Reddy, M.M.; Reddy, M.B.; Kipp, K.L.; Burman, A.; Schuster, P.; Rawlik, P.S.
2008-01-01
Water quality is a key aspect of the Everglades Restoration Project, the largest water reclamation and ecosystem management project proposed in the United States. Movement of nutrients and contaminants to and from Everglades peat porewater could have important consequences for Everglades water quality and ecosystem restoration activities. In a study of Everglades porewater, we observed complex, seasonally variable peat porewater chloride concentration profiles at several locations. Analyses and interpretation of these changing peat porewater chloride concentration profiles identifies processes controlling conservative solute movement at the peat-surface water interface, that is, solutes whose transport is minimally affected by chemical and biological reactions. We examine, with an advection-diffusion model, how alternating wet and dry climatic conditions in the Florida Everglades mediate movement of chloride between peat porewater and marsh surface water. Changing surface water-chloride concentrations alter gradients at the interface between peat and overlying water and hence alter chloride flux across that interface. Surface water chloride concentrations at two frequently monitored sites vary with marsh water depth, and a transfer function was developed to describe daily marsh surface water chloride concentration as a function of marsh water depth. Model results demonstrate that porewater chloride concentrations are driven by changing surface water chloride concentrations, and a sensitivity analysis suggests that inclusion of advective transport in the model improves the agreement between the calculated and the observed chloride concentration profiles. Copyright ?? 2007 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Chrzanowski, S.; Szajdak, L.
2009-04-01
Organic soils as result of drainage undergo consolidation, mineralization, and subsidence of surface layer, and decline of organic matter. The rate of the subsidence of surface layer depends on a number of factors, such as ground water level, kind of peat, density of thickness of peat layer, drainage depth, climate, land use and drainage duration. These processes are connected with the changes of physical properties and lead to the conversion of organic soils into mineral-organic and mineral. The phenomena are observed in Biebrza, Notec Valley, and Kurpiowska Basin and Wieprz-Krzna channel. During last 42 years, in Kuwasy peatland from 10-13 ton per year was declined and the area of peatland decreased from 53 to 57 cm. It was observed that, peat moorsh soil of the first stadium of moorshification located on a middle decomposed peat transformed into peat-moorh soil of the second stadium of moorshification located on a high decomposed peat. However shallow peat soils were converted into mineral-moorsh and moorsh. Kuwasy peatland was meliorated twice in XX century, first one in the middle of 30 and second one in 50. It led to the farther land surface subsidence and decline of organic matter. The aim of this investigation was to evaluate the rate of land surface subsidence, decline of the area and the transformation of physic-water properties in peat-moorsh soil of different water conditions. The investigations were carried out in Kuwasy peatland, located in Biebrza Basin North-East Poland. In peat soil samples ash contents, porosity, pF curves and bulk density were determined. The analysis of these results allowed to evaluate long-term soil subsidence and to relate it to soil water conditions.
The wettability of selected organic soils in Poland
NASA Astrophysics Data System (ADS)
Całka, A.; Hajnos, M.
2009-04-01
The wettability was measured in the laboratory by means of two methods: Water Drop Penetration Time (WDPT) test and Thin Column Wicking (TCW) method. WDPT is fast and simple method and was used to investigate potential water repellency of analyzed samples. TCW is an indirect method and was used to determine contact angles and surface free energy components. The measurement was performed in horizontal teflon chambers for thin-layer chromatography, adapted for tubes 10 cm long. The experiment was carried out on muck soils (samples were taken from two levels of soil profile: 0-20 cm and 20-40 cm) and peat soils. There were two types of peats: low-moor peats and high moor peats. Samples of low-moor peats were taken from level 25-75 cm (alder peat) and 75-125cm (sedge peat) and 25-75 cm (peloid peat). Samples of high moor peats from level 25-175 cm (sphagnum peat) and 175-225 cm (sphagnum peat with Eriophorum). There was found no variability in persistence of potential water repellency but there were differences in values of contact angles of individual soil samples. Both muck and peat samples are extremely water repellent soils. Water droplets persisted on the surface of soils for more than 24 hours. Contact angles and surface free energy components for all samples were differentiated. Ranges of water contact angles for organic soils are from 27,54o to 96,50o. The highest values of contact angles were for sphagnum peats, and the lowest for muck soil from 20-40 cm level. It means, that there are differences in wettability between these samples. Muck soil is the best wettable and sphagnum peats is the worst wettable soil. If the content of organic compounds in the soil exceeds 40% (like in peats), the tested material displays only dispersion-type interactions. Therefore for peat soils, the technique of thin column wicking could only be used to determine the dispersive component γiLW. For muck soils it was also determined electron-acceptor (Lewis acid) γ+ and electron-donor (Lewis base) γ- surface free energy components. The authors gratefully acknowledge the Ministry of Science and Higher Education for financial support of this work (grant No. N N310 149335).
Sequestration of arsenic in ombrotrophic peatlands
NASA Astrophysics Data System (ADS)
Rothwell, James; Hudson-Edwards, Karen; Taylor, Kevin; Polya, David; Evans, Martin; Allott, Tim
2014-05-01
Peatlands can be important stores of arsenic but we are lacking spectroscopic evidence of the sequestration pathways of this toxic metalloid in peatland environments. This study reports on the solid-phase speciation of anthropogenically-derived arsenic in atmospherically contaminated peat from the Peak District National Park (UK). Surface and sub-surface peat samples were analysed by synchrotron X-ray absorption spectroscopy on B18 beamline at Diamond Light Source (UK). The results suggest that there are contrasting arsenic sequestration mechanisms in the peat. The bulk arsenic speciation results, in combination with strong arsenic-iron correlations at the surface, suggest that iron (hydr)oxides are key phases for the immobilisation of arsenic at the peat surface. In contrast, the deeper peat samples are dominated by arsenic sulphides (arsenopyrite, realgar and orpiment). Given that these peats receive inputs solely from the atmosphere, the presence of these sulphide phases suggests an in-situ authigenic formation. Redox oscillations in the peat due to a fluctuating water table and an abundant store of legacy sulphur from historic acid rain inputs may favour the precipitation of arsenic sequestering sulphides in sub-surface horizons. Oxidation-induced loss of these arsenic sequestering sulphur species by water table drawdown has important implications for the mobility of arsenic and the quality of waters draining peatlands.
NASA Astrophysics Data System (ADS)
Hendriks, Rob F. A.; van den Akker, Jan J. A.
2017-04-01
Effectiveness of submerged drains in reducing subsidence of peat soils in agricultural use, and their effects on water management and nutrient loading of surface water: modelling of a case study in the western peat soil area of The Netherlands In the Netherlands, about 8% of the area is covered by peat soils. Most of these soils are in use for dairy farming and, consequently, are drained. Drainage causes decomposition of peat by oxidation and accordingly leads to surface subsidence and greenhouse gas emission. Submerged drains that enhance submerged infiltration of water from ditches during the dry and warm summer half year were, and are still, studied in The Netherlands as a promising tool for reducing peat decomposition by raising groundwater levels. For this purpose, several pilot field studies in the Western part of the Dutch peat area were conducted. Besides the effectiveness of submerged drains in reducing peat decomposition and subsidence by raising groundwater tables, some other relevant or expected effects of these drains were studied. Most important of these are water management and loading of surface water with nutrients nitrogen, phosphorus and sulphate. Because most of these parameters are not easy to assess and all of them are strongly depending on the meteorological conditions during the field studies some of these studies were modelled. The SWAP model was used for evaluating the hydrological results on groundwater table and water discharge and recharge. Effects of submerged drains were assessed by comparing the results of fields with and without drains. An empirical relation between deepest groundwater table and subsidence was used to convert effects on groundwater table to effects on subsidence. With the SWAP-ANIMO model nutrient loading of surface water was modelled on the basis of field results on nutrient concentrations . Calibrated models were used to assess effects in the present situation, as thirty-year averages, under extreme weather conditions and for two extreme climate scenarios of the Royal Netherlands Meteorological Institute. In this study the model results of one of the pilot studies are presented. The case study 'de Krimpenerwaard' is situated in the peat area in the "Green Heart" between the major cities of Amsterdam, The Hague, Rotterdam and Utrecht. Model results show a halving of soil subsidence, a strong increase of water recharge but a lower increase of water discharge, and generally small to moderate effects on nutrient loading , all depending (strongly) on meteorological conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tfaily, Malak M.; Wilson, Rachel M.; Cooper, William T.
We characterized dissolved organic matter (DOM) composition throughout the peat column at the Marcell S1 forested bog in northern Minnesota and tested the hypothesis that redox oscillations associated with cycles of wetting and drying at the surface of the fluctuating water table correlate with increased carbon, sulfur and nitrogen turn over. We found significant vertical stratification of DOM molecular composition and EEM-PARAFAC components within the peat column. In particular the intermediate depth zone (~ 50 cm) was identified as a zone where maximum decomposition and turnover is taking place. Surface DOM was dominated by inputs from surface vegetation. The intermediate-depthmore » zone was an area of high organic matter reactivity and increased microbial activity with diagenetic formation of many unique compounds, among them polycyclic aromatic compounds (PAC) that contain both nitrogen and sulfur heteroatoms. These compounds have been previously observed in coal-derived compounds and were assumed to be responsible for coal's biological activity. Biological processes triggered by redox oscillations taking place at the intermediate depth zone of the peat profile at the S1 bog are assumed to be responsible for the formation of these heteroatomic PACs in this system. Alternatively these compounds could stem from black carbon and nitrogen derived from fires that have occurred at the site in the past. Surface and deep DOM exhibited more similar characteristics, compared to the intermediate-depth zone, with the deep layer exhibiting greater input of microbially degraded organic matter than the surface suggesting that the entire peat profile consists of similar parent material at different degrees of decomposition and that lateral and vertical advection of pore water from the surface to the deeper horizons is responsible for such similarities. Our findings suggest that molecular composition of DOM in peatland pore water is dynamic and is a function of ecosystem activity, water table and redox oscillation and porewater advection.« less
NASA Astrophysics Data System (ADS)
Elfiana; Fuadi, A.; Diana, S.
2018-04-01
Peat water is water surface that brownish red colour caused by the contained constituents. Solving the peat watercolor problem requires special attention considering the quantity of peat water and suitable to be used to meet the daily needs. This study aims to know the inorganic membrane capability of mix nature zeolite and white Portland cement to purifying the peat water based on turbidity parameter. The study was conducted by varying the composition of nature zeolite (Za) and white Portland cement (Sp) in the ratio of Za: Sp is (25%:75%; 50%:50%; 75%:25%) with zeolite condition activated using HCl 2M and nonactivated zeolite treatments. The result of the characteristic test on membrane morphology using SEM (Scanning Electron Microscope) showed that the pore surface size of the membrane is 2 μm that could classified in microfiltration membrane an organic type. The characteristic test showed also resulted in the density of 0.77 to 0.86 gr/cm3, porosity 26.22% to 35.93%, and permeability 2736.19 to 8428.15. While the water retention capacity is in range of 30.64% to 46.46%, The result of inorganic membrane application on peat water showed turbidity of peat water decreased 94.17%, from 10.3 NTU to 0.6 NTU.
NASA Astrophysics Data System (ADS)
Mezbahuddin, M.; Grant, R. F.; Flanagan, L. B.
2016-08-01
Improved predictive capacity of hydrology and surface energy exchange is critical for conserving boreal peatland carbon sequestration under drier and warmer climates. We represented basic processes for water and O2 transport and their effects on ecosystem water, energy, carbon, and nutrient cycling in a process-based model ecosys to simulate effects of seasonal and interannual variations in hydrology on peat water content, water table depth (WTD), and surface energy exchange of a Western Canadian fen peatland. Substituting a van Genuchten model (VGM) for a modified Campbell model (MCM) in ecosys enabled a significantly better simulation of peat moisture retention as indicated by higher modeled versus measured R2 and Willmot's index (d) with VGM (R2 0.7, d 0.8) than with MCM (R2 0.25, d 0.35) for daily peat water contents from a wetter year 2004 to a drier year 2009. With the improved peat moisture simulation, ecosys modeled hourly WTD and energy fluxes reasonably well (modeled versus measured R2: WTD 0.6, net radiation 0.99, sensible heat >0.8, and latent heat >0.85). Gradually declining ratios of precipitation to evapotranspiration and of lateral recharge to discharge enabled simulation of a gradual drawdown of growing season WTD and a consequent peat drying from 2004 to 2009. When WTD fell below a threshold of 0.35 m below the hollow surface, intense drying of mosses in ecosys caused a simulated reduction in evapotranspiration and an increase in Bowen ratio during late growing season that were consistent with measurements. Hence, using appropriate water desorption curve coupled with vertical-lateral hydraulic schemes is vital to accurately simulate peatland hydrology and energy balance.
Facies development in the Lower Freeport coal bed, west-central Pennsylvania, U.S.A.
Pierce, B.S.; Stanton, R.W.; Eble, C.F.
1991-01-01
The Lower Freeport coal bed in west-central Pennsylvania is interpreted to have formed within a lacustrine-mire environment. Conditions of peat formation, caused by the changing chemical and physical environments, produced five coal facies and two mineral-rich parting facies within the coal bed. The coal bed facies are compositionally unique, having developed under varying conditions, and are manifested by megascopic, petrographic, palynologic and quality characteristics. The initial environment of the Lower Freeport peat resulted in a coal facies that is relatively high in ash yield and contains large amounts of lycopod miospores and moderate abundances of cryptotelinite, crypto-gelocollinite, inertinite and tree fern miospores. This initial Lower Freeport peat is interpreted to have been a topogenous body that was low lying, relatively nutrient rich (mesotrophic to eutrophic), and susceptible to ground water and to sediment influx from surface water. The next facies to form was a ubiquitous, clay-rich durain parting which is attributed to a general rise in the water table accompanied by widespread flooding. Following formation of the parting, peat accumulation resumed within an environment that inhibited clastic input. Development of doming in this facies restricted deposition of the upper shale parting to the margins of the mire and allowed low-ash peat to form in the interior of the mire. Because this environment was conducive to preservation of cellular tissue, this coal facies also contains large amounts of crypto-telinite. This facies development is interpreted to have been a transitional phase from topogenous, planar peat formation to slightly domed, oligotrophic (nutrient-poor) peat formation. As domed peat formation continued, fluctuations in the water table enabled oxidation of the peat surface and produced high inertinite concentrations toward the top of the coal bed. Tree ferns became an increasingly important peat contributor in the e upper facies, based on the palynoflora. This floral change is interpreted to have resulted from the peat surface becoming less wet or better drained, a condition that inhibited proliferation of lycopod trees. Accumulation of the peat continued until rising water levels formed a freshwater lake within which clays and silts were deposited. The development of the Lower Freeport peat from a planar mire through transitional phases toward domed peat formation may be an example of the type of peat formation of other upper Middle and Upper Pennsylvanian coal beds. ?? 1991.
Tfaily, Malak M.; Wilson, Rachel M.; Cooper, William T.; ...
2018-01-29
Here, we characterized dissolved organic matter (DOM) composition throughout the peat column at the Marcell S1 forested bog in northern Minnesota and tested the hypothesis that redox oscillations associated with cycles of wetting and drying at the surface of the fluctuating water table correlate with increased carbon, sulfur, and nitrogen turn over. We found significant vertical stratification of DOM molecular composition and excitation-emission matrix parallel factor analysis components within the peat column. In particular, the intermediate depth zone (~ 50 cm) was identified as a zone where maximum decomposition and turnover is taking place. Surface DOM was dominated by inputsmore » from surface vegetation. The intermediate depth zone was an area of high organic matter reactivity and increased microbial activity with diagenetic formation of many unique compounds, among them polycyclic aromatic compounds that contain both nitrogen and sulfur heteroatoms. These compounds have been previously observed in coal-derived compounds and were assumed to be responsible for coal's biological activity. Biological processes triggered by redox oscillations taking place at the intermediate depth zone of the peat profile at the S1 bog are assumed to be responsible for the formation of these heteroatomic PACs in this system. Alternatively, these compounds could stem from black carbon and nitrogen derived from fires that have occurred at the site in the past. Surface and deep DOM exhibited more similar characteristics, compared to the intermediate depth zone, with the deep layer exhibiting greater input of microbially degraded organic matter than the surface suggesting that the entire peat profile consists of similar parent material at different degrees of decomposition and that lateral and vertical advection of pore water from the surface to the deeper horizons is responsible for such similarities. Lastly, our findings suggest that molecular composition of DOM in peatland pore water is dynamic and is a function of ecosystem activity, water table, redox oscillation, and pore water advection.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tfaily, Malak M.; Wilson, Rachel M.; Cooper, William T.
Here, we characterized dissolved organic matter (DOM) composition throughout the peat column at the Marcell S1 forested bog in northern Minnesota and tested the hypothesis that redox oscillations associated with cycles of wetting and drying at the surface of the fluctuating water table correlate with increased carbon, sulfur, and nitrogen turn over. We found significant vertical stratification of DOM molecular composition and excitation-emission matrix parallel factor analysis components within the peat column. In particular, the intermediate depth zone (~ 50 cm) was identified as a zone where maximum decomposition and turnover is taking place. Surface DOM was dominated by inputsmore » from surface vegetation. The intermediate depth zone was an area of high organic matter reactivity and increased microbial activity with diagenetic formation of many unique compounds, among them polycyclic aromatic compounds that contain both nitrogen and sulfur heteroatoms. These compounds have been previously observed in coal-derived compounds and were assumed to be responsible for coal's biological activity. Biological processes triggered by redox oscillations taking place at the intermediate depth zone of the peat profile at the S1 bog are assumed to be responsible for the formation of these heteroatomic PACs in this system. Alternatively, these compounds could stem from black carbon and nitrogen derived from fires that have occurred at the site in the past. Surface and deep DOM exhibited more similar characteristics, compared to the intermediate depth zone, with the deep layer exhibiting greater input of microbially degraded organic matter than the surface suggesting that the entire peat profile consists of similar parent material at different degrees of decomposition and that lateral and vertical advection of pore water from the surface to the deeper horizons is responsible for such similarities. Lastly, our findings suggest that molecular composition of DOM in peatland pore water is dynamic and is a function of ecosystem activity, water table, redox oscillation, and pore water advection.« less
NASA Astrophysics Data System (ADS)
Krest, J. M.; Harvey, J. W.
2002-05-01
Peat sediments are present as a nearly continuous surface layer across large areas of the Everglades. These sediments have relatively low hydraulic conductivity, impeding water exchange between surface water and the underlying surficial aquifer. Although vertical water transport does occur across the peat layer, rates are slow enough that they are difficult to quantify. Even modest rates of vertical transport, however, become significant to water budgets and nutrient cycles when they occur over a large area. In the Everglades, common methods for measuring exchange across the peat layer are prone to complications: small hydraulic gradients are difficult to measure; seepage meters tend to be imprecise at slow rates; radon profiles or emanation rates are complicated by methane bubble ebullition; chloride profiles often exhibit a strong gradient only at the surface of the peat. We are employing a method that takes advantage of the different production rates of short-lived radium isotopes (Ra-223 and Ra-224) in the peat sediments and in the underlying sand or carbonate aquifer. Pore water radium concentrations are balanced by radioactive decay and production in the surrounding sediments. As the pore water is carried across the sediment interface a temporary excess or deficit of dissolved radium exists until decay is again balanced by the new production rate. We have derived steady-state, one-dimensional models to determine flow rates on the basis of this disequilibrium. This method has the advantage of being most sensitive at the base of the peat, away from transient perturbations occurring at the surface. In addition, Ra-223 and Ra-224 are collected simultaneously, providing two independent measurements. At present we have tested the method in Water Conservation Area-1 and WCA-2A, quantifying recharge and discharge on opposite sides of Levee 39, and also in more central sites in WCA-2A. Additional work is underway in Taylor Slough and Shark Slough.
NASA Astrophysics Data System (ADS)
Stolarczyk, Mateusz
2016-04-01
Wetland ecosystems, including raised peat bogs are characterized by a specific water conditions and unique vegetation, which makes peatland highly important habitats due to protection of biodiversity. Transformation of peat bog areas is particularly related to changes in the environment e.g. according to reclamation works. Drainage of peatlands is directly associated to the decrease of groundwater levels and lead to a number of changes in the chemical and physical properties of peat material, included contents of exchangeable cations in the surface layers of peat soils in the decession phase of peat development and release above compounds from the soil to ground or surface waters. The aim of the research was to determine the impact of extended drainage works on chemical composition of sorption complex of raised peat bog organic soils and identification the potential environmental effects of alkaline cations leaching to the surface waters. Research was carried out on the peat bogs located in the Upper San valley in Polish Bieszczady Mts. (Eastern Carpathians). Soil samples used in this study were collected from 3 soil profiles in 10 or 20 cm intervals to the approximately 130 cm depth. Laboratory analyses included determination of basic properties of organic material such as the degree of peat decomposition, ash content, soil pH and carbon, hydrogen, nitrogen concentrations. Additionally the amount of alkaline cations, exchangeable and extractable acidity was determined. Furthermore, the degree of saturation of the sorption complex with alkaline cations (V) and cation exchange capacity (CEC) are calculated. In order to evaluate the impact of the examined peat bog to the environment, also water samples were collected and ions composition was measured. The obtained results show that studied organic soils are oligotrophic and strongly acidic. In the case of organic material related to decession phase of peat development, as a result of the lengthy drainage works, increased pH values, changes in the morphology of the peat, high nitrogen contents and lower values of C/N ratios are noticed. The increased contents of calcium, occurred in soil layers comprised of moorsh forming process are probably the effect of peat mineralization process or changes in the chemistry and fluctuations of groundwater levels. As a result of above factors, increased calcium and magnesium concentrations in surface waters in the immediate vicinity of investigated bogs are observed.
NASA Astrophysics Data System (ADS)
Tfaily, Malak M.; Wilson, Rachel M.; Cooper, William T.; Kostka, Joel E.; Hanson, Paul; Chanton, Jeffrey P.
2018-02-01
We characterized dissolved organic matter (DOM) composition throughout the peat column at the Marcell S1 forested bog in northern Minnesota and tested the hypothesis that redox oscillations associated with cycles of wetting and drying at the surface of the fluctuating water table correlate with increased carbon, sulfur, and nitrogen turn over. We found significant vertical stratification of DOM molecular composition and excitation-emission matrix parallel factor analysis components within the peat column. In particular, the intermediate depth zone ( 50 cm) was identified as a zone where maximum decomposition and turnover is taking place. Surface DOM was dominated by inputs from surface vegetation. The intermediate depth zone was an area of high organic matter reactivity and increased microbial activity with diagenetic formation of many unique compounds, among them polycyclic aromatic compounds that contain both nitrogen and sulfur heteroatoms. These compounds have been previously observed in coal-derived compounds and were assumed to be responsible for coal's biological activity. Biological processes triggered by redox oscillations taking place at the intermediate depth zone of the peat profile at the S1 bog are assumed to be responsible for the formation of these heteroatomic PACs in this system. Alternatively, these compounds could stem from black carbon and nitrogen derived from fires that have occurred at the site in the past. Surface and deep DOM exhibited more similar characteristics, compared to the intermediate depth zone, with the deep layer exhibiting greater input of microbially degraded organic matter than the surface suggesting that the entire peat profile consists of similar parent material at different degrees of decomposition and that lateral and vertical advection of pore water from the surface to the deeper horizons is responsible for such similarities. Our findings suggest that molecular composition of DOM in peatland pore water is dynamic and is a function of ecosystem activity, water table, redox oscillation, and pore water advection.
NASA Astrophysics Data System (ADS)
Waddington, James; Kettridge, Nick; Sherwood, James; Granath, Gustaf
2015-04-01
Northern peatlands represent a globally significant carbon reservoir, composed largely of legacy carbon which is no longer part of the active carbon cycle. However, it is unclear whether this legacy carbon is vulnerable as a result of enhanced peat smouldering and combustion under the moderate drying conditions predicted for northern peatlands as a result of climate change and/or disturbance from forestry, mining, and associated transport development. A significant loss in legacy carbon as a result of wildfire has already been observed in smaller tropical peatlands where deep peat soils have been destabilized due to severe drainage and a shift in vegetation. Capitalizing on a unique long-term experiment, we quantify the post-wildfire recovery of a northern peatland several decades post drainage. We show that the moderate drop in water table position predicted for most northern regions triggers a shift in vegetation composition, previously observed within only severely disturbed tropical peatlands, when accompanied by wildfire. The combined impact of moderate drainage followed by wildfire resulted in a shift of the peat surface down the peat profile, exposing denser peat at the surface. In undisturbed northern peatlands where depth of burn is typically low, low-density near-surface peats help regulate water-table position and near-surface moisture availability post-fire, both of which are favourable to Sphagnum recolonization. As a result of drainage and fire at the study site, the self-regulating properties of the low-density Sphagnum surface were lost. We demonstrate that changes in peat hydrophysical properties increased hydrological limitations to Sphagnum recovery leading to the conversion to a non-carbon accumulating shrub-grass ecosystem. This new ecosystem is likely to experience a low intensity, high frequency wildfire regime, which will further deplete the legacy carbon stored in the peat.
Tropical organic soils ecosystems in relation to regional water resources in southeast Asia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armentano, T. V.
1982-01-01
Tropical organic soils have functioned as natural sinks for carbon, nitrogen, slfur and other nutrients for the past 4000 years or more. Topographic evolution in peat swamp forests towards greater oligotrophy has concentrated storage of the limited nutrient stock in surface soils and biota. Tropical peat systems thus share common ecosystem characteristics with northern peat bogs and certain tropical oligotrophic forests. Organic matter accumulation and high cation-exchange-capacity limit nutrient exports from undisturbed organic soils, although nutrient retention declines with increasing eutrophy and wetland productivity. Peat swamps are subject to irreversible degradation if severely altered because disturbance of vegetation, surface peatsmore » and detritus can disrupt nuttrient cycles and reduce forest recovery capacity. Drainage also greatly increases exports of nitrogen, phosphorus and other nutrients and leads to downstream eutrophication and water quality degradation. Regional planning for clean water supplies must recognize the benefits provided by natural peatlands in balancing water supplies and regulating water chemistry.« less
Reeve, A.S.; Glaser, P.H.; Rosenberry, Donald O.
2013-01-01
Northern peatlands appear to hold large volumes of free-phase gas (e.g., CH4 and CO2), which has been detected by surface deformations, pore pressure profiles, and electromagnetic surveys. Determining the gas content and its impact in peat is challenging because gas storage depends on both the elastic properties of the peat matrix and the buoyant forces exerted by pore fluids. We therefore used a viscoelastic deformation model to estimate these variables by adjusting model runs to reproduce observed changes in peat surface elevation within a 1300 km2 peatland. A local GPS network documented significant changes in surface elevations throughout the year with the greatest vertical displacements associated with rapid changes in peat water content and unloadings due to melting of the winter snowpack. These changes were coherent with changes in water table elevation and also abnormal pore pressure changes measured by nests of instrumented piezometers. The deformation model reproduced these changes when the gas content was adjusted to 10% of peat volume, and Young's modulus was varied between 5 and 100 kPa as the peat profile shifted from tension to compression. In contrast, the model predicted little peat deformation when the gas content was 3% or lower. These model simulations are consistent with previous estimates of gas volume in northern peatlands and suggest an upper limit of gas storage controlled by the elastic moduli of the peat fabric.
NASA Astrophysics Data System (ADS)
Vermaat, Jan E.; Harmsen, Joop; Hellmann, Fritz A.; van der Geest, Harm G.; de Klein, Jeroen J. M.; Kosten, Sarian; Smolders, Alfons J. P.; Verhoeven, Jos T. A.; Mes, Ron G.; Ouboter, Maarten
2016-02-01
Annual sulfate mass balances have been constructed for four low-lying peat polders in the Netherlands, to resolve the origin of high sulfate concentrations in surface water, which is considered a water quality problem, as indicated amongst others by the absence of sensitive water plant species. Potential limitation of these plants to areas with low sulfate was analyzed with a spatial match-up of two large databases. The peat polders are generally used for dairy farming or nature conservation, and have considerable areas of shallow surface water (mean 16%, range 6-43%). As a consequence of continuous drainage, the peat in these polders mineralizes causing subsidence rates generally ranging between 2 and 10 mm y-1. Together with pyrite oxidation, this peat mineralization the most important internal source of sulfate, providing an estimated 96 kg SO4 ha-1 mm-1 subsidence y-1. External sources are precipitation and water supplied during summer to compensate for water shortage, but these were found to be minor compared to internal release. The most important output flux is discharge of excess surface water during autumn and winter. If only external fluxes in and out of a polder are evaluated, inputs average 37 ± 9 and exports 169 ± 17 kg S ha-1 y-1. During summer, when evapotranspiration exceeds rainfall, sulfate accumulates in the unsaturated zone, to be flushed away and drained off during the wet autumn and winter. In some polders, upward seepage from early Holocene, brackish sediments can be a source of sulfate. Peat polders export sulfate to the regional water system and the sea during winter drainage. The available sulfate probably only plays a minor role in the oxidation of peat: we estimate that this is less than 10% whereas aerobic mineralization is the most important. Most surface waters in these polders have high sulfate concentrations, which generally decline during the growing season when aquatic sediments are a sink. In the sediment, this sulfur is reduced and binds iron more strongly than phosphorus, which can be released to the overlying water and potentially fuels eutrophication. About 76% of the sampled vegetation-sites exceeded a threshold of 50 mg l-1 SO4, above which sensitive species, such as Stratiotes aloides, and several species of Potamogeton were significantly less abundant. Thus high sulfate concentrations, mainly due to land drainage and consequent mineralization, appear to affect aquatic plant community composition.
Kluber, Lauren A. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Phillips, Jana R. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Hanson, Paul J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Schadt, Christopher W. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.
2016-01-01
This data set provides the peat water content and peat temperature at time of sampling for peat cores collected before and during the SPRUCE Deep Peat Heating (DPH) study. Cores were collected during three sampling events: 03 June 2014, 09 September 2014, and 16 June 2015. Two cores were extracted from hollow locations in each of the 10 experimental plots (4, 6, 8, 10, 11, 13, 16, 17, 19, and 20). Cores were partitioned into samples at 11 depth increments: 0-10, 10-20, 20-30, 30-40, 40-50, 50-75, 75-100, 100-125, 125-150, 150-175, and 175-200 cm below surface of the hollow.
Comparative study of the thermal properties of mud and peat solutions applied in clinical practice.
Beer, A M; Grozeva, A; Sagorchev, P; Lukanov, J
2003-11-01
Different peloids as e.g. mud and peat have been traditionally used for therapeutic purposes successfully, especially of there thermal actions. It was the aim of the experimental study to compare the thermal properties of two peloids, mud and peat, with a view to assessing their thermal effects when they are applied in clinical practice. The studies were carried out using peat of the marsh type of peats (Hochmoor), and curative Pomorie (Bulgaria) mud. As important parameters were determined the specific thermal capacity at constant pressure (Cp), the density of solutions (rho), the cooling rate (m), the coefficient of temperature transfer (a) of solutions and the coefficient of thermal conductivity (lambda) of solutions of peat and curative mud, compared to water bath. The comparative studies of the thermal properties of water and water solutions of peat and curative mud show that the thermal effect of the water bath is substantially smaller than that of the peat and mud applications. This difference is due to a greater extent to the high values of the dynamic viscosity, not allowing cooling by convection and protecting the surface of the skin upon applications of peloid solutions with a higher temperature.
Water storage characteristics of several peats in situ
D.H. Boelter
1964-01-01
Water storage characteristics of the various horizons in a northern Minnesota bog were found to vary considerably with peat type. Surface horizons of sphagnum moss contain 0.020 g. per cc. of dry material and 95 to nearly 100% water by volume at saturation. Its total porosity consisted primarily of large pores which released 0.80 cc. of water per cc. between saturation...
Drexler, J.Z.; De Fontaine, C. S.; Deverel, S.J.
2009-01-01
Throughout the world, many extensive wetlands, such as the Sacramento-San Joaquin Delta of California (hereafter, the Delta), have been drained for agriculture, resulting in land-surface subsidence of peat soils. The purpose of this project was to study the in situ effects of wetland drainage on the remaining peat in the Delta. Peat cores were retrieved from four drained, farmed islands and four relatively undisturbed, marsh islands. Core samples were analyzed for bulk density and percent organic carbon. Macrofossils in the peat were dated using radiocarbon age determination. The peat from the farmed islands is highly distinct from marsh island peat. Bulk density of peat from the farmed islands is generally greater than that of the marsh islands at a given organic carbon content. On the farmed islands, increased bulk density, which is an indication of compaction, decreases with depth within the unoxidized peat zone, whereas, on the marsh islands, bulk density is generally constant with depth except near the surface. Approximately 5580 of the original peat layer on the farmed islands has been lost due to land-surface subsidence. For the center regions of the farmed islands, this translates into an estimated loss of between 29005700 metric tons of organic carbon/hectare. Most of the intact peat just below the currently farmed soil layer is over 4000 years old. Peat loss will continue as long as the artificial water table on the farmed islands is held below the land surface. ?? 2009 The Society of Wetland Scientists.
Wildfire effects on vadose zone hydrology in forested boreal peatland microforms
NASA Astrophysics Data System (ADS)
Thompson, Dan K.; Waddington, James M.
2013-04-01
SummaryPeatland vulnerability to wildfire disturbance has been shown to vary as a function of hummock and hollow microforms and vadose zone hydrology, with low-lying hollow microforms most susceptible to deep combustion of peat. To better understand how this microform induced pattern of burning alters vadose water storage, pore-water pressure, and water table relationships, we examined a paired burned and unburned peatland in the boreal plain region of north central Alberta. Water table response to rain events increased significantly after wildfire, resulting in a more variable unsaturated zone thickness that was more responsive to smaller rain events. Water storage losses in the vadose zone occurred primarily at depths greater than 15 cm. Large peat surface water loss occurred in hummock microforms in the early spring due to the presence of unsaturated frozen peat at depth, likely a result of a vapour gradient from the unfrozen peat into the frozen peat underneath. During this period, the loss of water storage in the vadose zone satisfied up to 25% of daily evaporative demand, compared to only 3-5% during ice-free periods. A similar but less severe drying was observed late in summer, with burned hummocks the most vulnerable with high pore-water pressures. The enhanced surface drying observed is a precursor to high pore-water pressure conditions that inhibit Sphagnum regeneration. Our observations point to a paradox where the hummocks, being most resistant to combustion, are themselves most prone to high pore-water pressures following wildfire. The harsher hummock environment may contribute to the observed delay in post-fire Sphagnum regeneration in hummocks compared to hollows.
Drexler, Judith Z.; Christian S. de Fontaine,; Steven J. Deverel,
2009-01-01
Throughout the world, many extensive wetlands, such as the Sacramento-San Joaquin Delta of California (hereafter, the Delta), have been drained for agriculture, resulting in land-surface subsidence of peat soils. The purpose of this project was to study the in situ effects of wetland drainage on the remaining peat in the Delta. Peat cores were retrieved from four drained, farmed islands and four relatively undisturbed, marsh islands. Core samples were analyzed for bulk density and percent organic carbon. Macrofossils in the peat were dated using radiocarbon age determination. The peat from the farmed islands is highly distinct from marsh island peat. Bulk density of peat from the farmed islands is generally greater than that of the marsh islands at a given organic carbon content. On the farmed islands, increased bulk density, which is an indication of compaction, decreases with depth within the unoxidized peat zone, whereas, on the marsh islands, bulk density is generally constant with depth except near the surface. Approximately 55–80% of the original peat layer on the farmed islands has been lost due to landsurface subsidence. For the center regions of the farmed islands, this translates into an estimated loss of between 2900-5700 metric tons of organic carbon/hectare. Most of the intact peat just below the currently farmed soil layer is over 4000 years old. Peat loss will continue as long as the artificial water table on the farmed islands is held below the land surface.
NASA Astrophysics Data System (ADS)
Cummings, M. L.; Large, A.; Mowbray, A.; Weatherford, J.; Webb, B.
2013-12-01
Fens and seasonal wetlands in the headwaters of the Klamath and Deschutes river basins in south-central Oregon are present in an area blanketed by 2 to 3 m of pumice during the Holocene eruption of Mount Mazama. The lower pumice unit, moderately sorted coarse pumice lapilli to blocks (0.3 to 0.7 cm), phenocrysts, and lithics is 1.5 to 2 m thick; the upper pumice unit, poorly sorted lapilli to blocks (0.2 to 6 cm), minor phenocrysts, and lithics is 1 m thick. Pumice is a perched, unconfined aquifer over low permeability bedrock or pre-eruption fine-grained sediment. Early landscape response included partial erosion of pumice from pre-eruption valleys followed by partial filling by alluvium: phenocryst- and lithic-rich sand grading upward to glassy silt with rounded pumice pebbles. Groundwater-fed wetlands, fens, associated with the unconfined pumice aquifer occur as areas of diffuse groundwater discharge through gently sloping, convex surfaces underlain by up to 1.4 m of peat. Locally, focused discharge through the confining peat layer feeds low discharge streams. Carnivorous plants (sundews and pitcher plants) may be present. The sharp contact between peat and underlying pumice is an erosion surface that cuts progressively deeper into the upper and lower pumice units downslope. At the base of the slope peat with fen discharge feeding surface flow, alluvium with no surface flow, or a subtle berm separating the slope underlain by peat from the valley bottom underlain by alluvium may be present. Distinct vegetation changes take place at this transition. The erosion surface that underlies the peat layer in the fen is at the surface on the opposing valley wall and progressively rises up through the lower and upper pumice units: iron staining and cementation of pumice is locally prominent. Up to 1.5 m difference in water table occurs between the fen and opposing valley wall. Water table in piezometers screened in peat is at the surface. Locally, water table screened in pumice below the peat confining layer is up to 24 cm above the surface. Electrical conductivity in groundwater from the unconfined pumice aquifer ranged between 20 and 45 μS/cm. Rarely, electrical conductivity greater than 250 μS/cm is measured. Hydrochemistry indicates these waters are distinctly different (Ca-bicarbonate, [Fe] up to 22 mg/l) from water commonly encountered in the unconfined pumice aquifer (Na-bicarbonate, [Fe] less than 0.07 mg/l). Seasonally elevated water tables are present where pre-eruption topography allows snowmelt to accumulate in the unconfined pumice aquifer in valley bottoms and upland surfaces. Differential hardness of volcanic bedrock units control distribution in valley bottoms; emplacement processes and weathering of flow tops control distribution in upland settings. In both settings the lower pumice unit is saturated, but the upper pumice unit may be absent or thin. Alluvium commonly overlies pumice in valley bottoms. The water table may fluctuate up to 1.5 m from the spring snowmelt to late summer. Electrical conductivity in the pumice aquifer ranges between 19 and 250 μS/cm and commonly increases at single sites as the dry season progresses.
NASA Astrophysics Data System (ADS)
Meingast, Karl M.
Due to warmer and drier conditions, wildland fire has been increasing in extent into peatland ecosystems during recent decades. As such, there is an increasing need for broadly applicable tools to detect surface peat moisture, in order to ascertain the susceptibility of peat burning, and the vulnerability of deep peat consumption in the event of a wildfire. In this thesis, a field portable spectroradiometer was used to measure surface reflectance of two Sphagnum moss dominated peatlands. Relationships were developed correlating spectral indices to surface moisture as well as water table position. Spectral convolutions were also applied to the high resolution spectra to represent spectral sensitivity of earth observing sensors. Band ratios previously used to monitor surface moisture with these sensors were assessed. Strong relationships to surface moisture and water table position are evident for both the narrowband indices as well as broadened indices. This study also found a dependence of certain spectral relationships on changes in vegetation cover by leveraging an experimental vegetation manipulation. Results indicate broadened indices employing the 1450-1650 nm region may be less stable under changing vegetation cover than those located in the 1200 nm region.
Removal of metal(oid)s from contaminated water using iron-coated peat sorbent.
Kasiuliene, Alfreda; Carabante, Ivan; Bhattacharya, Prosun; Caporale, Antonio Giandonato; Adamo, Paola; Kumpiene, Jurate
2018-05-01
This study aimed at combining iron and peat to produce a sorbent suitable for a simultaneous removal of cations and anions from a solution. Peat powder, an industrial residue, was coated with iron by immersing peat into iron salt solutions. The adsorption efficiency of the newly produced sorbent towards As, Cr, Cu and Zn was tested by means of batch adsorption experiments at a constant pH value of 5. Coating of Fe on peat significantly increased the adsorption of As (from <5% to 80%) and Cr (from <3% to 25%) in comparison to uncoated peat. Removal of cations on coated peat slightly decreased (by 10-15%), yet remained within acceptable range. Electron Microscopy combined with X-Ray Energy Dispersive Spectroscopy revealed that iron coating on the peat was rather homogenous and As and Cr were abundantly adsorbed on the surface. By contrast, Cu and Zn displayed a sparing distribution on the surface of the iron coated peat. These results indicate that iron-peat simultaneously target sufficient amounts of both cations and anions and can be used for a one-step treatment of contaminated groundwater. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Johnson, M. S.; Hilbert, I.; Jollymore, A. J.
2012-12-01
Biochar (charcoal derived from waste biomass via pyrolysis) has the potential to be used as part of regional scale carbon sequestration strategies. By providing a stable form of carbon that is resistant to decay in soils, biochar can be utilized in a wide range of applications to improve the sustainability of land use management practices. Due to its high water holding capacity, surface area and charge density, it could provide a substitute for peat that is widely used in horticultural activities. Globally, peat production in 2010 amounted to 23.4 Mt, with more than a third of this used for horticulture. In Canada, essentially all peat produced is used for horticulture, with each ton of peat extracted also contributing about 0.7 t CO2e in combined greenhouse gas emissions related to production, transportation and use of peat. We evaluated biochar produced on farm from red alder as a peat substitute in terms of soil water characteristics and carbon leaching in greenhouse growing media (e.g. potting mix). Biochar mixing ratios of 10% (v/v) and greater provided water holding capacity equivalent to peat-based potting mixes. We also present results from a laboratory wetting experiment in which we characterized leachate for dissolved organic carbon (DOC) concentration and DOC characteristics using spectral methods (uV-Vis and fluorescence spectroscopy).
Hydrologic processes governing near surface saturation of alpine wetlands in the Canadian Rockies
NASA Astrophysics Data System (ADS)
Westbrook, C.; Mercer, J.
2016-12-01
Alpine wetlands are vital for habitat, biodiversity, carbon cycling and water storage, but little is known about their hydrologic condition. Climate trends toward smaller mountain snowpacks that melt earlier are thought to pose a threat to the continued provision of alpine wetland ecological functions, and their existence, as it is believed they derive their water mainly from snowmelt. Our objective was to determine the hydrologic processes governing near surface saturation in alpine wetlands. We monitored the water table dynamics of three alpine wetlands in contrasting hydrogeomorphic landscape positions for two summers in Banff National Park, Canada. We concurrently monitored water balance components, and analyzed soil properties and source water geochemistry. Despite very different snow conditions between the two study years, water tables remained near the surface and relatively stable in both years, indicating wetlands are more hydrologically buffered from snowpack variations than expected. We did not find convincing evidence of hydrogeomorphic position influencing wetland water table dynamics. Instead, peat thickness seemed to be critical in regulating water table as the wetland with the thickest peat soil (>1 m) maintained water tables closest to the ground surface for the longest period of time. Thicker peat deposits may develop under convergent hydrologic flow path conditions. Our results indicate that alpine wetlands are more resilient to shifting environmental conditions than previously reported.
Structure of peat soils and implications for biogeochemical processes and hydrological flow
NASA Astrophysics Data System (ADS)
Rezanezhad, F.; McCarter, C. P. R.; Gharedaghloo, B.; Kleimeier, C.; Milojevic, T.; Liu, H.; Weber, T. K. D.; Price, J. S.; Quinton, W. L.; Lenartz, B.; Van Cappellen, P.
2017-12-01
Permafrost peatlands contain globally important amounts of soil organic carbon and play major roles in global water, nutrient and biogeochemical cycles. The structure of peatland soils (i.e., peat) are highly complex with unique physical and hydraulic properties; where significant, and only partially reversible, shrinkage occurs during dewatering (including water table fluctuations), compression and/or decomposition. These distinct physical and hydraulic properties controls water flow, which in turn affect reactive and non-reactive solute transport (such as, sorption or degradation) and biogeochemical functions. Additionally, peat further attenuates solute migration through molecular diffusion into the inactive pores of Sphagnum dominated peat. These slow, diffusion-limited solute exchanges between the pore regions may give rise to pore-scale chemical gradients and heterogeneous distributions of microbial habitats and activity in peat soils. Permafrost peat plateaus have the same essential subsurface characteristics as other widely organic soil-covered peatlands, where the hydraulic conductivity is related to the degree of decomposition and soil compression. Increasing levels of decomposition correspond with a reduction of effective pore diameter and consequently restrict water and solute flow (by several orders of magnitude in hydraulic conductivity between the ground surface and a depth of 50 cm). In this presentation, we present the current knowledge of key physical and hydraulic properties related to the structure of globally available peat soils and discuss their implications for water storage, flow and the migration of solutes.
Environmental factors controlling fluxes of dimethyl sulfide in a New Hampshire fen
NASA Technical Reports Server (NTRS)
Demello, William Zamboni; Hines, Mark E.
1992-01-01
The major environmental factors controlling fluxes of dimethyl sulfide (DMS) in a Sphagnum-dominated peatland were investigated in a poor fen in New Hampshire. DMS emissions from the surface of the peatland varied greatly over 24 hours and seasonally. Maximum DMS emissions occurred in summer with minima in the late fall. Temperature was the major environmental factor controlling these variabilities. There was also some evidence that the changes in water table height might have contributed to the seasonable variability in DMS emission. The influence of the water table was greater during periods of elevated temperature. DMS and MSH were the most abundant dissolved volatile sulfur compound (VSC) in the surface of the water table. Concentrations of dissolved VSC's varied with time and space throughout the fen. Dissolved MDS, MSH, and OCS in the surface of the water table were supersaturated with respect to their concentrations in the atmosphere suggesting that the peat surface was a source of VSC's in the peatland. VCS in peatlands seemed to be produced primarily by microbial processes in the anoxic surface layers of the peat rich in organic matter and inorganic sulfide. Sphagnum mosses were not a direct source of VSC's. However, they increased transport of DMS from the peat surface to the atmosphere.
