the contrary, an increase in deviator stresses led to a decrease in modulus resilient. The addition of geopolymer in peat soil provided an insignificant effect on the increase of resilient modulus value.
How does whole ecosystem warming of a peatland affect methane production and consumption?
NASA Astrophysics Data System (ADS)
Hopple, A.; Brunik, K.; Keller, J.; Pfeifer-Meister, L.; Woerndle, G.; Zalman, C.; Hanson, P.; Bridgham, S. D.
2017-12-01
Peatlands are among Earth's most important terrestrial ecosystems due to their massive soil carbon (C) stores and significant release of methane (CH4) into the atmosphere. Methane has a sustained-flux global warming potential 45-times greater than carbon dioxide (CO2), and the accuracy of Earth system model projections relies on our mechanistic understanding of peatland CH4 cycling in the context of environmental change. The objective of this study was to determine, under in situ conditions, how heating of the peat profile affects ecosystem-level anaerobic C cycling. We assessed the response of CO2 and CH4 production, as well as the anaerobic oxidation of CH4 (AOM), in a boreal peatland following 13 months of deep peat heating (DPH) and 16 months of subsequent whole-ecosystem warming (surface and deep heating; WEW) as part of the Spruce and Peatland Responses Under Changing Environments (SPRUCE) project in northern Minnesota, USA. The study uses a regression-based experimental design including 5 temperature treatments that warmed the entire 2 m peat profile from 0 to +9 °C above ambient temperature. Soil cores were collected at multiple depths (25-200 cm) from each experimental chamber at the SPRUCE site and anaerobically incubated at in situ temperatures for 1-2 weeks. Methane and CO2 production in surface peat were positively correlated with elevated temperature, but no consistent temperature response was found at depth (75-200 cm) following DPH. However, during WEW, we observed significant increases in both surface and deep peat methanogenesis with increasing temperature. Surface peat had greater CH4 production rates than deeper peat, implying that the increased CH4 emissions observed in the field were largely driven by surface peat warming. The CO2:CH4 ratio was inversely correlated with temperature across all depths following 16 months of WEW, indicating that the entire peat profile is becoming more methanogenic with warming. We also observed AOM throughout the whole peat profile, with the highest rates observed at the surface and initial data suggesting a positive correlation with increasing temperature. While SPRUCE will continue for many years, our initial results suggest that the vast C stores at depth in peatlands are minimally responsive to warming and any response will be driven largely by surface peat.
NASA Astrophysics Data System (ADS)
Azhar, ATS; Norhaliza, W.; Ismail, B.; Ezree, AM; Nizam, ZM
2017-08-01
Shear strength of the soil is one of the most important parameters in engineering design, especially during the pre- or post-construction periods, since it is mainly used to measure and evaluate the foundation or slope stability of soil. Peat normally known as a soil that has a very low value of shear strength, and in order to determine and understand the shear strength of the peat, it is a difficult task in geotechnical engineering due to several factors such as types of fabrics, the origin of the soil, water content, organic matter and the degree of humification. The aim of this study is to determine the effective undrained shear strength properties of reconstituted peat of different sizes. All the reconstituted peat samples were formed with the size that passed the opening sieve of 0.425 mm (
Deborah Page-Dumroese
2005-01-01
Moving equipment and logs over the surface of forest soils causes gouges and ruts in the mineral soil, displaces organic matter, and can cause compaction. Compaction is the component of soil productivity most influenced by forest management, but the degree to which soils may be compacted depends on initial soil bulk density. For example, low bulk density soils (such as...
Establishment and early growth of conifers on compact soils in urban areas
Robert P. Zisa; Howard G. Halverson; Benjamin B. Stout
1979-01-01
A study of pitch pine, Austrian pine, and Norway spruce on two different urban soils compacted to bulk densities of 1.2, 1.3, 1.6, and 1.8 gcm-3 and maintained at high water potentials showed that all three species could become established from seed at high soil bulk densities. Pitch pine was the most suceessful species in establishment...
The geology of selected peat-forming environments in temperate and tropical latitudes
Cameron, C.C.; Palmer, C.A.; Esterle, J.S.
1990-01-01
We studied peat in several geologic and climatic settings: (1) a glaciated terrain in cold-temperate Maine and Minnesota, U.S.A.; (2) an island in a temperate maritime climate in the Atlantic Ocean off the coast of Maine, U.S.A., where sea level is rising rapidly and changing the environment of peat accumulation; (3) swamps along the warm-temperate U.S. Atlantic and Gulf Coastal Plains, where sea level has changed often, thus creating sites for accumulation; and (4) in a tropical climate along the coast of Sarawak, Malaysia, and the delta of the Batang Hari River, Sumatra, Indonesia (Figs. 1 and 2). With the exception of the deposits on the Atlantic and Gulf Coastal Plains, most of the deposits described are domed bogs in which peat accumulation continued above the surface of the surrounding soil. The bogs of the U.S. Atlantic and Gulf Coastal Plains have almost level surfaces. All domed bogs are not entirely ombrotrophic (watered only from precipitation); multidomed bogs that rise from irregular or hilly surfaces may be crossed by streams that supply water to the bogs. The geologic processes or organic sedimentation, namely terrestrialization and paludification, are similar in all peat deposits considered here. Differences in geomorphology affecting the quantity and that quality of peat that has ash contents of less than 25%, which are desirable for commercial purposes, depend chiefly on: (1) high humidity, which is favorable to luxuriant growth of peat-forming vegetation; (2) a depositional setting that permits extensive accumulation relatively free from inorganic contamination from sea water and streams and from dust and volcanic ash; and (3) a stable regional water table that controls the rate of decomposition under aerobic conditions and protects the deposit against the ravages of fire. Differences in peat textures are due to the type of vegetation and to the degree of decomposition. The rate of decomposition is largely the result of the amount of oxidation and aerobic microbial activity. Stratigraphic distribution of various textures and amounts of inorganic components within a peat deposit is largely determined by the vertical positions occupied by peat-forming environments, such as pond, marsh, swamp and heath where vegetation accumulated, and the depth to zones of unoxygenated water. Peat also differs in the rate of accumulation. On the basis of carbon-14 dating, an estimated 8 m of peat in the tropical Batang Hari River deposit in Sumatra has been accumulating at the rate of about 1.5 m/1,000 yr, whereas peat in the cold-temperate deposit in Maine has been accumulating at the rate of 0.66 m/1,000 yr. Accumulation rates in domed deposits such as these are affected not only by factors controlling volume of biomass and aerobic decay but also by stream erosion and fires that remove peat. Such disconformities (see Fig. 2) within the deposit may be recognized by sudden vertical changes in degree of decomposition and/or the presence of charcoal. The trace-element content of peat deposits is affected by the environments of their settings. Samples of peat that have an ash content of less than 25% dry weight and that are from small, almost level swamp deposits along the Atlantic Coastal Plain of North Carolina were compared with similar samples from small domed bogs in Maine, a glaciated area. Samples from Nort Carolina, which are from deposits in thick fluvial and nearshore marine sediments far from the bedrock source, are generally higher in Ti, Cr and Pb. The Maine samples from deposits in glacial drift close to the bedrock source contain more Zn, Mn, P, Ca, Na and Fe. The kind and amount of trace elements within the deposits appear to relate largely to depositional setting, to kinds of bedrock source, and to the modes of transportation from source to peat swamp. Trace-element concentrations in the extensive Sumatra peat deposit, which represents a potentially commercial coal bed, are similar to those found in Appalachian c
Chemical properties of peat used in balneology
NASA Astrophysics Data System (ADS)
Szajdak, L.; Hładoń, T.
2009-04-01
The physiological activity of peats is observed in human peat-bath therapy and in the promotion of growth in some plants. Balneological peat as an ecologically clean and natural substance is perceived as being more 'human friendly' than synthetic compounds. Poland has a long tradition of using balneological peat for therapeutic purposes. Balneological peat reveals a physical effect by altering temperature and biochemical effects through biologically active substances. It is mainly used for the treatment of rheumatic diseases that are quite common in Poland. Peat represents natural product. Physico-chemical properties of peat in particular surface-active, sorption and ion exchanges, defining their biological function, depend mainly on the chemical composition and molecular structure of humic substances representing the major constituent of organic soil (peat). The carbon of organic matter of peats is composed of 10 to 20% carbohydrates, primarily of microbial origin; 20% nitrogen-containing constituents, such as amino acids and amino sugars; 10 to 20% aliphatic fatty acids, alkanes, etc.; with the rest of carbon being aromatic. For balneology peat should be highly decomposed (preferably H8), natural and clean. The content of humic acids should exceed 20% of dry weight, ash content will be less than 15 15% of dry weight, sulphur content less than 0.3% of dry weight and the amount of water more than 85%. It will not contain harmful bacteria and heavy metals. Humic substances (HS) of peat are known to be macromolecular polydisperse biphyllic systems including both hydrophobic domains (saturated hydrocarbon chains, aromatic structural units) and hydrophilic functional groups, i. e having amphiphilic character. Amphiphilic properties of FA are responsible for their solubility, viscosity, conformation, surfactant-like character and a variety of physicochemical properties of considerable biologically practical significance. The chemical composition of peats depends significantly on the genesis of peatlands and the depth of sampling. The chemical properties of peat fulvic acids (FA) have some genetic peculiarities due to the specific conditions of the process of humification of peat-forming plants in mires. The process of humification in mires takes place in the top-forming layer under amphibious moisture conditions. Substances of microbial origin are water-soluble and can participate in the formation of peat FA to a little extent. So a main source of structural units for the peat HA and FA is suggested to be organic constituents of peat forming plants of various botanical composition. The content of aromatic units in peat FA was shown to depend on the content of lignin in peat-forming plants and also of the aromatization of polysaccharides mainly due to the transformation of cellulose. FA characterized lower than humic acids molecular weight (1000-30,000). FA's are composed of a series of highly oxidized aromatic rings with a large number of side chains. Building blocks are benzene carboxylic acids and phenolic acids. These are held together by hydrogen bonding van der Waals' forces and ionic bonding. FA contains larger concentrations of nitrogen. This fraction also contains a great deal of polysaccharide materials, as well as low molecular fatty acids and cytoplasmic constituents of microorganisms. These compounds are linear, flexible colloids at low concentrations, and spherical colloids at high solution concentrations and low pH values. A more adequate knowledge of the chemical structure of humic materials will assist us in better understanding the physiological effects and also the function of these macromolecules on the health that these materials are know to exert. This improved knowledge provides us better information on chemical structure of humic substances from peats, which are responsible for pharmacotherapeutic, pharmacokinetic and biopharmaceutical effect. This structure of FA creates proper conditions for uptake of nutrient as well as bioavailability of biologically active substances. The solubilization in water by humic materials of organic substances which are otherwise water-insoluble is a matter of considerable interest to chemist deals with the problem of the function of organic matter. There has been considerable evidence that humic substances can "complex" with several biologically active substances and so modify their physiological activity. It has been noteworthy that FA can "fix" high-molecular weight water-insoluble organic compounds and make them water-soluble. FA may so act as a vehicle for the mobilization, transport and immobilization of such substances in physiological conditions. Analysis of HA and FA carried out by several analytical methods revealed that there were no chemical interaction among biologically active substances but that latter was firmly adsorbed, possible by hydrogen-bonding, on the FA surfaces. Amino acids account for the majority of organic N fraction in humic substances. Most of the amino acids in organic matter occur in bound form in the humino-peptides fraction. These amino acids are commonly bound to the central core of FA. These humino-peptides fraction of FA mediate in respiration and act as hydrogen acceptors, thus affecting oxidation-reaction reactions. Thus, what is needed at this time is more fundamental research in order to solve practical pharmacological, pharmacokinetic and biopharmaceutical problem of great significance for human health.
NASA Astrophysics Data System (ADS)
Chlost, Izabela; Cieśliński, Roman
2018-03-01
The present study focuses on two Baltic-type peat bogs in Slowinski National Park, namely that at Żarnowskie and at Kluki, located in the Lake Łebsko catchment and both characterised by a centrally located dome with a very marshy fringe area featuring an emerging marshy coniferous forest (Vaccinio uliginosi-Pinetum). The Żarnowskie bog is under active protection. A total of 24 flow barriers were installed in drainage ditches during the years 2006 and 2007. The purpose of these barriers was to put a halt to water outflow. In addition, 30 hectares of young pine forest were cleared in order to decrease loss of water via evapotranspiration. Kluki peat bog is only partially protected by Polish law. The lack of efforts to prevent outflow via the canal is due to the fact that the canal is utilised to drain meadows in the vicinity of the village of Łokciowe outside of the national park. Peat formation no longer occurs in this peat bog. The hydrological condition of the bog is catastrophic as a result of its main canal, referred to as Canal C9, which is 2.5 to 3.0 m deep and 10 m wide in places. Both peat bogs are monitored for fluctuations in groundwater. Research has shown that changes in water levels fluctuate based on season of the year and geographical location, which is illustrated quite well using the two studied peat bogs. The water retention rate of the Żarnowskie peat bog may be considered fairly high and is likely to improve due to protective measures enabled by Polish environmental laws. The water retention rate of the bog is consistently improving thanks to these measures, fluctuations in water level are small and the water level does not drop under 0.5 m below ground level even under extreme hydrometeorological conditions. This yields optimum conditions for renewed peat formation in this area. One potential threat is the Krakulice peat extraction facility, which is located in the southern part of the bog close to the boundary with the national park.
Ranneklev, S B; Bååth, E
2001-03-01
The temperature-driven adaptation of the bacterial community in peat was studied, by altering temperature to simulate self-heating and a subsequent return to mesophilic conditions. The technique used consisted of extracting the bacterial community from peat using homogenization-centrifugation and measuring the rates of thymidine (TdR) or leucine (Leu) incorporation by the extracted bacterial community at different temperatures. Increasing the peat incubation temperature from 25 degrees C to 35, 45, or 55 degrees C resulted in a selection of bacterial communities whose optimum temperatures for activity correlated to the peat incubation temperatures. Although TdR and Leu incorporations were significantly correlated, the Leu/TdR incorporation ratios were affected by temperature. Higher Leu/TdR incorporation ratios were found at higher temperatures of incubation of the extracted bacterial community. Higher Leu/TdR incorporation ratios were also found for bacteria in peat samples incubated at higher temperatures. The reappearance of the mesophilic community and disappearance of the thermophilic community when the incubation temperature of the peat was shifted down were monitored by measuring TdR incorporation at 55 degrees C (thermophilic activity) and 25 degrees C (mesophilic activity). Shifting the peat incubation temperature from 55 to 25 degrees C resulted in a recovery of the mesophilic activity, with a subsequent disappearance of the thermophilic activity. The availability of substrate for bacterial growth varied over time and among different peat samples. To avoid confounding effects of substrate availability, a temperature adaptation index was calculated. This index consisted of the log(10) ratio of TdR incorporation at 55 and 25 degrees C. The temperature index decreased linearly with time, indicating that no thermophilic activity would be detected by the TdR technique 1 month after the temperature downshift. There were no differences between the slopes of the temperature adaptation indices over time for peat samples incubated at 55 degrees C 3 or 11 days before incubation at 25 degrees C. Thus, different levels of bacterial activity did not affect the temperature-driven adaptation of the bacterial community.
Ranneklev, Sissel Brit; Bååth, Erland
2001-01-01
The temperature-driven adaptation of the bacterial community in peat was studied, by altering temperature to simulate self-heating and a subsequent return to mesophilic conditions. The technique used consisted of extracting the bacterial community from peat using homogenization-centrifugation and measuring the rates of thymidine (TdR) or leucine (Leu) incorporation by the extracted bacterial community at different temperatures. Increasing the peat incubation temperature from 25°C to 35, 45, or 55°C resulted in a selection of bacterial communities whose optimum temperatures for activity correlated to the peat incubation temperatures. Although TdR and Leu incorporations were significantly correlated, the Leu/TdR incorporation ratios were affected by temperature. Higher Leu/TdR incorporation ratios were found at higher temperatures of incubation of the extracted bacterial community. Higher Leu/TdR incorporation ratios were also found for bacteria in peat samples incubated at higher temperatures. The reappearance of the mesophilic community and disappearance of the thermophilic community when the incubation temperature of the peat was shifted down were monitored by measuring TdR incorporation at 55°C (thermophilic activity) and 25°C (mesophilic activity). Shifting the peat incubation temperature from 55 to 25°C resulted in a recovery of the mesophilic activity, with a subsequent disappearance of the thermophilic activity. The availability of substrate for bacterial growth varied over time and among different peat samples. To avoid confounding effects of substrate availability, a temperature adaptation index was calculated. This index consisted of the log10 ratio of TdR incorporation at 55 and 25°C. The temperature index decreased linearly with time, indicating that no thermophilic activity would be detected by the TdR technique 1 month after the temperature downshift. There were no differences between the slopes of the temperature adaptation indices over time for peat samples incubated at 55°C 3 or 11 days before incubation at 25°C. Thus, different levels of bacterial activity did not affect the temperature-driven adaptation of the bacterial community. PMID:11229900
NASA Astrophysics Data System (ADS)
Chen, X.; Comas, X.; Binley, A. M.; Slater, L. D.
2017-12-01
Methane can accumulate in the gaseous phase in peats, and enter the atmosphere as gas bubbles with a mass flux higher than that via diffusion and plant-mediated pathways. A complete understanding of the mechanisms regulating bubble storage in peats remains incomplete. We developed a layered model to quantify the storage of gas bubbles over a peat column based on a general lumped capacitance model. This conceptual model was applied to explain the effects of peat structure on bubble storage at different depths observed in a laboratory experiment. A peat monolith was collected from the Everglades, a subtropical wetland located in Florida (USA), and kept submerged in a cuboid chamber over 102 days until gas bubble saturation was achieved. Time-lapse ground-penetrating radar (GPR) was used to estimate changes in gas content of each layer and the corresponding average dimensions of stored gas bubbles. The results highlight a hotspot layer of bubble accumulation at depths between 5 and 10 cm below the monolith surface. Bubbles in this shallow hotspot layer were larger relative to those in deeper layers, whilst the degree of decomposition of the upper layers was generally smaller than that of the lower layers based on von Post humification tests. X-ray Computer tomography (CT) was applied to resin-impregnated peat sections from different depths and the results showed that a higher porosity promotes bubbles storage. The stored gas bubbles were released by changing water levels and the air CH4 concentrations above the peat monolith were measured using a flow-through chamber system to confirm the high CH4 concentration in the stored bubbles. Our findings suggest that bubble capacitance is related to the difference in size between gas bubbles and peat pores. This work has implications for better understanding how changes in water table elevation associated with climate change and sea level rise (particularly for freshwater wetlands near coastal areas like the Everglades) may potentially alter bubble sizes, thus bubble storage in peats.
Sensitivity of simulated snow cloud properties to mass-diameter parameterizations.
NASA Astrophysics Data System (ADS)
Duffy, G.; Nesbitt, S. W.; McFarquhar, G. M.
2015-12-01
Mass to diameter (m-D) relationships are used in model parameterization schemes to represent ice cloud microphysics and in retrievals of bulk cloud properties from remote sensing instruments. One of the most common relationships, used in the current Global Precipitation Measurement retrieval algorithm for example, assigns the density of snow as a constant tenth of the density of ice (0.1g/m^3). This assumption stands in contrast to the results of derived m-D relationships of snow particles, which imply decreasing particle densities at larger sizes and result in particle masses orders of magnitude below the constant density relationship. In this study, forward simulations of bulk cloud properties (e.g., total water content, radar reflectivity and precipitation rate) derived from measured size distributions using several historical m-D relationships are presented. This expands upon previous studies that mainly focused on smaller ice particles because of the examination of precipitation-sized particles here. In situ and remote sensing data from the GPM Cold season Experiment (GCPEx) and Canadian CloudSAT/Calypso Validation Program (C3VP), both synoptic snowstorm field experiments in southern Ontario, Canada, are used to evaluate the forward simulations against total water content measured by the Nevzorov and Cloud Spectrometer and Impactor (CSI) probe, radar reflectivity measured by a C band ground based radar and a nadir pointing Ku/Ka dual frequency airborne radar, and precipitation rate measured by a 2D video disdrometer. There are differences between the bulk cloud properties derived using varying m-D relations, with constant density assumptions producing results differing substantially from the bulk measured quantities. The variability in bulk cloud properties derived using different m-D relations is compared against the natural variability in those parameters seen in the GCPEx and C3VP field experiments.
