Sample records for peat samples collected

  1. SPRUCE Whole Ecosystem Warming (WEW) Peat Water Content and Temperature Profiles for Experimental Plot Cores Beginning June 2016

    DOE Data Explorer

    Gutknecht, J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Kluber, L. A. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Hanson, P. J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Schadt, C. W. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.

    2016-06-01

    This data set provides the peat water content and peat temperature at time of sampling for peat cores collected before and during the SPRUCE Whole Ecosystem Warming (WEW) study. Cores for the current data set were collected during the following bulk peat sampling events: 13 June 2016 and 23 August 2016. Over time, this dataset will be updated with each new major bulk peat sampling event, and dates/methods will be updated accordingly.

  2. SPRUCE Deep Peat Heating (DPH) Peat Water Content and Temperature Profiles for Experimental Plot Cores, June 2014 through June 2015

    DOE Data Explorer

    Kluber, Lauren A. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Phillips, Jana R. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Hanson, Paul J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Schadt, Christopher W. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.

    2016-01-01

    This data set provides the peat water content and peat temperature at time of sampling for peat cores collected before and during the SPRUCE Deep Peat Heating (DPH) study. Cores were collected during three sampling events: 03 June 2014, 09 September 2014, and 16 June 2015. Two cores were extracted from hollow locations in each of the 10 experimental plots (4, 6, 8, 10, 11, 13, 16, 17, 19, and 20). Cores were partitioned into samples at 11 depth increments: 0-10, 10-20, 20-30, 30-40, 40-50, 50-75, 75-100, 100-125, 125-150, 150-175, and 175-200 cm below surface of the hollow.

  3. Substrate quality and nutrient availability influence CO2 production from tropical peat decomposition

    NASA Astrophysics Data System (ADS)

    Swails, E.; Jaye, D.; Verchot, L. V.; Hergoualc'h, K.; Wahyuni, N. S.; Borchard, N.; Lawrence, D.

    2015-12-01

    In Indonesia, peatlands are a major and growing source of greenhouse gas emissions due to increasing pressure from oil palm and pulp wood plantations. We are using a combination of field measures, laboratory experiments, and remote sensing to investigate relationships among land use, climatic factors and biogeochemical controls, and their influence on trace gas fluxes from tropical peat soils. Analysis of soils collected from peat sites on two major islands indicated substantial variation in peat substrate quality and nutrient content among land uses and geographic location. We conducted laboratory incubations to test the influence of substrate quality and nutrient availability on CO2 production from peat decomposition. Differences in peat characteristics attributable to land use change were tested by comparison of forest and oil palm peat samples collected from the same peat dome in Kalimantan. Regional differences in peat characteristics were tested by comparison of samples from Sumatra with samples from Kalimantan. We conducted additional experiments to test the influence of N and P availability and labile carbon on CO2 production. Under moisture conditions typical of oil palm plantations, CO2 production was higher from peat forest samples than from oil palm samples. CO2 production from Sumatra and Kalimantan oil palm samples was not different, despite apparent differences in nutrient content of these soils. N and P treatments representative of fertilizer application rates raised CO2 production from forest samples but not oil palm samples. Labile carbon treatments raised CO2 production in all samples. Our results suggest that decomposition of peat forest soils is nutrient limited, while substrate quality controls decomposition of oil palm soils post-conversion. Though fertilizer application could accelerate peat decomposition initially, fertilizer application may not influence long-term CO2 emissions from oil palm on peat.

  4. SPRUCE Peat Physical and Chemical Characteristics from Experimental Plot Cores, 2012

    DOE Data Explorer

    Iversen, C. M. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Hanson, P. J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Brice, D. J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Phillips, J. R. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; McFarlane, K. J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Hobbie, E. A. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Kolka, R. K. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.

    2012-01-01

    This data set reports the results of physical and chemical analyses of peat core samples from the SPRUCE experimental study plots located in the S1-Bog. On August 13-15, 2012, a team of SPRUCE investigators and collaborators collected core samples of peat in the SPRUCE experimental plots. The goal was to characterize the biological, physical, and chemical characteristics of peat, and how those characteristics changed throughout the depth profile of the bog, prior to the initialization of the SPRUCE experimental warming and CO2 treatments. Cores were collected from 16 experimental plots; samples were collected from the hummock and hollow surfaces to depths of 200-300 cm in defined increments. Three replicate cores were collected from both hummock and hollow locations in each plot. The coring locations within each plot were mapped

  5. INNOVATIVE TECHNOLOGY EVALUATION REPORT ...

    EPA Pesticide Factsheets

    The Russian Peat Borer designed and fabricated by Aquatic Research Instruments was demonstrated under the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation Program in April and May 1999 at sites in EPA Regions 1 and 5, respectively. In addition to assessing ease of sampler operation, key objectives of the demonstration included evaluating the sampler?s ability to (1) consistently collect a given volume of sediment, (2) consistently collect sediment in a given depth interval, (3) collect samples with consistent characteristics from a homogenous layer of sediment, and (4) collect samples under a variety of site conditions. This report describes the demonstration results for the Russian Peat Borer and two conventional samplers (the Hand Corer and Vibrocorer) used as reference samplers. During the demonstration, the Russian Peat Borer was the only sampler that collected samples in the deep depth interval (4 to 11 feet below sediment surface). It collected representative and relatively uncompressed core samples of consolidated sediment in discrete depth intervals. The reference samplers collected relatively compressed samples of both consolidated and unconsolidated sediments from the sediment surface downward; sample representativeness may be questionable because of core shortening and core compression. Sediment stratification was preserved only for consolidated sediment samples collected by the Russian Peat Borer but for bo

  6. SPRUCE Deep Peat Heat (DPH) Metagenomes for Peat Samples Collected June 2015

    DOE Data Explorer

    Klumber, Laurel A. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Yang, Zamin K. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Schadt, Christopher W. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.

    2015-01-01

    This data set provides links to the results of metagenomic analyses of 38 peat core samples collected on 16 June 2015 from SPRUCE experiment treatment plots after approximately one year of belowground heating. These metagenomes are archived in the U.S. Department of Energy Joint Genome Institute (DOE JGI) Integrated Microbial Genomes (IMG) system and are available at the accession numbers provided in the accompanying inventory file.

  7. Mycobacterium avium subsp. hominissuis infection in swine associated with peat used for bedding.

    PubMed

    Johansen, Tone Bjordal; Agdestein, Angelika; Lium, Bjørn; Jørgensen, Anne; Djønne, Berit

    2014-01-01

    Mycobacterium avium subsp. hominissuis is an environmental bacterium causing opportunistic infections in swine, resulting in economic losses. Additionally, the zoonotic aspect of such infections is of concern. In the southeastern region of Norway in 2009 and 2010, an increase in condemnation of pig carcasses with tuberculous lesions was seen at the meat inspection. The use of peat as bedding in the herds was suspected to be a common factor, and a project examining pigs and environmental samples from the herds was initiated. Lesions detected at meat inspection in pigs originating from 15 herds were sampled. Environmental samples including peat from six of the herds and from three peat production facilities were additionally collected. Samples were analysed by culture and isolates genotyped by MLVA analysis. Mycobacterium avium subsp. hominissuis was detected in 35 out of 46 pigs, in 16 out of 20 samples of peat, and in one sample of sawdust. MLVA analysis demonstrated identical isolates from peat and pigs within the same farms. Polyclonal infection was demonstrated by analysis of multiple isolates from the same pig. To conclude, the increase in condemnation of porcine carcasses at slaughter due to mycobacteriosis seemed to be related to untreated peat used as bedding.

  8. Mycobacterium avium subsp. hominissuis Infection in Swine Associated with Peat Used for Bedding

    PubMed Central

    Johansen, Tone Bjordal; Lium, Bjørn; Jørgensen, Anne; Djønne, Berit

    2014-01-01

    Mycobacterium avium subsp. hominissuis is an environmental bacterium causing opportunistic infections in swine, resulting in economic losses. Additionally, the zoonotic aspect of such infections is of concern. In the southeastern region of Norway in 2009 and 2010, an increase in condemnation of pig carcasses with tuberculous lesions was seen at the meat inspection. The use of peat as bedding in the herds was suspected to be a common factor, and a project examining pigs and environmental samples from the herds was initiated. Lesions detected at meat inspection in pigs originating from 15 herds were sampled. Environmental samples including peat from six of the herds and from three peat production facilities were additionally collected. Samples were analysed by culture and isolates genotyped by MLVA analysis. Mycobacterium avium subsp. hominissuis was detected in 35 out of 46 pigs, in 16 out of 20 samples of peat, and in one sample of sawdust. MLVA analysis demonstrated identical isolates from peat and pigs within the same farms. Polyclonal infection was demonstrated by analysis of multiple isolates from the same pig. To conclude, the increase in condemnation of porcine carcasses at slaughter due to mycobacteriosis seemed to be related to untreated peat used as bedding. PMID:25431762

  9. A Study on Factors Affecting Strength of Solidified Peat through XRD and FESEM Analysis

    NASA Astrophysics Data System (ADS)

    Rahman, J. A.; Napia, A. M. A.; Nazri, M. A. A.; Mohamed, R. M. S. R.; Al-Geethi, A. S.

    2018-04-01

    Peat is soft soil that often causes multiple problems to construction. Peat has low shear strength and high deformation characteristics. Thus, peat soil needs to be stabilized or treated. Study on peat stabilization has been conducted for decades with various admixtures and mixing formulations. This project intends to provide an overview of the solidification of peat soil and the factors that affecting the strength of solidified peat soil. Three types of peats which are fabric, hemic and sapric were used in this study to understand the differences on the effect. The understanding of the factors affecting strength of solidified peat in this study is limited to XRD and FESEM analysis only. Peat samples were collected at Pontian, Johor and Parit Raja, Johor. Peat soil was solidified using fly ash, bottom ash and Portland cement with two mixing formulation following literature review. The solidified peat were cured for 7 days, 14 days, 28 days and 56 days. All samples were tested using Unconfined Compressive Strength Test (UCS), X-ray diffraction (XRD) and Field Emission Scanning Electron Microscope (FESEM). The compressive strength test of solidified peat had shown consistently increase of sheer strength, qu for Mixing 1 while decrease of its compressive strength value for Mixing 2. All samples were tested and compared for each curing days. Through XRD, it is found that all solidified peat are dominated with pargasite and richterite. The highest qu is Fabric Mixing 1(FM1) with the value of 105.94 kPa. This sample were proven contain pargasite. Samples with high qu were observed to be having fly ash and bottom ash bound together with the help of pargasite. Sample with decreasing strength showed less amount of pargasite in it. In can be concluded that XRD and FESEM findings are in line with UCS values.

  10. Radiocarbon ages of different fractions of peat on coastal lowland of Bohai Bay: marine influence?

    NASA Astrophysics Data System (ADS)

    Shang, Zhiwen; Wang, Fu; Fang, Jing; Li, Jianfen; Chen, Yongsheng; Jiang, Xingyu; Tian, Lizhu; Wang, Hong

    2018-05-01

    Peat in boreholes is the most important 14C dating material used for constructing age framework. 20 bulk peat samples were collected from five boreholes, the 14C ages of two fractions (organic sediment fraction and peat fraction) of the bulk peat samples were investigated by AMS-dating and which fraction is better to help construct an age framework for the boreholes were compared and discussed. The results indicated that the peat fraction give a good dating results sequence in the boreholes, compared with the corresponding organic sediment fraction. And the dating results of organic sediment fraction show 161-6 702 years older than corresponding peat fraction, which was caused by marine influence. Then, we suggest an experience formula as y=0.99x-466.5 by the correlation analysis for correcting the marine influenced organic sediment ages within the conventional ages between 4 000 to 9 000 yrs BP, and more study should be carried out for the AMS 14C dating of the bulk organic sediments.

  11. Characterization of Gas and Particle Emissions from Laboratory Burns of Peat

    EPA Science Inventory

    Peat cores collected from two locations in eastern North Carolina (NC, USA) were burned in a laboratory facility to characterize emissions during simulated field combustion. Particle and gas samples were analyzed to quantify emission factors for particulate matter (PM2.5), organi...

  12. SPRUCE Deep Peat Heating (DPH) to Whole Ecosystem Warming (WEW) Metagenomes for Peat Samples Collected June 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kluber, Laurel A; Yip, Daniel Z; Yang, Zamin K

    This data set provides links to the results of metagenomic analyses of 44 peat samples collected on 13 June 2016 from SPRUCE experiment treatment and ambient plots. Experimental plots had received approximately 24 months of belowground warming (deep peat heating (DPH), Hanson et al. 2015) with the last 9 of those months including air warming for implementation of whole ecosystems warming (WEW – Hanson et al. 2016). WEW Metagenomes: Data from these metagenomes are archived in the U.S. Department of Energy Joint Genome Institute (DOE JGI) Integrated Microbial Genomes (IMG) system (http://img.jgi.doe.gov/) and are available at the accession numbers providedmore » below (Table 2) and in the accompanying inventory file. The easiest way to find results on IMG is at this link, https://img.jgi.doe.gov/cgi-bin/m/main.cgi, and then enter “June2016WEW” as a search term in the “Quick Genome Search:” box at the top of the page.« less

  13. Peat soil properties and erodibility: what factors affect erosion and suspended sediment yields in peat extraction areas?

    NASA Astrophysics Data System (ADS)

    Tuukkanen, Tapio; Marttila, Hannu; Kløve, Bjørn

    2014-05-01

    Peatland drainage and peat extraction operations change soil properties and expose bare peat to erosion forces, resulting in increased suspended sediment (SS) loads to downstream water bodies. SS yields from peat extraction areas are known to vary significantly between sites, but the contribution of peat properties and catchment characteristics to this variation is not well understood. In this study, we investigated peat erosion at 20 Finnish peat extraction sites by conducting in situ and laboratory measurements on peat erodibility and associated peat properties (degree of humification, peat type, bulk density, loss on ignition, porosity, moisture content, and shear strength), and by comparing the results with monitored long-term SS concentrations and loads at each catchment outlet. Here, we used a cohesive strength meter (CSM) to measure direct erosion thresholds for undisturbed soil cores collected from each study site. The results suggested that the degree of peat decomposition clearly affects peat erodibility and explains much of the variation in SS concentration between the study sites. According to CSM tests, critical shear stresses for particle entrainment were lowest (on average) in well-decomposed peat samples, while undecomposed, dry and fiber rich peat generally resisted erosion very well. Furthermore, the results indicated that two separate critical shear stresses often exist in moderately decomposed peat. In these cases, the well-decomposed parts of peat samples eroded first at relatively low shear stresses and remaining peat fibers prevented further erosion until a much higher shear stress was reached. In addition to peat soil properties, the study showed that the erosion of mineral subsoil may play a key role in runoff water SS concentration at peat extraction areas with drainage ditches extending into the mineral soil. The interactions between peat properties and peat erodibility found in this study as well as critical shear stress values obtained can be used for several purposes in e.g. water conservation and sediment management planning for peat extraction areas and other bare peat-covered catchments.

  14. Economic characteristics of the peat deposits of Costa Rica: preliminary study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, A.D. Malavassi, L.; Raymond, R. Jr.; Mora, S.

    1985-01-01

    Recent field and laboratory studies have established the presence of numerous extensive peat deposits in Costa Rica. Three of these were selected for initial investigation: (1) the cloud-forest histosols of the Talamanca Mountain Range; (2) the Rio Medio Queso flood plain deposits near the northern Costa Rican border; and (3) a tropical jungle swamp deposit on the northeastern coastal plain. In the Talamanca area, 29 samples were collected from eight sites. Due to the high moisture and cool temperatures of the cloud forest, the peats in this area form blanket-like deposits (generally <1 meter thick) over a wide area (>150more » km/sup 2/). These peats are all highly decomposed (avg. 28% fiber), high in ash (avg. 21%), and extensively bioturbated. Relative to all other sites visited, these peats are lowest in moisture (avg. 84%), pH (avg. 4.4), fixed carbon (avg. 23%), and sulfur (avg. 0.2%). However, they have the highest bulk densities (avg. 0.22 g/cc), volatile matter contents (avg. 55%), and nitrogen. Their heating value averaged 7700 BTUs/lb., dry. In the Rio Medio Queso area, 28 samples were collected, representing one transect of the 70 km/sup 2/ flood plain. The peats here occurred in several layers (each <1-1/2 meters thick), interfingering with river flood plain sediments. These peats have the highest calorific values (avg. 8000 BTUs/lb., dry), fixed carbon (avg. 30%), and ash (avg. 22%) and have an average pH of 5.4 and a bulk density of 0.20 g/cc. These results represent only the first part of a long-term, extensive survey of Costa Rica's peat resources. However, they suggest that large, economically-significant peat deposits may be present in this country. 5 refs., 8 figs., 4 tabs.« less

  15. Function of peatland located on secondary transformed peat-moorsh soils on groundwater purification processes and the elution of soil organic matter

    NASA Astrophysics Data System (ADS)

    Szczepański, M.; Szajdak, L.; Bogacz, A.

    2009-04-01

    The investigation of peatland is used to show the water quality functioning with respect to different forms of nitrogen and carbon. The purification of ground water by the transect of 4.5 km long consisting organic soils (peat-moorsh soils) was estimated. This transect is located in the Agroecological Landscape Park in Turew, 40 km South-West of Poznan, West Polish Lowland. There is this transect along Wyskoć ditch. pH, the contents of total and dissolved organic carbon, total nitrogen, N-NO3-, N-NH4+ was measured. Additionally C/N factors of peats were estimated. The investigation has shown the impact of the peatland located on the secondary transformed peat - moorsh soils on the lowering of total nitrogen, ammonium, and nitrates as well as total and dissolved organic carbon in ground water. Peat-moorsh soils were described and classified according to Polish hydrogenic soil classification and World Reference Base Soil Notation. There are these investigated points along to Wyskoc ditch. Two times a month during entire vegetation season the following material was taken from four chosen sites marked as Zbechy, Bridge, Shelterbelt and Hirudo: samples of peat, from the depth of 0-20 cm, samples of water from the ditch, samples of ground water from wells established for this investigation. Samples of peat-moorsh soils were collected at the depth 0-20 cm. Soils were sampled two times a month from 10 sites of each site. Samples were air dried and crushed to pass a 1 mm-mesh sieve. These 10 sub-samples were mixed for the reason of preparing a "mean sample", which used for the determination of pH (in 1M KCl), dissolved organic carbon (DOC), total organic carbon (TOC), total nitrogen (Ntotal), and N-NO3- as well as N-NH4+. In water from Wyskoć ditch pH, Ntotal, N-NO3-, N-NH4+, DTC (dissolved total carbon) and DOC (dissolved organic carbon) was measured. Ground water samples were collected from four wells established for this investigation. The water was filtered by the middle velocity separation and pH, N-total, N-NO3-, N-NH4+, DTC (dissolved total carbon) and DOC (dissolved organic carbon) ware measured. Peatland located on the secondary transformed peat - moorsh soils has revealed the lowering in ground water: nitrates 38.5%, N-organic 10%, N-total 24.5%, ammonium 38.7%, dissolved total carbon 33.1%, dissolved total inorganic carbon 10%, and dissolved organic carbon 57.5%. The dissolution of soil organic matter from peat-moorsh soils in broad range of pH and ionic strength was investigated. The rates of the reaction were calculated from the kinetics of first order reaction model. The investigations have shown the impact of the properties of secondary transformed peat-moorsh soils on the rates of the dissolution of organic matter.

  16. Comparisons of soil nitrogen mass balances for an ...

    EPA Pesticide Factsheets

    We compared the N budgets of an ombrotrophic bog and a minerotrophic fen to quantify the importance of denitrification in peatlands and their watersheds. We also compared the watershed upland mineral soils to bog/fen peat; lagg and transition zone peat to central bog/fen peat; and surface, mid-layer and deep soil and peat horizons. Bog and fen area were derived from a wetland boundary GIS data layer, and bog and fen volumes were calculated as the interpolated product of area and depth of peat. Atmospheric N deposition to the bog and fen were based on measurements from a station located 2km north of the bog watershed and 0.5km from the fen watershed. Precipitation was analyzed for nitrate (NO3-), ammonium (NH4+), and total N (TN), and aggregated to annual values. Outflow water samples from the bog and fen were collected as surface grab samples on each of the May-October sampling dates over the 2010-2013 study, and were analyzed and aggregated annually as for atmospheric N. Soil and peat samples were analyzed for N content, and for net ammonification (AM), nitrification (NT), and ambient (DN) and potential (DEA) denitrification rates. Nitrogen mass balances are based on mean annual atmospheric deposition and outflow; soil and peat standing stocks of N, and mean annual estimates of DN, weighted for contributions of the uplands, lagg or transition zone, and bog or fen hollows and hummocks, and accounting for soil depth effects. Annual deposition of N species was: N

  17. Isotopic anomalies of H2 and C in the peat from the Tunguska meteorite impact area

    NASA Astrophysics Data System (ADS)

    Kolesnikov, E. M.

    Core samples of peat collected at the site of the Tunguska meteorite impact were mixed with CuO and burned inside evacuated and sealed quartz ampules. As a result, the organic components of peat were transformed to H2O and CO2 which were then separated and analyzed using a mass spectrometer. Results show that layers located above the level dated by 1908 are characterized by lighter H2 isotopes and heavier C isotopes, compared with lower layers. These effects are ascribed to the conservation and gradual redistribution of cosmic matter (e.g., regular chondrites, achondrites, and C4-type carbon chondrites) in the upper peat layers.

  18. The impact of 90 years of drainage works on some chemical properties of raised peat bog organic soils - case study from valley of the Upper San river in Polish Bieszczady Mts. (Eastern Carpathians).

    NASA Astrophysics Data System (ADS)

    Stolarczyk, Mateusz

    2016-04-01

    Wetland ecosystems, including raised peat bogs are characterized by a specific water conditions and unique vegetation, which makes peatland highly important habitats due to protection of biodiversity. Transformation of peat bog areas is particularly related to changes in the environment e.g. according to reclamation works. Drainage of peatlands is directly associated to the decrease of groundwater levels and lead to a number of changes in the chemical and physical properties of peat material, included contents of exchangeable cations in the surface layers of peat soils in the decession phase of peat development and release above compounds from the soil to ground or surface waters. The aim of the research was to determine the impact of extended drainage works on chemical composition of sorption complex of raised peat bog organic soils and identification the potential environmental effects of alkaline cations leaching to the surface waters. Research was carried out on the peat bogs located in the Upper San valley in Polish Bieszczady Mts. (Eastern Carpathians). Soil samples used in this study were collected from 3 soil profiles in 10 or 20 cm intervals to the approximately 130 cm depth. Laboratory analyses included determination of basic properties of organic material such as the degree of peat decomposition, ash content, soil pH and carbon, hydrogen, nitrogen concentrations. Additionally the amount of alkaline cations, exchangeable and extractable acidity was determined. Furthermore, the degree of saturation of the sorption complex with alkaline cations (V) and cation exchange capacity (CEC) are calculated. In order to evaluate the impact of the examined peat bog to the environment, also water samples were collected and ions composition was measured. The obtained results show that studied organic soils are oligotrophic and strongly acidic. In the case of organic material related to decession phase of peat development, as a result of the lengthy drainage works, increased pH values, changes in the morphology of the peat, high nitrogen contents and lower values of C/N ratios are noticed. The increased contents of calcium, occurred in soil layers comprised of moorsh forming process are probably the effect of peat mineralization process or changes in the chemistry and fluctuations of groundwater levels. As a result of above factors, increased calcium and magnesium concentrations in surface waters in the immediate vicinity of investigated bogs are observed.

  19. Radioactivity of peat mud used in therapy.

    PubMed

    Karpińska, Maria; Mnich, Krystian; Kapała, Jacek; Bielawska, Agnieszka; Kulesza, Grzegorz; Mnich, Stanisław

    2016-02-01

    The aim of the study was to determine the contents of natural and artificial isotopes in peat mud and to estimate the radiation dose absorbed via skin in patients during standard peat mud treatment. The analysis included 37 samples collected from 8 spas in Poland. The measurements of isotope concentration activity were conducted with the use of gamma spectrometry methods. The skin dose in a standard peat mud bath therapy is approximately 300 nSv. The effective dose of such therapy is considered to be 22 nSv. The doses absorbed during peat mud therapy are 5 orders of magnitude lower than effective annual dose absorbed from the natural radiation background by a statistical Pole (3.5 mSv). Neither therapeutic nor harmful effect is probable in case of such a small dose of ionising radiation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Selected Trace Element Concentrations in Peat Used for Cosmetic Production - A Case Study from Southern Poland

    NASA Astrophysics Data System (ADS)

    Glina, Bartłomiej

    2016-12-01

    The aim of the study was to assess the concentration of selected trace elements in organic soils used as a source to obtain a unique peat extract for cosmetics production. Peat material for laboratory analysis were collected from fen peatland located in the Prosna River Valley (Borek village). Studied peatland is managed by "Torf Corporation" company as a source of material to obtain peat extract for cosmetics production. In the collected soil samples (four soil profiles) Zn, Cu and Pb concentrations were determined by using atomic absorption spectrometer SpectraAA 220 (Varian), after acid digestion. Obtained results showed that the highest concentrations of selected trace elements were recorded in the surface horizons of organic soils. This fact might be the results of Prosna river flooding or air deposition. Howevere, according to the new Polish regulations (Ordinance of the Minister for Environment 01.09.2016 - the way of conducting contamination assessment of the earth surface), the content of trace elements in the examined soils was greatly belowe the permissible limit for areas from group IV (mine lands). Thus, described soils are proper to obtain peat extract used as a component in cosmetic production.

  1. Alkane, terpene and polycyclic aromatic hydrocarbon geochemistry of the Mackenzie River and Mackenzie shelf: Riverine contributions to Beaufort Sea coastal sediment

    NASA Astrophysics Data System (ADS)

    Yunker, Mark B.; Macdonald, Robie W.; Cretney, Walter J.; Fowler, Brian R.; McLaughlin, Fiona A.

    1993-07-01

    To study the largest source of river sediment to the Arctic Ocean, we have collected suspended particulates from the Mackenzie River in all seasons and sediments from the Mackenzie shelf between the river mouth and the shelf edge. These samples have been analyzed for alkanes, triterpenes and polycyclic aromatic hydrocarbons (PAHs). We found that naturally occurring hydrocarbons predominate in the river and on the shelf. These hydrocarbons include biogenic alkanes and triterpenes with a higher plant/peat origin, diagenetic PAHs from peat and plant detritus, petrogenic alkanes, triterpenes and PAHs from oil seeps and/or bitumens and combustion PAHs that are likely relict in peat deposits. Because these components vary independently, the season is found to strongly influence the concentration and composition of hydrocarbons in the Mackenzie River. While essentially the same pattern of alkanes, diagenetic hopanes and alkyl PAHs is observed in all river and most shelf sediment samples, alkane and triterpene concentration variations are strongly linked to the relative amount of higher plant/peat material. Polycyclic aromatic hydrocarbon molecular-mass profiles also appear to be tied primarily to varying proportions of peat, with an additional petrogenic component which is most likely associated with lithic material mobilized by the Mackenzie River at freshet. Consistent with the general lack of alkyl PAHs in peat, the higher PAHs found in the river are probably derived from forest and tundra fires. A few anthropogenic/pyrogenic compounds are manifest only at the shelf edge, probably due to a weakening of the river influence. We take this observation of pyrogenic PAHs and the pronounced source differences between two sediment samples collected at the shelf edge as evidence of a transition from dominance by the Mackenzie River to the geochemistry prevalent in Arctic regions far removed from major rivers.

  2. Determination of low methylmercury concentrations in peat soil samples by isotope dilution GC-ICP-MS using distillation and solvent extraction methods.

    PubMed

    Pietilä, Heidi; Perämäki, Paavo; Piispanen, Juha; Starr, Mike; Nieminen, Tiina; Kantola, Marjatta; Ukonmaanaho, Liisa

    2015-04-01

    Most often, only total mercury concentrations in soil samples are determined in environmental studies. However, the determination of extremely toxic methylmercury (MeHg) in addition to the total mercury is critical to understand the biogeochemistry of mercury in the environment. In this study, N2-assisted distillation and acidic KBr/CuSO4 solvent extraction methods were applied to isolate MeHg from wet peat soil samples collected from boreal forest catchments. Determination of MeHg was performed using a purge and trap GC-ICP-MS technique with a species-specific isotope dilution quantification. Distillation is known to be more prone to artificial MeHg formation compared to solvent extraction which may result in the erroneous MeHg results, especially with samples containing high amounts of inorganic mercury. However, methylation of inorganic mercury during the distillation step had no effect on the reliability of the final MeHg results when natural peat soil samples were distilled. MeHg concentrations determined in peat soil samples after distillation were compared to those determined after the solvent extraction method. MeHg concentrations in peat soil samples varied from 0.8 to 18 μg kg(-1) (dry weight) and the results obtained with the two different methods did not differ significantly (p=0.05). The distillation method with an isotope dilution GC-ICP-MS was shown to be a reliable method for the determination of low MeHg concentrations in unpolluted soil samples. Furthermore, the distillation method is solvent-free and less time-consuming and labor-intensive when compared to the solvent extraction method. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Function of peatland located on secondary transformed peat-moorsh soils on the purification processes of groundwater and the impact of pH on the rates of the elution of organic matter

    NASA Astrophysics Data System (ADS)

    Wojciech Szajdak, Lech; Szczepański, Marek

    2010-05-01

    The investigation of peatland is used to show the water quality functioning with respect to different forms of nitrogen and carbon. The purification of ground water by the transect of 4.5 km long consisting organic soils (peat-moorsh soils) was estimated. This transect is located in the Agroecological Landscape Park in Turew, 40 km South-West of Poznan, West Polish Lowland. There is this transect along Wyskoć ditch. pH, the contents of total and dissolved organic carbon, total nitrogen, N-NO3-, N-NH4+ was measured. Additionally C/N factors of peats were estimated. The investigation has shown the impact of the peatland located on the secondary transformed peat - moorsh soils on the lowering of total nitrogen, ammonium, and nitrates as well as total and dissolved organic carbon in ground water. Peat-moorsh soils were described and classified according to Polish hydrogenic soil classification and World Reference Base Soil Notation. There are four investigated points along to Wyskoc ditch. Two times a month during entire vegetation season the following material was taken from this four chosen sites: samples of peat, from the depth of 0-20 cm, samples of water from the ditch, samples of ground water from wells established for this investigation. Samples of peat-moorsh soils were collected at the depth 0-20 cm. Soils were sampled two times a month from 10 sites of each site. Samples were air dried and crushed to pass a 1 mm-mesh sieve. These 10 sub-samples were mixed for the reason of preparing a 'mean sample', which used for the determination of pH (in 1M KCl), dissolved organic carbon (DOC), total organic carbon (TOC), total nitrogen (Ntotal), and N-NO3- as well as N-NH4+. In water from Wyskoć ditch pH, Ntotal, N-NO3-, N-NH4+, DTC (dissolved total carbon) and DOC (dissolved organic carbon) was measured. Ground water samples were collected from four wells established for this investigation. The water was filtered by the middle velocity separation and pH, N-total, N-NO3-, N-NH4+, DTC (dissolved total carbon) and DOC (dissolved organic carbon) ware measured. Peatland located on the secondary transformed peat - moorsh soils has revealed the lowering in ground water: nitrates 38.5%, N-organic 10%, N-total 24.5%, ammonium 38.7%, dissolved total carbon 33.1%, dissolved total inorganic carbon 10%, and dissolved organic carbon 57.5%. The elution of soil organic matter from peat-moorsh soils in broad range of pH and ionic strength was investigated. The rates of the reaction were calculated from the kinetics of first order reaction model. All experiments were repeated at different pH 6.0, 6.5, 7.0, 8.0, 8.5 of 0.5 M ammonium acetate buffer solution. The investigations have shown the impact of the properties of secondary transformed peat-moorsh soils on the rates of the dissolution of organic matter. The rates of organic matter elution for all samples of peats were significant different at four used wavelengths λ=272 nm, λ=320 nm, λ=465 nm, and λ=665 nm. It was observed that the rates increased between λ=272 nm and λ=320 nm and decreased from λ=465 nm to λ=665 nm. Although, the lowest values of the pseudo first-order rate constants measured at λ=665 nm for all samples of peats from four places ranged from 1.9524 10-4 s-1 to 2.7361 10-4 s-1. Therefore, the highest values of t0.5 ranged from 42.2 to 59.2 min for all samples from Zbęchy, Shelterbelt, Mostek and Hirudo. This work was supported by a grant No. N N305 3204 36 founded by Polish Ministry of Education.

  4. Tracing of ca 800 yr old mining activity in peat bog using Pb elemental concentrations and isotope compositions.

    NASA Astrophysics Data System (ADS)

    Baron, S.; Carignan, J.; Ploquin, A.

    2003-04-01

    Sixty sites of slags have been documented on the Mont-Lozère in southern France. The petrographic analysis shows that slags are metallurgical wastes (800 to 850 yr BP) which certainly result from smelting activity for lead and silver extraction (Ploquin et al., 2001). The aims of this study are: 1) to trace the source of Pb ores which supplied the smelting sites, by using the Pb isotopic composition of several surrounding Pb deposits, 2) to evaluate the actual pollution caused by these slags, by using elemental and isotopic compositions of soils, water and vegetation, and 3) to document the pollution history of the region, by using elemental and isotopic compositions of peat bog cores collected in the neighbourhood of the historical smelting sites. The lead isotopic composition of galena collected in most surrounding ores is very similar to that of different slag samples. On the other hand, the high precision of the results allowed us to select the mineralised areas which were probably the ore sources. The Pb isotopic composition of slags is even more homogeneous: 208/206 Pb: 2.092±0.002; 206/207 Pb: 1.179±0.001; 208/204 Pb: 38.663±0.025; 207/204 Pb: 15.665±0.006; 206/204 Pb: 18.476±0.023, and will allow source tracing in the environment. The "Narses Mortes" peat bog, around which two smelting sites have been reported, is strongly minerotrophic and contains 8 to 60% ash. A 1.40 m core have been retrieved and divided into 58 individual samples. Minerotrophic peat bog records both atmospheric deposition, soils leaching and the grounwater influence. The measured metal concentrations are normalised to Al contents of peat bog samples and the metal/Al ratios are compared to that of the Mont-Lozère granite: relative excess in metal concentrations are found in peat bog samples. An increasing excess of most metals (Pb, Zn, Cd...) was measured for surface samples, from 55 cm depth to the top of the core (23 cm depth). This profil might be attributed to atmospheric input during the last centuries. Pb and As alone are also enriched in some deeper samples (between 120--90 cm depth). At the moment, no sedimentation rates are available for this section of the peat bog. However, according to palynological data (de Beaulieu, in progress), the bottom of the core might be as old as 5000 years BP. This would place the medieval activities at the base of the surface metal enrichment (˜55 cm depth), having no large effect in Pb concentrations measured in peat bog. The older Pb-As enrichment remain enigmatic and may correspond to earlier anthropogenic activities (2000--2500 BP), a period for which very few traces of metallurgical activities are found in Occidental Europe. 14C dating and Pb isotope works are going on peat bog samples trying to discriminate metals sources.

  5. How do peat type, sand addition and soil moisture influence the soil organic matter mineralization in anthropogenically disturbed organic soils?

    NASA Astrophysics Data System (ADS)

    Säurich, Annelie; Tiemeyer, Bärbel; Don, Axel; Burkart, Stefan

    2017-04-01

    Drained peatlands are hotspots of carbon dioxide (CO2) emissions from agriculture. As a consequence of both drainage induced mineralization and anthropogenic sand mixing, large areas of former peatlands under agricultural use contain soil organic carbon (SOC) at the boundary between mineral and organic soils. Studies on SOC dynamics of such "low carbon organic soils" are rare as the focus of previous studies was mainly either on mineral soils or "true" peat soil. However, the variability of CO2 emissions increases with disturbance and therefore, we have yet to understand the reasons behind the relatively high CO2 emissions of these soils. Peat properties, soil organic matter (SOM) quality and water content are obviously influencing the rate of CO2 emissions, but a systematic evaluation of the hydrological and biogeochemical drivers for mineralization of disturbed peatlands is missing. With this incubation experiment, we aim at assessing the drivers of the high variability of CO2 emissions from strongly anthropogenically disturbed organic soil by systematically comparing strongly degraded peat with and without addition of sand under different moisture conditions and for different peat types. The selection of samples was based on results of a previous incubation study, using disturbed samples from the German Agricultural Soil Inventory. We sampled undisturbed soil columns from topsoil and subsoil (three replicates of each) of ten peatland sites all used as grassland. Peat types comprise six fens (sedge, Phragmites and wood peat) and four bogs (Sphagnum peat). All sites have an intact peat horizon that is permanently below groundwater level and a strongly disturbed topsoil horizon. Three of the fen and two of the bog sites have a topsoil horizon altered by sand-mixing. In addition the soil profile was mapped and samples for the determination of soil hydraulic properties were collected. All 64 soil columns (including four additional reference samples) will be installed in a microcosm system under a constant temperature of 10°C. The water-saturated soil columns will be drained via suction plates at the bottom of the columns by stepwise increase of the suction. The head space of the soil columns will be permanently flushed with moistened synthetic air and CO2 concentrations will be measured via online gas chromatography. First results will be presented.

  6. The wettability of selected organic soils in Poland

    NASA Astrophysics Data System (ADS)

    Całka, A.; Hajnos, M.

    2009-04-01

    The wettability was measured in the laboratory by means of two methods: Water Drop Penetration Time (WDPT) test and Thin Column Wicking (TCW) method. WDPT is fast and simple method and was used to investigate potential water repellency of analyzed samples. TCW is an indirect method and was used to determine contact angles and surface free energy components. The measurement was performed in horizontal teflon chambers for thin-layer chromatography, adapted for tubes 10 cm long. The experiment was carried out on muck soils (samples were taken from two levels of soil profile: 0-20 cm and 20-40 cm) and peat soils. There were two types of peats: low-moor peats and high moor peats. Samples of low-moor peats were taken from level 25-75 cm (alder peat) and 75-125cm (sedge peat) and 25-75 cm (peloid peat). Samples of high moor peats from level 25-175 cm (sphagnum peat) and 175-225 cm (sphagnum peat with Eriophorum). There was found no variability in persistence of potential water repellency but there were differences in values of contact angles of individual soil samples. Both muck and peat samples are extremely water repellent soils. Water droplets persisted on the surface of soils for more than 24 hours. Contact angles and surface free energy components for all samples were differentiated. Ranges of water contact angles for organic soils are from 27,54o to 96,50o. The highest values of contact angles were for sphagnum peats, and the lowest for muck soil from 20-40 cm level. It means, that there are differences in wettability between these samples. Muck soil is the best wettable and sphagnum peats is the worst wettable soil. If the content of organic compounds in the soil exceeds 40% (like in peats), the tested material displays only dispersion-type interactions. Therefore for peat soils, the technique of thin column wicking could only be used to determine the dispersive component γiLW. For muck soils it was also determined electron-acceptor (Lewis acid) γ+ and electron-donor (Lewis base) γ- surface free energy components. The authors gratefully acknowledge the Ministry of Science and Higher Education for financial support of this work (grant No. N N310 149335).

  7. Saprophytic and Potentially Pathogenic Fusarium Species from Peat Soil in Perak and Pahang

    PubMed Central

    Karim, Nurul Farah Abdul; Mohd, Masratulhawa; Nor, Nik Mohd Izham Mohd; Zakaria, Latiffah

    2016-01-01

    Isolates of Fusarium were discovered in peat soil samples collected from peat swamp forest, waterlogged peat soil, and peat soil from oil palm plantations. Morphological characteristics were used to tentatively identify the isolates, and species confirmation was based on the sequence of translation elongation factor-1α (TEF-1α) and phylogenetic analysis. Based on the closest match of Basic Local Alignment Search Tool (BLAST) searches against the GenBank and Fusarium-ID databases, five Fusarium species were identified, namely F. oxysporum (60%), F. solani (23%), F. proliferatum (14%), F. semitectum (1%), and F. verticillioides (1%). From a neighbour-joining tree of combined TEF-1α and β-tubulin sequences, isolates from the same species were clustered in the same clade, though intraspecies variations were observed from the phylogenetic analysis. The Fusarium species isolated in the present study are soil inhabitants and are widely distributed worldwide. These species can act as saprophytes and decomposers as well as plant pathogens. The presence of Fusarium species in peat soils suggested that peat soils could be a reservoir of plant pathogens, as well-known plant pathogenic species such F. oxysporum, F. solani, F. proliferatum, and F. verticillioides were identified. The results of the present study provide knowledge on the survival and distribution of Fusarium species. PMID:27019679

  8. Stability of mercury concentration measurements in archived soil and peat samples

    USGS Publications Warehouse

    Navrátil, Tomáš; Burns, Douglas; Nováková, Tereza; Kaňa, Jiří; Rohovec, Jan; Roll, Michal; Ettler, Vojtěch

    2018-01-01

    Archived soil samples can provide important information on the history of environmental contamination and by comparison with recently collected samples, temporal trends can be inferred. Little previous work has addressed whether mercury (Hg) concentrations in soil samples are stable with long-term storage under standard laboratory conditions. In this study, we have re-analyzed using cold vapor atomic adsorption spectroscopy a set of archived soil samples that ranged from relatively pristine mountainous sites to a polluted site near a non-ferrous metal smelter with a wide range of Hg concentrations (6 - 6485 µg kg-1). Samples included organic and mineral soils and peats with a carbon content that ranged from 0.2 to 47.7%. Soil samples were stored in polyethylene bags or bottles and held in laboratory rooms where temperature was not kept to a constant value. Mercury concentrations in four subsets of samples were originally measured in 2000, 2005, 2006 and 2007, and re-analyzed in 2017, i.e. after 17, 12, 11 and 10 years of storage. Statistical analyses of either separated or lumped data yielded no significant differences between the original and current Hg concentrations. Based on these analyses, we show that archived soil and peat samples can be used to evaluate historical soil mercury contamination.

  9. The peats of Costa Rica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obando A, L.; Malavassi R, L.; Ramirez E, O.

    The objectives of this investigation were: (1) to locate potential peat deposits in Costa Rica; (2) to estimate as closely as possible by representative sampling the amount of peat present in each deposit, and (3) to make a preliminary evaluation of the quality of the peat in each deposit. With information from soil maps and a 3-week survey of Costa Rica, it is estimated that a potential area of about 1000 km{sup 2} is covered by peat. Most of the peat area (about 830 km{sup 2}) is in northeastern Costa Rica in the Tortuguero area. An aerial survey identified themore » potential peat areas by the exclusive presence of the Yolillo palm. The next largest potential area of peat (about 175 km{sup 2}) is in the cloud-covered areas of the Talamanca Mountains. Some reconnaissance has been done in the Talamanca Mountains, and samples of the peat indicate that it is very similar to the sphagnum peat moss found in Canada and the northern US. Smaller bogs have been discovered at Medio Queso, El Cairo, Moin, and the Limon airport. Two bogs of immediate interest are Medio Queso and El Cairo. The Medio Queso bog has been extensively sampled and contains about 182,000 metric tons (dry) of highly decomposed peat, which is being used as a carrier for nitrogen-fixing bacteria. The El Cairo bog is sparsely sampled and contains about 1,300,000 metric tons of slightly decomposed dry peat. Plans are to use this peat in horticultural applications on nearby farms. 10 refs., 11 figs., 7 tabs.« less

  10. Predicting organic matter, nitrogen, and phosphorus concentrations in runoff from peat extraction sites using partial least squares regression

    NASA Astrophysics Data System (ADS)

    Tuukkanen, T.; Marttila, H.; Kløve, B.

    2017-07-01

    Organic matter and nutrient export from drained peatlands is affected by complex hydrological and biogeochemical interactions. Here partial least squares regression (PLSR) was used to relate various soil and catchment characteristics to variations in chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) concentrations in runoff. Peat core samples and water quality data were collected from 15 peat extraction sites in Finland. PLSR models constructed by cross-validation and variable selection routines predicted 92, 88, and 95% of the variation in mean COD, TN, and TP concentration in runoff, respectively. The results showed that variations in COD were mainly related to net production (temperature and water-extractable dissolved organic carbon (DOC)), hydrology (topographical relief), and solubility of dissolved organic matter (peat sulfur (S) and calcium (Ca) concentrations). Negative correlations for peat S and runoff COD indicated that acidity from oxidation of organic S stored in peat may be an important mechanism suppressing organic matter leaching. Moreover, runoff COD was associated with peat aluminum (Al), P, and sodium (Na) concentrations. Hydrological controls on TN and COD were similar (i.e., related to topography), whereas degree of humification, bulk density, and water-extractable COD and Al provided additional explanations for TN concentration. Variations in runoff TP concentration were attributed to erosion of particulate P, as indicated by a positive correlation with suspended sediment concentration (SSC), and factors associated with metal-humic complexation and P adsorption (peat Al, water-extractable P, and water-extractable iron (Fe)).

  11. Polyphenols as enzyme inhibitors in different degraded peat soils: Implication for microbial metabolism in rewetted peatlands

    NASA Astrophysics Data System (ADS)

    Zak, Dominik; Roth, Cyril; Gelbrecht, Jörg; Fenner, Nathalie; Reuter, Hendrik

    2015-04-01

    Recently, more than 30,000 ha of drained minerotrophic peatlands (= fens) in NE Germany were rewetted to restore their ecological functions. Due to an extended drainage history, a re-establishment of their original state is not expected in the short-term. Elevated concentrations of dissolved organic carbon, ammonium and phosphate have been measured in the soil porewater of the upper degraded peat layers of rewetted fens at levels of one to three orders higher than the values in pristine systems; an indicator of increased microbial activity in the upper degraded soil layers. On the other hand there is evidence that the substrate availability within the degraded peat layer is lowered since the organic matter has formerly been subject to intense decomposition over the decades of drainage and intense agricultural use of the areas. Previously however, it was suggested that inhibition of hydrolytic enzymes by polyphenolic substances is suspended during aeration of peat soils mainly due to the decomposition of the inhibiting polyphenols by oxidising enzymes such as phenol oxidase. Accordingly we hypothesised a lack of enzyme inhibiting polyphenols in degraded peat soils of rewetted fens compared to less decomposed peat of more natural fens. We collected both peat samples at the soil surface (0-20 cm) and fresh roots of dominating vascular plants and mosses (as peat parent material) from five formerly drained rewetted sites and five more natural sites of NE Germany and NW Poland. Less decomposed peat and living roots were used to obtain an internal standard for polyphenol analysis and to run enzyme inhibition tests. For all samples we determined the total phenolic contents and in addition we distinguished between the contents of hydrolysable and condensed tannic substances. From a methodical perspective the advantage of internal standards compared to the commercially available standards cyanidin chloride and tannic acid became apparent. Quantification with cyanidin or tannic acid led to a considerable underestimation (up to 90%) of polyphenolic concentrations in peat soils. As hypothesised we found that highly degraded peat contains far lower levels of total polyphenolics (factor 8) and condensed tannins (factor 50) than less decomposed peat. In addition we detected large differences between different plant species with highest polyphenolic contents for the roots of Carex appropinquata that were more than 10-fold higher than Sphagnum spp. (450 mg/g dry mass vs. 39 mg/g dry mass). Despite these differences, we did not find a significant correlation between enzyme activities and peat degradation state, indicating that there is no simple linear relationship between polyphenolic contents and microbial activity.

  12. Trihalomethanes formed from natural organic matter isolates: Using isotopic and compositional data to help understand sources

    USGS Publications Warehouse

    Bergamaschi, Brian A.; Fram, Miranda S.; Fujii, Roger; Aiken, George R.; Kendall, Carol; Silva, Steven R.

    2000-01-01

    Over 20 million people drink water from the Sacramento-San Joaquin Delta despite problematic levels of natural organic matter (NOM) and bromide in Delta water, which can form trihalomethanes (THMs) during the treatment process. It is widely believed that NOM released from Delta peat islands is a substantial contributor to the pool of THM precursors present in Delta waters. Dissolved NOM was isolated from samples collected at five channel sites within the Sacramento-San Joaquin Rivers and Delta, California, USA, and from a peat island agricultural drain. To help understand the sources of THM precursors, samples were analyzed to determine their chemical and isotopic composition, their propensity to form THMs, and the isotopic composition of the THMs.The chemical composition of the isolates was quite variable, as indicated by significant differences in carbon-13 nuclear magnetic resonance spectra and carbon-to-nitrogen concentration ratios. The lowest propensity to form THMs per unit of dissolved organic carbon was observed in the peat island agricultural drain isolate, even though it possessed the highest fraction of aromatic material and the highest specific ultraviolet absorbance. Changes in the chemical and isotopic composition of the isolates and the isotopic composition of the THMs suggest that the source of the THMs precursors was different between samples and between isolates. The pattern of variability in compositional and isotopic data for these samples was not consistent with simple mixing of river- and peat-derived organic material.

  13. Dissolved organic carbon in soil solution of peat-moorsh soils on Kuwasy Mire

    NASA Astrophysics Data System (ADS)

    Jaszczyński, J.; Sapek, A.

    2009-04-01

    Key words: peat-moorsh soils, soil solution, dissolved organic carbon (DOC), temperature of soil, redox potential. The objective this study was the dissolved organic carbon concentration (DOC) in soil solution on the background of soil temperature, moisture and redox potential. The investigations were localized on the area of drained and agricultural used Kuwasy Mire, which are situated in the middle basin of Biebrza River, in North-East Poland. Research point was placed on a low peat soil of 110 cm depth managed as extensive grassland. The soil was recognized as peat-moorsh with the second degree of the moorshing process (with 20 cm of moorsh layer). The ceramic suction cups were installed in three replications at 30 cm depth of soil profile. The soil solution was continuously sampled by pomp of the automatic field station. The successive samples comprised of solution collected at the intervals of 21 days. Simultaneously, at the 20, 30 and 40 cm soil depths the measurements of temperature and determination of soil moisture and redox potential were made automatically. The mean twenty-four hours data were collected. The concentrations of DOC were determined by means of the flow colorimeter using the Skalar standard methods. Presented observations were made in 2001-2006. Mean DOC concentration in soil solution was 66 mg.dm-3 within all research period. A significant positive correlation between studied compound concentration and temperature of soil at 30 cm depth was observed; (correlation coefficient - r=0.55, number of samples - n=87). The highest DOC concentrations were observed during the season from July to October, when also a lower ground water level occurred. The DOC concentration in soil solution showed as well a significant correlation with the soil redox potential at 20 cm level. On this depth of describing soil profile a frontier layer between moorshing layer and peat has been existed. This layer is the potentially most active in the respect to biochemical transformation. On the other hand it wasn't possible to shown dependences on the DOC concentration from soil moisture. That probably results from a huge water-holding capacity of these type of peat soils, which are keeping a high moisture content even at a long time after decreasing of the groundwater table.

  14. Re-assessing the vertical distribution of testate amoeba communities in surface peats: Implications for palaeohydrological studies.

    PubMed

    Roe, Helen M; Elliott, Suzanne M; Patterson, R Timothy

    2017-08-01

    Testate amoeba-derived transfer functions are frequently used in peatland palaeohydrological studies and involve the development of training sets from surficial peats. However, within acrotelmic peats, considerable vertical variation in assemblage composition can occur, particularly along Sphagnum stems, which may limit the representation of the associated 'contemporary' testate amoeba samples as analogues for the peatland surface. This paper presents contiguous testate amoeba assemblage data from nine monoliths collected from different peatland microforms (hummock, hollow, lawn) in three Sphagnum dominated ombrotrophic peatlands in Ontario and Quebec, eastern Canada. The aim is to: (i) gain a greater understanding of the vertical distribution of xerophilous/hygrophilous taxa along Sphagnum stems; (ii) determine the vertical extent of live/encysted taxa along this gradient; and (iii) assess the significance of this distribution on surface sampling protocols. The results show that testate amoeba communities in the uppermost acrotelmic peat layers display considerable variability. This may reflect a complex interplay of abiotic and biotic controls, including moisture, temperature, light and other characteristics, food availability, and mineral particle availability for test construction. These findings underline the complexity of testate amoeba community structure and highlight the importance of analysing both living and dead Sphagnum stem sections when developing calibration sets. Copyright © 2017 Elsevier GmbH. All rights reserved.

  15. Thermodynamic constrains on the flux of organic matter through a peatland ecosystem

    NASA Astrophysics Data System (ADS)

    Worrall, Fred; Moody, Catherine; Clay, Gareth; Kettridge, Nick; Burt, Tim

    2017-04-01

    The transformations and transitions of organic matter into, through and out of a peatland ecosystem must obey the 2nd law of thermodynamics. Beer and Blodau (Geochimica Cosmochimica Acta, 2007, 71, 12, 2989-3002) showed that the evolution of CH4 in peatlands was constrained by equilibrium occurring at depth in the peat as the pore water became a closed system. However, that study did not consider the transition in the solid components of the organic matter flux through the entire ecosystem. For this study, organic matter samples were taken from each organic matter reservoir and fluvial transfer pathway and analysed the samples by elemental analysis and bomb calorimetry. The samples analysed were: above- and below-ground biomass, heather, mosses, sedges, plant litter layer, peat soil, and monthly samples of particulate and dissolved organic matter. All organic matter samples were taken from a 100% peat catchment within Moor House National Nature Reserve in the North Pennines, UK, and collected samples were compared to standards of lignin, cellulose, and plant protein. It was possible to calculate ∆H_f^OM ∆S_f^OM and ∆G_f^OM for each of the samples and standards. By assuming that each thermodynamic property can be expressed per g C and that any increase in ∆G_f^OM can be balanced by the production of CO2, DOM or CH4 then it is possible to predict the consequences of the fixation of 1 g of carbon in a peatland soil. The value of ∆G_f^OMincreases from glucose to components of the biomass: 1g of C fixed as glucose by photosynthesis would result in 0.68 g C as biomass and 0.32 g C as CO2. The transition from biomass to litter could occur spontaneously but the transition from surface to 1m depth in the peat profile would release 0.18 g C as CO2 per 1 g of carbon entering the peat profile. Therefore, for every 1 g of carbon fixed from photosynthesis then 0.44g of C would be released as CO2 and 0.54 g C would be present at 1 m depth. Alternatively, if DOM only were released in transition down the peat profile then for every 1 g of carbon fixed by photosynthesis 0.32 g C would be released as CO2 and 0.22 g C would be lost as DOM and leaving 0.46 g C as residual peat at 1m depth. If the variation in ∆G_f^OM of the DOM were considered then for every 1 g of C produced as DOM then between 0 and 0.57g C would be lost as CO2. At median value of DOM loss then for every 1g of carbon fixed as photosynthesis 0.39 g C would be lost as CO2 and 0.15 g lost as DOM with 0.46 g C as residual peat. Alternatively, if CH4 only were released down the soil profile then no organic matter would be left in the peat profile, i.e. CH4 is not an efficient method of transferring Gibbs free energy. The measured carbon budget for this catchment is that 1 g C fixed as photosynthesis resulted in 0.42 g C as CO2; 0.29 g C as DOM; 0.04 g C as CH4 and 0.24 g C as residual peat at 1m depth.

  16. Dynamics of organic carbon stock of Estonian arable and grassland peat soils

    NASA Astrophysics Data System (ADS)

    Kauer, Karin; Tammik, Kerttu; Penu, Priit

    2016-04-01

    Peat soils represent globally a major reserve of soil organic carbon (SOC). Estimation of changes in SOC stocks is important for understanding soil carbon sequestration and dynamics of greenhouse gas emissions. The aim of this study was to estimate the SOC stock of Estonian agricultural peat soils and SOC stock change depending on land use type (arable land and long-term grasslands (over 5 years)). The soils were classified as Histosols according to WRB classification. Generally the arable land was used for growing cereals, oilseed rape, legumes and used as ley in crop rotation. The main technique of soil cultivation was ploughing. During 2002-2015 the soil samples of 0-20 cm soil layer (one average soil sample per 1-5 ha) were collected. The SOC content was measured by NIRS method. The SOC stock was calculated by assuming that soil mean bulk density is 0.3 g cm-3. The SOC stock change in arable land was estimated during 3-13 years (N=91) and in grassland 4-13 year (N=163). The average SOC content of peat soils varied from 150.6 to 549.0 mg g-1. The initial SOC stock of arable land was 271.3 t ha-1 and of grassland 269.3 t ha-1. The SOC stock declined in arable peat soils faster (-2.57 t ha-1 y-1) compared to the changes in grassland peat soils (-0.67 t ha-1 y-1). According to the length of the study period the SOC stock change per year varied from -5.14 to 6.64 t ha-1 y-1 in grasslands and from -14.78 to 0.83 t ha-1 y-1 in arable land, although there was no clear relationship between the SOC stock change and the length of the study period. More detailed information about the properties of agricultural land and land use history is needed to analyse the causes of the SOC stock changes in agricultural peat soils. However, from the current research we can conclude that the SOC stock of arable and grassland peat soils is declining during the cultivation. These decreases are important to specify when considering the role of peat soils in atmospheric greenhouse gas balances considering peat soils spatial variability related to regional and local differences in ecology, hydrology and climate.

  17. Mechanisms controlling Cu, Fe, Mn, and Co profiles in peat of the Filson Creek Fen, northeastern Minnesota

    USGS Publications Warehouse

    Walton-Day, K.; Filipek, L.H.; Papp, C.S.E.

    1990-01-01

    Filson Creek Fen, located in northeastern Minnesota, overlies a Cu-Ni sulfide deposit. A site in the fen was studied to evaluate the hydrogeochemical mechanisms governing the development of Fe, Mn, Co, and Cu profiles in the peat. At the study site, surface peat approximately 1 m thick is separated from the underlying mineralized bedrock by a 6-12 m thickness of lake and glaciofluvial sediments and till. Concentrations of Fe, Mn, Co, and Cu in peat and major elements in pore water delineate a shallow, relatively oxidized, Cu-rich zone overlying a deeper, reduced, Fe-, Mn-, and Co-rich zone within the peat. Sequential metal extractions from peat samples reveal that 40-55% of the Cu in the shallow zone is associated with organic material, whereas the remaining Cu is distributed between iron-oxide, sulfide, and residual fractions. Sixty to seventy percent of the Fe, Mn, and Co concentrated in the deeper zone occur in the residual phase. The metal profiles and associations probably result from non-steady-state input of metals and detritus into the fen during formation of the peat column. The enrichment of organic-associated Cu in the upper, oxidized zone represents a combination of Cu transported into the fen with detrital plant fragments and soluble Cu, derived from weathering of outcrop and subcrop of the mineral deposit, transported into the fen, and fixed onto organic matter in the peat. The variable stratigraphy of the peat indicates that weathering processes and surface vegetation have changed through time in the fen. The Fe, Mn, and Co maxima at the base of the peat are associated with a maximum in detrital matter content of the peat resulting from a transition between the underlying inorganic sedimentary environment to an organic sedimentary environment. The chemistry of sediments and ground water collected beneath the peat indicate that mobilization of metals from sulfide minerals in the buried mineral deposit or glacial deposits is minimal. Therefore, the primary source of Cu to the peat at the study site is outcrops and shallow subcrops of the mineral deposit adjacent to the fen. ?? 1990.

  18. Emissions of volatile organic compounds and particulate matter from small-scale peat fires

    NASA Astrophysics Data System (ADS)

    George, I. J.; Black, R.; Walker, J. T.; Hays, M. D.; Tabor, D.; Gullett, B.

    2013-12-01

    Air pollution emitted from peat fires can negatively impact regional air quality, visibility, climate, and human health. Peat fires can smolder over long periods of time and, therefore, can release significantly greater amounts of carbon into the atmosphere per unit area compared to burning of other types of biomass. However, few studies have characterized the gas and particulate emissions from peat burning. To assess the atmospheric impact of peat fires, particulate matter (PM) and volatile organic compounds (VOCs) were quantified from controlled small-scale peat fire experiments. Major carbon emissions (i.e. CO2, CO, methane and total hydrocarbons) were measured during the peat burn experiments. Speciated PM mass was also determined from the peat burns from filter and polyurethane foam samples. Whole air samples were taken in SUMMA canisters and analyzed by gas chromatography-mass spectrometry to measure 82 trace VOCs. Additional gaseous carbonyl species were measured by sampling with dinitrophenylhydrazine-coated cartridges and analyzed with high performance liquid chromatography. VOCs with highest observed concentrations measured from the peat burns were propylene, benzene, chloromethane and toluene. Gas-phase carbonyls with highest observed concentrations included acetaldehyde, formaldehyde and acetone. Emission factors of major pollutants will be compared with recommended values for peat and other biomass burning.

  19. Mitigation of greenhouse gas emission on abandoned peatlands by growing reed canary grass

    NASA Astrophysics Data System (ADS)

    Järveoja, J.; Laht, J.; Soosaar, K.; Maddison, M.; Ostonen, I.; Mander, Ü.

    2012-04-01

    We used combined closed-chamber and plant biomass techniques to study the impact of reed canary grass (RCG, Phalaris arundinacea) cultivation on greenhouse gas (GHG) fluxes and carbon balance of an abandoned peat extraction area in Lavassaare, Estonia (N58°34'20''; E24°23'15''). Three core study sites were chosen within the abandoned peat extraction area: (I) bare peat soil (abandoned and not planted site), (II) non-fertilized Phalaris site, (III) and fertilized Phalaris site (all on drained Fibric Histosols). In addition, (IV) the natural raised bog (Fibric Histosol) and (V) the cultivated fen meadow (drained Sapric Histosol) served as reference sites. The CO2, CH4 and N2O fluxes were determined using the closed-chamber method once a month from May 2010 to December 2011. White 60 L chambers made of PVC and sealed with a water-filled ring on the soil surface were installed in 5 replicates on each site. The gas was sampled 3 times per hour in 100 mL pre-evacuated glass bottles, and in the lab the gas concentrations were measured using the Shimadzu GC-2014 (ECD, FID) gas-chromatographic system combined with a Loftfield autosampler. Measurements of groundwater level and soil temperature (10, 20, 30, and 40 cm depths) were performed simultaneously. Biomass assessments of RCG were carried out just after maximal growth of macrophytes, in early September 2010, in April 2011 just after snow melt (time of minimum aboveground biomass), and again in September 2011. Aboveground biomass samples were collected from 1×1m plots. Belowground biomass samples were collected at a depth of 25 cm in 3 replicates adjacent to each chamber using a 10×10 cm auger. Samples were analyzed for N, P and C. Our results showed high nitrous oxide emissions (up to 541 μg N2O-N m-2 h-1) from the fen meadow and high methane emissions from the natural raised bog (up to 12915 μg CH4-C m-2 h-1). The low CH4 emission from the Phalaris plots and bare soil was due to the deeper water table (up to 85 cm below ground) and high sulfur concentration in peat (up to 23 g kg-1), which probably inhibited methanogenesis. The high CO2 emission on fertilized and non-fertilized Phalaris plots in comparison to the bare peat site was probably caused by: (1) the higher plant biomass: more dissolved C coming from roots and greater amount of fine root turnover, (2) the influence of fresh plant litter on the peat mineralization on Phalaris plots, and (3) inhibited mineralization by recalcitrant C of bare peat. Our results demonstrated that as a total, the Phalaris sites acted as net carbon sinks, sequestering C in the amount of 6929.5 and 6083.5 kg CO2-C ha-1 yr-1 on the fertilized and non-fertilized plots, respectively, whereas the bare peat site acted as a carbon source (emitting 687.5 kg CO2-C ha-1 yr-1).

  20. Experimental early-stage coalification of a peat sample and a peatified wood sample from Indonesia

    USGS Publications Warehouse

    Orem, W.H.; Neuzil, S.G.; Lerch, H.E.; Cecil, C.B.

    1996-01-01

    Experimental coalification of a peat sample and a buried wood sample from domed peat deposits in Indonesia was carried out to examine chemical structural changes in organic matter during early-stage coalification. The experiment (125 C, 408 atm lithostatic pressure, and 177 atm fluid pressure for 75 days) was designed to maintain both lithostatic and fluid pressure on the sample, but allow by-products that may retard coalification to escape. We refer to this design as a geologically open system. Changes in the elemental composition, and 13C NMR and FTIR spectra of the peat and wood after experimental coalification suggest preferential thermal decomposition of O-containing aliphatic organic compounds (probably cellulose) during early-stage coalification. The elemental compositions and 13C NMR spectra of the experimentally coalified peat and wood were generally similar to those of Miocene coal and coalified wood samples from Indonesia. Yields of lignin phenols in the peat and wood samples decreased following experimental coalification; the wood sample exhibited a larger change. Lignin phenol yields from the experimentally coalified peat and wood were comparable to yields of lignin phenols from Miocene Indonesian lignite and coalified wood. Changes in syringyl/vanillyl and p-hydroxy/vanillyl ratios suggest direct demethoxylation as a secondary process to demethylation of methoxyl groups during early coalification, and changes in lignin phenol yields and acid/aldehyde ratios point to a coupling between demethoxylation processes and reactions in the alkyl side chain bonds of the ??-carbon in lignin phenols.

  1. Atmospheric fallout radionuclides in peatland from Southern Poland.

    PubMed

    Mróz, Tomasz; Łokas, Edyta; Kocurek, Justyna; Gąsiorek, Michał

    2017-09-01

    Two peat profiles were collected in a peat bog located in Southern Poland and their geochronology were determined using 210 Pb, 238,239+240 Pu and 137 Cs radiometric techniques. The 210 Pb chronologies were established using the constant rate of supply model (CRS) and are in good agreement with the Pu isotopes and 137 Cs time markers. Maximum activities of Pu isotopes were found at a depth corresponding to the early 1960s, which is the period characterized by the maximum nuclear weapon tests. The results showed that the 210 Pb method is the most accurate technique for the determination age and accumulation rate of a peat. The next part of this study calculated linear accumulation rates by analyzing 238,239+240 Pu and 137 Cs vertical distributions in the profiles. Activities of fallout isotopes were also measured in plants covering the peatland. The highest activities of 137 Cs and 210 Pb were found in Calluna vulgaris samples, and 239+240 Pu were found only in two samples (C. vulgaris and leaves of Oxycoccus quadripelatus). Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Sphagnum mosses from 21 ombrotrophic bogs in the athabasca bituminous sands region show no significant atmospheric contamination of "heavy metals".

    PubMed

    Shotyk, William; Belland, Rene; Duke, John; Kempter, Heike; Krachler, Michael; Noernberg, Tommy; Pelletier, Rick; Vile, Melanie A; Wieder, Kelman; Zaccone, Claudio; Zhang, Shuangquan

    2014-11-04

    Sphagnum moss was collected from 21 ombrotrophic (rain-fed) peat bogs surrounding open pit mines and upgrading facilities of Athabasca bituminous sands in Alberta (AB). In comparison to contemporary Sphagnum moss from four bogs in rural locations of southern Germany (DE), the AB mosses yielded lower concentrations of Ag, Cd, Ni, Pb, Sb, and Tl, similar concentrations of Mo, but greater concentrations of Ba, Th, and V. Except for V, in comparison to the "cleanest", ancient peat samples ever tested from the northern hemisphere (ca. 6000-9000 years old), the concentrations of each of these metals in the AB mosses are within a factor of 3 of "natural, background" values. The concentrations of "heavy metals" in the mosses, however, are proportional to the concentration of Th (a conservative, lithophile element) and, therefore, contributed to the plants primarily in the form of mineral dust particles. Vanadium, the single most abundant trace metal in bitumen, is the only anomaly: in the AB mosses, V exceeds that of ancient peat by a factor of 6; it is therefore enriched in the mosses, relative to Th, by a factor of 2. In comparison to the surface layer of peat cores collected in recent years from across Canada, from British Columbia to New Brunswick, the Pb concentrations in the mosses from AB are far lower.

  3. Elucidating effects of atmospheric deposition and peat decomposition processes on mercury accumulation rates in a northern Minnesota peatland over last 10,000 cal years

    NASA Astrophysics Data System (ADS)

    Nater, E. A.; Furman, O.; Toner, B. M.; Sebestyen, S. D.; Tfaily, M. M.; Chanton, J.; Fissore, C.; McFarlane, K. J.; Hanson, P. J.; Iversen, C. M.; Kolka, R. K.

    2014-12-01

    Climate change has the potential to affect mercury (Hg), sulfur (S) and carbon (C) stores and cycling in northern peatland ecosystems (NPEs). SPRUCE (Spruce and Peatland Responses Under Climate and Environmental change) is an interdisciplinary study of the effects of elevated temperature and CO2 enrichment on NPEs. Peat cores (0-3.0 m) were collected from 16 large plots located on the S1 peatland (an ombrotrophic bog treed with Picea mariana and Larix laricina) in August, 2012 for baseline characterization before the experiment begins. Peat samples were analyzed at depth increments for total Hg, bulk density, humification indices, and elemental composition. Net Hg accumulation rates over the last 10,000 years were derived from Hg concentrations and peat accumulation rates based on peat depth chronology established using 14C and 13C dating of peat cores. Historic Hg deposition rates are being modeled from pre-industrial deposition rates in S1 scaled by regional lake sediment records. Effects of peatland processes and factors (hydrology, decomposition, redox chemistry, vegetative changes, microtopography) on the biogeochemistry of Hg, S, and other elements are being assessed by comparing observed elemental depth profiles with accumulation profiles predicted solely from atmospheric deposition. We are using principal component analyses and cluster analyses to elucidate relationships between humification indices, peat physical properties, and inorganic and organic geochemistry data to interpret the main processes controlling net Hg accumulation and elemental concentrations in surface and subsurface peat layers. These findings are critical to predicting how climate change will affect future accumulation of Hg as well as existing Hg stores in NPE, and for providing reference baselines for SPRUCE future investigations.

  4. Sorption and degradation of petroleum hydrocarbons, polycyclic aromatic hydrocarbons, alkylphenols, bisphenol A and phthalates in landfill leachate using sand, activated carbon and peat filters.

    PubMed

    Kalmykova, Yuliya; Moona, Nashita; Strömvall, Ann-Margret; Björklund, Karin

    2014-06-01

    Landfill leachates are repeatedly found contaminated with organic pollutants, such as alkylphenols (APs), phthalates and polycyclic aromatic hydrocarbons (PAHs) at levels exceeding water quality standards. It has been shown that these pollutants may be present in the colloidal and truly dissolved phase in contaminated water, making particle separation an inefficient removal method. The aim of this study was to investigate sorption and degradation of petroleum hydrocarbons (PHCs), selected APs, bisphenol A (BPA), phthalates and PAHs from landfill leachate using sand, granulated activated carbon (GAC) and peat moss filters. A pilot plant was installed at an inactive landfill with mixed industrial and household waste and samples were collected before and after each filter during two years. Leachate pre-treated in oil separator and sedimentation pond failed to meet water quality standards in most samples and little improvement was seen after the sand filter. These techniques are based on particle removal, whereas the analysed pollutants are found, to varying degrees, bound to colloids or dissolved. However, even highly hydrophobic compounds expected to be particle-bound, such as the PHCs and high-molecular weight PAHs, were poorly removed in the sand filter. The APs and BPA were completely removed by the GAC filter, while mass balance calculations indicate that 50-80% of the investigated phenols were removed in the peat filter. Results suggest possible AP degradation in peat filters. No evidence of phthalate degradation in the landfill, pond or the filters was found. The PHCs were completely removed in 50% and 35% of the measured occasions in the GAC and peat filters, respectively. The opposite trend was seen for removal of PAHs in GAC (50%) and peat (63%). Oxygenated PAHs with high toxicity were found in the leachates but not in the pond sediment. These compounds are likely formed in the pond water, which is alarming because sedimentation ponds are commonly used treatment techniques. The oxy-PAHs were effectively removed in the GAC, and especially the peat filter. It was hypothesized that dissolved compounds would adsorb equally well to the peat and GAC filters. This was not completely supported as the GAC filter was in general more efficient than peat. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Investigation of bacterial communities in peat land of the Gahai Lake natural conservation area

    NASA Astrophysics Data System (ADS)

    Bai, Yani; Wang, Jinchang; Zhan, Zhigao; Guan, Limei; Jin, Liang; Zheng, Guohua

    2017-10-01

    Peat is involved in the global carbon cycle and water conservation; therefore, it is implicated in global environmental change. Microorganisms play an important role in the function of peat. To investigate the bacterial communities in peat of Gahai Lake, different locations and depths were sampled and Illumina Miseq sequencing was used to analyze the microbial community. Chemical properties of peat samples were analyzed by China state standard methods (GB methods). The results showed that bacterial communities were affected by depth, with bacterial diversity and community structure at 90 and 120 cm significantly different from that at 10, 30 and 50 cm depth from the peat surface. Chemical properties of peat land including organic matter, total nitrogen and humus content did not significantly influence bacterial community structure in peat, with only one group from genus Rhizomicrobium that was significantly correlated with total nitrogen. A substantial proportion of the bacterial sequences were unclassified (1.4%), which indicates the great application potential of peat in the Gahai Lake natural conservation area in the future.

  6. Physical and chemical characteristics of fibrous peat

    NASA Astrophysics Data System (ADS)

    Sutejo, Yulindasari; Saggaff, Anis; Rahayu, Wiwik; Hanafiah

    2017-11-01

    Banyuasin is one of the regency in South Sumatera which has an area of 200.000 Ha of peat land. Peat soil are characterized by high compressibility parameters and low initial shear strength. Block sampling method was used to obtain undisturbed sample. The results of this paper describe the characteristics of peat soil from physical and chemical testing. The physical and chemical characteristics of peat include water content (ω), specific gravity (Gs), Acidity (pH), unit weight (γ), and ignition loss tests. SEM and EDS test was done to determine the differences in fiber content and to analyze chemical elements of the specimen. The average results ω, Gs, and pH are 263.538 %, 1.847, and 3.353. Peat is classified in H4 (by Von Post). The results of organic content (OC), ash content (AC), and fiber content (FC) are found 78.693 %, 21.310 %, and 73.703 %. From the results of physical and chemical tests, the peat in Banyuasin is classified as fibrous peat. All the results of the characteristics and classification of fibrous peat compared with published data were close.

  7. Peats from West Kalimantan Province, Indonesia: The Distribution, Formation, Disturbances, Utilization and Conservation

    NASA Astrophysics Data System (ADS)

    Anshari, G. Z.

    2011-12-01

    A major portion of tropical peats, approximately between 180,000 and 210,000 km2, occurs in Indonesia. Peat is a water body that preserves and stores enormous organic Carbon of dead biomass vegetation. In a natural state, peat helps to maintain Carbon balance, hydrological cycle, and supply of dissolved and particulate organic matters into adjacent waters. Peat disturbances drive the change from Carbon sink function into Carbon source. This paper aims to discuss variability of tropical peats and peat degradation in West Kalimantan Province. The discussions include extent and formation, biodiversity, Carbon and water storage, major properties, utilization, peat disturbances (i.e. logging, forest conversion, drainage affects, and recurrent peat fires), and peat conservation. Management options for reducing peat fires and developing sustainable peat utilization are also explored. Data were collected from both coastal and inland peats in West Kalimantan Province. This paper declares that degradation of tropical peats in Indonesia is strongly associated with anthropogenic fires, peat forest conversion, and logging. To reduce speeds of peat degradation, the current utilization of peats needs being more intensive than extensive, and preventing water table drop by managing excessive drainage that leads to substantial decline of moisture in the upper peat layer, which is subsequently dry and flammable.

  8. Estimating Carbon Stocks Along Depressional Wetlands Using Ground Penetrating Radar (GPR) in the Disney Wilderness Preserve (Orlando, Florida)

    NASA Astrophysics Data System (ADS)

    McClellan, M. D.; Comas, X.; Wright, W. J.; Mount, G. J.

    2014-12-01

    Peat soils store a large fraction of the global carbon (C) in soil. It is estimated that 95% of carbon in peatlands is stored in the peat soil, while less than 5% occurs in the vegetation. The majority of studies related to C stocks in peatlands have taken place in northern latitudes leaving the tropical and subtropical latitudes clearly understudied. In this study we use a combination of indirect non-invasive geophysical methods (mainly ground penetrating radar, GPR) as well as direct measurements (direct coring) to calculate total C stocks within subtropical depressional wetlands in the Disney Wilderness Preserve (DWP, Orlando, FL). A set of three-dimensional (3D) GPR surveys were used to detect variability of the peat layer thickness and the underlying peat-sand mix layer across several depressional wetlands. Direct samples collected at selected locations were used to confirm depth of each interface and to estimate C content in the laboratory. Layer thickness estimated from GPR and direct C content were used to estimate total peat volume and C content for the entire depressional wetland. Through the use of aerial photos a relationship between surface area along the depressional wetlands and total peat thickness (and thus C content) was established for the depressions surveyed and applied throughout the entire preserve. This work shows the importance of depressional wetlands as critical contributors of the C budget at the DWP.

  9. Analysis of Absorption Spectra of Polycyclic Aromatic Hydrocarbons in Gaseous- and Particle- Phase Emissions from Peat Fuel Combustion Under Controlled Conditions

    NASA Astrophysics Data System (ADS)

    Connolly, J. I.; Samburova, V.; Moosmüller, H.; Khlystov, A.

    2015-12-01

    Biomass and fossil fuel burning processes emit important organic pollutants called polycyclic aromatic hydrocarbons (PAHs) into the atmosphere. Smoldering combustion of peat is one of the largest contributors (up to 70%) of carbonaceous species and, therefore, it may be one of the main sources of these PAHs. PAHs can be detrimental to health, they are known to be potent mutagens and suspected carcinogens. They may also contribute to solar light absorption as the particles absorb in the blue and near ultraviolet (UV) region of the solar spectrum ("brown carbon" species). There is very little knowledge and large ambiguity regarding the contribution of PAHs to optical properties of organic carbon (OC) emitted from smoldering biomass combustion. This study focuses on quantifying and analyzing PAHs emitted from peat smoldering combustion to gain more knowledge on their optical properties. Five peat fuels collected in different regions of the world (Russia, USA) were burned under controlled conditions (e.g., relative humidity, combustion efficiency, fuel-moisture content) at the Desert Research Institute Biomass Burning facility (Reno, NV, USA). Combustion aerosols collected on TIGF filters followed by XAD resin cartridges were extracted and analyzed for gas-phase (semi-volatile) and particle-phase PAHs. Filter and XAD samples were extracted separately with dichloromethane followed by acetone using Accelerated Solvent Extractor (ACE 300, Dionex). To determine absorption properties, absorption spectra of extracts and standard PAHs were recorded between 190 and 900 nm with a UV/VIS spectrophotometer (PerkinElmer, Lambda 650). This poster will discuss the potential contribution of PAHs to brown carbon emitted from peat combustion and give a brief comparison with absorption spectra from biomass burning aerosols.

  10. Reservoir-flooded river mouth areas as sediment traps revealing erosion from peat mining areas - Jukajoki case study in eastern Finland

    NASA Astrophysics Data System (ADS)

    Tahvanainen, Teemu; Meriläinen, Henna-Kaisa; Haraguchi, Akira; Simola, Heikki

    2016-04-01

    Many types of soil-disturbing land use have caused excess sedimentation in Finnish lakes. Identification and quantification of catchment sources of sediment material is crucial in cases where demands for remediation measures are considered. We studied recent (50 yr) sediments of four small rivers, all draining to a reservoir impounded in 1971. Catchments of two of the rivers had had peat mining activities from early 1980s until recently, exposing large areas of peat surfaces to erosion. The water level of the reservoir had risen to the river mouth areas of all rivers, while in each case, the river mouth areas still form riverine narrows separable from the main reservoir, hence collecting sedimentation from their own catchments. The original soils under the reservoir water level could readily be observed in core samples, providing a dated horizon under recent sediments. In addition, we used 137Cs-stratigraphies for dating of samples from original river bed locations. As expected, recent sediments of rivers with peat mining influence differed from others e.g. by high organic content and C:N ratios. Stable isotopes 13C and 15N both correlated with C:N (r = 0.799 and r = -0.717, respectively) and they also differentiated the peat-mining influenced samples from other river sediments. Principal components of the physical-chemical variables revealed clearer distinction than any variables separately. Light-microscopy revealed abundance of leafs of Sphagnum mosses in peat-mining influenced river sediments that were nearly absent from other rivers. Spores of Sphagnum were, however, abundant in all river sediments indicating their predominantly airborne origin. We find that combination of several physical-chemical characters rather than any single variable and microscopy of plant remains can result in reliable recognition of peatland-origin of sediment material when non-impacted sites are available for comparison. Dating of disturbed recent sediments is challenging. River-mouth areas with reservoir history can be particularly useful as the terrestrial soil strata provides a dated horizon under recent sediments.

  11. 234U/238U and δ87Sr in peat as tracers of paleosalinity in the Sacramento-San Joaquin Delta of California, USA

    USGS Publications Warehouse

    Drexler, Judith Z.; Paces, James B.; Alpers, Charles N.; Windham-Myers, Lisamarie; Neymark, Leonid; Bullen, Thomas D.; Taylor, Howard E.

    2013-01-01

    The purpose of this study was to determine the history of paleosalinity over the past 6000+ years in the Sacramento-San Joaquin Delta (the Delta), which is the innermost part of the San Francisco Estuary. We used a combination of Sr and U concentrations, d87Sr values, and 234U/238U activity ratios (AR) in peat as proxies for tracking paleosalinity. Peat cores were collected in marshes on Browns Island, Franks Wetland, and Bacon Channel Island in the Delta. Cores were dated using 137Cs, the onset of Pb and Hg contamination from hydraulic gold mining, and 14C. A proof of concept study showed that the dominant emergent macrophyte and major component of peat in the Delta, Schoenoplectus spp., incorporates Sr and U and that the isotopic composition of these elements tracks the ambient water salinity across the Estuary. Concentrations and isotopic compositions of Sr and U in the three main water sources contributing to the Delta (seawater, Sacramento River water, and San Joaquin River water) were used to construct a three-end-member mixing model. Delta paleosalinity was determined by examining variations in the distribution of peat samples through time within the area delineated by the mixing model. The Delta has long been considered a tidal freshwater marsh region, but only peat samples from Franks Wetland and Bacon Channel Island have shown a consistently fresh signal (<0.5 ppt) through time. Therefore, the eastern Delta, which occurs upstream from Bacon Channel Island along the San Joaquin River and its tributaries, has also been fresh for this time period. Over the past 6000+ years, the salinity regime at the western boundary of the Delta (Browns Island) has alternated between fresh and oligohaline (0.5-5 ppt).

  12. High diversity of tropical peatland ecosystem types in the Pastaza-Marañón basin, Peruvian Amazonia

    NASA Astrophysics Data System (ADS)

    LäHteenoja, Outi; Page, Susan

    2011-06-01

    Very little information exists on Amazonian peatlands with most studies on tropical peatlands concentrating on Southeast Asia. Here we describe diversity of Amazonian peatland ecosystems and consider its implications for the global diversity of tropical peatland ecosystems. Nine study sites were selected from within the most extensive wetland area of Peruvian Amazonia: the 120,000 km2 Pastaza-Marañón basin. Peat thickness was determined every 500 m from the edge toward the center of each site, and peat samples were collected from two cores per site. Samples from the entire central core and surface samples from the other core were analyzed for nutrient content. Topography of four peat deposits was measured. In order to study differences in vegetation, pixel values were extracted from a satellite image. The surface peat nutrient content of the peatlands varied from very nutrient-rich to nutrient-poor. Two of the peatlands measured for their topography were domed (5.4 and 5.8 m above the stream), one was gently sloping (1.4 m above the stream), and one was flat and occurred behind a 7 m high levee. Five different peatland vegetation types were detected on the basis of pixel values derived from the satellite image. The peat cores had considerable variation in nutrient content and showed different developmental pathways. In summary, the Pastaza-Marañón basin harbors a considerable diversity of previously undescribed peatland ecosystems, representing a gradient from atmosphere-influenced, nutrient-poor ombrotrophic bogs through to river-influenced, nutrient-rich swamps. Their existence affects the habitat diversity, carbon dynamics, and hydrology of the Amazonian lowlands, and they also provide an undisturbed analog for the heavily disturbed peatlands of Southeast Asia. Considering the factors threatening the Amazonian lowlands, there is an urgent need to investigate and conserve these peatland ecosystems, which may in the near future be among the very few undisturbed tropical ombrotrophic bogs remaining in the world.

  13. Surfactant-Modified Soil Amendments Reduce Nitrogen and Phosphorus Leaching in a Sand-Based Rootzone.

    PubMed

    Shaddox, Travis W; Kruse, Jason K; Miller, Grady L; Nkedi-Kizza, Peter; Sartain, Jerry B

    2016-09-01

    United States Golf Association putting greens are susceptible to nitrogen (N) and phosphorus (P) leaching. Inorganic soil amendments are used to increase moisture and nutrient retention and may influence N and P leaching. This study was conducted to determine whether N and P leaching could be reduced using soil amendments and surfactant-modified soil amendments. Treatments included a control (sand), sand-peat, zeolite, calcined clay, hexadecyltrimethylammonium-zeolite, and hexadecyltrimethylammonium-calcined clay. Lysimeters were filled with a 30-cm rootzone layer of sand-peat (85:15 by volume), below which a 5-cm treatment layer of amendments was placed. A solution of NO-N, NH-N, and orthophosphate-P (2300, 2480, and 4400 μg mL, respectively) was injected at the top of each lysimeter, and leachate was collected using an autocollector set to collect a 10-mL sample every min until four pore volumes were collected. Uncoated amendments, sand, and peat had no influence on NO-N retention, whereas hexadecyltrimethylammonium-coated amendments reduced NO-N leaching to below detectable limits. Both coated and uncoated amendments reduced NH-N leaching, with zeolite reducing NH-N leached to near zero regardless of hexadecyltrimethylammonium coating. Pure sand resulted in a 13% reduction of applied orthophosphate-P leaching, whereas peat contributed to orthophosphate-P leaching. Surfactant-modified amendments reduced orthophosphate-P leaching by as much as 97%. Surfactant-modified soil amendments can reduce NO-N, NH-N, and orthophosphate-P leaching and, thus, may be a viable option for removing leached N and P before they enter surface or ground waters. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  14. Sulfur Speciation in Peat: a Time-zero Signature for the " Spruce and Peatland Responses Under Climate and Environmental Change" Experiment

    NASA Astrophysics Data System (ADS)

    Furman, O.; Toner, B. M.; Sebestyen, S. D.; Kolka, R. K.; Nater, E. A.

    2014-12-01

    As part of the "Spruce and Peatland Responses Under Climate and Environmental Change" (SPRUCE) experiment, we made initial measurements of sulfur speciation in peat. These observations represent a "time-zero" relative to the intended soil warming experiment which begins in 2015. Total sulfur and sulfur speciation were measured in peat cores (solid phase) from nine plots (hollows and hummocks) to a depth of 2 m. Peat samples were packed under nitrogen and frozen in the field immediately after collection. All subsequent sample storage, handling, and processing were conducted under inert gas. Sulfur speciation was measured using bulk sulfur 1s X-ray absorption near edge structure (XANES) spectroscopy at the SXRMB instrument at the Canadian Light Source, Saskatoon, SK, Canada and at the 9-BM instrument, Advanced Photon Source, Argonne National Laboratory, IL, USA. Total sulfur concentrations ranged from 968 to 4077 mg sulfur / kg dry peat. Sulfur content increased with depth from 2 g sulfur / m2 in the 0-10 cm increment to a maximum value of 38 g sulfur / m2 in the 50-60 cm increment. These sulfur loadings produced high quality XANES spectra. The nine cores exhibited reproducible trends with depth in both total sulfur and specific sulfur species; however, variability in sulfur speciation was greatest in the top 40 cm. All sulfur detected within the peat solids was in an organic form. The most abundant sulfur species group was composed of organic mono-sulfide and thiol forms, representing approximately half of the total sulfur at all depths. Sulfonate and ester-sulfate species were 10-15 mol% of sulfur and exhibited low variability with depth. A subsurface maximum in organic di-sulfide was observed in the 20-30 cm depth increment, which is the transition zone between transiently oxidized acrotelm and permanently saturated anaerobic catotelm. Quantification of major sulfur pools is important for the SPRUCE experiment as they are likely to be indicators of changes in the oxidation-reduction (redox) status, and mercury methylation potential, of the peat in response to warming and enhanced carbon dioxide.

  15. Investigation of metal ions sorption of brown peat moss powder

    NASA Astrophysics Data System (ADS)

    Kelus, Nadezhda; Blokhina, Elena; Novikov, Dmitry; Novikova, Yaroslavna; Chuchalin, Vladimir

    2017-11-01

    For regularities research of sorptive extraction of heavy metal ions by cellulose and its derivates from aquatic solution of electrolytes it is necessary to find possible mechanism of sorption process and to choice a model describing this process. The present article investigates the regularities of aliovalent metals sorption on brown peat moss powder. The results show that sorption isotherm of Al3+ ions is described by Freundlich isotherm and sorption isotherms of Na+ i Ni2+ are described by Langmuir isotherm. To identify the mechanisms of brown peat moss powder sorption the IR-spectra of the initial brown peat moss powder samples and brown peat moss powder samples after Ni (II) sorption were studied. Metal ion binding mechanisms by brown peat moss powder points to ion exchange, physical adsorption, and complex formation with hydroxyl and carboxyl groups.

  16. Investigation of occupational radiation exposures to NORM at an Irish peat-fired power station and potential use of peat fly ash by the construction industry.

    PubMed

    Organo, C; Lee, E M; Menezes, G; Finch, E C

    2005-12-01

    Annually, approximately 15% of Ireland's electricity requirement is provided through the combustion of 3 x 10(6) tonnes of peat. While the literature on coal-fired power generation is quite abundant, studies on the peat-fired power generation industry from a radiological point of view are scarce. A study of the largest Irish peat-fired power plant was initiated to review the potential occupational radiation exposures arising from the occurrence of naturally occurring radioactive material (NORM) at different stages of the industrial process and to investigate any radiological health consequences that may arise should peat fly ash be used as a component of building materials. Ambient gamma dose rate measurements, radon measurements, quantification of the occupational exposure from inhalation of airborne particles (personal air sampling) and gamma spectrometry analysis of peat, peat ash and effluent samples from the ash ponds were undertaken. The results indicate that the radiation dose received by any worker involved in the processing of the peat and the handling of the ash resulting from peat combustion does not exceed 150 microSv per annum. Regulatory control of the peat-fired power generation is therefore unnecessary according to the Irish legislation with regards to NORM. The potential use of peat fly ash as a by-product in the building industry was also found to have a negligible radiological impact for construction workers and for members of the public.

  17. Nitrosation and nitration of fulvic acid, peat and coal with nitric acid

    USGS Publications Warehouse

    Thorn, Kevin A.; Cox, Larry G.

    2016-01-01

    Nitrohumic acids, produced from base extraction of coals and peats oxidized with nitric acid, have received considerable attention as soil ammendments in agriculture. The nitration chemistry however is incompletely understood. Moreover, there is a need to understand the reaction of nitric acid with natural organic matter (NOM) in general, in the context of a variety of environmental and biogeochemical processes. Suwannee River NOM, Suwannee River fulvic acid, and Pahokee Peat fulvic acid were treated with 15N-labeled nitric acid at concentrations ranging from 15% to 22% and analyzed by liquid and solid state 15N NMR spectroscopy. Bulk Pahokee peat and Illinois #6 coal were also treated with nitric acid, at 29% and 40% respectively, and analyzed by solid state 15N NMR spectroscopy. In addition to nitro groups from nitration of aromatic carbon, the 15N NMR spectra of all five samples exhibited peaks attributable to nitrosation reactions. These include nitrosophenol peaks in the peat fulvic acid and Suwannee River samples, from nitrosation of phenolic rings, and N-nitroso groups in the peat samples, from nitrosation of secondary amides or amines, the latter consistent with the peat samples having the highest naturally abundant nitrogen contents. Peaks attributable to Beckmann and secondary reactions of the initially formed oximes were present in all spectra, including primary amide, secondary amide, lactam, and nitrile nitrogens. The degree of secondary reaction product formation resulting from nitrosation reactions appeared to correlate inversely with the 13C aromaticities of the samples. The nitrosation reactions are most plausibly effected by nitrous acid formed from the reduction of nitric acid by oxidizable substrates in the NOM and coal samples.

  18. Nitrosation and Nitration of Fulvic Acid, Peat and Coal with Nitric Acid

    PubMed Central

    Thorn, Kevin A.; Cox, Larry G.

    2016-01-01

    Nitrohumic acids, produced from base extraction of coals and peats oxidized with nitric acid, have received considerable attention as soil ammendments in agriculture. The nitration chemistry however is incompletely understood. Moreover, there is a need to understand the reaction of nitric acid with natural organic matter (NOM) in general, in the context of a variety of environmental and biogeochemical processes. Suwannee River NOM, Suwannee River fulvic acid, and Pahokee Peat fulvic acid were treated with 15N-labeled nitric acid at concentrations ranging from 15% to 22% and analyzed by liquid and solid state 15N NMR spectroscopy. Bulk Pahokee peat and Illinois #6 coal were also treated with nitric acid, at 29% and 40% respectively, and analyzed by solid state 15N NMR spectroscopy. In addition to nitro groups from nitration of aromatic carbon, the 15N NMR spectra of all five samples exhibited peaks attributable to nitrosation reactions. These include nitrosophenol peaks in the peat fulvic acid and Suwannee River samples, from nitrosation of phenolic rings, and N-nitroso groups in the peat samples, from nitrosation of secondary amides or amines, the latter consistent with the peat samples having the highest naturally abundant nitrogen contents. Peaks attributable to Beckmann and secondary reactions of the initially formed oximes were present in all spectra, including primary amide, secondary amide, lactam, and nitrile nitrogens. The degree of secondary reaction product formation resulting from nitrosation reactions appeared to correlate inversely with the 13C aromaticities of the samples. The nitrosation reactions are most plausibly effected by nitrous acid formed from the reduction of nitric acid by oxidizable substrates in the NOM and coal samples. PMID:27175784

  19. Geochemical characteristics of peat from two raised bogs of Germany

    NASA Astrophysics Data System (ADS)

    Mezhibor, A. M.

    2016-11-01

    Peat has a wide range of applications in different spheres of human activity, and this is a reason for a comprehensive study. This research represents the results of an ICP-MS study of moss and peat samples from two raised bogs of Germany. Because of the wide use of sphagnum moss and peat, determining their geochemical characteristics is an important issue. According to the results obtained, we can resume that the moss samples from Germany are rich in Cu, As, Y, Zr, Nb, and REE. The geochemical composition of the bogs reflects the regional environmental features and anthropogenic influence.

  20. Decoding the Secrets of Carbon Preservation and GHG Flux in Lower-Latitude Peatlands

    NASA Astrophysics Data System (ADS)

    Richardson, C. J.; Flanagan, N. E.; Wang, H.; Ho, M.; Hodgkins, S. B.; Cooper, W. T.; Chanton, J.; Winton, S.

    2017-12-01

    The mechanisms regulating peat decomposition and C carbon storage in peatlands are poorly understood, particularly with regard to the importance of the biochemical compounds produced by different plant species and in turn peat quality controls on C storage and GHG flux. To examine the role of carbon quality in C accretion in northern compared to tropical peatlands we completed field and lab studies on bog peats collected in Minnesota, North Carolina, Florida and Peru to answer three fundamental questions; 1) is tropical peat more recalcitrant than northern peat 2) does the addition of aromatic and phenolic C compounds increase towards the tropics 3) do differences in the chemical structure of organic matter explain variances in carbon storage and GHG flux in tropical versus northern peatlands? Our main hypothesize is that high concentrations of phenolics and aromatic C compounds produced in shrub and tree plant communities in peatlands coupled with the fire production of biochar aromatics in peatlands may provide a dual biogeochemical latch mechanism controlling microbial decomposition of peat even under higher temperatures and seasonal drought. By comparing the peat bog soil cores collected from the MN peat bogs, NC Pocosins, FL Everglades and Peru palm swamps we find that the soils in the shrub-dominant Pocosin contain the highest phenolics, which microbial studies indicate have the strongest resistance to microbial decomposition. A chemical comparison of plant driven peat carbon quality along a north to south latitudinal gradient indicates that tropical peatlands have higher aromatic compounds, and enhanced phenolics, especially after light fires, which enhances C storage and affect GHG flux across the latitudinal gradient.

  1. Benthic macroinvertebrates and the use of stable isotopes (δ13C and δ15N) in the impact assessment of peatland use on boreal stream ecosystems

    NASA Astrophysics Data System (ADS)

    Nieminen, Mika L.; Daza Secco, Emmanuela; Nykänen, Hannu; Meissner, Kristian

    2013-04-01

    Stable isotope analysis (SIA) can provide insights into carbon flow dynamics and trophic positions of consumers in food webs. SIA is used in this study, where we assess the possible changes in the basal resources of Finnish boreal stream ecosystems and differences in the impact of two forms of peatland use, forestry and peat mining. About 30% of the total land area of Finland is classified as peatland, of which about 55% has been drained for forestry and about 0.6% is in peat production. Unlike forestry, peat production is regionally less scattered and can thus have measurable local impacts although the total area of peat production is small. Three watersheds were used as study areas. Within each watershed, one stream drains a subcatchment affected only by peat mining, whereas the other stream flows through a subcatchment affected by forestry. The two subcatchment streams merge to form a single stream flowing into a lake. Studied watersheds were subject to no other forms of land use. In addition to the impacted sites, we used two pristine natural mire and two natural forest catchments as controls. We analysed the stable isotopes of carbon (δ13C) and nitrogen (δ15N) from benthic macroinvertebrates, stream bank soil, stream sediment, and dissolved organic carbon (DOC) in stream water. Samples for stable isotope analyses were collected in the summer of 2011 and samples for invertebrate community analyses in the autumn of 2011. Upon sampling we measured several physical parameters at each sampling site. In addition, stream water samples collected in summer and autumn 2012 were analysed for CH4 and CO2 gas concentrations and autumn gas samples also for their δ13C values. Our initial SIA results of invertebrates suggest some degree of discrimination between different sources of OM and possible effects on feeding habits, presumably due to the quality of the basal resources. We will explore this result further by examining not only taxonomical structure, but also the role that functional feeding groups may have on results. Initial results on invertebrate community structure in response to land use indicate the importance of geographical site location over land use effects. We suggest that SIA results should be interpreted together with benthic macroinvertebrate community analyses to get more insight into ecological impacts of different peatland uses with respect to changed food quality. Further, we will assess whether CH4 and CO2 could be used as an indicator of basal resource change. In future studies, we will address the role of the quality and quantity of the basal resources in more detail, which is likely to provide more insight into the effects of different forms of peatland use on aquatic ecosystems.

  2. Chemical characterization of fine particulate matter emitted by peat fires in Central Kalimantan, Indonesia, during the 2015 El Niño

    NASA Astrophysics Data System (ADS)

    Jayarathne, Thilina; Stockwell, Chelsea E.; Gilbert, Ashley A.; Daugherty, Kaitlyn; Cochrane, Mark A.; Ryan, Kevin C.; Putra, Erianto I.; Saharjo, Bambang H.; Nurhayati, Ati D.; Albar, Israr; Yokelson, Robert J.; Stone, Elizabeth A.

    2018-02-01

    Fine particulate matter (PM2.5) was collected in situ from peat smoke during the 2015 El Niño peat fire episode in Central Kalimantan, Indonesia. Twenty-one PM samples were collected from 18 peat fire plumes that were primarily smoldering with modified combustion efficiency (MCE) values of 0.725-0.833. PM emissions were determined and chemically characterized for elemental carbon (EC), organic carbon (OC), water-soluble OC, water-soluble ions, metals, and organic species. Fuel-based PM2.5 mass emission factors (EFs) ranged from 6.0 to 29.6 g kg-1 with an average of 17.3 ± 6.0 g kg-1. EC was detected only in 15 plumes and comprised ∼ 1 % of PM mass. Together, OC (72 %), EC (1 %), water-soluble ions (1 %), and metal oxides (0.1 %) comprised 74 ± 11 % of gravimetrically measured PM mass. Assuming that the remaining mass is due to elements that form organic matter (OM; i.e., elements O, H, N) an OM-to-OC conversion factor of 1.26 was estimated by linear regression. Overall, chemical speciation revealed the following characteristics of peat-burning emissions: high OC mass fractions (72 %), primarily water-insoluble OC (84 ± 11 %C), low EC mass fractions (1 %), vanillic to syringic acid ratios of 1.9, and relatively high n-alkane contributions to OC (6.2 %C) with a carbon preference index of 1.2-1.6. Comparison to laboratory studies of peat combustion revealed similarities in the relative composition of PM but greater differences in the absolute EF values. The EFs developed herein, combined with estimates of the mass of peat burned, are used to estimate that 3.2-11 Tg of PM2.5 was emitted to atmosphere during the 2015 El Niño peatland fire event in Indonesia. Combined with gas-phase measurements of CO2, CO, CH4, and volatile organic carbon from Stockwell et al. (2016), it is determined that OC and EC accounted for 2.1 and 0.04 % of total carbon emissions, respectively. These in situ EFs can be used to improve the accuracy of the representation of Indonesian peat burning in emission inventories and receptor-based models.

  3. Volatile and semivolatile organic compounds in laboratory peat fire emissions

    EPA Science Inventory

    Speciated volatile organic compounds (VOCs) and organic fine particulate matter (PM2.5) mass emission factors were determined from laboratory peat fire experiments. Peat samples originated from two wildlife reserves located near the coast of North Carolina, U.S. Gas and particula...

  4. Peat Soil Stabilization using Lime and Cement

    NASA Astrophysics Data System (ADS)

    Zambri, Nadhirah Mohd; Ghazaly, Zuhayr Md.

    2018-03-01

    This paper presents a study of the comparison between two additive Lime and Cement for treating peat soil in term of stabilization. Peat and organic soils are commonly known for their high compressibility, extremely soft, and low strength. The aim of this paper is to determine the drained shear strength of treated peat soil from Perlis for comparison purposes. Direct Shear Box Test was conducted to obtain the shear strength for all the disturbed peat soil samples. The quick lime and cement was mixed with peat soil in proportions of 10% and 20% of the dry weight peat soil. The experiment results showed that the addition of additives had improved the strength characteristics of peat soil by 14% increment in shear strength. In addition, the mixture of lime with peat soil yield higher result in shear strength compared to cement by 14.07% and 13.5% respectively. These findings indicate that the lime and cement is a good stabilizer for peat soil, which often experienced high amount of moisture content.

  5. Comparative Study of Emission Factors and Mutagenicity of ...

    EPA Pesticide Factsheets

    Wildfire events produce massive amounts of smoke and thus play an important role in local and regional air quality as well as public health. It is not well understood however if the impacts of wildfire smoke are influenced by fuel types or combustion conditions. Here we developed a novel combustion and sample-collection system that features an automated tube furnace to control combustion conditions and a multistage cryotrap system to efficiently collection particulate and semi-volatile phases of smoke emissions. The furnace sustained stable flaming and smoldering biomass (red oak and peat) burning conditions consistently for ~60 min. The multi-stage cryo-trap system (-10°C followed by -47°C, and ending in -70°C sequential impingers) collected up to 90% (by mass) of the smoke. Condensates were extracted and assessed for mutagenicity (polycyclic aromatic hydrocarbons (PAHs)- and nitroarene-type activity) in Salmonella strains TA100 and TA98+/-S9. Carbon dioxide, carbon monoxide (CO), and particulate matter (PM) concentrations monitored continuously during the combustion process were used to calculate modified combustion efficiency (MCE) and emission factors (EFs). We found that the MCE during smoldering conditions was 74% and 71% and during flaming conditions was 99% and 96% for red oak and peat, respectively. Red oak smoldering EFs for CO and PM were 209 g/kg and 147 g/kg, whereas flaming EFs were 16 g/kg and 0.6 g/kg, respectively. Peat smoldering EF

  6. Vegetation correlates of gibbon density in the peat-swamp forest of the Sabangau catchment, Central Kalimantan, Indonesia.

    PubMed

    Hamard, Marie; Cheyne, Susan M; Nijman, Vincent

    2010-06-01

    Understanding the complex relationship between primates and their habitats is essential for effective conservation plans. Peat-swamp forest has recently been recognized as an important habitat for the Southern Bornean gibbon (Hylobates albibarbis), but information is scarce on the factors that link gibbon density to characteristics of this unique ecosystem. Our aims in this study were firstly to estimate gibbon density in different forest subtypes in a newly protected, secondary peat-swamp forest in the Sabangau Catchment, Indonesia, and secondly to identify which vegetation characteristics correlate with gibbon density. Data collection was conducted in a 37.1 km(2) area, using auditory sampling methods and vegetation "speed plotting". Gibbon densities varied between survey sites from 1.39 to 3.92 groups/km(2). Canopy cover, tree height, density of large trees and food availability were significantly correlated with gibbon density, identifying the preservation of tall trees and good canopy cover as a conservation priority for the gibbon population in the Sabangau forest. This survey indicates that selective logging, which specifically targets large trees and disrupts canopy cover, is likely to have adverse effects on gibbon populations in peat-swamp forests, and calls for greater protection of these little-studied ecosystems. (c) 2010 Wiley-Liss, Inc.

  7. Development of a multidisciplinary method for mapping spatial extent and C-content of tropical ombrotrophic peatlands

    NASA Astrophysics Data System (ADS)

    Illés, Gábor; Kristijono, Agus; Pfeifer, Norbert; Pásztor, László; Shandhyavitri, Ari; Szatmári, Gábor; Sutikno, Sigit; Molnár, Gábor; László, Péter; Árvai, Mátyás; Mészáros, János; Koós, Sándor; Bakacsi, Zsófia; Takács, Katalin; Király, Géza; Székely, Balázs

    2017-04-01

    One of the world's most worrying environmental problems is the peat land CO2 emission problem of Indonesia: peat lands developed during the Quaternary are now under strong human influence; the artificial lowering of the natural water table leads to rapid drying and compaction of the peat layer, which then becomes vulnerable to subsurface fire. The emitted CO2 of this process is assessed to be 0.5 billion tonnes from Indonesia that is slightly higher than total emission of e.g. United Kingdom in 2014 (0.42 billion tonnes). To cope with the problem it is inevitable to assess the extents of peat lands and volumetric estimation of the potentially affected layers. Methods suitable for mapping of the peat lands (current situation and as far as possible retrospectively), thickness determination and partly thickness estimation of the peat layer are integrated in an advanced geostatistical approach building upon geomorphic, ecological, remote sensing, and geophysical methods to provide information on peat matrix attributes such as peat thickness of organo-mineral horizons between peat and underlying substrate, the presence of buried wood, buttressed trees or tip-up pools and soil type. In order to cope with the problem, our research group is developing a multidisciplinary methodology making use of our experience in soil science, GIS, remote sensing for forestry and ecology, geomorphometry, geophysics, LiDAR remote sensing, parameter estimation and geostatistical methods. The methodology is based largely on GIS data integration, but also applies technologies of 'big data' processing. Our integrative attitude ensures the holistic consideration of the problem, analyzing its origins, temporal development and varying spatial extent, its subprocesses in a multi-scale, inter- and transdisciplinary approach. At the same time practical problems, feasibility, costs, and human resource need consideration in order to design a viable solution. In the development of the solution, elements of gathered experience is integrated acquired in previous similar projects in Hungary, in the Pannonian Basin and in Indonesia, in southern Kalimantan and Indragiri Hilir, Sumatra. The pointwise and profilewise data acquisition of peat forms is converted to mapping methods augmented with a sophisticated sampling strategy. Besides the similarities - freshwater, ombrotrophic peatlands - we also have to focus on remarkable dissimilarities - e.g., herbaceous vs. woody peat material. In the case of the Pannonian Basin the peat occurrences have been developed as the filling up of the floodplains. In the Indonesian case, however, only the basin flanks are partly comparable to that generation mechanism, whereas see level changes play an important role in the development of the vast Indonesian peat occurrences. Geomorphometric approach helps in designing the sample strategy, remote sensing tools are responsible to deliver high-resolution topographic data as input. The varying thickness is assessed with geophysical measurements and shallow boreholes deployed at sampling points and profiles dictated by the sophisticated sampling strategy. During the measurement and sampling the experience gathered is fed back to the sampling strategy giving a dynamic plan for the continuation of the sampling. The advanced evaluation and visualization techniques applied result in a digital map system that also contains estimates on its quality and accuracy in the spatial context. This new approach brings us closer to the understanding of Indonesian peatland development that may also be used elsewhere in similar environmental contexts.