Impact of drainage on wettability of fen peat-moorsh soils
NASA Astrophysics Data System (ADS)
Szajdak, L.; Szatyłowicz, J.; Brandyk, T.
2009-04-01
High water retention in peat is attributed to structural voids (macro-pores) due to the partial degradation of the structure of peat-forming plants, and molecular absorption sites (micro-pores) associated with the formation of humic substances. Water retention by the heterogeneously-structured system in peat organic matter depends on the chemical structure of solid surfaces. These naturally wet solids, if dried sufficiently, lose the ability to rewet quickly when immersed in water. The ability of peat surfaces to attract and hold water is attributed to hydrophilic functional groups which characterize the organic substances of peat. The investigations of chemical and physical properties were performed for three different peat-moorsh soils located in the Biebrza River Valley in Poland. All examined soils were used as meadow. Soil samples were taken from two depths: 5-10 cm (moorsh) and 50-80 cm (peat). Total organic carbon (TOC), dissolved organic carbon (DOC) and humic acids (HA) extracted from these samples were analysed. Also basic physical properties such as ash content and bulk density were measured. Wetting behavior of soils was quantified using water drop penetration time test (WDPT) and measured values of the soil-water contact angle using sessile drop method. The measurements were conducted on air-dry soil samples which volumetric moisture content was not exceeding 7%. The significant differences in the concentrations of TOC, DOC and properties of HA between two investigated depth of among peat and moorsh samples were observed. The measured concentrations of total organic carbon in the considered soils ranged from 37.2 to 45.6%. Generally, the decrease of total organic carbon concentration with depth of profiles was observed. The contents of dissolved organic carbon in the soils ranged from 5.3 to 19.4%. The quantities of dissolved organic carbon decreased simultaneously with E4/E6 values and with the depth of the soil profiles. For the investigated peat's, an increase of the depth is accompanied by the decrease in the degree of humification or an increase in chemical maturity of HA. The measured values of the contact angle for investigated soils were in the range from 81.4˚ to 114.3˚ what indicates their high water repellency. The WDPT was positively correlated with total organic carbon, organic matter and humic acids content while ash content, soil bulk density, pH and absorbance were correlated negatively. The highest value of correlation coefficient (statistically significant) was obtained for relation between WDPT and ash content. The soil water contact angle was less correlated with peat-moorsh soil properties in comparison with WDPT with one exception pH. The pH against the contact angle indicates tendency of increasing the contact angle with decreasing pH.
Monitoring the effects of manure policy in the Peat region, Netherlands
NASA Astrophysics Data System (ADS)
Hooijboer, Arno; Buis, Eke; Fraters, Dico; Boumans, Leo; Lukacs, Saskia; Vrijhoef, Astrid
2014-05-01
Total N concentrations in farm ditches in the Peat region of the Netherlands are on the average twice as high as the Good Ecological Potential value of the Water Framework Directive. Since ditches are connected to regional surface water, they may contribute to eutrophication. The minerals policy aims to improve the water quality. In the Netherlands, the effectiveness of the minerals policy on water quality is evaluated with data from the National Minerals Policy Monitoring Programme (LMM). This regards farm data on the quality of water leaching from the root zone and on farm practices. The soil balance nitrogen surpluses decreased between 1996 and 2003 on dairy farms in the Peat region. However, no effect on root zone leaching was found. This study aims to show how monitoring in the Peat region can be improved in order to link water quality to agricultural practice. Contrary to the other Dutch regions, nitrate concentrations in root zone leaching on farms in the Peat region are often very low (90% of the farms below 25 mg/l) due to the reduction of nitrate (denitrification). The main nitrogen (N) components in the peat region waters are ammonium and organic N. Total N is therefore a better measure for N concentrations in the Peat region. The ammonium concentration in groundwater in Dutch peat soils increases with depth. It is assumed that the deeper ammonia-rich water is older and relates to anaerobic peat decomposition instead of agricultural practice. Recent infiltrated low-ammonium water, lies like a thin freshwater lens on the older water. In the Peat region, root zone leaching is monitored by taking samples from the upper meter of groundwater. Unintended, often both lens water and older water are sampled and this distorts the relation between agricultural practice and water quality. In the Peat region, the N surplus is transported with the precipitation surplus to ditches. The relation between the N surplus and the total N in ditch water is therefore better than between N surplus and total N in root zone leaching. The precipitation surplus flows to ditches directly or via open field drains. However, the ditches may be fed partly with older water (seepage of groundwater). In the open field drain only recent water will occur. We expect that monitoring the water quality of the open field drains may even better reflect changes in agricultural practices. These data may also improve the understanding of contribution of agricultural nitrogen and natural nitrogen, necessary to develop measures to decrease the total-N concentration in ditch water.
Do storage dynamics in hydropedological units control hydrological connectivity? (Invited)
NASA Astrophysics Data System (ADS)
Tetzlaff, D.; Birkel, C.; Dick, J.; Geris, J.; Soulsby, C.
2013-12-01
In many northern landscapes, peat-dominated riparian wetlands often characterise the zone of connection between terrestrial drainage and the river network. In order to understand the relationship between connectivity and stream flow generation in a montane headwater catchment, we examined the storage dynamics and isotopic composition of soil water in major hydropedological units. These formed a classic catena sequence for northern catchments from free-draining podzols on steep upper hillslopes through to peaty gleysols in lower receiving slopes to deeper peats (Histosols) in the riparian zone. The peaty gleys and peats remained saturated throughout the year, whilst the podzols showed distinct wetting and drying cycles. In this climatic region, most precipitation events are less than 10mm in magnitude, storm runoff is mainly generated from the Histosols and Gleysols, with runoff coefficients (RCs) typically <10%. In larger events the podzolic soils become strongly connected to the saturated areas and RCs can exceed 40%. Isotopic variations in precipitation are significantly damped in the organic-rich surface horizons of the soils due to mixing with larger volumes of stored water. This damping is accentuated in the deeper soil profile and groundwater. Consequently, the isotopic composition of stream water is also damped, but the strongly reflects that of the near surface waters in the riparian peats. Old 'pre-event' water generally accounts for >80% of flow, even in large events, mainly reflecting the displacement of water stored in the riparian peats and peaty gleys. These riparian areas appear to be the dominant zone where different catchment source waters mix; acting as an 'isostat' that regulates the isotopic composition of stream waters and integrates the Transit Time Distribution (TTD) for the catchment.
Degradation potentials of dissolved organic carbon (DOC) from thawed permafrost peat
Panneer Selvam, Balathandayuthabani; Lapierre, Jean-François; Guillemette, Francois; Voigt, Carolina; Lamprecht, Richard E.; Biasi, Christina; Christensen, Torben R.; Martikainen, Pertti J.; Berggren, Martin
2017-01-01
Global warming can substantially affect the export of dissolved organic carbon (DOC) from peat-permafrost to aquatic systems. The direct degradability of such peat-derived DOC, however, is poorly constrained because previous permafrost thaw studies have mainly addressed mineral soil catchments or DOC pools that have already been processed in surface waters. We incubated peat cores from a palsa mire to compare an active layer and an experimentally thawed permafrost layer with regard to DOC composition and degradation potentials of pore water DOC. Our results show that DOC from the thawed permafrost layer had high initial degradation potentials compared with DOC from the active layer. In fact, the DOC that showed the highest bio- and photo-degradability, respectively, originated in the thawed permafrost layer. Our study sheds new light on the DOC composition of peat-permafrost directly upon thaw and suggests that past estimates of carbon-dioxide emissions from thawed peat permafrost may be biased as they have overlooked the initial mineralization potential of the exported DOC. PMID:28378792
NASA Astrophysics Data System (ADS)
Faubert, Patrick; Tiiva, Päivi; Rinnan, Åsmund; Räty, Sanna; Holopainen, Jarmo K.; Holopainen, Toini; Rinnan, Riikka
2010-11-01
Biogenic volatile organic compound (BVOC) emissions are important in the global atmospheric chemistry and their feedbacks to global warming are uncertain. Global warming is expected to trigger vegetation changes and water table drawdown in boreal peatlands, such changes have only been investigated on isoprene emission but never on other BVOCs. We aimed at distinguishing the BVOCs released from vascular plants, mosses and peat in hummocks (dry microsites) and hollows (wet microsites) of boreal peatland microcosms maintained in growth chambers. We also assessed the effect of water table drawdown (-20 cm) on the BVOC emissions in hollow microcosms. BVOC emissions were measured from peat samples underneath the moss surface after the 7-week-long experiment to investigate whether the potential effects of vegetation and water table drawdown were shown. BVOCs were sampled using a conventional chamber method, collected on adsorbent and analyzed with GC-MS. In hummock microcosms, vascular plants increased the monoterpene emissions compared with the treatment where all above-ground vegetation was removed while no effect was detected on the sesquiterpenes, other reactive VOCs (ORVOCs) and other VOCs. Peat layer from underneath the surface with intact vegetation had the highest sesquiterpene emissions. In hollow microcosms, intact vegetation had the highest sesquiterpene emissions. Water table drawdown decreased monoterpene and other VOC emissions. Specific compounds could be closely associated to the natural/lowered water tables. Peat layer from underneath the surface of hollows with intact vegetation had the highest emissions of monoterpenes, sesquiterpenes and ORVOCs whereas water table drawdown decreased those emissions. The results suggest that global warming would change the BVOC emission mixtures from boreal peatlands following changes in vegetation composition and water table drawdown.
Cameron, C.C.; Esterle, J.S.; Palmer, C.A.
1989-01-01
Peat has been studied in several geologic settings: (1) glaciated terrain in cold temperate Maine and Minnesota, U.S.A.; (2) an island in the Atlantic Ocean off the coast of Maine, where sea level is rising; (3) the warm temperate U.S. Atlantic and Gulf Coastal Plains, where sea level has changed often; and (4) the tropical coast of Sarawak, Malaysia, and the tropical delta of the Batang Hari River, Sumatra, Indonesia. Most of these deposits are domed (ombrotrophic or partly ombrotrophic) bogs in which peat accumulation continued above the surface of the surrounding soil. However, the bogs of the U.S. Atlantic and Gulf Coastal Plains are comparatively not as domed, and many have almost level surfaces. In some bogs, aquatic or semi-aquatic plant materials accumulated, replaced water in the depressions, and formed a surface on which marsh or swamp vegetation could subsequently live, die, and accumulate. In others, the plant materials accumulated initially on level silt or sand surfaces supporting marshes or swamps. As the peat dome formed, plants growing on it changed from luxuriant ones near the base of the dome, where nutrients were brought into the bog by surface and ground water, to stunted ones at the top of the dome, where the raised bogs are fed by nutrient-poor precipitation. The physical and chemical changes that take place in the sequence of environments from the pond stage of deposit development, through the grassy marsh stage, through the forested swamp stage, and finally through the heath dome stage can be measured in terms of acidity and ash, volatile matter, carbon, hydrogen, nitrogen, sulfur and oxygen contents, as well as in the kind and distribution of trace elements. The organic and inorganic contents of the deposits relate to geomorphology, and geomorphology relates to their settings. As models of coal formation, some domed peat deposits may help in solving problems of distribution and character of ancient coal beds. But clearly not all peat deposits are precursors of coal. Most Holocene peat deposits are subject to destruction by erosion, fire and decomposition through microbial and chemical oxidation before burial. The best environments for coal precursors have biomass accumulation, a continuously rising water table within the mass, and minimum influx of clay and silt until preservation by burial. The most suitable settings for future economic coal deposits are domed bogs that accumulate thick, widespread peat having low ash and low sulfur contents. The ombrotrophic peat deposits of tropical Sarawak and Sumatra are thick and extensive, contain low-ash and low-sulfur peat, and have high heating values. They are considered to be the best tropical coal analogs because of their extent and chances of preservation; the base of the peat is below adjacent river levels, and chemical and structural conditions are favorable for accumulation. ?? 1989.
Hydrogeology of the Seldovia area, Alaska
Nelson, Gordon L.; Danskin, Wesley R.
1980-01-01
Surficial materials in the Seldovia area, Alaska, are mapped as glacial drift over sedimentary bedrock, glacial drift over igneous and metamorphic bedrock, valley-bottom, alluvium, alluvial fan deposits, beach and intertidal deposits, and peat. Unconsolidated materials are generally less than 10 feet thick except in well-drained glacial deposits along the Seldovia-Jakolof Bay Road and in depressions in the bedrock surface. These depressions are poorly drained and commonly contain peat bogs. Development of domestic wells (1-15 gallons per minute) may be possible from unconsolidated materials and sedimentary bedrock, but larger water requirements must be met from surface-water sources. In areas having the water table or top of bedrock at shallow depths, effluent from sewage disposal systems may cause pollution of the land surface and nearby surface water. Seepage from hillside aquifers and unstable land along the coast of Kachemak Bay may adversely affect roads and structures. (USGS)
Gaseous mercury fluxes in peatlands and the potential influence of climate change
NASA Astrophysics Data System (ADS)
Haynes, Kristine M.; Kane, Evan S.; Potvin, Lynette; Lilleskov, Erik A.; Kolka, Randall K.; Mitchell, Carl P. J.
2017-04-01
Climate change has the potential to significantly impact the stability of large stocks of mercury (Hg) stored in peatland systems due to increasing temperatures, altered water table regimes and subsequent shifts in vascular plant communities. However, the Hg exchange dynamics between the atmosphere and peatlands are not well understood. At the PEATcosm Mesocosm Facility in Houghton, Michigan, total gaseous Hg (TGM) fluxes were monitored in a subset of 1-m3 peat monoliths with altered water table positions (high and low) and vascular plant functional groups (sedge only, Ericaceae only or unmanipulated control) above the Sphagnum moss layer. At the SPRUCE bog in north-central Minnesota, TGM fluxes were measured from plots subjected to deep peat soil warming (up to +9 °C above ambient at a depth of 2 m). At PEATcosm, the strongest depositional trend was observed with the Low WT - sedge only treatment mesocosms with a mean TGM flux of -73.7 ± 6.3 ng m-2 d-1, likely due to shuttling of Hg to the peat at depth by aerenchymous tissues. The highest total leaf surface and tissue Hg concentrations were observed with the Ericaceae shrubs. A negative correlation between TGM flux and Ericaceae total leaf surface area suggests an influence of shrubs in controlling Hg exchange through stomatal uptake, surface sorption and potentially, peat shading. Surface peat total Hg concentrations are highest in treatments with greatest deposition suggesting deposition controls Hg accumulation in surface peat. Fluxes in the SPRUCE plots ranged from -45.9 ± 93.8 ng m-2 d-1 prior to the implementation of the deep warming treatments to -1.41 ± 27.1 ng m-2 d-1 once warming targets were achieved at depth and +10.2 ± 44.6 ng m-2 d-1 following prolonged deep soil warming. While these intervals did not differ significantly, a significant positive increase in the slope of the regression between flux and surface temperature was observed across the pre-treatment and warming periods. Shifts in vascular vegetation cover and peat warming as a result of climate change may significantly affect the dynamics of TGM fluxes between peatlands and the atmosphere.
NASA Astrophysics Data System (ADS)
Chasmer, L.; Flade, L.; Virk, R.; Montgomery, J. S.; Hopkinson, C.; Thompson, D. K.; Petrone, R. M.; Devito, K.
2017-12-01
Landscape changes in the hydrological characteristics of wetlands in some parts of the Boreal region of Canada are occurring as a result of climate-induced feedbacks and anthropogenic disturbance. Wetlands are largely resilient to wildfire, however, natural, climatic and anthropogenic disturbances can change surface water regimes and predispose wetlands to greater depth of peat burn. Over broad areas, peat loss contributes to significant pollution emissions, which can affect community health. In this study, we a) quantify depth of peat burn and relationships to antecedent conditions (species type, topography, surficial geology) within three classified wetlands found in the Boreal Plains ecoregion of western Canada; and b) examine the impacts of wildfire on post-fire ground surface energy balance to determine how peat loss might affect local hydro-climatology and surface water feedbacks. High-resolution optical imagery, pre- and post-burn multi-spectral Light Detection And Ranging (LiDAR), airborne thermal infrared imagery, and field validation data products are integrated to identify multiple complex interactions within the study wetlands. LiDAR-derived depth of peat burn is within 1 cm (average) compared with measured (RMSE = 9 cm over the control surface), demonstrating the utility of LiDAR with high point return density. Depth of burn also correlates strongly with variations in Normalised Burn Ratio (NBR) determined for ground surfaces only. Antecedent conditions including topographic position, soil moisture, soil type and wetland species also have complex interactions with depth of peat loss within wetlands observed in other studies. However, while field measurements are important for validation and understanding eco-hydrological processes, results from remote sensing are spatially continuous. Temporal LiDAR data illustrate the full range of variability in depth of burn and wetland characteristics following fire. Finally, measurements of instantaneous surface temperature indicate that the temperatures of burned wetlands are significantly warmer by up to 10oC compared to non-burned wetlands, altering locally variable sensible vs. latent energy exchanges and implications for further post-fire evaporative losses.
NASA Astrophysics Data System (ADS)
Fajri Alif, Matlal; Aprillia, Wandha; Arief, Syukri
2018-01-01
Hydroxyapatite (HAP) were synthesized from Pensi (Corbicula moltkiana) sheels by hydrothermal method and used as adsorbent for peat water purification. Batch adsorption experiments were performed to investigate the effects of various factors such as contact time, adsorbent dosage, and pH. The obtained materials were characterized by powder X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and scanning electron microscope (SEM). Results showed that HAP calcined at 900°C (HAP900) and 1000°C (HAP1000) have a poorly crystalline shape. HAP900 also contain Tetracalsium Phosphate (TTCP) with a Ca/P molar ratio 2.18, while HAP 1000 contain HAp with a Ca/P molar ratio 1.67. Optimum condition for peat water purification with HAP900 and HAP1000 were both achieved at 1 hours, 1 grams adsorben mass at pH 2. SEM micrographs show that after purification, the surface of HAP were covered by organic compounds from peat water.
Moss and peat hydraulic properties are optimized to maximise peatland water use efficiency
NASA Astrophysics Data System (ADS)
Kettridge, Nicholas; Tilak, Amey; Devito, Kevin; Petrone, Rich; Mendoza, Carl; Waddington, Mike
2016-04-01
Peatland ecosystems are globally important carbon and terrestrial surface water stores that have formed over millennia. These ecosystems have likely optimised their ecohydrological function over the long-term development of their soil hydraulic properties. Through a theoretical ecosystem approach, applying hydrological modelling integrated with known ecological thresholds and concepts, the optimisation of peat hydraulic properties is examined to determine which of the following conditions peatland ecosystems target during this development: i) maximise carbon accumulation, ii) maximise water storage, or iii) balance carbon profit across hydrological disturbances. Saturated hydraulic conductivity (Ks) and empirical van Genuchten water retention parameter α are shown to provide a first order control on simulated water tensions. Across parameter space, peat profiles with hypothetical combinations of Ks and α show a strong binary tendency towards targeting either water or carbon storage. Actual hydraulic properties from five northern peatlands fall at the interface between these goals, balancing the competing demands of carbon accumulation and water storage. We argue that peat hydraulic properties are thus optimized to maximise water use efficiency and that this optimisation occurs over a centennial to millennial timescale as the peatland develops. This provides a new conceptual framework to characterise peat hydraulic properties across climate zones and between a range of different disturbances, and which can be used to provide benchmarks for peatland design and reclamation.
Age Determination of the Remaining Peat in the Sacramento-San Joaquin Delta, California, USA
Drexler, Judith Z.; de Fontaine, Christian S.; Knifong, Donna L.
2007-01-01
Introduction The Sacramento-San Joaquin Delta of California was once a 1,400 square kilometer (km2) tidal marsh, which contained a vast layer of peat ranging up to 15 meters (m) thick (Atwater and Belknap, 1980). Because of its favorable climate and highly fertile peat soils, the majority of the Delta was drained and reclaimed for agriculture during the late 1800s and early 1900s. Drainage of the peat soils changed the conditions in the surface layers of peat from anaerobic (having no free oxygen present) to aerobic (exposed to the atmosphere). This change in conditions greatly increased the decomposition rate of the peat, which consists largely of organic (plant) matter. Thus began the process of land-surface subsidence, which initially was a result of peat shrinkage and compaction, and later largely was a result of oxidation by which organic carbon in the peat essentially vaporized to carbon dioxide (Deverel and others, 1998; Ingebritsen and Ikehara, 1999). Because of subsidence, the land-surface elevation on farmed islands in the Delta has decreased from a few meters to as much as 8 m below local mean sea level (California Department of Water Resources, 1995; Steve Deverel, Hydrofocus, Inc., written commun., 2007). The USGS, in collaboration with the University of California at Davis, and Hydrofocus Inc. of Davis, California, has been studying the formation of the Delta and the impact of wetland reclamation on the peat column as part of a project called Rates and Evolution of Peat Accretion through Time (REPEAT). The purpose of this report is to provide results on the age of the remaining peat soils on four farmed islands in the Delta.
Walton-Day, K.; Filipek, L.H.; Papp, C.S.E.
1990-01-01
Filson Creek Fen, located in northeastern Minnesota, overlies a Cu-Ni sulfide deposit. A site in the fen was studied to evaluate the hydrogeochemical mechanisms governing the development of Fe, Mn, Co, and Cu profiles in the peat. At the study site, surface peat approximately 1 m thick is separated from the underlying mineralized bedrock by a 6-12 m thickness of lake and glaciofluvial sediments and till. Concentrations of Fe, Mn, Co, and Cu in peat and major elements in pore water delineate a shallow, relatively oxidized, Cu-rich zone overlying a deeper, reduced, Fe-, Mn-, and Co-rich zone within the peat. Sequential metal extractions from peat samples reveal that 40-55% of the Cu in the shallow zone is associated with organic material, whereas the remaining Cu is distributed between iron-oxide, sulfide, and residual fractions. Sixty to seventy percent of the Fe, Mn, and Co concentrated in the deeper zone occur in the residual phase. The metal profiles and associations probably result from non-steady-state input of metals and detritus into the fen during formation of the peat column. The enrichment of organic-associated Cu in the upper, oxidized zone represents a combination of Cu transported into the fen with detrital plant fragments and soluble Cu, derived from weathering of outcrop and subcrop of the mineral deposit, transported into the fen, and fixed onto organic matter in the peat. The variable stratigraphy of the peat indicates that weathering processes and surface vegetation have changed through time in the fen. The Fe, Mn, and Co maxima at the base of the peat are associated with a maximum in detrital matter content of the peat resulting from a transition between the underlying inorganic sedimentary environment to an organic sedimentary environment. The chemistry of sediments and ground water collected beneath the peat indicate that mobilization of metals from sulfide minerals in the buried mineral deposit or glacial deposits is minimal. Therefore, the primary source of Cu to the peat at the study site is outcrops and shallow subcrops of the mineral deposit adjacent to the fen. ?? 1990.
NASA Astrophysics Data System (ADS)
Mathijssen, Paul; Knorr, Klaus-Holger; Gałka, Mariusz; Borken, Werner
2017-04-01
Peat carbon cycling is controlled by both large scale factors, such as climate and hydrological setting, and small scale factors, such as microtopography, vegetation, litter quality, and rooting depth. These small scale factors commonly vary within peatlands, causing variation in the carbon balance at different locations within the same site. Understanding the relationship between small scale carbon cycling and vegetation helps us to assess the variation of carbon dynamics of peatlands, because vegetation composition acts as an integrator of factors such as microtopography, hydrology, and nutrient level. Variation in vegetation illustrates spatial variation of these underlying factors. Furthermore, the presence of certain plant species affects carbon cycling directly through litter quality or aeration through root tissues. In order to understand these within-site variations in terms of carbon cycling, we investigated carbon accumulation, decomposition, and biogeochemistry of pore waters along a transect of peat cores with changing vegetation and water levels in an ombrotrophic peatland in southern Patagonia. The transect ran from a Sphagnum magellanicum dominated spot with relatively high water table, to intermediately wet spots with mixed Sphagnum/shrubs vegetation, or dominated by Cyperaceae, eventually to a more elevated and drier spot dominated by cushion plants (mainly Astelia pumila). There were large differences in peat accumulation rates and peat densities, with faster peat growth and lower densities under Sphagnum, but overall carbon accumulation rates were quite similar in the various microenvironments. At most plots C/N ratios decreased with depth, concurrent with increasing humification index derived from FT-IR spectra. But under cushion plants this relation was opposite: more humification with depth, but also C/N ratios increases. This reflected the differing source material at depth under the cushion plants, and that the cushion plant peat layers were formed on top of Sphagnum peat. The divergent source material throughout a peat core makes it difficult to use C/N ratios to indicate peat decomposition rates. Although the low peat density and higher C/N ratios indicate that overall carbon turnover is slow at Sphagnum plots, pore water methane concentrations were elevated. At cushion plant plots, however, higher redox potentials exist until greater depths due to aerenchymous roots, inhibiting methane production and release. Our results demonstrate that large variation exists within pristine bogs, in terms of decomposition patterns, organic matter quality, and carbon turnover pathways, corresponding to variation in surface moisture levels and vegetation. Furthermore, variation in carbon cycling properties are maintained in buried peat layers and reflect more the organic material of that layer, than the current surface carbon dynamics.
Almendinger, J.E.; Leete, J.H.
1998-01-01
. Calcareous fens in Minnesota are spring-seepage peatlands with a distinctive flora of rare calciphilic species. Peat characteristics and groundwater geochemistry were determined for six calcareous fens in the Minnesota River Basin to better understand the physical structure and chemical processes associated with stands of rare vegetation. Onset of peat accumulation in three of the fens ranged from about 4,700 to 11,000 14C yrs BP and probably resulted from a combination of climate change and local hydrogeologic conditions. Most peat cores had a carbonate-bearing surface zone with greater than 10% carbonates (average 27%, dry wt basis), an underlying carbonate-depleted zone with 10% or less carbonates (average 4%), and a carbonate-bearing lower zone again with greater than 10% carbonates (average 42%). This carbonate zonation was hypothesized to result from the effect of water-table level on carbonate equilibria: carbonate precipitation occurs when the water table is above a critical level, and carbonate dissolution occurs when the water table is lower. Other processes that changed the major ion concentrations in upwelling groundwater include dilution by rain water, sulfate reduction or sulfide oxidation, and ion adsorption or exchange. Geochemical modeling indicated that average shallow water in the calcareous fens during the study period was groundwater mixed with about 6 to 13% rain water. Carbonate precipitation in the surface zone of calcareous fens could be decreased by a number of human activities, especially those that lower the water table. Such changes in shallow water geochemistry could alter the growing conditions that apparently sustain rare fen vegetation.
Global latitudinal trends in peat recalcitrance quantified with calibrated FTIR spectroscopy
NASA Astrophysics Data System (ADS)
Hodgkins, S. B.; Richardson, C. J.; Dommain, R.; Wang, H.; Glaser, P. H.; Verbeke, B. A.; Rogers, K.; Winkler, B. R.; Missilmani, M.; Flanagan, N. E.; Ho, M.; Hoyt, A.; Harvey, C. F.; Cobb, A.; Rich, V. I.; Vining, S. R.; Hough, M.; Saleska, S. R.; Podgorski, D. C.; Tfaily, M. M.; Wilson, R.; Holmes, B.; de La Cruz, F.; Toufaily, J.; Hamdan, R.; Cooper, W. T.; Chanton, J.
2017-12-01
Peatlands are a major global carbon reservoir (528-600 Pg). Most peat is found at high latitudes, where organic matter decomposition is slowed by cold temperatures and water-saturated conditions. Nonetheless, a significant portion of global peatland carbon (10-30%) is in tropical peatlands. The factors that allow peat accumulation in warm climates remain uncertain, raising the question of whether these factors may preserve peat in boreal regions as they warm. In this study, we examined peat and plant chemistry across a latitudinal transect from the Arctic to the tropics. Carbohydrate and aromatic contents were estimated based on a newly-developed analysis method for Fourier transform infrared (FTIR) spectra. In this method, peaks are baseline-corrected and normalized to the integrated spectral area using an automated R script, then calibrated to known concentrations using standards. This technique showed trends that were in agreement with those seen with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and 13C-NMR spectroscopy. Along the latitudinal transect, we found that near-surface (sub)tropical peat has lower carbohydrate and greater aromatic content than near-surface high-latitude peat, leading to recalcitrance that allows (sub)tropical peat to persist despite warm temperatures. The chemistry of (sub)tropical peat reflects a combination of recalcitrant plant inputs, and more extensive humification driven by higher temperatures. Because we observed similar declines in carbohydrate content with depth in high-latitude peat deposits, our data explain recent field-scale deep peat warming experiments in which catotelm (deeper) peat remained stable in the face of temperature increases up to 9 °C. We suggest that high-latitude deep peat reservoirs may be stabilized in the face of climate change by their ultimately lower carbohydrate and higher aromatic composition, similar to tropical peats.
NASA Astrophysics Data System (ADS)
Evans, Martin; Allott, Tim; Worrall, Fred; Rowson, James; Maskill, Rachael
2014-05-01
Water table is arguably the dominant control on biogeochemical cycling in peatland systems. Local water tables are controlled by peat surface water balance and lateral transfer of water driven by slope can be a significant component of this balance. In particular, blanket peatlands typically have relatively high surface slope compared to other peatland types so that there is the potential for water table to be significantly contolled by topographic context. UK blanket peatlands are also significantly eroded so that there is the potential for additional topographic drainage of the peatland surface. This paper presents a topographically driven model of blanket peat water table. An initial model presented in Allott et al. (2009) has been refined and tested against further water table data collected across the Bleaklow and Kinderscout plateaux of the English Peak District. The water table model quantifies the impact of peat erosion on water table throughout this dramatically dissected landscape demonstrating that almost 50% of the landscape has suffered significant water table drawdown. The model calibrates the impact of slope and degree of dissection on local water tables but does not incorporate any effects of surface cover on water table conditions. Consequently significant outliers in the test data are potentially indicative of important impacts of surface cover on water table conditions. In the test data presented here sites associated with regular moorland burning are significant outliers. The data currently available do not allow us to draw conclusions around the impact of land cover but they indicate an important potential application of the validated model in controlling for topographic position in further testing of the impact of land cover on peatland water tables. Allott, T.E.H. & Evans, M.G., Lindsay, J.B., Agnew, C.T., Freer, J.E., Jones, A. & Parnell, M. Water tables in Peak District blanket peatlands. Moors for the Future Report No. 17. Moors for the Future Partnership, Edale, 47pp.
Organic matter loss from cultivated peat soils in Sweden
NASA Astrophysics Data System (ADS)
Berglund, Örjan; Berglund, Kerstin
2015-04-01
The degradation of drained peat soils in agricultural use is an underestimated source of loss of organic matter. Oxidation (biological degradation) of agricultural peat soils causes a loss of organic matter (OM) of 11 - 22 t ha-1 y-1 causing a CO2 emission of 20 - 40 t ha-1 y-1. Together with the associated N2O emissions from mineralized N this totals in the EU to about 98.5 Mton CO2 eq per year. Peat soils are very prone to climate change and it is expected that at the end of this century these values are doubled. The degradation products pollute surface waters. Wind erosion of peat soils in arable agriculture can cause losses of 3 - 30 t ha-1 y-1 peat also causing air pollution (fine organic particles). Subsidence rates are 1 - 2 cm per year which leads to deteriorating drainage effect and make peat soils below sea or inland water levels prone to flooding. Flooding agricultural peat soils is in many cases not possible without high costs, high GHG emissions and severe water pollution. Moreover sometimes cultural and historic landscapes are lost and meadow birds areas are lost. In areas where the possibility to regulate the water table is limited the mitigation options are either to increase biomass production that can be used as bioenergy to substitute some fossil fuel, try to slow down the break-down of the peat by different amendments that inhibit microbial activity, or permanent flooding. The negative effects of wind erosion can be mitigated by reducing wind speed or different ways to protect the soil by crops or fiber sheets. In a newly started project in Sweden a typical peat soil with and without amendment of foundry sand is cropped with reed canary grass, tall fescue and timothy to investigate the yield and greenhouse gas emissions from the different crops and how the sand effect the trafficability and GHG emissions.
Deformation behaviors of peat with influence of organic matter.
Yang, Min; Liu, Kan
2016-01-01
Peat is a kind of special material rich in organic matter. Because of the high content of organic matter, it shows different deformation behaviors from conventional geotechnical materials. Peat grain has a non-negligible compressibility due to the presence of organic matter. Biogas can generate from peat and can be trapped in form of gas bubbles. Considering the natural properties of peat, a special three-phase composition of peat is described which indicates the existence of organic matter and gas bubbles in peat. A stress-strain-time model is proposed for the compression of organic matter, and the surface tension effect is considered in the compression model of gas bubbles. Finally, a mathematical model has been developed to simulate the deformation behavior of peat considering the compressibility of organic matter and entrapped gas bubbles. The deformation process is the coupling of volume variation of organic matter, gas bubbles and water drainage. The proposed model is used to simulate a series of peat laboratory oedometer tests, and the model can well capture the test results with reasonable model parameters. Effects of model parameters on deformation of peat are also analyzed.
Anthropogenic degradation of mountainous raised bogs. Case study of the Polish Carpathians
NASA Astrophysics Data System (ADS)
Lajczak, Adam
2016-04-01
Publications on the human impact on peat bogs pay a lot of attention to peat erosion, peat burning and changes in the physical and chemical properties of peat deposits that indicate pollution in the environment, but a more detailed analysis of current changes in the peat bog relief as a result of peat deposit extraction and drying is omitted. Compared to other areas of the world, the level of knowledge on anthropogenic changes in the relief of peat bogs in some areas of Poland may be considered advanced. This applies not only to peat bogs in northern Poland but also southern Poland, where peat bogs in the Carpathians and the Sudetes are also found. The best analyzed peat bogs in southern Poland are the raised bogs in the Orawsko-Nowotarska Basin (Western Carpathians) and in valleys in the Bieszczady Mts. (Eastern Carpathians). Both areas are impacted by deep precipitation shadow. The purpose of this paper is: (1) to assess the rate of shrinkage in the surface area of peat domes in the mentioned areas, (2) to describe the rate of growth in the surface area of older and younger post-peat areas, (3) to explain current changes in peat bogs morphology, (4) to explain changes in water retention in peat deposit, (5) to separate phases in peat bogs relief changes. With that in mind, the direction and rate of change of landforms typical of younger post-peat areas, such as peat extraction scarps, post-extraction hollows, drainage systems including ditches and regulated stream channels, were analyzed. A special emphasis was placed on the period of time when the restoration of such areas has taken place. The paper is based on an analysis of maps produced over the last 230 years as well as on aerial photographs taken since 1965 and on LiDAR data. Fieldwork included the geomorphological and hydrographic mapping of specified landforms within peat bogs using GPS methods. In period prior to human activity peat domes were larger than today and were surrounded by lagg fens and were drained by meandering streams. In period prior to the end of peat extraction and drying the amount of area lost by the peat dome and former wetland fringe can be identified in terms of older and younger post-peat areas. Stream channels in the general area have been regulated and drainage ditches dug. Partial or full peat extraction taking place primarily in the domes' fringe zone has produced major changes in peat bog relief and has substantially reduced peat bog water content. The increased density of drainage ditches in the area surrounding the remnants of peat domes has led to further drying of the peat bogs. An unintended consequence of stream regulation are shallower and wider channels that evolve into braided channels with a local tendency to aggradate material. The current stage of peat bogs development is their restoration which started when peat extraction had been halted in most peat bogs and drainage ditch maintenance had been abandoned.
Evaporation from a sphagnum moss surface
D.S. Nichols; J.M. Brown
1980-01-01
Peat cores, 45 cm in diameter, were collected from a sphagnum bog in northern Minnesota, and used to measure the effects of different temperatures and water levels on evaporation from a sphagnum moss surface in a growth chamber. Under all conditions, evaporation from the moss surface was greater than that from a free-water surface. Evaporation from the moss increased...
The geology of selected peat-forming environments in temperate and tropical latitudes
Cameron, C.C.; Palmer, C.A.; Esterle, J.S.
1990-01-01
We studied peat in several geologic and climatic settings: (1) a glaciated terrain in cold-temperate Maine and Minnesota, U.S.A.; (2) an island in a temperate maritime climate in the Atlantic Ocean off the coast of Maine, U.S.A., where sea level is rising rapidly and changing the environment of peat accumulation; (3) swamps along the warm-temperate U.S. Atlantic and Gulf Coastal Plains, where sea level has changed often, thus creating sites for accumulation; and (4) in a tropical climate along the coast of Sarawak, Malaysia, and the delta of the Batang Hari River, Sumatra, Indonesia (Figs. 1 and 2). With the exception of the deposits on the Atlantic and Gulf Coastal Plains, most of the deposits described are domed bogs in which peat accumulation continued above the surface of the surrounding soil. The bogs of the U.S. Atlantic and Gulf Coastal Plains have almost level surfaces. All domed bogs are not entirely ombrotrophic (watered only from precipitation); multidomed bogs that rise from irregular or hilly surfaces may be crossed by streams that supply water to the bogs. The geologic processes or organic sedimentation, namely terrestrialization and paludification, are similar in all peat deposits considered here. Differences in geomorphology affecting the quantity and that quality of peat that has ash contents of less than 25%, which are desirable for commercial purposes, depend chiefly on: (1) high humidity, which is favorable to luxuriant growth of peat-forming vegetation; (2) a depositional setting that permits extensive accumulation relatively free from inorganic contamination from sea water and streams and from dust and volcanic ash; and (3) a stable regional water table that controls the rate of decomposition under aerobic conditions and protects the deposit against the ravages of fire. Differences in peat textures are due to the type of vegetation and to the degree of decomposition. The rate of decomposition is largely the result of the amount of oxidation and aerobic microbial activity. Stratigraphic distribution of various textures and amounts of inorganic components within a peat deposit is largely determined by the vertical positions occupied by peat-forming environments, such as pond, marsh, swamp and heath where vegetation accumulated, and the depth to zones of unoxygenated water. Peat also differs in the rate of accumulation. On the basis of carbon-14 dating, an estimated 8 m of peat in the tropical Batang Hari River deposit in Sumatra has been accumulating at the rate of about 1.5 m/1,000 yr, whereas peat in the cold-temperate deposit in Maine has been accumulating at the rate of 0.66 m/1,000 yr. Accumulation rates in domed deposits such as these are affected not only by factors controlling volume of biomass and aerobic decay but also by stream erosion and fires that remove peat. Such disconformities (see Fig. 2) within the deposit may be recognized by sudden vertical changes in degree of decomposition and/or the presence of charcoal. The trace-element content of peat deposits is affected by the environments of their settings. Samples of peat that have an ash content of less than 25% dry weight and that are from small, almost level swamp deposits along the Atlantic Coastal Plain of North Carolina were compared with similar samples from small domed bogs in Maine, a glaciated area. Samples from Nort Carolina, which are from deposits in thick fluvial and nearshore marine sediments far from the bedrock source, are generally higher in Ti, Cr and Pb. The Maine samples from deposits in glacial drift close to the bedrock source contain more Zn, Mn, P, Ca, Na and Fe. The kind and amount of trace elements within the deposits appear to relate largely to depositional setting, to kinds of bedrock source, and to the modes of transportation from source to peat swamp. Trace-element concentrations in the extensive Sumatra peat deposit, which represents a potentially commercial coal bed, are similar to those found in Appalachian c
Tetzlaff, D; Birkel, C; Dick, J; Geris, J; Soulsby, C
2014-01-01
We examined the storage dynamics and isotopic composition of soil water over 12 months in three hydropedological units in order to understand runoff generation in a montane catchment. The units form classic catena sequences from freely draining podzols on steep upper hillslopes through peaty gleys in shallower lower slopes to deeper peats in the riparian zone. The peaty gleys and peats remained saturated throughout the year, while the podzols showed distinct wetting and drying cycles. In this region, most precipitation events are <10 mm in magnitude, and storm runoff is mainly generated from the peats and peaty gleys, with runoff coefficients (RCs) typically <10%. In larger events the podzolic soils become strongly connected to the saturated areas, and RCs can exceed 40%. Isotopic variations in precipitation are significantly damped in the organic-rich soil surface horizons due to mixing with larger volumes of stored water. This damping is accentuated in the deeper soil profile and groundwater. Consequently, the isotopic composition of stream water is also damped, but the dynamics strongly reflect those of the near-surface waters in the riparian peats. “pre-event” water typically accounts for >80% of flow, even in large events, reflecting the displacement of water from the riparian soils that has been stored in the catchment for >2 years. These riparian areas are the key zone where different source waters mix. Our study is novel in showing that they act as “isostats,” not only regulating the isotopic composition of stream water, but also integrating the transit time distribution for the catchment. Key Points Hillslope connectivity is controlled by small storage changes in soil units Different catchment source waters mix in large riparian wetland storage Isotopes show riparian wetlands set the catchment transit time distribution PMID:25506098
Tetzlaff, D; Birkel, C; Dick, J; Geris, J; Soulsby, C
2014-02-01
We examined the storage dynamics and isotopic composition of soil water over 12 months in three hydropedological units in order to understand runoff generation in a montane catchment. The units form classic catena sequences from freely draining podzols on steep upper hillslopes through peaty gleys in shallower lower slopes to deeper peats in the riparian zone. The peaty gleys and peats remained saturated throughout the year, while the podzols showed distinct wetting and drying cycles. In this region, most precipitation events are <10 mm in magnitude, and storm runoff is mainly generated from the peats and peaty gleys, with runoff coefficients (RCs) typically <10%. In larger events the podzolic soils become strongly connected to the saturated areas, and RCs can exceed 40%. Isotopic variations in precipitation are significantly damped in the organic-rich soil surface horizons due to mixing with larger volumes of stored water. This damping is accentuated in the deeper soil profile and groundwater. Consequently, the isotopic composition of stream water is also damped, but the dynamics strongly reflect those of the near-surface waters in the riparian peats. "pre-event" water typically accounts for >80% of flow, even in large events, reflecting the displacement of water from the riparian soils that has been stored in the catchment for >2 years. These riparian areas are the key zone where different source waters mix. Our study is novel in showing that they act as "isostats," not only regulating the isotopic composition of stream water, but also integrating the transit time distribution for the catchment. Hillslope connectivity is controlled by small storage changes in soil unitsDifferent catchment source waters mix in large riparian wetland storageIsotopes show riparian wetlands set the catchment transit time distribution.
Water exchange in raised bogs: revised views especially in relation to biogeochemistry
NASA Astrophysics Data System (ADS)
Sirin, Andrey; Kravchenko, Irina; Yurova, Alla; Markina, Anastasiya
2017-04-01
Raised bogs are one of the most common and exciting mire type within the boreal zone and appear in the other zones including mountain regions in the tropics. They receive water and nutrients from the atmosphere and pore water stored in their domes is spaced above the surrounding area (up to 10 m in height). Traditionally it is assumed that water flow occurs mainly in a peat layer near to the surface and water transport is negligible in deeper layers (lvanov, 1981; Ingram, 1982; etc.). The «acrotelm/catotelm» paradigm on active and inert horizons for the peat above and below the lowest water level is still widely spread in peatland hydrology. However, recent studies have shown that deep water movement is much more dynamic in raised bogs than was previously thought (Sirin et al., 1997, Reeve et al., 2000; etc.). Relying on isotope studies we conclude that all the mounded strata of the raised bogs have relatively active water exchange although water residence time changes with depth. The study included two raised bogs, representing different typical hydrological conditions (underlain by outwash sands and moraine clay) at the Zapadnaya Dvina Peatland Field Station of the Institute of Forest Science RAS located 400 km west of Moscow (56 N, 32 E). Peatlands, among which raised bogs dominate, constitute > 30% of the area, and maximum peat thickness exceeds 7 m. To evaluate water residence time in peat strata specially determined mathematical model which include the equations of water mass and tritium balance, imbedded in a conceptual framework of water dynamics within a raised bog peat body, have been developed and tested. The results from isotope studies (3H, 18O, 2H) were additionally supported by geochemical (pH, Eh, electrical conductivity) and temperature long term monitoring, as well as dissolved CO2 and CH4 monitoring within vertical profiles of the studied raised bogs (Sirin et al., 1998). Later it was also supported by microbiology data of methane cycle in the profile of peat bogs (Kravchenko, Sirin, 2007). The obtained results confirm that the hydrological stratification of peat bogs is a more complicated picture than previously thought and need to be considered.
Investigation of bacterial communities in peat land of the Gahai Lake natural conservation area
NASA Astrophysics Data System (ADS)
Bai, Yani; Wang, Jinchang; Zhan, Zhigao; Guan, Limei; Jin, Liang; Zheng, Guohua
2017-10-01
Peat is involved in the global carbon cycle and water conservation; therefore, it is implicated in global environmental change. Microorganisms play an important role in the function of peat. To investigate the bacterial communities in peat of Gahai Lake, different locations and depths were sampled and Illumina Miseq sequencing was used to analyze the microbial community. Chemical properties of peat samples were analyzed by China state standard methods (GB methods). The results showed that bacterial communities were affected by depth, with bacterial diversity and community structure at 90 and 120 cm significantly different from that at 10, 30 and 50 cm depth from the peat surface. Chemical properties of peat land including organic matter, total nitrogen and humus content did not significantly influence bacterial community structure in peat, with only one group from genus Rhizomicrobium that was significantly correlated with total nitrogen. A substantial proportion of the bacterial sequences were unclassified (1.4%), which indicates the great application potential of peat in the Gahai Lake natural conservation area in the future.
O'Donnell, Jonathan A.; Jorgenson, M. Torre; Harden, Jennifer W.; McGuire, A. David; Kanevskiy, Mikhail Z.; Wickland, Kimberly P.