NASA Astrophysics Data System (ADS)
Matyshak, G. V.; Bogatyrev, L. G.; Goncharova, O. Yu.; Bobrik, A. A.
2017-10-01
Differently directed and heterochronous cryogenic processes have contributed to the contrasting soil cover patterns and spatial heterogeneity of the properties of soils in hydromorphic ecosystems of the discontinuous permafrost zone of the northern taiga in Western Siberia. Frost heave and permafrost thawing within ecosystems of highmoor bogs have led to the development of specific cryogenic landforms, such as flat-topped and large peat mounds. A set of cryogenic soils is developed in these ecosystems; it includes different variants of cryozems, gleyzems (Cryosols), and peat soils (Histosols). The distribution of these soil types is controlled by the local topography and thawing depth, other factors being insignificant. Alternation of peat horizons of different types and ages, whirl-like patterns of horizon boundaries, considerable variations in the thickness of soil horizons, and inversions of soil horizons under the impact of frost cracking, frost heave, and cryoturbation are typical of the considered soils. Thawing depth is the most significant factor affecting the thickness of organic horizons, the soil pH, and the degree of decomposition of peat. As a result of the upward movement of bog ecosystems under the impact of frost heave, peat soils are subjected to considerable transformation: peat horizons undergo mineralization, and the thickness of organic horizons decreases; in some cases, eluvial-illuvial differentiation of the mineral horizons takes place, and peat podzols are developed. However, the opposite process of the return of the soils to the bog stage of pedogenesis with peat accumulation may take place in any time in the case of activation of thermokarst processes.
Impact of the water salinity on the hydraulic conductivity of fen peat
NASA Astrophysics Data System (ADS)
Gosch, Lennart; Janssen, Manon; Lennartz, Bernd
2017-04-01
Coastal peatlands represent an interface between marine and terrestrial ecosystems; their hydrology is affected by salt and fresh water inflow alike. Previous studies on bog peat have shown that pore water salinity can have an impact on the saturated hydraulic conductivity (Ks) of peat because of chemical pore dilation effects. In this ongoing study, we are aiming at quantifying the impact of higher salinities (up to 3.5 %) on Ks of fen peat to get a better understanding of the water and solute exchange between coastal peatlands and the adjacent sea. Two approaches differing in measurement duration employing a constant-head upward-flow permeameter were conducted. At first, Ks was measured at an initial salinity for several hours before the salinity was abruptly increased and the measurement continued. In the second approach, Ks was measured for 15 min at the salt content observed during sampling. Then, samples were completely (de)salinized via diffusion for several days/weeks before a comparison measurement was carried out. The results for degraded fen peats show a decrease of Ks during long-term measurements which does not depend on the water salinity. A slow, diffusion-controlled change in salinity does not modify the overall outcome that the duration of measurements has a stronger impact on Ks than the salinity. Further experiments will show if fen peat soils differing in their state of degradation exhibit a different behavior. A preliminary conclusion is that salinity might have a less important effect on hydraulic properties of fen peat than it was observed for bog peat.
Background: Emissions from a large peat fire in North Carolina were associated with increased hospital admissions for asthma and the rate of heart failure in the exposed population. Peat fires often produce larger amounts of smoke and last longer than forest fires, however few st...
Food waste composting: its use as a peat replacement.
Farrell, M; Jones, D L
2010-01-01
We successfully co-composted catering waste with green waste and shredded paper to yield two high-nitrogen composts for use in horticulture. Sunflowers (Helianthus annuus L.) were grown in various mixtures of the compost and a commercially available peat-based compost to assess the efficacy of catering waste-based composts for peat replacement. Height, head diameter, seed mass and above-ground biomass were measured, with all mixtures giving a significant increase in yield or size over the commercially available peat-free control compost. We conclude that differences in physical structure governed sunflower growth over substrate chemistry, and none of the compost mixtures were nutrient deficient. We recommend that catering waste co-compost can be substituted to at least 75% within Sphagnum-based traditional growing media, providing a viable replacement for a large proportion of peat used as a growth medium in the horticulture industry. Our catering waste compost yielded similar seed head, seed mass and above-ground biomass values to 100% peat-based compost in all food waste compost blends tested in this study. 2010 Elsevier Ltd. All rights reserved.
Bulk density of asteroid 243 Ida from the orbit of its satellite Dactyl
Belton, M.J.S.; Chapmant, C.R.; Thomas, P.C.; Davies, M.E.; Greenberg, R.; Klaasen, K.; Byrnes, D.; D'Amario, L.; Synnott, S.; Johnson, T.V.; McEwen, A.; Merline, W.J.; Davis, D.R.; Petit, J.-M.; Storrs, A.; Veverka, J.; Zellner, B.
1995-01-01
DURING its reconnaissance of the asteroid 243 Ida, the Galileo spacecraft returned images of a second object, 1993(243)1 Dactyl1 - the first confirmed satellite of an asteroid. Sufficient data were obtained on the motion of Dactyl to determine its orbit as a function of Ida's mass. Here we apply statistical and dynamical arguments to constrain the range of possible orbits, and hence the mass of Ida. Combined with the volume of Ida2, this yields a bulk density of 2.6??0.5 g cm-3. Allowing for the uncertainty in the porosity of Ida, this density range is consistent with a bulk chondritic composition, and argues against some (but not all) classes of meteoritic igneous rock types that have been suggested as compositionally representative of S-type asteroids like Ida.
Bulk density of asteroid 243 Ida from the orbit of its satellite Dactyl
Belton, M.J.S.; Chapman, C.R.; Thomas, P.C.; Davies, M.E.; Greenberg, R.; Klaasen, K.; Byrnes, D.; D'Amario, L.; Synnott, S.; Johnson, T.V.; McEwen, A.; Merline, W.J.; Davis, D.R.; Petit, J.-M.; Storrs, A.; Veverka, J.; Zellner, B.
1995-01-01
DURING its reconnaissance of the asteroid 243 Ida, the Galileo spacecraft returned images of a second object, 1993(243)1 Dactyl1 - the first confirmed satellite of an asteroid. Sufficient data were obtained on the motion of Dactyl to determine its orbit as a function of Ida's mass. Here we apply statistical and dynamical arguments to constrain the range of possible orbits, and hence the mass of Ida. Combined with the volume of Ida2, this yields a bulk density of 2.6 ?? 0.5 g cm-3. Allowing for the uncertainty in the porosity of Ida, this density range is consistent with a bulk chon-dritic composition, and argues against some (but not all) classes of meteoritic igneous rock types that have been suggested as compositionally representative of S-type asteroids like Ida. ?? 2002 Nature Publishing Group.
First-principles studies of electronic, transport and bulk properties of pyrite FeS2
NASA Astrophysics Data System (ADS)
Banjara, Dipendra; Mbolle, Augustine; Malozovsky, Yuriy; Franklin, Lashounda; Bagayoko, Diola
We present results of ab-initio, self-consistent density functional theory (DFT) calculations of electronic, transport, and bulk properties of pyrite FeS2. We employed a local density approximation (LDA) potential and the linear combination of atomic orbitals (LCAO) formalism, following the Bagayoko, Zhao and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF). The BZW-EF method requires successive, self consistent calculations with increasing basis sets to reach the ground state of the system under study. We report the band structure, the band gap, total and partial densities of states, effective masses, and the bulk modulus. Work funded in part by the US Department of Energy (DOE), National Nuclear Security Administration (NNSA) (Award No.DE-NA0002630), the National Science Foundation (NSF) (Award No, 1503226), LaSPACE, and LONI-SUBR.
Solute movement in drained fen peat: a field tracer study in a Somerset (UK) wetland
NASA Astrophysics Data System (ADS)
Baird, Andrew J.; Gaffney, Simon W.
2000-10-01
Little is known about solute transport in peats, despite the obvious importance of solute transport on eco-hydrological processes in both managed and natural peatlands. To address this lack of knowledge, we investigated solute transport processes in an agricultural fen peat using a conservative KBr tracer. The main aim of the study was to elucidate solute transport behaviour in general in this peat, with a more specific aim of investigating whether preferential or bypassing flow occurred. The tracer moved through the peat more rapidly than expected, and the pattern of movement showed clear evidence of plot-scale bypassing flow. The data also provide evidence that bypassing flow occurs in pores at smaller scales. The implications of this study for management of wetland pastures in the Somerset Moors in south-west England are discussed.
Trofimova, E S; Zykova, M V; Ligacheva, A A; Sherstoboev, E Y; Zhdanov, V V; Belousov, M V; Yusubov, M S; Krivoshchekov, S V; Danilets, M G; Dygai, A M
2017-04-01
We studied activation of macrophages with humic acids extracted from peat of large deposits in the Tomsk region by two extraction methods: by hydroxide or sodium pyrophosphate. Humic acid of lowland peat types containing large amounts of aromatic carbon, phenolic and alcohol groups, carbohydrate residues and ethers, irrespectively of the extraction methods contained LPS admixture that probably determines their activating properties. Humic acid of upland peat types characterized by high content of carbonyl, carboxyl, and ester groups enhance NO production and reduce arginase expression, but these effects were minimized when sodium hydroxide was used as an extraction solvent. Pyrophosphate samples of the upland peat types were characterized by aromaticity and diversity of functional groups and have a significant advantage because of they induce specific endotoxin-independent stimulating action on antigen presenting cells.
Milchev, Andrey; Egorov, Sergei A; Binder, Kurt
2017-03-01
Semiflexible polymers under good solvent conditions interacting with attractive planar surfaces are investigated by Molecular Dynamics (MD) simulations and classical Density Functional Theory (DFT). A bead-spring type potential complemented by a bending potential is used, allowing variation of chain stiffness from completely flexible coils to rod-like polymers whose persistence length by far exceeds their contour length. Solvent is only implicitly included, monomer-monomer interactions being purely repulsive, while two types of attractive wall-monomer interactions are considered: (i) a strongly attractive Mie-type potential, appropriate for a strictly structureless wall, and (ii) a corrugated wall formed by Lennard-Jones particles arranged on a square lattice. It is found that in dilute solutions the former case leads to the formation of a strongly adsorbed surface layer, and the profile of density and orientational order in the z-direction perpendicular to the wall is predicted by DFT in nice agreement with MD. While for very low bulk densities a Kosterlitz-Thouless type transition from the isotropic phase to a phase with power-law decay of nematic correlations is suggested to occur in the strongly adsorbed layer, for larger densities a smectic-C phase in the surface layer is detected. No "capillary nematization" effect at higher bulk densities is found in this system, unlike systems with repulsive walls. This finding is attributed to the reduction of the bulk density (in the center of the slit pore) due to polymer adsorption on the attractive wall, for a system studied in the canonical ensemble. Consequently in a system with two attractive walls nematic order in the slit pore can occur only at a higher density than for a bulk system.
Elliott, David R.; Caporn, Simon J. M.; Nwaishi, Felix; Nilsson, R. Henrik; Sen, Robin
2015-01-01
The UK hosts 15–19% of global upland ombrotrophic (rain fed) peatlands that are estimated to store 3.2 billion tonnes of carbon and represent a critical upland habitat with regard to biodiversity and ecosystem services provision. Net production is dependent on an imbalance between growth of peat-forming Sphagnum mosses and microbial decomposition by microorganisms that are limited by cold, acidic, and anaerobic conditions. In the Southern Pennines, land-use change, drainage, and over 200 years of anthropogenic N and heavy metal deposition have contributed to severe peatland degradation manifested as a loss of vegetation leaving bare peat susceptible to erosion and deep gullying. A restoration programme designed to regain peat hydrology, stability and functionality has involved re-vegetation through nurse grass, dwarf shrub and Sphagnum re-introduction. Our aim was to characterise bacterial and fungal communities, via high-throughput rRNA gene sequencing, in the surface acrotelm/mesotelm of degraded bare peat, long-term stable vegetated peat, and natural and managed restorations. Compared to long-term vegetated areas the bare peat microbiome had significantly higher levels of oligotrophic marker phyla (Acidobacteria, Verrucomicrobia, TM6) and lower Bacteroidetes and Actinobacteria, together with much higher ligninolytic Basidiomycota. Fewer distinct microbial sequences and significantly fewer cultivable microbes were detected in bare peat compared to other areas. Microbial community structure was linked to restoration activity and correlated with soil edaphic variables (e.g. moisture and heavy metals). Although rapid community changes were evident following restoration activity, restored bare peat did not approach a similar microbial community structure to non-eroded areas even after 25 years, which may be related to the stabilisation of historic deposited heavy metals pollution in long-term stable areas. These primary findings are discussed in relation to bare peat oligotrophy, re-vegetation recalcitrance, rhizosphere-microbe-soil interactions, C, N and P cycling, trajectory of restoration, and ecosystem service implications for peatland restoration. PMID:25969988
Elliott, David R; Caporn, Simon J M; Nwaishi, Felix; Nilsson, R Henrik; Sen, Robin
2015-01-01
The UK hosts 15-19% of global upland ombrotrophic (rain fed) peatlands that are estimated to store 3.2 billion tonnes of carbon and represent a critical upland habitat with regard to biodiversity and ecosystem services provision. Net production is dependent on an imbalance between growth of peat-forming Sphagnum mosses and microbial decomposition by microorganisms that are limited by cold, acidic, and anaerobic conditions. In the Southern Pennines, land-use change, drainage, and over 200 years of anthropogenic N and heavy metal deposition have contributed to severe peatland degradation manifested as a loss of vegetation leaving bare peat susceptible to erosion and deep gullying. A restoration programme designed to regain peat hydrology, stability and functionality has involved re-vegetation through nurse grass, dwarf shrub and Sphagnum re-introduction. Our aim was to characterise bacterial and fungal communities, via high-throughput rRNA gene sequencing, in the surface acrotelm/mesotelm of degraded bare peat, long-term stable vegetated peat, and natural and managed restorations. Compared to long-term vegetated areas the bare peat microbiome had significantly higher levels of oligotrophic marker phyla (Acidobacteria, Verrucomicrobia, TM6) and lower Bacteroidetes and Actinobacteria, together with much higher ligninolytic Basidiomycota. Fewer distinct microbial sequences and significantly fewer cultivable microbes were detected in bare peat compared to other areas. Microbial community structure was linked to restoration activity and correlated with soil edaphic variables (e.g. moisture and heavy metals). Although rapid community changes were evident following restoration activity, restored bare peat did not approach a similar microbial community structure to non-eroded areas even after 25 years, which may be related to the stabilisation of historic deposited heavy metals pollution in long-term stable areas. These primary findings are discussed in relation to bare peat oligotrophy, re-vegetation recalcitrance, rhizosphere-microbe-soil interactions, C, N and P cycling, trajectory of restoration, and ecosystem service implications for peatland restoration.
Prasad, Munoo; Tzortzakis, Nikos; McDaniel, Nicola
2018-06-15
Biochar can be produced from several organic sources with varying nutrients and metal concentrations. Four commercial grade biochars were evaluated as peat substitute. Biochars were characterised for plant nutrients and for biological stability. The results showed that there were negligible quantities of N and P and generally high levels of K and high biological stability. When these materials were mixed with peat at 10, 25 and 50% and nutrients were added to bring them to the same level of nutrients as in fertilized peat, it was found that biochar mixtures considerably reduced the levels of calcium chloride/DTPA (CAT) extractable N (including nitrate), P, and electrical conductivity- greater extent with higher rates of biochar addition except for K. The pH and K levels were increased with biochar addition. The drop in EC has important implications regarding the use of other materials used to dilute peat, for example, composted green waste, the rate of dilution is limited due to high EC and biochar addition gives the potential for higher peat dilution of these materials. Nitrate and phosphorus are very vulnerable to leaching of these nutrients in the environment in peat substrates and the binding of these by biochar has implication for leaching and nutrient application strategy. Root development using Cress test and tomato plant height and biomass using containers, were in some cases better than peat indicating that biochar could be used to dilute peat e.g. for seedling production where root development and rapid growth are very important. Application of biochars resulted in a marked reduction of N (and P) in the plant. There were significant correlation between CAT extractable N and P and corresponding plant concentration, indicating the standard growing media test, CAT, would be suitable for assessing the nutrient status of peat biochar mixes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effect of Organic Material on Mechanical, Hydrological, and Microstructural Properties of Mudstones
NASA Astrophysics Data System (ADS)
Altobelli, M. A.; Reece, J. S.
2016-12-01
In this research we analyze the influence of organic material on the mechanical and flow properties of mudstones. We uniformly mix peat, milled and harvested by Bord na Móna from the surface of bogs in Ireland, with natural mudstone from Site C0011 in the Nankai Trough, offshore Japan, obtained during Integrated Ocean Drilling Program Expedition 322. The mudstone had previously been disaggregated into a homogeneous dry powder of clay- and silt-sized particles. The peat is ground and dry-sieved to achieve a similar particle size distribution as the mudstone (< 63 micrometers). In order to understand the mechanical and hydrological processes affected by peat, we prepare dry peat-mudstone mixtures with three different peat concentrations: 0 wt%, 5 wt%, and 10 wt%. Then, these peat - mudstone mixtures are saturated with deionized water at a water content of 109%, formed into stable slurries, and uniaxially compressed to an axial stress of 100 kPa using resedimentation, a method that simulates the natural behavior of deposition and burial in the laboratory under controlled conditions. How the organic material interacts with the mudstone matrix and pore fluid under compression influences the physical properties of the mudstones such as porosity, compressibility, and permeability; all of which are measured in the resedimentation experiments. We will also analyze the microstructural changes as a function of peat concentration using a petrographic microscope and scanning electron microscope. Due to the fibrous and absorbent nature of peat, we anticipate the peat to force tightly packed clay particles in the mudstone apart resulting in a looser microstructure and increased porosity, and thus, a higher compressibility and permeability. Understanding the controls on the mechanical and flow properties of hydrocarbon-bearing, fine-grained formations is crucial for exploration and successful production from hydrocarbon reservoirs. Additionally, this study has large implications for soil water storage and soil amendment to improve plant growth and health in clayey soils.
The importance of pH and sand substrate in the revegetation of saline non-waterlogged peat fields.
Montemayor, Marilou B; Price, Jonathan; Rochefort, Line
2015-11-01
A partially peat-extracted coastal bog contaminated by seawater was barren and required revegetation as a wetland. Peat fields were rectangular in shape, cambered in cross-section profile, and separated by drainage ditches. Common to all peat fields were symmetrical patterns in micro-topography with slopes between differences in elevation. Saline non-waterlogged slopes of ∼5% occurred as a symmetrical pair on each side of the crest of the cambered profile, at one end of each peat field. Three rows were laid across this slope (Top, Middle, and Bottom rows) and transplanted with naturally-growing plant species with their sand substrate, in three experiments, and grown for a year. In the Spartina pectinata experiment, bare root stem sections were also planted. Another experiment was conducted to determine changes in the characteristics of a volume of sand when incubated in saline peat fields. We found the salinity of peat increased with moisture downslope, and pH decreased with increase in salinity. S. pectinata grew best when planted with its sand substrate compared with bare root stem section, and when planted in Bottom rows. Juncus balticus had excellent growth in all rows. Unexpectedly, Festuca rubra that was inconspicuous beneath the J. balticus canopy in the natural donor site grew densely within the J. balticus sods. Agrostis stolonifera grew well but seemed to show intolerance to the surrounding acidic peat by curling up its stolons. The pH of the incubated sand volume was much higher than the surrounding peat. These studies suggest that recognition of plant niches and pH manipulation are important in the revegetation of disturbed Sphagnum peatlands that are found abundantly in the northern hemisphere. Results are also relevant to the reclamation of other disturbed lands. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ecosystem state shifts during long-term development of an Amazonian peatland.