  8. Water Table Depth Reconstruction in Ombrotrophic Peatlands Using Biomarker Abundance Ratios and Compound-Specific Hydrogen Isotope Composition

    NASA Astrophysics Data System (ADS)

    Nichols, J. E.; Jackson, S. T.; Booth, R. K.; Pendall, E. G.; Huang, Y.

    2005-12-01

    Sediment cores from ombrotrophic peat bogs provide sensitive records of changes in precipitation/evaporation (P/E) balance. Various proxies have been developed to reconstruct surface moisture conditions in peat bogs, including testate amoebae, plant macrofossils, and peat humification. Studying species composition of testate amoeba assemblages is time consuming and requires specialized training. Humification index can be influenced by environmental factors other than moisture balance. The plant macrofossil proxy is less quantitative and cannot be performed on highly decomposed samples. We demonstrate that the ratio of C23 alkane to C29 alkane abundance may provide a simple alternative or complementary means of tracking peatland water-table depth. Data for this proxy can be collected quickly using a small sample (100 mg dry). Water-table depth decreases during drought, and abundance of Sphagnum, the dominant peat-forming genus, decreases as vascular plants increase. Sphagnum moss produces mainly medium chain-length alkanes (C21-C25) while vascular plants (grasses and shrubs) produce primarily longer chain-length alkanes (C27-C31). Therefore, C23:C29 n-alkane ratios quantitatively track the water table depth fluctuations in peat bogs. We compared C23:C29 n-alkane ratios in a core from Minden Bog (southeastern Michigan) with water table depth reconstructions based on testate-amoeba assemblages and humification. The 184-cm core spans the past ~3kyr of continuous peat deposition in the bog. Our results indicate that the alkane ratios closely track the water table depth variations, with C29 most abundant during droughts. We also explored the use of D/H ratios in Sphagnum biomarkers as a water-table depth proxy. Compound-specific hydrogen isotope ratio analyses were performed on Sphagnum biomarkers: C23 and C25 alkane and C24 acid. Dry periods are represented in these records by an enrichment of deuterium in these Sphagnum-specific compounds. These events also correlate with drought events in the testate amoeba record and the alkane abundance ratio record. These biogeochemical proxies can be used in paleohydrological studies of ombrotrophic bogs and provide a new and complimentary source of data from these underutilized paleoclimate archives.

  9. Recent atmospheric lead deposition recorded in an ombrotrophic peat bog of Great Hinggan Mountains, Northeast China, from 210Pb and 137Cs dating.

    PubMed

    Bao, K; Xia, W; Lu, X; Wang, G

    2010-09-01

    Radioactive markers are useful in dating lead deposition patterns from industrialization in peat archive. Peat cores were collected in an ombrotrophic peat bog in the Great Hinggan Mountains in Northeast China in September 2008 and dated using (210)Pb and (137)Cs radiometric techniques. The mosses in both cores were examined systematically for dry bulk density, water and ash content. Lead also was measured using atomic emission spectroscopy with inductively coupled plasma (ICP-AES). Both patterned peat profiles were preserved well without evident anthropogenic disturbance. Unsupported (210)Pb and (137)Cs decreased with the depth in both of the two sample cores. The (210)Pb chronologies were established using the constant rate of supply model (CRS) and are in good agreement with the (137)Cs time marker. Recent atmospheric (210)Pb flux in Great Hinggan Mountains peat bog was estimated to be 337 Bq m(-2)y(-1), which is consistent with published data for the region. Lead deposition rate in this region was also derived from these two peat cores and ranged from 24.6 to 55.8 mg m(-2)y(-1) with a range of Pb concentration of 14-262 microg g(-1). The Pb deposition patterns were consistent with increasing industrialization over the last 135-170 y, with a peak of production and coal burning in the last 50 y in Northeast China. This work presents a first estimation of atmospheric Pb deposition rate in peatlands in China and suggests an increasing trend of environmental pollution due to anthropogenic contaminants in the atmosphere. More attention should be paid to current local pollution problems, and society should take actions to seek a balance between economic development and environmental protection. Copyright 2010 Elsevier Ltd. All rights reserved.

  10. Dissolved Organic Carbon in Marginal, Damaged Peatlands: Using 14C to Understand DOC Losses

    NASA Astrophysics Data System (ADS)

    Luscombe, D.; Grand-Clement, E.; Garnett, M.; Anderson, K.; Gatis, N.; Benaud, P.; Brazier, R.

    2013-12-01

    Peatlands are widely represented throughout the world and act as an important store of carbon, as well as providing society with a range of other ecosystem services, such as drinking water or the support of rare habitats. However, the combination of historical management practices, and the predicted impact of climate change means that they are now largely under threat. In the shallow peatlands of Exmoor National Park (South West UK), peat cutting and intensive drainage in the 19th and 20th century for agricultural reclamation have changed the hydrological behaviour of the peat. This damage has dried out the upper layers, causing oxidation, erosion and vegetation change. In addition, their location on the southernmost limit of peatlands geographical extent in northern Europe makes them particularly vulnerable to the predicted changes in rainfall and temperature. Recent modelling work has shown that such marginal peatlands may disappear as early as 2050. Restoration programs are currently in place, aiming to restore the hydrological functioning of the peat. However, current dissolved organic carbon (DOC) losses from damaged peatlands are especially of concern, because of the contribution of the aquatic pathways in the C flux, and because of the impact on water quality. DOC has been shown to originate from the drainage of highly-aged organic matter. In stream waters, DOC from low flow tends to contain a larger component of older C compared to that of high flow. Both the impact of extensive drainage on where DOC is originating from and the effect of peatland restoration on this process remain poorly understood. We used 14C dating of DOC from streams and pore water, as well as from damaged peat, in order to gain a better understanding of the process and origin of DOC loss in drained shallow peatlands. This will further help us understand the potential for peatland restoration. Work was carried out in a small intensively monitored catchment in Exmoor. Samples were taken in an area of shallow peat (ca. 20-30 cm depth) drained by a medium size ditch (50 x 50 cm). Samples of DOC from stream water were taken at low and high flow during 3 separate rain events in Winter- Spring 2013 using automatic pump samplers. Samples of DOC in pore water were taken 2 m away from the ditch at 5 and 15 cm depth on two occasions. Finally, matching bulk peat samples were collected at 5 and 15 cm depth. Intensive monitoring data also provides information on water table depth and level in streams. A neighbouring pristine peat area was used as a control, and DOC pore water and bulk peat soil samples were taken at 5, 15 and 45 cm depth on two occasions. Preliminary results show that DOC lost in streams at high flow contains a greater contribution of bomb-14C compared to that at low flow (107 and 101 % modern respectively). Stream water DOC at low flow had a 14C concentration lower than that in pore water at both 5 and 15 cm depth (105 and 102% modern, respectively), suggesting that low flow stream water DOC is predominantly older than that found in pore water at depth.

  11. Experimental Investigation of the Deepening of the Combustion Front into Peat Layers Different in Botanical Composition

    NASA Astrophysics Data System (ADS)

    Kasymov, D. P.

    2017-01-01

    The deepening of the center of combustion into peat layers of different botanical compositions (pine-cotton grass and grass-sphagnum peats), typical for the Tomsk region, was investigated experimentally. Peats were ignited from a model ground forest fire initiated by firing of a needle-litter layer. As a result of laboratory investigations, the change in the temperature in the bulk of peat samples with time was determined and analyzed, and the rates of their combustion in the horizontal and vertical directions were estimated. It was established that a fire penetrates deep into a layer of grass-sphagnum peat, containing more than 70% of combustion conductors in its composition, more rapidly as compared to that of pine-cotton grass peat. The rates of combustion of grass-sphagnum peat in the vertical and horizontal directions are larger by 20 and 22%, respectively, than those of pine-cotton grass peat, which is evidently due to the botanical composition of grass-sphagnum peat and the random arrangement of components in its layers.

  12. Testing the potential of bacterial branched tetraether membrane lipids as temperature proxy in peat and immature coal deposits

    NASA Astrophysics Data System (ADS)

    Weijers, J. W. H.; Steinmann, P.; Hopmans, E. C.; Basiliko, N.; Finkelstein, S. A.; Johnson, K. R.; Schouten, S.; Sinninghe Damsté, J. S.

    2012-04-01

    Branched glycerol dialkyl glycerol tetraether (brGDGT) membrane lipids occur ubiquitously in peat and soil. In soil, the degree of methylation and cyclisation of branched tetraethers (MBT index and CBT ratio, respectively) has shown to relate to both soil pH and annual mean air temperature (MAT). Using this relation, past annual MATs can be reconstructed by analysing brGDGTs in marine sediment records near large river outflows. More recently, the potential of this MBT/CBT proxy is also being explored in lakes. Despite being more abundant in peat than soils, however, the utility of the proxy has not yet been fully explored in peat records. Present day peat records generally extent back to the early Holocene, but if the MBT/CBT proxy were shown to be applicable in peat deposits, there is also potential to apply it to immature coal deposits like lignites, which could provide valuable snapshots of continental climate back to the early Cenozoic. Here results are presented of analyses of different peats in south eastern Canada, showing that the pH of peat along a nutrient gradient is rather well reflected by the CBT. Annual MAT reconstructions based on the MBT/CBT soil calibration, however, tend to overestimate measured MAT. This is also the case for peat analysed from the surface of Etang de la Gruère peat bog in the Swiss Jura Mountains. Along the 6m depth profile of this bog (~13ka), CBT-reconstructed pH is compared with in-situ measured pore water pH showing that the brGDGT composition does not reflect present-day in-situ conditions. Instead, it reflects a stratigraphic boundary between Carex and Sphagnum dominated peat at 4 m depth that is not present in the pore water profile, testifying to a 'fossil' nature of the brGDGTs down the peat bog. Analyses of three immature coals of the Argonne Premium Coal Series reveal that branched GDGTs are present in the most immature coal, the Beulah Zap lignite (Ro = 0.25%), and only just above detection limit in the Wyodak Anderson coal (Ro = 0.32%), both of about the same age (Late Palaeocene). In the more mature Illinois #6 coal (Ro = 0.46%), brGDGTs are completely absent. In the Denver Basin, a comparison is made between outcrop and drilled core samples of Palaeocene lignites. BrGDGTs are preserved in the core samples, although in low quantities compared to peat. Outcrop samples are clearly overprinted by modern soil derived brGDGTs, despite digging a meters deep trench, which shows the need to obtain fresh non-weathered samples by coring. Reconstructed annual MAT for both the Beulah Zap and the Denver Basin lignites are several degrees higher than estimates based on leaf margin and oxygen isotope analyses from the same sites. Both reconstructions do testify, nevertheless, to the warm continental conditions during the early Cenozoic of the central U.S.A.. Although further validation is required, potentially in the form of a specific peat calibration, these results do show potential for application of the MBT/CBT temperature proxy in peat and lignite deposits.

  13. Thermomagnetic properties of peat-soil layers from Sag pond near Lembang Fault, West Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Iryanti, Mimin; Wibowo, Dimas Maulana; Bijaksana, Satria

    2015-09-01

    Sag pond is a body of water near fault system as water flows blocked by the fault. Sag pond is a special type of environment for peat formation as peat layers in were deposited as the fault moves in episodic fashion. Depending on the history of the fault, peat layers are often interrupted by soil layers. In this study, core of peat-soil layers from a Sag pond in Karyawangi Village near Lembang Fault was obtained and analyzed for its magnetic properties. The 5 m core was obtained using a hand auger. Individual samples were obtained every cm and measured for their magnetic susceptibility. In general, there are three distinct magnetic susceptibility layers that were associated with peat and soil layers. The upper first 1 m is unconsolidated mud layer with its relatively high magnetic susceptibility. Between 1-2.81 m, there is consolidated mud layer and the lowest part (2.82-5) m is basically peat layer. Six samples were then measured for their thermomagnetic properties by measuring their susceptibility during heating and cooling from room temperature to 700°C. The thermomagnetic profiles provide Curie temperatures for various magnetic minerals in the cores. It was found that the upper part (unconsolidated mud) contains predominantly iron-oxides, such as magnetite while the lowest part (peat layer) contains significant amount of iron-sulphides, presumably greigite.

  14. Sequestration of arsenic in ombrotrophic peatlands

    NASA Astrophysics Data System (ADS)

    Rothwell, James; Hudson-Edwards, Karen; Taylor, Kevin; Polya, David; Evans, Martin; Allott, Tim

    2014-05-01

    Peatlands can be important stores of arsenic but we are lacking spectroscopic evidence of the sequestration pathways of this toxic metalloid in peatland environments. This study reports on the solid-phase speciation of anthropogenically-derived arsenic in atmospherically contaminated peat from the Peak District National Park (UK). Surface and sub-surface peat samples were analysed by synchrotron X-ray absorption spectroscopy on B18 beamline at Diamond Light Source (UK). The results suggest that there are contrasting arsenic sequestration mechanisms in the peat. The bulk arsenic speciation results, in combination with strong arsenic-iron correlations at the surface, suggest that iron (hydr)oxides are key phases for the immobilisation of arsenic at the peat surface. In contrast, the deeper peat samples are dominated by arsenic sulphides (arsenopyrite, realgar and orpiment). Given that these peats receive inputs solely from the atmosphere, the presence of these sulphide phases suggests an in-situ authigenic formation. Redox oscillations in the peat due to a fluctuating water table and an abundant store of legacy sulphur from historic acid rain inputs may favour the precipitation of arsenic sequestering sulphides in sub-surface horizons. Oxidation-induced loss of these arsenic sequestering sulphur species by water table drawdown has important implications for the mobility of arsenic and the quality of waters draining peatlands.

  15. Temperature-driven adaptation of the bacterial community in peat measured by using thymidine and leucine incorporation.

    PubMed

    Ranneklev, S B; Bååth, E

    2001-03-01

    The temperature-driven adaptation of the bacterial community in peat was studied, by altering temperature to simulate self-heating and a subsequent return to mesophilic conditions. The technique used consisted of extracting the bacterial community from peat using homogenization-centrifugation and measuring the rates of thymidine (TdR) or leucine (Leu) incorporation by the extracted bacterial community at different temperatures. Increasing the peat incubation temperature from 25 degrees C to 35, 45, or 55 degrees C resulted in a selection of bacterial communities whose optimum temperatures for activity correlated to the peat incubation temperatures. Although TdR and Leu incorporations were significantly correlated, the Leu/TdR incorporation ratios were affected by temperature. Higher Leu/TdR incorporation ratios were found at higher temperatures of incubation of the extracted bacterial community. Higher Leu/TdR incorporation ratios were also found for bacteria in peat samples incubated at higher temperatures. The reappearance of the mesophilic community and disappearance of the thermophilic community when the incubation temperature of the peat was shifted down were monitored by measuring TdR incorporation at 55 degrees C (thermophilic activity) and 25 degrees C (mesophilic activity). Shifting the peat incubation temperature from 55 to 25 degrees C resulted in a recovery of the mesophilic activity, with a subsequent disappearance of the thermophilic activity. The availability of substrate for bacterial growth varied over time and among different peat samples. To avoid confounding effects of substrate availability, a temperature adaptation index was calculated. This index consisted of the log(10) ratio of TdR incorporation at 55 and 25 degrees C. The temperature index decreased linearly with time, indicating that no thermophilic activity would be detected by the TdR technique 1 month after the temperature downshift. There were no differences between the slopes of the temperature adaptation indices over time for peat samples incubated at 55 degrees C 3 or 11 days before incubation at 25 degrees C. Thus, different levels of bacterial activity did not affect the temperature-driven adaptation of the bacterial community.

  16. Temperature-Driven Adaptation of the Bacterial Community in Peat Measured by Using Thymidine and Leucine Incorporation

    PubMed Central

    Ranneklev, Sissel Brit; Bååth, Erland

    2001-01-01

    The temperature-driven adaptation of the bacterial community in peat was studied, by altering temperature to simulate self-heating and a subsequent return to mesophilic conditions. The technique used consisted of extracting the bacterial community from peat using homogenization-centrifugation and measuring the rates of thymidine (TdR) or leucine (Leu) incorporation by the extracted bacterial community at different temperatures. Increasing the peat incubation temperature from 25°C to 35, 45, or 55°C resulted in a selection of bacterial communities whose optimum temperatures for activity correlated to the peat incubation temperatures. Although TdR and Leu incorporations were significantly correlated, the Leu/TdR incorporation ratios were affected by temperature. Higher Leu/TdR incorporation ratios were found at higher temperatures of incubation of the extracted bacterial community. Higher Leu/TdR incorporation ratios were also found for bacteria in peat samples incubated at higher temperatures. The reappearance of the mesophilic community and disappearance of the thermophilic community when the incubation temperature of the peat was shifted down were monitored by measuring TdR incorporation at 55°C (thermophilic activity) and 25°C (mesophilic activity). Shifting the peat incubation temperature from 55 to 25°C resulted in a recovery of the mesophilic activity, with a subsequent disappearance of the thermophilic activity. The availability of substrate for bacterial growth varied over time and among different peat samples. To avoid confounding effects of substrate availability, a temperature adaptation index was calculated. This index consisted of the log10 ratio of TdR incorporation at 55 and 25°C. The temperature index decreased linearly with time, indicating that no thermophilic activity would be detected by the TdR technique 1 month after the temperature downshift. There were no differences between the slopes of the temperature adaptation indices over time for peat samples incubated at 55°C 3 or 11 days before incubation at 25°C. Thus, different levels of bacterial activity did not affect the temperature-driven adaptation of the bacterial community. PMID:11229900

  17. Effect of vegetation removal and water table drawdown on the non-methane biogenic volatile organic compound emissions in boreal peatland microcosms

    NASA Astrophysics Data System (ADS)

    Faubert, Patrick; Tiiva, Päivi; Rinnan, Åsmund; Räty, Sanna; Holopainen, Jarmo K.; Holopainen, Toini; Rinnan, Riikka

    2010-11-01

    Biogenic volatile organic compound (BVOC) emissions are important in the global atmospheric chemistry and their feedbacks to global warming are uncertain. Global warming is expected to trigger vegetation changes and water table drawdown in boreal peatlands, such changes have only been investigated on isoprene emission but never on other BVOCs. We aimed at distinguishing the BVOCs released from vascular plants, mosses and peat in hummocks (dry microsites) and hollows (wet microsites) of boreal peatland microcosms maintained in growth chambers. We also assessed the effect of water table drawdown (-20 cm) on the BVOC emissions in hollow microcosms. BVOC emissions were measured from peat samples underneath the moss surface after the 7-week-long experiment to investigate whether the potential effects of vegetation and water table drawdown were shown. BVOCs were sampled using a conventional chamber method, collected on adsorbent and analyzed with GC-MS. In hummock microcosms, vascular plants increased the monoterpene emissions compared with the treatment where all above-ground vegetation was removed while no effect was detected on the sesquiterpenes, other reactive VOCs (ORVOCs) and other VOCs. Peat layer from underneath the surface with intact vegetation had the highest sesquiterpene emissions. In hollow microcosms, intact vegetation had the highest sesquiterpene emissions. Water table drawdown decreased monoterpene and other VOC emissions. Specific compounds could be closely associated to the natural/lowered water tables. Peat layer from underneath the surface of hollows with intact vegetation had the highest emissions of monoterpenes, sesquiterpenes and ORVOCs whereas water table drawdown decreased those emissions. The results suggest that global warming would change the BVOC emission mixtures from boreal peatlands following changes in vegetation composition and water table drawdown.

  18. Peatland Open-water Pool Biogeochemistry: The Influence of Hydrology and Vegetation

    NASA Astrophysics Data System (ADS)

    Arsenault, J.; Talbot, J.; Moore, T. R.

    2017-12-01

    Peatland open-water pools are net sources of carbon to the atmosphere. However, their interaction with the surrounding peat remains poorly known. In a previous study, we showed that shallow pools are richer in nutrients than deep pools. While depth was the main driver of biogeochemistry variations across time and space, analyses also showed that pool's adjacent vegetation may have an influence on water chemistry. Our goal is to understand the relationship between the biogeochemistry of open-water pools and their surroundings in a subboreal ombrotrophic peatland of southern Quebec (Canada). To assess the influence of vegetation on pool water chemistry, we compare two areas covered with different types of vegetation: a forested zone dominated by spruce trees and an open area mostly covered by Sphagnum spp. To evaluate the direction of water (in or out of the pools), we installed capacitance water level probes in transects linking pools in the two zones. Wells were also installed next to each probe to collect peat pore water samples. Samples were taken every month during summer 2017 and analyzed for dissolved organic carbon, nitrogen and phosphorus, pH and specific UV absorbance. Preliminary results show differences in peat water chemistry depending on the dominant vegetation. In both zones, water levels fluctuations are disconnected between peat and the pools, suggesting poor horizontal water movement. Pool water chemistry may be mostly influenced by the immediate surrounding vegetation than by the local vegetation pattern. Climate and land-use change may affect the vegetation structure of peatlands, thus affecting pool biogeochemistry. Considering the impact of pools on the overall peatland capacity to accumulate carbon, our results show that more focus must be placed on pools to better understand peatland stability over time.

  19. Microbial Response in Peat Overlying Kimberlite Pipes in The Attawapiskat Area, Northern Ontario

    NASA Astrophysics Data System (ADS)

    Donkervoort, L. J.; Southam, G.

    2009-05-01

    Exploration for ore deposits occurring under thick, post-mineralized cover requires innovative methods and instrumentation [1]. Buried kimberlite pipes 'produce' geochemical conditions such as increased pH and decreased Eh in overlying peat [2] that intuitively select for bacterial populations that are best able to grow and, which in turn affect the geochemistry producing a linked signal. A microbiological study of peat was conducted over the Zulu kimberlite in the Attawapiskat area of the James Bay Lowlands to determine if the type of underlying rock influences the diversity and populations of microorganisms living in the overlying peat. Peat was sampled along an 800 m transect across the Zulu kimberlite, including samples underlain by limestone. Microbial populations and carbon source utilization patterns of peat samples were compared between the two underlying rock types. Results demonstrate an inverse relationship of increased anaerobic populations and lower biodiversity directly above the kimberlite pipe. These results support a reduced 'column' consistent with the model presented by Hamilton [3]. The combination of traditional bacterial enumeration and community- level profiling represents a cost-effective and efficient exploration technique that can serve to compliment both geophysical and geochemical surveys. [1] Goldberg (1998) J. Geochem. Explor. 61, 191-202 [2] Hattori and Hamilton (2008) Appl. Geochem. 23, 3767-3782 [3] Hamilton (1998) J. Geochem. Explor. 63, 155-172

  20. Smouldering peat fires in polluted landscapes and their impact on heavy metal mobilisation

    NASA Astrophysics Data System (ADS)

    Clay, Gareth; Rothwell, James; Shuttleworth, Emma

    2016-04-01

    Whilst wildfires are commonly viewed as a threat confined to Southern Europe, Australia, and North America, recognition of wildfire hazard in the UK has been growing in recent years. UK wildfires often occur on heathland vegetation underlain by peat. These areas can contain industrially-derived legacy pollutants, such as mercury, lead, and arsenic. Ignition of the peat can lead to long-term smouldering fires that are difficult to extinguish, leading to large-scale damage. While work on assessing post-fire damage of peatlands has focussed on carbon and nutrient dynamics, there has been little attention on the release of heavy metals following wildfires. This paper presents initial data from a preliminary study to assess heavy metal release from smouldering peat fires. A homogenised sample of peat from the Peak District National Park, UK was ignited, monitored using thermocouples and an IR camera, and left to smoulder until self-extinguished (~9 hours). Total mass loss was 61%. Samples of pre- and post-burn peat were analysed for their heavy metal concentrations using XRF, ICP-MS, and CVAFS. Sample analysis is ongoing, but initial data shows that there is a substantial (3x) relative enrichment in heavy metal concentrations in post-fire ash. This has important implications for subsequent mobilisation in the aquatic and terrestrial environments, as well as consequences for human health risk through atmospheric redistribution.

  1. Acoustic Monitoring of Ebullitive Flux from a Mire Ecosystem in Subarctic Sweden

    NASA Astrophysics Data System (ADS)

    Burke, S. A.; Varner, R. K.; Palace, M. W.; Wik, M.; Crill, P. M.; McCalley, C. K.; Amante, J.

    2012-12-01

    Methane (CH4) is a potent green house gas with wetlands being the largest natural source to the atmosphere. Studies in the Stordalen Mire, a dynamic peatland complex 11km east of the Abisko Scientific Research Station (ANS) in northern Sweden, that focused on CH4 transport to the atmosphere from peatlands have shown increased emissions over the past decades. Ebullitive flux (bubbling) is a potentially significant pathway of CH4 from mire/lake ecosystems. Ebullitive fluxes were successfully monitored acoustically in peat and lakes in 2011. This work expands those measurements with installation of sensors in ponds and permafrost thaw margins in 2012. Eighteen acoustic sensors were installed in peat (6), pond (6), and lake (6) sites at Stordalen Mire. Recorders collected acoustic data continuously from each sensor and gas samples were collected from the traps at least once per week beginning 7 July. The CH4 concentration in the gas was measured using gas chromatography and selected samples were also analyzed for 13C-CH4 using a Quantum Cascade Laser (QCL). The acoustic data were evaluated using a MATLAB program for determine the timing and volume of each ebullition event. The CH4 ebullitive flux from the peat was greater in July 2011 than during the same period in 2012. In comparison, the ponds and thaw margins released CH4 at a faster rate in 2012 than was observed in the peat and lake sensors in 2011. Inter-annual differences in ebullitive rates suggest that weather scale differences between years may control CH4 ebullitive flux. 13C-CH4 measured in the pore waters of pond sediment suggests that not all ponds are dominated by the same production processes. However, 13C-CH4 measured in bubbles and sediments are not different, implying little or no oxidation of CH4 during transport to the water surface. Our data suggests that changes in atmospheric pressure and water table height correlated with the ebullitive release in all three sub-ecosystems.

  2. Biogeochemistry of carbon and related major and trace elements in peat bog soils of the middle taiga of Western Siberia (Russia).

    NASA Astrophysics Data System (ADS)

    Stepanova, V. A.; Mironycheva-Tokareva, N. P.; Pokrovsky, O. S.

    2012-04-01

    Global climate changes impact the status of wetland ecosystems shifting the balances of the carbon, macro-, and microelements cycles. This study aims to establish the features of accumulation and distribution of major- and trace elements in the organic layer of peat bog soils, belonging to different ecosystems of the oligotrophic bog complex located in the middle taiga of Western Siberia (Khanty-Mansiysk region, Russia). Key areas which are selected for this study include the following bog conjugate elementary ecosystems: higher ryam, lower ryam, ridge-hollow complex, and oligotrophic poor fen as characterized previously [1]. We have sampled various peat types along the entire length of the soil column (every 10 cm down to 3 m). Peat samples were analyzed for a wide range of macro- and microelements using an ICP-MS technique following full acid digestion in a microwave oven. These measurements allowed quantitative estimates of major- and trace elements in the peat deposits within the whole bog complex and individual elementary landscapes. Based on the data obtained, the lateral and radial geochemical structures of the bog landscapes were determined and clarified for the first time for middle taiga of the West Siberian plain. The similar regime of mineral nutrition during the complete bog landscape formation was detected for the peat deposits based on the measurements of some major- and trace elements (Ca, Fe, Mg, etc.). The vertical distribution of some major and some trace elements along the profile of peat column is rather uniform with relatively strong increase in the bottom organic layers. This strongly suggests the similarity of the processes of element accumulation in the peat and relatively weak post depositional redistribution of elements within the peat soil profile. Overall, obtained corroborate the existing view on chemical composition of peats being determined by botanical peat's components (which forms this peat deposit), atmospheric precipitation, position of ecosystems in the landscape (lateral migration) and types of bedrocks [2]. The results allow better understanding of the coupling between biogeochemical cycles of carbon and major and trace elements in peat soils in order to predict the future changes in both concentrations and stocks of chemical elements in the Western Siberia peat bog systems under climate warming.

  3. Anthropogenic contributions to atmospheric Hg, Pb and As accumulation recorded by peat cores from southern Greenland and Denmark dated using the 14C "bomb pulse curve"

    NASA Astrophysics Data System (ADS)

    Shotyk, W.; Goodsite, M. E.; Roos-Barraclough, F.; Frei, R.; Heinemeier, J.; Asmund, G.; Lohse, C.; Hansen, T. S.

    2003-11-01

    Mercury concentrations are clearly elevated in the surface and sub-surface layers of peat cores collected from a minerotrophic ("groundwater-fed") fen in southern Greenland (GL) and an ombrotrophic ("rainwater-fed") bog in Denmark (DK). Using 14C to precisely date samples since ca. AD 1950 using the "atmospheric bomb pulse," the chronology of Hg accumulation in GL is remarkably similar to the bog in DK where Hg was supplied only by atmospheric deposition: this suggests not only that Hg has been supplied to the surface layers of the minerotrophic core (GL) primarily by atmospheric inputs, but also that the peat cores have preserved a consistent record of the changing rates of atmospheric Hg accumulation. The lowest Hg fluxes in the GL core (0.3 to 0.5 μg/m 2/yr) were found in peats dating from AD 550 to AD 975, compared to the maximum of 164 μg/m 2/yr in AD 1953. Atmospheric Hg accumulation rates have since declined, with the value for 1995 (14 μg/m 2/yr) comparable to the value for 1995 obtained by published studies of atmospheric transport modelling (12 μg/m 2/yr). The greatest rates of atmospheric Hg accumulation in the DK core are also found in the sample dating from AD 1953 and are comparable in magnitude (184 μg/m 2/yr) to the GL core; again, the fluxes have since gone into strong decline. The accumulation rates recorded by the peat core for AD 1994 (14 μg/m 2/yr) are also comparable to the value for 1995 obtained by atmospheric transport modelling (18 μg/m 2/yr). Comparing the Pb/Ti and As/Ti ratios of the DK samples with the corresponding crustal ratios (or "natural background values" for preanthropogenic peat) shows that the samples dating from 1953 also contain the maximum concentration of "excess" Pb and As. The synchroneity of the enrichments of all three elements (Hg, Pb, and As) suggests a common source, with coal-burning the most likely candidate. Independent support for this interpretation was obtained from the Pb isotope data ( 206Pb/ 207Pb = 1.1481 ± 0.0002 in the leached fraction and 1.1505 ± 0.0002 in the residual fraction) which is too radiogenic to be explained in terms of gasoline lead alone, but compares well with values for U.K. coals. In contrast, the lowest values for 206Pb/ 207Pb in the DK profile (1.1370 ± 0.0003 in the leached fraction and 1.1408 ± 0.0003 in the residual fraction) are found in the sample dating from AD 1979: this shows that the maximum contribution of leaded gasoline occurred approximately 25 yr after the zenith in total anthropogenic Pb deposition.

  4. Impact of drainage on wettability of fen peat-moorsh soils

    NASA Astrophysics Data System (ADS)

    Szajdak, L.; Szatyłowicz, J.; Brandyk, T.

    2009-04-01

    High water retention in peat is attributed to structural voids (macro-pores) due to the partial degradation of the structure of peat-forming plants, and molecular absorption sites (micro-pores) associated with the formation of humic substances. Water retention by the heterogeneously-structured system in peat organic matter depends on the chemical structure of solid surfaces. These naturally wet solids, if dried sufficiently, lose the ability to rewet quickly when immersed in water. The ability of peat surfaces to attract and hold water is attributed to hydrophilic functional groups which characterize the organic substances of peat. The investigations of chemical and physical properties were performed for three different peat-moorsh soils located in the Biebrza River Valley in Poland. All examined soils were used as meadow. Soil samples were taken from two depths: 5-10 cm (moorsh) and 50-80 cm (peat). Total organic carbon (TOC), dissolved organic carbon (DOC) and humic acids (HA) extracted from these samples were analysed. Also basic physical properties such as ash content and bulk density were measured. Wetting behavior of soils was quantified using water drop penetration time test (WDPT) and measured values of the soil-water contact angle using sessile drop method. The measurements were conducted on air-dry soil samples which volumetric moisture content was not exceeding 7%. The significant differences in the concentrations of TOC, DOC and properties of HA between two investigated depth of among peat and moorsh samples were observed. The measured concentrations of total organic carbon in the considered soils ranged from 37.2 to 45.6%. Generally, the decrease of total organic carbon concentration with depth of profiles was observed. The contents of dissolved organic carbon in the soils ranged from 5.3 to 19.4%. The quantities of dissolved organic carbon decreased simultaneously with E4/E6 values and with the depth of the soil profiles. For the investigated peat's, an increase of the depth is accompanied by the decrease in the degree of humification or an increase in chemical maturity of HA. The measured values of the contact angle for investigated soils were in the range from 81.4˚ to 114.3˚ what indicates their high water repellency. The WDPT was positively correlated with total organic carbon, organic matter and humic acids content while ash content, soil bulk density, pH and absorbance were correlated negatively. The highest value of correlation coefficient (statistically significant) was obtained for relation between WDPT and ash content. The soil water contact angle was less correlated with peat-moorsh soil properties in comparison with WDPT with one exception pH. The pH against the contact angle indicates tendency of increasing the contact angle with decreasing pH.

  5. Thermal characterization of organic matter along a (hypothetical) coalification gradient

    NASA Astrophysics Data System (ADS)

    Cavallo, Ornella; Provenzano, Maria Rosaria; Zaccone, Claudio

    2017-04-01

    Geochemical transformations of organic carbon (C) in aquatic and terrestrial ecosystems are important starting points for genesis of peats, brown coals and other coal precursors. The humification process plays a key role in biogeochemical transformations of organic C and, as a result, in the first stages of coal precursors formation. Thermal analysis was used by Schnitzer and other scientists since 1950-1960s, in order to investigate the stability of several organic materials of industrial value including peat and coal. What soil scientists found was the general occurrence of two exothermic peaks (exotherm 1 and 2) due to decomposition and combustion reactions of organic compounds having different thermal stability and, consequently, different degree of humification. Thermogravimetric analysis (TG) was carried out on different samples reproducing a "hypothetical" coalification gradient as follows: peat (IHSS Pahokee peat standard), fulvic acid (FA), a peat humic acid (HA), leonardite (IHSS Gascoyne standard) and charcoal. An aliquot of about 20 mg of each sample was heated in a ceramic crucible from 50 to 850˚ C at 30˚ C min-1, at a gas flow rate of 30 mL min-1 using a PerkinElmer TGA4000 thermobalance. Samples were analysed both under nitrogen and under synthetic air. All analyses were carried out in triplicate and the average coefficient of variation was <1.5%. Weight losses (in %) were determined within 200-400˚ C (WL1) and 400-600˚ C (WL2) temperature ranges, and the ratio between WL2/WL1 calculated for all samples. This ratio has been often used as a highly sensitive parameter to describe chemical changes induced by the bio-transformation of organic materials. Finally, the temperature at which half of the exothermic mass loss has occurred (TG-T50) was also calculated. Preliminary results obtained from TG analysis under air showed that WL2/WL1 ratio was lower for the FA sample and higher for leonardite and charcoal, following the order FA

  6. Carbohydrates and phenols as quantitative molecular vegetation proxies in peats

    NASA Astrophysics Data System (ADS)

    Kaiser, K.; Benner, R. H.

    2012-12-01

    Vegetation in peatlands is intricately linked to local environmental conditions and climate. Here we use chemical analyses of carbohydrates and phenols to reconstruct paleovegetation in peat cores collected from 56.8°N (SIB04), 58.4°N (SIB06), 63.8°N (G137) and 66.5°N (E113) in the Western Siberian Lowland. Lignin phenols (vanillyl and syringyl phenols) were sensitive biomarkers for vascular plant contributions and provided additional information on the relative contributions of angiosperm and gymnosperm plants. Specific neutral sugar compositions allowed identification of sphagnum mosses, sedges (Cyperaceae) and lichens. Hydroxyphenols released by CuO oxidation were useful tracers of sphagnum moss contributions. The three independent molecular proxies were calibrated with a diverse group of peat-forming plants to yield quantitative estimates (%C) of vascular plant, sphagnum moss and lichen contributions in peat core samples. Correlation analysis indicated the three molecular proxies produced fairly similar results for paleovegetation compositions, generally within the error interval of each approach (≤26%). The lignin-based method generally lead to higher estimates of vascular plant vegetation. Several significant deviations were also observed due to different reactivities of carbohydrate and phenolic polymers during peat decomposition. Rapid vegetation changes on timescales of 50-200 years were observed in the southern cores SIB04 and SIB06 over the last 2000 years. Vanillyl and syringyl phenol ratios indicated these vegetation changes were largely due to varying inputs of angiosperm and gymnosperm plants. The northern permafrost cores G137 and E113 showed a more stable development. Lichens briefly replaced sphagnum mosses and vascular plants in both of these cores. Shifts in vegetation did not correlate well with Northern hemisphere climate variability over the last 2000 years. This suggested that direct climate forcing of peatland dynamics was overridden by local or regional ecosystem variables. Overall, these molecular proxies offer robust complementary approaches to reconstruct paleovegetation in peat in addition to traditional methods such as macrofossil and pollen analyses.

  7. Decadal changes in peat carbon accrual rates in bogs in Northern Minnesota

    NASA Astrophysics Data System (ADS)

    Fissore, C.; Nater, E. A.; McFarlane, K. J.

    2017-12-01

    Throughout the Holocene, peatland ecosystems have accumulated substantial amounts of carbon (C) and currently store about one third of all soil organic carbon (SOC) worldwide. Large uncertainty still persists on whether peatland ecosystems located in northern latitudes will continue to act as C sinks, or if the effects of global warming will have greater effects on decomposition processes than on net ecosystem production. We investigated decadal C accrual rates of the top 25 cm of peats in three Sphagnum-rich peatlands located in Northern Minnesota (two ombrotrophic bogs and one fen). We used radiocarbon analysis of Sphagnum cellulose and model fitting to determine peat ages, and peat FTIR spectroscopy to determine humification indices and relative decomposition of peat samples with depth. We had the scope to detect whether recent warming has had an effect on peat decomposition and C accumulation rates. Modeled C accumulation rates in the three peatlands during the past five decades ranged between 78 and 107 g C m-2 yr-1 in the top 25 cm analyzed in this study, values that are higher than the 22 to 29 g C m-2 yr-1 obtained for long-term (millennial) accumulations for the entire bog profiles. Peat IR spectra and C:N ratios confirm low levels of decomposition across the bog sites, especially in the uppermost parts of the peat. The fen site showed very limited decomposition across the entire sampled profile. Higher rates of C accumulation, combined with low decomposition rates close to the surface provide a good estimate of net primary productivity. As substrate decomposition progresses over time, net rates of accumulation decrease. Peat decomposition was more pronounced in the lower depths of the sampled cores in the two ombrotrophic bogs than in the fen, likely an effect of larger temporal variation in water table depth in the bogs than in the fen. Some of the variation in C accumulation and decomposition observed in our bogs and fen suggests that future C accumulation rates will also largely depend on the effect of warming on hydrology, rather than temperature alone.

  8. Dust is the dominant source of "heavy metals" to peat moss (Sphagnum fuscum) in the bogs of the Athabasca Bituminous Sands region of northern Alberta.

    PubMed

    Shotyk, William; Bicalho, Beatriz; Cuss, Chad W; Duke, M John M; Noernberg, Tommy; Pelletier, Rick; Steinnes, Eiliv; Zaccone, Claudio

    2016-01-01

    Sphagnum fuscum was collected from twenty-five ombrotrophic (rain-fed) peat bogs surrounding open pit mines and upgrading facilities of Athabasca Bituminous Sands (ABS) in northern Alberta (AB) in order to assess the extent of atmospheric contamination by trace elements. As a control, this moss species was also collected at a bog near Utikuma (UTK) in an undeveloped part of AB and 264km SW of the ABS region. For comparison, this moss was also collected in central AB, in the vicinity of the City of Edmonton which is approximately 500km to the south of the ABS region, from the Wagner Wetland which is 22km W of the City, from Seba Beach (ca. 90km W) and from Elk Island National Park (ca. 45km E). All of the moss samples were digested and trace elements concentrations determined using ICP-SMS at a commercial laboratory, with selected samples also analyzed using instrumental neutron activation analysis at the University of Alberta. The mosses from the ABS region yielded lower concentrations of Ag, As, Bi, Cd, Cu, Pb, Sb, Tl, and Zn compared to the moss from the Edmonton area. Concentrations of Ni and Mo in the mosses were comparable in these two regions, but V was more abundant in the ABS samples. Compared with the surface vegetation of eight peat cores collected in recent years from British Columbia, Ontario, Quebec and New Brunswick, the mean concentrations of Ag, As, Bi, Cd, Cu, Mo, Ni, Pb, Sb, Tl and Zn in the mosses from the ABS region are generally much lower. In fact, the concentrations of these trace elements in the samples from the ABS region are comparable to the corresponding values in forest moss from remote regions of central and northern Norway. Lithophile element concentrations (Ba, Be, Ga, Ge, Li, Sc, Th, Ti, Zr) explain most of the variation in trace metal concentrations in the moss samples. The mean concentrations of Th and Zr are greatest in the moss samples from the ABS region, reflecting dust inputs to the bogs from open pit mines, aggregate quarries, and gravel roads. Linear regressions of V, Ni, and Mo (elements enriched in bitumen) versus Sc (a conservative, lithophile element) show excellent correlations in the mosses from the ABS region, but this is true also of Ag, Pb, Sb and Tl: thus, most of the variation in the trace metal concentrations can be explained simply by the abundance of dust particles on the plants of this region. Unlike the moss samples from the ABS region and from UTK where Pb/Sc ratios resemble those of crustal rocks, the moss samples from the other regions studied yielded much greater Pb/Sc ratios implying significant anthropogenic Pb contributions at these other sites. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. High Temporal Resolution Measurements to Investigate Carbon Dynamics in Subtropical Peat Soils Using Automated Ground Penetrating Radar (GPR) Measurements at the Laboratory Scale

    NASA Astrophysics Data System (ADS)

    McClellan, M. D.; Wright, W. J.; Job, M. J.; Comas, X.

    2015-12-01

    Peatlands have the capability to produce and release significant amounts of free phase biogenic gasses (CO2, CH4) into the atmosphere and are thus regarded as key contributors of greenhouse gases into the atmosphere. Many studies throughout the past two decades have investigated gas flux dynamics in peat soils; however a high resolution temporal understanding in the variability of these fluxes (particularly at the matrix scale) is still lacking. This study implements an array of hydrogeophysical methods to investigate the temporal variability in biogenic gas accumulation and release in high resolution for a large 0.073 m3 peat monolith from the Blue Cypress Preserve in central Florida. An autonomous rail system was constructed in order to estimate gas content variability (i.e. build-up and release) within the peat matrix using a series of continuous, uninterrupted ground penetrating radar (GPR) transects along the sample. This system ran non-stop implementing a 0.01 m shot interval using high frequency (1.2 GHz) antennas. GPR measurements were constrained with an array of 6 gas traps fitted with time-lapse cameras in order to capture gas releases at 15 minute intervals. A gas chromatograph was used to determine CH4 and CO2 content of the gas collected in the gas traps. The aim of this study is to investigate the temporal variability in the accumulation and release of biogenic gases in subtropical peat soils at the lab scale at a high resolution. This work has implications for better understanding carbon dynamics in subtropical freshwater peatlands and how climate change may alter such dynamics.

  10. Spatial variation of peat soil properties in the oil-producing region of northeastern Sakhalin

    NASA Astrophysics Data System (ADS)

    Lipatov, D. N.; Shcheglov, A. I.; Manakhov, D. V.; Zavgorodnyaya, Yu. A.; Rozanova, M. S.; Brekhov, P. T.

    2017-07-01

    Morphology and properties of medium-deep oligotrophic peat, oligotrophic peat gley, pyrogenic oligotrophic peat gley, and peat gley soils on subshrub-cotton grass-sphagnum bogs and in swampy larch forests of northeastern Sakhalin have been studied. Variation in the thickness and reserves of litters in the studied bog and forest biogeocenoses has been analyzed. The profile distribution and spatial variability of moisture, density, ash, and pHKCl in separate groups of peat soils have been described. The content and spatial variability of petroleum hydrocarbons have been considered in relation to the accumulation of natural bitumoids by peat soils and the technogenic pressing in the oil-producing region. Variation of each parameter at different distances (10, 50, and 1000 m) has been estimated using a hierarchical sampling scheme. The spatial conjugation of soil parameters has been studied by factor analysis using the principal components method and Spearman correlation coefficients. Regression equations have been proposed to describe relationships of ash content with soil density and content of petroleum hydrocarbons in peat horizons.

  11. Peat resources of Maine. Volume 2. Penobscot County

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cameron, C.C.; Mullen, M.K.; Lepage, C.A.

    1984-01-01

    In July 1979, the Maine Office of Energy Resources, in conjunction with the Maine Geological Survey, began the Maine Peat Resource Evaluation Program. The Program, which was funded by the US Department of Energy (DOE), was undertaken to determine the amount and location of fuel-grade peat in Maine. Two hundred thirty-three areas containing peat deposits were evaluated under the Program. A total of 47 deposits covering 21,666 acres and containing 40,923,000 short tons (dry weight) of peat in Penobscot County have been evaluated under the Maine Peat Resource Evaluation Program. These deposits range in size from 35 to 3301 acresmore » and in estimated resources from 45,000 to 6,994,000 short tons. Maps of individual deposits showing the distribution and depth of peat, core sites, and the surficial geology of the area adjacent to the deposits are shown in Figures 4 to 46. Cores showing the vertical distribution of peat and sediment as well as sample locations, and the results of laboratory analyses are also included. 22 references, 46 figures, 3 tables.« less

  12. Impact of the water salinity on the hydraulic conductivity of fen peat

    NASA Astrophysics Data System (ADS)

    Gosch, Lennart; Janssen, Manon; Lennartz, Bernd

    2017-04-01

    Coastal peatlands represent an interface between marine and terrestrial ecosystems; their hydrology is affected by salt and fresh water inflow alike. Previous studies on bog peat have shown that pore water salinity can have an impact on the saturated hydraulic conductivity (Ks) of peat because of chemical pore dilation effects. In this ongoing study, we are aiming at quantifying the impact of higher salinities (up to 3.5 %) on Ks of fen peat to get a better understanding of the water and solute exchange between coastal peatlands and the adjacent sea. Two approaches differing in measurement duration employing a constant-head upward-flow permeameter were conducted. At first, Ks was measured at an initial salinity for several hours before the salinity was abruptly increased and the measurement continued. In the second approach, Ks was measured for 15 min at the salt content observed during sampling. Then, samples were completely (de)salinized via diffusion for several days/weeks before a comparison measurement was carried out. The results for degraded fen peats show a decrease of Ks during long-term measurements which does not depend on the water salinity. A slow, diffusion-controlled change in salinity does not modify the overall outcome that the duration of measurements has a stronger impact on Ks than the salinity. Further experiments will show if fen peat soils differing in their state of degradation exhibit a different behavior. A preliminary conclusion is that salinity might have a less important effect on hydraulic properties of fen peat than it was observed for bog peat.

  13. Comparison of Shear Strength Properties for Undisturbed and Reconstituted Parit Nipah Peat, Johor

    NASA Astrophysics Data System (ADS)

    Azhar, A. T. S.; Norhaliza, W.; Ismail, B.; Abdullah, M. E.; Zakaria, M. N.

    2016-11-01

    Shear strength of soil is required to determine the soil stability and design the foundations. Peat is known as a soil with complex natural formations which also contributes problems to the researchers, developers, engineers and contractors in constructions and infrastructures. Most researchers conducted experiment and investigation of shear strength on peat using shear box test and simple shear test, but only a few had discovered the behavior of peat using triaxial consolidated undrained test. The aim of this paper is to determine the undrained shear strength properties of reconstituted peat and undisturbed peat of Parit Nipah, Johor for comparison purposes. All the reconstituted peat samples were formed with the size that passed opening sieve 3.35 mm and preconsolidation pressure at 100 kPa. The result of undrained shear strength of reconstituted peat was 21kPa for cohesion with the angle of friction, 41° compare to the undisturbed peat with cohesion 10 kPa and angle of friction, 16°. The undrained shear strength properties result obtained shows that the reconstituted peat has higher strength than undisturbed peat. For relationship deviator stress-strain, σd max and excess pore pressure, Δu, it shows that both of undisturbed and reconstituted gradually increased when σ’ increased, but at the end of the test, the values are slightly dropped. The physical properties of undisturbed and reconstituted peat were also investigated to correlate with the undrained shear strength results.

  14. The legacy of wetland drainage on the remaining peat in the Sacramento-San Joaquin Delta, California, USA

    USGS Publications Warehouse

    Drexler, Judith Z.; Christian S. de Fontaine,; Steven J. Deverel,

    2009-01-01

    Throughout the world, many extensive wetlands, such as the Sacramento-San Joaquin Delta of California (hereafter, the Delta), have been drained for agriculture, resulting in land-surface subsidence of peat soils. The purpose of this project was to study the in situ effects of wetland drainage on the remaining peat in the Delta. Peat cores were retrieved from four drained, farmed islands and four relatively undisturbed, marsh islands. Core samples were analyzed for bulk density and percent organic carbon. Macrofossils in the peat were dated using radiocarbon age determination. The peat from the farmed islands is highly distinct from marsh island peat. Bulk density of peat from the farmed islands is generally greater than that of the marsh islands at a given organic carbon content. On the farmed islands, increased bulk density, which is an indication of compaction, decreases with depth within the unoxidized peat zone, whereas, on the marsh islands, bulk density is generally constant with depth except near the surface. Approximately 55–80% of the original peat layer on the farmed islands has been lost due to landsurface subsidence. For the center regions of the farmed islands, this translates into an estimated loss of between 2900-5700 metric tons of organic carbon/hectare. Most of the intact peat just below the currently farmed soil layer is over 4000 years old. Peat loss will continue as long as the artificial water table on the farmed islands is held below the land surface.

  15. Assessing the Impact of Land Management on Organic Matter Composition in Peat Soils

    NASA Astrophysics Data System (ADS)

    Savage, A.; Holden, J.; Wainwright, J.

    2010-05-01

    Peatlands are seen as important stores of terrestrial carbon, accounting for up to one-third of global soil carbon stocks. In some cases peatlands are shown to be emitters of carbon, in other cases carbon sinks depending on the site conditions and nature of degradation. However, carbon budget calculations carried out to date have a number of uncertainties associated with them and the composition of the carbon is generally not considered when determining carbon budgets. Carbon cycling in peat is driven by four key factors (Laiho, 2006):, environmental conditions (e.g. temperature, water table level), substrate quality (e.g. how recalcitrant the peat is), nutrients (e.g. nitrogen required to synthesis the carbon stocks) and microbial community (e.g. are the microbes present able to utilise the available substrate). Land management is also recognised as an additional driver, but the impacts of many types of management are poorly understood. Among the four drivers listed by Laiho (2006) substrate quality is seen as the most significant. To date, little work has been carried out to characterise the quality of organic matter in peat soils; rather crude estimates have been made as to the quantity of carbon that is stored in peatlands, yet without understanding the composition of the peat, limitations are imposed on calculations of rates of carbon loss from peatlands. This work seeks to examine how variations in the chemical composition of organic matter in peat varies with land use. The method published by Wieder and Starr (1998) was followed to determine eight fractions: soluble fats and waxes, hot water soluble, hollocellulose, cellulose, soluble phenolics, acid insoluble carbohydrates, water soluble carbohydrates and lignin. Samples were taken from burnt, grazed, drained, afforested and undisturbed sites at the Moor House UNESCO Biosphere Reserve in Northern England. The method was used to identify if differences were present in the recalcitrance of the peat and linked to gaseous carbon emissions data collected during fortnightly monitoring. R. Laiho (2006) Decomposition in peatlands: Reconciling seemingly contrasting results on the impacts of lowered water levels Soil Biology & Biochemistry, 38, 2011-2024. R.K. Wieder & S.T. Starr (1998) Quantitative determination of organic fractions in highly organic, Sphagnum peat soils Communications in Soil Science and Plant Analysis, 29, 847-857.

  16. Magnetic susceptibility and dielectric properties of peat in Central Kalimantan, Indonesia

    NASA Astrophysics Data System (ADS)

    Budi, Pranitha Septiana; Zulaikah, Siti; Hidayat, Arif; Azzahro, Rosyida

    2017-07-01

    Peatlands dominate almost all regions of Borneo, yet its utilization has not been developed optimally. Any information in this field could be obtained using soil magnetization methods by determining the magnetic succeptibility in terms of magnetic susceptibility value that could describe the source and type of magnetic minerals which could describe the source and type of magnetic minerals. Moreover, the dielectric properties of peat soil were also investigated to determine the level of water content by using the dielectric constant value. Samples was taken at six different locations along Pulang pisau to Berengbengkel. Magnetic susceptibility mass value at these locations ranged between -0.0009 - 0.712 (×10-6 m3/kg). Based on the average magnetic susceptibility value, samples that were taken from T1, T3 and T5 belonged to the type of paramagnetic mineral, while samples which were taken from T2, T4 and T6 belonged to the group of diamagnetic mineral. The low value of magnetic susceptibility of peat was probably derived from the pedogenic process. The average value of peat soil in six locations has a large dielectric constant value that is 28.2 which indicated that there was considerable moisture content due to the hydrophilic nature of peatland which means that the ability of peat in water binding is considerably high.

  17. Heat transport in the Red Lake Bog, Glacial Lake Agassiz Peatlands

    USGS Publications Warehouse

    McKenzie, J.M.; Siegel, D.I.; Rosenberry, D.O.; Glaser, P.H.; Voss, C.I.

    2007-01-01

    We report the results of an investigation on the processes controlling heat transport in peat under a large bog in the Glacial Lake Agassiz Peatlands. For 2 years, starting in July 1998, we recorded temperature at 12 depth intervals from 0 to 400 cm within a vertical peat profile at the crest of the bog at sub-daily intervals. We also recorded air temperature 1 m above the peat surface. We calculate a peat thermal conductivity of 0.5 W m-1 ??C-1 and model vertical heat transport through the peat using the SUTRA model. The model was calibrated to the first year of data, and then evaluated against the second year of collected heat data. The model results suggest that advective pore-water flow is not necessary to transport heat within the peat profile and most of the heat is transferred by thermal conduction alone in these waterlogged soils. In the spring season, a zero-curtain effect controls the transport of heat through shallow depths of the peat. Changes in local climate and the resulting changes in thermal transport still may cause non-linear feedbacks in methane emissions related to the generation of methane deeper within the peat profile as regional temperatures increase. Copyright ?? 2006 John Wiley & Sons, Ltd.

  18. Determination of the water retention of peat soils in the range of the permanent wilting point.

    NASA Astrophysics Data System (ADS)

    Nünning, Lena; Bechtold, Michel; Dettmann, Ullrich; Piayda, Arndt; Tiemeyer, Bärbel; Durner, Wolfgang

    2017-04-01

    Global coverage of peatlands decreases due to the use of peat for horticulture and to the drainage of peatlands for agriculture and forestry. While alternatives for peat in horticulture exist, profitable agriculture on peatlands and climate protection are far more difficult to combine. A controlled water management that is optimized to stabilize yields while reducing peat degradation provides a promising path in this direction. For this goal, profound knowledge of hydraulic properties of organic soil is essential, for which, however, literature is scarce. This study aimed to compare different methods to determine the water retention of organic soils in the dry range (pF 3 to 4.5). Three common methods were compared: two pressure based apparatus (ceramic plate vs. membrane, Eijkelkamp) and a dew point potentiameter (WP4C, Decagon Devices), which is based on the equilibrium of soil water potential and air humidity. Two different types of organic soil samples were analyzed: i) samples wet from the field and ii) samples that were rewetted after oven-drying. Additional WP4C measurements were performed at samples from standard evaporation experiments directly after they have been finished. Results were: 1) no systematic differences between pressure apparatus and WP4C measurements, 2) however, high moisture variability of the samples from the pressure apparatus as well as high variability of the WP4C measurements at these samples when they were removed from these devices which indicated that applied pressure did not establish well in all samples, 3) rewetted oven-dried samples resulted in up to three times lower soil moistures even after long equilibrium times, i.e. there was a strong and long-lasting hysteresis effect that was highest for less degraded peat samples, 4) and highly consistent WP4C measurements at samples from the end of the evaporation experiment. Results provide useful information for deriving reliable water retention characteristics for organic soils.

  19. Functioning of microbial complexes in aerated layers of a highmoor peat bog

    NASA Astrophysics Data System (ADS)

    Golovchenko, A. V.; Bogdanova, O. Yu.; Stepanov, A. L.; Polyanskaya, L. M.; Zvyagintsev, D. G.

    2010-09-01

    Monitoring was carried out using the luminescent-microscopic method of the abundance parameters of different groups of microorganisms in a monolith and in the mixed layers of a highmoor peat bog (oligotrophic residual-eutrophic peat soil) in a year-long model experiment. The increase of the aeration as a result of mixing of the layers enhanced the activity of the soil fungi. This was attested to by the following changes: the increase of the fungal mycelium length by 6 times and of the fungal biomass by 4 times and the double decrease of the fraction of spores in the fungal complex. The response of the fungal complex to mixing was different in the different layers of the peat bog. The maximal effect was observed in the T1 layer and the minimal one in the T2 layer. The emission of CO2 in the mixed samples was 1.5-2 times higher than that from the undisturbed peat samples. In contrast with the fungi, the bacteria and actinomycetes were not affected by the aeration of the highmoor layers.

  20. The geology of selected peat-forming environments in temperate and tropical latitudes

    USGS Publications Warehouse

    Cameron, C.C.; Palmer, C.A.; Esterle, J.S.

    1990-01-01

    We studied peat in several geologic and climatic settings: (1) a glaciated terrain in cold-temperate Maine and Minnesota, U.S.A.; (2) an island in a temperate maritime climate in the Atlantic Ocean off the coast of Maine, U.S.A., where sea level is rising rapidly and changing the environment of peat accumulation; (3) swamps along the warm-temperate U.S. Atlantic and Gulf Coastal Plains, where sea level has changed often, thus creating sites for accumulation; and (4) in a tropical climate along the coast of Sarawak, Malaysia, and the delta of the Batang Hari River, Sumatra, Indonesia (Figs. 1 and 2). With the exception of the deposits on the Atlantic and Gulf Coastal Plains, most of the deposits described are domed bogs in which peat accumulation continued above the surface of the surrounding soil. The bogs of the U.S. Atlantic and Gulf Coastal Plains have almost level surfaces. All domed bogs are not entirely ombrotrophic (watered only from precipitation); multidomed bogs that rise from irregular or hilly surfaces may be crossed by streams that supply water to the bogs. The geologic processes or organic sedimentation, namely terrestrialization and paludification, are similar in all peat deposits considered here. Differences in geomorphology affecting the quantity and that quality of peat that has ash contents of less than 25%, which are desirable for commercial purposes, depend chiefly on: (1) high humidity, which is favorable to luxuriant growth of peat-forming vegetation; (2) a depositional setting that permits extensive accumulation relatively free from inorganic contamination from sea water and streams and from dust and volcanic ash; and (3) a stable regional water table that controls the rate of decomposition under aerobic conditions and protects the deposit against the ravages of fire. Differences in peat textures are due to the type of vegetation and to the degree of decomposition. The rate of decomposition is largely the result of the amount of oxidation and aerobic microbial activity. Stratigraphic distribution of various textures and amounts of inorganic components within a peat deposit is largely determined by the vertical positions occupied by peat-forming environments, such as pond, marsh, swamp and heath where vegetation accumulated, and the depth to zones of unoxygenated water. Peat also differs in the rate of accumulation. On the basis of carbon-14 dating, an estimated 8 m of peat in the tropical Batang Hari River deposit in Sumatra has been accumulating at the rate of about 1.5 m/1,000 yr, whereas peat in the cold-temperate deposit in Maine has been accumulating at the rate of 0.66 m/1,000 yr. Accumulation rates in domed deposits such as these are affected not only by factors controlling volume of biomass and aerobic decay but also by stream erosion and fires that remove peat. Such disconformities (see Fig. 2) within the deposit may be recognized by sudden vertical changes in degree of decomposition and/or the presence of charcoal. The trace-element content of peat deposits is affected by the environments of their settings. Samples of peat that have an ash content of less than 25% dry weight and that are from small, almost level swamp deposits along the Atlantic Coastal Plain of North Carolina were compared with similar samples from small domed bogs in Maine, a glaciated area. Samples from Nort Carolina, which are from deposits in thick fluvial and nearshore marine sediments far from the bedrock source, are generally higher in Ti, Cr and Pb. The Maine samples from deposits in glacial drift close to the bedrock source contain more Zn, Mn, P, Ca, Na and Fe. The kind and amount of trace elements within the deposits appear to relate largely to depositional setting, to kinds of bedrock source, and to the modes of transportation from source to peat swamp. Trace-element concentrations in the extensive Sumatra peat deposit, which represents a potentially commercial coal bed, are similar to those found in Appalachian c

  1. Candida kantuleensis sp. nov., a d-xylose-fermenting yeast species isolated from peat in a tropical peat swamp forest.

    PubMed

    Nitiyon, Sukanya; Khunnamwong, Pannida; Lertwattanasakul, Noppon; Limtong, Savitree

    2018-05-24

    Three strains (DMKU-XE11 T , DMKU-XE15 and DMKU-XE20) representing a single novel anamorphic and d-xylose-fermenting yeast species were obtained from three peat samples collected from Khan Thulee peat swamp forest in Surat Thani province, Thailand. The strains differed from each other by one to two nucleotide substitutions in the sequences of the D1/D2 region of the large subunit (LSU) rRNA gene and zero to one nucleotide substitution in the internal transcribed spacer (ITS) region. Phylogenetic analysis based on the combined sequences of the ITS and the D1/D2 regions showed that the three strains represented a single Candida species that was distinct from the other related species in the Lodderomyces/Candida albicans clade. The three strains form a subclade with the other Candida species including Candida sanyaensis, Candida tropicalis and Candida sojae. C. sanyaensis was the most closely related species, with 2.1-2.4 % nucleotide substitutions in the D1/D2 region of the LSU rRNA gene, and 3.8-4.0 % nucleotide substitutions in the ITS region. The three strains (DMKU-XE11 T , DMKU-XE15 and DMKU-XE20) were assigned as a single novel species, which was named Candida kantuleensis sp. nov. The type strain is DMKU-XE11 T (=CBS 15219 T =TBRC 7764 T ). The MycoBank number for C. kantuleensis sp. nov. is MB 824179.

  2. Treatment of Explosives Residues from Range Activities

    DTIC Science & Technology

    2009-09-01

    on the specific proportions of peat moss and crude soybean oil in the PMSO. Detections of TNT, HMX, and the RDX degradation products MNX, DNX, and...83 Table 5.8.1-1. Summary of explosive compound detections in all samples collected over the duration of the demonstration...reduced 12- to 50-fold, depending on the depth. Dissolved TNT and HMX were not detected with enough frequency to allow calculation of fluxes of these

  3. Application of microwave digestion to the analysis of peat

    USGS Publications Warehouse

    Papp, C.S.E.; Fischer, L.B.

    1987-01-01

    A microwave digestion technique for the dissolution of peat is described and compared with a dry ashing method and a nitric - perchloric - hydrofluoric acid wet digestion. Peat samples with different organic matter contents were used and Ca, Mg, Fe, AI, Na, K, Mn, Zn, Cu and Li were determined by atomic absoprtion spectrometry. The results obtained using the three dissolution techniques were in good agreement. The microwave method has the advantage of digesting the samples in less than 2 h and uses less acid than the conventional wet digestion method. Keeping the volume of the acid mixture as small as possible minimises contamination and leads to lower blank values.

  4. Peat soils stabilization using Effective Microorganisms (EM)

    NASA Astrophysics Data System (ADS)

    Yusof, N. Z.; Samsuddin, N. S.; Hanif, M. F.; Syed Osman, S. B.

    2018-04-01

    Peat soil is known as geotechnical problematic soil since it is the softest soil having highly organic and moisture content which led to high compressibility, low shear strength and long-term settlement. The aim of this study was to obtain the stabilized peat soils using the Effective Microorganisms (EM). The volume of EM added and mixed with peat soils varied with 2%, 4%, 6%, 8% and 10% and then were cured for 7, 14 and 21 days. The experiment was done for uncontrolled and controlled moisture content. Prior conducting the main experiments, the physical properties such as moisture content, liquid limit, specific gravity, and plastic limit etc. were measure for raw peat samples. The Unconfined Compressive Strength (UCS) test was performed followed by regression analysis to check the effect of EM on the soil strength. Obtained results have shown that the mix design for controlled moisture contents showed the promising improvement in their compressive strength. The peat soil samples with 10% of EM shows the highest increment in UCS value and the percentage of increments are in the range of 44% to 65% after curing for 21 days. The regression analysis of the EM with the soil compressive strength showed that in controlled moisture conditions, EM significantly improved the soil stability as the value of R2 ranged between 0.97 – 0.78. The results have indicated that the addition of EM in peat soils provides significant improving in the strength of the soil as well as the other engineering properties.

  5. Influence of different kind of peats on some physic-chemical properties, biochemical activity, the content of different forms of nitrogen and fractions of humic substances of The Great Vasyugan Mire

    NASA Astrophysics Data System (ADS)

    Inisheva, L. I.; Szajdak, L.

    2009-04-01

    Mires, or peatlands belong to the wetlands ecosystems where carbon is bounded in primary production and deposited as peat in water saturated, anoxic conditions. In those conditions, the rate of the supply of new organic matter has exceeded that the decomposition, resulting in carbon accumulation. Place of sampling belongs to an oligotrophic landscapes of the river Klyuch basin in spurs of Vasyugan mire. The catchment represents reference system for Bokchar swampy area (political district of Tomsk region). Landscape profile crosses main kinds of swampy biogeocoenosis (BGC) toward the mire center: paludal tall mixed forest, pine undershrub Sphagnum (high riam, trans-accumulative part of a profile, P2), pine-undershrub Sphagnum (low riam, transit part, P3), sedge-moss swamp (eluvial part, P5). The latter represents an eluvial part of a slope of watershed massif where it is accomplished discharge of excess, surface, soil-mire waters. The depth of peat deposit of sedge-moss swamp reaches 2,5m. To the depth of 0,6m there is a layer of Sphagnum raised bog peat, then it is a mesotrophic Scheuchzeria Sphagnum layer and at the bottom there is a thick layer of low-mire horsetail peat. The samples of peats were taken from two places (P2 and P3), both from the depth 0-75 cm of the great Vasyugan Mire. These materials represent (P2) Sphagnum fuscum peat (ash content ranged from 10.8 to 15.1%), but samples P3 belong to low-moor sedge peat (ash content ranged from 4.5-4.8%). The differences in water level, redox potential, pH, degree of degradation, bulk density, number of microorganisms, activity of enzymes, different kinds of nitrogen and humic substances were studied in two different peat soils characterized by different type of peat. In general in P2 the redox potential changed from 858 to /-140/ mV, higher activity of xanthine oxidase and peroxidase, different kinds of microorganisms (ammonifing bacteria and cellulose decomposing microorganisms) and different kinds of nitrogen (mineral, easily hydrolysable, hardly hydrolysable and non-hydrolyzable), bitumines, 3 fractions of humic acids and 3 fractions of fulvic acids were determined in the deep 0-25 cm than in 50-75 cm. The ratio HA/FA in the depth 0-25 cm was equal to from 1.87, but in the depth 50-75 cm was equal to 7.66. Contrary was observed for P3. For this peat with the increase of the deep of sampling the decrease of total nitrogen, activity of enzymes (xanthine oxidase and peroxidase) is connected with the changes of Fe+2/Fe+3 and lower difference of redox potential than in P2. The ratio HA/FA in the depth 0-25 cm was equal to 0.56, but in the depth 50-70 cm was equal to 0.84.

  6. The legacy of wetland drainage on the remaining peat in the Sacramento San Joaquin Delta, California, USA

    USGS Publications Warehouse

    Drexler, J.Z.; De Fontaine, C. S.; Deverel, S.J.

    2009-01-01

    Throughout the world, many extensive wetlands, such as the Sacramento-San Joaquin Delta of California (hereafter, the Delta), have been drained for agriculture, resulting in land-surface subsidence of peat soils. The purpose of this project was to study the in situ effects of wetland drainage on the remaining peat in the Delta. Peat cores were retrieved from four drained, farmed islands and four relatively undisturbed, marsh islands. Core samples were analyzed for bulk density and percent organic carbon. Macrofossils in the peat were dated using radiocarbon age determination. The peat from the farmed islands is highly distinct from marsh island peat. Bulk density of peat from the farmed islands is generally greater than that of the marsh islands at a given organic carbon content. On the farmed islands, increased bulk density, which is an indication of compaction, decreases with depth within the unoxidized peat zone, whereas, on the marsh islands, bulk density is generally constant with depth except near the surface. Approximately 5580 of the original peat layer on the farmed islands has been lost due to land-surface subsidence. For the center regions of the farmed islands, this translates into an estimated loss of between 29005700 metric tons of organic carbon/hectare. Most of the intact peat just below the currently farmed soil layer is over 4000 years old. Peat loss will continue as long as the artificial water table on the farmed islands is held below the land surface. ?? 2009 The Society of Wetland Scientists.

  7. How does conversion from peat swamp forest to oil palm plantation affect emissions of nitrous oxide from the soil? A case study in Jambi, Indonesia

    NASA Astrophysics Data System (ADS)

    Hartill, Jodie; Hergoualc'h, Kristell; Comeau, Louis-Pierre; Jo, Smith; Lou, Verchot

    2017-04-01

    Half of the peatlands across Peninsular Malaysia, Borneo and Sumatra are 'managed'. Conversion of peat swamp forest to workable oil palm plantation requires a drastic, potentially irreversible, change to the landscape, to which fertilizers are then routinely applied. A combination of these factors is now widely thought to increase soil nitrous oxide (N2O) emissions, although there is high uncertainty due to gaps in the knowledge, both regionally and nationally. Despite the widespread use of fertilizers in plantations on peats, studies observing their effects remain very limited. Therefore, there is a need for in situ studies to evaluate how environmental parameters (edaphic properties, climate, soil moisture and N availability indicators) influence soil emissions. This 18 month study was located in plots local to each other, representing the start, intermediate and end of the land conversion process; namely mixed peat swamp forest, drained and logged forest and industrial oil palm plantation. Spatial variability was taken into account by differentiating the hollows and hummocks in the mixed peat swamp forest, and the fertilized zone and the zone without fertilizer addition in the oil palm plantation. Gas samples were collected each month from static chambers at the same time as key environmental parameters were measured. Intensive sampling was performed during a 35 day period following two fertilizer applications, in which urea was applied to palms at rates of 0.5 and 1 kg urea palm-1. Soil N2O emissions (kg N ha-1 y-1 ± SE) were low overall, but they were greater in the oil palm plantation (0.8 ± 0.1) than in the mixed peat swamp forest (0.3 ± 0.0) and the drained/logged forest (0.2 ± 0.0). In the mixed peat swamp forest, monthly average fluxes of N2O (g N ha-1 d-1 ± SE) were similar in the hollows (0.6 ± 0.2) and the hummocks (0.3 ± 0.1), whereas in the oil palm plantation they were consistently higher in the zone without fertilizer (2.5 ± 0.4) than in the fertilized zone (0.5 ± 0.1), even after fertilizer application. In the fertilized zones, the N2O fluxes following the two fertilizer applications were 2.4 and 4.5 times higher respectively than fluxes observed in the absence of fertilizers. No change in emissions was observed in the neighboring unfertilized zone at the time of fertilizer application. Soil N2O emissions were related to changes in air and soil temperature in the mixed peat swamp forest, air temperature and water table depth in the drained and logged forest, and rainfall on the day of measurement in the oil palm plantation. This research confirms that peat forest conversion to oil palm plantation has negative consequences on the emissions of N2O. It also corroborates an increase in emission due to fertilizer application, with a magnitude comparable to the emission factor provided by the IPCC guidelines, but this is restricted to the limited area of fertilizer application.

  8. Investigation of smoldering combustion propagation of dried peat

    NASA Astrophysics Data System (ADS)

    Palamba, Pither; Ramadhan, M. L.; Imran, F. A.; Kosasih, E. A.; Nugroho, Y. S.

    2017-03-01

    Smoldering is a form of combustion characterised by flameless burning of porous materials. Smoldering combustion of porous and organic soil such as peat, is considered as a major contributor to haze problem during wildland fires in Sumatra and Kalimantan, Indonesia. With almost half of tropical peatland worldwide, and vast area that resulted in its rich agricultural diversity, Indonesia possessed many variants of peat throughout the region. Thus, further highlighting the importance of characterizing the thermal properties of different varieties of peats for further analysis. An experimental test method was built to analyse the differences of varying peats from different parts of Indonesia, regarding its smoldering combustion propagation. In this case, peat from Papua and South Sumatera were analysed. A cylindrical wire meshed container of 190 cm3 in volume, was filled with dried peat. The temperature data and mass loss during the smoldering combustion was gathered using thermocouples and a DAQ system. After the experimental apparatus was set, a smoldering combustion of the dried peats was initiated at the top of the container using an electric heater. The results of the experiment showed a smoldering temperature of about 600°C and with a smoldering propagation rate of about 4.50 to 4.75 cm/h for both peat samples.

  9. Airborne Petcoke Dust is a Major Source of Polycyclic Aromatic Hydrocarbons in the Athabasca Oil Sands Region.

    PubMed

    Zhang, Yifeng; Shotyk, William; Zaccone, Claudio; Noernberg, Tommy; Pelletier, Rick; Bicalho, Beatriz; Froese, Duane G; Davies, Lauren; Martin, Jonathan W

    2016-02-16

    Oil sands mining has been linked to increasing atmospheric deposition of polycyclic aromatic hydrocarbons (PAHs) in the Athabasca oil sands region (AOSR), but known sources cannot explain the quantity of PAHs in environmental samples. PAHs were measured in living Sphagnum moss (24 sites, n = 68), in sectioned peat cores (4 sites, n = 161), and snow (7 sites, n = 19) from ombrotrophic bogs in the AOSR. Prospective source samples were also analyzed, including petroleum coke (petcoke, from both delayed and fluid coking), fine tailings, oil sands ore, and naturally exposed bitumen. Average PAH concentrations in near-field moss (199 ng/g, n = 11) were significantly higher (p = 0.035) than in far-field moss (118 ng/g, n = 13), and increasing temporal trends were detected in three peat cores collected closest to industrial activity. A chemical mass-balance model estimated that delayed petcoke was the major source of PAHs to living moss, and among three peat core the contribution to PAHs from delayed petcoke increased over time, accounting for 45-95% of PAHs in contemporary layers. Petcoke was also estimated to be a major source of vanadium, nickel, and molybdenum. Scanning electron microscopy with energy-dispersive X-ray spectroscopy confirmed large petcoke particles (>10 μm) in snow at near-field sites. Petcoke dust has not previously been considered in environmental impact assessments of oil sands upgrading, and improved dust control from growing stockpiles may mitigate future risks.

  10. Effect of water-table fluctuations on the degradation of Sphagnum phenols in surficial peats

    NASA Astrophysics Data System (ADS)

    Abbott, Geoffrey D.; Swain, Eleanor Y.; Muhammad, Aminu B.; Allton, Kathryn; Belyea, Lisa R.; Laing, Christopher G.; Cowie, Greg L.

    2013-04-01

    A much improved understanding of how water-table fluctuations near the surface affect decomposition and preservation of peat-forming plant litter and surficial peats is needed in order to predict possible feedbacks between the peatland carbon cycle and the global climate system. In this study peatland plants (bryophytes and vascular plants), their litter and peat cores were collected from the Ryggmossen peatland in the boreonemoral zone of central Sweden. The extracted insoluble residues from whole plant tissues were depolymerized using thermally assisted hydrolysis and methylation (THM) in the presence of both unlabelled and 13C-labelled tetramethylammonium hydroxide (TMAH) which yielded both vascular plant- and Sphagnum-derived phenols. Methylated 4-isopropenylphenol (IUPAC: 1-methoxy-4-(prop-1-en-2-yl)benzene), methylated cis- and trans-3-(4'-hydroxyphen-1-yl)but-2-enoic acid (IUPAC: (E/Z)-methyl 3-(4-methoxyphenyl)but-2-enoate), and methylated 3-(4'-hydroxyphen-1-yl)but-3-enoic acid (IUPAC: methyl 3-(4-methoxyphenyl)but-3-enoate) (van der Heijden et al., 1997) are confirmed as TMAH thermochemolysis products of "bound" sphagnum acid and also as being specific to Sphagnum mosses. These putative biomarkers were also significant components in the unlabelled TMAH thermochemolysis products from the depolymerization of ultrasonically extracted samples from eight peat cores, one from a hummock and one from a hollow at each of the four stages along the bog plateau-to-swamp forest gradient. We have proposed and measured two parameters namely (i) σ which is defined as the total amount of these four molecules normalised to 100 mg of OC; and (ii) an index (SR%) which is the ratio of σ to the Λ parameter giving a measure of the relative amounts of "bound" sphagnum acid to the "bound" vascular plant phenols in peat moss and the surficial peat layers. Changes in σ and SR% down the bog plateau (BP), bog margin (BM) and fen lagg (FL) cores in the Ryggmossen mire indicates that the sphagnum acid bound into the peat is being degraded in the unsaturated and seasonally-saturated layers. There is then a stabilisation of Sphagnum-derived phenols in the deepest horizons of the seasonally-saturated layer and into the permanently-saturated layer. These results suggest that "bound" sphagnum acid will be stabilised in peatlands shifting to a wetter and more variable precipitation regime whereas it will be gradually stripped away (e.g. by hydrolysis/enzymatic activity) in surficial peats shifting to a drier climate, such that any subsequent rewetting of the peat could lead to anaerobic hydrolysis and fermentation of the newly exposed carbohydrates. This highlights the sensitivity of Sphagnum surficial peats to climate-induced changes in water levels albeit there may be differences in the extent of degradation along the bog-fen gradient.

  11. SPRUCE Deep Peat Microbial Diversity, CO2 and CH4 Production in Response to Nutrient, Temperature, and pH Treatments during Incubation Studies.

    DOE Data Explorer

    A., Kluber Laurel [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Allen, Samantha A. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Hendershot, Nicholas [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Hanson, Paul J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Schadt, Christopher W. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.

    2014-09-01

    This data set contains the results of a microcosm incubation study on deep peat collected from the SPRUCE experimental site in the S1 Bog in September 2014. Microcosms were monitored for CO2 and CH4 production, and microbial community dynamics were assessed using qPCR and amplicon sequencing.The experiment was designed with a full factorial design with elevated temperature, nitrogen (N), (P), and pH treatments was used with samples from each transect serving replicates. In all, 96 microcosms were constructed to account for the 16 treatment combinations (N x P x pH x temperature), 2 time points, and 3 replicates. Temperature treatments were 6 °C, to mimic the SPRUCE ambient plot temperatures, and 15 °C to mimic the SPRUCE +9 °C treatment.

  12. Effects of spatial heterogeneity in moisture content on the horizontal spread of peat fires.

    PubMed

    Prat-Guitart, Nuria; Rein, Guillermo; Hadden, Rory M; Belcher, Claire M; Yearsley, Jon M

    2016-12-01

    The gravimetric moisture content of peat is the main factor limiting the ignition and spread propagation of smouldering fires. Our aim is to use controlled laboratory experiments to better understand how the spread of smouldering fires is influenced in natural landscape conditions where the moisture content of the top peat layer is not homogeneous. In this paper, we study for the first time the spread of peat fires across a spatial matrix of two moisture contents (dry/wet) in the laboratory. The experiments were undertaken using an open-top insulated box (22×18×6cm) filled with milled peat. The peat was ignited at one side of the box initiating smouldering and horizontal spread. Measurements of the peak temperature inside the peat, fire duration and longwave thermal radiation from the burning samples revealed important local changes of the smouldering behaviour in response to sharp gradients in moisture content. Both, peak temperatures and radiation in wetter peat (after the moisture gradient) were sensitive to the drier moisture condition (preceding the moisture gradient). Drier peat conditions before the moisture gradient led to higher temperatures and higher radiation flux from the fire during the first 6cm of horizontal spread into a wet peat patch. The total spread distance into a wet peat patch was affected by the moisture content gradient. We predicted that in most peat moisture gradients of relevance to natural ecosystems the fire self-extinguishes within the first 10cm of horizontal spread into a wet peat patch. Spread distances of more than 10cm are limited to wet peat patches below 160% moisture content (mass of water per mass of dry peat). We found that spatial gradients of moisture content have important local effects on the horizontal spread and should be considered in field and modelling studies. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Use of Computed Tomography Imaging for Qualifying Coarse Roots, Rhizomes, Peat, and Particle Densities in Marsh Soils

    EPA Science Inventory

    Computed tomography (CT) imaging has been used to describe and quantify subtidal, benthic animals such as polychaetes, amphipods, and shrimp. Here, for the first time, CT imaging is used to successfully quantify wet mass of coarse roots, rhizomes, and peat in cores collected from...

  14. Use of Computer-Aided Tomography (CT) Imaging for Quantifying Coarse Roots, Rhizomes, Peat, and Particle Densities in Marsh Soils

    EPA Science Inventory

    Computer-aided Tomography (CT) imaging was utilized to quantify wet mass of coarse roots, rhizomes, and peat in cores collected from organic-rich (Jamaica Bay, NY) and mineral (North Inlet, SC) Spartina alterniflora soils. Calibration rods composed of materials with standard dens...

  15. High nitrogen availability reduces polyphenol content in Sphagnum peat.

    PubMed

    Bragazza, Luca; Freeman, Chris

    2007-05-15

    Peat mosses of the genus Sphagnum constitute the bulk of living and dead biomass in bogs. These plants contain peculiar polyphenols which hamper litter peat decomposition through their inhibitory activity on microbial breakdown. In the light of the increasing availability of biologically active nitrogen in natural ecosystems, litter derived from Sphagnum mosses is an ideal substrate to test the potential effects of increased atmospheric nitrogen deposition on polyphenol content in litter peat. To this aim, we measured total nitrogen and soluble polyphenol concentration in Sphagnum litter peat collected in 11 European bogs under a chronic gradient of atmospheric nitrogen deposition. Our results demonstrate that increasing nitrogen concentration in Sphagnum litter, as a consequence of increased exogenous nitrogen availability, is accompanied by a decreasing concentration of polyphenols. This inverse relationship is consistent with reports that in Sphagnum mosses, polyphenol and protein biosynthesis compete for the same precursor. Our observation of modified Sphagnum litter chemistry under chronic nitrogen eutrophication has implications in the context of the global carbon balance, because a lower content of decay-inhibiting polyphenols would accelerate litter peat decomposition.

  16. Revealing spatial distribution of soil organic carbon contents and stocks of a disturbed bog relict by in-situ NIR and apparent EC mapping

    NASA Astrophysics Data System (ADS)

    Bechtold, Michel; Tiemeyer, Bärbel; Don, Axel; Altdorff, Daniel; van der Kruk, Jan; Huisman, Johan A.

    2013-04-01

    Previous studies showed that in-situ visible near-infrared (vis-NIR) spectroscopy can overcome the limitations of conventional soil sampling. Costs can be reduced and spatial resolution enhanced when mapping field-scale variability of soil organic carbon (SOC). Detailed maps can help to improve SOC management and lead to better estimates of field-scale total carbon stocks. Knowledge of SOC field patterns may also help to reveal processes and factors controlling SOC variability. In this study, we apply in situ vis-NIR and apparent electrical conductivity (ECa) mapping to a disturbed bog relict. The major question of this application study was how field-scale in-situ vis-NIR mapping performs for a very heterogeneous area and under difficult grassland conditions and under highly-variable water content conditions. Past intensive peat cutting and deep ploughing in some areas, in combination with a high background heterogeneity of the underlying mineral sediments, have led to a high variability of SOC content (5.6 to 41.3 %), peat layer thickness (25 to 60 cm) and peat degradation states (from nearly fresh to amorphous). Using a field system developed by Veris Technologies (Salina KS, USA), we continuously collected vis-NIR spectra at 10 cm depth (measurement range: 350 nm to 2200 nm) over an area of around 12 ha with a line spacing of about 12 m. The system includes a set of discs for measuring ECa of the first 30 and 90 cm of the soil. The same area was also mapped with a non-invasive electro-magnetic induction (EMI) setup that provided ECa data of the first 25, 50 and 100 cm. For calibration and validation of the spatial data, we took 30 representative soil samples and 15 soil cores of about 90 cm depth, for which peat thickness, water content, pore water EC, bulk density (BD), as well as C and N content were determined for various depths. Preliminary results of the calibration of the NIR spectra to the near-surface SOC contents indicate good data quality despite the challenging site conditions. Bore hole data indicates that the peat layer is characterized by lower BD, higher pore water EC, higher SOC content, and higher water contents compared to the underlying mineral sediments. This ECa contrast at the peat-sand interface is promising for using the various ECa investigation depths as predictors for peat thickness. Preliminary EMI results also show a correlation between ECa and SOC content, most strongly for the 25 cm EMI signal. We evaluate how vis-NIR and ECa data can be used in a joined approach to estimate SOC content as well as SOC stock distribution.

  17. Influence of Biodegradation on the Organic Compounds Composition of Peat.

    NASA Astrophysics Data System (ADS)

    Serebrennikova, Olga; Svarovskaya, Lidiya; Duchko, Maria; Strelnikova, Evgeniya; Russkikh, Irina

    2016-06-01

    Largest wetland systems are situated on the territory of the Tomsk region. They are characterized by the high content of organic matter (OM), which undergoes transformation as a result of physical, chemical and biological processes. The composition of peat OM is determined by the nature of initial peat-forming plants, their transformation products and bacteria. An experiment in stimulated microbial impact was carried out for estimating the influence of biodegradation on the composition of peat lipids. The composition of the functional groups in the bacterial biomass, initial peat and peat after biodegradation was determined by IR-spectroscopy using the spectrometer NICOLET 5700. The IR spectra of peat and bacteria organic matter are characterized by the presence of absorption bands in ranges: 3400-3200 cm-1, which refers to the stretching vibrations of OH-group of carboxylic acids and various types of hydrogen bonds; 1738-1671 cm-1 - characteristic stretching vibrations of the C = O group of carboxylic acids and ketones; 1262 cm-1 - stretching vibrations of C-O of carboxylic acids. Group and individual composition of organic compounds in studied samples was determined by gas chromatography-mass-spectrometry.

  18. Influence of north climatic conditions on the peat lipids composition

    NASA Astrophysics Data System (ADS)

    Serebrennikova, O. V.; Strelnikova, E. B.; Duchko, M. A.; Preis, Yu I.

    2018-03-01

    The paper studies the composition of lipid organic compounds of peat from the northern regions of the Russian Federation. Peat was sampled in the northern taiga, forest-tundra and tundra zones, characterized by various hydrothermal conditions and vegetation cover. n-Alkanes, fatty acids and their ethers, aldehydes, ketones, alcohols, tocopherols, squalene, bi-, tri- and pentacyclic terpenoids, as well as steroids were identified in peat lipids by gas chromatography-mass spectrometry. The dependences of the total content of lipids and the majority of the investigated compounds classes on the ambient temperature and vegetation, as well as the correlation between the composition of n-alkanes and humidity were revealed.

  19. The composition and character of DOM from an upland peat catchment - sources, roles and fate

    NASA Astrophysics Data System (ADS)

    Worrall, F.; Moody, C.; Clay, G.; Boothroyd, I.; Burt, T. P.

    2017-12-01

    The fluvial fluxes of dissolved organic carbon (DOC) from peatlands form an important part of that ecosystem's carbon cycle, contributing approximately 35% of the overall peatland carbon budget. The source, role and fate of this component of the carbon cycle was explored for a peat covered catchment in the north east of England with dissolved organic matter (DOM) being sampled from both a first-order peat-hosted stream and soil water at two depths within the peat profile. All DOM samples were analysed within the context of analysing the particulate organic matter (POM) from the catchment; the peat profile; and biomass. All samples were analysed using: elemental analysis (C, H, N, O, P and S); bomb calorimetry; thermogravimetric analysis (TGA); 13C solid state NMR; and S isotopes. Furthermore, the degradation of fresh DOC was examined over periods of 70 hours every month for 23 months. The analysis has shown that: DOM is highly oxidised compared to all other organic in the ecosystem and DOM did not exist until [C]/[O] < 1.44. The DOM was dominantly the product of lignin breakdown and not the processing of proteins or carbohydrates, i.e. it was not an intermediate of oxidation to CO2. DOM could only be sourced from high in the peat profile at most above 41 cm depth. Thermodynamic inhibition shows that only DOM from the surface layers could be reactive in the catotelmic layers of the peat. There was a significant role for the composition of the DOM in controlling degradation with degradation rates significantly increasing with the proportion of aldehyde and carboxylic acid functional groups but decreasing with the proportion of N-alkyl functional groups. The study meant that is was possible to consider the behaviour of DOM in terms of its thermodynamic properties (DH, DS & DG) for both formation and reaction.

  20. Microbial Activity in Peat Soil Treated With Ordinary Portland Cement (OPC) and Coal Ashes

    NASA Astrophysics Data System (ADS)

    Rahman, J. A.; Mohamed, R. M. S. R.; Al-Gheethi, A. A.

    2018-04-01

    Peat soil is a cumulative of decayed plant fragment which developed as a result of microbial activity. The microbes degrade the organic matter in the peat soils by the production of hydrolysis enzyme. The least decomposed peat, known as fibric peat has big particles and retain lots of water. This made peat having high moisture content, up to 1500 %. The most decomposed peat known as sapric peat having fines particles and less void ratio. The present study aimed to understand the effects of solidification process on the bacterial growth and cellulase (CMCase) enzyme activity. Two types of mixing were designed for fibric, hemic and sapric peats; (i) Ordinary Portland cement (OPC) at an equal amount of dry peat, with 25 % of fly ash (FA) and total of coarse particle, a combination of bottom ash and fibre of 22 – 34 %, (ii) fibric peat was using water-to-binder ratio (w/b) = 1, 50% OPC, 25 % bottom ash (BA) and 25 % FA. For hemic and sapric peat, w/b=3 with 50 % OPC and 50 % BA were used. All samples were prepared triplicates, and were cured for 7, 14, 28 and 56 days in a closed container at room temperature. The results revealed that the first mix design giving a continuous strength development. However, the second mix design shows a decreased in strength pattern after day 28. The influence of the environment factors such as alkaline pH, reduction of the water content and peat temperature has no significant on the reduction amount of native microbes in the peat. The microbes survived in the solidified peat but the amount of microbes were found reduced for all types of mixing Fibric Mixed 1 (FM1), Hemic Mixed 1(HM1) and Sapric Mixed 1 (SM1) were having good strength increment for about 330 – 1427 % with enzymatic activity recorded even after D56. Nevertheless, with increase in the strength development through curing days, the enzymatic activities were reduced. For the time being, it can be concluded that the microbes have the ability to adapt with new environment. The reactivity of the microbes relates with the strength of solidified peat.

  1. Utilization of peatlands as possible land resource for low-input agriculture: cultivation of Vaccinium species as an example

    NASA Astrophysics Data System (ADS)

    Tonutare, Tonu; Rodima, Ako; Rannik, Kaire; Shanskiy, Merrit

    2013-04-01

    The best way of soil protection is its sustainable and expedient use, which secures soils ecological functioning. Recent years, by exploitation of peat soils for their different use, has raised important issues concerning their input to global climate change as important source of greenhouse gases (GHG) emitters. The dynamics of GHG are determined by different factors as: site specific conditions including hydrology, soil type, vegetation, area management, including meteorological and climatic conditions. Therefore, in this current paper we are presenting the study results were we estimated CO2, CH4 and N2O emissions from exhausted cultivated peatland with Vaccinium species and determined the soil chemical composition. For comparision a virgin state peatland was observed. The main goals of the paper are: (1) to present the experimental results of greenhouse gases generation and peat chemical composition (antioxidant activity of peat, C/N ratio, fiber content, water extractable phenolics) relationships on different microsites either on natural plant cover or Vaccinium species cultivation area on exhausted milled peat area; (2) to discuss how peat soil quality contributes to greenhouse gases emission; (3) and what kind of relationship reveals between low input agricultural system in which Vaccinium species are cultivated on exhausted milled peat area. The study are is located in nearby Ilmatsalu (58°23'N, 26°31'E) in South Estonia, inside of which the three microsites are determined. Microsites are different from each other by exploitation and plant cover type. 1). Natural plant cover, 2). Cultivated area with Vaccinium angustifolium x V. corymbosum, 3). Cultivated area with Vaccinium angustifolium. The determined soil type according to WRB was Fibri Dystric Histosol. The main part of study focuses on the analyses of greenhouse gases. For this purpose the closed chamber method was used. The greenhouse gas samples were collected from spring to autumn 2011 throughout the vegetation period and analyzed in laboratory by GC. In June 2011 the soil samples were collected and chemical composition analyzed for Ntot, Corg, and related plant available nutrients, dry matter and ash content. Also, the water extractable phenolics were measured and the cellulose and lignin content was determined. Along the microsites the ratios of carbon to nitrogen (C/N) and of lignin to nitrogen (L/N) were calculated.. The higher CO2 emission rate in the period from June to August was obtained from the natural plant cover area (range from 322 up to 517 mg/m2h). The emission rate from cultivated area with Vaccinium angustifolium x V. corymbosum was 67-305, from area with Vaccinium angustifolium was 17 - 324 mg/m2h. The maximum emission in October (67 mg/m2h) was recorded from the cultivated area with Vaccinium angustifolium x V. corymbosum plant cover area. During the whole period of measurements the higher methane emission rate was observed from area with natural plant cover - 18-189 μg/m2h. In the same time the lowest emission of N2O was produced on the natural plant cover area. Based on preliminary results we may conclude that greenhouse gas emissions from peat is dependent on the specific pedo-ecological conditions.

  2. Retention of atmospheric Cu, Ni, Cd and Zn in an ombrotrophic peat profile near the Outokumpu Cu-Ni mine, SE-Finland

    NASA Astrophysics Data System (ADS)

    Rausch, N.; Nieminen, T. M.; Ukonmaanaho, L.; Cheburkin, A.; Krachler, M.; Shotyk, W.

    2003-05-01

    Peat cores taken from ombrotrophic bogs are widely used to reconstruct historical records of atmospheric lead and mercury déposition[1, 2]. In this study, the retention of copper, nickel, cadmium and zinc in peat bogs are studied by comparing high resolution, age dated concentration profiles with emissions from the main local source, the Outokumpu copper-nickel mine. An ombrotrophic peat core was taken from the vicinity of Outokumpu, E Finland. Copper and zinc concentrations of dry peat were measured by XRF, cadmium and nickel by GF-AAS, and sample ages by 210Pb. Only copper and nickel show enhanced concentrations in layers covering the mining period, indicating a retention of these elements. However, the more detailed comparison of ore production rates and concentrations in age-dated samples show clearly that only copper is likely to be permanently fixed, while nickel doesn't reflect the mining activity. Even though copper is retained in the upper part of the profile, a possible redeposition of this element by secondary processes (e.g., water table fluctuations) can not be excluded. This question will be resolved by further investigations, e.g. by pore water profiles.

  3. Effect of Different Peat Size and Pre-Consolidation Pressure of Reconstituted Peat on Effective Undrained Shear Strength Properties

    NASA Astrophysics Data System (ADS)

    Azhar, ATS; Norhaliza, W.; Ismail, B.; Ezree, AM; Nizam, ZM

    2017-08-01

    Shear strength of the soil is one of the most important parameters in engineering design, especially during the pre- or post-construction periods, since it is mainly used to measure and evaluate the foundation or slope stability of soil. Peat normally known as a soil that has a very low value of shear strength, and in order to determine and understand the shear strength of the peat, it is a difficult task in geotechnical engineering due to several factors such as types of fabrics, the origin of the soil, water content, organic matter and the degree of humification. The aim of this study is to determine the effective undrained shear strength properties of reconstituted peat of different sizes. All the reconstituted peat samples were formed with the size that passed the opening sieve of 0.425 mm (

  4. Influence of Humic Acids Extracted from Peat by Different Methods on Functional Activity of Macrophages in Vitro.

    PubMed

    Trofimova, E S; Zykova, M V; Ligacheva, A A; Sherstoboev, E Y; Zhdanov, V V; Belousov, M V; Yusubov, M S; Krivoshchekov, S V; Danilets, M G; Dygai, A M

    2017-04-01

    We studied activation of macrophages with humic acids extracted from peat of large deposits in the Tomsk region by two extraction methods: by hydroxide or sodium pyrophosphate. Humic acid of lowland peat types containing large amounts of aromatic carbon, phenolic and alcohol groups, carbohydrate residues and ethers, irrespectively of the extraction methods contained LPS admixture that probably determines their activating properties. Humic acid of upland peat types characterized by high content of carbonyl, carboxyl, and ester groups enhance NO production and reduce arginase expression, but these effects were minimized when sodium hydroxide was used as an extraction solvent. Pyrophosphate samples of the upland peat types were characterized by aromaticity and diversity of functional groups and have a significant advantage because of they induce specific endotoxin-independent stimulating action on antigen presenting cells.

  5. Methane and CO2 fluxes from peat soil, palm stems and field drains in two oil palm plantations in Sarawak, Borneo, on different tropical peat soil types.

    NASA Astrophysics Data System (ADS)

    Manning, Frances; Lip Khoon, Kho; Hill, Tim; Arn Teh, Yit

    2017-04-01

    Oil palm plantations have been expanding rapidly on tropical peat soils in the last 20 years, with 50 % of SE Asian peatlands now managed as industrial or small-holder plantations, up from 11% in 1990. Tropical peat soils are an important carbon (C) store, containing an estimated 17 % of total peatland C. There are large uncertainties as to the soil C dynamics in oil palm plantations on peat due to a shortage of available data. It is therefore essential to understand the soil C cycle in order to promote effective management strategies that optimise yields, whilst maintaining the high C storage capacity of the soil. Here we present CO2 and CH4 fluxes from two oil palm plantations in Sarawak, Malaysia on peat soils. Data were collected from different surface microforms within each plantation that experienced different surface management practices. These included the area next to the palm, in bare soil harvest paths, beneath frond piles, underneath cover crops, from the surface of drains, and from palm stems. Data were collected continuously over one year and analysed with different environmental variables, including soil temperature, WTD, O2, soil moisture and weather data in order to best determine the constraints on the dataset. Total soil respiration (Rtot) varied between 0.09 and 1.59 g C m-2 hr-1. The largest fluxes (0.59 - 1.59 g C m-2 hr-1) were measured next to the palms. Larger CO2 fluxes were observed beneath the cover crops than in the bare soil. This trend was attributed to priming effects from the input of fresh plant litter and exudates. Peat soil type was shown to have significantly different fluxes. The different plantations also had different environmental drivers best explaining the variation in Rtot - with soil moisture being the most significant variable on Sabaju series soil and soil temperature being the most significant environmental variable in the plantation with the Teraja series soil. Rtot was shown to reduce significantly with increasing distance from the palm. The relationship between Rtot and root biomass, which also decreased significantly with increasing distance from the palm, allowed for the partitioning of Rtot into peat oxidation and Ra. Here rates of peat oxidation were estimated to be 0.11 g C m-2 hr-1 following partitioning, and 0.16 g C m-2 hr-1 without partitioning. Methane fluxes varied between 0 and 1.95 g C m-2 hr-1. The largest methane fluxes were emitted from collection drains. Methane oxidation was occasionally observed in field drains, when the water table dropped below the depth of the drain. Soil methane fluxes were lower than those from collection drains. The highest methane fluxes were observed next to palms (0.02 mg C m-2 hr-1) and the lowest under frond piles (0.08 mg C m-2 hr-1). Methane emissions were measured from the palm stems. Preliminary data gives a range between 0.005 and 0.27 µg C m-2 hr-1. These results show wide ranges in both CO2 and CH4 emissions from different sources within the plantations, with the collection drains being the largest source of C fluxes.

  6. The Characteristics of Electrical and Physical Properties of Peat Soil in Rasau Village, West Kalimantan

    NASA Astrophysics Data System (ADS)

    Aminudin, A.; Hasanah, T. R.; Iryati, M.

    2018-05-01

    The Electrical and physical properties can be used as indicators for measuring soil conditions. One of the methods developed in agricultural systems to obtain information on soil conditions is through measuring of electrical conductivity. Peat soil is one of the natural resources that exist in Indonesia. This study aims to determine the characteristics of peat soil in Rasau village, West Kalimantan. This research was conducted by the properties of electrical conductivity and water content using 5TE Water Contents and EC Sensor equipment, but also to know the change of physical nature of peat soil covering peat soil and peat type. The results showed that the electrical conductivity value of 1-4 samples was 0.02 -0.29 dS/m and the volume water content value (VWC) was 0.255-0.548 m3/m3 and the physical characteristics obtained were peat colour brown to dark brown that allegedly the soil still has a very high content of organic material derived from weathering plants and there are discovery of wood chips, wood powder and leaf powder on the ground. Knowing the information is expected to identify the land needs to be developed to be considered for future peat soil utilization.

  7. Peatland Structural Controls on Spring Distribution

    NASA Astrophysics Data System (ADS)

    Hare, D. K.; Boutt, D. F.; Hackman, A. M.; Davenport, G.

    2013-12-01

    The species richness of wetland ecosystems' are sustained by the presence of discrete groundwater discharge, or springs. Springs provide thermal refugia and a source of fresh water inflow crucial for survival of many wetland species. The subsurface drivers that control the spatial distribution of surficial springs throughout peatland complexes are poorly understood due to the many challenges peatlands pose for hydrologic characterization, such as the internal heterogeneities, soft, dynamic substrate, and low gradient of peat drainage. This has previously made it difficult to collect spatial data required for restoration projects that seek to support spring obligate and thermally stressed species such as trout. Tidmarsh Farms is a 577-acre site in Southeastern Massachusetts where 100+ years of cranberry farming has significantly altered the original peatland hydrodynamics and ecology. Farming practices such as the regular application of sand, straightening of the main channel, and addition of drainage ditches has strongly degraded this peatland ecosystem. Our research has overlain non-invasive geophysical, thermal, and water isotopic data from the Tidmarsh Farms peatland to provide a detailed visualization of how subsurface peat structure and spring patterns correlate. Ground penetrating radar (GPR) has proven particularly useful in characterizing internal peat structure and the mineral soil interface beneath peatlands, we interpolate the peatland basin at a large scale (1 km2) and compare this 3-D surface to the locations of springs on the peat platform. Springs, expressed as cold anomalies in summer and warm anomalies in winter, were specifically located by combining fiber-optic and infrared thermal surveys, utilizing the numerous relic agricultural drainage ditches as a sampling advantage. Isotopic signatures of the spring locations are used to distinguish local and regional discharge, differences that can be explained in part by the peat basin structure delineated with GPR. The study expands our understanding of complex peat systems and will be used to inform wetland restoration based on hydrodynamic processes; yielding a more successful, resilient restoration and desired ecologic function. Our research demonstrates how the use of GPR in combination with thermal imagery and isotopic analysis can help characterize degraded peatlands, informing a process-based approach to ecological restoration of the site with the ability to monitor changes through time.

  8. Depositional environments of the Jurassic Maghara main coal seam in north central Sinai, Egypt

    NASA Astrophysics Data System (ADS)

    Edress, Nader Ahmed Ahmed; Opluštil, Stanislav; Sýkorová, Ivana

    2018-04-01

    Twenty-eight channel samples with a cumulative thickness of about 4 m collected from three sections of the Maghara main coal seam in the middle Jurassic Safa Formation have been studied for their lithotype and maceral compositions to reconstruct the character of peat swamp, its hydrological regime and the predominating type of vegetation. Lithotype composition is a combination of dully lithotypes with duroclarain (19% of total cumulative thickness), clarodurain (15%), black durain (15%), and shaly coal (15%) and bright lithotypes represented by clarain (23%), vitrain (12%) and a small proportion of wild fire-generated fusain (1%). Maceral analyses revealed the dominance of vitrinite (70.6% on average), followed by liptinite (25.2%) and inertinite (8.1%). Mineral matter content is ∼9% on average and consists of clay, quartz and pyrite concentrate mostly at the base and the roof of the seam. Dominantly vitrinite composition of coal and extremely low fire- and oxidation-borne inertinite content, together with high Gelification Indices imply predomination of waterlogged anoxic conditions in the precursing mire with water tables mostly above the peat surface throughout most of the time during peat swamp formation. Increases in collotelinite contents and Tissue Preservation Index up the section, followed by a reversal trend in upper third of the coal section, further accompanied by a reversal trend in collodetrinite, liptodetrinite, alginite, sporinite and clay contents records a transition from dominately limnotelmatic and limnic at the lower part to dominately limnotelmatic with increase telmatic condition achieved in the middle part of coal. At the upper part of coal seam an opposite trend marks the return to limnic and limnotelmatic conditions in the final phases of peat swamp history and its subsequent inundation. The proportion of arborescent (mostly coniferous) and herbaceous vegetation varied throughout the section of the coal with tendency of increasing density of arborescent vegetation to the middle part of the coal seam section. The intercalation of coal in shallow marine strata implies that peat swamp precursor formed in a coastal setting, probably on delta plain or lagoon. Its formation was controlled by water table changes driven by sea level fluctuations that created an accommodation space necessary for preservation of peat.

  9. Radiometric age dating of peat cores from ombrotrophic bogs: challenges and opportunities presented by the Industrial Period

    NASA Astrophysics Data System (ADS)

    Shotyk, W.; Appleby, P.; Davies, L. J.; Froese, D. G.; Magnan, G.; Mullan-Boudreau, G.; Noernberg, T.; Bob, S.; van Bellen, S.; Zaccone, C.