2012-01-01
Recent warming at high-latitudes has accelerated permafrost thaw in northern peatlands, and thaw can have profound effects on local hydrology and ecosystem carbon balance. To assess the impact of permafrost thaw on soil organic carbon (OC) dynamics, we measured soil hydrologic and thermal dynamics and soil OC stocks across a collapse-scar bog chronosequence in interior Alaska. We observed dramatic changes in the distribution of soil water associated with thawing of ice-rich frozen peat. The impoundment of warm water in collapse-scar bogs initiated talik formation and the lateral expansion of bogs over time. On average, Permafrost Plateaus stored 137 ± 37 kg C m-2, whereas OC storage in Young Bogs and Old Bogs averaged 84 ± 13 kg C m-2. Based on our reconstructions, the accumulation of OC in near-surface bog peat continued for nearly 1,000 years following permafrost thaw, at which point accumulation rates slowed. Rapid decomposition of thawed forest peat reduced deep OC stocks by nearly half during the first 100 years following thaw. Using a simple mass-balance model, we show that accumulation rates at the bog surface were not sufficient to balance deep OC losses, resulting in a net loss of OC from the entire peat column. An uncertainty analysis also revealed that the magnitude and timing of soil OC loss from thawed forest peat depends substantially on variation in OC input rates to bog peat and variation in decay constants for shallow and deep OC stocks. These findings suggest that permafrost thaw and the subsequent release of OC from thawed peat will likely reduce the strength of northern permafrost-affected peatlands as a carbon dioxide sink, and consequently, will likely accelerate rates of atmospheric warming.
Chiou, C.T.; Kile, D.E.; Rutherford, D.W.; Sheng, G.; Boyd, S.A.
2000-01-01
The sorption isotherms of ethylene dibromide (EDB), diuron (DUN), and 3,5-dichlorophenol (DCP) from water on the humic acid and humin fractions of a peat soil and on the humic-acid of a muck soil have been measured. The data were compared with those of the solutes with the whole peat from which the humic-acid (HA) and humin (HM) fractions were derived and on which the sorption of the solutes exhibited varying extents of nonlinear capacities at low relative concentrations (C(e)/S(w)). The HA fraction as prepared by the density-fractionated method is relatively pure and presumably free of high- surface-area carbonaceous material (HSACM) that is considered to be responsible for the observed nonlinear sorption for nonpolar solutes (e.g., EDB) on the peat; conversely, the base-insoluble HM fraction as prepared is presumed to be enriched with HSACM, as manifested by the greatly higher BET- (N2) surface area than that of the whole peat. The sorption of EDB on HA exhibits no visible nonlinear effect, whereas the sorption on HM shows an enhanced nonlinearity over that on the whole peat. The sorption of polar DUN and DCP on HA and HM display nonlinear effects comparable with those on the whole peat; the effects are much more significant than those with nonpolar EDB. These results conform to the hypothesis that adsorption onto a small amount of strongly adsorbing HSACM is largely responsible for the nonlinear sorption of nonpolar solutes on soils and that additional specific interactions with the active groups of soil organic matter are responsible for the generally higher nonlinear sorption of the polar solutes.
Impact of prescribed and repeated vegetation burning on blanket peat hydrology
NASA Astrophysics Data System (ADS)
Holden, Joseph; Brown, Lee; Palmer, Sheila; Johnston, Kerrylyn; Wearing, Catherine; Irvine, Brian
2013-04-01
In some peatlands there has been a tradition over the past century of burning vegetation to manage the landscape for a range of purposes. These include producing an environment suitable for game birds used in the gun sports industry and reducing the biomass fuel load to reduce possible wildfire damage to the peat. However, there have been few studies that have interrogated the impacts of this activity on peatland hydrological processes both at the plot scale and at the catchment scale. The EMBER project measured water tables, overland flow, hydraulic conductivity, stream discharge, and a myriad of aquatic invertebrate and peat physical and water chemistry indicators (at plot and stream scale) in ten upland blanket peat catchments in the UK. Five catchments were subject to a history of prescribed rotational patch burning with burning taking place each year over a proportion of the catchment (typically 5-10 %) but where for an individual patch the interval was typically 10-20 years. The other five catchments acted as controls which were not subject to burning, nor confounded by other detrimental activities such as drainage or forestry. Stream flows were flashier in response to rainfall in the catchments with prescribed burning patches and had greater rainfall to runoff efficiencies. Water tables were found to be significantly shallower with a smaller interquartile range for unburnt catchments. In the burnt catchments, more recently burnt plots had significantly greater mean water table depths and water table residence times were much less frequent within the upper 10 cm of the peat profile compared to plots that been burned more than a decade before. The water table residence curves will be explored in the presentation. The occurrence of overland flow was significantly impacted by both burning and time since burn with significantly less overland flow recorded for more recently burnt sites. This ties in well with our water table data since blanket peat systems are dominated by saturation processes rather than infiltration-excess overland flow. In this presentation we focus on the hydrological findings from the EMBER project but where relevant we relate these to other supporting environmental data we collected in order to interrogate process explanations for the differences we observed. For example, surface and near-surface peat temperatures were significantly more variable (both warmer and cooler depending on season and time of day) for burnt sites (and for patches burnt < 5 yrs prior to monitoring within burnt sites) but with warmer peat associated with burning overall. The results provide clear evidence that prescribed vegetation burning on blanket peat significantly impacts peatland hydrology at both the plot and stream scale and therefore raises issues for government bodies who have legal responsibility to protect many peatland landscapes, their integrity, their biogeochemical functions and the ecosystem services that peatlands provide.
NASA Astrophysics Data System (ADS)
Sirin, Andrey; Chistotin, Maxim; Suvorov, Gennady; Glagolev, Mikhail; Kravchenko, Irina; Minaeva, Tatiana
2010-05-01
Many peatlands previously drained for peat extraction or utilized for agriculture (directly or after partial cutoff) are left abandoned during last decades in Europe, and especially in its eastern part. In the European part of Russia alone, several million hectares of peatlands have been modified for peat extraction and agriculture by direct water level draw-down and nowadays are not under use by economic reasons. This makes up one of the most serious and urgent problems of wise use and management of peatlands in these regions with serious feedback to people, environment and economy (Quick Scan of Peatlands in Central and Eastern Europe, 2009). Drainage for agriculture leads to peat oxidation resulting in substantial emissions of greenhouse gases (carbon dioxide and sometimes nitrous oxide) to the atmosphere. Together with peat fires this is the most significant negative input of peatland degradation to climate change (Assessment on Peatlands Biodiversity and Climate Change, 2008; Peatlands and Climate Change, 2008). Besides that, dehydrated peatlands often release methane. Starting from 2003, the effect of drainage and subsequent utilization of peatlands on the emissions of carbon dioxide and methane was studied in Tomsk region (West Siberia) during the summer-fall periods (Glagolev et al. 2008). The measurements were conducted by chamber method at peatlands drained for use as croplands (now partly being fallows) and peat cutting (currently abandoned or reclaimed for forest planting, haying, or pasturing), as well as at a wide range of undrained oligotrophic, mesotrophic, and eutrophic mires and burnt mire areas of different regeneration stages. The statistical analysis of data from a large number of study sites indicated a higher release of carbon dioxide from disturbed peatlands compared to undrained ones. At the same time some drained peatlands had considerable methane emission rates, additionally enhanced by the intensive efflux from the surface of drainage ditches. The findings were supported by the studies conducted from 2005 at drained peatland sites in Moscow region (European part of Russia) which are used for peat extraction or as hayfield (Chistotin et al., 2006). Unexpected transient methane fluxes were observed at the inter-ditch surfaces in two types of sites: milled peat extraction area and used as a hay field after partial peat extraction. Under warm and wet conditions methane was released even from peat stockpiles. Microbiological studies showed not lower and near to twice higher genomic diversity of methanogens in extracted sites and in a hayfield as compared to virgin mire. We suppose that well-developed plant roots at the grassland provide a source of fresh organic material used for CH4 production. To test this hypothesis, a pot experiment with mesocosms which model three succession stages (bare peat, grass sowing, and developed grassland) under permanently high or fluctuating wetness was conducted. Methane efflux from peat under developed grassland was higher as compared to the other treatments. Under permanently high water supply the methane emission was 1 to 2 orders of magnitude higher. The obtained results clearly showed that plant organic matter can be an additional source of methane after rewetting which is obviously needed for abandoned peatland sites not used for agriculture any more. To mitigate the emissions, such management options as removal of the surface peat layer before rewetting could be applied. This practice could have additional benefits achieved by bringing day surface closer to ground water table level and forming more favorable soil conditions for mire species.
NASA Astrophysics Data System (ADS)
Qiu, Chunjing; Zhu, Dan; Ciais, Philippe; Guenet, Bertrand; Krinner, Gerhard; Peng, Shushi; Aurela, Mika; Bernhofer, Christian; Brümmer, Christian; Bret-Harte, Syndonia; Chu, Housen; Chen, Jiquan; Desai, Ankur R.; Dušek, Jiří; Euskirchen, Eugénie S.; Fortuniak, Krzysztof; Flanagan, Lawrence B.; Friborg, Thomas; Grygoruk, Mateusz; Gogo, Sébastien; Grünwald, Thomas; Hansen, Birger U.; Holl, David; Humphreys, Elyn; Hurkuck, Miriam; Kiely, Gerard; Klatt, Janina; Kutzbach, Lars; Largeron, Chloé; Laggoun-Défarge, Fatima; Lund, Magnus; Lafleur, Peter M.; Li, Xuefei; Mammarella, Ivan; Merbold, Lutz; Nilsson, Mats B.; Olejnik, Janusz; Ottosson-Löfvenius, Mikaell; Oechel, Walter; Parmentier, Frans-Jan W.; Peichl, Matthias; Pirk, Norbert; Peltola, Olli; Pawlak, Włodzimierz; Rasse, Daniel; Rinne, Janne; Shaver, Gaius; Schmid, Hans Peter; Sottocornola, Matteo; Steinbrecher, Rainer; Sachs, Torsten; Urbaniak, Marek; Zona, Donatella; Ziemblinska, Klaudia
2018-02-01
Peatlands store substantial amounts of carbon and are vulnerable to climate change. We present a modified version of the Organising Carbon and Hydrology In Dynamic Ecosystems (ORCHIDEE) land surface model for simulating the hydrology, surface energy, and CO2 fluxes of peatlands on daily to annual timescales. The model includes a separate soil tile in each 0.5° grid cell, defined from a global peatland map and identified with peat-specific soil hydraulic properties. Runoff from non-peat vegetation within a grid cell containing a fraction of peat is routed to this peat soil tile, which maintains shallow water tables. The water table position separates oxic from anoxic decomposition. The model was evaluated against eddy-covariance (EC) observations from 30 northern peatland sites, with the maximum rate of carboxylation (Vcmax) being optimized at each site. Regarding short-term day-to-day variations, the model performance was good for gross primary production (GPP) (r2 = 0.76; Nash-Sutcliffe modeling efficiency, MEF = 0.76) and ecosystem respiration (ER, r2 = 0.78, MEF = 0.75), with lesser accuracy for latent heat fluxes (LE, r2 = 0.42, MEF = 0.14) and and net ecosystem CO2 exchange (NEE, r2 = 0.38, MEF = 0.26). Seasonal variations in GPP, ER, NEE, and energy fluxes on monthly scales showed moderate to high r2 values (0.57-0.86). For spatial across-site gradients of annual mean GPP, ER, NEE, and LE, r2 values of 0.93, 0.89, 0.27, and 0.71 were achieved, respectively. Water table (WT) variation was not well predicted (r2 < 0.1), likely due to the uncertain water input to the peat from surrounding areas. However, the poor performance of WT simulation did not greatly affect predictions of ER and NEE. We found a significant relationship between optimized Vcmax and latitude (temperature), which better reflects the spatial gradients of annual NEE than using an average Vcmax value.
Hybrid biosorbents for removal of pollutants and remediation
NASA Astrophysics Data System (ADS)
Burlakovs, Juris; Klavins, Maris; Robalds, Artis; Ansone, Linda
2014-05-01
For remediation of soils and purification of polluted waters, wastewaters, biosorbents might be considered as prospective groups of materials. Amongst them peat have a special role due to low cost, biodegradability, high number of functional groups, well developed surface area and combination of hydrophilic/hydrophobic structural elements. Peat as sorbent have good application potential for removal of trace metals, and we have demonstrated peat sorption capacities, sorption kinetics, thermodynamics in respect to metals with different valencies - Tl(I), Cu(II), Cr(III). However, peat sorption capacity in respect to nonmetallic (anionic species) elements is low. Also peat mechanical properties do not support application in large scale column processes thereby, to expand peat application sphere, the approach of biomass based hybrid sorbents has been elaborated. The concept "hybrid sorbent" in understanding of biosorbent means natural, biomass based modified material, covered with another sorbent material, thus combining properties of both such as sorbent functionalities, surface properties etc. As the "covering layer" both inorganic substances, mineral phases (iron oxohydroxides, oxyappatite) and organic polymers (using graft polymerization) were used. The obtained sorbents were characterised by their spectral properties, surface area and elemental composition. The obtained hybrid sorbents were tested for sorption of compounds in anionic speciation forms, for example of arsenic, antimony, tellurium and phosphorous compounds in comparison with weakly basic anionites. The highest sorption capacity was observed when peat sorbents modified with iron compounds were used. Sorption of different arsenic speciation forms onto iron-modified peat sorbents was investigated as a function of pH and temperature. It was established that sorption capacity increases with a rise in temperature as the calculation of sorption process thermodynamic parameters indicates the spontaneity of sorption process and its endothermic nature. The recycling options of obtained compounds after their saturation with metal or non-metallic species are suggested.
Hydrology and hydraulics of treatment wetlands constructed on drained peatlands
NASA Astrophysics Data System (ADS)
Postila, Heini; Ronkanen, Anna-Kaisa; Kløve, Bjørn
2013-04-01
Treatment wetlands are globally used for wastewater purification purposes. In Finland, these wetlands are commonly peatland-based and are used to treat runoff from peat extraction sites and peatland forestry. Wetlands are also used for polishing municipal wastewaters and mining waters. In peat extraction the structures are usually called overland flow areas (OFAs), which are traditionally established on pristine peatlands. However, nowadays establishing of new peat extraction sites is guided to drained peatland areas due to the Finnish Peat Use Strategy, which leads difficulties to find undisturbed peatland area for OFA. Therefore treatment wetlands have had to construct also on drained peatland areas. In drained areas peat physical properties have changed due to oxidation and subsidence and the water flow pathways differs from OFAs flow patterns, which maybe have effect on purification results. Thus in the present study we aim to clarify the hydrology and hydraulic properties of treatment wetlands constructed on drained peatland areas. For this purposes, 20 treatment wetlands on drained peatland areas across Finland were detailed measured for peat hydraulic conductivity. In selected areas, runoff was continuously monitored, flow distribution at treatment areas was studied and water residence times measured with tracer tests using potassium iodide (KI). Generally, in the study areas, the ditches had been completely blocked, partly blocked e.g with peat dams or not blocked at all. The ditches were located partly parallel to the flow direction and partly perpendicular to it. The distribution of water to the wetlands has been implemented in many different ways e.g. by distribution ditch or by perforated pipes. Based on the results, in majority of the wetlands, the peat drainage has clearly affected the hydraulic properties of wetlands, but not on all sites. In more than half of the wetlands (12), the median hydraulic conductivity of peat drastically decreased at the depth below 20 cm (or 10 cm). Two site it decreased at the depth of 40 cm, and at five sites, it was high at all depth investigated (down to 60-70 cm). The outflow proportion to inflow varied from 20 % to 97 %, which means that the part of the water infiltrated into the groundwater. Evaporation can explain part of the observed reduced water flow especially in dense tree stands. More than half of the wetlands contained also dry areas, meaning that treatment wetlands constructed on drained area have problems with even water distribution to the wetland. Ditches are also potential preferential flow paths and the shortest observed residence time was less than one day, but a much longer residence time was also recorded. The water flow in these treatment wetlands consequently occur only at the surface layer (0-20 cm) of peat, not deeper, or in the ditches, which may have impact on water purification results.
NASA Technical Reports Server (NTRS)
Glaser, Paul H.; Siegel, Donald I.; Chanton, Jeffrey P.; Reeve, Andrew S.; Rosenberry, Donald O.; Corbett, J. Elizabeth; Dasgupta, Soumitri; Levy, Zeno
2016-01-01
Northern peatlands are an important source for greenhouse gases but their capacity to produce methane remains uncertain under changing climatic conditions. We therefore analyzed a 43-year time series of pore-water chemistry to determine if long-term shifts in precipitation altered the vertical transport of solutes within a large peat basin in northern Minnesota. These data suggest that rates of methane production can be finely tuned to multi-decadal shifts in precipitation that drive the vertical penetration of labile carbon substrates within the Glacial Lake Agassiz Peatlands. Tritium and cation profiles demonstrate that only the upper meter of these peat deposits was flushed by downwardly moving recharge from 1965 through 1983 during a Transitional Dry-to-Moist Period. However, a shift to a moister climate after 1984 drove surface waters much deeper, largely flushing the pore waters of all bogs and fens to depths of 2 m. Labile carbon compounds were transported downward from the rhizosphere to the basal peat at this time producing a substantial enrichment of methane in Delta C-14 with respect to the solid-phase peat from 1991 to 2008. These data indicate that labile carbon substrates can fuel deep production zones of methanogenesis that more than doubled in thickness across this large peat basin after 1984. Moreover, the entire peat profile apparently has the capacity to produce methane from labile carbon substrates depending on climate-driven modes of solute transport. Future changes in precipitation may therefore play a central role in determining the source strength of peatlands in the global methane cycle.
Glaser, Paul H.; Siegel, Donald I.; Chanton, Jeffrey P.; Reeve, Andrew S.; Rosenberry, Donald O.; Corbett, J. Elizabeth; Dasgupta, Soumitri; Levy, Zeno
2016-01-01
Northern peatlands are an important source for greenhouse gases, but their capacity to produce methane remains uncertain under changing climatic conditions. We therefore analyzed a 43 year time series of the pore-water chemistry to determine if long-term shifts in precipitation altered the vertical transport of solutes within a large peat basin in northern Minnesota. These data suggest that rates of methane production can be finely tuned to multidecadal shifts in precipitation that drive the vertical penetration of labile carbon substrates within the Glacial Lake Agassiz Peatlands. Tritium and cation profiles demonstrate that only the upper meter of these peat deposits was flushed by downwardly moving recharge from 1965 to 1983 during a Transitional Dry-to-Moist Period. However, a shift to a moister climate after 1984 drove surface waters much deeper, largely flushing the pore waters of all bogs and fens to depths of 2 m. Labile carbon compounds were transported downward from the rhizosphere to the basal peat at this time producing a substantial enrichment of methane in Δ14C with respect to the solid-phase peat from 1991 to 2008. These data indicate that labile carbon substrates can fuel deep production zones of methanogenesis that more than doubled in thickness across this large peat basin after 1984. Moreover, the entire peat profile apparently has the capacity to produce methane from labile carbon substrates depending on climate-driven modes of solute transport. Future changes in precipitation may therefore play a central role in determining the source strength of peatlands in the global methane cycle.
NASA Astrophysics Data System (ADS)
Anshari, G. Z.
2011-12-01
A major portion of tropical peats, approximately between 180,000 and 210,000 km2, occurs in Indonesia. Peat is a water body that preserves and stores enormous organic Carbon of dead biomass vegetation. In a natural state, peat helps to maintain Carbon balance, hydrological cycle, and supply of dissolved and particulate organic matters into adjacent waters. Peat disturbances drive the change from Carbon sink function into Carbon source. This paper aims to discuss variability of tropical peats and peat degradation in West Kalimantan Province. The discussions include extent and formation, biodiversity, Carbon and water storage, major properties, utilization, peat disturbances (i.e. logging, forest conversion, drainage affects, and recurrent peat fires), and peat conservation. Management options for reducing peat fires and developing sustainable peat utilization are also explored. Data were collected from both coastal and inland peats in West Kalimantan Province. This paper declares that degradation of tropical peats in Indonesia is strongly associated with anthropogenic fires, peat forest conversion, and logging. To reduce speeds of peat degradation, the current utilization of peats needs being more intensive than extensive, and preventing water table drop by managing excessive drainage that leads to substantial decline of moisture in the upper peat layer, which is subsequently dry and flammable.
Karl M. Meingast; Michael J. Falkowski; Evan S. Kane; Lynette R. Potvin; Brian W. Benscoter; Alistair M.S. Smith; Laura L. Bourgeau-Chavez; Mary Ellen Miller
2014-01-01
Wildland fire occurrence has been increasing in peatland ecosystems during recent decades. As such, there is a need for broadly applicable tools to detect and monitor controls on combustion such as surface peat moisture and water-table position. A field portable spectroradiometer was used to measure surface reflectance of two Sphagnum moss-dominated...
NASA Astrophysics Data System (ADS)
Olivia, Monita; Ismeddiyanto, Wibisono, Gunawan; Sitompul, Iskandar R.
2017-09-01
Construction in peatland has faced scarce water sources for mixing and curing concrete. It is known that peat water has high organic content and low pH that can be harmful to concrete in the environment. In some remote areas in Riau Province, contractors used peat water directly without sufficient treatments to comply with SKSNI requirements of concrete mixing water. This paper presents a study of compressive strength, porosity and sorptivity of Ordinary Portland Cement (OPC) and blended OPC-Palm Oil Fuel Ash (OPC-POFA) concrete. The specimens were mixed using natural water and peat water, then some of them were cured in fresh water and peat water. Six mixtures were investigated using a variation of cement, mixing water and curing water. Tap water is used as control mixing and curing water for all specimens. The compressive strength, porosity and sorptivity were calculated at seven and 28 days. Results indicate that the use of peat water will cause low compressive strength, high porosity and sorptivity for both OPC and OPC-POFA concrete. Using peat water and curing the specimens in tap water could improve the early strength, porosity and sorptivity of OPC concrete; however, it has an adverse effect on OPC-POFA specimens. The properties of early age concrete of both types (OPC and OPC-POFA) using peat water were as good as those with tap water. Therefore, it is suggested that peat water should be considered as mixing and curing water for concrete where tap water resources are scarce. Investigation of its long-term properties, as well as extending the observed age of concrete is recommended before any use of peat water.
NASA Astrophysics Data System (ADS)
Hughes, P. D. M.; Mauquoy, D.; van Bellen, S.; Roland, T. P.; Loader, N.; Street-Perrott, F. A.; Daley, T.
2017-12-01
The deep ombrotrophic peat bogs of Chile are located throughout the latitudes dominated by the southern westerly wind belt. The domed surfaces of these peatlands make them sensitive to variability in summer atmospheric moisture balance and the near-continuous accumulation of deep peat strata throughout the Holocene to the present day means that these sites provide undisturbed archives of palaeoclimatic change. We have reconstructed late-Holocene bog water table depths - which can be related to changes in the regional balance of precipitation to evaporation (P-E) - from a suite of peat bogs located in three areas of Tierra del Feugo, Chile, under the main path of the SWWB. Water-table depths were reconstructed from sub-fossil testate amoebae assemblages using a conventional transfer function to infer past water-table depths, based on taxonomic classification of tests but also an innovative trait-based transfer function to infer the same parameter. Water table reconstructions derived from the two methods were consistent within sites. They show that mire water tables have been relatively stable in the last 2000 years across Tierra del Feugo. Higher water table levels, most probably indicating increased effective precipitation, were found between c. 1400 and 900 cal. BP., whereas a consistent drying trend was reconstructed across the region in the most recent peat strata. This shift may represent a pronounced regional decrease in precipitation and/or a change to warmer conditions linked to strengthening of the SWWB. However, other factors such as recent thinning of the ozone layer over Tierra del Fuego could have contributed to recent shifts in some testate amoebae species.
Agricultural management impact on physical and chemical functions of European peat soils.
NASA Astrophysics Data System (ADS)
Piayda, Arndt; Tiemeyer, Bärbel; Dettmann, Ullrich; Bechtold, Michel; Buschmann, Christoph
2017-04-01
Peat soils offer numerous functions from the global to the local scale: they constitute the biggest terrestrial carbon storage on the globe, form important nutrient filters for catchments and provide hydrological buffer capacities for local ecosystems. Peat soils represent a large share of soils suitable for agriculture in temperate and boreal Europe, pressurized by increasing demands for production. Cultivated peat soils, however, show extreme mineralization rates of the organic substance and turn into hotspots for green house gas emissions, are highly vulnerable to land surface subsidence, soil and water quality deterioration and thus crop failure. The aim of this study is to analyse the impact of past agricultural management on soil physical and chemical functions of peat soils in six European countries. We conducted standardized soil mapping, soil physical/chemical analysis, ground water table monitoring and farm business surveys across 7 to 10 sites in Germany, The Netherlands, Denmark, Estonia, Finland and Sweden. The results show a strong impact of past agricultural management on peat soil functions across Europe. Peat soil under intensive arable land use consistently offer lowest bearing capacities in the upper 10 cm compared to extensive and intensive grassland use, which is a major limiting factor for successful agricultural practice on peat soils. The difference can be explained by root mat stabilization solely, since soil compaction in the upper 25cm is highest under arable land use. A strong decrease of available water capacity and saturated hydraulic conductivity is consequently observed under arable land use, further intensifying hydrological problems like ponding, drought stress and reductions of hydrological buffer capacities frequently present on cultivated peat soils. Soil carbon stocks clearly decrease with increasing land use intensity, showing highest carbon stocks on extensive grassland. This is supported by the degree of decomposition, which is lowest for extensive grass land. Both findings indicate a strong impact of land use intensity and management on soil carbon losses and peat conservation on the European scale. This study provides evidence how functions of peat soils, valuable for successful agricultural production and relevant for climate change mitigation, are impacted by agricultural management.
Interlinkages between Carbon and Water Residence Times in Peat
NASA Astrophysics Data System (ADS)
Visser, A.; Wilson, R.; Sebestyen, S.; Griffiths, N.; Chanton, J.; Veale, N.; McFarlane, K. J.; Kolka, R. K.; Guilderson, T.
2016-12-01
Peatlands play an important role in the terrestrial carbon cycle. Understanding their response to climate change is crucial to predict their role as carbon sink or source of methane and carbon dioxide to the atmosphere. The hydrology of the peatland plays a crucial role, providing anoxic conditions for peat accumulation and advective transport of nutrients and dissolved organic carbon (DOC) to methanogens at depth. The interlinkages between the hydrology and carbon-cycling at the S1 bog at the Marcell Experimental Forest were investigated as part of the SPRUCE experiment, using a combination of isotopic techniques characterizing the carbon and water ages to assess the role of advective transport in the peat pore water. Tritium and tritiogenic helium concentrations constrain the age of the pore water to less than 10 years, although gas exchange with the atmosphere complicates direct use of 3H/3He dating methods. The pore water ages further constrain the interpretation of the peat, DOC and DIC ages. While carbon-14 values of solid peat decrease from 0‰ at the surface to -550‰ (corresponding to carbon-14 ages of 8 ka) at 2m depth, the DOC and DIC shift from +50‰ to -50‰ at depth. Knowing that the advective transport time of pore water is negligible on this time scale, the shift in carbon-14 of DOC must result from peat decomposition at depth, rather than in situ aging of DOC. Combined with the DOC concentration data, the carbon-cycling rates at the SPRUCE experiment are further constrained. The integrated application of isotopes in the carbon and water cycle emphasizes the importance of understanding peatland hydrology for understanding carbon-cycle dynamics. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-675107
Effect of Organic Material on Mechanical, Hydrological, and Microstructural Properties of Mudstones
NASA Astrophysics Data System (ADS)
Altobelli, M. A.; Reece, J. S.
2016-12-01
In this research we analyze the influence of organic material on the mechanical and flow properties of mudstones. We uniformly mix peat, milled and harvested by Bord na Móna from the surface of bogs in Ireland, with natural mudstone from Site C0011 in the Nankai Trough, offshore Japan, obtained during Integrated Ocean Drilling Program Expedition 322. The mudstone had previously been disaggregated into a homogeneous dry powder of clay- and silt-sized particles. The peat is ground and dry-sieved to achieve a similar particle size distribution as the mudstone (< 63 micrometers). In order to understand the mechanical and hydrological processes affected by peat, we prepare dry peat-mudstone mixtures with three different peat concentrations: 0 wt%, 5 wt%, and 10 wt%. Then, these peat - mudstone mixtures are saturated with deionized water at a water content of 109%, formed into stable slurries, and uniaxially compressed to an axial stress of 100 kPa using resedimentation, a method that simulates the natural behavior of deposition and burial in the laboratory under controlled conditions. How the organic material interacts with the mudstone matrix and pore fluid under compression influences the physical properties of the mudstones such as porosity, compressibility, and permeability; all of which are measured in the resedimentation experiments. We will also analyze the microstructural changes as a function of peat concentration using a petrographic microscope and scanning electron microscope. Due to the fibrous and absorbent nature of peat, we anticipate the peat to force tightly packed clay particles in the mudstone apart resulting in a looser microstructure and increased porosity, and thus, a higher compressibility and permeability. Understanding the controls on the mechanical and flow properties of hydrocarbon-bearing, fine-grained formations is crucial for exploration and successful production from hydrocarbon reservoirs. Additionally, this study has large implications for soil water storage and soil amendment to improve plant growth and health in clayey soils.
Peat hybrid sorbents for treatment of wastewaters and remediation of polluted environment
NASA Astrophysics Data System (ADS)
Klavins, Maris; Burlakovs, Juris; Robalds, Artis; Ansone-Bertina, Linda
2015-04-01
For remediation of soils and purification of polluted waters, wastewaters, sorbents might be considered as an prospective group of materials and amongst them peat have a special role due to low cost, biodegradability, high number of functional groups, well developed surface area and combination of hydrophilic/hydrophobic structural elements. Peat as sorbent have good application potential for removal of trace metals, and we have demonstrated peat sorption capacities, sorption kinetics, thermodynamics in respect to metals with different valencies - Tl(I), Cu(II), Cr(III). However peat sorption capacity in respect to nonmetallic (anionic species) elements is low. Also peat mechanical properties do not support application in large scale column processes. To expand peat application possibilities the approach of biomass based hybrid sorbents has been elaborated. The concept "hybrid sorbent" in our understanding means natural, biomass based sorbent modified, covered with another sorbent material, thus combining two types of sorbent properties, sorbent functionalities, surface properties etc. As the "covering layer" both inorganic substances, mineral phases (iron oxohydroxides, oxyapatite) both organic polymers (using graft polymerization) were used. The obtained sorbents were characterised by their spectral properties, surface area, elemental composition. The obtained hybrid sorbents were tested for sorption of compounds in anionic speciation forms, for example of arsenic, antimony, tellurium and phosphorous compounds in comparison with weakly basic anionites. The highest sorption capacity was observed when peat sorbents modified with iron compounds were used. Sorption of different arsenic speciation forms onto iron-modified peat sorbents was investigated as a function of pH and temperature. It was established that sorption capacity increases with a rise in temperature, and the calculation of sorption process thermodynamic parameters indicates the spontaneity of sorption process and its endothermic nature. The recycling options of obtained compounds after their saturation with metal or non-metallic species are suggested. Acknowledgement: Support from a project 2014/0009/1DP/1.1.1.2.0/13/APIA/VIAA/044
NASA Astrophysics Data System (ADS)
Wells, C. M.; Petrone, R. M.; Sutherland, G.; Price, J. S.
2015-12-01
Linear disturbances such as roads cover vast swaths of northeastern Alberta, the majority of which are wetlands with shallow and local hydrologic connections. Thus, the effects of road construction on wetland hydrological pathways can have significant implications on water movement within the region, and by extension the productivity of vegetation communities and carbon sequestration. However, little is known about the effect that roads have on wetland hydrology. In 2013, a gravel road built within a fen peatland was reclaimed to evaluate hydrologic impacts post removal. Prior to removal, ground and surface water flow was obstructed leading to surface ponding, and vegetation mortality was observed on the up-gradient (wet) side of the road. Rebounding of the peat column was observed throughout the fen immediately following road removal in 2013 (maximum of 12 cm, mean of 2 cm), with modest but slightly smaller expansion in 2014. For both years, peat rebound was greatest in areas where the road was removed. Peat physical properties contrasted sharply between the reclaimed road (RR) peat and the adjacent, unimpacted peatland (UP). Surface bulk densities (pb, 0-10 cm) ranged from 0.1-0.25 g cm-3 along the RR compared to 0.02-0.07 g cm-3 for the UP and on average, pb for all depths were lower at the RR compared to the UP. Similar spatial patterns were observed for peat porosity. Correspondingly low horizontal saturated hydraulic conductivities (Kh) were observed along the RR compared to the UP, averaging 5.7x10-4 m s-1 and 1.7x10-3 m s-1, respectively. The local flow system across the RR and thus subsurface flow was impeded by almost half (0.4 m d-1) compared to flow observed within the UP (0.8 m d-1), leading to ponding on the upgradient side. A marked change in hydrophysical properties and ground and surface water flow patterns post road removal has implications for plant reestablishment and restoration and will form the basis of further study.
NASA Astrophysics Data System (ADS)
Koster, Kay; Erkens, Gilles; Zwanenburg, Cor
2016-04-01
It is undisputed that land subsidence threatens coastal-deltaic lowlands all over the world. Any loss of elevation (on top of sea level rise) increases flood risk in these lowlands, and differential subsidence may cause damage to infrastructure and constructions. Many of these settings embed substantial amounts of peat, which is, due to its mechanically weak organic composition, one of the main drivers of subsidence. Peat is very susceptible to volume reduction by loading and drainage induced consolidation, which dissipates pore water, resulting in a tighter packing of the organic components. Often, the current state of consolidation of peat embedded within coastal-deltaic subsidence hotspots (e.g. Venice lagoon, Mississippi delta, San Joaquin delta, Kalimantan peatlands), is somewhere between its initial (natural) and maximum compressed stage. Quantifying the current state regarding peat volume loss, is of utmost importance to predict potential (near) future subsidence when draining or loading an area. The processes of subsidence often afflict large areas (>103 km2), thus demanding large datasets to assess the current state of the subsurface. In contrast to data describing the vertical motions of the actual surface (geodesy, satellite imagery), subsurface information applicable for subsidence analysis are often lacking in subsiding deltas. This calls for new initiatives to bridge that gap. Here we introduce Cone Penetration Testing (CPT) to quantify the amount of volume loss peat layers embedded within the Holland coastal plain (the Netherlands) experienced. CPT measures soil mechanical strength, and hundreds of thousands of CPTs are conducted each year on all continents. We analyzed 28 coupled CPT-borehole observations, and found strong empirical relations between volume loss and increased peat mechanical strength. The peat lost between ~20 - 95% of its initial thickness by dissipation of excess pore water. An increase in 0.1 - 0.4 MPa of peat strength is accountable for 20 - 75 % of the volume loss, and 0.4 - 0.7 MPa for 75 - 95 % volume loss. This indicates that large amounts of volume by water dissipation has to be lost, before peat experiences a serious increase in strength, which subsequently continuous to increase with only small amount of volume loss. To demonstrate the robustness of our approach to the international field of land subsidence, we applied the obtained empirical relations to previously published CPT logs deriving from the peat-rich San Joaquin-Sacramento delta and the Kalimantan peatlands, and found volume losses that correspond with previously published results. Furthermore, we used the obtained results to predict maximum surface lowering for these areas by consolidation. In conclusion, these promising results and its worldwide popularity yielding large datasets, open the door for CPT as a generic method to contribute to quantifying the imminent threat of coastal-deltaic land subsidence.
Relationship between peatland hydrology and biogeochemistry
NASA Astrophysics Data System (ADS)
Roulet, N. T.
2012-04-01
The 'boreal forest' landscape is composed of upland forests, peatlands, some of which are treed, lakes, streams, and in North America, beaver ponds. Each of these landscapes present quite different biogeochemical environments due to differences in both abiotic and biotic processes and conditions. A significant amount of the carbon (C) in the boreal landscape is stored in peatlands, in part, due to the effect of the water storage on C cycling. The near saturated conditions affect the plants that can grow in peatlands and over the shorter term moisture variability controls the rate of C input to the peat. In the peat water limits the supply of electron donors and this has a profound effect on the C biogeochemistry. Near peat surface the moisture storage can be quite dynamic and mostly oxic conditions prevail, but redox conditions change significantly within a few tenth of a meter below the surface where water residence times increase orders of magnitude. This limits the supply of electron donors and other substrates that control the rate of C mineralization. Understanding the links among the moisture dynamics, the chemical thermodynamics of temporally variable saturated environments, and the quality of C is critical to determining the sensitivity of the C stored in peatlands to environmental change.
NASA Astrophysics Data System (ADS)
Inisheva, L. I.; Szajdak, L.; Sergeeva, M. A.
2016-04-01
The biological activity in oligotrophic peatlands at the margins of the Vasyugan Mire has been studied. It is shown found that differently directed biochemical processes manifest themselves in the entire peat profile down to the underlying mineral substrate. Their activity is highly variable. It is argued that the notion about active and inert layers in peat soils is only applicable for the description of their water regime. The degree of the biochemical activity is specified by the physical soil properties. As a result of the biochemical processes, a micromosaic aerobic-anaerobic medium is developed under the surface waterlogged layer of peat deposits. This layer contains the gas phase, including oxygen. It is concluded that the organic and mineral parts of peat bogs represent a single functional system of a genetic peat profile with a clear record of the history of its development.
NASA Astrophysics Data System (ADS)
Huang, X.; Xue, J.; Wang, X.; WANG, H.; Meyers, P. A.; Qin, Y.; Gong, L.; Ding, W.
2012-12-01
Northern peatlands are one of the very important atmospheric carbon sinks and represent about 30% of the global soil organic carbon (Gorham, 1991). In peatland conditions, high water levels and consequent anoxia make them an important source of methane. A recent study revealed that methanotrophic bacteria growing on stems or in hyaline cells of Sphagnum can provide methane derived carbon for photosynthesis (Raghoebarsing et al., 2005). This interaction has been found to be globally prevalent in peat-moss ecosystems and can contribute up to 30% of carbon for Sphagnum photosynthesis (Kip et al., 2010). Due to the uptake of 13C-depleted methane-derived CO2 and the sensitivity of methane oxidizing bacteria to the surface wetness, the carbon isotopic signatures of Sphagnum derived lipids have the potential to be used as a proxy for the surface wetness in peatlands and hence as paleoclimate archives (Nichols et al., 2009). In this study, we report the δ13C variations of the Sphagnum derived n-C23 alkane in both fresh Sphagnum and surface peat samples in the Dajiuhu peatland, a small fen located in the Shennongjia forestry region, Hubei province, central China. The δ13C23 values of Sphagnum show a negative correlation with the water level, supporting the idea that that the carbon isotope fractionation of Sphagnum is mainly manifested by the diffusion resistance of CO2 in hyaline cells of Sphagnum. However, δ13C23 values of surface peats collected in Sphagnum dominated ecosystems display a positive relation with the water level when the water level is less than 30 cm. Such an inconsistency probably results from the higher potential for methane-oxidizing activity in the lower parts of Sphagnum in fen meadows. When the water level is higher than 30 cm, the influence of symbiotic methanotrophic bacteria on Sphagnum derived n-C23 alkane is weak or nearly absent. These findings provide direct evidence to support the hypothesis that the carbon isotopic signatures of Sphagnum derived lipids can be used as a proxy of surface wetness in peatlands. References Gorham, E., 1991. Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecological Applications, 1, 182-195. Kip, N., van Winden, J.F., Pan, Y., et al., 2010. Global prevalence of methane oxidation by symbiotic bacteria in peat-moss ecosystems. Nature Geosciences 3, 617-621. Nichols, JE, Walcott, M, Bradley, R., et al., 2009. Quantitative assessment of precipitation seasonality and summer surface wetness using ombrotrophic sediments from an Arctic Norwegian peatland. Quaternary Research, 2009, 72: 443-451. Raghoebarsing, A.A., Smolders, A.J.P., Schmid, M.C., et al., 2005. Methanotrophic symbionts provide carbon for photosynthesis in peat bogs. Nature 436, 1153-1156.
Contemporary Mobilization of Legacy Pb Stores by DOM in a Boreal Peatland.
Jeremiason, Jeff D; Baumann, Erin I; Sebestyen, Stephen D; Agather, Alison M; Seelen, Emily A; Carlson-Stehlin, Benjamin J; Funke, Meghan M; Cotner, James B
2018-03-20
We examined how different landscape areas in a catchment containing a northern ombrotrophic peatland and upland mineral soils responded to dramatic decreases in atmospheric deposition of lead (Pb). Pb concentrations in the outflow stream from the peatland measured from 2009-2015 indicated continued mobilization and export of Pb derived from historic inputs to the bog. In contrast, Pb concentrations in surface peat and runoff from upland mineral soils have declined in response to reductions in atmospheric deposition. Relative to the early 1980s, Pb concentrations in the streamflow decreased only ∼50%, while Pb in surface peat and upland subsurface runoff decreased by more than 90%. Water level fluctuations in the slow-accumulating peat have allowed dissolved organic matter (DOM) to continue mobilizing Pb deposited in the peatland decades earlier. Strong correlations between dissolved organic carbon (DOC) and Pb concentrations in outflow from the peatland and in bog porewaters demonstrate Pb mobility related to DOM production. Peat stores of Pb in 2016 were less than or equal to those reported in the early 1980s despite the dry mass inventory increasing by 60-80%. Much of the loss in Pb stored in peat can be accounted for by stream runoff from the peatland.
Insights from 14C into C loss pathways in degraded peatlands
NASA Astrophysics Data System (ADS)
Evans, Martin; Evans, Chris; Allott, Tim; Stimson, Andrew; Goulsbra, Claire
2016-04-01
Peatlands are important global stores of terrestrial carbon. Lowered water tables due to changing climate and direct or indirect human intervention produce a deeper aerobic zone and have the potential to enhance loss of stored carbon from the peat profile. The quasi continuous accumulation of organic matter in active peatlands means that the age of fluvial dissolved organic carbon exported from peatland systems is related to the source depth in the peat profile. Consequently 14C analysis of DOC in waters draining peatlands has the potential not only to tell us about the source of fluvial carbon and the stability of the peatland but also about the dominant hydrological pathways in the peatland system. This paper will present new radiocarbon determinations from peatland streams draining the heavily eroded peatlands of the southern Pennine uplands in the UK. These blanket peatland systems are highly degraded, with extensive bare peat and gully erosion resulting from air pollution during the industrial revolution, overgrazing, wildfire and climatic changes. Deep and extensive gullying has significantly modified the hydrology of these systems leading to local and more widespread drawdown of water table. 14C data from DOC in drainage waters are presented from two catchments; one with extensive gully erosion and the other with a combination of gully erosion and sheet erosion of the peat. At the gully eroded site DOC in drainage waters is as old as 160 BP but at the site with extensive sheet erosion dates of up to 1069 BP are amongst the oldest recorded from blanket peatland globally These data indicate significant degradation of stored carbon from the eroding peatlands. Initial comparisons of the 14C data with modelled water table for the catchments and depth-age curves for catchment peats suggests that erosion of the peat surface, allowing decomposition of exposed older organic material is a potential mechanism producing aged carbon from the eroded catchment. This mechanism may be as important as changes in hydrological flow pathways within the peat in mobilising aged carbon from the systems.
Manasypov, Rinat M; Shirokova, Liudmila S; Pokrovsky, Oleg S
2017-02-15
Thaw of frozen peat in discontinuous permafrost zone produces a significant number of thermokarst lakes, which are known to contribute to Green House Gases (GHG) emission in the atmosphere. In palsa peatland of western Siberia, the thermokarst lake formation includes soil subsidences, lichen submergence and peat abrasion, leading to lateral spreading of the lake border, often intensified by ground fires. Mesocosm experiments were conducted during 3weeks on two thermokarst lake waters interacting in 30-L tanks with surface horizon of peat, the dominant ground vegetation (lichen Cladonia sp.) and the ash produced by lichen burning at 450°C. The obtained results allowed a better understanding of physico-chemical factors controlling the enrichment of thermokarst lake water in organic carbon and metals, and evaluating CO 2 sequestration/emission potential. The changes of dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC), major element and divalent metal concentration in response to peat and lichen biomass addition were less than a factor of 2 over full duration of the experiment. Iron (Fe) concentration in the lake water decreased by a factor of 2 to 3 after the addition of peat and lichen biomass. The concentration of low-soluble trivalent and tetravalent hydrolysates decreased by ca. 30 to 50%, presumably due to their co-precipitation with Fe hydroxide. The dissolved carbon dioxide (CO 2 ) in tank with lichen increased by a factor of 5.5±0.5, likely due to respiration of algal component in closed environment. Strong enrichment of the lake water in DIC, P, K, Ca, Mg, Si, Al, Ti, Mn, Mo, Rb, As, Sb and U upon the ash addition persisted over full duration of experiments and was significant (p<0.0001) compared to peat and lichen biomass treatments. These elements may serve as indicators of ground fire impact on thermokarst lake water's chemistry. The overall effect of ash leaching on aquatic ecosystems after ground fire of frozen Siberian peatland is predicted to be much stronger than that currently recognized for non-permafrost regions. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kiikkilä, O.; Nieminen, T.; Starr, M.; Ukonmaanaho, L.
2012-04-01
Boreal peatlands form an important terrestrial carbon reserve and are a major source of dissolved organic matter (DOM) to surface waters, particularly when disturbed through forestry practices such as draining or timber harvesting. Heavy metals show a strong affinity to organic matter and so, along with DOM, heavy metals can be mobilized and transported from the soil to surface waters and sediments where they may become toxic to aquatic organisms and pass up the food chain. The complexation of heavy metals with DOM can be expected to be related and determined by the chemical characteristics of DOM and oxidation/reducing conditions in the peat. We extracted interstitial water from peat samples and determined the concentrations of dissolved organic carbon (DOC), dissolved organic nitrogen (DON) and Al, Cu, Zn and Fe in various fractions of DOM isolated by adsorption properties (XAD-8 fractionation) and molecular-weight (ultrafiltration). The peat samples were taken from 0-30 and 30-50 cm depth in drained peatland catchments two years after whole-tree or stem-only clear-cut harvesting (Scots pine or Norway spruce) had been carried out. The samples from the upper layer had been subject to alternating saturation/aeration conditions while the deeper layer had been continuously under the water table. The fractionation of DOC and DON according to both adsorption properties and molecular-weight fractions clearly differed between the upper and lower peat layers. While the hydrophobic acid fraction contained proportionally more DOC and DON than the hydrophilic acid fraction in the upper peat layer the results were vice versa in the lower peat layer. High-molecular-weight compounds (> 100 kDa) were proportionally more abundant in the upper and low-molecular-weight compounds (< 1 kDa) in the lower peat layer. These differences are assumed to reflect differences in the aerobic/ anaerobic conditions and degree of decomposition between the two layers. The concentrations of Zn, Al, Fe and DON correlated positively with DOC concentrations whereas the concentration Cu did not correlate with DOC concentrations. Heavy metal concentrations in different molecular-weight fractions indicated that Al, Cu, Zn and Fe were mostly associated with high-molecular-weight compounds and only a small fraction existed as free metal ions in solution. There were no clear differences in the chemical characteristics of DOC or DON or heavy metal concentrations between the two harvesting treatments.