Swindles, Graeme T; Morris, Paul J; Whitney, Bronwen; Galloway, Jennifer M; Gałka, Mariusz; Gallego-Sala, Angela; Macumber, Andrew L; Mullan, Donal; Smith, Mark W; Amesbury, Matthew J; Roland, Thomas P; Sanei, Hamed; Patterson, R Timothy; Sanderson, Nicole; Parry, Lauren; Charman, Dan J; Lopez, Omar; Valderamma, Elvis; Watson, Elizabeth J; Ivanovic, Ruza F; Valdes, Paul J; Turner, T Edward; Lähteenoja, Outi
2018-02-01
The most carbon (C)-dense ecosystems of Amazonia are areas characterized by the presence of peatlands. However, Amazonian peatland ecosystems are poorly understood and are threatened by human activities. Here, we present an investigation into long-term ecohydrological controls on C accumulation in an Amazonian peat dome. This site is the oldest peatland yet discovered in Amazonia (peat initiation ca. 8.9 ka BP), and developed in three stages: (i) peat initiated in an abandoned river channel with open water and aquatic plants; (ii) inundated forest swamp; and (iii) raised peat dome (since ca. 3.9 ka BP). Local burning occurred at least three times in the past 4,500 years. Two phases of particularly rapid C accumulation (ca. 6.6-6.1 and ca. 4.9-3.9 ka BP), potentially resulting from increased net primary productivity, were seemingly driven by drier conditions associated with widespread drought events. The association of drought phases with major ecosystem state shifts (open water wetland-forest swamp-peat dome) suggests a potential climatic control on the developmental trajectory of this tropical peatland. A third drought phase centred on ca. 1.8-1.1 ka BP led to markedly reduced C accumulation and potentially a hiatus during the peat dome stage. Our results suggest that future droughts may lead to phases of rapid C accumulation in some inundated tropical peat swamps, although this can lead ultimately to a shift to ombrotrophy and a subsequent return to slower C accumulation. Conversely, in ombrotrophic peat domes, droughts may lead to reduced C accumulation or even net loss of peat. Increased surface wetness at our site in recent decades may reflect a shift towards a wetter climate in western Amazonia. Amazonian peatlands represent important carbon stores and habitats, and are important archives of past climatic and ecological information. They should form key foci for conservation efforts. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
Peat hybrid sorbents for treatment of wastewaters and remediation of polluted environment
NASA Astrophysics Data System (ADS)
Klavins, Maris; Burlakovs, Juris; Robalds, Artis; Ansone-Bertina, Linda
2015-04-01
For remediation of soils and purification of polluted waters, wastewaters, sorbents might be considered as an prospective group of materials and amongst them peat have a special role due to low cost, biodegradability, high number of functional groups, well developed surface area and combination of hydrophilic/hydrophobic structural elements. Peat as sorbent have good application potential for removal of trace metals, and we have demonstrated peat sorption capacities, sorption kinetics, thermodynamics in respect to metals with different valencies - Tl(I), Cu(II), Cr(III). However peat sorption capacity in respect to nonmetallic (anionic species) elements is low. Also peat mechanical properties do not support application in large scale column processes. To expand peat application possibilities the approach of biomass based hybrid sorbents has been elaborated. The concept "hybrid sorbent" in our understanding means natural, biomass based sorbent modified, covered with another sorbent material, thus combining two types of sorbent properties, sorbent functionalities, surface properties etc. As the "covering layer" both inorganic substances, mineral phases (iron oxohydroxides, oxyapatite) both organic polymers (using graft polymerization) were used. The obtained sorbents were characterised by their spectral properties, surface area, elemental composition. The obtained hybrid sorbents were tested for sorption of compounds in anionic speciation forms, for example of arsenic, antimony, tellurium and phosphorous compounds in comparison with weakly basic anionites. The highest sorption capacity was observed when peat sorbents modified with iron compounds were used. Sorption of different arsenic speciation forms onto iron-modified peat sorbents was investigated as a function of pH and temperature. It was established that sorption capacity increases with a rise in temperature, and the calculation of sorption process thermodynamic parameters indicates the spontaneity of sorption process and its endothermic nature. The recycling options of obtained compounds after their saturation with metal or non-metallic species are suggested. Acknowledgement: Support from a project 2014/0009/1DP/1.1.1.2.0/13/APIA/VIAA/044
Some peat deposits in Penobscot County, Maine
Cameron, Cornelia Clermont; Anderson, Walter A.
1979-01-01
Twenty of the peat deposits in Penobscot County, Maine contain an estimated 29,282,000 short tons air-dried peat. The peat is chiefly sphagnum moss and reed-sedge of high quality according to ASTM standards for agricultural and horticultural use. Analyses show that this same volume has high fuel value, low sulfur and high hydrogen contents compared with lignite and sub-bituminous coal, which may indicate that it also has potential for fuel use. On the basis of the metallic trace element content, one area within the region containing the 20 deposits has been delineated for further bedrock studies.
Coal and peat in the sub-Saharan region of Africa: alternative energy options?
Weaver, J.N.; Landis, E.R.
1990-01-01
Coal and peat are essentially unused and in some cases unknown in sub-Saharan Africa. However, they might comprise valuable alternative energy sources in some or all of the developing nations of the region. The 11 countries considered in this appraisal reportedly contain coal and peat. On the basis of regional geology, another five countries might also contain coal-bearing rocks. If the resource potential is adequate, coal and peat might be utilized in a variety of ways including substituting for fuelwood, generating electricity, supplying process heat for local industry and increasing agricultural productivity. -from Author
Geochemical characteristics of peat from two raised bogs of Germany
NASA Astrophysics Data System (ADS)
Mezhibor, A. M.
2016-11-01
Peat has a wide range of applications in different spheres of human activity, and this is a reason for a comprehensive study. This research represents the results of an ICP-MS study of moss and peat samples from two raised bogs of Germany. Because of the wide use of sphagnum moss and peat, determining their geochemical characteristics is an important issue. According to the results obtained, we can resume that the moss samples from Germany are rich in Cu, As, Y, Zr, Nb, and REE. The geochemical composition of the bogs reflects the regional environmental features and anthropogenic influence.
Johanna D. Landsberg; Richard E. Miller; Harry W. Anderson; Jeffrey S. Tepp
2003-01-01
Bulk density and soil resistance to penetration were measured in ten, 3- to 11-ha operational units in overstocked, mixed-conifer stands in northeast Washington. Resistance was measured with a recording penetrometer to the 33-cm depth (13 in) at 10 stations on each of 8 to 17, 30.5-m-long, randomly located transects in each unit. Subsequently, different combinations of...
Effect of Alkali Concentration on Fly Ash Geopolymers
NASA Astrophysics Data System (ADS)
Fatimah Azzahran Abdullah, Siti; Yun-Ming, Liew; Bakri, Mohd Mustafa Al; Cheng-Yong, Heah; Zulkifly, Khairunnisa; Hussin, Kamarudin
2018-03-01
This paper presents the effect of NaOH concentration on fly ash geopolymers with compressive up to 56 MPa at 12M. The physical and mechanical on fly ash geopolymer are investigated. Test results show that the compressive strength result complied with bulk density result whereby the higher the bulk density, the higher the strength. Thus, the lower water absorption and porosity due to the increasing of NaOH concentration.
NASA Astrophysics Data System (ADS)
Hoş Çebi, Fatma; Korkmaz, Sadettin
2013-04-01
Young peat deposits crop out in the southern part of the Aǧaçbaşı region of Trabzon city, Northern Turkey. In this study, chemical, organic geochemical, petrographic and palynological features of the peat occurrences are investigated and results obtained evaluated. According to palynological investigations, it is determined that peats were occured in terrestrial or lacustrine environments, which is containing average of 80% woody, 15% herbaceous and 5% amorphous organic matter. Age of peats has been determined as Miocene or younger, by the palynological age determinations. It is understood from the obtained SCI (Sport Color Index) analysis results that constituting organic material of peat is immature. Total organic carbon content of the peat is average 41.69% by pyrolysis analysis. HI values were calculated as average 315.46 mgHC/gTOC, which is very high for the coal occurrences. The high OI values (avg. 134 mgCO2/gTOC) show that the environments of peat deposits were oxic or suboxic. TAR (Terrigenous/Aquatic Ratio) and CPI (Carbon Preference Index) index value, is found to be 2.4 and 3.4 respectively. These values that resulted from dominance of high-numbered n-alkanes, indicate terrestrial organic matter input. According to the m/z 191 and m/z 217 mass peaks of GC chromatogram data which is obtained by biomarker analysis, sterane/hopane ratio suggests algal organic matter. Moreover, the lack of C34 and C35 homohopans show that organic matter deposited under oxic or suboxic conditions. Moretane/hopane, Tm/Ts and Tm/C30 hopane ratios were calculated in order of 0.15, 3.25 and 0.33, respectively. These values imply acidic and oxic conditions during the formation of peat. Due to the absence of 17α(H)-28.30-bisnorhopan in the m/z 191 chromatograms, it is concluded that Aǧaçbaşı plateau peat might be deposited in a terrestrial or lacustrine environments under oxic or suboxic conditions. Dominant sterane content of C29 suggests terrestrial organic matter input. In the sterane triangle diagram, the extract of the peat sample was plotted in the area of high plant and brown and green alga inputs. Also C30 sterane, which is implication of marine environment, has not been recorded on chromatogram. 22S/(22S+22R) homohopan index, Ts/(Ts+Tm), moretan/hopane, 20S/(20S+20R) sterane and ββ/(ββ+αα) sterane ratios suggest immature level of the organic matter. Key Words: peat, biomarker, sterane, terpane
Disruption rates for one vulnerable soil in Organ Pipe Cactus National Monument, Arizona, USA
Webb, Robert H.; Esque, Todd C.; Nussear, Kenneth E.; Sturm, Mark
2013-01-01
Rates of soil disruption from hikers and vehicle traffic are poorly known, particularly for arid landscapes. We conducted an experiment in Organ Pipe Cactus National Monument (ORPI) in western Arizona, USA, on an air-dry very fine sandy loam that is considered to be vulnerable to disruption. We created variable-pass tracks using hikers, an all-terrain vehicle (ATV), and a four-wheel drive vehicle (4WD) and measured changes in cross-track topography, penetration depth, and bulk density. Hikers (one pass = 5 hikers) increased bulk density and altered penetration depth but caused minimal surface disruption up to 100 passes; a minimum of 10 passes were required to overcome surface strength of this dry soil. Both ATV and 4WD traffic significantly disrupted the soil with one pass, creating deep ruts with increasing passes that rendered the 4WD trail impassable after 20 passes. Despite considerable soil loosening (dilation), bulk density increased in the vehicle trails, and lateral displacement created berms of loosened soil. This soil type, when dry, can sustain up to 10 passes of hikers but only one vehicle pass before significant soil disruption occurs; greater disruption is expected when soils are wet. Bulk density increased logarithmically with applied pressure from hikers, ATV, and 4WD.
Zhu, Han-hua; Huang, Dao-you; Liu, Shou-long; Zhu, Qi-hong
2007-11-01
Two typical land-use types, i.e., newly cultivated slope land and mellow upland, were selected to investigate the effects of ex situ rice straw incorporation on the organic matter content, field water-holding capacity, bulk density, and porosity of hilly red soil, and to approach the correlations between these parameters. The results showed that ex situ incorporation of rice straw increased soil organic matter content, ameliorated soil physical properties, and improved soil water storage. Comparing with non-fertilization and applying chemical fertilizers, ex situ incorporation of rice straw increased the contents of organic matter (5.8%-28.9%) and > 0.25 mm water-stable aggregates in 0-20 cm soil layer, and increased the field water-holding capacity (6.8%-16.2%) and porosity (4.8%-7.7%) significantly (P < 0.05) while decreased the bulk density (4.5%-7.5%) in 10-15 cm soil layer. The organic matter content in 0-20 cm soil layer was significantly correlated to the bulk density, porosity, and field water-holding capacity in 10-15 cm soil layer (P < 0.01), and the field water-holding capacity in 0-20 cm and 10-15 cm soil layers was significantly correlated to the bulk density and porosity in these two layers (P < 0.05).
Natural gas storage with activated carbon from a bituminous coal
Sun, Jielun; Rood, M.J.; Rostam-Abadi, M.; Lizzio, A.A.
1996-01-01
Granular activated carbons ( -20 + 100 mesh; 0.149-0.84 mm) were produced by physical activation and chemical activation with KOH from an Illinois bituminous coal (IBC-106) for natural gas storage. The products were characterized by BET surface area, micropore volume, bulk density, and methane adsorption capacities. Volumetric methane adsorption capacities (Vm/Vs) of some of the granular carbons produced by physical activation are about 70 cm3/cm3 which is comparable to that of BPL, a commercial activated carbon. Vm/Vs values above 100 cm3/cm3 are obtainable by grinding the granular products to - 325 mesh (<0.044 mm). The increase in Vm/Vs is due to the increase in bulk density of the carbons. Volumetric methane adsorption capacity increases with increasing pore surface area and micropore volume when normalizing with respect to sample bulk volume. Compared with steam-activated carbons, granular carbons produced by KOH activation have higher micropore volume and higher methane adsorption capacities (g/g). Their volumetric methane adsorption capacities are lower due to their lower bulk densities. Copyright ?? 1996 Elsevier Science Ltd.
Volatile and semivolatile organic compounds in laboratory peat fire emissions
NASA Astrophysics Data System (ADS)
George, Ingrid J.; Black, Robert R.; Geron, Chris D.; Aurell, Johanna; Hays, Michael D.; Preston, William T.; Gullett, Brian K.
2016-05-01
In this study, volatile and semi-volatile organic compound (VOCs and SVOCs) mass emission factors were determined from laboratory peat fire experiments. The peat samples originated from two National Wildlife Refuges on the coastal plain of North Carolina, U.S.A. Gas- and particle-phase organic compounds were quantified by gas chromatography-mass spectrometry and by high pressure liquid chromatography. Hazardous air pollutants (HAPs) accounted for a large fraction (∼60%) of the speciated VOC emissions from peat burning, including large contributions of acetaldehyde, formaldehyde, benzene, toluene, and chloromethane. In the fine particle mass (PM2.5), the following organic compound classes were dominant: organic acids, levoglucosan, n-alkanes, and n-alkenes. Emission factors for the organic acids in PM2.5 including n-alkanoic acids, n-alkenoic acids, n-alkanedioic acids, and aromatic acids were reported for the first time for peat burning, representing the largest fraction of organic carbon (OC) mass (11-12%) of all speciated compound classes measured in this work. Levoglucosan contributed to 2-3% of the OC mass, while methoxyphenols represented 0.2-0.3% of the OC mass on a carbon mass basis. Retene was the most abundant particulate phase polycyclic aromatic hydrocarbon (PAH). Total HAP VOC and particulate PAH emissions from a 2008 peat wildfire in North Carolina were estimated, suggesting that peat fires can contribute a large fraction of state-wide HAP emissions.
Structure of peat soils and implications for biogeochemical processes and hydrological flow
NASA Astrophysics Data System (ADS)
Rezanezhad, F.; McCarter, C. P. R.; Gharedaghloo, B.; Kleimeier, C.; Milojevic, T.; Liu, H.; Weber, T. K. D.; Price, J. S.; Quinton, W. L.; Lenartz, B.; Van Cappellen, P.
2017-12-01
Permafrost peatlands contain globally important amounts of soil organic carbon and play major roles in global water, nutrient and biogeochemical cycles. The structure of peatland soils (i.e., peat) are highly complex with unique physical and hydraulic properties; where significant, and only partially reversible, shrinkage occurs during dewatering (including water table fluctuations), compression and/or decomposition. These distinct physical and hydraulic properties controls water flow, which in turn affect reactive and non-reactive solute transport (such as, sorption or degradation) and biogeochemical functions. Additionally, peat further attenuates solute migration through molecular diffusion into the inactive pores of Sphagnum dominated peat. These slow, diffusion-limited solute exchanges between the pore regions may give rise to pore-scale chemical gradients and heterogeneous distributions of microbial habitats and activity in peat soils. Permafrost peat plateaus have the same essential subsurface characteristics as other widely organic soil-covered peatlands, where the hydraulic conductivity is related to the degree of decomposition and soil compression. Increasing levels of decomposition correspond with a reduction of effective pore diameter and consequently restrict water and solute flow (by several orders of magnitude in hydraulic conductivity between the ground surface and a depth of 50 cm). In this presentation, we present the current knowledge of key physical and hydraulic properties related to the structure of globally available peat soils and discuss their implications for water storage, flow and the migration of solutes.
NASA Astrophysics Data System (ADS)
Gill, A. L.; Finzi, A.; Giasson, M. A.
2015-12-01
High latitude peatlands represent a major terrestrial carbon store sensitive to climate change, as well as a globally significant methane source. While elevated atmospheric carbon dioxide concentrations and warming temperatures may increase peat respiration and C losses to the atmosphere, reductions in peatland water tables associated with increased growing season evapotranspiration may alter the nature of trace gas emission and increase peat C losses as CO2 relative to methane (CH4). As CH4 is a greenhouse gas with twenty times the warming potential of CO2, it is critical to understand how surface fluxes of CO2 and CH4 will be influenced by factors associated with global climate change. We used automated soil respiration chambers to assess the influence of elevated atmospheric CO2 and whole ecosystem warming on peatland CH4 and CO2 fluxes at the SPRUCE (Spruce and Peatland Responses Under Climatic and Environmental Change) Experiment in northern Minnesota. Belowground warming treatments were initiated in July 2014 and whole ecosystem warming and elevated CO2 treatments began in August 2015. Here we report soil iCO2 and iCH4 flux responses to the first year of belowground warming and the first two months of whole ecosystem manipulation. We also leverage the spatial and temporal density of measurements across the twenty autochambers to assess how physical (i.e., plant species composition, microtopography) and environmental (i.e., peat temperature, water table position, oxygen availability) factors influence observed rates of CH4 and CO2 loss. We find that methane fluxes increased significantly across warming treatments following the first year of belowground warming, while belowground warming alone had little influence on soil CO2 fluxes. Peat microtopography strongly influenced trace gas emission rates, with higher CH4 fluxes in hollow locations and higher CO2 fluxes in hummock locations. While there was no difference in the isotopic composition of the methane fluxes between hollow and hummock locations, δ13CH4 was more depleted in the early and late growing season, indicating a transition from hydrogenotrophic to acetoclastic methanogenesis during periods of high photosynthetic input.
USDA-ARS?s Scientific Manuscript database
Douglas fir [Pseudotsuga menziesii Mirb.(Franco)] bark (DFB), sphagnum peat moss, and pumice are the most common substrate components used in the Oregon nursery industry. The objective of this study was to document the effect of peat and pumice addition on the physical and hydrological properties o...
Predicting Calcite (CaCO3) Requirements of Sphagnum Peat Moss from pH Titration Curves
USDA-ARS?s Scientific Manuscript database
Liming materials are required to neutralize acidity in peat moss to make it a suitable substrate for growing container crops. A series of time-consuming incubations of peat:lime mixtures are typically used to determine the liming rate to achieve a desired pH. Our objective was to evaluate the util...
We compared the N budgets of an ombrotrophic bog and a minerotrophic fen to quantify the importance of denitrification in peatlands and their watersheds. We also compared the watershed upland mineral soils to bog/fen peat; lagg and transition zone peat to central bog/fen peat; an...
NASA Astrophysics Data System (ADS)
Drexler, J. Z.; Alpers, C. N.; Taylor, H. E.; Windham-Myers, L.; Neymark, L. A.; Paces, J. B.