    2016-12-01

    The upper layers of ombrotrophic (rain-fed) bogs are hydrologically isolated from surface waters and groundwaters and, in consequence, contaminants are supplied exclusively from the atmosphere. Peat cores from bogs have been used to reconstruct the history of heavy metal pollution since mining and metallurgy began, but the greatest changes have taken place since the start of the Industrial Revolution which was well underway by the middle of the 19th century. Dating peat, accumulated since this time has been made possible using 210Pb (t1/2 = 22.3 yr), but the validity of the age-depth relationship obtained must always be assessed using one or more chronostratigraphic markers. The post-industrial period provides an enormous range of possible time markers including various fallout radionuclides, numerous trace metals and their isotopes, and countless organic contaminants. Most of these have not yet been explored, and will be helpful only if they are immobile in the peat column; often, their fate during chemical diagenesis in anoxic, acidic bog waters is either unknown or at least poorly understood. The atmospheric bomb pulse curve of 14C for the period since AD 1950 has proved to be particularly valuable for validating 210Pb chronologies by providing accurate dates for individual plant macrofossils. Peat cores collected in northern Alberta, surrounding open pit mines and upgraders of Athabsca Bituminous Sands, were carefully dated using 210Pb and the age-depth relationship evaluated using both 241Am and 14C. The cores nearest industry (MIL, JPH4) show that atmospheric deposition of trace metals has been declining ever since industrial-scale mining and refining began in 1967. This includes all of the potentially toxic trace elements (Ag, Cd, Pb, Sb, Tl), but also the metals known for their enrichment in bitumen (V, Ni, Mo). In fact, the surface layers of these bogs today are comparable in composition to the "cleanest" peat samples ever found in the northern hemisphere. Our findings are completely opposed to recent claims about environmental pollution by metals from mining and upgrading in this region, illustrating the importance of reliable age dates and the value of robust age-depth models.

  10. Rice husk ash (RHA) as a partial cement replacement in modifying peat soil properties

    NASA Astrophysics Data System (ADS)

    Daud, Nik Norsyahariati Nik; Daud, Mohd Nazrin Mohd; Muhammed, Abubakar Sadiq

    2018-02-01

    This paper describes the effect of rice husk ash (RHA) and ordinary Portland cement (OPC) as a potential binder for modifying the properties of peat soil. The amounts RHA and OPC added to the peat soil sample, as percentage of the dry soil mass were in the range of 10-15% and 15%, respectively. Observations were made for the changes in the properties of the soil such as maximum dry density (MDD), optimum moisture content (OMC) and shear strength. Scanning Electron Micrograph-Energy Dispersive X-Ray (SEM-EDX) test were also conducted to observe the microstructure of treated and untreated peat soil. The results show that the modified soil of MDD and OMC values are increased due to the increment amount of binder material. Shear strength values of modified peat showing a good result by assuming that it is relative to the formation of major reaction products such as calcium silicate hydrate (C-S-H). The presence of C-S-H formation is indicated by the results produced from microstructural analysis of peat before and after modification process. This depicts the potential usage of RHA as a partial cement replacement in peat soil which is also improving its engineering properties.

  11. Effect of Peat on Physicomechanical Properties of Cemented Brick

    PubMed Central

    Hashim, Roslan; Kurnia, Ryan

    2014-01-01

    The popularity of low cost, lightweight, and environmentally affable masonry unit in building industry carries the need to investigate more flexible and adaptable brick component as well as to retain the requirements confirmed in building standards. In this study, potential use of local materials used as lightweight building materials in solving the economic problems of housing has been investigated. Experimental studies on peat added bricks have been carried out. It demonstrates the physicomechanical properties of bricks and investigates the influence of peat, sand, and cement solid bricks to the role of various types of constructional applications. The achieved compressive strength, spitting strength, flexural strength, unit weight, and ultrasonic pulse velocity are significantly reduced and the water absorption is increased with percentage wise replacement of peat as aggregate in the samples. The maximum 20% of (% mass) peat content meets the requirements of relevant well-known international standards. The experimental values illustrate that, the 44% volumetric replacement with peat did not exhibit any sudden brittle fracture even beyond the ultimate loads and a comparatively smooth surface is found. The application of peat as efficient brick substance shows a potential to be used for wall and a viable solution in the economic buildings design. PMID:24982941

  12. Seven centuries of atmospheric Pb deposition recorded in a floating mire from Central Italy

    NASA Astrophysics Data System (ADS)

    Zaccone, Claudio; Lobianco, Daniela; D'Orazio, Valeria; Miano, Teodoro M.; Shotyk, William

    2016-04-01

    Floating mires generally consist of emergent vegetation rooted in highly organic buoyant mats that rise and fall with changes in water level. Generally speaking, the entire floating mass (mat) is divided into a mat root zone and an underlying mat peat zone. Floating mires are distributed world-wide; large areas of floating marsh occur along rivers and lakes in Africa, the Danube Delta in Romania, the Amazon River in South America, and in the Mississippi River delta in USA, whereas smaller areas occur also in The Netherlands, Australia and Canada. While peat cores from ombrotrophic bogs have been often (and successfully) used to reconstruct changes in the atmospheric deposition of several metals (including Pb), no studies are present in literature about the possibility to use peat profiles from floating mires. To test the hypothesis that peat-forming floating mires could provide an exceptional tool for environmental studies, a complete, 4-m deep peat profile was collected in July 2012 from the floating island of Posta Fibreno, a relic mire in the Central Italy. This floating island has a diameter of ca. 30 m, a submerged thickness of about 3 m, and the vegetation is organized in concentric belts, from the Carex paniculata palisade to the Sphagnum palustre centre. The whole core was frozen cut each 1-to-2 cm (n =231), and Pb determined by quadrupole ICP-MS (at the ultraclean SWAMP lab, University of Alberta, Canada) in each sample throughout the first 100 cm, and in each odd-numbered slice for the remaining 300 cm. The 14C age dating of organic sediments (silty peat) isolated from the sample at 385 cm of depth revealed that the island probably formed ca. 700 yrs ago. Lead concentration trend shows at least two main zones of interest, i.e., a clear peak (ranging from 200 to 1600 ppm) between 110-115 cm of depth, probably corresponding to early 1960's - late 1970's, and a broad band (80-160 ppm) between 295-320 cm of depth, corresponding to approximately AD 1480-1650. Lead concentrations were normalized to those of Th, a conservative, lithophile element often used as an indicator of the abundance of mineral particles. Crustal enrichment factor values, calculated by normalizing the Pb/Th ratio in peat samples to the corresponding ratio for the Upper Continental Crust, clearly show that almost all the Pb reaching this floating isle in the last seven centuries is of anthropogenic origin. In particular, while the big peak around 100-115 cm of depth is associated with that of Sb, the band around 300 cm characterized also the trend of several other major and trace elements (i.e., Ag, Al, Ba, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Sr, Th, Tl, U, V, Y, Zn) with the exception of Sb. Although γ-spectrometry measurement (210Pb, 137Cs and 241Am) for the first 100 cm of this core is still on-going, at the best of our knowledge, this work may provide the first Pb chronology obtained from a (4 m) deep floating mire. Furthermore, it is to note that a) this floating mire could consist of the southernmost European population of Sphagnum, and b) this core shows a great potential to be used as archive of environmental changes, especially considering its high resolution (1 cm = 0.5 yr in the first 100 cm, and 2-2.5 yrs in the remaining 300 cm of depth). The Authors thank the Municipality of Posta Fibreno, Managing Authority of the Regional Natural Reserve of Lake Posta Fibreno, for allowing peat cores sampling.

  13. Biogenic Gas Dynamics in Peat Soil Blocks using Ground Penetrating Radar: a Comparative Study in the Laboratory between Peat Soils from the Everglades and from two Northern Peatlands in Minnesota and Maine

    NASA Astrophysics Data System (ADS)

    Cabolova, Anastasija

    Peatlands cover a total area of approximately 3 million square kilometers and are one of the largest natural sources of atmospheric methane ( CH4) and carbon dioxide (CO 2). Most traditional methods used to estimate biogenic gas dynamics are invasive and provide little or no information about lateral distribution of gas. In contrast, Ground Penetrating Radar (GPR) is an emerging technique for non-invasive investigation of gas dynamics in peat soils. This thesis establishes a direct comparison between gas dynamics (i.e. build-up and release) of four different types of peat soil using GPR. Peat soil blocks were collected at peatlands with contrasting latitudes, including the Everglades, Maine and Minnesota. A unique two-antenna GPR setup was used to monitor biogenic gas buildup and ebullition events over a period of 4.5 months, constraining GPR data with surface deformation measurements and direct CH 4 and CO2 concentration measurements. The effect of atmospheric pressure was also investigated. This study has implications for better understanding global gas dynamics and carbon cycling in peat soils and its role in climate change.

  14. INNOVATIVE TECHNOLOGY EVALUATION REPORT, SEDIMENT SAMPLING TECHNOLOGY, AQUATIC RESEARCH INSTRUMENTS, RUSSIAN PEAT BORER

    EPA Science Inventory

    The Russian Peat Borer designed and fabricated by Aquatic Research Instruments was demonstrated under the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation Program in April and May 1999 at sites in EPA Regions 1 and 5, respectively. In additio...

  15. Estimating the water budget for a peat filter treating septic tank effluent in the field

    NASA Astrophysics Data System (ADS)

    Van Geel, Paul J.; Parker, Wayne J.

    2003-02-01

    The use of peat as a filter medium for the treatment of a variety of liquid and gas waste streams has increased over the past decade. Peat has been used as an alternate treatment medium to treat septic tank effluent (STE) from domestic and small communal systems. Very little research has been completed to study the hydraulics and water budget of a peat filter operating in the field. This study evaluated the water budget of a peat filter operating at an elementary school near Ottawa, Canada. The peat filter was instrumented with tensiometers to measure the pore water pressures within the filter and a weather station to collect weather data required to estimate potential evapotranspiration. A one-dimensional unsaturated flow model, SoilCover, was calibrated using the pressure data and weather data collected in the field. The calibrated model was use to estimate the water budget for the filter operating with and without STE loading. The calibrated model predicted that the annual precipitation exceeded evapotranspiration for both scenarios. For the filter treating 50 mm/day of STE, there was a slight dilution due to the infiltration resulting in a net dilution factor of 0.97 (loading divided by the loading plus infiltration). The largest rainfall event of 49.9 mm resulted in a dilution factor of approximately 0.87, which corresponded to an approximate decrease in the hydraulic retention time (HRT) of between 12 and 33% depending on the calculation used to determine the HRT. When the filter does not receive STE, the precipitation exceeds evapotranspiration and hence the filter should not dry out when the filter is not in use.

  16. Pb inventory in an ombrotrophic bog decreases over time

    NASA Astrophysics Data System (ADS)

    Baumann, E.; Jeremiason, J.; Sebestyen, S.

    2016-12-01

    Peat cores were collected from the S2 ombrotrophic bog at the Marcell Experimental Forest (MEF) to determine if the Pb inventory in the bog has decreased over time. Pb concentrations in the outflow of the bog measured from 2009-2016 indicated continued mobilization and export of Pb out of the bog despite dramatic decreases in atmospheric deposition. A seminal study conducted by Urban et al. (1990) from 1981-1983 calculated a mass balance of Pb in the S2 watershed which included a Pb inventory in peat based on the approximate time frame of 1930 to 1983. We collected peat cores in 2016 to compare peat inventories of Pb over the same time range. We found that Pb inventories in the peat have decreased over time, consistent with Pb being mobilized by dissolved organic carbon (DOC) and gradually flushed out of the bog. Since 1983, DOC levels may have increased leading to further Pb mobilization and transport from the bog, but this trend is unclear. In contrast to Pb concentrations in the outflow water, upland runoff and the surface sphagnum moss layer have dramatically lower Pb concentrations compared to 1980s levels indicating fast ecosystem responses to a decrease in Pb inputs in these compartments. However, the deeper peat layers near the water table are responding more slowly to the decrease in Pb inputs and historical Pb inputs continue to be mobilized and transported from the bog. Our results would be applicable to other trace metals, such as Hg, that bind strongly to DOC. For example, a dramatic decrease in Hg deposition would not result in near-term decreases in Hg out of the bog.

  17. Investigating variability of biogenic gas dynamics in peat soils using high temporal frequency hydrogeophysical methods

    NASA Astrophysics Data System (ADS)

    Wright, William J.

    Peat soils are known to be a significant source of atmospheric greenhouse gasses. However, the releases of methane and carbon dioxide gasses from peat soils are currently not well understood, particularly since the timing of the releases are poorly constrained. Furthermore, most research work performed on peatlands has been focused on temperate to sub-arctic peatlands, while recent works have suggested that gas production rates from low-latitude peat soils are higher than those from colder climates. The purpose of the work proposed here is to introduce an autonomous Ground Penetrating Radar (GPR) method for investigating the timing of gas releases from peat soils at the lab scale utilizing samples originating from Maine and the Florida Everglades, and at the field scale in a Maine peatland. Geophysical data are supported by direct gas flux measurements using the flux chamber method enhanced by timelapse photography, and terrestrial LiDAR (TLS) monitoring surface deformation.

  18. Effect of past peat cultivation practices on present dynamics of dissolved organic carbon.

    PubMed

    Frank, S; Tiemeyer, B; Bechtold, M; Lücke, A; Bol, R

    2017-01-01

    Peatlands are a major source of dissolved organic carbon (DOC) for aquatic ecosystems. Naturally high DOC concentrations in peatlands may be increased further by drainage. For agricultural purposes, peat has frequently been mixed with sand, but the effect of this measure on the release and cycling of DOC has rarely been investigated. This study examined the effects of (i) mixing peat with sand and (ii) water table depth (WTD) on DOC concentrations at three grassland sites on shallow organic soils. The soil solution was sampled bi-weekly for two years with suction plates at 15, 30 and 60cm depth. Selected samples were analysed for dissolved organic nitrogen (DON), δ 13 C DOM and δ 15 N DOM . Average DOC concentrations were surprisingly high, ranging from 161 to 192mgl -1 . There was no significant impact of soil organic carbon (SOC) content or WTD on mean DOC concentrations. At all sites, DOC concentrations were highest at the boundary between the SOC-rich horizon and the mineral subsoil. In contrast to the mean concentrations, the temporal patterns of DOC concentrations, their drivers and the properties of dissolved organic matter (DOM) differed between peat-sand mixtures and peat. DOC concentrations responded to changes in environmental conditions, but only after a lag period of a few weeks. At the sites with a peat-sand mixture, temperature and therefore probably biological activity determined the DOC concentrations. At the peat site, the contribution of vegetation-derived DOM was higher. The highest concentrations occurred during long, cool periods of waterlogging, suggesting a stronger physicochemical-based DOC mobilisation. Overall, these results indicate that mixing peat with sand does not improve water quality and may result in DOC losses of around 200kg DOCha -1 a -1 . Copyright © 2016 Office national des forêts. Published by Elsevier B.V. All rights reserved.

  19. Field Measurements of Trace Gases and Aerosols Emitted by Undersampled Combustion Sources Including Wood and Dung Cooking Fires, Garbage and Crop Residue Burning, and Indonesian Peat Fires

    NASA Astrophysics Data System (ADS)

    Stockwell, C.; Jayarathne, T. S.; Goetz, D.; Simpson, I. J.; Selimovic, V.; Bhave, P.; Blake, D. R.; Cochrane, M. A.; Ryan, K. C.; Putra, E. I.; Saharjo, B.; Stone, E. A.; DeCarlo, P. F.; Yokelson, R. J.

    2017-12-01

    Field measurements were conducted in Nepal and in the Indonesian province of Central Kalimantan to improve characterization of trace gases and aerosols emitted by undersampled combustion sources. The sources targeted included cooking with a variety of stoves, garbage burning, crop residue burning, and authentic peat fires. Trace gas and aerosol emissions were studied using a land-based Fourier transform infrared spectrometer, whole air sampling, photoacoustic extinctiometers (405 and 870nm), and filter samples that were analyzed off-line. These measurements were used to calculate fuel-based emission factors (EFs) for up to 90 gases, PM2.5, and PM2.5 constituents. The aerosol optical data measured included EFs for the scattering and absorption coefficients, the single scattering albedo (at 870 and 405 nm), as well as the absorption Ångström exponent. The emissions varied significantly by source, although light absorption by both brown and black carbon (BrC and BC, respectively) was important for all non-peat sources. For authentic peat combustion, the emissions of BC were negligible and absorption was dominated by organic aerosol. The field results from peat burning were in reasonable agreement with recent lab measurements of smoldering Kalimantan peat and compare well to the limited data available from other field studies. The EFs can be used with estimates of fuel consumption to improve regional emissions inventories and assessments of the climate and health impacts of these undersampled sources.

  20. A millennial-scale record of Pb and Hg contamination in peatlands of the Sacramento-San Joaquin Delta of California, USA.

    PubMed

    Drexler, Judith Z; Alpers, Charles N; Neymark, Leonid A; Paces, James B; Taylor, Howard E; Fuller, Christopher C

    2016-05-01

    In this paper, we provide the first record of millennial patterns of Pb and Hg concentrations on the west coast of the United States. Peat cores were collected from two micro-tidal marshes in the Sacramento-San Joaquin Delta of California. Core samples were analyzed for Pb, Hg, and Ti concentrations and dated using radiocarbon and (210)Pb. Pre-anthropogenic concentrations of Pb and Hg in peat ranged from 0.60 to 13.0μgg(-1)and from 6.9 to 71ngg(-1), respectively. For much of the past 6000+ years, the Delta was free from anthropogenic pollution, however, beginning in ~1425CE, Hg and Pb concentrations, Pb/Ti ratios, Pb enrichment factors (EFs), and HgEFs all increased. Pb isotope compositions of the peat suggest that this uptick was likely caused by smelting activities originating in Asia. The next increases in Pb and Hg contamination occurred during the California Gold Rush (beginning ~1850CE), when concentrations reached their highest levels (74μgg(-1) Pb, 990ngg(-1) Hg; PbEF=12 and HgEF=28). Lead concentrations increased again beginning in the ~1920s with the incorporation of Pb additives in gasoline. The phase-out of lead additives in the late 1980s was reflected in changes in Pb isotope ratios and reductions in Pb concentrations in the surface layers of the peat. The rise and subsequent fall of Hg contamination was also tracked by the peat archive, with the highest Hg concentrations occurring just before 1963CE and then decreasing during the post-1963 period. Overall, the results show that the Delta was a pristine region for most of its ~6700-year existence; however, since ~1425CE, it has received Pb and Hg contamination from both global and regional sources. Published by Elsevier B.V.

  1. A millennial-scale record of Pb and Hg contamination in peatlands of the Sacramento-San Joaquin Delta of California, USA

    USGS Publications Warehouse

    Drexler, Judith; Alpers, Charles N.; Neymark, Leonid; Paces, James B.; Taylor, Howard E.; Fuller, Christopher C.

    2016-01-01

    In this paper, we provide the first record of millennial patterns of Pb and Hg concentrations on the west coast of the United States. Peat cores were collected from two micro-tidal marshes in the Sacramento-San Joaquin Delta of California. Core samples were analyzed for Pb, Hg, and Ti concentrations and dated using radiocarbon, 210Pb, and 137Cs. Pre-anthropogenic concentrations of Pb and Hg in peat ranged from 0.60 to 13.0 µg g-1and from 6.9 to 71 ng g-1, respectively. For much of the past 6000+ years, the Delta was free from anthropogenic pollution, however, beginning in ~1425 CE, Hg and Pb concentrations, Pb/Ti ratios, Pb enrichment factors (EFs), and HgEFs all increased. Pb isotope compositions of the peat suggest that this uptick was likely caused by smelting activities originating in Asia. The next increases in Pb and Hg contamination occurred during the California Gold Rush (beginning ~1850 CE), when concentrations reached their highest levels (74 µg g-1 Pb, 990 ng g-1 Hg; PbEF = 12 and HgEF = 28). Lead concentrations increased again beginning in the ~1920s with the incorporation of Pb additives in gasoline. The phase-out of lead additives in the late 1980s was reflected in Pb isotope ratios and reductions in Pb concentrations in the surface layers of the peat. The rise and fall of Hg contamination was also tracked by the peat archive, with the highest Hg concentrations occurring just before 1963 CE and then decreasing during the post-1963 period. Overall, the results show that the Delta was a pristine region for most of its ~6700-year existence; however, since ~1425 CE, it has received Pb and Hg contamination from both global and regional sources.

  2. What controls the oxidative ratio of UK peats? A multi-site study of elemental CHNO concentrations in peat cores

    NASA Astrophysics Data System (ADS)

    Clay, Gareth; Worrall, Fred; Masiello, Carrie

    2013-04-01

    The oxidative ratio (OR) is the amount of CO2 sequestered in the terrestrial biosphere for each mol of O2 produced. The OR governs the effectiveness of a terrestrial biome to mitigate the impact of anthropogenic CO2 emissions and it has been used to calculate the balance of terrestrial and oceanic carbon sinks across the globe. However, few studies have investigated the controls of the variability in OR. What factors affect OR - climate? Soil type? Vegetation type? N deposition? Land use? Land use change? Small shifts in OR could have important implications in the global partitioning of CO2 between the atmosphere, biosphere, and oceans. This study looks at peat soils from a series of sites representing a climatic transect across the UK. Duplicate peat cores were taken, along with samples of above-ground vegetation and litter, from sites in northern Scotland (Forsinard), southern Scotland (Auchencorth), northern England (Moor House; Thorne Moor) through the Welsh borders (Whixhall Moss) and Somerset levels (Westhay Moor) to Dartmoor and Bodmin Moor in the south west of England. Sub-samples of the cores were analysed for their CHNO concentrations using a Costech ECS 4010 Elemental combustion system. Using the method of Masiello et al. (2008), OR values could be calculated from these elemental concentrations. Results show that OR values of UK peats varied between 0.82 and 1.27 with a median value of 1.08 which is within the range of world soils. There were significant differences in OR of the peat between sites with the data falling into two broad groupings - Group 1: Forsinard, Auchencorth, Dartmoor and Bodmin Moor; Group 2: Moor House, Thorne Moor, Westhay Moor, Whixhall Moss. Whilst there were significant changes (p < 0.05) in elemental ratios with increasing peat depth (increasing C:N ratio and decreasing O:C ratio) there was no significant difference overall in OR with depth. This paper will explore some of the possible controlling factors on these ratios. Local vegetation was also sampled along with agricultural soils from the local area of the peat cores to compare the relative differences in different mediums. Significant differences (p < 0.01) between vegetation, agricultural soils and surface peat layers were found where vegetation had OR values of 1.03 ± 0.04 and agricultural soils had OR values of 1.15 ± 0.04. Further discussion of these results from these comparisons is also presented in this study.

  3. Characterization and source apportionment of particulate matter < or = 2.5 micrometer in Sumatra, Indonesia, during a recent peat fire episode.

    PubMed

    See, Siao Wei; Balasubramanian, Rajasekhar; Rianawati, Elisabeth; Karthikeyan, Sathrugnan; Streets, David G

    2007-05-15

    An intensive field study was conducted in Sumatra, Indonesia, during a peat fire episode to investigate the physical and chemical characteristics of particulate emissions in peat smoke and to provide necessary data for source-receptor analyses. Ambient air sampling was carried out at three different sites located at varying distances from the peatfires to determine changes in mass and number concentrations of PM2.5 and its chemical composition (carbonaceous and nitrogenous materials, polycyclic aromatic hydrocarbons, water-soluble inorganic and organic ions, and total and water-soluble metals). The three sites represent a rural site directly affected by the local peat combustion, a semirural site, and an urban site situated downwind of the peat fires. The mass concentration of PM2.5 and the number concentration of airborne particles were as high as 1600 microg/m3 and 1.7 x 10(5) cm(-3), respectively, in the vicinity of peat fires. The major components of PM2.5 in peat smoke haze were carbonaceous particles, particularly organic carbon, NO3-, and SO4(2-), while the less abundant constituents included ions such as NH4+, NO2-, Na+, K+, organic acids, and metals such as Al, Fe, and Ti. Source apportionment by chemical mass balance receptor modeling indicates that peat smoke can travel long distances and significantly affect the air quality at locations downwind.

  4. Measuring Outcomes for Dysphagia: Validity and Reliability of the European Portuguese Eating Assessment Tool (P-EAT-10).

    PubMed

    Nogueira, Dália Santos; Ferreira, Pedro Lopes; Reis, Elizabeth Azevedo; Lopes, Inês Sousa

    2015-10-01

    The purpose of this study was to evaluate the validity and the reliability of the European Portuguese version of the EAT-10 (P-EAT-10). This research was conducted in three phases: (i) cultural and linguistic adaptation; (ii) feasibility and reliability test; and (iii) validity tests. The final sample was formed by a cohort of 520 subjects. The P-EAT-10 index was compared for socio-demographic and clinic variables. It was also compared for both dysphagic and non-dysphagic groups as well as for the results of the 3Oz wst. Lastly, the P-EAT-10 scores were correlated with the EuroQol Group Portuguese EQ-5D index. The Cronbach's α obtained for the P-EAT-10 scale was 0.952 and it remained excellent even if any item was deleted. The item-total and the intraclass correlation coefficients were very good. The P-EAT-10 mean of the non-dysphagic cohort was 0.56 and that of the dysphagic cohort was 14.26, the mean comparison between the 3Oz wst groups and the P-EAT-10 scores were significant. A significant higher perception of QoL was also found among the non-dysphagic subjects. P-EAT-10 is a valid and reliable measure that may be used to document dysphagia which makes it useful both for screening in clinical practice and in research.

  5. Petrography and geochemistry of selected lignite beds in the Gibbons Creek mine (Manning Formation, Jackson Group, Paleocene) of east-central Texas

    USGS Publications Warehouse

    Warwick, Peter D.; Crowley, Sharon S.; Ruppert, Leslie F.; Pontolillo, James

    1997-01-01

    This study examined the petrographic and geochemical characteristics of two lignite beds (3500 and 4500 beds, Manning Formation, Jackson Group, Eocene) that are mined at the Gibbons Creek mine in east-central Texas. The purpose of the study was to identify the relations among sample ash yield, coal petrography, and trace-element concentrations in lignite and adjoining rock layers of the Gibbons Creek mine. Particular interest was given to the distribution of 12 environmentally sensitive trace elements (As, Be, Cd, Cr, Co, Hg, Mn, Ni, Pb, Sb, Se, and U) that have been identified as potentially hazardous air pollutants (HAPs) in the United States Clean Air Act Amendments of 1990. Eleven lignite, floor, and rock parting samples were collected from incremental channel samples of the 3500 and 4500 beds that were exposed in a highwall of pit A3 at the Gibbons Creek mine. Short proximate and ultimate and forms of sulfur analyses were performed on all lignite samples, and lignite and rock samples were analyzed for 60 major, minor and trace elements. Representative splits of all lignite samples were ground and cast into pellets, and polished for petrographic analyses in blue-light fluorescence and reflected white light to determine liptinite, inertinite, and huminite maceral group percentages. The following observations summarize our results and conclusions about the geochemistry, petrography, and sedimentology of the 3500 and 4500 beds of the Gibbons Creek lignite deposit: (1) Weighted average dry (db) ash yield for the two beds is 29.7%, average total sulfur content is 2.6%, and average calorific value is 7832 Btu (18.22 MJ/kg). Ash yields are greatest in the lower bench (59.33% db) of the 3500 bed and in the upper bench of the 4500 bed (74.61% db). (2) For lignite samples (on a whole-coal basis), the distributions of two of the HAPs (Pb and Sb) are positively related to ash yield, probably indicating an inorganic affinity for these elements. By using cluster analysis we found that Be and Cd were poorly associated with ash yield, indicating a possible organic affinity, and that Ni, Se, Hg, U, and Pb cluster with most of the rare-earth elements. (3) The dominance of the crypto-eugelinite maceral subgroup over the crypto-humotelinite subgroup suggests that all Gibbons Creek lignites were subjected to peat-forming conditions (either biogenic or chemical) conducive to the degradation of wood cellular material into matrix gels, or that original plant material was not very woody and was prone to formation of matrix gels. The latter idea is supported by pollen studies of Gibbons Creek lignite beds; results indicate that the peat was derived in part from marsh plants low in wood tissue. (4) The occurrence of siliceous sponge spicules in the lower benches of the 3500 bed suggests the original peat in this part of the bed was deposited in standing, fresh water. (5) The petrographic data indicate that the upper sample interval of the 3500 bed contains more inertinite (3%) than the other samples studied. Increases in inertinite content in the upper part of the 3500 bed may have been associated with alteration of the peat by acids derived from the volcanic ash or could have been caused by fire, oxidation and drying, or biologic alteration of the peat in the paleo-mire.

  6. Chemical and physical characteristics of coal and carbonaceous shale samples from the Salt Range coal field, Punjab Province, Pakistan

    USGS Publications Warehouse

    Warwick, Peter D.; Shakoor, T.; Javed, Shahid; Mashhadi, S.T.A.; Hussain, H.; Anwar, M.; Ghaznavi, M.I.

    1990-01-01

    Sixty coal and carbonaceous shale samples collected from the Paleocene Patala Formation in the Salt Range coal field, Punjab Province, Pakistan, were analyzed to examine the relationships between coal bed chemical and physical characteristics and depositional environments. Results of proximate and ultimate analyses, reported on an as received basis, indicate that coal beds have an average ash yield of 24.23 percent, average sulfur content of 5.32 percent, average pyritic sulfur content of 4.07 percent, and average calorific value of 8943 Btu (4972 kcal/kg). Thirty five coal samples, analyzed on a whole coal, dry basis for selected trace elements and oxides, have anomalously high average concentrations of Ti, at O.3& percent; Zr, at 382 ppm; and Se, at 11.4 ppm, compared to world wide averages for these elements in coal.Some positive correlation coefficients, significant at a 0.01 level, are those between total sulfur and As, pyritic sulfur and As, total sulfur and sample location, organic sulfur and Se, calorific value (Btu) and sample location, and coal bed thickness and Se. Calorific values -for the samples, calculated on a moist, mineral matter free basis, indicate that the apparent rank of the coal is high volatile C bituminous.Variations observed in the chemical and physical characteristics of the coal beds may be related to depositional environments. Total ash yields and concentrations of Se and organic sulfur increase toward more landward depositional environments and may be related to an increase of fluvial influence on peat deposition. Variations in pyritic sulfur concentrations may be related to post-peat pyrite filled burrows commonly observed in the upper part of the coal bed. The thickest coal beds that have the lowest ash content, and highest calorific values, formed from peats deposited in back barrier, tidal flat environments of the central and western parts of the coal field. The reasons for correlations between Se and coal bed thickness and Se and ash content are not clear and may be a product of averaging.

  7. Monitoring the effects of manure policy in the Peat region, Netherlands

    NASA Astrophysics Data System (ADS)

    Hooijboer, Arno; Buis, Eke; Fraters, Dico; Boumans, Leo; Lukacs, Saskia; Vrijhoef, Astrid

    2014-05-01

    Total N concentrations in farm ditches in the Peat region of the Netherlands are on the average twice as high as the Good Ecological Potential value of the Water Framework Directive. Since ditches are connected to regional surface water, they may contribute to eutrophication. The minerals policy aims to improve the water quality. In the Netherlands, the effectiveness of the minerals policy on water quality is evaluated with data from the National Minerals Policy Monitoring Programme (LMM). This regards farm data on the quality of water leaching from the root zone and on farm practices. The soil balance nitrogen surpluses decreased between 1996 and 2003 on dairy farms in the Peat region. However, no effect on root zone leaching was found. This study aims to show how monitoring in the Peat region can be improved in order to link water quality to agricultural practice. Contrary to the other Dutch regions, nitrate concentrations in root zone leaching on farms in the Peat region are often very low (90% of the farms below 25 mg/l) due to the reduction of nitrate (denitrification). The main nitrogen (N) components in the peat region waters are ammonium and organic N. Total N is therefore a better measure for N concentrations in the Peat region. The ammonium concentration in groundwater in Dutch peat soils increases with depth. It is assumed that the deeper ammonia-rich water is older and relates to anaerobic peat decomposition instead of agricultural practice. Recent infiltrated low-ammonium water, lies like a thin freshwater lens on the older water. In the Peat region, root zone leaching is monitored by taking samples from the upper meter of groundwater. Unintended, often both lens water and older water are sampled and this distorts the relation between agricultural practice and water quality. In the Peat region, the N surplus is transported with the precipitation surplus to ditches. The relation between the N surplus and the total N in ditch water is therefore better than between N surplus and total N in root zone leaching. The precipitation surplus flows to ditches directly or via open field drains. However, the ditches may be fed partly with older water (seepage of groundwater). In the open field drain only recent water will occur. We expect that monitoring the water quality of the open field drains may even better reflect changes in agricultural practices. These data may also improve the understanding of contribution of agricultural nitrogen and natural nitrogen, necessary to develop measures to decrease the total-N concentration in ditch water.

  8. Changes in vegetation, peat properties and peat accumulation in Swedish peatlands as revealed by archive data.

    NASA Astrophysics Data System (ADS)

    Schoning, Kristian; Sohlenius, Gustav

    2016-04-01

    In this investigation we have studied patterns in peat accumulation and changes in mire status since the early 1900s for two areas in Sweden. In the early 1900s the Geological Survey of Sweden collected a vast amount of peat and peatland data, including information on vegetation and land-use. We have used this archive data to evaluate changes in mire vegetation, mire wetness and surface peat properties, rates of peat accumulation, succession in young wetlands and the effects of cultivation on peatlands. In total 156 mires in an uplift area of eastern middle Sweden were included in the data-set, including both pristine mires and peatlands used for agricultural purposes. In this area new peatlands have continuously been formed during the past 7 000 years making it possible to evaluate changes in peat accumulation over time. The other study area is situated in the south Swedish Uplands where we have revisited some larger bogs. The results from our investigation show that many of the peatlands have underwent major changes since the early 1900s. In most of the small peatlands we have found important changes in vegetation where mire vegetation has been replaced by nutrient demanding and/or dry species flora while the tree stand on large mires in south Sweden have increased. In some mires humification has increased in the uppermost peat-layers and the mire surface have become drier compared to the early 1900s. In eastern middle Sweden there are indications that the peat accumulation is lower 0,5 mm/year in older peatlands compared with younger ones 1,2 mm/year, although the mire vegetation in the older peatlands is dominated by sphagnum. The peat depth of the cultivated mires in this area shows a mean decrease of 40 cm since the early 1900s.

  9. Contrasting denitrifier communities relate to contrasting N2O emission patterns from acidic peat soils in arctic tundra

    PubMed Central

    Palmer, Katharina; Biasi, Christina; Horn, Marcus A

    2012-01-01

    Cryoturbated peat circles (that is, bare surface soil mixed by frost action; pH 3–4) in the Russian discontinuous permafrost tundra are nitrate-rich ‘hotspots' of nitrous oxide (N2O) emissions in arctic ecosystems, whereas adjacent unturbated peat areas are not. N2O was produced and subsequently consumed at pH 4 in unsupplemented anoxic microcosms with cryoturbated but not in those with unturbated peat soil. Nitrate, nitrite and acetylene stimulated net N2O production of both soils in anoxic microcosms, indicating denitrification as the source of N2O. Up to 500 and 10 μ nitrate stimulated denitrification in cryoturbated and unturbated peat soils, respectively. Apparent maximal reaction velocities of nitrite-dependent denitrification were 28 and 18 nmol N2O gDW−1 h−1, for cryoturbated and unturbated peat soils, respectively. Barcoded amplicon pyrosequencing of narG, nirK/nirS and nosZ (encoding nitrate, nitrite and N2O reductases, respectively) yielded ≈49 000 quality-filtered sequences with an average sequence length of 444 bp. Up to 19 species-level operational taxonomic units were detected per soil and gene, many of which were distantly related to cultured denitrifiers or environmental sequences. Denitrification-associated gene diversity in cryoturbated and in unturbated peat soils differed. Quantitative PCR (inhibition-corrected per DNA extract) revealed higher copy numbers of narG in cryoturbated than in unturbated peat soil. Copy numbers of nirS were up to 1000 × higher than those of nirK in both soils, and nirS nirK−1 copy number ratios in cryoturbated and unturbated peat soils differed. The collective data indicate that the contrasting N2O emission patterns of cryoturbated and unturbated peat soils are associated with contrasting denitrifier communities. PMID:22134649

  10. The composition and degradability of upland dissolved organic matter

    NASA Astrophysics Data System (ADS)

    Moody, Catherine; Worrall, Fred; Clay, Gareth

    2016-04-01

    In order to assess controls on the degradability of DOM in stream water, samples of dissolved organic matter (DOM) and particulate organic matter (POM) were collected every month for a period of 24 months from an upland, peat-covered catchment in northern England. Each month the degradability of the DOM was assessed by exposing river water to light for up to 24 hours, and the change in the dissolved organic carbon (DOC) concentration in the water was measured. To provide context for the analysis of DOM and its degradability, samples of peat, vegetation, and litter were also taken from the same catchment and analysed. The organic matter samples were analysed by several methods including: elemental analysis (CHN and O), bomb calorimetry, thermogravimetric analysis, pyrolysis GC/MS, ICP-OES, stable isotope analysis (13C and 15N) and 13C solid state nuclear magnetic resonance (NMR). The water samples were analysed for pH, conductivity, absorbance at 400nm, anions, cations, particulate organic carbon (POC) and DOC concentrations. River flow conditions and meteorology were also recorded at the site and included in the analysis of the composition and degradability of DOM. The results of multiple regression models showed that the rates of DOC degradation were affected by the N-alkyl, O-alkyl, aldehyde and aromatic relative intensities, gross heat, OR and C:N. Of these, the N-alkyl relative intensity had the greatest influence, and this in turn was found to be dependent on the rainfall and soil temperature in the week before sampling.

  11. Can we Ecohydrologically Rehabilitate Disturbed Peatlands? From "Wetlands of Mass Decomposition" to "Yes We Can"

    NASA Astrophysics Data System (ADS)

    Waddington, J. M.; Cagampan, J.; Lucchese, M.; Thompson, D. K.; Duval, T. P.

    2009-05-01

    The natural carbon storage function of peatland ecosystems can be severely affected by human and natural disturbances such as drainage, peat extraction, drought and wildfire. Cutover peatands, for example, become a large and persistent source of atmospheric CO2 following peat extraction. The recovery (rehabilitation, re- establishment, restoration) of disturbed peatlands to a net carbon sink depends to a large extent on the rate of recovery of the surface peat layer referred to as the acrotelm. The acrotelm serves to stabilize water table variation providing ideal conditions for vegetation re-establishment, particularly peat forming Sphagnum moss. Here we present results from several ecosystem-scale field experiments where we examined the change in hydrophysical properties of peat following peat extraction and subsequent restoration and discuss how this affects peatland-atmosphere CO2. We found that moisture retention properties of a new peat layer at a restored peatland were distinct from near- by natural and naturally regenerated sites. Despite considerable biomass accumulation and increase in peat thickness, the new peat layer differed with respect to its moisture retention properties, an indication that factors other than growth have an impact on the restoration of the returning moss layer. Similarly in an acrotelm transplant experiment we determined that the restored peatland experienced high variability in volumetric moisture content (VMC) in the capitula zone (upper 2 cm) where large diurnal changes in VMC (~30%) were observed, suggesting possible disturbance to the peat matrix structure during the extraction-restoration process. However, soil - water retention analysis and physical peat properties (porosity and bulk density) suggest that no significant differences existed between the natural and restored sites. A simple hydrologic model demonstrated that the new peat layer will become an acrotelm in ~20 years when ~20 cm of peat has accumulated, an approach which may aid in designing a long-term sampling strategy for assessing the long- term effects of restoration of disturbed peatlands on peatland hydrology and ecology. Applications of these findings to a new research collaboration on the effects of wildfire on peatland ecohydrology will be discussed.

  12. Substrate-induced growth and isolation of Acidobacteria from acidic Sphagnum peat.

    PubMed

    Pankratov, Timofei A; Serkebaeva, Yulia M; Kulichevskaya, Irina S; Liesack, Werner; Dedysh, Svetlana N

    2008-05-01

    Fluorescence in situ hybridization (FISH) was applied to estimate the population size of the poorly characterized phylum Acidobacteria in acidic peat sampled from nine different Sphagnum-dominated wetlands of Northern Russia. The cell numbers of these bacteria in oxic peat layers ranged from 0.4 x 10(6) to 1.3 x 10(7) cells per g of wet peat, comprising up to 4% of total bacterial cells. Substrate-induced growth of acidobacteria was observed after amendment of peat samples with glucose, pectin, xylan, starch, ethanol and methanol, while weak or no response was obtained for acetate, pyruvate, mannitol and cellobiose. Using low-nutrient media and FISH-mediated monitoring of the isolation procedure, we succeeded in obtaining nine strains of acidobacteria in pure cultures. These strains belonged to subdivisions 1 and 3 of the Acidobacteria and represented strictly aerobic, heterotrophic organisms. Except for methanol, the substrate utilization patterns of these isolates matched the results obtained in our substrate-amendment experiments with native peat. All strains were also capable of utilizing galacturonic acid, a characteristic component of the cell wall in Sphagnum spp, which is released during moss decomposition. Most isolates from subdivision 1 were truly acidophilic organisms with the growth optimum at pH 3.5-4.5, while the isolates from subdivision 3 grew optimally at pH 5.5-6.5. Another important phenotypic trait of novel strains was their capability of active growth at low temperatures. Both acidophily and low-temperature growth are consistent with the occurrence of acidobacteria in cold and acidic northern wetlands.

  13. A cost-efficient method to assess carbon stocks in tropical peat soil

    NASA Astrophysics Data System (ADS)

    Warren, M. W.; Kauffman, J. B.; Murdiyarso, D.; Anshari, G.; Hergoualc'h, K.; Kurnianto, S.; Purbopuspito, J.; Gusmayanti, E.; Afifudin, M.; Rahajoe, J.; Alhamd, L.; Limin, S.; Iswandi, A.

    2012-11-01

    Estimation of belowground carbon stocks in tropical wetland forests requires funding for laboratory analyses and suitable facilities, which are often lacking in developing nations where most tropical wetlands are found. It is therefore beneficial to develop simple analytical tools to assist belowground carbon estimation where financial and technical limitations are common. Here we use published and original data to describe soil carbon density (kgC m-3; Cd) as a function of bulk density (gC cm-3; Bd), which can be used to rapidly estimate belowground carbon storage using Bd measurements only. Predicted carbon densities and stocks are compared with those obtained from direct carbon analysis for ten peat swamp forest stands in three national parks of Indonesia. Analysis of soil carbon density and bulk density from the literature indicated a strong linear relationship (Cd = Bd × 495.14 + 5.41, R2 = 0.93, n = 151) for soils with organic C content > 40%. As organic C content decreases, the relationship between Cd and Bd becomes less predictable as soil texture becomes an important determinant of Cd. The equation predicted belowground C stocks to within 0.92% to 9.57% of observed values. Average bulk density of collected peat samples was 0.127 g cm-3, which is in the upper range of previous reports for Southeast Asian peatlands. When original data were included, the revised equation Cd = Bd × 468.76 + 5.82, with R2 = 0.95 and n = 712, was slightly below the lower 95% confidence interval of the original equation, and tended to decrease Cd estimates. We recommend this last equation for a rapid estimation of soil C stocks for well-developed peat soils where C content > 40%.

  14. Radioactivity of natural medicinal preparations contained extracts from peat mud available in retail trade used externally.

    PubMed

    Karpińska, Maria; Kapała, Jacek; Raciborska, Agnieszka; Kulesza, Grzegorz; Milewska, Anna; Mnich, Stanisław

    2017-08-01

    In this work were identified and measured the activity of radioactive isotopes present in medicinal preparations from peat mud and estimated the doses obtained from them during therapy. Radioactivity of 22 preparations from peat mud and 20 water samples from water of the North-East region of Poland was studied. The median of the total activity was 24.8 Bq kg -1 . Total maximal isotope activity was observed in the Iwonicka Cube 146 Bq kg -1 while considerable amounts of isotopes were found in the Kolobrzeska Peat Mud Paste 112 Bq kg -1 . The doses obtained during therapy were within the range of 11 nSv-13 μSv depending on extracts of medicinal preparations from peat mud. The probability that such a small dose would stimulate biological effects is low. However, some clinicians believe that one of the possible therapeutic mechanisms in the treatment of rheumatoid disorders is the induction of immune response by ionising radiation.

  15. Uranium delivery and uptake in a montane wetland, north-central Colorado, USA

    USGS Publications Warehouse

    Schumann, R. Randall; Zielinski, Robert A.; Otton, James K.; Pantea, Michael P.; Orem, William H.

    2017-01-01

    Comprehensive sampling of peat, underlying lakebed sediments, and coexisting waters of a naturally uraniferous montane wetland are combined with hydrologic measurements to define the important controls on uranium (U) supply and uptake. The major source of U to the wetland is groundwater flowing through locally fractured and faulted granite gneiss of Proterozoic age. Dissolved U concentrations in four springs and one seep ranged from 20 to 83 ppb (μg/l). Maximum U concentrations are ∼300 ppm (mg/kg) in lakebed sediments and >3000 ppm in peat. Uranium in lakebed sediments is primarily stratabound in the more organic-rich layers, but samples of similar organic content display variable U concentrations. Post-depositional modifications include variable additions of U delivered by groundwater. Uranium distribution in peat is heterogeneous and primarily controlled by proximity to groundwater-fed springs and seeps that act as local point sources of U, and by proximity to groundwater directed along the peat/lakebeds contact. Uranium is initially sorbed on various organic components of peat as oxidized U(VI) present in groundwater. Selective extractions indicate that the majority of sorbed U remains as the oxidized species despite reducing conditions that should favor formation of U(IV). Possible explanations are kinetic hindrances related to strong complex formation between uranyl and humic substances, inhibition of anaerobic bacterial activity by low supply of dissolved iron and sulfate, and by cold temperatures.

  16. Distribution and Rate of Methane Oxidation in Sediments of the Florida Everglades †

    PubMed Central

    King, Gary M.; Roslev, Peter; Skovgaard, Henrik

    1990-01-01

    Rates of methane emission from intact cores were measured during anoxic dark and oxic light and dark incubations. Rates of methane oxidation were calculated on the basis of oxic incubations by using the anoxic emissions as an estimate of the maximum potential flux. This technique indicated that methane oxidation consumed up to 91% of the maximum potential flux in peat sediments but that oxidation was negligible in marl sediments. Oxygen microprofiles determined for intact cores were comparable to profiles measured in situ. Thus, the laboratory incubations appeared to provide a reasonable approximation of in situ activities. This was further supported by the agreement between measured methane fluxes and fluxes predicted on the basis of methane profiles determined by in situ sampling of pore water. Methane emissions from peat sediments, oxygen concentrations and penetration depths, and methane concentration profiles were all sensitive to light-dark shifts as determined by a combination of field and laboratory analyses. Methane emissions were lower and oxygen concentrations and penetration depths were higher under illuminated than under dark conditions; the profiles of methane concentration changed in correspondence to the changes in oxygen profiles, but the estimated flux of methane into the oxic zone changed negligibly. Sediment-free, root-associated methane oxidation showed a pattern similar to that for methane oxidation in the core analyses: no oxidation was detected for roots growing in marl sediment, even for roots of Cladium jamaicense, which had the highest activity for samples from peat sediments. The magnitude of the root-associated oxidation rates indicated that belowground plant surfaces may not markedly increase the total capacity for methane consumption. However, the data collectively support the notion that the distribution and activity of methane oxidation have a major impact on the magnitude of atmospheric fluxes from the Everglades. PMID:16348299

  17. Mobilization of major inorganic ions during experimental diagenesis of characterized peats

    USGS Publications Warehouse

    Bailey, A.M.; Cohen, A.D.; Orem, W.H.; Blackson, J.H.

    2000-01-01

    Laboratory experiments were undertaken to study changes in concentrations of major inorganic ions during simulated burial of peats to about 1.5 km. Cladium, Rhizophora, and Cyrilla peats were first analyzed to determine cation distributions among fractions of the initial materials and minerals in residues from wet oxidation. Subsamples of the peats (80 g) were then subjected to increasing temperatures and pressures in steps of 5??C and 300 psi at 2-day intervals and produced solutions collected. After six steps, starting from 30??C and 300 psi, a final temperature of 60??C and a final pressure of 2100 psi were achieved. The system was then allowed to stand for an additional 2 weeks at 60??C and 2100 psi. Treatments resulted in highly altered organic solids resembling lignite and expelled solutions of systematically varying compositions. Solutions from each step were analyzed for Na+, Ca2+, Mg2+, total dissolved Si (Si(T)), Cl-, SO42-, and organic acids and anions (OAAs). Some data on total dissolved Al (Al(T)) were also collected. Mobilization of major ions from peats during these experiments is controlled by at least three processes: (1) loss of dissolved ions in original porewater expelled during compaction, (2) loss of adsorbed cations as adsorption sites are lost during modification of organic solids, and (3) increased dissolution of inorganic phases at later steps due to increased temperatures (Si(T)) and increased complexing by OAAs (Al(T)). In general, results provide insight into early post-burial inorganic changes occurring during maturation of terrestrial organic matter. (C) 2000 Elsevier Science B.V. All rights reserved.

  18. Preliminary stable isotope results from the Mohos peat bog, East-Carpathians

    NASA Astrophysics Data System (ADS)

    Túri, Marianna; Palcsu, László; Futó, István; Hubay, Katalin; Molnár, Mihály; Rinyu, László; Braun, Mihály

    2016-04-01

    This work provides preliminary results of an isotope investigation carried out on a peat core drilled in the ombrotrophic Mohos peat bog, Ciomadul Mountain, (46°8'3.60"N, 25°54'19.43"E, 1050 m.a.s.l.), East Carpathians, Romania. The Ciomadul is a single dacitic volcano with two craters: the younger Saint Ana and the older Mohos which is a peat bog, and surrounded by a number of individual lava domes as well as a narrow volcaniclastic ring plain volcano. A 10 m long peat core has been taken previously, and is available for stable oxygen and carbon isotope analysis. It is known from our previous work (Hubay et al., 2015) that it covers a period from 11.500 cal year B.P. to present. The peat bog is composed mainly of Sphagnum, which has a direct relationship with the environment, making it suitable for examine the changes in the surrounding circumstances. Isotopic analysis of the prepared cellulose from Sphagnum moss has the attribute to provide such high resolution quantitative estimates of the past climate and there is no such climate studies in this area where the past climate investigations based on oxygen isotope analysis of the Sphagnum. Oxygen and carbon stable isotope analysis were carried out on the hemicellulose samples, which were chemically prepared for 14C dating and taken from every 30 cm of the 10 m long peat core. The oxygen isotope composition of the precipitation can be revealed from the δ18O values of the prepared cellulose samples, since, while carbon isotope ratio tells more about the wet and dry periods of the past. Studying both oxygen and carbon isotope signatures, slight fluctuations can be seen during the Holocene like some of the six periods of significant climate changes can be seen in this resolution during the time periods of 9000-8000, 6000-5000, 4200-3800, 3500-2500, 1200-1000, and 600-150 cal yr B.P. Additionally, the late Pleistocene - early Holocene environmental changes can be clearly observed as Pleistocene peat samples have increasingly negative delta values as going back in time. All measurements were carried out in Hertelendi Laboratory of Environmental Studies, Institute for Nuclear Research, Hungarian Academy of Sciences. Katalin Hubay, Mihály Braun, Sándor Harangi, László Palcsu, Marianna Túri, László Rinyu, Mihály Molnár, 2015. European Geosciences Union (EGU) General Assembly 2015, Radiocarbon dating of Sphagnum cellulose from Mohos peat bog, East Carpathians, accepted in CL5.10/GM1.10 Geophysical Research Abstracts Vol. 17, EGU2015-10813, 2015

  19. Controls on the chemistry of runoff from an upland peat catchment

    NASA Astrophysics Data System (ADS)

    Worrall, Fred; Burt, Tim; Adamson, John

    2003-07-01

    This study uses 2 years of data from a detailed weekly water sampling programme in a 11·4 km2 upland peat catchment in the Northern Pennines, UK. The sampling comprised precipitation, soil-water samples and a number of streams, including the basin outlet. Samples were analysed for: pH, conductivity, alkalinity, Na, K, Ca, Mg, Fe, Al, Total N, SO4, Cl and colour. Principal component analysis (PCA) was used to identify end-members and compositional trends in order to identify controls on the development of water composition. The study showed that the direct use of PCA had several advantages over the use of end-member mixing analysis (EMMA) as it combines an analysis of mixing and evolving waters without the assumption of having to know the compositional sources of the water. In its application to an upland peat catchment, the study supports the view that shallow throughflow at the catotelm/acrotelm boundary is responsible for storm runoff generation and shows that baseflow is controlled by cation exchange in the catotelm and mixing with a base-rich groundwater.

  20. Effect of soil and water environment on typeability of PowerPlex Y (Promega) in selected tissue samples.

    PubMed

    Niemcunowicz-Janica, Anna; Pepinski, Witold; Janica, Jacek Robert; Skawronska, Malgorzata; Janica, Jerzy; Koc-Zorawska, Ewa; Stolyszewski, Ireneusz

    2007-01-01

    In cases of decomposed bodies Y chromosomal STR markers may be useful in identification of a male relative. The authors assessed typeability PowerPlex Y (Promega) loci in tissue material stored in water and soil environment. Tissue material was collected during autopsies of five persons aged 20-30 years with time of death determined within the limit of 14 hours. Heart muscle, liver and lung specimens were stored in pond water, sea water, sand and peat soil. DNA was extracted by organic method from tissue samples collected in 7-day intervals. Liver specimens were typeable in all PowerPlex Y loci within 100 days of storage in pond water with gradual decline at DYS392 in sea water. Heart muscle specimens stored in pond water exhibited allelic loss at DYS19, DYS385, DYS389II and DYS392, while all loci were typeable in sea water stored samples. For lung specimens allelic loss was noted throughout the profile. Storage of liver specimens in peat soil for more than 14 days resulted in allelic drop-out, and after 21 days no profiles were typeable. Heart muscle specimens were typeable in all PowerPlex Y systems after 35-day storage in sand, while allelic drop-out and subsequent lack of profiles were noted after 14 and 35 days respectively. Lung specimens stored in garden soil exhibited allelic drop-out and subsequent lack of profiles after 7 and 21 days, respectively. All PowerPlex Y loci were typeable in the latter material in sand up to day 35 with gradual decline of longer amplicons (DYS19, DYS385, DYS389II and DYS392).

  1. Impact of water conditions on land surface subsidance and the decline of organic soils in Kuwasy peatland

    NASA Astrophysics Data System (ADS)

    Chrzanowski, S.; Szajdak, L.

    2009-04-01

    Organic soils as result of drainage undergo consolidation, mineralization, and subsidence of surface layer, and decline of organic matter. The rate of the subsidence of surface layer depends on a number of factors, such as ground water level, kind of peat, density of thickness of peat layer, drainage depth, climate, land use and drainage duration. These processes are connected with the changes of physical properties and lead to the conversion of organic soils into mineral-organic and mineral. The phenomena are observed in Biebrza, Notec Valley, and Kurpiowska Basin and Wieprz-Krzna channel. During last 42 years, in Kuwasy peatland from 10-13 ton per year was declined and the area of peatland decreased from 53 to 57 cm. It was observed that, peat moorsh soil of the first stadium of moorshification located on a middle decomposed peat transformed into peat-moorh soil of the second stadium of moorshification located on a high decomposed peat. However shallow peat soils were converted into mineral-moorsh and moorsh. Kuwasy peatland was meliorated twice in XX century, first one in the middle of 30 and second one in 50. It led to the farther land surface subsidence and decline of organic matter. The aim of this investigation was to evaluate the rate of land surface subsidence, decline of the area and the transformation of physic-water properties in peat-moorsh soil of different water conditions. The investigations were carried out in Kuwasy peatland, located in Biebrza Basin North-East Poland. In peat soil samples ash contents, porosity, pF curves and bulk density were determined. The analysis of these results allowed to evaluate long-term soil subsidence and to relate it to soil water conditions.

  2. Impact of managed moorland burning on peat nutrient and base cation status

    NASA Astrophysics Data System (ADS)

    Palmer, Sheila; Gilpin, Martin; Wearing, Catherine; Johnston, Kerrylyn; Holden, Joseph; Brown, Lee

    2013-04-01

    Controlled 'patch' burning of moorland vegetation has been used for decades in the UK to stimulate growth of heather (Calluna vulgaris) for game bird habitat and livestock grazing. Typically small patches (300-900 m2) are burned in rotations of 8-25 years. However, our understanding of the short-to-medium term environmental impacts of the practice on these sensitive upland areas has so far been limited by a lack of scientific data. In particular the effect of burning on concentrations of base cations and acid-base status of these highly organic soils has implications both for ecosystem nutrient status and for buffering of acidic waters. As part of the EMBER project peat chemistry data were collected in ten upland blanket peat catchments in the UK. Five catchments were subject to a history of prescribed rotational patch burning. The other five catchments acted as controls which were not subject to burning, nor confounded by other detrimental activities such as drainage or forestry. Soil solution chemistry was also monitored at two intensively studied sites (one regularly burned and one control). Fifty-centimetre soil cores, sectioned into 5-cm intervals, were collected from triplicate patches of four burn ages at each burned site, and from twelve locations at similar hillslope positions at each control site. At the two intensively monitored sites, soil solution chemistry was monitored at four depths in each patch. Across all sites, burned plots had significantly smaller cation exchange capacities, lower concentrations of exchangeable base cations and increased concentrations of exchangeable H+ and Al3+ in near-surface soil. C/N ratios were also lower in burned compared to unburned surface soils. There was no consistent trend between burn age and peat chemistry across all burned sites, possibly reflecting local controls on post-burn recovery rates or external influences on burn management decisions. At the intensively monitored site, plots burned less than two years prior to sampling had significantly smaller exchange capacities and lower concentrations of soil base cations in surface soils relative to plots burned 15-25 years previously. In contrast, surface soil solutions in recently burned plots were enriched in base cations relative to older plots and relative to the control site, possibly due to enhanced leaching at bare soil surfaces. The results offer evidence for an impact of burning on peat nutrient and acid-base status, but suggest that soils recover given time with no further burning.

  3. A method for measuring losses of soil carbon by heterotrophic respiration from peat soils under oil palms

    NASA Astrophysics Data System (ADS)

    Farmer, Jenny; Manning, Frances; Smith, Jo; Arn Teh, Yit

    2017-04-01

    The effects of drainage and deforestation of South East Asian peat swamp forests for the development of oil palm plantations has received considerable attention in both mainstream media and academia, and is the source of significant discussion and debate. However, data on the long-term carbon losses from these peat soils as a result of this land use change is still limited and the methods with which to collect this data are still developing. Here we present the ongoing evolution and implementation of a method for separating autotrophic and heterotrophic respiration by sampling carbon dioxide emissions at increasing distance from palm trees. We present the limitations of the method, modelling approaches and results from our studies. In 2011 we trialled this method in Sumatra, Indonesia and collected rate measurements over a six day period in three ages of oil palm. In the four year oil palm site there were thirteen collars that had no roots present and from these the peat based carbon losses were recorded to be 0.44 g CO2 m2 hr-1 [0.34; 0.57] (equivalent to 39 t CO2 ha-1 yr-1 [30; 50]) with a mean water table depth of 0.40 m, or 63% of the measured total respiration across the plot. In the two older palm sites of six and seven years, only one collar out of 100 had no roots present, and thus a linear random effects model was developed to calculate heterotrophic emissions for different distances from the palm tree. This model suggested that heterotrophic respiration was between 37 - 59% of total respiration in the six year old plantation and 39 - 56% in the seven year old plantation. We applied this method in 2014 to a seven year old plantation, in Sarawak, Malaysia, modifying the method to include the heterotrophic contribution from beneath frond piles and weed covered areas. These results indicated peat based carbon losses to be 0.42 g CO2 m2 hr-1 [0.27;0.59] (equivalent to 37 t CO2 ha-1 yr-1 [24; 52]) at an average water table depth of 0.35 m, 47% of the measured total respiration of the plot. We conclude that, despite a few limitations, it is possible to use a linear modelling approach to partition heterotrophic respiration from the total respiration in oil palm plantations.

  4. Analytical procedures for the determination of selected trace elements in peat and plant samples by inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Krachler, Michael; Mohl, Carola; Emons, Hendrik; Shotyk, William

    2002-08-01

    A simple, robust and reliable analytical procedure for the determination of 15 elements, namely Ca, V, Cr, Mn, Co, Ni, Cu, Zn, Rb, Ag, Cd, Ba, Tl, Th and U in peat and plant materials by inductively coupled plasma-quadrupole mass spectrometry (ICP-QMS) was developed. Powdered sample aliquots of approximately 220 mg were dissolved with various acid mixtures in a microwave heated high-pressure autoclave capable to digest 40 samples simultaneously. The selection of appropriate amounts of digestion acids (nitric acid, hydrofluoric acid or tetrafluoroboric acid) was crucial to obtain accurate results. The optimized acid mixture for digestion of plant and peat samples consisted of 3 ml HNO 3 and 0.1 ml HBF 4. An ultrasonic nebulizer with an additional membrane desolvation unit was found beneficial for the determination of Co, Ni, Ag, Tl, Th and U, allowing to aspirate a dry sample aerosol into the ICP-QMS. A pneumatic cross flow nebulizer served as sample introduction device for the other elements. Internal standardization was achieved with 103Rh for all elements, except for Th whose ICP-QMS signals were corrected by 103Rh and 185Re. Quality control was ascertained by analysis of the certified plant reference material GBW 07602 Bush Branches and Leaves. In almost all cases HNO 3 alone could not fully liberate the analytes of interest from the peat or plant matrix, probably because of the silicates present. After adding small amounts (0.05-0.1 ml) of either HF or HBF 4 to the digestion mixture, concentrations quantified by ICP-QMS generally increased significantly, in the case of Rb up to 80%. Further increasing the volumes of HF or HBF 4 in turn, resulted in a loss of recoveries of almost all elements, some of which amounted to approximately 60%. The successful analytical procedures were applied to the determination of two bulk peat materials. In general, good agreement between the found concentrations and results from an inter-laboratory trial or from instrumental neutron activation data were obtained, underpinning the suitability of the developed analytical approach.

  5. Mutagenicity and Lung Toxicity of Smoldering vs. Flaming Emissions from Various Biomass Fuels: Implications for Health Effects from Wildland Fires.

    PubMed

    Kim, Yong Ho; Warren, Sarah H; Krantz, Q Todd; King, Charly; Jaskot, Richard; Preston, William T; George, Barbara J; Hays, Michael D; Landis, Matthew S; Higuchi, Mark; DeMarini, David M; Gilmour, M Ian

    2018-01-24

    The increasing size and frequency of wildland fires are leading to greater potential for cardiopulmonary disease and cancer in exposed populations; however, little is known about how the types of fuel and combustion phases affect these adverse outcomes. We evaluated the mutagenicity and lung toxicity of particulate matter (PM) from flaming vs. smoldering phases of five biomass fuels, and compared results by equal mass or emission factors (EFs) derived from amount of fuel consumed. A quartz-tube furnace coupled to a multistage cryotrap was employed to collect smoke condensate from flaming and smoldering combustion of red oak, peat, pine needles, pine, and eucalyptus. Samples were analyzed chemically and assessed for acute lung toxicity in mice and mutagenicity in Salmonella . The average combustion efficiency was 73 and 98% for the smoldering and flaming phases, respectively. On an equal mass basis, PM from eucalyptus and peat burned under flaming conditions induced significant lung toxicity potencies (neutrophil/mass of PM) compared to smoldering PM, whereas high levels of mutagenicity potencies were observed for flaming pine and peat PM compared to smoldering PM. When effects were adjusted for EF, the smoldering eucalyptus PM had the highest lung toxicity EF (neutrophil/mass of fuel burned), whereas smoldering pine and pine needles had the highest mutagenicity EF. These latter values were approximately 5, 10, and 30 times greater than those reported for open burning of agricultural plastic, woodburning cookstoves, and some municipal waste combustors, respectively. PM from different fuels and combustion phases have appreciable differences in lung toxic and mutagenic potency, and on a mass basis, flaming samples are more active, whereas smoldering samples have greater effect when EFs are taken into account. Knowledge of the differential toxicity of biomass emissions will contribute to more accurate hazard assessment of biomass smoke exposures. https://doi.org/10.1289/EHP2200.

  6. Thermal diffusivity of peat, sand and their mixtures at different water contents

    NASA Astrophysics Data System (ADS)

    Gvozdkova, Anna; Arkhangelskaya, Tatiana

    2014-05-01

    Thermal diffusivity of peat, sand and their mixtures at different water contents was studied using the unsteady-state method described in (Parikh et al., 1979). Volume sand content in studied samples was 0 % (pure peat), 5, 10, 15, 20, 30, 40, 50, 55 and 62 % (pure sand). Thermal diffusivity of air-dry samples varied from 0.6×10-7m2s-1 for pure peat to 7.0×10-7m2s-1 for pure sand. Adding 5 and 10 vol. % of sand didn't change the thermal diffusivity of studied mixture as compared with that of the pure air-dry peat. Adding 15 % of sand resulted in significant increase of thermal diffusivity by approximately 1.5 times: from 0.6×10-7m2s-1 to 0.9×10-7m2s-1. It means that small amounts of sand with separate sand particles distributed within the peat don't contribute much to the heat transfer through the studied media. And there is a kind of threshold between the 10 and 15 vol. % of sand, after which the continuous sandy chains are formed within the peat, which can serve as preferential paths of heat transport. Adding 20 and 30 % of sand resulted in further increase of thermal diffusivity to 1.3×10-7m2s-1 and 1.7×10-7m2s-1, which is more than two and three times greater than the initial value for pure peat. Thermal diffusivity vs. moisture content dependencies had different shapes. For sand contents of 0 to 40 vol. % the thermal diffusivity increased with water content in the whole studied range from air-dry samples to the capillary moistened ones. For pure peat the experimental curves were almost linear; the more sand was added the more pronounced became the S-shape of the curves. For sand contents of 50 % and more the curves had a pronounced maximum within the range of water contents between 0.10 and 0.25 m3m-3 and then decreased. The experimental k(θ) curves, where k is soil thermal diffusivity, θ is water content, were parameterized with a 4-parameter approximating function (Arkhangelskaya, 2009, 2014). The suggested approximation has an advantage of clear physical interpretation: the parameters are (1) the thermal diffusivity of the dry sample; (2) the difference between the highest thermal diffusivity at some optional water content and that of the dry sample; (3) the optional water content at which the thermal diffusivity reaches its maximum; (4) half-width of the peak of the k(θ) curve. The increase of sand contents in studied mixtures was accompanied by the increase of the parameters (1), (2) and (4) and the decrease of the parameter (3). References Parikh R.J., Havens J.A., Scott H.D., 1979. Thermal diffusivity and conductivity of moist porous media. Soil Science Society of America Journal 43, 1050-1052. Arkhangel'skaya T.A., 2009. Parameterization and mathematical modeling of the dependence of soil thermal diffusivity on the water content. Eurasian Soil Science 42 (2), 162-172. doi: 10.1134/S1064229309020070 Arkhangelskaya T.A., 2014. Diversity of thermal conditions within the paleocryogenic soil complexes of the East European Plain: The discussion of key factors and mathematical modeling // Geoderma. Vol. 213. P. 608-616. doi 10.1016/j.geoderma.2013.04.001

  7. Volatile and semivolatile organic compounds in laboratory peat fire emissions

    NASA Astrophysics Data System (ADS)

    George, Ingrid J.; Black, Robert R.; Geron, Chris D.; Aurell, Johanna; Hays, Michael D.; Preston, William T.; Gullett, Brian K.

    2016-05-01

    In this study, volatile and semi-volatile organic compound (VOCs and SVOCs) mass emission factors were determined from laboratory peat fire experiments. The peat samples originated from two National Wildlife Refuges on the coastal plain of North Carolina, U.S.A. Gas- and particle-phase organic compounds were quantified by gas chromatography-mass spectrometry and by high pressure liquid chromatography. Hazardous air pollutants (HAPs) accounted for a large fraction (∼60%) of the speciated VOC emissions from peat burning, including large contributions of acetaldehyde, formaldehyde, benzene, toluene, and chloromethane. In the fine particle mass (PM2.5), the following organic compound classes were dominant: organic acids, levoglucosan, n-alkanes, and n-alkenes. Emission factors for the organic acids in PM2.5 including n-alkanoic acids, n-alkenoic acids, n-alkanedioic acids, and aromatic acids were reported for the first time for peat burning, representing the largest fraction of organic carbon (OC) mass (11-12%) of all speciated compound classes measured in this work. Levoglucosan contributed to 2-3% of the OC mass, while methoxyphenols represented 0.2-0.3% of the OC mass on a carbon mass basis. Retene was the most abundant particulate phase polycyclic aromatic hydrocarbon (PAH). Total HAP VOC and particulate PAH emissions from a 2008 peat wildfire in North Carolina were estimated, suggesting that peat fires can contribute a large fraction of state-wide HAP emissions.

  8. Layered storage of biogenic methane-enriched gas bubbles in peat: A lumped capacitance model controlled by soil structure

    NASA Astrophysics Data System (ADS)

    Chen, X.; Comas, X.; Binley, A. M.; Slater, L. D.

    2017-12-01

    Methane can accumulate in the gaseous phase in peats, and enter the atmosphere as gas bubbles with a mass flux higher than that via diffusion and plant-mediated pathways. A complete understanding of the mechanisms regulating bubble storage in peats remains incomplete. We developed a layered model to quantify the storage of gas bubbles over a peat column based on a general lumped capacitance model. This conceptual model was applied to explain the effects of peat structure on bubble storage at different depths observed in a laboratory experiment. A peat monolith was collected from the Everglades, a subtropical wetland located in Florida (USA), and kept submerged in a cuboid chamber over 102 days until gas bubble saturation was achieved. Time-lapse ground-penetrating radar (GPR) was used to estimate changes in gas content of each layer and the corresponding average dimensions of stored gas bubbles. The results highlight a hotspot layer of bubble accumulation at depths between 5 and 10 cm below the monolith surface. Bubbles in this shallow hotspot layer were larger relative to those in deeper layers, whilst the degree of decomposition of the upper layers was generally smaller than that of the lower layers based on von Post humification tests. X-ray Computer tomography (CT) was applied to resin-impregnated peat sections from different depths and the results showed that a higher porosity promotes bubbles storage. The stored gas bubbles were released by changing water levels and the air CH4 concentrations above the peat monolith were measured using a flow-through chamber system to confirm the high CH4 concentration in the stored bubbles. Our findings suggest that bubble capacitance is related to the difference in size between gas bubbles and peat pores. This work has implications for better understanding how changes in water table elevation associated with climate change and sea level rise (particularly for freshwater wetlands near coastal areas like the Everglades) may potentially alter bubble sizes, thus bubble storage in peats.

  9. How does whole ecosystem warming of a peatland affect methane production and consumption?

    NASA Astrophysics Data System (ADS)

    Hopple, A.; Brunik, K.; Keller, J.; Pfeifer-Meister, L.; Woerndle, G.; Zalman, C.; Hanson, P.; Bridgham, S. D.

    2017-12-01

    Peatlands are among Earth's most important terrestrial ecosystems due to their massive soil carbon (C) stores and significant release of methane (CH4) into the atmosphere. Methane has a sustained-flux global warming potential 45-times greater than carbon dioxide (CO2), and the accuracy of Earth system model projections relies on our mechanistic understanding of peatland CH4 cycling in the context of environmental change. The objective of this study was to determine, under in situ conditions, how heating of the peat profile affects ecosystem-level anaerobic C cycling. We assessed the response of CO2 and CH4 production, as well as the anaerobic oxidation of CH4 (AOM), in a boreal peatland following 13 months of deep peat heating (DPH) and 16 months of subsequent whole-ecosystem warming (surface and deep heating; WEW) as part of the Spruce and Peatland Responses Under Changing Environments (SPRUCE) project in northern Minnesota, USA. The study uses a regression-based experimental design including 5 temperature treatments that warmed the entire 2 m peat profile from 0 to +9 °C above ambient temperature. Soil cores were collected at multiple depths (25-200 cm) from each experimental chamber at the SPRUCE site and anaerobically incubated at in situ temperatures for 1-2 weeks. Methane and CO2 production in surface peat were positively correlated with elevated temperature, but no consistent temperature response was found at depth (75-200 cm) following DPH. However, during WEW, we observed significant increases in both surface and deep peat methanogenesis with increasing temperature. Surface peat had greater CH4 production rates than deeper peat, implying that the increased CH4 emissions observed in the field were largely driven by surface peat warming. The CO2:CH4 ratio was inversely correlated with temperature across all depths following 16 months of WEW, indicating that the entire peat profile is becoming more methanogenic with warming. We also observed AOM throughout the whole peat profile, with the highest rates observed at the surface and initial data suggesting a positive correlation with increasing temperature. While SPRUCE will continue for many years, our initial results suggest that the vast C stores at depth in peatlands are minimally responsive to warming and any response will be driven largely by surface peat.

  10. Regional transport, source apportionment and health impact of PM10 bound polycyclic aromatic hydrocarbons in Singapore's atmosphere.

    PubMed

    Urbančok, Dejan; Payne, Anthony J R; Webster, Richard D

    2017-10-01

    A study of 16 United States Environmental Protection Agency (USEPA) priority listed PAHs associated with particulate matter ≤ 10 μm (PM 10 ) was conducted in Singapore during the period 29th May 2015 to 28th May 2016. The sampling period coincided with an extensive, regional smoke haze episode (5th September to 25th October) that occurred as a result of forest and peat fires in neighboring Indonesia. Throughout this study, 54 atmospheric PM 10 samples were collected in 24 h periods using a high volume sampler (HVS) and quarts fiber filters (QFF) as the collection medium. Hysplit software for computing 3-D backward air mass trajectories, diagnostic ratio analysis and ring number distribution calculations were used to examine the sources of PAHs in the atmosphere in Singapore. Under normal conditions the total PAH concentrations were in a range from 0.68 ng m -3 to 3.07 ng m -3 , while for the high haze period the results showed approximately double the concentrations with a maximum value of 5.97 ng m -3 . Diagnostic ratio (DR) and principal component analysis (PCA) were conducted and indicated the contribution of the traffic as a dominant pyrogenic source of PAHs during normal periods, while results from the haze dataset showed relatively strong influence of smoke from peat and forest fires in Indonesia. Environmental and health risk from PAHs were assessed for both regular and hazy days. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Feasibility of a peat biogasification process

    NASA Astrophysics Data System (ADS)

    Buivid, M. G.; Wise, D. L.; Rader, A. M.; McCarty, P. L.; Owen, W. F.

    1980-07-01

    The feasibility of a two-stage biogasification process for the conversion of peat reserves, the energy content of which in the United States is greater than that of uranium, shale oil or petroleum and natural gas combined, into pipeline-quality methane is investigated. Samples of wet-harvested reed-sedge peat were pretreated in alkaline and nonalkaline conditions in the presence and absence of oxidation in order to determine the most favorable conditions for the conversion of cellulosic and lignaceous fractions to water-soluble, fermentable compounds, and the resulting products were subjected to anaerobic fermentation to methane. Conversion efficiencies obtained reveal that up to 26% of the initial heat content of peat was converted to methane when alkaline heat pretreatment was employed. Analysis of the process parameters by a computer model to determine equipment sizes, mass and energy balances and costs indicates that for a 79,200 GJ/day plant the total capital requirement would be $323,000,000, annual operating costs would be $44,000,000 and average SNG cost would be $3.16/GJ, assuming a 90% stream factor with a delivered peat slurry costing $0.0033/kg.

  12. Examination of soil contaminated by coal-liquids by size exclusion chromatography in 1-methyl-2-pyrrolidinone solution to evaluate interference from humic and fulvic acids and extracts from peat.

    PubMed

    Morgan, T J; Herod, A A; Brain, S A; Chambers, F M; Kandiyoti, R

    2005-11-18

    Soil from a redundant coke oven site has been examined by extraction of soluble materials using 1-methyl-2-pyrrolidinone (NMP) followed by size exclusion chromatography (SEC) of the extracted material. The extracted material was found to closely resemble a high temperature coal tar pitch. Standard humic and fulvic acids were also examined since these materials are very soluble in NMP and would be extracted with pitch if present in the soil. Humic substances derived from peat samples and NMP-extracts of peats were also examined. The results show that the humic and fulvic substances were not extracted directly by NMP from peats. They were extracted using caustic soda solution and were different from the peat extracts in NMP. These results indicate that humic and fulvic acids were soluble in NMP in the protonated polyelectrolyte form but not in the original native polyelectrolyte form. The extraction of soil using NMP followed by SEC appears to be a promising method for identifying contamination by coal-based industries.

  13. Volatile and semivolatile organic compounds in laboratory ...

    EPA Pesticide Factsheets

    Speciated volatile organic compounds (VOCs) and organic fine particulate matter (PM2.5) mass emission factors were determined from laboratory peat fire experiments. Peat samples originated from two wildlife reserves located near the coast of North Carolina, U.S. Gas and particulate organics were quantified by gas chromatography/mass spectrometry and by high pressure liquid chromatography. Hazardous air pollutants (HAPs) accounted for a large fraction (~60 %) of the speciated VOC emissions from peat burning, including large contributions of acetaldehyde, formaldehyde, benzene, toluene, and chloromethane. Speciated organic PM2.5 mass was dominated by the following compound classes: organic acids, levoglucosan, n-alkanes, and n-alkenes. Emission factors for PM2.5 organic acids including n-alkanoic acids, n-alkenoic acids, n-alkanedioic acids, and aromatic acids were reported for the first time for peat burning, representing the largest fraction of organic carbon (OC) mass (11-12 %) of all speciated compound classes measured in this work. Levoglucosan contributed 2-3 % of the OC mass, while methoxyphenols represented 0.2-0.3 % of the OC mass on a carbon mass basis. Retene was the most abundant particulate phase polycyclic aromatic hydrocarbon. Total HAP VOC and particulate polycyclic aromatic hydrocarbon emissions from a 2008 peat wildfire in North Carolina were estimated, suggesting that peat fires can contribute a large fraction of state-wide HAP emissions. This p

  14. Peat Depth Assessment Using Airborne Geophysical Data for Carbon Stock Modelling

    NASA Astrophysics Data System (ADS)

    Keaney, Antoinette; McKinley, Jennifer; Ruffell, Alastair; Robinson, Martin; Graham, Conor; Hodgson, Jim; Desissa, Mohammednur

    2013-04-01

    The Kyoto Agreement demands that all signatory countries have an inventory of their carbon stock, plus possible future changes to this store. This is particularly important for Ireland, where some 16% of the surface is covered by peat bog. Estimates of soil carbon stores are a key component of the required annual returns made by the Irish and UK governments to the Intergovernmental Panel on Climate Change. Saturated peat attenuates gamma-radiation from underlying rocks. This effect can be used to estimate the thickness of peat, within certain limits. This project examines this relationship between peat depth and gamma-radiation using airborne geophysical data generated by the Tellus Survey and newly acquired data collected as part of the EU-funded Tellus Border project, together encompassing Northern Ireland and the border area of the Republic of Ireland. Selected peat bog sites are used to ground truth and evaluate the use of airborne geophysical (radiometric and electromagnetic) data and validate modelled estimates of soil carbon, peat volume and depth to bedrock. Data from two test line sites are presented: one in Bundoran, County Donegal and a second line in Sliabh Beagh, County Monaghan. The plane flew over these areas at different times of the year and at a series of different elevations allowing the data to be assessed temporally with different soil/peat saturation levels. On the ground these flight test lines cover varying surface land use zones allowing future extrapolation of data from the sites. This research applies spatial statistical techniques, including uncertainty estimation in geostatistical prediction and simulation, to investigate and model the use of airborne geophysical data to examine the relationship between reduced radioactivity and peat depth. Ground truthing at test line locations and selected peat bog sites involves use of ground penetrating radar, terrestrial LiDAR, peat depth probing, magnetometry, resistivity, handheld gamma-ray spectrometry, moisture content and rainfall monitoring combined with a real-time Differential Global Positioning System (DGPS) to monitor temporal and spatial variability of bog elevations. This research will assist in determining the accuracy and limitations of modelling soil carbon and changes in peat stocks by investigating the attenuation of gamma-radiation from underlying rocks. Tellus Border is supported by the EU INTERREG IVA programme, which is managed by the Special EU Programmes Body in Northern Ireland, the border Region of Ireland and western Scotland. The Tellus project was funded by the Northern Ireland Development of Enterprise Trade and Investment and by the Rural Development Programme through the Northern Ireland Programme for Building Sustainable Prosperity.

  15. Coastal Landforms and Accumulation of Mangrove Peat Increase Carbon Sequestration and Storage

    NASA Astrophysics Data System (ADS)

    Costa, M. T.; Excurra, P.; Ezcurra, E.; Garcillan, P. P.; Aburto-Oropeza, O.

    2016-02-01

    Many studies have highlighted the considerable belowground carbon storage of mangroves and other coastal ecosystems (as much 30% of total ocean carbon storage). Mangroves are among the most carbon-rich forests in the tropics, containing on average more than 1,000 Mg C/ha. We sampled mangrove sediments in four locations along the Pacific Coast of Mexico, from the Baja California Sur in the north to Chiapas near the Guatemalan boarder. These sites varied in their coastal geomorphology and rainfall regimes. The mangroves of rainy Chiapas possessed the deepest and most carbon-rich Rhizophora peat deposits of any of the sites (in places more than 2,000 Mg/ha). More surprisingly, in Balandra, one of the desert mangrove lagoons of Baja California Sur, the Avicennia-dominated mudflat zone of the forest possessed deep and rich peat deposits, ranging from 400-1,300 Mg/ha. This forest, hemmed in by relatively steep hillsides demonstrates the potential for mangroves to accrete carbon-rich peat vertically when local topography precludes their landwards expansion with sea-level rise. Our microscopic examination of root fibers from these peat deposits revealed the importance of Avicennia to the formation of buried organic matter deposits. We used 14C dating to track the age of the Baja California deposits, whose ages ranged between 1193 and 1636 BP. Plotting the calibrated 14C age of each peat sample from Balandra against the depth of the sample below the mean sea-level, we found a very significant linear trend (r2 = 0.87, P < 0.0001) with a slope of 0.070 ±0.007 mm/yr. Belowground carbon sequestration rates during recent decades varied from very low (ca. 0.1 Mg.ha-1.yr-1) in a receding fringe in Bahía Magdalena or a halophilic hinterland in Balandra, to 9-20 Mg.ha-1.yr-1 in a Rhizophora mudflat in La Encrucijada. With only 0.49% of the total area, the mangroves around the Gulf of California store 18% of the total belowground carbon pool of the whole region, 76 Tg in total.

  16. Antimony in recent, ombrotrophic peat from Switzerland and Scotland: Comparison with natural background values (5,320 to 8,020 14C yr BP) and implications for the global atmospheric Sb cycle

    NASA Astrophysics Data System (ADS)

    Shotyk, William; Krachler, Michael; Chen, Bin

    2004-03-01

    The lowest concentrations, atmospheric fluxes, and enrichments of Sb in a Swiss bog were found in peat samples dating from 8,020 to 5,320 14C yr BP when Sb inputs were proportional to those of Sc and effectively controlled by deposition of soil dust. For comparison with these ancient samples, modern peat samples from five rural areas of Switzerland and two remote areas of Scotland and Shetland are highly contaminated with Sb, with enrichments of the order of 30 to 80 times. "Lithogenic" Sb concentrations calculated using the Sc concentrations and background Sb/Sc ratio are dwarfed at all sites by "anthropogenic" Sb. The chronology and intensity of the Sb enrichments are in many ways similar to those of Pb which indicates that (1) Sb, like Pb, is well preserved in ombrotrophic peat and (2) the extent of human impacts on the geochemical cycle of Sb is comparable to that of Pb. The similar distribution of Sb and Pb can be explained in terms of their chemical and mineralogical associations, with most lead minerals being rich in Sb. Assuming that the "background" Sb flux (0.35 μg/m2/yr) from the Swiss bog is representative of preanthropogenic deposition rates worldwide, the global flux of natural Sb is estimated at 154 T/a. Using the natural Pb flux published by [1987] of 2600 T/a and the "background" Pb/Sb ratio (29) of the preanthropogenic peat samples, the global flux of natural Sb is estimated at 90 T/a. Either way, these values (90 to 154 T/a) are considerably lower than the current estimate of natural Sb to the global atmosphere (2400 T/a) published by [2001]. Assuming that the current estimate of anthropogenic Sb to the global atmosphere (1600 T/a) is correct [, 2001], the ratio of anthropogenic to natural Sb emissions is on the order of 10 to 18. Taken together, the data from modern and ancient peat samples suggests that the impact of human activities on the global geochemical cycle of Sb may have been underestimated by an order of magnitude. Like Pb, Sb has no known biological function, has a similar toxicity, and is a cumulative poison. The environmental geochemistry of Sb therefore may have a relevance to human and environmental health comparable to that of Pb.

  17. The initiation and development of small peat-forming ecosystems adjacent to lakes in the north central Canadian low arctic during the Holocene

    NASA Astrophysics Data System (ADS)

    Camill, Philip; Umbanhowar, Charles E.; Geiss, Christoph; Edlund, Mark B.; Hobbs, Will O.; Dupont, Allison; Doyle-Capitman, Catherine; Ramos, Matthew

    2017-07-01

    Small peat-forming ecosystems in arctic landscapes may play a significant role in the regional biogeochemistry of high-latitude systems, yet they are understudied compared to arctic uplands and other major peat-forming regions of the North. We present a new data set of 25 radiocarbon-dated permafrost peat cores sampled around eight low arctic lake sites in northern Manitoba (Canada) to examine the timing of peat initiation and controls on peat accumulation throughout the Holocene. We used macrofossils and charcoal to characterize changes in the plant community and fire, and we explored potential impacts of these local factors, as well as regional climatic change, on rates of C accumulation and C stocks. Peat initiation was variable across and within sites, suggesting the influence of local topography, but 56% of the cores initiated after 3000 B.P. Most cores initiated and remained as drier bog hummock communities, with few vegetation transitions in this landscape. C accumulation was relatively slow and did not appear to be correlated with Holocene-scale climatic variability, but C stocks in this landscape were substantial (mean = 45.4 kg C m-2), potentially accounting for 13.2 Pg C in the Taiga Shield ecozone. To the extent that small peat-forming systems are underrepresented in peatland mapping, soil organic carbon (SOC) stocks may be underestimated in arctic regions. Mean fire severity appeared to be negatively correlated with C accumulation rates. Initiation and accumulation of soil C may respond to both regional and local factors, and substantial lowland soil C stocks have the potential for biogeochemical impacts on adjacent aquatic ecosystems.

  18. Lateral carbon fluxes and CO2 outgassing from a tropical peat-draining river

    NASA Astrophysics Data System (ADS)

    Müller, D.; Warneke, T.; Rixen, T.; Müller, M.; Jamahari, S.; Denis, N.; Mujahid, A.; Notholt, J.

    2015-07-01

    Tropical peatlands play an important role in the global carbon cycle due to their immense carbon storage capacity. However, pristine peat swamp forests are vanishing due to deforestation and peatland degradation, especially in Southeast Asia. CO2 emissions associated with this land use change might not only come from the peat soil directly, but also from peat-draining rivers. So far, though, this has been mere speculation, since there was no data from undisturbed reference sites. We present the first combined assessment of lateral organic carbon fluxes and CO2 outgassing from an undisturbed tropical peat-draining river. Two sampling campaigns were undertaken on the Maludam river in Sarawak, Malaysia. The river catchment is covered by protected peat swamp forest, offering a unique opportunity to study a peat-draining river in its natural state, without any influence from tributaries with different characteristics. The two campaigns yielded consistent results. Dissolved organic carbon (DOC) concentrations ranged between 3222 and 6218 μmol L-1 and accounted for more than 99 % of the total organic carbon (TOC). Radiocarbon dating revealed that the riverine DOC was of recent origin, suggesting that it derives from the top soil layers and surface runoff. We observed strong oxygen depletion, implying high rates of organic matter decomposition and consequently CO2 production. The measured median pCO2 was 7795 and 8400 μatm during the two campaigns, respectively. Overall, we found that only 26 ± 15 % of the carbon was exported by CO2 evasion, while the rest was exported by discharge. CO2 outgassing seemed to be moderated by the short water residence time. Since most Southeast Asian peatlands are located at the coast, this is probably an important limiting factor for CO2 outgassing from most of its peat-draining rivers.

  19. Sorption of radioiodide in an acidic, nutrient-poor boreal bog: insights into the microbial impact.

    PubMed

    Lusa, M; Bomberg, M; Aromaa, H; Knuutinen, J; Lehto, J

    2015-05-01

    Batch sorption experiments were conducted to evaluate the sorption behaviour of iodide and the microbial impact on iodide sorption in the surface moss, subsurface peat, gyttja, and clay layers of a nutrient-poor boreal bog. The batch distribution coefficient (Kd) values of iodide decreased as a function of sampling depth. The highest Kd values, 4800 L/Kg dry weight (DW) (geometric mean), were observed in the fresh surface moss and the lowest in the bottom clay (geometric mean 90 mL/g DW). In the surface moss, peat and gyttja layers, which have a high organic matter content (on average 97%), maximum sorption was observed at a pH between ∼ 4 and 5 and in the clay layer at pH 2. The Kd values were significantly lower in sterilized samples, being 20-fold lower than the values found for the unsterilized samples. In addition, the recolonization of sterilized samples with a microbial population from the fresh samples restored the sorption capacity of surface moss, peat and gyttja samples, indicating that the decrease in the sorption was due to the destruction of microbes and supporting the hypothesis that microbes are necessary for the incorporation of iodide into the organic matter. Anoxic conditions reduced the sorption of iodide in fresh, untreated samples, similarly to the effect of sterilization, which supports the hypothesis that iodide is oxidized into I2/HIO before incorporation into the organic matter. Furthermore, the Kd values positively correlated with peroxidase activity in surface moss, subsurface peat and gyttja layers at +20 °C, and with the bacterial cell counts obtained from plate count agar at +4 °C. Our results demonstrate the importance of viable microbes for the sorption of iodide in the bog environment, having a high organic matter content and a low pH. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. The carbon functional group budget of a peatland

    NASA Astrophysics Data System (ADS)

    Moody, Catherine; Worrall, Fred; Clay, Gareth; Apperley, David

    2016-04-01

    Organic matter samples were taken from each organic matter reservoir and fluvial flux found in a peatland and analysed by elemental analysis for carbon, hydrogen, nitrogen and oxygen content, and by 13C solid state nuclear magnetic resonance (NMR) for functional group composition. The samples analysed were: aboveground, belowground, heather, mosses and sedges, litter layer, four different depths from a peat core, and monthly samples of fluvial particulate and dissolved organic matter. All organic matter samples were taken from a 100% peat catchment within Moor House National Nature Reserve in the North Pennines, UK. The proportion of carbon atoms from each of the eight carbon functional groups (C-alkyl, N-alkyl/methoxyl C, O-alkyl, O2-alkyl/acetal C, aromatic/unsaturated C, phenolic C, aldehyde/ketone C and amide/carboxyl C) from each type of organic matter were combined with an existing carbon budget from the same site, to give a functional group carbon budget. The budget results show that the ecosystem is accumulating N-alkyl/methoxyl C, O-alkyl, O2-alkyl/acetal C and phenolic C groups, but losing C-alkyl, aromatic/unsaturated C, amide/carboxyl C and aldehyde/ketone C. Comparing the functional group compositions between the sampled organic matter pools shows that DOM arises from two distinct sources; from the peat itself and from a vegetation source.

  1. The Effect of Long-term Nutrient Addition on Peat Properties in an Ombrotrophic Bog

    NASA Astrophysics Data System (ADS)

    Moore, T. R.; Bubier, J. L.; Knorr, K. H.; Roy, C.

    2017-12-01

    Atmospheric inputs of nutrients, particularly N and P, to ecosystems have increased and may have a significant effect on nutrient-deficient peatlands such as bogs. At the Mer Bleue ombrotrophic bog near Ottawa, Canada, we have conducted an experiment over 10 to 20 years by adding 1.6 to 6.4 g N m-2 yr-1 (as NH4NO3), with/without 6 g P m-2 yr-1 (as K phosphate), to evaluate the effect of increased inputs on ecosystem functions. Increased N and P amendment has changed the vegetation from a mixed shrub-Sphagnum community into one dominated by shrubs with the disappearance of mosses, with changes in plant production and litter input. The largest N and P amendments have resulted in an increase in bulk density at 0-10 cm and a lowering of the peat surface by 10 to 20 cm, creating an effective rise in the water table and an increase in CH4 emission from 15 to 50 mg m-2 d-1. Peat cores to a depth of 40 cm were collected after 10 to 15 yr of amendment and showed little change in soil pH (range 4.1 to 4.5). There were substantial increases in the concentration of N and P in the peat (8 to 14 and 0.5 to 1.5 mg g-1, respectively) and general decreases in Ca and Mg concentration. The von Post humification index increased by about 1 unit in the heavily fertilized plots, with shrub leaves replacing Sphagnum as the primary litterfall. FTIR analysis of the 0-20 cm peat showed significant increases in abundance of phenolic+aliphatic, aromatic, and carboxylic relative to polysaccharide components, revealed by the following ratios of absorbance at the respective wavenumbers: 1420/1090 cm-1, 0.41 to 0.45; 1510/1090 cm-1, 0.23 to 0.30; 1630/1090 cm-1, 0.53 to 0.65; and 1720/1090 cm-1, 0.44 to 0.48, respectively. Laboratory incubations of peat samples showed that potential rates of aerobic CH4 consumption were unaffected by nutrient treatment, apart from position relative to the water table, whereas potential rates of anaerobic CH4 production near the water table increased under the P amendment. Potential rates of aerobic CO2 production generally decreased with depth in the cores, but were not strongly related to decomposition properties (e.g. Von Post, FTIR). This study shows the profound effect of increased N and P addition on the vegetation composition, carbon cycling and peat chemical properties and decomposability of this ombrotrophic mire.

  2. Investigating carbon dynamics in Siberian peat bogs using molecular-level analyses

    NASA Astrophysics Data System (ADS)

    Kaiser, K.; Benner, R. H.

    2013-12-01

    Total hydrolysable carbohydrates, and lignin and cutin acid compounds were analyzed in peat cores collected 56.8 N (SIB04), 58.4 N (SIB06), 63.8 N (G137) and 66.5 N (E113) in the Western Siberian Lowland to investigate vegetation, chemical compositions and the stage of decomposition. Sphagnum mosses dominated peatland vegetation in all four cores. High-resolution molecular analyses revealed rapid vegetation changes on timescales of 50-200 years in the southern cores Sib4 and Sib6. Syringyl and vanillyl (S/V) ratios and cutin acids indicated these vegetation changes were due to varying inputs of angiosperm and gymnosperm and root material. In the G137 and E113 cores lichens briefly replaced sphagnum mosses and vascular plants. Molecular decomposition indicators used in this study tracked the decomposition of different organic constituents of peat organic matter. The carbohydrate decomposition index was sensitive to the polysaccharide component of all peat-forming plants, whereas acid/aldehyde ratios of S and V phenols (Ac/AlS,V) followed the lignin component of vascular plants. Low carbohydrate decomposition indices in peat layers corresponded well with elevated (Ad/Al)S,V ratios. This suggested both classes of biochemicals were simultaneously decomposed, and decomposition processes were associated with extensive total mass loss in these ombrotrophic systems. Selective decomposition or transformation of lignin was observed in the permafrost-influenced northern cores G137 and E113. Both cores exhibited the highest (Ad/Al)S,V ratios, almost four-fold higher than measured in peat-forming plants. The extent of decomposition in the four peat cores did not uniformly increase with age, but showed episodic extensive decomposition events. Variable decomposition events independent of climatic conditions and vegetation shifts highlight the complexity of peatland dynamics.

  3. Typeability of PowerPlex Y (Promega) profiles in selected tissue samples incubated in various environments.

    PubMed

    Niemcunowicz-Janica, Anna; Pepiński, Witold; Janica, Jacek Robert; Janica, Jerzy; Skawrońska, Małgorzata; Koc-Zórawska, Ewa

    2007-01-01

    In cases of decomposed bodies, Y chromosomal STR markers may be useful in identification of a male relative. The authors assessed typeability of PowerPlex Y (Promega) loci in post mortem tissue material stored in various environments. Kidney, spleen and pancreas specimens were collected during autopsies of five persons aged 20-30 years, whose time of death was determined within the limit of 14 hours. Tissue material was incubated at 21 degrees C and 4 degrees C in various environmental conditions. DNA was extracted by the organic method from tissue samples collected in 7-day intervals and subsequently typed using the PowerPlexY-STR kit and ABI 310. A fast decrease in the typeability rate was seen in specimens incubated in peat soil and in sand. Kidney tissue samples were typeable in all PowerPlexY-STR loci within 63 days of incubation at 4 degrees C. Faster DNA degradation was recorded in spleen and pancreas specimens. In samples with negative genotyping results, no DNA was found by fluorometric quantitation. Decomposed soft tissues are a potential material for DNA typing.

  4. Psychrotolerant bacteria for remediation of oil-contaminated soils in the Arctic

    NASA Astrophysics Data System (ADS)

    Svarovskaya, L. I.; Altunina, L. K.

    2017-12-01

    Samples of oil-contaminated peat soil are collected in the region of the Barents Sea in Arctic Kolguyev Island. A model experiment on biodegradation of polluting hydrocarbons by natural microflora exhibiting psychrophilic properties is carried out at +10°C. The geochemical activity of pure hydrocarbon-oxidizing Acinetobacter, Pseudomonas, Bacillus and Rhodococcus cultures isolated from the soil is studied at a lower temperature. The concentration of soil contamination is determined within the range 18-57 g/kg. The biodegradation of oil by natural microflora is 60% under the conditions of a model experiment.

  5. Does oxygen exposure time control the extent of organic matter decomposition in peatlands?

    NASA Astrophysics Data System (ADS)

    Philben, Michael; Kaiser, Karl; Benner, Ronald

    2014-05-01

    The extent of peat decomposition was investigated in four cores collected along a latitudinal gradient from 56°N to 66°N in the West Siberian Lowland. The acid:aldehyde ratios of lignin phenols were significantly higher in the two northern cores compared with the two southern cores, indicating peats at the northern sites were more highly decomposed. Yields of hydroxyproline, an amino acid found in plant structural glycoproteins, were also significantly higher in northern cores compared with southern cores. Hydroxyproline-rich glycoproteins are not synthesized by microbes and are generally less reactive than bulk plant carbon, so elevated yields indicated that northern cores were more extensively decomposed than the southern cores. The southern cores experienced warmer temperatures, but were less decomposed, indicating that temperature was not the primary control of peat decomposition. The plant community oscillated between Sphagnum and vascular plant dominance in the southern cores, but vegetation type did not appear to affect the extent of decomposition. Oxygen exposure time appeared to be the strongest control of the extent of peat decomposition. The northern cores had lower accumulation rates and drier conditions, so these peats were exposed to oxic conditions for a longer time before burial in the catotelm, where anoxic conditions prevail and rates of decomposition are generally lower by an order of magnitude.

  6. Decomposition and organic matter quality in continental peatlands: The ghost of permafrost past

    USGS Publications Warehouse

    Turetsky, M.R.

    2004-01-01

    Permafrost patterning in boreal peatlands contributes to landscape heterogeneity, as peat plateaus, palsas, and localized permafrost mounds are interspersed among unfrozen bogs and fens. The degradation of localized permafrost in peatlands alters local topography, hydrology, thermal regimes, and plant communities, and creates unique peatland features called "internal lawns." I used laboratory incubations to quantify carbon dioxide (CO 2) production in peat formed under different permafrost regimes (with permafrost, without permafrost, melted permafrost), and explored the relationships among proximate organic matter fractions, nutrient concentrations, and decomposition. Peat within each feature (internal lawn, bog, permafrost mound) is more chemically similar than peat collected within the same province (Alberta, Saskatchewan) or within depth intervals (surface, deep). Internal lawn peat produces more CO2 than the other peatland types. Across peatland features, acid-insoluble material (AIM) and AIM/nitrogen are significant predictors of decomposition. However, within each peatland feature, soluble proximate fractions are better predictors of CO2 production. Permafrost stability in peatlands influences plant and soil environments, which control litter inputs, organic matter quality, and decomposition rates. Spatial patterns of permafrost, as well as ecosystem processes within various permafrost features, should be considered when assessing the fate of soil carbon in northern ecosystems. ?? 2004 Springer Science+Business Media, Inc.

  7. Long-term disturbance dynamics and resilience of tropical peat swamp forests

    PubMed Central

    Cole, Lydia E S; Bhagwat, Shonil A; Willis, Katherine J

    2015-01-01

    1. The coastal peat swamp forests of Sarawak, Malaysian Borneo, are undergoing rapid conversion, predominantly into oil palm plantations. This wetland ecosystem is assumed to have experienced insignificant disturbance in the past, persisting under a single ecologically-stable regime. However, there is limited knowledge of the past disturbance regime, long-term functioning and fundamentally the resilience of this ecosystem to changing natural and anthropogenic perturbations through time. 2. In this study, long-term ecological data sets from three degraded peatlands in Sarawak were collected to shed light on peat swamp forest dynamics. Fossil pollen and charcoal were counted in each sedimentary sequence to reconstruct vegetation and investigate responses to past environmental disturbance, both natural and anthropogenic. 3. Results demonstrate that peat swamp forest taxa have dominated these vegetation profiles throughout the last c. 2000-year period despite the presence of various drivers of disturbance. Evidence for episodes of climatic variability, predominantly linked to ENSO events, and wildfires is present throughout. However, in the last c. 500 years, burning and indicators of human disturbance have elevated beyond past levels at these sites, concurrent with a reduction in peat swamp forest pollen. 4. Two key insights have been gained through this palaeoecological analysis: (i) peat swamp forest vegetation has demonstrated resilience to disturbance caused by burning and climatic variability in Sarawak in the late Holocene, however (ii) coincident with increased fire combined with human impact c. 500 years ago, these communities started to decline. 5. Synthesis. Sarawak's coastal peat swamps have demonstrated resilience to past natural disturbances, with forest vegetation persisting through episodes of fire and climatic variability. However, palaeoecological data presented here suggest that recent, anthropogenic disturbances are of a greater magnitude, causing the observed decline in the peat swamp forest communities in the last c. 500 years and challenging the ecosystem's persistence. This study greatly extends our knowledge of the ecological functioning of these understudied ecosystems, providing baseline information on the past vegetation and its response to disturbance. This understanding is central to developing management strategies that foster resilience in the remaining peat swamp forests and ensure continued provision of services, namely carbon storage, from this globally important ecosystem. PMID:26120202

  8. Long-term disturbance dynamics and resilience of tropical peat swamp forests.

    PubMed

    Cole, Lydia E S; Bhagwat, Shonil A; Willis, Katherine J

    2015-01-01

    1. The coastal peat swamp forests of Sarawak, Malaysian Borneo, are undergoing rapid conversion, predominantly into oil palm plantations. This wetland ecosystem is assumed to have experienced insignificant disturbance in the past, persisting under a single ecologically-stable regime. However, there is limited knowledge of the past disturbance regime, long-term functioning and fundamentally the resilience of this ecosystem to changing natural and anthropogenic perturbations through time. 2. In this study, long-term ecological data sets from three degraded peatlands in Sarawak were collected to shed light on peat swamp forest dynamics. Fossil pollen and charcoal were counted in each sedimentary sequence to reconstruct vegetation and investigate responses to past environmental disturbance, both natural and anthropogenic. 3. Results demonstrate that peat swamp forest taxa have dominated these vegetation profiles throughout the last c . 2000-year period despite the presence of various drivers of disturbance. Evidence for episodes of climatic variability, predominantly linked to ENSO events, and wildfires is present throughout. However, in the last c . 500 years, burning and indicators of human disturbance have elevated beyond past levels at these sites, concurrent with a reduction in peat swamp forest pollen. 4. Two key insights have been gained through this palaeoecological analysis: (i) peat swamp forest vegetation has demonstrated resilience to disturbance caused by burning and climatic variability in Sarawak in the late Holocene, however (ii) coincident with increased fire combined with human impact c . 500 years ago, these communities started to decline. 5. Synthesis . Sarawak's coastal peat swamps have demonstrated resilience to past natural disturbances, with forest vegetation persisting through episodes of fire and climatic variability. However, palaeoecological data presented here suggest that recent, anthropogenic disturbances are of a greater magnitude, causing the observed decline in the peat swamp forest communities in the last c . 500 years and challenging the ecosystem's persistence. This study greatly extends our knowledge of the ecological functioning of these understudied ecosystems, providing baseline information on the past vegetation and its response to disturbance. This understanding is central to developing management strategies that foster resilience in the remaining peat swamp forests and ensure continued provision of services, namely carbon storage, from this globally important ecosystem.

  9. Temperature and burning history affect emissions of greenhouse gases and aerosol particles from tropical peatland fire

    NASA Astrophysics Data System (ADS)

    Kuwata, Mikinori; Kai, Fuu Ming; Yang, Liudongqing; Itoh, Masayuki; Gunawan, Haris; Harvey, Charles F.

    2017-01-01

    Tropical peatland burning in Asia has been intensifying over the last decades, emitting huge amounts of gas species and aerosol particles. Both laboratory and field studies have been conducted to investigate emission from peat burning, yet a significant variability in data still exists. We conducted a series of experiments to characterize the gas and particulate matter emitted during burning of a peat sample from Sumatra in Indonesia. Heating temperature of peat was found to regulate the ratio of CH4 to CO2 in emissions (ΔCH4/ΔCO2) as well as the chemical composition of particulate matter. The ΔCH4/ΔCO2 ratio was larger for higher temperatures, meaning that CH4 emission is more pronounced at these conditions. Mass spectrometric analysis of organic components indicated that aerosol particles emitted at higher temperatures had more unsaturated bonds and ring structures than that emitted from cooler fires. The result was consistently confirmed by nuclear magnetic resonance analysis. In addition, CH4 emitted by burning charcoal, which is derived from previously burned peat, was lower by at least an order of magnitude than that from fresh peat. These results highlight the importance of both fire history and heating temperature for the composition of tropical peat-fire emissions. They suggest that remote sensing technologies that map fire histories and temperatures could provide improved estimates of emissions.

  10. Microbial communities and transformation of carbon compounds in bog soils of the taiga zone (Tomsk oblast)

    NASA Astrophysics Data System (ADS)

    Grodnitskaya, I. D.; Trusova, M. Yu.