Water relations in cutover peatlands
NASA Astrophysics Data System (ADS)
Price, Jonathan S.; Ketcheson, Scott J.
Sphagnum mosses, the dominant peat-forming plant in many northern peatlands, generally do not regenerate spontaneously in mined peatlands because water transfer between the cutover peat and incipient moss diaspores cannot overcome the capillary barrier effect between the two hydraulically distinct layers. Artificial drainage networks established throughout peatlands, coupled with the removal of the acrotelm during the peat extraction process, drastically alter the natural system function through the exposure of more decomposed catotelm peat and increased compression, oxidation, and shrinkage, subsequently decreasing average pore diameter and enhancing this capillary barrier effect. Water table (WT) fluctuations, constrained within the reduced specific yield of the altered catotelm, exhibit increased variability and rapid decline. The increased effective stress caused by a declining WT can result in seasonal surface subsidence of 8 to 10 cm, thereby reducing saturated hydraulic conductivity by three orders of magnitude. Restoration efforts aim to alter the disturbed hydrological regime, creating conditions more favorable for the recolonization of Sphagnum mosses and the ultimate reestablishment of an upper acrotelm layer. Due to the large areal coverage and high organic carbon content, the response of peatlands to disturbances caused by resource extraction, and their return to functioning ecosystems, must be thoroughly addressed. This paper integrates both published and unpublished work to facilitate an overview of our understanding of the hydrological impact of peat cutting and its implications for restoration.
Comparisons of soil nitrogen mass balances for an ...
We compared the N budgets of an ombrotrophic bog and a minerotrophic fen to quantify the importance of denitrification in peatlands and their watersheds. We also compared the watershed upland mineral soils to bog/fen peat; lagg and transition zone peat to central bog/fen peat; and surface, mid-layer and deep soil and peat horizons. Bog and fen area were derived from a wetland boundary GIS data layer, and bog and fen volumes were calculated as the interpolated product of area and depth of peat. Atmospheric N deposition to the bog and fen were based on measurements from a station located 2km north of the bog watershed and 0.5km from the fen watershed. Precipitation was analyzed for nitrate (NO3-), ammonium (NH4+), and total N (TN), and aggregated to annual values. Outflow water samples from the bog and fen were collected as surface grab samples on each of the May-October sampling dates over the 2010-2013 study, and were analyzed and aggregated annually as for atmospheric N. Soil and peat samples were analyzed for N content, and for net ammonification (AM), nitrification (NT), and ambient (DN) and potential (DEA) denitrification rates. Nitrogen mass balances are based on mean annual atmospheric deposition and outflow; soil and peat standing stocks of N, and mean annual estimates of DN, weighted for contributions of the uplands, lagg or transition zone, and bog or fen hollows and hummocks, and accounting for soil depth effects. Annual deposition of N species was: N
Harvey, Judson W.; Jackson, J.M.; Mooney, R.H.; Choi, Jungyill
2000-01-01
The data presented in this report are products of an investigation that quantified interactions between ground water and surface water in Taylor Slough in Everglades National Park. Determining the extent of hydrologic interactions between wetland surface water and ground water in Taylor Slough is important because the balance of freshwater flow in the lower part of the Slough is uncertain. Although freshwater flows through Taylor Slough are quite small in comparison to Shark Slough (the larger of the two major sloughs in Everglades National Park), flows through Taylor Slough are especially important to the ecology of estuarine mangrove embayments of northeastern Florida Bay. Also, wetland and ground- water interactions must be quantified if their role in affecting water quality is to be determined. In order to define basic hydrologic characteristics of the wetland, depth of wetland peat was mapped, and hydraulic conductivity and vertical hydraulic gradients in peat were determined. During specific time periods representing both wet and dry conditions in the area, the distribution of major ions, nutrients, and water stable isotopes throughout the slough were determined. The purpose of chemical measurements was to identify an environmental tracer could be used to quantify ground-water discharge.
NASA Astrophysics Data System (ADS)
Hashimoto, A.; Akita, M.; Takahashi, Y.; Suzuki, H.; Hasegawa, Y.; Ogino, Y.; Naruse, N.; Takahashi, Y.
2016-12-01
In recent years, the smoke caused by the forest fires in Indonesia has become a serious problem. Most of the land in Indonesia is covered with peat moss, which occurs the expanding of fires due to the burning itself. Thus, the surface soil water, reflecting the amount of precipitation in the area, can become the indication of the risk of fires. This study aims to develop a new index reflecting the risk of forest fires in Indonesia using satellite remote sensing through the direct spectral measurements of peat moss soil.We have prepared the peat moss in 7 steps of soil water content measured at an accuracy of ±15 percent (Field pro, WD-3). We obtained spectra between 400nm and 1050nm (Source: halogen lamp, spectroscope: self-made space time, spectral analysis kit) from the peat moss.The obtained spectra show the difference from the previous spectral measurement for the soil in various water content. There are the features, especially, in the wavelength range of ultraviolet (400-450nm) and infrared (530-800nm) as shown in the figure; the more the soil water increases, the lower the reflectance becomes. We have developed a new index using the New deep blue band (433 453nm and NIR band 845 885nm of Landsat 8. The resulting satellite images calculated by our original index appears to reflect the risk of forest fires rather than well-known indices such as Normalized Difference Water Index and Normalized difference Soil Index.In conclusion, we have created a new index that highly reflects to the degree of soil water of a peat soil in Indonesia.
NASA Astrophysics Data System (ADS)
Gill, A. L.; Finzi, A.; Hsieh, I. F.; Giasson, M. A.
2016-12-01
High latitude peatlands represent a major terrestrial carbon store sensitive to climate change, as well as a globally significant methane source. While elevated atmospheric carbon dioxide concentrations and warming temperatures may increase peat respiration and C losses to the atmosphere, reductions in peatland water tables associated with increased growing season evapotranspiration may alter the nature of trace gas emission and increase peat C losses as CO2 relative to methane (CH4). As CH4 is a greenhouse gas with twenty times the warming potential of CO2, it is critical to understand how surface fluxes of CO2 and CH4 will be influenced by factors associated with global climate change. We used automated soil respiration chambers to assess the influence of elevated atmospheric CO2 and whole ecosystem warming on peatland CH4 and CO2 fluxes at the SPRUCE (Spruce and Peatland Responses Under Climatic and Environmental Change) Experiment in northern Minnesota. Here we report soil iCO2 and iCH4 flux responses to the first year of belowground warming and the first season of whole ecosystem warming and elevated CO2 treatments. We find that peat methane fluxes are more sensitive to warming treatments than peat CO2 fluxes, particularly in hollow peat microforms. Surface CO2:CH4 flux ratios decreased across warming treatments, suggesting that the temperature sensitivity of methane production overshadows the effect of peat drying and surface aeration in the short term. δ13C of the emitted methane was more depleted in the early and late growing season, indicating a transition from hydrogenotrophic to acetoclastic methanogenesis during periods of high photosynthetic input. The measurement record demonstrates that belowground warming has measureable impacts on the nature of peat greenhouse gas emission within one year of treatment.
NASA Astrophysics Data System (ADS)
Waddington, J. M.; Cagampan, J.; Lucchese, M.; Thompson, D. K.; Duval, T. P.
2009-05-01
The natural carbon storage function of peatland ecosystems can be severely affected by human and natural disturbances such as drainage, peat extraction, drought and wildfire. Cutover peatands, for example, become a large and persistent source of atmospheric CO2 following peat extraction. The recovery (rehabilitation, re- establishment, restoration) of disturbed peatlands to a net carbon sink depends to a large extent on the rate of recovery of the surface peat layer referred to as the acrotelm. The acrotelm serves to stabilize water table variation providing ideal conditions for vegetation re-establishment, particularly peat forming Sphagnum moss. Here we present results from several ecosystem-scale field experiments where we examined the change in hydrophysical properties of peat following peat extraction and subsequent restoration and discuss how this affects peatland-atmosphere CO2. We found that moisture retention properties of a new peat layer at a restored peatland were distinct from near- by natural and naturally regenerated sites. Despite considerable biomass accumulation and increase in peat thickness, the new peat layer differed with respect to its moisture retention properties, an indication that factors other than growth have an impact on the restoration of the returning moss layer. Similarly in an acrotelm transplant experiment we determined that the restored peatland experienced high variability in volumetric moisture content (VMC) in the capitula zone (upper 2 cm) where large diurnal changes in VMC (~30%) were observed, suggesting possible disturbance to the peat matrix structure during the extraction-restoration process. However, soil - water retention analysis and physical peat properties (porosity and bulk density) suggest that no significant differences existed between the natural and restored sites. A simple hydrologic model demonstrated that the new peat layer will become an acrotelm in ~20 years when ~20 cm of peat has accumulated, an approach which may aid in designing a long-term sampling strategy for assessing the long- term effects of restoration of disturbed peatlands on peatland hydrology and ecology. Applications of these findings to a new research collaboration on the effects of wildfire on peatland ecohydrology will be discussed.
Chemical properties of peat used in balneology
NASA Astrophysics Data System (ADS)
Szajdak, L.; Hładoń, T.
2009-04-01
The physiological activity of peats is observed in human peat-bath therapy and in the promotion of growth in some plants. Balneological peat as an ecologically clean and natural substance is perceived as being more 'human friendly' than synthetic compounds. Poland has a long tradition of using balneological peat for therapeutic purposes. Balneological peat reveals a physical effect by altering temperature and biochemical effects through biologically active substances. It is mainly used for the treatment of rheumatic diseases that are quite common in Poland. Peat represents natural product. Physico-chemical properties of peat in particular surface-active, sorption and ion exchanges, defining their biological function, depend mainly on the chemical composition and molecular structure of humic substances representing the major constituent of organic soil (peat). The carbon of organic matter of peats is composed of 10 to 20% carbohydrates, primarily of microbial origin; 20% nitrogen-containing constituents, such as amino acids and amino sugars; 10 to 20% aliphatic fatty acids, alkanes, etc.; with the rest of carbon being aromatic. For balneology peat should be highly decomposed (preferably H8), natural and clean. The content of humic acids should exceed 20% of dry weight, ash content will be less than 15 15% of dry weight, sulphur content less than 0.3% of dry weight and the amount of water more than 85%. It will not contain harmful bacteria and heavy metals. Humic substances (HS) of peat are known to be macromolecular polydisperse biphyllic systems including both hydrophobic domains (saturated hydrocarbon chains, aromatic structural units) and hydrophilic functional groups, i. e having amphiphilic character. Amphiphilic properties of FA are responsible for their solubility, viscosity, conformation, surfactant-like character and a variety of physicochemical properties of considerable biologically practical significance. The chemical composition of peats depends significantly on the genesis of peatlands and the depth of sampling. The chemical properties of peat fulvic acids (FA) have some genetic peculiarities due to the specific conditions of the process of humification of peat-forming plants in mires. The process of humification in mires takes place in the top-forming layer under amphibious moisture conditions. Substances of microbial origin are water-soluble and can participate in the formation of peat FA to a little extent. So a main source of structural units for the peat HA and FA is suggested to be organic constituents of peat forming plants of various botanical composition. The content of aromatic units in peat FA was shown to depend on the content of lignin in peat-forming plants and also of the aromatization of polysaccharides mainly due to the transformation of cellulose. FA characterized lower than humic acids molecular weight (1000-30,000). FA's are composed of a series of highly oxidized aromatic rings with a large number of side chains. Building blocks are benzene carboxylic acids and phenolic acids. These are held together by hydrogen bonding van der Waals' forces and ionic bonding. FA contains larger concentrations of nitrogen. This fraction also contains a great deal of polysaccharide materials, as well as low molecular fatty acids and cytoplasmic constituents of microorganisms. These compounds are linear, flexible colloids at low concentrations, and spherical colloids at high solution concentrations and low pH values. A more adequate knowledge of the chemical structure of humic materials will assist us in better understanding the physiological effects and also the function of these macromolecules on the health that these materials are know to exert. This improved knowledge provides us better information on chemical structure of humic substances from peats, which are responsible for pharmacotherapeutic, pharmacokinetic and biopharmaceutical effect. This structure of FA creates proper conditions for uptake of nutrient as well as bioavailability of biologically active substances. The solubilization in water by humic materials of organic substances which are otherwise water-insoluble is a matter of considerable interest to chemist deals with the problem of the function of organic matter. There has been considerable evidence that humic substances can "complex" with several biologically active substances and so modify their physiological activity. It has been noteworthy that FA can "fix" high-molecular weight water-insoluble organic compounds and make them water-soluble. FA may so act as a vehicle for the mobilization, transport and immobilization of such substances in physiological conditions. Analysis of HA and FA carried out by several analytical methods revealed that there were no chemical interaction among biologically active substances but that latter was firmly adsorbed, possible by hydrogen-bonding, on the FA surfaces. Amino acids account for the majority of organic N fraction in humic substances. Most of the amino acids in organic matter occur in bound form in the humino-peptides fraction. These amino acids are commonly bound to the central core of FA. These humino-peptides fraction of FA mediate in respiration and act as hydrogen acceptors, thus affecting oxidation-reaction reactions. Thus, what is needed at this time is more fundamental research in order to solve practical pharmacological, pharmacokinetic and biopharmaceutical problem of great significance for human health.
NASA Astrophysics Data System (ADS)
van den Akker, Jan J. H.; Hendriks, Rob F. A.
2017-04-01
About 8% of all soils in The Netherlands are peat soils which almost all drained with ditches and mainly in agricultural use as permanent pasture for dairy farming. The largest part of the peat meadow area is situated in the densely populated western provinces South- and North-Holland and Utrecht and is called the Green Heart and is valued as a historic open landscape. Conservation of these peats soil by raising water levels and converting the peat meadow areas mainly in very extensive grasslands or wet nature proved to be a very costly and slow process due to the strong opposition of farmers and many others who value the open cultural historic landscape and meadow birds. The use of submerged drains seems to be a promising solution acceptable for dairy farmers and effective in diminishing peat oxidation and so the associated subsidence and CO2 emissions. Oxidation of peat soils strongly depends on the depth of groundwater levels in dry periods. In dry periods the groundwater level can be 30 to 50 cm lower than the ditchwater level, which is 30 - 60 cm below soil surface. Infiltration of ditchwater via submerged drain can raise the groundwater level up to the ditchwater level and diminish the oxidation and associated subsidence and CO2 emissions with at least 50%. Since 2003 several pilots with submerged drains are started to check this theoretical reduction and to answer questions raised about water usage and water quality and grass yields and trafficability etcetera. In our presentation we focus on the results of a pilot in South-Holland concerning the hydrological aspects, however, include results from the other pilots to consider the long term aspects such as the reduction of subsidence. The use of submerged drains proves to be promising to reduce peat oxidation and so subsidence and CO2 emissions with at least 50%. Grass yields are more or less equal in parcels with versus parcels without submerged drains. Trafficability in wet periods is better and trampling less by the draining effect of submerged drains. This reduces losses of grass yield by trampling and increases the length of the grazing season. The use of submerged drains causes a higher water usage, however, raising ditchwater levels to derive the same peat soil conservation would require a higher amount of inlet water. The impact on ditchwater quality is in most cases positive, however, sometimes slightly negative. For the dairy farmer submerged drains are economically in the short term not effective, however in the longer term increasingly positive. For the society as a whole the use of submerged drains is a very cost effective way to reduce CO2 emissions and subsidence of peat soils in agricultural use.
Experimental burial inhibits methanogenesis and anaerobic decomposition in water-saturated peats.
Blodau, Christian; Siems, Melanie; Beer, Julia
2011-12-01
A mechanistic understanding of carbon (C) sequestration and methane (CH(4)) production is of great interest due to the importance of these processes for the global C budget. Here we demonstrate experimentally, by means of column experiments, that burial of water saturated, anoxic bog peat leads to inactivation of anaerobic respiration and methanogenesis. This effect can be related to the slowness of diffusive transport of solutes and evolving energetic constraints on anaerobic respiration. Burial lowered decomposition constants in homogenized peat sand mixtures from about 10(-5) to 10(-7) yr(-1), which is considerably slower than previously assumed, and methanogenesis slowed down in a similar manner. The latter effect could be related to acetoclastic methanogenesis approaching a minimum energy quantum of -25 kJ mol(-1) (CH(4)). Given the robustness of hydraulic properties that locate the oxic-anoxic boundary near the peatland surface and constrain solute transport deeper into the peat, this effect has likely been critical for building the peatland C store and will continue supporting long-term C sequestration in northern peatlands even under moderately changing climatic conditions.
Effect of Peat on Physicomechanical Properties of Cemented Brick
Hashim, Roslan; Kurnia, Ryan
2014-01-01
The popularity of low cost, lightweight, and environmentally affable masonry unit in building industry carries the need to investigate more flexible and adaptable brick component as well as to retain the requirements confirmed in building standards. In this study, potential use of local materials used as lightweight building materials in solving the economic problems of housing has been investigated. Experimental studies on peat added bricks have been carried out. It demonstrates the physicomechanical properties of bricks and investigates the influence of peat, sand, and cement solid bricks to the role of various types of constructional applications. The achieved compressive strength, spitting strength, flexural strength, unit weight, and ultrasonic pulse velocity are significantly reduced and the water absorption is increased with percentage wise replacement of peat as aggregate in the samples. The maximum 20% of (% mass) peat content meets the requirements of relevant well-known international standards. The experimental values illustrate that, the 44% volumetric replacement with peat did not exhibit any sudden brittle fracture even beyond the ultimate loads and a comparatively smooth surface is found. The application of peat as efficient brick substance shows a potential to be used for wall and a viable solution in the economic buildings design. PMID:24982941
Heat transport in the Red Lake Bog, Glacial Lake Agassiz Peatlands
McKenzie, J.M.; Siegel, D.I.; Rosenberry, D.O.; Glaser, P.H.; Voss, C.I.
2007-01-01
We report the results of an investigation on the processes controlling heat transport in peat under a large bog in the Glacial Lake Agassiz Peatlands. For 2 years, starting in July 1998, we recorded temperature at 12 depth intervals from 0 to 400 cm within a vertical peat profile at the crest of the bog at sub-daily intervals. We also recorded air temperature 1 m above the peat surface. We calculate a peat thermal conductivity of 0.5 W m-1 ??C-1 and model vertical heat transport through the peat using the SUTRA model. The model was calibrated to the first year of data, and then evaluated against the second year of collected heat data. The model results suggest that advective pore-water flow is not necessary to transport heat within the peat profile and most of the heat is transferred by thermal conduction alone in these waterlogged soils. In the spring season, a zero-curtain effect controls the transport of heat through shallow depths of the peat. Changes in local climate and the resulting changes in thermal transport still may cause non-linear feedbacks in methane emissions related to the generation of methane deeper within the peat profile as regional temperatures increase. Copyright ?? 2006 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Nichols, J. E.; Jackson, S. T.; Booth, R. K.; Pendall, E. G.; Huang, Y.
2005-12-01
Sediment cores from ombrotrophic peat bogs provide sensitive records of changes in precipitation/evaporation (P/E) balance. Various proxies have been developed to reconstruct surface moisture conditions in peat bogs, including testate amoebae, plant macrofossils, and peat humification. Studying species composition of testate amoeba assemblages is time consuming and requires specialized training. Humification index can be influenced by environmental factors other than moisture balance. The plant macrofossil proxy is less quantitative and cannot be performed on highly decomposed samples. We demonstrate that the ratio of C23 alkane to C29 alkane abundance may provide a simple alternative or complementary means of tracking peatland water-table depth. Data for this proxy can be collected quickly using a small sample (100 mg dry). Water-table depth decreases during drought, and abundance of Sphagnum, the dominant peat-forming genus, decreases as vascular plants increase. Sphagnum moss produces mainly medium chain-length alkanes (C21-C25) while vascular plants (grasses and shrubs) produce primarily longer chain-length alkanes (C27-C31). Therefore, C23:C29 n-alkane ratios quantitatively track the water table depth fluctuations in peat bogs. We compared C23:C29 n-alkane ratios in a core from Minden Bog (southeastern Michigan) with water table depth reconstructions based on testate-amoeba assemblages and humification. The 184-cm core spans the past ~3kyr of continuous peat deposition in the bog. Our results indicate that the alkane ratios closely track the water table depth variations, with C29 most abundant during droughts. We also explored the use of D/H ratios in Sphagnum biomarkers as a water-table depth proxy. Compound-specific hydrogen isotope ratio analyses were performed on Sphagnum biomarkers: C23 and C25 alkane and C24 acid. Dry periods are represented in these records by an enrichment of deuterium in these Sphagnum-specific compounds. These events also correlate with drought events in the testate amoeba record and the alkane abundance ratio record. These biogeochemical proxies can be used in paleohydrological studies of ombrotrophic bogs and provide a new and complimentary source of data from these underutilized paleoclimate archives.
Historical peat loss explains limited short-term response of drained blanket bogs to rewetting.
Williamson, Jennifer; Rowe, Edwin; Reed, David; Ruffino, Lucia; Jones, Peter; Dolan, Rachel; Buckingham, Helen; Norris, David; Astbury, Shaun; Evans, Chris D
2017-03-01
This study assessed the short-term impacts of ditch blocking on water table depth and vegetation community structure in a historically drained blanket bog. A chronosequence approach was used to compare vegetation near ditches blocked 5 years, 4 years and 1 year prior to the study with vegetation near unblocked ditches. Plots adjacent to and 3 m away from 70 ditches within an area of blanket bog were assessed for floristic composition, aeration depth using steel bars, and topography using LiDAR data. No changes in aeration depth or vegetation parameters were detected as a function of ditch-blocking, time since blocking, or distance from the ditch, with the exception of non-Sphagnum bryophytes which had lower cover in quadrats adjacent to ditches that had been blocked for 5 years. Analysis of LiDAR data and the observed proximity of the water table to the peat surface led us to conclude that the subdued ecosystem responses to ditch-blocking were the result of historical peat subsidence within a 4-5 m zone either side of each ditch, which had effectively lowered the peat surface to the new, ditch-influenced water table. We estimate that this process led to the loss of around 500,000 m 3 peat within the 38 km 2 study area following drainage, due to a combination of oxidation and compaction. Assuming that 50% of the volume loss was due to oxidation, this amounts to a carbon loss of 11,000 Mg C over this area, i.e. 3 Mg C ha -1 . The apparent 'self-rewetting' of blanket bogs in the decades following drainage has implications for their restoration as it suggests that there may not be large quantities of dry peat left to rewet, and that there is a risk of inundation (potentially leading to high methane emissions) along subsided ditch lines. Many peatland processes are likely to be maintained in drained blanket bog, including support of typical peatland vegetation, but infilling of lost peat and recovery of original C stocks are likely to take longer than is generally anticipated. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Geophysical survey for groundwater potential investigation in peat land area, Riau, Indonesia
NASA Astrophysics Data System (ADS)
Islami, N.; Irianti, M.; Azhar; Nor, M.; Fakhrudin
2018-04-01
Tropical forests, especially peat lands, are particularly vulnerable to forest fires. Fires are the most common disasters in peat lands in the dry season, especially in Riau Province, Indonesia. In the process of extinguishing the peat fire, several substantial problems arise to stop peat fires during this period. This study aims to determine the possibility of using ground water as a source of water to anticipate the early mitigation of peat land fires disaster. The geoelectrical resistivity surveys were used to predict the subsurface geological data including peat thickness and depth of aquifers. The geometry of peat lands was determined using geostatistics based on geoelectrical resistivity interpretation data. Peat Land thickness varies up to 4 m in the north and is thinner to the south. A shallower and deeper aquifer is available at a depth of 13 m to 18 m and 70 m to 90 m respectively. In general, the potential of groundwater in the shallow aquifer is predicted to be sufficient for peat land watering anytime.
Eutrophic mire, its characteristics and modern conditions of peat genesis
NASA Astrophysics Data System (ADS)
Inisheva, L. I.; Golubina, O. A.; Zaplatnikova, Yu. D.; Dubrovskaya, L. I.
2009-04-01
The study of structure functional organization of Siberian mire ecosystems is the base of after-effects influence of their reclamation on global changes of biosphere. The aim of this investigation is to study the structure functional organization of eutrophic mire ecosystem "Tagan". Peat deposit "Tagan" (West Siberia, 20 kilometers near Tomsk) is situated on the second flood-plain terrace of the river Tom of ancient flow channel. Maximum power of peat deposit is 9.3 meters. Subsoil is made up from sand, more seldom from loamy sand and loam. Eutrophic vegetation covers almost the whole mire. It is presented by woody sedge, sedge, sedge-moss and grass undershrub phytocenoses. The oligotrophic vegetation is presented by Sphagnum pine cotton-grass phytocenosis. There were organized three observation points on the mire in 2007. They watched dynamics of hydrothermic, redox, biological, hydrochemical regimes. There were studied physicochemical properties at given points. Peats with normal ash basically refer to grass, woody grass group of lowland type. They are characterized by high degree of decomposition which is increased down deposit. Group composition of organic matters of investigated peats showed that bitumen content in peat changes from 1.4 to 3.56%, and humid acids content is within the limits of 16.67 - 44.34 %. Water-soluble and hardly-hydrolyzed matters are contained in quantity of 19.04 - 49.76% of the whole dry peat mass. The overall nitrogen content changes within the limits of 1.76 - 3.52%. It is presented mainly by fraction of unhydrolyzed nitrogen (72.07 - 95.67% of the whole nitrogen). Highly-hydrolyzed nitrogen is the most available reserve of mineral compound of nitrogen and its content changes within the limits of 0.18 - 4.79 of the overall nitrogen. 2008 year is characterized as an average year at conditions of moistening and heat providing. Investigations, made during this year, revealed the following results. Bog waters were kept at a surface level of 20 - 69cm in summer. Peat deposit heating up to 10˚ C was observed at a depth of 120cm. Oxidizing conditions are traced up to 40 - 60cm deep. There is gradual change into restoring conditions deep in peat deposit. Very reduction conditions are observed at a depth of 60cm. Weather conditions of 2008 year were favorable for biological processes activation. In the result of their manifestation hydrochemical composition of bog waters was formed. First of all, one should pay attention to weak alkaline reaction of bog waters. Calcium content in bog waters changes from 70.2 to 150.9 mg/l. One may state calcium removal from peat deposit of eutrophic mire into an outfall. The latter is the river which is flowing along the mire. Magnesium concentration in bog waters changed within the limits of 8.5 - 42.5 mg/l. It is important to note high content of iron in individual months - up to 17.8 mg/l. Organic matters content in bog waters, which are presented by humid acids (HA) and fulvic acids (FA), is HA 3.4 - 24.65 mg/l, FA 11.0 - 58.3 mg/l. Let's, first of all, examine dynamics of individual components in bog waters. Thus, content of calcium, water-soluble carbon, and fulvic acids naturally increased in July, when it was marked combination of high temperature and minor precipitation. Active iron in bog waters had the highest concentration in spring which had gradually decreased by September (from 18 and 8 mg/l to 0.1 mg/l). Preliminary obtained results reveal bog drainage occurring at present. It is followed also from the fact that there are favorable redox conditions in a meter layer of peat deposit and high degree of peats decomposition. The examination of dynamics of hydrothermic, biological and hydrochemical regimes also is evidence of biological processes activity in eutrophic mire "Tagan". This fact, in its turn, influences on hydrochemical compound formation of bog waters.
Towards a conceptual model of hydrological change on an abandoned cutover bog, Quebec
NASA Astrophysics Data System (ADS)
van Seters, Tim E.; Price, Jonathan S.
2002-07-01
Cutover bogs do not return to functional peatland ecosystems after abandonment because re-establishment of peat-forming mosses is poor. This paper presents a conceptual model of bog disturbance caused by peat harvesting (1942-1972), and the hydrological evolution that occurred after abandonment (1973-1998). Two adjacent bogs of similar size and origin, one harvested and the other essentially undisturbed, provide the basis for understanding what changes occurred. The model is based on historical trends evident from previous surveys of land-use, bog ecology and resource mapping; and from recent hydrological and ecological data that characterize the current condition. Water balance data and historical information suggest that runoff increased and evapotranspiration decreased following drainage, but tended towards pre-disturbance levels following abandonment, as vegetation recolonized the surface and drainage became less efficient over time. Dewatering of soil pores after drainage caused shrinkage and oxidation of the peat and surface subsidence of approximately 80 cm over 57 years. Comparisons with a nearby natural bog suggest that bulk density in the upper 50 cm of cutover peat increased from 0·07 to 0·13 g cm-3, specific yield declined from 0·14 to 0·07, water table fluctuations were 67% greater, and mean saturated hydraulic conductivity declined from 4·1 × 10-5 to 1·3 × 10-5 cm s-1. More than 25 years after abandonment, Sphagnum mosses were distributed over broad areas but covered less than 15% of the surface. Areas with good Sphagnum regeneration (>10% cover) were strongly correlated with high water tables (mean -22 cm), especially in zones of seasonal groundwater discharge, artefacts of the extraction history. Forest cover expanded from 5 to 20% of the study area following abandonment. The effect of forest growth (transpiration and interception) and drainage on lowering water levels eventually will be countered by slower water movement through the increasingly dense soil, and by natural ditch deterioration. However, without management intervention, full re-establishment of natural hydrological functions will take a very long time.
NASA Astrophysics Data System (ADS)
Jungerius, Pieter Dirk; van den Ancker, Hanneke; Wevers, Nina
2013-04-01
Geodiversity is the natural and cultural range of geological, geomorphological and soil features. We analysed the large database of 19th and early 20th century paintings of Simonis and Buunk (www.Simonis-Buunk.com) to track changes in the geodiversity of Dutch peatlands since pre-photographic times. Peat dominated in two of the eight main landscapes of the Netherlands: the Lowland peats in the Holocene west and the Highland peats in the sandy Pleistocene eastern parts. Painters were mainly attracted by the lowland peats. Since more than thousand years, peat plays a major role in Dutch military security, economy, ecology and cultural life. Natural variety and cultural use resulted in a geodiversity that is unique in Europe. There are more than 100 place names with 'veen' (= peat), and surnames with 'veen' are common. Proof of the exploitation of peat for salt and fuel exists from the Roman times onwards. In the 9th century, peatlands were drained and reclaimed for growing wheat. Already in the 11th century, it was necessary to build dikes to prevent flooding, to control waterlevels to avoid further oxidation, and to convert landuse to grassland. But subsidence continued, and in the 14th century windmills were needed to drain the lands and pump the water out. In the 16th century industrial peat exploitation fuelled the rise of industries and cities. All this draining and digging caused the peat surface to shrink. The few remaining living peats are conserved by nature organisations. Geodiversity and landscape paintings In the peat landscapes, popular painting motives were high water levels, the grasslands of the 'Green Heart', the winding streams and remaining lakes. The paintings of landscapes where peat had been removed, show watermanagement adaptations: wind mills, different water levels, canals made for the transport of fuel, bridges, tow paths and the 'plassen', i.e. the lakes left after peat exploitation. The droogmakerijen (reclaimed lakes), now 2 to 5 m below sealevel, were less inspiring. Examples of geodiversity changes illustrated by the landscape paintings • Peat extraction stopped • Land use changed e.g. the deforestation of the 'Bovenlanden' • Erosion by waves and boats caused the collapse of peat islands in the artificial lakes • Peat polders of the Green Heart were sacrificed for building projects • 90% of the original wind mills were replaced by electrical and motor pumps • Horse traction was replaced by motor vehicles, which made tow paths and high wooden bridges redundant. • Dam burst risk increased and skating scenes disappeared with climate change, References Jungerius, P.D., 2010. Sea level rise and the response of the Dutch people - Adaptive strategies based on geomorphologic principles give sustainable solutions. In: Martini I.P.& Chesworth, W.(eds.) Landscapes and Societies. Springer Verlag.
Serkebaeva, Yulia M; Kim, Yongkyu; Liesack, Werner; Dedysh, Svetlana N
2013-01-01
Northern peatlands play a key role in the global carbon and water budget, but the bacterial diversity in these ecosystems remains poorly described. Here, we compared the bacterial community composition in the surface (0-5 cm depth) and subsurface (45-50 cm) peat layers of an acidic (pH 4.0) Sphagnum-dominated wetland, using pyrosequencing of 16S rRNA genes. The denoised sequences (37,229 reads, average length ∼430 bp) were affiliated with 27 bacterial phyla and corresponded to 1,269 operational taxonomic units (OTUs) determined at 97% sequence identity. Abundant OTUs were affiliated with the Acidobacteria (35.5±2.4% and 39.2±1.2% of all classified sequences in surface and subsurface peat, respectively), Alphaproteobacteria (15.9±1.7% and 25.8±1.4%), Actinobacteria (9.5±2.0% and 10.7±0.5%), Verrucomicrobia (8.5±1.4% and 0.6±0.2%), Planctomycetes (5.8±0.4% and 9.7±0.6%), Deltaproteobacteria (7.1±0.4% and 4.4%±0.3%), and Gammaproteobacteria (6.6±0.4% and 2.1±0.1%). The taxonomic patterns of the abundant OTUs were uniform across all the subsamples taken from each peat layer. In contrast, the taxonomic patterns of rare OTUs were different from those of the abundant OTUs and varied greatly among subsamples, in both surface and subsurface peat. In addition to the bacterial taxa listed above, rare OTUs represented the following groups: Armatimonadetes, Bacteroidetes, Chlamydia, Chloroflexi, Cyanobacteria, Elusimicrobia, Fibrobacteres, Firmicutes, Gemmatimonadetes, Spirochaetes, AD3, WS1, WS4, WS5, WYO, OD1, OP3, BRC1, TM6, TM7, WPS-2, and FCPU426. OTU richness was notably higher in the surface layer (882 OTUs) than in the anoxic subsurface peat (483 OTUs), with only 96 OTUs common to both data sets. Most members of poorly studied phyla, such as the Acidobacteria, Verrucomicrobia, Planctomycetes and the candidate division TM6, showed a clear preference for growth in either oxic or anoxic conditions. Apparently, the bacterial communities in surface and subsurface layers of northern peatlands are highly diverse and taxonomically distinct, reflecting the different abiotic conditions in microhabitats within the peat profile.
Scales and Patterns of Nitrate Transport and Transformation in the Hyporheic Zone of a Lowland River
NASA Astrophysics Data System (ADS)
Naden, E.; Krause, S.; Tecklenburg, C.; Munz, M.
2009-04-01
The Hyporheic Zone (HZ) represents the spatially and temporally variable part of the streambed that is affected by the mixture of groundwater and surface water and often characterised by strong redox gradients and high turnover rates of redox reactive substances. The HZ has often been understood as a complex bioreactor with a high potential to affect groundwater-surface water exchange as well control the chemical signature of waters along the hyporheic passage. Currently, 73% of groundwater and 28% of UK rivers sampled exhibit either high nitrate levels or rising trends (Defra, 2008) Because of the high metabolic rates that have often be observed, the HZ is by many expected to potentially ameliorate groundwater nitrate fluxes and thus to reduce nitrate pollution and benefit freshwater ecosystems. The objective of this pilot study was to set up a monitoring program on a typical lowland river within glacio-fluvial deposits and well connected to the shallow groundwater aquifer. This study aims to derive a conceptual model of hyporheic exchange and nutrient metabolism in an agriculturally used lowland system including the development of upscaling strategies that allow for the assessment of hyporheic uptake or contribution on a subcatchment scale. The research area covers a 250 metre stream reach of the River Tern (Shropshire, UK), a lowland groundwater dependent surface water body at risk of failing to achieve ‘good water' status under the WFD, primarily due to diffuse agricultural pollution. In two horizontal arrays 42 multi piezometers have been installed in the river bed offering sampling from between three and eight sampling points ranging from 5 cm to 200 cm depth. These allow the sampling of streambed porewater from more than 150 locations. Additionally, ten shallow groundwater boreholes (up to 3m depth) have been installed within the riparian floodplain. From June to September 2008 head measurements were taken at the streambed piezometers, riparian groundwater boreholes and the river in order to determine the groundwater flowfield and exchange with the surface water. At the same time interval streambed pore water and riparian groundwater were sampled from piezometers and boreholes alongside surface water samples from the river. The samples were analysed for dissolved oxygen and major anion concentrations. Initial results confirm indicate that the water sources mixing in the HZ are statistically distinctive. In contrast to the many observed head water streams the exchange between groundwater and surface water is not just determined by gradually changing hydraulic conductivities of the sediment material but strongly controlled by the spatial pattern of a discontinuous impermeable regional peat layer located in 50 cm depth on average. The peat layer is separating the fluxes within the streambed into two (partially connected) flow systems, with semi-confined conditions underneath and pattern of surface water mixing above the peat. Areas where the peat layer is disrupted are characterised by strong connection of both flow systems. Dependent on flow paths and residence times redox conditions and nitrate concentrations are showing substantial changes along the hyporheic flow path. The spatial very heterogeneous patterns of nitrate concentrations in the streambed were found controlled by complex flow processes at multiple scales covering small scale hyporheic exchange in pools, riffles and sand bars as well as large scale pattern of groundwater - surface water connectivity and riparian influences.
Response of anaerobic carbon cycling to water table manipulation in an Alaskan rich fen
E.S. Kane; M.R. Chivers; M.S. Turetsky; C.C. Treat; D.G. Petersen; M. Waldrop; J.W. Harden; A.D. McGuire
2013-01-01
To test the effects of altered hydrology on organic soil decomposition, we investigated CO2 and CH4 production potential of rich-fen peat (mean surface pH = 6.3) collected from a field water table manipulation experiment including control, raised and lowered water table treatments. Mean anaerobic CO2...
Ecosystem state shifts during long-term development of an Amazonian peatland.
Swindles, Graeme T; Morris, Paul J; Whitney, Bronwen; Galloway, Jennifer M; Gałka, Mariusz; Gallego-Sala, Angela; Macumber, Andrew L; Mullan, Donal; Smith, Mark W; Amesbury, Matthew J; Roland, Thomas P; Sanei, Hamed; Patterson, R Timothy; Sanderson, Nicole; Parry, Lauren; Charman, Dan J; Lopez, Omar; Valderamma, Elvis; Watson, Elizabeth J; Ivanovic, Ruza F; Valdes, Paul J; Turner, T Edward; Lähteenoja, Outi
2018-02-01
The most carbon (C)-dense ecosystems of Amazonia are areas characterized by the presence of peatlands. However, Amazonian peatland ecosystems are poorly understood and are threatened by human activities. Here, we present an investigation into long-term ecohydrological controls on C accumulation in an Amazonian peat dome. This site is the oldest peatland yet discovered in Amazonia (peat initiation ca. 8.9 ka BP), and developed in three stages: (i) peat initiated in an abandoned river channel with open water and aquatic plants; (ii) inundated forest swamp; and (iii) raised peat dome (since ca. 3.9 ka BP). Local burning occurred at least three times in the past 4,500 years. Two phases of particularly rapid C accumulation (ca. 6.6-6.1 and ca. 4.9-3.9 ka BP), potentially resulting from increased net primary productivity, were seemingly driven by drier conditions associated with widespread drought events. The association of drought phases with major ecosystem state shifts (open water wetland-forest swamp-peat dome) suggests a potential climatic control on the developmental trajectory of this tropical peatland. A third drought phase centred on ca. 1.8-1.1 ka BP led to markedly reduced C accumulation and potentially a hiatus during the peat dome stage. Our results suggest that future droughts may lead to phases of rapid C accumulation in some inundated tropical peat swamps, although this can lead ultimately to a shift to ombrotrophy and a subsequent return to slower C accumulation. Conversely, in ombrotrophic peat domes, droughts may lead to reduced C accumulation or even net loss of peat. Increased surface wetness at our site in recent decades may reflect a shift towards a wetter climate in western Amazonia. Amazonian peatlands represent important carbon stores and habitats, and are important archives of past climatic and ecological information. They should form key foci for conservation efforts. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
Gutknecht, J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Kluber, L. A. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Hanson, P. J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Schadt, C. W. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.
2016-06-01
This data set provides the peat water content and peat temperature at time of sampling for peat cores collected before and during the SPRUCE Whole Ecosystem Warming (WEW) study. Cores for the current data set were collected during the following bulk peat sampling events: 13 June 2016 and 23 August 2016. Over time, this dataset will be updated with each new major bulk peat sampling event, and dates/methods will be updated accordingly.
An ecologic study of peat landforms in Canada and Alaska
NASA Technical Reports Server (NTRS)
Glaser, P. H.
1986-01-01
The role of groundwater and surface runoff in controlling the water chemistry and development of peat landforms in northern Minnesota are described. The LANDSAT imagery taken duing spring break-up are particularly valuable in identifying potential zones of groundwater discharge. The vascular floras of raised bogs in eastern North Americas demonstrating the remarkabe uniformity of the ombrotrophic flora over broad geographic regions are described. The evolution of peat landforms in the major boreal peatlands of eastern America is examined. The LANDSAT imagery is used to determine the area of patterned to featureless peatlands, the area of ombrotrophic bog relative to minerotrophic fen, and the relative size and degree of streamlining of island landforms entirely composed of peat. Such measurements can be used to assess the role of climate, time, and hydrology in controlling the formation of peatland patterns across broad geographic regions.
NASA Astrophysics Data System (ADS)
Tuukkanen, Tapio; Marttila, Hannu; Kløve, Bjørn
2014-05-01
Peatland drainage and peat extraction operations change soil properties and expose bare peat to erosion forces, resulting in increased suspended sediment (SS) loads to downstream water bodies. SS yields from peat extraction areas are known to vary significantly between sites, but the contribution of peat properties and catchment characteristics to this variation is not well understood. In this study, we investigated peat erosion at 20 Finnish peat extraction sites by conducting in situ and laboratory measurements on peat erodibility and associated peat properties (degree of humification, peat type, bulk density, loss on ignition, porosity, moisture content, and shear strength), and by comparing the results with monitored long-term SS concentrations and loads at each catchment outlet. Here, we used a cohesive strength meter (CSM) to measure direct erosion thresholds for undisturbed soil cores collected from each study site. The results suggested that the degree of peat decomposition clearly affects peat erodibility and explains much of the variation in SS concentration between the study sites. According to CSM tests, critical shear stresses for particle entrainment were lowest (on average) in well-decomposed peat samples, while undecomposed, dry and fiber rich peat generally resisted erosion very well. Furthermore, the results indicated that two separate critical shear stresses often exist in moderately decomposed peat. In these cases, the well-decomposed parts of peat samples eroded first at relatively low shear stresses and remaining peat fibers prevented further erosion until a much higher shear stress was reached. In addition to peat soil properties, the study showed that the erosion of mineral subsoil may play a key role in runoff water SS concentration at peat extraction areas with drainage ditches extending into the mineral soil. The interactions between peat properties and peat erodibility found in this study as well as critical shear stress values obtained can be used for several purposes in e.g. water conservation and sediment management planning for peat extraction areas and other bare peat-covered catchments.
NASA Astrophysics Data System (ADS)
Brouns, Karlijn; Eikelboom, Tessa; Jansen, Peter C.; Janssen, Ron; Kwakernaak, Cees; van den Akker, Jan J. H.; Verhoeven, Jos T. A.
2015-02-01
Dutch peatlands have been subsiding due to peat decomposition, shrinkage and compression, since their reclamation in the 11th century. Currently, subsidence amounts to 1-2 cm/year. Water management in these areas is complex and costly, greenhouse gases are being emitted, and surface water quality is relatively poor. Regional and local authorities and landowners responsible for peatland management have recognized these problems. In addition, the Netherlands Royal Meteorological Institute predicts higher temperatures and drier summers, which both are expected to enhance peat decomposition. Stakeholder workshops have been organized in three case study areas in the province of Friesland to exchange knowledge on subsidence and explore future subsidence rates and the effects of land use and management changes on subsidence rates. Subsidence rates were up to 3 cm/year in deeply drained parcels and increased when we included climate change in the modeling exercises. This means that the relatively thin peat layers in this province (ca 1 m) would shrink or even disappear by the end of the century when current practices continue. Adaptation measures were explored, such as extensive dairy farming and the production of new crops in wetter conditions, but little experience has been gained on best practices. The workshops have resulted in useful exchange of ideas on possible measures and their consequences for land use and water management in the three case study areas. The province and the regional water board will use the results to develop land use and water management policies for the next decades.
Kurylyk, Barret L.; Masaki, Masaki; Quinton, William L.; McKenzie, Jeffrey M.; Voss, Clifford I.
2016-01-01
Recent climate change has reduced the spatial extent and thickness of permafrost in many discontinuous permafrost regions. Rapid permafrost thaw is producing distinct landscape changes in the Taiga Plains of the Northwest Territories, Canada. As permafrost bodies underlying forested peat plateaus shrink, the landscape slowly transitions into unforested wetlands. The expansion of wetlands has enhanced the hydrologic connectivity of many watersheds via new surface and near-surface flow paths, and increased streamflow has been observed. Furthermore, the decrease in forested peat plateaus results in a net loss of boreal forest and associated ecosystems. This study investigates fundamental processes that contribute to permafrost thaw by comparing observed and simulated thaw development and landscape transition of a peat plateau-wetland complex in the Northwest Territories, Canada from 1970 to 2012. Measured climate data are first used to drive surface energy balance simulations for the wetland and peat plateau. Near-surface soil temperatures simulated in the surface energy balance model are then applied as the upper boundary condition to a three-dimensional model of subsurface water flow and coupled energy transport with freeze-thaw. Simulation results demonstrate that lateral heat transfer, which is not considered in many permafrost models, can influence permafrost thaw rates. Furthermore, the simulations indicate that landscape evolution arising from permafrost thaw acts as a positive feedback mechanism that increases the energy absorbed at the land surface and produces additional permafrost thaw. The modeling results also demonstrate that flow rates in local groundwater flow systems may be enhanced by the degradation of isolated permafrost bodies.