2010-12-01
Marshes in the Sacramento-San Joaquin Delta, the most landward extent of the San Francisco Estuary, started forming around ~6,700 years ago. Currently, Delta marshes are classified as tidal freshwater, however it is unknown to what degree the salinity regime has varied between brackish and fresh conditions since marsh development. This information is important to managers considering major changes to the flow regime in the Delta, because such changes could impact the future sustainability of endangered species such as the Delta smelt (Hypomesus transpacificus), which live in or just upstream of the mixing zone between fresh and brackish water. The main goal of the Rates and Evolution of PEat Accretion through Time project (REPEAT II) is to reconstruct paleosalinity regimes in the Delta. We are using elemental concentrations of Na, Ca, K, and Mg (the major cations in ocean water) in peat profiles to develop a quantitative index of salinity for the past 6000+ years. We are normalizing the elemental concentrations to Ti (a proxy for inorganic sediment content because it is inversely correlated with loss on ignition, a measure of peat organic content) to correct for bias in elemental concentrations caused by variations in the inorganic sediment content of peat through time. Plots of Ti-normalized element concentration vs. peat depth (or age) indicate that Browns Island, a brackish marsh on the western edge of the Delta, has experienced significant variations in salinity through the millennia. Vertical peat profiles show a spatial trend of decreasing salinity from west (bay-side) to east (landward) (i.e., Browns Island > Sherman Island > Franks Wetland ≧ Bacon Channel Island). During the period from 2300 to 500 calibrated years before present, Na concentrations in peat at Browns Island indicate a particularly saline period, with peat containing up to 3 wt. % Na. In the last 100 years or so, salinity at Browns Island has apparently decreased and the Na content of peat has stabilized at between 0.6 and 1 wt. % Na. We are currently analyzing the roots of live plants collected along a salinity gradient (range of means from ~0.2 to 20 ppt) in the San Francisco Estuary to determine concentrations of Na, Ca, K, and Mg in root material and the empirical relationships between root chemistry and ambient salinity levels. Because the organic component of peat is largely made up of roots that have decomposed in situ, we anticipate using these empirical relationships to quantify salinity regimes in the Delta through time.
Monitoring the effects of manure policy in the Peat region, Netherlands
NASA Astrophysics Data System (ADS)
Hooijboer, Arno; Buis, Eke; Fraters, Dico; Boumans, Leo; Lukacs, Saskia; Vrijhoef, Astrid
2014-05-01
Total N concentrations in farm ditches in the Peat region of the Netherlands are on the average twice as high as the Good Ecological Potential value of the Water Framework Directive. Since ditches are connected to regional surface water, they may contribute to eutrophication. The minerals policy aims to improve the water quality. In the Netherlands, the effectiveness of the minerals policy on water quality is evaluated with data from the National Minerals Policy Monitoring Programme (LMM). This regards farm data on the quality of water leaching from the root zone and on farm practices. The soil balance nitrogen surpluses decreased between 1996 and 2003 on dairy farms in the Peat region. However, no effect on root zone leaching was found. This study aims to show how monitoring in the Peat region can be improved in order to link water quality to agricultural practice. Contrary to the other Dutch regions, nitrate concentrations in root zone leaching on farms in the Peat region are often very low (90% of the farms below 25 mg/l) due to the reduction of nitrate (denitrification). The main nitrogen (N) components in the peat region waters are ammonium and organic N. Total N is therefore a better measure for N concentrations in the Peat region. The ammonium concentration in groundwater in Dutch peat soils increases with depth. It is assumed that the deeper ammonia-rich water is older and relates to anaerobic peat decomposition instead of agricultural practice. Recent infiltrated low-ammonium water, lies like a thin freshwater lens on the older water. In the Peat region, root zone leaching is monitored by taking samples from the upper meter of groundwater. Unintended, often both lens water and older water are sampled and this distorts the relation between agricultural practice and water quality. In the Peat region, the N surplus is transported with the precipitation surplus to ditches. The relation between the N surplus and the total N in ditch water is therefore better than between N surplus and total N in root zone leaching. The precipitation surplus flows to ditches directly or via open field drains. However, the ditches may be fed partly with older water (seepage of groundwater). In the open field drain only recent water will occur. We expect that monitoring the water quality of the open field drains may even better reflect changes in agricultural practices. These data may also improve the understanding of contribution of agricultural nitrogen and natural nitrogen, necessary to develop measures to decrease the total-N concentration in ditch water.
Reducing Respiratory Health Risks to Horses and Workers: A Comparison of Two Stall Bedding Materials
Saastamoinen, Markku; Särkijärvi, Susanna; Hyyppä, Seppo
2015-01-01
Simple Summary In this study, the effect of wood shavings and peat was examined on stable air quality and health of horses and stable workers. The ammonia level in the boxes in which peat was used as bedding was non-existent or very low. The respiratory symptoms in horses increased regardless of the bedding material at the beginning of the study. The health status of the horses on peat bedding returned to the initial level in the end of the trial but horses in stalls bedded with wood shavings continued to be symptomatic. The hooves of the horses in stalls with peat bedding had a better moisture content. The results suggest that peat is a better bedding material for horses and people working or visiting horse stables than wood shavings. Abstract Stable air quality and the choice of bedding material are an important health issue both in horses and people working or visiting horse stables. Risks of impaired respiratory health are those that can especially be avoided by improving air quality in the stable. The choice of bedding material is particularly important in cold climate conditions; where horses are kept most of the day and year indoors throughout their life. This study examined the effect of two bedding materials; wood shavings and peat; on stable air quality and health of horses. Ammonia and dust levels were also measured to assess conditions in the stable. Ammonia was not detected or was at very low levels (<0.25 ppm) in the boxes in which peat was used as bedding; but its concentration was clearly higher (1.5–7.0 ppm) in stalls with wood shavings as bedding. Personal measurements of workers revealed quite high ammonia exposure (5.9 ppm8h) in the boxes in which wood shavings were used; but no exposure was observed in stalls bedded with peat. The respiratory symptoms in horses increased regardless of the bedding material at the beginning of the study. The health status of the horses in the peat bedding group returned to the initial level in the end of the trial but horses bedded with wood shavings continued to be symptomatic. The hooves of the horses with peat bedding had a better moisture content than those of the horses bedded with wood shavings. The results suggest that peat is a better bedding material for horses than wood shavings regarding the health of both horses and stable workers. PMID:26479479
Physical properties of the Nankai inner accretionary prism at Site C0002, IODP Expedition 348
NASA Astrophysics Data System (ADS)
Kitamura, Manami; Kitajima, Hiroko; Henry, Pierre; Valdez, Robert; Josh, Matthew
2014-05-01
Integrated Ocean Drilling Program (IODP) Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) Expedition 348 focused on deepening the existing riser hole at Site C0002 to ~3000 meters below seafloor (mbsf) to access the deep interior of the Miocene inner accretionary prism. This unique tectonic environment, which has never before been sampled in situ by ocean drilling, was characterized through riser drilling, logging while drilling (LWD), mud gas monitoring and sampling, and cuttings and core analysis. Shipboard physical properties measurements including moisture and density (MAD), electrical conductivity, P-wave, natural gamma ray, and magnetic susceptibility measurements were performed mainly on cuttings samples from 870.5 to 3058.5 mbsf, but also on core samples from 2163 and 2204 mbsf. MAD measurements were conducted on seawater-washed cuttings ("bulk cuttings") in two size fractions of >4 mm and 1-4 mm from 870.5 to 3058.5 mbsf, and hand-picked intact cuttings from the >4 mm size fractions within 1222.5-3058.5 mbsf interval. The bulk cuttings show grain density of 2.68 g/cm3 and 2.72 g/cm3, bulk density of 1.9 g/cm3 to 2.2 g/cm3, and porosity of 50% to 32%. Compared to the values on bulk cuttings, the intact cuttings show almost the same grain density (2.66-2.70 g/cm3), but higher bulk density (2.05-2.41 g/cm3) and lower porosity (37-18%), respectively. The grain density agreement suggests that the measurements on both bulk cuttings and intact cuttings are of good quality, and the differences in porosity and density are real, but the values from the bulk cuttings are affected strongly by artifacts of the drilling process. Thus, the bulk density and porosity data on handpicked cuttings are better representative of formation properties. Combined with the MAD measurements on hand-picked intact cuttings and discrete core samples from previous expeditions, porosity generally decreases from ~60% to ~20% from the seafloor to 3000 mbsf at Site C0002. Electrical conductivity and P-wave velocity on discrete samples, which were prepared from both cuttings and core samples in the depth interval of 1745.5-3058.5 mbsf, range 0.15-0.9 S/m and 1.7-4.5 km/s, respectively. The electrical resistivity (a reciprocal of conductivity) on discrete samples is generally higher than the LWD resistivity data but the overall depth trends are similar. On the other hand, the P-wave velocity on discrete samples is lower than the LWD P-wave velocity between 2200 mbsf and 2600 mbsf, while the P-wave velocity on discrete samples and LWD P-wave velocity are in a closer agreement below 2600 mbsf. The electrical conductivity and P-wave velocity on discrete samples corrected for in-situ pressure and temperature will be presented. The shipboard physical properties measurements on cuttings are very limited but can be useful with careful treatment and observation.
Drexel, R. Todd; Haitzer, Markus; Ryan, Joseph N.; Aiken, George R.; Nagy, Kathryn L.
2002-01-01
The binding of mercury(II) to two peats from Florida Everglades sites with different rates of mercury methylation was measured at pH 6.0 and 0.01 M ionic strength. The mercury(II) sorption isotherms, measured over a total mercury(II) range of 10-7.4 to 10-3.7 M, showed the competition for mercury(II) between the peat and dissolved organic matter released from the peat and the existence of strong and weak binding sites for mercury(II). Binding was portrayed by a model accounting for strong and weak sites on both the peat and the released DOM. The conditional binding constants (for which the ligand concentration was set as the concentration of reduced sulfur in the organic matter as measured by X-ray absorption near-edge structure spectroscopy) determined for the strong sites on the two peats were similar (Kpeat,s = 1021.8±0.1and 1022.0±0.1 M-1), but less than those determined for the DOM strong sites (Kdom,s = 1022.8±0.1and 1023.2±0.1 M-1), resulting in mercury(II) binding by the DOM at low mercury(II) concentrations. The magnitude of the strong site binding constant is indicative of mercury(II) interaction with organic thiol functional groups. The conditional binding constants determined for the weak peat sites (Kpeat,w = 1011.5±0.1 and 1011.8±0.1 M-1) and weak DOM sites (Kdom,w = 108.7±3.0 and 107.3±4.5 M-1) were indicative of mercury(II) interaction with carboxyl and phenol functional groups.
NASA Astrophysics Data System (ADS)
Camill, Philip; Umbanhowar, Charles E.; Geiss, Christoph; Edlund, Mark B.; Hobbs, Will O.; Dupont, Allison; Doyle-Capitman, Catherine; Ramos, Matthew
2017-07-01
Small peat-forming ecosystems in arctic landscapes may play a significant role in the regional biogeochemistry of high-latitude systems, yet they are understudied compared to arctic uplands and other major peat-forming regions of the North. We present a new data set of 25 radiocarbon-dated permafrost peat cores sampled around eight low arctic lake sites in northern Manitoba (Canada) to examine the timing of peat initiation and controls on peat accumulation throughout the Holocene. We used macrofossils and charcoal to characterize changes in the plant community and fire, and we explored potential impacts of these local factors, as well as regional climatic change, on rates of C accumulation and C stocks. Peat initiation was variable across and within sites, suggesting the influence of local topography, but 56% of the cores initiated after 3000 B.P. Most cores initiated and remained as drier bog hummock communities, with few vegetation transitions in this landscape. C accumulation was relatively slow and did not appear to be correlated with Holocene-scale climatic variability, but C stocks in this landscape were substantial (mean = 45.4 kg C m-2), potentially accounting for 13.2 Pg C in the Taiga Shield ecozone. To the extent that small peat-forming systems are underrepresented in peatland mapping, soil organic carbon (SOC) stocks may be underestimated in arctic regions. Mean fire severity appeared to be negatively correlated with C accumulation rates. Initiation and accumulation of soil C may respond to both regional and local factors, and substantial lowland soil C stocks have the potential for biogeochemical impacts on adjacent aquatic ecosystems.
Lateral carbon fluxes and CO2 outgassing from a tropical peat-draining river
NASA Astrophysics Data System (ADS)
Müller, D.; Warneke, T.; Rixen, T.; Müller, M.; Jamahari, S.; Denis, N.; Mujahid, A.; Notholt, J.
2015-07-01
Tropical peatlands play an important role in the global carbon cycle due to their immense carbon storage capacity. However, pristine peat swamp forests are vanishing due to deforestation and peatland degradation, especially in Southeast Asia. CO2 emissions associated with this land use change might not only come from the peat soil directly, but also from peat-draining rivers. So far, though, this has been mere speculation, since there was no data from undisturbed reference sites. We present the first combined assessment of lateral organic carbon fluxes and CO2 outgassing from an undisturbed tropical peat-draining river. Two sampling campaigns were undertaken on the Maludam river in Sarawak, Malaysia. The river catchment is covered by protected peat swamp forest, offering a unique opportunity to study a peat-draining river in its natural state, without any influence from tributaries with different characteristics. The two campaigns yielded consistent results. Dissolved organic carbon (DOC) concentrations ranged between 3222 and 6218 μmol L-1 and accounted for more than 99 % of the total organic carbon (TOC). Radiocarbon dating revealed that the riverine DOC was of recent origin, suggesting that it derives from the top soil layers and surface runoff. We observed strong oxygen depletion, implying high rates of organic matter decomposition and consequently CO2 production. The measured median pCO2 was 7795 and 8400 μatm during the two campaigns, respectively. Overall, we found that only 26 ± 15 % of the carbon was exported by CO2 evasion, while the rest was exported by discharge. CO2 outgassing seemed to be moderated by the short water residence time. Since most Southeast Asian peatlands are located at the coast, this is probably an important limiting factor for CO2 outgassing from most of its peat-draining rivers.
Hybrid biosorbents for removal of pollutants and remediation
NASA Astrophysics Data System (ADS)
Burlakovs, Juris; Klavins, Maris; Robalds, Artis; Ansone, Linda
2014-05-01
For remediation of soils and purification of polluted waters, wastewaters, biosorbents might be considered as prospective groups of materials. Amongst them peat have a special role due to low cost, biodegradability, high number of functional groups, well developed surface area and combination of hydrophilic/hydrophobic structural elements. Peat as sorbent have good application potential for removal of trace metals, and we have demonstrated peat sorption capacities, sorption kinetics, thermodynamics in respect to metals with different valencies - Tl(I), Cu(II), Cr(III). However, peat sorption capacity in respect to nonmetallic (anionic species) elements is low. Also peat mechanical properties do not support application in large scale column processes thereby, to expand peat application sphere, the approach of biomass based hybrid sorbents has been elaborated. The concept "hybrid sorbent" in understanding of biosorbent means natural, biomass based modified material, covered with another sorbent material, thus combining properties of both such as sorbent functionalities, surface properties etc. As the "covering layer" both inorganic substances, mineral phases (iron oxohydroxides, oxyappatite) and organic polymers (using graft polymerization) were used. The obtained sorbents were characterised by their spectral properties, surface area and elemental composition. The obtained hybrid sorbents were tested for sorption of compounds in anionic speciation forms, for example of arsenic, antimony, tellurium and phosphorous compounds in comparison with weakly basic anionites. The highest sorption capacity was observed when peat sorbents modified with iron compounds were used. Sorption of different arsenic speciation forms onto iron-modified peat sorbents was investigated as a function of pH and temperature. It was established that sorption capacity increases with a rise in temperature as the calculation of sorption process thermodynamic parameters indicates the spontaneity of sorption process and its endothermic nature. The recycling options of obtained compounds after their saturation with metal or non-metallic species are suggested.
Gillespie, Dirk
2014-11-01
Classical density functional theory (DFT) of fluids is a fast and efficient theory to compute the structure of the electrical double layer in the primitive model of ions where ions are modeled as charged, hard spheres in a background dielectric. While the hard-core repulsive component of this ion-ion interaction can be accurately computed using well-established DFTs, the electrostatic component is less accurate. Moreover, many electrostatic functionals fail to satisfy a basic theorem, the contact density theorem, that relates the bulk pressure, surface charge, and ion densities at their distances of closest approach for ions in equilibrium at a smooth, hard, planar wall. One popular electrostatic functional that fails to satisfy the contact density theorem is a perturbation approach developed by Kierlik and Rosinberg [Phys. Rev. A 44, 5025 (1991)PLRAAN1050-294710.1103/PhysRevA.44.5025] and Rosenfeld [J. Chem. Phys. 98, 8126 (1993)JCPSA60021-960610.1063/1.464569], where the full free-energy functional is Taylor-expanded around a bulk (homogeneous) reference fluid. Here, it is shown that this functional fails to satisfy the contact density theorem because it also fails to satisfy the known low-density limit. When the functional is corrected to satisfy this limit, a corrected bulk pressure is derived and it is shown that with this pressure both the contact density theorem and the Gibbs adsorption theorem are satisfied.
Inspection of wood density by spectrophotometry and a diffractive optical element based sensor
NASA Astrophysics Data System (ADS)
Palviainen, Jari; Silvennoinen, Raimo
2001-03-01
Correlation among gravimetric, spectrophotometric and radiographic data from dried wood samples of Scots pine (Pinus sylvestris L) was observed. A diffractive optical element (DOE) based sensor was applied to investigate density variations as well as optical anisotropy inside year rings of the wood samples. The correlation between bulk density of wood and spectrophotometric data (reflectance and transmittance) was investigated for the wavelength range 200-850 nm and the highest correlation was found at wavelengths from 800 to 850 nm. The correlation at this wavelength was smaller than the correlation between bulk density and radiography data. The DOE sensor was found to be capable of sensing anisotropy of the wood samples inside the year ring.
Calculation of density of states of transition metals: From bulk sample to nanocluster
NASA Astrophysics Data System (ADS)
Krasavin, Andrey V.; Borisyuk, Petr V.; Vasiliev, Oleg S.; Zhumagulov, Yaroslav V.; Kashurnikov, Vladimir A.; Kurelchuk, Uliana N.; Lebedinskii, Yuriy Yu.
2018-03-01
A technique is presented of restoring the electronic density of states of the valence band from data of X-ray photoelectron spectroscopy (XPS). The originality of the technique consists in using a stochastic procedure to solve an integral equation relating the density of states and the experimental X-ray photoelectron spectra via the broadening function. To obtain the broadening function, only the XPS spectra of the core levels are needed. The results are presented for bulk sample of gold and tungsten and nanoclusters of tantalum; the possibility of using the results to determine the density of states of low-dimensional structures, including ensembles of metal nanoclusters, is demonstrated.
NASA Astrophysics Data System (ADS)
Yung, Lai Chin; Fei, Cheong Choke; Mandeep, Jit Singh; Amin, Nowshad; Lai, Khin Wee
2015-11-01
The leadframe fabrication process normally involves additional thin-metal layer plating on the bulk copper substrate surface for wire bonding purposes. Silver, tin, and copper flakes are commonly adopted as plating materials. It is critical to assess the density of the plated metal layer, and in particular to look for porosity or voids underneath the layer, which may reduce the reliability during high-temperature stress. A fast, reliable inspection technique is needed to assess the porosity or void weakness. To this end, the characteristics of x-rays generated from bulk samples were examined using an energy-dispersive x-ray (EDX) detector to examine the porosity percentage. Monte Carlo modeling was integrated with Castaing's formula to verify the integrity of the experimental data. Samples with different porosity percentages were considered to test the correlation between the intensity of the collected x-ray signal and the material density. To further verify the integrity of the model, conventional cross-sectional samples were also taken to observe the porosity percentage using Image J software measurement. A breakthrough in bulk substrate assessment was achieved by applying EDX for the first time to nonelemental analysis. The experimental data showed that the EDX features were not only useful for elemental analysis, but also applicable to thin-film metal layer thickness measurement and bulk material density determination. A detailed experiment was conducted using EDX to assess the plating metal layer and bulk material porosity.