    2009-09-01

    Two types of bogs were studied in Tomsk oblast—Maloe Zhukovskoe (an eutrophic peat low-moor bog) and Ozernoe (an oligotrophic peat high-moor bog). The gram-negative forms of Proteobacteria were found to be dominant and amounted to more than 40% of the total population of the microorganisms investigated. In the peat bogs, the population and diversity of the hydrolytic microbial complex, especially of the number of micromycetes, were lower than those in the mineral soils. The changes in the quantitative indices of the total microbiological activity of the bogs were established. The microbial biomass and the intensity of its respiration differed and were also related to the depth of the sampling. In the Zhukovskoe peat low-moor bog, the maximal biomass of heterotrophic microorganisms (154 μg of C/g of peat) was found in the aerobic zone at a depth of 0 to 10 cm. In the Ozernoe bog, the maximal biomass was determined in the zone of anaerobiosis at a depth of 300 cm (1947 μ g of C/g of peat). The molecular-genetic method was used for the determination of the spectrum of the methanogens. Seven unidentified dominant forms were revealed. The species diversity of the methanogens was higher in the oligotrophic high-moor bog than in the eutrophic low-moor bog.

  11. Distributions of geohopanoids in peat: Implications for the use of hopanoid-based proxies in natural archives

    NASA Astrophysics Data System (ADS)

    Inglis, Gordon N.; Naafs, B. David A.; Zheng, Yanhong; McClymont, Erin L.; Evershed, Richard P.; Pancost, Richard D.; T-GRES Peat Database Collaborators

    2018-03-01

    Hopanoids are pentacyclic triterpenoids produced by a wide range of bacteria. Within modern settings, hopanoids mostly occur in the biological 17β,21β(H) configuration. However, in some modern peatlands, the C31 hopane is present as the 'thermally-mature' 17α,21β(H) stereoisomer. This has traditionally been ascribed to isomerisation at the C-17 position catalysed by the acidic environment. However, recent work has argued that temperature and/or hydrology also exert a control upon hopane isomerisation. Such findings complicate the application of geohopanoids as palaeoenvironmental proxies. However, due to the small number of peats that have been studied, as well as the lack of peatland diversity sampled, the environmental controls regulating geohopanoid isomerisation remain poorly constrained. Here, we undertake a global approach to investigate the occurrence, distribution and diagenesis of geohopanoids within peat, combining previously published and newly generated data (n = 395) from peatlands with a wide temperature (-1 to 27 °C) and pH (3-8) range. Our results indicate that peats are characterised by a wide range of geohopanoids. However, the C31 hopane and C32 hopanoic acid (and occasionally the C32 hopanol) typically dominate. C32 hopanoic acids occur as αβ- and ββ-stereoisomers, with the ββ-isomer typically dominating. In contrast, C31 hopanes occur predominantly as the αβ-stereoisomer. These two observations collectively suggest that isomerisation is not inherited from an original biological precursor (i.e. biohopanoids). Using geohopanoid ββ/(αβ + ββ) indices, we demonstrate that the abundance of αβ-hopanoids is strongly influenced by the acidic environment, and we observe a significant positive correlation between C31 hopane isomerisation and pH (n = 94, r2 = 0.64, p < 0.001). Crucially, there is no correlation between C31 hopane isomerisation and temperature. We therefore conclude that within peats, αβ-hopanoids are acid-catalysed diagenetic products and their occurrence at shallow depths indicates that this isomerisation is rapid. This shows that geohopanoid ββ/(αβ + ββ) indices can be used to reconstruct pH within modern and ancient peat-forming environments. However, we only recommend using ββ/(αβ + ββ) indices to interrogate large amplitude (>1 pH unit) and longer-term (>1 kyr) variation. Overall, our findings demonstrate the potential of geohopanoids to provide unique new insights into understanding depositional environments and interpreting terrestrial organic matter sources in the geological record.

  12. Chemical characteristics of dissolved organic matter (DOM) in relation to heavy metal concentrations in soil water from boreal peatlands after clear-cut harvesting

    NASA Astrophysics Data System (ADS)

    Kiikkilä, O.; Nieminen, T.; Starr, M.; Ukonmaanaho, L.

    2012-04-01

    Boreal peatlands form an important terrestrial carbon reserve and are a major source of dissolved organic matter (DOM) to surface waters, particularly when disturbed through forestry practices such as draining or timber harvesting. Heavy metals show a strong affinity to organic matter and so, along with DOM, heavy metals can be mobilized and transported from the soil to surface waters and sediments where they may become toxic to aquatic organisms and pass up the food chain. The complexation of heavy metals with DOM can be expected to be related and determined by the chemical characteristics of DOM and oxidation/reducing conditions in the peat. We extracted interstitial water from peat samples and determined the concentrations of dissolved organic carbon (DOC), dissolved organic nitrogen (DON) and Al, Cu, Zn and Fe in various fractions of DOM isolated by adsorption properties (XAD-8 fractionation) and molecular-weight (ultrafiltration). The peat samples were taken from 0-30 and 30-50 cm depth in drained peatland catchments two years after whole-tree or stem-only clear-cut harvesting (Scots pine or Norway spruce) had been carried out. The samples from the upper layer had been subject to alternating saturation/aeration conditions while the deeper layer had been continuously under the water table. The fractionation of DOC and DON according to both adsorption properties and molecular-weight fractions clearly differed between the upper and lower peat layers. While the hydrophobic acid fraction contained proportionally more DOC and DON than the hydrophilic acid fraction in the upper peat layer the results were vice versa in the lower peat layer. High-molecular-weight compounds (> 100 kDa) were proportionally more abundant in the upper and low-molecular-weight compounds (< 1 kDa) in the lower peat layer. These differences are assumed to reflect differences in the aerobic/ anaerobic conditions and degree of decomposition between the two layers. The concentrations of Zn, Al, Fe and DON correlated positively with DOC concentrations whereas the concentration Cu did not correlate with DOC concentrations. Heavy metal concentrations in different molecular-weight fractions indicated that Al, Cu, Zn and Fe were mostly associated with high-molecular-weight compounds and only a small fraction existed as free metal ions in solution. There were no clear differences in the chemical characteristics of DOC or DON or heavy metal concentrations between the two harvesting treatments.

  13. Reconstructing paleosalinity in the Sacramento-San Joaquin Delta of California using major elements in peat

    NASA Astrophysics Data System (ADS)

    Drexler, J. Z.; Alpers, C. N.; Taylor, H. E.; Windham-Myers, L.; Neymark, L. A.; Paces, J. B.

    2010-12-01

    Marshes in the Sacramento-San Joaquin Delta, the most landward extent of the San Francisco Estuary, started forming around ~6,700 years ago. Currently, Delta marshes are classified as tidal freshwater, however it is unknown to what degree the salinity regime has varied between brackish and fresh conditions since marsh development. This information is important to managers considering major changes to the flow regime in the Delta, because such changes could impact the future sustainability of endangered species such as the Delta smelt (Hypomesus transpacificus), which live in or just upstream of the mixing zone between fresh and brackish water. The main goal of the Rates and Evolution of PEat Accretion through Time project (REPEAT II) is to reconstruct paleosalinity regimes in the Delta. We are using elemental concentrations of Na, Ca, K, and Mg (the major cations in ocean water) in peat profiles to develop a quantitative index of salinity for the past 6000+ years. We are normalizing the elemental concentrations to Ti (a proxy for inorganic sediment content because it is inversely correlated with loss on ignition, a measure of peat organic content) to correct for bias in elemental concentrations caused by variations in the inorganic sediment content of peat through time. Plots of Ti-normalized element concentration vs. peat depth (or age) indicate that Browns Island, a brackish marsh on the western edge of the Delta, has experienced significant variations in salinity through the millennia. Vertical peat profiles show a spatial trend of decreasing salinity from west (bay-side) to east (landward) (i.e., Browns Island > Sherman Island > Franks Wetland ≧ Bacon Channel Island). During the period from 2300 to 500 calibrated years before present, Na concentrations in peat at Browns Island indicate a particularly saline period, with peat containing up to 3 wt. % Na. In the last 100 years or so, salinity at Browns Island has apparently decreased and the Na content of peat has stabilized at between 0.6 and 1 wt. % Na. We are currently analyzing the roots of live plants collected along a salinity gradient (range of means from ~0.2 to 20 ppt) in the San Francisco Estuary to determine concentrations of Na, Ca, K, and Mg in root material and the empirical relationships between root chemistry and ambient salinity levels. Because the organic component of peat is largely made up of roots that have decomposed in situ, we anticipate using these empirical relationships to quantify salinity regimes in the Delta through time.

  14. Nitrite fixation by humic substances: Nitrogen-15 nuclear magnetic resonance evidence for potential intermediates in chemodenitrification

    USGS Publications Warehouse

    Thorn, K.A.; Mikita, M.A.

    2000-01-01

    Studies have suggested that NO2/-, produced during nitrification and denitrification, can become incorporated into soil organic matter and, in one of the processes associated with chemodenitrification, react with organic matter to form trace N gases, including N2O. To gain an understanding of the nitrosation chemistry on a molecular level, soil and aquatic humic substances were reacted with 15N-labeled NaNO2, and analyzed by liquid phase 15N and 13C nuclear magnetic resonance (NMR). The International Humic Substances Society (IHSS) Pahokee peat and peat humic acid were also reacted with Na15NO2 and analyzed by solid-state 15N NMR. In Suwannee River, Armadale, and Laurentian fulvic acids, phenolic rings and activated methylene groups underwent nitrosation to form nitrosophenols (quinone monoximes) and ketoximes, respectively. The oximes underwent Beckmann rearrangements to 2??amides, and Beckmann fragmentations to nitriles. The nitriles in turn underwent hydrolysis to 1??amides. Peaks tentatively identified as imine, indophenol, or azoxybenzene nitrogens were clearly present in spectra of samples nitrosated at pH 6 but diminished at pH 3. The 15N NMR spectrum of the peat humic acid exhibited peaks corresponding with N-nitroso groups in addition to nitrosophenols, ketoximes, and secondary Beckmann reaction products. Formation of N-nitroso groups was more significant in the whole peat compared with the peat humic acid. Carbon-13 NMR analyses also indicated the occurrence of nitrosative demethoxylation in peat and soil humic acids. Reaction of 15N-NH3 fixated fulvic acid with unlabeled NO2/- resulted in nitrosative deamination of aminohydroquinone N, suggesting a previously unrecognized pathway for production of N2 gas in soils fertilized with NH3.Studies have suggested that NO2-, produced during nitrification and denitrification, can become incorporated into soil organic matter and, in one of the processes associated with chemodenitrification, react with organic matter to form trace N gases, including N2O. To gain an understanding of the nitrosation chemistry on a molecular level, soil and aquatic humic substances were reacted with 15N-labeled NaNO2, and analyzed by liquid phase 15N and 13C nuclear magnetic resonance (NMR). The International Humic Substances Society (IHSS) Pahokee peat and peat humic acid were also reacted with Na15NO2 and analyzed by solid-state 15N NMR. In Suwannee River, Armadale, and Laurentian fulvic acids, phenolic rings and activated methylene groups underwent nitrosation to form nitrosophenols (quinone monoximes) and ketoximes, respectively. The oximes underwent Beckmann rearrangements to 2?? amides, and Beckmann fragmentations to nitriles. The nitriles in turn underwent hydrolysis to 1?? amides. Peaks tentatively identified as imine, indophenol, or azoxybenzene nitrogens were dearly present in spectra of samples nitrosated at pH 6 but diminished at pH 3. The 15N NMR spectrum of the peat humic acid exhibited peaks corresponding with N-nitroso groups in addition to nitrosophenols, ketoximes, and secondary Beckmann reaction products. Formation of N-nitroso groups was more significant in the whole peat compared with the peat humic acid. Carbon-13 NMR analyses also indicated the occurrence of nitrosative demethoxylation in peat and soil humic acids. Reaction of 15N-NH3 fixated fulvic acids with unlabeled NO2- resulted in nitrosative deamination of aminohydroquinone N, suggesting a previously unrecognized pathway for production of N2 gas in soils fertilized with NH3.

  15. Modifications to the bottomless lift net for sampling nekton in tidal mangrove forests

    USGS Publications Warehouse

    McIvor, C.C.; Silverman, N.L.

    2010-01-01

    Sampling fishes in vegetated intertidal wetlands is logistically challenging. We modified the 2 ?? 3-m2 bottomless lift net developed for sampling nekton (fish and decapod crustaceans) on the surface of salt marshes for use in tidal mangrove forests with a woody (as opposed to herbaceous) underground root system. As originally designed (Rozas, Mar Ecol Prog Ser 89:287-292, 1992), the lift net was buried directly in the marsh substrate. The net was raised at slack high tide thereby encircling nekton within the enclosed area. A chain-line on the net bottom prevented escape under the net once deployed. However, when we used this same design in tidal mangrove forests, the extensive woody roots and occasional slumping sediments resulted in uneven trenches that could not be cleared effectively during sample recovery. We made 3 modifications to the original net design: (i) lined the peat trenches with aluminum channels of uniform width and depth; (ii) replaced the previous chain-line with Velcro closures that directly attached the net to the inner face of the outer wall of the aluminum channel; and (iii) removed the subtidal pan previously used for concentrating the enclosed nekton at low tide, and filled in those depressions with on-site peat. In the modified version, the aluminum trench became the only subtidal refuge available to nekton, and it was from here that we collected the sample after the forest drained. These modifications permitted high clearing efficiency (93-100%) of fin-clipped individuals of two common species of estuarine resident fishes, Kryptolebias marmoratus (mangrove rivulus) and Bathygobius soporator (frillfin goby). Additionally, the density estimates of grass shrimp (Palaemonetes spp.) increased 10-fold post-modification. ?? 2010 US Government.

  16. A Few Issues on the Peat Research in the Altai Mountains

    NASA Astrophysics Data System (ADS)

    Inisheva, Lydia I.; Larina, Galina; Shurova, Maya

    2010-05-01

    At the present time we carry out complex research of marsh ecosystems in various areas of Gorny Altai to reveal the perspective deposits of peat in the Altai Mountains with the purpose of its use in the medical and recreational spheres. The peat deposits of the Northeastern Altai, Central Altai, and Southeastern Altai are surveyed; the selective chemical analysis of peat and marsh waters is carried out. The group structure of organic substance of various samples of peat is investigated by the method of Institutes of Peat. The toxic metals of Cd, Pb, Hg, Cu, Zn, and As were defined by the method of stripping voltammetry. The region of the Altai Mountains is characterized by the contrastive distribution of some heavy metals and arsenic in a soil cover. This is caused by a variety of petrography and granulometry of soil forming material, and also by a landscape and geochemical situation in the system of vertical zoning. The sources of natural accumulation of heavy metals in the ground might be the deposits of polymetals. In this connection the content of the specified toxic elements in the peat under research has been identified. The peat of the Turochak deposit is characterized by a significant ash content - up to 41,9%; the increased ash content is typical of the Kutyush deposit: from 6,1% up to 19, %. The peat of the Northeastern Altai is referred to non-bitumunous: the content of bitumen makes up less than 5%. In comparison with the European peat the peat under study of the transitive and lowland type is characterized by the significant content of easy hydrolysable substances in the amount of 24,8-41,1%. The amount of the non-hydrolysable rest makes up around 4,3 - 7,4 %. The total content of fulvic acids is less than the content of humic acids by 2,9 - 5,8 times. The high content of humic acids which can reach up to 58 % is characteristic of certain deposits. Humic acids extracted from the peat are characterized, as a rule, by similar IR-spectra. The distinctions are shown in an unequal intensity of characteristic absorption bands, in their spreading and some shifts. It is revealed that humic acids of peat with the increase in a degree of decomposition are exposed to transformation; therefore the increase in their structure of functional groups is observed. As a result of the research which was carried out the following elements among heavy metals in the lowland peat of the Altai Mountains are revealed: Cd (2,7 - 30)> Hg (0,67)> Zn (0,22) ~Pb (0,21)> Cu (0,13)> As (0,03). The degree of mobility of chemical elements in the peat varies within the limits of 1,3 - 36%. According to the degree of their mobility these elements form the following line: Zn (36 %)> Pb (18,1 %)> Cd (9,6 %)> Cu (1,3 %). The content and the character of distribution of the heavy metals under study and arsenic in the peat of the Altai Mountains have their unique features in comparison with the same valley analogues. The mountain peat of the Central Altai contains much less Hg than the West Siberian one: 0,078 mg/g and 0,69 mg/g accordingly. Cd represents itself as the concentrator in the lowland peat of the Northeastern and Central Altai, its content is actually the same and makes up approximately 0,3 mg/kg. The lowland Altai and West Siberian peat has the same amount of Pb: 4-5 mg/kg; they have smaller amounts of Zn and Cu in comparison with the European and West Siberian peat. The revealed features of distribution of some toxic metals are the display of specificity of peat genesis in the conditions of a mountain relief. The complex of the data received by us allows to consider the peat of the Altai Mountains as a non-polluting raw source concerning the amount of some natural toxic substances. The possible perspective directions of practical application of the mountain peat can be medicine, veterinary science, and agriculture.

  17. Detecting biotic and hydrogeochemical processes in large peat basins with Landsat TM imagery

    NASA Technical Reports Server (NTRS)

    Glaser, Paul H.

    1989-01-01

    A survey was made of three large peat basins in boreal North America with Landsat TM imagery and field sampling. False-color composites composed of Bands 2, 3, and 4 are particularly effective in discriminating the major vegetation types and the important hydrogeochemical processes in these peatlands. This imagery indicates that the discharge of alkaline groundwater provides one of the most important regional and local controls on peatland development.

  18. Nitrogen and phosphorus loading from drained wetlands adjacent to Upper Klamath and Agency lakes, Oregon

    USGS Publications Warehouse

    Snyder, Daniel T.; Morace, Jennifer L.

    1997-01-01

    The results of this study could be useful in helping to prioritize which drained wetlands may provide the greatest benefits with regard to reducing nutrient loads to the lake if restoration or land-use modifications are instituted. Recent acquisition and planned restoration of drained wetland areas at the Wood River and Williamson River North properties may produce significant reduction in the quantity of nutrients released by the decomposition of peat soils of these areas. If the water table rises to predrainage levels, the peats soils may become inundated most of the year, resulting in the continued long-term storage of nutrients within the peat soils by reducing aerobic decomposition. The maximum benefit, in terms of decreasing potential nutrient loss due to peat decomposition, could be the reduction of total nitrogen and total phosphorus loss to about one-half that of the 1994–95 annual loss estimated for all the drained wetlands sampled for this study.

  19. Does Miscanthus cultivation on organic soils compensate for carbon loss from peat oxidation? A dual label study

    NASA Astrophysics Data System (ADS)

    Bader, Cédric; Leifeld, Jens; Müller, Moritz; Schulin, Rainer

    2016-04-01

    Agricultural use of organic soils requires drainage and thereby changes conditions in these soils from anoxic to oxic. As a consequence, organic carbon that had been accumulated over millennia is rapidly mineralized, so that these soils are converted from a CO2 sink to a source. The peat mineralization rate depends mainly on drainage depth, but also on crop type. Various studies show that Miscanthus, a C4 bioenergy plant, shows potential for carbon sequestration in mineral soils because of its high productivity, its dense root system, absence of tillage and high preharvest litterfall. If Miscanthus cropping would have a similar effect in organic soils, peat consumption and thus CO2 emissions might be reduced. For our study we compared two adjacent fields, on which organic soil is cultivated with Miscanthus (since 20 years) and perennial grass (since 6 years). Both sites are located in the Bernese Seeland, the largest former peatland area of Switzerland. To determine wether Miscanthus-derived carbon accumulated in the organic soil, we compared the stable carbon isotopic signatures of the experimental soil with those of an organic soil without any C4-plant cultivation history. To analyze the effect of C4-C accumulation on peat degradability we compared the CO2 emissions by incubating 90 soil samples of the two fields for more than one year. Additionally, we analysed the isotopic CO2 composition (13C, 14C) during the first 25 days of incubation after trapping the emitted CO2 in NaOH and precipitating it as BaCO3. The ∂13C values of the soil imply, that the highest share of C4-C of around 30% is situated at a depth of 10-20 cm. Corn that used to be cultivated on the grassland field before 2009 still accounts for 8% of SOC. O/C and H/C ratios of the peat samples indicate a stronger microbial imprint of organic matter under Miscanthus cultivation. The amount of CO2 emitted was not affected by the cultivation type. On average 57% of the CO2 was C4 derived in the Miscanthus field, whereas 38% was C4-derived in the Grassland field. According to our radiocarbon data, 38% of the CO2 must have originated from peat-derived OM on the Miscanthus field, whereas 57% of the CO2 was derived from peat in the grassland. Although peat minerlaization seems to be smaller and a significant amount of C4-C accumulated under Miscanthus, peat mineralization nonetheless contributed substantially to soil respiration. Together, our data do not support the hypothesis that Miscanthus cultivation can fully compensate for organic matter loss in drained peatlands.

  20. Petrographic and anatomical characteristics of plant material from two peat deposits of Holocene and Miocene age, Kalimantan, Indonesia

    USGS Publications Warehouse

    Moore, T.A.; Hilbert, R.E.

    1992-01-01

    Samples from two peat-forming environments of Holocene and Miocene age in Kalimantan (Borneo), Indonesia, were studied petrographically using nearly identical sample preparation and microscopic methodologies. Both deposits consist of two basic types of organic material: plant organs/tissues and fine-grained matrix. There are seven predominant types of plant organs and tissues: roots possessing only primary growth, stems possessing only primary growth, leaves, stems/roots with secondary growth, secondary xylem fragments, fragments of cork cells, and macerated tissue of undetermined origin. The fine-grained matrix consists of fragments of cell walls and cell fillings, fungal remains, spores and pollen grains, and resin. Some of the matrix material does not have distinct grain boundaries (at ??500) and this material is designated amorphous matrix. The major difference between the Holocene peat and Miocene lignite in reflected light, oil immersion is a loss of red coloration in the cell walls of tissue in the lignite, presumably due to loss of cellulosic compounds. In addition, cortex and phloem tissue (hence primary roots and stems) are difficult to recognize in the lignite, probably because these large, thin-walled tissues are more susceptible to microbial degradation and compaction. Particle size in both peat and lignite samples display a bimodal distribution when measurements are transformed to a - log2 or phi (??), scale. Most plant parts have modes of 2-3?? (0.25 - 0.125 mm), whereas the finer-grained particulate matrix has modes of 7-9?? (0.008-0.002 mm). This similarity suggest certain degradative processes. The 2-3?? range may be a "stable" size for plant parts (regardless of origin) because this is a characteristics of a substrate which is most suitable for plant growth in peat. The finer-grained matrix material (7-9??) probably results from fungal decay which causes plant material to weaken and with slight physical pressure to shatter into its component parts, i.e. fragments of cell walls and fillings. The absence of differences in particle size between the peat and lignite also indicate little compaction of organic components; rather an extreme loss in water content and pore space has occurred from between the particles of organic material. ?? 1992.

  1. Classification of forest land attributes using multi-source remotely sensed data

    NASA Astrophysics Data System (ADS)

    Pippuri, Inka; Suvanto, Aki; Maltamo, Matti; Korhonen, Kari T.; Pitkänen, Juho; Packalen, Petteri

    2016-02-01

    The aim of the study was to (1) examine the classification of forest land using airborne laser scanning (ALS) data, satellite images and sample plots of the Finnish National Forest Inventory (NFI) as training data and to (2) identify best performing metrics for classifying forest land attributes. Six different schemes of forest land classification were studied: land use/land cover (LU/LC) classification using both national classes and FAO (Food and Agricultural Organization of the United Nations) classes, main type, site type, peat land type and drainage status. Special interest was to test different ALS-based surface metrics in classification of forest land attributes. Field data consisted of 828 NFI plots collected in 2008-2012 in southern Finland and remotely sensed data was from summer 2010. Multinomial logistic regression was used as the classification method. Classification of LU/LC classes were highly accurate (kappa-values 0.90 and 0.91) but also the classification of site type, peat land type and drainage status succeeded moderately well (kappa-values 0.51, 0.69 and 0.52). ALS-based surface metrics were found to be the most important predictor variables in classification of LU/LC class, main type and drainage status. In best classification models of forest site types both spectral metrics from satellite data and point cloud metrics from ALS were used. In turn, in the classification of peat land types ALS point cloud metrics played the most important role. Results indicated that the prediction of site type and forest land category could be incorporated into stand level forest management inventory system in Finland.

  2. Maceral distributions in Illinois coals and their paleoenvironmental implications

    USGS Publications Warehouse

    Harvey, R.D.; Dillon, J.W.

    1985-01-01

    For purposes of assessing the maceral distribution of Illinois (U.S.A.) coals analyses were assembled for 326 face channel and drill core samples from 24 coal members of the Pennsylvanian System. The inertinite content of coals from the Missourian and Virgilian Series averages 16.1% (mineral free), compared to 9.4% for older coals from the Desmoinesian and older Series. This indicates there was generally a higher state of oxidation in the peat that formed the younger coals. This state probably resulted from greater exposure of these peats to weathering as the climate became drier and the water table lower than was the case for the older coals, although oxidation during allochthonous deposition of inertinite components is a genetic factor that needs further study to confirm the importance of the climate. Regional variation of the vitrinite-inertinite ratio (V-I), on a mineral- and micrinite-free basis, was observed in the Springfield (No. 5) and Herrin (No. 6) Coal Members to be related to the geographical position of paleochannel (river) deposits known to have been contemporaneous with the peats that formed these two coal strata. The V-I ratio is highest (generally 12-27) in samples from areas adjacent to the channels, and lower (5-11) some 10-20 km away. We interpret the V-I ratio to be an inverse index of the degree of oxidation to which the original peat was exposed. High V-I ratio coal located near the channels probably formed under more anoxic conditions than did the lower V-I ratio coal some distance away from the channels. The low V-I ratio coal probably formed in areas of the peat swamp where the watertable was generally lower than the channel areas. ?? 1986.

  3. Deciphering human-climate interactions in an ombrotrophic peat record: REE, Nd and Pb isotope signatures of dust supplies over the last 2500 years (Misten bog, Belgium)

    NASA Astrophysics Data System (ADS)

    Fagel, N.; Allan, M.; Le Roux, G.; Mattielli, N.; Piotrowska, N.; Sikorski, J.

    2014-06-01

    A high-resolution peat record from Eastern Belgium reveals the chronology of dust deposition for the last 2500 years. REE and lithogenic elements in addition to Nd and Pb isotopes were measured in a 173 cm age-dated peat profile and provide a continuous chronology of dust source and intensity. Calculated dust flux show pronounced increases c. 300 BC, 600 AD, 1000 AD, 1200 AD and from 1700 AD, corresponding to local and regional human activities combined with climate change. The Industrial Revolution samples (1700-1950 AD) are characterised by a significant enrichment in Sc-normalised REE abundance (sum REE/Sc > 25) due to intensive coal combustion. For the pre-Industrial Revolution samples, the Sc-normalised REE abundance (10 < Sum REE/Sc < 25) and the εNd variability (-13 to -9) are interpreted by a mixing between dust particles from local soils and long-range transport of desert particles. Three periods characterised by dominant-distal sources (c. 320 AD, 1000 AD and 1700 AD) are consistent with local wetter-than-average intervals as indicated by a lower degree of peat humification. Local erosion prevails during the drier (higher humification) intervals (100 AD, 600 AD). On a global scale, more distal supplies are driven during colder periods, in particular during the Oort and Maunder minima, suggesting a potential link between dust deposition and global climate. Combining REE abundance, fractionation between Light REE and Heavy REE and Nd isotope data in ombrotrophic peat allows one to distinguish between dust flux changes related to human and climate forcings.

  4. Survey of Hylobates agilis albibarbis in a logged peat-swamp forest: Sabangau catchment, Central Kalimantan.

    PubMed

    Buckley, Cara; Nekaris, K A I; Husson, Simon John

    2006-10-01

    Few data are available on gibbon populations in peat-swamp forest. In order to assess the importance of this habitat for gibbon conservation, a population of Hylobates agilis albibarbis was surveyed in the Sabangau peat-swamp forest, Central Kalimantan, Indonesia. This is an area of about 5,500 km(2) of selectively logged peat-swamp forest, which was formally gazetted as a national park during 2005. The study was conducted during June and July 2004 using auditory sampling methods. Five sample areas were selected and each was surveyed for four consecutive days by three teams of researchers at designated listening posts. Researchers recorded compass bearings of, and estimated distances to, singing groups. Nineteen groups were located. Population density is estimated to be 2.16 (+/-0.46) groups/km(2). Sightings occurring either at the listening posts or that were obtained by tracking in on calling groups yielded a mean group size of 3.4 individuals, hence individual gibbon density is estimated to be 7.4 (+/-1.59) individuals/km(2). The density estimates fall at the mid-range of those calculated for other gibbon populations, thus suggesting that peat-swamp forest is an important habitat for gibbon conservation in Borneo. A tentative extrapolation of results suggests a potential gibbon population size of 19,000 individuals within the mixed-swamp forest habitat sub-type in the Sabangau. This represents one of the largest remaining continuous populations of Bornean agile gibbons. The designation of the Sabangau forest as a national park will hopefully address the problem of illegal logging and hunting in the region. Further studies should note any difference in gibbon density post protection.

  5. Lateral carbon fluxes and CO2 outgassing from a tropical peat-draining river

    NASA Astrophysics Data System (ADS)

    Müller, D.; Warneke, T.; Rixen, T.; Müller, M.; Jamahari, S.; Denis, N.; Mujahid, A.; Notholt, J.

    2015-10-01

    Tropical peatlands play an important role in the global carbon cycle due to their immense carbon storage capacity. However, pristine peat swamp forests are vanishing due to deforestation and peatland degradation, especially in Southeast Asia. CO2 emissions associated with this land use change might not only come from the peat soil directly but also from peat-draining rivers. So far, though, this has been mere speculation, since there has been no data from undisturbed reference sites. We present the first combined assessment of lateral organic carbon fluxes and CO2 outgassing from an undisturbed tropical peat-draining river. Two sampling campaigns were undertaken on the Maludam River in Sarawak, Malaysia. The river catchment is covered by protected peat swamp forest, offering a unique opportunity to study a peat-draining river in its natural state, without any influence from tributaries with different characteristics. The two campaigns yielded consistent results. Dissolved organic carbon (DOC) concentrations ranged between 3222 and 6218 μmol L-1 and accounted for more than 99 % of the total organic carbon (TOC). Radiocarbon dating revealed that the riverine DOC was of recent origin, suggesting that it derives from the top soil layers and surface runoff. We observed strong oxygen depletion, implying high rates of organic matter decomposition and consequently CO2 production. The measured median pCO2 was 7795 and 8400 μatm during the first and second campaign, respectively. Overall, we found that only 32 ± 19 % of the carbon was exported by CO2 evasion, while the rest was exported by discharge. CO2 outgassing seemed to be moderated by the short water residence time. Since most Southeast Asian peatlands are located at the coast, this is probably an important limiting factor for CO2 outgassing from most of its peat-draining rivers.

  6. Influence of the kind of peat and the depth of sampling on the biochemical properties of Tagan peatland

    NASA Astrophysics Data System (ADS)

    Wojciech Szajdak, Lech; Inisheva, Lydia I.

    2010-05-01

    The upper layer of a peat bog in which organic matter decomposes aerobically much more rapidly than in the underlying, anaerobic catotelm. As litter accumulates at the surface the size of the catotelm increases, because the thickness of the acrotelm is limited to depth at which aerobic respiration can occur. Although the rate of decomposition per unit volume of material is much greater in the acrotelm than in the catotelm, a point is reached at which the difference in volume between the two layers is such that the total rate of decomposition in the catotelm is equal to that in the acrotelm. This limits the thickness to which the bog can grow. Should there be a climate change (e.g. an increase in precipitation) growth can resume. Bogs therefore preserve a record of climatic conditions. Soils samples were taken from four places marked as No 1, 2, 3 and 4 each from two depth 0-25 and 50-75 cm of the peatland Tagan. Peatlands Tagan is located near Tomsk, West Siberia, Russia. Place No 1 in both layers represents grasses peat with the degree of the decomposition ranged from 25 to 35% (pH 6.31-7.95). Point 2 is characterized by wooden and wooden grasses peat with 35% degree of the decomposition (pH 5.16-9.31. There is buckbean peat in the points 3 and 4 (pH 6.4-6.49). However, 1.5 m depth of sapropel is located in point 4. The activity of the following enzymes: xanthine oxidase, phenolic oxidase, peroxidase, urease, nitrate reductase were measured and two forms of organic carbon (total organic carbon and dissolved organic carbon) and two form of iron Fe(II) and Fe(III) were determined in these samples. These enzymes participate in several biochemical pathways in soil connected with redox potential. The concentrations of indole-3-acetic acid, very famous fitohormone were also measured. It was observed in all places of sampling significant increase of the total organic carbon with an increase of the depth. However, the quantity of dissolved organic carbon closely decreased with an increase of the depth, suggesting lower microbiological activity of this level. The increase of the ratios Fe(II)/Fe(III) for place 1 and 2 and 4 and both depth 0-25 were similar (0.56; 0.59 and 0.65) indicating similar redox properties of these levels. Higher contents of F(III) were determined in upper layer than in lower layer of all samples. It indicate higher oxidizing properties upper layer than lower one The activity of nitrate reductase, peroxidase, phenolic axidase and xanthine oxidase agree with the content of two forms of iron in samples from all depth. In all samples was observed the decrease of the activity of urease with an increase of the depth. It suggest higher rate of the degradation process of urea created from the decomposition of peptides in peat. In sample No 1 the concentrations of indole-3-acetic acid very famous phytohormone were similar in both determined levels. However for sample No 2, 3 and 4 the significant decrease of the concentrations of indole-3-acetic acid with and increase of the depth of sampling was observed. Acknowledgements: This work was supported by a grant No. N N305 3204 36 founded by Polish Ministry of Education and by RFFR (No.No. 09-05-00235, 09-05-00395), Minister of Education and Science (No. 02.740.11.0325).

  7. Cardiopulmonary toxicity of peat wildfire particulate matter and the predictive utility of precision cut lung slices.

    PubMed

    Kim, Yong Ho; Tong, Haiyan; Daniels, Mary; Boykin, Elizabeth; Krantz, Q Todd; McGee, John; Hays, Michael; Kovalcik, Kasey; Dye, Janice A; Gilmour, M Ian

    2014-06-16

    Emissions from a large peat fire in North Carolina in 2008 were associated with increased hospital admissions for asthma and the rate of heart failure in the exposed population. Peat fires often produce larger amounts of smoke and last longer than forest fires, however few studies have reported on their toxicity. Moreover, reliable alternatives to traditional animal toxicity testing are needed to reduce the number of animals required for hazard identification and risk assessments. Size-fractionated particulate matter (PM; ultrafine, fine, and coarse) were obtained from the peat fire while smoldering (ENCF-1) or when nearly extinguished (ENCF-4). Extracted samples were analyzed for chemical constituents and endotoxin content. Female CD-1 mice were exposed via oropharyngeal aspiration to 100 μg/mouse, and assessed for relative changes in lung and systemic markers of injury and inflammation. At 24 h post-exposure, hearts were removed for ex vivo functional assessments and ischemic challenge. Lastly, 8 mm diameter lung slices from CD-1 mice were exposed (11 μg) ± co-treatment of PM with polymyxin B (PMB), an endotoxin-binding compound. On an equi-mass basis, coarse ENCF-1 PM had the highest endotoxin content and elicited the greatest pro-inflammatory responses in the mice including: increases in bronchoalveolar lavage fluid protein, cytokines (IL-6, TNF-α, and MIP-2), neutrophils and intracellular reactive oxygen species (ROS) production. Exposure to fine or ultrafine particles from either period failed to elicit significant lung or systemic effects. In contrast, mice exposed to ENCF-1 ultrafine PM developed significantly decreased cardiac function and greater post-ischemia-associated myocardial infarction. Finally, similar exposures to mouse lung slices induced comparable patterns of cytokine production; and these responses were significantly attenuated by PMB. The findings suggest that exposure to coarse PM collected during a peat fire causes greater lung inflammation in association with endotoxin and ROS, whereas the ultrafine PM preferentially affected cardiac responses. In addition, lung tissue slices were shown to be a predictive, alternative assay to assess pro-inflammatory effects of PM of differing size and composition. Importantly, these toxicological findings were consistent with the cardiopulmonary health effects noted in epidemiologic reports from exposed populations.

  8. Cardiopulmonary toxicity of peat wildfire particulate matter and the predictive utility of precision cut lung slices

    PubMed Central

    2014-01-01

    Background Emissions from a large peat fire in North Carolina in 2008 were associated with increased hospital admissions for asthma and the rate of heart failure in the exposed population. Peat fires often produce larger amounts of smoke and last longer than forest fires, however few studies have reported on their toxicity. Moreover, reliable alternatives to traditional animal toxicity testing are needed to reduce the number of animals required for hazard identification and risk assessments. Methods Size-fractionated particulate matter (PM; ultrafine, fine, and coarse) were obtained from the peat fire while smoldering (ENCF-1) or when nearly extinguished (ENCF-4). Extracted samples were analyzed for chemical constituents and endotoxin content. Female CD-1 mice were exposed via oropharyngeal aspiration to 100 μg/mouse, and assessed for relative changes in lung and systemic markers of injury and inflammation. At 24 h post-exposure, hearts were removed for ex vivo functional assessments and ischemic challenge. Lastly, 8 mm diameter lung slices from CD-1 mice were exposed (11 μg) ± co-treatment of PM with polymyxin B (PMB), an endotoxin-binding compound. Results On an equi-mass basis, coarse ENCF-1 PM had the highest endotoxin content and elicited the greatest pro-inflammatory responses in the mice including: increases in bronchoalveolar lavage fluid protein, cytokines (IL-6, TNF-α, and MIP-2), neutrophils and intracellular reactive oxygen species (ROS) production. Exposure to fine or ultrafine particles from either period failed to elicit significant lung or systemic effects. In contrast, mice exposed to ENCF-1 ultrafine PM developed significantly decreased cardiac function and greater post-ischemia-associated myocardial infarction. Finally, similar exposures to mouse lung slices induced comparable patterns of cytokine production; and these responses were significantly attenuated by PMB. Conclusions The findings suggest that exposure to coarse PM collected during a peat fire causes greater lung inflammation in association with endotoxin and ROS, whereas the ultrafine PM preferentially affected cardiac responses. In addition, lung tissue slices were shown to be a predictive, alternative assay to assess pro-inflammatory effects of PM of differing size and composition. Importantly, these toxicological findings were consistent with the cardiopulmonary health effects noted in epidemiologic reports from exposed populations. PMID:24934158

  9. High Throughput Sequencing to Detect Differences in Methanotrophic Methylococcaceae and Methylocystaceae in Surface Peat, Forest Soil, and Sphagnum Moss in Cranesville Swamp Preserve, West Virginia, USA

    PubMed Central

    Lau, Evan; Nolan, Edward J.; Dillard, Zachary W.; Dague, Ryan D.; Semple, Amanda L.; Wentzell, Wendi L.

    2015-01-01

    Northern temperate forest soils and Sphagnum-dominated peatlands are a major source and sink of methane. In these ecosystems, methane is mainly oxidized by aerobic methanotrophic bacteria, which are typically found in aerated forest soils, surface peat, and Sphagnum moss. We contrasted methanotrophic bacterial diversity and abundances from the (i) organic horizon of forest soil; (ii) surface peat; and (iii) submerged Sphagnum moss from Cranesville Swamp Preserve, West Virginia, using multiplex sequencing of bacterial 16S rRNA (V3 region) gene amplicons. From ~1 million reads, >50,000 unique OTUs (Operational Taxonomic Units), 29 and 34 unique sequences were detected in the Methylococcaceae and Methylocystaceae, respectively, and 24 potential methanotrophs in the Beijerinckiaceae were also identified. Methylacidiphilum-like methanotrophs were not detected. Proteobacterial methanotrophic bacteria constitute <2% of microbiota in these environments, with the Methylocystaceae one to two orders of magnitude more abundant than the Methylococcaceae in all environments sampled. The Methylococcaceae are also less diverse in forest soil compared to the other two habitats. Nonmetric multidimensional scaling analyses indicated that the majority of methanotrophs from the Methylococcaceae and Methylocystaceae tend to occur in one habitat only (peat or Sphagnum moss) or co-occurred in both Sphagnum moss and peat. This study provides insights into the structure of methanotrophic communities in relationship to habitat type, and suggests that peat and Sphagnum moss can influence methanotroph community structure and biogeography. PMID:27682082

  10. Introducing global peat-specific temperature and pH calibrations based on brGDGT bacterial lipids

    NASA Astrophysics Data System (ADS)

    Naafs, B. D. A.; Inglis, G. N.; Zheng, Y.; Amesbury, M. J.; Biester, H.; Bindler, R.; Blewett, J.; Burrows, M. A.; del Castillo Torres, D.; Chambers, F. M.; Cohen, A. D.; Evershed, R. P.; Feakins, S. J.; Gałka, M.; Gallego-Sala, A.; Gandois, L.; Gray, D. M.; Hatcher, P. G.; Honorio Coronado, E. N.; Hughes, P. D. M.; Huguet, A.; Könönen, M.; Laggoun-Défarge, F.; Lähteenoja, O.; Lamentowicz, M.; Marchant, R.; McClymont, E.; Pontevedra-Pombal, X.; Ponton, C.; Pourmand, A.; Rizzuti, A. M.; Rochefort, L.; Schellekens, J.; De Vleeschouwer, F.; Pancost, R. D.

    2017-07-01

    Glycerol dialkyl glycerol tetraethers (GDGTs) are membrane-spanning lipids from Bacteria and Archaea that are ubiquitous in a range of natural archives and especially abundant in peat. Previous work demonstrated that the distribution of bacterial branched GDGTs (brGDGTs) in mineral soils is correlated to environmental factors such as mean annual air temperature (MAAT) and soil pH. However, the influence of these parameters on brGDGT distributions in peat is largely unknown. Here we investigate the distribution of brGDGTs in 470 samples from 96 peatlands around the world with a broad mean annual air temperature (-8 to 27 °C) and pH (3-8) range and present the first peat-specific brGDGT-based temperature and pH calibrations. Our results demonstrate that the degree of cyclisation of brGDGTs in peat is positively correlated with pH, pH = 2.49 × CBTpeat + 8.07 (n = 51, R2 = 0.58, RMSE = 0.8) and the degree of methylation of brGDGTs is positively correlated with MAAT, MAATpeat (°C) = 52.18 × MBT5me‧ - 23.05 (n = 96, R2 = 0.76, RMSE = 4.7 °C). These peat-specific calibrations are distinct from the available mineral soil calibrations. In light of the error in the temperature calibration (∼4.7 °C), we urge caution in any application to reconstruct late Holocene climate variability, where the climatic signals are relatively small, and the duration of excursions could be brief. Instead, these proxies are well-suited to reconstruct large amplitude, longer-term shifts in climate such as deglacial transitions. Indeed, when applied to a peat deposit spanning the late glacial period (∼15.2 kyr), we demonstrate that MAATpeat yields absolute temperatures and relative temperature changes that are consistent with those from other proxies. In addition, the application of MAATpeat to fossil peat (i.e. lignites) has the potential to reconstruct terrestrial climate during the Cenozoic. We conclude that there is clear potential to use brGDGTs in peats and lignites to reconstruct past terrestrial climate.

  11. Brown coal maceral distributions in a modern domed tropical Indonesian peat and a comparison with maceral distributions in Middle Pennsylvanian–age Appalachian bituminous coal beds

    USGS Publications Warehouse

    Grady, William C.; Eble, Cortland F.; Neuzil, Sandra G.

    1993-01-01

    Analyses of modern Indonesian peat samples reveal that the optical characteristics of peat constituents are consistent with the characteristics of macerals observed in brown coal and, as found by previous workers, brown-coal maceral terminology can be used in the analysis of modern peat. A core from the margin and one from near the center of a domed peat deposit in Riau Province, Sumatra, reveal that the volume of huminite macerals representing well-preserved cell structures (red, red-gray, and gray textinite; ulminite; and corpo/textinite) decreases upward. Huminite macerals representing severely degraded (<20 microns) cellular debris (degraded textinite, attrinite, and densinite) increase uniformly from the base to the surface. Greater degradation of the huminite macerals in the upper peat layers in the interior of the deposit is interpreted to be the result of fungal activity that increased in response to increasingly aerobic conditions associated with the doming of the peat deposit. Aerobic conditions concurrent with the activities of fungi may result in incipient oxidation of the severely degraded huminite macerals. This oxidation could lead to the formation of degradosemifusinite, micrinite, and macrinite maceral precursors in the peat, which may become evident only upon coalification. The core at the margin was petrographically more homogeneous than the core from the center and was dominated by well-preserved huminite macerals except in the upper 1 m, which showed signs of aerobic degradation and was similar to the upper 1 m of the peat in the interior of the deposit.The Stockton and other Middle Pennsylvanian Appalachian coal beds show analogous vertical trends in vitrinite maceral composition. The succession from telocollinite-rich, bright coal lithotypes in the lower benches upward to thin-banded/matrix collinite and desmocollinite in higher splint coal benches is believed to reflect a progression similar to that from the well-preserved textinite macerals in the lower portions of the peat cores to severely fragmented and degraded cellular materials (degraded textinite, attrinite, and densinite) in the upper portions of the cores. This petrographic sequence from bright to splint coal in the Stockton and other Middle Pennsylvanian coal beds supports previous interpretations of an upward transition from planar to domed swamp accumulations.

  12. Greenhouse gas efflux from an impacted Malaysian tropical peat swamp (Invited)

    NASA Astrophysics Data System (ADS)

    Waldron, S.; Vihermaa, L. E.; Evers, S.; Garnett, M.; Newton, J.; Padfield, R.

    2013-12-01

    Tropical peatlands constitute ~11% of global peatland area and ~12% of the global peat C pool. Malaysia alone contains 10% of tropical peats. Due to rising global demands for food and biofuels, SE-Asia peat swamp forest ecosystems are threatened by increasing amounts of drainage, fire and conversion to plantation. These processes can change the GHG emissions and thus net ecosystem C balance. However, in comparison to temperate and boreal peatlands, there is a lack of data on terrestrial-aquatic-atmospheric carbon transfer from tropical peatlands, both those that are little disturbed and those facing anthropogenic pressures. Lateral transport of soil-respired carbon, and fluvial respiration or UV-oxidation of terrestrial DOC primes atmospheric carbon dioxide efflux. We now know that DOC lost from disturbed tropical peat swamp forests can be centuries to millennia old and originates deep within the peat column - this carbon may fuel efflux of old carbon dioxide and so anthropogenic land-use change renders the older, slower carbon cycles shorter and faster. Currently we have no knowledge of how significant ';older-slower' terrestrial-aquatic-atmospheric cycles are in disturbed tropical peatlands. Further, in some areas for commercial reasons, or by conservation bodies trying to minimise peat habitat loss, logged peats have been left to regenerate. Consequently, unpicking the legacy of multiple land uses on magnitude, age and source of GHG emissions is challenging but required to support land management decisions and projections of response to a changing climate. Here, we present the results of our first field campaign in July 2013 to the Raja Musa and Sungai Karang Peat Swamp Forest Reserves in North Selangor, Malaysia. This is one of Malaysia's largest oceanic peat swamps, and has been selectively logged and drained for 80 years, but is now subject to a 30 year logging ban to aid forest regeneration and build up wood stocks. From sites subject to different land use, we will present measurements of i) spatial variation in fluvial carbon dioxide and methane concentrations and associated efflux rates, and ii) the stable carbon isotopic composition of DIC and novel determination of the age of the effluxed carbon dioxide. From this we can consider if younger-faster or older-slower carbon cycling dominates the terrestrial-aquatic-atmospheric C transfer during this dry period sampling.

  13. Peatlands and potatoes; organic wetland soils in Uganda

    NASA Astrophysics Data System (ADS)

    Farmer, Jenny; Langan, Charlie; Gimona, Alessandro; Poggio, Laura; Smith, Jo

    2017-04-01

    Land use change in Uganda's wetlands has received very little research attention. Peat soils dominate the papyrus wetlands of the south west of the country, but the areas they are found in have been increasingly converted to potato cultivation. Our research in Uganda set out to (a) document both the annual use of and changes to these soils under potato cultivation, and (b) the extent and condition of these soils across wetland systems. During our research we found it was necessary to develop locally appropriate protocols for sampling and analysis of soil characteristics, based on field conditions and locally available resources. Over the period of one year we studied the use of the peat soil for potato cultivation by smallholder farmers in Ruhuma wetland and measured changes to surface peat properties and soil nutrients in fields over that time. Farmer's use of the fields changed over the year, with cultivation, harvesting and fallow periods, which impacted on soil micro-topography. Measured soil properties changed over the course of the year as a result of the land use, with bulk density, nitrogen content, potassium and magnesium all reducing. Comparison of changes in soil carbon stocks over the study period were difficult to make as it was not possible to reach the bottom of the peat layer. However, a layer of fallow weeds discarded onto the soil prior to preparation of the raised potato beds provided a time marker which gave insight into carbon losses over the year. To determine the peatland extent, a spatial survey was conducted in the Kanyabaha-Rushebeya wetland system, capturing peat depths and key soil properties (bulk density, organic matter and carbon contents). Generalised additive models were used to map peat depth and soil characteristics across the system, and maps were developed for these as well as drainage and land use classes. Comparison of peat cores between the two study areas indicates spatial variability in peat depths and the influence of neighbouring mineral soil hillslopes. Our work provides valuable insight into the condition and use of these tropical peat soils, which are under-researched yet highly depended upon by local communities, with wider climate impacts. Cultivation of these peat soils has implications for their future sustainability and use, and having insight into the impacts of land management on these soils improves local and national level capacity for better soil management.

  14. Carbon Turnover in Organic Soils of Central Saskatchewan: Insights From a Core-Based Decomposition Study

    NASA Astrophysics Data System (ADS)

    Bauer, I. E.; Bhatti, J. S.; Hurdle, P. A.

    2004-05-01

    Field-based decomposition studies that examine several site types tend to use one of two approaches: Either the decay of one (or more) standard litters is examined in all sites, or litters native to each site type are incubated in the environment they came from. The first of these approaches examines effects of environment on decay, whereas the latter determines rates of mass loss characteristic of each site type. Both methods are usually restricted to a limited number of litters, and neither allows for a direct estimate of ecosystem-level parameters (e.g. heterotrophic respiration). In order to examine changes in total organic matter turnover along forest - peatland gradients in central Saskatchewan, we measured mass loss of native peat samples from six different depths (surface to 50 cm) over one year. Samples were obtained by sectioning short peat cores, and cores and samples were returned to their original position after determining the initial weight of each sample. A standard litter (birch popsicle sticks) was included at each depth, and water tables and soil temperature were monitored over the growing season. After one year, average mass loss in surface peat samples was similar to published values from litter bag studies, ranging from 12 to 21 percent in the environments examined. Native peat mass loss showed few systematic differences between sites or along the forest - peatland gradient, with over 60 percent of the total variability explained by depth alone. Mass loss of standard litter samples was highly variable, with high values in areas at the transition between upland and peatland that may have experienced recent disturbance. In combination, these results suggest strong litter-based control over natural rates of organic matter turnover. Estimates of heterotrophic respiration calculated from the mass loss data are higher than values obtained by eddy covariance or static chamber techniques, probably reflecting loss of material during the handling of samples or increased mass loss from manipulated profiles. Nevertheless, the core-based method is a useful tool in examining carbon dynamics of organic soils, since it provides a good relative index of organic matter turnover, and allows for separate examination of environmental and litter-based effects.

  15. mcrA-Targeted Real-Time Quantitative PCR Method To Examine Methanogen Communities▿

    PubMed Central

    Steinberg, Lisa M.; Regan, John M.

    2009-01-01

    Methanogens are of great importance in carbon cycling and alternative energy production, but quantitation with culture-based methods is time-consuming and biased against methanogen groups that are difficult to cultivate in a laboratory. For these reasons, methanogens are typically studied through culture-independent molecular techniques. We developed a SYBR green I quantitative PCR (qPCR) assay to quantify total numbers of methyl coenzyme M reductase α-subunit (mcrA) genes. TaqMan probes were also designed to target nine different phylogenetic groups of methanogens in qPCR assays. Total mcrA and mcrA levels of different methanogen phylogenetic groups were determined from six samples: four samples from anaerobic digesters used to treat either primarily cow or pig manure and two aliquots from an acidic peat sample stored at 4°C or 20°C. Only members of the Methanosaetaceae, Methanosarcina, Methanobacteriaceae, and Methanocorpusculaceae and Fen cluster were detected in the environmental samples. The three samples obtained from cow manure digesters were dominated by members of the genus Methanosarcina, whereas the sample from the pig manure digester contained detectable levels of only members of the Methanobacteriaceae. The acidic peat samples were dominated by both Methanosarcina spp. and members of the Fen cluster. In two of the manure digester samples only one methanogen group was detected, but in both of the acidic peat samples and two of the manure digester samples, multiple methanogen groups were detected. The TaqMan qPCR assays were successfully able to determine the environmental abundance of different phylogenetic groups of methanogens, including several groups with few or no cultivated members. PMID:19447957

  16. Increase in carbon accumulation in a boreal peatland following a period of wetter climate and long-term decrease in nitrogen deposition.

    PubMed

    Utstøl-Klein, Simon; Halvorsen, Rune; Ohlson, Mikael

    2015-06-01

    Rates of peat growth and carbon (C) accumulation in a Sphagnum-dominated boreal peatland in south-east Norway were compared over two time periods each 17 yr long, that is, an earlier period from 1978 to 1995 and a recent period from 1995 to 2012. Our research was based on 109 peat cores. By using exactly the same study area and sampling protocols to obtain data for the two time periods, we were able to obtain a clear picture of the spatio-temporal patterns of peat accumulation. We show that peat growth and C accumulation were significantly higher in the recent than in the earlier time period. Interestingly, nitrogen (N) deposition was lower in the recent than in the earlier time period, while precipitation increased in the recent time period. Temperatures did not show any consistent trends over the time periods. Although our data do not allow assessment of the relative importance of declining N deposition vs increasing precipitation as drivers of peat accumulation, our results suggest that peatland C sequestration is not significantly inhibited by N pollution at current precipitation and N deposition levels. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  17. The flux of organic matter through a peatland ecosystem: The role of cellulose, lignin, and their control of the ecosystem oxidation state

    NASA Astrophysics Data System (ADS)

    Worrall, Fred; Moody, Catherine S.; Clay, Gareth D.; Burt, Tim P.; Rose, Rob

    2017-07-01

    This study used thermogravimetric analysis (TGA) to study the transit of organic C through a peatland ecosystem. The biomass, litter, peat soil profile, particulate organic matter (POM), and dissolved organic matter (DOM) fluxes were sampled from the Moor House National Nature Reserve, a peat-covered catchment in northern England where both the dry matter and carbon budget for the catchment were known. The study showed that although TGA traces showed distinct differences between organic matter reservoirs and fluxes, the traces could not readily be associated with particular functionalities or elemental properties. The TGA trace shows that polysaccharides are preferentially removed by humification and degradation with residual peat being dominated by lignin compositions. The DOM is derived from the degradation of lignin while the POM is derived from erosion of the peat profile. The carbon lost as gases (CO2 and CH4) was estimated to be composed of 92 to 95% polysaccharide carbon. The composition of the organic matter lost from the peat ecosystem means that the oxidative ratio (OR) of the ecosystem experienced by the atmosphere was between 0.96 and 0.99: currently, the Intergovernmental Panel on Climate Change uses an OR value of 1.1 for all ecosystems.

  18. A comprehensive study of combustion products generated from pulverized peat combustion in the furnace of BKZ-210-140F steam boiler

    NASA Astrophysics Data System (ADS)

    Kuzmin, V. A.; Zagrai, I. A.

    2017-11-01

    The experimental and theoretical study of combustion products has been carried out for the conditions of pulverized peat combustion in BKZ-210-140F steam boiler. Sampling has been performed in different parts of the boiler system in order to determine the chemical composition, radiative properties and dispersity of slag and ash particles. The chemical composition of particles was determined using the method of x-ray fluorescence analysis. Shapes and sizes of the particles were determined by means of electron scanning microscopy. The histograms and the particle size distribution functions were computed. The calculation of components of the gaseous phase was based on the combustion characteristics of the original fuel. The software package of calculation of thermal radiation of combustion products from peat combustion was used to simulate emission characteristics (flux densities and emissivity factors). The dependence of emission characteristics on the temperature level and on the wavelength has been defined. On the basis of the analysis of emission characteristics the authors give some recommendations how to determine the temperature of peat combustion products in the furnace of BKZ-210-140F steam boiler. The findings can be used to measure the combustion products temperature, support temperature control in peat combustion and solve the problem of boiler furnace slagging.

  19. Recent Measurements of Groundwater Recharge and Discharge Through Everglades' Peat Sediments Using Short-Lived Radium Isotopes

    NASA Astrophysics Data System (ADS)

    Krest, J. M.; Harvey, J. W.

    2002-05-01

    Peat sediments are present as a nearly continuous surface layer across large areas of the Everglades. These sediments have relatively low hydraulic conductivity, impeding water exchange between surface water and the underlying surficial aquifer. Although vertical water transport does occur across the peat layer, rates are slow enough that they are difficult to quantify. Even modest rates of vertical transport, however, become significant to water budgets and nutrient cycles when they occur over a large area. In the Everglades, common methods for measuring exchange across the peat layer are prone to complications: small hydraulic gradients are difficult to measure; seepage meters tend to be imprecise at slow rates; radon profiles or emanation rates are complicated by methane bubble ebullition; chloride profiles often exhibit a strong gradient only at the surface of the peat. We are employing a method that takes advantage of the different production rates of short-lived radium isotopes (Ra-223 and Ra-224) in the peat sediments and in the underlying sand or carbonate aquifer. Pore water radium concentrations are balanced by radioactive decay and production in the surrounding sediments. As the pore water is carried across the sediment interface a temporary excess or deficit of dissolved radium exists until decay is again balanced by the new production rate. We have derived steady-state, one-dimensional models to determine flow rates on the basis of this disequilibrium. This method has the advantage of being most sensitive at the base of the peat, away from transient perturbations occurring at the surface. In addition, Ra-223 and Ra-224 are collected simultaneously, providing two independent measurements. At present we have tested the method in Water Conservation Area-1 and WCA-2A, quantifying recharge and discharge on opposite sides of Levee 39, and also in more central sites in WCA-2A. Additional work is underway in Taylor Slough and Shark Slough.

  20. Organic Geochemical Characteristics and Depositional Environment of Aǧaçbaşi Plateau Peat, Köprübaşi/Trabzon, NE Turkey

    NASA Astrophysics Data System (ADS)

    Hoş Çebi, Fatma; Korkmaz, Sadettin

    2013-04-01

    Young peat deposits crop out in the southern part of the Aǧaçbaşı region of Trabzon city, Northern Turkey. In this study, chemical, organic geochemical, petrographic and palynological features of the peat occurrences are investigated and results obtained evaluated. According to palynological investigations, it is determined that peats were occured in terrestrial or lacustrine environments, which is containing average of 80% woody, 15% herbaceous and 5% amorphous organic matter. Age of peats has been determined as Miocene or younger, by the palynological age determinations. It is understood from the obtained SCI (Sport Color Index) analysis results that constituting organic material of peat is immature. Total organic carbon content of the peat is average 41.69% by pyrolysis analysis. HI values were calculated as average 315.46 mgHC/gTOC, which is very high for the coal occurrences. The high OI values (avg. 134 mgCO2/gTOC) show that the environments of peat deposits were oxic or suboxic. TAR (Terrigenous/Aquatic Ratio) and CPI (Carbon Preference Index) index value, is found to be 2.4 and 3.4 respectively. These values that resulted from dominance of high-numbered n-alkanes, indicate terrestrial organic matter input. According to the m/z 191 and m/z 217 mass peaks of GC chromatogram data which is obtained by biomarker analysis, sterane/hopane ratio suggests algal organic matter. Moreover, the lack of C34 and C35 homohopans show that organic matter deposited under oxic or suboxic conditions. Moretane/hopane, Tm/Ts and Tm/C30 hopane ratios were calculated in order of 0.15, 3.25 and 0.33, respectively. These values imply acidic and oxic conditions during the formation of peat. Due to the absence of 17α(H)-28.30-bisnorhopan in the m/z 191 chromatograms, it is concluded that Aǧaçbaşı plateau peat might be deposited in a terrestrial or lacustrine environments under oxic or suboxic conditions. Dominant sterane content of C29 suggests terrestrial organic matter input. In the sterane triangle diagram, the extract of the peat sample was plotted in the area of high plant and brown and green alga inputs. Also C30 sterane, which is implication of marine environment, has not been recorded on chromatogram. 22S/(22S+22R) homohopan index, Ts/(Ts+Tm), moretan/hopane, 20S/(20S+20R) sterane and ββ/(ββ+αα) sterane ratios suggest immature level of the organic matter. Key Words: peat, biomarker, sterane, terpane

  1. Late Holocene relative sea level: Maine coast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belknap, D.F.; Shipp, R.C.; Stuckenrath, R.

    1985-01-01

    More than 50 new radiocarbon dates from 5 primary sites along the Maine coast define local relative sea-level curves far different from those previously published, with similar shapes at each site. Salt marsh peats were collected from 7 cm diameter vibracores, allowing relatively precise depth control and large sample volume. Environments of deposition were interpreted from sediment texture, structures and macrofossil remains. Samples for dating were treated with hot NaOH to remove humic acids. Both soluble and insoluble fractions were analyzed in 25% of the samples; the remainder were treated but only the insoluble fraction was dated. Stable carbon isotopemore » ratios were measured to further identify environments and to correct the C-14 data for fractionation. Humic acids were a significant contaminant in the most basal peats, which also showed more terrestrial C-13/12 ratios. Previous studies have used radiocarbon dates, precision releveling, tide gauge data, Quaternary geologic information and archaeologic and historic patterns to suggest an along-coast downwarping to the northeast, with Eastport, Maine presently subsiding at a rate of up to 9 mm/years relative to Bangor. The five localities studied to date suggest no more than 0.3 mm/years long-term differential subsidence within the central and western parts of Maine. In particular, the long-studied Addison marsh was re-examined and the rapid 10 mm/years rates of rise were not found. Sea level rose 1.2 +/- 0.3 mm/years from 4000 years B.P. to 1500 years B.P. and ca. 0.3 mm/years from 1500 years B.P. to present. Sampling and dating at Eastport is presently underway.« less

  2. Species Identification of Archaeological Skin Objects from Danish Bogs: Comparison between Mass Spectrometry-Based Peptide Sequencing and Microscopy-Based Methods

    PubMed Central

    Brandt, Luise Ørsted; Schmidt, Anne Lisbeth; Mannering, Ulla; Sarret, Mathilde; Kelstrup, Christian D.; Olsen, Jesper V.; Cappellini, Enrico

    2014-01-01

    Denmark has an extraordinarily large and well-preserved collection of archaeological skin garments found in peat bogs, dated to approximately 920 BC – AD 775. These objects provide not only the possibility to study prehistoric skin costume and technologies, but also to investigate the animal species used for the production of skin garments. Until recently, species identification of archaeological skin was primarily performed by light and scanning electron microscopy or the analysis of ancient DNA. However, the efficacy of these methods can be limited due to the harsh, mostly acidic environment of peat bogs leading to morphological and molecular degradation within the samples. We compared species assignment results of twelve archaeological skin samples from Danish bogs using Mass Spectrometry (MS)-based peptide sequencing, against results obtained using light and scanning electron microscopy. While it was difficult to obtain reliable results using microscopy, MS enabled the identification of several species-diagnostic peptides, mostly from collagen and keratins, allowing confident species discrimination even among taxonomically close organisms, such as sheep and goat. Unlike previous MS-based methods, mostly relying on peptide fingerprinting, the shotgun sequencing approach we describe aims to identify the complete extracted ancient proteome, without preselected specific targets. As an example, we report the identification, in one of the samples, of two peptides uniquely assigned to bovine foetal haemoglobin, indicating the production of skin from a calf slaughtered within the first months of its life. We conclude that MS-based peptide sequencing is a reliable method for species identification of samples from bogs. The mass spectrometry proteomics data were deposited in the ProteomeXchange Consortium with the dataset identifier PXD001029. PMID:25260035

  3. Effect of recent climate change on Arctic Pb pollution: a comparative study of historical records in lake and peat sediments.

    PubMed

    Liu, Xiaodong; Jiang, Shan; Zhang, Pengfei; Xu, Liqiang

    2012-01-01

    Historical changes of anthropogenic Pb pollution were reconstructed based on Pb concentrations and isotope ratios in lake and peat sediment profiles from Ny-Ålesund of Arctic. The calculated excess Pb isotope ratios showed that Pb pollution largely came from west Europe and Russia. The peat profile clearly reflected the historical changes of atmospheric deposition of anthropogenic Pb into Ny-Ålesund, and the result showed that anthropogenic Pb peaked at 1960s-1970s, and thereafter a significant recovery was observed by a rapid increase of (206)Pb/(207)Pb ratios and a remarkable decrease in anthropogenic Pb contents. In contrast to the peat record, the longer lake record showed relatively high anthropogenic Pb contents and a persistent decrease of (206)Pb/(207)Pb ratios within the uppermost samples, suggesting that climate-sensitive processes such as catchment erosion and meltwater runoff might have influenced the recent change of Pb pollution record in the High Arctic lake sediments. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Fourth technical contractors' conference on peat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-01-01

    This conference reported the status of the US Department of Energy Peat Program. The papers presented dealt with peat dewatering, international peat programs, environmental and socio-economic factors, peat gasification, peat harvesting, and the state peat surveys for 14 states. Separate abstracts were prepared for the individual papers. (CKK)

  5. Carbon budget for a British upland peat catchment.

    PubMed

    Worrall, Fred; Reed, Mark; Warburton, Jeff; Burt, Tim

    2003-08-01

    This study describes the analysis of fluvial carbon flux from an upland peat catchment in the North Pennines. Dissolved organic carbon (DOC), pH, alkalinity and calcium were measured in weekly samples, with particulate organic carbon (POC) measured from the suspended sediment load from the stream outlet of an 11.4-km(2) catchment. For calendar year 1999, regular monitoring of the catchment was supplemented with detailed quasi-continuous measurements of flow and stream temperature, and DOC for the months September through November. The measurements were used to calculate the annual flux of dissolved CO(2), dissolved inorganic carbon, DOC and POC from the catchment and were combined with CO(2) and CH(4) gaseous exchanges calculated from previously published values and the observations of water table height within the peat. The study catchment represents a net sink of 15.4+/-11.9 gC/m(2)/yr. Carbon flows calculated for the study catchment are combined with values in the literature, using a Monte Carlo method, to estimate the carbon budget for British upland peat. For all British upland peat the calculation suggests a net carbon sink of between 0.15 and 0.29 MtC/yr. This is the first study to include a comprehensive study of the fluvial export of carbon within carbon budgets and shows the size of the peat carbon sink to be smaller than previous estimates, although sensitivity analysis shows that the primary productivity rather than fluvial carbon flux is a more important element in estimating the carbon budget in this regard.

  6. Frozen peatlands: carbon store and the climate change

    NASA Astrophysics Data System (ADS)

    Ogneva, Olga; Matyshak, George; Tarkhov, Matvey

    2017-04-01

    Peatlands soils in the northern permafrost region store approximately 40% of total Earth's soils carbon. These soils develop under the influence of cryogenic processes especially such as freeze-thaw and cryoturbations. Climate change predictions suggest that the frequency of soil freeze-thaw cycles (FTCs) will increase in cool temperate and other high-latitude regions. This trend may cause a response in organic matter decomposition rate - that will result in significant changes of greenhouse gases emission (CO2, CH4). For further predictions improvement of soils response to global climate changes it is necessary to estimate the impact of FTCs in permafrost soils on organic matter decomposition. We investigated the effects of FTCs on microbial biomass, basal respiration, metabolic quotient and dissolved organic matter (DOM) content (carbon - DOC and nitrogen - DON) in frozen peatlands soils by laboratory modelling experiment. Frozen peatlands from the north of Western Siberia in Nadym area (N65°19', E72°53'), in a zone of discontinuous permafrost were studied. The soil cover of these formations is represented by a complex of Typic Histoturbels (Turbic Cryosol) and Typic Historthels (Cryic Histosols). Peat profiles of both soil types were divided into horizons due to decomposition degree (from 15 to 55-60%), age (from 1000 to 5700 yrs) and botanic composition (oligotrophic, mesotrophic, eutrophic). During the experiment, first group of samples of peat horizons (field moisture content) were subjected for 10 times to 3-day FTCs at the temperature of -10 and +4 ° C. In the second group of peat samples were incubated at +4 ° C (with no freeze-thaw). It was established that all studied microbial properties were inversely proportional with decomposition degree of peat, except metabolic quotient. Our results illustrate that microbial activity, estimated by BR, shows resistance to FTCs and doesn't significantly differ after FTCs an average. Microbial biomass (carbon and nitrogen) as well as BR doesn't differ too. The most intensive response to FTCs shows DOM content value which was 1.5 times higher on average in samples after FTCs in comparison with control samples. We suppose that increase of FTCs frequency in soil will result in significant acceleration mineralization of peat. Because these processes exert disruptive effects on soil organic matter, provide converting carbon from pool into forms available for microbial communities, thus involving stored carbon into the carbon turnover.

  7. Atmospheric Deposition of Trace Elements in Ombrotrophic Peat as a Result of Anthropic Activities

    NASA Astrophysics Data System (ADS)

    Fabio Lourençato, Lucio; Cabral Teixeira, Daniel; Vieira Silva-Filho, Emmanoel

    2014-05-01

    Ombrotrophic peat can be defined as a soil rich in organic matter, formed from the partial decomposition of vegetable organic material in a humid and anoxic environment, where the accumulation of material is necessarily faster than the decomposition. From the physical-chemical point of view, it is a porous and highly polar material with high adsorption capacity and cation exchange. The high ability of trace elements to undergo complexation by humic substances happens due to the presence of large amounts of oxygenated functional groups in these substances. Since the beginning of industrialization human activities have scattered a large amount of trace elements in the environment. Soil contamination by atmospheric deposition can be expressed as a sum of site contamination by past/present human activities and atmospheric long-range transport of trace elements. Ombrotrophic peat records can provide valuable information about the entries of trace metals into the atmosphere and that are subsequently deposited on the soil. These trace elements are toxic, non-biodegradable and accumulate in the food chain, even in relatively low quantities. Thus studies on the increase of trace elements in the environment due to human activities are necessary, particularly in the southern hemisphere, where these data are scarce. The aims of this study is to evaluate the concentrations of mercury in ombrotrophic peat altomontanas coming from atmospheric deposition. The study is conducted in the Itatiaia National Park, Brazilian conservation unit, situated between the southeastern state of Rio de Janeiro, São Paulo and Minas Gerais. An ombrotrophic peat core is being sampled in altitude (1980m), to measure the trace elements concentrations of this material. As it is conservation area, the trace elements found in the samples is mainly from atmospheric deposition, since in Brazil don't exist significant lithology of trace elements. The samples are characterized by organic matter content which is determined by calcination and pH. For the determination of mercury, an aliquot of 10 mL of sample with 5 mL of the reducing agent 2 % SnCl2, purged with air by atomic absorption spectrophotometry by cold vapor, EAAVF is being used. The determination of other trace elements (Zn, Cd and Pb) is analyzed by flame atomic absorption spectroscopy (FAAS).

  8. Organic matter evolution throughout a 100-cm ombrotrophic profile from an Italian floating mire

    NASA Astrophysics Data System (ADS)

    Zaccone, Claudio; D'Orazio, Valeria; Lobianco, Daniela; Miano, Teodoro M.

    2015-04-01

    The curious sight of an island floating and moving on a lake naturally, already described by Pliny the Elder in his Naturalis historia (AD 77-79), fascinated people from time immemorial. Floating mires are defined by the occurrence of emergent vegetation rooted in highly organic buoyant mats that rise and fall with changes in water level. Peat-forming floating mires could provide an exceptional tool for environmental studies, since much of their evolution, as well as the changes of the surrounding areas, is recorded in their peat deposits. A complete, 4-m deep peat core was collected in July 2012 from the floating island of Posta Fibreno, a relic mire in the Central Italy. This floating island has a diameter of ca. 30 m, a submerged thickness of about 3 m, and the vegetation is organized in concentric belts, from the Carex paniculata palisade to the Sphagnum centre. Here, some of the southernmost Italian populations of Sphagnum palustre occur. The 14C age dating of macrofossils removed from the sample at 360 cm of depth revealed that the island probably formed more than 500 yrs ago (435±20 yr BP). In the present work, we show preliminary results regarding the evolution of the organic matter along the first, ombrotrophic 100 cm of depth, hoping also to provide some insight into the possible mechanism of the evolution of this floating island. The 100 cm monolith was collected using a Wardenaar corer and cut frozen in 1-cm layers. It consists almost exclusively of Sphagnum mosses, often spaced out, in the top 20-30 cm, by leaves of Populus tremula that annually fell off. This section shows a very low bulk density, ranging from 0.017 and 0.059 g cm-3 (avg. value, 0.03±0.01 g cm-3), an average water content of 96.1±1.1%, and a gravimetric water content ranging between 14.3 and 41.5 gwater gdrypeat-1. The pH of porewaters was in the range 5-5.5. The C content along the profile ranged between 35 and 47% (avg., 41±1%), whereas the N between 0.3 and 0.9% (avg., 0.6±0.1%). Main atomic ratios seem to confirm what found during the visual inspection of the core, i.e., Sphagnum material so well preserved that it is hard to classify it as 'peat'. In fact, the F14C age dating suggests that the first 95 cm of Sphagnum material accumulate in less than 55 yrs, thus resulting in an average growing rate of ca. 1.7-1.8 cm yr-1. At the same time, C/N, H/C and O/C ratios show their lowest values between 20 and 55 cm of depth, corresponding to the section with highest bulk density (0.025-0.059 g cm-3). This seems to suggest a slightly more decomposed material. Consequently, the depth of 55-60 cm could represent the emerged (i.e., less anaerobic) section of this floating mire. Finally, the first 100 cm of the core show a great potential to be used as archive of environmental changes, especially considering their high resolution (1 cm = 0.5 yr ca.), although the short time-space covered could be a limiting factor. The Authors thank the Municipality of Posta Fibreno (FR), Managing Authority of the Regional Natural Reserve of Lake Posta Fibreno, for allowing peat cores sampling. C.Z. is indebted to the Staff of the Regional Natural Reserve for the help during samplings and for their continuous feedbacks.

  9. Thermal properties of degraded lowland peat-moorsh soils

    NASA Astrophysics Data System (ADS)

    Gnatowski, Tomasz

    2016-04-01

    Soil thermal properties, i.e.: specific heat capacity (c), thermal conductivity (K), volumetric heat capacity (C) govern the thermal environment and heat transport through the soil. Hence the precise knowledge and accurate predictions of these properties for peaty soils with high amount of organic matter are especially important for the proper forecasting of soil temperature and thus it may lead to a better assessment of the greenhouse gas emissions created by microbiological activity of the peatlands. The objective of the study was to develop the predictive models of the selected thermal parameters of peat-moorsh soils in terms of their potential applicability for forecasting changes of soil temperature in degraded ecosystems of the Middle Biebrza River Valley area. Evaluation of the soil thermal properties was conducted for the parameters: specific heat capacity (c), volumetric heat capacities of the dry and saturated soil (Cdry, Csat) and thermal conductivities of the dry and saturated soil (Kdry, Ksat). The thermal parameters were measured using the dual-needle probe (KD2-Pro) on soil samples collected from seven peaty soils, representing total 24 horizons. The surface layers were characterized by different degrees of advancement of soil degradation dependent on intensiveness of the cultivation practises (peaty and humic moorsh). The underlying soil layers contain peat deposits of different botanical composition (peat-moss, sedge-reed, reed and alder) and varying degrees of decomposition of the organic matter, from H1 to H7 (von Post scale). Based on the research results it has been shown that the specific heat capacity of the soils differs depending on the type of soil (type of moorsh and type of peat). The range of changes varied from 1276 J.kg-1.K-1 in the humic moorsh soil to 1944 J.kg-1.K-1 in the low decomposed sedge-moss peat. It has also been stated that in degraded peat soils with the increasing of the ash content in the soil the value of specific heat has decreased in a non-linear manner. Thermal parameters of the dry mass of the studied soils (Kdry, Cdry) were characterised by the mean value of approximately 0.11±0.028 W.m-1.K-1 and 0.781±0.220 MJ.m-3.K-1. The application of the correlation analysis showed that the most significant predictor of these properties of soils is the soil bulk density which, respectively explains: 54.6% and 67.1% of their variation. The increase of the accuracy in determining Kdry and Cdry was obtained by developing regression models, which apart from the bulk density also include the chemical properties of the peat soils. In the fully saturated soil the Ksat value ranged from 0.47 to 0.63 W.m-1.K-1, and the Csat varied from 3.200 to 3.995 MJ.m-3.K-1. The variation coefficients of these soil thermal features are at the level of approx. 5%. The obtained results allowed to conclude that the significant diversity of studied soils doesn't cause the significant differences in thermal soil parameters in fully saturated soils. The developed statistical relationships indicate that parameters Ksat and Csat were poorly correlated with saturated moisture content.

  10. Seven hundred years of peat formation recorded throughout a deep floating mire profile from Central Italy

    NASA Astrophysics Data System (ADS)

    Lobianco, Daniela; D'Orazio, Valeria; Miano, Teodoro; Zaccone, Claudio

    2016-04-01

    Floating mires are defined by the occurrence of emergent vegetation rooted in highly organic buoyant mats that rise and fall with changes in water level. Islands floating and moving on a lake naturally were already described by Pliny the Elder in his Naturalis historia almost two millennia ago. Actually, he devoted a whole chapter of Naturalis historia to "Of Islands Ever Floating and Swimming", reporting how certain isles were always waving and never stood still. The status of "flotant" has been defined transitory; in fact, these small isles often disappear, in most of the cases because of a transition from floating island to firm land during decades is likely to happen. That is why most of the floating islands described by Pliny the Elder (e.g., Lacus Fundanus, Lacus Cutiliensis, Lacus Mutinensis, Lacus Statoniensis, Lacus Tarquiniensis, Lydia Calaminae, Lacus Vadimonis) do not exist anymore. In the present study, peat formation and organic matter evolution were investigated in order to understand how these peculiar environments form, and how stable actually they are. In fact, it is hoped that peat-forming floating mires could provide an exceptional tool for environmental studies, since much of their evolution, as well as the changes of the surrounding areas, is recorded in their peat deposits. A complete, 4-m deep peat core was collected in July 2012 from the floating island of Posta Fibreno, a relic mire in the Central Italy. This floating island has a diameter of ca. 30 m, a submerged thickness of about 3 m, and the vegetation is organized in concentric belts, from the Carex paniculata palisade to the Sphagnum centre. Here, some of the southernmost Italian populations of Sphagnum palustre occur. The 14C age dating of organic sediments isolated from the sample at 385 cm of depth revealed that the island formed ca. 700 yrs ago (620±30 yr BP). The top 100 cm, consisting almost exclusively of Sphagnum mosses, show a very low bulk density (avg., 0.03±0.01 g cm-3), an ash content ranging from 0.8 and 7.4%, an average gravimetric water content of 26.6±7.7 gwater gdrypeat-1, and a pH generally increasing with depth (from 4.1 to 7.2). The C content along the profile ranged between 35 and 47% (avg., 41±4%), whereas the N between 0.3 and 1.1% (avg., 0.5±0.1%). Main atomic ratios (C/N, H/C and O/C) and FT-IR spectra seem to confirm what found during the visual inspection of the core, i.e., Sphagnum material so well preserved that it is hard to classify it as "peat". In fact, the 14C age dating suggests that the first 110 cm of Sphagnum material accumulated in ca. 55 yrs, thus resulting in an average growing rate of 2 cm yr-1. The remaining 300 cm (from 100 to 400 cm of depth), i.e., the submerged part of the island, consist of peat showing completely different botanical composition (reed-fen peat and silty peat rich in reeds) and physical and chemical properties. In particular, both bulk density (avg., 0.09±0.05 g cm-3) and ash content increase, reaching their maximum at 300-325 cm of depth (0.27 g cm-3 and 17%, respectively), whereas the average gravimetric water content significantly decreases (17.4±9.0 gwater gdrypeat-1). The pH ranges from 6.6 and 7.4. Both C and N along this section of the profile show higher average contents (44±3 and 1.3±0.6%, respectively) compared to those recorded in the upper 100 cm layer; furthermore, the decrease with depth of C/N, H/C and O/C atomic ratios, as well as main absorption bands of FT-IR spectra, clearly indicate the occurrence of an organic matter highly humified. The estimated accumulation rate for the bottom 300 cm of the island is 0.5 cm yr-1. At the best of our knowledge, this work represents the first characterization of a (4 m) deep floating mire profile. At Posta Fibreno, the deep water layer below the base of the island (7 m) and the movement on the water surface probably avoided the transition from floating island to firm land, thus allowing this island to float during the last centuries. The Authors thank the Municipality of Posta Fibreno (FR), Managing Authority of the Regional Natural Reserve of Lake Posta Fibreno, for allowing peat cores sampling.

  11. Influence of soil organic matter composition on the partition of organic compounds

    USGS Publications Warehouse

    Rutherford, D.W.; Chiou, C.T.; Klle, D.E.

    1992-01-01

    The sorption at room temperature of benzene and carbon tetrachloride from water on three high-organic-content soils (muck, peat, and extracted peat) and on cellulose was determined in order to evaluate the effect of sorbent polarity on the solute partition coefficients. The isotherms are highly linear for both solutes on all the organic matter samples, which is consistent with a partition model. For both solutes, the extracted peat shows the greatest sorption capacity while the cellulose shows the lowest capacity; the difference correlates with the polar-to-nonpolar group ratio [(O + N)/C] of the sorbent samples. The relative increase of solute partition coefficient (Kom) with a decrease of sample polar content is similar for both solutes, and the limiting sorption capacity on a given organic matter sample is comparable between the solutes. This observation suggests that one can estimate the polarity effect of a sample of soil organic matter (SOM) on Kom of various nonpolar solutes by determining the partition coefficient of single nonpolar solute when compositional analysis of the SOM is not available. The observed dependence of Kom on sample polarity is used to account for the variation of Kom values of individual compounds on different soils that results from change in the polar group content of SOM. On the assumption that the carbon content of SOM in "ordinary soils" is 53-63%, the calculated variation of Kom is a factor of ???3. This value is in agreement with the limit of variation of most Kom data with soils of relatively high SOM contents.

  12. Impact of fire on macropore flow and the hydraulic conductivity of near-surface blanket peat

    NASA Astrophysics Data System (ADS)

    Holden, Joseph; Wearing, Catherine; Palmer, Sheila; Jackson, Benjamin; Johnston, Kerrylyn; Brown, Lee

    2013-04-01

    Peatlands can be subject to wildfire or deliberate burning in many locations. Wildfires are known to impact soil properties and runoff production in most soil types but relatively little work has been conducted on peatlands. Furthermore in large parts of the UK uplands prescribed vegetation burning on peat has taken place at regular intervals (e.g. every 8-25 years) on patches of around 300-900 sq. metres over the past century to support increased grouse populations for sport shooting. However, there have been few studies on how these prescribed fires influence near-surface hydrology. It is known that macropores transport a large proportion of flow in near-surface peat layers and we investigated their role in flow transport for fire sites using tension infiltrometers. Measurements were performed, at replicated hillslope positions to control for slope position effects, on unburnt peat (U) and where prescribed burning had taken place two years (P2), four years (P4) and >15 years (P15+) prior to sampling. For the prescribed burning plots, vegetation burning had also occurred at around a 15-20 year interval for most of the past century. We also sampled a nearby wildfire site (W) with the same sampling design where wildfire had occurred four months prior to sampling. Both the contribution of macropore flow to overall infiltration, and the saturated hydraulic conductivity, were significantly lower in the recently burnt sites (W, P2, P4), compared to P15+ and U. There was no significant difference in macropore flow contributions, effective macroporosity and saturated hydraulic conductivity between P15+ and U. The results suggest fire influences the near-surface hydrological functioning of peatlands but that 'recovery' for some hydrological processes to prescribed vegetation burning may be possible within two decades if there are no further fires.

  13. Comparison of the petrography, palynology and paleobotany of the Stockton coal bed, West Virginia and implications for paleoenvironmental interpretations

    USGS Publications Warehouse

    Pierce, B.S.; Stanton, R.W.; Eble, C.F.

    1993-01-01

    The Stockton coal bed (Middle Pennsylvanian) is a relatively high ash coal composed primarily of moderately thin banded, sparsely thin banded, and nonbanded coal (splint and cannel coal). Comparisons of petrographic, palynologic, and paleobotanic data gathered from the same sample sets from a single column of the Stockton coal bed indicate that compositional correspondences among the sets exist regardless of coal type. Some correspondences are believed to exist because of original plant constituents and others because of the paleoenvironment of peat formation. Using some combination of these data is critical when interpreting paleoenvironmental conditions because (1) a direct correspondence is lacking between many of the data and (2) each of the three data sets provides a unique and important perspective on the paleomire. The Stockton paleomire in the area of this study supported a diverse flora that consisted of both small and arboreous lycopsids, small ferns and tree ferns, calamites, cordaites, and pteridosperms. There appear to have been two successions of Lycospora spore-dominated, vitrinite-rich, liptinite-poor peat formation, which were followed by inertinite-rich peat formation marked by a tree fern-dominant spore assemblage and abundant unidentifiable plant tissues. These are interpreted to be two water-laden or topogenous peat formational stages followed by slightly domed, better drained peat formation. ?? 1993.

  14. Bringing back the rare - biogeochemical constraints of peat moss establishment in restored cut-over bogs

    NASA Astrophysics Data System (ADS)

    Raabe, Peter; Blodau, Christian; Hölzel, Norbert; Kleinebecker, Till; Knorr, Klaus-Holger

    2016-04-01

    In rewetted cut-over bogs in north-western Germany and elsewhere almost no spontaneous recolonization of hummock peat mosses, such as Sphagnum magellanicum, S. papillosum or S. rubellum can be observed. However, to reach goals of climate protection every restoration of formerly mined peatlands should aim to enable the re-establishment of these rare but functionally important plant species. Besides aspects of biodiversity, peatlands dominated by mosses can be expected to emit less methane compared to sites dominated by graminoids. To assess the hydrological and biogeochemical factors constraining the successful establishment of hummock Sphagnum mosses we conducted a field experiment by actively transferring hummock species into six existing restoration sites in the Vechtaer Moor, a large peatland complex with active peat harvesting and parallel restoration efforts. The mosses were transferred as intact sods in triplicate at the beginning of June 2016. Six weeks (mid-July) and 18 weeks later (beginning of October) pore water was sampled in two depths (5 and 20 cm) directly beneath the inoculated Sphagnum sods as well as in untreated control plots and analysed for phosphate, ferrous iron, ammonia, nitrate and total organic carbon (TOC). On the same occasions and additionally in December, the vitality of mosses was estimated. Furthermore, the increment of moss height between July and December was measured by using cranked wires and peat cores were taken for lab analyses of nutrients and major element inventories at the depths of pore water sampling. Preliminary results indicate that vitality of mosses during the period of summer water level draw down was strongly negatively related to plant available phosphate in deeper layers of the residual peat. Furthermore, increment of moss height was strongly negatively related to TOC in the upper pore waters sampled in October. Concentration of ferrous iron in deeper pore waters was in general significantly higher beneath Sphagnum sods compared to control plots suggesting a direct impact of hummock mosses on microsite soil moisture conditions. However, with an increase of water levels towards winter season accompanied by increase of ferrous iron and concurrent increase of phosphate in pore waters of the upper peat layers the vitality was strongly positively related to plant available phosphate. This suggests that actively transferred hummock mosses suffering temporarily from desiccation during the dry summer season are able to recover also under relatively higher trophic conditions as long as water level and redox state favour an optimal supply of required water nutrients.

  15. Occurrence of organic arsenic species in a 4-m deep free-floating mire

    NASA Astrophysics Data System (ADS)

    Lobianco, Daniela; Zaccone, Claudio; Raber, Georg; D'Orazio, Valeria; Miano, Teodoro; Francesconi, Kevin

    2017-04-01

    Wetlands play a key role in the fate of major and trace elements, affecting their environmental mobility and ecotoxicity. Arsenic (As) is a chalcophile element that is recognized as a serious health risk worldwide. Inorganic forms of this metalloid are dominant in soils, whereas the organic forms generally occur only in trace amounts. Nevertheless, methylation processes are responsible for the mobilization of As in several ecosystems, especially in anoxic conditions. Peat cores from ombrotrophic bogs have been used to determine atmospheric depositional fluxes of total As over centuries, although the contribution of organic vs inorganic As species has been rarely considered. Here, 47 peat samples collected throughout a 400-cm deep, free-floating mire have been analysed for total As and for its organic species, including dimethylarsinic acid (DMA), methylarsonic acid (MA), trimethylarsine oxide (TMAO) and arsenobetaine (AB) by HPLC-ICP-MS. Total As concentration throughout the profile ranged between 0.20 and 9.79 mg/kg (1.41±1.36 mg/kg; mean ± st. dev.), showing values that are quite low compared to other mire ecosystems. Organic As species (DMA+MA+TMAO+AB) account, on average, for 28±10% of total As (range 6-47%; median 28%), and for 41±14% of the extracted As (range 7-73%; median 42%). The relative abundance of organoarsenicals generally followed the order DMA>TMAO˜MA>>AB, and was not correlated with main physical and chemical properties of peat, including its degree of decomposition. There was, however, a highly significant (p <0.001) statistical correlation among all organic As compounds. This result provides new insights into the occurrence of organic As species in floating mires, suggesting a possible common biological pathway for their formation.

  16. Ecosystem and physiological controls over methane production in northern wetlands

    NASA Technical Reports Server (NTRS)

    Valentine, David W.; Holland, Elisabeth A.; Schimel, David S.

    1994-01-01

    Peat chemistry appears to exert primary control over methane production rates in the Canadian Northern Wetlands Study (NOWES) area. We determined laboratory methane production rate potentials in anaerobic slurries of samples collected from a transect of sites through the NOWES study area. We related methane production rates to indicators of resistance to microbial decay (peat C: N and lignin: N ratios) and experimentally manipulated substrate availability for methanogenesis using ethanol (EtOH) and plant litter. We also determined responses of methane production to pH and temperature. Methane production potentials declined along the gradient of sites from high rates in the coastal fens to low rates in the interior bogs and were generally highest in surface layers. Strong relationships between CH4 production potentials and peat chemistry suggested that methanogenesis was limited by fermentation rates. Methane production at ambient pH responded strongly to substrate additions in the circumneutral fens with narrow lignin: N and C: N ratios (delta CH4/delta EtOH = 0.9-2.3 mg/g) and weakly in the acidic bogs with wide C: N and lignin: N ratios (delta CH4/delta EtOH = -0.04-0.02 mg/g). Observed Q(sub 10) values ranged from 1.7 to 4.7 and generally increased with increasing substrate availability, suggesting that fermentation rates were limiting. Titration experiments generally demonstrated inhibition of methanogenesis by low pH. Our results suggest that the low rates of methane emission observed in interior bogs during NOWES likely resulted from pH and substrate quality limitation of the fermentation step in methane production and thus reflect intrinsically low methane production potentials. Low methane emission rates observed during NOWES will likely be observed in other northern wetland regions with similar vegetation chemistry.

  17. Peat decomposability in managed organic soils in relation to land use, organic matter composition and temperature

    NASA Astrophysics Data System (ADS)

    Bader, Cédric; Müller, Moritz; Schulin, Rainer; Leifeld, Jens

    2018-02-01

    Organic soils comprise a large yet fragile carbon (C) store in the global C cycle. Drainage, necessary for agriculture and forestry, triggers rapid decomposition of soil organic matter (SOM), typically increasing in the order forest < grassland < cropland. However, there is also large variation in decomposition due to differences in hydrological conditions, climate and specific management. Here we studied the role of SOM composition on peat decomposability in a variety of differently managed drained organic soils. We collected a total of 560 samples from 21 organic cropland, grassland and forest soils in Switzerland, monitored their CO2 emission rates in lab incubation experiments over 6 months at two temperatures (10 and 20 °C) and related them to various soil characteristics, including bulk density, pH, soil organic carbon (SOC) content and elemental ratios (C / N, H / C and O / C). CO2 release ranged from 6 to 195 mg CO2-C g-1 SOC at 10 °C and from 12 to 423 mg g-1 at 20 °C. This variation occurring under controlled conditions suggests that besides soil water regime, weather and management, SOM composition may be an underestimated factor that determines CO2 fluxes measured in field experiments. However, correlations between the investigated chemical SOM characteristics and CO2 emissions were weak. The latter also did not show a dependence on land-use type, although peat under forest was decomposed the least. High CO2 emissions in some topsoils were probably related to the accrual of labile crop residues. A comparison with published CO2 rates from incubated mineral soils indicated no difference in SOM decomposability between these soil classes, suggesting that accumulation of recent, labile plant materials that presumably account for most of the evolved CO2 is not systematically different between mineral and organic soils. In our data set, temperature sensitivity of decomposition (Q10 on average 2.57 ± 0.05) was the same for all land uses but lowest below 60 cm in croplands and grasslands. This, in turn, indicates a relative accumulation of recalcitrant peat in topsoils.

  18. Anthropogenic degradation of mountainous raised bogs. Case study of the Polish Carpathians

    NASA Astrophysics Data System (ADS)

    Lajczak, Adam

    2016-04-01

    Publications on the human impact on peat bogs pay a lot of attention to peat erosion, peat burning and changes in the physical and chemical properties of peat deposits that indicate pollution in the environment, but a more detailed analysis of current changes in the peat bog relief as a result of peat deposit extraction and drying is omitted. Compared to other areas of the world, the level of knowledge on anthropogenic changes in the relief of peat bogs in some areas of Poland may be considered advanced. This applies not only to peat bogs in northern Poland but also southern Poland, where peat bogs in the Carpathians and the Sudetes are also found. The best analyzed peat bogs in southern Poland are the raised bogs in the Orawsko-Nowotarska Basin (Western Carpathians) and in valleys in the Bieszczady Mts. (Eastern Carpathians). Both areas are impacted by deep precipitation shadow. The purpose of this paper is: (1) to assess the rate of shrinkage in the surface area of peat domes in the mentioned areas, (2) to describe the rate of growth in the surface area of older and younger post-peat areas, (3) to explain current changes in peat bogs morphology, (4) to explain changes in water retention in peat deposit, (5) to separate phases in peat bogs relief changes. With that in mind, the direction and rate of change of landforms typical of younger post-peat areas, such as peat extraction scarps, post-extraction hollows, drainage systems including ditches and regulated stream channels, were analyzed. A special emphasis was placed on the period of time when the restoration of such areas has taken place. The paper is based on an analysis of maps produced over the last 230 years as well as on aerial photographs taken since 1965 and on LiDAR data. Fieldwork included the geomorphological and hydrographic mapping of specified landforms within peat bogs using GPS methods. In period prior to human activity peat domes were larger than today and were surrounded by lagg fens and were drained by meandering streams. In period prior to the end of peat extraction and drying the amount of area lost by the peat dome and former wetland fringe can be identified in terms of older and younger post-peat areas. Stream channels in the general area have been regulated and drainage ditches dug. Partial or full peat extraction taking place primarily in the domes' fringe zone has produced major changes in peat bog relief and has substantially reduced peat bog water content. The increased density of drainage ditches in the area surrounding the remnants of peat domes has led to further drying of the peat bogs. An unintended consequence of stream regulation are shallower and wider channels that evolve into braided channels with a local tendency to aggradate material. The current stage of peat bogs development is their restoration which started when peat extraction had been halted in most peat bogs and drainage ditch maintenance had been abandoned.

  19. Understanding the Impact of Land Management on Carbon Losses from Peatlands

    NASA Astrophysics Data System (ADS)

    Savage, A.; Holden, J.; Wainwright, J.

    2010-05-01

    British peatlands have historically been managed in many different ways to provide an income for rural communities. Such practices involve heather burning on grouse shooting estates, sheep grazing, drainage to increase the area of land available for agriculture and afforestation. Carbon budget calculations for unmanaged peatlands have demonstrated that peatlands are carbon sinks. At present, little is known about how management affects carbon stocks, and whether one strategy might be favoured over another in the future, from a carbon stock preservation perspective. As the need to safeguard carbon stocks rises up the political agenda, questions are being asked about how peatlands should be managed to limit carbon losses. Carbon cycling in peat is governed by four drivers (Laiho, 2006), environmental conditions (e.g. temperature, water table level), substrate quality (e.g. how recalcitrant the peat is), nutrients (e.g. nitrogen required to synthesis the carbon stocks) and microbial community (e.g. are the microbes present able to utilise the available substrate). Changes in one or more of these drivers will influence the carbon budget of a peatland. How land management influences these drivers is unclear at present. Carbon budget calculations carried out by Worrall et al. (2003 and 2009) indicate that carbon dioxide and dissolved organic carbon (DOC) account for the greatest losses of carbon from peatland systems. If climate change predictions are realised, peatlands are expected to become sources of carbon as rising temperatures and falling water tables will result in increased rates of carbon mineralisation and subsequent losses of carbon. By investigating the influence of land management on these key carbon loss pathways, more accurate predictions of the effects of climate change on UK peatlands can be made. A field study was carried out in the British uplands to determine how carbon losses vary between differently managed peatlands, and to identify some of the underlying causes for such variations. The study focused on three of the driving factors identified by Laiho (2006): substrate quality, environmental conditions and nutrients. In addition, the physical properties of the peat - bulk density and air filled porosity which will control rates of gas and water movement within the peat profile, were studied. This paper will present the results of the work which was carried out at the Moor House, National Nature Reserve. The work involved collection of peat cores from burnt, grazed, drained, afforested and unmanaged areas of peat. The chemical and physical properties of the peat that are relevant to carbon cycling (e.g. nutrients, metals, substrate quality, air filled porosity) were analysed and compared between sites, and correlated with carbon losses which were measured on a fortnightly basis; and meteorological and hydrological data which were collected throughout the study period. Based on these results, suggestions for peatland management strategies that preserve carbon stocks will be presented. Laiho, R. (2006) "Decomposition in peatlands: Reconciling seemingly contrasting results on the impacts of lowered water levels." Soil Biology & Biochemistry 38(8): 2011-2024. Worrall, F. et al. (2003) "Carbon budget for a British upland peat catchment." Science of the Total Environment 312(1-3): 133-146. Worrall, F. et al. (2009) "The Multi-Annual Carbon Budget of a Peat-Covered Catchment" Science of the Total Environment 407: 4084-4094

  20. The Cultivation of Arabidopsis for Experimental Research Using Commercially Available Peat-Based and Peat-Free Growing Media

    PubMed Central

    Drake, Tiffany; Keating, Mia; Summers, Rebecca; Yochikawa, Aline; Pitman, Tom

    2016-01-01

    Experimental research involving Arabidopsis thaliana often involves the quantification of phenotypic traits during cultivation on compost or other growing media. Many commercially-available growing media contain peat, but peat extraction is not sustainable due to its very slow rate of formation. Moreover, peat extraction reduces peatland biodiversity and releases stored carbon and methane into the atmosphere. Here, we compared the experimental performance of Arabidopsis on peat-based and several types of commercially-available peat-free growing media (variously formed from coir, composted bark, wood-fibre, and domestic compost), to provide guidance for reducing peat use in plant sciences research with Arabidopsis. Arabidopsis biomass accumulation and seed yield were reduced by cultivation on several types of peat-free growing media. Arabidopsis performed extremely poorly on coir alone, presumably because this medium was completely nitrate-free. Some peat-free growing media were more susceptible to fungal contamination. We found that autoclaving of control (peat-based) growing media had no effect upon any physiological parameters that we examined, compared with non-autoclaved control growing media, under our experimental conditions. Overall, we conclude that Arabidopsis performs best when cultivated on peat-based growing media because seed yield was almost always reduced when peat-free media were used. This may be because standard laboratory protocols and growth conditions for Arabidopsis are optimized for peat-based media. However, during the vegetative growth phase several phenotypic traits were comparable between plants cultivated on peat-based and some peat-free media, suggesting that under certain circumstances peat-free media can be suitable for phenotypic analysis of Arabidopsis. PMID:27088495

  1. The decomposition of vegetation and soil in marginal peat-forming landscapes: climate simulations to quantify gaseous and dissolved carbon fluxes and the effects on peat accumulation and drinking water treatment

    NASA Astrophysics Data System (ADS)

    Ritson, J.; Bell, M.; Clark, J. M.; Graham, N.; Templeton, M.; Brazier, R.; Verhoef, A.; Freeman, C.

    2013-12-01

    Peatlands in the UK represent a large proportion of the soil carbon store, however there is concern that some systems may be switching from sinks to sources of carbon. The accumulation of organic material in peatlands results from the slow rates of decomposition typically occurring in these regions. Climate change may lead to faster decomposition which, if not matched by an equivalent increase in net primary productivity and litter fall, may tip the balance between source and sink. Recent trends have seen a greater flux of dissolved organic matter (DOM) from peatlands to surface waters and a change in DOM character, presenting challenges to water treatment, for example in terms of increased production of disinfectant by-products (DBPs). Peat systems border a large proportion of reservoirs in the UK so uncertainty regarding DOM quantity and quality is a concern for water utilities. This study considered five peatland vegetation types (Sphagnum spp., Calluna vulgaris, Molinea caerulea, peat soil and mixed litter) collected from the Exmoor National Park, UK where it is hypothesised that peat formation may be strongly affected by future changes to climate. A factorial experiment design to simulate climate was used, considering vegetation type, temperature and rainfall amount using a current baseline and predictions from the UKCP09 model. Gaseous fluxes of carbon were monitored over a two month period to quantify the effect on carbon mineralisation rates while 13C NMR analysis was employed to track which classes of compounds decayed preferentially. The DOM collected was characterised using UV and fluorescence techniques before being subject to standard drinking water treatment processes (coagulation/flocculation followed by chlorination). The effect of the experimental factors on DOM amenability to removal and propensity to form DBPs was then considered, with both trihalomethane (THM) and haloacetonitrile (HAN) DBP classes monitored. Initial results have shown a statistically significant (Mann-Whitney U) difference in THM formation (p<0.05) as well as the amount of DOM produced and specific UV absorption at 254nm (p<0.01) between vegetation classes.

  2. Controls on bacterial and archaeal community structure and greenhouse gas production in natural, mined, and restored Canadian peatlands

    PubMed Central

    Basiliko, Nathan; Henry, Kevin; Gupta, Varun; Moore, Tim R.; Driscoll, Brian T.; Dunfield, Peter F.

    2013-01-01

    Northern peatlands are important global C reservoirs, largely because of their slow rates of microbial C mineralization. Particularly in sites that are heavily influenced by anthropogenic disturbances, there is scant information about microbial ecology and whether or not microbial community structure influences greenhouse gas production. This work characterized communities of bacteria and archaea using terminal restriction fragment length polymorphism (T-RFLP) and sequence analysis of 16S rRNA and functional genes across eight natural, mined, or restored peatlands in two locations in eastern Canada. Correlations were explored among chemical properties of peat, bacterial and archaeal community structure, and carbon dioxide (CO2) and methane (CH4) production rates under oxic and anoxic conditions. Bacteria and archaea similar to those found in other peat soil environments were detected. In contrast to other reports, methanogen diversity was low in our study, with only 2 groups of known or suspected methanogens. Although mining and restoration affected substrate availability and microbial activity, these land-uses did not consistently affect bacterial or archaeal community composition. In fact, larger differences were observed between the two locations and between oxic and anoxic peat samples than between natural, mined, and restored sites, with anoxic samples characterized by less detectable bacterial diversity and stronger dominance by members of the phylum Acidobacteria. There were also no apparent strong linkages between prokaryote community structure and CH4 or CO2 production, suggesting that different organisms exhibit functional redundancy and/or that the same taxa function at very different rates when exposed to different peat substrates. In contrast to other earlier work focusing on fungal communities across similar mined and restored peatlands, bacterial and archaeal communities appeared to be more resistant or resilient to peat substrate changes brought about by these land uses. PMID:23914185

  3. The association of uranium with organic matter in Holocene peat: An experimental leaching study

    USGS Publications Warehouse

    Zielinski, R.A.; Meier, A.L.

    1988-01-01

    Uraniferous peat was sampled from surface layers of a Holocene U deposit in northeastern Washington State. Dried, sized, and homogenized peat that contained 5980 ??307 ppm U was subjected to a variety of leaching conditions to determine the nature and strength of U-organic bonding in recently accumulated organic matter. The results complement previous experimental studies of U uptake on peat and suggest some natural or anthropogenic disturbances that are favorable for remobilizing U. The fraction of U leached in 24 h experiments at 25??C ranged from 0 to 95%. The most effective leach solutions contained anions capable of forming stable dissolved complexes with uranyl (UO2+2) cation. These included H2SO4 (pH = 1.5) and concentrated (>0.01 M) solutions of sodium bicarbonate-carbonate (pH = 7.0-10.0), or sodium pyrophosphate (pH = 10). Effective leaching by carbonate and pyrophosphate in the absence of added oxidant, and the insignificant effect of added oxidant (as pressurized O2) strongly suggest that U is initially fixed on organic matter as an oxidized U(VI) species. Uranium is more strongly bound than some other polyvalent cations, based on its resistance to exchange in the presence of large excesses of dissolved Ca2+ and Cu2+. Measurements of the rate of U leaching indicate faster rates in acid solution compared to carbonate solution, and are consisten with simultaneous attack of sites with different affinities for U. Sulfuric acid appears a good choice for commercial extraction of U from mined peat. In situ disturbances such as overliming of peat soils, addition of fertilizers containing pyrophosphate, or incursions of natural carbonate-rich waters could produce significant remobilization of U, and possibly compromise the quality of local domestic water supplies. ?? 1988.

  4. Accumulation rates and predominant atmospheric sources of natural and anthropogenic Hg and Pb on the Faroe Islands

    NASA Astrophysics Data System (ADS)

    Shotyk, W.; Goodsite, M. E.; Roos-Barraclough, F.; Givelet, N.; Le Roux, G.; Weiss, D.; Cheburkin, A. K.; Knudsen, K.; Heinemeier, J.; van Der Knaap, W. O.; Norton, S. A.; Lohse, C.