Flow path oscillations in transient ground-water simulations of large peatland systems
Reeve, A.S.; Evensen, R.; Glaser, P.H.; Siegel, D.I.; Rosenberry, D.
2006-01-01
Transient numerical simulations of the Glacial Lake Agassiz Peatland near the Red Lakes in Northern Minnesota were constructed to evaluate observed reversals in vertical ground-water flow. Seasonal weather changes were introduced to a ground-water flow model by varying evapotranspiration and recharge over time. Vertical hydraulic reversals, driven by changes in recharge and evapotranspiration were produced in the simulated peat layer. These simulations indicate that the high specific storage associated with the peat is an important control on hydraulic reversals. Seasonally driven vertical flow is on the order of centimeters in the deep peat, suggesting that seasonal vertical advective fluxes are not significant and that ground-water flow into the deep peat likely occurs on decadal or longer time scales. Particles tracked within the ground-water flow model oscillate over time, suggesting that seasonal flow reversals will enhance vertical mixing in the peat column. The amplitude of flow path oscillations increased with increasing peat storativity, with amplitudes of about 5 cm occurring when peat specific storativity was set to about 0.05 m-1. ?? 2005 Elsevier B.V. All rights reserved.
Long-term purification efficiency of a wetland constructed to treat runoff from peat extraction.
Karjalainen, Satu M; Heikkinen, Kaisa; Ihme, Raimo; Kløve, Bjørn
2016-01-01
Peat extraction increases the phosphorus, nitrogen, organic matter, suspended solids, and iron concentrations in runoff, resulting in negative effects on downstream water bodies. Wetlands are commonly used as natural cost-effective solutions to mitigate these negative effects. This study analyzed changes in the quality of runoff water from peat extraction areas and the long-term efficiency of constructed wetlands. The results indicate that the quality of runoff water changed after the initial drainage and during peat extraction. Nitrogen leached at high concentrations in the early stages of peat extraction following drainage, whereas the leaching of iron and phosphorus increased after peat extraction from deeper layers. Comparison of water quality and impurities retained immediately after treatment wetland construction and 14 years later showed that the treatment wetland remained functional, with good retention capacity, over a long period.
NASA Astrophysics Data System (ADS)
Chen, X.; Comas, X.; Binley, A. M.; Slater, L. D.
2017-12-01
Methane can accumulate in the gaseous phase in peats, and enter the atmosphere as gas bubbles with a mass flux higher than that via diffusion and plant-mediated pathways. A complete understanding of the mechanisms regulating bubble storage in peats remains incomplete. We developed a layered model to quantify the storage of gas bubbles over a peat column based on a general lumped capacitance model. This conceptual model was applied to explain the effects of peat structure on bubble storage at different depths observed in a laboratory experiment. A peat monolith was collected from the Everglades, a subtropical wetland located in Florida (USA), and kept submerged in a cuboid chamber over 102 days until gas bubble saturation was achieved. Time-lapse ground-penetrating radar (GPR) was used to estimate changes in gas content of each layer and the corresponding average dimensions of stored gas bubbles. The results highlight a hotspot layer of bubble accumulation at depths between 5 and 10 cm below the monolith surface. Bubbles in this shallow hotspot layer were larger relative to those in deeper layers, whilst the degree of decomposition of the upper layers was generally smaller than that of the lower layers based on von Post humification tests. X-ray Computer tomography (CT) was applied to resin-impregnated peat sections from different depths and the results showed that a higher porosity promotes bubbles storage. The stored gas bubbles were released by changing water levels and the air CH4 concentrations above the peat monolith were measured using a flow-through chamber system to confirm the high CH4 concentration in the stored bubbles. Our findings suggest that bubble capacitance is related to the difference in size between gas bubbles and peat pores. This work has implications for better understanding how changes in water table elevation associated with climate change and sea level rise (particularly for freshwater wetlands near coastal areas like the Everglades) may potentially alter bubble sizes, thus bubble storage in peats.
Applications of peat-based sorbents for removal of metals from water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, A.D.; Stack, E.M.; Eltayeb, S.
1995-12-31
The results reported in this paper are derived from one part of an ongoing investigation of peat sorption properties, in particular, the capacities of acid-treated peats to adsorb chromium, nickel, zinc, copper, and cadmium from water. Acid treatment was done to remove as much previously adsorbed metal as possible before testing. Four peat types were selected for study, two highly decomposed types (a woody, Taxodium-dominated peat from the Okefenokee Swamp of Georgia and a sedge-dominated, charcoal-rich peat from the Tamiami Trail region of Florida) and two less decomposed ones (a Sphagnum moss-dominated peat from Maine and a Nymphaea-dominated peat frommore » the Okefenokee Swamp of Georgia). Single metal and mixed metal solutions were tested in slurry experiments with each peat type. Solutions were analyzed using a Perkin-Elmer model 305B Flame Atomic Absorption Spectrophotometer. In single metal tests, chromium and copper tended to be adsorbed to a greater extent than the other metals. Three of the peats were found to be capable of adsorbine more copper ions than zince ions, while a fourth type adsorbed approximately the same amounts of each. Degree of decomposition of the peats tended to affect sorption properties for certain metals. The results of batch studies revealed that chromium was always preferentially adsorbed regardless of the peat type tested. The results of these studies further confirm that remediation of metal-contaminated waters using peats will require selection of specific peats to match the contaminants.« less
Dependency of Ecosystem Respiration in a Cool Temperate Bog on Peat Temperature and Water Table
NASA Astrophysics Data System (ADS)
Moore, T.; Lafleur, P.; Roulet, N.; Frolking, S.
2003-12-01
We measured ecosystem respiration (ER) from nighttime net ecosystem exchange of carbon dioxide determined from an eddy covariance tower located in a large ombrotrophic bog near Ottawa, Canada. Measurements were made from May to October over 5 years, 1998 to 2002. Ecosystem respiration ranged from <0.05 mg CO2/m2/s in spring (May) and late fall (late October) to 0.10-0.15 mg CO2/m2/s during the summer (July-August). As anticipated, there was a strong relationship between ER and peat temperatures, such as at a depth of 5 cm (r2 = 0.63). Q10 over 5° to 15° C varied from 2.2 to 4.2 depending upon the choice of temperature level and location within a hummock or hollow. Unexpected for a wetland ecosystem, there was only a weak relationship between ER and water table position (r2 = 0.11). Comparison of ER in early and late summer, 2002 with similar surface temperature revealed no significant difference in ER. A laboratory incubation of peat cores at different moisture contents showed that CO2 production was reduced by drying in the surface samples, but there was little decrease in samples from below a depth of 30 cm. We believe that the lack of correlation between ER and water table position in this ecosystem results from an increase in CO2 production at depth compensating a decrease in production of CO2 by heterotrophic respiration in the near surface layers and autotrophic respiration in the moss community.
NASA Astrophysics Data System (ADS)
Shotyk, William
2013-04-01
A bog is much more than a waterlogged ecosystem where organic matter accumulates as peat. Peatlands such as bogs represent a critical link between the atmosphere, hydrosphere, and biosphere. Plants growing at the surface of ombrotrophic bogs receive nutrients exclusively from the atmosphere. Despite the variations in redox status caused by seasonal fluctuations in depth to water table, the low pHof the waters, and abundance of dissolved organic matter, bogs preserve a remarkably reproducible history of atmospheric pollution, climate change, landscape evolution and human history. For example, peat cores from bogs in Europe and North America have provided detailed reconstructions of the changing rates and sources of Ag, Cd, Hg, Pb, Sb, and Tl, providing new insights into the geochemical cycles of these elements, including the massive perturbations induced by human activities beginning many thousands of years ago. Despite the low pH, and perhaps because of the abundance of dissolved organic matter, bogs preserve many silicate and aluminosilicate minerals which renders them valuable archives of atmospheric dust deposition and the climate changes which drive them. In the deeper, basal peat layers of the bog, in the minerotrophic zone where pore waters are affected bymineral-water interactions in the underlying and surrounding soils and sediments, peat serves as animportant link to the hydrosphere, efficiently removing from the imbibed groundwaters such trace elements as As, Cu, Mo, Ni, Se, V, and U. These removal processes, while incompletely understood, are so effective that measuring the dissolved fraction of trace elements in the pore waters becomes a considerable challenge even for the most sophisticated analytical laboratories. While the trace elements listed above are removed from groundwaters (along with P and S), elements such as Fe and Mn are added to the waters because of reductive dissolution, an important first step in the formation of lacustrine Fe and Mn nodules. While these important chemical reactions have taken place silently and imperceptibly over millenia acrossthe Earth wherever climate and water allow bogs to form, at the same time, peat bogs represent an important component of the biosphere and provide a home to many unique plants and animals, thereby contributing to the vast biodiversity found on Earth.
NASA Astrophysics Data System (ADS)
Frank, S.; Tiemeyer, B.; Gelbrecht, J.; Freibauer, A.
2014-04-01
Anthropogenic drainage of peatlands releases additional greenhouse gases to the atmosphere, and dissolved carbon (C) and nutrients to downstream ecosystems. Rewetting drained peatlands offers a possibility to reduce nitrogen (N) and C losses. In this study, we investigate the impact of drainage and rewetting on the cycling of dissolved C and N as well as on dissolved gases, over a period of 1 year and a period of 4 months. We chose four sites within one Atlantic bog complex: a near-natural site, two drained grasslands with different mean groundwater levels and a former peat cutting area rewetted 10 years ago. Our results clearly indicate that long-term drainage has increased the concentrations of dissolved organic carbon (DOC), ammonium, nitrate and dissolved organic nitrogen (DON) compared to the near-natural site. DON and ammonium contributed the most to the total dissolved nitrogen. Nitrate concentrations below the mean groundwater table were negligible. The concentrations of DOC and N species increased with drainage depth. In the deeply-drained grassland, with a mean annual water table of 45 cm below surface, DOC concentrations were twice as high as in the partially rewetted grassland with a mean annual water table of 28 cm below surface. The deeply drained grassland had some of the highest-ever observed DOC concentrations of 195.8 ± 77.3 mg L-1 with maximum values of >400 mg L-1. In general, dissolved organic matter (DOM) at the drained sites was enriched in aromatic moieties and showed a higher degradation status (lower DOC to DON ratio) compared to the near-natural site. At the drained sites, the C to N ratios of the uppermost peat layer were the same as of DOM in the peat profile. This suggests that the uppermost degraded peat layer is the main source of DOM. Nearly constant DOM quality through the profile furthermore indicated that DOM moving downwards through the drained sites remained largely biogeochemically unchanged. Unlike DOM concentration, DOM quality and dissolved N species distribution were similar in the two grasslands and thus unaffected by the drainage depth. Methane production during the winter months at the drained sites was limited to the subsoil, which was quasi-permanently water saturated. The recovery of the water table in the winter months led to the production of nitrous oxide around mean water table depth at the drained sites. The rewetted and the near-natural site had comparable DOM quantity and quality (DOC to DON ratio and aromaticity). 10 years after rewetting quasi-pristine biogeochemical conditions have been re-established under continuously water logged conditions in the former peat cut area. Only the elevated dissolved methane and ammonium concentrations reflected the former disturbance by drainage and peat extraction. Rewetting via polder technique seems to be an appropriate way to revitalize peatlands on longer timescales and to improve the water quality of downstream water bodies.
Surface-Water and Ground-Water Interactions in the Central Everglades, Florida
Harvey, Judson W.; Newlin, Jessica T.; Krest, James M.; Choi, Jungyill; Nemeth, Eric A.; Krupa, Steven L.
2004-01-01
Recharge and discharge are hydrological processes that cause Everglades surface water to be exchanged for subsurface water in the peat soil and the underlying sand and limestone aquifer. These interactions are thought to be important to water budgets, water quality, and ecology in the Everglades. Nonetheless, relatively few studies of surface water and ground water interactions have been conducted in the Everglades, especially in its vast interior areas. This report is a product of a cooperative investigation conducted by the USGS and the South Florida Water Management District (SFWMD) aimed at developing and testing techniques that would provide reliable estimates of recharge and discharge in interior areas of WCA-2A (Water Conservation Area 2A) and several other sites in the central Everglades. The new techniques quantified flow from surface water to the subsurface (recharge) and the opposite (discharge) using (1) Darcy-flux calculations based on measured vertical gradients in hydraulic head and hydraulic conductivity of peat; (2) modeling transport through peat and decay of the naturally occurring isotopes 224Ra and 223Ra (with half-lives of 4 and 11 days, respectively); and (3) modeling transport and decay of naturally occurring and 'bomb-pulse' tritium (half-life of 12.4 years) in ground water. Advantages and disadvantages of each method for quantifying recharge and discharge were compared. In addition, spatial and temporal variability of recharge and discharge were evaluated and controlling factors identified. A final goal was to develop appropriately simplified (that is, time averaged) expressions of the results that will be useful in addressing a broad range of hydrological and ecological problems in the Everglades. Results were compared with existing information about water budgets from the South Florida Water Management Model (SFWMM), a principal tool used by the South Florida Water Management District to plan many of the hydrological aspects of the Everglades restoration. A century of water management for flood control and water storage in the Everglades resulted in the creation of the Water Conservation Areas (WCAs). Construction of the major canals began in the 1910s and the systems of levees that enclose the basins and structures that move water between basins were largely completed by the 1950s. The abandoned wetlands that remained outside of the Water Conservation areas tended to dry out and subside by 10 feet or more, which created abrupt transitions in land-surface elevations and water levels across the levees. The increases in topographic and hydraulic gradients near the margins of the WCAs, along with rapid pumping of water between basins to achieve management objectives, have together altered the patterns of recharge and discharge in the Everglades. The most evident change is the increase in the magnitude of recharge (on the upgradient side) and discharge (on the downgradient side) of levees separating WCA-2A from other basins or areas outside. Recharge and discharge in the vast interior of WCA-2A also likely have increased, but fluxes in the interior wetlands are more subtle and more difficult to quantify compared with areas close to the levees. Surface-water and ground-water interactions differ in fundamental ways between wetlands near WCA-2A's boundaries and wetlands in the basin's interior. The levees that form the WCA's boundaries have introduced step functions in the topographic and hydraulic gradients that are important as a force to drive water flow across the wetland ground surface. The resulting recharge and discharge fluxes tend to be unidirectional (connecting points of recharge on the upgradient side of the levee with points of discharge on the downgradient side), and fluxes are also relatively steady in magnitude compared with fluxes in the interior. Recharge flow paths are also relatively deep in their extent near levees, with fluxes passing entirely through the 1-m peat layer and inte
Review of the inorganic geochemistry of peats and peatland waters
NASA Astrophysics Data System (ADS)
Shotyk, William
1988-06-01
The major floristic and geochemical differences between bogs, fens, and swamps are summarized, and the most common peat types described. This is followed by a critical, historical review of the literature. The methods used to measure the pH of peatland (mire) waters are examined, and the pH range of various peatland types is reported. In addition, horizontal and vertical pH variations are illustrated, and factors affecting the pH of these waters reviewed. The cause of the low pH of surface waters of Sphagnum bogs (approximately pH 4) is critically investigated, and the relative importance of dissolved CO 2 and other inorganic acids, and organic acids to the low pH is assessed. Cation exchange on the surfaces of Sphagnum mosses is found to be a relatively unimportant acidification mechanism, but important to the chemical ecology of the plants. The redox chemistry of mire waters is described in terms of the geochemistry of such redox indicators as O 2, CO 2, CH 4, CO, H 2, H 2S, SO 42-, native Cu, and siderite (FeCO 3). Published studies of Eh in peatlands are cited, and the problems of Eh measurement and interpretation are explored. The chemical composition of mire waters (major and trace metals, and nonmetallic species) is examined, and factors affecting their composition reported. The abundance and distribution of mineral matter in peats is described, and the occurrence and formation of minerals of Fe (pyrite and other sulphides, siderite, vivianite), Cu (chalcopyrite, native Cu, covellite) and Zn (smithsonite and wurtzite) investigated. The abundance and distribution of major elements (Si, Al, Na, K, Mg, Ca) and trace metals (Ni, V, Cr, Fe, Mn, Cu, U, Zn, Pb) is described, and factors affecting their solubility examined.
Tang, R; Clark, J M; Bond, T; Graham, N; Hughes, D; Freeman, C
2013-02-01
Catchments draining peat soils provide the majority of drinking water in the UK. Over the past decades, concentrations of dissolved organic carbon (DOC) have increased in surface waters. Residual DOC can cause harmful carcinogenic disinfection by-products to form during water treatment processes. Increased frequency and severity of droughts combined with and increased temperatures expected as the climate changes, have potentials to change water quality. We used a novel approach to investigate links between climate change, DOC release and subsequent effects on drinking water treatment. We designed a climate manipulation experiment to simulate projected climate changes and monitored releases from peat soil and litter, then simulated coagulation used in water treatment. We showed that the 'drought' simulation was the dominant factor altering DOC release and affected the ability to remove DOC. Our results imply that future short-term drought events could have a greater impact than increased temperature on DOC treatability. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Biasi, Christina; Jokinen, Simo; Marushchak, Maija; Trubnikova, Tatiana; Hämäläinen, Kai; Oinonen, Markku; Martikainen, Pertti
2014-05-01
Soil respiration is the second largest C flux between atmosphere and terrestrial ecosystems after gross primary production. Carbon dioxide released from soils is thus a major contributor to the atmospheric CO2 concentration. Despite the global importance, soil respiration and its components (heterotrophic and autotrophic respiration) remain poorly understood and not well constrained fluxes of the terrestrial C cycle. This is particularly true for the Arctic, where huge amounts of the Earth's soil carbon is stored. Here, we report on heterotrophic soil respiration rates from various Arctic tundra microhabitats measured in situ. The study site was Seida (67°07'N, 62°57'E, 100 m a.s.l.) which is characterized by typical sub-arctic permafrost landscape which comprises raised, vegetated permafrost peat plateaus, interspersed with spots of bare peat surfaces (peat circles), and upland mineral soils. We used isotope partitioning approach based on differences in natural abundance of 14C between soil and plants to separate sources of soil-respired CO2. In addition, the tradition trenching approach was employed. Complementary laboratory incubations with homogenized soil were conducted to assess primary decomposability of the soils and to identify age of the CO2 released and thus get more information on the nature of the sources of respiration. The major aim was to link SMR rates with of soil type, land cover class, soil physic-chemical properties (e.g. water content), soil C stocks and age of soil. Results show that, despite profound differences in soil characteristics and primary decomposability of organic matter, surface CO2 fluxes derived from soil microbial respiration rates were rather similar between microhabitats. The only factor which influenced, at least to some extent, the respiration rates was total soil C (and N) stocks in surface soils. There was some evidence for reduced soil-related CO2 emissions from peatlands, though results were not consistent between the methods applied. It seems that the lower decomposability of peat is largely outweighed by higher C stocks at field conditions. Surprisingly, the bare surfaces (peat circles) with 3500 years old C at the surface exhibited about the largest soil microbial respiration rates among all sites as shown by both methods. This is likely due to the immature status of the peat which was during the bulk of its developmental time protected by permafrost, together with high C-densities. The observation is particularly relevant for decomposition of deeper peat at the permafrost-active layer interface in the large vegetated peat plateaus, where soil material similar to the bare surfaces can be found. The results suggest that the chemical nature and high age of the soil SOC in deep peat does not solely guarantee for resistance to decay. Thus, the study highlights risks for potential re-mobilization of C in deep peat soils following thawing. Soil microbial respiration rates need to be better known when predicting the overall carbon sink/source character of tundra ecosystems in a warming climate. Biasi C., Jokinen S., Marushchak M., Hämäläinen K., Trubnikova T., Oinonen M., Martikainen P. (2013). Microbial respiration in Arctic upland and peat soils as source of CO2. Ecosystems. DOI: 10.1007/s10021-013-9710-z.
Peatland hydrology and carbon release: why small-scale process matters.
Holden, Joseph
2005-12-15
Peatlands cover over 400 million hectares of the Earth's surface and store between one-third and one-half of the world's soil carbon pool. The long-term ability of peatlands to absorb carbon dioxide from the atmosphere means that they play a major role in moderating global climate. Peatlands can also either attenuate or accentuate flooding. Changing climate or management can alter peatland hydrological processes and pathways for water movement across and below the peat surface. It is the movement of water in peats that drives carbon storage and flux. These small-scale processes can have global impacts through exacerbated terrestrial carbon release. This paper will describe advances in understanding environmental processes operating in peatlands. Recent (and future) advances in high-resolution topographic data collection and hydrological modelling provide an insight into the spatial impacts of land management and climate change in peatlands. Nevertheless, there are still some major challenges for future research. These include the problem that impacts of disturbance in peat can be irreversible, at least on human time-scales. This has implications for the perceived success and understanding of peatland restoration strategies. In some circumstances, peatland restoration may lead to exacerbated carbon loss. This will also be important if we decide to start to create peatlands in order to counter the threat from enhanced atmospheric carbon.
NASA Astrophysics Data System (ADS)
Tfaily, Malak M.; Cooper, William T.; Kostka, Joel E.; Chanton, Patrick R.; Schadt, Christopher W.; Hanson, Paul J.; Iversen, Colleen M.; Chanton, Jeffrey P.
2014-04-01
We characterized peat decomposition at the Marcell Experimental Forest (MEF), Minnesota, USA, to a depth of 2 m to ascertain the underlying chemical changes using Fourier transform infrared (FT IR) and 13C nuclear magnetic resonance (NMR) spectroscopy) and related these changes to decomposition proxies C:N ratio, δ13C and δ15N, bulk density, and water content. FT IR determined that peat humification increased rapidly between 30 and 75 cm, indicating a highly reactive intermediate-depth zone consistent with changes in C:N ratio, δ13C and δ15N, bulk density, and water content. Peat decomposition at the MEF, especially in the intermediate-depth zone, is mainly characterized by preferential utilization of O-alkyl-C, carboxyl-C, and other oxygenated functionalities with a concomitant increase in the abundance of alkyl- and nitrogen-containing compounds. Below 75 cm, less change was observed but aromatic functionalities and lignin accumulated with depth. Significant correlations with humification indices, identified by FT IR spectroscopy, were found for C:N ratios. Incubation studies at 22°C revealed the highest methane production rates, greatest CH4:CO2 production ratios, and significant O-alkyl-C utilization within this 30 and 75 cm zone. Oxygen-containing functionalities, especially O-alkyl-C, appear to serve as excellent proxies for soil decomposition rate and should be a sensitive indicator of the response of the solid phase peat to increased temperatures caused by climate change and the field study manipulations that are planned to occur at this site. Radiocarbon signatures of microbial respiration products in deeper pore waters at the MEF resembled the signatures of more modern dissolved organic carbon rather than solid phase peat, indicating that recently photosynthesized organic matter fueled the bulk of subsurface microbial respiration. These results indicate that carbon cycling at depth at the MEF is not isolated from surface processes.
Trends and causes of historical wetland loss, Sabine National Wildlife Refuge, southwest Louisiana
Bernier, Julie C.; Morton, Robert A.; Kelso, Kyle W.
2011-01-01
The thickness of the uppermost Holocene sediments (peat and organic-rich mud) and the elevation of stratigraphic contacts were compared at marsh and open-water sites across areas of formerly continuous marsh to estimate magnitudes of recent elevation loss caused by vertical erosion and subsidence. Results of these analyses indicate that erosion greatly exceeded subsidence at most of the core sites, although both processes have contributed to historical wetland loss. Comparison of these results with results of our prior studies indicates that magnitudes of subsidence and total accommodation space that formed in the western chenier plain were less than those in the delta plain. Compared with the delta plain, where subsidence generally exceeded erosion and peat thicknesses were so great that peat was preserved even where erosion was greater than subsidence, the SNWR peats are thin and were absent (eroded) at most open-water sites. Although historical subsidence rates in the chenier plain are substantially lower than most of the same rates in the delta plain, the temporal and spatial trends of rapid wetland loss, highest rates of land-surface subsidence, and high rates of oil-and-gas production are similar, indicating that historical wetland loss was likely initiated by similar processes (deep-subsurface subsidence) in both regions.
NASA Astrophysics Data System (ADS)
Shotyk, W.; Appleby, P.; Davies, L. J.; Froese, D. G.; Magnan, G.; Mullan-Boudreau, G.; Noernberg, T.; Bob, S.; van Bellen, S.; Zaccone, C.
2016-12-01
The upper layers of ombrotrophic (rain-fed) bogs are hydrologically isolated from surface waters and groundwaters and, in consequence, contaminants are supplied exclusively from the atmosphere. Peat cores from bogs have been used to reconstruct the history of heavy metal pollution since mining and metallurgy began, but the greatest changes have taken place since the start of the Industrial Revolution which was well underway by the middle of the 19th century. Dating peat, accumulated since this time has been made possible using 210Pb (t1/2 = 22.3 yr), but the validity of the age-depth relationship obtained must always be assessed using one or more chronostratigraphic markers. The post-industrial period provides an enormous range of possible time markers including various fallout radionuclides, numerous trace metals and their isotopes, and countless organic contaminants. Most of these have not yet been explored, and will be helpful only if they are immobile in the peat column; often, their fate during chemical diagenesis in anoxic, acidic bog waters is either unknown or at least poorly understood. The atmospheric bomb pulse curve of 14C for the period since AD 1950 has proved to be particularly valuable for validating 210Pb chronologies by providing accurate dates for individual plant macrofossils. Peat cores collected in northern Alberta, surrounding open pit mines and upgraders of Athabsca Bituminous Sands, were carefully dated using 210Pb and the age-depth relationship evaluated using both 241Am and 14C. The cores nearest industry (MIL, JPH4) show that atmospheric deposition of trace metals has been declining ever since industrial-scale mining and refining began in 1967. This includes all of the potentially toxic trace elements (Ag, Cd, Pb, Sb, Tl), but also the metals known for their enrichment in bitumen (V, Ni, Mo). In fact, the surface layers of these bogs today are comparable in composition to the "cleanest" peat samples ever found in the northern hemisphere. Our findings are completely opposed to recent claims about environmental pollution by metals from mining and upgrading in this region, illustrating the importance of reliable age dates and the value of robust age-depth models.
Climate-driven flushing of pore water in peatlands
NASA Astrophysics Data System (ADS)
Siegel, D. I.; Reeve, A. S.; Glaser, P. H.; Romanowicz, E. A.
1995-04-01
NORTHERN peatlands can act as either important sources or sinks for atmospheric carbon1,2. It is therefore important to understand how carbon cycling in these regions will respond to a changing climate. Existing carbon balance models for peatlands assume that fluid flow and advective mass transport are negligible at depth3,4, and that the effects of climate change should be essentially limited to the near-surface. Here we report the response of groundwater flow and porewater chemistry in the Glacial Lake Agassiz peat-lands of northern Minnesota to the regional drought cycle. Comparison of field observations and numerical simulations indicates that climate fluctuations of short duration may temporarily reverse the vertical direction of fluid flow through the peat, although this has little effect on water chemistry5. On the other hand, periods of drought persisting for at least 3-5 years produce striking changes in the chemistry of the pore water. These longer-term changes in hydrology influence the flux of nutrients and dissolved organic matter through the deeper peat, and therefore affect directly the rates of fermentation and methanogenesis, and the export of dissolved carbon compounds from the peatland.
Molybdenum-Based Diazotrophy in a Sphagnum Peatland in Northern Minnesota
Warren, Melissa J.; Lin, Xueju; Gaby, John C.; Kretz, Cecilia B.; Kolton, Max; Morton, Peter L.; Pett-Ridge, Jennifer; Weston, David J.; Schadt, Christopher W.; Kostka, Joel E.
2017-01-01
ABSTRACT Microbial N2 fixation (diazotrophy) represents an important nitrogen source to oligotrophic peatland ecosystems, which are important sinks for atmospheric CO2 and are susceptible to the changing climate. The objectives of this study were (i) to determine the active microbial group and type of nitrogenase mediating diazotrophy in an ombrotrophic Sphagnum-dominated peat bog (the S1 peat bog, Marcell Experimental Forest, Minnesota, USA); and (ii) to determine the effect of environmental parameters (light, O2, CO2, and CH4) on potential rates of diazotrophy measured by acetylene (C2H2) reduction and 15N2 incorporation. A molecular analysis of metabolically active microbial communities suggested that diazotrophy in surface peat was primarily mediated by Alphaproteobacteria (Bradyrhizobiaceae and Beijerinckiaceae). Despite higher concentrations of dissolved vanadium ([V] 11 nM) than molybdenum ([Mo] 3 nM) in surface peat, a combination of metagenomic, amplicon sequencing, and activity measurements indicated that Mo-containing nitrogenases dominate over the V-containing form. Acetylene reduction was only detected in surface peat exposed to light, with the highest rates observed in peat collected from hollows with the highest water contents. Incorporation of 15N2 was suppressed 90% by O2 and 55% by C2H2 and was unaffected by CH4 and CO2 amendments. These results suggest that peatland diazotrophy is mediated by a combination of C2H2-sensitive and C2H2-insensitive microbes that are more active at low concentrations of O2 and show similar activity at high and low concentrations of CH4. IMPORTANCE Previous studies indicate that diazotrophy provides an important nitrogen source and is linked to methanotrophy in Sphagnum-dominated peatlands. However, the environmental controls and enzymatic pathways of peatland diazotrophy, as well as the metabolically active microbial populations that catalyze this process, remain in question. Our findings indicate that oxygen levels and photosynthetic activity override low nutrient availability in limiting diazotrophy and that members of the Alphaproteobacteria (Rhizobiales) catalyze this process at the bog surface using the molybdenum-based form of the nitrogenase enzyme. PMID:28667112
Molybdenum-based diazotrophy in a Sphagnum peatland in northern Minnesota.
Warren, Melissa J; Lin, Xueju; Gaby, John C; Kretz, Cecilia B; Kolton, Max; Morton, Peter L; Pett-Ridge, Jennifer; Weston, David J; Schadt, Christopher W; Kostka, Joel E; Glass, Jennifer B
2017-06-30
Microbial N 2 fixation (diazotrophy) represents an important nitrogen source to oligotrophic peatland ecosystems, which are important sinks for atmospheric CO 2 and susceptible to changing climate. The objectives of this study were: (i) to determine the active microbial group and type of nitrogenase mediating diazotrophy in a ombrotrophic Sphagnum -dominated peat bog (the S1 peat bog, Marcell Experimental Forest, Minnesota, USA); and (ii) to determine the effect of environmental parameters (light, O 2 , CO 2 , CH 4 ) on potential rates of diazotrophy measured by acetylene (C 2 H 2 ) reduction and 15 N 2 incorporation. Molecular analysis of metabolically active microbial communities suggested that diazotrophy in surface peat was primarily mediated by Alphaproteobacteria ( Bradyrhizobiaceae and Beijerinckiaceae ). Despite higher dissolved vanadium (V; 11 nM) than molybdenum (Mo; 3 nM) in surface peat, a combination of metagenomic, amplicon sequencing and activity measurements indicated that Mo-containing nitrogenases dominate over the V-containing form. Acetylene reduction was only detected in surface peat exposed to light, with the highest rates observed in peat collected from hollows with the highest water content. Incorporation of 15 N 2 was suppressed 90% by O 2 and 55% by C 2 H 2 , and was unaffected by CH 4 and CO 2 amendments. These results suggest that peatland diazotrophy is mediated by a combination of C 2 H 2 -sensitive and C 2 H 2 -insensitive microbes that are more active at low O 2 and show similar activity at high and low CH 4 Importance Previous studies indicate that diazotrophy provides an important nitrogen source and is linked to methanotrophy in Sphagnum -dominated peatlands. However, the environmental controls and enzymatic pathways of peatland diazotrophy, as well as the metabolically active microbial populations that catalyze this process remain in question. Our findings indicate that oxygen levels and photosynthetic activity override low nutrient availability in limiting diazotrophy, and that members of the Alphaproteobacteria ( Rhizobiales ) catalyze this process at the bog surface using the molybdenum-based form of the nitrogenase enzyme. Copyright © 2017 American Society for Microbiology.
Carbon isotopes in peat, DOC, CO2, and CH4 in a Holocene peatland on Dartmoor, southwest England
NASA Astrophysics Data System (ADS)
Charman, Dan J.; Aravena, Ramon; Bryant, Charlotte L.; Harkness, Doug D.
1999-06-01
Carbon gases with younger 14C ages than those of the surrounding peat have been reported from continental boreal peatlands, a fact which suggests that significant movement of CO2, CH4, or DOC (dissolved organic carbon) and export of C via subsurface processes are not accounted for in most estimates of contributions to the C cycle. This paper tests the hypothesis that similar processes can occur in oceanic ombrotrophic mires where water and gas movement is theoretically minimal. Measurements of 14C and δ13C in CO2, CH4, and DOC, and of tritium, are reported from depths to 250 cm at Tor Royal, a raised mire in southwest England. Radiocarbon ages of gases are 1460 to 500 yr younger than those of peat from the same depths, and CO2 is consistently younger than CH4. DOC is 1260 to 830 yr younger than the peat, and significant amounts of tritium were found at all depths. Gas ages are mostly intermediate between the age of the peat and that of the DOC, which suggests that C is principally transported as DOC. However, some gases are younger than their associated DOC, which implies that movement of dissolved gases may also take place. δ13C values in gases suggest that CO2 reduction is the major pathway for CH4 production. Transport of C in deep peats is likely to be a significant component in the overall C budget of ombrotrophic oceanic peatlands, and C export via discharge to ground or surface waters may be an important mechanism for gaseous C emissions.
The association of uranium with organic matter in Holocene peat: An experimental leaching study
Zielinski, R.A.; Meier, A.L.
1988-01-01
Uraniferous peat was sampled from surface layers of a Holocene U deposit in northeastern Washington State. Dried, sized, and homogenized peat that contained 5980 ??307 ppm U was subjected to a variety of leaching conditions to determine the nature and strength of U-organic bonding in recently accumulated organic matter. The results complement previous experimental studies of U uptake on peat and suggest some natural or anthropogenic disturbances that are favorable for remobilizing U. The fraction of U leached in 24 h experiments at 25??C ranged from 0 to 95%. The most effective leach solutions contained anions capable of forming stable dissolved complexes with uranyl (UO2+2) cation. These included H2SO4 (pH = 1.5) and concentrated (>0.01 M) solutions of sodium bicarbonate-carbonate (pH = 7.0-10.0), or sodium pyrophosphate (pH = 10). Effective leaching by carbonate and pyrophosphate in the absence of added oxidant, and the insignificant effect of added oxidant (as pressurized O2) strongly suggest that U is initially fixed on organic matter as an oxidized U(VI) species. Uranium is more strongly bound than some other polyvalent cations, based on its resistance to exchange in the presence of large excesses of dissolved Ca2+ and Cu2+. Measurements of the rate of U leaching indicate faster rates in acid solution compared to carbonate solution, and are consisten with simultaneous attack of sites with different affinities for U. Sulfuric acid appears a good choice for commercial extraction of U from mined peat. In situ disturbances such as overliming of peat soils, addition of fertilizers containing pyrophosphate, or incursions of natural carbonate-rich waters could produce significant remobilization of U, and possibly compromise the quality of local domestic water supplies. ?? 1988.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charman, D.J.; Aravena, R.; Bryant, C.L.
1999-06-01
Carbon gases with younger {sup 14}C ages than those of the surrounding peat have been reported from continental boreal peatlands, a fact which suggests that significant movement of CO{sub 2}, CH{sub 4}, or DOC (dissolved organic carbon) and export of C via subsurface processes are not accounted for in most estimates of contributions to the C cycle. This paper tests the hypothesis that similar processes can occur in oceanic ombrotrophic mires where water and gas movement is theoretically minimal. Measurements of {sup 14}C and {delta}{sup 13}C in CO{sub 2}, CH{sub 4}, and DOC, and of tritium, are reported from depthsmore » to 250 cm at Tor Royal, a raised mire in southwest England. Radiocarbon ages of gases are 1,460 to 500 yr younger than those of peat from the same depths, and CO{sub 2} is consistently younger than CH{sub 4}. DOC is 1,260 to 830 yr younger than the peat, and significant amounts of tritium were found at all depths. Gas ages are mostly intermediate between the age of the peat and that of the DOC, which suggests that C is principally transported as DOC. However, some gases are younger than their associated DOC, which implies that movement of dissolved gases may also take place. {delta}{sup 13}C values in gases suggest that CO{sub 2} reduction is the major pathway for CH{sub 4} production. Transport of C in deep peats is likely to be a significant component in the overall C budget of ombrotrophic oceanic peatlands, and C export via discharge to ground or surface waters may be an important mechanism for gaseous C emissions.« less
Pb inventory in an ombrotrophic bog decreases over time
NASA Astrophysics Data System (ADS)
Baumann, E.; Jeremiason, J.; Sebestyen, S.
2016-12-01
Peat cores were collected from the S2 ombrotrophic bog at the Marcell Experimental Forest (MEF) to determine if the Pb inventory in the bog has decreased over time. Pb concentrations in the outflow of the bog measured from 2009-2016 indicated continued mobilization and export of Pb out of the bog despite dramatic decreases in atmospheric deposition. A seminal study conducted by Urban et al. (1990) from 1981-1983 calculated a mass balance of Pb in the S2 watershed which included a Pb inventory in peat based on the approximate time frame of 1930 to 1983. We collected peat cores in 2016 to compare peat inventories of Pb over the same time range. We found that Pb inventories in the peat have decreased over time, consistent with Pb being mobilized by dissolved organic carbon (DOC) and gradually flushed out of the bog. Since 1983, DOC levels may have increased leading to further Pb mobilization and transport from the bog, but this trend is unclear. In contrast to Pb concentrations in the outflow water, upland runoff and the surface sphagnum moss layer have dramatically lower Pb concentrations compared to 1980s levels indicating fast ecosystem responses to a decrease in Pb inputs in these compartments. However, the deeper peat layers near the water table are responding more slowly to the decrease in Pb inputs and historical Pb inputs continue to be mobilized and transported from the bog. Our results would be applicable to other trace metals, such as Hg, that bind strongly to DOC. For example, a dramatic decrease in Hg deposition would not result in near-term decreases in Hg out of the bog.
UAV based 3D digital surface model to estimate paleolandscape in high mountainous environment
NASA Astrophysics Data System (ADS)
Mészáros, János; Árvai, Mátyás; Kohán, Balázs; Deák, Márton; Nagy, Balázs
2016-04-01
Our method to present current state of a peat bog was focused on the possible use of a UAV-system and later Structure-from-motion algorithms as processing technique. The peat bog site is located on the Vinderel Plateau, Farcǎu Massif, Maramures Mountains (Romania). The peat bog (1530 m a.s.l., N47°54'11", E24°26'37") lies below Rugasu ridge (c. 1820 m a.s.l.) and the locality serves as a conservation area for fallen down coniferous trees. Peat deposits were formed in a landslide concavity on the western slope of Farcǎu Massif. Nowadays the site is surrounded by a completely deforested landscape, and Farcǎu Massif lies above the depressed treeline. The peat bog has an extraordinary geomorphological situation, because a gully reached the bog and drained the water. In the recent past sedimentological and dendrochronological researches have been initiated. However, an accurate 3D digital surface model also needed for a complex paleoenvironmental research. Last autumn the bog and its surroundings were finally surveyed by a multirotor UAV developed in-house based on an open-source flight management unit and its firmware. During this survey a lightweight action camera (mainly to decrease payload weight) was used to take aerial photographs. While our quadcopter is capable to fly automatically on a predefined flight route, several over- and sidelapping flight lines were generated prior to the actual survey on the ground using a control software running on a notebook. Despite those precautions, limited number of batteries and severe weather affected our final flights, resulting a reduced surveyed area around peat bog. Later, during the processing we looked for a reliable tool which powerful enough to process more than 500 photos taken during flights. After testing several software Agisoft PhotoScan was used to create 3D point cloud and mesh about bog and its environment. Due to large number of photographs PhotoScan had to be configured for network processing to get reliable results and resolution. Based on the sediment layers of the peat bog together with the generated 3D surface model the paleoenvironment, the largest paleowater level can be reconstructed and we can estimate the dimension of the landslide which created the basin of the peat bog.
Identification of runoff formation with two dyes in a mid-latitude mountain headwater
NASA Astrophysics Data System (ADS)
Vlček, Lukáš; Falátková, Kristýna; Schneider, Philipp
2017-06-01
Subsurface flow in peat bog areas and its role in the hydrologic cycle has garnered increased attention as water scarcity and floods have increased due to a changing climate. In order to further probe the mechanisms in peat bog areas and contextualize them at the catchment scale, this experimental study identifies runoff formation at two opposite hillslopes in a peaty mountain headwater; a slope with organic peat soils and a shallow phreatic zone (0.5 m below surface), and a slope with mineral Podzol soils and no detectable groundwater (> 2 m below surface). Similarities and differences in infiltration, percolation and preferential flow paths between both hillslopes could be identified by sprinkling experiments with Brilliant Blue and Fluorescein sodium. To our knowledge, this is the first time these two dyes have been compared in their ability to stain preferential flow paths in soils. Dye-stained soil profiles within and downstream of the sprinkling areas were excavated parallel (lateral profiles) and perpendicular (frontal profiles) to the slopes' gradients. That way preferential flow patterns in the soil could be clearly identified. The results show that biomat flow, shallow subsurface flow in the organic topsoil layer, occurred at both hillslopes; however, at the peat bog hillslope it was significantly more prominent. The dye solutions infiltrated into the soil and continued either as lateral subsurface pipe flow in the case of the peat bog, or percolated vertically towards the bedrock in the case of the Podzol. This study provides evidence that subsurface pipe flow, lateral preferential flow along decomposed tree roots or logs in the unsaturated zone, is a major runoff formation process at the peat bog hillslope and in the adjacent riparian zone.
Identification of runoff formation with two dyes in a mid-latitude mountain headwater
NASA Astrophysics Data System (ADS)
Vlcek, Lukas; Schneider, Philipp; Falatkova, Kristyna
2017-04-01
There have been numerous studies on subsurface flow in peat bog areas, as both water scarcity and floods have led to increased attention to this specific environment and its role within the hydrological cycle. In contrast, this experimental study identifies runoff formation at two opposite hillslopes in a peaty mountain headwater; a slope with organic soils (Peat / Histosol) and shallow groundwater ( 0.5 m below surface) complemented by a slope with mineral soils (Podzol) and no detectable groundwater within 2 m below surface. Differences in infiltration, percolation, and preferential flowpaths between both hillslopes could be identified by sprinkling experiments with two dyes - Brilliant Blue FCF and Fluorescein. By excavating dye-stained soil profiles parallel ("lateral") and perpendicular ("frontal") to the slopes' gradients - both within and downstream of the sprinkling plots - dye stained flow patterns in the soil could be clearly identified. The results show that biomat flow occurred at both hillslopes. The dye solutions infiltrated into the soil and continued either as lateral subsurface pipeflow (SSF), in the case of the Peat Bog, or percolated vertically towards the bedrock in the case of the Podzol. The study provides evidence that biomat flow (BMF) - shallow, lateral preferential flowpaths along decomposed tree roots or logs - is a major runoff formation process at the Peat Bog hillslope and in the adjacent riparian zone. This lateral flow through the organic soil hillslope (Peat Bog) towards the stream occurred mainly as shallow subsurface flow in organic layers above the groundwater level (BMF and SSF), but water partly percolates to the shallow groundwater via vertical macropores as well . In contrast, the mineral soil hillslope (Podzol) was mostly dominated by vertical percolation. Lateral flow occurred only on short distances in the organic topsoil as biomat flow (BMF). The sorptive tracer Brilliant Blue FCF successfully stained flowpaths in the soil at both hillslopes, whereas the identification of soil staining patterns by the relatively conservative tracer Fluorescein was limited on organic soil profiles.
A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands.
Turetsky, Merritt R; Kotowska, Agnieszka; Bubier, Jill; Dise, Nancy B; Crill, Patrick; Hornibrook, Ed R C; Minkkinen, Kari; Moore, Tim R; Myers-Smith, Isla H; Nykänen, Hannu; Olefeldt, David; Rinne, Janne; Saarnio, Sanna; Shurpali, Narasinha; Tuittila, Eeva-Stiina; Waddington, J Michael; White, Jeffrey R; Wickland, Kimberly P; Wilmking, Martin
2014-07-01
Wetlands are the largest natural source of atmospheric methane. Here, we assess controls on methane flux using a database of approximately 19 000 instantaneous measurements from 71 wetland sites located across subtropical, temperate, and northern high latitude regions. Our analyses confirm general controls on wetland methane emissions from soil temperature, water table, and vegetation, but also show that these relationships are modified depending on wetland type (bog, fen, or swamp), region (subarctic to temperate), and disturbance. Fen methane flux was more sensitive to vegetation and less sensitive to temperature than bog or swamp fluxes. The optimal water table for methane flux was consistently below the peat surface in bogs, close to the peat surface in poor fens, and above the peat surface in rich fens. However, the largest flux in bogs occurred when dry 30-day averaged antecedent conditions were followed by wet conditions, while in fens and swamps, the largest flux occurred when both 30-day averaged antecedent and current conditions were wet. Drained wetlands exhibited distinct characteristics, e.g. the absence of large flux following wet and warm conditions, suggesting that the same functional relationships between methane flux and environmental conditions cannot be used across pristine and disturbed wetlands. Together, our results suggest that water table and temperature are dominant controls on methane flux in pristine bogs and swamps, while other processes, such as vascular transport in pristine fens, have the potential to partially override the effect of these controls in other wetland types. Because wetland types vary in methane emissions and have distinct controls, these ecosystems need to be considered separately to yield reliable estimates of global wetland methane release. © 2014 John Wiley & Sons Ltd.