Radioactivity of peat mud used in therapy.
Karpińska, Maria; Mnich, Krystian; Kapała, Jacek; Bielawska, Agnieszka; Kulesza, Grzegorz; Mnich, Stanisław
2016-02-01
The aim of the study was to determine the contents of natural and artificial isotopes in peat mud and to estimate the radiation dose absorbed via skin in patients during standard peat mud treatment. The analysis included 37 samples collected from 8 spas in Poland. The measurements of isotope concentration activity were conducted with the use of gamma spectrometry methods. The skin dose in a standard peat mud bath therapy is approximately 300 nSv. The effective dose of such therapy is considered to be 22 nSv. The doses absorbed during peat mud therapy are 5 orders of magnitude lower than effective annual dose absorbed from the natural radiation background by a statistical Pole (3.5 mSv). Neither therapeutic nor harmful effect is probable in case of such a small dose of ionising radiation. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wright, William J.
Peat soils are known to be a significant source of atmospheric greenhouse gasses. However, the releases of methane and carbon dioxide gasses from peat soils are currently not well understood, particularly since the timing of the releases are poorly constrained. Furthermore, most research work performed on peatlands has been focused on temperate to sub-arctic peatlands, while recent works have suggested that gas production rates from low-latitude peat soils are higher than those from colder climates. The purpose of the work proposed here is to introduce an autonomous Ground Penetrating Radar (GPR) method for investigating the timing of gas releases from peat soils at the lab scale utilizing samples originating from Maine and the Florida Everglades, and at the field scale in a Maine peatland. Geophysical data are supported by direct gas flux measurements using the flux chamber method enhanced by timelapse photography, and terrestrial LiDAR (TLS) monitoring surface deformation.
NASA Astrophysics Data System (ADS)
Inisheva, L. I.; Szajdak, L.; Sergeeva, M. A.
2016-04-01
The biological activity in oligotrophic peatlands at the margins of the Vasyugan Mire has been studied. It is shown found that differently directed biochemical processes manifest themselves in the entire peat profile down to the underlying mineral substrate. Their activity is highly variable. It is argued that the notion about active and inert layers in peat soils is only applicable for the description of their water regime. The degree of the biochemical activity is specified by the physical soil properties. As a result of the biochemical processes, a micromosaic aerobic-anaerobic medium is developed under the surface waterlogged layer of peat deposits. This layer contains the gas phase, including oxygen. It is concluded that the organic and mineral parts of peat bogs represent a single functional system of a genetic peat profile with a clear record of the history of its development.
Untangling climate signals from autogenic changes in long-term peatland development
NASA Astrophysics Data System (ADS)
Morris, Paul J.; Baird, Andy J.; Young, Dylan M.; Swindles, Graeme T.
2015-12-01
Peatlands represent important archives of Holocene paleoclimatic information. However, autogenic processes may disconnect peatland hydrological behavior from climate and overwrite climatic signals in peat records. We use a simulation model of peatland development driven by a range of Holocene climate reconstructions to investigate climate signal preservation in peat records. Simulated water-table depths and peat decomposition profiles exhibit homeostatic recovery from prescribed changes in rainfall, whereas changes in temperature cause lasting alterations to peatland structure and function. Autogenic ecohydrological feedbacks provide both high- and low-pass filters for climatic information, particularly rainfall. Large-magnitude climatic changes of an intermediate temporal scale (i.e., multidecadal to centennial) are most readily preserved in our simulated peat records. Simulated decomposition signals are offset from the climatic changes that generate them due to a phenomenon known as secondary decomposition. Our study provides the mechanistic foundations for a framework to separate climatic and autogenic signals in peat records.
Direct Measurements of Pore Fluid Density by Vibrating Tube Densimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gruszkiewicz, Miroslaw S.; Rother, Gernot; Wesolowski, David J.
2012-02-27
The densities of pore-confined fluids were measured for the first time by means of a vibrating tube method. Isotherms of total adsorption capacity were measured directly making the method complementary to the conventional gravimetric or volumetric/piezometric adsorption techniques, which yield the excess adsorption (the Gibbsian surface excess). A custom-made high-pressure, high-temperature vibrating tube densimeter (VTD) was used to measure the densities of subcritical and supercritical propane (between 35 °C and 97 °C) and supercritical carbon dioxide (between 32 C and 50°C) saturating hydrophobic silica aerogel (0.2 g/cm 3, 90% porosity) synthesized inside Hastelloy U-tubes. Additionally, excess adsorption isotherms for supercriticalmore » CO 2 and the same porous solid were measured gravimetrically using a precise magnetically-coupled microbalance. Pore fluid densities and total adsorption isotherms increased monotonically with increasing density of the bulk fluid, in contrast to excess adsorption isotherms, which reached a maximum at a subcritical density of the bulk fluid, and then decreased towards zero or negative values at supercritical densities. Compression of the confined fluid significantly beyond the density of the bulk liquid at the same temperature was observed at subcritical temperatures. The features of the isotherms of confined fluid density are interpreted to elucidate the observed behavior of excess adsorption. The maxima of excess adsorption were found to occur below the critical density of the bulk fluid at the conditions corresponding to the beginning of the plateau of total adsorption, marking the end of the transition of pore fluid to a denser, liquid-like pore phase. The results for propane and carbon dioxide showed similarity in the sense of the principle of corresponding states. No measurable effect of pore confinement on the liquid-vapor critical point was found. Quantitative agreement was obtained between excess adsorption isotherms determined from VTD total adsorption results and those measured gravimetrically at the same temperature, confirming the validity of the vibrating tube measurements. Vibrating tube densimetry was demonstrated as a novel experimental approach capable of providing the average density of pore-confined fluids.« less
Accurate bulk density determination of irregularly shaped translucent and opaque aerogels
NASA Astrophysics Data System (ADS)
Petkov, M. P.; Jones, S. M.
2016-05-01
We present a volumetric method for accurate determination of bulk density of aerogels, calculated from extrapolated weight of the dry pure solid and volume estimates based on the Archimedes' principle of volume displacement, using packed 100 μm-sized monodispersed glass spheres as a "quasi-fluid" media. Hard particle packing theory is invoked to demonstrate the reproducibility of the apparent density of the quasi-fluid. Accuracy rivaling that of the refractive index method is demonstrated for both translucent and opaque aerogels with different absorptive properties, as well as for aerogels with regular and irregular shapes.
Trapping effects in irradiated and avalanche-injected MOS capacitors
NASA Technical Reports Server (NTRS)
Bakowski, M.; Cockrum, R. H.; Zamani, N.; Maserjian, J.; Viswanathan, C. R.
1978-01-01
The trapping parameters for holes, and for electrons in the presence of trapped holes, have been measured from a set of wafers with different oxide thickness processed under controlled conditions. The trap cross-sections and densities indicate at least three trap species, including an interfacial species, a dominant bulk species which is determined to tail off from the silicon interface, and a third, lower density bulk species that is distributed throughout the oxide.
Theory of the interface between a classical plasma and a hard wall
NASA Astrophysics Data System (ADS)
Ballone, P.; Pastore, G.; Tosi, M. P.
1983-09-01
The interfacial density profile of a classical one-component plasma confined by a hard wall is studied in planar and spherical geometries. The approach adapts to interfacial problems a modified hypernetted-chain approximation developed by Lado and by Rosenfeld and Ashcroft for the bulk structure of simple liquids. The specific new aim is to embody selfconsistently into the theory a contact theorem, fixing the plasma density at the wall through an equilibrium condition which involves the electrical potential drop across the interface and the bulk pressure. The theory is brought into fully quantitative contact with computer simulation data for a plasma confined in a spherical cavity of large but finite radius. The interfacial potential at the point of zero charge is accurately reproduced by suitably combining the contact theorem with relevant bulk properties in a simple, approximate representation of the interfacial charge density profile.
Theory of the interface between a classical plasma and a hard wall
NASA Astrophysics Data System (ADS)
Ballone, P.; Pastore, G.; Tosi, M. P.
1984-12-01
The interfacial density profile of a classical one-component plasma confined by a hard wall is studied in planar and spherical geometries. The approach adapts to interfacial problems a modified hypernetted-chain approximation developed by Lado and by Rosenfeld and Ashcroft for the bulk structure of simple liquids. The specific new aim is to embody self-consistently into the theory a “contact theorem”, fixing the plasma density at the wall through an equilibrium condition which involves the electrical potential drop across the interface and the bulk pressure. The theory is brought into fully quantitative contact with computer simulation data for a plasma confined in a spherical cavity of large but finite radius. It is also shown that the interfacial potential at the point of zero charge is accurately reproduced by suitably combining the contact theorem with relevant bulk properties in a simple, approximate representation of the interfacial charge density profile.
Matthew Warren; Kristell Hergoualc' h; J. Boone Kauffman; Daniel Murdiyarso; Randall Kolka
2017-01-01
Background: A large proportion of the world's tropical peatlands occur in Indonesia where rapid conversion and associated losses of carbon, biodiversity and ecosystem services have brought peatland management to the forefront of Indonesia's climate mitigation efforts. We evaluated peat volume from two commonly referenced maps of peat distribution and depth...
Influence of north climatic conditions on the peat lipids composition
NASA Astrophysics Data System (ADS)
Serebrennikova, O. V.; Strelnikova, E. B.; Duchko, M. A.; Preis, Yu I.
2018-03-01
The paper studies the composition of lipid organic compounds of peat from the northern regions of the Russian Federation. Peat was sampled in the northern taiga, forest-tundra and tundra zones, characterized by various hydrothermal conditions and vegetation cover. n-Alkanes, fatty acids and their ethers, aldehydes, ketones, alcohols, tocopherols, squalene, bi-, tri- and pentacyclic terpenoids, as well as steroids were identified in peat lipids by gas chromatography-mass spectrometry. The dependences of the total content of lipids and the majority of the investigated compounds classes on the ambient temperature and vegetation, as well as the correlation between the composition of n-alkanes and humidity were revealed.
Anomalous concentrations of zinc and copper in highmoor peat bog, southeast coast of Lake Baikal
NASA Astrophysics Data System (ADS)
Bobrov, V. A.; Bogush, A. A.; Leonova, G. A.; Krasnobaev, V. A.; Anoshin, G. N.
2011-08-01
When examining the peat deposit discovered in Vydrinaya bog, South Baikal region, the authors encountered anomalous Zn and Cu concentrations for highmoors being up to 600-500 ppm on a dry matter basis in the Early Holocene beds (360-440 cm) formed 11 000-8500 years ago. It has been demonstrated that Zn and Cu are present inside the plant cells of peat moss in the form of authigenic sulfide minerals of micron size. Apart from Zn and Cu, native Ag particles (5-7 um) have been encountered in the peat of the Vydrinaya bog at a depth of 390-410 cm; these particles formed inside the organic matter of the plasma membrane of peat moss containing Ca, Al, S, and Cu. This study suggests probable patterns of the formation of zinc sulfides, copper sulfides, and native silver in peat moss. The results obtained indicate that biogenic mineral formation plays a significant role in this system, which is a very important argument in the discussion on the ore genesis, in which physicochemical processes are normally favored, while the role of living matter is quite frequently disregarded.
Zhang, Lu; Sun, Xiangyang; Tian, Yun; Gong, Xiaoqiang
2013-01-01
Peat mined from endangered wetland ecosystems is generally used as a component in soilless potting media in horticulture but is a costly and non-renewable natural resource. The objective of this work was to study the feasibility of replacing peat with different percentages (0, 10, 30, 50, 70, 90, and 100%) of composted green waste (CGW) as growth media for the production of the ornamental plant Calathea insignis. Compared with 100% peat media, media containing CGW had improved physical and chemical characteristics to achieve the acceptable ranges. Moreover, CGW addition had increased the stability (i.e., reduced the decomposition rates) of growth media mixtures, as indicated by comparison of particle-size distribution at the start and end of a 7-month greenhouse experiment. Addition of CGW also supported increased plant growth (biomass production, root morphology, nutrient contents, and photosynthetic pigment contents). The physical and chemical characteristics of growth media and plant growth were best with a medium containing 70% CGW and were better in a medium with 100% CGW than in one with 100% peat media. These results indicate that CGW is a viable alternative to peat for the cultivation of Calathea insignis.
Zhang, Lu; Sun, Xiangyang; Tian, Yun; Gong, Xiaoqiang
2013-01-01
Peat mined from endangered wetland ecosystems is generally used as a component in soilless potting media in horticulture but is a costly and non-renewable natural resource. The objective of this work was to study the feasibility of replacing peat with different percentages (0, 10, 30, 50, 70, 90, and 100%) of composted green waste (CGW) as growth media for the production of the ornamental plant Calathea insignis. Compared with 100% peat media, media containing CGW had improved physical and chemical characteristics to achieve the acceptable ranges. Moreover, CGW addition had increased the stability (i.e., reduced the decomposition rates) of growth media mixtures, as indicated by comparison of particle-size distribution at the start and end of a 7-month greenhouse experiment. Addition of CGW also supported increased plant growth (biomass production, root morphology, nutrient contents, and photosynthetic pigment contents). The physical and chemical characteristics of growth media and plant growth were best with a medium containing 70% CGW and were better in a medium with 100% CGW than in one with 100% peat media. These results indicate that CGW is a viable alternative to peat for the cultivation of Calathea insignis. PMID:24205121
Determining critical groundwater level to prevent degraded peatland from severe peat fire
NASA Astrophysics Data System (ADS)
Putra, E. I.; Cochrane, M. A.; Vetrita, Y.; Graham, L.; Saharjo, B. H.
2018-05-01
Peat fires have been a severe recurrent problem for Indonesia, but droughts due to prolonged dry season aggravate burning conditions. To get a better understanding of this issue, we studied fire conditions in a portion of the ex-Mega Rice Project (MRP) area, Central Kalimantan. To examine fire season and hydrology factors affecting peat fires we analyzed daily TRMM data, Nino 3.4 SST Anomalies, and changing groundwater levels (GWL) from 300 dipwells. Our results quantify time-lags between the period of lowest precipitation and the lowest GWL; providing some ability to predict fire risk in advance of the lowest GWL. The rise of Nino 3.4 SST anomalies is significant risk factors for peat fire as they signify dry months which may yield large fire occurrences. GWL in 2011 was lower than in 2012, but fires were more frequent in 2012, indicating that low precipitation amounts in the wet season of 2011/2012 left the peat in a dry condition early in 2012. Most of the fires occurred in areas with GWL less than -30 cm, powerfully illustrating the importance of maintaining GWL at more than -10 cm, to prevent degraded peatlands from experiencing surface and deep peat fires.
NASA Astrophysics Data System (ADS)
Cabolova, Anastasija
Peatlands cover a total area of approximately 3 million square kilometers and are one of the largest natural sources of atmospheric methane ( CH4) and carbon dioxide (CO 2). Most traditional methods used to estimate biogenic gas dynamics are invasive and provide little or no information about lateral distribution of gas. In contrast, Ground Penetrating Radar (GPR) is an emerging technique for non-invasive investigation of gas dynamics in peat soils. This thesis establishes a direct comparison between gas dynamics (i.e. build-up and release) of four different types of peat soil using GPR. Peat soil blocks were collected at peatlands with contrasting latitudes, including the Everglades, Maine and Minnesota. A unique two-antenna GPR setup was used to monitor biogenic gas buildup and ebullition events over a period of 4.5 months, constraining GPR data with surface deformation measurements and direct CH 4 and CO2 concentration measurements. The effect of atmospheric pressure was also investigated. This study has implications for better understanding global gas dynamics and carbon cycling in peat soils and its role in climate change.
New approaches to estimation of peat deposits for production of biologically active compounds
NASA Astrophysics Data System (ADS)
Stepchenko, L. M.; Yurchenko, V. I.; Krasnik, V. G.; Syedykh, N. J.
2009-04-01
It is known, that biologically active preparations from peat increase animals productivity as well as resistance against stress-factors and have adaptogeneous, antioxidant, immunomodulative properties. Optymal choice of peat deposits for the production of biologically active preparations supposes the detailed comparative analysis of peat properties from different deposits. For this the cadastre of peat of Ukraine is developed in the humic substances laboratory named after prof. Khristeva L.A. (Dnipropetrovsk Agrarian University, Ukraine). It based on the research of its physical and chemical properties, toxicity and biological activity, and called Biocadastre. The Biocadastre is based on the set of parameters, including the descriptions of physical and chemical properties (active acidity, degree of decomposition, botanical composition etc.), toxicity estimation (by parabyotyc, infusorial, inhibitor and other tests), biological activity indexes (growth-promoting, antioxidative, adaptogeneous, immunomodulative antistress and other actions). The blocks of Biocadastre indexes are differentiated, taking into account their use for creation the preparations for vegetable, animals and microorganisms. The Biocadastre will allow to choose the peat deposits, most suitable for the production of different biologically active preparations, both wide directed and narrow spectrum of action, depending on application fields (medicine, agriculture, veterinary medicine, microbiological industry, balneology, cosmetology).
Development of new peat based growing media by addition of pruning waste and biochars
NASA Astrophysics Data System (ADS)
Nieto, Aurora; Gascó, Gabriel; Paz-Ferreiro, Jorge; Plaza, César; Fernández, José Manuel; Méndez, Ana
2015-04-01
In the last years, several researches have been performed to find high quality and low cost substrates from different organic wastes in order to decrease peat consumption since the indiscriminate exploitation of peat lands is exhausting this non-renewable useful resource and destroying endangered wetland ecosystems worldwide. The use of organic wastes as soil amendments or possible peat substitute could be improved by pyrolysis treatment, leading to biochar, a carbon-rich material that has attached important attention. Our research group has been worked in the formulation of new based-growing media by peat substitution in 50 and 75 vol% of pruning waste (PW), commercial charcoal (CC), biochar from PW at 300°C (B300) and 500°C (B500). Growing media show adequate physicochemical and hydrophysical properties. Experiments performed with lettuce germination show that PW addition in a 75vol% reduces germination index probably due to their high content on phenolic compounds. Lettuce growing experiments were performed during 5 weeks and show that addition of PW and CC to peat decreases biomass production whereas; B300 and specially, B500 addition significantly increases the lettuce biomass.
Grady, William C.; Eble, Cortland F.; Neuzil, Sandra G.
1993-01-01
Analyses of modern Indonesian peat samples reveal that the optical characteristics of peat constituents are consistent with the characteristics of macerals observed in brown coal and, as found by previous workers, brown-coal maceral terminology can be used in the analysis of modern peat. A core from the margin and one from near the center of a domed peat deposit in Riau Province, Sumatra, reveal that the volume of huminite macerals representing well-preserved cell structures (red, red-gray, and gray textinite; ulminite; and corpo/textinite) decreases upward. Huminite macerals representing severely degraded (<20 microns) cellular debris (degraded textinite, attrinite, and densinite) increase uniformly from the base to the surface. Greater degradation of the huminite macerals in the upper peat layers in the interior of the deposit is interpreted to be the result of fungal activity that increased in response to increasingly aerobic conditions associated with the doming of the peat deposit. Aerobic conditions concurrent with the activities of fungi may result in incipient oxidation of the severely degraded huminite macerals. This oxidation could lead to the formation of degradosemifusinite, micrinite, and macrinite maceral precursors in the peat, which may become evident only upon coalification. The core at the margin was petrographically more homogeneous than the core from the center and was dominated by well-preserved huminite macerals except in the upper 1 m, which showed signs of aerobic degradation and was similar to the upper 1 m of the peat in the interior of the deposit.The Stockton and other Middle Pennsylvanian Appalachian coal beds show analogous vertical trends in vitrinite maceral composition. The succession from telocollinite-rich, bright coal lithotypes in the lower benches upward to thin-banded/matrix collinite and desmocollinite in higher splint coal benches is believed to reflect a progression similar to that from the well-preserved textinite macerals in the lower portions of the peat cores to severely fragmented and degraded cellular materials (degraded textinite, attrinite, and densinite) in the upper portions of the cores. This petrographic sequence from bright to splint coal in the Stockton and other Middle Pennsylvanian coal beds supports previous interpretations of an upward transition from planar to domed swamp accumulations.