    2005-01-01

    A monolith representing 5420 14C yr of peat accumulation was collected from a blanket bog at Myrarnar, Faroe Islands. The maximum Hg concentration (498 ng/g at a depth of 4.5 cm) coincides with the maximum concentration of anthropogenic Pb (111 μg/g). Age dating of recent peat accumulation using 210Pb (CRS model) shows that the maxima in Hg and Pb concentrations occur at AD 1954 ± 2. These results, combined with the isotopic composition of Pb in that sample ( 206Pb/ 207Pb = 1.1720 ± 0.0017), suggest that coal burning was the dominant source of both elements. From the onset of peat accumulation (ca. 4286 BC) until AD 1385, the ratios Hg/Br and Hg/Se were constant (2.2 ± 0.5 × 10 -4 and 8.5 ± 1.8 × 10 -3, respectively). Since then, Hg/Br and Hg/Se values have increased, also reaching their maxima in AD 1954. The age date of the maximum concentrations of anthropogenic Hg and Pb in the Faroe Islands is consistent with a previous study of peat cores from Greenland and Denmark (dated using the atmospheric bomb pulse curve of 14C), which showed maximum concentrations in AD 1953. The average rate of atmospheric Hg accumulation from 1520 BC to AD 1385 was 1.27 ± 0.38 μg/m 2/yr. The Br and Se concentrations and the background Hg/Br and Hg/Se ratios were used to calculate the average rate of natural Hg accumulation for the same period, 1.32 ± 0.36 μg/m 2/yr and 1.34 ± 0.29 μg/m 2/yr, respectively. These fluxes are similar to the preanthropogenic rates obtained using peat cores from Switzerland, southern Greenland, southern Ontario, Canada, and the northeastern United States. Episodic volcanic emissions and the continual supply of marine aerosols to the Faroe Islands, therefore, have not contributed significantly to the Hg inventory or the Hg accumulation rates, relative to these other areas. The maximum rate of Hg accumulation was 34 μg/m 2/yr. The greatest fluxes of anthropogenic Hg accumulation calculated using Br and Se, respectively, were 26 and 31 μg/m 2/yr. The rate of atmospheric Hg accumulation in 1998 (16 μg/m 2/yr) is comparable to the values recently obtained by atmospheric transport modeling for Denmark, the Faroe Islands, and Greenland.

  5. Distribution of potentially hazardous trace elements in coals from Shanxi province, China

    USGS Publications Warehouse

    Zhang, J.Y.; Zheng, C.G.; Ren, D.Y.; Chou, C.-L.; Liu, J.; Zeng, R.-S.; Wang, Z.P.; Zhao, F.H.; Ge, Y.T.

    2004-01-01

    Shanxi province, located in the center of China, is the biggest coal base of China. There are five coal-forming periods in Shanxi province: Late Carboniferous (Taiyuan Formation), Early Permian (Shanxi Formation), Middle Jurassic (Datong Formation), Tertiary (Taxigou Formation), and Quaternary. Hundred and ten coal samples and a peat sample from Shanxi province were collected and the contents of 20 potentially hazardous trace elements (PHTEs) (As, B, Ba, Cd, Cl, Co, Cr, Cu, F, Hg, Mn, Mo, Ni, Pb, Sb, Se, Th, U, V and Zn) in these samples were determined by instrumental neutron activation analysis, atomic absorption spectrometry, cold-vapor atomic absorption spectrometry, ion chromatography spectrometry, and wet chemical analysis. The result shows that the brown coals are enriched in As, Ba, Cd, Cr, Cu, F and Zn compared with the bituminous coals and anthracite, whereas the bituminous coals are enriched in B, Cl, Hg, and the anthracite is enriched in Cl, Hg, U and V. A comparison with world averages and crustal abundances (Clarke values) shows that the Quaternary peat is highly enriched in As and Mo, Tertiary brown coals are highly enriched in Cd, Middle Jurassic coals, Early Permian coals and Late Carboniferous coals are enriched in Hg. According to the coal ranks, the bituminous coals are highly enriched in Hg, whereas Cd, F and Th show low enrichments, and the anthracite is also highly enriched in Hg and low enrichment in Th. The concentrations of Cd, F, Hg and Th in Shanxi coals are more than world arithmetic means of concentrations for the corresponding elements. Comparing with the United States coals, Shanxi coals show higher concentrations of Cd, Hg, Pb, Se and Th. Most of Shanxi coals contain lower concentrations of PHTEs. ?? 2004 Elsevier Ltd. All rights reserved.

  6. An Assessment of macro-scale in situ Raman and ultraviolet-induced fluorescence spectroscopy for rapid characterization of frozen peat and ground ice

    NASA Astrophysics Data System (ADS)

    Laing, Janelle R.; Robichaud, Hailey C.; Cloutis, Edward A.

    2016-04-01

    The search for life on other planets is an active area of research. Many of the likeliest planetary bodies, such as Europa, Enceladus, and Mars are characterized by cold surface environments and ice-rich terrains. Both Raman and ultraviolet-induced fluorescence (UIF) spectroscopies have been proposed as promising tools for the detection of various kinds of bioindicators in these environments. We examined whether macro-scale Raman and UIF spectroscopy could be applied to the analysis of unprocessed terrestrial frozen peat and clear ground ice samples for detection of bioindicators. It was found that this approach did not provide unambiguous detection of bioindicators, likely for a number of reasons, particularly due to strong broadband induced fluorescence. Other contributing factors may include degradation of organic matter in frozen peat to the point that compound-specific emitted fluorescence or Raman peaks were not resolvable. Our study does not downgrade the utility of either UIF or Raman spectroscopy for astrobiological investigations (which has been demonstrated in previous studies), but does suggest that the choice of instrumentation, operational conditions and sample preparation are important factors in ensuring the success of these techniques.

  7. Comparison of digestion methods for total elemental analysis of peat and separation of its organic and inorganic components

    USGS Publications Warehouse

    Papp, C.S.E.; Harms, T.F.

    1985-01-01

    In order to find the most efficient digestion method for the total elemental recovery in peat, ten samples were subjected to different techniques and analysed for Ca, Mg, Fe, AI, Na, K, Mn, P, Zn, Cu, Li, Cd, Co, Ni, Pb and Si using atomic-absorption spectrophotometry. The most satisfactory procedures were dry ashing followed by hydrofluoric acid treatment and wet digestion using a mixture of hot nitric, perchloric and hydrofluoric acids. The wet digestion offers the advantage of a single decomposition method for the determination of Ca, Mg, Fe, AI, K, Na, Mn, Cu, Li, Zn and P. An alkaline fusion technique was required for the determination of Si. Hydrogen peroxide was used to separate the peat into its organic and inorganic components, leading to the total recovery of the elements for both fractions.

  8. Is the blocking of drainage channels in upland peats an effective means of reducing DOC loss at the catchment scale?

    NASA Astrophysics Data System (ADS)

    Turner, Kate; Worrall, Fred

    2010-05-01

    Only 3% of the earths land surface is covered by peatland yet boreal and subarctic peatlands store approximately 15-30% of the World's soil carbon as peat (Limpens et al. 2008). In comparison British bogs store carbon equivalent to 20 years worth of national emissions. The loss of carbon from these areas in the form of dissolved organic carbon (DOC) is increasing and it is expected to have grown by up to 40% by 2018. Extensive drainage of UK peatlands has been associated with dehydration of the peat, an increase in water colour and a loss of carbon storage. It has been considered that the blocking of these drainage channels represents a means of peat restoration and a way of reducing DOC loss. This study aims to assess the effectiveness of this drain blocking at both an individual drain scale and at a larger catchment scale. Gibson et al. (2009) considered the effects of blocking at a solely individual drain scale finding that a 20% drop in DOC export was recorded post blocking however this decrease was due to a reduction in water yield rather than a reduction in DOC concentration with the concentration record showing no significant reduction. The effect of external parameters become more pronounced as the DOC record is examined at larger scales. The catchment is an open system and water chemistry will be influence by mixing with water from other sources. Also it is likely that at some point the drains will cut across slope leading to the flow of any highly coloured water down slope, bypassing the blockages, and entering the surface waters downstream. Degradation of DOC will occur naturally downstream due to the effects of light and microbial activity. There is, consequently, a need to examine the wider effects of drain blocking at a catchment scale to ensure that what is observed for one drain transfers to the whole catchment. A series of blocked and unblocked catchments were studied in Upper Teesdale, Northern England. Drain water samples were taken at least daily at nine localities. These sites were located such that individual drains could be monitored in the context of a larger catchment. Water table depth, flow and weather parameters were recorded along with the collection of runoff and soil water samples. A detailed sampling programme was undertaken in which a series of drains were studied in the 12 months prior to and post blocking. This approach has allowed the effects of blocking on the carbon budget, water balance and flow pathways to be considered. Results indicate that the blocking of zero order drainage channels leads to a decrease in DOC export on an individual drain scale. However, this is due to a reduction in water yield rather than concentration. Concentrations are seen to rise by a small yet statistically significant amount in blocked zero order streams. The effect at a larger scale is more complex. Annual export values in the unblocked control catchment show a rise from zero to first order streams indicating that water is being added to the system at this scale from external spatially variable sources. This pattern is also recognised in the blocked catchment. The DOC concentration record in blocked drains at this larger scale however indicated a reduction relative to the unblocked catchment. This reduction points to a change in flow pathways post blocking as highly coloured water re-navigates its way downstream. References: Gibson H, Worrall F, Burt TP, Adamson JK (2009) DOC budgets of drained peat catchments: implications for DOC production in peat soils, Hydrological Processes 23(13) 1901-1911 Limpens J (2008) Peatlands and the carbon cycle: from local processes to global implications- a synthesis, Biogeosciences 5 1475-1491

  9. Effects of soil temperature, flooding, and organic matter addition on N2O emissions from a soil of Hongze Lake wetland, China.

    PubMed

    Lu, Yan; Xu, Hongwen

    2014-01-01

    The objectives of this study were to test the effects of soil temperature, flooding, and raw organic matter input on N2O emissions in a soil sampled at Hongze Lake wetland, Jiangsu Province, China. The treatments studied were-peat soil (I), peat soil under flooding (II), peat soil plus raw organic matter (III), and peat soil under flooding plus organic matter. These four treatments were incubated at 20°C and 35°C. The result showed that temperature increase could enhance N2O emissions rate and cumulative emissions significantly; moreover, the flooded soil with external organic matter inputs showed the lowest cumulative rise in N2O emissions due to temperature increment. Flooding might inhibit soil N2O emissions, and the inhibition was more pronounced after organic matter addition to the original soil. Conversely, organic matter input explained lower cumulative N2O emissions under flooding. Our results suggest that complex interactions between flooding and other environmental factors might appear in soil N2O emissions. Further studies are needed to understand potential synergies or antagonisms between environmental factors that control N2O emissions in wetland soils.

  10. Aquatic carbon export from peatland catchments recently undergone wind farm development

    NASA Astrophysics Data System (ADS)

    Smith, Ben; Waldron, Susan; Henderson, Andrew; Flowers, Hugh; Gilvear, David

    2013-04-01

    Scotland's peat landscapes are desirable locations for wind-based renewables due to high wind resources and low land use pressures in these areas. The environmental impact of sitting wind-based renewables on peats however, is unknown. Globally, peatlands are important terrestrial carbon stores. Given the topical nature of carbon-related issues, e.g. global warming and carbon footprints, it is imperative we help mitigate their degradation and maintain carbon sequestration. To do so, we need to better understand how peatland systems function with regards to their carbon balance (export versus sequestration) so we can assess their resilience and adaptation to hosting land-based renewable energy projects. Predicting carbon lost as a result of construction of wind farms built on peatland has not been fully characterised and this research will provide data that can supplement current 'carbon payback calculator' models for wind farms that aim to reinforce their 'green' credentials. Transfer of carbon from the terrestrial peatland systems to the aquatic freshwater and oceanic systems is most predominant during periods of high rainfall. It has been estimated that 50% of carbon is exported during only 10% of highest river flows, (Hinton et al., 1998). Furthermore, carbon export from peatlands is known to have a seasonal aspect with highest concentrations of dissolved organic carbon (DOC) found mostly in late summer months of August and September and lowest in December and January, (Dawson et al., 2004). Event sampling, where high intensity sample collection is carried out during high river flow periods, offers a better insight, understanding and estimation of carbon aquatic fluxes from peatland landscapes. The Gordonbush estate, near Brora, has an extensive peatland area where a wind farm development has recently been completed (April 2012). Investigations of aquatic carbon fluxes from this peatland system were started in July 2010, in conjunction with the start of construction of the 35-turbine wind farm, with a strong focus on event sampling. Fieldwork and sample collection is due to continue until at least September 2013 but data collated so far shows seasonal differences of carbon export from similar sized hydrological events. In addition, event sampling has highlighted the different characteristics between DOC and POC export as well as their contribution to the overall aquatic carbon flux. Phosphorous and nitrate concentrations have also been analysed and their export regimes and interactions with carbon export will also be discussed.

  11. Uplifting of palsa peatlands by permafrost identified by stable isotope depth profiles

    NASA Astrophysics Data System (ADS)

    Krüger, Jan Paul; Conen, Franz; Leifeld, Jens; Alewell, Christine

    2015-04-01

    Natural abundances of stable isotopes are a widespread tool to investigate biogeochemical processes in soils. Palsas are peatlands with an ice core and are common in the discontinuous permafrost region. Elevated parts of palsa peatlands, called hummocks, were uplifted by permafrost out of the influence of groundwater. Here we used the combination of δ15N values and C/N ratio along depth profiles to identify perturbation of these soils. In the years 2009 and 2012 we took in total 14 peat cores from hummocks in two palsa peatlands near Abisko, northern Sweden. Peat samples were analysed in 2 to 4 cm layers for stable isotope ratios and concentrations of C and N. The uplifting of the hummocks by permafrost could be detected by stable isotope depth patterns with the highest δ15N value at permafrost onset, a so-called turning point. Regression analyses indicated in 11 of 14 peat cores increasing δ15N values above and decreasing values below the turning point. This is in accordance with the depth patterns of δ13C values and C/N ratios in these palsa peatlands. Onset of permafrost aggradation identified by the highest δ15N value in the profile and calculated from peat accumulation rates show ages ranging from 80 to 545 years and indicate a mean (±SD) peat age at the turning points of 242 (±66) years for Stordalen and 365 (±53) years for Storflaket peatland. The mean peat ages at turning points are within the period of the Little Ice Age. Furthermore, we tested if the disturbance, in this case the uplifting of the peat material, can be displayed in the relation of δ15N and C/N ratio following the concept of Conen et al. (2013). In unperturbed sites soil δ15N values cover a relatively narrow range at any particular C/N ratio. Changes in N cycling, i.e. N loss or gain, results in the loss or gain of 15N depleted forms. This leads to larger or smaller δ15N values than usual at the observed C/N ratio. All, except one, turning point show a perturbation in the depth profile, with most of the adjacent sampling points also indicating perturbation. This perturbation shows the changes in N cycling, in this case N loss, from these depths due to permafrost aggradation. Deeper parts of some profiles at Stordalen peatland indicate with the same approach an N gain, maybe due to lateral N input to these nutrient poor ecosystems. Most of the uppermost samples in the δ15N depth profiles show no perturbation, potentially due to the adaptation of these soils to the new conditions. Both stable isotope (δ15N and δ13C) depth profiles are suitable to detect palsa uplifting by permafrost. The perturbation of the peat by uplifting as well as the potential nutrient input can be detected by δ15N when related to the C/N ratio. Conen, F., Yakutin, M. V., Carle, N., and Alewell, C. (2013): δ15N natural abundance may directly disclose perturbed soil when related to C:N ratio. Rapid Commun. Mass Spectrom. 27: 1101-1104.

  12. Partitioning Carbon Dioxide Emission and Assessing Dissolved Organic Carbon Leaching of a Drained Peatland Cultivated with Pineapple at Saratok, Malaysia

    PubMed Central

    Lim Kim Choo, Liza Nuriati; Ahmed, Osumanu Haruna

    2014-01-01

    Pineapples (Ananas comosus (L.) Merr.) cultivation on drained peats could affect the release of carbon dioxide (CO2) into the atmosphere and also the leaching of dissolved organic carbon (DOC). Carbon dioxide emission needs to be partitioned before deciding on whether cultivated peat is net sink or net source of carbon. Partitioning of CO2 emission into root respiration, microbial respiration, and oxidative peat decomposition was achieved using a lysimeter experiment with three treatments: peat soil cultivated with pineapple, bare peat soil, and bare peat soil fumigated with chloroform. Drainage water leached from cultivated peat and bare peat soil was also analyzed for DOC. On a yearly basis, CO2 emissions were higher under bare peat (218.8 t CO2 ha/yr) than under bare peat treated with chloroform (205 t CO2 ha/yr), and they were the lowest (179.6 t CO2 ha/yr) under cultivated peat. Decreasing CO2 emissions under pineapple were attributed to the positive effects of photosynthesis and soil autotrophic activities. An average 235.7 mg/L loss of DOC under bare peat suggests rapid decline of peat organic carbon through heterotrophic respiration and peat decomposition. Soil CO2 emission depended on moderate temperature fluctuations, but it was not affected by soil moisture. PMID:25215335

  13. Environmental controls on leaf wax δD ratios in surface peats across the monsoonal region of China

    NASA Astrophysics Data System (ADS)

    Huang, X.; Xue, J.; Wang, X.; Meyers, P. A.

    2015-09-01

    Leaf wax molecular and isotopic ratios are generally considered robust isotopic paleohydrologic proxies. Here we evaluate the proxy value of the molecular distributions and hydrogen isotopic compositions of long chain n-alkanes (δDalk) in surface peats collected from peatlands across a range of annual air temperatures from 1 to 15 °C and a range of annual mean precipitation from 720 to 2070 mm in the monsoonal region of China. The alkane ratios (ACL and CPI) and δDalk values show relatively large variations in multiple samples from a single site, highlighting the complexity of these ratios at a small spatial scale. In the montane Zoigê peatland, the apparent fractionation between precipitation and δDalk is more positive than in the other six sites, which is possibly an effect of the higher conductivity of the water in this high elevation site (3500 m a.s.l.). At a larger spatial scale, the site-averaged CPI ratios and the δDalk values of n-C29 and n-C31 alkanes show significant correlation with the air temperature and precipitation. These results support the application of the CPI ratio and the δDalk ratios of n-C29 and n-C31 alkanes as sensitive paleohydrologic proxies on millennial and larger timescales.

  14. Quantifying the impacts of land use change on soil organic carbon losses in tropical peatlands

    NASA Astrophysics Data System (ADS)

    Farmer, J.; Smith, J.; Smith, P.; Matthews, R.

    2012-04-01

    The challenge of collecting field measurements of soil carbon dioxide (CO2) efflux and soil carbon (C) in tropical peatlands creates an opportunity for the use of SOC models for predicting local and regional impacts of land use and climate change on these soils, offering a way of translating this limited data into tangible results. Previously, no soil C model existed for use in non-steady state sites such as those found on tropical peats- in particular peat swamp forests which accumulate C, and oil palm plantations which are grown for 20-25 years between re-plantings. A simple, user friendly model has been created for use by scientists, policy makers and plantation managers. This model uses only limited inputs to predict the changes to soil C from land use and climate change. The model runs on the assumption that plant inputs can be related to yield, and that this can be used to derive the decomposition of SOM. It uses a simple decomposition response to determine the changes to the soil C. The model can run in a basic form if data is very limited, or a more complex form with modifiers for temperature, pH, salinity and soil moisture if this data is available. Using measured CO2 efflux and soil C values from peat cores, combined with literature values, we demonstrate the efficacy of the model, showing how we have identified and addressed some of the issues related to modelling soil C losses from tropical peat soils under land use change. Key challenges addressed included quantifying the effects of drainage when peat swamp forests are converted to oil palm plantations, and comparing field results between sites because in oil palm plantations the original soil conditions prior to conversion from peat swamp forest were largely unknown.

  15. Abundant Trimethylornithine Lipids and Specific Gene Sequences Are Indicative of Planctomycete Importance at the Oxic/Anoxic Interface in Sphagnum-Dominated Northern Wetlands.

    PubMed

    Moore, Eli K; Villanueva, Laura; Hopmans, Ellen C; Rijpstra, W Irene C; Mets, Anchelique; Dedysh, Svetlana N; Sinninghe Damsté, Jaap S

    2015-09-01

    Northern wetlands make up a substantial terrestrial carbon sink and are often dominated by decay-resistant Sphagnum mosses. Recent studies have shown that planctomycetes appear to be involved in degradation of Sphagnum-derived debris. Novel trimethylornithine (TMO) lipids have recently been characterized as abundant lipids in various Sphagnum wetland planctomycete isolates, but their occurrence in the environment has not yet been confirmed. We applied a combined intact polar lipid (IPL) and molecular analysis of peat cores collected from two northern wetlands (Saxnäs Mosse [Sweden] and Obukhovskoye [Russia]) in order to investigate the preferred niche and abundance of TMO-producing planctomycetes. TMOs were present throughout the profiles of Sphagnum bogs, but their concentration peaked at the oxic/anoxic interface, which coincided with a maximum abundance of planctomycete-specific 16S rRNA gene sequences. The sequences detected at the oxic/anoxic interface were affiliated with the Isosphaera group, while sequences present in the anoxic peat layers were related to an uncultured planctomycete group. Pyrosequencing-based analysis identified Planctomycetes as the major bacterial group at the oxic/anoxic interface at the Obukhovskoye peat (54% of total 16S rRNA gene sequence reads), followed by Acidobacteria (19% reads), while in the Saxnäs Mosse peat, Acidobacteria were dominant (46%), and Planctomycetes contributed to 6% of the total reads. The detection of abundant TMO lipids in planctomycetes isolated from peat bogs and the lack of TMO production by cultures of acidobacteria suggest that planctomycetes are the producers of TMOs in peat bogs. The higher accumulation of TMOs at the oxic/anoxic interface and the change in the planctomycete community with depth suggest that these IPLs could be synthesized as a response to changing redox conditions at the oxic/anoxic interface. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. Abundant Trimethylornithine Lipids and Specific Gene Sequences Are Indicative of Planctomycete Importance at the Oxic/Anoxic Interface in Sphagnum-Dominated Northern Wetlands

    PubMed Central

    Villanueva, Laura; Hopmans, Ellen C.; Rijpstra, W. Irene C.; Mets, Anchelique; Dedysh, Svetlana N.

    2015-01-01

    Northern wetlands make up a substantial terrestrial carbon sink and are often dominated by decay-resistant Sphagnum mosses. Recent studies have shown that planctomycetes appear to be involved in degradation of Sphagnum-derived debris. Novel trimethylornithine (TMO) lipids have recently been characterized as abundant lipids in various Sphagnum wetland planctomycete isolates, but their occurrence in the environment has not yet been confirmed. We applied a combined intact polar lipid (IPL) and molecular analysis of peat cores collected from two northern wetlands (Saxnäs Mosse [Sweden] and Obukhovskoye [Russia]) in order to investigate the preferred niche and abundance of TMO-producing planctomycetes. TMOs were present throughout the profiles of Sphagnum bogs, but their concentration peaked at the oxic/anoxic interface, which coincided with a maximum abundance of planctomycete-specific 16S rRNA gene sequences. The sequences detected at the oxic/anoxic interface were affiliated with the Isosphaera group, while sequences present in the anoxic peat layers were related to an uncultured planctomycete group. Pyrosequencing-based analysis identified Planctomycetes as the major bacterial group at the oxic/anoxic interface at the Obukhovskoye peat (54% of total 16S rRNA gene sequence reads), followed by Acidobacteria (19% reads), while in the Saxnäs Mosse peat, Acidobacteria were dominant (46%), and Planctomycetes contributed to 6% of the total reads. The detection of abundant TMO lipids in planctomycetes isolated from peat bogs and the lack of TMO production by cultures of acidobacteria suggest that planctomycetes are the producers of TMOs in peat bogs. The higher accumulation of TMOs at the oxic/anoxic interface and the change in the planctomycete community with depth suggest that these IPLs could be synthesized as a response to changing redox conditions at the oxic/anoxic interface. PMID:26150465

  17. Impact of the Little Ice Age cooling and 20th century climate change on peatland vegetation dynamics in central and northern Alberta using a multi-proxy approach and high-resolution peat chronologies

    NASA Astrophysics Data System (ADS)

    Magnan, Gabriel; van Bellen, Simon; Davies, Lauren; Froese, Duane; Garneau, Michelle; Mullan-Boudreau, Gillian; Zaccone, Claudio; Shotyk, William

    2018-04-01

    Northern boreal peatlands are major terrestrial sinks of organic carbon and these ecosystems, which are highly sensitive to human activities and climate change, act as sensitive archives of past environmental change at various timescales. This study aims at understanding how the climate changes of the last 1000 years have affected peatland vegetation dynamics in the boreal region of Alberta in western Canada. Peat cores were collected from five bogs in the Fort McMurray region (56-57° N), at the southern limit of sporadic permafrost, and two in central Alberta (53° N and 55° N) outside the present-day limit of permafrost peatlands. The past changes in vegetation communities were reconstructed using detailed plant macrofossil analyses combined with high-resolution peat chronologies (14C, atmospheric bomb-pulse 14C, 210Pb and cryptotephras). Peat humification proxies (C/N, H/C, bulk density) and records of pH and ash content were also used to improve the interpretation of climate-related vegetation changes. Our study shows important changes in peatland vegetation and physical and chemical peat properties during the Little Ice Age (LIA) cooling period mainly from around 1700 CE and the subsequent climate warming of the 20th century. In some bogs, the plant macrofossils have recorded periods of permafrost aggradation during the LIA with drier surface conditions, increased peat humification and high abundance of ericaceous shrubs and black spruce (Picea mariana). The subsequent permafrost thaw was characterized by a short-term shift towards wetter conditions (Sphagnum sect. Cuspidata) and a decline in Picea mariana. Finally, a shift to a dominance of Sphagnum sect. Acutifolia (mainly Sphagnum fuscum) occurred in all the bogs during the second half of the 20th century, indicating the establishment of dry ombrotrophic conditions under the recent warmer and drier climate conditions.

  18. Iron speciation in peats: Chemical and spectroscopic evidence for the co-occurrence of ferric and ferrous iron in organic complexes and mineral precipitates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharyya, Amrita; Schmidt, Michael P.; Stavitski, Eli

    The speciation of iron (Fe) in organic matter (OM)-rich environments under in situ variable redox conditions is largely unresolved. Peatlands provide a natural setting to study Fe–OM interactions. Utilizing chemical, spectroscopic and theoretical modeling approaches, we report the chemical forms, oxidation states and local coordination environment of naturally occurring Fe in the vertically redox-stratified Manning peatlands of western New York. In addition, we report dominant carbon, sulfur and nitrogen species that can potentially stabilize the various Fe species present in these peatlands. Our results provide clear direct and indirect evidence for the co-occurrence of ferrous (Fe 2+) and ferric (Femore » 3+) iron species in peats under both oxic and anoxic conditions. Iron is mostly present within the operationally defined organic and amorphous (i.e., short range ordered, SRO) fractions; ferric iron primarily as magnetically isolated paramagnetic Fe 3+ in Fe(III)-organic complexes, but also in mineral forms such as ferrihydrite; ferrous iron in tetrahedral coordination in Fe(II)-organic complexes with minor contribution from pyrite. All of the Fe species identified stabilize Fe(III) and/or Fe(II) in anoxic and oxic peats. Fundamental differences are also observed in the relative proportion of C, S and N functionalities of OM in oxic and anoxic peats. Aromatic C=C, ester, phenol and anomeric C (R-O-C-O-R), as well as thiol, sulfide and heterocyclic N functionalities are more prevalent in anoxic peats. Collectively, our experimental evidence suggests iron forms coordination complexes with O-, S- and N-containing functional groups of OM. We posit the co-occurrence of organic and mineral forms of Fe(II) and Fe(III) in both oxic and anoxic peat layers results from dynamic complexation and hydrolysis-precipitation reactions that occur under variable redox conditions. In conclusion, our findings aid in understanding the crucial role OM plays in determining Fe species in soils and sediments.« less

  19. Iron speciation in peats: Chemical and spectroscopic evidence for the co-occurrence of ferric and ferrous iron in organic complexes and mineral precipitates

    DOE PAGES

    Bhattacharyya, Amrita; Schmidt, Michael P.; Stavitski, Eli; ...

    2017-10-31

    The speciation of iron (Fe) in organic matter (OM)-rich environments under in situ variable redox conditions is largely unresolved. Peatlands provide a natural setting to study Fe–OM interactions. Utilizing chemical, spectroscopic and theoretical modeling approaches, we report the chemical forms, oxidation states and local coordination environment of naturally occurring Fe in the vertically redox-stratified Manning peatlands of western New York. In addition, we report dominant carbon, sulfur and nitrogen species that can potentially stabilize the various Fe species present in these peatlands. Our results provide clear direct and indirect evidence for the co-occurrence of ferrous (Fe 2+) and ferric (Femore » 3+) iron species in peats under both oxic and anoxic conditions. Iron is mostly present within the operationally defined organic and amorphous (i.e., short range ordered, SRO) fractions; ferric iron primarily as magnetically isolated paramagnetic Fe 3+ in Fe(III)-organic complexes, but also in mineral forms such as ferrihydrite; ferrous iron in tetrahedral coordination in Fe(II)-organic complexes with minor contribution from pyrite. All of the Fe species identified stabilize Fe(III) and/or Fe(II) in anoxic and oxic peats. Fundamental differences are also observed in the relative proportion of C, S and N functionalities of OM in oxic and anoxic peats. Aromatic C=C, ester, phenol and anomeric C (R-O-C-O-R), as well as thiol, sulfide and heterocyclic N functionalities are more prevalent in anoxic peats. Collectively, our experimental evidence suggests iron forms coordination complexes with O-, S- and N-containing functional groups of OM. We posit the co-occurrence of organic and mineral forms of Fe(II) and Fe(III) in both oxic and anoxic peat layers results from dynamic complexation and hydrolysis-precipitation reactions that occur under variable redox conditions. In conclusion, our findings aid in understanding the crucial role OM plays in determining Fe species in soils and sediments.« less

  20. Comparison of physical and chemical properties of ambient aerosols during the 2009 haze and non-haze periods in Southeast Asia.

    PubMed

    Xu, Jingsha; Tai, Xuhong; Betha, Raghu; He, Jun; Balasubramanian, Rajasekhar

    2015-10-01

    Recurrent smoke-haze episodes that occur in Southeast Asia (SEA) are of much concern because of their environmental and health impacts. These haze episodes are mainly caused by uncontrolled biomass and peat burning in Indonesia. Airborne particulate matter (PM) samples were collected in the southwest coast of Singapore from 16 August to 9 November in 2009 to assess the impact of smoke-haze episodes on the air quality due to the long-range transport of biomass and peat burning emissions. The physical and chemical characteristics of PM were investigated during pre-haze, smoke-haze, and post-haze periods. Days with PM2.5 mass concentrations of ≥35 μg m(-3) were considered as smoke-haze events. Using this criterion, out of the total 82 sampling days, nine smoke-haze events were identified. The origin of air masses during smoke-haze episodes was studied on the basis of HYSPLIT backward air trajectory analysis for 4 days. In terms of the physical properties of PM, higher particle surface area concentrations and particle gravimetric mass concentrations were observed during the smoke-haze period, but there was no consistent pattern for particle number concentrations during the haze period as compared to the non-haze period except that there was a significant increase at about 08:00, which could be attributed to the entrainment of PM from aloft after the breakdown of the nocturnal inversion layer. As for the chemical characteristics of PM, among the six key inorganic water-soluble ions (Cl(-), NO3(-), nss-SO4(2-), Na(+), NH4(+), and nss-K(+)) measured in this study, NO3(-), nss-SO4(2-), and NH4(+) showed a significant increase in their concentrations during the smoke-haze period together with nss-K(+). These observations suggest that the increased atmospheric loading of PM with higher surface area and increased concentrations of optically active secondary inorganic aerosols [(NH4)2SO4 or NH4HSO4 and NH4NO3] resulted in the atmospheric visibility reduction in SEA due to the advection of biomass and peat burning emissions.

  1. MOELCULAR SIZE EXCLUSION BY SOIL ORGANIC MATERIALS ESTIMATED FROM THEIR SWELLING IN ORGANIC SOLVENTS

    EPA Science Inventory

    A published method previously developed to measure the swelling characteristics of pow dered coal samples has been adapted for swelling measurements on various peat, pollen, chain, and cellulose samples The swelling of these macromolecular materials is the volumetric manifestatio...

  2. MOLECULAR SIZE EXCLUSION BY SOIL ORGANIC MATERIALS ESTIMATED FROM THEIR SWELLING IN ORGANIC SOLVENTS

    EPA Science Inventory

    A published method previously developed to measure the swelling characteristics of powdered coal samples has been adapted for swelling measurements on various peat, pollen, chitin, and cellulose samples. he swelling of these macromolecular materials is the volumetric manifestatio...

  3. Temporal Changes in Photochemically Labile DOM and Implications for Carbon Budgets in Peatland Aquatic Systems

    NASA Astrophysics Data System (ADS)

    Pickard, A.

    2015-12-01

    Aquatic systems in peatland catchments are subject to high loading of dissolved organic matter (DOM) from surrounding terrestrial environments. However the significance of photochemical transformation of DOM in peatland carbon budgets remains poorly constrained. In this study UV irradiation experiments were conducted on water samples collected over one year from two contrasting systems in Scotland: a stream draining a peatland with high levels of DOM and a reservoir draining a peat catchment with low levels of DOM. Further samples were collected from the high DOM system during two storm events. After experimental exposure, optical and chemical analyses were employed to determine photochemical lability of the DOM pool. At both sites irradiation-induced decreases in dissolved organic carbon (DOC) as a percentage of the total carbon pool were greatest in winter, suggesting that DOM was depleted in photo-reactive molecules in summer. Seasonal variability in DOC was high at the stream site and was positively correlated with CO₂ and CO photoproduction (r2 = 0.81 and 0.83, respectively; p<0.05). Lignin phenol analyses indicate considerable contribution of peat to the DOM pool at the stream site, particularly during summer. Whilst DOC concentrations did not vary greatly during storm events, UV-Vis absorbance indicators did, signifying changing DOM source material from activation of different hydrological pathways. The most photo-reactive DOM occurred 5-10 hours after peak discharge, suggesting that storms replenish photochemically labile DOM in headwater streams. Conservative estimates using data from this study suggest that up to 7% of the DOM pool of peatland streams can be lost (primarily as CO₂ and CO) upon exposure to 8 hours of environmentally representative UV irradiation. Further investigation in field campaigns under natural UV exposure are underway to assess the importance of photodegradation of DOM as a loss pathway of carbon based gases from aquatic systems.

  4. Dissolved organic carbon concentrations and compositions, and trihalomethane formation potentials in waters from agricultural peat soils, Sacramento-San Joaquin Delta, California; implications for drinking-water quality

    USGS Publications Warehouse

    Fujii, Roger; Ranalli, Anthony J.; Aiken, George R.; Bergamaschi, Brian A.

    1998-01-01

    Water exported from the Sacramento-San Joaquin River delta (Delta) is an important drinking-water source for more than 20 million people in California. At times, this water contains elevated concentrations of dissolved organic carbon and bromide, and exceeds the U.S. Environmental Protection Agency's maximum contaminant level for trihalomethanes of 0.100 milligrams per liter if chlorinated for drinking water. About 20 to 50 percent of the trihalomethane precursors to Delta waters originates from drainage water from peat soils on Delta islands. This report elucidates some of the factors and processes controlling and affecting the concentration and quality of dissolved organic carbon released from peat soils and relates the propensity of dissolved organic carbon to form trihalomethanes to its chemical composition.Soil water was sampled from near-surface, oxidized, well-decomposed peat soil (upper soil zone) and deeper, reduced, fibrous peat soil (lower soil zone) from one agricultural field in the west central Delta over 1 year. Concentrations of dissolved organic carbon in the upper soil zone were highly variable, with median concentrations ranging from 46.4 to 83.2 milligrams per liter. Concentrations of dissolved organic carbon in samples from the lower soil zone were much less variable and generally slightly higher than samples from the upper soil zone, with median concentrations ranging from 49.3 to 82.3 milligrams per liter. The dissolved organic carbon from the lower soil zone had significantly higher aromaticity (as measured by specific ultraviolet absorbance) and contained significantly greater amounts of aromatic humic substances (as measured by XAD resin fractionation and carbon-13 nuclear magnetic resonance analysis of XAD isolates) than the dissolved organic carbon from the upper soil zone. These results support the conclusion that more aromatic forms of dissolved organic carbon are produced under anaerobic conditions compared to aerobic conditions. Dissolved organic carbon concentration, trihalomethane formation potential, and ultraviolet absorbance were all highly correlated, showing that trihalomethane precursors increased with increasing dissolved organic carbon and ultraviolet absorbance for whole water samples. Contrary to the generally accepted conceptual model for trihalomethane formation that assumes that aromatic forms of carbon are primary precursors to trihalomethanes, results from this study indicate that dissolved organic carbon aromaticity appears unrelated to trihalomethane formation on a carbon-normalized basis. Thus, dissolved organic carbon aromaticity alone cannot fully explain or predict trihalomethane precursor content, and further investigation of aromatic and nonaromatic forms of carbon will be needed to better identify trihalomethane precursors.

  5. Regional Haze Evolved from Peat Fires - an Overview

    NASA Astrophysics Data System (ADS)

    Hu, Yuqi; Rein, Guillermo

    2016-04-01

    This work provides an overview of haze episodes, their cause, emissions and health effects found in the scientific literature. Peatlands, the terrestrial ecosystems resulting from the accumulation of partially decayed vegetation, become susceptible to smouldering fires because of natural droughts or anthropogenic-induced drainages. Once ignited, smouldering peat fires persistently consume large amounts of soil carbon in a flameless form. It is estimated that the average annual carbon gas emissions (mainly CO2 and CO) from peat fires are equivalent to 15% of manmade emissions, representing influential perturbation of global carbon circle. In addition to carbon emissions, smouldering peat fires emit substantial quantities of heterogeneous smoke, which is responsible for haze phenomena, has not yet been fully studied. Peat-fire-derived smoke is characterized by high concentration of particulate matter (PM), ranging from nano-scale ultrafine fraction (PM1, particle diameter < 1 μm) to micro-scale fine (PM2.5, particle diameter < 2.5 μm) and coarse fraction (PM10, particle diameter < 10 μm). The dispersal of the smoke could be blocked due to the stagnant weather condition, and then low buoyant smoke plume could accumulate and migrate long distances, leading to regional haze. Apart from air quality deterioration, haze leads to severe reduction in visibility, which strongly affects local transportation, construction, tourism and agriculture-based industries. For example, an unprecedented peatland mega-fire burst on the Indonesian islands Kalimantan and Sumatra during the 1997 El-Niño event, resulting in transboundary smoke-haze disaster. Severe haze events continue to appear in Southeast Asia every few years due to periodical peat fires in this region. In addition, smouldering peat fires have been frequently reported in tropical, temperate and boreal regions (Botswana in 2000, North America in 2004, Scotland in 2006 and Central Russia in 2010 et al.), peat-fire-induced haze has become a regional seasonal phenomenon. Exposure to smoky haze results in deleterious physiologic responses, predominantly to the respiratory and cardiovascular systems. In 1997, an estimation of 100 million people in 5 countries in Southeast Asia were affected by Indonesia haze episode while 20 million people suffered from respiratory problems in Indonesia alone. Fine PM fraction generated from peat fires could penetrate into lower respiratory tracks and exacerbate respiratory diseases including chronic bronchitis, emphysema and asthma. Epidemiological studies show that direct exposure to haze pollution is associated with decreased pulmonary function and increased morbidity and mortality among individuals with pre-existent cardiovascular diseases. Reported cases of acute respiratory infection increased 3.8 times during the 1997 Indonesia haze episode (1,446,120 cases in total with 527 haze-related deaths). Collectively, peat fire and the resultant haze considerably affect the local society in many aspects, and more thorough research need to be carried out for further haze mitigation and governance. Corresponding author: Dr. Guillermo Rein: g.rein@imperial.ac.uk

  6. Chemical properties of peat used in balneology

    NASA Astrophysics Data System (ADS)

    Szajdak, L.; Hładoń, T.

    2009-04-01

    The physiological activity of peats is observed in human peat-bath therapy and in the promotion of growth in some plants. Balneological peat as an ecologically clean and natural substance is perceived as being more 'human friendly' than synthetic compounds. Poland has a long tradition of using balneological peat for therapeutic purposes. Balneological peat reveals a physical effect by altering temperature and biochemical effects through biologically active substances. It is mainly used for the treatment of rheumatic diseases that are quite common in Poland. Peat represents natural product. Physico-chemical properties of peat in particular surface-active, sorption and ion exchanges, defining their biological function, depend mainly on the chemical composition and molecular structure of humic substances representing the major constituent of organic soil (peat). The carbon of organic matter of peats is composed of 10 to 20% carbohydrates, primarily of microbial origin; 20% nitrogen-containing constituents, such as amino acids and amino sugars; 10 to 20% aliphatic fatty acids, alkanes, etc.; with the rest of carbon being aromatic. For balneology peat should be highly decomposed (preferably H8), natural and clean. The content of humic acids should exceed 20% of dry weight, ash content will be less than 15 15% of dry weight, sulphur content less than 0.3% of dry weight and the amount of water more than 85%. It will not contain harmful bacteria and heavy metals. Humic substances (HS) of peat are known to be macromolecular polydisperse biphyllic systems including both hydrophobic domains (saturated hydrocarbon chains, aromatic structural units) and hydrophilic functional groups, i. e having amphiphilic character. Amphiphilic properties of FA are responsible for their solubility, viscosity, conformation, surfactant-like character and a variety of physicochemical properties of considerable biologically practical significance. The chemical composition of peats depends significantly on the genesis of peatlands and the depth of sampling. The chemical properties of peat fulvic acids (FA) have some genetic peculiarities due to the specific conditions of the process of humification of peat-forming plants in mires. The process of humification in mires takes place in the top-forming layer under amphibious moisture conditions. Substances of microbial origin are water-soluble and can participate in the formation of peat FA to a little extent. So a main source of structural units for the peat HA and FA is suggested to be organic constituents of peat forming plants of various botanical composition. The content of aromatic units in peat FA was shown to depend on the content of lignin in peat-forming plants and also of the aromatization of polysaccharides mainly due to the transformation of cellulose. FA characterized lower than humic acids molecular weight (1000-30,000). FA's are composed of a series of highly oxidized aromatic rings with a large number of side chains. Building blocks are benzene carboxylic acids and phenolic acids. These are held together by hydrogen bonding van der Waals' forces and ionic bonding. FA contains larger concentrations of nitrogen. This fraction also contains a great deal of polysaccharide materials, as well as low molecular fatty acids and cytoplasmic constituents of microorganisms. These compounds are linear, flexible colloids at low concentrations, and spherical colloids at high solution concentrations and low pH values. A more adequate knowledge of the chemical structure of humic materials will assist us in better understanding the physiological effects and also the function of these macromolecules on the health that these materials are know to exert. This improved knowledge provides us better information on chemical structure of humic substances from peats, which are responsible for pharmacotherapeutic, pharmacokinetic and biopharmaceutical effect. This structure of FA creates proper conditions for uptake of nutrient as well as bioavailability of biologically active substances. The solubilization in water by humic materials of organic substances which are otherwise water-insoluble is a matter of considerable interest to chemist deals with the problem of the function of organic matter. There has been considerable evidence that humic substances can "complex" with several biologically active substances and so modify their physiological activity. It has been noteworthy that FA can "fix" high-molecular weight water-insoluble organic compounds and make them water-soluble. FA may so act as a vehicle for the mobilization, transport and immobilization of such substances in physiological conditions. Analysis of HA and FA carried out by several analytical methods revealed that there were no chemical interaction among biologically active substances but that latter was firmly adsorbed, possible by hydrogen-bonding, on the FA surfaces. Amino acids account for the majority of organic N fraction in humic substances. Most of the amino acids in organic matter occur in bound form in the humino-peptides fraction. These amino acids are commonly bound to the central core of FA. These humino-peptides fraction of FA mediate in respiration and act as hydrogen acceptors, thus affecting oxidation-reaction reactions. Thus, what is needed at this time is more fundamental research in order to solve practical pharmacological, pharmacokinetic and biopharmaceutical problem of great significance for human health.

  7. Applications of peat-based sorbents for removal of metals from water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, A.D.; Stack, E.M.; Eltayeb, S.

    1995-12-31

    The results reported in this paper are derived from one part of an ongoing investigation of peat sorption properties, in particular, the capacities of acid-treated peats to adsorb chromium, nickel, zinc, copper, and cadmium from water. Acid treatment was done to remove as much previously adsorbed metal as possible before testing. Four peat types were selected for study, two highly decomposed types (a woody, Taxodium-dominated peat from the Okefenokee Swamp of Georgia and a sedge-dominated, charcoal-rich peat from the Tamiami Trail region of Florida) and two less decomposed ones (a Sphagnum moss-dominated peat from Maine and a Nymphaea-dominated peat frommore » the Okefenokee Swamp of Georgia). Single metal and mixed metal solutions were tested in slurry experiments with each peat type. Solutions were analyzed using a Perkin-Elmer model 305B Flame Atomic Absorption Spectrophotometer. In single metal tests, chromium and copper tended to be adsorbed to a greater extent than the other metals. Three of the peats were found to be capable of adsorbine more copper ions than zince ions, while a fourth type adsorbed approximately the same amounts of each. Degree of decomposition of the peats tended to affect sorption properties for certain metals. The results of batch studies revealed that chromium was always preferentially adsorbed regardless of the peat type tested. The results of these studies further confirm that remediation of metal-contaminated waters using peats will require selection of specific peats to match the contaminants.« less

  8. Peat deposits of North Carolina: Bulletin 88

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ingram, R.L.

    1987-01-01

    Fuel-grade peat is an accumulation of partially decomposed plant material that has less than 25% non-combustible material (ash). In eastern North Carolina peat has formed in the past 10,000 years in swamps or pocosins (coastal swamps), Carolina bays, and river floodplains. Most of the peat is found at the surface with no over-burden and usually ranges in thickness from 1 to 15 ft with an average of 4-1/2 ft. The mean ash content of the fuel-grade peats is about 7.4%, but ash contents of less than 5% are common in most peat deposits. Heating values average 10,100 Btu/lb on amore » moisture-free basis. Fuel-grade peat deposits cover about 677,000 acres (1060 sq mi) in coastal North Carolina with total resources of about 500 million tons of moisture-free peat. Of this total, about 284,000 acres (444 sq mi) with 319 million tons are underlain by peat greater than 4 ft thick. Peat resources are concentrated in the pocosins or coastal swamps of northeastern North Carolina with the Albemarle-Pamlico peninsula having 55% of the resources and the Dismal Swamp, 11%. The remaining coastal swamp deposits are small but significant. Although 96 Carolina bays have peat, only 46 have peat greater than 4 ft thick; and only one has more than 1 million tons of peat. None of the river floodplain peats located were very large, continuous, or of high quality. 75 refs.« less

  9. Influence of forest management on the changes of organic soil properties in border part of Kragle Mokradlo Peatland (Stolowe Mountains National Park, Poland)

    NASA Astrophysics Data System (ADS)

    Bogacz, A.; Roszkowicz, M.

    2009-04-01

    SUMMARY The aim of this work was to determine the properties of organic soils modified by man, muddy and fluvial process. Peat horizons were analyzed and classified by types - and species of peat. Three profiles of shallow peat and peaty gley soils identified. Investigation showed that organic soil developed on a sandy weathered sandstone base according to oligotrophic type of sites. Organic horizons were mixed with sand and separated by sandy layers. Those soils were classified as Sapric Histosols Dystric or Sapric Gleysols Histic (WRB 2006). The throphism of organic soil in this object resulted from both natural factors and anthropo-pedogenesis. key words: peat deposit, organic soils, soil properties, muddy process, sandy layers INTRODUCTION The areas of Stolowe Mountains National Park were influenced by forestry management. Many peatlands in the Park area were drained for forestry before World War II. Several amelioration attempts were undertaken as early as in the nineteenth century. The system of forest roads were built on drained areas. The Kragle Mokradlo Peatland is located in the Skalniak plateau. The object is cut by a melioration ditch. This ditch has been recently blocked to rewet the objects. Several forest roads pass in the close neighbourhood of investigated areas. In a border part of Kragle Mokradlo Peatlands, we can observe artificial spruce habitat. Investigated object represents shallow peat soil developed on sandy basement. The early investigations showed that peaty soils were also covered by sandstone - related deposits, several dozen centimeter thick (BOGACZ 2000). Those layers was developed from sandstone weathered material transported by wind and water. The aim of presented works was to determine the stage of evolution of organic soils on the base on their morphological, physical and chemical properties. MATERIAL AND METHODS Peat soils in different locations (3 profiles, 18 samples) were selected for examination. Peat samples were collected from study areas using a 6.0 cm diameter Instorfu peat auger (HORAWSKI 1987). Soil horizons were determined on the basis of colour, degree of organic matter decomposition and the quality of vegetation remains. Cores were taken to the depth where underlying mineral material was encountered. The cores ware sectioned to subsamples at intervals at major stratigrafic breaks. Some physical, chemical properties and botanical composition of peat were determined in this material. Differentiation in botanical composition of peat was analyzed by the microscopic method and subsequently classified according to the Polish standards (Oznaczanie gatunku...1977). Peat humification degree was measured using two methods: SPEC method and half syringe method (LYNN at all. 1974). Ash content was estimated by combusting the material in a muffle furnace at 500oC for 4 hours. The texture of mineral horizons was determined using the Bouyoucos hydrometer method (GEE AND BOUNDER 1986). The specific gravity (W) and bulk density (Z) of organic soils were calculated using the following formula's (ZAWADZKI 1970): W=0.11A+1.451, (1.451) represents the specific gravity of humus, Z =0.004A+0.0913, A is a ash content and constant (0.0913) represents the bulk density of humus. The following chemical properties of organic soil horizons were analyzed: content of total carbon and nitrogen, acidity in H2O and 1mol dm-3 KCl and CECe in CH3COONH4 at pH 7. Base saturation (BS) of soil sorption complex was calculated. The soils were classified to reference groups in WRB Classification System (WRB 2006). RESULTS AND DISSCUSION Based on the cores, -the soils in the border part of Kragle Mokradlo Peatland area were classified as Sapric Histosols Dystric or Sapric Gleysols Histic (WRB 2006). Soils represented ombrogenic type of hydrological conditions. In that site, an ombrogenic type of hydrological input is the predominant mechanism of soil evolution. Soil examined in this study have developed in oligotrophic type of site. Organic soils developed on sandy weathered sandstones. The depth of organic horizons ranged from 40 to 80 cm. The object represented spruce forests habitat introduced by man. Organic horizons were separated by sandy layers. The process of sandstone weathering and forestry management changed morphological features of soils. Presently, the area is under the influence of fluvigenic type of hydrological input, too. Geobotanical analyses of peat layers indicated significant presence of preserved fragments of roots grasses, Sphagnum sp. and Bryales sp. Hemic or sapric material were usually present in organic horizons of this object. Analysis of organic horizons showed that their specific gravity was about 1.58-2.25 g cm-3, the bulk density was 0.14-0.42 g cm-3. The total porosity was in the range 82.0-91.1% and the ash content: in the range 11.74-77.96% of soil dry matter. Organic material consisting of weathered sandstone was likely to move down the profiles, increasing the concentration of sand and silt fractions in organic horizons. The similar phenomenon of residual deposits was reported by KLEMENTOWSKI (1979). The values of bulk density of peatland soils are connected with the high ash content. Ash content was different in situated layers. This is caused by the muddy and fluvial process. This situation was influenced by trophical status of this soils. The pH of sand and peat layers in a border part of Krągłe Mokradło Peatland was strongly acidic: pH H2O 2.92-3.51, pH KCl 2.38-3.07. The acidity was lower in upper horizons than in deeper ones. The ratio C/N in organic horizons ranged between 10:1 to 40:1. Low ratios of C/N in some upper horizons were probably caused by strong mineralization of organic matter. Strongly acidic soil horizons usually exhibited high cation exchange capacity (CECe). In general, the base saturated (BS) did not exceed 50%. Organic surface horizons showed higher content of potassium, calcium and magnesium than lower horizons. CONCLUSIONS Shallow organic soils occupy the ombrotrophic sites of a border part of Kragle Mokradlo Peatland. The variety of organic soil throphism in the object resulted from the placement on the base sandstone, partial mixing of soil horizons as well as from muddy and fluvial processes. Peat horizons present in the studied profiles were generally classified as hemic and sapric, sometimes as fibric. Soil horizons exhibited differed thickness and ash content. Forest management strongly changed the properties of organic soil. REFERENCES Bogacz, A. (2000). Physical properties of organic soil in Stolowe Mountains National Park (Poland). Suo 51,3; pp.105-113. Gee, G.W. and Bauder, J.W. (1986). Particle-size analysis. In: Klute, A.(ed.) Methods of Soil Analysis Part I. Agronomy series No. 9. Am. Soc. Agronomy Soil Sci. Am, Inc., Publ., Madison, WI.pp. 383-411. Horawski, M. (1987). Torfoznawstwo dla meliorantow. Pojecia podstawowe.[Peat science for melioration. Basic definitions.]. Wydawnictwo Akademii Rolniczej w Krakowie. pp.37-39.[In Polish]. Lubliner - Mianowska, K. (1951). Wskazowki do badania torfu. Metody geobotaniczne, polowe i laboratoryjne [Hints to peat research. In: Geobotanical, field and laboratory methods] Państwowe Wydawnictwo Techniczne, Katowice.pp.58-60. [In Polish]. Lynn, W.C., Mc Kinzie, W.E., Grossman, R.B. (1974). Field Laboratory Test for characterization of Histosols. In: Histosols, their characteristics, classification and use. pp. 11-20. Oznaczanie gatunku, rodzaju i typu torfu. (1977). [Peat and peat varies. Determination of classes, sort and types of peat]. Polish standard PN-76/G-02501, [Polish Normalization Commitee]. pp.1-11.[In Polish]. Word Reference Base for Soil Resources. 1998. Word Soil Resources Report, 84. FAO-ISRIC-ISSS, Rome, pp.1-88. Zawadzki, S. (1970). Relationship between the content of organic matter and physical properties of hydrogenic soils. Polish Journal of Soil Science Vol.III, 1; pp.3-9.

  10. Interdependence of peat and vegetation in a tropical peat swamp forest.

    PubMed Central

    Page, S E; Rieley, J O; Shotyk, W; Weiss, D

    1999-01-01

    The visual uniformity of tropical peat swamp forest masks the considerable variation in forest structure that has evolved in response to differences and changes in peat characteristics over many millennia. Details are presented of forest structure and tree composition of the principal peat swamp forest types in the upper catchment of Sungai Sebangau, Central Kalimantan, Indonesia, in relation to thickness and hydrology of the peat. Consideration is given to data on peat geochemistry and age of peat that provide evidence of the ombrotrophic nature of this vast peatland and its mode of formation. The future sustainability of this ecosystem is predicted from information available on climate change and human impact in this region. PMID:11605630

  11. Terrain Analysis Procedural Guide for Soil. Report Number 6 in the ETL Series on Guides for Army Terrain Analysts

    DTIC Science & Technology

    1981-02-01

    01 T3 Swamp Pt. OH. CH. MH. OL T4 Peat Bog Pt T5 . - Peat Cuttings Pt T6 Cranberry Bog Pt. OH. CH. MH, OL T7 Rice holds Pt. OH, CH, MH, OL ’ ~Known...Commonly Associated Soils Landlorm/erc Climate Horizon USCS Symbol Coastal Plain unspecified unspecified OL. ML. CL. ML-CL, MH. Depressions CH, OH...total sample. SALINA A salt marsh or pond located adjacent to the sea, but not open to the sea. SALT PAN Any flat area or natural depression where water

  12. Geophysical survey for groundwater potential investigation in peat land area, Riau, Indonesia

    NASA Astrophysics Data System (ADS)

    Islami, N.; Irianti, M.; Azhar; Nor, M.; Fakhrudin

    2018-04-01

    Tropical forests, especially peat lands, are particularly vulnerable to forest fires. Fires are the most common disasters in peat lands in the dry season, especially in Riau Province, Indonesia. In the process of extinguishing the peat fire, several substantial problems arise to stop peat fires during this period. This study aims to determine the possibility of using ground water as a source of water to anticipate the early mitigation of peat land fires disaster. The geoelectrical resistivity surveys were used to predict the subsurface geological data including peat thickness and depth of aquifers. The geometry of peat lands was determined using geostatistics based on geoelectrical resistivity interpretation data. Peat Land thickness varies up to 4 m in the north and is thinner to the south. A shallower and deeper aquifer is available at a depth of 13 m to 18 m and 70 m to 90 m respectively. In general, the potential of groundwater in the shallow aquifer is predicted to be sufficient for peat land watering anytime.

  13. Application of infrared spectroscopy for assessing quality (chemical composition) of peatland plants, litter and soil

    NASA Astrophysics Data System (ADS)

    Straková, Petra; Laiho, Raija

    2016-04-01

    In this presentation, we assess the merits of using Fourier transform infrared (FTIR) spectra to estimate the organic matter composition in different plant biomass and peat soil samples. Infrared spectroscopy has a great potential in large-scale peatland studies that require low cost and high throughput techniques, as it gives a unique "chemical overview" of a sample, with all the chemical compounds present contributing to the spectrum produced. Our extensive sample sets include soil samples ranging from boreal to tropical peatlands, including sites under different environmental and/or land-use changes; above- and below-ground biomass of different peatland plant species; plant root mixtures. We mainly use FTIR to estimate (1) chemical composition of the samples (e.g., total C and N, C:N ratio, holocellulose, lignin and ash content), (2) proportion of each plant species in root mixtures, and (3) respiration of surface peat. The satisfactory results of our predictive models suggest that this experimental approach can, for example, be used as a screening tool in the evaluation of organic matter composition in peatlands during monitoring of their degradation and/or restoration success.

  14. Spatiotemporal variability in biogenic gas dynamics in a subtropical peat soil at the laboratory scale is revealed using high-resolution ground-penetrating radar

    NASA Astrophysics Data System (ADS)

    Mustasaar, Mario; Comas, Xavier

    2017-09-01

    The importance of peatlands as sources of greenhouse gas emissions has been demonstrated in many studies during the last two decades. While most studies have shown the heterogeneous distribution of biogenic gas in peat soils at the field scale (sampling volumes in the order of meters), little information exists for submeter scales, particularly relevant to properly capture the dynamics of hot spots for gas accumulation and release when designing sampling routines with methods that use smaller (i.e., submeter) sampling volumes like flux chambers. In this study, ground-penetrating radar is used at the laboratory scale to evaluate biogenic gas dynamics at high spatial resolution (i.e., cm) in a peat monolith from the Everglades. The results indicate sharp changes (both spatially and temporally) in the dynamics of gas accumulation and release, representing hot spots for production and release of biogenic gases with surface areas ranging between 5 to 10 cm diameter and are associated with increases in porosity. Furthermore, changes in gas composition and inferred methane (CH4) and carbon dioxide (CO2) fluxes also displayed a high spatiotemporal variability associated with hot spots, resulting in CH4 and CO2 flux estimates showing differences up to 1 order of magnitude during the same day for different parts of the sample. This work follows on recent studies in the Everglades and questions the appropriateness of spatial and temporal scales of measurement when defining gas dynamics by showing how flux values may change both spatially and temporarily even when considering submeter spatial scales.

  15. Light-Absorbing Brown Carbon Aerosol Constituents from Combustion of Indonesian Peat and Biomass.

    PubMed

    Budisulistiorini, Sri Hapsari; Riva, Matthieu; Williams, Michael; Chen, Jing; Itoh, Masayuki; Surratt, Jason D; Kuwata, Mikinori

    2017-04-18

    Light-absorbing brown carbon (BrC) constituents of organic aerosol (OA) have been shown to significantly absorb ultraviolet (UV) and visible light and thus impact radiative forcing. However, molecular identification of the BrC constituents is still limited. In this study, we characterize BrC constituents at the molecular level in (i) aerosols emitted by combustion of peat, fern/leaf, and charcoal from Indonesia and (ii) ambient aerosols collected in Singapore during the 2015 haze episode. Aerosols were analyzed using ultra performance liquid chromatography instrument interfaced to a diode array detector and electrospray ionization high-resolution quadrupole time-of-flight mass spectrometer operated in the negative ion mode. In the laboratory-generated aerosols, we identified 41 compounds that can potentially absorb near-UV and visible wavelengths, such as oxygenated-conjugated compounds, nitroaromatics, and S-containing compounds. The sum of BrC constituents in peat, fern/leaf, and charcoal burning aerosols are 16%, 35%, and 28% of the OA mass, respectively, giving an average contribution of 24%. On average, the BrC constituents account for 0.4% of the ambient OA mass; however, large uncertainties in mass closure remain because of the lack of authentic standards. This study highlights the potential of light-absorbing BrC OA constituents from peat, fern/leaf, and charcoal burning and their importance in the atmosphere.

  16. High potential of nitrogen fixation in pristine, ombrotrophic bogs in Southern Patagonia

    NASA Astrophysics Data System (ADS)

    Knorr, Klaus-Holger; Horn, Marcus A.; Bahamonde Aguilar, Nelson A.; Borken, Werner

    2015-04-01

    Nitrogen (N) input in pristine peatlands occurs via natural input of inorganic N through atmospheric deposition or biological dinitrogen (N2) fixation. However, N2 fixation is to date mostly attributed to bacteria and algae associated to Sphagnum and its contribution to plant productivity and peat buildup has been often underestimated in previous studies. Based on net N storage, exceptionally low N deposition, and high abundance of vascular plants at pristine peatlands in Southern Patagonia, we hypothesized that there must be a high potential of non-symbiotic N2 fixation not limited to the occurrence of Sphagnum. To this end, we chose two ombrotrophic bogs with spots that are dominated either by Sphagnum or by vascular, cushion-forming plants and sampled peat from different depths for incubation with 15N2 to determine N2 fixation potentials. Moreover, we analyzed 15N2 fixation by a nodule-forming, endemic conifer inhabiting the peatlands. Results from 15N2 uptake were compared to the conventional approach to study N2 fixation by the acetylene reduction assay (ARA). Using 15N2 as a tracer, high non-symbiotic N2 fixation rates of 0.3-1.4 μmol N g-1 d-1 were found down to 50 cm under micro-oxic conditions (2 vol.%) in samples from both plots either covered by Sphagnum magellanicum or by vascular cushion plants. Peat N concentrations suggested a higher potential of non-symbiotic N2 fixation under cushion plants, likely because of the availability of easily decomposable organic compounds as substrates and oxic conditions in the rhizosphere. In the Sphagnum plots, high N2 fixation below 10 cm depth would rather reflect a potential fixation that may switch on during periods of low water levels when oxygen penetrates deeper into the peat. 15N natural abundance of live Sphagnum from 0-10 cm pointed to N uptake solely from atmospheric deposition and non-symbiotic N2 fixation. 15N signatures of peat from the cushion plant plots indicated additional N supply from N mineralization. Nitrogen fixation by the conifer Lepidothamnus fonkii was exceptionally high, reaching 3.1 μmol N g-1 d.w. d-1 detected in roots, stems, and green biomass. For L. fonkii, we could identify a specific association with Beijerinckiaceae as N2 fixing bacteria in the root nodules, whereas the rhizosphere peat was dominated by other diazotrophs. The ARA considerably underestimated N2 fixation and can thus not be recommended for peatland studies. Our findings suggest that non-symbiotic or associative N2 fixation overcomes N deficiency in different vegetation communities and has great significance for N cycling and peat accumulation in pristine peatlands.

  17. 46 CFR 148.290 - Peat moss.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Peat moss. 148.290 Section 148.290 Shipping COAST GUARD... SPECIAL HANDLING Special Requirements for Certain Materials § 148.290 Peat moss. (a) Before shipment, peat... handling or coming into contact with peat moss must wear gloves, a dust mask, and goggles. ...

  18. Using Ground Targets to Validate S-NPP VIIRS Day-Night Band Calibration

    NASA Technical Reports Server (NTRS)

    Chen, Xuexia; Wu, Aisheng; Xiong, Xiaoxiong; Lei, Ning; Wang, Zhipeng; Chiang, Kwofu

    2016-01-01

    In this study, the observations from S-NPP VIIRS Day-Night band (DNB) and Moderate resolution bands (M bands) of Libya 4 and Dome C over the first four years of the mission are used to assess the DNB low gain calibration stability. The Sensor Data Records produced by NASA Land Product Evaluation and Algorithm Testing Element (PEATE) are acquired from nearly nadir overpasses for Libya 4 desert and Dome C snow surfaces. A kernel-driven bidirectional reflectance distribution function (BRDF) correction model is used for both Libya 4 and Dome C sites to correct the surface BRDF influence. At both sites, the simulated top-of-atmosphere (TOA) DNB reflectances based on SCIAMACHY spectral data are compared with Land PEATE TOA reflectances based on modulated Relative Spectral Response (RSR). In the Libya 4 site, the results indicate a decrease of 1.03% in Land PEATE TOA reflectance and a decrease of 1.01% in SCIAMACHY derived TOA reflectance over the period from April 2012 to January 2016. In the Dome C site, the decreases are 0.29% and 0.14%, respectively. The consistency between SCIAMACHY and Land PEATE data trends is good. The small difference between SCIAMACHY and Land PEATE derived TOA reflectances could be caused by changes in the surface targets, atmosphere status, and on-orbit calibration. The reflectances and radiances of Land PEATE DNB are also compared with matching M bands and the integral M bands based on M4, M5, and M7. The fitting trends of the DNB to integral M bands ratios indicate a 0.75% decrease at the Libya 4 site and a 1.89% decrease at the Dome C site. Part of the difference is due to an insufficient number of sampled bands available within the DNB wavelength range. The above results indicate that the Land PEATE VIIRS DNB product is accurate and stable. The methods used in this study can be used on other satellite instruments to provide quantitative assessments for calibration stability.

  19. River Export of Dissolved and Particulate Organic Carbon from Permafrost and Peat Deposits across the Siberian Arctic

    NASA Astrophysics Data System (ADS)

    Wild, B.; Andersson, A.; Bröder, L.; Vonk, J.; Hugelius, G.; McClelland, J. W.; Raymond, P. A.; Gustafsson, O.

    2017-12-01

    Permafrost and peat deposits of northern high latitudes store more than 1300 Pg of organic carbon. This carbon has been preserved for thousands of years by cold and moist conditions, but is now increasingly mobilized as temperatures rise. While part will be degraded to CO2 and CH4 and amplify global warming, part will be exported by rivers to the Arctic Ocean where it can be degraded or re-buried by sedimentation. We here use the four large Siberian rivers Ob, Yenisey, Lena, and Kolyma as natural integrators of carbon mobilization in their catchments. We apply isotope based source apportionments and Markov Chain Monte Carlo Simulations to quantify contributions of organic carbon from permafrost and peat deposits to organic carbon exported by these rivers. More specifically, we compare the 14C signatures of dissolved and particulate organic carbon (DOC, POC) sampled close to the river mouths with those of five potential carbon sources; (1) recent aquatic and (2) terrestrial primary production, (3) the active layer of permafrost soils, (4) deep Holocene deposits (including thermokarst and peat deposits) and (5) Ice Complex Deposits. 14C signatures of these endmembers were constrained based on extensive literature review. We estimate that the four rivers together exported 2.4-4.5 Tg organic carbon from permafrost and peat deposits per year. While total organic carbon export was dominated by DOC (90%), the export of organic carbon from permafrost and peat deposits was more equally distributed between DOC (56%) and POC (44%). Recent models predict that ca. 200 Pg carbon will be lost as CO2 or CH4 by 2100 (RCP8.5) from the circumarctic permafrost area, of which roughly a quarter is drained by the Ob, Yenisey, Lena, and Kolyma rivers. Our comparatively low estimates of river carbon export thus suggest limited transfer of organic carbon from permafrost and peat deposits to high latitude rivers, or its rapid degradation within rivers. Our findings highlight the importance of both DOC and POC, and its degradation, for the fate of carbon mobilized from high latitude deposits under global warming, and indicate a low potential for its stabilization in the Arctic Ocean.

  20. Global latitudinal trends in peat recalcitrance quantified with calibrated FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Hodgkins, S. B.; Richardson, C. J.; Dommain, R.; Wang, H.; Glaser, P. H.; Verbeke, B. A.; Rogers, K.; Winkler, B. R.; Missilmani, M.; Flanagan, N. E.; Ho, M.; Hoyt, A.; Harvey, C. F.; Cobb, A.; Rich, V. I.; Vining, S. R.; Hough, M.; Saleska, S. R.; Podgorski, D. C.; Tfaily, M. M.; Wilson, R.; Holmes, B.; de La Cruz, F.; Toufaily, J.; Hamdan, R.; Cooper, W. T.; Chanton, J.

    2017-12-01

    Peatlands are a major global carbon reservoir (528-600 Pg). Most peat is found at high latitudes, where organic matter decomposition is slowed by cold temperatures and water-saturated conditions. Nonetheless, a significant portion of global peatland carbon (10-30%) is in tropical peatlands. The factors that allow peat accumulation in warm climates remain uncertain, raising the question of whether these factors may preserve peat in boreal regions as they warm. In this study, we examined peat and plant chemistry across a latitudinal transect from the Arctic to the tropics. Carbohydrate and aromatic contents were estimated based on a newly-developed analysis method for Fourier transform infrared (FTIR) spectra. In this method, peaks are baseline-corrected and normalized to the integrated spectral area using an automated R script, then calibrated to known concentrations using standards. This technique showed trends that were in agreement with those seen with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and 13C-NMR spectroscopy. Along the latitudinal transect, we found that near-surface (sub)tropical peat has lower carbohydrate and greater aromatic content than near-surface high-latitude peat, leading to recalcitrance that allows (sub)tropical peat to persist despite warm temperatures. The chemistry of (sub)tropical peat reflects a combination of recalcitrant plant inputs, and more extensive humification driven by higher temperatures. Because we observed similar declines in carbohydrate content with depth in high-latitude peat deposits, our data explain recent field-scale deep peat warming experiments in which catotelm (deeper) peat remained stable in the face of temperature increases up to 9 °C. We suggest that high-latitude deep peat reservoirs may be stabilized in the face of climate change by their ultimately lower carbohydrate and higher aromatic composition, similar to tropical peats.

  1. The structure of the microbial communities in low-moor and high-moor peat bogs of Tomsk oblast

    NASA Astrophysics Data System (ADS)

    Dobrovol'skaya, T. G.; Golovchenko, A. V.; Kukharenko, O. S.; Yakushev, A. V.; Semenova, T. A.; Inisheva, L. A.

    2012-03-01

    The number, structure, and physical state of the microbial communities in high-moor and low-moor peat bogs were compared. Distinct differences in these characteristics were revealed. The microbial biomass in the high-moor peat exceeded that in the low-moor peat by 2-9 times. Fungi predominated in the high-moor peat, whereas bacteria were the dominant microorganisms in the low-moor peat. The micromycetal complexes of the high-moor peat were characterized by a high portion of dark-colored representatives; the complexes of the low-moor peat were dominated by fast-growing fungi. The species of the Penicillum genus were dominant in the high-moor peat; the species of Trichoderma were abundant in the low-moor peat. In the former, the bacteria were distinguished as minor components; in the latter, they predominated in the saprotrophic bacterial complex. In the high-moor peat, the microorganisms were represented by bacilli, while, in the low-moor peat, by cytophages, myxobacteria, and actinobacteria. The different physiological states of the bacteria in the studied objects reflecting the duration of the lag phase and the readiness of the metabolic system to consume different substrates were demonstrated for the first time. The relationships between the trophic characteristics of bacterial habitats and the capacity of the bacteria to consume substrates were established.

  2. Deformation behaviors of peat with influence of organic matter.

    PubMed

    Yang, Min; Liu, Kan

    2016-01-01

    Peat is a kind of special material rich in organic matter. Because of the high content of organic matter, it shows different deformation behaviors from conventional geotechnical materials. Peat grain has a non-negligible compressibility due to the presence of organic matter. Biogas can generate from peat and can be trapped in form of gas bubbles. Considering the natural properties of peat, a special three-phase composition of peat is described which indicates the existence of organic matter and gas bubbles in peat. A stress-strain-time model is proposed for the compression of organic matter, and the surface tension effect is considered in the compression model of gas bubbles. Finally, a mathematical model has been developed to simulate the deformation behavior of peat considering the compressibility of organic matter and entrapped gas bubbles. The deformation process is the coupling of volume variation of organic matter, gas bubbles and water drainage. The proposed model is used to simulate a series of peat laboratory oedometer tests, and the model can well capture the test results with reasonable model parameters. Effects of model parameters on deformation of peat are also analyzed.

  3. Effect of residual monomer from polyacrylamide on head lettuce grown in peat substrate.

    PubMed

    Mroczek, Ewelina; Kleiber, Tomasz; Konieczny, Piotr; Waśkiewicz, Agnieszka

    2015-01-01

    The paper investigates the migration of the acrylamide monomer (AMD) to lettuce chosen as a test plant growing in an organic medium (peat substrate). Polyacrylamide (PAM)-based flocculant added to the growing medium contained no more than 1000 mg kg(-1) of AMD. Plants were grown with varied doses of PAM preparation (0.5-3.0 mg dm(-3) of peat substrate) to compare the results with the control sample. The determination of AMD content, chlorophyll content, weight of the lettuce head, and also analysis of macro- and micro-elements in lyophilised test material was made under the same analytical conditions. The results showed that lettuce plants absorb AMD to the leaves from the peat substrate. The AMD uptake has a negative impact on the growth of lettuce. It reduces the average fresh weight of heads and destabilises the mineral composition of the plant. Therefore, concern related to the transfer risk of the residual AMD from sludge used for organic fertilisation of edible plants still remains a crucial question from a food and consumer safety point of view. To ensure consumer safety, the fate of the AMD following the application of PAM to cropland should be carefully monitored in the whole food chain.

  4. High Diversity of Planctomycetes in Soils of Two Lichen-Dominated Sub-Arctic Ecosystems of Northwestern Siberia

    PubMed Central

    Ivanova, Anastasia A.; Kulichevskaya, Irina S.; Merkel, Alexander Y.; Toshchakov, Stepan V.; Dedysh, Svetlana N.

    2016-01-01

    A wide variety of terrestrial ecosystems in tundra have a ground vegetation cover composed of reindeer lichens (genera Cladonia and Cetraria). The microbial communities of two lichen-dominated ecosystems typical of the sub-arctic zone of northwestern Siberia, that is a forested tundra soil and a shallow acidic peatland, were examined in our study. As revealed by molecular analyses, soil and peat layers just beneath the lichen cover were abundantly colonized by bacteria from the phylum Planctomycetes. Highest abundance of planctomycetes detected by fluorescence in situ hybridization was in the range 2.2–2.7 × 107 cells per gram of wet weight. 16S rRNA gene fragments from the Planctomycetes comprised 8–13% of total 16S rRNA gene reads retrieved using Illumina pair-end sequencing from the soil and peat samples. Lichen-associated assemblages of planctomycetes displayed unexpectedly high diversity, with a total of 89,662 reads representing 1723 operational taxonomic units determined at 97% sequence identity. The soil of forested tundra was dominated by uncultivated members of the family Planctomycetaceae (53–71% of total Planctomycetes-like reads), while sequences affiliated with the Phycisphaera-related group WD2101 (recently assigned to the order Tepidisphaerales) were most abundant in peat (28–51% of total reads). Representatives of the Isosphaera–Singulisphaera group (14–28% of total reads) and the lineages defined by the genera Gemmata (1–4%) and Planctopirus–Rubinisphaera (1–3%) were present in both habitats. Two strains of Singulisphaera-like bacteria were isolated from studied soil and peat samples. These planctomycetes displayed good tolerance of low temperatures (4–15°C) and were capable of growth on a number of polysaccharides, including lichenan, a characteristic component of lichen-derived phytomass. PMID:28066382

  5. Actinobacterial Nitrate Reducers and Proteobacterial Denitrifiers Are Abundant in N2O-Metabolizing Palsa Peat

    PubMed Central

    Palmer, Katharina

    2012-01-01

    Palsa peats are characterized by elevated, circular frost heaves (peat soil on top of a permanently frozen ice lens) and are strong to moderate sources or even temporary sinks for the greenhouse gas nitrous oxide (N2O). Palsa peats are predicted to react sensitively to global warming. The acidic palsa peat Skalluvaara (approximate pH 4.4) is located in the discontinuous permafrost zone in northwestern Finnish Lapland. In situ N2O fluxes were spatially variable, ranging from 0.01 to −0.02 μmol of N2O m−2 h−1. Fertilization with nitrate stimulated in situ N2O emissions and N2O production in anoxic microcosms without apparent delay. N2O was subsequently consumed in microcosms. Maximal reaction velocities (vmax) of nitrate-dependent denitrification approximated 3 and 1 nmol of N2O per h per gram (dry weight [gDW]) in soil from 0 to 20 cm and below 20 cm of depth, respectively. vmax values of nitrite-dependent denitrification were 2- to 5-fold higher than the vmax nitrate-dependent denitrification, and vmax of N2O consumption was 1- to 6-fold higher than that of nitrite-dependent denitrification, highlighting a high N2O consumption potential. Up to 12 species-level operational taxonomic units (OTUs) of narG, nirK and nirS, and nosZ were retrieved. Detected OTUs suggested the presence of diverse uncultured soil denitrifiers and dissimilatory nitrate reducers, hitherto undetected species, as well as Actino-, Alpha-, and Betaproteobacteria. Copy numbers of nirS always outnumbered those of nirK by 2 orders of magnitude. Copy numbers of nirS tended to be higher, while copy numbers of narG and nosZ tended to be lower in 0- to 20-cm soil than in soil below 20 cm. The collective data suggest that (i) the source and sink functions of palsa peat soils for N2O are associated with denitrification, (ii) actinobacterial nitrate reducers and nirS-type and nosZ-harboring proteobacterial denitrifiers are important players, and (iii) acidic soils like palsa peats represent reservoirs of diverse acid-tolerant denitrifiers associated with N2O fluxes. PMID:22660709

  6. Changes in carbon fractions during composting and maturation of organic wastes

    NASA Astrophysics Data System (ADS)

    Garcia, Carlos; Hernandez, Teresa; Costa, Francisco

    1991-05-01

    Seven mixtures from four organic residues—an aerobic sewage sludge, a city refuse, a peat residue, and a grape debris—were composted, and the changes undergone by their different carbon fractions during their composting and maturation were studied. In most cases a decrease in carbon fractions during the composting and maturation processes was observed. The extractable carbon, however, increased during maturation. Organic matter mineralization was greater in the composts with city refuse than in those with sewage sludge. The samples with peat residue showed the lowest decreases in carbon fractions. During maturation, an increase of humiclike fraction was observed, which was reflected by a decrease in the soluble carbon-precipitated carbon ratio at pH 2. Water-soluble carbon was the carbon fraction most easily degradable by microorganisms, and its amount correlated significantly with composting time in all the samples.

  7. Spatial patterns of denitrification and its functional genes in peatlands

    NASA Astrophysics Data System (ADS)

    Mander, Ülo; Ligi, Teele; Truu, Marika; Truu, Jaak; Pärn, Jaan; Egorov, Sergey; Järveoja, Järvi; Vohla, Christina; Maddison, Martin; Soosaar, Kaido; Oopkaup, Kristjan; Teemusk, Alar; Preem, Jens-Konrad; Uuemaa, Evelyn

    2014-05-01

    This study is aimed to analyse relationships between the environmental factors and the spatial distribution of the main functional genes nirS, nirK, and nosZ regulating the denitrification process. Variations in hydrological regime, soil temperature and peat quality have been taken into the consideration at both local and global scale. Measurements of greenhouse gas (GHG) emissions using static chambers, groundwater analysis, gas and peat sampling for further laboratory analysis has been conducted in various peatlands in Iceland (two study areas, 2011), Transylvania/Romania (2012), Santa Catarina/Brazil (2012), Quebec/Canada (2012), Bashkortostan/Russian Federation (two study areas, 2012), Sichuan/China (2012), Estonia (two study areas, 2012), Florida/USA (2013, Sologne/France (2013), Jugra in West Siberia/Russia (2013), Uganda (2013), French Guyana (two study areas, 2013), Tasmania (two study areas, 2014) and New Zealand (two study areas, 2014). In each study area at least 2 transects along the groundwater depth gradient, one preferably in undisturbed, another one in drained area, and at least 3 rows of sampling sites (3-5 replicate chambers and 1 piezometer and soil sampling plot in each) in both has been established for studies. In each transect GHG emission was measured during 2-3 days in at least 5 sessions. In addition, organic sediments from the artificial riverine wetlands in Ohio/USA in 2009 and relevant gas emission studies have been used in the analyses. In the laboratories of Estonian University of Life Sciences and the University of Tartu, the peat chemical quality (pH, N, P, C, NH4, NO3) and N2O, CO2, and CH4 concentration in gas samples (50mL glass bottles and exetainers) were analysed. The peat samples for further pyrosequencing and qPCR analyses are stored in fridge by -22oC. This presentation will consider the variation of GHG emissions and hydrological conditions in the study sites. In addition, several selected biophysical factors will be taken into account. Further study will include peatland sites in Montana/USA, Columbia (Andes), Tierra del Fuego/Argentina, Pyrenees/Spain, Savo/Finland, the Netherlands, Okawango/Botswana, Heilongjiang/China, and Kamchatka/Russian Federation. Also, additional analysis will be conducted on the relationships between the intensity of CH4 emissions and methanogenesis regulating functional genes mcrA, pmoA, and dsrAB.

  8. A Mediterranean free-floating peat mire hosts microbial communities shared by cold latitude habitats

    NASA Astrophysics Data System (ADS)

    Concheri, Giuseppe; Stevanato, Piergiorgio; Zaccone, Claudio; Shotyk, William; D'Orazio, Valeria; Miano, Teodoro; Lobianco, Daniela; Piffanelli, Pietro; Rizzi, Valeria; Ferrandi, Chiara; Squartini, Andrea

    2017-04-01

    The microbiological features of a peculiar and hitherto unexplored environment, i.e., a 4m-deep, free-floating peat island located within the Posta Fibreno lake (central Italy), were analyzed via DNA-based techniques. Methods included RealTime PCR targeting for nitrogen (N) cycle genes (nitrification from eubacteria and archaea, denitrification, N fixation), and Next Generation Sequencing (NGS) using an Illumina platform of prokaryotic (16S) and eukaryotic (ITS) amplicons to assess community members identity and abundance. Two depths were sampled at ca. 40 and 280 cm from the surface, the former corresponding to a portion of Sphagnum residues accumulated less than 30 yrs ago above the water level, and the latter mainly consisting of silty peat belonging to the deeply submerged part of the island, dating back to 1520-1660 AD. Bacterial gene abundances for the N cycle were consistently higher in the deeper sample. Sequencing analyses allowed identifying for the surface sample 1738 prokaryotic and 310 eukaryotic Operational Taxonomic Units (OTUs), while, for the deeper sample, the corresponding values were 2026 and 291 respectively. There was a very limited taxa overlap between the two layers' communities in which dominant taxa featured two different sulphate-reducing Deltaproteobacteria for prokaryotes. For eukaryotes, the surface sample was dominated by the Neobulgaria (Ascomycota) genus, while in the deeper one three quarters of the ITS reads were featured by a taxon observed in Antarctic lakes. The functional guilds represented pertain mostly to species involved in slow organic matter degradation and contexts in which dissolved organic carbon contains one-atom compounds, supportive of methylotrophy and methanogenesis. The identity of taxa partitioning between the acidic surface layer and the neutral core is very reminiscent of the differences reported between bogs and fens peatland types respectively, supporting the view of Posta Fibreno as a hybrid between the two main models. A remarkable feature is the coincidence of most taxa observed with database subjects isolated from mires and lakes in boreal/polar environments in spite of the fact that Posta Fibreno is located in sub-Mediterranean climate conditions. This instance suggests a common ecological feature linking peat-forming mires and habitats alike, in which the process factor would rule in determining the biotic composition in spite of the macroclimatic and geographical variables. The principle offers interpretive clues for a deeper understanding of a number of other biotic-environmental interplay contexts.

  9. A Comparison of Mass-Based Emission Factors from Laboratory Combustion of Boreal and Sub-Tropical Peat

    NASA Astrophysics Data System (ADS)

    Knue, J.; Yatavelli, R. L. N.; Chen, L. W. A. A.; Samburova, V.; Gyawali, M. S.; Watts, A.; Chakrabarty, R. K.; Moosmuller, H.; Wang, X.; Zielinska, B.; Chow, J. C.; Watson, J. G.; Tsibart, A.

    2014-12-01

    Peatlands cover approximately 3% of the Earth's surface, but account for approximately one-third of terrestrial soil carbon. This carbon is also much older, collected over hundreds to thousands of years, than other commonly encountered wildfire fuels such as Ponderosa Pine (i.e., years to decades). Due to the moisture and mineral content of peat it has a propensity to smolder, unlike Ponderosa Pine which has an intense flaming period when burning. To better understand the emission from peat fires, in comparison to Ponderosa Pine, a series of experiments were performed in the 8 m3 combustion chamber located at the Desert Research Institute in Reno, NV. Peat from Alaska and Florida (USA) and Siberia (Russia) were burned at two moisture content levels (25 & 50%). Ponderosa Pine needles from Sierra Nevada sites were burned at one moisture content level (8.2%). Real-time measurements included gaseous carbon monoxide (CO), carbon dioxide (CO2), oxides of nitrogen (NOx = NO + NO2), and ozone (O3) concentration, as well as particulate matter (PM) mass, size distribution, and black carbon concentration. In addition, Teflon-membrane and quartz-fiber filters as well as Teflon-impregnated glass fiber (TIGF) filters followed by XAD-4 cartridges were collected for detailed PM chemical speciation. Changes in fuel mass and combustion temperature were continuously monitored during each experiment. We will present a comparison of mass-based emission factors of inorganic gases, PM and black carbon mass concentrations, organic and elemental carbon, and a number of intermediate-volatility (300

  10. The Characteristics of Peats and Co2 Emission Due to Fire in Industrial Plant Forests

    NASA Astrophysics Data System (ADS)

    Ratnaningsih, Ambar Tri; Rayahu Prasytaningsih, Sri

    2017-12-01

    Riau Province has a high threat to forest fire in peat soils, especially in industrial forest areas. The impact of fires will produce carbon (CO2) emissions in the atmosphere. The magnitude of carbon losses from the burning of peatlands can be estimated by knowing the characteristics of the fire peat and estimating CO2 emissions produced. The objectives of the study are to find out the characteristics of fire-burning peat, and to estimate carbon storage and CO2 emissions. The location of the research is in the area of industrial forest plantations located in Bengkalis Regency, Riau Province. The method used to measure peat carbon is the method of lost in ignation. The results showed that the research location has a peat depth of 600-800 cm which is considered very deep. The Peat fiber content ranges from 38 to 75, classified as hemic peat. The average bulk density was 0.253 gram cm-3 (0.087-0,896 gram cm-3). The soil ash content is 2.24% and the stored peat carbon stock with 8 meter peat thickness is 10723,69 ton ha-1. Forest fire was predicted to burn peat to a depth of 100 cm and produced CO2 emissions of 6,355,809 tons ha-1.

  11. Reduction of trichloroethylene and nitrate by zero-valent iron with peat.

    PubMed

    Min, Jee-Eun; Kim, Meejeong; Pardue, John H; Park, Jae-Woo

    2008-02-01

    The feasibility of using zero-valent iron (ZVI) and peat mixture as in situ barriers for contaminated sediments and groundwater was investigated. Trichloroethylene (TCE) and nitrate (NO(3)(-)), redox sensitive contaminants were reduced by ZVI and peat soil mixture under anaerobic condition. Peat was used to support the sorption of TCE, microbial activity for biodegradation of TCE and denitrification while TCE and nitrate were reduced by ZVI. Decreases in TCE concentrations were mainly due to ZVI, while peat supported denitrifying microbes and further affected the sorption of TCE. Due to the competition of electrons, nitrate reduction was inhibited by TCE, while TCE reduction was not affected by nitrate. From the results of peat and sterilized peat, it can be concluded that peat was involved in both dechlorination and denitrification but biological reduction of TCE was negligible compared to that of nitrate. The results from hydrogen and methane gas analyses confirmed that hydrogen utilization by microbes and methanogenic process had occurred in the ZVI-peat system. Even though effect of the peat on TCE reduction were quantitatively small, ZVI and peat contributed to the removal of TCE and nitrate independently. The 16S rRNA analysis revealed that viable bacterial diversity was narrow and the most frequently observed genera were Bacillus and Staphylococcus spp.

  12. Methane ebullition fluxes from northern peatlands: initial observations from four sites of contrasting vegetation type in Caribou Bog, ME

    NASA Astrophysics Data System (ADS)

    Slater, L. D.; Comas, X.; Mumford, K. G.; Reeve, A. S.; Varner, R. K.; Chen, X.; Wright, W.; Wright, J.; Molnar, I. L.; Krol, M.

    2017-12-01

    The contribution of peatlands to the atmospheric CH4 burden remains unclear in large part due to incomplete understanding of the ebullition pathway. Oxidation of dissolved methane reduces the release of methane by diffusion, but the transit time of bubbles released via ebullition is too short for extensive oxidation to occur, i.e. ebullition releases increase the greenhouse gas potential of peatlands. We are working to couple innovative strategies for ebullition monitoring with a physical model describing gas transport in terms of the mechanical properties of the peat. This integration of measurement and modeling will permit a fundamental step forward towards a more quantitative understanding of CH4 ebullition from peatlands. Sampling and sensor installation have been performed in Caribou Bog, a multi-unit peatland located in Maine (USA) where an extensive database accounting for a decade of research is already available from previous work examining methane dynamics. Multi-depth gas trap and moisture probe arrays have been installed at four sites selected based on contrasting vegetation type and peat basin depth determined from extensive ground penetrating radar surveys. Hydraulic head measurements have also been acquired on multi-level piezometers designed to capture transient signals associated with gas transport. Cores and initial field observations acquired in summer 2017 confirm that the physical properties of the peat vary markedly between the sites and influence gas storage and release. An existing ebullition model describing gas bubble expansion is being coupled with an invasion percolation approach to describe the transport of CH4 between multiple peat layers by both diffusion in the pore water and ebullition between layers. Although the proposed model does not explicitly incorporate the geomechanical properties of peat, model predictions for maximum gas contents are being compared with key measurable geomechanical properties (including measured capillary drainage curves for peat) that may control ebullition.

  13. Physico-chemical and chemical properties of some coconut coir dusts for use as a peat substitute for containerised ornamental plants.

    PubMed

    Abad, Manuel; Noguera, Patricia; Puchades, Rosa; Maquieira, Angel; Noguera, Vicente

    2002-05-01

    Selected physico-chemical and chemical characteristics of 13 coconut coir dust (mesocarp pithy tissue plus short-length fibres) samples from Asia, America and Africa were evaluated as peat alternatives. All properties studied differed significantly between and within sources, and from the control Sphagnum peat. pH of coir dust was slightly acidic, whereas salinity varied dramatically between 39 and 597 mS m(-1) in the saturated media extract. The cation exchange capacity and carbon/nitrogen (C/N) ratio ranged from 31.7 to 95.4 cmol(c) kg(-1) and from 75 to 186, respectively. Most carbon was found as lignin and cellulose. The concentrations of available nitrogen, calcium, magnesium and micro-elements were low, while those of phosphorus and potassium were remarkably high (0.28-2.81 mol m(-3) and 2.97-52.66 mol m(-3) for P and K, respectively). Saline ion concentrations, especially chloride and sodium, were also high.

  14. Proton and metal ion binding to natural organic polyelectrolytes-II. Preliminary investigation with a peat and a humic acid

    USGS Publications Warehouse

    Marinsky, J.A.; Reddy, M.M.

    1984-01-01

    We summarize here experimental studies of proton and metal ion binding to a peat and a humic acid. Data analysis is based on a unified physico-chemical model for reaction of simple ions with polyelectrolytes employing a modified Henderson-Hasselbalch equation. Peat exhibited an apparent intrinsic acid dissociation constant of 10-4.05, and an apparent intrinsic metal ion binding constant of: 400 for cadmium ion; 600 for zinc ion; 4000 for copper ion; 20000 for lead ion. A humic acid was found to have an apparent intrinsic proton binding constant of 10-2.6. Copper ion binding to this humic acid sample occurred at two types of sites. The first site exhibited reaction characteristics which were independent of solution pH and required the interaction of two ligands on the humic acid matrix to simultaneously complex with each copper ion. The second complex species is assumed to be a simple monodentate copper ion-carboxylate species with a stability constant of 18. ?? 1984.

  15. Temperature sensitivity differences with depth and season between carbon, nitrogen, and phosphorus cycling enzyme activities in an ombrotrophic peatland system

    NASA Astrophysics Data System (ADS)

    Steinweg, J. M.; Kostka, J. E.; Hanson, P. J.; Schadt, C. W.

    2017-12-01

    Northern peatlands have large amounts of soil organic matter due to reduced decomposition. Breakdown of organic matter is initially mediated by extracellular enzymes, the activity of which may be controlled by temperature, moisture, and substrate availability, all of which vary seasonally throughout the year and with depth. In typical soils the majority of the microbial biomass and decomposition occurs within the top 30cm due to reduced organic matter inputs in the subsurface however peatlands by their very nature contain large amounts of organic matter throughout their depth profile. We hypothesized that potential enzyme activity would be greatest at the surface of the peat due to a larger microbial biomass compared to 40cm and 175cm below the surface and that temperature sensitivity would be greatest at the surface during winter but lowest during the summer due to high temperatures and enzyme efficiency. Peat samples were collected in February, July, and August 2012 from the DOE Spruce and Peatland Responses Under Climatic and Environmental Change project at Marcell Experimental Forest S1 bog. We measured potential activity of hydrolytic enzymes involved in three different nutrient cycles: beta-glucosidase (carbon), leucine amino peptidase (nitrogen), and phosphatase (phosphorus) at 15 temperature points ranging from 3°C to 65°C. Enzyme activity decreased with depth as expected but there was no concurrent change in activation energy (Ea). The reduction in enzyme activity with depth indicates a smaller pool which coincided with a decreased microbial biomass. Differences in enzyme activity with depth also mirrored the changes in peat composition from the acrotelm to the catotelm. Season did play a role in temperature sensitivity with Ea of β-glucosidase and phosphatase being the lowest in August as expected but leucine amino peptidase (a nitrogen acquiring enzyme) Ea was not influenced by season. As temperatures rise, especially in winter months, enzymatic carbon and phosphorus acquisition in the Marcell bog may increase whereas nitrogen acquisition would remain unchanged. The lack of temperature response for leucine amino peptidase has been measured in other systems but may be less of a concern in the Marcell bog due to low microbial biomass and enzymatic activity at depth and relatively low peat C:N ratios.

  16. Removal of metal(oid)s from contaminated water using iron-coated peat sorbent.

    PubMed

    Kasiuliene, Alfreda; Carabante, Ivan; Bhattacharya, Prosun; Caporale, Antonio Giandonato; Adamo, Paola; Kumpiene, Jurate

    2018-05-01

    This study aimed at combining iron and peat to produce a sorbent suitable for a simultaneous removal of cations and anions from a solution. Peat powder, an industrial residue, was coated with iron by immersing peat into iron salt solutions. The adsorption efficiency of the newly produced sorbent towards As, Cr, Cu and Zn was tested by means of batch adsorption experiments at a constant pH value of 5. Coating of Fe on peat significantly increased the adsorption of As (from <5% to 80%) and Cr (from <3% to 25%) in comparison to uncoated peat. Removal of cations on coated peat slightly decreased (by 10-15%), yet remained within acceptable range. Electron Microscopy combined with X-Ray Energy Dispersive Spectroscopy revealed that iron coating on the peat was rather homogenous and As and Cr were abundantly adsorbed on the surface. By contrast, Cu and Zn displayed a sparing distribution on the surface of the iron coated peat. These results indicate that iron-peat simultaneously target sufficient amounts of both cations and anions and can be used for a one-step treatment of contaminated groundwater. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Relationship between peat geochemistry and depositional environments, Cranberry Island, Maine

    USGS Publications Warehouse

    Raymond, R.; Cameron, C.C.; Cohen, A.D.

    1987-01-01

    The Heath, Great Cranberry Island, Maine, offers a unique locality for studying lateral and vertical relationships between radically different peat types within 1 km2. The majority of The Heath is a Sphagnum moss-dominated raised bog. Surrounding the raised bog is a swamp/marsh complex containing grass, sedge, Sphagnum moss, alder, tamarack, and skunk cabbage. Swamp/ marsh-deposited peat occurs both around the margins of The Heath and under Sphagnum-dominated peat, which was deposited within the raised bog. A third peat type, dominated by herbaceous aquatics, is present underlying the swamp/marsh-dominated peat but is not present as a dominant botanical community of The Heath. The three peat types have major differences in petrographic characteristics, ash contents, and associated minerals. Sulfur contents range from a low of 0.19 wt.% (dry) within the raised bog to a high of 4.44 wt% (dry) near the west end of The Heath, where swamp/marsh peat occurring directly behind a storm beach berm has been influenced by marine waters. The presence of major geochemical variations within a 1-km2 peat deposit suggests the need for in-depth characterization of potential peat resources prior to use. ?? 1987.

  18. Biofiltration using peat and a nutritional synthetic packing material: influence of the packing configuration on H2S removal.

    PubMed

    Dumont, Eric; Cabral, Flavia Da Silva; Le Cloirec, Pierre; Andrès, Yves

    2013-01-01

    This study aims to evaluate the feasibility of using a nutritional synthetic material (UP20) combined with fibrous peat as a packing material in treating H2S (up to 280 ppmv). Three identical laboratory-scale biofilters with different packing material configurations (peat only; peat + UP20 in a mixture; peat + UP20 in two layers) were used to determine the biofilter performances. The superficial velocity of the polluted gas on each biofilter was 65 m/h (gas flow rate 0.5 Nm3 /h) corresponding to an empty bed residence time = 57 s. Variations in elimination capacity, removal efficiency, temperature and pH were tracked during 111 d. A removal efficiency of 100% was obtained for loading rates up to 6 g/m3/h for the biofilter filled with 100% peat, and up to 10 g/m3/h for both biofilters using peat complemented with UP20. For higher loading rates (up to 25.5 g/m3/h), the configuration ofpeat-UP20 in a mixture provided the best removal efficiencies (around 80% compared to 65% for the configuration of peat-UP20 in two layers and 60% for peat only). Microbial characterization highlighted that peat is able to provide sulfide-oxidizing bacteria. Through kinetic analysis (Ottengrafand Michaelis-Menten models were applied), it appeared that the configuration peat-UP20 in two layers (80/20 v/v) did not show significant improvement compared with peat alone. Although the configuration of peat-UP20 in a mixture (80/20 v/v) offered a real advantage in improving H2S treatment, it was shown that this benefit was related to the bed configuration rather than the nutritional properties of UP20.

  19. Sulfur cycling in wetland peat of the New Jersey Pinelands and its effect on stream water chemistry

    NASA Astrophysics Data System (ADS)

    Mandernack, Kevin W.; Lynch, L.; Krouse, H. R.; Morgan, M. D.

    2000-12-01

    The dynamics of sulfur cycling in wetland peat along an elevational transect at high, intermediate, and low locations (MS, NW, and LB sites, respectively) was investigated in the watershed of McDonalds Branch within the New Jersey Pinelands, by utilizing both soil incubation experiments (with 35SO 42- as a radiotracer) and stable isotope (δ 34S and δ 18O) analyses of soil, rain, and streamwater. The results indicate that sulfur cycling can vary greatly among different portions of the watershed and this can have large effects on streamwater chemistry and δ 34S values over distances as short as 1 km. Laboratory incubations of peat samples collected in July 1993 revealed the co-occurrence of dissimilatory sulfate reduction (DSR; rates ranging from 0.2 to 22.1 nmol/wet g/day) and net generation of sulfate (NaH 2PO 4 extractable) in the porewater. Generation of sulfate, which was most pronounced at the LB site, may involve oxidation of reduced sulfur in the peat and/or hydrolysis of ester sulfates (ES). Seasonal changes in streamwater SO 42-/Cl - molar ratios were similar at LB and NW, being low during the summer and high in the winter, probably a result of higher rates of DSR within the peat during the summer. Consistent with this, higher δ 34S values of sulfate in streamwater at NW during the summer are attributable to kinetic isotope effects associated with DSR. In contrast to NW, δ 34S values of streamwater sulfate at LB were consistently lower, fluctuated little throughout the year, and were most negative during the summer (as much as 9‰ lower than streamwater at NW 1 km upstream). In comparison to NW, SO 42-/Cl - ratios were lower in streamwater at LB throughout most of the year except for reversals during the summer, which coincided with the lowest δ 34S values. In addition, there was a marked difference in the relationship of δ 18O vs. δ 34S of sulfate in LB and NW streamwater, further suggesting that sulfur cycling varies greatly over relatively short distances within this watershed. In order to explain some of these site-specific differences in streamwater SO 42-/Cl - ratios, δ 34S, and δ 18O values, we hypothesize that the ES pool at LB may, by means of hydrolysis or isotopic exchange with streamwater sulfate, serve as an additional source of isotopically light sulfate to streamwater throughout most of the year. During the summer, drier conditions lower the water table at LB and enhance oxidation of reduced sulfur which releases a pulse of even isotopically lighter sulfate to the stream.

  20. Environmental controls on δ13C variations of Sphagnum derived n-alkanes in the Dajiuhu peatland, central China

    NASA Astrophysics Data System (ADS)

    Huang, X.; Xue, J.; Wang, X.; WANG, H.; Meyers, P. A.; Qin, Y.; Gong, L.; Ding, W.

    2012-12-01

    Northern peatlands are one of the very important atmospheric carbon sinks and represent about 30% of the global soil organic carbon (Gorham, 1991). In peatland conditions, high water levels and consequent anoxia make them an important source of methane. A recent study revealed that methanotrophic bacteria growing on stems or in hyaline cells of Sphagnum can provide methane derived carbon for photosynthesis (Raghoebarsing et al., 2005). This interaction has been found to be globally prevalent in peat-moss ecosystems and can contribute up to 30% of carbon for Sphagnum photosynthesis (Kip et al., 2010). Due to the uptake of 13C-depleted methane-derived CO2 and the sensitivity of methane oxidizing bacteria to the surface wetness, the carbon isotopic signatures of Sphagnum derived lipids have the potential to be used as a proxy for the surface wetness in peatlands and hence as paleoclimate archives (Nichols et al., 2009). In this study, we report the δ13C variations of the Sphagnum derived n-C23 alkane in both fresh Sphagnum and surface peat samples in the Dajiuhu peatland, a small fen located in the Shennongjia forestry region, Hubei province, central China. The δ13C23 values of Sphagnum show a negative correlation with the water level, supporting the idea that that the carbon isotope fractionation of Sphagnum is mainly manifested by the diffusion resistance of CO2 in hyaline cells of Sphagnum. However, δ13C23 values of surface peats collected in Sphagnum dominated ecosystems display a positive relation with the water level when the water level is less than 30 cm. Such an inconsistency probably results from the higher potential for methane-oxidizing activity in the lower parts of Sphagnum in fen meadows. When the water level is higher than 30 cm, the influence of symbiotic methanotrophic bacteria on Sphagnum derived n-C23 alkane is weak or nearly absent. These findings provide direct evidence to support the hypothesis that the carbon isotopic signatures of Sphagnum derived lipids can be used as a proxy of surface wetness in peatlands. References Gorham, E., 1991. Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecological Applications, 1, 182-195. Kip, N., van Winden, J.F., Pan, Y., et al., 2010. Global prevalence of methane oxidation by symbiotic bacteria in peat-moss ecosystems. Nature Geosciences 3, 617-621. Nichols, JE, Walcott, M, Bradley, R., et al., 2009. Quantitative assessment of precipitation seasonality and summer surface wetness using ombrotrophic sediments from an Arctic Norwegian peatland. Quaternary Research, 2009, 72: 443-451. Raghoebarsing, A.A., Smolders, A.J.P., Schmid, M.C., et al., 2005. Methanotrophic symbionts provide carbon for photosynthesis in peat bogs. Nature 436, 1153-1156.

  1. The Late Holocene Stratigraphy of an Inlet-Dominated Barrier Island, Pea Island, North Carolina.

    NASA Astrophysics Data System (ADS)

    Smith, C. G.; Ames, D.; Corbett, D. R.; Culver, S.; Mallinson, D.; Riggs, S. R.; Vance, D.

    2002-12-01

    Sedimentological, foraminiferal, geochemical, and geophysical data sets as well as aerial photographs have been used to investigate the natural processes (inlet dynamics, ocean/estuarine washover, and sea-level change) responsible for the late Holocene units preserved in the barrier island subsurface at Pea Island National Wildlife Refuge. Historic nautical charts indicate that three inlets characterized Pea Island between early European exploration (1590) and the late 19th century; aerial photographs show New Inlet open in 1932 and 1940. Vibracores (up to 5.5 m) collected along three transects across Pea Island extend our knowledge of the geological evolution of this region to pre-historic times. The section in the longest core (PI01S6) consists of four fining-upwards depositional sequences. The basal unit of each sequence is a bedded, medium to fine, clean quartz sand with increasing concentrations of organic matter (3-4 % detrital and 5-7 % in situ Spartina alterniflora roots) or irregular mud clasts (2-5 cm) to spherical mud balls (1-2 cm) up core. The clean sand units have so far proven to be barren of foraminifera except for a shelly unit at ca. 220 cm below MSL. The foraminiferal assemblage in this unit is of open shelf character (Elphidium excavatum, Hanzawaia strattoni, and Buccella inusitata). A 14C age on a disarticulated Chione cancellata valve from this unit is cal. 930+/-60 BP. The sand grades into a gray, tight mud in the first two sequences and into an inter-laminated mud and in situ peat in the third sequence. The peat contains leaf fragments and rhizomes of the marsh plants Juncus roemarianus, Spartina cynosuroides, and/or Phragmites spp. The peat and muddy sand units contain marsh foraminifera (Trochammina spp., Miliammina fusca, Arenoparrella mexicana), which are also found in modern marsh deposits. A peat sample from the third fining upward sequence (the only one to grade into a true peat) has a 14C age of cal. 395+/-35 BP, cal. 295+/-35 BP, or cal 180+/-40 BP. The four fining-upwards sequences have sharp erosional basal contacts. These deposits appear to reflect back-barrier processes including sequential deposition of flood-tide delta sands and/or sound sands adjacent to marshes. The shelly sands, containing open shelf foraminiferal assemblages, represent oceanic overwash, inlet deposits, or open embayment sands deposited behind a laterally extensive breach in the barrier island. The sequences are capped by the deposits of modern environments that include algal flats, tidal creeks, high and low marshes, back-barrier berms, overwash fans, and aeolian dunes. Several of the modern environments became covered with marsh vegetation after the construction of barrier dune ridges in the late 1930?s.