A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands
Turetsky, Merritt R.; Kotowska, Agnieszka; Bubier, Jill; Dise, Nancy B.; Crill, Patrick; Hornibrook, Ed R.C.; Minkkinen, Kari; Moore, Tim R.; Myers-Smith, Isla H.; Nykanen, Hannu; Olefeldt, David; Rinne, Janne; Saarnio, Sanna; Shurpali, Narasinha; Tuittila, Eeva-Stiina; Waddington, J. Michael; White, Jeffrey R.; Wickland, Kimberly P.; Wilmking, Martin
2014-01-01
Wetlands are the largest natural source of atmospheric methane. Here, we assess controls on methane flux using a database of approximately 19 000 instantaneous measurements from 71 wetland sites located across subtropical, temperate, and northern high latitude regions. Our analyses confirm general controls on wetland methane emissions from soil temperature, water table, and vegetation, but also show that these relationships are modified depending on wetland type (bog, fen, or swamp), region (subarctic to temperate), and disturbance. Fen methane flux was more sensitive to vegetation and less sensitive to temperature than bog or swamp fluxes. The optimal water table for methane flux was consistently below the peat surface in bogs, close to the peat surface in poor fens, and above the peat surface in rich fens. However, the largest flux in bogs occurred when dry 30-day averaged antecedent conditions were followed by wet conditions, while in fens and swamps, the largest flux occurred when both 30-day averaged antecedent and current conditions were wet. Drained wetlands exhibited distinct characteristics, e.g. the absence of large flux following wet and warm conditions, suggesting that the same functional relationships between methane flux and environmental conditions cannot be used across pristine and disturbed wetlands. Together, our results suggest that water table and temperature are dominant controls on methane flux in pristine bogs and swamps, while other processes, such as vascular transport in pristine fens, have the potential to partially override the effect of these controls in other wetland types. Because wetland types vary in methane emissions and have distinct controls, these ecosystems need to be considered separately to yield reliable estimates of global wetland methane release.
Colloid-facilitated metal transport in peat filters.
Kalmykova, Yuliya; Rauch, Sebastien; Strömvall, Ann-Margret; Morrison, Greg; Stolpe, Björn; Hasselliöv, Martin
2010-06-01
The effect of colloids on metal retention in peat columns was studied, with the focus on colloids from two sources-organic matter leached from peat, and introduced organic and hydrous ferric oxide (HFO) colloids. A significant fraction of metals was found to be associated with peat-produced organic colloids; however the concentrations of organic colloids leached are low (trace concentrations) and temporal and have a limited effect on the efficiency of peat filters. In contrast, the presence of organic and HFO colloids in the input water causes a significant decrease in the performance of peat filters. Organic colloids were identified as the main vector of cadmium, copper, nickel, and zinc, while lead is transported by both organic and HFO colloids. The colloidal distribution of metals obtained in this study has important implications for the mobility of trace metals in porous media. The occurrence of colloids in the input waters and their characteristics must be considered when designing water treatment facilities.
NASA Astrophysics Data System (ADS)
Tuukkanen, T.; Marttila, H.; Kløve, B.
2017-07-01
Organic matter and nutrient export from drained peatlands is affected by complex hydrological and biogeochemical interactions. Here partial least squares regression (PLSR) was used to relate various soil and catchment characteristics to variations in chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) concentrations in runoff. Peat core samples and water quality data were collected from 15 peat extraction sites in Finland. PLSR models constructed by cross-validation and variable selection routines predicted 92, 88, and 95% of the variation in mean COD, TN, and TP concentration in runoff, respectively. The results showed that variations in COD were mainly related to net production (temperature and water-extractable dissolved organic carbon (DOC)), hydrology (topographical relief), and solubility of dissolved organic matter (peat sulfur (S) and calcium (Ca) concentrations). Negative correlations for peat S and runoff COD indicated that acidity from oxidation of organic S stored in peat may be an important mechanism suppressing organic matter leaching. Moreover, runoff COD was associated with peat aluminum (Al), P, and sodium (Na) concentrations. Hydrological controls on TN and COD were similar (i.e., related to topography), whereas degree of humification, bulk density, and water-extractable COD and Al provided additional explanations for TN concentration. Variations in runoff TP concentration were attributed to erosion of particulate P, as indicated by a positive correlation with suspended sediment concentration (SSC), and factors associated with metal-humic complexation and P adsorption (peat Al, water-extractable P, and water-extractable iron (Fe)).
Post-fire fluxes and sources of carbon in previously burnt tropical swamp peatlands, Brunei
NASA Astrophysics Data System (ADS)
Lupascu, M.; Akhtar, H.; Smith, T. E. L.; Sukmaria binti Hj Sukri, R.
2017-12-01
Tropical peatlands hold about 15-19% of the global organic carbon (C) pool of which 77% in Southeast Asia. Nonetheless Southeast Asian peatlands have been exploited for timber and land for agriculture leading to rapid deforestation, extensive drainage and frequent fires. Direct C-emissions through peat combustion must be quantified to examine the impact of peat fires on global and regional C-budgets, however it is also essential to evaluate oxidative decomposition of peat after fires for a complete understanding of ecosystem-scale fire impact. This kind of investigation is necessary also to understand the effect of peat burning on peat decomposition, because burning effects on the belowground environment are variable, depending on burnt frequency and fire severity. After a fire, ecosystems act as a C-source for months-to-years as ecosystem-respiration (Reco) exceeds photosynthesis. Furthermore during fires, the surface peat with a higher proportion of the more modern rapidly-cycled C burns preferentially. The loss of the surface peat possibly can reduce oxidative soil CO2 emissions, as the deeper, older peat, has more recalcitrant compounds. However, CO2emissions from this old C pool are a net flux to the atmosphere compared to the modern C. Within this context, we are quantifying the magnitudes and patterns of ecosystem-atmosphere fluxes of carbon dioxide (CO2) and methane (CH4) through cavity-ring spectroscopy in different transects of an intact tropical peat swamp forest and in two degraded forest areas affected by two and six fires over the last 40 years in Brunei, on the island of Borneo. We are using natural tracers such as δ13C and 14C to investigate the age and sources (auto- and heterotrophic) of C contributing to Reco and we are continuously monitoring soil temperature and water table level. Preliminary data show a similar magnitude of CO2 efflux between the intact (5.3 µmol CO2 m-2 s-1) and burnt areas (6.4 µmol CO2 m-2 s-1), with higher soil temperature in the latter. Our results will give a deeper insight into the vulnerability of the C pool in tropical peat swamp forest after fire events and aim at improving terrestrial soil C budget.
Dennis W. Hallema; Jonathan A. Lafond; Yann Périard; Silvio J. Gumiere; Ge Sun; Jean Caron
2015-01-01
Organic soils are an excellent substrate for commercial lettuce (Lactuca sativa L.) farming; however, drainage accelerates oxidation of the surface layer and reduces the water holding capacity, which is often lethal for crops that are sensitive to water stress. In this case study, we analyzed 942 peat samples from a large cultivated peatland complex...
NASA Astrophysics Data System (ADS)
Burow, K. R.; Gamble, J. M.; Fujii, R.; Constantz, J.
2001-12-01
Water flowing through the Sacramento-San Joaquin River Delta supplies drinking water to more than 20 million people in California. Delta water contains elevated concentrations of dissolved organic carbon (DOC) from drainage through the delta peat soils, forming trihalomethanes when the water is chlorinated for drinking. Land subsidence caused by oxidation of the peat soils has led to increased pumping of drainage water from delta islands to maintain arable land. An agricultural field on Twitchell Island was flooded in 1997 to evaluate continuous flooding as a technique to mitigate subsidence. The effects of shallow flooding on DOC loads to the drain water must be determined to evaluate the feasibility of this technique. In this study, heat is used as a nonconservative tracer to determine shallow ground-water flux and calculate DOC loads to an adjacent drainage ditch. Temperature profiles and water levels were measured in 12 wells installed beneath the pond, in the pond, and in an adjacent drainage ditch from May 2000 to June 2001. The range in seasonal temperatures decreased with depth, but seasonal temperature variation was evident in wells screened as deep as 10 to 12 feet below land surface. A constant temperature of 17 degrees C was measured in wells 25 feet beneath the pond. Ground-water flux beneath the pond was quantified in a two-dimensional simulation of water and heat exchange using the SUTRA flow and transport model. The effective vertical hydraulic conductivity of the peat soils underlying the pond was estimated through model calibration. Calibrated hydraulic conductivity is higher (1E-5 m/sec) than estimates from slug tests (2E-6 m/sec). Modeled pond seepage is similar to that estimated from a water budget, although the total seepage determined from the water budget is within the range of error of the instrumentation. Overall, model results indicate that recharge from the pond flows along shallow flow paths and that travel times through the peat to the drainage ditch may be on the order of decades.
NASA Astrophysics Data System (ADS)
Chlost, Izabela; Cieśliński, Roman
2018-03-01
The present study focuses on two Baltic-type peat bogs in Slowinski National Park, namely that at Żarnowskie and at Kluki, located in the Lake Łebsko catchment and both characterised by a centrally located dome with a very marshy fringe area featuring an emerging marshy coniferous forest (Vaccinio uliginosi-Pinetum). The Żarnowskie bog is under active protection. A total of 24 flow barriers were installed in drainage ditches during the years 2006 and 2007. The purpose of these barriers was to put a halt to water outflow. In addition, 30 hectares of young pine forest were cleared in order to decrease loss of water via evapotranspiration. Kluki peat bog is only partially protected by Polish law. The lack of efforts to prevent outflow via the canal is due to the fact that the canal is utilised to drain meadows in the vicinity of the village of Łokciowe outside of the national park. Peat formation no longer occurs in this peat bog. The hydrological condition of the bog is catastrophic as a result of its main canal, referred to as Canal C9, which is 2.5 to 3.0 m deep and 10 m wide in places. Both peat bogs are monitored for fluctuations in groundwater. Research has shown that changes in water levels fluctuate based on season of the year and geographical location, which is illustrated quite well using the two studied peat bogs. The water retention rate of the Żarnowskie peat bog may be considered fairly high and is likely to improve due to protective measures enabled by Polish environmental laws. The water retention rate of the bog is consistently improving thanks to these measures, fluctuations in water level are small and the water level does not drop under 0.5 m below ground level even under extreme hydrometeorological conditions. This yields optimum conditions for renewed peat formation in this area. One potential threat is the Krakulice peat extraction facility, which is located in the southern part of the bog close to the boundary with the national park.
Zak, Dominik; Wagner, Carola; Payer, Brian; Augustin, Jürgen; Gelbrecht, Jörg
2010-07-01
Rewetting of drained fens is necessary to stop further soil degradation and to reestablish important ecological functions. However, substantial changes of peat characteristics in the upper soil layers, due to drainage and land use, could counteract their recovery as nutrient-poor systems for an unknown period. We assessed the importance of altered peat properties, such as the degree of peat decomposition and the amount of redox-sensitive phosphorus (P) compounds, for P mobilization in different degraded fens. An experimental design involving 63 intact peat cores from fens with varying drainage and land-use histories was developed to quantify the mobilization of P, as well as that of iron (Fe), ammonium, carbon dioxide, and methane, all indicators of organic-matter decomposition and/or P-releasing processes. We found that net P release rates in peat cores with highly decomposed peat (range: 0.1-52.3 mg P x m(-2) x d(-1)) were significantly correlated to the amount of P bound to redox-sensitive compounds and the molar Fe:P as well as Al:P ratios of peat. We conclude that the following general rules apply for P mobilization in rewetted fens: (1) elevated levels of P release rates and P concentrations in pore water up to three orders of magnitude larger than under natural reference conditions can only be expected for rewetted fens whose surface soil layers consist of highly decomposed peat; (2) peat characteristics, such as the amount of P bound to redox-sensitive Fe(III) compounds (positive correlation) and molar ratios of Fe:P or Al:P (negative correlations), explain the high range of P release rates; and (3) a critical P export to adjacent lakes or rivers can only be expected if molar Fe:P ratios of highly decomposed peat are less than 10.
Stratigraphic controls on fluid and solute fluxes across the sediment-water interface of an estuary
Sawyer, Audrey H.; Lazareva, Olesya; Kroeger, Kevin D.; Crespo, Kyle; Chan, Clara S.; Stieglitz, Thomas; Michael, Holly A.
2014-01-01
Shallow stratigraphic features, such as infilled paleovalleys, modify fresh groundwater discharge to coastal waters and fluxes of saltwater and nutrients across the sediment–water interface. We quantify the spatial distribution of shallow surface water–groundwater exchange and nitrogen fluxes near a paleovalley in Indian River Bay, Delaware, using a hand resistivity probe, conventional seepage meters, and pore-water samples. In the interfluve (region outside the paleovalley) most nitrate-rich fresh groundwater discharges rapidly near the coast with little mixing of saline pore water, and nitrogen transport is largely conservative. In the peat-filled paleovalley, fresh groundwater discharge is negligible, and saltwater exchange is deep (∼1 m). Long pore-water residence times and abundant sulfate and organic matter promote sulfate reduction and ammonium production in shallow sediment. Reducing, iron-rich fresh groundwater beneath paleovalley peat discharges diffusely around paleovalley margins offshore. In this zone of diffuse fresh groundwater discharge, saltwater exchange and dispersion are enhanced, ammonium is produced in shallow sediments, and fluxes of ammonium to surface water are large. By modifying patterns of groundwater discharge and the nature of saltwater exchange in shallow sediments, paleovalleys and other stratigraphic features influence the geochemistry of discharging groundwater. Redox reactions near the sediment–water interface affect rates and patterns of geochemical fluxes to coastal surface waters. For example, at this site, more than 99% of the groundwater-borne nitrate flux to the Delaware Inland Bays occurs within the interfluve portion of the coastline, and more than 50% of the ammonium flux occurs at the paleovalley margin.
How does whole ecosystem warming of a peatland affect methane production and consumption?
NASA Astrophysics Data System (ADS)
Hopple, A.; Brunik, K.; Keller, J.; Pfeifer-Meister, L.; Woerndle, G.; Zalman, C.; Hanson, P.; Bridgham, S. D.
2017-12-01
Peatlands are among Earth's most important terrestrial ecosystems due to their massive soil carbon (C) stores and significant release of methane (CH4) into the atmosphere. Methane has a sustained-flux global warming potential 45-times greater than carbon dioxide (CO2), and the accuracy of Earth system model projections relies on our mechanistic understanding of peatland CH4 cycling in the context of environmental change. The objective of this study was to determine, under in situ conditions, how heating of the peat profile affects ecosystem-level anaerobic C cycling. We assessed the response of CO2 and CH4 production, as well as the anaerobic oxidation of CH4 (AOM), in a boreal peatland following 13 months of deep peat heating (DPH) and 16 months of subsequent whole-ecosystem warming (surface and deep heating; WEW) as part of the Spruce and Peatland Responses Under Changing Environments (SPRUCE) project in northern Minnesota, USA. The study uses a regression-based experimental design including 5 temperature treatments that warmed the entire 2 m peat profile from 0 to +9 °C above ambient temperature. Soil cores were collected at multiple depths (25-200 cm) from each experimental chamber at the SPRUCE site and anaerobically incubated at in situ temperatures for 1-2 weeks. Methane and CO2 production in surface peat were positively correlated with elevated temperature, but no consistent temperature response was found at depth (75-200 cm) following DPH. However, during WEW, we observed significant increases in both surface and deep peat methanogenesis with increasing temperature. Surface peat had greater CH4 production rates than deeper peat, implying that the increased CH4 emissions observed in the field were largely driven by surface peat warming. The CO2:CH4 ratio was inversely correlated with temperature across all depths following 16 months of WEW, indicating that the entire peat profile is becoming more methanogenic with warming. We also observed AOM throughout the whole peat profile, with the highest rates observed at the surface and initial data suggesting a positive correlation with increasing temperature. While SPRUCE will continue for many years, our initial results suggest that the vast C stores at depth in peatlands are minimally responsive to warming and any response will be driven largely by surface peat.
Hydrostratigraphy of Tree Island Cores from Water Conservation Area 3
McNeill, Donald F.; Cunningham, Kevin J.
2003-01-01
Cores and borehole-geophysical logs collected on and around two tree islands in Water Conservation Area 3 have been examined to develop a stratigraphic framework for these ecosystems. Especially important is the potential for the exchange of ground water and surface water within these features. The hydrostratigraphic results from this study document the lithologic nature of the foundation of the tree islands, the distribution of porous intervals, the potential for paleotopographic influence on their formation, and the importance of low-permeability, subaerial-exposure horizons on the vertical exchange of ground water and surface water. Figure 1. Location of Tree Islands 3AS3 and 3BS1. [larger image] Results from this hydrostratigraphic study indicate that subtle differences occur in lithofacies and topography between the on-island and off-island subsurface geologic records. Specifics are described herein. Firstly, at both tree-island sites, the top of the limestone bedrock is slightly elevated beneath the head of the tree islands relative to the off-island core sites and the tail of the tree islands, which suggests that bedrock 'highs' acted as 'seeds' for the development of the tree islands of this study and possibly many others. Secondly, examination of the recovered core and the caliper logs tentatively suggest that the elevated limestone beneath the tree islands may have a preferentially more porous framework relative to limestone beneath the adjacent areas, possibly providing a ground-water-to-surface-water connection that sustains the tree island system. Finally, because the elevation of the top of the limestone bedrock at the head of Tree Island 3AS3 is slightly higher than the surrounding upper surface of the peat, and because the wetland peats have a lower hydraulic conductivity than the limestone bedrock (Miami Limestone and Fort Thompson Formation), it is possible that there is a head difference between surface water of the wetlands and the ground water in underlying limestone bedrock.
Impact of the water salinity on the hydraulic conductivity of fen peat
NASA Astrophysics Data System (ADS)
Gosch, Lennart; Janssen, Manon; Lennartz, Bernd
2017-04-01
Coastal peatlands represent an interface between marine and terrestrial ecosystems; their hydrology is affected by salt and fresh water inflow alike. Previous studies on bog peat have shown that pore water salinity can have an impact on the saturated hydraulic conductivity (Ks) of peat because of chemical pore dilation effects. In this ongoing study, we are aiming at quantifying the impact of higher salinities (up to 3.5 %) on Ks of fen peat to get a better understanding of the water and solute exchange between coastal peatlands and the adjacent sea. Two approaches differing in measurement duration employing a constant-head upward-flow permeameter were conducted. At first, Ks was measured at an initial salinity for several hours before the salinity was abruptly increased and the measurement continued. In the second approach, Ks was measured for 15 min at the salt content observed during sampling. Then, samples were completely (de)salinized via diffusion for several days/weeks before a comparison measurement was carried out. The results for degraded fen peats show a decrease of Ks during long-term measurements which does not depend on the water salinity. A slow, diffusion-controlled change in salinity does not modify the overall outcome that the duration of measurements has a stronger impact on Ks than the salinity. Further experiments will show if fen peat soils differing in their state of degradation exhibit a different behavior. A preliminary conclusion is that salinity might have a less important effect on hydraulic properties of fen peat than it was observed for bog peat.
NASA Astrophysics Data System (ADS)
Inisheva, L. I.; Szajdak, L.
2009-04-01
Mires, or peatlands belong to the wetlands ecosystems where carbon is bounded in primary production and deposited as peat in water saturated, anoxic conditions. In those conditions, the rate of the supply of new organic matter has exceeded that the decomposition, resulting in carbon accumulation. Place of sampling belongs to an oligotrophic landscapes of the river Klyuch basin in spurs of Vasyugan mire. The catchment represents reference system for Bokchar swampy area (political district of Tomsk region). Landscape profile crosses main kinds of swampy biogeocoenosis (BGC) toward the mire center: paludal tall mixed forest, pine undershrub Sphagnum (high riam, trans-accumulative part of a profile, P2), pine-undershrub Sphagnum (low riam, transit part, P3), sedge-moss swamp (eluvial part, P5). The latter represents an eluvial part of a slope of watershed massif where it is accomplished discharge of excess, surface, soil-mire waters. The depth of peat deposit of sedge-moss swamp reaches 2,5m. To the depth of 0,6m there is a layer of Sphagnum raised bog peat, then it is a mesotrophic Scheuchzeria Sphagnum layer and at the bottom there is a thick layer of low-mire horsetail peat. The samples of peats were taken from two places (P2 and P3), both from the depth 0-75 cm of the great Vasyugan Mire. These materials represent (P2) Sphagnum fuscum peat (ash content ranged from 10.8 to 15.1%), but samples P3 belong to low-moor sedge peat (ash content ranged from 4.5-4.8%). The differences in water level, redox potential, pH, degree of degradation, bulk density, number of microorganisms, activity of enzymes, different kinds of nitrogen and humic substances were studied in two different peat soils characterized by different type of peat. In general in P2 the redox potential changed from 858 to /-140/ mV, higher activity of xanthine oxidase and peroxidase, different kinds of microorganisms (ammonifing bacteria and cellulose decomposing microorganisms) and different kinds of nitrogen (mineral, easily hydrolysable, hardly hydrolysable and non-hydrolyzable), bitumines, 3 fractions of humic acids and 3 fractions of fulvic acids were determined in the deep 0-25 cm than in 50-75 cm. The ratio HA/FA in the depth 0-25 cm was equal to from 1.87, but in the depth 50-75 cm was equal to 7.66. Contrary was observed for P3. For this peat with the increase of the deep of sampling the decrease of total nitrogen, activity of enzymes (xanthine oxidase and peroxidase) is connected with the changes of Fe+2/Fe+3 and lower difference of redox potential than in P2. The ratio HA/FA in the depth 0-25 cm was equal to 0.56, but in the depth 50-70 cm was equal to 0.84.
Effect of water-table fluctuations on the degradation of Sphagnum phenols in surficial peats
NASA Astrophysics Data System (ADS)
Abbott, Geoffrey D.; Swain, Eleanor Y.; Muhammad, Aminu B.; Allton, Kathryn; Belyea, Lisa R.; Laing, Christopher G.; Cowie, Greg L.
2013-04-01
A much improved understanding of how water-table fluctuations near the surface affect decomposition and preservation of peat-forming plant litter and surficial peats is needed in order to predict possible feedbacks between the peatland carbon cycle and the global climate system. In this study peatland plants (bryophytes and vascular plants), their litter and peat cores were collected from the Ryggmossen peatland in the boreonemoral zone of central Sweden. The extracted insoluble residues from whole plant tissues were depolymerized using thermally assisted hydrolysis and methylation (THM) in the presence of both unlabelled and 13C-labelled tetramethylammonium hydroxide (TMAH) which yielded both vascular plant- and Sphagnum-derived phenols. Methylated 4-isopropenylphenol (IUPAC: 1-methoxy-4-(prop-1-en-2-yl)benzene), methylated cis- and trans-3-(4'-hydroxyphen-1-yl)but-2-enoic acid (IUPAC: (E/Z)-methyl 3-(4-methoxyphenyl)but-2-enoate), and methylated 3-(4'-hydroxyphen-1-yl)but-3-enoic acid (IUPAC: methyl 3-(4-methoxyphenyl)but-3-enoate) (van der Heijden et al., 1997) are confirmed as TMAH thermochemolysis products of "bound" sphagnum acid and also as being specific to Sphagnum mosses. These putative biomarkers were also significant components in the unlabelled TMAH thermochemolysis products from the depolymerization of ultrasonically extracted samples from eight peat cores, one from a hummock and one from a hollow at each of the four stages along the bog plateau-to-swamp forest gradient. We have proposed and measured two parameters namely (i) σ which is defined as the total amount of these four molecules normalised to 100 mg of OC; and (ii) an index (SR%) which is the ratio of σ to the Λ parameter giving a measure of the relative amounts of "bound" sphagnum acid to the "bound" vascular plant phenols in peat moss and the surficial peat layers. Changes in σ and SR% down the bog plateau (BP), bog margin (BM) and fen lagg (FL) cores in the Ryggmossen mire indicates that the sphagnum acid bound into the peat is being degraded in the unsaturated and seasonally-saturated layers. There is then a stabilisation of Sphagnum-derived phenols in the deepest horizons of the seasonally-saturated layer and into the permanently-saturated layer. These results suggest that "bound" sphagnum acid will be stabilised in peatlands shifting to a wetter and more variable precipitation regime whereas it will be gradually stripped away (e.g. by hydrolysis/enzymatic activity) in surficial peats shifting to a drier climate, such that any subsequent rewetting of the peat could lead to anaerobic hydrolysis and fermentation of the newly exposed carbohydrates. This highlights the sensitivity of Sphagnum surficial peats to climate-induced changes in water levels albeit there may be differences in the extent of degradation along the bog-fen gradient.
Streambed peat lenses as redox-reactivity hotspots in lowland river hyporheic zones
NASA Astrophysics Data System (ADS)
Naden, Emma; Krause, Stefan; Cassidy, Nigel
2010-05-01
Hyporheic zones, as the direct interfaces between aquifers and rivers, are often characterised by increased redox reactivity and chemical transformation capacity. Depending on redox conditions and reaction types, hyporheic mixing of groundwater and surface water can lead to either attenuation or enrichment of pollutants or nutrients with diametrical implications for in-stream and aquifer hydro-ecological status. This study combines geophysical methods with distributed temperature sensor networks and nested multi-level sampling and analysis of hyporheic redox conditions and nutrient concentrations to investigate the reactive transport of nitrate at the aquifer-river interface of a UK lowland river. In stream Electric Resistivity Tomography and Ground Penetrating Radar (including core based ground truthing) have been applied to map the complex spatial patterns of highly conductive sandy and gravely sediments in contrast to semi-confining, low conductivity peat lenses which have been found to be characteristic for most lowland rivers. Reach scale (1km) spatial patterns and temporal dynamics of aquifer-river exchange have been identified by heat tracer experiments based on fibre-optical Distributed Temperature Sensing techniques combined with vertical thermocouple-arrays for tracing hyporheic flow paths. Spatial patterns of hyporheic redox conditions, dissolved oxygen (DO) and organic carbon (DOC) content as well as concentrations of major anions have been monitored in 48 nested multi-level mini-piezometers. Our investigations indicate that streambed temperature patterns were dominantly controlled by groundwater up-welling, causing cold spots in sandy and gravely sediments with high up-welling rates and low hyporheic residence times and warmer areas at the streambed surface where groundwater - surface water exchange was inhibited by streambed peat lenses. The flow-inhibiting peat structures have been found to cause semi-confined conditions in the up-welling groundwater, resulting in long residence times and increased redox-reactivity. Anoxic conditions and high DOC contents combined with long residence times underneath peat layers cause highly efficient denitrification rates, reducing nitrate concentrations from > 50mg/l to below the level of detection. In contrast, sandy and gravely areas of fast groundwater up-welling where characterized by only marginal changes in nitrate concentrations. The investigations lead to the development of a conceptual model of aquifer - river exchange and hyporheic reactivity in lowland rivers including temperature traceable hyporheic reactivity hotspots with high denitrification potential. The results for this exemplary field site highlight the substantial nutrient attenuation capacity of hyporheic zones at lowland rivers and emphasize the great importance of their consideration for river restoration programs and the assessment of water quality and ecological status.
NASA Astrophysics Data System (ADS)
Turetsky, M. R.
2015-12-01
Fire is increasingly appreciated as a threat to peatlands and their carbon stocks. The global peatland carbon pool exceeds that of global vegetation and is similar to the current atmospheric carbon pool. Under pristine conditions, most of the peat carbon stock is protected from burning, and resistance to fire has increased peat carbon storage in high latitude regions over long time scales. This, in part, is due to the high porosity and storage coefficient of surface peat, which minimizes water table variability and maintains wet conditions even during drought. However, higher levels of disturbance associated with warming and increasing human activities are triggering state changes and the loss of resiliency in some peatland systems. This presentation will summarize information on burn area and severity in peatlands under undisturbed scenarios of hydrologic self-regulation, and will assess the consequences of warming and drying on peatland vegetation and wildfire behaviour. Our goal is to predict where and when peatlands will become more vulnerable to deep smouldering, given the importance of deep peat layers to global carbon cycling, permafrost stability, and a variety of other ecosystem services in northern regions. Results from two major wildfire seasons (2004 in Alaska and 2014 in the Northwest Territories) show that biomass burning in peatlands releases similar amounts of carbon to the atmosphere as patterns of burning in upland forests, but that peatlands are less vulnerable to severe burning that tends to occur in boreal forests during late season fire activity.
Spatial characteristics of net methylmercury production hot spots in peatlands
Carl P.J. Mitchell; Brian A. Branfireun; Randall K. Kolka
2008-01-01
Many wetlands are sources of methylmercury (MeHg) to surface waters, yet little information exists about the distribution of MeHg within wetlands. Total mercury (THg) and MeHg in peat pore waters were studied in four peatlands in spring, summer, and fall 2005. Marked spatial variability in the distribution of MeHg, and %MeHg as a proxy for net MeHg production, was...
NASA Astrophysics Data System (ADS)
Ritson, J.; Bell, M.; Clark, J. M.; Graham, N.; Templeton, M.; Brazier, R.; Verhoef, A.; Freeman, C.
2013-12-01
Peatlands in the UK represent a large proportion of the soil carbon store, however there is concern that some systems may be switching from sinks to sources of carbon. The accumulation of organic material in peatlands results from the slow rates of decomposition typically occurring in these regions. Climate change may lead to faster decomposition which, if not matched by an equivalent increase in net primary productivity and litter fall, may tip the balance between source and sink. Recent trends have seen a greater flux of dissolved organic matter (DOM) from peatlands to surface waters and a change in DOM character, presenting challenges to water treatment, for example in terms of increased production of disinfectant by-products (DBPs). Peat systems border a large proportion of reservoirs in the UK so uncertainty regarding DOM quantity and quality is a concern for water utilities. This study considered five peatland vegetation types (Sphagnum spp., Calluna vulgaris, Molinea caerulea, peat soil and mixed litter) collected from the Exmoor National Park, UK where it is hypothesised that peat formation may be strongly affected by future changes to climate. A factorial experiment design to simulate climate was used, considering vegetation type, temperature and rainfall amount using a current baseline and predictions from the UKCP09 model. Gaseous fluxes of carbon were monitored over a two month period to quantify the effect on carbon mineralisation rates while 13C NMR analysis was employed to track which classes of compounds decayed preferentially. The DOM collected was characterised using UV and fluorescence techniques before being subject to standard drinking water treatment processes (coagulation/flocculation followed by chlorination). The effect of the experimental factors on DOM amenability to removal and propensity to form DBPs was then considered, with both trihalomethane (THM) and haloacetonitrile (HAN) DBP classes monitored. Initial results have shown a statistically significant (Mann-Whitney U) difference in THM formation (p<0.05) as well as the amount of DOM produced and specific UV absorption at 254nm (p<0.01) between vegetation classes.
Nutrient loading enhances methane flux in an ombrotrophic bog
NASA Astrophysics Data System (ADS)
Bubier, Jill L.; Juutinen, Sari; Moore, Tim; Arnkil, Sini; Humphreys, Elyn; Marincak, Brenden; Roy, Cameron; Larmola, Tuula
2017-04-01
Peatlands are significant sources of atmospheric methane (CH4) and emission rates may be affected by atmospheric nutrient inputs and associated changes in vegetation. In a long-term (10-15 yr) fertilization experiment at a nutrient-poor, Sphagnum moss- and dwarf shrub-dominated bog in eastern Canada, we tested the effect of ammonium nitrate (NH4NO3,0 to 6.4 g N m-2 yr-1) and potassium phosphate (KH2PO4,5 g P m-2 yr-1) on fluxes of CH4. Fluxes were measured using a closed chamber technique over the growing seasons of 2005 and 2015. The effect of long-term field treatments on aerobic consumption and anaerobic production potentials of CH4 was tested by laboratory incubations of peat samples, as well as an amendment with KH2PO4on anaerobic production potentials at the water table. Over the 10-15 yr, three levels of N plus PK addition and N-only addition of 6.4g N m-2yr-1 decreased the abundance of Sphagnum and Polytrichum mosses, increased the growth and coverage of dwarf shrubs, and caused a decline in surface elevation and thus a higher water table. Overall, CH4 flux was small, ˜ 12 mg m-2 d-1 in the control plots, primarily because of the low water table (30 to 50 cm beneath the peat surface), but flux varied as a function of water table position and treatment. KH2PO4 addition was associated with the highest fluxes: in the 5th treatment year, the PK treatment had the largest CH4 flux (˜25 mg m-2 d-1), whereas in the 15th year the 6.4NPK treatment had the largest flux (˜50 mg m-2 d-1). Rates of potential production and consumption of CH4in laboratory incubations of peat samples were associated with position relative to the water table. Anaerobic potential CH4production was largest in the PK treatment and overall was marginally increased by PK amendment; there were no clear effects of NH4NO3 on CH4 production. The major increase in CH4 flux appearing in the long term seemed to be result of the change in water table position owing to peat subsidence and loss of moss, plus potential stimulation of CH4 production by PK.
Microbial Activity in Peat Soil Treated With Ordinary Portland Cement (OPC) and Coal Ashes
NASA Astrophysics Data System (ADS)
Rahman, J. A.; Mohamed, R. M. S. R.; Al-Gheethi, A. A.
2018-04-01
Peat soil is a cumulative of decayed plant fragment which developed as a result of microbial activity. The microbes degrade the organic matter in the peat soils by the production of hydrolysis enzyme. The least decomposed peat, known as fibric peat has big particles and retain lots of water. This made peat having high moisture content, up to 1500 %. The most decomposed peat known as sapric peat having fines particles and less void ratio. The present study aimed to understand the effects of solidification process on the bacterial growth and cellulase (CMCase) enzyme activity. Two types of mixing were designed for fibric, hemic and sapric peats; (i) Ordinary Portland cement (OPC) at an equal amount of dry peat, with 25 % of fly ash (FA) and total of coarse particle, a combination of bottom ash and fibre of 22 – 34 %, (ii) fibric peat was using water-to-binder ratio (w/b) = 1, 50% OPC, 25 % bottom ash (BA) and 25 % FA. For hemic and sapric peat, w/b=3 with 50 % OPC and 50 % BA were used. All samples were prepared triplicates, and were cured for 7, 14, 28 and 56 days in a closed container at room temperature. The results revealed that the first mix design giving a continuous strength development. However, the second mix design shows a decreased in strength pattern after day 28. The influence of the environment factors such as alkaline pH, reduction of the water content and peat temperature has no significant on the reduction amount of native microbes in the peat. The microbes survived in the solidified peat but the amount of microbes were found reduced for all types of mixing Fibric Mixed 1 (FM1), Hemic Mixed 1(HM1) and Sapric Mixed 1 (SM1) were having good strength increment for about 330 – 1427 % with enzymatic activity recorded even after D56. Nevertheless, with increase in the strength development through curing days, the enzymatic activities were reduced. For the time being, it can be concluded that the microbes have the ability to adapt with new environment. The reactivity of the microbes relates with the strength of solidified peat.
Solute transport and storage mechanisms in wetlands of the Everglades, south Florida
Harvey, Judson W.; Saiers, James E.; Newlin, Jessica T.
2005-01-01
Solute transport and storage processes in wetlands play an important role in biogeochemical cycling and in wetland water quality functions. In the wetlands of the Everglades, there are few data or guidelines to characterize transport through the heterogeneous flow environment. Our goal was to conduct a tracer study to help quantify solute exchange between the relatively fast flowing water in the open part of the water column and much more slowly moving water in thick floating vegetation and in the pore water of the underlying peat. We performed a tracer experiment that consisted of a constant‐rate injection of a sodium bromide (NaBr) solution for 22 hours into a 3 m wide, open‐ended flume channel in Everglades National Park. Arrival of the bromide tracer was monitored at an array of surface water and subsurface samplers for 48 hours at a distance of 6.8 m downstream of the injection. A one‐dimensional transport model was used in combination with an optimization code to identify the values of transport parameters that best explained the tracer observations. Parameters included dimensions and mass transfer coefficients describing exchange with both short (hours) and longer (tens of hours) storage zones as well as the average rates of advection and longitudinal dispersion in the open part of the water column (referred to as the “main flow zone”). Comparison with a more detailed set of tracer measurements tested how well the model's storage zones approximated the average characteristics of tracer movement into and out of the layer of thick floating vegetation and the pore water in the underlying peat. The rate at which the relatively fast moving water in the open water column was exchanged with slowly moving water in the layer of floating vegetation and in sediment pore water amounted to 50 and 3% h−1, respectively. Storage processes decreased the depth‐averaged velocity of surface water by 50% relative to the water velocity in the open part of the water column. As a result, flow measurements made with other methods that only work in the open part of the water column (e.g., acoustic Doppler) would have overestimated the true depth‐averaged velocity by a factor of 2. We hypothesize that solute exchange and storage in zones of floating vegetation and peat pore water increase contact time of solutes with biogeochemically active surfaces in this heterogeneous wetland environment.
Barrett, Sophie E; Watmough, Shaun A
2015-11-01
The objective of this research was to assess factors controlling peat and plant chemistry, and vegetation composition in 18 peatlands surrounding Sudbury after more than 30 years of large (>95%) pollution emission reductions. Sites closer to the main Copper Cliff smelter had more humified peat and the surface horizons were greatly enriched in copper (Cu) and nickel (Ni). Copper and Ni concentrations in peat were significantly correlated with that in the plant tissue of Chamaedaphne calyculata. The pH of peat was the strongest determining factor for species richness, diversity, and community composition, although percent vascular plant cover was strongly negatively correlated with surface Cu and Ni concentrations in peat. Sphagnum frequency was also negatively related to peat Cu and Ni concentrations indicating sites close to Copper Cliff smelter remain adversely impacted by industrial activities. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ceglie, Francesco Giovanni; Bustamante, Maria Angeles; Ben Amara, Mouna; Tittarelli, Fabio
2015-01-01
Peat replacement is an increasing demand in containerized and transplant production, due to the environmental constraints associated to peat use. However, despite the wide information concerning the use of alternative materials as substrates, it is very complex to establish the best materials and mixtures. This work evaluates the use of mixture design and surface response methodology in a peat substitution experiment using two alternative materials (green compost and palm fibre trunk waste) for transplant production of tomato (Lycopersicon esculentum Mill.); melon, (Cucumis melo L.); and lettuce (Lactuca sativa L.) in organic farming conditions. In general, the substrates showed suitable properties for their use in seedling production, showing the best plant response the mixture of 20% green compost, 39% palm fibre and 31% peat. The mixture design and applied response surface methodology has shown to be an useful approach to optimize substrate formulations in peat substitution experiments to standardize plant responses. PMID:26070163
NASA Astrophysics Data System (ADS)
Aminudin, A.; Hasanah, T. R.; Iryati, M.
2018-05-01
The Electrical and physical properties can be used as indicators for measuring soil conditions. One of the methods developed in agricultural systems to obtain information on soil conditions is through measuring of electrical conductivity. Peat soil is one of the natural resources that exist in Indonesia. This study aims to determine the characteristics of peat soil in Rasau village, West Kalimantan. This research was conducted by the properties of electrical conductivity and water content using 5TE Water Contents and EC Sensor equipment, but also to know the change of physical nature of peat soil covering peat soil and peat type. The results showed that the electrical conductivity value of 1-4 samples was 0.02 -0.29 dS/m and the volume water content value (VWC) was 0.255-0.548 m3/m3 and the physical characteristics obtained were peat colour brown to dark brown that allegedly the soil still has a very high content of organic material derived from weathering plants and there are discovery of wood chips, wood powder and leaf powder on the ground. Knowing the information is expected to identify the land needs to be developed to be considered for future peat soil utilization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, A.D.; Raymond, R. Jr.; Thayer, G.
1987-08-01
A peat deposit occupying over 80 square kilometers, and averaging 8 meters in thickness, was discovered on the Caribbean coast of northwestern Panama near the town of Changuinola. This deposit occurs inland (behind) the present beach-barrier shoreline. It is thickest in the center and thins toward all edges (as if domed). The surface vegetation in the central regions consists primarily of ombrotrophic plants (especially sedges, grasses, Sphagnum, Sagittaria, and various scattered shrubs). Toward the edges, the deposit has a surface cover of more minerotrophic plants (such as swamp-forest trees, ferns, and palms). Petrographic/botanical analysis of the deposit with depth revealsmore » the presence of five peat types (swamp-forest, sedge-grass-fern, Sagittaria et al., Nymphaea et al., and Rhizophora). Typically peats of the thick, central portions of the deposit are very low in ash and sulfur (less than 2% ash and 0.3% sulfur). Ash contents tend to increase abruptly at the base and more gradually toward the edges of the deposit and sulfur contents increasing gradually toward the ocean and bay. Vertical and lateral variations in botanical, chemical, and physical properties of this deposit can be related to factors that have controlled: (1) the surrounding rocks and water chemistry; (2) the source vegetation; and (3) the environments in which these source ingredients were deposited. 3 refs., 10 figs.« less
Lateral carbon fluxes and CO2 outgassing from a tropical peat-draining river
NASA Astrophysics Data System (ADS)
Müller, D.; Warneke, T.; Rixen, T.; Müller, M.; Jamahari, S.; Denis, N.; Mujahid, A.; Notholt, J.
2015-07-01
Tropical peatlands play an important role in the global carbon cycle due to their immense carbon storage capacity. However, pristine peat swamp forests are vanishing due to deforestation and peatland degradation, especially in Southeast Asia. CO2 emissions associated with this land use change might not only come from the peat soil directly, but also from peat-draining rivers. So far, though, this has been mere speculation, since there was no data from undisturbed reference sites. We present the first combined assessment of lateral organic carbon fluxes and CO2 outgassing from an undisturbed tropical peat-draining river. Two sampling campaigns were undertaken on the Maludam river in Sarawak, Malaysia. The river catchment is covered by protected peat swamp forest, offering a unique opportunity to study a peat-draining river in its natural state, without any influence from tributaries with different characteristics. The two campaigns yielded consistent results. Dissolved organic carbon (DOC) concentrations ranged between 3222 and 6218 μmol L-1 and accounted for more than 99 % of the total organic carbon (TOC). Radiocarbon dating revealed that the riverine DOC was of recent origin, suggesting that it derives from the top soil layers and surface runoff. We observed strong oxygen depletion, implying high rates of organic matter decomposition and consequently CO2 production. The measured median pCO2 was 7795 and 8400 μatm during the two campaigns, respectively. Overall, we found that only 26 ± 15 % of the carbon was exported by CO2 evasion, while the rest was exported by discharge. CO2 outgassing seemed to be moderated by the short water residence time. Since most Southeast Asian peatlands are located at the coast, this is probably an important limiting factor for CO2 outgassing from most of its peat-draining rivers.
Mariussen, Espen; Johnsen, Ida Vaa; Strømseng, Arnljot Einride
2017-04-01
An environmental survey was performed on shooting ranges for small arms located on minerotrophic mires. The highest mean concentrations of Pb (13 g/kg), Cu (5.2 g/kg), Zn (1.1 g/kg), and Sb (0.83 g/kg) in the top soil were from a range located on a poor minerotrophic and acidic mire. This range had also the highest concentrations of Pb, Cu, Zn, and Sb in discharge water (0.18 mg/L Pb, 0.42 mg/L Cu, 0.63 mg/L Zn, and 65 μg/L Sb) and subsurface soil water (2.5 mg/L Pb, 0.9 mg/L Cu, 1.6 mg/L Zn, and 0.15 mg/L Sb). No clear differences in the discharge of ammunition residues between the mires were observed based on the characteristics of the mires. In surface water with high pH (pH ~7), there was a trend with high concentrations of Sb and lower relative concentrations of Cu and Pb. The relatively low concentrations of ammunition residues both in the soil and soil water, 20 cm below the top soil, indicates limited vertical migration in the soil. Channels in the mires, made by plant roots or soil layer of less decomposed materials, may increase the rate of transport of contaminated surface water into deeper soil layers and ground water. A large portion of both Cu and Sb were associated to the oxidizable components in the peat, which may imply that these elements form inner-sphere complexes with organic matter. The largest portion of Pb and Zn were associated with the exchangeable and pH-sensitive components in the peat, which may imply that these elements form outer-sphere complexes with the peat.
Short-Term Summer Inundation as a Measure to Counteract Acidification in Rich Fens
Mettrop, Ivan S.; Cusell, Casper; Kooijman, Annemieke M.; Lamers, Leon P. M.
2015-01-01
In regions with intensive agriculture, water level fluctuation in wetlands has generally become constricted within narrow limits. Water authorities are, however, considering the re-establishment of fluctuating water levels as a management tool in biodiverse, base-rich fens (‘rich fens’). This includes temporary inundation with surface water from ditches, which may play an important role in counteracting acidification in order to conserve and restore biodiversity. Inundation may result in an increased acid neutralizing capacity (ANC) for two reasons: infiltration of base-rich inundation water into peat soils, and microbial alkalinity generation under anaerobic conditions. The main objectives of this study were to test whether short-term (2 weeks) summer inundation is more effective than short-term winter inundation to restore the ANC in the upper 10 cm of non-floating peat soils, and to explain potential differences. Large-scale field experiments were conducted for five years in base-rich fens and Sphagnum-dominated poor fens. Winter inundation did not result in increased porewater ANC, because infiltration was inhibited in the waterlogged peat and evapotranspiration rates were relatively low. Also, low temperatures limit microbial alkalinity generation. In summer, however, when temperature and evapotranspiration rates are higher, inundation resulted in increased porewater Ca and HCO3 - concentrations, but only in areas with characteristic rich fen bryophytes. This increase was not only due to stronger infiltration into the soil, but also to higher microbial alkalinity generation under anaerobic conditions. In contrast, porewater ANC did not increase in Sphagnum-plots as a result of the ability of Sphagnum spp. to acidify their environment. In both rich and poor fens, flooding-induced P-mobilization remained sufficiently low to safeguard P-limited vegetation. NO3 - and NH4 + dynamics showed no considerable changes either. In conclusion, short-term summer inundation with base-rich and nutrient-poor surface water is considered beneficial in the management of non-floating rich fens, and much more effective than winter inundation. PMID:26637121
Fujii, Roger; Ranalli, Anthony J.; Aiken, George R.; Bergamaschi, Brian A.