Post-fire fluxes and sources of carbon in previously burnt tropical swamp peatlands, Brunei
NASA Astrophysics Data System (ADS)
Lupascu, M.; Akhtar, H.; Smith, T. E. L.; Sukmaria binti Hj Sukri, R.
2017-12-01
Tropical peatlands hold about 15-19% of the global organic carbon (C) pool of which 77% in Southeast Asia. Nonetheless Southeast Asian peatlands have been exploited for timber and land for agriculture leading to rapid deforestation, extensive drainage and frequent fires. Direct C-emissions through peat combustion must be quantified to examine the impact of peat fires on global and regional C-budgets, however it is also essential to evaluate oxidative decomposition of peat after fires for a complete understanding of ecosystem-scale fire impact. This kind of investigation is necessary also to understand the effect of peat burning on peat decomposition, because burning effects on the belowground environment are variable, depending on burnt frequency and fire severity. After a fire, ecosystems act as a C-source for months-to-years as ecosystem-respiration (Reco) exceeds photosynthesis. Furthermore during fires, the surface peat with a higher proportion of the more modern rapidly-cycled C burns preferentially. The loss of the surface peat possibly can reduce oxidative soil CO2 emissions, as the deeper, older peat, has more recalcitrant compounds. However, CO2emissions from this old C pool are a net flux to the atmosphere compared to the modern C. Within this context, we are quantifying the magnitudes and patterns of ecosystem-atmosphere fluxes of carbon dioxide (CO2) and methane (CH4) through cavity-ring spectroscopy in different transects of an intact tropical peat swamp forest and in two degraded forest areas affected by two and six fires over the last 40 years in Brunei, on the island of Borneo. We are using natural tracers such as δ13C and 14C to investigate the age and sources (auto- and heterotrophic) of C contributing to Reco and we are continuously monitoring soil temperature and water table level. Preliminary data show a similar magnitude of CO2 efflux between the intact (5.3 µmol CO2 m-2 s-1) and burnt areas (6.4 µmol CO2 m-2 s-1), with higher soil temperature in the latter. Our results will give a deeper insight into the vulnerability of the C pool in tropical peat swamp forest after fire events and aim at improving terrestrial soil C budget.
Greenhouse gas efflux from an impacted Malaysian tropical peat swamp (Invited)
NASA Astrophysics Data System (ADS)
Waldron, S.; Vihermaa, L. E.; Evers, S.; Garnett, M.; Newton, J.; Padfield, R.
2013-12-01
Tropical peatlands constitute ~11% of global peatland area and ~12% of the global peat C pool. Malaysia alone contains 10% of tropical peats. Due to rising global demands for food and biofuels, SE-Asia peat swamp forest ecosystems are threatened by increasing amounts of drainage, fire and conversion to plantation. These processes can change the GHG emissions and thus net ecosystem C balance. However, in comparison to temperate and boreal peatlands, there is a lack of data on terrestrial-aquatic-atmospheric carbon transfer from tropical peatlands, both those that are little disturbed and those facing anthropogenic pressures. Lateral transport of soil-respired carbon, and fluvial respiration or UV-oxidation of terrestrial DOC primes atmospheric carbon dioxide efflux. We now know that DOC lost from disturbed tropical peat swamp forests can be centuries to millennia old and originates deep within the peat column - this carbon may fuel efflux of old carbon dioxide and so anthropogenic land-use change renders the older, slower carbon cycles shorter and faster. Currently we have no knowledge of how significant ';older-slower' terrestrial-aquatic-atmospheric cycles are in disturbed tropical peatlands. Further, in some areas for commercial reasons, or by conservation bodies trying to minimise peat habitat loss, logged peats have been left to regenerate. Consequently, unpicking the legacy of multiple land uses on magnitude, age and source of GHG emissions is challenging but required to support land management decisions and projections of response to a changing climate. Here, we present the results of our first field campaign in July 2013 to the Raja Musa and Sungai Karang Peat Swamp Forest Reserves in North Selangor, Malaysia. This is one of Malaysia's largest oceanic peat swamps, and has been selectively logged and drained for 80 years, but is now subject to a 30 year logging ban to aid forest regeneration and build up wood stocks. From sites subject to different land use, we will present measurements of i) spatial variation in fluvial carbon dioxide and methane concentrations and associated efflux rates, and ii) the stable carbon isotopic composition of DIC and novel determination of the age of the effluxed carbon dioxide. From this we can consider if younger-faster or older-slower carbon cycling dominates the terrestrial-aquatic-atmospheric C transfer during this dry period sampling.
NASA Astrophysics Data System (ADS)
Craig, M. S.; Kundariya, N.; Hayashi, K.; Srinivas, A.; Burnham, M.; Oikawa, P.
2017-12-01
Near surface geophysical surveys were conducted in the Sacramento-San Joaquin Delta for earthquake hazard assessment and to provide estimates of peat thickness for use in carbon models. Delta islands have experienced 3-8 meters of subsidence during the past century due to oxidation and compaction of peat. Projected sea level rise over the next century will contribute to an ongoing landward shift of the freshwater-saltwater interface, and increase the risk of flooding due to levee failure or overtopping. Seismic shear wave velocity (VS) was measured in the upper 30 meters to determine Uniform Building Code (UBC)/ National Earthquake Hazard Reduction Program (NEHRP) site class. Both seismic and ground penetrating radar (GPR) methods were employed to estimate peat thickness. Seismic surface wave surveys were conducted at eight sites on three islands and GPR surveys were conducted at two of the sites. Combined with sites surveyed in 2015, the new work brings the total number of sites surveyed in the Delta to twenty.Soil boreholes were made at several locations using a hand auger, and peat thickness ranged from 2.1 to 5.5 meters. Seismic surveys were conducted using the multichannel analysis of surface wave (MASW) method and the microtremor array method (MAM). On Bouldin Island, VS of the surficial peat layer was 32 m/s at a site with pure peat and 63 m/s at a site peat with higher clay and silt content. Velocities at these sites reached a similar value, about 125 m/s, at a depth of 10 m. GPR surveys were performed at two sites on Sherman Island using 100 MHz antennas, and indicated the base of the peat layer at a depth of about 4 meters, consistent with nearby auger holes.The results of this work include VS depth profiles and UBC/NEHRP site classifications. Seismic and GPR methods may be used in a complementary fashion to estimate peat thickness. The seismic surface wave method is a relatively robust method and more effective than GPR in many areas with high clay content or where surface sediments have been disturbed by human activities. GPR does however provide significantly higher resolution and better depth control in areas with suitable recording conditions.
Implications of the observed Pluto-Charon density contrast
NASA Astrophysics Data System (ADS)
Bierson, C. J.; Nimmo, F.; McKinnon, W. B.
2018-07-01
Observations by the New Horizons spacecraft have determined that Pluto has a larger bulk density than Charon by 153 ± 44 kg m-3 (2σ uncertainty). We use a thermal model of Pluto and Charon to determine if this density contrast could be due to porosity variations alone, with Pluto and Charon having the same bulk composition. We find that Charon can preserve a larger porous ice layer than Pluto due to its lower gravity and lower heat flux but that the density contrast can only be explained if the initial ice porosity is ≳ 30%, extends to ≳100 km depth and Pluto retains a subsurface ocean today. We also find that other processes such as a modern ocean on Pluto, self-compression, water-rock interactions, and volatile (e.g., CO) loss cannot, even in combination, explain this difference in density. Although an initially high porosity cannot be completely ruled out, we conclude that it is more probable that Pluto and Charon have different bulk compositions. This difference could arise either from forming Charon via a giant impact, or via preferential loss of H2O on Pluto due to heating during rapid accretion.
NASA Astrophysics Data System (ADS)
Maji, Tuhin Kumar; Pal, Samir Kumar; Karmakar, Debjani
2018-04-01
We aim at comparing the electronic properties of topological insulator Sb2S3 in bulk and Nanorod using density-functional scheme and investigating the effects of Se-doping at chalcogen-site. While going from bulk to nano, there is a drastic change in the band gap due to surface-induced strain. However, the trend of band gap modulation with increased Se doping is more prominent in bulk. Interestingly, Se-doping introduces different type of carriers in bulk and nano.
Comparisons of soil nitrogen mass balances for an ...
We compared the N budgets of an ombrotrophic bog and a minerotrophic fen to quantify the importance of denitrification in peatlands and their watersheds. We also compared the watershed upland mineral soils to bog/fen peat; lagg and transition zone peat to central bog/fen peat; and surface, mid-layer and deep soil and peat horizons. Bog and fen area were derived from a wetland boundary GIS data layer, and bog and fen volumes were calculated as the interpolated product of area and depth of peat. Atmospheric N deposition to the bog and fen were based on measurements from a station located 2km north of the bog watershed and 0.5km from the fen watershed. Precipitation was analyzed for nitrate (NO3-), ammonium (NH4+), and total N (TN), and aggregated to annual values. Outflow water samples from the bog and fen were collected as surface grab samples on each of the May-October sampling dates over the 2010-2013 study, and were analyzed and aggregated annually as for atmospheric N. Soil and peat samples were analyzed for N content, and for net ammonification (AM), nitrification (NT), and ambient (DN) and potential (DEA) denitrification rates. Nitrogen mass balances are based on mean annual atmospheric deposition and outflow; soil and peat standing stocks of N, and mean annual estimates of DN, weighted for contributions of the uplands, lagg or transition zone, and bog or fen hollows and hummocks, and accounting for soil depth effects. Annual deposition of N species was: N
NASA Astrophysics Data System (ADS)
Frolking, S. E.; Dommain, R.; Glaser, P. H.; Joos, F.; Jeltsch-Thommes, A.
2016-12-01
The climate mitigation potential of tropical peatlands has gained increased attention as Southeast Asian tropical peat swamp forests are being deforested, drained and burned at very high rates, causing globally significant carbon dioxide (CO2) emissions to the atmosphere. We used a simple force-restore model to represent the perturbation to the atmospheric CO2 and CH4 burdens, and net radiative forcing, resulting from long-term conversion of tropical peat swamp forests to oil palm or acacia plantations. Drainage ditches are installed in land-use conversion to both oil palm and acacia, leading to a persistent change in the system greenhouse gas balance with the atmosphere. Drainage causes the net CO2 exchange to switch from a weak sink (removal from the atmosphere) in the accumulating peat of a swamp forest to a relatively strong source as the peat is oxidized. CH4 emissions increase due to relatively high emissions from the ditches themselves. For these systems, persistent CO2 fluxes have a much stronger impact on atmospheric radiative forcing than do the CH4 fluxes. Prior to conversion, slow peat accumulation (net CO2 uptake) over millennia establishes a slowly increasing net radiative cooling perturbation to the atmosphere. Upon conversion, CO2 loss rates are 16-32 times higher than pre-conversion CO2 uptake rates. Rapid loss rates cause the net radiative forcing perturbation to quickly (decades) become a net warming, which can persist for many centuries after the peat has all been oxidized.
Distribution and speciation of mercury in the peat bog of Xiaoxing'an Mountain, northeastern China.
Liu, Ruhai; Wang, Qichao; Lu, Xianguo; Fang, Fengman; Wang, Yan
2003-01-01
Most reports on mercury (Hg) in boreal ecosystems are from the Nordic countries and North America. Comparatively little information is available on Hg in wetlands in China. We present here a study on Hg in the Tangwang River forested catchment of the Xiaoxing'an Mountain in the northeast of China. The average total Hg (THg) in peat profile ranged from 65.8 to 186.6 ng g(-1) dry wt with the highest at the depth of 5-10 cm. THg in the peat surface was higher than the background in Heilongjiang province, the Florida Everglades, and Birkeness in Sweden. MethylHg (MeHg) concentration ranged from 0.16 to 1.86 ng g(-1) dry wt, with the highest amount at 10-15 cm depth. MeHg content was 0.2-1.2% of THg. THg and MeHg all decreased with the depth. THg in upland layer of soil (0-20 cm) was comparable to the peat surface, but in deeper layers THg concentration in peat was much higher than that in the forested mineral soil. THg in the peat bog increased, but MeHg decreased after it was drained. THg content in plant was different; THg contents in moss (119 ng g(-1) dry wt, n=12) were much higher than in the herbage, the arbor, and the shrubs. The peat bog has mainly been contaminated by Hg deposition from the atmosphere.
Peat soils stabilization using Effective Microorganisms (EM)
NASA Astrophysics Data System (ADS)
Yusof, N. Z.; Samsuddin, N. S.; Hanif, M. F.; Syed Osman, S. B.
2018-04-01
Peat soil is known as geotechnical problematic soil since it is the softest soil having highly organic and moisture content which led to high compressibility, low shear strength and long-term settlement. The aim of this study was to obtain the stabilized peat soils using the Effective Microorganisms (EM). The volume of EM added and mixed with peat soils varied with 2%, 4%, 6%, 8% and 10% and then were cured for 7, 14 and 21 days. The experiment was done for uncontrolled and controlled moisture content. Prior conducting the main experiments, the physical properties such as moisture content, liquid limit, specific gravity, and plastic limit etc. were measure for raw peat samples. The Unconfined Compressive Strength (UCS) test was performed followed by regression analysis to check the effect of EM on the soil strength. Obtained results have shown that the mix design for controlled moisture contents showed the promising improvement in their compressive strength. The peat soil samples with 10% of EM shows the highest increment in UCS value and the percentage of increments are in the range of 44% to 65% after curing for 21 days. The regression analysis of the EM with the soil compressive strength showed that in controlled moisture conditions, EM significantly improved the soil stability as the value of R2 ranged between 0.97 – 0.78. The results have indicated that the addition of EM in peat soils provides significant improving in the strength of the soil as well as the other engineering properties.
Reddy, M.M.; Reddy, M.B.; Kipp, K.L.; Burman, A.; Schuster, P.; Rawlik, P.S.
2008-01-01
Water quality is a key aspect of the Everglades Restoration Project, the largest water reclamation and ecosystem management project proposed in the United States. Movement of nutrients and contaminants to and from Everglades peat porewater could have important consequences for Everglades water quality and ecosystem restoration activities. In a study of Everglades porewater, we observed complex, seasonally variable peat porewater chloride concentration profiles at several locations. Analyses and interpretation of these changing peat porewater chloride concentration profiles identifies processes controlling conservative solute movement at the peat-surface water interface, that is, solutes whose transport is minimally affected by chemical and biological reactions. We examine, with an advection-diffusion model, how alternating wet and dry climatic conditions in the Florida Everglades mediate movement of chloride between peat porewater and marsh surface water. Changing surface water-chloride concentrations alter gradients at the interface between peat and overlying water and hence alter chloride flux across that interface. Surface water chloride concentrations at two frequently monitored sites vary with marsh water depth, and a transfer function was developed to describe daily marsh surface water chloride concentration as a function of marsh water depth. Model results demonstrate that porewater chloride concentrations are driven by changing surface water chloride concentrations, and a sensitivity analysis suggests that inclusion of advective transport in the model improves the agreement between the calculated and the observed chloride concentration profiles. Copyright ?? 2007 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Wright, William; Comas, Xavier
2016-04-01
The spatial and temporal variability in production and release of greenhouse gases (such as methane) in peat soils remains uncertain, particularly for low-latitude peatlands like the Everglades. Ground penetrating radar (GPR) is a hydrogeophysical tool that has been successfully used in the last decade to noninvasively investigate carbon dynamics in peat soils; however, application in subtropical systems is almost non-existent. This study is based on four field sites in the Florida Everglades, where changes in gas content within the soil are monitored using time-lapse GPR measurements and gas releases are monitored using gas traps. A weekly methane gas production rate is estimated using a mass balance approach, considering gas content estimated from GPR, gas release from gas traps and incorporating rates of diffusion, and methanotrophic consumption from previous studies. Resulting production rates range between 0.02 and 0.47 g CH4 m-2 d-1, falling within the range reported in literature. This study shows the potential of combining GPR with gas traps to monitor gas dynamics in peat soils of the Everglades and estimate methane gas production. We also show the enhanced ability of certain peat soils to store gas when compared to others, suggesting that physical properties control biogenic gas storage in the Everglades peat soils. Better understanding biogenic methane gas dynamics in peat soils has implications regarding the role of wetlands in the global carbon cycle, particularly under a climate change scenario.
Experimental early-stage coalification of a peat sample and a peatified wood sample from Indonesia
Orem, W.H.; Neuzil, S.G.; Lerch, H.E.; Cecil, C.B.
1996-01-01
Experimental coalification of a peat sample and a buried wood sample from domed peat deposits in Indonesia was carried out to examine chemical structural changes in organic matter during early-stage coalification. The experiment (125 C, 408 atm lithostatic pressure, and 177 atm fluid pressure for 75 days) was designed to maintain both lithostatic and fluid pressure on the sample, but allow by-products that may retard coalification to escape. We refer to this design as a geologically open system. Changes in the elemental composition, and 13C NMR and FTIR spectra of the peat and wood after experimental coalification suggest preferential thermal decomposition of O-containing aliphatic organic compounds (probably cellulose) during early-stage coalification. The elemental compositions and 13C NMR spectra of the experimentally coalified peat and wood were generally similar to those of Miocene coal and coalified wood samples from Indonesia. Yields of lignin phenols in the peat and wood samples decreased following experimental coalification; the wood sample exhibited a larger change. Lignin phenol yields from the experimentally coalified peat and wood were comparable to yields of lignin phenols from Miocene Indonesian lignite and coalified wood. Changes in syringyl/vanillyl and p-hydroxy/vanillyl ratios suggest direct demethoxylation as a secondary process to demethylation of methoxyl groups during early coalification, and changes in lignin phenol yields and acid/aldehyde ratios point to a coupling between demethoxylation processes and reactions in the alkyl side chain bonds of the ??-carbon in lignin phenols.
NASA Astrophysics Data System (ADS)
Rosenheim, B. E.; Firesinger, D.; Roberts, M. L.; Burton, J. R.; Khan, N.; Moyer, R. P.
2016-12-01
Radiocarbon (14C) sediment core chronologies benefit from a high density of dates, even when precision of individual dates is sacrificed. This is demonstrated by a combined approach of rapid 14C analysis of CO2 gas generated from carbonates and organic material coupled with Bayesian statistical modeling. Analysis of 14C is facilitated by the gas ion source on the Continuous Flow Accelerator Mass Spectrometry (CFAMS) system at the Woods Hole Oceanographic Institution's National Ocean Sciences Accelerator Mass Spectrometry facility. This instrument is capable of producing a 14C determination of +/- 100 14C y precision every 4-5 minutes, with limited sample handling (dissolution of carbonates and/or combustion of organic carbon in evacuated containers). Rapid analysis allows over-preparation of samples to include replicates at each depth and/or comparison of different sample types at particular depths in a sediment or peat core. Analysis priority is given to depths that have the least chronologic precision as determined by Bayesian modeling of the chronology of calibrated ages. Use of such a statistical approach to determine the order in which samples are run ensures that the chronology constantly improves so long as material is available for the analysis of chronologic weak points. Ultimately, accuracy of the chronology is determined by the material that is actually being dated, and our combined approach allows testing of different constituents of the organic carbon pool and the carbonate minerals within a core. We will present preliminary results from a deep-sea sediment core abundant in deep-sea foraminifera as well as coastal wetland peat cores to demonstrate statistical improvements in sediment- and peat-core chronologies obtained by increasing the quantity and decreasing the quality of individual dates.