  2. Impact of prescribed and repeated vegetation burning on blanket peat hydrology

    NASA Astrophysics Data System (ADS)

    Holden, Joseph; Brown, Lee; Palmer, Sheila; Johnston, Kerrylyn; Wearing, Catherine; Irvine, Brian

    2013-04-01

    In some peatlands there has been a tradition over the past century of burning vegetation to manage the landscape for a range of purposes. These include producing an environment suitable for game birds used in the gun sports industry and reducing the biomass fuel load to reduce possible wildfire damage to the peat. However, there have been few studies that have interrogated the impacts of this activity on peatland hydrological processes both at the plot scale and at the catchment scale. The EMBER project measured water tables, overland flow, hydraulic conductivity, stream discharge, and a myriad of aquatic invertebrate and peat physical and water chemistry indicators (at plot and stream scale) in ten upland blanket peat catchments in the UK. Five catchments were subject to a history of prescribed rotational patch burning with burning taking place each year over a proportion of the catchment (typically 5-10 %) but where for an individual patch the interval was typically 10-20 years. The other five catchments acted as controls which were not subject to burning, nor confounded by other detrimental activities such as drainage or forestry. Stream flows were flashier in response to rainfall in the catchments with prescribed burning patches and had greater rainfall to runoff efficiencies. Water tables were found to be significantly shallower with a smaller interquartile range for unburnt catchments. In the burnt catchments, more recently burnt plots had significantly greater mean water table depths and water table residence times were much less frequent within the upper 10 cm of the peat profile compared to plots that been burned more than a decade before. The water table residence curves will be explored in the presentation. The occurrence of overland flow was significantly impacted by both burning and time since burn with significantly less overland flow recorded for more recently burnt sites. This ties in well with our water table data since blanket peat systems are dominated by saturation processes rather than infiltration-excess overland flow. In this presentation we focus on the hydrological findings from the EMBER project but where relevant we relate these to other supporting environmental data we collected in order to interrogate process explanations for the differences we observed. For example, surface and near-surface peat temperatures were significantly more variable (both warmer and cooler depending on season and time of day) for burnt sites (and for patches burnt < 5 yrs prior to monitoring within burnt sites) but with warmer peat associated with burning overall. The results provide clear evidence that prescribed vegetation burning on blanket peat significantly impacts peatland hydrology at both the plot and stream scale and therefore raises issues for government bodies who have legal responsibility to protect many peatland landscapes, their integrity, their biogeochemical functions and the ecosystem services that peatlands provide.

  3. Using a microfossil-based approach to constrain megathrust-induced coseismic land displacement in coastal Oregon, USA

    NASA Astrophysics Data System (ADS)

    Hawkes, A. D.; Horton, B. P.

    2007-05-01

    Paleoseismologists infer the amount of coseismic subsidence during plate-boundary earthquakes from stratigraphic changes in microfossils across sharp peat-mud and peat-sand contacts. However, the use of lithostratigraphic-based reconstructions is associated with a number of limitations, and these become particularly significant when examining low amplitude, short period variations that occur during a plate-boundary earthquake. To address this, paleoecologists working in the coastal zone have recently adopted a transfer- function approach to environmental reconstruction. Continuing subduction of the Juan de Fuca plate beneath the North America plate constitutes a major seismic hazard in the Pacific Northwest. The subduction zone interface presently lacks seismicity. The timing of the last great earthquake along the Cascadia subduction zone (1700AD) is now well refined by Japanese records of an orphan tsunami (no causal earthquake was felt in Japan) that was generated from an earthquake off the Pacific Northwest on the evening of January 26th 1700AD. I will apply the transfer function to modern foraminiferal datasets along coastal Oregon to analyze the fossil record and quantitatively determine the amount of vertical land movement associated with the 1700AD earthquake event. To date, we have collected 7 modern transects totaling 132 samples from the intertidal zone to the upland. We have also collected 9 cores recording the 1700AD earthquake. Furthermore, a 4m vibracore was collected and contains between 3 and 5 potential earthquake horizons. The 1700AD earthquake in the vibracore shows a distinct litho- and biostratigraphical change representing an instantaneous episode of subsidence of approximately 1m. However, development and application of the transfer function to such events will provide quantitative constrained estimates of coseismic land movement. Measurements that are more accurate are necessary to help modelers develop simulations that are more realistic in order to better assess earthquake and tsunami hazards. This will enable efficient and effective mitigation planning and preparation to minimize the personal and economic costs associated with such hazards.

  4. Preliminary investigation of the formation age and chemical characterization of the tropical peat in the middle Sepik Plain, northern Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Ono, Eisuke; Umemura, Mitsutoshi; Ishida, Takuya; Takenaka, Chisato

    2015-12-01

    Seven gouge cores in the middle Sepik Plain (northern Papua New Guinea) were bored to clarify the depositional age and the chemical characteristics of the tropical peat. The weakly-acidic peat layer (3-4 m thick) is distributed around the south bank of the Blackwater Lakes. The peat layer consists mainly of sago palm and grass remains within a mineral matrix of very fine sand and clay. Radiocarbon dating indicates that the peat's formation had commenced by 3,710-3,560 cal BP. Nitrogen and exchangeable potassium reach their highest values in the upper 60 cm of the peat column. Conversely, exchangeable sodium, calcium and magnesium, as well as carbon, increase their values with depth in the peat. These differences in the exchangeable cations' contribution suggest changes in the plant species, which were decomposed during the peat's formation.

  5. Stratigraphic response of salt marshes to slow rates of sea-level change

    NASA Astrophysics Data System (ADS)

    Daly, J.; Bell, T.

    2006-12-01

    Conventional models of salt-marsh development show an idealized spatial relationship between salt-marsh floral and foraminiferal zones, where the landward margin of the marsh gradually migrates inland in response to sea-level rise. This model predicts that transgression will result in persistent and possibly expanded salt marshes at the surface, depending on a variety of factors including sediment supply, hydrologic conditions, tidal range, and rate of sea-level rise. However, in areas with abundant sediment supply and slow rates of sea- level rise, the extent of back-barrier salt marshes may decline over time as the barrier-spits mature. Sea level around the northeast coast of Newfoundland is rising at a very slow rate during the late Holocene (<0.5 mm/yr). Sandy barrier-spits and tombolos are common coastal features, but salt marshes are rare. The generalized stratigraphy of dutch cores collected in back-barrier settings in this region is a surface layer of sphagnum peat with abundant woody roots, underlain by sedge-dominated peat that transitions gradually to a thin layer of Juncus sp. peat with agglutinated foraminifera, dominantly Jadammina macrescens and Balticammina pseudomacrescens. These basal peats are interpreted as salt-marsh peats, characterized by the presence of foraminifera that are absent in overlying peat units. This sequence indicates that salt marshes developed in back-barrier environments during the initial stages of barrier progradation, then gradually transitioned to environments increasingly dominated by freshwater flora. These transitions are interpreted to reflect the progradation of the spit, decreased tidal exchange in the back-barrier, and increased influence of freshwater streams discharging into the back-barrier setting. Decreased marine influence on the back-barrier environment leads to a floral and faunal shift associated with a regressive stratigraphy in an area experiencing sea-level rise. For studies of Holocene sea-level change requiring salt-marsh stratigraphic records, it is necessary to account for changing micro-environments to locate sites appropriate for study; salt marshes may play an important role in defining the record, but may not exist at the surface to guide investigation.

  6. Molybdenum-Based Diazotrophy in a Sphagnum Peatland in Northern Minnesota

    PubMed Central

    Warren, Melissa J.; Lin, Xueju; Gaby, John C.; Kretz, Cecilia B.; Kolton, Max; Morton, Peter L.; Pett-Ridge, Jennifer; Weston, David J.; Schadt, Christopher W.; Kostka, Joel E.

    2017-01-01

    ABSTRACT Microbial N2 fixation (diazotrophy) represents an important nitrogen source to oligotrophic peatland ecosystems, which are important sinks for atmospheric CO2 and are susceptible to the changing climate. The objectives of this study were (i) to determine the active microbial group and type of nitrogenase mediating diazotrophy in an ombrotrophic Sphagnum-dominated peat bog (the S1 peat bog, Marcell Experimental Forest, Minnesota, USA); and (ii) to determine the effect of environmental parameters (light, O2, CO2, and CH4) on potential rates of diazotrophy measured by acetylene (C2H2) reduction and 15N2 incorporation. A molecular analysis of metabolically active microbial communities suggested that diazotrophy in surface peat was primarily mediated by Alphaproteobacteria (Bradyrhizobiaceae and Beijerinckiaceae). Despite higher concentrations of dissolved vanadium ([V] 11 nM) than molybdenum ([Mo] 3 nM) in surface peat, a combination of metagenomic, amplicon sequencing, and activity measurements indicated that Mo-containing nitrogenases dominate over the V-containing form. Acetylene reduction was only detected in surface peat exposed to light, with the highest rates observed in peat collected from hollows with the highest water contents. Incorporation of 15N2 was suppressed 90% by O2 and 55% by C2H2 and was unaffected by CH4 and CO2 amendments. These results suggest that peatland diazotrophy is mediated by a combination of C2H2-sensitive and C2H2-insensitive microbes that are more active at low concentrations of O2 and show similar activity at high and low concentrations of CH4. IMPORTANCE Previous studies indicate that diazotrophy provides an important nitrogen source and is linked to methanotrophy in Sphagnum-dominated peatlands. However, the environmental controls and enzymatic pathways of peatland diazotrophy, as well as the metabolically active microbial populations that catalyze this process, remain in question. Our findings indicate that oxygen levels and photosynthetic activity override low nutrient availability in limiting diazotrophy and that members of the Alphaproteobacteria (Rhizobiales) catalyze this process at the bog surface using the molybdenum-based form of the nitrogenase enzyme. PMID:28667112

  7. Molybdenum-based diazotrophy in a Sphagnum peatland in northern Minnesota.

    PubMed

    Warren, Melissa J; Lin, Xueju; Gaby, John C; Kretz, Cecilia B; Kolton, Max; Morton, Peter L; Pett-Ridge, Jennifer; Weston, David J; Schadt, Christopher W; Kostka, Joel E; Glass, Jennifer B

    2017-06-30

    Microbial N 2 fixation (diazotrophy) represents an important nitrogen source to oligotrophic peatland ecosystems, which are important sinks for atmospheric CO 2 and susceptible to changing climate. The objectives of this study were: (i) to determine the active microbial group and type of nitrogenase mediating diazotrophy in a ombrotrophic Sphagnum -dominated peat bog (the S1 peat bog, Marcell Experimental Forest, Minnesota, USA); and (ii) to determine the effect of environmental parameters (light, O 2 , CO 2 , CH 4 ) on potential rates of diazotrophy measured by acetylene (C 2 H 2 ) reduction and 15 N 2 incorporation. Molecular analysis of metabolically active microbial communities suggested that diazotrophy in surface peat was primarily mediated by Alphaproteobacteria ( Bradyrhizobiaceae and Beijerinckiaceae ). Despite higher dissolved vanadium (V; 11 nM) than molybdenum (Mo; 3 nM) in surface peat, a combination of metagenomic, amplicon sequencing and activity measurements indicated that Mo-containing nitrogenases dominate over the V-containing form. Acetylene reduction was only detected in surface peat exposed to light, with the highest rates observed in peat collected from hollows with the highest water content. Incorporation of 15 N 2 was suppressed 90% by O 2 and 55% by C 2 H 2 , and was unaffected by CH 4 and CO 2 amendments. These results suggest that peatland diazotrophy is mediated by a combination of C 2 H 2 -sensitive and C 2 H 2 -insensitive microbes that are more active at low O 2 and show similar activity at high and low CH 4 Importance Previous studies indicate that diazotrophy provides an important nitrogen source and is linked to methanotrophy in Sphagnum -dominated peatlands. However, the environmental controls and enzymatic pathways of peatland diazotrophy, as well as the metabolically active microbial populations that catalyze this process remain in question. Our findings indicate that oxygen levels and photosynthetic activity override low nutrient availability in limiting diazotrophy, and that members of the Alphaproteobacteria ( Rhizobiales ) catalyze this process at the bog surface using the molybdenum-based form of the nitrogenase enzyme. Copyright © 2017 American Society for Microbiology.

  8. Peat

    USGS Publications Warehouse

    Apodaca, Lori E.

    2013-01-01

    The article looks at the U.S. peat market as of July 2013. Peat is produced from deposits of plant organic materials in wetlands and includes varieties such as reed-sedge, sphagnum moss, and humus. Use for peat include horticultural soil additives, filtration, and adsorbents. Other topics include effects of environmental protection regulations on peat extraction, competition from products such as coir, composted organic waste, and wood products, and peatland carbon sinks.

  9. Paleoecology of Middle Pennsylvanian-age peat-swamp plants in Herrin coal, Kentucky, U.S.A.

    USGS Publications Warehouse

    Winston, R.B.

    1988-01-01

    To develop a method for quantifying the vegetation of Pennsylvania-age coal beds, of four coal-ball (permineralized peat) profiles and four coal column samples from the Herrin coal bed (Kentucky No. 11) Carbondale Formation in western Kentucky were compared. An estimated 89.5% of the coal can be identified botanically. Compaction ratios for individual tissues were estimated using point counts of organic matter in coal balls. The estimated abundances of major plant groups (lycopods, ferns, sphenopsids, and pteridosperms) in coal balls differ by less than 10% compared to coal after accounting for differential compaction of plant tissues. Standard deviations in taxonomic and maceral composition among coal columns are generally less than 2%. Consistent differences in botanical composition were found between benches showing that the method is consistent when applied to sufficient thicknesses of coal. It was not possible to make fine-scale correlations within the coal bed using the vegetational data; either the flora varied considerably from place to place or the method of quantification is unreliable for small increments of coal (5 cm or less). In the coal, pteridosperm abundance is positively correlated with underlying shale partings. This correlation suggests that pteridosperms are favored either by higher nutrient levels or disturbance. In the third of four benches in the Herrin coal bed, a succession from Sigillaria-containing zones to zones dominated by Lepidophloios hallii is interpreted as a shift towards wetter conditions. In the other benches, the main factors controlling the taxonomic composition appear to have been the relative abundance of nutrients and/or the frequency of disturbance as indicated by the relative abundance of partings. Criteria for distinguishing between domed and planar swamps are discussed. These include: distribution of partings, type of plant succession, and changes in plant diversity, average plant size, preservational quality and sporinite content. The infrequency of partings in bench C suggests a peat dome developed while the peat of that bench was accumulating but other evidence either fails to support the development of a peat dome or is ambiguous. The maceral composition resembles those of other Carboniferous coals which are thought to have formed from planar peat swamps. Formation of fusain bands appears to be associated with processes occurring above the peat surface, such as burning or prolonged oxidative exposure. Oxidation of accumulated peat is unlikely because fusain bands rarely include more than a single plant. ?? 1988.

  10. Annual sulfate budgets for Dutch lowland peat polders: The soil is a major sulfate source through peat and pyrite oxidation

    NASA Astrophysics Data System (ADS)

    Vermaat, Jan E.; Harmsen, Joop; Hellmann, Fritz A.; van der Geest, Harm G.; de Klein, Jeroen J. M.; Kosten, Sarian; Smolders, Alfons J. P.; Verhoeven, Jos T. A.; Mes, Ron G.; Ouboter, Maarten

    2016-02-01

    Annual sulfate mass balances have been constructed for four low-lying peat polders in the Netherlands, to resolve the origin of high sulfate concentrations in surface water, which is considered a water quality problem, as indicated amongst others by the absence of sensitive water plant species. Potential limitation of these plants to areas with low sulfate was analyzed with a spatial match-up of two large databases. The peat polders are generally used for dairy farming or nature conservation, and have considerable areas of shallow surface water (mean 16%, range 6-43%). As a consequence of continuous drainage, the peat in these polders mineralizes causing subsidence rates generally ranging between 2 and 10 mm y-1. Together with pyrite oxidation, this peat mineralization the most important internal source of sulfate, providing an estimated 96 kg SO4 ha-1 mm-1 subsidence y-1. External sources are precipitation and water supplied during summer to compensate for water shortage, but these were found to be minor compared to internal release. The most important output flux is discharge of excess surface water during autumn and winter. If only external fluxes in and out of a polder are evaluated, inputs average 37 ± 9 and exports 169 ± 17 kg S ha-1 y-1. During summer, when evapotranspiration exceeds rainfall, sulfate accumulates in the unsaturated zone, to be flushed away and drained off during the wet autumn and winter. In some polders, upward seepage from early Holocene, brackish sediments can be a source of sulfate. Peat polders export sulfate to the regional water system and the sea during winter drainage. The available sulfate probably only plays a minor role in the oxidation of peat: we estimate that this is less than 10% whereas aerobic mineralization is the most important. Most surface waters in these polders have high sulfate concentrations, which generally decline during the growing season when aquatic sediments are a sink. In the sediment, this sulfur is reduced and binds iron more strongly than phosphorus, which can be released to the overlying water and potentially fuels eutrophication. About 76% of the sampled vegetation-sites exceeded a threshold of 50 mg l-1 SO4, above which sensitive species, such as Stratiotes aloides, and several species of Potamogeton were significantly less abundant. Thus high sulfate concentrations, mainly due to land drainage and consequent mineralization, appear to affect aquatic plant community composition.

  11. Quantity of dates trumps quality of dates for dense Bayesian radiocarbon sediment chronologies - Gas ion source 14C dating instructed by simultaneous Bayesian accumulation rate modeling

    NASA Astrophysics Data System (ADS)

    Rosenheim, B. E.; Firesinger, D.; Roberts, M. L.; Burton, J. R.; Khan, N.; Moyer, R. P.

    2016-12-01

    Radiocarbon (14C) sediment core chronologies benefit from a high density of dates, even when precision of individual dates is sacrificed. This is demonstrated by a combined approach of rapid 14C analysis of CO2 gas generated from carbonates and organic material coupled with Bayesian statistical modeling. Analysis of 14C is facilitated by the gas ion source on the Continuous Flow Accelerator Mass Spectrometry (CFAMS) system at the Woods Hole Oceanographic Institution's National Ocean Sciences Accelerator Mass Spectrometry facility. This instrument is capable of producing a 14C determination of +/- 100 14C y precision every 4-5 minutes, with limited sample handling (dissolution of carbonates and/or combustion of organic carbon in evacuated containers). Rapid analysis allows over-preparation of samples to include replicates at each depth and/or comparison of different sample types at particular depths in a sediment or peat core. Analysis priority is given to depths that have the least chronologic precision as determined by Bayesian modeling of the chronology of calibrated ages. Use of such a statistical approach to determine the order in which samples are run ensures that the chronology constantly improves so long as material is available for the analysis of chronologic weak points. Ultimately, accuracy of the chronology is determined by the material that is actually being dated, and our combined approach allows testing of different constituents of the organic carbon pool and the carbonate minerals within a core. We will present preliminary results from a deep-sea sediment core abundant in deep-sea foraminifera as well as coastal wetland peat cores to demonstrate statistical improvements in sediment- and peat-core chronologies obtained by increasing the quantity and decreasing the quality of individual dates.

  12. The ectomycorrhizal community of conifer stands on peat soils 12 years after fertilization with wood ash.

    PubMed

    Klavina, Darta; Pennanen, Taina; Gaitnieks, Talis; Velmala, Sannakajsa; Lazdins, Andis; Lazdina, Dagnija; Menkis, Audrius

    2016-02-01

    We studied long-term effects of fertilization with wood ash on biomass, vitality and mycorrhizal colonization of fine roots in three conifer forest stands growing in Vacciniosa turf. mel. (V), Myrtillosa turf. mel. (M) and Myrtillosa turf. mel./Caricoso-phragmitosa (MC) forest types on peat soils. Fertilization trials amounting 5 kg/m(2) of wood ash were established 12 years prior to this study. A total of 63 soil samples with roots were collected and analysed. Ectomycorrhizal (ECM) fungi in roots were identified by morphotyping and sequencing of the fungal internal transcribed spacer (ITS) region. In all forest types, fine root biomass was higher in fertilized plots than in control plots. In M forest type, proportion of living fine roots was greater in fertilized plots than in control plots, while in V and MC, the result was opposite. Fifty ECM species were identified, of which eight were common to both fertilized and control plots. Species richness and Shannon diversity index were generally higher in fertilized plots than in control plots. The most common species in fertilized plots were Amphinema byssoides (17.8%) and Tuber cf. anniae (12.2%), while in control plots, it was Tylospora asterophora (18.5%) and Lactarius tabidus (20.3%). Our results showed that forest fertilization with wood ash has long-lasting effect on diversity and composition of ECM fungal communities.

  13. Spatial-temporal controls on peatland carbon dynamics in the Hudson Bay Lowland, Canada: Reducing landscape-scale uncertainty in a changing climate

    NASA Astrophysics Data System (ADS)

    Packalen, M. S.; Finkelstein, S. A.; McLaughlin, J.

    2015-12-01

    Global peatlands currently store more than 650 Pg of carbon (C) that has accumulated over millennia, and contributed to a net climatic cooling. However, controls on spatial-temporal C dynamics may differ regionally. With at least 30 Pg C sequestered in the Hudson Bay Lowlands Canada (HBL), the vulnerability of this globally significant peat C reservoir remains uncertain under conditions of a changing climate and enhanced anthropogenic pressure. Here, we synthesize our current understanding of controls on C dynamics in the HBL using detailed peat records. Our data reveal that widespread bog-fen patterning across the HBL is related to the distribution of peat C in space and time, indicating that topographic and ecohydroclimatic controls are potentially important determinants of C mass accretion. We find that while peat age is closely related to timing of land emergence and peat depth in the HBL, considerable variation in the total C mass among sites of similar peat age suggests that additional factors may further explain trends in peat C dynamics. Among these factors, we find that temperature, precipitation, and potential evapotranspiration in the HBL account for up to half of the variation in the distribution of the peat C mass, whereby regions with warmer and wetter conditions support larger peat C masses. Moreover, we find that the rate of C accumulation is greatest for young fen peatlands developing during warmer mid-Holocene climates; but that long-term C stores are greatest in association with bog peatlands. Although nearly two-thirds of HBL peat C is of late Holocene age, most of the reconstructed potential C losses also occurred during the late Holocene, as previously accrued peat decayed. Our findings support the hypothesis that both climate and ecohydrological factors are important drivers of peat C dynamics in the HBL, alongside geophysical controls on the timing of peat initiation. As the HBL peat complex continues to rapidly expand, it may remain a globally significant C reservoir. However, conservative climate scenarios predict warmer and wetter conditions in the next century, beyond the range of past climate variability. Ongoing elucidation of controls on peat C dynamics may further inform our understanding of the response of the HBL peat C reservoir to future climate and resource management scenarios.

  14. Methodology for producing 100 tons of fuel peat for a cement plant test burn. Metodologia para producir 100 toneladas de turba combustible para una prueba de quema en uns planta de cemento (in English; Spanish)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, A.B.; Malavassi, L.; Ramirez, O.

    1989-05-01

    As a part of the Agency for International Development-funded cooperative project between Los Alamos and Costa Rica, the burning characteristics of Costa Rican peat were to be tested in an application. The cement plant owned by Industria National de Cemento in Cartago has a capability to handle solid fuel and was chosen for the burn demonstration. The Jungle No. 1 Peat Deposit near El Cairo was chosen as the site of the peat excavation. This peat production methodology study covers project site selection, installation of an access road and clearing of the jungle vegetation, removal of an upper layer ofmore » organic peat, excavation of fuel-grade peat, transport of the peat to the drying site, and drying and stockpiling of the finished product. As of this date the peat removal for the demonstration project has been started, and a description of the operation is included as an appendix to this paper. 10 figs.« less

  15. Development of recent chronologies and evaluation of temporal variations in Pb fluxes and sources in lake sediment and peat cores in a remote, highly radiogenic environment, Cairngorm Mountains, Scottish Highlands

    NASA Astrophysics Data System (ADS)

    Farmer, John G.; MacKenzie, Angus B.; Graham, Margaret C.; Macgregor, Kenneth; Kirika, Alexander

    2015-05-01

    The use of stable Pb isotope analyses in conjunction with recent (210Pb and anthropogenic radionuclide) chronologies has become a well-established method for evaluating historical trends in depositional fluxes and sources of atmospherically deposited Pb using archival records in lake sediment or peat cores. Such studies rely upon (i) simple radioactive disequilibrium between unsupported 210Pb and longer-lived members of the 238U decay series and (ii) well-defined values for the isotopic composition of contaminant Pb and indigenous Pb in the study area. However, areas of high natural radioactivity can present challenging environments for such studies, with potential complications arising from more complex disequilibria in the 238U decay series and the occurrence, at local or regional level, of anomalous, ill-defined stable isotope ratios due to the presence of elevated levels of radiogenic Pb. Results are presented here for a study of a sediment core from a freshwater lake, Loch Einich, in the high natural radioactivity area of the Cairngorm Mountains of Scotland. 238U decay series disequilibria revealed recent diagenetic re-deposition of both U and 226Ra, the latter resulting in a requirement to use a modified calculation to derive a 210Pb chronology for the core. Confidence in the chronology was provided by good agreement with the independent 241Am chronology, but the 137Cs distribution was affected by significant post-depositional mobility in the organic-rich sediment. The systematics of variations in 230Th, 232Th and stable Pb isotope ratio distributions were used to establish the indigenous Pb characteristics of the sediment. The relatively high radiogenic content of the indigenous Pb resulted in complications in source apportionment, in particular during the 20th century, with multiple natural and anthropogenic sources precluding the use of a simple binary mixing model. Consequently, 206Pb/207Pb ratios in Scottish moss samples from an archive collection were used to provide the input term for atmospheric deposition in order to establish historical trends in indigenous and anthropogenic Pb fluxes. A test of the accuracy of the derived Pb fluxes was provided by analysis of a core from a nearby blanket peat deposit, Great Moss. Independent atmospheric and basal inputs gave a complex distribution of 210Pb in the peat, but this did not affect calculation of a 210Pb chronology. Once again, the 210Pb chronology was supported by the 241Am distribution. Temporal trends in anthropogenic Pb deposition derived for the Loch Einich sediment core were in generally good agreement with those for the Great Moss peat core, other peat cores and some other lake sediment cores from northern Scotland, providing confidence in the use of the archive moss data to characterise atmospheric deposition. However, sustained input of Pb to Loch Einich sediment at relatively high levels in the late 20th century, after the regional decline in atmospheric Pb deposition, suggested that catchment-derived Pb is now a significant component of the depositional flux for Loch Einich.

  16. Development and carbon sequestration of tropical peat domes in south-east Asia: links to post-glacial sea-level changes and Holocene climate variability

    NASA Astrophysics Data System (ADS)

    Dommain, René; Couwenberg, John; Joosten, Hans

    2011-04-01

    Tropical peatlands of SE-Asia represent a significant terrestrial carbon reservoir of an estimated 65 Gt C. In this paper we present a comprehensive data synthesis of radiocarbon dated peat profiles and 31 basal dates of ombrogenous peat domes from the lowlands of Peninsular Malaysia, Sumatra and Borneo and integrate our peatland data with records of past sea-level and climate change in the region. Based on their developmental features three peat dome regions were distinguished: inland Central Kalimantan (Borneo), Kutai basin (Borneo) and coastal areas across the entire region. With the onset of the Holocene the first peat domes developed in Central Kalimantan as a response to rapid post-glacial sea-level rise over the Sunda Shelf and intensification of the Asian monsoon. Peat accumulation rates in Central Kalimantan strongly declined after 8500 cal BP in close relation to the lowering rate of the sea-level rise and possibly influenced by the regional impact of the 8.2 ka event. Peat growth in Central Kalimantan apparently ceased during the Late Holocene in association with amplified El Niño activity as exemplified by several truncated peat profiles. Peat domes from the Kutai basin are all younger than ˜8300 cal BP. Peat formation and rates of peat accumulation were driven by accretion rates of the Mahakam River and seemingly independent of climate. Most coastal peat domes, the largest expanse of SE-Asian peatlands, initiated between 7000 and 4000 cal BP as a consequence of a Holocene maximum in regional rainfall and the stabilisation and subsequent regression of the sea-level. These boundary conditions induced the highest rates of peat accumulation of coastal peat domes. The Late Holocene sea-level regression led to extensive new land availability that allowed for continued coastal peat dome formation until the present. The time weighted mean Holocene peat accumulation rate is 0.54 mm yr -1 for Central Kalimantan, 1.89 mm yr -1 for Kutai and 1.77 mm yr -1 for coastal domes of Sumatra and Borneo. The mean Holocene carbon sequestration rates amount to 31.3 g C m -2 yr -1 for Central Kalimantan and 77.0 g C m -2 yr -1 for coastal sites, which makes coastal peat domes of south-east Asia the spatially most efficient terrestrial ecosystem in terms of long term carbon sequestration.

  17. Highly anomalous accumulation rates of C and N recorded by a relic, free-floating peatland in Central Italy

    PubMed Central

    Zaccone, Claudio; Lobianco, Daniela; Shotyk, William; Ciavatta, Claudio; Appleby, Peter G.; Brugiapaglia, Elisabetta; Casella, Laura; Miano, Teodoro M.; D’Orazio, Valeria

    2017-01-01

    Floating islands mysteriously moving around on lakes were described by several Latin authors almost two millennia ago. These fascinating ecosystems, known as free-floating mires, have been extensively investigated from ecological, hydrological and management points of view, but there have been no detailed studies of their rates of accumulation of organic matter (OM), organic carbon (OC) and total nitrogen (TN). We have collected a peat core 4 m long from the free-floating island of Posta Fibreno, a relic mire in Central Italy. This is the thickest accumulation of peat ever found in a free-floating mire, yet it has formed during the past seven centuries and represents the greatest accumulation rates, at both decadal and centennial timescale, of OM (0.63 vs. 0.37 kg/m2/yr), OC (0.28 vs. 0.18 kg/m2/yr) and TN (3.7 vs. 6.1 g/m2/yr) ever reported for coeval peatlands. The anomalously high accretion rates, obtained using 14C age dating, were confirmed using 210Pb and 137Cs: these show that the top 2 m of Sphagnum-peat has accumulated in only ~100 years. As an environmental archive, Posta Fibreno offers a temporal resolution which is 10x greater than any terrestrial peat bog, and promises to provide new insight into environmental changes occurring during the Anthropocene. PMID:28230066

  18. Peat

    USGS Publications Warehouse

    Jasinski, S.M.

    2006-01-01

    In 2005, peat was harvested in 15 US states. Florida, Michigan and Minnesota accounted for more than 80% of the US production. Reed-sedge was the dominant variety of peat harvested in the United States. More than 56% of all peat used in the US was imported from Canada. With the growing interest in gardening, landscaping related to home construction and golf courses, peat usage is expected to remain near current levels during the next several years.

  19. Influence of peat formation conditions on the transformation of peat deposit organic matter

    NASA Astrophysics Data System (ADS)

    Serebrennikova, O. V.; Strelnikova, E. B.; Preis, Yu I.; Duchko, M. A.

    2015-11-01

    The paper studies the individual composition of n-alkanes, polycycloaromatic hydrocarbons, steroids, bi-, tri-, and pentacyclic terpenoids of two peat deposits of rich fen Kirek located in Western Siberia. Considering the individual n-alkanes concentrations, some indexes were calculated to estimate the humidity during peat formation. It was shown that the pH of peat medium primarily affects steroids, tri- and pentacyclic terpenoids transformations.

  20. Content of radionuclides in the peat deposit of swamps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nifontova, M.G.; Makovskii, V.I.

    1995-11-01

    The results are given of comparative analysis of the content and transformation of {sup 90}Sr and {sup 137}Cs over a peat deposit of swamps. During radioecological study, account was taken of the quantitative composition and physicochemical properties of the peat, as well as of the specific nature of the entry of radioactive products to peat deposits. Considering the increased capacity of peat for accumulating radionuclides and the specific features of sorption processes in a peat deposit, it is expedient to utilize swamps as a convenient natural object for continuous monitoring of radioactive contamination of the environment.

  1. Micropetrographic characteristics of peats from modern coal-forming environments in Okefenokee Swamp, Georgia and Albemarle-Pamlico Peninsular Swamps, North Carolina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corvinus, D.A.

    1982-01-01

    The Okefenokee Swamp, over 400,000 acres, is a swamp-marsh complex dominated by Taxodium-swamp vegetaion on its west side and Nymphaea-marsh vegetation onits east side. The Albemarle-Pamlico Peninsular Swamps primarily support a pocosin-bay vegetation. The Taxodium-dominated peats of the Okefenokee are more similar botanically to the Albemarle-Pamlico bay peats than are the Okefenokee Nymphaea-dominated peats. Some petrographic characteristics are common to all three peat types. The majority of cell walls in the peat exhibit colors (yellow to orange to red) which they did not display in their living state. This is believed to be from impregnation by the various cell fillingsmore » present in the peats. Unoxidized fragmented (granular) material in all three peat types usually occurs in larger amounts than oxidized (darkened) material. In Taxodium-dominated and bay peats the fragmented matrix is also usually more prevalent than the preserved material (intact cell walls and cell fillings). On the other hand, preserved material is most common in Nymphaea-dominated peats. It is believed that the majority of fragmented material is derived from the surface litter and that swamp vegetation contributes more surface litter than does marsh vegetation.« less

  2. Mixing of Marine and Terrestrial Sources of Strontium in Coastal Environments

    NASA Astrophysics Data System (ADS)

    Ryan, Saskia; Crowley, Quentin; Deegan, Eileen; Snoeck, Christophe

    2017-04-01

    87Sr/86Sr from bulk soils, soil extracts and plant material have been used to investigate and quantify the extent of marine-derived Sr in the terrestrial biosphere. Samples were collected along coastal transects and 87Sr/86Sr biosphere values (plant and soil) converge to marine values with increasing proximity to the coast. R2values indicate highly significant trends in certain regions. The National Soils Database (NSDB), TELLUS and TELLUS Border datasets, all of which are geochemical surveys have been employed to further test the extent of marine elemental contribution. Collectively these data cover all of Ireland and Northern Ireland, with varying degrees of sampling density. A strong spatial correlation exists between the Chemical Index of Alteration (CIA; (Al2O3-(CaO*+Na2O)-K2O)) in topsoil (CIA <60; 27% n = 11651) and areas of blanket peat. The enrichment of Ca and Na in these regions would suggest a significant marine geochemical contribution. Topsoil CIA can therefore be used to identify areas likely to feature significant marine inputs and identify regions where the 87Sr/86Sr budget may deviate from bedrock values.

  3. The peats of Costa Rica (in English; Spanish)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thayer, G.R.

    Peat has been identified in Cost Rica, and an economic analysis of energy applications for peat has been done. About 1000 km{sup 2} of Cost Rica has the potential of being covered by peat. The Talamanca Mountains and the northeastern plains contain most of the Costa Rican peat. Specific bogs have been identified by the Medio Queso River in north-central Costa Rica and near El Cairo, Moin, and the Limon airport in northeastern Costa Rica. The Medio Queso bog, which is supplying peat for use as a carrier for nitrogen-fixing bacteria, and the El Cairo bog, which has been identifiedmore » as a source of horticultural peat for nearby ornamental plant farms, are of special interest. The economics of three energy applications of peat were examined -- as a fuel in large boilers, as a fuel in small boilers, and as an oil substitute in a cement plant. A facility using coal would have the same total costs as one using peat if coal prices were $45 and $30 per metric ton (used for large boilers and a cement plant, respectively). A facility using Bunker C or diesel would have the same total cost as one using peat if oil prices were $0.11, $0.08, and $0.06 per liter (used for large boilers, small boilers, and a cement plant, respectively). In all three cases, the costs for peat were comparable or less than the costs for coal and oil at 1987 prices. 6 refs., 8 figs.« less

  4. Smouldering Combustion of Soil Organic Matter: Inverse Modelling of the Thermal and Oxidative Degradation Kinetics

    NASA Astrophysics Data System (ADS)

    Huang, Xinyan; Rein, Guillermo

    2013-04-01

    Smouldering combustion of soil organic matter (SOM) such as peatlands leads to the largest fires on Earth and posses a possible positive feedback mechanism to climate change. In this work, a kinetic model, including 3-step chemical reactions and 1-step water evaporation is proposed to describe drying, pyrolysis and oxidation behaviour of peat. Peat is chosen as the most important type of SOM susceptible to smoudering, and a Chinese boreal peat sample is selected from the literature. A lumped model of mass loss based on four Arrhenius-type reactions is developed to predict its thermal and oxidative degradation under a range of heating rates. A genetic algorithm is used to solve the inverse problem, and find a group of kinetic and stoichiometric parameters for this peat that provides the best match to the thermogravimetric (TG) data from literature. A multi-objective fitness function is defined using the measurements of both mass loss and mass-loss rate in inert and normal atmospheres under a range of heating rates. Piece-wise optimization is conducted to separate the low temperature drying (<450 K) from the higher temperature pyrolysis and oxidation reaction (>450 K). Modelling results shows the proposed 3-step chemistry is the unique simplest scheme to satisfy all given TG data of this particular peat type. Afterward, this kinetic model and its kinetic parameters are incorporated into a simple one-dimensional species model to study the relative position of each reaction inside a smoulder front. Computational results show that the species model agrees with experimental observations. This is the first time that the smouldering kinetics of SOM is explained and predicted, thus helping to understanding this important natural and widespread phenomenon.

  5. The use of plant-specific pyrolysis products as biomarkers in peat deposits

    NASA Astrophysics Data System (ADS)

    Schellekens, Judith; Bradley, Jonathan A.; Kuyper, Thomas W.; Fraga, Isabel; Pontevedra-Pombal, Xabier; Vidal-Torrado, Pablo; Abbott, Geoffrey D.; Buurman, Peter

    2015-09-01

    Peatlands are archives of environmental change that can be driven by climate and human activity. Proxies for peatland vegetation composition provide records of (local) environmental conditions that can be linked to both autogenic and allogenic factors. Analytical pyrolysis offers a molecular fingerprint of peat, and thereby a suite of environmental proxies. Here we investigate analytical pyrolysis as a method for biomarker analysis. Pyrolysates of 48 peatland plant species were compared, comprising seventeen lichens, three Sphagnum species, four non-Sphagnum mosses, eleven graminoids (Cyperaceae, Juncaceae, Poaceae), five Ericaceae and six species from other families. This resulted in twenty-one potential biomarkers, including new markers for lichens (3-methoxy-5-methylphenol) and graminoids (ferulic acid methyl ester). The potential of the identified biomarkers to reconstruct vegetation composition is discussed according to their depth records in cores from six peatlands from boreal, temperate and tropical biomes. The occurrence of markers for Sphagnum, graminoids and lichens in all six studied peat deposits indicates that they persist in peat of thousands of years old, in different vegetation types and under different conditions. In order to facilitate the quantification of biomarkers from pyrolysates, typically expressed as proportion (%) of the total quantified pyrolysis products, an internal standard (5-α-androstane) was introduced. Depth records of the Sphagnum marker 4-isopropenylphenol from the upper 3 m of a Sphagnum-dominated peat, from samples analysed with and without internal standard showed a strong positive correlation (r2 = 0.72, P < 0.0005, n = 12). This indicates that application of an internal standard is a reliable method to assess biomarker depth records, which enormously facilitates the use of analytical pyrolysis in biomarker research by avoiding quantification of a high number of products.

  6. Critical evaluation of the use of the hydroxyapatite as a stabilizing agent to reduce the mobility of Zn and Ni in sewage sludge amended soils.

    PubMed

    Zupancic, Marija; Bukovec, Peter; Milacic, Radmila; Scancar, Janez

    2006-01-01

    The leachability of zinc (Zn) and nickel (Ni) was investigated in various soil types amended with sewage sludge and sewage sludge treated with hydroxyapatite. Sandy, clay and peat soils were investigated. For leachability tests, plastic columns (diameter 9 cm, height 50 cm) were filled with moist samples up to a height of 25 cm. Sewage sludge (1 kg) was mixed with 4.6 kg of clay and sandy soils and with 6.7 kg of peat soil. For sewage sludge mixtures treated with hydroxyapatite, 0.5 kg of the hydroxyapatite was added to 1 kg of the sewage sludge. Neutral (pH 7) and acid precipitation (pH 3.5) were applied. Acid precipitation was prepared from concentrated HNO(3), H(2)SO(4) and fresh doubly distilled water. The amount of precipitation corresponded to the average annual precipitation for the city of Ljubljana, Slovenia. It was divided into eight equal portions and applied sequentially on the top of the columns. The results indicated that the leachabilities of Zn in sewage sludge amended peat and clay soils were low (below 0.3% of total Zn content) and of Ni in sewage sludge amended sandy, clay and peat soil below 1.9% of total Ni content. In sewage sludge amended sandy soil, the leachability of Zn was higher (11% of Zn content). The pH of precipitation had no influence on the leachability of either metal. Treatment of sewage sludge with hydroxyapatite efficiently reduced the leachability of Zn in sewage sludge amended sandy soil (from 11% to 0.2% of total Zn content). In clay and peat sewage sludge amended soils, soil characteristics rather than hydroxyapatite treatment dominate Zn mobility.

  7. Degradation of Malaysian peatlands decreases levels of phenolics in soil and in leaves of Macaranga pruinosa

    NASA Astrophysics Data System (ADS)

    Yule, Catherine; Lim, Yau; Lim, Tse

    2016-04-01

    Indo-Malaysian tropical peat swamp forests (PSF) sequester enormous stores of carbon in the form of phenolic compounds, particularly lignin as well as tannins. These phenolic compounds are crucial for ecosystem functioning in PSF through their inter-related roles in peat formation and plant defenses. Disturbance of PSF causes destruction of the peat substrate, but the specific impact of disturbance on phenolic compounds in peat and its associated vegetation has not previously been examined. A scale was developed to score peatland degradation based on the three major human impacts that affect tropical PSF - logging, drainage and fire. The objectives of this study were to compare the amount of phenolic compounds in Macaranga pruinosa, a common PSF tree, and in the peat substrate along a gradient of peatland degradation from pristine peat swamp forest to cleared, drained and burnt peatlands. We examined phenolic compounds in M. pruinosa and in peat and found that levels of total phenolic compounds and total tannins decrease in the leaves of M.pruinosa and also in the surface peat layers with an increase in peatland degradation. We conclude that waterlogged conditions preserve the concentration of phenolic compounds in peat, and that even PSF that has been previously logged but which has recovered a full canopy cover will have high levels of total phenolic content (TPC) in peat. High levels of TPC in peat and in the flora are vital for the inhibition of decomposition of organic matter and this is crucial for the accretion of peat and the sequestration of carbon. Thus regional PSF flourish despite the phenolic rich, toxic, waterlogged, nutrient poor, conditions, and reversal of such conditions is a sign of degradation.

  8. Landscape-scale changes in forest canopy structure across a partially logged tropical peat swamp

    NASA Astrophysics Data System (ADS)

    Wedeux, B. M. M.; Coomes, D. A.

    2015-07-01

    Forest canopy structure is strongly influenced by environmental factors and disturbance, and in turn influences key ecosystem processes including productivity, evapotranspiration and habitat availability. In tropical forests increasingly modified by human activities, the interplaying effects of environmental factors and disturbance legacies on forest canopy structure across landscapes are practically unexplored. We used high-fidelity airborne laser scanning (ALS) data to measure the canopy of old-growth and selectively logged peat swamp forest across a peat dome in Central Kalimantan, Indonesia, and quantified how canopy structure metrics varied with peat depth and under logging. Several million canopy gaps in different height cross-sections of the canopy were measured in 100 plots of 1 km2 spanning the peat dome, allowing us to describe canopy structure with seven metrics. Old-growth forest became shorter and had simpler vertical canopy profiles on deeper peat, consistently with previous work linking deep peat to stunted tree growth. Gap Size Frequency Distributions (GSFDs) indicated fewer and smaller canopy gaps on the deeper peat (i.e. the scaling exponent of pareto functions increased from 1.76 to 3.76 with peat depth). Areas subjected to concessionary logging until 2000, and informal logging since then, had the same canopy top height as old-growth forest, indicating the persistence of some large trees, but mean canopy height was significantly reduced; the total area of canopy gaps increased and the GSFD scaling exponent was reduced. Logging effects were most evident on the deepest peat, where nutrient depletion and waterlogged conditions restrain tree growth and recovery. A tight relationship exists between canopy structure and the peat deph gradient within the old-growth tropical peat swamp. This relationship breaks down after selective logging, with canopy structural recovery being modulated by environmental conditions.

  9. The Impact of Tropical Peat Fire on Termite Assemblage in Sumatra, Indonesia: Reduced Complexity of Community Structure and Survival Strategies.

    PubMed

    Neoh, Kok-Boon; Bong, Lee-Jin; Muhammad, Ahmad; Itoh, Masayuki; Kozan, Osamu; Takematsu, Yoko; Yoshimura, Tsuyoshi

    2016-10-01

    Tropical peat swamp forests in Southeast Asia account for approximately 72% of global peatland. However, extensive forest exploitation following peat drainage for agricultural expansion has been leading to catastrophic peat fires. In this study, we compared the termite assemblage in burnt and unburnt peats in Sumatra, Indonesia. We also identified which taxonomic group is particularly resistant to fire disturbance and the traits that correlate with its persistence in fire-impacted peatlands. Overall, the termite species richness in fire-impacted peats was up to 40% lower than that of the total species found in peat swamp forests. Although the estimated species richness values in fire-impacted peats and peat swamp forests were not significantly different, fire changed termite community structure significantly. Only termites of the family Rhinotermitidae survived in the fire event, whereas members of the Termitidae that were reportedly resilient to fire and open habitats elsewhere disappeared during the fire events. The rhinotermitids found in the burnt sites were exclusively wood nesters. This suggests that the desiccation tolerance of termites in open habitat is not the simple underlying survival strategy, but tree branches and barks might have provided a refuge from heat during fire. The result also suggests that the high similarity in species composition in recently burnt peats and long burnt peats implies low species turnover. Thus, regardless of how much time had passed since the fire-impacted peats were abandoned or cultivated, the increase in habitat complexity did not favor colonization by the forest-dependent group. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Combustion and Gasification Properties of Plastics Particles.

    PubMed

    Zevenhoven, Ron; Karlsson, Magnus; Hupa, Mikko; Frankenhaeuser, Martin

    1997-08-01

    The combustion and gasification behavior of the most common plastics is studied and compared with conventional fuels such as coal, peat, and wood. The aim is to give background data for finding the optimum conditions for co-combustion or co-gasification of a conventional fuel with a certain amount of plastic-derived fuel. Atmospheric or pressurized fluidized bed co-combustion of conventional fuels and plastics are considered to be promising future options. The plastics investigated were poly(ethylene) (PE), poly(propylene) (PP), poly(styrene) (PS), and poly(vinyl chloride) (PVC). Some of the samples had a print or color. The reference fuels were Polish bituminous coal, Finnish peat, and Finnish pine wood. PE, PP, and PS were found to burn like oil. The particles shrank to a droplet and burned completely during the pyrolysis stage, leaving no char. Printing and coloring left a small portion of ash. PVC was the only plastic that produced a carbonaceous residue, and its timescales for heating, devolatilization, and char burning were of the same order as those for peat and wood, and much shorter for the other plastics studied. An important result is that char from PVC contains less than 1% chlorine,99% hydrocarbon. The gasification rate of PVC char (at 1 bar and 25 bar) was of the same order as that of char from coal. Peat-char and wood-char were gasified an order of magnitude faster.

  11. New Mechanisms of Mercury Binding to Peat

    NASA Astrophysics Data System (ADS)

    Nagy, K. L.; Manceau, A.; Gasper, J. D.; Ryan, J. N.; Aiken, G. R.

    2007-12-01

    Mercury can be immobilized in the aquatic environment by binding to peat, a solid form of natural organic matter. Binding mechanisms can vary in strength and reversibility, and therefore will control concentrations of bioreactive mercury, may explain rates of mercury methylation, and are important for designing approaches to improve water quality using natural wetlands or engineered phytoremediation schemes. In addition, strong binding between mercury and peat is likely to result in the fixation of mercury that ultimately resides in coal. The mechanisms by which aqueous mercury at low concentrations reacts with both dissolved and solid natural organic matter remain incompletely understood, despite recent efforts. We have identified three distinct binding mechanisms of divalent cationic mercury to solid peats from the Florida Everglades using EXAFS spectroscopic data (FAME beamline, European Synchrotron Radiation Facility (ESRF)) obtained on experimental samples as compared to relevant references including mercury-bearing solids and mercury bound to various organic molecules. The proportions of the three molecular configurations vary with Hg concentration, and two new configurations that involve sulfur ligands occur at Hg concentrations up to about 4000 ppm. The binding mechanism at the lowest experimental Hg concentration (60-80 ppm) elucidates published reports on the inhibition of metacinnabar formation in the presence of Hg-bearing solutions and dissolved natural organic matter, and also, the differences in extent of mercury methylation in distinct areas of the Florida Everglades.

  12. Landscape-scale changes in forest canopy structure across a partially logged tropical peat swamp

    NASA Astrophysics Data System (ADS)

    Wedeux, B. M. M.; Coomes, D. A.

    2015-11-01

    Forest canopy structure is strongly influenced by environmental factors and disturbance, and in turn influences key ecosystem processes including productivity, evapotranspiration and habitat availability. In tropical forests increasingly modified by human activities, the interplay between environmental factors and disturbance legacies on forest canopy structure across landscapes is practically unexplored. We used airborne laser scanning (ALS) data to measure the canopy of old-growth and selectively logged peat swamp forest across a peat dome in Central Kalimantan, Indonesia, and quantified how canopy structure metrics varied with peat depth and under logging. Several million canopy gaps in different height cross-sections of the canopy were measured in 100 plots of 1 km2 spanning the peat dome, allowing us to describe canopy structure with seven metrics. Old-growth forest became shorter and had simpler vertical canopy profiles on deeper peat, consistent with previous work linking deep peat to stunted tree growth. Gap size frequency distributions (GSFDs) indicated fewer and smaller canopy gaps on the deeper peat (i.e. the scaling exponent of Pareto functions increased from 1.76 to 3.76 with peat depth). Areas subjected to concessionary logging until 2000, and illegal logging since then, had the same canopy top height as old-growth forest, indicating the persistence of some large trees, but mean canopy height was significantly reduced. With logging, the total area of canopy gaps increased and the GSFD scaling exponent was reduced. Logging effects were most evident on the deepest peat, where nutrient depletion and waterlogged conditions restrain tree growth and recovery. A tight relationship exists between canopy structure and peat depth gradient within the old-growth tropical peat swamp forest. This relationship breaks down after selective logging, with canopy structural recovery, as observed by ALS, modulated by environmental conditions. These findings improve our understanding of tropical peat swamp ecology and provide important insights for managers aiming to restore degraded forests.

  13. Native nematodes as new bio-insecticides for cranberries

    USDA-ARS?s Scientific Manuscript database

    In the summer of 2015, an effort was made in central Wisconsin to find an entomopathogenic nematode capable controlling Wisconsin’s cranberry pests. Using a standard baiting method, a nematode of the Oscheius genus was collected from the mossy, sandy, peat-filled soils of a wild cranberry marsh. Thi...

  14. Effects of Sea Level Rise and Coastal Marsh Transgression on Soil Organic Matter in a Chesapeake Bay Salt Marsh

    NASA Astrophysics Data System (ADS)

    Van Allen, R.; Schreiner, K. M.; Guntenspergen, G. R.

    2016-12-01

    Salt marsh, mangrove swamp, and seagrass bed ecosystems comprise a global carbon stock known as "blue carbon." While vegetated coastal ecosystems have a small global areal extent, their total carbon burial rates are comparable to global marine carbon burial rates. Under global climate change-induced sea level rise, the role of these systems in the global carbon cycle could change significantly. This study aims to develop a more complete view of how coastal marsh transgression into terrestrial upland environments impacts soil organic matter characteristics. A US Geological Survey study site in Blackwater National Wildlife Refuge on the eastern coast of Chesapeake Bay, Maryland was chosen for this study. This marsh has undergone transgression into adjacent upland forest as local relative sea level has risen, making it an ideal location to study the source and stability of organic matter underlying the shifting marsh-forest boundary. Peat cores and vegetation samples were collected from the study site in May 2015 and June 2016. Care was taken to sample marsh soils underlying a range of elevations and vegetation types from the intertidal zone through the transition to upland forest. Radiocarbon and lead-210 dating give age estimates for basal peat layers within the cores. Analysis of stable carbon isotopes in bulk soils in this site suggests a broad shift towards C4-dominated marsh vegetation. Finally, cupric oxide oxidation products of soil organic matter provide information about the changing molecular organic geochemistry of the marsh soils as sea level rises and the marsh transgresses. This represents a novel molecular-level study of the changing organic geochemistry of marsh soils with sea level rise and resulting vegetation changes.

  15. The paleoecology, peat chemistry and carbon storage of a discontinuous permafrost peatland

    NASA Astrophysics Data System (ADS)

    Talbot, Julie; Pelletier, Nicolas; Olefeldt, David; Turetsky, Merritt; Blodau, Christian; Sonnentag, Oliver; Quinton, William

    2017-04-01

    Permafrost in peatlands strongly influences ecosystem biogeochemical functioning, vegetation composition and hydrological functions. Permafrost peatlands of northwestern Canada store large amounts of carbon but the peatlands located at the southern margin of the permafrost zone are thawing rapidly. This thaw triggers changes in vegetation, hydrology and peat characteristics, and may affect carbon stocks. We present data from a permafrost plateau to thermokarst bog chronosequence located in the southern portion of the Scotty Creek watershed near Fort Simpson, Northwest Territories, Canada. We assessed changes in plant communities, hydrology, biogeochemistry and permafrost status over 9000 years of peatland development using plant macrofossil, testate amoeba and peat chemical characteristics. Peat accumulation started after the infilling of a lake 8500 cal. yr BP. Minerotrophic peat prevailed at the site until permafrost formed around 5000 cal. yr BP. Permafrost apparently formed three times, although there is spatial variability in the permafrost aggradation - degradation cycles. Permafrost thawed 550 cal. yr BP in the center of the thermokarst bog. Ombrotrophic peat is a fairly recent feature of the peat profiles, only appearing after the most recent permafrost thaw event. Both allogenic (temperature/precipitation/snow cover changes and wildfire) and autogenic (peat accumulation, Sphagnum growth) processes likely influenced permafrost aggradation and thaw. While apparent carbon accumulation rates were lower during present and past permafrost periods than during non-permafrost periods, long term carbon accumulation remained similar between cores with different permafrost period lengths. Deep peat was more decomposed in the thermokarst bog peat profile than in the permafrost plateau profile, highlighting the importance of considering potential deep peat carbon losses to project the fate of thawing permafrost peat carbon stores. Average long-term carbon accumulation derived from the peat cores (n=3, 20.6 ± 1.9 g C m-2 a-1) is in the same range than the contemporary landscape-scale carbon balance measured from eddy covariance at the site ( 15 g C m-2 a-1). While the carbon to nitrogen ratio tends to decrease with peat depth, the carbon to phosphorus ratio tends to increase, perhaps indicating a preferential uptake of phosphorus over nitrogen by plants.

  16. Effects of detrital influx in the Pennsylvanian Upper Freeport peat swamp

    USGS Publications Warehouse

    Ruppert, L.F.; Stanton, R.W.; Blaine, Cecil C.; Eble, C.F.; Dulong, F.T.

    1991-01-01

    Quartz cathodoluminescence properties and mineralogy of three sets of samples and vegetal and/ or miospore data from two sets of samples from the Upper Freeport coal bed, west-central Pennsylvania, show that detrital influence from a penecontemporaneous channel is limited to an area less than three km from the channel. The sets of samples examined include localities of the coal bed where (1) the coal is thin, split by partings, and near a penecontemporaneous fluvial channel, (2) the coal is relatively thick and located approximately three km from the channel, and (3) the coal is thick and located approximately 12 km from the channel. Samples from locality 1 (nearest the channel) have relatively high-ash yields (low-temperature ash average = 27.3% on a pyrite- and calcite-free basis) and high proportions of quartz and clay minerals. The quartz is primarily detrital, as determined by cathodoluminescent properties, and the ratio of kaolinite to illite is low. In addition, most of the plant remains and miospores indicate peat-forming plants that required low nutrient levels for growth. In contrast, samples from localities 2 and 3, from the more interior parts of the bed, contained predominantly authigenic quartz grains nd yielded low-temperature ash values of less than 14% on a pyrite- and calcite-free basis. The low-temperature ash contains low concentrations of quartz and clay minerals and the ratio of kaolinite to illite is relatively high. Although intact core was not available for paleobotanical analyses, another core collected within 1 km from locality 3 contained plant types interpreted to have required high nutrient levels for growth. These data indicate that mineral formation is dominated by authigenic processes in interior parts of the coal body. Some of the authigenic quartz may have been derived from herbaceous ferns as indicated by patterns in the palynological and paleobotanical data. In contrast, detrital processes appeared to be limited to in areas directly adjacent to the penecontemporaneous channel where the coal bed is high in ash, split by mineral-rich partings, and of little or no economic value. ?? 1991.

  17. Influence of peat on Fenton oxidation.

    PubMed

    Huling, S G; Arnold, R G; Sierka, R A; Miller, M R

    2001-05-01

    A diagnostic probe was used to estimate the activity of Fenton-derived hydroxyl radicals (.OH), reaction kinetics, and oxidation efficiency in batch suspensions comprised of silica sand, crushed goethite (alpha-FeOOH) ore, peat, and H2O2 (0.13 mM). A simple method of kinetic analysis is presented and used to estimate the rate of .OH production (POH) and scavenging term (ks), which were used to establish the influence of organic matter (Pahokee peat) in Fenton systems. POH was greater in the peat-amended systems than in the unamended control, and ks was approximately the same. Any increase in scavenging of .OH that resulted from the addition of peat was insignificant in comparison to radical scavenging by reaction with H2O2. Also, treatment efficiency, defined as the ratio of probe conversion to H2O2 consumption over the same period was greater in the peat-amended system. Results suggest that .OH production is enhanced in the presence of peat by one or more peat-dependent mechanisms. Fe concentration and availability in the peat, reduction of Fe(III) to Fe(II) by the organic matter, and reduction of organic-complexed Fe(III) to Fe(II) are discussed in the context of the Fenton mechanism.

  18. Isotopic evidence for nitrogen mobility in peat bogs

    NASA Astrophysics Data System (ADS)

    Novak, Martin; Stepanova, Marketa; Jackova, Ivana; Vile, Melanie A.; Wieder, R. Kelman; Buzek, Frantisek; Adamova, Marie; Erbanova, Lucie; Fottova, Daniela; Komarek, Arnost

    2014-05-01

    Elevated nitrogen (N) input may reduce carbon (C) storage in peat. Under low atmospheric deposition, most N is bound in the moss layer. Under high N inputs, Sphagnum is not able to prevent penetration of dissolved N to deeper peat. Nitrogen may become available to the roots of invading vascular plants. The concurrent oxygenation of deeper peat layers, along with higher supply of labile organic C, may enhance microbial decomposition and lead to peat thinning. The resulting higher emissions of greenhouse gases may accelerate global warming. Seepage of N to deeper peat has never been quantified. Here we present evidence for post-depositional mobility of atmogenic N in peat, based on natural-abundance N isotope ratios. We conducted a reciprocal peat transplant experiment between two Sphagnum-dominated peat bogs in the Czech Republic (Central Europe), differing in anthropogenic N inputs. The northern site VJ received as much as 33 kg N ha-1 yr-1 via spruce canopy throughfall. The southern site was less polluted (17.6 kg N ha-1 yr-1). Isotope signatures of living moss differed between the two sites (δ15N of -3‰ and -7‰ at VJ and CB, respectively). After 18 months, an isotope mass balance was constructed. In the CB-to-VJ transplant, a significant portion of original CB nitrogen (98-31%) was removed and replaced by nitrogen of the host site throughout the top 10 cm of the profile. Nitrogen, deposited at VJ, was immobilized in imported CB peat that was up to 20 years old. Additionally, we compared N concentration and N accumulation rates in 210Pb-dated peat profiles with well-constrained data on historical atmospheric N pollution. Nationwide N emissions peaked in 1990, while VJ exhibited the highest N content in peat that formed in 1930. This de-coupling of N inputs and N retention in peat might be interpreted as a result of translocation of dissolved pollutant N downcore, corroborating our δ15N results at VJ and CB. Data from a variety of peat bogs along pollution and climatic gradients would be needed to test to what extent the record of atmospheric N inputs in peat is overprinted by variable, locally-controlled decomposition rates.

  19. Facies development in the Lower Freeport coal bed, west-central Pennsylvania, U.S.A.

    USGS Publications Warehouse

    Pierce, B.S.; Stanton, R.W.; Eble, C.F.

    1991-01-01

    The Lower Freeport coal bed in west-central Pennsylvania is interpreted to have formed within a lacustrine-mire environment. Conditions of peat formation, caused by the changing chemical and physical environments, produced five coal facies and two mineral-rich parting facies within the coal bed. The coal bed facies are compositionally unique, having developed under varying conditions, and are manifested by megascopic, petrographic, palynologic and quality characteristics. The initial environment of the Lower Freeport peat resulted in a coal facies that is relatively high in ash yield and contains large amounts of lycopod miospores and moderate abundances of cryptotelinite, crypto-gelocollinite, inertinite and tree fern miospores. This initial Lower Freeport peat is interpreted to have been a topogenous body that was low lying, relatively nutrient rich (mesotrophic to eutrophic), and susceptible to ground water and to sediment influx from surface water. The next facies to form was a ubiquitous, clay-rich durain parting which is attributed to a general rise in the water table accompanied by widespread flooding. Following formation of the parting, peat accumulation resumed within an environment that inhibited clastic input. Development of doming in this facies restricted deposition of the upper shale parting to the margins of the mire and allowed low-ash peat to form in the interior of the mire. Because this environment was conducive to preservation of cellular tissue, this coal facies also contains large amounts of crypto-telinite. This facies development is interpreted to have been a transitional phase from topogenous, planar peat formation to slightly domed, oligotrophic (nutrient-poor) peat formation. As domed peat formation continued, fluctuations in the water table enabled oxidation of the peat surface and produced high inertinite concentrations toward the top of the coal bed. Tree ferns became an increasingly important peat contributor in the e upper facies, based on the palynoflora. This floral change is interpreted to have resulted from the peat surface becoming less wet or better drained, a condition that inhibited proliferation of lycopod trees. Accumulation of the peat continued until rising water levels formed a freshwater lake within which clays and silts were deposited. The development of the Lower Freeport peat from a planar mire through transitional phases toward domed peat formation may be an example of the type of peat formation of other upper Middle and Upper Pennsylvanian coal beds. ?? 1991.

  20. Comparing geophysical measurements to theoretical estimates for soil mixtures at low pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wildenschild, D; Berge, P A; Berryman, K G

    1999-01-15

    The authors obtained good estimates of measured velocities of sand-peat samples at low pressures by using a theoretical method, the self-consistent theory of Berryman (1980), using sand and porous peat to represent the microstructure of the mixture. They were unable to obtain useful estimates with several other theoretical approaches, because the properties of the quartz, air and peat components of the samples vary over several orders of magnitude. Methods that are useful for consolidated rock cannot be applied directly to unconsolidated materials. Instead, careful consideration of microstructure is necessary to adapt the methods successfully. Future work includes comparison of themore » measured velocity values to additional theoretical estimates, investigation of Vp/Vs ratios and wave amplitudes, as well as modeling of dry and saturated sand-clay mixtures (e.g., Bonner et al., 1997, 1998). The results suggest that field data can be interpreted by comparing laboratory measurements of soil velocities to theoretical estimates of velocities in order to establish a systematic method for predicting velocities for a full range of sand-organic material mixtures at various pressures. Once the theoretical relationship is obtained, it can be used to estimate the soil composition at various depths from field measurements of seismic velocities. Additional refining of the method for relating velocities to soil characteristics is useful for development inversion algorithms.« less

  1. Dissolved organic carbon and major and trace elements in peat porewater of sporadic, discontinuous, and continuous permafrost zones of western Siberia

    NASA Astrophysics Data System (ADS)

    Raudina, Tatiana V.; Loiko, Sergey V.; Lim, Artyom G.; Krickov, Ivan V.; Shirokova, Liudmila S.; Istigechev, Georgy I.; Kuzmina, Daria M.; Kulizhsky, Sergey P.; Vorobyev, Sergey N.; Pokrovsky, Oleg S.

    2017-07-01

    Mobilization of dissolved organic carbon (DOC) and related trace elements (TEs) from the frozen peat to surface waters in the permafrost zone is expected to enhance under ongoing permafrost thaw and active layer thickness (ALT) deepening in high-latitude regions. The interstitial soil solutions are efficient tracers of ongoing bio-geochemical processes in the critical zone and can help to decipher the intensity of carbon and metals migration from the soil to the rivers and further to the ocean. To this end, we collected, across a 640 km latitudinal transect of the sporadic to continuous permafrost zone of western Siberia peatlands, soil porewaters from 30 cm depth using suction cups and we analyzed DOC, dissolved inorganic carbon (DIC), and 40 major elements and TEs in 0.45 µm filtered fraction of 80 soil porewaters. Despite an expected decrease in the intensity of DOC and TE mobilization from the soil and vegetation litter to the interstitial fluids with the increase in the permafrost coverage and a decrease in the annual temperature and ALT, the DOC and many major and trace elements did not exhibit any distinct decrease in concentration along the latitudinal transect from 62.2 to 67.4° N. The DOC demonstrated a maximum of concentration at 66° N, on the border of the discontinuous/continuous permafrost zone, whereas the DOC concentration in peat soil solutions from the continuous permafrost zone was equal to or higher than that in the sporadic/discontinuous permafrost zone. Moreover, a number of major (Ca, Mg) and trace (Al, Ti, Sr, Ga, rare earth elements (REEs), Zr, Hf, Th) elements exhibited an increasing, not decreasing, northward concentration trend. We hypothesize that the effects of temperature and thickness of the ALT are of secondary importance relative to the leaching capacity of peat, which is in turn controlled by the water saturation of the peat core. The water residence time in peat pores also plays a role in enriching the fluids in some elements: the DOC, V, Cu, Pb, REEs, and Th were a factor of 1.5 to 2.0 higher in mounds relative to hollows. As such, it is possible that the time of reaction between the peat and downward infiltrating waters essentially controls the degree of peat porewater enrichments in DOC and other solutes. A 2° northward shift in the position of the permafrost boundaries may bring about a factor of 1.3 ± 0.2 decrease in Ca, Mg, Sr, Al, Fe, Ti, Mn, Ni, Co, V, Zr, Hf, Th, and REE porewater concentration in continuous and discontinuous permafrost zones, and a possible decrease in DOC, specific ultraviolet absorbency (SUVA), Ca, Mg, Fe, and Sr will not exceed 20 % of their current values. The projected increase in ALT and vegetation density, northward migration of the permafrost boundary, or the change of hydrological regime is unlikely to modify chemical composition of peat porewater fluids larger than their natural variations within different micro-landscapes, i.e., within a factor of 2. The decrease in DOC and metal delivery to small rivers and lakes by peat soil leachate may also decrease the overall export of dissolved components from the continuous permafrost zone to the Arctic Ocean. This challenges the current paradigm on the increase in DOC export from the land to the ocean under climate warming in high latitudes.

  2. The origin and distribution of HAPs elements in relation to maceral composition of the A1 lignite bed (Paleocene, Calvert Bluff Formation, Wilcox Group), Calvert mine area, east-central Texas

    USGS Publications Warehouse

    Crowley, Sharon S.; Warwick, Peter D.; Ruppert, Leslie F.; Pontolillo, James

    1997-01-01

    The origin and distribution of twelve potentially Hazardous Air Pollutants (HAPs; As, Be, Cd, Cr, Co, Hg, Mn, Ni, Pb, Sb, Se, and U) identified in the 1990 Clean Air Act Amendments were examined in relation to the maceral composition of the A1 bed (Paleocene, Calvert Bluff Formation, Wilcox Group) of the Calvert mine in east-central Texas. The 3.2 m-thick A1 bed was divided into nine incremental channel samples (7 lignite samples and 2 shaley coal samples) on the basis of megascopic characteristics. Results indicate that As, Cd, Cr, Ni, Pb, Sb, and U are strongly correlated with ash yield and are enriched in the shaley coal samples. We infer that these elements are associated with inorganic constituents in the coal bed and may be derived from a penecontemporaneous stream channel located several kilometers southeast of the mining block. Of the HAPs elements studied, Mn and Hg are the most poorly correlated to ash yield. We infer an organic association for Mn; Hg may be associated with pyrite. The rest of the trace elements (Be, Co, and Se) are weakly correlated with ash yield. Further analytical work is necessary to determine the mode of occurrence for these elements. Overall, concentrations of the HAPs elements are generally similar to or less than those reported in previous studies of lignites of the Wilcox Group, east-central region, Texas. Petrographic analysis indicates the following ranges in composition for the seven lignite samples: liptinites (5–8%), huminites (88–95%), and inertinites (trace amounts to 7%). Samples from the middle portion of the A1 bed contain abundant crypto-eugelinite compared to the rest of the samples; this relationship suggests that the degradation of plant material was an important process during the development of the peat mire. With the exception of Hg and Mn, relatively low levels of the HAPs elements studied are found in the samples containing abundant crypto-eugelinite. We infer that the peat-forming environment for this portion of the coal bed was very wet with minimal detrital input. Relatively high concentrations of crypto-humotelinite were found in samples from the top and base of the coal bed. The presence of abundant crypto-humotefinite in this part of the coal bed suggests the accumulation of wood-rich peat under conditions conducive to a high degree of tissue preservation in the peat mire. Although several of the trace elements (Be, Co, Ni, and Sb) exhibit enrichment in these samples, they are not necessarily chemically associated with humotelinite. We infer that these elements, with the exception of Be, are possibly associated with deposition of the roof and floor rock of the coal bed; however, further analytical work would be necessary to confirm this hypothesis. Beryllium may have an organic origin.

  3. Recent changes in vegetation, hydrotopography and peat accumulation in detailed case studies of northern aapa mires

    NASA Astrophysics Data System (ADS)

    Tahvanainen, Teemu; Kumpula, Timo; Tolonen, Kimmo

    2016-04-01

    Aapa mires are northern mire complexes with typical patterned central fen areas and relatively thin peat layers. In principle, aapa mires could develop into raised bogs either 1) through autogenic succession, given enough time for peat accumulation or 2) through allogenic mechanism triggered by hydrological change. Climate change models predict that the climatic envelop of aapa mires will move north and, indeed, that hydrology may change sufficiently to cause allogenic change pressure. Potential resilience or pace of ecosystem-scale responses are poorly understood, however, in the case of aapa mires. We studied recent (ca. 60 years) changes in vegetation, hydrotopography and peat accumulation of two aapa mires at their southern limit of distribution in eastern Finland. We used repeated sampling after 60 years combined with peat stratigraphy and time-series of aerial images in a multi-proxy approach. The study site at the Valkeasuo mire was affected by extensive drainage activities in its catchment, while the aapa mire area itself was not drained. This resulted in the loss of minerotrophic hydrology that lead to rapid changes over the whole patterned fen area. Wet minerotrophic sedge fen vegetation was almost totally covered by ombrotrophic Sphagnum mosses within few decades. Even up to 50 cm high hummocks emerged on the patterned fen strings in an abrupt response that could be precisely dated by simultaneous encroachment of pine seedlings and from the aerial images. The recent apparent rate of carbon accumulation of the new Sphagnum peat was ca. 100 g m-2 -a. The other study site in the Ilajansuo aapa mire persists in a more pristine setting without significant disturbance in its catchment area. Here the mineral-water limit was studied across a transition between a bog zone and an aapa mire zone of the mire complex. We were able to exactly locate a 100 x 300-m special study area and repeat e.g. mapping of all trees, of all topographic patterns (hummocks, hollows, pools), 155 peat depth measurements and 38 vegetation plots. Despite the pristine wilderness character of the site, we found increased tree encroachment, significant increase of height of Sphagnum hummocks, lateral expansion of ombrotrophic bog zone over fen vegetation and increase of dwarf-shrubs typical to raised bog vegetation. Peat thickness in the bog zone had increased by 2.2 mm per year, greatly exceeding the long-term average of bogs in the region. Our case studies demonstrate a remarkable potential of ecosystem-scale responses in northern aapa mires, ecotone mire type between temperate-south boreal bogs and subarctic palsa mires. Hydrological disturbances can rapidly trigger an allogenic mechanism of fen to bog transition. Traces of ongoing changes in aapa mires can be apparent also in seemingly pristine sites when accurate repeated measurements are performed. Although the observed changes may threaten aapa mire habitat types and biota, they are progressive in terms of peat growth and carbon dioxide sequestration.

  4. Seasonal variations in CO2 and CH4 fluxes of four different plant compositions of a Sphagnum-dominated Alpine peat bog

    NASA Astrophysics Data System (ADS)

    Drollinger, Simon; Maier, Andreas; Karer, Jasmin; Glatzel, Stephan

    2017-04-01

    Peatlands are the only type of ecosystems which have the ability to accumulate significant amounts of carbon (C) under undisturbed conditions. The amount of C sequestered in peatlands depends on the balance between gross primary production, ecosystem respiration and decomposition of plant material. Sphagnum-dominated bogs possess the greatest peat accumulation potential of all peatlands, thus in turn, feature highest C release potentials. Many studies report about the C balances of undisturbed northern peat bogs, however, little is known about the effects of peatland degradation on the C balance between different plant compositions within peat bog ecosystems. Particularly in the Alpine region, where temperature increase during the last century has been almost twice as high as the global mean. The investigated peat bog is located in the inner Alpine Enns valley in the Eastern Alps, Austria (N 47˚ 34.873' E 14˚ 20.810'). It is a pine peat bog covered by Sphagnum mosses and a present extent of about 62 ha. Due to increasing differences in surface height of the peatland compared to the surrounding areas and related lowered water retention capacity attributed to the subsidence of the adjacent intensively managed meadows on deeply drained peat soils, the function of the peatland as a carbon sink is strongly endangered. Hence, the current mean water table depth of the central peat bog area is about -12 cm. To reveal differences in peatland-atmosphere C exchanges within the peatland ecosystem, we investigated CO2 and CH4 fluxes of four different vegetation compositions (PM1-PM4) at the treeless central peat bog area. PM1 is dominated by the graminoids Rhynchospora alba and Eriophorum vaginatum. PM2 is inhabited by small individuals (< 35 cm) of the conifer Pinus mugo, whereas PM3 is dominated by the ericaceous plant Calluna vulgaris. PM4 again is populated by Pinus mugo, but higher growing (35 - 60 cm) and with corresponding higher amount of biomass. Fluxes were measured for at least 120 seconds with the closed dynamic chamber method using infrared gas analysers (UGGA, Los Gatos Research and LI-802, LI-COR Biosciences) at four study sites with three replicates each. Net ecosystem exchange was measured using transparent chambers, whereas soil respiration was revealed using opaque chambers. Measurements were conducted seasonally during the last two years with eight sampling periods. Here, we demonstrate the seasonal variations in CO2 and CH4 fluxes, evaluate the underlying factors being responsible for these variations, examine the differences in diurnal pattern during the seasons and compute the global warming potentials of the released greenhouse gases. Moreover, we estimate the annual C balance per site and revise the seasonal C fluxes by comparing the results with fluxes derived by eddy covariance method.

  5. Information Framework of Pervasive Real Time Monitoring System: Case of Peat Land Forest Fires and Air Quality in South Sumatera, Indonesia

    NASA Astrophysics Data System (ADS)

    Nurmaini, Siti; Firsandaya Malik, Reza; Stiawan, Deris; Firdaus; Saparudin; Tutuko, Bambang

    2017-04-01

    The information framework aims to holistically address the problems and issues posed by unwanted peat and land fires within the context of the natural environment and socio-economic systems. Informed decisions on planning and allocation of resources can only be made by understanding the landscape. Therefore, information on fire history and air quality impacts must be collected for future analysis. This paper proposes strategic framework based on technology approach with data fusion strategy to produce the data analysis about peat land fires and air quality management in in South Sumatera. The research framework should use the knowledge, experience and data from the previous fire seasons to review, improve and refine the strategies and monitor their effectiveness for the next fire season. Communicating effectively with communities and the public and private sectors in remote and rural landscapes is important, by using smartphones and mobile applications. Tools such as one-stop information based on web applications, to obtain information such as early warning to send and receive fire alerts, could be developed and promoted so that all stakeholders can share important information with each other.

  6. Examination of mercury and organic carbon dynamics from a constructed fen in the Athabasca oil sands region, Alberta, Canada using in situ and laboratory fluorescence measurements

    NASA Astrophysics Data System (ADS)

    Oswald, C.; Carey, S. K.

    2013-12-01

    In the Athabasca oil sands region, mined landscapes must be reclaimed to a functioning natural ecosystem as part of the mine closure process. To test wetland construction techniques on oil sands tailings, 55 ha of mined landscape on the Syncrude Canada Ltd. property is being reclaimed to a watershed containing a graminoid fen. The 18 ha constructed fen consists of an approximately 50 cm thick peat-mineral soil layer separated from underlying tailings sand by a thin layer of clay till. The water table in the fen is maintained by pumping water into the fen from a nearby lake and controlling outflow with under-drains. The objective of this study was to assess total mercury (THg) and methyl mercury (MeHg) concentration dynamics in water exported from the fen in relation to organic carbon quantity and composition. Water quality data from summer 2012 when the fen pumps were first turned on show that dissolved organic carbon (DOC) concentrations are on average twice as high in water flowing through the underlying tailings sand aquifer (median: 42.0 mg/L) compared to DOC concentrations in water flowing through the fen peat package (median: 20.3 mg/L). Given these DOC concentrations, filtered THg concentrations are very low (median values are 0.81 ng/L and 0.17 ng/L for water flowing through the fen peat and sand tailings, respectively) compared to concentrations reported for other boreal wetlands. Although a relationship was identified between filtered THg and DOC (r2=0.60), its slope (0.06 ng Hg/mg C) is an order-of-magnitude smaller than the typical range of slopes found at other wetland sites potentially suggesting a small pool of mercury in the peat and/or limited partitioning of mercury into solution. Filtered MeHg concentrations in all water samples are near the limit of detection and suggest that biogeochemical conditions conducive to methylation did not exist in the fen peat or tailings sand at the time of sampling. In addition to these baseline THg and MeHg results that will be used to assess the evolution of mercury dynamics in the fen as the hydrology and vegetation become established, we are investigating the composition of dissolved organic matter (DOM) using optical techniques in the water flowing through the fen peat and underlying tailing sand aquifer. During 2013, continuous in situ measurements of chromophoric DOM fluorescence (FDOM) were measured at the fen outlet to identify sources of C and their relative contribution to discharge waters. We compare these field measurements to laboratory measurements of FDOM on discrete water samples using a benchtop spectrofluorometer to develop relationships between FDOM, DOC and filtered THg and MeHg. The use of continuous in situ FDOM measurements as a proxy for DOC and mercury concentrations will improve our understanding of the effects of hydrologic management and natural seasonal variations in fen hydrology on DOC and Hg fluxes from different soil layers in the constructed system. Furthermore, we expect that the modeling of excitation-emission matrices using parallel factor analysis on discrete water samples will provide important information on the sources and reactivity of organic carbon being transported through different soil compartments in the fen.

  7. Factors controlling peat chemistry and vegetation composition in Sudbury peatlands after 30 years of pollution emission reductions.

    PubMed

    Barrett, Sophie E; Watmough, Shaun A

    2015-11-01

    The objective of this research was to assess factors controlling peat and plant chemistry, and vegetation composition in 18 peatlands surrounding Sudbury after more than 30 years of large (>95%) pollution emission reductions. Sites closer to the main Copper Cliff smelter had more humified peat and the surface horizons were greatly enriched in copper (Cu) and nickel (Ni). Copper and Ni concentrations in peat were significantly correlated with that in the plant tissue of Chamaedaphne calyculata. The pH of peat was the strongest determining factor for species richness, diversity, and community composition, although percent vascular plant cover was strongly negatively correlated with surface Cu and Ni concentrations in peat. Sphagnum frequency was also negatively related to peat Cu and Ni concentrations indicating sites close to Copper Cliff smelter remain adversely impacted by industrial activities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Excavating and loading equipment for peat mining

    NASA Astrophysics Data System (ADS)

    Mikhailov, A. V.; Zhigulskaya, A. I.; Yakonovskaya, T. B.

    2017-10-01

    Recently, the issues of sustainable development of Russian regions, related to ensuring energy security, are more urgent than ever. To achieve sustainable development, an integrated approach to the use of local natural resources is needed. Practically in all north regions of the Russian Federation, peat as a local natural resource is widespread, which has a practical application in the area of housing services. The paper presents the evaluation of technologies for open-pit peat mining, as well as analysis of technological equipment for peat production. Special attention is paid to a question of peat materials excavating and loading. The problem of equipment selection in a peat surface mine is complex. Many features, restrictions and criteria need to be considered. Use of low and ultra-low ground pressure excavators and low ground pressure front-end loaders with full-range tires to provide the necessary floatation in the peat bog environment is offered.

  9. Site Simulation of Solidified Peat: Lab Monitoring

    NASA Astrophysics Data System (ADS)

    Durahim, N. H. Ab; Rahman, J. Abd; Tajuddin, S. F. Mohd; Mohamed, R. M. S. R.; Al-Gheethi, A. A.; Kassim, A. H. Mohd

    2018-04-01

    In the present research, the solidified peat on site simulation is conducted to obtain soil leaching from soil column study. Few raw materials used in testing such as Ordinary Portland Cement (OPC), Fly ash (FA) and bottom ash (BA) which containing in solidified peat (SP), fertilizer (F), and rainwater (RW) are also admixed in soil column in order to assess their effects. This research was conducted in two conditions which dry and wet condition. Distilled water used to represent rainfall during flushing process while rainwater used to gain leaching during dry and wet condition. The first testing made after leaching process done was Moisture Content (MC). Secondly, Unconfined Compressive Strength (UCS) will be conducted on SP to know the ability of SP strength. These MC and UCS were made before and after SP were applied in soil column. Hence, the both results were compared to see the reliability occur on SP. All leachate samples were tested using Absorption Atomic Spectroscopy (AAS), Ion Chromatography (IC) and Inductively-Coupled Plasma Spectrophotometry (ICP-MS) testing to know the anion and cation present in it.

  10. Peat Processing

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Humics, Inc. already had patented their process for separating wet peat into components and processing it when they consulted NERAC regarding possible applications. The NERAC search revealed numerous uses for humic acid extracted from peat. The product improves seed germination, stimulates root development, and improves crop yields. There are also potential applications in sewage disposal and horticultural peat, etc.

  11. Growing reforestation conifer stock: Utilizing peat/sawdust medium

    Treesearch

    Janice K. Schaefer

    2009-01-01

    Western Forest Systems, Incorporated (WFS) (Lewiston, ID) has been utilizing a peat/sawdust blended mix as our growing medium for the past 10 years. Our decision to change from a peat/vermiculite blend to a peat/Douglas-fir (Pseudotsuga menziesii) sawdust blend involved worker health and safety issues, seedling culture, seedling production, and...

  12. Tracing Fallout Radionuclide Behavior During Atmospheric Deposition and Pedogenesis

    NASA Astrophysics Data System (ADS)

    Landis, J. D.

    2017-12-01

    Short-lived fallout radionuclides 7Be (54 day half-life) and 210Pbexcess (22.3 year half-life) inform problems in geomorphology covering timespans of days to decades. Linking these radionuclides together is a powerful strategy, since the ratio 7Be:210Pb can control for changes in the activity of each, provided that the tracers have similar behavior through relevant chemical and physical processes such as interception, sorption, dilution, transport, etc. To investigate the extent to which 7Be and 210Pbxs share a common behavior, I measured these radionuclides in atmospheric deposition, vegetation, and stable soil, sediment and peat profiles. Bulk deposition of 7Be and 210Pb was measured in weekly intervals for 6 years of continuous record. Samples of red oak leaves (Quercus rubra) were collected regularly over 4 years at a site co-located with precipitation collection. Soil pits were sampled by high resolution methods at regional, undisturbed sites. In all samples 7Be, 210Pb, and other nuclides were measured by high-precision gamma spectrometry. Depositional fluxes of 7Be and 210Pb were highly correlated, with 7Be:210Pb converging to the long-term mean activity ratio of ca. 10.5 over intervals of 7 to 14 days. Red oak foliage accumulated 7Be and 210Pb at a linear rate during both growth and senescence, and appeared to maintain a dynamic equilibrium with atmospheric deposition. Canopies of both forest and grass intercepted on the order of 50% of deposition; the remainder reached underlying soil, where 7Be activity showed an exponential decline due to rapid hydrologic penetration of soil surface. Features of 210Pbxs soil profiles, including a subsurface maximum, reflect the same penetration pattern integrated over decades of deposition. Application of the Linked Radionuclide aCcumulation (LRC) model demonstrated that 210Pb moves through soil, peat and fluvial sediment profiles at rates on the order of 1 mm per year, similar to other atmospherically-derived metals including Hg and 241Am. These observations suggest that the fates of 7Be, 210Pb and other atmospherically-derived metals are strongly linked by shared physical processes. An understanding of 7Be and 210Pb during deposition and pedogenesis can provide insights into the use of these and other tracers (e.g., 10Be) in studies of exposure age and erosion.

  13. Soil hydric characteristics and environmental ice nuclei influence supercooling capacity of hatchling painted turtles Chrysemys picta.

    PubMed

    Costanzo, J P; Litzgus, J D; Iverson, J B; Lee, R E

    1998-11-01

    Hatchling painted turtles (Chrysemys picta) hibernate in their shallow natal nests where temperatures occasionally fall below -10 C during cold winters. Because the thermal limit of freeze tolerance in this species is approximately -4 C, hatchlings rely on supercooling to survive exposure to extreme cold. We investigated the influence of environmental ice nuclei on susceptibility to inoculative freezing in hatchling C. picta indigenous to the Sandhills of west-central Nebraska. In the absence of external ice nuclei, hatchlings cooled to -14.6 1.9 C (mean s.e.m.; N=5) before spontaneously freezing. Supercooling capacity varied markedly among turtles cooled in physical contact with sandy soil collected from nesting locales or samples of the native soil to which water-binding agents (clay or peat) had been added, despite the fact that all substrata contained the same amount of moisture (7.5 % moisture, w/w). The temperature of crystallization (Tc) of turtles exposed to frozen native soil was -1.6 0.4 C (N=5), whereas turtles exposed to frozen soil/clay and soil/peat mixtures supercooled extensively (mean Tc values approximately -13 C). Hatchlings cooled in contact with drier (less than or equal to 4 % moisture) native soil also supercooled extensively. Thus, inoculative freezing is promoted by exposure to sandy soils containing abundant moisture and little clay or organic matter. Soil collected at turtle nesting locales in mid and late winter contained variable amounts of moisture (4-15 % w/w) and organic matter (1-3 % w/w). In addition to ice, the soil at turtle nesting locales may harbor inorganic and organic ice nuclei that may also seed the freezing of hatchlings. Bulk samples of native soil, which were autoclaved to destroy any organic nuclei, nucleated aqueous solutions at approximately -7 C (Tc range -6.1 to -8.2 C). Non-autoclaved samples contained water-extractable, presumably organic, ice nuclei (Tc range -4.4 to -5.3 C). Ice nuclei of both classes varied in potency among turtle nesting locales. Interaction with ice nuclei in the winter microenvironment determines whether hatchling C. picta remain supercooled or freeze and may ultimately account for differential mortality in nests at a given locale and for variation in winter survival rates among populations.

  14. 78 FR 56247 - Notice of Permit Applications Received Under the Antarctic Conservation Act of 1978 (Pub. L. 95-541)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-12

    ... the Antarctic Science, Tourism and Conservation Act of 1996, has developed regulations for the... the permit . Litchfield Island has thriving and pristine peat moss bank communities. Samples could be...

  15. A Database and Synthesis of Northern Peatland Soil Properties and Holocene Carbon and Nitrogen Accumulation

    NASA Technical Reports Server (NTRS)

    Loisel, Julie; Yu, Zicheng; Beilman, David W.; Camill, Philip; Alm, Jukka; Amesbury, Matthew J.; Anderson, David; Andersson, Sofia; Bochicchio, Christopher; Barber, Keith; hide

    2014-01-01

    Here, we present results from the most comprehensive compilation of Holocene peat soil properties with associated carbon and nitrogen accumulation rates for northern peatlands. Our database consists of 268 peat cores from 215 sites located north of 45 deg N. It encompasses regions within which peat carbon data have only recently become available, such as the West Siberia Lowlands, the Hudson Bay Lowlands, Kamchatka in Far East Russia, and the Tibetan Plateau. For all northern peatlands, carbon content in organic matter was estimated at 42 +/- 3% (standard deviation) for Sphagnum peat, 51 +/- 2% for non-Sphagnum peat, and at 49 +/- 2% overall. Dry bulk density averaged 0.12 +/- 0.07 g/cu cm, organic matter bulk density averaged 0.11 +/- 0.05 g/cu cm, and total carbon content in peat averaged 47 +/- 6%. In general, large differences were found between Sphagnum and non-Sphagnum peat types in terms of peat properties. Time-weighted peat carbon accumulation rates averaged 23 +/- 2 (standard error of mean) g C/sq m/yr during the Holocene on the basis of 151 peat cores from 127 sites, with the highest rates of carbon accumulation (25-28 g C/sq m/yr) recorded during the early Holocene when the climate was warmer than the present. Furthermore, we estimate the northern peatland carbon and nitrogen pools at 436 and 10 gigatons, respectively. The database is publicly available at https://peatlands.lehigh.edu.

  16. Physicochemical properties of hydrothermally treated peat fuel obtained from Mempawah-West Kalimantan: influence of hydrophilicity index on carbon aromaticity and combustibility

    NASA Astrophysics Data System (ADS)

    Mursito, Anggoro Tri; Hirajima, T.; Listiyowati, L. N.

    2018-02-01

    Mempawah peat of West Kalimantan was selected as raw material for studying the physicochemical properties of peat fuel products and their characteristic in the hydrothermal upgrading process at a temperature range of 150°C to 380°C at an average heating rate of 6.6°C/min for 30 minutes. The 13C NMR spectra revealed changes in the effect of temperature on carbon aromaticity of raw peat and peat fuel products which were in 0.39 to 0.63 as the temperature increased. Other phenomenon occurring during the experiment was hydrophilicity index of peat fuel surface decreases of about 1.7 and 1.4 with increased treatment temperature. We also found that hydrothermal upgrading also affected the combustion properties of peat fuel products. Ignition temperature of raw peat and solid products were at 175°C and between 188°C to 285°C respectively. Temperature at the maximum combustion rate of raw peat and solid products was at 460°C, and between 477°C to 509°C were suggested to the increasing of reactivity of solid products respectively. Here, we discussed several phenomenon of the peat fuel product during hydrothermal process with a respect to the change in the physicochemical properties as determined by Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric and Differential Thermal Analysis (TG-DTA) analyses, 13C NMR and also other supporting analytical equipment.

  17. Age Determination of the Remaining Peat in the Sacramento-San Joaquin Delta, California, USA

    USGS Publications Warehouse

    Drexler, Judith Z.; de Fontaine, Christian S.; Knifong, Donna L.

    2007-01-01

    Introduction The Sacramento-San Joaquin Delta of California was once a 1,400 square kilometer (km2) tidal marsh, which contained a vast layer of peat ranging up to 15 meters (m) thick (Atwater and Belknap, 1980). Because of its favorable climate and highly fertile peat soils, the majority of the Delta was drained and reclaimed for agriculture during the late 1800s and early 1900s. Drainage of the peat soils changed the conditions in the surface layers of peat from anaerobic (having no free oxygen present) to aerobic (exposed to the atmosphere). This change in conditions greatly increased the decomposition rate of the peat, which consists largely of organic (plant) matter. Thus began the process of land-surface subsidence, which initially was a result of peat shrinkage and compaction, and later largely was a result of oxidation by which organic carbon in the peat essentially vaporized to carbon dioxide (Deverel and others, 1998; Ingebritsen and Ikehara, 1999). Because of subsidence, the land-surface elevation on farmed islands in the Delta has decreased from a few meters to as much as 8 m below local mean sea level (California Department of Water Resources, 1995; Steve Deverel, Hydrofocus, Inc., written commun., 2007). The USGS, in collaboration with the University of California at Davis, and Hydrofocus Inc. of Davis, California, has been studying the formation of the Delta and the impact of wetland reclamation on the peat column as part of a project called Rates and Evolution of Peat Accretion through Time (REPEAT). The purpose of this report is to provide results on the age of the remaining peat soils on four farmed islands in the Delta.

  18. CRE dating on the scarps of large landslides affecting the Belledonne massif ( French Alps)

    NASA Astrophysics Data System (ADS)

    Lebrouc, V.; Baillet, L.; Schwartz, S.; Jongmans, D.; Gamond, J. F.; Bourles, D.; Le Roux, O.; Carcaillet, J.; Braucher, R.

    2012-04-01

    The southwestern edge of the Belledonne Massif (French Alps) consists of micaschists unconformably covered with Mesozoic sediments and Quaternary deposits. The morphology corresponds to a glacial plateau (Mont Sec plateau) bordered by steep slopes (around 40°), where moraines and peat bog subsist. The massif is incised by the East-West trending Romanche valley that was shaped by several cycles of quaternary glaciations and deglaciations. Slopes are affected by several active or past large scale rock mass instabilities. Cosmic Ray Exposure (CRE) dating was applied on the head scarps of three large landslides, one of which being the active Séchilienne landslide whose headscarp was already dated by Leroux et al. [2009]. Dating results suggest a concomitant initiation of these instabilities at about 7 ± 2 10Be ka, thousands years after the total downwastage of the valley. A different kinematic behaviour was however observed on two contiguous landslides for which continuous exposure profiles were obtained. On the Séchilienne landslide, 23 samples were collected from internal and lateral scarps, as well as on polished bedrock surfaces, with the aim of dating the internal kinematics of the landslide. Preliminary dating results obtained on polished surfaces and near the top of the scarps show unexpected low 10Be concentrations, suggesting the existence of thin moraine or peat bog deposits masking the bedrock, which have been subsequently eroded. The minimum thickness of these deposits was estimated assuming a constant denudation rate over time. Exposure date profiles show that the studied lateral and internal scarps were initiated at the same period as the Sechilienne headscarp. An increase in the exposure rate was also observed between 2 and 1 ka, in agreement with that evidenced along the headscarp. Forty other samples have been collected in the landslide to corroborate these results. Reference Le Roux, O., S. Schwartz , J.-F. Gamond, D. Jongmans, D. Bourles, R. Braucher, W. Mahaney, J. Carcaillet, and L. Leanni (2009). CRE dating on the head scarp of a major landslide (Séchilienne, French Alps), age constraints on Holocene kinematics. Earth and Planetary Science Letters, Vol. 280, 236-245.

  19. The thin brown line: The crucial role of peat in protecting permafrost in Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Gaglioti, B.; Mann, D. H.; Farquharson, L. M.; Baughman, C. A.; Jones, B. M.; Romanovsky, V. E.; Williams, A. P.; Andreu-Hayles, L.

    2017-12-01

    Ongoing warming threatens to thaw Arctic permafrost and release its stored carbon, which could trigger a permafrost-carbon feedback capable of augmenting global warming. The effects of warming air temperatures on permafrost are complicated by the fact that across much of the Arctic and Subarctic a mat of living plants and decaying litter cover the ground and buffer underlying permafrost from air temperatures. For simplicity here, we refer to this organic mat as "peat". Because this peat modifies heat flow between ground and air, the rate and magnitude of permafrost responses to changing climate - and hence the permafrost-carbon feedback - are partly slaved to the peat layer's slower dynamics. To explore this relationship, we used 14C-age offsets within lake sediments in Alaskan watersheds underlain by yedoma deposits to track the changing responses of permafrost thaw to fluctuating climate as peat accumulated over the last 14,000 years. As the peat layer built up, warming events became less effective at thawing permafrost and releasing ancient carbon. Consistent with this age-offset record, the geological record shows that early in post-glacial times when the peat cover was still thin and limited in extent, warm intervals triggered extensive thermokarst that resulted in rapid aggradation of floodplains. Today in contrast, hillslopes and floodplains remain stable despite rapid warming, probably because of the buffering effects of the extensive peat cover. Another natural experiment is provided by tundra fires like the 2007 Anaktuvuk River fire that removed the peat cover from tundra underlain by continuous permafrost and resulted in widespread thermkarsting. Further support for peat's critical role in protecting permafrost comes from the results of modeling how permafrost temperatures under different peat thicknesses respond to warming air temperature. Although post-industrial warming has not yet surpassed the buffering capacity of 14,000 years of peat buildup in Arctic Alaska, modeling suggests that a threshold is imminent.

  20. Revegetation processes and environmental conditions in abandoned peat production fields in Estonia

    NASA Astrophysics Data System (ADS)

    Orru, M.; Orru, H.

    2009-04-01

    As a result of peat extraction, peat production has been finished in Estonia at different times in 154 peat production areas and 9,500 ha (~1% of peatlands) are abandoned, although the peat reserves are not exhausted yet; besides, several areas are not properly recultivated. In addition 12,000 ha of fens (oligotrophic peat layers) are drained and used as grasslands. If the abandoned and non-recultivated peat production areas are not vegetated, their CO2 emission is considerable and peat mineralises in such areas. The aim of the study was to find out specific ecological and geological factors, which affect recovering of peatlands and influence the recultivation. During the revision the amount and quality of the remained reserves, as well as the state of water regime, drainage network and revegetation was assessed in all 154 abandoned peat production areas. The study showed that the state of them is very variable. Some of them are covered with forest, prevailingly with birches at former drainage ditches, later supplemented by pine trees. In the others predominate grasses among plants, and various species of moss (Cladonia rei, Bryum caespiticum, Sphagnum ripariuma, Sphagnum squarrosum) occur as well. Besides, some abandoned areas are completely overgrown with cotton grass. Open abandoned peat areas, which are not covered by vegetation, are much rarer. We found out, that water regime among the factors plays most important role. Moreover abandoned peat production fields, where the environmental conditions have changed - are appropriate for growth of several moss species, which cannot inhabit the areas already occupied by other species. The most interesting discovers were: second growing site of Polia elongata in West-Estonia and Ephemerum serratum, last found in Estonia in the middle of the 19th century, was identified in central Estonia. Also Campylopus introflexus, what was unknown in Estonia. However, the changes in environmental conditions influence the peat layers structure and technical characteristics of organic soils that affect the vegetation of peatlands.

  1. Electron transfer properties of peat organic matter: from electrochemical analysis to redox processes in peatlands

    NASA Astrophysics Data System (ADS)

    Sander, Michael; Getzinger, Gordon; Walpen, Nicolas

    2017-04-01

    Peat organic matter contains redox-active functional groups that can accept and/or donate electrons from and to biotic and abiotic reaction partners present in peatlands. Several studies have provided evidence that electron accepting quinone moieties in the peat organic matter may act as terminal electron acceptors for anaerobic microbial respiration. This respiration pathway may competitively suppress methanogenesis and thereby lead to excess carbon dioxide to methane formation in peatlands. Electron donating phenolic moieties in peat organic matter have long been considered to inhibit microbial and enzymatic activities in peatlands, thereby contributing to carbon stabilization and accumulation in these systems. Phenols are expected to be comparatively stable in anoxic parts of the peats as phenoloxidases, a class of enzymes capable of oxidatively degrading phenols, require molecular oxygen as co-substrate. Despite the general recognition of the importance of redox-active moieties in peat organic matter, the abundance, redox properties and reactivities of these moieties remain poorly studied and understood, in large part due to analytical challenges. This contribution will, in a first part, summarize recent advances in our research group on the analytical chemistry of redox-active moieties in peat organic matter. We will show how mediated electrochemical analysis can be used to quantify the capacities of electron accepting and donating moieties in both dissolved and particulate peat organic matter. We will link these capacities to the physicochemical properties of peat organic matter and provide evidence for quinones and phenols as major electron accepting and donating moieties, respectively. The second part of this contribution will highlight how these electroanalytical techniques can be utilized to advance a more fundamental understanding of electron transfer processes involving peat organic matter. These processes include the redox cycling (i.e., repeated reduction and re-oxidation) of peat organic matter under alternating anoxic-oxic conditions as well as the oxidation of phenolic moieties in peat organic matter by phenol oxidases in the presence of molecular oxygen. Overall, this contribution will attempt to link molecular-level insights into the redox properties of peat organic matter to larger scale redox processes that are important to carbon cycling in peatlands.

  2. Evaluating the hydraulic and transport properties of peat soil using pore network modeling and X-ray micro computed tomography

    NASA Astrophysics Data System (ADS)

    Gharedaghloo, Behrad; Price, Jonathan S.; Rezanezhad, Fereidoun; Quinton, William L.

    2018-06-01

    Micro-scale properties of peat pore space and their influence on hydraulic and transport properties of peat soils have been given little attention so far. Characterizing the variation of these properties in a peat profile can increase our knowledge on the processes controlling contaminant transport through peatlands. As opposed to the common macro-scale (or bulk) representation of groundwater flow and transport processes, a pore network model (PNM) simulates flow and transport processes within individual pores. Here, a pore network modeling code capable of simulating advective and diffusive transport processes through a 3D unstructured pore network was developed; its predictive performance was evaluated by comparing its results to empirical values and to the results of computational fluid dynamics (CFD) simulations. This is the first time that peat pore networks have been extracted from X-ray micro-computed tomography (μCT) images of peat deposits and peat pore characteristics evaluated in a 3D approach. Water flow and solute transport were modeled in the unstructured pore networks mapped directly from μCT images. The modeling results were processed to determine the bulk properties of peat deposits. Results portray the commonly observed decrease in hydraulic conductivity with depth, which was attributed to the reduction of pore radius and increase in pore tortuosity. The increase in pore tortuosity with depth was associated with more decomposed peat soil and decreasing pore coordination number with depth, which extended the flow path of fluid particles. Results also revealed that hydraulic conductivity is isotropic locally, but becomes anisotropic after upscaling to core-scale; this suggests the anisotropy of peat hydraulic conductivity observed in core-scale and field-scale is due to the strong heterogeneity in the vertical dimension that is imposed by the layered structure of peat soils. Transport simulations revealed that for a given solute, the effective diffusion coefficient decreases with depth due to the corresponding increase of diffusional tortuosity. Longitudinal dispersivity of peat also was computed by analyzing advective-dominant transport simulations that showed peat dispersivity is similar to the empirical values reported in the same peat soil; it is not sensitive to soil depth and does not vary much along the soil profile.

  3. Tangled history of the European uses of Sphagnum moss and sphagnol.

    PubMed

    Drobnik, Jacek; Stebel, Adam

    2017-09-14

    Sphagnum mosses and peat could have been utilized as wound dressings for centuries, however reliable data on this subject are ambiguous; sometimes even no distinction between peat moss (Sphagnum spp.) and peat is made or these terms become confused. The first scientific account on surgical use of peat comes from 1882: a peat digger who successfully, by himself and in the way unknown to the then medicine, cured an open fracture of his forearm with peat. The peat, and very soon the peat moss itself (which is the major constituent of peat) drew attention of the 19th-century surgeons. We search for reliable information on: (1) inspirations for Sphagnum usage for medical purposes and its beginnings in the 19th century, (2) substances or products named sphagnol and their connections with (1); (3) on the origin of this name, (4) and on the occurrence of this name in medical sources. We have identified and studied published sources on the uses of peat-based and Sphagnum-based preparations and products of any processing level (including herbal stock, distillate, isolated pure or impure active principle, or a mixture of such) in surgery, pharmacy or cosmetics. A special attention was paid to the name sphagnol, which appeared many a time, in more than one context since 1899. Source publications were critically analysed from the taxonomical, pharmacognostical and ethnopharmacological points of view. Gathered data were cross-checked with the modern knowledge of the biologically active principles of Sphagnum and the prospects of their medical use. The application of peat in surgery started 1882. The use of peat moss as dressings was developed in the 1880's. It returned to surgical practice during WW1. The name sphagnol has two meanings: (1) A chemical substance isolated from the cell walls of Sphagnum mosses in 1899. A post-1950 research showed it to be a mixture of phenols dominated by sphagnum acid. (2) A product of dry distillation of peat contains solid and liquid fractions and was applied in skin diseases due to antiseptic properties. It was added to ointments and medicated soaps manufactured up to the late 1960's. Today none of these two sphagnols is in use. Surgical application of peat had an ethnopharmacological origin: a case of wound treatment with peat as a remedy rather than a dressing (1880, published 1882) shortly shifted the surgeons' attention to peat moss as an absorptive dressing. The 1880's tests of antiseptic properties of peat and peat moss failed, the sterilization methods overrode the physiological effects of Sphagnum dressings. Sphagnan, a polysaccharide from Sphagnum cell walls, discovered 1983, inhibits microbial growth, tans the collagen and removes ammonia from microbial environments. Portions of raw peat could be sterile. The isolation of sphagnol (1899) from Sphagnum cell walls was not inspired by old surgery. Main component of sphagnol, the sphagnic acid, was used clinically during WW2, but was proved a weak antimicrobial agent. A homonymous name sphagnol appeared independently for a product of dry distillation of peat, introduced commercially probably about 1899, too, which gave rise to confusions: a) the commercial, "distilled" sphagnol was not the crystalline principle of Sphagnum cell walls. 2) the "distilled" sphagnol was hardly defined technologically or pharmacologically, never standardized in terms of the substrate (a variety of peat rather than Sphagnum herb) and the production process. This sphagnol, resembling pitch or tar, was an additive to medicated soaps and ointments for skin treatment and care. It must have been a low-scale product although advertised worldwide. Neither sphagnum acid nor sphagnan are used medicinally today. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  4. Diamondoid hydrocarbons as a molecular proxy for thermal maturity and oil cracking: Geochemical models from hydrous pyrolysis

    USGS Publications Warehouse

    Wei, Z.; Moldowan, J.M.; Zhang, S.; Hill, R.; Jarvie, D.M.; Wang, Hongfang; Song, F.; Fago, F.

    2007-01-01

    A series of isothermal hydrous pyrolysis experiments was performed on immature sedimentary rocks and peats of different lithology and organic source input to explore the generation of diamondoids during the thermal maturation of sediments. Oil generation curves indicate that peak oil yields occur between 340 and 360 ??C, followed by intense oil cracking in different samples. The biomarker maturity parameters appear to be insensitive to thermal maturation as most of the isomerization ratios of molecular biomarkers in the pyrolysates have reached their equilibrium values. Diamondoids are absent from immature peat extracts, but exist in immature sedimentary rocks in various amounts. This implies that they are not products of biosynthesis and that they may be generated during diagenesis, not just catagenesis and cracking. Most importantly, the concentrations of diamondoids are observed to increase with thermal stress, suggesting that they can be used as a molecular proxy for thermal maturity of source rocks and crude oils. Their abundance is most sensitive to thermal exposure above temperatures of 360-370 ??C (R0 = 1.3-1.5%) for the studied samples, which corresponds to the onset of intense cracking of other less stable components. Below these temperatures, diamondoids increase gradually due to competing processes of generation and dilution. Calibrations were developed between their concentrations and measured vitrinite reflectance through hydrous pyrolysis maturation of different types of rocks and peats. The geochemical models obtained from these methods may provide an alterative approach for determining thermal maturity of source rocks and crude oils, particularly in mature to highly mature Paleozoic carbonates. In addition, the extent of oil cracking was quantified using the concentrations of diamondoids in hydrous pyrolysates of rocks and peats, verifying that these hydrocarbons are valuable indicators of oil cracking in nature. ?? 2006 Elsevier Ltd. All rights reserved.