1998-01-01
Water exported from the Sacramento-San Joaquin River delta (Delta) is an important drinking-water source for more than 20 million people in California. At times, this water contains elevated concentrations of dissolved organic carbon and bromide, and exceeds the U.S. Environmental Protection Agency's maximum contaminant level for trihalomethanes of 0.100 milligrams per liter if chlorinated for drinking water. About 20 to 50 percent of the trihalomethane precursors to Delta waters originates from drainage water from peat soils on Delta islands. This report elucidates some of the factors and processes controlling and affecting the concentration and quality of dissolved organic carbon released from peat soils and relates the propensity of dissolved organic carbon to form trihalomethanes to its chemical composition.Soil water was sampled from near-surface, oxidized, well-decomposed peat soil (upper soil zone) and deeper, reduced, fibrous peat soil (lower soil zone) from one agricultural field in the west central Delta over 1 year. Concentrations of dissolved organic carbon in the upper soil zone were highly variable, with median concentrations ranging from 46.4 to 83.2 milligrams per liter. Concentrations of dissolved organic carbon in samples from the lower soil zone were much less variable and generally slightly higher than samples from the upper soil zone, with median concentrations ranging from 49.3 to 82.3 milligrams per liter. The dissolved organic carbon from the lower soil zone had significantly higher aromaticity (as measured by specific ultraviolet absorbance) and contained significantly greater amounts of aromatic humic substances (as measured by XAD resin fractionation and carbon-13 nuclear magnetic resonance analysis of XAD isolates) than the dissolved organic carbon from the upper soil zone. These results support the conclusion that more aromatic forms of dissolved organic carbon are produced under anaerobic conditions compared to aerobic conditions. Dissolved organic carbon concentration, trihalomethane formation potential, and ultraviolet absorbance were all highly correlated, showing that trihalomethane precursors increased with increasing dissolved organic carbon and ultraviolet absorbance for whole water samples. Contrary to the generally accepted conceptual model for trihalomethane formation that assumes that aromatic forms of carbon are primary precursors to trihalomethanes, results from this study indicate that dissolved organic carbon aromaticity appears unrelated to trihalomethane formation on a carbon-normalized basis. Thus, dissolved organic carbon aromaticity alone cannot fully explain or predict trihalomethane precursor content, and further investigation of aromatic and nonaromatic forms of carbon will be needed to better identify trihalomethane precursors.
Rosenberry, D.O.; Glaser, P.H.; Siegel, D.I.
2006-01-01
Recent research indicates that accumulation and release of biogenic gas from northern peatlands may substantially affect future climate. Sudden release of free-phase gas bubbles into the atmosphere may preclude the conversion of methane to carbon dioxide in the uppermost oxic layer of the peat, resulting in greater contribution of methane to the atmosphere than is currently estimated. The hydrology of these peatlands also affects and is affected by this process, especially when gas is released suddenly and episodically. Indirect hydrological evidence indicates that ebullitive gas releases are relatively frequent in some peatlands and time-averaged rates may be significantly greater than diffusive releases. Estimates of free-phase gas contained in peat have ranged from 0 to nearly 20% of the peat volume. Abrupt changes in the volume of gas may alter hydraulic gradients and movement of water and solutes in peat, which in turn could alter composition and fluxes of the gas. Peat surfaces also move vertically and horizontally in response to accumulation and release of free-phase gas. Future research should address the distribution, temporal variability, and relative significance of ebullition in peatlands and the consequent hydrological responses to these gas-emission events. Copyright ?? 2006 John Wiley & Sons, Ltd.
Ecological study of peat landforms in Canada and Alaska
NASA Technical Reports Server (NTRS)
Glaser, Paul H.
1989-01-01
Over 20 percent of the land surface of Canada and Alaska is covered by peatlands, which may be defined as any waterlogged ecosystem with a minimum thickness of 20 cm of organic matter in the soil. Past investigations have demonstrated the value of aerial photographs in identifying the major vegetation types and analyzing the biotic and hydrogeologic processes that control the development of these peatlands. In the present study, LANDSAT TM imagery was used in conjunction with field studies to determine the utility of this satellite sensor for detecting these important processes. Although the vegetation landforms within these major peat basins are visible on aerial photographs, LANDSAT TM imagery provides essential new evidence for their analysis. Spectral data from the LANDSAT TM system provides: (1) synoptic views of the patterns across large portions of these peat basins, indicating important physiographic controls on peatland development, (2) more sensitive detection of the major vegetation types, allowing rapid quantitative estimates to be made of their distribution and aerial extent, (3) discrimination of bog areas with potentially rapid or slow rates of peat accumulation, (4) identification of discharge zones for groundwater, which apparently represents the most important source of alkalinity in these peat basins, and (5) detection of flow patterns in water tracks that appear nearly uniform on standard aerial photographs.
Stability of peatland carbon to rising temperatures
Wilson, R. M.; Hopple, A. M.; Tfaily, M. M.; ...
2016-12-13
Peatlands contain one-third of soil carbon (C), mostly buried in deep, saturated anoxic zones (catotelm). The response of catotelm C to climate forcing is uncertain, because prior experiments have focused on surface warming. Here, we show that deep peat heating of a 2 m-thick peat column results in an exponential increase in CH 4 emissions. But, this response is due solely to surface processes and not degradation of catotelm peat. Incubations show that only the top 20–30 cm of peat from experimental plots have higher CH 4 production rates at elevated temperatures. Radiocarbon analyses demonstrate that CH 4 and COmore » 2 are produced primarily from decomposition of surface-derived modern photosynthate, not catotelm C. Furthermore, there are no differences in microbial abundances, dissolved organic matter concentrations or degradative enzyme activities among treatments. Our results suggest that although surface peat will respond to increasing temperature, the large reservoir of catotelm C is stable under current anoxic conditions.« less
Stability of peatland carbon to rising temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, R. M.; Hopple, A. M.; Tfaily, M. M.
Peatlands contain one-third of soil carbon (C), mostly buried in deep, saturated anoxic zones (catotelm). The response of catotelm C to climate forcing is uncertain, because prior experiments have focused on surface warming. Here, we show that deep peat heating of a 2 m-thick peat column results in an exponential increase in CH 4 emissions. But, this response is due solely to surface processes and not degradation of catotelm peat. Incubations show that only the top 20–30 cm of peat from experimental plots have higher CH 4 production rates at elevated temperatures. Radiocarbon analyses demonstrate that CH 4 and COmore » 2 are produced primarily from decomposition of surface-derived modern photosynthate, not catotelm C. Furthermore, there are no differences in microbial abundances, dissolved organic matter concentrations or degradative enzyme activities among treatments. Our results suggest that although surface peat will respond to increasing temperature, the large reservoir of catotelm C is stable under current anoxic conditions.« less
NASA Astrophysics Data System (ADS)
Bechtold, Michel; Tiemeyer, Bärbel; Don, Axel; Altdorff, Daniel; van der Kruk, Jan; Huisman, Johan A.
2013-04-01
Previous studies showed that in-situ visible near-infrared (vis-NIR) spectroscopy can overcome the limitations of conventional soil sampling. Costs can be reduced and spatial resolution enhanced when mapping field-scale variability of soil organic carbon (SOC). Detailed maps can help to improve SOC management and lead to better estimates of field-scale total carbon stocks. Knowledge of SOC field patterns may also help to reveal processes and factors controlling SOC variability. In this study, we apply in situ vis-NIR and apparent electrical conductivity (ECa) mapping to a disturbed bog relict. The major question of this application study was how field-scale in-situ vis-NIR mapping performs for a very heterogeneous area and under difficult grassland conditions and under highly-variable water content conditions. Past intensive peat cutting and deep ploughing in some areas, in combination with a high background heterogeneity of the underlying mineral sediments, have led to a high variability of SOC content (5.6 to 41.3 %), peat layer thickness (25 to 60 cm) and peat degradation states (from nearly fresh to amorphous). Using a field system developed by Veris Technologies (Salina KS, USA), we continuously collected vis-NIR spectra at 10 cm depth (measurement range: 350 nm to 2200 nm) over an area of around 12 ha with a line spacing of about 12 m. The system includes a set of discs for measuring ECa of the first 30 and 90 cm of the soil. The same area was also mapped with a non-invasive electro-magnetic induction (EMI) setup that provided ECa data of the first 25, 50 and 100 cm. For calibration and validation of the spatial data, we took 30 representative soil samples and 15 soil cores of about 90 cm depth, for which peat thickness, water content, pore water EC, bulk density (BD), as well as C and N content were determined for various depths. Preliminary results of the calibration of the NIR spectra to the near-surface SOC contents indicate good data quality despite the challenging site conditions. Bore hole data indicates that the peat layer is characterized by lower BD, higher pore water EC, higher SOC content, and higher water contents compared to the underlying mineral sediments. This ECa contrast at the peat-sand interface is promising for using the various ECa investigation depths as predictors for peat thickness. Preliminary EMI results also show a correlation between ECa and SOC content, most strongly for the 25 cm EMI signal. We evaluate how vis-NIR and ECa data can be used in a joined approach to estimate SOC content as well as SOC stock distribution.
NASA Astrophysics Data System (ADS)
Weijers, J. W. H.; Steinmann, P.; Hopmans, E. C.; Basiliko, N.; Finkelstein, S. A.; Johnson, K. R.; Schouten, S.; Sinninghe Damsté, J. S.
2012-04-01
Branched glycerol dialkyl glycerol tetraether (brGDGT) membrane lipids occur ubiquitously in peat and soil. In soil, the degree of methylation and cyclisation of branched tetraethers (MBT index and CBT ratio, respectively) has shown to relate to both soil pH and annual mean air temperature (MAT). Using this relation, past annual MATs can be reconstructed by analysing brGDGTs in marine sediment records near large river outflows. More recently, the potential of this MBT/CBT proxy is also being explored in lakes. Despite being more abundant in peat than soils, however, the utility of the proxy has not yet been fully explored in peat records. Present day peat records generally extent back to the early Holocene, but if the MBT/CBT proxy were shown to be applicable in peat deposits, there is also potential to apply it to immature coal deposits like lignites, which could provide valuable snapshots of continental climate back to the early Cenozoic. Here results are presented of analyses of different peats in south eastern Canada, showing that the pH of peat along a nutrient gradient is rather well reflected by the CBT. Annual MAT reconstructions based on the MBT/CBT soil calibration, however, tend to overestimate measured MAT. This is also the case for peat analysed from the surface of Etang de la Gruère peat bog in the Swiss Jura Mountains. Along the 6m depth profile of this bog (~13ka), CBT-reconstructed pH is compared with in-situ measured pore water pH showing that the brGDGT composition does not reflect present-day in-situ conditions. Instead, it reflects a stratigraphic boundary between Carex and Sphagnum dominated peat at 4 m depth that is not present in the pore water profile, testifying to a 'fossil' nature of the brGDGTs down the peat bog. Analyses of three immature coals of the Argonne Premium Coal Series reveal that branched GDGTs are present in the most immature coal, the Beulah Zap lignite (Ro = 0.25%), and only just above detection limit in the Wyodak Anderson coal (Ro = 0.32%), both of about the same age (Late Palaeocene). In the more mature Illinois #6 coal (Ro = 0.46%), brGDGTs are completely absent. In the Denver Basin, a comparison is made between outcrop and drilled core samples of Palaeocene lignites. BrGDGTs are preserved in the core samples, although in low quantities compared to peat. Outcrop samples are clearly overprinted by modern soil derived brGDGTs, despite digging a meters deep trench, which shows the need to obtain fresh non-weathered samples by coring. Reconstructed annual MAT for both the Beulah Zap and the Denver Basin lignites are several degrees higher than estimates based on leaf margin and oxygen isotope analyses from the same sites. Both reconstructions do testify, nevertheless, to the warm continental conditions during the early Cenozoic of the central U.S.A.. Although further validation is required, potentially in the form of a specific peat calibration, these results do show potential for application of the MBT/CBT temperature proxy in peat and lignite deposits.
NASA Astrophysics Data System (ADS)
Raymond, Anne
2016-04-01
Coal balls are carbonate and pyrite permineralizations of peat that contain three-dimensional plant fossils preserved at the cellular level. Coal balls, which occur in Pennsylvanian and earliest Permian equatorial coals, provide a detailed record of terrestrial ecology and tropical climate during the Late Paleozoic Ice Age; yet their depositional environment remains controversial. The exquisite preservation of some coal-ball fossils, e.g. pollen with pollen tubes and leaves with mesophyll, indicates rapid formation. The presence of abundant, cement-filled, void spaces within and between the plant debris in most coal balls indicates that they formed in uncompacted peat, near the surface of the mire. Botanical, taphonomic and isotopic evidence point to a freshwater origin for coal balls. The nearest living relatives of coal ball plants (modern lycopsids, sphenopsids, marratialean ferns and conifers) grow in fresh water. Coal-ball peat contains a high percentage of aerial debris, similar to modern freshwater peat. The stable oxygen isotopes of coal-ball carbonate (δ18O = 16 to 3 per mil) suggest a freshwater origin. However, the widespread occurrence of marine invertebrates and early diagenetic framboidal pyrite in coal balls suggests that many formed in close proximity to marine water. Indeed, carbonate petrology points to a marine or brackish water origin for the first-formed carbonate cements in coal balls. Petrographic and geochemical (microprobe) analysis of coal-ball carbonates in Pennsylvanian coals from the midcontinent of North America (Western Interior Basin, West Pangaea) and the Ruhr and Donets Basins (East Pangaea) indicate that the first formed carbonate is either radaxial, nonstochiometric dolomite or high magnesium calcite (9 - 17 mol % MgCO3, indicating precipitation in marine or brackish water. Although both primary dolomite and high magnesium calcite can form in lacustrine settings, the lakes in which these minerals form occur in carbonate terranes and experience significant evaporation. Paleotropical coals with coal balls are under- and overlain by siliciclastic sediments, and, if fresh, would have required ever-wet climatic conditions for peat to accumulate. Pervasive freshwater diagenesis, with low magnesium calcite enveloping individual grains of high-magnesium calcite, results in most coal-ball carbonates having a freshwater or mixed isotopic signature. In some coal balls, cell walls in the root cortex (a soft tissue) separate carbonate of differing magnesium content, resulting in cells filled with low-magnesium (freshwater) calcite adjacent to cells filled with high-magnesium (marine) calcite, suggesting that these cements formed in recently dead or dying roots. The juxtaposition of high-magnesium (marine) calcite and low-magnesium (freshwater) calcite in coal balls suggests that they formed at the marine/freshwater interface in mires that contained salt-tolerant plants. This model of coal-ball formation suggests that coals bearing coal balls accumulated early in marine transgression as glaciers melted and sea level rose. In modern coastal mires, tidal incursion of salt water can maintain high freshwater tables, enabling domed freshwater peat to form in climates that normally would be too dry for tropical freshwater peat accumulation. Peat accumulation in these mires may be due to marine transgression rather than the ever-wet paleoclimates.
Paulauskiene, Tatjana
2018-04-01
This work aimed to evaluate the sorption capacity of natural sorbents (wool, moss, straw, peat) and their composites during the sorption of crude oil and of diesel overspread on the water surface. The work presents the research results of the maximum sorption capacity of the sorbents/their composites using crude oil/diesel; the sorption capacity of the sorbents/their composites when crude oil/diesel is spilled on the water surface; and the research results of the unrealized part of the crude oil/diesel in the sorbents. The results of the analysis showed that all the sorbents and their composites have their selectivity to crude oil less than 50%. Also the results showed that the distribution of diesel and water in the sorbents and their composites is very different compared with the distribution of crude oil during the sorption analyses. In total, the diesel in the liquid mass absorbed by the straw and the peat amounted to 17 and 20%, respectively. This shows that these sorbents are much more selective for water but not for diesel. A larger part of the diesel was in the liquid amount absorbed by the composites-up to 33%. Accordingly, the use of these composites in watery environments is much more effective than the use of individual sorbents. The composition of sorbents in the composite enhanced both the hydrophobic and the oleophilic properties; as a result, a more effective removal of the diesel and oil from the water surface was achieved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corvinus, D.A.
1982-01-01
The Okefenokee Swamp, over 400,000 acres, is a swamp-marsh complex dominated by Taxodium-swamp vegetaion on its west side and Nymphaea-marsh vegetation onits east side. The Albemarle-Pamlico Peninsular Swamps primarily support a pocosin-bay vegetation. The Taxodium-dominated peats of the Okefenokee are more similar botanically to the Albemarle-Pamlico bay peats than are the Okefenokee Nymphaea-dominated peats. Some petrographic characteristics are common to all three peat types. The majority of cell walls in the peat exhibit colors (yellow to orange to red) which they did not display in their living state. This is believed to be from impregnation by the various cell fillingsmore » present in the peats. Unoxidized fragmented (granular) material in all three peat types usually occurs in larger amounts than oxidized (darkened) material. In Taxodium-dominated and bay peats the fragmented matrix is also usually more prevalent than the preserved material (intact cell walls and cell fillings). On the other hand, preserved material is most common in Nymphaea-dominated peats. It is believed that the majority of fragmented material is derived from the surface litter and that swamp vegetation contributes more surface litter than does marsh vegetation.« less
NASA Astrophysics Data System (ADS)
Rodionova, Alexandra
2016-04-01
Peatlands are an important natural archive for past climatic changes. Climatic changes throughout the Holocene have been reconstructed from peat using a wide array of biological and other proxies. Many different proxy indicators can be derived from peat cores allowing for a multi-proxy approach to climatic reconstructions. Peat-based climatic and environmental reconstructions are currently available from many sites in Yenisei Siberia, mainly for its northern territories. The purpose of this paper is to study some features of peatland development and environmental reconstructions from the Holocene period in the south part of Yenisei Siberia (Kansk forest-steppe zone). The main method used in this research is macrofossil analysis. It can be used to reconstruct the development of local vegetation and surface wetness on peatlands. The macrofossil analysis in the peat resulted from the study of the vegetation in a particular place over a period of time, and it allowed the reconstruction of environmental changes that have occurred since the Late Glacial. Then we used ecological scales of moisture and reconstructed surface wetness for the entire period of the bog formation. Radiocarbon dating was carried out at Sobolev Institute of Geology and Mineralogy, Russian Academy of Sciences, Novosibirsk . Peatland "Pinchinskoye" was selected for investigation in Kansk forest-steppe. It is located on the right bank of the Yenisei River in the floodplain of Esaulovka River. Peat cores of 350 cm were selected in the southern part of the peatbog, including 225 cm of peat (with loam layers in the range of 90 to 135 cm), 75 cm of organic and mineral sapropel with the inclusion of fossil shells of mollusks and different plant macrofossils and 50 cm of the loam below. The process of peat accumulation dated back 8400 ± 140 years, which is the oldest date for the forest-steppe zone of Yenisei Siberia. The climate of Boreal period of the Holocene was chilly. Under these conditions, in the territory of the peatland "Pinchinskoye" there was a small lake. The birch forest with different grasses was growing along the banks of the lake. The lake level dropped significantly at the beginning of the Atlantic period around 7000 BP in a warm and dry climate. This launched the lake overgrowth and eutrophication. Birch forests and then spruce forests rich in herbs with green moss emerged in the peatland. An increase in moisture was recorded for the Sub-Boreal period (4900-2400) and, as a result, the prevalence of marsh communities with bog bean and fern. Increasing water level of rovers led to the spill and silting up of the bog surface in 2020 ± 60 BP at the beginning of the Sub-Atlantic period. After the decline of the water level, the process of peat accumulation continued and spread out throughout the whole trough flat. Sedge, cotton grass, sphagnum moss and green moss predominated in the composition of plant communities in Sub-Atlantic period, starting from 1500 BP. In the last 500 years, the peatland moved to the mesoeutrophic phase of development.
NASA Astrophysics Data System (ADS)
Turner, Kate; Worrall, Fred
2010-05-01
Only 3% of the earths land surface is covered by peatland yet boreal and subarctic peatlands store approximately 15-30% of the World's soil carbon as peat (Limpens et al. 2008). In comparison British bogs store carbon equivalent to 20 years worth of national emissions. The loss of carbon from these areas in the form of dissolved organic carbon (DOC) is increasing and it is expected to have grown by up to 40% by 2018. Extensive drainage of UK peatlands has been associated with dehydration of the peat, an increase in water colour and a loss of carbon storage. It has been considered that the blocking of these drainage channels represents a means of peat restoration and a way of reducing DOC loss. This study aims to assess the effectiveness of this drain blocking at both an individual drain scale and at a larger catchment scale. Gibson et al. (2009) considered the effects of blocking at a solely individual drain scale finding that a 20% drop in DOC export was recorded post blocking however this decrease was due to a reduction in water yield rather than a reduction in DOC concentration with the concentration record showing no significant reduction. The effect of external parameters become more pronounced as the DOC record is examined at larger scales. The catchment is an open system and water chemistry will be influence by mixing with water from other sources. Also it is likely that at some point the drains will cut across slope leading to the flow of any highly coloured water down slope, bypassing the blockages, and entering the surface waters downstream. Degradation of DOC will occur naturally downstream due to the effects of light and microbial activity. There is, consequently, a need to examine the wider effects of drain blocking at a catchment scale to ensure that what is observed for one drain transfers to the whole catchment. A series of blocked and unblocked catchments were studied in Upper Teesdale, Northern England. Drain water samples were taken at least daily at nine localities. These sites were located such that individual drains could be monitored in the context of a larger catchment. Water table depth, flow and weather parameters were recorded along with the collection of runoff and soil water samples. A detailed sampling programme was undertaken in which a series of drains were studied in the 12 months prior to and post blocking. This approach has allowed the effects of blocking on the carbon budget, water balance and flow pathways to be considered. Results indicate that the blocking of zero order drainage channels leads to a decrease in DOC export on an individual drain scale. However, this is due to a reduction in water yield rather than concentration. Concentrations are seen to rise by a small yet statistically significant amount in blocked zero order streams. The effect at a larger scale is more complex. Annual export values in the unblocked control catchment show a rise from zero to first order streams indicating that water is being added to the system at this scale from external spatially variable sources. This pattern is also recognised in the blocked catchment. The DOC concentration record in blocked drains at this larger scale however indicated a reduction relative to the unblocked catchment. This reduction points to a change in flow pathways post blocking as highly coloured water re-navigates its way downstream. References: Gibson H, Worrall F, Burt TP, Adamson JK (2009) DOC budgets of drained peat catchments: implications for DOC production in peat soils, Hydrological Processes 23(13) 1901-1911 Limpens J (2008) Peatlands and the carbon cycle: from local processes to global implications- a synthesis, Biogeosciences 5 1475-1491
Peat drainage conditions assessment in Scotland
NASA Astrophysics Data System (ADS)
Poggio, Laura; Artz, Rebekka; Donaldson-Selby, Gillian; Aitkenhead, Matt; Donnelly, David; Gimona, Alessandro
2017-04-01
Large areas of Scotland are covered in peat, providing an important sink of carbon but also a notable source of emission where peatlands are not in good condition. However, despite data from designated sites that peat degradation is common, a detailed spatial assessment of the condition of most peatlands across the whole of Scotland is missing. An assessment of peatland drainage was carried out at >600 random sampling locations with an expert-based estimation of presence or absence of drainage ditches within a 500 metre block using 25 cm resolution aerial imagery. The resulting dataset was modelled using a scorpan-kriging approach, in particular using Generalised Additive Models for the description of the trend. Remote sensing images from different sensors (i.e. MODIS, Landsat and Sentinel 1 and 2) were used. In particular we used indices describing vegetation greenness (Enhanced Vegetation Index), water availability (Normalised Water Difference index), Land Surface Temperature and vegetation productivity. When considering MODIS indices we used time series and phenological summaries. The model provides also uncertainty of the estimations. The derived dataset can then be used in the decision making process for the selection of sites for restoration, emissions estimation and accounting.
Regulation of Methane Oxidation in a Freshwater Wetland by Water Table Changes and Anoxia
NASA Technical Reports Server (NTRS)
Roslev, Peter; King, Gary M.
1996-01-01
The effects of water table fluctuations and anoxia on methane emission and methane oxidation were studied in a freshwater marsh. Seasonal aerobic methane oxidation rates varied between 15% and 76% of the potential diffusive methane flux (diffusive flux in the absence of aerobic oxidation). On an annual basis, approximately 43% of the methane diffusing into the oxic zone was oxidized before reaching the atmosphere. The highest methane oxidation was observed when the water table was below the peat surface. This was confirmed in laboratory experiments where short-term decreases in water table levels increased methane oxidation but also net methane emission. Although methane emission was generally not observed during the winter, stems of soft rush (Juncus effusus) emitted methane when the marsh was ice covered. Indigenous methanotrophic bacteria from the wetiand studied were relatively anoxia tolerant. Surface peat incubated under anoxic conditions maintained 30% of the initial methane oxidation capacity after 32 days of anoxia. Methanotrophs from anoxic peat initiated aerobic methane oxidation relatively quickly after oxygen addition (1-7 hours). These results were supported by culture experiments with the methanotroph Methylosinus trichosporium OB3b. This organism maintained a greater capacity for aerobic methane oxidation when starved under anoxic compared to oxic conditions. Anoxic incubation of M. trichosporium OB3b in the presence of sulfide (2 mM) and a low redox potential (-110 mV) did not decrease the capacity for methane oxidation relative to anoxic cultures incubated without sulfide. The results suggest that aerobic methane oxidation was a major regulator of seasonal methane emission front the investigated wetland. The observed water table fluctuations affected net methane oxidation presumably due to associated changes in oxygen gradients. However, changes from oxic to anoxic conditions in situ had relatively little effect on survival of the methanotrophic bacteria and thus on methane oxidation potential per se.
Carbon Fluxes in Dissolved and Gaseous Forms for a Restored Peatland in British Columbia, Canada
NASA Astrophysics Data System (ADS)
D'Acunha, B.; Johnson, M. S.; Lee, S. C.; Christen, A.
2016-12-01
Peatlands are wetlands where gross primary production exceeds organic matter decomposition causing an accumulation of partially decomposed matter, also called peat. These ecosystems can accumulate more carbon than tropical rainforests. However, dissolved and gaseous fluxes of carbon (as dissolved organic carbon (DOC), CO2 and methane (CH4)) must also be considered to determine if these ecosystems are net sinks or sources of greenhouse gases (GHGs) to the atmosphere, which depends in part on the environmental conditions and the state of the ecosystem. We conducted research in Burns Bog, Delta, BC, Canada, a raised domed peat bog located in the Fraser River Delta and one of the largest raised peat bogs on the west coast of the Americas, but which has been heavily impacted by a range of human activities. Currently, ecological restoration efforts are underway by a large-scale ditch blocking program, with the aim to re-establish a high water table. This is approached in partnership with research on the ecosystem services that the bog provides, including its role in a regional GHG inventory. Here we present data on ecosystem-scale fluxes of CO2 and CH4 determined by eddy covariance (EC) on a floating tower platform, and complementary data on (i) evasion fluxes of CO2, CH4 and nitrous oxide (N2O) from the water surface to the atmosphere, and (ii) the flux and composition of dissolved organic carbon in water draining Burns Bog. Concentrations of dissolved CO2, CH4 and N2O were determined by headspace equilibration, and evasion rates from the water surface were quantified and are used to estimate the role of the hydrosphere in the ecosystem-scale measurements. Water samples collected from five saturated areas in the flux tower footprint were analyzed for DOC concentrations and composition. Results indicated that, even though the whole system is a net C sink, the water surface behaved as a source of CO2 and CH4, and a sink for N2O throughout the study period. Drainage waters were high in DOC (> 30 mg L-1). DOC export was found to offset about 20% of the apparent net C uptake determined by EC, indicating that the EC system overestimates carbon accumulation by not accounting for DOC drainage.
Eddy Covariance Measurements of Methane Flux at a Tropical Peat Forest in Sarawak, Malaysian Borneo
NASA Astrophysics Data System (ADS)
Tang, Angela C. I.; Stoy, Paul C.; Hirata, Ryuichi; Musin, Kevin K.; Aeries, Edward B.; Wenceslaus, Joseph; Melling, Lulie
2018-05-01
Tropical biogenic sources are a likely cause of the recent increase in global atmospheric methane concentration. To improve our understanding of tropical methane sources, we used the eddy covariance technique to measure CH4 flux (FCH4) between a tropical peat forest ecosystem and the atmosphere in Malaysian Borneo over a 2-month period during the wet season. Mean daily FCH4 during the measurement period, on the order of 0.024 g C-CH4·m-2·day-1, was similar to eddy covariance FCH4 measurements from tropical rice agroecosystems and boreal fen ecosystems. A linear modeling analysis demonstrated that air temperature (Tair) was critical for modeling FCH4 before the water table breached the surface and that water table alone explained some 20% of observed FCH4 variability once standing water emerged. Future research should measure FCH4 on an annual basis from multiple tropical ecosystems to better constrain tropical biogenic methane sources.
NASA Astrophysics Data System (ADS)
Dimitrov, Dimitre D.; Grant, Robert F.; Lafleur, Peter M.; Humphreys, Elyn R.
2011-12-01
The ecosys model was applied to investigate the effects of water table and subsurface hydrology changes on carbon dioxide exchange at the ombrotrophic Mer Bleue peatland, Ontario, Canada. It was hypothesized that (1) water table drawdown would not affect vascular canopy water potential, hence vascular productivity, because roots would penetrate deeper to compensate for near-surface dryness, (2) moss canopy water potential and productivity would be severely reduced because rhizoids occupy the uppermost peat that is subject to desiccation with water table decline, and (3) given that in a previous study of Mer Bleue, ecosystem respiration showed little sensitivity to water table drawdown, gross primary productivity would mainly determine the net ecosystem productivity through these vegetation-subsurface hydrology linkages. Model output was compared with literature reports and hourly eddy-covariance measurements during 2000-2004. Our findings suggest that late-summer water table drawdown in 2001 had only a minor impact on vascular canopy water potential but greatly impacted hummock moss water potential, where midday values declined to -250 MPa on average in the model. As a result, simulated moss productivity was reduced by half, which largely explained a reduction of 2-3 μmol CO2 m-2 s-1 in midday simulated and measurement-derived gross primary productivity and an equivalent reduction in simulated and measured net ecosystem productivity. The water content of the near-surface peat (top 5-10 cm) was found to be the most important driver of interannual variability of annual net ecosystem productivity through its effects on hummock moss productivity and on ecosystem respiration.
How important are peatlands globally in providing drinking water resources?
NASA Astrophysics Data System (ADS)
Xu, Jiren; Morris, Paul; Holden, Joseph
2017-04-01
The potential role of peatlands as water stores and sources of downstream water resources for human use is often cited in publications setting the context for the importance of peatlands, but is rarely backed up with substantive evidence. We sought to determine the global role of peatlands in water resource provision. We developed the Peat Population Index (PPI) that combines the coverage of peat and the local population density to show focused (hotspot) areas where there is a combination of both large areas of peat and large populations who would potentially use water sourced from those peatlands. We also developed a method for estimating the proportion of river water that interacted with contributing peatlands before draining into rivers and reservoirs used as a drinking water resource. The Peat Reservoir Index (PRI) estimates the contribution of peatlands to domestic water use to be 1.64 km3 per year which is 0.35 % of the global total. The results suggest that although peatlands are widespread, the spatial distribution of the high PPI and PRI river basins is concentrated in European middle latitudes particularly around major conurbations in The Netherlands, northern England, Scotland (Glasgow) and Ireland (Dublin), although there were also some important systems in Florida, the Niger Delta and Malaysia. More detailed research into water resource provision in high PPI areas showed that they were not always also high PRI areas as often water resources were delivered to urban centres from non-peat areas, despite a large area of peat within the catchment. However, particularly in the UK and Ireland, there are some high PRI systems where peatlands directly supply water to nearby urban centres. Thus both indices are useful and can be used at a global level while more local refinement enables enhanced use which supports global and local peatland protection measures. We now intend to study the impacts of peatland degradation and climate change on water resource provision in hotspot PPI and PRI regions.
Krest, J.M.; Harvey, J.W.
2003-01-01
Radium activity in pore water of wetland sediments often differs from the amount expected from local production, decay, and exchange with solid phases. This disequilibrium results from vertical transport of radium with groundwater that flows between the underlying aquifer and surface water. In situations where groundwater recharge or discharge is significant, the rate of vertical water flow through wetland sediment can be determined from the radium disequilibrium by a combined model of transport, production, decay, and exchange with solid phases. We have developed and tested this technique at three sites in the freshwater portion of the Everglades by quantifying vertical advective velocities in areas with persistent groundwater recharge or discharge and estimating a coefficient of dispersion at a site that is subject to reversals between recharge and discharge. Groundwater velocities (v) were determined to be between 0 and -0.5 cm d-1 for a recharge site and 1.5 ?? 0.4 cm d-1 for a discharge site near Levee 39 in the Everglades. Strong gradients in 223Ra and 224Ra usually occurred at the base of the peat layer, which avoided the problems of other tracers (e.g., chloride) for which greatest sensitivity occurs near the peat surface - a zone readily disturbed by processes unrelated to groundwater flow. This technique should be easily applicable to any wetland system with different production rates of these isotopes in distinct sedimentary layers or surface water. The approach is most straightforward in systems where constant pore-water ionic strength can be assumed, simplifying the modeling of radium exchange.
NASA Astrophysics Data System (ADS)
Raudina, Tatiana V.; Loiko, Sergey V.; Lim, Artyom G.; Krickov, Ivan V.; Shirokova, Liudmila S.; Istigechev, Georgy I.; Kuzmina, Daria M.; Kulizhsky, Sergey P.; Vorobyev, Sergey N.; Pokrovsky, Oleg S.
2017-07-01
Mobilization of dissolved organic carbon (DOC) and related trace elements (TEs) from the frozen peat to surface waters in the permafrost zone is expected to enhance under ongoing permafrost thaw and active layer thickness (ALT) deepening in high-latitude regions. The interstitial soil solutions are efficient tracers of ongoing bio-geochemical processes in the critical zone and can help to decipher the intensity of carbon and metals migration from the soil to the rivers and further to the ocean. To this end, we collected, across a 640 km latitudinal transect of the sporadic to continuous permafrost zone of western Siberia peatlands, soil porewaters from 30 cm depth using suction cups and we analyzed DOC, dissolved inorganic carbon (DIC), and 40 major elements and TEs in 0.45 µm filtered fraction of 80 soil porewaters. Despite an expected decrease in the intensity of DOC and TE mobilization from the soil and vegetation litter to the interstitial fluids with the increase in the permafrost coverage and a decrease in the annual temperature and ALT, the DOC and many major and trace elements did not exhibit any distinct decrease in concentration along the latitudinal transect from 62.2 to 67.4° N. The DOC demonstrated a maximum of concentration at 66° N, on the border of the discontinuous/continuous permafrost zone, whereas the DOC concentration in peat soil solutions from the continuous permafrost zone was equal to or higher than that in the sporadic/discontinuous permafrost zone. Moreover, a number of major (Ca, Mg) and trace (Al, Ti, Sr, Ga, rare earth elements (REEs), Zr, Hf, Th) elements exhibited an increasing, not decreasing, northward concentration trend. We hypothesize that the effects of temperature and thickness of the ALT are of secondary importance relative to the leaching capacity of peat, which is in turn controlled by the water saturation of the peat core. The water residence time in peat pores also plays a role in enriching the fluids in some elements: the DOC, V, Cu, Pb, REEs, and Th were a factor of 1.5 to 2.0 higher in mounds relative to hollows. As such, it is possible that the time of reaction between the peat and downward infiltrating waters essentially controls the degree of peat porewater enrichments in DOC and other solutes. A 2° northward shift in the position of the permafrost boundaries may bring about a factor of 1.3 ± 0.2 decrease in Ca, Mg, Sr, Al, Fe, Ti, Mn, Ni, Co, V, Zr, Hf, Th, and REE porewater concentration in continuous and discontinuous permafrost zones, and a possible decrease in DOC, specific ultraviolet absorbency (SUVA), Ca, Mg, Fe, and Sr will not exceed 20 % of their current values. The projected increase in ALT and vegetation density, northward migration of the permafrost boundary, or the change of hydrological regime is unlikely to modify chemical composition of peat porewater fluids larger than their natural variations within different micro-landscapes, i.e., within a factor of 2. The decrease in DOC and metal delivery to small rivers and lakes by peat soil leachate may also decrease the overall export of dissolved components from the continuous permafrost zone to the Arctic Ocean. This challenges the current paradigm on the increase in DOC export from the land to the ocean under climate warming in high latitudes.
The Dependence of Peat Soil Hydraulic Conductivity on Dominant Vegetation Type in Mountain Fens
NASA Astrophysics Data System (ADS)
Crockett, A. C.; Ronayne, M. J.; Cooper, D. J.
2014-12-01
The peat soil within fen wetlands provides water storage that can substantially influence the hydrology of mountain watersheds. In this study, we investigated the relationship between hydraulic conductivity and vegetation type for fens occurring in Rocky Mountain National Park (RMNP), Colorado, USA. Vegetation in RMNP fens can be dominated by woody plants and shrubs, such as willows; by mosses; or by herbaceous plants such as sedges. Fens dominated by each vegetation type were selected for study. Six fens were investigated, all of which are in the Colorado River watershed on the west side of RMNP. For each site, soil hydraulic conductivity was measured at multiple locations using a single-ring infiltrometer. As a result of the shallow water table in these fens (the water table was always within 10 cm of the surface), horizontal hydraulic gradients were produced during the field tests. The measured infiltration rates were analyzed using the numerical model HYDRUS. In order to determine the hydraulic conductivity, a parameter estimation problem was solved using HYDRUS as the forward simulator. Horizontal flow was explicitly accounted for in the model. This approach produced more accurate estimates of hydraulic conductivity than would be obtained using an analytical solution that assumes strictly vertical flow. Significant differences in hydraulic properties between fens appear to result at least in part from the effects of different dominant vegetation types on peat soil formation.
NASA Astrophysics Data System (ADS)
Hanisch, J.; Connon, R.; Templeton, M.; Quinton, W. L.; Olefeldt, D.; Moore, T. R.; Roulet, N. T.; Sonnentag, O.
2014-12-01
Our current understanding of peatland energy, water and carbon (C) cycles implies that northern peatlands are vulnerable to projected climate change, and that the perturbation of these cycles might cause a strong positive or negative net feedback to the climate system. About one third of Canada's northern peatlands contain contain perennialy frozen ground (permafrost). Boreal forest-peatland ecosystems in the discontinuous permafrost zone (50-90% of frozen ground) are especially vulnerable to rising temperatures as permafrost is ice-rich, relatively warm and thin, and thus susceptible to complete disappearance causing ground surface subsidence and a decline in forest cover in response to water-logging. Several recent studies have substantially improved our understanding of northern peatland's role in the climate system by quantifying their net ecosystem C balance which includes atmospheric and aqueous C fluxes generally dominated by the export of dissolved organic C (DOC). We characterize seasonal and diurnal variations in DOC export from five catchments (0.02-0.05 km2) at Scotty Creek, a 152 km2-watershed under the influence of rapidly degrading and disappearing discontinuous permafrost near Fort Simpson, Northwest Territories, Canada. The five catchments are characterized by different fractions of forested peat plateaus with permafrost (38-73%) and permafrost-free collapse bogs (27-62%). Dissolved organic carbon concentrations at Scotty Creek appear to be higher in catchments where the percentage of peat plateaus is higher compared to bogs, independent of catchment size. Average DOC concentration for catchments with a lower percentage of peat plateaus is lower (~43 mg/l) than for those with a higher percentage of plateaus (~60 mg/l). These preliminary results suggest that lateral C losses from this rapidly changing landscape are at least partly controlled by the peat plateau-bog ratio. Over the year, DOC export from the five catchments is limited to around a week due to the relatively dry conditions at Scotty Creek over the hot summer months: only one of the catchments produces continuous measurable surface runoff. However, as indicated through water level recordings, additional unaccounted DOC export may occur through diffuse subsurface flow.
Carbon balance of a drained forested bog in southern Finland
NASA Astrophysics Data System (ADS)
Minkkinen, Kari; Penttilä, Timo; Ojanen, Paavo; Lohila, Annalea
2016-04-01
Carbon and greenhouse gas (GHG) dynamics of a drained forested peatland in southern Finland were measured over multiple years, including one with severe drought during growing season. Net ecosystem carbon dioxide exchange (NEE) was measured with an eddy covariance method from a tower above the forest. Soil and forest floor CO2, CH4 and N2O fluxes were measured from the strips and from ditches with closed chambers. Biomasses and litter production were sampled, and soil subsidence was measured by consequtive levelings of the peat surface. The data were used to estimate the ecosystem C pools and annual fluxes of carbon and GHGs of the peatland and to analyse the impact of periodical drought on the carbon fluxes. The drained peatland was a strong sink of carbon dioxide in all studied years. Soil CO2 balance was estimated by subtracting the carbon sink of the growing tree stand from NEE, and it showed that also the soil was a sink of carbon in all studied years. A drought period in one summer significantly decreased the sink through decreased GPP. Drought also decreased the ecosystem respiration, including soil respiration. Decreasing water table thus did not increase, but rather decreased CO2 efflux from the peat soil. The site was a small sink for CH4, even when emissions from ditches were included. N2O emissions were small from all surfaces. Despite of the continuous carbon sink, peat surface subsided slightly (1.4 mm a-1) during the 10-year measurement period, which is interpreted to mean mainly compaction, rather than oxidation of the peat. It is concluded that this drained peatland acts as a continuous soil C sink similarly to an undrained peatland. The reason may be the relatively small water-level drawdown compared to an undrained situation, the consequently rather small changes in plant community structure and the significantly improved tree stand growth and litter production. The consequences of continuing production forestry vs. restoration of the site on the GHG fluxes and climate impact will be discussed.
Environmental factors controlling methane emissions from peatlands in northern Minnesota
NASA Technical Reports Server (NTRS)
Dise, Nancy B.; Gorham, Eville; Verry, Elon S.
1993-01-01
The environmental factors affecting the emission of methane from peatlands were investigated by correlating CH4 emission data for two years, obtained from five different peatland ecosystems in northern Minnesota, with peat temperature, water table position, and degree of peat humification. The relationship obtained between the CH4 flux and these factors was compared to results from a field manipulation experiment in which the water table was artificially raised in three experimental plots within the driest peatland. It was found that peat temperature, water table position, and degree of peat humification explained 91 percent of the variance in log CH4 flux, successfully predicted annual CH4 emission from individual wetlands, and predicted the change in flux due to the water table manipulation. Raising the water table in the bog corrals by an average of 6 cm in autumn 1989 and 10 cm in summer 1990 increased CH4 emission by 2.5 and 2.2 times, respectively.
Impact of Water Level on Carbon Sequestration at a Sub-tropical Peat Marsh
NASA Astrophysics Data System (ADS)
Sumner, D.; Hinkle, C.; Li, J.
2012-12-01
The impact of water level on sub-tropical peat marsh atmospheric/landscape carbon exchange was explored through eddy-covariance measurement of carbon dioxide and methane fluxes over a site at Blue Cypress Conservation Area in Florida. This site is vegetated with tall, dense sawgrass (Cladium jamaicense) and a thick accumulation of peat (over 3 m) suggesting a historically high primary productivity and carbon sequestration. Water managers are particularly interested in understanding how water-level controls can be directed to maintain topography through avoidance of excessive drought-induced oxidative losses of peat soil, as well as to minimize releases of greenhouse gases to the atmosphere. Comparison of net ecosystem productivity (NEP) during a wet year of continuous inundation and a drier year with a 9-month hydroperiod (NEP of 710 and 180 g C/m2/yr, respectively) suggests the positive impact of inundation on sequestration of carbon dioxide. These results are counter to previous research in short stature (1 m or less) sawgrass marshes in the Florida Everglades which indicate suppression of productivity during inundation. This seeming contradiction is probably best explained by the tall stature (over 2 m) of sawgrass at the study site in which inundation still does not cover a substantial fraction of the green leaves and the lower canopy is largely composed of brown and decaying leaves. Gross ecosystem productivity (GEP) was suppressed during the dry year (GEP = 1380 and 1030 g C/m2/yr for wet and dry years, respectively), probably as a consequence of canopy moisture stress. Respiration (R) was enhanced the year when water levels were farthest below land surface (R = 670 and 850 g C/m2/yr for wet and dry years, respectively) as a result of soil oxidation. GEP remained suppressed during the dry year even after re-flooding, probably because of relatively low photosynthetic leaf area that was the legacy of reduced canopy growth rates during the drought. Over a seven-month measurement period spanning a dry-to-inundated transition in the marsh, methane flux was negligible during non-inundated periods, but was substantial (averaging 80 g C/m2/yr) during wet periods. The results of this study suggest that water level is a critical control on atmospheric carbon exchanges at this peat marsh with implications for water management and strategic planning under potentially drier conditions that might occur in response to climate change.
Impact of Water Level on Carbon Sequestration at a Sub-tropical Peat Marsh
NASA Astrophysics Data System (ADS)
Sumner, D.; Hinkle, C.; Graham, S.; Li, J.
2013-12-01
The impact of water level on sub-tropical peat marsh atmospheric/landscape carbon exchange was explored through eddy-covariance measurement of carbon dioxide and methane fluxes over a site at Blue Cypress Conservation Area in Florida. This site is vegetated with tall, dense sawgrass (Cladium jamaicense) and a thick accumulation of peat (over 3 m) suggesting a historically high primary productivity and carbon sequestration. Water managers are particularly interested in understanding how water-level controls can be directed to maintain topography through avoidance of excessive drought-induced oxidative losses of peat soil, as well as to minimize releases of greenhouse gases to the atmosphere. Comparison of net ecosystem productivity (NEP) during a wet year of continuous inundation and a drier year with a 9-month hydroperiod (NEP of 710 and 180 g C/m2/yr, respectively) suggests the positive impact of inundation on sequestration of carbon dioxide. These results are counter to previous research in short stature (1 m or less) sawgrass marshes in the Florida Everglades which indicate suppression of productivity during inundation. This seeming contradiction is probably best explained by the tall stature (over 2 m) of sawgrass at the study site in which inundation still does not cover a substantial fraction of the green leaves and the lower canopy is largely composed of brown and decaying leaves. Gross ecosystem productivity (GEP) was suppressed during the dry year (GEP = 1380 and 1030 g C/m2/yr for wet and dry years, respectively), probably as a consequence of canopy moisture stress. Respiration (R) was enhanced the year when water levels were farthest below land surface (R = 670 and 850 g C/m2/yr for wet and dry years, respectively) as a result of soil oxidation. GEP remained suppressed during the dry year even after re-flooding, probably because of relatively low photosynthetic leaf area that was the legacy of reduced canopy growth rates during the drought. Over a seven-month measurement period spanning a dry-to-inundated transition in the marsh, methane flux was negligible during non-inundated periods, but was substantial (averaging 80 g C/m2/yr) during wet periods. The results of this study suggest that water level is a critical control on atmospheric carbon exchanges at this peat marsh with implications for water management and strategic planning under potentially drier conditions that might occur in response to climate change.