The solvent component of macromolecular crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weichenberger, Christian X.; Afonine, Pavel V.; Kantardjieff, Katherine
2015-04-30
On average, the mother liquor or solvent and its constituents occupy about 50% of a macromolecular crystal. Ordered as well as disordered solvent components need to be accurately accounted for in modelling and refinement, often with considerable complexity. The mother liquor from which a biomolecular crystal is grown will contain water, buffer molecules, native ligands and cofactors, crystallization precipitants and additives, various metal ions, and often small-molecule ligands or inhibitors. On average, about half the volume of a biomolecular crystal consists of this mother liquor, whose components form the disordered bulk solvent. Its scattering contributions can be exploited in initialmore » phasing and must be included in crystal structure refinement as a bulk-solvent model. Concomitantly, distinct electron density originating from ordered solvent components must be correctly identified and represented as part of the atomic crystal structure model. Herein, are reviewed (i) probabilistic bulk-solvent content estimates, (ii) the use of bulk-solvent density modification in phase improvement, (iii) bulk-solvent models and refinement of bulk-solvent contributions and (iv) modelling and validation of ordered solvent constituents. A brief summary is provided of current tools for bulk-solvent analysis and refinement, as well as of modelling, refinement and analysis of ordered solvent components, including small-molecule ligands.« less
Soyer, Tutku; Yalcin, Sule; Arslan, Selen Serel; Demir, Numan; Tanyel, Feridun Cahit
2017-10-01
Airway aspiration is a common problem in children with esophageal atresia (EA). Pediatric Eating Assessment Tool-10 (pEAT-10) is a self-administered questionnaire to evaluate dysphagia symptoms in children. A prospective study was performed to evaluate the validity of pEAT-10 to predict aspiration in children with EA. Patients with EA were evaluated for age, sex, type of atresia, presence of associated anomalies, type of esophageal repair, time of definitive treatment, and the beginning of oral feeding. Penetration-aspiration score (PAS) was evaluated with videofluoroscopy (VFS) and parents were surveyed for pEAT-10, dysphagia score (DS) and functional oral intake scale (FOIS). PAS scores greater than 7 were considered as risk of aspiration. EAT-10 values greater than 3 were assessed as abnormal. Higher DS scores shows dysphagia whereas higher FOIS shows better feeding abilities. Forty patients were included. Children with PAS greater than 7 were assessed as PAS+ group, and scores less than 7 were constituted as PAS- group. Demographic features and results of surgical treatments showed no difference between groups (p>0.05). The median values of PAS, pEAT-10 and DS scores were significantly higher in PAS+ group when compared to PAS- group (p<0.05). The sensitivity and specificity of pEAT-10 to predict aspiration were 88% and 77%, and the positive and negative predictive values were 22% and 11%, respectively. Type-C cases had better pEAT-10 and FOIS scores with respect to type-A cases, and both scores were statistically more reliable in primary repair than delayed repair (p<0.05). Among the postoperative complications, only leakage had impact on DS, pEAT-10, PAS and FOIS scores (p<0.05). The pEAT-10 is a valid, simple and reliable tool to predict aspiration in children. Patients with higher pEAT-10 scores should undergo detailed evaluation of deglutitive functions and assessment of risks of aspiration to improve safer feeding strategies. Level II (Development of diagnostic criteria in a consecutive series of patients and a universally applied "gold standard"). Copyright © 2017 Elsevier Inc. All rights reserved.
Long-term disturbance dynamics and resilience of tropical peat swamp forests
Cole, Lydia E S; Bhagwat, Shonil A; Willis, Katherine J
2015-01-01
1. The coastal peat swamp forests of Sarawak, Malaysian Borneo, are undergoing rapid conversion, predominantly into oil palm plantations. This wetland ecosystem is assumed to have experienced insignificant disturbance in the past, persisting under a single ecologically-stable regime. However, there is limited knowledge of the past disturbance regime, long-term functioning and fundamentally the resilience of this ecosystem to changing natural and anthropogenic perturbations through time. 2. In this study, long-term ecological data sets from three degraded peatlands in Sarawak were collected to shed light on peat swamp forest dynamics. Fossil pollen and charcoal were counted in each sedimentary sequence to reconstruct vegetation and investigate responses to past environmental disturbance, both natural and anthropogenic. 3. Results demonstrate that peat swamp forest taxa have dominated these vegetation profiles throughout the last c. 2000-year period despite the presence of various drivers of disturbance. Evidence for episodes of climatic variability, predominantly linked to ENSO events, and wildfires is present throughout. However, in the last c. 500 years, burning and indicators of human disturbance have elevated beyond past levels at these sites, concurrent with a reduction in peat swamp forest pollen. 4. Two key insights have been gained through this palaeoecological analysis: (i) peat swamp forest vegetation has demonstrated resilience to disturbance caused by burning and climatic variability in Sarawak in the late Holocene, however (ii) coincident with increased fire combined with human impact c. 500 years ago, these communities started to decline. 5. Synthesis. Sarawak's coastal peat swamps have demonstrated resilience to past natural disturbances, with forest vegetation persisting through episodes of fire and climatic variability. However, palaeoecological data presented here suggest that recent, anthropogenic disturbances are of a greater magnitude, causing the observed decline in the peat swamp forest communities in the last c. 500 years and challenging the ecosystem's persistence. This study greatly extends our knowledge of the ecological functioning of these understudied ecosystems, providing baseline information on the past vegetation and its response to disturbance. This understanding is central to developing management strategies that foster resilience in the remaining peat swamp forests and ensure continued provision of services, namely carbon storage, from this globally important ecosystem. PMID:26120202
NASA Astrophysics Data System (ADS)
Hanson, P. J.; Riggs, J. S.; Barbier, C. N.; Nettles, W. R., IV; Phillips, J. R.; Hook, L.
2014-12-01
Deep soil heating infrastructure was completed in 2014 for a peatland whole-ecosystem warming study that will include air warming starting in 2015 (SPRUCE; http://mnspruce.ornl.gov). In June 2014, we initiated deep soil heating to test the responsiveness of deep peat carbon stocks, microbial communities and biogeochemical cycling processes to heating at 4 warming levels (+2.25, +4.5, +6.75 and +9 °C; 2 replicate plots) compared to fully-constructed control plots (+0 °C; 2 replicate plots). The warming treatments were deployed over eight 113 m2 areas using circular arrays of low-wattage (W) electrical resistance heaters. Perimeter heating was achieved by an exterior circle of 48 100W heaters that apply heat from the surface to a depth of 3 meters. Heating within the study area was accomplished utilizing three zones of 100W "deep only" heaters: an intermediate circle of 12 units, an interior circle of 6 units and one unit placed at the plot center. Heating elements inside the study area apply heat only from -2 to -3 m to keep active heater surfaces away from measured peat volumes. With an average peat depth of 2.5 meters this system was able to warm approximately 113 of the 282 m3 of peat within each target plot. In the absence of the air warming cap, in situ deep peat heating is only effective at sustaining warming in the deep peat layers. Warming levels at depth were achieved over a 25-day (+ 2.25 °C) to a 60-day (+9 °C) period depending on the target treatment temperatures in agreement with a priori energy balance model simulations. Homogeneous temperature distributions between heaters at a given depth interval continued to develop after these targets were reached. Biological and biogeochemical responses to these manipulations are being actively assessed. After one month of transient heating, data for ground-level surface flux of CO2 and CH4 had not shown changes from deep peat heating, but they continue to be tracked and will be summarized in this and related talks.
The role of priming effects on the conversion of blue carbon to CO2 in the coastal zone
NASA Astrophysics Data System (ADS)
Morrison, E.; Ward, N. D.; Arellano, A. R.; Liu, Y.; Rivas-Ubach, A.; Ogram, A.; Osborne, T.; Vaughn, D.; Bianchi, T. S.
2017-12-01
Coastal ecosystems are recognized as valuable but vulnerable carbon (C) sinks, and the C stored in these systems is often referred to as blue C. These systems face many threats, particularly along low-relief coastlines such as Florida, which are susceptible to erosion and C loss as sea levels rise. Peat-derived organic matter (OM) may be degraded within downstream estuarine systems, and its degradation may be enhanced in the presence of labile algal-derived OM via microbial priming effects. To investigate the role of microbial priming effects on the degradation of peat-derived blue C, incubations were established and a suite of analyses were conducted to evaluate changes in peat-derived OM, CO2 production, metabolites, and microbial community structure (via metagenomic sequencing) over the course of the experiment. Four treatments were established: seawater with peat and algal leachate (SWPA), seawater and peat leachate (SWP), seawater and algal leachate (SWA), and seawater alone (SW). Treatments containing peat leachate (SWPA and SWP) harbored greater total DOC concentrations compared to SWA and SW treatments. Over the course of the incubation, CO2 concentrations increased in all treatments, with the highest CO2 levels in treatments with algal-derived DOM (SWA and SWPA). Both treatments with algal-derived DOM (SWA and SWPA) showed an increase in 13C-labeled CO2 over the course of the incubation, and stable isotope mass balance indicated that the conversion of peat-derived OC to CO2 occurred approximately 30% faster with the presence of algal-derived DOC. Aromaticity indices from absorption spectra were significantly lower in the SWP treatment when compared to the SWPA treatment. Dissolved organic matter molecular formulae detected by Fourier-transformed ion cyclotron resonance spectrometry indicated an increase in the degradation of peat-derived compounds when algal material was present. Overall, these findings suggest that there is an increase in microbial degradation of peat when in the presence of algal-derived DOM, which may drive the conversion of blue carbon stocks to CO2 when exported to estuarine systems.
Introducing global peat-specific temperature and pH calibrations based on brGDGT bacterial lipids
NASA Astrophysics Data System (ADS)
Naafs, B. D. A.; Inglis, G. N.; Zheng, Y.; Amesbury, M. J.; Biester, H.; Bindler, R.; Blewett, J.; Burrows, M. A.; del Castillo Torres, D.; Chambers, F. M.; Cohen, A. D.; Evershed, R. P.; Feakins, S. J.; Gałka, M.; Gallego-Sala, A.; Gandois, L.; Gray, D. M.; Hatcher, P. G.; Honorio Coronado, E. N.; Hughes, P. D. M.; Huguet, A.; Könönen, M.; Laggoun-Défarge, F.; Lähteenoja, O.; Lamentowicz, M.; Marchant, R.; McClymont, E.; Pontevedra-Pombal, X.; Ponton, C.; Pourmand, A.; Rizzuti, A. M.; Rochefort, L.; Schellekens, J.; De Vleeschouwer, F.; Pancost, R. D.
2017-07-01
Glycerol dialkyl glycerol tetraethers (GDGTs) are membrane-spanning lipids from Bacteria and Archaea that are ubiquitous in a range of natural archives and especially abundant in peat. Previous work demonstrated that the distribution of bacterial branched GDGTs (brGDGTs) in mineral soils is correlated to environmental factors such as mean annual air temperature (MAAT) and soil pH. However, the influence of these parameters on brGDGT distributions in peat is largely unknown. Here we investigate the distribution of brGDGTs in 470 samples from 96 peatlands around the world with a broad mean annual air temperature (-8 to 27 °C) and pH (3-8) range and present the first peat-specific brGDGT-based temperature and pH calibrations. Our results demonstrate that the degree of cyclisation of brGDGTs in peat is positively correlated with pH, pH = 2.49 × CBTpeat + 8.07 (n = 51, R2 = 0.58, RMSE = 0.8) and the degree of methylation of brGDGTs is positively correlated with MAAT, MAATpeat (°C) = 52.18 × MBT5me‧ - 23.05 (n = 96, R2 = 0.76, RMSE = 4.7 °C). These peat-specific calibrations are distinct from the available mineral soil calibrations. In light of the error in the temperature calibration (∼4.7 °C), we urge caution in any application to reconstruct late Holocene climate variability, where the climatic signals are relatively small, and the duration of excursions could be brief. Instead, these proxies are well-suited to reconstruct large amplitude, longer-term shifts in climate such as deglacial transitions. Indeed, when applied to a peat deposit spanning the late glacial period (∼15.2 kyr), we demonstrate that MAATpeat yields absolute temperatures and relative temperature changes that are consistent with those from other proxies. In addition, the application of MAATpeat to fossil peat (i.e. lignites) has the potential to reconstruct terrestrial climate during the Cenozoic. We conclude that there is clear potential to use brGDGTs in peats and lignites to reconstruct past terrestrial climate.
Long-term disturbance dynamics and resilience of tropical peat swamp forests.
Cole, Lydia E S; Bhagwat, Shonil A; Willis, Katherine J
2015-01-01
1. The coastal peat swamp forests of Sarawak, Malaysian Borneo, are undergoing rapid conversion, predominantly into oil palm plantations. This wetland ecosystem is assumed to have experienced insignificant disturbance in the past, persisting under a single ecologically-stable regime. However, there is limited knowledge of the past disturbance regime, long-term functioning and fundamentally the resilience of this ecosystem to changing natural and anthropogenic perturbations through time. 2. In this study, long-term ecological data sets from three degraded peatlands in Sarawak were collected to shed light on peat swamp forest dynamics. Fossil pollen and charcoal were counted in each sedimentary sequence to reconstruct vegetation and investigate responses to past environmental disturbance, both natural and anthropogenic. 3. Results demonstrate that peat swamp forest taxa have dominated these vegetation profiles throughout the last c . 2000-year period despite the presence of various drivers of disturbance. Evidence for episodes of climatic variability, predominantly linked to ENSO events, and wildfires is present throughout. However, in the last c . 500 years, burning and indicators of human disturbance have elevated beyond past levels at these sites, concurrent with a reduction in peat swamp forest pollen. 4. Two key insights have been gained through this palaeoecological analysis: (i) peat swamp forest vegetation has demonstrated resilience to disturbance caused by burning and climatic variability in Sarawak in the late Holocene, however (ii) coincident with increased fire combined with human impact c . 500 years ago, these communities started to decline. 5. Synthesis . Sarawak's coastal peat swamps have demonstrated resilience to past natural disturbances, with forest vegetation persisting through episodes of fire and climatic variability. However, palaeoecological data presented here suggest that recent, anthropogenic disturbances are of a greater magnitude, causing the observed decline in the peat swamp forest communities in the last c . 500 years and challenging the ecosystem's persistence. This study greatly extends our knowledge of the ecological functioning of these understudied ecosystems, providing baseline information on the past vegetation and its response to disturbance. This understanding is central to developing management strategies that foster resilience in the remaining peat swamp forests and ensure continued provision of services, namely carbon storage, from this globally important ecosystem.
Decadal changes in peat carbon accrual rates in bogs in Northern Minnesota
NASA Astrophysics Data System (ADS)
Fissore, C.; Nater, E. A.; McFarlane, K. J.
2017-12-01
Throughout the Holocene, peatland ecosystems have accumulated substantial amounts of carbon (C) and currently store about one third of all soil organic carbon (SOC) worldwide. Large uncertainty still persists on whether peatland ecosystems located in northern latitudes will continue to act as C sinks, or if the effects of global warming will have greater effects on decomposition processes than on net ecosystem production. We investigated decadal C accrual rates of the top 25 cm of peats in three Sphagnum-rich peatlands located in Northern Minnesota (two ombrotrophic bogs and one fen). We used radiocarbon analysis of Sphagnum cellulose and model fitting to determine peat ages, and peat FTIR spectroscopy to determine humification indices and relative decomposition of peat samples with depth. We had the scope to detect whether recent warming has had an effect on peat decomposition and C accumulation rates. Modeled C accumulation rates in the three peatlands during the past five decades ranged between 78 and 107 g C m-2 yr-1 in the top 25 cm analyzed in this study, values that are higher than the 22 to 29 g C m-2 yr-1 obtained for long-term (millennial) accumulations for the entire bog profiles. Peat IR spectra and C:N ratios confirm low levels of decomposition across the bog sites, especially in the uppermost parts of the peat. The fen site showed very limited decomposition across the entire sampled profile. Higher rates of C accumulation, combined with low decomposition rates close to the surface provide a good estimate of net primary productivity. As substrate decomposition progresses over time, net rates of accumulation decrease. Peat decomposition was more pronounced in the lower depths of the sampled cores in the two ombrotrophic bogs than in the fen, likely an effect of larger temporal variation in water table depth in the bogs than in the fen. Some of the variation in C accumulation and decomposition observed in our bogs and fen suggests that future C accumulation rates will also largely depend on the effect of warming on hydrology, rather than temperature alone.
Microwave dielectric spectrum of rocks
NASA Technical Reports Server (NTRS)
Ulaby, F. T.; Bengal, T.; East, J.; Dobson, M. C.; Garvin, J.; Evans, D.
1988-01-01
A combination of several measurement techniques was used to investigate the dielectric properties of 80 rock samples in the microwave region. The real part of the dielectric constant, epsilon', was measured in 0.1 GHz steps from 0.5 to 18 GHz, and the imaginary part, epsilon'', was measured at five frequencies extending between 1.6 and 16 GHz. In addition to the dielectric measurements, the bulk density was measured for all the samples and the bulk chemical composition was determined for 56 of the samples. The study shows that epsilon' is frequency-dependent over the 0.5 to 18 GHz range for all rock samples, and that the bulk density rho accounts for about 50 percent of the observed variance of epsilon'. For individual rock types (by genesis), about 90 percent of the observed variance may be explained by the combination of density and the fractional contents of SiO2, Fe2O3, MgO, and TiO2. For the loss factor epsilon'', it was not possible to establish statistically significant relationships between it and the measured properties of the rock samples (density and chemical composition).
Mason C. Carter; Thomas J. Dean; Ziyin Wang; Ray A. Newbold
2006-01-01
At four sites in the Gulf Coastal Plain, mechanical whole-tree harvesting (MWT) removed from biomass and nutrients than hand-fell bole-only harvesting (HFBO). Soil compaction and loblolly pine (Pinus taeda L.) regeneration growth varied among sites. At one location, MWT increased soil bulk density by 0.1 Mgm-3, from 1.14 to 1....
Spherical nitroguanidine process
Sanchez, John A.; Roemer, Edward L.; Stretz, Lawrence A.
1990-01-01
A process of preparing spherical high bulk density nitroguanidine by dissing low bulk density nitroguanidine in N-methyl pyrrolidone at elevated temperatures and then cooling the solution to lower temperatures as a liquid characterized as a nonsolvent for the nitroguanidine is provided. The process is enhanced by inclusion in the solution of from about 1 ppm up to about 250 ppm of a metal salt such as nickel nitrate, zinc nitrate or chromium nitrate, preferably from about 20 to about 50 ppm.
NASA Astrophysics Data System (ADS)
Koster, Kay; Erkens, Gilles; Zwanenburg, Cor
2016-04-01
It is undisputed that land subsidence threatens coastal-deltaic lowlands all over the world. Any loss of elevation (on top of sea level rise) increases flood risk in these lowlands, and differential subsidence may cause damage to infrastructure and constructions. Many of these settings embed substantial amounts of peat, which is, due to its mechanically weak organic composition, one of the main drivers of subsidence. Peat is very susceptible to volume reduction by loading and drainage induced consolidation, which dissipates pore water, resulting in a tighter packing of the organic components. Often, the current state of consolidation of peat embedded within coastal-deltaic subsidence hotspots (e.g. Venice lagoon, Mississippi delta, San Joaquin delta, Kalimantan peatlands), is somewhere between its initial (natural) and maximum compressed stage. Quantifying the current state regarding peat volume loss, is of utmost importance to predict potential (near) future subsidence when draining or loading an area. The processes of subsidence often afflict large areas (>103 km2), thus demanding large datasets to assess the current state of the subsurface. In contrast to data describing the vertical motions of the actual surface (geodesy, satellite imagery), subsurface information applicable for subsidence analysis are often lacking in subsiding deltas. This calls for new initiatives to bridge that gap. Here we introduce Cone Penetration Testing (CPT) to quantify the amount of volume loss peat layers embedded within the Holland coastal plain (the Netherlands) experienced. CPT measures soil mechanical strength, and hundreds of thousands of CPTs are conducted each year on all continents. We analyzed 28 coupled CPT-borehole observations, and found strong empirical relations between volume loss and increased peat mechanical strength. The peat lost between ~20 - 95% of its initial thickness by dissipation of excess pore water. An increase in 0.1 - 0.4 MPa of peat strength is accountable for 20 - 75 % of the volume loss, and 0.4 - 0.7 MPa for 75 - 95 % volume loss. This indicates that large amounts of volume by water dissipation has to be lost, before peat experiences a serious increase in strength, which subsequently continuous to increase with only small amount of volume loss. To demonstrate the robustness of our approach to the international field of land subsidence, we applied the obtained empirical relations to previously published CPT logs deriving from the peat-rich San Joaquin-Sacramento delta and the Kalimantan peatlands, and found volume losses that correspond with previously published results. Furthermore, we used the obtained results to predict maximum surface lowering for these areas by consolidation. In conclusion, these promising results and its worldwide popularity yielding large datasets, open the door for CPT as a generic method to contribute to quantifying the imminent threat of coastal-deltaic land subsidence.