  5. Hydrology and Geostatistics of a Vermont, USA Kettlehole Peatland

    NASA Astrophysics Data System (ADS)

    Mouser, Paula J.; Hession, W. Cully; Rizzo, Donna M.; Gotelli, Nicholas J.

    2005-01-01

    The ability to predict the response of peatland ecosystems to hydrologic changes is imperative for successful conservation and remediation efforts. We studied a 1.25-ha Vermont kettlehole bog for one year (September 2001-October 2002) to identify hydrologic controls, temporal and spatial variability in flow regimes, and to link hydrologic processes to density of the carnivorous plant ( Sarracenia purpurea), an ombrotrophic bog specialist. Using a spatial array of nested piezometers, we measured surface and subsurface flow in shallow peat and surrounding mineral soil. Our unique sampling array was based on a repeated measures factorial design with: (1) incremental distances from a central kettlehole pond; (2) equal distances between piezometers; and (3) at three depths from the peat surface. Local flow patterns in the peat were controlled by snowpack storage during winter and spring months and by evapotranspiration and pond water elevation during summer and fall months. Hydraulic head values showed a local reversal within the peat during spring months which was reflected in higher chemical constituent concentrations in these wells. On a regional scale, higher permeable soils diverted groundwater beneath the peatland to a nearby wetland complex. Horizontal water gradient magnitudes were larger in zones where the peatland was perched above regional groundwater and smaller in zones where a hydraulic connection existed between the peatland and the regional groundwater. The density of pitcher plants ( S. purpurea) is strongly correlated to the distance from a central pond, [Fe 3+], [Na +], [Cl -], and [SO42-]. The pH, conductivity, and [Ca 2+] had significant effects of depth and time with horizontal distance correlations between 20 and 26 m. The pH samples had temporal correlations between 27 and 79 days. The link between pitcher plants and ion chemistry; significant effects of peatland chemistry on distance, depth, and time; and spatial and temporal correlations are important considerations for peatland restoration strategies.

  6. Low-rank coal study: national needs for resource development. Volume 6. Peat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-11-01

    The requirements and potential for development of US peat resources for energy use are reviewed. Factors analyzed include the occurrence and properties of major peat deposits; technologies for extraction, dewatering, preparation, combustion, and conversion of peat to solid, liquid, or gaseous fuels; environmental, regulatory, and market constraints; and research, development, and demonstration (RD and D) needs. Based on a review of existing research efforts, recommendations are made for a comprehensive national RD and D program to enhance the use of peat as an energy source.

  7. Effects of N and P fertilisation on greenhouse gas (GHG) production in floodplain fen peat: A microcosm fertilisation experiment.

    NASA Astrophysics Data System (ADS)

    Stanley, Kieran; Heppell, Catherine; Belyea, Lisa; Baird, Andrew

    2016-04-01

    Biogeochemical and hydrological cycles are being significantly perturbed by anthropic activities altering atmospheric mole fractions of greenhouse gases (GHG) and increasing global temperatures. With the intensification of the hydrological cycle, lowland areas, such as floodplain fens, may be inundated more frequently. Rivers in agricultural catchments have the potential to pollute floodplain fens with significant amounts of nitrogen (N) and phosphorus (P); however, the effects of short-term (< 15 days) N and P fertilisation via fluvial inundation on GHG emissions from floodplain fens are poorly understood. The aim of this research was to determine how N (51 mg L-1 NO3-N) and P (1.4 mg L-1 PO43--P) additions may alter GHG (CO2, CH4, and N2O) production in floodplain fens of contrasting nutrient status under anaerobic conditions. A five-level (control, glucose (G), N+G, P+G, and N+P+G), fully-factorial microcosm experiment was designed and undertaken in Spring 2013 with peat from two floodplain fens under conservation management with similar vegetation (from Norfolk, United Kingdom). One site receives a higher nutrient load than the other and has a historical legacy of higher N and P contents within the peat. Results from the experiment showed no significant difference in CO2 production between the control and fertilised treatments from 0 to 96 hours, but a significant difference between treatments (ANCOVA, between factors: treatment and site; covariate: time; F4,419 = 11.844, p < 0.001) and site (F1,149 = 5.721, p = 0.017) from 96 hours to in the end of the experiment due to fermentation. N2O production only occurred in samples fertilised with N (N+G and N+P+G) due to denitrification. Rates of N2O production were significantly greater in samples from the lower-nutrient site in comparison to the nutrient-rich site (t12= 6.539, p < 0.001 and t12= 7.273, p < 0.001 for N+G and N+P+G fertilised samples, respectively). Fertilisation with N and P had different effects on CH4 production. Samples fertilised with P+G had the highest CH4 production (ANCOVA, between factors: treatment and site; covariate: time; F4,120= 15.026, p < 0.001). Samples fertilised with N (N+G and N+P+G) showed CH4 inhibition in comparison to G and P+G additions. CH4 production was significantly greater from the nutrient-rich peat than from the lower-nutrient peat (ANCOVA, between factors: treatment and site; covariate: time; F1,120= 38.646, p < 0.01). However, a decline in CH4 concentration in the microcosms suggests that CH4 oxidation occurred after 150 hours at the lower-nutrient site. Owing to the anaerobic conditions within the microcosms, aerobic methanotrophy cannot occur, suggesting anaerobic CH4 oxidation occurred along with denitrification. However, NO and N2 concentrations were not measured in this study, so this suggestion requires examination in future work.

  8. Only low methane production and emission in degraded peat extraction sites after rewetting

    NASA Astrophysics Data System (ADS)

    Agethen, Svenja; Waldemer, Carolin; Knorr, Klaus-Holger

    2015-04-01

    In Central Europe rewetting of bogs after peat extraction is a wide spread technique to halt secondary aerobic decomposition and to reestablish plant species such as Sphagnum spp. and Eriophorum spp. that initialize accumulation of organic carbon in peat. Before extraction, such sites are often used for agriculture causing the aerobic degradation of peat and mobilization of phosphorus, ammonia, and dissolved organic matter (DOM). In nutrient poor ecosystems such as bogs, additional supply of P and N does not only trigger the establishment of uncharacteristic vegetation but also the formation of more labile plant litter and DOM that is readily degradable. Therefore, after rewetting and the development of anoxic conditions especially in initial stages high methane (CH4) emissions are reported for these systems compared to pristine bogs. Regarding the potential of methane production and emissions we investigated three common practices to prepare extraction fields for restoration (years since rewetting): i) Filling of drainage ditches, passive rewetting (1 site, Altendorfer Moor, Stade, NW-Germany, ca. 20 yr.), ii) Removal of upper 30 cm peat layer, removed peat used for construction of polder dikes (2 sites, Königsmoor, Leer, NW-Germany, 2 and 3 yr.), iii) Removal upper peat layer down to 50 cm grown peat, not extracted peat used as polder walls (2 sites, Benthullener Moor, Wardenburg, NW-Germany, 3 and 7 yr.). In each site two vegetated replicate mesocosms (diam. 30 cm, depth 40 cm) were sampled and placed in a greenhouse from May-October 2014 to maintain the water table at surface level. Pore water concentrations of ions, fermentation products and DOM, DOM electron acceptor capacity (EAC), soil gas concentrations of CO2, CH4 and H2, gas fluxes as well as element composition and organic matter quality of DOM and SOM were analyzed. We found out that practice i) with least efforts of nutrient removal in the peat produced the highest CH4 emissions (3.5 mmol m-2 d-1) although still within the range of northern pristine bogs. Also practice ii) showed still inputs of external nutrients and labile DOM, but CH4 production was not yet developed (0.23 and 0.07 mmol m-2 d-1). Practice iii) was most effective in nutrient removal, but only in the 7 yr. site little methane (in the 3 yr. site 0.025 vs. 0.41 mmol m-2 d-1in the 7 yr. site) was emitted. The emissions were well in accord with soil gas concentrations, maximum values for CH4 in practice i) were 115 μmol L-1, 2-5 μmol L-1 in practice ii) and 0.5 vs. 16 μmol L-1 in practice iii). Only small concentrations of inorganic electron acceptors such as sulfate imply the importance of organic matter as electron acceptor. The results show that restored bogs on former strongly degraded extraction fields do not necessarily act as exceptionally high CH4 sources. Contrary to other findings in early stages of rewetting CH4 emissions can also be very low until other electron acceptors are exhausted and methanogens become effective competitors for substrates which happens in the order of years.

  9. Effectiveness of lime and peat applications on cadmium availability in a paddy soil under various moisture regimes.

    PubMed

    Chen, Yanhui; Xie, Tuanhui; Liang, Qiaofeng; Liu, Mengjiao; Zhao, Mingliu; Wang, Mingkuang; Wang, Guo

    2016-04-01

    In paddy soils, amendments and moisture play important role in the immobilization of cadmium (Cd). The effects of applying lime, peat, and a combination of both on soil Eh, pH, and Cd availability in contaminated soils were investigated under wetted (80 ± 5 % of water holding capacity) and flooded (completely submerged) conditions. In wetted soils, there was little change in Eh, compared to flooded soils where Eh reduced rapidly. Amendments of lime only or in a mixture with peat increased soil pH to different degrees, depending on the lime application rate. However, peat addition only slightly affected soil pH. The decreased Cd availability in flooded soils was related to submergence duration and was significantly lower than that in wetted soils after 14 days. Liming wetted and flooded soils decreased exchangeable Cd and increased carbonates or Fe-Mn oxides bound fractions, while peat addition transformed Cd from carbonates to organic matter bound fractions. The combined application of peat and lime generally showed better inhibitory effects on the availability of Cd than separately application of lime or peat. Higher application rates of lime, peat, or their mixture were more effective at reducing Cd contamination in flooded soil. This indicates that application of peat and lime mixture under flooded conditions was most effective for in situ remediation of Cd-contaminated soils. Further studies are required to assess the long-term effectiveness of the peat and lime mixture on Cd availability in paddy soils.

  10. Influence of a step-change increase of peat moisture content on the horizontal propagation of smouldering fires

    NASA Astrophysics Data System (ADS)

    Prat-Guitart, Nuria; Belcher, Claire M.; Hadden, Rory M.; Rein, Guillermo; Yearsley, Jon M.

    2015-04-01

    In shallow layers of peat, the transition between moss species causes a step-change of the horizontal distribution of peat moisture content. Post-fire studies in peatlands have reported shallow layers being consumed in irregular distributions. The unburned areas were found to be patches of wet Sphagnum moss. Our laboratory scale study analyses the effect of a horizontal step-change in moisture content on the spread of smouldering. We designed a laboratory-scale experiment (20×18×5 cm) within an insulated box filled with milled peat. Peat was ignited on one side of the box from which the smouldering fire horizontally self-propagates through a region of dry peat (MC1) and then through a wetter region of peat (MC2). An infrared camera, a webcam and thermocouples monitor the position of the smouldering fire spreading horizontally. The experiment was repeated with peats at different moisture content combinations to analyse the smouldering behaviour on a range of moisture content step-change conditions. The data analysis estimates the burned area and examines smouldering fire behaviour across a wide range of moisture content combinations reproducing realistic scenarios. We found that the area burned depends on peat moisture content before the step-change (MC1) as well as the increase in moisture of the step-change itself (difference between MC1 and MC2). Our study assists in researching the influence of peat moisture content on the spread of smouldering in peatland fire and contributes to a better understanding of the post-fire peatland landscape, helping to reconstruct smouldering fire events.

  11. Peat accumulation in drained thermokarst lake basins in continuous, ice-rich permafrost, northern Seward Peninsula, Alaska

    USGS Publications Warehouse

    Jones, Miriam C.; Grosse, Guido; Jones, Benjamin M.; Anthony, Katey Walter

    2012-01-01

    Thermokarst lakes and peat-accumulating drained lake basins cover a substantial portion of Arctic lowland landscapes, yet the role of thermokarst lake drainage and ensuing peat formation in landscape-scale carbon (C) budgets remains understudied. Here we use measurements of terrestrial peat thickness, bulk density, organic matter content, and basal radiocarbon age from permafrost cores, soil pits, and exposures in vegetated, drained lake basins to characterize regional lake drainage chronology, C accumulation rates, and the role of thermokarst-lake cycling in carbon dynamics throughout the Holocene on the northern Seward Peninsula, Alaska. Most detectable lake drainage events occurred within the last 4,000 years with the highest drainage frequency during the medieval climate anomaly. Peat accumulation rates were highest in young (50–500 years) drained lake basins (35.2 g C m−2 yr−1) and decreased exponentially with time since drainage to 9 g C m−2 yr−1 in the oldest basins. Spatial analyses of terrestrial peat depth, basal peat radiocarbon ages, basin geomorphology, and satellite-derived land surface properties (Normalized Difference Vegetation Index (NDVI); Minimum Noise Fraction (MNF)) from Landsat satellite data revealed significant relationships between peat thickness and mean basin NDVI or MNF. By upscaling observed relationships, we infer that drained thermokarst lake basins, covering 391 km2 (76%) of the 515 km2 study region, store 6.4–6.6 Tg organic C in drained lake basin terrestrial peat. Peat accumulation in drained lake basins likely serves to offset greenhouse gas release from thermokarst-impacted landscapes and should be incorporated in landscape-scale C budgets.

  12. Effects of peatland drainage on water quality: a case study of the shallow blanket bogs of Exmoor, UK

    NASA Astrophysics Data System (ADS)

    Grand-Clement, E.; Luscombe, D.; Le Feuvre, N.; Smith, D.; Anderson, K.; Brazier, R. E.

    2012-04-01

    Peatlands are widely represented in the South West of England (i.e. Exmoor, Dartmoor and Bodmin moors), but their existence is currently under threat due to both climate change and the impact of historical human activities. Peat cutting and intensive drainage for agricultural reclamation in the 19th and 20th century, have modified the hydrological behaviour of these shallow peats and dried out the upper layers, causing oxidation, erosion and vegetation change. Such anthropogenic impacts directly affect the storage of carbon, but also the provision of other ecosystem services, such as the supply of drinking water, and the support of specific and rare habitats. Blocking drainage ditches to restore the hydrological behaviour of peatlands has mostly been undertaken in the North of England, but to date, little is still known about the consequences of such management approaches on the overall Carbon stocks. The need to monitor restoration of peatlands in the South West of England arises due to the specific characteristics of the peat - it is often shallower than more northerly peat and dominated by Purple Moor Grass. In addition, and in part because of the shallowness of the resource, the peat has been damaged differently, often with very dense networks of hand-cut ditches which behave as highly efficient drainage networks. Most importantly, their location at the southernmost margin of the UK peatlands' geographical extent makes them extremely vulnerable to climate change, and so it is hypothesised that monitoring of these peatlands may provide an 'early warning system' for climatic impacts that affect more northerly sites in years to come. This study focuses upon the current impact of peatland degradation on water quality on Exmoor. Our experimental approach employs detailed, high resolution monitoring of selected ditches that are representative of damaged conditions on Exmoor, from small- (30 x 30cm ditches) through medium- (50x50cm), large- (1-2m ditches) and finally headwater catchment-scales. Flow monitoring has been in place at all scales since November 2010. Flow proportional water samples were collected during a range of events throughout winter 2011-2012 and analysed for Dissolved Organic Carbon (DOC), Particulate Organic Carbon (POC), pH and colour. These variables were identified as critical, both in terms of carbon cycling and for costly water treatment that currently takes place downstream. Results were examined spatially in relation to drain sizes and magnitude/frequency of event, to improve our understanding of carbon losses in streams from damaged peatlands and further estimate the potential for improvement that can be expected after restoration. Data presented here focus on the DOC and colour and demonstrate the importance of understanding across different scales of ditch and understanding the effects of the magnitude/frequency of events that are observed prior to restoration of the system.

  13. Uncertainty in peat volume and soil carbon estimated using ground-penetrating radar and probing

    Treesearch

    Andrew D. Parsekian; Lee Slater; Dimitrios Ntarlagiannis; James Nolan; Stephen D. Sebestyen; Randall K. Kolka; Paul J. Hanson

    2012-01-01

    Estimating soil C stock in a peatland is highly dependent on accurate measurement of the peat volume. In this study, we evaluated the uncertainty in calculations of peat volume using high-resolution data to resolve the three-dimensional structure of a peat basin based on both direct (push probes) and indirect geophysical (ground-penetrating radar) measurements. We...

  14. Economics of selected energy applications of peat in Panama and Costa Rica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thayer, G.R.; Ramirez E., O.; Ramirez, A.

    Studies were performed to determine the economic competitiveness of peat in Costa Rica and Panama. The cases examined were (1) electrical production in Panama, and (2) industrial boilers and cement plants in Costa Rica. Based on estimates of peat mining costs and the end-use costs we calculated for each application, the price of coal and oil at which the levelized life cycle cost of energy using peat was the same as that when coal or oil was used. We found that a peat-fueled power plant in Panama would be economic if the price of fuel oil was above $0.10 permore » liter and the cost of coal was above $40.00 per metric ton delivered. In Costa Rica, peat was competitive with fuel oil for large boilers (34,000 kg of steam per hour) when the cost of oil was above $0.10 per liter. For smaller boilers (5,000 kg of steam per hour) peat was cheaper than fuel oil when oil was above $0.08 per liter. Peat would be competitive in a cement plant when fuel oil prices were above $0.075 per liter. 5 figs.« less

  15. Comparative study of the thermal properties of mud and peat solutions applied in clinical practice.

    PubMed

    Beer, A M; Grozeva, A; Sagorchev, P; Lukanov, J

    2003-11-01

    Different peloids as e.g. mud and peat have been traditionally used for therapeutic purposes successfully, especially of there thermal actions. It was the aim of the experimental study to compare the thermal properties of two peloids, mud and peat, with a view to assessing their thermal effects when they are applied in clinical practice. The studies were carried out using peat of the marsh type of peats (Hochmoor), and curative Pomorie (Bulgaria) mud. As important parameters were determined the specific thermal capacity at constant pressure (Cp), the density of solutions (rho), the cooling rate (m), the coefficient of temperature transfer (a) of solutions and the coefficient of thermal conductivity (lambda) of solutions of peat and curative mud, compared to water bath. The comparative studies of the thermal properties of water and water solutions of peat and curative mud show that the thermal effect of the water bath is substantially smaller than that of the peat and mud applications. This difference is due to a greater extent to the high values of the dynamic viscosity, not allowing cooling by convection and protecting the surface of the skin upon applications of peloid solutions with a higher temperature.

  16. Sesquiterpene lactones in Arnica montana: helenalin and dihydrohelenalin chemotypes in Spain.

    PubMed

    Perry, Nigel B; Burgess, Elaine J; Rodríguez Guitián, Manuel A; Romero Franco, Rosa; López Mosquera, Elvira; Smallfield, Bruce M; Joyce, Nigel I; Littlejohn, Roger P

    2009-05-01

    An analytical RPLC method for sesquiterpene lactones in Arnica montana has been extended to include quantitative analyses of dihydrohelenalin esters. LC-ESI-MS-MS distinguished the isomeric helenalin and dihydrohelenalin esters. The dihydrohelenalin esters have lower response factors for UV detection than do helenalin esters, which must be taken into account for quantitative analyses. Analyses of flowers from 16 different wild populations of A. montana in Spain showed differing proportions of helenalin and dihydrohelenalin esters. For the first time a chemotype with high levels of helenalin esters (total helenalins 5.2-10.3 mg/g dry weight) is reported in Spanish A. montana. These samples were from heath lands at high altitude (1330-1460 m), whereas samples from meadows and peat bogs at lower altitudes were the expected chemotype with high levels of dihydrohelenalin esters (total dihydrohelenalins 10.9-18.2 mg/g). The phenolic compounds, both flavonoid glycosides and caffeoylquinic acids, in Spanish A. montana are reported for the first time. The levels of several of these compounds differed significantly between samples from heath lands and samples from peat bogs or meadows, with the heath land samples being most similar to central European A. montana in their phenolic composition. Copyright Georg Thieme Verlag KG Stuttgart. New York.

  17. Biochemical processes of oligotrophic peat deposits of Vasyugan Mire

    NASA Astrophysics Data System (ADS)

    Inisheva, L. I.; Sergeeva, M. A.

    2009-04-01

    The problem of peat and mire ecosystems functioning and their rational use is the main problem of biosphere study. This problem also refers to forecasting of biosphere changes results which are global and anthropogenic. According to many scientists' research the portion of mires in earth carbon balance is about 15% of world's stock. The aim of this study is to investigate biochemical processes in oligotrophic deposits in North-eastern part of Vasyugan Mire. The investigations were made on the territory of scientific-research ground (56˚ 03´ and 56˚ 57´ NL, 82˚ 22´ and 82˚ 42´ EL). It is situated between two rivers Bakchar and Iksa (in outskirts of the village Polynyanka, Bakchar region, Tomsk oblast). Evolution of investigated mire massif began with the domination of eutrophic phytocenosis - Filicinae, then sedge. Later transfer into oligotrophic phase was accompanied by formation of meter high-moor peat deposit. The age of three-meter peat deposit reaches four thousand years. Biochemical processes of carbon cycle cover the whole peat deposit, but the process activity and its direction in different layers are defined by genesis and duration of peat formation. So, the number of cellulose-fermenting aerobes in researched peat deposits ranges from 16.8 to 75.5 million CFU/g, and anaerobic bacteria from 9.6 to 48.6 million CFU/g. The high number of aerobes is characteristic for high water levels, organizing by raised bog peats. Their number decreases along the profile in 1.7 - 2 times. The number of microflora in peat deposit is defined by the position in the landscape profile (different geneses), by the depth, by hydrothermic conditions of years and individual months. But microflora activity shows along all depth of peat deposit. We found the same in the process of studying of micromycete complex structure. There was revealed either active component micromycete complex - mycelium, or inert one - spores in a meter layer of peat deposit. If mushrooms spores are observed in all deposit layers, mycelium of mushrooms deepens into the peat deposit (to 2 meters) within the limits of aerobic (meter) zone and only in particular months of dry years. The existence of seasonal dynamics of eukaryotic cells, and also capability of yeast and other groups of micromycetes for growth, testifies about vital activity of a number of eukaryotic cells at a depth of 2 meters. Researched peat deposits are biochemically active along the whole profile. But they are different in a microflora number of individual physiological groups either in items of the landscape, or in deposit depth. The largest quantity of aerobic cellulose-fermenting microorganisms is marked during dry years. Anaerobic cellulose-fermenting microorganisms dominate during wet years. The quantity of microbe biomass increases in bottom lifts of peat deposits. This fact testifies about viable condition of microbe complex at depth. The formation process of carbon dioxide in peat deposits of Vasyugan Mire actively occurs during dry years and is defined by hydrothermic conditions of a meter layer of peat deposit. The intensity of CO2 isolation for certain correlates with the temperature in horizon of 0 - 50 sm. and with bog waters level. The study of gas composition for the three years showed that the largest concentration of carbon dioxide in peat soils is marked along the whole profile during a dryer year (0.08 - 2.65 millimole/l), increasing other years' level in about 1.5 0 2 times. Emission of carbon dioxide in peat

  18. Changes in the geodiversity of Dutch peatlands inferred from 19th and 20th century landscape paintings

    NASA Astrophysics Data System (ADS)

    Jungerius, Pieter Dirk; van den Ancker, Hanneke; Wevers, Nina

    2013-04-01

    Geodiversity is the natural and cultural range of geological, geomorphological and soil features. We analysed the large database of 19th and early 20th century paintings of Simonis and Buunk (www.Simonis-Buunk.com) to track changes in the geodiversity of Dutch peatlands since pre-photographic times. Peat dominated in two of the eight main landscapes of the Netherlands: the Lowland peats in the Holocene west and the Highland peats in the sandy Pleistocene eastern parts. Painters were mainly attracted by the lowland peats. Since more than thousand years, peat plays a major role in Dutch military security, economy, ecology and cultural life. Natural variety and cultural use resulted in a geodiversity that is unique in Europe. There are more than 100 place names with 'veen' (= peat), and surnames with 'veen' are common. Proof of the exploitation of peat for salt and fuel exists from the Roman times onwards. In the 9th century, peatlands were drained and reclaimed for growing wheat. Already in the 11th century, it was necessary to build dikes to prevent flooding, to control waterlevels to avoid further oxidation, and to convert landuse to grassland. But subsidence continued, and in the 14th century windmills were needed to drain the lands and pump the water out. In the 16th century industrial peat exploitation fuelled the rise of industries and cities. All this draining and digging caused the peat surface to shrink. The few remaining living peats are conserved by nature organisations. Geodiversity and landscape paintings In the peat landscapes, popular painting motives were high water levels, the grasslands of the 'Green Heart', the winding streams and remaining lakes. The paintings of landscapes where peat had been removed, show watermanagement adaptations: wind mills, different water levels, canals made for the transport of fuel, bridges, tow paths and the 'plassen', i.e. the lakes left after peat exploitation. The droogmakerijen (reclaimed lakes), now 2 to 5 m below sealevel, were less inspiring. Examples of geodiversity changes illustrated by the landscape paintings • Peat extraction stopped • Land use changed e.g. the deforestation of the 'Bovenlanden' • Erosion by waves and boats caused the collapse of peat islands in the artificial lakes • Peat polders of the Green Heart were sacrificed for building projects • 90% of the original wind mills were replaced by electrical and motor pumps • Horse traction was replaced by motor vehicles, which made tow paths and high wooden bridges redundant. • Dam burst risk increased and skating scenes disappeared with climate change, References Jungerius, P.D., 2010. Sea level rise and the response of the Dutch people - Adaptive strategies based on geomorphologic principles give sustainable solutions. In: Martini I.P.& Chesworth, W.(eds.) Landscapes and Societies. Springer Verlag.

  19. Stable isotope ratios in swale sequences of Lake Superior as indicators of climate and lake level fluctuations during the Late Holocene

    USGS Publications Warehouse

    Sharma, Shruti; Mora, G.; Johnston, J.W.; Thompson, T.A.

    2005-01-01

    Beach ridges along the coastline of Lake Superior provide a long-term and detailed record of lake level fluctuations for the past 4000 cal BP. Although climate change has been invoked to explain these fluctuations, its role is still in debate. Here, we reconstruct water balance by employing peat samples collected from swale deposits present between beach ridge sequences at two locations along the coastline of Lake Superior. Carbon isotope ratios for Sphagnum remains from these peat deposits are used as a proxy for water balance because the presence or absence of water films on Sphagnum controls the overall isotope discrimination effects. Consequently, increased average water content in Sphagnum produces elevated ??13C values. Two maxima of Sphagnum ??13C values interpreted to reflect wetter conditions prevailed from 3400 to 2400 cal BP and from about 1900 to 1400 cal BP. There are two relatively short drier periods as inferred from low Sphagnum ??13C values: one is centered at about 2300 cal BP, and one begins at 1400 cal BP. A good covariance was found between Sphagnum ??13C values and reconstructed lake-levels for Lake Michigan in which elevated carbon isotope values correlate well with higher lake levels. Based on this covariance, we conclude that climate exerts a strong influence on lake levels in Lake Superior for the past 4000 cal BP. ?? 2005 Elsevier Ltd. All rights reserved.

  20. Stocks and fluxes of carbon associated with land use change in Southeast Asian tropical peatlands: A review

    NASA Astrophysics Data System (ADS)

    Hergoualc'h, Kristell; Verchot, Louis V.

    2011-06-01

    The increasing and alarming trend of degradation and deforestation of tropical peat swamp forests may contribute greatly to climate change. Estimates of carbon (C) losses associated with land use change in tropical peatlands are needed. To assess these losses we examined C stocks and peat C fluxes in virgin peat swamp forests and tropical peatlands affected by six common types of land use. Phytomass C loss from the conversion of virgin peat swamp forest to logged forest, fire-damaged forest, mixed croplands and shrublands, rice field, oil palm plantation, and Acacia plantation were calculated using the stock difference method and estimated at 116.9 ± 39.8, 151.6 ± 36.0, 204.1 ± 28.6, 214.9 ± 28.4, 188.1 ± 29.8, and 191.7 ± 28.5 Mg C ha-1, respectively. Total C loss from uncontrolled fires ranged from 289.5 ± 68.1 Mg C ha-1 in rice fields to 436.2 ± 77.0 Mg C ha-1 in virgin peat swamp forest. We assessed the effects of land use change on C stocks in the peat by looking at how the change in vegetation cover altered the main C inputs (litterfall and root mortality) and outputs (heterotrophic respiration, CH4 flux, fires, and soluble and physical removal) before and after conversion. The difference between the soil input-output balances in the virgin peat swamp forest and in the oil palm plantation gave an estimate of peat C loss of 10.8 ± 3.5 Mg C ha-1 yr-1. Peat C loss from other land use conversions could not be assessed due to lack of data, principally on soil heterotrophic respiration rates. Over 25 years, the conversion of tropical virgin peat swamp forest into oil palm plantation represents a total C loss from both biomass and peat of 427.2 ± 90.7 Mg C ha-1 or 17.1 ± 3.6 Mg C ha-1 yr-1. In all situations, peat C loss contributed more than 63% to total C loss, demonstrating the urgent need in terms of the atmospheric greenhouse gas burden to protect tropical virgin peat swamp forests from land use change and fires.

  1. Genesis of peat-bog soils in the northern taiga spruce forests of the Kola Peninsula

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikonov, V.V.

    1981-01-01

    The characteristics of soil formation processes in the Peat-Bog soils of waterlogged spruce phytocenoses on the Kola Peninsula are investigated. It is found that the ash composition of the peat layer is determined primarily by the composition of the buried plant residues. The effect of the chemical composition of water feeding the peat bogs is determined. (Refs. 7).

  2. Soil carbon dioxide emissions from a rubber plantation on tropical peat.

    PubMed

    Wakhid, Nur; Hirano, Takashi; Okimoto, Yosuke; Nurzakiah, Siti; Nursyamsi, Dedi

    2017-03-01

    Land-use change in tropical peatland potentially results in a large amount of carbon dioxide (CO 2 ) emissions owing to drainage, which lowers groundwater level (GWL) and consequently enhances oxidative peat decomposition. However, field information on carbon balance is lacking for rubber plantations, which are expanding into Indonesia's peatlands. To assess soil CO 2 emissions from an eight-year-old rubber plantation established on peat after compaction, soil CO 2 efflux was measured monthly using a closed chamber system from December 2014 to December 2015, in which a strong El Niño event occurred, and consequently GWL lowered deeply. Total soil respiration (SR) and oxidative peat decomposition (PD) were separately quantified by trenching. In addition, peat surface elevation was measured to determine annual subsidence along with GWL. With GWL, SR showed a negative logarithmic relationship (p<0.01), whereas PD showed a strong negative linearity (p<0.001). Using the significant relationships, annual SR and PD were calculated from hourly GWL data to be 3293±1039 and 1408±214gCm -2 yr -1 (mean±1 standard deviation), respectively. PD accounted for 43% of SR on an annual basis. SR showed no significant difference between near and far positions from rubber trees (p>0.05). Peat surface elevation varied seasonally in almost parallel with GWL. After correcting for GWL difference, annual total subsidence was determined at 5.64±3.20 and 5.96±0.43cmyr -1 outside and inside the trenching, respectively. Annual subsidence only through peat oxidation that was calculated from the annual PD, peat bulk density and peat carbon content was 1.50cmyr -1 . As a result, oxidative peat decomposition accounted for 25% of total subsidence (5.96cmyr -1 ) on average on an annual basis. The contribution of peat oxidation was lower than those of previous studies probably because of compaction through land preparation. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Phosphorus mobilization in rewetted fens: the effect of altered peat properties and implications for their restoration.

    PubMed

    Zak, Dominik; Wagner, Carola; Payer, Brian; Augustin, Jürgen; Gelbrecht, Jörg

    2010-07-01

    Rewetting of drained fens is necessary to stop further soil degradation and to reestablish important ecological functions. However, substantial changes of peat characteristics in the upper soil layers, due to drainage and land use, could counteract their recovery as nutrient-poor systems for an unknown period. We assessed the importance of altered peat properties, such as the degree of peat decomposition and the amount of redox-sensitive phosphorus (P) compounds, for P mobilization in different degraded fens. An experimental design involving 63 intact peat cores from fens with varying drainage and land-use histories was developed to quantify the mobilization of P, as well as that of iron (Fe), ammonium, carbon dioxide, and methane, all indicators of organic-matter decomposition and/or P-releasing processes. We found that net P release rates in peat cores with highly decomposed peat (range: 0.1-52.3 mg P x m(-2) x d(-1)) were significantly correlated to the amount of P bound to redox-sensitive compounds and the molar Fe:P as well as Al:P ratios of peat. We conclude that the following general rules apply for P mobilization in rewetted fens: (1) elevated levels of P release rates and P concentrations in pore water up to three orders of magnitude larger than under natural reference conditions can only be expected for rewetted fens whose surface soil layers consist of highly decomposed peat; (2) peat characteristics, such as the amount of P bound to redox-sensitive Fe(III) compounds (positive correlation) and molar ratios of Fe:P or Al:P (negative correlations), explain the high range of P release rates; and (3) a critical P export to adjacent lakes or rivers can only be expected if molar Fe:P ratios of highly decomposed peat are less than 10.

  4. The new European Competence Centre for Moor and Climate - A European initiative for practical peat bog and climate protection

    NASA Astrophysics Data System (ADS)

    Smidt, Geerd; Tänzer, Detlef

    2013-04-01

    The new European Competence Centre for Moor and Climate (EFMK) is an initiative by different local communities, environmental protection NGOs, agricultural services, and partners from the peat and other industries in Lower Saxony (Germany). The Centre aims to integrate practical peat bog conservation with a focus on green house gas emission after drainage and after water logging activities. Together with our partners we want to break new ground to protect the remaining bogs in the region. Sphagnum mosses will be produced in paludiculture on-site in cooperation with the local peat industry to provide economic and ecologic alternatives for peat products used in horticulture business. Land-use changes are needed in the region and will be stimulated in cooperation with agricultural services via compensation money transfers from environmental protection funds. On a global scale the ideas of Carbon Credit System have to be discussed to protect the peat bogs for climate protection issues. Environmental education is an important pillar of the EFMK. The local society is invited to explore the unique ecosystem and to participate in peat bog protection activities. Future generations will be taught to understand that the health of our peat bogs is interrelated with the health of the local and global climate. Besides extracurricular classes for schools the centre will provide infrastructure for Master and PhD students, as well for senior researchers for applied research in the surrounding moor. International partners in the scientific and practical fields of peat bog ecology, renaturation, green house gas emissions from peat bogs, and environmental policy are invited to participate in the European Competence Center for Moor and Climate.

  5. Early age compressive strength, porosity, and sorptivity of concrete using peat water to produce and cure concrete

    NASA Astrophysics Data System (ADS)

    Olivia, Monita; Ismeddiyanto, Wibisono, Gunawan; Sitompul, Iskandar R.

    2017-09-01

    Construction in peatland has faced scarce water sources for mixing and curing concrete. It is known that peat water has high organic content and low pH that can be harmful to concrete in the environment. In some remote areas in Riau Province, contractors used peat water directly without sufficient treatments to comply with SKSNI requirements of concrete mixing water. This paper presents a study of compressive strength, porosity and sorptivity of Ordinary Portland Cement (OPC) and blended OPC-Palm Oil Fuel Ash (OPC-POFA) concrete. The specimens were mixed using natural water and peat water, then some of them were cured in fresh water and peat water. Six mixtures were investigated using a variation of cement, mixing water and curing water. Tap water is used as control mixing and curing water for all specimens. The compressive strength, porosity and sorptivity were calculated at seven and 28 days. Results indicate that the use of peat water will cause low compressive strength, high porosity and sorptivity for both OPC and OPC-POFA concrete. Using peat water and curing the specimens in tap water could improve the early strength, porosity and sorptivity of OPC concrete; however, it has an adverse effect on OPC-POFA specimens. The properties of early age concrete of both types (OPC and OPC-POFA) using peat water were as good as those with tap water. Therefore, it is suggested that peat water should be considered as mixing and curing water for concrete where tap water resources are scarce. Investigation of its long-term properties, as well as extending the observed age of concrete is recommended before any use of peat water.

  6. Towards explaining excess CO2 production in wetlands - the roles of solid and dissolved organic matter as electron acceptors and of substrate quality

    NASA Astrophysics Data System (ADS)

    Knorr, Klaus-Holger; Gao, Chuanyu; Agethen, Svenja; Sander, Michael

    2017-04-01

    To understand carbon storage in water logged, anaerobic peatlands, factors controlling mineralization have been studied for decades. Temperature, substrate quality, water table position and the availability of electron acceptors for oxidation of organic carbon have been identified as major factors. However, many studies reported an excess carbon dioxide (CO2) production over methane (CH4) that cannot be explained by available electron acceptors, and peat soils did not reach strictly methanogenic conditions (i.e., a stoichiometric formation ratio of 1:1 of CO2 to CH4). It has been hypothesized that peat organic matter (OM) provides a previously unrecognized electron acceptor for microbial respiration, elevating CO2 to CH4 ratios. Microbial reduction of dissolved OM has been shown in the mid 90's, but only recently mediated electrochemical techniques opened the possibility to access stocks and changes in electron accepting capacities (EAC) of OM in dissolved and solid form. While it was shown that the EAC of OM follows redox cycles of microbial reduction and O2 reoxidation, changes in the EAC of OM were so far not related quantitatively to CO2 production. We therefore tested if CO2 production in anoxic peat incubations is balanced by the consumption of electron acceptors if EAC of OM is included. We set up anoxic incubations with peat and monitored production of CO2 and CH4, and changes in EAC of OM in the dissolved and solid phase over time. Interestingly, in all incubations, the EAC of dissolved OM was poorly related to CO2 and CH4 production. Instead, dissolved OM was rapidly reduced at the onset of the incubations and thereafter remained in reduced form. In contrast, the decrease in the EAC of particulate (i.e. non-dissolved) OM was closely linked to the observed production of non-methanogenic CO2. Thereby, the total EAC of the solid OM pool by far exceeded the EAC of the dissolved OM pool. Over the course of eight week incubations, measured decreases in the EAC of total NOM could explain 22-38 % of excess CO2 production in a weakly decomposed peat, 30-67 % of excess CO2 production in a well decomposed peat, and >100 % of excess CO2 production in a peat that had been exposed to oxygen for > 1 year. In this latter peat, EAC by OM explained 45-57 % of CO2 production, while reduction of sulfate available in this material readily explained the remaining fraction. Despite having considerable uncertainty arising from methodological challenges, the collected data demonstrated that accounting for the EACs of solid and dissolved OM may fully explain excess CO2 production. As we conservatively assumed a carbon oxidation state of zero for our budget calculations, a higher oxidation state of C in NOM as suggested by elemental analysis would result in electron equivalent budgets between EAC decreases and CO2 formation even closer to 100 %. A higher oxidation state of mineralized carbon seemed especially likely for weakly decomposed peat, as this material had higher concentrations of oxygen and showed the largest percentage of formed CO2 that could not be explained based on OM reduction.

  7. Long-term purification efficiency of a wetland constructed to treat runoff from peat extraction.

    PubMed

    Karjalainen, Satu M; Heikkinen, Kaisa; Ihme, Raimo; Kløve, Bjørn

    2016-01-01

    Peat extraction increases the phosphorus, nitrogen, organic matter, suspended solids, and iron concentrations in runoff, resulting in negative effects on downstream water bodies. Wetlands are commonly used as natural cost-effective solutions to mitigate these negative effects. This study analyzed changes in the quality of runoff water from peat extraction areas and the long-term efficiency of constructed wetlands. The results indicate that the quality of runoff water changed after the initial drainage and during peat extraction. Nitrogen leached at high concentrations in the early stages of peat extraction following drainage, whereas the leaching of iron and phosphorus increased after peat extraction from deeper layers. Comparison of water quality and impurities retained immediately after treatment wetland construction and 14 years later showed that the treatment wetland remained functional, with good retention capacity, over a long period.

  8. In situ fluidization for peat bed rupture, and preliminary economic analysis.

    PubMed

    Niven, R K; Khalili, N

    2002-11-01

    This study concerns in situ fluidization (ISF), a new remediation method with potential application to the remediation of NAPL and heavy metal contaminants, by their release from the fluidized zone generated by a water jet. The present study examines the effect of ISF on layers of peat, of significance owing to its role as an important NAPL and metal contaminant trap. Once trapped, such contaminants are not readily accessible by most remedial methods, due to the low permeability and diffusivity of the peat. A simple tank experiment is used to demonstrate rupture of a peat layer by ISF, with removal of the peat as elutriated fines and segregated peat chunks. The application of ISF in the field is then examined by three field trials in uncontaminated sands, in both saturated and unsaturated conditions. Fluidized depths of up to 1.9 m in the saturated zone (with refusal on a peat layer) and 2.5 m in the unsaturated zone (no refusal) were attained, using a 1.9-m-long, 50 mm diameter jet operated at 5-13 1 s(-1). Pulses of dark turbidity and shell fragments in the effluent indicated the rupture of peat and shelly layers. The experiments demonstrate the hydraulic viability of ISF in the field, and its ability to remove peat-based contaminants. The issues of appropriate jet design and water generation during ISF are discussed, followed by a preliminary economic analysis of ISF relative to existing remediation methods.

  9. Soil amendments and planting techniques : campsite restoration in the Eagle Cap Wilderness, Oregon

    Treesearch

    David N. Cole; David R. Spildie

    2000-01-01

    Results of the first three years of revegetation research on closed wilderness campsites are described. Experimental treatments involved soil scarification, an organic soil amendment (a mix of locally collected organic materials and peat moss and an inoculation of native undisturbed soil), an organic matter and composted sewage sludge treatment and surface application...

  10. Response of anaerobic carbon cycling to water table manipulation in an Alaskan rich fen

    Treesearch

    E.S. Kane; M.R. Chivers; M.S. Turetsky; C.C. Treat; D.G. Petersen; M. Waldrop; J.W. Harden; A.D. McGuire

    2013-01-01

    To test the effects of altered hydrology on organic soil decomposition, we investigated CO2 and CH4 production potential of rich-fen peat (mean surface pH = 6.3) collected from a field water table manipulation experiment including control, raised and lowered water table treatments. Mean anaerobic CO2...

  11. Examination of Below-Ground Structure and Soil Respiration Rates of Stable and Deteriorating Salt Marshes in Jamaica Bay (NY)

    EPA Science Inventory

    CAT scan imaging is currently being used to examine below-ground peat and root structure in cores collected from salt marshes of Jamaica Bay, part of the Gateway National Recreation Area (NY). CAT scans or Computer-Aided Tomography scans use X-ray equipment to produce multiple i...

  12. Evaporation from a sphagnum moss surface

    Treesearch

    D.S. Nichols; J.M. Brown

    1980-01-01

    Peat cores, 45 cm in diameter, were collected from a sphagnum bog in northern Minnesota, and used to measure the effects of different temperatures and water levels on evaporation from a sphagnum moss surface in a growth chamber. Under all conditions, evaporation from the moss surface was greater than that from a free-water surface. Evaporation from the moss increased...

  13. Scheduling Accessory Assists Patients with Cognitive Disorders

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Recom Technologies Inc. received initial funding from NASA to research the commercial potential of an artificially intelligent planning reaction model to serve as a tool to help individuals suffering from various forms and levels of brain impairment. In 1993, the chief of the Artificial Intelligence Research Branch at Ames Research Center suggested collaborative research with Santa Clara Valley Medical Center. This partnership led to further development of the technology and funding to support clinical research from the U.S. Department of Education's National Institute on Disability and Rehabilitation Research. In 1996, Attention Control Systems Inc. was founded to market the finished device, called the Planning and Execution Assistant and Trainer (PEAT). PEAT is a pocket-sized PDA-like device with a graphical display, touchscreen controls, an electronic calendar, an address book, and a built-in phone, that cues users to start or stop scheduled activities, monitors their progress, and adjusts schedules as necessary in response to delays or calendar changes. It uses an automatic planning model developed for NASA to adjust daily plans when a situation changes. PEAT is sold as a complete system that includes software, hardware, documentation, and technical support. In addition to the flagship Pocket PEAT device, there is PEAT Phone, PC PEAT, and PEAT Link. Clinical studies of PEAT continue at Santa Clara Valley Medical Center

  14. Logged peat swamp forest supports greater macrofungal biodiversity than large-scale oil palm plantations and smallholdings.

    PubMed

    Shuhada, Siti Noor; Salim, Sabiha; Nobilly, Frisco; Zubaid, Akbar; Azhar, Badrul

    2017-09-01

    Intensive land expansion of commercial oil palm agricultural lands results in reducing the size of peat swamp forests, particularly in Southeast Asia. The effect of this land conversion on macrofungal biodiversity is, however, understudied. We quantified macrofungal biodiversity by identifying mushroom sporocarps throughout four different habitats; logged peat swamp forest, large-scale oil palm plantation, monoculture, and polyculture smallholdings. We recorded a total of 757 clusters of macrofungi belonging to 127 morphospecies and found that substrates for growing macrofungi were abundant in peat swamp forest; hence, morphospecies richness and macrofungal clusters were significantly greater in logged peat swamp forest than converted oil palm agriculture lands. Environmental factors that influence macrofungi in logged peat swamp forests such as air temperature, humidity, wind speed, soil pH, and soil moisture were different from those in oil palm plantations and smallholdings. We conclude that peat swamp forests are irreplaceable with respect to macrofungal biodiversity. They host much greater macrofungal biodiversity than any of the oil palm agricultural lands. It is imperative that further expansion of oil palm plantation into remaining peat swamp forests should be prohibited in palm oil producing countries. These results imply that macrofungal distribution reflects changes in microclimate between habitats and reduced macrofungal biodiversity may adversely affect decomposition in human-modified landscapes.

  15. Transition from a warm and dry to a cold and wet climate in NE China across the Holocene

    NASA Astrophysics Data System (ADS)

    Zheng, Yanhong; Pancost, Richard D.; Naafs, B. David A.; Li, Qiyuan; Liu, Zhao; Yang, Huan

    2018-07-01

    Northeast (NE) China lies in the northernmost part of the East Asian Summer monsoon (EASM) region. Although a series of Holocene climatic records have been obtained from lakes and peats in this region, the Holocene hydrological history and its controls remain unclear. More specifically, it is currently debated whether NE China experienced a dry or wet climate during the early Holocene. Here we reconstruct changes in mean annual air temperature and peat soil moisture across the last ∼13,000 year BP using samples from the Gushantun and Hani peat, located in NE China. Our approach is based on the distribution of bacterial branched glycerol dialkyl glycerol tetraethers (brGDGTs) and the abundance of the archaeal isoprenoidal (iso)GDGT crenarchaeol. Using the recently developed peat-specific MAATpeat temperature calibration we find that NE China experienced a relatively warm early Holocene (∼5-7 °C warmer than today), followed by a cooling trend towards modern-day values during the mid- and late Holocene. Moreover, crenarchaeol concentrations, brGDGT-based pH values, and the distribution of 6-methyl brGDGTs, all indicate an increase in soil moisture content from the early to late Holocene in both peats, which is largely consistent with other data from NE China. This trend towards increasing soil moisture/wetter conditions across the Holocene in NE China records contrasts with the trends observed in other parts of the EASM region, which exhibit an early and/or mid-Holocene moisture/precipitation maximum. However, the Holocene soil moisture variations and temperature-moisture relationships (warm-dry and cold-wet) observed in NE China are similar to those observed in the core area of arid central Asia which is dominated by the westerlies. We therefore propose that an increase in the intensity of the westerlies across the Holocene, driven by increasing winter insolation, expanding Arctic sea ice extent and the enhanced Okhotsk High, caused an increase in moisture during the late Holocene in NE China.

  16. Exploring 222Rn as a tool for tracing groundwater inflows from eskers and moraines into slope peatlands of the Amos region of Quebec, Canada.

    PubMed

    Berthot, Laureline; Pinti, Daniele L; Larocque, Marie; Gagné, Sylvain; Ferlatte, Miryane; Cloutier, Vincent

    2016-11-01

    Peatlands can play an important role in the hydrological dynamics of a watershed. However, interactions between groundwater and peat water remain poorly understood. Here, we present results of an exploratory study destined to test radon ( 222 Rn) as a potential tracer of groundwater inflows from fluvioglacial landform aquifers to slope peatlands in the Amos region of Quebec, Canada. 222 Rn occurs in groundwater but is expected to be absent from peat water because of its rapid degassing to the atmosphere. Any 222 Rn activity detected in peat water should therefore derive from groundwater inflow. 222 Rn activity was measured in groundwater from municipal, domestic wells and newly drilled and instrumented piezometers from the Saint-Mathieu-Berry and Barraute eskers (n = 9), from the Harricana Moraine (n = 4), and from the fractured bedrock (n = 3). Forty measurements of 222 Rn activity were made from piezometers installed in five slope peatlands, along six transects oriented perpendicular to the fluvioglacial deposits. The relationship between 222 Rn and total dissolved solids (TDS) measured in water from the mineral deposits underlying the peat layer suggests that 222 Rn is introduced by lateral inflow from eskers and moraine together with salinity. This input is then diluted by peat water, depleted in both TDS and 222 Rn. The fact that a relationship between TDS and 222 Rn is visible calls for a continuous inflow of groundwater from lateral eskers/moraines, being 222 Rn rapidly removed from the system by radioactive decay. Although more research is required to improve the sampling and tracing techniques, this work shows the potential of 222 Rn tracer to identify groundwater inflow areas from granular aquifers found in eskers and moraines to slope peatlands. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Time-Lapse Geophysical Measurements targeting Spatial and Temporal Variability in Biogenic Gas Production from Peat Soils in a Hydrologically Controlled Wetland in the Florida Everglades

    NASA Astrophysics Data System (ADS)

    Wright, W. J.; Shahan, T.; Sharp, N.; Comas, X.

    2015-12-01

    Peat soils are known to release globally significant amounts of methane (CH4) and carbon dioxide (CO2) to the atmosphere. However, uncertainties still remain regarding the spatio-temporal distribution of gas accumulations and triggering mechanisms of gas releasing events. Furthermore, most research on peatland gas dynamics has traditionally been focused on high latitude peatlands. Therefore, understanding gas dynamics in low-latitude peatlands (e.g. the Florida Everglades) is key to global climate research. Recent studies in the Everglades have demonstrated that biogenic gas flux values may vary when considering different temporal and spatial scales of measurements. The work presented here targets spatial variability in gas production and release at the plot scale in an approximately 85 m2 area, and targets temporal variability with data collected during the spring months of two different years. This study is located in the Loxahatchee Impoundment Landscape Assessment (LILA), a hydrologically controlled, landscape scale (30 Ha) model of the Florida Everglades. Ground penetrating radar (GPR) has been used in the past to investigate biogenic gas dynamics in peat soils, and is used in this study to monitor changes of in situ gas storage. Each year, a grid of GPR profiles was collected to image changes in gas distribution in 2d on a weekly basis, and several flux chambers outfitted with time-lapse cameras captured high resolution (hourly) gas flux measurements inside the GPR grid. Combining these methods allows us to use a mass balance approach to estimate spatial variability in gas production rates, and capture temporal variability in gas flux rates.

  18. Peatland hydrology and carbon release: why small-scale process matters.

    PubMed

    Holden, Joseph

    2005-12-15

    Peatlands cover over 400 million hectares of the Earth's surface and store between one-third and one-half of the world's soil carbon pool. The long-term ability of peatlands to absorb carbon dioxide from the atmosphere means that they play a major role in moderating global climate. Peatlands can also either attenuate or accentuate flooding. Changing climate or management can alter peatland hydrological processes and pathways for water movement across and below the peat surface. It is the movement of water in peats that drives carbon storage and flux. These small-scale processes can have global impacts through exacerbated terrestrial carbon release. This paper will describe advances in understanding environmental processes operating in peatlands. Recent (and future) advances in high-resolution topographic data collection and hydrological modelling provide an insight into the spatial impacts of land management and climate change in peatlands. Nevertheless, there are still some major challenges for future research. These include the problem that impacts of disturbance in peat can be irreversible, at least on human time-scales. This has implications for the perceived success and understanding of peatland restoration strategies. In some circumstances, peatland restoration may lead to exacerbated carbon loss. This will also be important if we decide to start to create peatlands in order to counter the threat from enhanced atmospheric carbon.

  19. The peats of Costa Rica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thayer, G.R.; Williamson, K.D. Jr.; Ramirez, O.

    The authors compare the competitive position of peat for energy with coal, oil, and cogenerative systems in gasifiers and solid-fuel boilers. They also explore the possibility for peat use in industry. To identify the major factors, they analyze costs using a Los Alamos levelized cost code, and they study parametric costs, comparing peat production in constant dollars with interest rates and return on investment. They consider costs of processing plant construction, sizes and kinds of boilers, retrofitting, peat drying, and mining methods. They examine mining requirements for Moin, Changuinola, and El Cairo and review wet mining and dewatering methods. Peatmore » can, indeed, be competitive with other energy sources, but this depends on the ratio of fuel costs to boiler costs. This ratio is nearly constant in comparison with cogeneration in a steam-only production system. For grate boilers using Costa Rican high-ash peat, and for small nonautomatic boilers now used in Costa Rica, the authors recommend combustion tests. An appendix contains a preliminary mining plan and cost estimate for the El Cairo peat deposit. 8 refs., 43 figs., 19 tabs.« less

  20. Flow path oscillations in transient ground-water simulations of large peatland systems

    USGS Publications Warehouse

    Reeve, A.S.; Evensen, R.; Glaser, P.H.; Siegel, D.I.; Rosenberry, D.

    2006-01-01

    Transient numerical simulations of the Glacial Lake Agassiz Peatland near the Red Lakes in Northern Minnesota were constructed to evaluate observed reversals in vertical ground-water flow. Seasonal weather changes were introduced to a ground-water flow model by varying evapotranspiration and recharge over time. Vertical hydraulic reversals, driven by changes in recharge and evapotranspiration were produced in the simulated peat layer. These simulations indicate that the high specific storage associated with the peat is an important control on hydraulic reversals. Seasonally driven vertical flow is on the order of centimeters in the deep peat, suggesting that seasonal vertical advective fluxes are not significant and that ground-water flow into the deep peat likely occurs on decadal or longer time scales. Particles tracked within the ground-water flow model oscillate over time, suggesting that seasonal flow reversals will enhance vertical mixing in the peat column. The amplitude of flow path oscillations increased with increasing peat storativity, with amplitudes of about 5 cm occurring when peat specific storativity was set to about 0.05 m-1. ?? 2005 Elsevier B.V. All rights reserved.

  1. CO2 emissions from organic soils under agricultural use

    NASA Astrophysics Data System (ADS)

    Bader, Cédric; Leifeld, Jens; Müller, Moritz; Schulin, Rainer

    2015-04-01

    The organic soils of peatlands represent a major global sink for terrestrial carbon. Agricultural use of organic soils requires drainage, changing conditions in these soils from anoxic to oxic. As a consequence, the organic carbon that had been accumulated often over millennia is rapidly mineralized, so that these soils then are no longer a sink but become a source of CO2. The aim of our study is to analyse the amount and origin of CO2 emitted from organic soils under three land-use types (forest, arable cropland and grassland). Our study area is located in the Bernese Lakeland (CH). The peatlands of this region were drained in the 1870ies, and the site as well as the surrounding area are now managed by a state prison. Since decades our study site is under the same land-use. In Oktober 2013 we took 4 replicate soil cores of all land-uses with respect to a certain distance from a major drainage ditch. Each core was analysed for its bulk density and carbon content. 9 soil samples from a depth of 20-30 cm were analysed for their F14C and δ13C values and later divided into 18 subsamples. Half of them were mixed with 0.2-0.4 g of labelled corn stalk enriched in δ13C (δ13C=2000) in order to mimic plant residue inputs in the field. The moisture content of these samples was equilibrated at a pF-value of 2 before incubating the samples in a Respicond VII analyser for several weeks at 20° C. By trapping the respired CO2 in NaOH and precipitating it as BaCO3 we were able to analyse its F14C and δ13C value. This enabled us to determine to what extent the CO2 originated from old peat, young plant residues or the added maize stalk. Generally the cropland samples showed the highest respiration rates, lowest F14C values and highest carbon stocks. The organic soils under the forest were degraded the most and showed low respiration rates. Analyzing the F14C values of the CO2 revealed that peat contributes most to the respiration and its degradation is fastest in the cropland. Our findings suggest that peat respiration must have been more intense under forest during the past 140 years. The addition of fresh plant material resulted in increased respiration rates but supressed the respiration of old peat in the cropland and grassland (negative priming).

  2. Revising Estimates of the Methane Production Pathway in Peatland Porewater Using Intramolecular Isotopic Analyses of Acetate

    NASA Astrophysics Data System (ADS)

    Thomas, B.; Arthur, M. A.; Freeman, K. H.

    2007-12-01

    Stable isotopic measurements of methane and carbon dioxide are routinely applied to environmental samples to assess the relative importance of methane production by either aceticlastic or hydrogenotrophic methanogenesis. Such estimates rely upon assumptions about isotopic fractionation during methane production and oxidation. Rigorous isotope-based pathway estimates require knowledge of the carbon isotopic composition of both carbon dioxide and acetate. In practice, technical barriers have limited measurements of the isotopic composition of whole acetate in natural samples. Yet, the estimate of whole acetate isotopic values, even when available, may not represent accurately the composition of the methyl carbon, which is, in fact, the precursor to methane. It is exceedingly rare to find carbon isotopic measurements of acetate-methyl in the literature, and, to our knowledge, the d13C of the acetate-methyl precursor to methane has never before been reported from peatland porewater samples. Extremely 13C-depleted methane, -70 permil VPDB, and 13C-enriched carbon dioxide from acidic northern peat bogs are typically interpreted as signatures of hydrogenotrophic methanogenesis. The hypothesized dominance of methane production from hydrogen in acidic bogs contrasts with the vast majority of freshwater wetlands in which aceticlastic methanogenesis dominates. Using a new technique for the online analysis of the intramolecular carbon isotopic composition of acetate in natural samples, we find the acetate-methyl in peat porewaters can be significantly depleted relative to bulk organic matter. In porewater profiles from both winter and summer, acetate is as much as 15 permil depleted relative to bulk carbon. We hypothesize that acetate- methyl isotopic depletion results from conditions that favor autotrophic acetogenesis and subsequent acetate consumption by aceticlastic methanogens. Porewater depth profiles during winter and summer illustrate depth- dependent increases in the fraction of methane derived from carbon dioxide, with deeper peat dominated by hydrogenotrophic methanogenesis, but shallow peat dominated by aceticlastic methanogens. Significant aceticlastic methane production from autotrophically produced acetate challenges the ability of hydrogen isotopic measurements of methane to represent the pathway of methanogenesis. Supplementing our field observations, intramolecular acetate measurements of incubation experiments confirm that an aceticlastic methanogen can facilitate significant acetate-carboxyl exchange with DIC. This novel technique confirms two caveats associated with whole acetate carbon isotopic data: 1, the carboxyl carbon isotopic composition may not accurately reflect the composition of the parent molecule, and 2, the acetate methyl may be derived from inorganic carbon or the fractionation effect of fermentation in acidic porewaters may be significant.

  3. Metatranscriptomics reveals the hydrolytic potential of peat-inhabiting Planctomycetes.

    PubMed

    Ivanova, Anastasia A; Wegner, Carl-Eric; Kim, Yongkyu; Liesack, Werner; Dedysh, Svetlana N

    2018-06-01

    Members of the phylum Planctomycetes are common inhabitants of northern Sphagnum-dominated wetlands. Evidence is accumulating that, in these environments, some planctomycetes may be involved in degrading polymeric organic matter. The experimental data, however, remain scarce due to the low number of characterized representatives of this phylum. In a previous study, we used metatranscriptomics to assess the activity response of peat-inhabiting microorganisms to biopolymers abundantly present in native peat. The community responses to cellulose, xylan, pectin, and chitin availability were analysed relative to unamended controls. Here, we re-analysed these metatranscriptomes and retrieved a total of 1,602,783 rRNA and 35,522 mRNA sequences affiliated with the Planctomycetes. Each of the four polymers induced specific planctomycete responses. These were most pronounced on chitin. The two groups with increased 16S rRNA transcript pools were Gemmata- and Phycisphaera-like planctomycetes. Among uncultivated members of the Planctomycetaceae, two increased transcript pools were detected in pectin-amended samples and belonged to Pirellula-like bacteria. The analysis of taxonomically assigned mRNA reads confirmed the specific response of Gemmata-related planctomycetes to chitin amendment suggesting the presence of chitinolytic capabilities in these bacteria.

  4. Peat drainage conditions assessment in Scotland

    NASA Astrophysics Data System (ADS)

    Poggio, Laura; Artz, Rebekka; Donaldson-Selby, Gillian; Aitkenhead, Matt; Donnelly, David; Gimona, Alessandro

    2017-04-01

    Large areas of Scotland are covered in peat, providing an important sink of carbon but also a notable source of emission where peatlands are not in good condition. However, despite data from designated sites that peat degradation is common, a detailed spatial assessment of the condition of most peatlands across the whole of Scotland is missing. An assessment of peatland drainage was carried out at >600 random sampling locations with an expert-based estimation of presence or absence of drainage ditches within a 500 metre block using 25 cm resolution aerial imagery. The resulting dataset was modelled using a scorpan-kriging approach, in particular using Generalised Additive Models for the description of the trend. Remote sensing images from different sensors (i.e. MODIS, Landsat and Sentinel 1 and 2) were used. In particular we used indices describing vegetation greenness (Enhanced Vegetation Index), water availability (Normalised Water Difference index), Land Surface Temperature and vegetation productivity. When considering MODIS indices we used time series and phenological summaries. The model provides also uncertainty of the estimations. The derived dataset can then be used in the decision making process for the selection of sites for restoration, emissions estimation and accounting.

  5. Colloid-facilitated metal transport in peat filters.

    PubMed

    Kalmykova, Yuliya; Rauch, Sebastien; Strömvall, Ann-Margret; Morrison, Greg; Stolpe, Björn; Hasselliöv, Martin

    2010-06-01

    The effect of colloids on metal retention in peat columns was studied, with the focus on colloids from two sources-organic matter leached from peat, and introduced organic and hydrous ferric oxide (HFO) colloids. A significant fraction of metals was found to be associated with peat-produced organic colloids; however the concentrations of organic colloids leached are low (trace concentrations) and temporal and have a limited effect on the efficiency of peat filters. In contrast, the presence of organic and HFO colloids in the input water causes a significant decrease in the performance of peat filters. Organic colloids were identified as the main vector of cadmium, copper, nickel, and zinc, while lead is transported by both organic and HFO colloids. The colloidal distribution of metals obtained in this study has important implications for the mobility of trace metals in porous media. The occurrence of colloids in the input waters and their characteristics must be considered when designing water treatment facilities.

  6. Insights and issues with estimating Holocene peatland carbon stocks: a synthesis and review

    NASA Astrophysics Data System (ADS)

    Loisel, Julie; Yu, Zicheng

    2014-05-01

    Of all terrestrial ecosystems, peatlands are arguably the most efficient at sequestering carbon (C) over long time scales. However, ongoing and projected climate change could shift the balance between peat production and organic matter decomposition, potentially impacting the peat C sink capacity and modifying peat C fluxes to the atmosphere. Yet, the sign and magnitude of the peatland - C - climate feedback remain uncertain and difficult to assess because of large uncertainties in regional peat C stocks and limited understanding of peatland responses to climate change. Here we present results from the most comprehensive compilation of Holocene peat soil properties with associated carbon (C) and nitrogen (N) accumulation rates for northern peatlands. Our database consists of 268 peat cores from 215 sites located north of 45N. It encompasses regions within which peat C data have only recently become available, such as the West Siberia Lowlands, the Hudson Bay Lowlands, Kamchatka in Far East Russia, and the Tibetan Plateau. The database is publicly available at https://peatlands.lehigh.edu. Several scaling-up methods for estimating present-day peatland C stocks are presented, and uncertainties associated with each one of them are addressed. Likewise, the assumptions for calculating peat C volumes are discussed in light of conceptual models of spatial heterogeneity in peatland structure and function. We also examine the theoretical basis and underlying assumptions for the models of peatland lateral expansion and peat vertical growth used in estimating paleo peatland C stocks. Finally, we explore the importance of the fen-to-bog transition and of permafrost aggradation on C sequestration.

  7. Controls on Methanogenesis in Organic-Rich Anaerobic Environments

    NASA Astrophysics Data System (ADS)

    Wilson, R.; Tfaily, M.; Chanton, J.; Rich, V. I.; Saleska, S. R.; Holmes, B.; Langford, L.; Hanson, P. J.; Bridgham, S. D.; Hopple, A.; Keller, J.; Cory, A.; Kostka, J. E.

    2017-12-01

    Peatlands contain an amount of C equal to half the CO2 in the atmosphere. That C is stored as organic C (OC) in peat deposits which form when plant productivity exceeds heterotrophic respiration. This balance has been attributed to cold, anaerobic, low pH conditions which slow microbial respiration rates, high aromatic content which may inhibit microbial decomposition, and recalcitrance of OC under terminal electron-acceptor (TEA) depleted conditions. Peat has been described as a potential C bomb which could release Gt of C into the atmosphere if rising global temperatures shifted this balance in favor of increased microbial respiration. At the Spruce and Peatlands Responses Under Changing Environments (SPRUCE) experimental site in Minnesota, U.S.A., peat up to 2 m deep was heated (+2.25°C to +9°C above ambient) both in situ and in laboratory incubations to test the response of microbial respiration to increasing temperatures. Our results demonstrated (1) that temperature did not influence CO2 or CH4 production rates in deep anaerobic peat, (2) that microbial decomposition was dominated by dissolved OC rather than the solid phase peat, and (3) that microbial decomposition in surface peat may become more methanogenic with warming. This shift towards higher CH4 production relative to CO2 has significant climate change implications since CH4 is a much stronger greenhouse gas than CO2. Under TEA-poor, anaerobic conditions, such as peat deposits, thermodynamic principles dictate that cellulose, the dominant OC form in Sphagnum peat, should be mineralized into equimolar CO2 and CH­4. However, deviations from this predicted ratio abound. The literature of rumen, a system similar to peat in many ways, revealed a potential mechanism for sustaining elevated CO2 production without accumulating inhibitory H2. Using FTICRMS, we found ubiquitous hydrogenation of unsaturated OC which could be acting as TEAs in peat deposits. This mechanism has the further advantages of alleviating the toxicity of aromatic compounds and potentially making otherwise recalcitrant aromatic molecules susceptible to anaerobic decomposition thereby providing a critical step in the diagenesis of peat. Incubation experiments adding H2 support these findings and incubations of irradiated peat suggest an abiotic contribution to CO2 production.

  8. Dips, ramps, and rolls- Evidence for paleotopographic and syn-depositional fault control on the Western Kentucky No. 4 coal bed, tradewater formation (Bolsovian) Illinois Basin

    USGS Publications Warehouse

    Greb, S.F.; Eble, C.F.; Williams, D.A.; Nelson, W.J.

    2001-01-01

    The Western Kentucky No. 4 coal is a high-volatile B to high-volatile C bituminous coal that has been heavily mined along the southern margin of the Western Kentucky Coal Field. The seam has a reputation for rolling floor elevation. Elongate trends of floor depressions are referred to as "dips" and "rolls" by miners. Some are relatively narrow and straight to slightly curvilinear in plan view, with generally symmetric to slightly asymmetric cross-sections. Others are broader and asymmetric in section, with sharp dips on one limb and gradual, ramp-like dips on the other. Some limbs change laterally from gradual dip, to sharp dip, to offset of the coal. Lateral changes in the rate of floor elevation dip are often associated with changes in coal thickness, and in underground mines, changes in floor elevation are sometimes associated with roof falls and haulage problems. In order to test if coal thickness changes within floor depressions were associated with changes in palynology, petrography and coal quality, the coal was sampled at a surface mine across a broad. ramp-like depression that showed down-dip coal thickening. Increment samples of coal from a thick (150 cm), down-ramp and thinner (127 cm), up-ramp position at one surface mine correlate well between sample sites (a distance of 60 m) except for a single increment. The anomalous increment (31 cm) in the lower-middle part of the thick coal bed contained 20% more Lycospora orbicula spores. The rolling floor elevations noted in the study mines are inferred to have been formed as a result of pre-peat paleotopographic depressions, syn-depositional faulting, fault-controlled pre-peat paleotopography, and from compaction beneath post-depositional channels and slumps. Although the association of thick coal with linear trends and inferred faults has been used in other basins to infer syn-depositional faulting, changes in palynology within increment samples of the seam along a structural ramp in this study provide subtle evidence of faulting within a specific increment of the coal itself. The sudden increase in L. orbicula (produced by Paralycopodites) in a single increment of a down-ramp sample of the Western Kentucky No. 4 coal records the reestablishment of a rheotrophic mire following a sudden change in edaphic conditions. Paralycopodites was a colonizing lycopod, which in this case became locally abundant after the peat was well established along a fault with obvious growth during peat accumulation. Because many coal-mire plants were susceptible to sudden edaphic changes as might accompany faulting or flooding, changes in palynology would be expected in coals affected by syn-depositional faulting. ?? 2001 Elsevier Science B.V. All rights reserved.

  9. Illuminating Geochemical Controls of Methane Oxidation Along a Gradient of Permafrost Thaw

    NASA Astrophysics Data System (ADS)

    Perryman, C. R.; Kashi, N.; McCalley, C. K.; Malhotra, A.; Giesler, R.; Varner, R.

    2017-12-01

    Increases in annual mean temperature in the subarctic have accelerated the thaw of organic-rich permafrost peatlands, exacerbating methane (CH4) production from microbial decomposition of peat deposits and subsequent CH4 emissions. Methanotrophic bacteria may oxidize/consume upwards of 90% of produced CH4 in some settings, pending substrate availability and environmental conditions. Redox chemistry may also control the rate of CH4 oxidation in thawing permafrost areas, particularly redox potential (Eh) and the availability of oxygen (O2) and other terminal electron receptors. We investigated potential CH4 oxidation rates across a permafrost thaw gradient in Stordalen Mire (68°21'N,18°49'E) near Abisko, Sweden. Methane oxidation rates for sites from thawing and collapsed palsa, semi-wet Sphagnum, and open-water sedge sites were determined through laboratory incubations. Peat cores were extracted from two depths at each site and incubated at in situ temperatures and CH4 concentrations. Headspace samples were collected over a 48-hour period and analyzed for CH4 concentration using flame ionization detection gas chromatography (GC-FID). Dissolved O2, Eh, and dissolved CH4 were measured in sites with porewater. Oxidation rates ranged from <0.1 to 19 μg of CH4 per gram of dry biomass per day. Eh remained positive (41.6 to 316.8 mV) with available dissolved O2 (0.3 - 5.2 mg/L) in all measurement locations down to 20cm, indicating in situ aerobic CH4 oxidation is viable across these environments. Potential CH4 oxidation rates increased with increasing dissolved CH4 concentration. Highest potential CH4 oxidation rates were found in open-water sedge sites. Eh and dissolved O2 were lowest at these sites, suggesting that methanotrophs with low-O2 demand may populate sedge areas. Furthermore, potential CH4 oxidation rates were higher at depth than at the surface in thawing palsa, suggesting CH4 oxidation may mitigate CH4 production triggered by warming in these actively thawing environments. Forthcoming elemental analyses of peat and pore water will further elucidate trends and geochemical controls of CH4 oxidation rates in thawing permafrost areas.

  10. Infectivity, distribution, and persistence of the entomopathogenic nematode Steinernema carpocapsae all strain (Rhabditida: Steinernematidae) applied by sprinklers or boom sprayer to dry-pick cranberries.

    PubMed

    Hayes, A E; Fitzpatrick, S M; Webster, J M

    1999-06-01

    We evaluated infectivity, distribution, and persistence of commercially produced Steinernema carpocapsae (Weiser) All strain applied through solid set sprinkler irrigation or boom sprayer to 2 dry-pick cranberry farms on peat soil in British Columbia in 1993. Most infectivity assays used Galleria mellonella (L.) larvae. When possible, larvae of the target pest, Otiorynchus sulcatas (F.) were used as assay organisms. Nematodes in almost all samples of nematode suspensions diluted from shipping containers, from spray tanks, or collected in cups after passage through application equipment were infective to G. mellonella larvae. When O. sulcatus larvae were used as assay organisms, 93% (n = 14) of assays from the spray tank and 67% (n = 12) of assays after application showed infectivity. In the spring, sprinklers delivered nematodes to only 15 of 20 sample points on the 0.2-ha plot; delivery by the boom sprayer was better but 2 of 20 points on the 0.2-ha plot received approximately twice as many nematodes as the other points. In the fall, nematode delivery by both systems was more even. However, the average number of nematodes per milliliter of sprayed water collected from the 20 samples on each farm after each application did not correspond to the rates of nematodes applied. Persistence of nematodes in the soil was encouraging, but percentage of infectivity was lower than expected. After application in the spring, assays using G. mellonella larvae showed the presence of infective nematodes in soil samples (0-5 and 5-10 cm deep) on each sampling day (0, 3, 7, and 25) after application by boom sprayer, and on days 0, 3, and 7 after application through sprinklers. In the fall, G. mellonella assays showed infective nematodes in soil samples on each sampling day (0, 3, 7, and 25) after application by boom sprayer, and on days 0, 3, 7, 35, 60, 135, and 250 after application through sprinklers. In the spring, when assays lasted 4 d, percentage of infectivity rose to a maximum of 45% on the 3rd d after application by boom sprayer and declined thereafter. In the fall, when assays lasted 10 d, percentage of infectivity rose to a maximum of 58% on the 7th d after application through sprinklers and remained between 20 and 58% until day 135, declining thereafter; infectivity after boom application remained between 37 and 45% on days 3 and 7, and began to decline on day 25. Nematode infectivity was not compromised in peat soil, muck, or silty clay loam, but infectivity in loam (that may have contained nematicide residues) was very low. We suggest that the inconsistent control of O. sulcatus by S. carpocapsae on British Columbia cranberry farms may be partially explained by problems associated with application and factors related to nematode entry into the soil.

  11. The lignin component of humic substances: Distribution among soil and sedimentary humic, fulvic, and base-insoluble fractions

    NASA Astrophysics Data System (ADS)

    Ertel, John R.; Hedges, John I.

    1984-10-01

    Vanillyl, syringyl and cinnamyl phenols occur as CuO oxidation products of humic, fulvic and base-insoluble residual fractions from soils, peat and nearshore marine sediments. However, none of these lignin-derived phenols were released by CuO oxidation of deepsea sediment or its base-extractable organic fractions. Lignin analysis indicated that peat and coastal marine sediments contained significantly higher levels of recognizable vascular plant carbon (20-50%) than soils and offshore marine sediments (0-10%). Although accounting for less than 20% of the total sedimentary (bulk) lignin, lignin components of humic acid fractions compositionally and quantitatively resembled the corresponding bulk samples and baseinsoluble residues. Recognizable lignin, presumably present as intact phenylpropanoid units, accounted for up to 5% of the carbon in peat and coastal humic acids but less than 1% in soil humic acids. Fulvic acid fractions uniformly yielded less lignin-derived phenols in mixtures that were depleted in syringyl and cinnamyl phenols relative to the corresponding humic acid fractions. Within the vanillyl and syringyl families the relative distribution of acidic and aldehydic phenols is a sensitive measure of the degree of oxidative alteration of the lignin component The high acid/aldehyde ratios and the low phenol yields of soils and their humic fractions compared to peat and coastal sediments indicate extensive degradation of the lignin source material. Likewise, the progressively higher acid/aldehyde ratios and lower phenol yields along the sequence: plant tissues (plant debris)-humic acids-fulvic acids suggest that this pattern represents the diagenetic sequence for the aerobic degradation of lignin biopolymers.

  12. Impacts of regional climatic fluctuations on radial growth of Siberian and Scots pine at Mukhrino mire (central-western Siberia).

    PubMed

    Blanchet, Guillaume; Guillet, Sébastien; Calliari, Baptiste; Corona, Christophe; Edvardsson, Johannes; Stoffel, Markus; Bragazza, Luca

    2017-01-01

    Ring width (TRW) chronologies from Siberian (Pinus sibirica) and Scots (Pinus sylvestris) pine trees were sampled at Mukhrino - a large mire complex in central-western Siberia - to evaluate the impacts of hydroclimatic variability on tree growth over the last three centuries. For this purpose, we compared climate-growth correlation profiles from trees growing on peat soils with those growing on adjacent mineral soils. Tree growth at both peat and mineral soils was positively correlated to air temperature during the vegetation period. This finding can be explained by (i) the positive influence of temperature on plant physiological processes (i.e. growth control) during the growing season and (ii) the indirect impact of air temperatures on water table fluctuations. We observe also a strong link between TRW and the winter Palmer Drought Severity Index (PDSI), especially in Siberian pine, reflecting the isolating effect of snow and limited freezing damage in roots. Significant negative relations were, by contrast, observed between bog TRW chronologies and hydroclimatic indices during spring and summer; they are considered an expression of the negative impacts of high water levels and moist peat soils on root development. Some unusually old bog pines - exhibiting >500 growth rings - apparently colonized the site at the beginning of the Little Ice Age, and therefore seem to confirm that (i) peat conditions may have been drier in Siberia than in most other regions of western Europe during this period. At the same time, the bog trees also point to (ii) their strong dependence on surface conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. A Molecular Budget for a Peatland Based Upon 13C Solid-State Nuclear Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Moody, Catherine S.; Worrall, Fred; Clay, Gareth D.; Burt, Tim P.; Apperley, David C.; Rose, Rob

    2018-02-01

    Peatlands can accumulate organic matter into long-term carbon (C) storage within the soil profile. This study used solid-state 13C nuclear magnetic resonance (13C-NMR) to investigate the transit of organic C through a peatland ecosystem to understand the molecular budget that accompanies the long-term accumulation of C. Samples of biomass, litter, peat soil profile, particulate organic matter, and dissolved organic matter (DOM) were taken from the Moor House National Nature Reserve, a peat-covered catchment in northern England where both the dry matter and C budget for the ecosystem were known. The results showed that: The interpretation of the 13C-NMR spectra shows that polysaccharides are preferentially removed through the ecosystem, while lignin components are preferentially retained and come to dominate the organic matter accumulated at depth in the profile. The DOM is derived from the oxidation of both biomass and the degradation of lignin, while the particulate organic matter is derived from erosion of the peat profile. The DOM is differentiated by its proportion of oxidized functional groups and not by its aromatic content. The changes in functionality leading to DOM production suggest side chain oxidation resulting in C-C cleavage/depolymerisation of lignin, a common reaction within white rot fungi. The 13C-NMR budget shows that O-alkyl functional groups are disproportionately lost between primary production and accumulation in the deep peat, while C-alkyl functional groups are disproportionately preserved. The carbon lost as gases (CO2 and CH4) was estimated to be composed of 93% polysaccharide-derived carbon and 7% lignin-derived carbon.

  14. Biochar as a Substitute for Peat in Greenhouse Growing Media: Soil Water Characteristics and Carbon Leaching Dynamics

    NASA Astrophysics Data System (ADS)

    Johnson, M. S.; Hilbert, I.; Jollymore, A. J.

    2012-12-01

    Biochar (charcoal derived from waste biomass via pyrolysis) has the potential to be used as part of regional scale carbon sequestration strategies. By providing a stable form of carbon that is resistant to decay in soils, biochar can be utilized in a wide range of applications to improve the sustainability of land use management practices. Due to its high water holding capacity, surface area and charge density, it could provide a substitute for peat that is widely used in horticultural activities. Globally, peat production in 2010 amounted to 23.4 Mt, with more than a third of this used for horticulture. In Canada, essentially all peat produced is used for horticulture, with each ton of peat extracted also contributing about 0.7 t CO2e in combined greenhouse gas emissions related to production, transportation and use of peat. We evaluated biochar produced on farm from red alder as a peat substitute in terms of soil water characteristics and carbon leaching in greenhouse growing media (e.g. potting mix). Biochar mixing ratios of 10% (v/v) and greater provided water holding capacity equivalent to peat-based potting mixes. We also present results from a laboratory wetting experiment in which we characterized leachate for dissolved organic carbon (DOC) concentration and DOC characteristics using spectral methods (uV-Vis and fluorescence spectroscopy).

  15. Effects of addition of straw, chitin and manure to new or recycled biofilters on their pesticides retention and degradation properties.

    PubMed

    Genot, P; Van Huynh, N; Debongnie, Ph; Pussemier, L

    2002-01-01

    Pollution of surface and groundwater by pesticides is an increasing problem that needs to be addressed by the authorities as well as by the farmers themselves. Nowadays, some researchers are considering the numerous small spillages at the farm sites as a relevant entry route to be taken into account for predicting surface and groundwater pollution. In order to tackle this problem, several solutions exist for limiting the disposal of pesticide wastes into the environment. One such system is biopurification of farm wastes by biobed, biofilter or phytobac. In this study, the results of pesticides retention by biofilters under outdoor conditions are presented. The biofilters were filled with a mixture of a soil + peat constituent (25% by volume for each of them) and the rest (50%) with straw or with composted manure ot with chitin (in this later case at the rate of 5 g chitin per liter of substrate). The soil + peat constituent was made either of a material already challenged by pesticides (= recycled biofilters) or of untreated material (new biofilters). Selected pesticides (atrazine, carbofuran, chloridazon, chlortoluron, cyanazine, isoproturon and lenacil) were applied onto biofilters and the eluates were collected and analyzed. Two successive injections of pesticides into the biofilters were conducted. After the first pesticides application, the recycled biofilters made of soil + peat previously treated with pesticides had better retention and degradation rates than the new biofilters. Adding manure also improved these properties of biofilters. Columns made of unchallenged soil + peat and straw (new biofilters) were the least satisfactory: up to 25% of carbofuran were lost. Biofilters made of unchallenged soil + peat and chitin retained the least lenacil. Atrazine was the most retained by biofilters (either new or recycled) with added chitin. Cyanazine was almost absent in the percolates of all biofilters. After the second application of carbofuran and isoproturon, all biofilters improved to the point where (with the exception the new biofilters made of chitin) they retained the totality of the pesticides.

  16. Dissolved organic carbon export and its contribution to the carbon budget in a boreal peat landscape undergoing rapid permafrost thaw

    NASA Astrophysics Data System (ADS)

    Sonnentag, O.; Fouche, J.; Helbig, M.; Karoline, W.; Hould Gosselin, G.; Hanisch, J.; Quinton, W. L.; Moore, T. R.

    2017-12-01

    Northern permafrost soils store 1035 ± 150 Pg of organic carbon in the first 3 m. In boreal lowlands with warm and thin isolated, sporadic and discontinuous permafrost, increasing temperatures cause a thaw-induced expansion of permafrost-free wetlands at the expense of forested permafrost peat plateaus. Permafrost thaw associated with warmer soils may enhance microbial decomposition of near-surface and deeper organic matter but also increase dissolved organic carbon (DOC) export to aquatic systems. Recent studies suggest that, under a warmer climate, the current net CO2 sink strength of boreal peat landscapes may decline over the next few decades, eventually turning them into net CO2 sources. DOC export from these organic-rich landscapes undergoing rapid permafrost thaw may play a non-negligible role for the carbon budget in a warmer climate. In this study, we quantify the DOC export from a boreal peat landscape in the southern Northwest Territories (Canada). We use half-hourly discharge measurements and DOC concentrations sampled at the outlets of three small catchments ( 0.1 km2) to quantify runoff and DOC export from April to August 2014, 2015 and 2016. We estimate the DOC export contribution to the overall carbon budget using concurrent eddy covariance measurements of net CO2 and methane exchanges. The primary control of DOC export is discharge. In 2016, 70% of the DOC was exported during the two weeks of the spring freshet in early May. DOC export from the three catchments was 3g C m-2 from April to August, which accounted for 15% of the annual net ecosystem exchange. For the same period, the cumulative methane emissions were 6 g C-CH4 m-2. Our findings suggest that thawing boreal peat landscapes along the southern limit of permafrost currently act as net carbon sinks with 11 g C m-2 y-1. Investigating the optical properties of the dissolved organic matter across the different landforms (e.g., transition between forested permafrost peat plateau and permafrost-free wetland) will allow us to assess the different contributions to catchment DOC export and better forecast the changes in DOC lability with permafrost thaw and wetland expansion. Associated with a more rainfall-controlled runoff regime, changes in DOC export with warming may affect the carbon budget in the southern boundaries of the permafrost region.

  17. Agricultural management impact on physical and chemical functions of European peat soils.

    NASA Astrophysics Data System (ADS)

    Piayda, Arndt; Tiemeyer, Bärbel; Dettmann, Ullrich; Bechtold, Michel; Buschmann, Christoph

    2017-04-01

    Peat soils offer numerous functions from the global to the local scale: they constitute the biggest terrestrial carbon storage on the globe, form important nutrient filters for catchments and provide hydrological buffer capacities for local ecosystems. Peat soils represent a large share of soils suitable for agriculture in temperate and boreal Europe, pressurized by increasing demands for production. Cultivated peat soils, however, show extreme mineralization rates of the organic substance and turn into hotspots for green house gas emissions, are highly vulnerable to land surface subsidence, soil and water quality deterioration and thus crop failure. The aim of this study is to analyse the impact of past agricultural management on soil physical and chemical functions of peat soils in six European countries. We conducted standardized soil mapping, soil physical/chemical analysis, ground water table monitoring and farm business surveys across 7 to 10 sites in Germany, The Netherlands, Denmark, Estonia, Finland and Sweden. The results show a strong impact of past agricultural management on peat soil functions across Europe. Peat soil under intensive arable land use consistently offer lowest bearing capacities in the upper 10 cm compared to extensive and intensive grassland use, which is a major limiting factor for successful agricultural practice on peat soils. The difference can be explained by root mat stabilization solely, since soil compaction in the upper 25cm is highest under arable land use. A strong decrease of available water capacity and saturated hydraulic conductivity is consequently observed under arable land use, further intensifying hydrological problems like ponding, drought stress and reductions of hydrological buffer capacities frequently present on cultivated peat soils. Soil carbon stocks clearly decrease with increasing land use intensity, showing highest carbon stocks on extensive grassland. This is supported by the degree of decomposition, which is lowest for extensive grass land. Both findings indicate a strong impact of land use intensity and management on soil carbon losses and peat conservation on the European scale. This study provides evidence how functions of peat soils, valuable for successful agricultural production and relevant for climate change mitigation, are impacted by agricultural management.

  18. Proximate Analysis of Coal

    ERIC Educational Resources Information Center

    Donahue, Craig J.; Rais, Elizabeth A.

    2009-01-01

    This lab experiment illustrates the use of thermogravimetric analysis (TGA) to perform proximate analysis on a series of coal samples of different rank. Peat and coke are also examined. A total of four exercises are described. These are dry exercises as students interpret previously recorded scans. The weight percent moisture, volatile matter,…

  19. Mapping SOC content and bulk density of a disturbed peatland relict with electromagnetic induction and DEM data

    NASA Astrophysics Data System (ADS)

    Altdorff, Daniel; Bechtold, Michel; van der Kruk, Jan; Tiemeyer, Bärbel; von Hebel, Christian; Huisman, Johan Alexander

    2014-05-01

    Peatlands represent a huge storage of soil organic carbon (SOC), and there is considerable interest to assess the total amount of carbon stored in these ecosystems. However, reliable field-scale information about peat properties, particularly SOC content and bulk density (BD) necessary to estimate C stocks, remains difficult to obtain. A potential way to acquire information on these properties and its spatial variation is the non-invasive mapping of easily recordable physical variables that correlate with peat properties, such as bulk electrical conductivity (ECa) measured with electromagnetic induction (EMI). However, ECa depends on a range of soil properties, including BD, soil and water chemistry, and water content, and thus results often show complex and site-specific relationships. Therefore, a reliable prediction of SOC and BD from ECa data is not necessarily given. In this study, we aim to explore the usefulness of Multiple Linear Regression (MLR) models to predict the peat soil properties SOC and BD from multi-offset EMI and high-resolution DEM data. The quality of the MLR models is assessed by cross-validation. We use data from a medium-scale disturbed peat relict (approximately 35ha) in Northern Germany. The potential explanatory variables considered in MLR were: EMI data of six different integral depths (approximately 0.25, 0.5, 0.6, 0.9, 1, and 1.80 m), their vertical heterogeneity, as well as several topographical variables extracted from the DEM. Ground truth information for SOC, BD content and peat layer thickness was obtained from 34 soil cores of 1 m depth. Each core was divided into several 5 to 20 cm thick layers so that integral information of the upper 0.25, 0.5, and 1 m as well as from the total peat layer was obtained. For cross-validation of results, we clustered the 34 soil cores into 4 classes using K-means clustering and selected 8 cores for validation from the clusters with a probability that depended on the size of the cluster. With the remaining 26 samples, we performed a stepwise MLR and generated separate models for each depth and soil property. Preliminary results indicate reliable model predictions for SOC and BD (R² = 0.83- 0.95). The RMSE values of the validation ranged between 3.5 and 7.2 vol. % for SOC and 0.13 and 0.37 g/cm³ for BD for the independent samples. This equates roughly the quality of SOC predictions obtained by field application of vis-NIR (visible-near infrared) presented in literature for a similar peatland setting. However, the EMI approach offers the potential to derive information from deeper depths and allows non-invasive mapping of BD variability, which is not possible with vis-NIR. Therefore, this new approach potentially provides a more useful tool for total carbon stock assessment in peatlands.

  20. Short-term effects of salinity reduction and drainage on salt-marsh biogeochemical cycling and Spartina (Cordgrass) production

    USGS Publications Warehouse

    Portnoy, J.W.; Valiela, I.

    1997-01-01

    To assess the biogeochemical effects of tidal restrictions on salt-marsh sulfur cycling and plant growth, cores of short-form Spartina alterniflora peat were desalinated and kept either waterlogged or drained in greenhouse microcosms. Changes in net Spartina production, and porewater and solid phase chemistry of treated cores were compared to natural conditions in the field collection site over a 21-mo period. Net production among treatments increased significantly in drained and waterlogged peat compared to field conditions during the first growing season. Constantly high sulfide in waterlogged cores accompanied reduced plant growth. Aeration invigorated growth in drained cores but led to oxidization of sulfide minerals and to lowered pH. During the second growing season, growth declined in the drained treatment, probably because of acidification and decreased dissolved inorganic nitrogen. Results are pertinent to the success of current wetland protection and restoration activities in the coastal zone.

  1. Organic matter loss from cultivated peat soils in Sweden

    NASA Astrophysics Data System (ADS)

    Berglund, Örjan; Berglund, Kerstin

    2015-04-01

    The degradation of drained peat soils in agricultural use is an underestimated source of loss of organic matter. Oxidation (biological degradation) of agricultural peat soils causes a loss of organic matter (OM) of 11 - 22 t ha-1 y-1 causing a CO2 emission of 20 - 40 t ha-1 y-1. Together with the associated N2O emissions from mineralized N this totals in the EU to about 98.5 Mton CO2 eq per year. Peat soils are very prone to climate change and it is expected that at the end of this century these values are doubled. The degradation products pollute surface waters. Wind erosion of peat soils in arable agriculture can cause losses of 3 - 30 t ha-1 y-1 peat also causing air pollution (fine organic particles). Subsidence rates are 1 - 2 cm per year which leads to deteriorating drainage effect and make peat soils below sea or inland water levels prone to flooding. Flooding agricultural peat soils is in many cases not possible without high costs, high GHG emissions and severe water pollution. Moreover sometimes cultural and historic landscapes are lost and meadow birds areas are lost. In areas where the possibility to regulate the water table is limited the mitigation options are either to increase biomass production that can be used as bioenergy to substitute some fossil fuel, try to slow down the break-down of the peat by different amendments that inhibit microbial activity, or permanent flooding. The negative effects of wind erosion can be mitigated by reducing wind speed or different ways to protect the soil by crops or fiber sheets. In a newly started project in Sweden a typical peat soil with and without amendment of foundry sand is cropped with reed canary grass, tall fescue and timothy to investigate the yield and greenhouse gas emissions from the different crops and how the sand effect the trafficability and GHG emissions.

  2. 3D modelling of mechanical peat properties in the Holocene coastal-deltaic sequence of the Netherlands

    NASA Astrophysics Data System (ADS)

    Koster, Kay; Stouthamer, Esther; Cohen, Kim; Stafleu, Jan; Busschers, Freek; Middelkoop, Hans

    2016-04-01

    Peat is abundantly present within the Holocene coastal-deltaic sequence of the Netherlands, where it is alternating with clastic fluvial, estuarine and lagoonal deposits. The areas that are rich in peat are vulnerable to land subsidence, resulting from consolidation and oxidation, due to loading by overlying deposits, infrastructure and buildings, as well as excessive artificial drainage. The physical properties of the peat are very heterogeneous, with variable clastic admixture up to 80% of its mass and rapid decrease in porosity with increasing effective stress. Mapping the spatial distribution of the peat properties is essential for identifying areas most susceptible to future land subsidence, as mineral content determines volume loss by oxidation, and porosity influences the rate of consolidation. Here we present the outline of a study focusing on mapping mechanical peat properties in relation to density and amount of admixed clastic constituents of Holocene peat layers (in 3D). In this study we use a staged approach: 1) Identifying soil mechanical properties in two large datasets that are managed by Utrecht University and the Geological Survey. 2) Determining relations between these properties and palaeogeographical development of the area by evaluating these properties against known geological concepts such as distance to clastic source (river, estuary etc.). 3) Implementing the obtained relations in GeoTOP, which is a 3D geological subsurface model of the Netherlands developed by the Geological Survey. The model will be used, among others, to assess the susceptibility of different areas to peat related land subsidence and load bearing capacity of the subsurface. So far, our analysis has focused stage 1, by establishing empirical relations between mechanical peat properties in ~70 paired (piezometer) cone penetration tests and continuously cored boreholes with LOI measurements. Results show strong correlations between net cone resistance (qn), excess pore water (u1-u0), and total vertical stress (σvo), suggesting that the overburden strongly controls the vertical differential susceptibility of peat layers to consolidation.

  3. Distributions of Heavy Metals and Benzo[ a]pyrene in Oligotrophic Peat Soils and Peat Gleyzems of Northeastern Sakhalin

    NASA Astrophysics Data System (ADS)

    Lipatov, D. N.; Shcheglov, A. I.; Manakhov, D. V.; Karpukhin, M. M.; Zavgorodnyaya, Yu. A.; Tsvetnova, O. B.

    2018-05-01

    The contents and profile distributions of Cr, Ni, Cu, Zn, Cd, Hg, Pb, and benzo[a]pyrene in oligotrophic peat soils, oligotrophic peat gley soils (Dystric Fibric Histosols), humus-impregnated peat gleyzems (Dystric Histic Gleysols), and mucky gleyzems (Dystric Gleysols) have been analyzed with consideration for their degree of oligotrophicity and anthropogenic loads. Horizons with the accumulation (O, Tpyr, TT) and removal (Ghi,e) of heavy metals have been revealed. The increase in the content of heavy metals and benzo[ a]pyrene in the upper layer of oligotrophic peat soils under technogenic fallouts in the impact zone of flare and motor transport has been considered. Statistical parameters of the spatial variation of parameters in organic and gley horizons have been calculated. The variation coefficients of pollutant elements (Pb and Zn) in the surface horizons of soils increase to 100-125%. Positive correlations revealed between the content of some heavy metals in litter indicate their bioaccumulation and possible joint input with aerotechnogenic fallouts. No correlations are found between the contents of benzo[ a]pyrene and heavy metals, but a reliable negative correlation with the ash content is noted in the peat horizon.

  4. The influence of aeration and temperature on the structure of bacterial complexes in high-moor peat soil

    NASA Astrophysics Data System (ADS)

    Kukharenko, O. S.; Pavlova, N. S.; Dobrovol'Skaya, T. G.; Golovchenko, A. V.; Pochatkova, T. N.; Zenova, G. M.; Zvyagintsev, D. G.

    2010-05-01

    The number and taxonomic structure of the heterotrophic block of aerobic and facultative anaerobic bacteria were studied in monoliths from a high-moor peat (stored at room temperature and in a refrigerator) and in the peat horizons mixed in laboratory vessels. The monitoring lasted for a year. In the T0 horizon, spirilla predominated at room and low temperatures; in the T1 and T2 horizons, bacilli were the dominants. The continuous mixing of the peat layers increased the oxygen concentration and the peat decomposition; hence, the shares of actinomycetes and bacilli (bacteria of the hydrolytic complex) increased. In the peat studied, the bacilli were in the active state; i.e., vegetative cells predominated, whose amount ranged from 65 to 90%. The representatives of the main species of bacilli (the facultative anaerobic forms prevailed) hydrolyzed starch, pectin, and carboxymethylcellulose. Thus, precisely sporiferous bacteria can actively participate in the decomposition of plant polysaccharides in high-moor peat soils that are characterized by low temperatures and an oxygen deficit. The development of actinomycetes is inhibited by low temperatures; they can develop only under elevated temperature and better aeration.

  5. Production of fuel ethanol from cellulosic peat for future transportation systems.

    DOT National Transportation Integrated Search

    2007-12-01

    The production of bioethanol from peat is proposed. A search of the available : literature yields no prior information on the use of peat as a carbon source for : bioethanol. This proposal addresses the production in the most cost-effective manner : ...

  6. SPRUCE S1 Bog Vegetation Survey and Peat Depth Data: 2009

    DOE Data Explorer

    Hanson, P. J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A

    2009-12-31

    This data set reports the results of a field survey of the S1 Bog to characterize the vegetation and to determine peat depth. The survey was conducted on September 21 and 22, 2009. The initial survey of vegetation and peat depth characteristics of the target bog was conducted to evaluate the logical locations for installing replicated experimental blocks for SPRUCE. The goal was to identify multiple locations of uniform aboveground vegetation and belowground peat depth for positioning experimental units within the bog.

  7. Phenol oxidase activity in secondary transformed peat-moorsh soils

    NASA Astrophysics Data System (ADS)

    Styła, K.; Szajdak, L.

    2009-04-01

    The chemical composition of peat depends on the geobotanical conditions of its formation and on the depth of sampling. The evolution of hydrogenic peat soils is closely related to the genesis of peat and to the changes in water conditions. Due to a number of factors including oscillation of ground water level, different redox potential, changes of aerobic conditions, different plant communities, and root exudes, and products of the degradation of plant remains, peat-moorsh soils may undergo a process of secondary transformation conditions (Sokolowska et al. 2005; Szajdak et al. 2007). Phenol oxidase is one of the few enzymes able to degrade recalcitrant phenolic materials as lignin (Freeman et al. 2004). Phenol oxidase enzymes catalyze polyphenol oxidation in the presence of oxygen (O2) by removing phenolic hydrogen or hydrogenes to from radicals or quinines. These products undergo nucleophilic addition reactions in the presence or absence of free - NH2 group with the eventual production of humic acid-like polymers. The presence of phenol oxidase in soil environments is important in the formation of humic substances a desirable process because the carbon is stored in a stable form (Matocha et al. 2004). The investigations were carried out on the transect of peatland 4.5 km long, located in the Agroecological Landscape Park host D. Chlapowski in Turew (40 km South-West of Poznań, West Polish Lowland). The sites of investigation were located along Wyskoć ditch. The following material was taken from four chosen sites marked as Zbechy, Bridge, Shelterbelt and Hirudo in two layers: cartel (0-50cm) and cattle (50-100cm). The object of this study was to characterize the biochemical properties by the determination of the phenol oxidize activity in two layers of the four different peat-moors soils used as meadow. The phenol oxidase activity was determined spectrophotometrically by measuring quinone formation at λmax=525 nm with catechol as substrate by method of Perucci et al. (2000). In peat the highest activities of phenol oxidase was observed in the combinations marked as Shelterbelt and whereas the lowest - in Zbechy, Bridge and Hirudo. Activities of this enzyme in peat ranged from 15.35 to 38.33 μmol h-1g d.m soil. Increased activities of phenol oxidase have been recorded on the depth 50-100cm - catotelm (21.74-38.33 μmol h-1g d.m soil) in comparison with the depth 0-50cm - acrotelm (15.35-28.32 μmol h-1g d.m soil). References Freeman, C., Ostle N.J., Fener, N., Kang H. 2004. A regulatory role for phenol oxidase during decomposition in peatlands. Soil Biology and Biochemistry, 36, 1663-1667. Matocha Ch.J., Haszler G.R., Grove J.H. 2004. Nitrogen fertilization suppresses soil phenol oxidase enzyme activity in no-tillage systems. Soil Science, 169/10, 708-714. Perucci P., Casucci C., Dumontet S. 2000. An improved method to evaluate the o-diphenol oxidase activity of soil. Soil Biology and Biochemistry, 32, 1927-1933. Sokolowska Z., Szajdak L., Matyka-Sarzyńska D. 2005. Impact of the degree of secondary transformation on amid-base properties of organic compounds in mucks. Geoderma, 127, 80-90. Szajdak L., Szczepański M., Bogacz A. 2007. Impact of secondary transformation of peat-moorsh soils on the decrease of nitrogen and carbon compounds in ground water. Agronomy Research, 5/2, 189-200.

  8. Dependency of Ecosystem Respiration in a Cool Temperate Bog on Peat Temperature and Water Table

    NASA Astrophysics Data System (ADS)

    Moore, T.; Lafleur, P.; Roulet, N.; Frolking, S.

    2003-12-01

    We measured ecosystem respiration (ER) from nighttime net ecosystem exchange of carbon dioxide determined from an eddy covariance tower located in a large ombrotrophic bog near Ottawa, Canada. Measurements were made from May to October over 5 years, 1998 to 2002. Ecosystem respiration ranged from <0.05 mg CO2/m2/s in spring (May) and late fall (late October) to 0.10-0.15 mg CO2/m2/s during the summer (July-August). As anticipated, there was a strong relationship between ER and peat temperatures, such as at a depth of 5 cm (r2 = 0.63). Q10 over 5° to 15° C varied from 2.2 to 4.2 depending upon the choice of temperature level and location within a hummock or hollow. Unexpected for a wetland ecosystem, there was only a weak relationship between ER and water table position (r2 = 0.11). Comparison of ER in early and late summer, 2002 with similar surface temperature revealed no significant difference in ER. A laboratory incubation of peat cores at different moisture contents showed that CO2 production was reduced by drying in the surface samples, but there was little decrease in samples from below a depth of 30 cm. We believe that the lack of correlation between ER and water table position in this ecosystem results from an increase in CO2 production at depth compensating a decrease in production of CO2 by heterotrophic respiration in the near surface layers and autotrophic respiration in the moss community.

  9. A pore-size classification for peat bogs derived from unsaturated hydraulic properties

    NASA Astrophysics Data System (ADS)

    Weber, Tobias Karl David; Iden, Sascha Christian; Durner, Wolfgang

    2017-12-01

    In ombrotrophic peatlands, the moisture content of the acrotelm (vadoze zone) controls oxygen diffusion rates, redox state, and the turnover of organic matter. Thus, variably saturated flow processes determine whether peatlands act as sinks or sources of atmospheric carbon, and modelling these processes is crucial to assess effects of changed environmental conditions on the future development of these ecosystems. We show that the Richards equation can be used to accurately describe the moisture dynamics under evaporative conditions in variably saturated peat soil, encompassing the transition from the topmost living moss layer to the decomposed peat as part of the vadose zone. Soil hydraulic properties (SHP) were identified by inverse simulation of evaporation experiments on samples from the entire acrotelm. To obtain consistent descriptions of the observations, the traditional van Genuchten-Mualem model was extended to account for non-capillary water storage and flow. We found that the SHP of the uppermost moss layer reflect a pore-size distribution (PSD) that combines three distinct pore systems of the Sphagnum moss. For deeper samples, acrotelm pedogenesis changes the shape of the SHP due to the collapse of inter-plant pores and an infill with smaller particles. This leads to gradually more homogeneous and bi-modal PSDs with increasing depth, which in turn can serve as a proxy for increasing state of pedogenesis in peatlands. From this, we derive a nomenclature and size classification for the pore spaces of Sphagnum mosses and define inter-, intra-, and inner-plant pore spaces, with effective pore diameters of > 300, 300-30, and 30-10 µm, respectively.

  10. Altered peat hydrophysical properties following drainage and wildfire increases peatland vulnerability to ecosystem regime shift

    NASA Astrophysics Data System (ADS)

    Waddington, James; Kettridge, Nick; Sherwood, James; Granath, Gustaf

    2015-04-01

    Northern peatlands represent a globally significant carbon reservoir, composed largely of legacy carbon which is no longer part of the active carbon cycle. However, it is unclear whether this legacy carbon is vulnerable as a result of enhanced peat smouldering and combustion under the moderate drying conditions predicted for northern peatlands as a result of climate change and/or disturbance from forestry, mining, and associated transport development. A significant loss in legacy carbon as a result of wildfire has already been observed in smaller tropical peatlands where deep peat soils have been destabilized due to severe drainage and a shift in vegetation. Capitalizing on a unique long-term experiment, we quantify the post-wildfire recovery of a northern peatland several decades post drainage. We show that the moderate drop in water table position predicted for most northern regions triggers a shift in vegetation composition, previously observed within only severely disturbed tropical peatlands, when accompanied by wildfire. The combined impact of moderate drainage followed by wildfire resulted in a shift of the peat surface down the peat profile, exposing denser peat at the surface. In undisturbed northern peatlands where depth of burn is typically low, low-density near-surface peats help regulate water-table position and near-surface moisture availability post-fire, both of which are favourable to Sphagnum recolonization. As a result of drainage and fire at the study site, the self-regulating properties of the low-density Sphagnum surface were lost. We demonstrate that changes in peat hydrophysical properties increased hydrological limitations to Sphagnum recovery leading to the conversion to a non-carbon accumulating shrub-grass ecosystem. This new ecosystem is likely to experience a low intensity, high frequency wildfire regime, which will further deplete the legacy carbon stored in the peat.

  11. Inorganic geochemistry of domed peat in Indonesia and its implication for the origin of mineral matter in coal

    USGS Publications Warehouse

    Neuzil, Sandra G.; Supardi,; Cecil, C. Blaine; Kane, Jean S.; Soedjono, Kadar

    1993-01-01

    The inorganic geochemistry of three domed ombrogenous peat deposits in Riau and West Kalimantan provinces, Indonesia, was investigated as a possible modern analogue for certain types of low-ash, low-sulfur coal. Mineral matter entering the deposits is apparently limited to small amounts from the allogenic sources of dryfall, rainfall, and diffusion from substrate pore water. In the low-ash peat in the interior of the deposits, a large portion of the mineral matter is authigenic and has been mobilized and stabilized by hydrological, chemical, and biological processes and conditions.Ash yield and sulfur content are low through most of the peat deposits and average 1.1% and 0.14%, respectively, on a moisture-free basis. Ash and sulfur contents only exceed 5% and 0.3%, respectively, near the base of the deposits, with maximum concentrations of 19.9% ash and 0.56% sulfur. Peat water in all three deposits has a low pH, about 4 units, and low dissolved cation concentration, averaging 14 ppm. Near the base, in the geographic interior of each peat deposit, pH is about two units higher and dissolved cation concentration averages 110 ppm. Relative concentrations of the inorganic constituents vary, resulting in chemical facies in the peat. In general, Si, Al, and Fe are the abundant inorganic constituents, although Mg, Ca, and Na dominate in the middle horizon in the geographic interior of coastal peat deposits.The composition of the three deposits reported in this paper indicates that domed ombrogenous peat deposits will result in low ash and sulfur coal, probably less than 10% ash and 1% sulfur, even if marine rocks are laterally and vertically adjacent to the coal.

  12. Heterotrophic respiration in drained tropical peat temperatures influenced by shading gradient

    NASA Astrophysics Data System (ADS)

    Jauhiainen, Jyrki; Kerojoki, Otto; Silvennoinen, Hanna; Limin, Suwido; Vasander, Harri

    2015-04-01

    Lowland peatlands in Southeast Asia constitute a highly concentrated carbon (C) pool of global significance. These peatlands have formed over periods of several millennia by forest vegetation tolerant to flooding and poor substrates. Uncontrollable drainage and reoccurring wild fires in lack of management after removal of forest cover has impaired the C-storing functions in large reclaimed areas. Intergovernmental Panel on Climate Change (IPCC) reporting sees drained tropical organic soils as one of the largest greenhouse gas emissions releasing terrestrial systems. Vast areas of deforested tropical peatlands do not receive noteworthy shading by vegetation, which increases the amount of solar radiation reaching the peat surface. We studied heterotrophic carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) fluxes in tropical peat in conditions, where; (i) peat temperatures were modified by artificial shading (no shade, 28%, 51% and 90% from the full sun exposure), (ii) root respiration was minimized, (iii) nutrient availability for peat decomposer community was changed (NPK fertilization of 0 and 313 kg ha-1). The experiment was repeated at two over 20 years ago drained fallow agricultural- and degraded sites in Central Kalimantan, Indonesia. Enhanced shading created a lasting decrease in peat temperatures, and decreased diurnal temperature fluctuations, in comparison to less shaded plots. The largest peat temperature difference was between the unshaded and 90% shaded peat surface, where the average temperatures within the topmost 50-cm peat profile differed 3 °C, and diurnal temperatures at 5 cm depth varied up to 4.2 °C in the unshaded and 0.4 °C in the 90% shaded conditions. Highest impacts on the heterotrophic CO2 fluxes caused by the treatments were on agricultural land, where 90% shading from the full exposure resulted in a 33% lower CO2 emission average on the unfertilised plots and a 66% lower emission average on the fertilised plots. Correlation between peat temperature and CO2 flux suggested an approximately 8% (unfertilised) and 25% (fertilised) emissions change for each 1 °C temperature change at 5 cm depth on the agricultural land. CO2 flux responses to the treatments remained low or were inconsistent over the peat temperature range.. Fertilised conditions negatively correlated with N2O efflux with increases in temperature, suggesting a 12-36% lower efflux for each 1 °C increase in peat temperature (at 5 cm depth) at the sites. Despite the apparently similar landscapes of fallow agricultural land and degraded peatland sites, the differences in greenhouse gas dynamics are expected to be an outcome of the long-term management differences. Based on the results it is possible to seek management practices that prolong timespan for using drained tropical peat for cultivation, simultaneously reduce negative climate impacts created from peat substrate carbon loss, and also improve greenhouse gas monitoring techniques at field.

  13. A humid early Holocene in Yemen interpreted from palaeoecology and taxonomy of freshwater ostracods

    NASA Astrophysics Data System (ADS)

    Mohammed, Munef; Frenzel, Peter; Keyser, Dietmar; Hussain, Fadhl; Abood, Abdulkareem; Sha'af, Abdulmajed; Alzara'e, Sadham; Alammari, Sakher

    2018-01-01

    Lake or marsh sediments in the Qa'a Jahran-Dhamār area indicate a period of higher moisture availability in the early Holocene of the highlands of Yemen. Forty-two marl-peat sediment samples from eight stratigraphic sections of that area have been collected and are examined for the first time for their ostracod associations. Eight species belonging to seven genera and four families are reported. Their ecological tolerances and preferences are used to investigate the climatic and environmental changes in the early to mid-Holocene. Our data are compared and correlated with previous archaeological results, particularly from the region of Qa'a Jahran (Dhamār) in the vicinity of the village of Beyt Nahmi. We conclude that the wettest period of the Holocene was from about 7900 to 7400 cal yr BP, when northwards incursion of the Indian Ocean Monsoon caused intensified monsoon precipitation over southern Arabia.

  14. Foam concrete of increased strength with the thermomodified peat additives

    NASA Astrophysics Data System (ADS)

    Kudyakov, A. I.; Kopanitsa, N. O.; Sarkisov, Ju S.; Kasatkina, A. V.; Prischepa, I. A.

    2015-01-01

    The paper presents the results of research of foam concrete with thermomodified peat additives. The aim of the research was to study the effect of modifying additives on cement stone and foam concrete properties. Peat additives are prepared by heat treatment of peat at 600 °C. Two approaches of obtaining additives are examined: in condition of open air access (TMT-600) and in condition of limited air access (TMT-600-k). Compressive strength of a cement stone with modifiers found to be increased by 28.9 - 65.2%. Introducing peat modifiers into foam concrete mix leads to increase of compressive strength by 44-57% at 28- day age and heat conductivity of foam concrete decreases by 0.089 W/(m·°C).

  15. Alfred P. Dachnowski and the scientific study of peats

    USGS Publications Warehouse

    Landa, E.R.; Cohen, K.M.

    2011-01-01

    Botanist Alfred Paul Dachnowski (1875–1949) was a major contributor to efforts at mapping organic soils in the United States during the early 20th century. He began his career at The Ohio State University, and spent most of his professional life at the U.S. Department of Agriculture in Washington, DC. His work spanned a diversity of topics, including bog ecology and the ecosystem services provided by wetlands, the mapping and chemical characterization of peat, and the commercial applications of peat. We present a biography and overview of his work. Dachnowski is best known today for the peat sampler that bears his name. The details of its operation are described here, and its place in modern peat studies is discussed.

  16. Outstanding accumulation of Sphagnum palustre in central-southern Italy

    NASA Astrophysics Data System (ADS)

    Casella, Laura; Zaccone, Claudio

    2017-04-01

    Lake Fibreno is a site where some outstanding anomalies for the flora and vegetation of the wetlands of peninsular Italy are concentrated. Here one the southernmost European population of Sphagnum palustre occurs, and is restricted on the surface of a free-floating island, i.e., a round-shaped portion of fen (with a core of Sphagnum), erratically floating on the surface of a submerged sinkhole. Geological evidences point out the existence in the area of a large lacustrine basin since Late Pleistocene. The progressive filling of the lake, caused by changing in climatic conditions and neotectonic events, resulted in the formation of peat deposits in the area, following different depositional cycles in a swampy environment. So that, the studied free-floating island, probably originated around lake margins in the waterlogged area, was somehow isolated from the bank and started to float. Once the separation occurred, sedge peat stopped to accumulate, thus enhancing the role of S. palustre as the main peat-forming plant. The vegetation occurring at the moment of the isolation of the island was a coverage of Salix cinerea/Populus tremula stands below which cushions of moss and, in a lower extent, Thelypteris palustris/Equisetum palustre accumulated resulting in the formation of 2-3 meters of peat dominated by reeds and sedges. This vegetation has been partially degraded by grazing until 1970s, while in 1980s the lake became a nature reserve. Since then, the succession could resume in a spontaneous and natural way and it was possible for the vegetation to recover to natural dynamics and growing rate. The Sphagnum tussocks were measured in an empirical way at a distance of about 60 years after the last signaling and the result was a measurement of an accretion open to about 70 cm thick. Moreover, in a recent study, a 4-m deep peat core was collected from the centre of the island and results were surprising. In fact, 14C age dating, confirmed using 210Pb and 137Cs, showed that the top 2 m of ombrotrophic Sphagnum-peat has accumulated in only ˜100 years (growth rate: ˜2 cm/yr). These values are extremely important in the evaluation scenario of the importance of these habitats especially considering that the site is currently circumscribed in a Sub-Mediterranean climate area (deciduous species-rich oak forests dominate the slopes of the catchment, and Mediterranean evergreen woody species are scattered on topographical discontinuities).

  17. The Challenge of Peat Substitution in Organic Seedling Production: Optimization of Growing Media Formulation through Mixture Design and Response Surface Analysis

    PubMed Central

    Ceglie, Francesco Giovanni; Bustamante, Maria Angeles; Ben Amara, Mouna; Tittarelli, Fabio

    2015-01-01

    Peat replacement is an increasing demand in containerized and transplant production, due to the environmental constraints associated to peat use. However, despite the wide information concerning the use of alternative materials as substrates, it is very complex to establish the best materials and mixtures. This work evaluates the use of mixture design and surface response methodology in a peat substitution experiment using two alternative materials (green compost and palm fibre trunk waste) for transplant production of tomato (Lycopersicon esculentum Mill.); melon, (Cucumis melo L.); and lettuce (Lactuca sativa L.) in organic farming conditions. In general, the substrates showed suitable properties for their use in seedling production, showing the best plant response the mixture of 20% green compost, 39% palm fibre and 31% peat. The mixture design and applied response surface methodology has shown to be an useful approach to optimize substrate formulations in peat substitution experiments to standardize plant responses. PMID:26070163

  18. Degradation potentials of dissolved organic carbon (DOC) from thawed permafrost peat

    PubMed Central

    Panneer Selvam, Balathandayuthabani; Lapierre, Jean-François; Guillemette, Francois; Voigt, Carolina; Lamprecht, Richard E.; Biasi, Christina; Christensen, Torben R.; Martikainen, Pertti J.; Berggren, Martin

    2017-01-01

    Global warming can substantially affect the export of dissolved organic carbon (DOC) from peat-permafrost to aquatic systems. The direct degradability of such peat-derived DOC, however, is poorly constrained because previous permafrost thaw studies have mainly addressed mineral soil catchments or DOC pools that have already been processed in surface waters. We incubated peat cores from a palsa mire to compare an active layer and an experimentally thawed permafrost layer with regard to DOC composition and degradation potentials of pore water DOC. Our results show that DOC from the thawed permafrost layer had high initial degradation potentials compared with DOC from the active layer. In fact, the DOC that showed the highest bio- and photo-degradability, respectively, originated in the thawed permafrost layer. Our study sheds new light on the DOC composition of peat-permafrost directly upon thaw and suggests that past estimates of carbon-dioxide emissions from thawed peat permafrost may be biased as they have overlooked the initial mineralization potential of the exported DOC. PMID:28378792

  19. Telmatocola sphagniphila gen. nov., sp. nov., a novel dendriform planctomycete from northern wetlands.

    PubMed

    Kulichevskaya, Irina S; Serkebaeva, Yulia M; Kim, Yongkyu; Rijpstra, W Irene C; Damsté, Jaap S Sinninghe; Liesack, Werner; Dedysh, Svetlana N

    2012-01-01

    Members of the phylum Planctomycetes are common inhabitants of northern wetlands. We used barcoded pyrosequencing to survey bacterial diversity in an acidic (pH 4.0) Sphagnum peat sampled from the peat bog Obukhovskoye, European North Russia. A total of 21189 bacterial 16S rRNA gene sequences were obtained, of which 1081 reads (5.1%) belonged to the Planctomycetes. Two-thirds of these sequences affiliated with planctomycete groups for which characterized representatives have not yet been available. Here, we describe two organisms from one of these previously uncultivated planctomycete groups. One isolate, strain OB3, was obtained from the peat sample used in our molecular study, while another strain, SP2(T) (=DSM 23888(T) = VKM B-2710(T)), was isolated from the peat bog Staroselsky moss. Both isolates are represented by aerobic, budding, pink-pigmented, non-motile, spherical cells that are arranged in unusual, dendriform-like structures during growth on solid media. These bacteria are moderately acidophilic and mesophilic, capable of growth at pH 4.0-7.0 (optimum pH 5.0-5.5) and at 6-30°C (optimum 20-26°C). The preferred growth substrates are various heteropolysaccharides and sugars, the latter being utilized only if provided in low concentrations (≤0.025%). In contrast to other described planctomycetes, strains SP2(T) and OB3 possess weak cellulolytic potential. The major fatty acids are C16:1ω5c, C18:1ω5c, C16:0, and C18:0. Characteristic lipids are the n-C31 polyunsaturated alkene (9-10 double bonds) and C30:1/C32:1 (ω-1) hydroxy fatty acids. The G + C content of the DNA is 58.5-59.0 mol%. Strains SP2(T) and OB3 share identical 16S rRNA gene sequences, which exhibit only 86 and 87% similarity to those of Gemmata obscuriglobus and Zavarzinella formosa. Based on the characteristics reported here, we propose to classify these novel planctomycetes as representatives of a novel genus and species, Telmatocola sphagniphila gen. nov., sp. nov.

  20. Permafrost thaw and climate warming may decrease the CO2, carbon, and metal concentration in peat soil waters of the Western Siberia Lowland.

    PubMed

    Raudina, T V; Loiko, S V; Lim, A; Manasypov, R M; Shirokova, L S; Istigechev, G I; Kuzmina, D M; Kulizhsky, S P; Vorobyev, S N; Pokrovsky, O S

    2018-09-01

    Soil pore waters are a vital component of the ecosystem as they are efficient tracers of mineral weathering, plant litter leaching, and nutrient uptake by vegetation. In the permafrost environment, maximal hydraulic connectivity and element transport from soils to rivers and lakes occurs via supra-permafrost flow (i.e. water, gases, suspended matter, and solutes migration over the permafrost table). To assess possible consequences of permafrost thaw and climate warming on carbon and Green House gases (GHG) dynamics we used a "substituting space for time" approach in the largest frozen peatland of the world. We sampled stagnant supra-permafrost (active layer) waters in peat columns of western Siberia Lowland (WSL) across substantial gradients of climate (-4.0 to -9.1°C mean annual temperature, 360 to 600mm annual precipitation), active layer thickness (ALT) (>300 to 40cm), and permafrost coverage (sporadic, discontinuous and continuous). We analyzed CO 2 , CH 4 , dissolved carbon, and major and trace elements (TE) in 93 soil pit samples corresponding to several typical micro landscapes constituting the WSL territory (peat mounds, hollows, and permafrost subsidences and depressions). We expected a decrease in intensity of DOC and TE mobilization from soil and vegetation litter to the supra-permafrost water with increasing permafrost coverage, decreasing annual temperature and ALT along a latitudinal transect from 62.3°N to 67.4°N. However, a number of solutes (DOC, CO 2 , alkaline earth metals, Si, trivalent and tetravalent hydrolysates, and micronutrients (Mn, Co, Ni, Cu, V, Mo) exhibited a northward increasing trend with highest concentrations within the continuous permafrost zone. Within the "substituting space for time" climate change scenario and northward shift of the permafrost boundary, our results suggest that CO 2 , DOC, and many major and trace elements will decrease their concentration in soil supra-permafrost waters at the boundary between thaw and frozen layers. As a result, export of DOC and elements from peat soil to lakes and rivers of the WSL (and further to the Arctic Ocean) may decrease. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Telmatocola sphagniphila gen. nov., sp. nov., a Novel Dendriform Planctomycete from Northern Wetlands

    PubMed Central

    Kulichevskaya, Irina S.; Serkebaeva, Yulia M.; Kim, Yongkyu; Rijpstra, W. Irene C.; Damsté, Jaap S. Sinninghe; Liesack, Werner; Dedysh, Svetlana N.

    2012-01-01

    Members of the phylum Planctomycetes are common inhabitants of northern wetlands. We used barcoded pyrosequencing to survey bacterial diversity in an acidic (pH 4.0) Sphagnum peat sampled from the peat bog Obukhovskoye, European North Russia. A total of 21189 bacterial 16S rRNA gene sequences were obtained, of which 1081 reads (5.1%) belonged to the Planctomycetes. Two-thirds of these sequences affiliated with planctomycete groups for which characterized representatives have not yet been available. Here, we describe two organisms from one of these previously uncultivated planctomycete groups. One isolate, strain OB3, was obtained from the peat sample used in our molecular study, while another strain, SP2T (=DSM 23888T = VKM B-2710T), was isolated from the peat bog Staroselsky moss. Both isolates are represented by aerobic, budding, pink-pigmented, non-motile, spherical cells that are arranged in unusual, dendriform-like structures during growth on solid media. These bacteria are moderately acidophilic and mesophilic, capable of growth at pH 4.0–7.0 (optimum pH 5.0–5.5) and at 6–30°C (optimum 20–26°C). The preferred growth substrates are various heteropolysaccharides and sugars, the latter being utilized only if provided in low concentrations (≤0.025%). In contrast to other described planctomycetes, strains SP2T and OB3 possess weak cellulolytic potential. The major fatty acids are C16:1ω5c, C18:1ω5c, C16:0, and C18:0. Characteristic lipids are the n-C31 polyunsaturated alkene (9–10 double bonds) and C30:1/C32:1 (ω-1) hydroxy fatty acids. The G + C content of the DNA is 58.5–59.0 mol%. Strains SP2T and OB3 share identical 16S rRNA gene sequences, which exhibit only 86 and 87% similarity to those of Gemmata obscuriglobus and Zavarzinella formosa. Based on the characteristics reported here, we propose to classify these novel planctomycetes as representatives of a novel genus and species, Telmatocola sphagniphila gen. nov., sp. nov. PMID:22529844

  2. Seasonal changes in peatland surface elevation recorded at GPS stations in the Red Lake Peatlands, northern Minnesota, USA

    USGS Publications Warehouse

    Reeve, A.S.; Glaser, P.H.; Rosenberry, Donald O.

    2013-01-01

    Northern peatlands appear to hold large volumes of free-phase gas (e.g., CH4 and CO2), which has been detected by surface deformations, pore pressure profiles, and electromagnetic surveys. Determining the gas content and its impact in peat is challenging because gas storage depends on both the elastic properties of the peat matrix and the buoyant forces exerted by pore fluids. We therefore used a viscoelastic deformation model to estimate these variables by adjusting model runs to reproduce observed changes in peat surface elevation within a 1300 km2 peatland. A local GPS network documented significant changes in surface elevations throughout the year with the greatest vertical displacements associated with rapid changes in peat water content and unloadings due to melting of the winter snowpack. These changes were coherent with changes in water table elevation and also abnormal pore pressure changes measured by nests of instrumented piezometers. The deformation model reproduced these changes when the gas content was adjusted to 10% of peat volume, and Young's modulus was varied between 5 and 100 kPa as the peat profile shifted from tension to compression. In contrast, the model predicted little peat deformation when the gas content was 3% or lower. These model simulations are consistent with previous estimates of gas volume in northern peatlands and suggest an upper limit of gas storage controlled by the elastic moduli of the peat fabric.

  3. Net ecosystem CO2 exchange of a primary tropical peat swamp forest in Sarawak, Malaysia

    NASA Astrophysics Data System (ADS)

    Tang Che Ing, A.; Stoy, P. C.; Melling, L.

    2014-12-01

    Tropical peat swamp forests are widely recognized as one of the world's most efficient ecosystems for the sequestration and storage of carbon through both their aboveground biomass and underlying thick deposits of peat. As the peat characteristics exhibit high spatial and temporal variability as well as the structural and functional complexity of forests, tropical peat ecosystems can act naturally as both carbon sinks and sources over their life cycles. Nonetheless, few reports of studies on the ecosystem-scale CO2 exchange of tropical peat swamp forests are available to-date and their present roles in the global carbon cycle remain uncertain. To quantify CO2 exchange and unravel the prevailing factors and potential underlying mechanism regulating net CO2 fluxes, an eddy covariance tower was erected in a tropical peat swamp forest in Sarawak, Malaysia. We observed that the diurnal and seasonal patterns of net ecosystem CO2 exchange (NEE) and its components (gross primary productivity (GPP) and ecosystem respiration (RE)) varied between seasons and years. Rates of NEE declined in the wet season relative to the dry season. Conversely, both the gross primary productivity (GPP) and ecosystem respiration (RE) were found to be higher during the wet season than the dry season, in which GPP was strongly negatively correlated with NEE. The average annual NEE was 385 ± 74 g C m-2 yr-1, indicating the primary peat swamp forest functioned as net source of CO2 to the atmosphere over the observation period.

  4. Relationship between selected physicochemical properties of peaty-mucks soils and main absorbance bands of its FTIR spectra*

    NASA Astrophysics Data System (ADS)

    Boguta, Patrycja; Sokolowska, Zofia

    2013-04-01

    Peatlands are a large reservoir of organic matter that is responsible for sorption properties, structure of soils and microbial activity. However, most of the peatlands in Poland have been drained and subjected to agricultural use. Processes of such kind cause acceleration of peat mass transformation to mucks. Changes in peat evolution under melioration processes are mostly characterised by mineralisation and humification. The above processes lead to changes in the morphological, chemical, biological and physical properties of peat soils. Knowledge about changes of these parameters is very important in suitable application of conditions and fertilisers in order to improve agricultural value of soil. One of the indicators which could describe the changes in peat mass could be the water holding capacity index proposed by Gawlik. This parameter characterises the secondary transformation processes taking place in soils. Mucking processes are also well described by humification indexes and organic/inorganic carbon content. However, changes of above physical and physicochemical properties of soils are also connected with changes of chemical structure of organic matter contained in soil material. Organic matter is a significant component of organic soils and it influences such important parameters of all soil like sorptivity. So that, it is also valuable to control state of functional groups which determine sorption capacity of soil. One of the methods which could be applied in this case is observation of absorbance values of functional groups in infrared spectra of samples. This is quick and method but it could be used only in approximate way because of some content of ash and inorganic parts. Main aim of this work was attempt to find relationships beetwen selected physicochemical properties of peats soils and height of the most important infrared bands of these materials. 11 peaty-muck soils were taken from different places in Eastern part of Poland from deph 0-20cm. After homogenizing, selected parameters were determined for all samples. Content of organic carbon was investigated using TOC analyzer (MultiNC 2000, Analityk Jena), water holding capacity indexes were determined via centrifugation/ weighting method proposed by Gawlik, humification index was calculated using colorimetric method proposed by Springer. Infrared spectra were recorded for samples in form of pellets with KBr. Absorbance of the most important bands were measured: carboxylic for COO- as. (1619-1639cm-1), COO- sym. (1383 - 1387cm-1), COOH sym. (1240 - 1266cm-1) and phenolic groups for (~3389-3401cm-1). After this, relationships between all parameters were found. Results showed presence of statistically significant correlation between absorbance of functional groups and organic carbon content. This relation indicated that increase in organic carbon caused increase in functional groups of organic matter. No statistically significant correlation was found for relation of bands height and water holding capacity and humification index. *This work was partly supported by the National Science Centre in Poland, grant No. UMO-2011/03/N/NZ9/04239.

  5. Source characterization of ambient fine aerosol in Singapore during a haze episode in 2015

    NASA Astrophysics Data System (ADS)

    Hapsari Budisulistiorini, Sri; Riva, Matthieu; Williams, Michael; Miyakawa, Takuma; Komazaki, Yuichi; Chen, Jing; Surratt, Jason; Kuwata, Mikinori

    2017-04-01

    Recurring transboundary haze from Indonesia peatland fires in the previous decades has significantly elevated particulate matter (PM) concentration in Southeast Asia, particularly during the 2015 El Niño event. Previous studies have investigated chemical composition of particles emitted during haze episodes; however, they were limited to time-integrated samples and the number of identified compounds. Low time-resolution measurement results in co-variance of PM sources; therefore, higher time-resolution measurement is important in PM source apportionment. Between October 10-31, 2015, Aerodyne Time-of-Flight Aerosol Chemical Speciation Monitor (ToF-ACSM) was deployed for real-time chemical characterization of ambient submicron PM (NR-PM1) in Singapore. Simultaneously, PM2.5 filter samples were collected for molecular-level organic aerosol (OA) constituents, organic carbon (OC), elemental carbon (EC) and water-soluble OC (WSOC) analyses. OA constituents were quantified by gas chromatography interfaced to electron ionization mass spectrometry (GC/EI-MS) and ultra-performance liquid chromatography interfaced to electrospray ionization high-resolution quadrupole time-of-flight mass spectrometer operated in the negative ion mode (UPLC/(-)ESI-HR-Q-TOFMS). OA and SO42- are dominant components of the haze particles, accounting for ˜77% and ˜12% of the total NR-PM1 mass, respectively. OC/EC ratio of 4.8 might indicate formation of secondary OA (SOA) and aerosols from biomass burning, including those from peat burning. OA fraction from ToF-ACSM measurements was analyzed for source apportionment using a bilinear model through multi-linear engine algorithm (ME-2) in graphical user interface SoFi (Source Finder). Five OA factors were identified: hydrocarbon-like OA (HOA), biomass burning OA (BBOA), peat burning OA (PBOA), low-volatility oxygenated OA (LV-OOA), and semi-volatile oxygenated OA (SV-OOA). The HOA factor shows a distinct diurnal profile peaking in the morning and evening, suggesting traffic influences. The BBOA factor was identified based on factor profile of wood burning particles and correlated with known biomass burning tracers (i.e. levoglucosan and mannosan). The PBOA factor was identified based on factor profile of laboratory-generated peat burning particles. This factor would be further identified with OA constituents in peat burning particles, such as brown carbon constituents. The LV-OOA and SV-OOA factors peak in the afternoon indicating they were likely formed through photochemistry. The LV-OOA factor might be a product of biomass burning aerosol aging as indicated by temporal trend correlations with BBOA and PBOA factors (r2 = 0.7-0.8). Contributions of the HOA and SV-OOA factors to OA mass are ˜12% and ˜21%, respectively. The biomass burning-related factors (BBOA and PBOA) account for ˜29% of OA mass, which likely indicates a lower-bound estimate of the transboundary impacts of primary emissions from peatland fires. The transboundary impacts of secondary aerosol from peatland fires might be represented by the LV-OOA factor accounting for ˜37% of OA mass. Overall, the transboundary haze could contribute to ˜66% of OA concentration, suggesting the strong influence of Indonesia peatland fires on the air quality of Singapore.

  6. Emissions of volatile organic compounds and particulate matter from small-scale peat fire

    EPA Science Inventory

    Air pollution emitted from peat fires can negatively impact regional air quality, visibility, climate, and human health. Peat fires can smolder over long periods of time and, therefore, can release significantly greater amounts of carbon into the atmosphere per unit area compared...

  7. Emissions of volatile organic compounds and particulate matter from small-scale peat fires

    EPA Science Inventory

    Air pollution emitted from peat fires can negatively impact regional air quality, visibility, climate, and human health. Peat fires can smolder over long periods of time and, therefore, can release significantly greater amounts of carbon into the atmosphere per unit area compared...

  8. Organic petrology and coalbed gas content, Wilcox Group (Paleocene-Eocene), northern Louisiana

    USGS Publications Warehouse

    Hackley, Paul C.; Warwick, Peter D.; Breland, F. Clayton

    2007-01-01

    Wilcox Group (Paleocene–Eocene) coal and carbonaceous shale samples collected from four coalbed methane test wells in northern Louisiana were characterized through an integrated analytical program. Organic petrographic analyses, gas desorption and adsorption isotherm measurements, and proximate–ultimate analyses were conducted to provide insight into conditions of peat deposition and the relationships between coal composition, rank, and coalbed gas storage characteristics. The results of petrographic analyses indicate that woody precursor materials were more abundant in stratigraphically higher coal zones in one of the CBM wells, consistent with progradation of a deltaic depositional system (Holly Springs delta complex) into the Gulf of Mexico during the Paleocene–Eocene. Comparison of petrographic analyses with gas desorption measurements suggests that there is not a direct relationship between coal type (sensu maceral composition) and coalbed gas storage. Moisture, as a function of coal rank (lignite–subbituminous A), exhibits an inverse relationship with measured gas content. This result may be due to higher moisture content competing for adsorption space with coalbed gas in shallower, lower rank samples. Shallower (< 600 m) coal samples consistently are undersaturated with respect to CH4 adsorption isotherms; deeper (> 600 m) coal samples containing less moisture range from under- to oversaturated with respect to their CH4adsorption capacity.

  9. Hydrological Dynamics, Fire History and Carbon Accumulation in the Last Millennium in Western Siberia Reconstructed from a High Resolution Ombrotrophic Peat Archive

    NASA Astrophysics Data System (ADS)

    Lamentowicz, M.; Slowinski, M. M.; Marcisz, K.; Kolaczek, P.; Neumann, M.; Kaliszan, K.; Lapshina, E.; Gilbert, D.; Buttler, A.; Fialkiewicz-Koziel, B.; Jassey, V.; Laggoun-Defarge, F.

    2014-12-01

    Northern peatlands are important sinks of carbon. However, ongoing climate change and human impact trigger emission of the stored carbon into the atmosphere. Because of the progressive disturbances there is an urgent need to recognize these processes in space and time. We investigated a profile from a Mukhrino bog located close to the Mukhrino Field Station, about 20 km from Khanty-Mansiysk (60°54' N, 68°42' E). One meter peat core was subsampled in one-centimeter intervals. Pollen, testate amoebae, plant macrofossils, bulk density and carbon content were analyzed in high-resolution to reconstruct hydrology, droughts and carbon accumulation rates during the last 1200 years. We hypothesize that continental bogs of Siberia have been existing in under summer drought stress during the last millennium and hydrological change (dry shift) is also reflected in local fires. Palaeoecological work was accompanied by surface sampling to collect testate amoebae training set for transfer function development. These microorganisms have been scarcely studied in this part of the world. Redundancy analysis (RDA) showed that 23.7% of variance is explained by the model. Furthermore, water table appeared to be the most significant variable for sampled communities. Testate amoebae calibration data set performed the reliably using weighted averaging model (RMSEPboot=7.9, R2boot=0.74). According to our quantitative reconstruction, higher charcoal influx was inferred between AD 1975 and 1990 what suggests higher fire frequency. However, water table was the lowest between AD 1150 and AD 1965. The data show lack of correlation between peatland wetness and regional fires. Consequently, it suggests that peatland hydrological dynamics might be independent from fires frequency, as fires were caused by recent human activities in concomitance with the positive Arctic Oscillation Index during the last decade.

  10. Microbiological profile of selected mucks

    NASA Astrophysics Data System (ADS)

    Dąbek-Szreniawska, M.; Wyczółkowski, A. I.

    2009-04-01

    INTRODUCTION Matyka-Sarzynska and Sokolowska (2000) emphasize that peats and peat soils comprise large areas of Poland. The creation of soil begins when the formation of swamp has ended. Gawlik (2000) states that the degree of influence of the mucky process of organic soils on the differentiations of the conditions of growth and development of plants is mainly connected with the changes of moisture-retentive properties of mucks which constitute the material for these soils, and the loss of their wetting capacities. The above-mentioned changes, which usually occur gradually and show a clear connection with the extent of dehydration and, at times, with its duration, intensify significantly when the soils are under cultivation. The mucky process of peat soils leads to transformations of their physical, chemical and biological properties. The main ingredient of peat soils is organic substance. The substance is maintained inside them by the protective activity of water. The process of land improvement reduces the humidity of the environment, and that Intensifies the pace of the activity of soil microorganisms which cause the decay of organic substance. The decay takes place in the direction of two parallel processes: mineralization and humification. All groups of chemical substances constituting peat undergo mineralization. Special attention should be called to the mineralization of carbon and nitrogen compounds, which constitute a large percentage of theorganic substance of the peat organic mass. Okruszko (1976) has examined scientificbases of the classification of peat soils depending on the intensity of the muck process. The aim of this publication was to conduct a microbiological characteristic of selected mucky material. METHODS AND MATERIALS Soil samples used in the experiments were acquired from the Leczynsko-Wlodawski Lake Region, a large area of which constitutes a part of the Poleski National Park, which is covered to a large extent with high peat bogs. It was a mucky-peat soil with different degrees of muck process, described by Gawlik (2000) as MtI - first step of muck process, and MtII - second step of muck process. The numbers of selected groups of microorganisms were established using the cultivation method. The total number of microorganisms, zymogenic, aerobic and anaerobic microorganisms (Fred, Waksman 1928), oligotrophic microorganisms, the number of fungi (Parkinson 1982), ammonifiers (Parkinson et al 1971), nitrogen reducers and amolytic microorganisms (Pochon and Tardieux 1962), were determined. RESULTS The interpretation of the obtained results should take into consideration not only the characteristics of the studied objects, but also the characteristics of the methods used and of the examined microorganisms. As a result of the experiments that were carried out, significant differences of the numbers of the examined groups of microorganisms, depending on the degree of the muck process, have been observed. The number of the examined groups was significantly higher in the soil at the first step muck process than the second step of muck process. Amylolytic bacteria were an exception. Probably, during the muck process, ammonification, nitrification and nitrogen reduction process take place at the same time, which is indicated by the number of individual groups of examined microorganisms. CONCLUSIONS During the muck process, the number of microorganisms in the soil decreases. It can be presupposed that during the muck process, the basic process realized by microorganisms is the degradation of organic substance, using nitrates as oxidizers. Dąbek-Szreniawska M.: 1992 Results of microbiological analysis related to soil physical properties. Zesz. Probl. Post. Nauk Roln., 398, 1-6. Fred E.B., Waksman S.A.: 1928 Laboratory manual of general microbiology. Mc Graw-Hill Book Company, New York - London pp. 145. Gawlik J.: 2000 Division of differently silted peat formations into classes according to their state of secondary transformations. Acta Agrophysica, 26, 17-24. Maciak F.: 1985 MateriaŁ y do ćwiczeń z rekultywacji teren

  11. Comparison of pelletized biochar derived from two source materials as replacements for peat in potting substrates

    USDA-ARS?s Scientific Manuscript database

    Soilless substrates are primarily used in the production of containerized greenhouse and nursery crops, with sphagnum peat moss being a primary constituent of most substrates. We are examining biochars for several horticultural applications, including as peat moss replacements. Biochar was prepared ...

  12. Characterisation of VOC, SVOC, and PM emissions from peat burnt in laboratory simulations

    EPA Science Inventory

    Peat, or organic soil, is a vast store of organic carbon, widely distributed from polar temperate to equatorial regions. Drainage for agriculture and drought are drying vast areas of peat, exposing it to increasing fire risk, which may be exacerbated by climate change. This has ...

  13. Development of a Palliative Education Assessment Tool for Medical Student Education.

    ERIC Educational Resources Information Center

    Meekin, Sharon Abele; Klein, Jason E.; Fleischman, Alan R.; Fins, Joseph J.

    2000-01-01

    Describes the Palliative Education Assessment Tool (PEAT), an innovative assessment to facilitate curricular mapping of palliative care education. The PEAT comprises seven palliative care domains, each of which details specific objectives of knowledge, skills, and attitudes. PEAT enables educators to describe a specific multidimensional aspect of…

  14. Posidonia oceanica (L.) based compost as substrate for potted basil production.

    PubMed

    Mininni, Carlo; Grassi, Francesco; Traversa, Andreina; Cocozza, Claudio; Parente, Angelo; Miano, Teodoro; Santamaria, Pietro

    2015-08-15

    Peat is the main component of growing media but is also a non-renewable resource; therefore European policy strongly encourages the use of peat alternatives such as compost. Posidonia is a Mediterranean seagrass that produces very conspicuous onshore deposits that can be composted. In this study, a commercial green compost and a Posidonia residue-based compost were tested in order to assess their potential use as substitutes or complements to peat. All macro and micro-element concentrations of the substrates were positively and significantly related to the percentage of composts in the growing media. Plant grown on peat showed higher content of P, Ca, K, Na, Cu, Mn, Zn and Fe, and a slightly higher biomass production in comparison to compost-based growing media. In contrast, plants grown on compost-based substrates showed lower uptake of Cd and Cr than peat. The results indicate that both composts can be used as a complement to the peat for substrate preparation, especially at a rate of 30%. The Posidonia-based compost showed better productive results in comparison to the green one. Basil grown on the two compost-based media showed reduced absorption level of potentially toxic metals in comparison to peat. © 2014 Society of Chemical Industry.

  15. Stable carbon and nitrogen isotopes in vertical peat profiles of natural and drained boreal peatlands

    NASA Astrophysics Data System (ADS)

    Nykänen, Hannu; Mpamah, Promise; Rissanen, Antti; Pitkänen, Aki; Turunen, Jukka; Simola, Heikki

    2015-04-01

    Peatlands form a significant carbon pool in the global carbon cycle. Change in peat hydrology, due to global warming is projected to change microbiological processes and peat carbon pool. We tested if bulk stable carbon and nitrogen isotopes serve as indicators of severe long term drying in peatlands drained for forestry. Depth profile analysis of peat, for their carbon and nitrogen content as well as their carbon and nitrogen stable isotopic signatures, were conducted for peatlands in southern and eastern Finland, having ombrotrophic and minerotrophic natural and corresponding drained pairs or separate drained sites. The selection of sites allowed us to compare changes due to different fertility and changes due to long term artificial drying. Drainage lasting over 40 years has led to changes in hydrology, vegetation, nutrient mineralization and respiration. Furthermore, increased nutrient uptake and possible recycling of peat nitrogen and carbon trough vegetation back to the peat surface, also possibly has an effect on the stable isotopic composition of peat carbon and nitrogen. We think that drainage induced changes somehow correspond to those caused by changed hydrology due to climate change. We will present data from these measurements and discuss their implications for carbon and nitrogen flows in peatlands.

  16. Resilient modulus characteristics of soil subgrade with geopolymer additive in peat

    NASA Astrophysics Data System (ADS)

    Zain, Nasuhi; Hadiwardoyo, Sigit Pranowo; Rahayu, Wiwik

    2017-06-01

    Resilient modulus characteristics of peat soil are generally very low with high potential of deformation and low bearing capacity. The efforts to improve the peat subgrade resilient modulus characteristics is required, one among them is by adding the geopolymer additive. Geopolymer was made as an alternative to replace portland cement binder in the concrete mix in order to promote environmentally friendly, low shrinkage value, low creep value, and fire resistant material. The use of geopolymer to improve the mechanical properties of peat as a road construction subgrade, hence it becomes important to identify the effect of geopolymer addition on the resilient modulus characteristics of peat soil. This study investigated the addition of 0% - 20% geopolymer content on peat soil derived from Ogan Komering Ilir, South Sumatera Province. Resilient modulus measurement was performed by using cyclic triaxial test to determine the resilience modulus model as a function of deviator stresses and radial stresses. The test results showed that an increase in radial stresses did not necessarily lead to an increase in modulus resilient, and on the contrary, an increase in deviator stresses led to a decrease in modulus resilient. The addition of geopolymer in peat soil provided an insignificant effect on the increase of resilient modulus value.

  17. Effects of environmental and anthropogenic determinants on changes in groundwater levels in selected peat bogs of Slowinski National Park, northern Poland

    NASA Astrophysics Data System (ADS)

    Chlost, Izabela; Cieśliński, Roman

    2018-03-01

    The present study focuses on two Baltic-type peat bogs in Slowinski National Park, namely that at Żarnowskie and at Kluki, located in the Lake Łebsko catchment and both characterised by a centrally located dome with a very marshy fringe area featuring an emerging marshy coniferous forest (Vaccinio uliginosi-Pinetum). The Żarnowskie bog is under active protection. A total of 24 flow barriers were installed in drainage ditches during the years 2006 and 2007. The purpose of these barriers was to put a halt to water outflow. In addition, 30 hectares of young pine forest were cleared in order to decrease loss of water via evapotranspiration. Kluki peat bog is only partially protected by Polish law. The lack of efforts to prevent outflow via the canal is due to the fact that the canal is utilised to drain meadows in the vicinity of the village of Łokciowe outside of the national park. Peat formation no longer occurs in this peat bog. The hydrological condition of the bog is catastrophic as a result of its main canal, referred to as Canal C9, which is 2.5 to 3.0 m deep and 10 m wide in places. Both peat bogs are monitored for fluctuations in groundwater. Research has shown that changes in water levels fluctuate based on season of the year and geographical location, which is illustrated quite well using the two studied peat bogs. The water retention rate of the Żarnowskie peat bog may be considered fairly high and is likely to improve due to protective measures enabled by Polish environmental laws. The water retention rate of the bog is consistently improving thanks to these measures, fluctuations in water level are small and the water level does not drop under 0.5 m below ground level even under extreme hydrometeorological conditions. This yields optimum conditions for renewed peat formation in this area. One potential threat is the Krakulice peat extraction facility, which is located in the southern part of the bog close to the boundary with the national park.

  18. Effect of mixing geopolymer and peat on bearing capacity in Ogan Komering Ilir (OKI) by California bearing ratio (CBR) test

    NASA Astrophysics Data System (ADS)

    Raharja, Danang S.; Hadiwardoyo, Sigit P.; Rahayu, Wiwik; Zain, Nasuhi

    2017-06-01

    Geopolymer is binder material that consists of solid material and the activator solution. Geopolymer material has successfully replaced cement in the manufacture of concrete with aluminosilicate bonding system. Geopolymer concrete has properties similar to cement concrete with high compressive strength, low shrinkage value, relatively low creep value, as well as acid-resistant. Based on these, the addition of polymers in peat soils is expected to improve the bearing capacity of peat soils. A study on the influence of geopolymer addition in peat soils was done by comparing before and after the peat soil was mixed with geopolymer using CBR (California Bearing Ratio) test in unsoaked and soaked conditions. 10% mixture content of the peat dry was used, weighted with a variety of curing time 4 hours, 5 days, and 10 days. There were two methods of mixing: first, peat was mixed with fly ash geopolymer activators and mixed solution (waterglass, NaOH, water), and second, peat was mixed with fly ash and mixed geopolymer (waterglass, NaOH, water, fly ash). Changes were observed in specific gravity, dry density, acidity (pH), and the microscopic structure with Scanning Electron Microscope (SEM). Curing time did not significantly affect the CBR value. It even shows a tendency to decline with longer curing time. The first type mixture obtained CBR value of: 5.4% for 4 hours curing, 4.6% for 5 days curing and 3.6% for 10 days curing. The second type mixture obtained CBR value of: 6.1% for 4 hours curing, 5.2% for 5 days curing and 5.2% for 10 days curing. Furthermore, the specific gravity value, dry density, pH near neutral and swelling percentage increased. From both variants, the second type mixture shows better results than the first type mixture. The results of SEM (Scanning Electron Microscopy) show the structure of the peat which became denser with the fly ash particles filling the peat microporous. Also, the reaction of fly ash with geopolymer is indicated by the solid agglomerates that are larger than normal fly ash particle size.

  19. Effects of permafrost aggradation on peat properties as determined from a pan-Arctic synthesis of plant macrofossils

    USGS Publications Warehouse

    Treat, C.C.; Jones, Miriam C.; Camill, P.; Gallego-Sala, A.; Garneau, M.; Harden, Jennifer W.; Hugelius, G.; Klein, E.S.; Kokfelt, U.; Kuhry, P.; Loisel, Julie; Mathijssen, J.H.; O'Donnell, J.A.; Oksanen, P.O.; Ronkainen, T.M.; Sannel, A.B.K.; Talbot, J. J.; Tarnocal, C.M.; Valiranta, M.

    2016-01-01

    Permafrost dynamics play an important role in high-latitude peatland carbon balance and are key to understanding the future response of soil carbon stocks. Permafrost aggradation can control the magnitude of the carbon feedback in peatlands through effects on peat properties. We compiled peatland plant macrofossil records for the northern permafrost zone (515 cores from 280 sites) and classified samples by vegetation type and environmental class (fen, bog, tundra and boreal permafrost, and thawed permafrost). We examined differences in peat properties (bulk density, carbon (C), nitrogen (N) and organic matter content, and C/N ratio) and C accumulation rates among vegetation types and environmental classes. Consequences of permafrost aggradation differed between boreal and tundra biomes, including differences in vegetation composition, C/N ratios, and N content. The vegetation composition of tundra permafrost peatlands was similar to permafrost-free fens, while boreal permafrost peatlands more closely resembled permafrost-free bogs. Nitrogen content in boreal permafrost and thawed permafrost peatlands was significantly lower than in permafrost-free bogs despite similar vegetation types (0.9% versus 1.5% N). Median long-term C accumulation rates were higher in fens (23 g C m−2 yr−1) than in permafrost-free bogs (18 g C m−2 yr−1) and were lowest in boreal permafrost peatlands (14 g C m−2 yr−1). The plant macrofossil record demonstrated transitions from fens to bogs to permafrost peatlands, bogs to fens, permafrost aggradation within fens, and permafrost thaw and reaggradation. Using data synthesis, we have identified predominant peatland successional pathways, changes in vegetation type, peat properties, and C accumulation rates associated with permafrost aggradation.

  20. Seasonal pathogen removal by alternative on-site wastewater treatment systems.

    PubMed

    Pundsack, J; Axler, R; Hicks, R; Henneck, J; Nordman, D; McCarthy, B

    2001-01-01

    Subsurface-flow constructed wetlands, sand filters, and peat filters near Duluth, Minnesota, were studied to determine their seasonal performance for removing pathogens from wastewater. Influent was a high-strength septic tank effluent (mean values of 5-day biochemical oxygen demand, total nitrogen, and total phosphorus were 294, 96, and 15 mg/L, respectively) at the Natural Resources Research Institute's alternative treatment system test facility in northern Minnesota. Each treatment system was inoculated with cultures of Salmonella choleraesuis (serotype typhimurium) for 5 to 7 consecutive days in summer and winter during 1998 to 1999. After the seeding, outflow samples were taken until Salmonella counts were sustained at background levels. The removal of Salmonella was calculated for each system, although the exact removal mechanisms were not determined. During the summer, the wetlands removed 99.6 to 99.999 4% (2.4 to 5.3 log10 reduction) of the culturable Salmonella. The sand filters demonstrated a greater than 7 log10 removal of Salmonella cells, whereas the peat filters were responsible for a greater than 8 log10 loss of cells. Fewer Salomonella cells were removed by all of these systems during the winter, although the pattern of removal was similar to their summer operation. During the winter, the wetlands and sand filters removed greater than 1 log10 of culturable cells, but the peat filters were responsible for a greater than 5 log10 loss of cells. Fecal coliform removal patterns reflected those for Salmonella by treatment systems for summer and winter periods. Based on Salmonella and fecal coliform removal, the peat filters operated most effectively followed by the sand filters and the constructed wetlands.

  1. Peatland Organic Matter Chemistry Trends Over a Global Latitudinal Gradient

    NASA Astrophysics Data System (ADS)

    Verbeke, B. A.; Hodgkins, S. B.; Carson, M. A.; Lamit, L. J.; Lilleskov, E.; Chanton, J.

    2017-12-01

    Peatlands contain a significant amount of the global soil carbon, and the climate feedback of carbon cycling within these peatland systems is still relatively unknown. Organic matter composition of peatlands plays a major role in determining carbon storage, and while high latitude peatlands seem to be the most sensitive to climate change, a global picture of peat organic matter chemistry is required to improve predictions and models of greenhouse gas emissions fueled by peatland decomposition. The objective of this research is to test the hypothesis that carbohydrate content of peatlands near the equator will be lower than high latitude peatlands, while aromatic content will be higher. As a part of the Global Peatland Microbiome Project (GPMP), around 2000 samples of peat from 10 to 70 cm across a latitudinal gradient of 79 N to 53 S were measured with Fourier transform infrared spectroscopy (FTIR) to examine the organic matter functional groups of peat. Carbohydrate and aromatic content, as determined by FTIR, are useful proxies of decomposition potential and recalcitrance, respectively. We found a highly significant relationship between carbohydrate and aromatic content, latitude, and depth. Carbohydrate content of high latitude sites were significantly greater than at sites near the equator, in contrast to aromatic content which showed the opposite trend. It is also clear that carbohydrate content decreases with depth while aromatic content increases with depth. Higher carbohydrate content at higher latitudes indicates a greater potential for lability and resultant mineralization to form the greenhouse gases, carbon dioxide and methane, whereas the composition of low latitude peatlands is consistent with their apparent stability. We speculate that the combination of low carbohydrates and high aromatics at warmer locations near the equator could foreshadow the organic matter composition of high latitude peat transitioning to a more recalcitrant form with a warming climate.

  2. The transport dynamics of chloride and sodium in a ladder fen during a continuous wastewater polishing experiment

    NASA Astrophysics Data System (ADS)

    McCarter, Colin P. R.; Price, Jonathan S.

    2017-06-01

    Ladder fen peatlands have excellent potential for wastewater polishing as they naturally contain both open water (pools) and subsurface (peat) treatment landforms; however, there is a poor understanding of solute transport in ladder fens with and without the increased hydrological load imposed by wastewater discharge. To better understand solute transport in ladder fens under wastewater polishing conditions a continuous solute (NaCl) tracer experiment (38 m3 day-1 of water, chloride - 47.2 mg L-1, and sodium - 25.3 mg L-1) was conducted during the summer of 2014 (day of year 192-243) in a small ladder fen in the James Bay Lowland. The transmissivity distribution and effective porosity (average 0.5) of the peat ribs were determined through repeated bail tests and the drainable porosity of 18 peat cores at -100 mb, respectively. Water samples were taken at least every 7 days to capture the solute (sodium and chloride) plumes. Both solute plumes never reached the site outflow (∼250 m downgradient) and displayed complex plume morphology, typically following the patterns of higher hydraulic conductivity within the upper 0.1 m of the saturated peat, rather than the microtopography. Based on the 50% breakthrough isotherms, sodium and chloride were transported at an average solute velocity of 1.9 and 1.1 m day-1, respectively (average linear groundwater velocity = 2.1 m day-1); thus, the solutes were retarded by a factor of 2.1 and 1.2 for sodium and chloride, respectively. Due to the inherent retardation of solutes into inactive pores and relatively high solute residence times, this study demonstrates the potential for wastewater polishing in ladder fens.

  3. Specific features of the development of soils of hydromorphic ecosystems in the northern taiga of Western Siberia under conditions of cryogenesis

    NASA Astrophysics Data System (ADS)

    Matyshak, G. V.; Bogatyrev, L. G.; Goncharova, O. Yu.; Bobrik, A. A.

    2017-10-01

    Differently directed and heterochronous cryogenic processes have contributed to the contrasting soil cover patterns and spatial heterogeneity of the properties of soils in hydromorphic ecosystems of the discontinuous permafrost zone of the northern taiga in Western Siberia. Frost heave and permafrost thawing within ecosystems of highmoor bogs have led to the development of specific cryogenic landforms, such as flat-topped and large peat mounds. A set of cryogenic soils is developed in these ecosystems; it includes different variants of cryozems, gleyzems (Cryosols), and peat soils (Histosols). The distribution of these soil types is controlled by the local topography and thawing depth, other factors being insignificant. Alternation of peat horizons of different types and ages, whirl-like patterns of horizon boundaries, considerable variations in the thickness of soil horizons, and inversions of soil horizons under the impact of frost cracking, frost heave, and cryoturbation are typical of the considered soils. Thawing depth is the most significant factor affecting the thickness of organic horizons, the soil pH, and the degree of decomposition of peat. As a result of the upward movement of bog ecosystems under the impact of frost heave, peat soils are subjected to considerable transformation: peat horizons undergo mineralization, and the thickness of organic horizons decreases; in some cases, eluvial-illuvial differentiation of the mineral horizons takes place, and peat podzols are developed. However, the opposite process of the return of the soils to the bog stage of pedogenesis with peat accumulation may take place in any time in the case of activation of thermokarst processes.

  4. The Use of Hotspot Spatial Clustering and Multitemporal Satellite Imagery to Facilitate Peat Land Degradation in West Kalimantan, Indonesia (Case Study in Mensiku Miniwatershed of Kapuas River)

    NASA Astrophysics Data System (ADS)

    Yanuarsyah, I.; Suwarno, Y.; Hudjimartsu, S.

    2016-11-01

    Peat land in Indonesia is currently a matter of interest to economic activity. In addition to having the uniqueness of the ecosystem which is reserve a huge of biodiversity and carbon storage, peat land is grow an alternative expansion of agriculture and plantation. Mensiku miniwatershed is a subset of Kapuas Watershed with the domination of the peat soil type. It located in the upstream from the Kapuas River and supporting for the continuation of the river ecosystem. The research objective is to facilitate peat land degradation by using hotspot spatial clustering and multitemporal satellite imagery. There have three main processes which are image processing, geoprocessing and statistical process using DBSCAN to determine hotspot clustering. The trend of LUC changes for 14 years (2002 to 2016) shows that the downward occurred in secondary peat forest (0.9% per year) and swampy shrub (0.6% per year). The upward occurred in mixed farms (0.6% per year) and plantations (0.8% per year). degradation rate of peat land over 14 years about 4.6 km2 per year. Hotspot predominantly occurrence in secondary peat forest with 200-250 centimeter depth and Saprists type. DBSCAN clustering obtain 2 clusters in 2002, obtain 4 clusters in 2009 and obtain 1 clusters in 2016. Regarding LUC platform, average density value over 14 years about 0.063 hotspot per km2. DBSCAN is common used to examine the cluster and perform the distribution and density with spatial analysis

  5. Factors affecting the geochemistry of a thick, subbituminous coal bed in the Powder River Basin: volcanic, detrital, and peat-forming processes

    USGS Publications Warehouse

    Crowley, S.S.; Ruppert, L.F.; Belkin, H.E.; Stanton, R.W.; Moore, T.A.

    1993-01-01

    The inorganic geochemistry and mineralogy of three cores from the Anderson-Dietz 1 coal bed, a 15.2-m-thick subbituminous coal bed in the Tongue River Member (Paleocene) of the Fort Union Formation, were examined (1) to determine if the cores could be correlated by geochemical composition alone over a total distance of 2 km and (2) to identify the major factors that influenced the geochemistry of the coal bed. Chemical data (46 elements on a coal-ash basis) for 81 coal samples and 4 carbonaceous rock samples, with most samples representing a 0.6-m-thick (2-ft) interval of core, were grouped into compositional clusters by means of cluster analysis. Seven major clusters were produced; two of these clusters can be used to correlate the coal bed throughout the study area. Data from scanning electron and optical microscope analyses indicate that several factors influenced the geochemistry of the Anderson-Dietz 1 coal bed. The majority of mineral grains in the coal bed are interpreted to be detrital (water borne); evidence includes the presence of rounded to subrounded quartz grains having two-phase, aqueous fluid inclusions characteristic of hydrothermal or low-to-moderate grade metamorphic quartz. These quartz grains are found throughout the coal bed but are most abundant in samples from the midpart of the bed, which was influenced by detrital input associated with the deposition of the clastic rocks that form the split between the Anderson and Dietz 1 coal beds 900 m to the east of the study area. In addition to the detrital minerals mentioned above, volcanic ash that was fluvially transported to the sites of peat deposition or possibly deposited as air-fall volcanic ash also affected the geochemistry of the coal bed. For example, crandallite(?), a mineral reported to form as an alteration product of volcanic ash, is found in seven samples from the coal bed. The presence of quartz grains containing silicate-melt inclusions in eight samples from the coal bed.provides further support for a volcanic ash component. Other factors that probably affected the geochemistry of the coal bed include (1) detrital input associated with the deposition of the roof rocks of the coal bed, (2) peat-forming processes and plant material, and (3) epigenetic ground-water flow. ?? 1993.

  6. Rheological Properties of Automorphic and Semihydromorphic Cryometamorphic Northern Taiga Soils in Northeastern European Russia (Komi Republic)

    NASA Astrophysics Data System (ADS)

    Kholopov, Yu. V.; Khaidapova, D. D.; Lapteva, E. M.

    2018-04-01

    Soil pastes at the water content corresponding to the maximum swelling of samples from different genetic horizons of cryometamorphic soils―surface-gleyic iron-illuvial svetlozem (Folic Albic Stagnosol) and peaty and peat humus-impregnated gleyic svetlozems (Histic Gleyic Stagnosols)―have been studied with an MCR-302 modular rheometer (Anton Paar, Austria). It has been found that the strongest interparticle bonds are formed in the horizons of cryometamorphic soils characterized by high contents of humic substances and organomineral Al-Fe-humus compounds. These are horizons of podzol microprofile (Eg and BHF) in iron-illuvial svetlozem and a humus-impregnated horizon (ELhi,g) in peaty and peat svetlozems. Organomineral Al-Fe-humus compounds, as well as the seasonal freezing of soils, determine the elastic-brittle character of interparticle interactions. The contents of clay fractions, exchangeable bases, and organic and organomineral substances impart viscoelastic properties to these contacts. An enhancement of elastic-brittle properties of soil is observed under the impact of gleying and freezing. The threefold decrease of the structural interaction parameter (∫ Z) when going from automorphic to semihydromorphic conditions indicates a decrease in the resistance of peaty and peat svetlozems to mechanical loads under increasing hydromorphism compared to iron-illuvial svetlozems.

  7. Dynamic Vertical Profiles of Peat Porewater Chemistry in a Northern Peatland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffiths, Natalie A.; Sebestyen, Stephen D.

    We measured pH, cations, nutrients, and total organic carbon (TOC) over 3 years to examine weekly to monthly variability in porewater chemistry depth profiles (0–3.0 m) in an ombrotrophic bog in Minnesota, USA. We also compared temporal variation at one location to spatial variation in depth profiles at 16 locations across the bog. Most solutes exhibited large gradients with depth. pH increased by two units and calcium concentrations increased over 20 fold with depth, and may reflect peatland development from minerotrophic to ombrotrophic conditions. Ammonium concentrations increased almost 20 fold and TOC concentrations decreased by half with depth, and thesemore » patterns likely reflect mineralization of peat or decomposition of TOC. There was also considerable temporal variation in the porewater chemistry depth profiles. Ammonium, soluble reactive phosphorus, and potassium showed greater temporal variation in near-surface porewater, while pH, calcium, and TOC varied more at depth. This variation demonstrates that deep peat porewater chemistry is not static. Lastly, temporal variation in solute chemistry depth profiles was greater than spatial variation in several instances, especially in shallow porewaters. In conclusion, characterizing both temporal and spatial variability is necessary to ensure representative sampling in peatlands, especially when calculating solute pools and fluxes and parameterizing process-based models.« less

  8. Dynamic Vertical Profiles of Peat Porewater Chemistry in a Northern Peatland

    DOE PAGES

    Griffiths, Natalie A.; Sebestyen, Stephen D.

    2016-10-14

    We measured pH, cations, nutrients, and total organic carbon (TOC) over 3 years to examine weekly to monthly variability in porewater chemistry depth profiles (0–3.0 m) in an ombrotrophic bog in Minnesota, USA. We also compared temporal variation at one location to spatial variation in depth profiles at 16 locations across the bog. Most solutes exhibited large gradients with depth. pH increased by two units and calcium concentrations increased over 20 fold with depth, and may reflect peatland development from minerotrophic to ombrotrophic conditions. Ammonium concentrations increased almost 20 fold and TOC concentrations decreased by half with depth, and thesemore » patterns likely reflect mineralization of peat or decomposition of TOC. There was also considerable temporal variation in the porewater chemistry depth profiles. Ammonium, soluble reactive phosphorus, and potassium showed greater temporal variation in near-surface porewater, while pH, calcium, and TOC varied more at depth. This variation demonstrates that deep peat porewater chemistry is not static. Lastly, temporal variation in solute chemistry depth profiles was greater than spatial variation in several instances, especially in shallow porewaters. In conclusion, characterizing both temporal and spatial variability is necessary to ensure representative sampling in peatlands, especially when calculating solute pools and fluxes and parameterizing process-based models.« less

  9. Cardiopulmonary toxicity of peat wildfire particulate matter and the predictive utility of precision cut lung slices

    EPA Science Inventory

    Background: Emissions from a large peat fire in North Carolina were associated with increased hospital admissions for asthma and the rate of heart failure in the exposed population. Peat fires often produce larger amounts of smoke and last longer than forest fires, however few st...

  10. Food waste composting: its use as a peat replacement.

    PubMed

    Farrell, M; Jones, D L

    2010-01-01

    We successfully co-composted catering waste with green waste and shredded paper to yield two high-nitrogen composts for use in horticulture. Sunflowers (Helianthus annuus L.) were grown in various mixtures of the compost and a commercially available peat-based compost to assess the efficacy of catering waste-based composts for peat replacement. Height, head diameter, seed mass and above-ground biomass were measured, with all mixtures giving a significant increase in yield or size over the commercially available peat-free control compost. We conclude that differences in physical structure governed sunflower growth over substrate chemistry, and none of the compost mixtures were nutrient deficient. We recommend that catering waste co-compost can be substituted to at least 75% within Sphagnum-based traditional growing media, providing a viable replacement for a large proportion of peat used as a growth medium in the horticulture industry. Our catering waste compost yielded similar seed head, seed mass and above-ground biomass values to 100% peat-based compost in all food waste compost blends tested in this study. 2010 Elsevier Ltd. All rights reserved.

  11. Solute movement in drained fen peat: a field tracer study in a Somerset (UK) wetland

    NASA Astrophysics Data System (ADS)

    Baird, Andrew J.; Gaffney, Simon W.

    2000-10-01

    Little is known about solute transport in peats, despite the obvious importance of solute transport on eco-hydrological processes in both managed and natural peatlands. To address this lack of knowledge, we investigated solute transport processes in an agricultural fen peat using a conservative KBr tracer. The main aim of the study was to elucidate solute transport behaviour in general in this peat, with a more specific aim of investigating whether preferential or bypassing flow occurred. The tracer moved through the peat more rapidly than expected, and the pattern of movement showed clear evidence of plot-scale bypassing flow. The data also provide evidence that bypassing flow occurs in pores at smaller scales. The implications of this study for management of wetland pastures in the Somerset Moors in south-west England are discussed.

  12. Bacterial and Fungal Communities in a Degraded Ombrotrophic Peatland Undergoing Natural and Managed Re-Vegetation

    PubMed Central

    Elliott, David R.; Caporn, Simon J. M.; Nwaishi, Felix; Nilsson, R. Henrik; Sen, Robin

    2015-01-01

    The UK hosts 15–19% of global upland ombrotrophic (rain fed) peatlands that are estimated to store 3.2 billion tonnes of carbon and represent a critical upland habitat with regard to biodiversity and ecosystem services provision. Net production is dependent on an imbalance between growth of peat-forming Sphagnum mosses and microbial decomposition by microorganisms that are limited by cold, acidic, and anaerobic conditions. In the Southern Pennines, land-use change, drainage, and over 200 years of anthropogenic N and heavy metal deposition have contributed to severe peatland degradation manifested as a loss of vegetation leaving bare peat susceptible to erosion and deep gullying. A restoration programme designed to regain peat hydrology, stability and functionality has involved re-vegetation through nurse grass, dwarf shrub and Sphagnum re-introduction. Our aim was to characterise bacterial and fungal communities, via high-throughput rRNA gene sequencing, in the surface acrotelm/mesotelm of degraded bare peat, long-term stable vegetated peat, and natural and managed restorations. Compared to long-term vegetated areas the bare peat microbiome had significantly higher levels of oligotrophic marker phyla (Acidobacteria, Verrucomicrobia, TM6) and lower Bacteroidetes and Actinobacteria, together with much higher ligninolytic Basidiomycota. Fewer distinct microbial sequences and significantly fewer cultivable microbes were detected in bare peat compared to other areas. Microbial community structure was linked to restoration activity and correlated with soil edaphic variables (e.g. moisture and heavy metals). Although rapid community changes were evident following restoration activity, restored bare peat did not approach a similar microbial community structure to non-eroded areas even after 25 years, which may be related to the stabilisation of historic deposited heavy metals pollution in long-term stable areas. These primary findings are discussed in relation to bare peat oligotrophy, re-vegetation recalcitrance, rhizosphere-microbe-soil interactions, C, N and P cycling, trajectory of restoration, and ecosystem service implications for peatland restoration. PMID:25969988

  13. Bacterial and fungal communities in a degraded ombrotrophic peatland undergoing natural and managed re-vegetation.

    PubMed

    Elliott, David R; Caporn, Simon J M; Nwaishi, Felix; Nilsson, R Henrik; Sen, Robin

    2015-01-01

    The UK hosts 15-19% of global upland ombrotrophic (rain fed) peatlands that are estimated to store 3.2 billion tonnes of carbon and represent a critical upland habitat with regard to biodiversity and ecosystem services provision. Net production is dependent on an imbalance between growth of peat-forming Sphagnum mosses and microbial decomposition by microorganisms that are limited by cold, acidic, and anaerobic conditions. In the Southern Pennines, land-use change, drainage, and over 200 years of anthropogenic N and heavy metal deposition have contributed to severe peatland degradation manifested as a loss of vegetation leaving bare peat susceptible to erosion and deep gullying. A restoration programme designed to regain peat hydrology, stability and functionality has involved re-vegetation through nurse grass, dwarf shrub and Sphagnum re-introduction. Our aim was to characterise bacterial and fungal communities, via high-throughput rRNA gene sequencing, in the surface acrotelm/mesotelm of degraded bare peat, long-term stable vegetated peat, and natural and managed restorations. Compared to long-term vegetated areas the bare peat microbiome had significantly higher levels of oligotrophic marker phyla (Acidobacteria, Verrucomicrobia, TM6) and lower Bacteroidetes and Actinobacteria, together with much higher ligninolytic Basidiomycota. Fewer distinct microbial sequences and significantly fewer cultivable microbes were detected in bare peat compared to other areas. Microbial community structure was linked to restoration activity and correlated with soil edaphic variables (e.g. moisture and heavy metals). Although rapid community changes were evident following restoration activity, restored bare peat did not approach a similar microbial community structure to non-eroded areas even after 25 years, which may be related to the stabilisation of historic deposited heavy metals pollution in long-term stable areas. These primary findings are discussed in relation to bare peat oligotrophy, re-vegetation recalcitrance, rhizosphere-microbe-soil interactions, C, N and P cycling, trajectory of restoration, and ecosystem service implications for peatland restoration.

  14. Chemical characterization of biochar and assessment of the nutrient dynamics by means of preliminary plant growth tests.

    PubMed

    Prasad, Munoo; Tzortzakis, Nikos; McDaniel, Nicola

    2018-06-15

    Biochar can be produced from several organic sources with varying nutrients and metal concentrations. Four commercial grade biochars were evaluated as peat substitute. Biochars were characterised for plant nutrients and for biological stability. The results showed that there were negligible quantities of N and P and generally high levels of K and high biological stability. When these materials were mixed with peat at 10, 25 and 50% and nutrients were added to bring them to the same level of nutrients as in fertilized peat, it was found that biochar mixtures considerably reduced the levels of calcium chloride/DTPA (CAT) extractable N (including nitrate), P, and electrical conductivity- greater extent with higher rates of biochar addition except for K. The pH and K levels were increased with biochar addition. The drop in EC has important implications regarding the use of other materials used to dilute peat, for example, composted green waste, the rate of dilution is limited due to high EC and biochar addition gives the potential for higher peat dilution of these materials. Nitrate and phosphorus are very vulnerable to leaching of these nutrients in the environment in peat substrates and the binding of these by biochar has implication for leaching and nutrient application strategy. Root development using Cress test and tomato plant height and biomass using containers, were in some cases better than peat indicating that biochar could be used to dilute peat e.g. for seedling production where root development and rapid growth are very important. Application of biochars resulted in a marked reduction of N (and P) in the plant. There were significant correlation between CAT extractable N and P and corresponding plant concentration, indicating the standard growing media test, CAT, would be suitable for assessing the nutrient status of peat biochar mixes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Effect of Organic Material on Mechanical, Hydrological, and Microstructural Properties of Mudstones

    NASA Astrophysics Data System (ADS)

    Altobelli, M. A.; Reece, J. S.

    2016-12-01

    In this research we analyze the influence of organic material on the mechanical and flow properties of mudstones. We uniformly mix peat, milled and harvested by Bord na Móna from the surface of bogs in Ireland, with natural mudstone from Site C0011 in the Nankai Trough, offshore Japan, obtained during Integrated Ocean Drilling Program Expedition 322. The mudstone had previously been disaggregated into a homogeneous dry powder of clay- and silt-sized particles. The peat is ground and dry-sieved to achieve a similar particle size distribution as the mudstone (< 63 micrometers). In order to understand the mechanical and hydrological processes affected by peat, we prepare dry peat-mudstone mixtures with three different peat concentrations: 0 wt%, 5 wt%, and 10 wt%. Then, these peat - mudstone mixtures are saturated with deionized water at a water content of 109%, formed into stable slurries, and uniaxially compressed to an axial stress of 100 kPa using resedimentation, a method that simulates the natural behavior of deposition and burial in the laboratory under controlled conditions. How the organic material interacts with the mudstone matrix and pore fluid under compression influences the physical properties of the mudstones such as porosity, compressibility, and permeability; all of which are measured in the resedimentation experiments. We will also analyze the microstructural changes as a function of peat concentration using a petrographic microscope and scanning electron microscope. Due to the fibrous and absorbent nature of peat, we anticipate the peat to force tightly packed clay particles in the mudstone apart resulting in a looser microstructure and increased porosity, and thus, a higher compressibility and permeability. Understanding the controls on the mechanical and flow properties of hydrocarbon-bearing, fine-grained formations is crucial for exploration and successful production from hydrocarbon reservoirs. Additionally, this study has large implications for soil water storage and soil amendment to improve plant growth and health in clayey soils.

  16. The importance of pH and sand substrate in the revegetation of saline non-waterlogged peat fields.

    PubMed

    Montemayor, Marilou B; Price, Jonathan; Rochefort, Line

    2015-11-01

    A partially peat-extracted coastal bog contaminated by seawater was barren and required revegetation as a wetland. Peat fields were rectangular in shape, cambered in cross-section profile, and separated by drainage ditches. Common to all peat fields were symmetrical patterns in micro-topography with slopes between differences in elevation. Saline non-waterlogged slopes of ∼5% occurred as a symmetrical pair on each side of the crest of the cambered profile, at one end of each peat field. Three rows were laid across this slope (Top, Middle, and Bottom rows) and transplanted with naturally-growing plant species with their sand substrate, in three experiments, and grown for a year. In the Spartina pectinata experiment, bare root stem sections were also planted. Another experiment was conducted to determine changes in the characteristics of a volume of sand when incubated in saline peat fields. We found the salinity of peat increased with moisture downslope, and pH decreased with increase in salinity. S. pectinata grew best when planted with its sand substrate compared with bare root stem section, and when planted in Bottom rows. Juncus balticus had excellent growth in all rows. Unexpectedly, Festuca rubra that was inconspicuous beneath the J. balticus canopy in the natural donor site grew densely within the J. balticus sods. Agrostis stolonifera grew well but seemed to show intolerance to the surrounding acidic peat by curling up its stolons. The pH of the incubated sand volume was much higher than the surrounding peat. These studies suggest that recognition of plant niches and pH manipulation are important in the revegetation of disturbed Sphagnum peatlands that are found abundantly in the northern hemisphere. Results are also relevant to the reclamation of other disturbed lands. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Ecosystem state shifts during long-term development of an Amazonian peatland.

    PubMed

    Swindles, Graeme T; Morris, Paul J; Whitney, Bronwen; Galloway, Jennifer M; Gałka, Mariusz; Gallego-Sala, Angela; Macumber, Andrew L; Mullan, Donal; Smith, Mark W; Amesbury, Matthew J; Roland, Thomas P; Sanei, Hamed; Patterson, R Timothy; Sanderson, Nicole; Parry, Lauren; Charman, Dan J; Lopez, Omar; Valderamma, Elvis; Watson, Elizabeth J; Ivanovic, Ruza F; Valdes, Paul J; Turner, T Edward; Lähteenoja, Outi

    2018-02-01

    The most carbon (C)-dense ecosystems of Amazonia are areas characterized by the presence of peatlands. However, Amazonian peatland ecosystems are poorly understood and are threatened by human activities. Here, we present an investigation into long-term ecohydrological controls on C accumulation in an Amazonian peat dome. This site is the oldest peatland yet discovered in Amazonia (peat initiation ca. 8.9 ka BP), and developed in three stages: (i) peat initiated in an abandoned river channel with open water and aquatic plants; (ii) inundated forest swamp; and (iii) raised peat dome (since ca. 3.9 ka BP). Local burning occurred at least three times in the past 4,500 years. Two phases of particularly rapid C accumulation (ca. 6.6-6.1 and ca. 4.9-3.9 ka BP), potentially resulting from increased net primary productivity, were seemingly driven by drier conditions associated with widespread drought events. The association of drought phases with major ecosystem state shifts (open water wetland-forest swamp-peat dome) suggests a potential climatic control on the developmental trajectory of this tropical peatland. A third drought phase centred on ca. 1.8-1.1 ka BP led to markedly reduced C accumulation and potentially a hiatus during the peat dome stage. Our results suggest that future droughts may lead to phases of rapid C accumulation in some inundated tropical peat swamps, although this can lead ultimately to a shift to ombrotrophy and a subsequent return to slower C accumulation. Conversely, in ombrotrophic peat domes, droughts may lead to reduced C accumulation or even net loss of peat. Increased surface wetness at our site in recent decades may reflect a shift towards a wetter climate in western Amazonia. Amazonian peatlands represent important carbon stores and habitats, and are important archives of past climatic and ecological information. They should form key foci for conservation efforts. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  18. Peat hybrid sorbents for treatment of wastewaters and remediation of polluted environment

    NASA Astrophysics Data System (ADS)

    Klavins, Maris; Burlakovs, Juris; Robalds, Artis; Ansone-Bertina, Linda

    2015-04-01

    For remediation of soils and purification of polluted waters, wastewaters, sorbents might be considered as an prospective group of materials and amongst them peat have a special role due to low cost, biodegradability, high number of functional groups, well developed surface area and combination of hydrophilic/hydrophobic structural elements. Peat as sorbent have good application potential for removal of trace metals, and we have demonstrated peat sorption capacities, sorption kinetics, thermodynamics in respect to metals with different valencies - Tl(I), Cu(II), Cr(III). However peat sorption capacity in respect to nonmetallic (anionic species) elements is low. Also peat mechanical properties do not support application in large scale column processes. To expand peat application possibilities the approach of biomass based hybrid sorbents has been elaborated. The concept "hybrid sorbent" in our understanding means natural, biomass based sorbent modified, covered with another sorbent material, thus combining two types of sorbent properties, sorbent functionalities, surface properties etc. As the "covering layer" both inorganic substances, mineral phases (iron oxohydroxides, oxyapatite) both organic polymers (using graft polymerization) were used. The obtained sorbents were characterised by their spectral properties, surface area, elemental composition. The obtained hybrid sorbents were tested for sorption of compounds in anionic speciation forms, for example of arsenic, antimony, tellurium and phosphorous compounds in comparison with weakly basic anionites. The highest sorption capacity was observed when peat sorbents modified with iron compounds were used. Sorption of different arsenic speciation forms onto iron-modified peat sorbents was investigated as a function of pH and temperature. It was established that sorption capacity increases with a rise in temperature, and the calculation of sorption process thermodynamic parameters indicates the spontaneity of sorption process and its endothermic nature. The recycling options of obtained compounds after their saturation with metal or non-metallic species are suggested. Acknowledgement: Support from a project 2014/0009/1DP/1.1.1.2.0/13/APIA/VIAA/044

  19. Some peat deposits in Penobscot County, Maine

    USGS Publications Warehouse

    Cameron, Cornelia Clermont; Anderson, Walter A.

    1979-01-01

    Twenty of the peat deposits in Penobscot County, Maine contain an estimated 29,282,000 short tons air-dried peat. The peat is chiefly sphagnum moss and reed-sedge of high quality according to ASTM standards for agricultural and horticultural use. Analyses show that this same volume has high fuel value, low sulfur and high hydrogen contents compared with lignite and sub-bituminous coal, which may indicate that it also has potential for fuel use. On the basis of the metallic trace element content, one area within the region containing the 20 deposits has been delineated for further bedrock studies.

  20. Coal and peat in the sub-Saharan region of Africa: alternative energy options?

    USGS Publications Warehouse

    Weaver, J.N.; Landis, E.R.

    1990-01-01

    Coal and peat are essentially unused and in some cases unknown in sub-Saharan Africa. However, they might comprise valuable alternative energy sources in some or all of the developing nations of the region. The 11 countries considered in this appraisal reportedly contain coal and peat. On the basis of regional geology, another five countries might also contain coal-bearing rocks. If the resource potential is adequate, coal and peat might be utilized in a variety of ways including substituting for fuelwood, generating electricity, supplying process heat for local industry and increasing agricultural productivity. -from Author

  1. Effectiveness of inorganic membrane mixture of natural zeolite and portland white cement in purifying of peat water based on turbidity parameter

    NASA Astrophysics Data System (ADS)

    Elfiana; Fuadi, A.; Diana, S.

    2018-04-01

    Peat water is water surface that brownish red colour caused by the contained constituents. Solving the peat watercolor problem requires special attention considering the quantity of peat water and suitable to be used to meet the daily needs. This study aims to know the inorganic membrane capability of mix nature zeolite and white Portland cement to purifying the peat water based on turbidity parameter. The study was conducted by varying the composition of nature zeolite (Za) and white Portland cement (Sp) in the ratio of Za: Sp is (25%:75%; 50%:50%; 75%:25%) with zeolite condition activated using HCl 2M and nonactivated zeolite treatments. The result of the characteristic test on membrane morphology using SEM (Scanning Electron Microscope) showed that the pore surface size of the membrane is 2 μm that could classified in microfiltration membrane an organic type. The characteristic test showed also resulted in the density of 0.77 to 0.86 gr/cm3, porosity 26.22% to 35.93%, and permeability 2736.19 to 8428.15. While the water retention capacity is in range of 30.64% to 46.46%, The result of inorganic membrane application on peat water showed turbidity of peat water decreased 94.17%, from 10.3 NTU to 0.6 NTU.

  2. Structure of peat soils and implications for biogeochemical processes and hydrological flow

    NASA Astrophysics Data System (ADS)

    Rezanezhad, F.; McCarter, C. P. R.; Gharedaghloo, B.; Kleimeier, C.; Milojevic, T.; Liu, H.; Weber, T. K. D.; Price, J. S.; Quinton, W. L.; Lenartz, B.; Van Cappellen, P.

    2017-12-01

    Permafrost peatlands contain globally important amounts of soil organic carbon and play major roles in global water, nutrient and biogeochemical cycles. The structure of peatland soils (i.e., peat) are highly complex with unique physical and hydraulic properties; where significant, and only partially reversible, shrinkage occurs during dewatering (including water table fluctuations), compression and/or decomposition. These distinct physical and hydraulic properties controls water flow, which in turn affect reactive and non-reactive solute transport (such as, sorption or degradation) and biogeochemical functions. Additionally, peat further attenuates solute migration through molecular diffusion into the inactive pores of Sphagnum dominated peat. These slow, diffusion-limited solute exchanges between the pore regions may give rise to pore-scale chemical gradients and heterogeneous distributions of microbial habitats and activity in peat soils. Permafrost peat plateaus have the same essential subsurface characteristics as other widely organic soil-covered peatlands, where the hydraulic conductivity is related to the degree of decomposition and soil compression. Increasing levels of decomposition correspond with a reduction of effective pore diameter and consequently restrict water and solute flow (by several orders of magnitude in hydraulic conductivity between the ground surface and a depth of 50 cm). In this presentation, we present the current knowledge of key physical and hydraulic properties related to the structure of globally available peat soils and discuss their implications for water storage, flow and the migration of solutes.

  3. A rapid and reliable method for Pb isotopic analysis of peat and lichens by laser ablation-quadrupole-inductively coupled plasma-mass spectrometry for biomonitoring and sample screening.

    PubMed

    Kylander, M E; Weiss, D J; Jeffries, T E; Kober, B; Dolgopolova, A; Garcia-Sanchez, R; Coles, B J

    2007-01-16

    An analytical protocol for rapid and reliable laser ablation-quadrupole (LA-Q)- and multi-collector (MC-) inductively coupled plasma-mass spectrometry (ICP-MS) analysis of Pb isotope ratios ((207)Pb/(206)Pb and (208)Pb/(206)Pb) in peats and lichens is developed. This technique is applicable to source tracing atmospheric Pb deposition in biomonitoring studies and sample screening. Reference materials and environmental samples were dry ashed and pressed into pellets for introduction by laser ablation. No binder was used to reduce contamination. LA-MC-ICP-MS internal and external precisions were <1.1% and <0.3%, respectively, on both (207)Pb/(206)Pb and (208)Pb/(206)Pb ratios. LA-Q-ICP-MS internal precisions on (207)Pb/(206)Pb and (208)Pb/(206)Pb ratios were lower with values for the different sample sets <14.3% while external precisions were <2.9%. The level of external precision acquired in this study is high enough to distinguish between most modern Pb sources. LA-MC-ICP-MS measurements differed from thermal ionisation mass spectrometry (TIMS) values by 1% or less while the accuracy obtained using LA-Q-ICP-MS compared to solution MC-ICP-MS was 3.1% or better using a run bracketing (RB) mass bias correction method. Sample heterogeneity and detector switching when measuring (208)Pb by Q-ICP-MS are identified as sources of reduced analytical performance.

  4. Effect of Peat Moss and Pumice on Douglas Fir Bark based Soilless Substrate Physical and Hydraulic Properties

    USDA-ARS?s Scientific Manuscript database

    Douglas fir [Pseudotsuga menziesii Mirb.(Franco)] bark (DFB), sphagnum peat moss, and pumice are the most common substrate components used in the Oregon nursery industry. The objective of this study was to document the effect of peat and pumice addition on the physical and hydrological properties o...

  5. Predicting Calcite (CaCO3) Requirements of Sphagnum Peat Moss from pH Titration Curves

    USDA-ARS?s Scientific Manuscript database

    Liming materials are required to neutralize acidity in peat moss to make it a suitable substrate for growing container crops. A series of time-consuming incubations of peat:lime mixtures are typically used to determine the liming rate to achieve a desired pH. Our objective was to evaluate the util...

  6. Comparisons of soil nitrogen mass balances for an ombrotrophic bog and a minerotrophic fen in northern Minnesota

    EPA Science Inventory

    We compared the N budgets of an ombrotrophic bog and a minerotrophic fen to quantify the importance of denitrification in peatlands and their watersheds. We also compared the watershed upland mineral soils to bog/fen peat; lagg and transition zone peat to central bog/fen peat; an...

  7. Petrography and geochemistry of the San Miguel lignite, Jackson Group (Eocene), south Texas

    USGS Publications Warehouse

    Warwick, Peter D.; Crowley, Sharon S.; Ruppert, Leslie F.; Pontolillo, James

    1996-01-01

    The San Miguel lignite deposit (late Eocene, lower Jackson Group) of south Texas consists of four or more thin (generally < 1 m thick) lignite benches that are separated by claystone and mudstone partings. The partings are composed of altered volcanic air-fall ash that has been reworked by tidal or channel processes associated with a back-barrier depositional environment. The purpose of this study is to examine the relationship between the ash yield and the petrographic and geochemical characteristics of the San Miguel lignite as mined. Particular attention is given to 12 of the environmentally sensitive trace elements (As, Be, Cd, Cr, Co, Hg, Mn, Ni, Pb, Sb, Se, and U) that have been identified as possible hazardous air pollutants (HAPs) by the United States Clean Air Act Amendments of 1990. A total of 29 rock and lignite samples were collected and characterized by geochemical and petrographic methods. The major conclusions of the study are as follows: (1) The distribution of Mn is inversely related to the ash yield of the lignite samples. This indicates an organic affinity, or an association with finely disseminated minerals in the lignite that contain this element. (2) On a whole-coal basis, the concentration of the HAPs' element Pb is positively related to ash yield in lignite samples. This indicates an inorganic affinity for Pb. (3) Average whole-coal concentrations of As, Be, Sb, and U in the San Miguel samples are greater than published averages for these elements in other U.S. lignites. (4) The upper and lower lignite benches of the San Miguel deposit are both ash- and algal-rich, indicating that these intervals were probably deposited in wetter conditions than those in which the middle intervals formed. (5) The dominance of the eugelinite maceral subgroup over the huminite subgroup indicates that the San Miguel lignites were subjected to peat-forming conditions (either biogenic or chemical) that enabled degradation of wood cellular material into matrix gels, or that the plants that formed these lignite benches were less woody and more prone to formation of matrix gels. (6) An inertinite-rich layer (top of the B bed) might have formed from widespread oxidation of the San Miguel peat as a result of a volcanic ash fall which was subsequently reworked.

  8. Spatial variation in below ground carbon cycling in a pristine peatland, driven by present and past vegetation

    NASA Astrophysics Data System (ADS)

    Mathijssen, Paul; Knorr, Klaus-Holger; Gałka, Mariusz; Borken, Werner

    2017-04-01

    Peat carbon cycling is controlled by both large scale factors, such as climate and hydrological setting, and small scale factors, such as microtopography, vegetation, litter quality, and rooting depth. These small scale factors commonly vary within peatlands, causing variation in the carbon balance at different locations within the same site. Understanding the relationship between small scale carbon cycling and vegetation helps us to assess the variation of carbon dynamics of peatlands, because vegetation composition acts as an integrator of factors such as microtopography, hydrology, and nutrient level. Variation in vegetation illustrates spatial variation of these underlying factors. Furthermore, the presence of certain plant species affects carbon cycling directly through litter quality or aeration through root tissues. In order to understand these within-site variations in terms of carbon cycling, we investigated carbon accumulation, decomposition, and biogeochemistry of pore waters along a transect of peat cores with changing vegetation and water levels in an ombrotrophic peatland in southern Patagonia. The transect ran from a Sphagnum magellanicum dominated spot with relatively high water table, to intermediately wet spots with mixed Sphagnum/shrubs vegetation, or dominated by Cyperaceae, eventually to a more elevated and drier spot dominated by cushion plants (mainly Astelia pumila). There were large differences in peat accumulation rates and peat densities, with faster peat growth and lower densities under Sphagnum, but overall carbon accumulation rates were quite similar in the various microenvironments. At most plots C/N ratios decreased with depth, concurrent with increasing humification index derived from FT-IR spectra. But under cushion plants this relation was opposite: more humification with depth, but also C/N ratios increases. This reflected the differing source material at depth under the cushion plants, and that the cushion plant peat layers were formed on top of Sphagnum peat. The divergent source material throughout a peat core makes it difficult to use C/N ratios to indicate peat decomposition rates. Although the low peat density and higher C/N ratios indicate that overall carbon turnover is slow at Sphagnum plots, pore water methane concentrations were elevated. At cushion plant plots, however, higher redox potentials exist until greater depths due to aerenchymous roots, inhibiting methane production and release. Our results demonstrate that large variation exists within pristine bogs, in terms of decomposition patterns, organic matter quality, and carbon turnover pathways, corresponding to variation in surface moisture levels and vegetation. Furthermore, variation in carbon cycling properties are maintained in buried peat layers and reflect more the organic material of that layer, than the current surface carbon dynamics.

  9. Reducing Respiratory Health Risks to Horses and Workers: A Comparison of Two Stall Bedding Materials

    PubMed Central

    Saastamoinen, Markku; Särkijärvi, Susanna; Hyyppä, Seppo

    2015-01-01

    Simple Summary In this study, the effect of wood shavings and peat was examined on stable air quality and health of horses and stable workers. The ammonia level in the boxes in which peat was used as bedding was non-existent or very low. The respiratory symptoms in horses increased regardless of the bedding material at the beginning of the study. The health status of the horses on peat bedding returned to the initial level in the end of the trial but horses in stalls bedded with wood shavings continued to be symptomatic. The hooves of the horses in stalls with peat bedding had a better moisture content. The results suggest that peat is a better bedding material for horses and people working or visiting horse stables than wood shavings. Abstract Stable air quality and the choice of bedding material are an important health issue both in horses and people working or visiting horse stables. Risks of impaired respiratory health are those that can especially be avoided by improving air quality in the stable. The choice of bedding material is particularly important in cold climate conditions; where horses are kept most of the day and year indoors throughout their life. This study examined the effect of two bedding materials; wood shavings and peat; on stable air quality and health of horses. Ammonia and dust levels were also measured to assess conditions in the stable. Ammonia was not detected or was at very low levels (<0.25 ppm) in the boxes in which peat was used as bedding; but its concentration was clearly higher (1.5–7.0 ppm) in stalls with wood shavings as bedding. Personal measurements of workers revealed quite high ammonia exposure (5.9 ppm8h) in the boxes in which wood shavings were used; but no exposure was observed in stalls bedded with peat. The respiratory symptoms in horses increased regardless of the bedding material at the beginning of the study. The health status of the horses in the peat bedding group returned to the initial level in the end of the trial but horses bedded with wood shavings continued to be symptomatic. The hooves of the horses with peat bedding had a better moisture content than those of the horses bedded with wood shavings. The results suggest that peat is a better bedding material for horses than wood shavings regarding the health of both horses and stable workers. PMID:26479479

  10. Mercury(II) sorption to two Florida Everglades peat--Evidence for strong and weak binding and competition by dissolved organic matter released from the peat

    USGS Publications Warehouse

    Drexel, R. Todd; Haitzer, Markus; Ryan, Joseph N.; Aiken, George R.; Nagy, Kathryn L.

    2002-01-01

    The binding of mercury(II) to two peats from Florida Everglades sites with different rates of mercury methylation was measured at pH 6.0 and 0.01 M ionic strength. The mercury(II) sorption isotherms, measured over a total mercury(II) range of 10-7.4 to 10-3.7 M, showed the competition for mercury(II) between the peat and dissolved organic matter released from the peat and the existence of strong and weak binding sites for mercury(II). Binding was portrayed by a model accounting for strong and weak sites on both the peat and the released DOM. The conditional binding constants (for which the ligand concentration was set as the concentration of reduced sulfur in the organic matter as measured by X-ray absorption near-edge structure spectroscopy) determined for the strong sites on the two peats were similar (Kpeat,s = 1021.8±0.1and 1022.0±0.1 M-1), but less than those determined for the DOM strong sites (Kdom,s = 1022.8±0.1and 1023.2±0.1 M-1), resulting in mercury(II) binding by the DOM at low mercury(II) concentrations. The magnitude of the strong site binding constant is indicative of mercury(II) interaction with organic thiol functional groups. The conditional binding constants determined for the weak peat sites (Kpeat,w = 1011.5±0.1 and 1011.8±0.1 M-1) and weak DOM sites (Kdom,w = 108.7±3.0 and 107.3±4.5 M-1) were indicative of mercury(II) interaction with carboxyl and phenol functional groups.

  11. Controls on boreal peat combustion and resulting emissions of carbon and mercury

    NASA Astrophysics Data System (ADS)

    Kohlenberg, Andrew J.; Turetsky, Merritt R.; Thompson, Dan K.; Branfireun, Brian A.; Mitchell, Carl P. J.

    2018-03-01

    Warming in the boreal forest region has already led to changes in the fire regime. This may result in increasing fire frequency or severity in peatlands, which could cause these ecosystems to shift from a net sink of carbon (C) to a net source of C to the atmosphere. Similar to C cycling, peatlands serve as a net sink for mercury (Hg), which binds strongly to organic matter and accumulates in peat over time. This stored Hg is also susceptible to re-release to the atmosphere during peat fires. Here we investigate the physical properties that influence depth of burn in experimental peat columns and the resulting emissions of CO, CO2, CH4, and gaseous and particulate Hg. As expected, bulk density and soil moisture content were important controls on depth of burn, CO2 emissions, and CO emissions. However, our results show that CH4 and Hg emissions are insensitive to combustion temperature or fuel moisture content. Emissions during the burning of peat, across a wide range of moisture conditions, were associated with low particulate Hg and high gaseous Hg release. Due to strong correlations between total Hg and CO emissions and because high Hg emissions occurred despite incomplete combustion of total C, our results suggest that Hg release during peat burning is governed by the thermodynamics of Hg reduction more so than by the release of Hg associated with peat combustion. Our measured emissions ratios, particularly for CH4:CO2, are higher than values typically used in the upscaling of boreal forest or peatland fire emissions. These emission ratios have important implications not only for our understanding of smouldering chemistry, but also for potential influences of peat fires on the Earth’s climate system.

  12. Stable Carbon and Nitrogen Isotopes in a Peat Profile Are Influenced by Early Stage Diagenesis and Changes in Atmospheric CO(2) and N Deposition.

    PubMed

    Esmeijer-Liu, Alice J; Kürschner, Wolfram M; Lotter, André F; Verhoeven, Jos T A; Goslar, Tomasz

    2012-06-01

    In this study, we test whether the δ(13)C and δ(15)N in a peat profile are, respectively, linked to the recent dilution of atmospheric δ(13)CO(2) caused by increased fossil fuel combustion and changes in atmospheric δ(15)N deposition. We analysed bulk peat and Sphagnum fuscum branch C and N concentrations and bulk peat, S. fuscum branch and Andromeda polifolia leaf δ(13)C and δ(15)N from a 30-cm hummock-like peat profile from an Aapa mire in northern Finland. Statistically significant correlations were found between the dilution of atmospheric δ(13)CO(2) and bulk peat δ(13)C, as well as between historically increasing wet N deposition and bulk peat δ(15)N. However, these correlations may be affected by early stage kinetic fractionation during decomposition and possibly other processes. We conclude that bulk peat stable carbon and nitrogen isotope ratios may reflect the dilution of atmospheric δ(13)CO(2) and the changes in δ(15)N deposition, but probably also reflect the effects of early stage kinetic fractionation during diagenesis. This needs to be taken into account when interpreting palaeodata. There is a need for further studies of δ(15)N profiles in sufficiently old dated cores from sites with different rates of decomposition: These would facilitate more reliable separation of depositional δ(15)N from patterns caused by other processes. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11270-011-1001-8) contains supplementary material, which is available to authorized users.

  13. Hybrid biosorbents for removal of pollutants and remediation

    NASA Astrophysics Data System (ADS)

    Burlakovs, Juris; Klavins, Maris; Robalds, Artis; Ansone, Linda

    2014-05-01

    For remediation of soils and purification of polluted waters, wastewaters, biosorbents might be considered as prospective groups of materials. Amongst them peat have a special role due to low cost, biodegradability, high number of functional groups, well developed surface area and combination of hydrophilic/hydrophobic structural elements. Peat as sorbent have good application potential for removal of trace metals, and we have demonstrated peat sorption capacities, sorption kinetics, thermodynamics in respect to metals with different valencies - Tl(I), Cu(II), Cr(III). However, peat sorption capacity in respect to nonmetallic (anionic species) elements is low. Also peat mechanical properties do not support application in large scale column processes thereby, to expand peat application sphere, the approach of biomass based hybrid sorbents has been elaborated. The concept "hybrid sorbent" in understanding of biosorbent means natural, biomass based modified material, covered with another sorbent material, thus combining properties of both such as sorbent functionalities, surface properties etc. As the "covering layer" both inorganic substances, mineral phases (iron oxohydroxides, oxyappatite) and organic polymers (using graft polymerization) were used. The obtained sorbents were characterised by their spectral properties, surface area and elemental composition. The obtained hybrid sorbents were tested for sorption of compounds in anionic speciation forms, for example of arsenic, antimony, tellurium and phosphorous compounds in comparison with weakly basic anionites. The highest sorption capacity was observed when peat sorbents modified with iron compounds were used. Sorption of different arsenic speciation forms onto iron-modified peat sorbents was investigated as a function of pH and temperature. It was established that sorption capacity increases with a rise in temperature as the calculation of sorption process thermodynamic parameters indicates the spontaneity of sorption process and its endothermic nature. The recycling options of obtained compounds after their saturation with metal or non-metallic species are suggested.

  14. Developing and evaluating rapid field methods to estimate peat carbon

    Treesearch

    Rodney A. Chimner; Cassandra A. Ott; Charles H. Perry; Randall K. Kolka

    2014-01-01

    Many international protocols (e.g., REDD+) are developing inventories of ecosystem carbon stocks and fluxes at country and regional scales, which can include peatlands. As the only nationally implemented field inventory and remeasurement of forest soils in the US, the USDA Forest Service Forest Inventory and Analysis Program (FIA) samples the top 20 cm of organic soils...

  15. Dynamics of biochemical processes and redox conditions in geochemically linked landscapes of oligotrophic bogs

    NASA Astrophysics Data System (ADS)

    Inisheva, L. I.; Szajdak, L.; Sergeeva, M. A.

    2016-04-01

    The biological activity in oligotrophic peatlands at the margins of the Vasyugan Mire has been studied. It is shown found that differently directed biochemical processes manifest themselves in the entire peat profile down to the underlying mineral substrate. Their activity is highly variable. It is argued that the notion about active and inert layers in peat soils is only applicable for the description of their water regime. The degree of the biochemical activity is specified by the physical soil properties. As a result of the biochemical processes, a micromosaic aerobic-anaerobic medium is developed under the surface waterlogged layer of peat deposits. This layer contains the gas phase, including oxygen. It is concluded that the organic and mineral parts of peat bogs represent a single functional system of a genetic peat profile with a clear record of the history of its development.

  16. Untangling climate signals from autogenic changes in long-term peatland development

    NASA Astrophysics Data System (ADS)

    Morris, Paul J.; Baird, Andy J.; Young, Dylan M.; Swindles, Graeme T.

    2015-12-01

    Peatlands represent important archives of Holocene paleoclimatic information. However, autogenic processes may disconnect peatland hydrological behavior from climate and overwrite climatic signals in peat records. We use a simulation model of peatland development driven by a range of Holocene climate reconstructions to investigate climate signal preservation in peat records. Simulated water-table depths and peat decomposition profiles exhibit homeostatic recovery from prescribed changes in rainfall, whereas changes in temperature cause lasting alterations to peatland structure and function. Autogenic ecohydrological feedbacks provide both high- and low-pass filters for climatic information, particularly rainfall. Large-magnitude climatic changes of an intermediate temporal scale (i.e., multidecadal to centennial) are most readily preserved in our simulated peat records. Simulated decomposition signals are offset from the climatic changes that generate them due to a phenomenon known as secondary decomposition. Our study provides the mechanistic foundations for a framework to separate climatic and autogenic signals in peat records.

  17. The change of soil properties after wildfires in drained peatlands (Moscow region, Russia)

    NASA Astrophysics Data System (ADS)

    Koshovskii, Timur; Tsibart, Anna; Smirnova, Maria; Valentina, Gavrilova; Anna, Kiseleva

    2014-05-01

    The peat fires differ from the forest and grassland fires, because the soil organic matter acts as burning material. The deep peat horizons are heated or burned during smoldering fires, causing the dramatic change in soil properties. But the most of available data are devoted to changes in organo-mineral soils. In addition, the alteration in hydrological regime, for instance drainage, makes landscapes and soils very vulnerable to wildfires. Drained peatlands are widespread in the European part of Russia and they are affected to extreme wildfires of 2010. So there is a need of post-fire peat soils investigations in this region. During current research the soils of drained peatlands of Moscow Region (Russia) subjected to wildfires of 2002 and 2010 were studied. A total of 14 profiles including background and post-pyrogenic histosols and histic podsols were investigated. Soil samples were taken from genetic horizons and from every 10 cm in cases of thick horizons. The morfological properties of soil profiles were studied and the samples were analysed on macroelements content and organic carbon. The total organic carbon contentrations were detected with spectrofotometric method and the concentrations of macroelements were analysed with X-ray fluorescence method. After wildfires on drained peatlands morfological and physico-chemical properties of soils were changed, the horizons of ash (up to 5 cm) and char (up to 3 cm) instead of organic layers were formed. In addition, the plots of post-pirogenic landscape were characterized by high variability of soil properties. For instance, the thickness of organic layer changed from 5 to 30 cm in a small plot of 5X5 m. The changes in element composition were detected. The peat horizons of background histosols had 80-90% of SiO2, 9-5,8% of Al2O3,1,5-5,6% of Fe2O3, 3,7-6,3% of CaO, 0,7-2,8 % of MnO. Background histic podsols contained 88-90% of SiO2, to 4,8% of Al2O3, and the proportion of Fe2O3 and MnO was about 2,3%. After the fire ash horizons had elevated concentrations of Al2O3 (9-17%), Fe2O3 (4-11%), P2O3 (1-1,8 %), CaO (1,9-2,8 %) and K2O (0,1-1,9%). The char horizons had composition similar to background peat. On the one hand the loss of organic matter took place after burning. But on the other hand after the fire new stage of humus formation started and in 2 years after the burning the content of organic carbon reached up to 10 % in upper horizons.

  18. Mapping Soil Carbon in the Yukon Kuskokwim River Delta Alaska

    NASA Astrophysics Data System (ADS)

    Natali, S.; Fiske, G.; Schade, J. D.; Mann, P. J.; Holmes, R. M.; Ludwig, S.; Melton, S.; Sae-lim, N.; Jardine, L. E.; Navarro-Perez, E.

    2017-12-01

    Arctic river deltas are hotspots for carbon storage, occupying <1% of the pan-Arctic watershed but containing >10% of carbon stored in arctic permafrost. The Yukon Kuskokwim (YK) Delta, Alaska is located in the lower latitudinal range of the northern permafrost region in an area of relatively warm permafrost that is particularly vulnerable to warming climate. Active layer depths range from 50 cm on peat plateaus to >100 cm in wetland and aquatic ecosystems. The size of the soil organic carbon pool and vulnerability of the carbon in the YK Delta is a major unknown and is critically important as climate warming and increasing fire frequency may make this carbon vulnerable to transport to aquatic and marine systems and the atmosphere. To characterize the size and distribution of soil carbon pools in the YK Delta, we mapped the land cover of a 1910 km2 watershed located in a region of the YK Delta that was impacted by fire in 2015. The map product was the result of an unsupervised classification using the Weka K Means clustering algorithm implemented in Google's Earth Engine. Inputs to the classification were Worldview2 resolution optical imagery (1m), Arctic DEM (5m), and Sentinel 2 level 1C multispectral imagery, including NDVI, (10 m). We collected 100 soil cores (0-30 cm) from sites of different land cover and landscape position, including moist and dry peat plateaus, high and low intensity burned plateaus, fens, and drained lakes; 13 lake sediment cores (0-50 cm); and 20 surface permafrost cores (to 100 cm) from burned and unburned peat plateaus. Active layer and permafrost soils were analyzed for organic matter content, soil moisture content, and carbon and nitrogen pools (30 and 100 cm). Soil carbon content varied across the landscape; average carbon content values for lake sediments were 12% (5- 17% range), fens 26% (9-44%), unburned peat plateaus 41% (34-44%), burned peat plateaus 19% (7-34%). These values will be used to estimate soil carbon pools, which will be applied to the spatial extent of each landcover class in our map, yielding a watershed-wide and spatially explicit map of soil carbon in the YK Delta. This map will provide the basis for understanding where carbon is stored in the watershed and the vulnerability of that carbon to climate change and fire.

  19. Peatland Microbial Communities and Decomposition Processes in the James Bay Lowlands, Canada

    PubMed Central

    Preston, Michael D.; Smemo, Kurt A.; McLaughlin, James W.; Basiliko, Nathan

    2012-01-01

    Northern peatlands are a large repository of atmospheric carbon due to an imbalance between primary production by plants and microbial decomposition. The James Bay Lowlands (JBL) of northern Ontario are a large peatland-complex but remain relatively unstudied. Climate change models predict the region will experience warmer and drier conditions, potentially altering plant community composition, and shifting the region from a long-term carbon sink to a source. We collected a peat core from two geographically separated (ca. 200 km) ombrotrophic peatlands (Victor and Kinoje Bogs) and one minerotrophic peatland (Victor Fen) located near Victor Bog within the JBL. We characterized (i) archaeal, bacterial, and fungal community structure with terminal restriction fragment length polymorphism of ribosomal DNA, (ii) estimated microbial activity using community level physiological profiling and extracellular enzymes activities, and (iii) the aeration and temperature dependence of carbon mineralization at three depths (0–10, 50–60, and 100–110 cm) from each site. Similar dominant microbial taxa were observed at all three peatlands despite differences in nutrient content and substrate quality. In contrast, we observed differences in basal respiration, enzyme activity, and the magnitude of substrate utilization, which were all generally higher at Victor Fen and similar between the two bogs. However, there was no preferential mineralization of carbon substrates between the bogs and fens. Microbial community composition did not correlate with measures of microbial activity but pH was a strong predictor of activity across all sites and depths. Increased peat temperature and aeration stimulated CO2 production but this did not correlate with a change in enzyme activities. Potential microbial activity in the JBL appears to be influenced by the quality of the peat substrate and the presence of microbial inhibitors, which suggests the existing peat substrate will have a large influence on future JBL carbon dynamics. PMID:22393328

  20. Bioaccumulation of petroleum hydrocarbons in arctic amphipods in the oil development area of the Alaskan Beaufort Sea.

    PubMed

    Neff, Jerry M; Durell, Gregory S

    2012-04-01

    An objective of a multiyear monitoring program, sponsored by the US Department of the Interior, Bureau of Ocean Energy Management was to examine temporal and spatial changes in chemical and biological characteristics of the Arctic marine environment resulting from offshore oil exploration and development activities in the development area of the Alaskan Beaufort Sea. To determine if petroleum hydrocarbons from offshore oil operations are entering the Beaufort Sea food web, we measured concentrations of hydrocarbons in tissues of amphipods, Anonyx nugax, sediments, Northstar crude oil, and coastal peat, collected between 1999 and 2006 throughout the development area. Mean concentrations of polycyclic aromatic hydrocarbons (PAH), saturated hydrocarbons (SHC), and sterane and triterpane petroleum biomarkers (StTr) were not significantly different in amphipods near the Northstar oil production facility, before and after it came on line in 2001, and in amphipods from elsewhere in the study area. Forensic analysis of the profiles (relative composition and concentrations) of the 3 hydrocarbon classes revealed that hydrocarbon compositions were different in amphipods, surface sediments where the amphipods were collected, Northstar crude oil, and peat from the deltas of 4 North Slope rivers. Amphipods and sediments contained a mixture of petrogenic, pyrogenic, and biogenic PAH. The SHC in amphipods were dominated by pristane derived from zooplankton, indicating that the SHC were primarily from the amphipod diet of zooplankton detritus. The petroleum biomarker StTr profiles did not resemble those in Northstar crude oil. The forensic analysis revealed that hydrocarbons in amphipod tissues were not from oil production at Northstar. Hydrocarbons in amphipod tissues were primarily from their diet and from river runoff and coastal erosion of natural diagenic and fossil terrestrial materials, including seep oils, kerogens, and peat. Offshore oil and gas exploration and development do not appear to be causing an increase in petroleum hydrocarbon contamination of the Beaufort Sea food web. Copyright © 2011 SETAC.

Top