Xia, Xianping; Xie, Changsheng; Zhu, Changhong; Cai, Shuizhou; Yang, Xiangliang
2007-08-01
To investigate the damage of endometrium caused by the implanted Cu/low-density polyethylene (LDPE) nanocomposite and the contraceptive effect of this novel copper-containing intrauterine device material. Experimental animal study. TongJi Medical College of Huazhong University of Science and Technology. Sixty healthy female mice. Twenty mice received no implants, 20 mice received the Cu/LDPE nanocomposite, and 20 mice received bulk copper. Morphologic features of the endometrium, contraceptive effect, and surface condition of the implanted implants. The contraceptive effect of both the Cu/LDPE nanocomposite and bulk copper is 100%, the damage of the endometrium caused by the Cu/LDPE nanocomposite is much less than that caused by bulk copper, and the surface of the implanted Cu/LDPE nanocomposite is much smoother and much softer than that of the implanted bulk copper. The contraceptive effect of the Cu/LDPE nanocomposite is comparable with that of bulk copper, and the damage of the endometrium caused by the Cu/LDPE nanocomposite is much less than that caused by bulk copper. The endometrium injury is related to the surface condition of the implanted intrauterine device material.
Measurement of Physical and Hydraulic Properties of Organic Soil Using Computed Tomographic Imagery
NASA Astrophysics Data System (ADS)
Blais, K. E.; Quinton, W. L.; Heck, R. J.; Price, J. S.; Schmidt, M. G.
2005-12-01
The Lower Liard River valley is located within the continental northern boreal region and the zone of discontinuous permafrost. Lying in the centre of the Mackenzie basin, this valley is an extensive flat headwater region with a high density of open water and peatlands. Several standard methods of measuring the physical properties of organic soils exist, although many of them have several drawbacks that limit their use. Organic soils, in particular, have unique properties that require special attention to ensure that the measured hydrological characteristics are represented as they exist in nature. The goal of this research was to devise an improved method of analyzing and measuring the physical and hydraulic properties of organic soil using MicroCT imagery. Specifically, this research seeks to determine if two and three-dimensional images of peat can be used to accurately characterize air-filled porosity, active porosity, pore size distribution, pore saturated area and capillarity of porous Sphagnum cells. Results indicate that measurements derived from these images are consistent with current literature. They also suggest that this non-destructive method is a valuable tool for measuring peat physical and hydraulic properties and that there is potential for additional research using CT technology.
Effects of humic acids on the aggregation and sorption of nano-TiO2.
Li, Yanjie; Yang, Chen; Guo, Xuetao; Dang, Zhi; Li, Xiaoqin; Zhang, Qian
2015-01-01
In this study, humic acids (HAs) from three sources, peat, sediment and straw, used to coat nano-TiO2 were investigated. The results indicated that HAs isolated from peat were aromatic-rich, whereas those isolated from sediment and straw were aliphatic-rich. The nano-TiO2 sedimentation experiments indicated that the presence of aromatic-rich HAs was more capable of stabilizing nano-TiO2 particles than was the presence of aliphatic-rich HAs. This result is because the deionized phenolic groups in the HAs were preferentially adsorbed on the nano-TiO2 surfaces, which generated a higher charge density on the nano-TiO2 surfaces and caused stronger repulsive forces among particles. Furthermore, the aromatic-rich TiO2-HA complexes exhibited a greater sorption capacity than the aliphatic-rich TiO2-HAs complexes and nonlinear phenanthrene sorption because of their higher affinity and the condensed state of aromatic fractions. Note that natural organic matters, such as humic acids, in aquatic environments can not only increase the stability of nanoparticles but can also influence the mobility of hydrophobic organic compounds (HOCs). Copyright © 2014. Published by Elsevier Ltd.
Isotopic anomalies of H2 and C in the peat from the Tunguska meteorite impact area
NASA Astrophysics Data System (ADS)
Kolesnikov, E. M.
Core samples of peat collected at the site of the Tunguska meteorite impact were mixed with CuO and burned inside evacuated and sealed quartz ampules. As a result, the organic components of peat were transformed to H2O and CO2 which were then separated and analyzed using a mass spectrometer. Results show that layers located above the level dated by 1908 are characterized by lighter H2 isotopes and heavier C isotopes, compared with lower layers. These effects are ascribed to the conservation and gradual redistribution of cosmic matter (e.g., regular chondrites, achondrites, and C4-type carbon chondrites) in the upper peat layers.
NASA Astrophysics Data System (ADS)
Illés, Gábor; Kristijono, Agus; Pfeifer, Norbert; Pásztor, László; Shandhyavitri, Ari; Szatmári, Gábor; Sutikno, Sigit; Molnár, Gábor; László, Péter; Árvai, Mátyás; Mészáros, János; Koós, Sándor; Bakacsi, Zsófia; Takács, Katalin; Király, Géza; Székely, Balázs
2017-04-01
One of the world's most worrying environmental problems is the peat land CO2 emission problem of Indonesia: peat lands developed during the Quaternary are now under strong human influence; the artificial lowering of the natural water table leads to rapid drying and compaction of the peat layer, which then becomes vulnerable to subsurface fire. The emitted CO2 of this process is assessed to be 0.5 billion tonnes from Indonesia that is slightly higher than total emission of e.g. United Kingdom in 2014 (0.42 billion tonnes). To cope with the problem it is inevitable to assess the extents of peat lands and volumetric estimation of the potentially affected layers. Methods suitable for mapping of the peat lands (current situation and as far as possible retrospectively), thickness determination and partly thickness estimation of the peat layer are integrated in an advanced geostatistical approach building upon geomorphic, ecological, remote sensing, and geophysical methods to provide information on peat matrix attributes such as peat thickness of organo-mineral horizons between peat and underlying substrate, the presence of buried wood, buttressed trees or tip-up pools and soil type. In order to cope with the problem, our research group is developing a multidisciplinary methodology making use of our experience in soil science, GIS, remote sensing for forestry and ecology, geomorphometry, geophysics, LiDAR remote sensing, parameter estimation and geostatistical methods. The methodology is based largely on GIS data integration, but also applies technologies of 'big data' processing. Our integrative attitude ensures the holistic consideration of the problem, analyzing its origins, temporal development and varying spatial extent, its subprocesses in a multi-scale, inter- and transdisciplinary approach. At the same time practical problems, feasibility, costs, and human resource need consideration in order to design a viable solution. In the development of the solution, elements of gathered experience is integrated acquired in previous similar projects in Hungary, in the Pannonian Basin and in Indonesia, in southern Kalimantan and Indragiri Hilir, Sumatra. The pointwise and profilewise data acquisition of peat forms is converted to mapping methods augmented with a sophisticated sampling strategy. Besides the similarities - freshwater, ombrotrophic peatlands - we also have to focus on remarkable dissimilarities - e.g., herbaceous vs. woody peat material. In the case of the Pannonian Basin the peat occurrences have been developed as the filling up of the floodplains. In the Indonesian case, however, only the basin flanks are partly comparable to that generation mechanism, whereas see level changes play an important role in the development of the vast Indonesian peat occurrences. Geomorphometric approach helps in designing the sample strategy, remote sensing tools are responsible to deliver high-resolution topographic data as input. The varying thickness is assessed with geophysical measurements and shallow boreholes deployed at sampling points and profiles dictated by the sophisticated sampling strategy. During the measurement and sampling the experience gathered is fed back to the sampling strategy giving a dynamic plan for the continuation of the sampling. The advanced evaluation and visualization techniques applied result in a digital map system that also contains estimates on its quality and accuracy in the spatial context. This new approach brings us closer to the understanding of Indonesian peatland development that may also be used elsewhere in similar environmental contexts.
A low-dimensional analogue of holographic baryons
NASA Astrophysics Data System (ADS)
Bolognesi, Stefano; Sutcliffe, Paul
2014-04-01
Baryons in holographic QCD correspond to topological solitons in the bulk. The most prominent example is the Sakai-Sugimoto model, where the bulk soliton in the five-dimensional spacetime of AdS-type can be approximated by the flat space self-dual Yang-Mills instanton with a small size. Recently, the validity of this approximation has been verified by comparison with the numerical field theory solution. However, multi-solitons and solitons with finite density are currently beyond numerical field theory computations. Various approximations have been applied to investigate these important issues and have led to proposals for finite density configurations that include dyonic salt and baryonic popcorn. Here we introduce and investigate a low-dimensional analogue of the Sakai-Sugimoto model, in which the bulk soliton can be approximated by a flat space sigma model instanton. The bulk theory is a baby Skyrme model in a three-dimensional spacetime with negative curvature. The advantage of the lower-dimensional theory is that numerical simulations of multi-solitons and finite density solutions can be performed and compared with flat space instanton approximations. In particular, analogues of dyonic salt and baryonic popcorn configurations are found and analysed.
Zeng, L. F.; Gao, R.; Xie, Z. M.; Miao, S.; Fang, Q. F.; Wang, X. P.; Zhang, T.; Liu, C. S.
2017-01-01
Traditional nanostructured metals are inherently comprised of a high density of high-energy interfaces that make this class of materials not stable in extreme conditions. Therefore, high performance bulk nanostructured metals containing stable interfaces are highly desirable for extreme environments applications. Here, we reported an attractive bulk Cu/V nanolamellar composite that was successfully developed by integrating interface engineering and severe plastic deformation techniques. The layered morphology and ordered Cu/V interfaces remained stable with respect to continued rolling (total strain exceeding 12). Most importantly, for layer thickness of 25 nm, this bulk Cu/V nanocomposite simultaneously achieves high strength (hardness of 3.68 GPa) and outstanding thermal stability (up to 700 °C), which are quite difficult to realize simultaneously in traditional nanostructured materials. Such extraordinary property in our Cu/V nanocomposite is achieved via an extreme rolling process that creates extremely high density of stable Cu/V heterophase interfaces and low density of unstable grain boundaries. In addition, high temperature annealing result illustrates that Rayleigh instability is the dominant mechanism driving the onset of thermal instability after exposure to 800 °C. PMID:28094346
Karpińska, Maria; Kapała, Jacek; Raciborska, Agnieszka; Kulesza, Grzegorz; Milewska, Anna; Mnich, Stanisław
2017-08-01
In this work were identified and measured the activity of radioactive isotopes present in medicinal preparations from peat mud and estimated the doses obtained from them during therapy. Radioactivity of 22 preparations from peat mud and 20 water samples from water of the North-East region of Poland was studied. The median of the total activity was 24.8 Bq kg -1 . Total maximal isotope activity was observed in the Iwonicka Cube 146 Bq kg -1 while considerable amounts of isotopes were found in the Kolobrzeska Peat Mud Paste 112 Bq kg -1 . The doses obtained during therapy were within the range of 11 nSv-13 μSv depending on extracts of medicinal preparations from peat mud. The probability that such a small dose would stimulate biological effects is low. However, some clinicians believe that one of the possible therapeutic mechanisms in the treatment of rheumatoid disorders is the induction of immune response by ionising radiation.
Stability of peatland carbon to rising temperatures
Wilson, R. M.; Hopple, A. M.; Tfaily, M. M.; ...
2016-12-13
Peatlands contain one-third of soil carbon (C), mostly buried in deep, saturated anoxic zones (catotelm). The response of catotelm C to climate forcing is uncertain, because prior experiments have focused on surface warming. Here, we show that deep peat heating of a 2 m-thick peat column results in an exponential increase in CH 4 emissions. But, this response is due solely to surface processes and not degradation of catotelm peat. Incubations show that only the top 20–30 cm of peat from experimental plots have higher CH 4 production rates at elevated temperatures. Radiocarbon analyses demonstrate that CH 4 and COmore » 2 are produced primarily from decomposition of surface-derived modern photosynthate, not catotelm C. Furthermore, there are no differences in microbial abundances, dissolved organic matter concentrations or degradative enzyme activities among treatments. Our results suggest that although surface peat will respond to increasing temperature, the large reservoir of catotelm C is stable under current anoxic conditions.« less
Stability of peatland carbon to rising temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, R. M.; Hopple, A. M.; Tfaily, M. M.
Peatlands contain one-third of soil carbon (C), mostly buried in deep, saturated anoxic zones (catotelm). The response of catotelm C to climate forcing is uncertain, because prior experiments have focused on surface warming. Here, we show that deep peat heating of a 2 m-thick peat column results in an exponential increase in CH 4 emissions. But, this response is due solely to surface processes and not degradation of catotelm peat. Incubations show that only the top 20–30 cm of peat from experimental plots have higher CH 4 production rates at elevated temperatures. Radiocarbon analyses demonstrate that CH 4 and COmore » 2 are produced primarily from decomposition of surface-derived modern photosynthate, not catotelm C. Furthermore, there are no differences in microbial abundances, dissolved organic matter concentrations or degradative enzyme activities among treatments. Our results suggest that although surface peat will respond to increasing temperature, the large reservoir of catotelm C is stable under current anoxic conditions.« less
Arsenic removal using natural biomaterial-based sorbents.
Ansone, Linda; Klavins, Maris; Viksna, Arturs
2013-10-01
Arsenic contamination of water is a major problem worldwide. A possible solution can be approached through developing new sorbents based on cost-effective and environmentally friendly natural biomaterials. We have developed new sorbents based on biomaterial impregnation with iron oxyhydroxide. In this study, raw peat material, iron-modified peat, iron-modified biomass (shingles, straw, sands, cane and moss) as well as iron humate were used for the removal of arsenate from contaminated water. The highest sorption capacity was observed in iron-modified peat, and kinetic studies indicated that the amount of arsenic sorbed on this material exceeds 90 % in 5 h. Arsenate sorption on iron-modified peat is characterised by the pseudo-second-order mechanism. The results of arsenic sorption in the presence of competing substances indicated that sulphate, nitrate, chloride and tartrate anions have practically no influence on As(V) sorption onto Fe-modified peat, whereas the presence of phosphate ions and humic acid significantly lowers the arsenic removal efficiency.
137Cs in the fungal compartment of Swedish forest soils.
Vinichuk, Mykhaylo M; Johanson, Karl J; Taylor, Andy F S
2004-05-05
The (137)Cs activities in soil profiles and in the mycelia of four ectomycorrhizal fungi were studied in a Swedish forest in an attempt to understand the mechanisms governing the transfer and retention of (137)Cs in forest soil. The biomass of four species of fungi was determined and estimated to be 16 g m(-2) in a peat soil and 47-189 g m(-2) in non-peat soil to the depth of 10 cm. The vertical distribution was rather homogeneous for two species (Tylospora spp. and Piloderma fallax) and very superficial for Hydnellum peckii. Most of the (137)Cs activity in mycelium of non-peat soils was found in the upper 5 cm. Transfer factors were quite high even for those species producing resupinate sporocarps. In the peat soil only approximately 0.3% of the total (137)Cs inventory in soil was found in the fungal mycelium. The corresponding values for non-peat soil were 1.3, 1.8 and 1.9%.
3D-Laser-Scanning Technique Applied to Bulk Density Measurements of Apollo Lunar Samples
NASA Technical Reports Server (NTRS)
Macke, R. J.; Kent, J. J.; Kiefer, W. S.; Britt, D. T.
2015-01-01
In order to better interpret gravimetric data from orbiters such as GRAIL and LRO to understand the subsurface composition and structure of the lunar crust, it is import to have a reliable database of the density and porosity of lunar materials. To this end, we have been surveying these physical properties in both lunar meteorites and Apollo lunar samples. To measure porosity, both grain density and bulk density are required. For bulk density, our group has historically utilized sub-mm bead immersion techniques extensively, though several factors have made this technique problematic for our work with Apollo samples. Samples allocated for measurement are often smaller than optimal for the technique, leading to large error bars. Also, for some samples we were required to use pure alumina beads instead of our usual glass beads. The alumina beads were subject to undesirable static effects, producing unreliable results. Other investigators have tested the use of 3d laser scanners on meteorites for measuring bulk volumes. Early work, though promising, was plagued with difficulties including poor response on dark or reflective surfaces, difficulty reproducing sharp edges, and large processing time for producing shape models. Due to progress in technology, however, laser scanners have improved considerably in recent years. We tested this technique on 27 lunar samples in the Apollo collection using a scanner at NASA Johnson Space Center. We found it to be reliable and more precise than beads, with the added benefit that it involves no direct contact with the sample, enabling the study of particularly friable samples for which bead immersion is not possible
High density crystalline boron prepared by hot isostatic pressing in refractory metal containers
Hoenig, C.L.
1993-08-31
Boron powder is hot isostatically pressed in a refractory metal container to produce a solid boron monolith with a bulk density at least 2.22 g/cc and up to or greater than 2.34 g/cc. The refractory metal container is formed of tantalum, niobium, tungsten, molybdenum or alloys thereof in the form of a canister or alternatively plasma sprayed or chemical vapor deposited onto a powder compact. Hot isostatic pressing at 1,800 C and 30 PSI (206.8 MPa) argon pressure for four hours produces a bulk density of 2.34 g/cc. Complex shapes can be made.
High density crystalline boron prepared by hot isostatic pressing in refractory metal containers
Hoenig, Clarence L.
1993-01-01
Boron powder is hot isostatically pressed in a refractory metal container to produce a solid boron monolith with a bulk density at least 2.22 g/cc and up to or greater than 2.34 g/cc. The refractory metal container is formed of tantalum, niobium, tungsten, molybdenum or alloys thereof in the form of a canister or alternatively plasma sprayed or chemical vapor deposited onto a powder compact. Hot isostatic pressing at 1800.degree. C. and 30 KSI (206.8 MPa) argon pressure for four hours produces a bulk density of 2.34 g/cc. Complex shapes can be made.
High density-high purity graphite prepared by hot isostatic pressing in refractory metal containers
Hoenig, Clarence L.
1994-01-01
Porous graphite in solid form is hot isostatically pressed in a refractory metal container to produce a solid graphite monolith with a bulk density greater than or equal to 2.10 g/cc. The refractory metal container is formed of tantalum, niobium, tungsten, molybdenum or alloys thereof in the form of a canister or alternatively plasma sprayed, chemically vapor deposited, or coated by some other suitable means onto graphite. Hot isostatic pressing at 2200.degree. C. and 30 KSI (206.8 MPa) argon pressure for two hours produces a bulk density of 2.10 g/cc. Complex shapes can be made.
High density-high purity graphite prepared by hot isostatic pressing in refractory metal containers
Hoenig, C.L.
1994-08-09
Porous graphite in solid form is hot isostatically pressed in a refractory metal container to produce a solid graphite monolith with a bulk density greater than or equal to 2.10 g/cc. The refractory metal container is formed of tantalum, niobium, tungsten, molybdenum or alloys thereof in the form of a canister or alternatively plasma sprayed, chemically vapor deposited, or coated by some other suitable means onto graphite. Hot isostatic pressing at 2,200 C and 30 KSI (206.8 MPa) argon pressure for two hours produces a bulk density of 2.10 g/cc. Complex shapes can be made. 1 fig.