NASA Astrophysics Data System (ADS)
Craig, M. S.; Kundariya, N.; Hayashi, K.; Srinivas, A.; Burnham, M.; Oikawa, P.
2017-12-01
Near surface geophysical surveys were conducted in the Sacramento-San Joaquin Delta for earthquake hazard assessment and to provide estimates of peat thickness for use in carbon models. Delta islands have experienced 3-8 meters of subsidence during the past century due to oxidation and compaction of peat. Projected sea level rise over the next century will contribute to an ongoing landward shift of the freshwater-saltwater interface, and increase the risk of flooding due to levee failure or overtopping. Seismic shear wave velocity (VS) was measured in the upper 30 meters to determine Uniform Building Code (UBC)/ National Earthquake Hazard Reduction Program (NEHRP) site class. Both seismic and ground penetrating radar (GPR) methods were employed to estimate peat thickness. Seismic surface wave surveys were conducted at eight sites on three islands and GPR surveys were conducted at two of the sites. Combined with sites surveyed in 2015, the new work brings the total number of sites surveyed in the Delta to twenty.Soil boreholes were made at several locations using a hand auger, and peat thickness ranged from 2.1 to 5.5 meters. Seismic surveys were conducted using the multichannel analysis of surface wave (MASW) method and the microtremor array method (MAM). On Bouldin Island, VS of the surficial peat layer was 32 m/s at a site with pure peat and 63 m/s at a site peat with higher clay and silt content. Velocities at these sites reached a similar value, about 125 m/s, at a depth of 10 m. GPR surveys were performed at two sites on Sherman Island using 100 MHz antennas, and indicated the base of the peat layer at a depth of about 4 meters, consistent with nearby auger holes.The results of this work include VS depth profiles and UBC/NEHRP site classifications. Seismic and GPR methods may be used in a complementary fashion to estimate peat thickness. The seismic surface wave method is a relatively robust method and more effective than GPR in many areas with high clay content or where surface sediments have been disturbed by human activities. GPR does however provide significantly higher resolution and better depth control in areas with suitable recording conditions.
NASA Astrophysics Data System (ADS)
Szczepański, M.; Szajdak, L.; Bogacz, A.
2009-04-01
The investigation of peatland is used to show the water quality functioning with respect to different forms of nitrogen and carbon. The purification of ground water by the transect of 4.5 km long consisting organic soils (peat-moorsh soils) was estimated. This transect is located in the Agroecological Landscape Park in Turew, 40 km South-West of Poznan, West Polish Lowland. There is this transect along Wyskoć ditch. pH, the contents of total and dissolved organic carbon, total nitrogen, N-NO3-, N-NH4+ was measured. Additionally C/N factors of peats were estimated. The investigation has shown the impact of the peatland located on the secondary transformed peat - moorsh soils on the lowering of total nitrogen, ammonium, and nitrates as well as total and dissolved organic carbon in ground water. Peat-moorsh soils were described and classified according to Polish hydrogenic soil classification and World Reference Base Soil Notation. There are these investigated points along to Wyskoc ditch. Two times a month during entire vegetation season the following material was taken from four chosen sites marked as Zbechy, Bridge, Shelterbelt and Hirudo: samples of peat, from the depth of 0-20 cm, samples of water from the ditch, samples of ground water from wells established for this investigation. Samples of peat-moorsh soils were collected at the depth 0-20 cm. Soils were sampled two times a month from 10 sites of each site. Samples were air dried and crushed to pass a 1 mm-mesh sieve. These 10 sub-samples were mixed for the reason of preparing a "mean sample", which used for the determination of pH (in 1M KCl), dissolved organic carbon (DOC), total organic carbon (TOC), total nitrogen (Ntotal), and N-NO3- as well as N-NH4+. In water from Wyskoć ditch pH, Ntotal, N-NO3-, N-NH4+, DTC (dissolved total carbon) and DOC (dissolved organic carbon) was measured. Ground water samples were collected from four wells established for this investigation. The water was filtered by the middle velocity separation and pH, N-total, N-NO3-, N-NH4+, DTC (dissolved total carbon) and DOC (dissolved organic carbon) ware measured. Peatland located on the secondary transformed peat - moorsh soils has revealed the lowering in ground water: nitrates 38.5%, N-organic 10%, N-total 24.5%, ammonium 38.7%, dissolved total carbon 33.1%, dissolved total inorganic carbon 10%, and dissolved organic carbon 57.5%. The dissolution of soil organic matter from peat-moorsh soils in broad range of pH and ionic strength was investigated. The rates of the reaction were calculated from the kinetics of first order reaction model. The investigations have shown the impact of the properties of secondary transformed peat-moorsh soils on the rates of the dissolution of organic matter.
Genesis of peat-bog soils in the northern taiga spruce forests of the Kola Peninsula
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikonov, V.V.
1981-01-01
The characteristics of soil formation processes in the Peat-Bog soils of waterlogged spruce phytocenoses on the Kola Peninsula are investigated. It is found that the ash composition of the peat layer is determined primarily by the composition of the buried plant residues. The effect of the chemical composition of water feeding the peat bogs is determined. (Refs. 7).
Hydrology and Geostatistics of a Vermont, USA Kettlehole Peatland
NASA Astrophysics Data System (ADS)
Mouser, Paula J.; Hession, W. Cully; Rizzo, Donna M.; Gotelli, Nicholas J.
2005-01-01
The ability to predict the response of peatland ecosystems to hydrologic changes is imperative for successful conservation and remediation efforts. We studied a 1.25-ha Vermont kettlehole bog for one year (September 2001-October 2002) to identify hydrologic controls, temporal and spatial variability in flow regimes, and to link hydrologic processes to density of the carnivorous plant ( Sarracenia purpurea), an ombrotrophic bog specialist. Using a spatial array of nested piezometers, we measured surface and subsurface flow in shallow peat and surrounding mineral soil. Our unique sampling array was based on a repeated measures factorial design with: (1) incremental distances from a central kettlehole pond; (2) equal distances between piezometers; and (3) at three depths from the peat surface. Local flow patterns in the peat were controlled by snowpack storage during winter and spring months and by evapotranspiration and pond water elevation during summer and fall months. Hydraulic head values showed a local reversal within the peat during spring months which was reflected in higher chemical constituent concentrations in these wells. On a regional scale, higher permeable soils diverted groundwater beneath the peatland to a nearby wetland complex. Horizontal water gradient magnitudes were larger in zones where the peatland was perched above regional groundwater and smaller in zones where a hydraulic connection existed between the peatland and the regional groundwater. The density of pitcher plants ( S. purpurea) is strongly correlated to the distance from a central pond, [Fe 3+], [Na +], [Cl -], and [SO42-]. The pH, conductivity, and [Ca 2+] had significant effects of depth and time with horizontal distance correlations between 20 and 26 m. The pH samples had temporal correlations between 27 and 79 days. The link between pitcher plants and ion chemistry; significant effects of peatland chemistry on distance, depth, and time; and spatial and temporal correlations are important considerations for peatland restoration strategies.
NASA Astrophysics Data System (ADS)
Gogo, Sébastien; Laggoun-Défarge, Fatima; Leroy, Fabien; Guimbaud, Christophe; Bernard-Jannin, Léonard
2017-04-01
Many Sphagnum peatlands are experiencing vegetation change caused mainly by hydrological disturbances. In the context of these direct and indirect modifications, greenhouse gases (GHG) fluxes are affected by peat oxygenation, changes in litter composition (and thus decomposition) and rhizospheric processes (such as root exudates). This could lead a C sink system to switch to a source. To restore peatland functioning, ecological engineering works can be undertaken. Our study site, La Guette peatland (central France) is invaded by Molinia caerulea because a drain at the output decreased the water table depth. It was shown that it functioned as a source of C. In 2014, hydrological works were undertaken: 8 dams were installed, ditches were dug perpendicular to the water flow and back-filled with a mixture of shales and bentonite. In addition, a biodiversity experiment with 2 identical experimental stations was implemented: "downstream", close to the hydraulic works (relatively wet), "upstream", (relatively dry), with types of 3 vegetation plot (2m x 2m, n=4): 1) "control": intact vegetation (Molinia caerulea, Erica tetralix), 2) "bare" peat: vegetation and 5cm of peat were removed, 3) "Sphagnum": bare peat+Sphagnum. Our study aims to assess the effect of the vegetation treatment on the GHG fluxes. CO2 (ecosystem respiration or ER, Gross Primary Production or GPP, and Net Ecosystem Exchange) and CH4 fluxes (manual accumulation chamber), air and soil temperature, water table level, soil moisture were measured. After 18 months, half of the surface of "bare" and "Sphagnum" plots were covered by vegetation (Eriophorum angustifolium, Rynchospora alba, Trichophorum cespitosum). With time, as succession unfolds in these 2 types of station, ER and GPP increased. The sensitivity of ER to temperature increased sharply in "bare" and "Sphagnum" plots with years and became higher than the sensitivity in "control" plots. GPP increased with the total vegetation percentage cover, especially in "bare" peat plots. NEE were still lower in the "bare" and "sphagnum" peat plots than in "control". However, the difference tends to decrease. In November 2015, the "sphagnum" peat plots were still functioning as a sink of C, whereas the other plots functioned as a source. As a conclusion, the "bare" and "sphagnum" treatments, after 3 years, were not able to store C as much as the control during the daytime measurements undertaken. C budget for each treatment still have to be calculated to determine the sink or source functioning of the different treatment.
Lateral carbon fluxes and CO2 outgassing from a tropical peat-draining river
NASA Astrophysics Data System (ADS)
Müller, D.; Warneke, T.; Rixen, T.; Müller, M.; Jamahari, S.; Denis, N.; Mujahid, A.; Notholt, J.
2015-10-01
Tropical peatlands play an important role in the global carbon cycle due to their immense carbon storage capacity. However, pristine peat swamp forests are vanishing due to deforestation and peatland degradation, especially in Southeast Asia. CO2 emissions associated with this land use change might not only come from the peat soil directly but also from peat-draining rivers. So far, though, this has been mere speculation, since there has been no data from undisturbed reference sites. We present the first combined assessment of lateral organic carbon fluxes and CO2 outgassing from an undisturbed tropical peat-draining river. Two sampling campaigns were undertaken on the Maludam River in Sarawak, Malaysia. The river catchment is covered by protected peat swamp forest, offering a unique opportunity to study a peat-draining river in its natural state, without any influence from tributaries with different characteristics. The two campaigns yielded consistent results. Dissolved organic carbon (DOC) concentrations ranged between 3222 and 6218 μmol L-1 and accounted for more than 99 % of the total organic carbon (TOC). Radiocarbon dating revealed that the riverine DOC was of recent origin, suggesting that it derives from the top soil layers and surface runoff. We observed strong oxygen depletion, implying high rates of organic matter decomposition and consequently CO2 production. The measured median pCO2 was 7795 and 8400 μatm during the first and second campaign, respectively. Overall, we found that only 32 ± 19 % of the carbon was exported by CO2 evasion, while the rest was exported by discharge. CO2 outgassing seemed to be moderated by the short water residence time. Since most Southeast Asian peatlands are located at the coast, this is probably an important limiting factor for CO2 outgassing from most of its peat-draining rivers.
Climatic Controls on the Porewater Chemistry of Mid-Continental Wetlands
NASA Astrophysics Data System (ADS)
Levy, Zeno Francis
Wetlands develop where climate and physiography conspire to maintain saturated soils at the land surface, support diverse plant and animal communities, and serve as globally important sinks for atmospheric carbon. The chemistry of wetland porewaters impacts near-surface biological communities and subsurface biogeochemical processes that influence carbon cycling in the environment. Wetland porewater chemistry is a dynamic byproduct of complex hydrogeological processes that cause meteoric waters to enter groundwater systems (recharge) or groundwater to flow to the land surface (discharge). Changes in climate can alter subsurface hydraulic gradients that determine the recharge and discharge functions of wetlands, which in turn control the hydrogeochemical evolution of wetland porewaters. The climate of mid-continental North America is influenced by competing air masses with vastly different temperature and moisture contents originating from the Pacific Coast, the Gulf of Mexico, and the Arctic. The interactions of these air masses result in large dynamic shifts of climate regimes characterized by decadal-scale oscillations between periods of drought and heavy rain. Over the course of the 20th century, a shift occurred towards wetter climate in the mid-continental region. This dissertation examines the impact of this climate shift on the porewater chemistry of two very different wetland systems, located only 350 km apart: the Glacial Lake Agassiz Peatlands (GLAP) of northern Minnesota and the Cottonwood Lake Study Area (CLSA) of North Dakota. The former study site consists of a large (7,600 km2), circumboreal peatland that developed an extensive blanket of peat over the last 5000 years on a relatively flat glacial lake bed within a sub-humid to semi-arid climate gradient characterized by small annual atmospheric moisture surpluses and frequent droughts. The latter study site consists of a 0.92 km2 complex of small (meter-scale) "prairie pothole" wetlands located on a hummocky glacial stagnation moraine under semi-arid climate where wetlands frequently fill and dry with surface ponds over low-permeability glacial till in response to snowmelt runoff and evapotranspiration. Both sites have been the subject of long-term hydrological study since c. 1980 and are well-established examples of the sensitivity of wetland functions to changes in climate. The first chapter of this dissertation utilizes a semi-conservative tracer suite (pH, Ca, Mg, Sr, 87Sr/86Sr) to fingerprint discharge of calcareous groundwater to GLAP peat along a 6 km transect from a bog crest downslope to an internal fen water track and bog islands. However, stable isotopes of the peat porewaters (delta18O and delta 2H) show that the subsurface throughout the entire study area is currently flushed with recharge from the near surface peat. I hypothesize that back-diffusion of groundwater-derived solutes from the peat matrix to active pore-spaces has allowed the geochemical signal from paleo-hydrogeologic discharge to persist into the current regime of dilute recharge. This effect promotes methane generation in the peatland subsurface by allowing transport of labile carbon compounds from the land surface to depth while maintaining geochemical conditions (i.e. pH) in the deep peat favorable to biogenic methane production. The results of this study show that autogenic hydrogeochemical feedback mechanisms contribute to the resilience of peatlands systems and associated ecological functions against climate change. The second chapter of this dissertation consists of a detailed geoelectrical survey of a well-studied, closed-basin prairie wetland (P1) in the CLSA that has experienced record drought and heavy rains (i.e. deluge) during the late 20th century. Subsurface storage of sulfate (SO4) salts allows many such closed-basin prairie wetlands to maintain moderate surface water salinities (TDS from 1 to 10 g L-1) that influence communities of aquatic biota. I imaged saline lenses of sulfate-rich porewater (TDS > 10 g L-1) in wetland sediments beneath the bathymetric low of the wetland and within the currently ponded area along the shoreline of a prior pond stand. Analyses of long-term (1979-2014) groundwater and surface water levels in the wetland suggest that the saline lenses formed during paleo-droughts when the groundwater levels dropped below the wetland bed and are stable in the subsurface on at least centennial timescales. I hypothesize a "drought-induced recharge" mechanism by which wetlands maintain moderate surface water salinity by subsurface storage during droughts when the wetlands dry and intermittent runoff events flush surface salts down secondary porosity created by desiccation fractures and terrestrial plant roots. Drought-derived saline groundwater has the potential to increase wetland salinity during record wet climate conditions currently prevalent in the Prairie Pothole Region. The third chapter of this dissertation extends the findings of the second chapter by a detailed geochemical survey of wetland porewater, pond water, and upland groundwater in the P1 basin. (Abstract shortened by ProQuest.).
Small spatial variability in methane emission measured from a wet patterned boreal bog
NASA Astrophysics Data System (ADS)
Korrensalo, Aino; Männistö, Elisa; Alekseychik, Pavel; Mammarella, Ivan; Rinne, Janne; Vesala, Timo; Tuittila, Eeva-Stiina
2018-03-01
We measured methane fluxes of a patterned bog situated in Siikaneva in southern Finland from six different plant community types in three growing seasons (2012-2014) using the static chamber method with chamber exposure of 35 min. A mixed-effects model was applied to quantify the effect of the controlling factors on the methane flux. The plant community types differed from each other in their water level, species composition, total leaf area (LAITOT) and leaf area of aerenchymatous plant species (LAIAER). Methane emissions ranged from -309 to 1254 mg m-2 d-1. Although methane fluxes increased with increasing peat temperature, LAITOT and LAIAER, they had no correlation with water table or with plant community type. The only exception was higher fluxes from hummocks and high lawns than from high hummocks and bare peat surfaces in 2013 and from bare peat surfaces than from high hummocks in 2014. Chamber fluxes upscaled to ecosystem level for the peak season were of the same magnitude as the fluxes measured with the eddy covariance (EC) technique. In 2012 and in August 2014 there was a good agreement between the two methods; in 2013 and in July 2014, the chamber fluxes were higher than the EC fluxes. Net fluxes to soil, indicating higher methane oxidation than production, were detected every year and in all community types. Our results underline the importance of both LAIAER and LAITOT in controlling methane fluxes and indicate the need for automatized chambers to reliably capture localized events to support the more robust EC method.
Trajectories of water table recovery following the re-vegetation of bare peat
NASA Astrophysics Data System (ADS)
Shuttleworth, Emma; Evans, Martin; Allott, Tim; Maskill, Rachael; Pilkington, Michael; Walker, Jonathan
2016-04-01
The hydrological status of blanket peat influences a wide range of peatland functions, such as runoff generation, water quality, vegetation distribution, and rates of carbon sequestration. The UK supports 15% of the world's blanket peat cover, but much of this vital resource is significantly degraded, impacted by industrial pollution, overgrazing, wildfire, and climatic shifts. These pressures have produced a unique landscape characterised by severe gully erosion and extensive areas of bare peat. This in turn has led water tables to become substantially drawn down, impacting peatland function and limiting the resilience of these landscapes to future changes in climate. The restoration of eroding UK peatlands is a major conservation concern, and landscape-scale interventions through the re-vegetation of bare peat is becoming increasingly extensive in areas of upland Britain. Water table is the primary physical parameter considered in the monitoring of many peatland restoration projects, and there is a wealth of data on individual monitoring programmes which indicates that re-vegetation significantly raises water tables. This paper draws on data from multiple restoration projects carried out by the Moors for the Future Partnership in the Southern Pennines, UK, covering a range of stages in the erosion-restoration continuum, to assess the trajectories of water table recovery following re-vegetation. This will allow us to generate projections of future water table recovery, which will be of benefit to land managers and conservation organisations to inform future restoration initiatives.
Decadal changes in peat carbon accrual rates in bogs in Northern Minnesota
NASA Astrophysics Data System (ADS)
Fissore, C.; Nater, E. A.; McFarlane, K. J.
2017-12-01
Throughout the Holocene, peatland ecosystems have accumulated substantial amounts of carbon (C) and currently store about one third of all soil organic carbon (SOC) worldwide. Large uncertainty still persists on whether peatland ecosystems located in northern latitudes will continue to act as C sinks, or if the effects of global warming will have greater effects on decomposition processes than on net ecosystem production. We investigated decadal C accrual rates of the top 25 cm of peats in three Sphagnum-rich peatlands located in Northern Minnesota (two ombrotrophic bogs and one fen). We used radiocarbon analysis of Sphagnum cellulose and model fitting to determine peat ages, and peat FTIR spectroscopy to determine humification indices and relative decomposition of peat samples with depth. We had the scope to detect whether recent warming has had an effect on peat decomposition and C accumulation rates. Modeled C accumulation rates in the three peatlands during the past five decades ranged between 78 and 107 g C m-2 yr-1 in the top 25 cm analyzed in this study, values that are higher than the 22 to 29 g C m-2 yr-1 obtained for long-term (millennial) accumulations for the entire bog profiles. Peat IR spectra and C:N ratios confirm low levels of decomposition across the bog sites, especially in the uppermost parts of the peat. The fen site showed very limited decomposition across the entire sampled profile. Higher rates of C accumulation, combined with low decomposition rates close to the surface provide a good estimate of net primary productivity. As substrate decomposition progresses over time, net rates of accumulation decrease. Peat decomposition was more pronounced in the lower depths of the sampled cores in the two ombrotrophic bogs than in the fen, likely an effect of larger temporal variation in water table depth in the bogs than in the fen. Some of the variation in C accumulation and decomposition observed in our bogs and fen suggests that future C accumulation rates will also largely depend on the effect of warming on hydrology, rather than temperature alone.
Blanchet, Guillaume; Guillet, Sébastien; Calliari, Baptiste; Corona, Christophe; Edvardsson, Johannes; Stoffel, Markus; Bragazza, Luca
2017-01-01
Ring width (TRW) chronologies from Siberian (Pinus sibirica) and Scots (Pinus sylvestris) pine trees were sampled at Mukhrino - a large mire complex in central-western Siberia - to evaluate the impacts of hydroclimatic variability on tree growth over the last three centuries. For this purpose, we compared climate-growth correlation profiles from trees growing on peat soils with those growing on adjacent mineral soils. Tree growth at both peat and mineral soils was positively correlated to air temperature during the vegetation period. This finding can be explained by (i) the positive influence of temperature on plant physiological processes (i.e. growth control) during the growing season and (ii) the indirect impact of air temperatures on water table fluctuations. We observe also a strong link between TRW and the winter Palmer Drought Severity Index (PDSI), especially in Siberian pine, reflecting the isolating effect of snow and limited freezing damage in roots. Significant negative relations were, by contrast, observed between bog TRW chronologies and hydroclimatic indices during spring and summer; they are considered an expression of the negative impacts of high water levels and moist peat soils on root development. Some unusually old bog pines - exhibiting >500 growth rings - apparently colonized the site at the beginning of the Little Ice Age, and therefore seem to confirm that (i) peat conditions may have been drier in Siberia than in most other regions of western Europe during this period. At the same time, the bog trees also point to (ii) their strong dependence on surface conditions. Copyright © 2016 Elsevier B.V. All rights reserved.
Kerminen, Kaisa; Le Moël, Romain; Harju, Vilhelmiina; Kontro, Merja H
2018-03-15
Pesticides leaching from soil to surface and groundwater are a global threat for drinking water safety, as no cleaning methods occur for groundwater environment. We examined whether peat, compost-peat-sand (CPS) mixture, NH 4 NO 3 , NH 4 NO 3 with sodium citrate (Na-citrate), and the surfactant methyl-β-cyclodextrin additions enhance atrazine, simazine, hexazinone, dichlobenil, and the degradate 2,6-dichlorobenzamide (BAM) dissipations in sediment slurries under aerobic and anaerobic conditions, with sterilized controls. The vadose zone sediment cores were drilled from a depth of 11.3-14.6m in an herbicide-contaminated groundwater area. The peat and CPS enhanced chemical atrazine and simazine dissipation, and the peat enhanced chemical hexazinone dissipation, all oxygen-independently. Dichlobenil dissipated under all conditions, while BAM dissipation was fairly slow and half-lives could not be calculated. The chemical dissipation rates could be associated with the chemical structures and properties of the herbicides, and additive compositions, not with pH. Microbial atrazine degradation was only observed in the Pseudomonas sp. ADP amended slurries, although the sediment slurries were known to contain atrazine-degrading microorganisms. The bioavailability of atrazine in the water phase seemed to be limited, which could be due to complex formation with organic and inorganic colloids. Atrazine degradation by indigenous microbes could not be stimulated by the surfactant methyl-β-cyclodextrin, or by the additives NH 4 NO 3 and NH 4 NO 3 with Na-citrate, although the nitrogen additives increased microbial growth. Copyright © 2017 Elsevier B.V. All rights reserved.
Climate mitigation scenarios of drained peat soils
NASA Astrophysics Data System (ADS)
Kasimir Klemedtsson, Åsa; Coria, Jessica; He, Hongxing; Liu, Xiangping; Nordén, Anna
2014-05-01
The national inventory reports (NIR) submitted to the UNFCCC show Sweden - which as many other countries has wetlands where parts have been drained for agriculture and forestry purposes, - to annually emit 12 million tonnes carbon dioxide equivalents, which is more GHG'es than industrial energy use release in Sweden. Similar conditions can be found in other northern countries, having cool and wet conditions, naturally promoting peat accumulation, and where land use management over the last centuries have promoted draining activities. These drained peatland, though covering only 2% of the land area, have emissions corresponding to 20% of the total reported NIR emissions. This substantial emission contribution, however, is hidden within the Land Use Land Use Change and Forestry sector (LULUCF) where the forest Carbon uptake is even larger, which causes the peat soil emissions become invisible. The only drained soil emission accounted in the Swedish Kyoto reporting is the N2O emission from agricultural drained organic soils of the size 0.5 million tonnes CO2e yr-1. This lack of visibility has made incentives for land use change and management neither implemented nor suggested, however with large potential. Rewetting has the potential to decrease soil mineralization, why CO2 and N2O emissions are mitigated. However if the soil becomes very wet CH4 emission will increase together with hampered plant growth. By ecological modeling, using the CoupModel the climate change mitigation potential have been estimated for four different land use scenarios; 1, Drained peat soil with Spruce (business as usual scenario), 2, raised ground water level to 20 cm depth and Willow plantation, 3, raised ground water level to 10 cm depth and Reed Canary Grass, and 4, rewetting to an average water level in the soil surface with recolonizing wetland plants and mosses. We calculate the volume of biomass production per year, peat decomposition, N2O emission together with nitrate and DOC/POC leakage. Based on the modelling results a cost benefit analysis is performed (economics), guiding to the design of environmental policies needed for land use change to come true.
NASA Astrophysics Data System (ADS)
Probert, Samantha; Kettridge, Nicholas; Devito, Kevin; Hurley, Alexander
2017-04-01
Riparian wetlands represent an important ecotone at the interface of peatlands and forests within the Western Boreal Plain of Canada. Water storage and negative feedbacks to evaporation in these systems is crucial for the conservation and redistribution of water during dry periods and providing ecosystem resilience to disturbance. Litter cover can alter the relative importance of the physical processes that drive soil evaporation. Negative feedbacks to drying are created as the hydrophysical properties of the litter and soil override atmospheric controls on evaporation in dry conditions, subsequently dampening the effects of external forcings on the wetland moisture balance. In this study, water repellency in leaf litter has been shown to significantly correlate with surface-atmosphere interactions, whereby severely hydrophobic leaf litter is linked to the highest surface resistances to evaporation, and therefore lowest instantaneous evaporation. Decreasing moisture is associated with increasing hydrophobicity, which may reduce the evaporative flux further as the dry hydrophobic litter creates a hydrological disconnect between soil moisture and the atmosphere. In contrast, hydrophilic litter layers exhibited higher litter moistures, which is associated with reduced resistances to evaporation and enhanced evaporative fluxes. Water repellency of the litter layer has a greater control on evaporation than the presence or absence of litter itself. Litter removal had no significant effect on instantaneous evaporation or surface resistance to evaporation except under the highest evaporation conditions, where litter layers produced higher resistance values than bare peat soils. However, litter removal modified the dominant physical controls on evaporation: moisture loss in plots with leaf litter was driven by leaf and soil hydrophysical properties. Contrastingly, bare peat soils following litter removal exhibited cooler, wetter surfaces and were more strongly correlated to atmospheric controls. The interaction between evaporation, hydrophobicity and moisture of the soil surface, or litter, presents a potentially significant negative feedback to drying across wetland-forestland interfaces.
Seasonally frozen layer in natural and drained peatlands at the South of West Siberia, Russia
NASA Astrophysics Data System (ADS)
Dyukarev, Egor; Kiselev, Maxim; Voropay, Nadezhda; Preis, Yulia
2017-04-01
The temperature regime of soils in natural and drained peatlands at Bakchar bog located in the South Taiga zone of West Siberia is studied. Soil temperature for depths up to 320 cm was registered using autonomous temperature profile recorder during the period from August 2010 to September 2016. Maximal and minimal temperatures were registered at surface in July and February, consequently. Extreme soil temperatures at 320 cm depth shifts to December (maximum) and July (minimum) reducing absolute values. Annual peat soil temperature amplitude decrease with depth from 21,8 °C on surface to 1,1 °C at 320 cm. The analysis of daily, month and annual mean data of temperature in peat soil has shown that seasonally frozen layer was registered up to 20-60 cm depth. The duration of seasonally freeze layer existence varies from 130 to 180 days. Drained peatlands with the lowest water table have highest freeze depth. Soil at water-logged sedge-sphagnum fen in winter is warmer than soil in ryam ecosystem and mineral soil at upland. Maximal freezing depth in peatlands is up to 3 times lower than at drain areas.
Ritson, Jonathan P; Bell, Michael; Graham, Nigel J D; Templeton, Michael R; Brazier, Richard E; Verhoef, Anne; Freeman, Chris; Clark, Joanna M
2014-12-15
Uncertainty regarding changes in dissolved organic carbon (DOC) quantity and quality has created interest in managing peatlands for their ecosystem services such as drinking water provision. The evidence base for such interventions is, however, sometimes contradictory. We performed a laboratory climate manipulation using a factorial design on two dominant peatland vegetation types (Calluna vulgaris and Sphagnum Spp.) and a peat soil collected from a drinking water catchment in Exmoor National Park, UK. Temperature and rainfall were set to represent baseline and future conditions under the UKCP09 2080s high emissions scenario for July and August. DOC leachate then underwent standard water treatment of coagulation/flocculation before chlorination. C. vulgaris leached more DOC than Sphagnum Spp. (7.17 versus 3.00 mg g(-1)) with higher specific ultraviolet (SUVA) values and a greater sensitivity to climate, leaching more DOC under simulated future conditions. The peat soil leached less DOC (0.37 mg g(-1)) than the vegetation and was less sensitive to climate. Differences in coagulation removal efficiency between the DOC sources appears to be driven by relative solubilisation of protein-like DOC, observed through the fluorescence peak C/T. Post-coagulation only differences between vegetation types were detected for the regulated disinfection by-products (DBPs), suggesting climate change influence at this scale can be removed via coagulation. Our results suggest current biodiversity restoration programmes to encourage Sphagnum Spp. will result in lower DOC concentrations and SUVA values, particularly with warmer and drier summers. Copyright © 2014 Elsevier Ltd. All rights reserved.
Global trends in peatland methane production
NASA Astrophysics Data System (ADS)
Hoyt, A.; Corbett, J. E.; Gandois, L.; Cobb, A.; Pangala, S. R.; Gauci, V.; Harvey, C. F.
2017-12-01
Peatland methane production rates and fluxes to the atmosphere vary globally. Here we present a systematic comparison of peatland CH4 production across latitudes. We developed and applied an isotope-based mass transport model to characterize rates of methanogenesis and recharge rates across ten ombrotrophic peatlands from around the world. We validated our model against peat incubations and surface fluxes where data was available. We found striking similarities in the DIC and CH4 concentrations and δ13C isotope profiles across northern bogs, despite highly variable precipitation, recharge rates, and peat characteristics. Profiles from northern sites were similar because increased recharge rates were always compensated by increased CH4 production rates. This could represent a feedback mechanism between recharge rates and methanogenesis in northern bogs or could represent a shared dependence of these two properties on the degree of peat decomposition. We also found strong differences between northern and tropical sites, both in the rate of CH4 production, the recharge rate, and in the transport pathways and fluxes to the atmosphere. Our findings have important implications for methane transport and release to the atmosphere. In northern bogs, low flow rates allow CH4 concentrations to build up, and CH4 escapes by surface diffusion, ebullition, and plant-mediated transport. Thus, the majority of CH4 produced escapes through the peat surface. In tropical peatlands, high flow rates suppress CH4 concentrations, which do not build up above the threshold for ebullition. Instead, CH4 leaves the peat by lateral transport and surface fluxes are small. This work provides evidence that peat properties and hydrology are fundamental controls on decomposition, CH4 production, and peat formation across latitudes.
NASA Astrophysics Data System (ADS)
Tahvanainen, Teemu; Meriläinen, Henna-Kaisa; Haraguchi, Akira; Simola, Heikki
2016-04-01
Many types of soil-disturbing land use have caused excess sedimentation in Finnish lakes. Identification and quantification of catchment sources of sediment material is crucial in cases where demands for remediation measures are considered. We studied recent (50 yr) sediments of four small rivers, all draining to a reservoir impounded in 1971. Catchments of two of the rivers had had peat mining activities from early 1980s until recently, exposing large areas of peat surfaces to erosion. The water level of the reservoir had risen to the river mouth areas of all rivers, while in each case, the river mouth areas still form riverine narrows separable from the main reservoir, hence collecting sedimentation from their own catchments. The original soils under the reservoir water level could readily be observed in core samples, providing a dated horizon under recent sediments. In addition, we used 137Cs-stratigraphies for dating of samples from original river bed locations. As expected, recent sediments of rivers with peat mining influence differed from others e.g. by high organic content and C:N ratios. Stable isotopes 13C and 15N both correlated with C:N (r = 0.799 and r = -0.717, respectively) and they also differentiated the peat-mining influenced samples from other river sediments. Principal components of the physical-chemical variables revealed clearer distinction than any variables separately. Light-microscopy revealed abundance of leafs of Sphagnum mosses in peat-mining influenced river sediments that were nearly absent from other rivers. Spores of Sphagnum were, however, abundant in all river sediments indicating their predominantly airborne origin. We find that combination of several physical-chemical characters rather than any single variable and microscopy of plant remains can result in reliable recognition of peatland-origin of sediment material when non-impacted sites are available for comparison. Dating of disturbed recent sediments is challenging. River-mouth areas with reservoir history can be particularly useful as the terrestrial soil strata provides a dated horizon under recent sediments.
Peatland Structural Controls on Spring Distribution
NASA Astrophysics Data System (ADS)
Hare, D. K.; Boutt, D. F.; Hackman, A. M.; Davenport, G.
2013-12-01
The species richness of wetland ecosystems' are sustained by the presence of discrete groundwater discharge, or springs. Springs provide thermal refugia and a source of fresh water inflow crucial for survival of many wetland species. The subsurface drivers that control the spatial distribution of surficial springs throughout peatland complexes are poorly understood due to the many challenges peatlands pose for hydrologic characterization, such as the internal heterogeneities, soft, dynamic substrate, and low gradient of peat drainage. This has previously made it difficult to collect spatial data required for restoration projects that seek to support spring obligate and thermally stressed species such as trout. Tidmarsh Farms is a 577-acre site in Southeastern Massachusetts where 100+ years of cranberry farming has significantly altered the original peatland hydrodynamics and ecology. Farming practices such as the regular application of sand, straightening of the main channel, and addition of drainage ditches has strongly degraded this peatland ecosystem. Our research has overlain non-invasive geophysical, thermal, and water isotopic data from the Tidmarsh Farms peatland to provide a detailed visualization of how subsurface peat structure and spring patterns correlate. Ground penetrating radar (GPR) has proven particularly useful in characterizing internal peat structure and the mineral soil interface beneath peatlands, we interpolate the peatland basin at a large scale (1 km2) and compare this 3-D surface to the locations of springs on the peat platform. Springs, expressed as cold anomalies in summer and warm anomalies in winter, were specifically located by combining fiber-optic and infrared thermal surveys, utilizing the numerous relic agricultural drainage ditches as a sampling advantage. Isotopic signatures of the spring locations are used to distinguish local and regional discharge, differences that can be explained in part by the peat basin structure delineated with GPR. The study expands our understanding of complex peat systems and will be used to inform wetland restoration based on hydrodynamic processes; yielding a more successful, resilient restoration and desired ecologic function. Our research demonstrates how the use of GPR in combination with thermal imagery and isotopic analysis can help characterize degraded peatlands, informing a process-based approach to ecological restoration of the site with the ability to monitor changes through time.
Depositional environments of the Jurassic Maghara main coal seam in north central Sinai, Egypt
NASA Astrophysics Data System (ADS)
Edress, Nader Ahmed Ahmed; Opluštil, Stanislav; Sýkorová, Ivana
2018-04-01
Twenty-eight channel samples with a cumulative thickness of about 4 m collected from three sections of the Maghara main coal seam in the middle Jurassic Safa Formation have been studied for their lithotype and maceral compositions to reconstruct the character of peat swamp, its hydrological regime and the predominating type of vegetation. Lithotype composition is a combination of dully lithotypes with duroclarain (19% of total cumulative thickness), clarodurain (15%), black durain (15%), and shaly coal (15%) and bright lithotypes represented by clarain (23%), vitrain (12%) and a small proportion of wild fire-generated fusain (1%). Maceral analyses revealed the dominance of vitrinite (70.6% on average), followed by liptinite (25.2%) and inertinite (8.1%). Mineral matter content is ∼9% on average and consists of clay, quartz and pyrite concentrate mostly at the base and the roof of the seam. Dominantly vitrinite composition of coal and extremely low fire- and oxidation-borne inertinite content, together with high Gelification Indices imply predomination of waterlogged anoxic conditions in the precursing mire with water tables mostly above the peat surface throughout most of the time during peat swamp formation. Increases in collotelinite contents and Tissue Preservation Index up the section, followed by a reversal trend in upper third of the coal section, further accompanied by a reversal trend in collodetrinite, liptodetrinite, alginite, sporinite and clay contents records a transition from dominately limnotelmatic and limnic at the lower part to dominately limnotelmatic with increase telmatic condition achieved in the middle part of coal. At the upper part of coal seam an opposite trend marks the return to limnic and limnotelmatic conditions in the final phases of peat swamp history and its subsequent inundation. The proportion of arborescent (mostly coniferous) and herbaceous vegetation varied throughout the section of the coal with tendency of increasing density of arborescent vegetation to the middle part of the coal seam section. The intercalation of coal in shallow marine strata implies that peat swamp precursor formed in a coastal setting, probably on delta plain or lagoon. Its formation was controlled by water table changes driven by sea level fluctuations that created an accommodation space necessary for preservation of peat.
Peatland Ecosystem Processes in the Maritime Antarctic During Warm Climates.
Loisel, Julie; Yu, Zicheng; Beilman, David W; Kaiser, Karl; Parnikoza, Ivan
2017-09-27
We discovered a 50-cm-thick peat deposit near Cape Rasmussen (65.2°S), in the maritime Antarctic. To our knowledge, while aerobic 'moss banks' have often been examined, waterlogged 'peatlands' have never been described in this region before. The waterlogged system is approximately 100 m 2 , with a shallow water table. Surface vegetation is dominated by Warnstorfia fontinaliopsis, a wet-adapted moss commonly found in the Antarctic Peninsula. Peat inception was dated at 2750 cal. BP and was followed by relatively rapid peat accumulation (~0.1 cm/year) until 2150 cal. BP. Our multi-proxy analysis then shows a 2000-year-long stratigraphic hiatus as well as the recent resurgence of peat accumulation, sometime after 1950 AD. The existence of a thriving peatland at 2700-2150 cal. BP implies regionally warm summer conditions extending beyond the mid-Holocene; this finding is corroborated by many regional records showing moss bank initiation and decreased sea ice extent during this time period. Recent peatland recovery at the study site (<50 years ago) might have been triggered by ongoing rapid warming, as the area is experiencing climatic conditions approaching those found on milder, peatland-rich sub-Antarctic islands (50-60°S). Assuming that colonization opportunities and stabilization mechanisms would allow peat to persist in Antarctica, our results suggest that longer and warmer growing seasons in the maritime Antarctic region may promote a more peatland-rich landscape in the future.
NASA Astrophysics Data System (ADS)
Finkelstein, D. B.; Pratt, L. M.
2004-12-01
Prevalence of wildfires or peat fires associated with seasonally dry conditions in the Cretaceous is supported by recent studies documenting the widespread presence of pyrolytic polycyclic aromatic hydrocarbons and fusinite. Potential roles of CO2 emissions from fire have been overlooked in many discussions of Cretaceous carbon-isotope excursions (excluding K-P boundary discussions). Enhanced atmospheric CO2 levels could increase fire frequency through elevated lightning activity. When biomass or peat is combusted, emissions of CO2 are more negative than atmospheric CO2. Five reservoirs (atmosphere, vegetation, soil, and shallow and deep oceans), and five fluxes (productivity, respiration, litter fall, atmosphere-ocean exchange, and surface-deep ocean exchange) were modeled as a closed system. The size of the Cretaceous peat reservoir was estimated by compilation of published early Cretaceous coal resources. Initial pCO2 was assumed to be 2x pre-industrial atmospheric levels (P.A.L.). Critical variables in the model are burning efficiency and post-fire growth rates. Assuming 1% of standing terrestrial biomass is consumed by wildfires each year for ten years (without combustion of peat), an increase of atmospheric CO2 (from 2.0 to 2.2x P.A.L.) and a negative carbon isotope excursion (-1.2 ‰ ) are recorded by both atmosphere and new growth. Net primary productivity linked to the residence time of the vegetation and soil reservoirs results in a negative isotope shift followed by a broad positive isotope excursion. Decreasing the rate of re-growth dampens this trailing positive shift and increases the duration of the excursion. Post-fire pCO2 and new growth returned to initial values after 72 years. Both negative and positive isotope excursions are recorded in the model in surface ocean waters. Exchange of CO2 with the surface- and deep-ocean dampens the isotopic shift of the atmosphere. Excursions are first recorded in the atmosphere (and new growth), followed by the ocean, vegetation, and soil reservoirs. Ten to twenty five-year cycles of drought and fire are not recorded as individual excursions in the soil reservoir as the rate of transfer between the vegetation and soil reservoirs homogenizes the signal. A wildfire-modeled excursion does not propagate a geologically significant excursion through time. Combustion of a peat reservoir is necessary to drive and validate a geologically and isotopically significant excursion. Assuming 0.5% of the standing early Cretaceous peat reservoir is consumed by fire for each year for ten years coupled with the earlier scenario, the atmospheric CO2 increases from 2.0 to 3.1x P.A.L., atmosphere, vegetation, and the surface ocean record a negative carbon isotope excursion of -5.1 ‰ , -3.8 ‰ and -1.8 ‰ respectively, with a duration of 741 years. Increasing the size of the vegetation reservoir translates the excursions from the centennial to millennial scale. For example, doubling the vegetation reservoir (from 1.4 to 2.8E+16 gC) for a 25 year global peat conflagration (0.5% combusted each year) results in a CO2 increase from 2.0 to 4.0x P.A.L., and the atmosphere, vegetation, and the surface ocean reservoirs with a negative carbon isotope excursion of -5.7 ‰ , -8.7 ‰ and -2.3 ‰ respectively. Addition of carbonaceous aerosols (black carbon and polycyclic aromatic hydrocarbons) to pelagic marine sediments could potentially serve as a high-resolution record of ancient fires and firmly tie isotopic shifts to paleofires.
In situ fluidization for peat bed rupture, and preliminary economic analysis.
Niven, R K; Khalili, N
2002-11-01
This study concerns in situ fluidization (ISF), a new remediation method with potential application to the remediation of NAPL and heavy metal contaminants, by their release from the fluidized zone generated by a water jet. The present study examines the effect of ISF on layers of peat, of significance owing to its role as an important NAPL and metal contaminant trap. Once trapped, such contaminants are not readily accessible by most remedial methods, due to the low permeability and diffusivity of the peat. A simple tank experiment is used to demonstrate rupture of a peat layer by ISF, with removal of the peat as elutriated fines and segregated peat chunks. The application of ISF in the field is then examined by three field trials in uncontaminated sands, in both saturated and unsaturated conditions. Fluidized depths of up to 1.9 m in the saturated zone (with refusal on a peat layer) and 2.5 m in the unsaturated zone (no refusal) were attained, using a 1.9-m-long, 50 mm diameter jet operated at 5-13 1 s(-1). Pulses of dark turbidity and shell fragments in the effluent indicated the rupture of peat and shelly layers. The experiments demonstrate the hydraulic viability of ISF in the field, and its ability to remove peat-based contaminants. The issues of appropriate jet design and water generation during ISF are discussed, followed by a preliminary economic analysis of ISF relative to existing remediation methods.
NASA Astrophysics Data System (ADS)
Royles, Jessica; Sime, Louise C.; Hodgson, Dominic A.; Convey, Peter; Griffiths, Howard
2013-03-01
Oxygen isotope palaeoclimate records, preserved in moss tissue cellulose, are complicated by environmental influences on the relationships between source water inputs and evaporative conditions. We carried out stable isotope analyses of precipitation collected from the maritime Antarctic and cellulose extracted from co-located Chorisodontium aciphyllum dominated moss peat bank deposits accumulated since 1870 A.D. Analyses of stable oxygen and hydrogen isotope composition of summer precipitation on Signy Island (60.7°S, 45.6°W) established a local meteoric water line (LMWL) similar to both the global MWL and other LMWLs, and almost identical to the HadAM3 isotope-enabled global circulation model output. The oxygen isotopic composition of cellulose (δ18OC) revealed little temporal variation between four moss peat banks on Signy Island since 1870. However, δ18OC followed two patterns with Sites A and D consistently 3‰ enriched relative to δ18OC values from Sites B and C. The growing moss surfaces at Sites A and D are likely to have been hydrated by isotopically heavier summer precipitation, whilst at Sites B and C, the moss banks are regularly saturated by the isotopically depleted snow melt streams. Laboratory experiments revealed that evaporative enrichment of C. aciphyllum moss leaf water by 5‰ occurred rapidly following saturation (ecologically equivalent to post-rainfall or snow melt periods). In addition to the recognized source water-cellulose fractionation extent of 27 ± 3‰, such a shift would account for the 32‰ difference measured between δ18O of Signy Island precipitation and cellulose.
Wallage, Zoe E; Holden, Joseph; McDonald, Adrian T
2006-08-31
Peatlands are an important terrestrial carbon store. However, heightened levels of degradation in response to environmental change have resulted in an increased loss of dissolved organic carbon (DOC) and an associated rise in the level of discolouration in catchment waters. A significant threat to peatland sustainability has been the installation of artificial drainage ditches. However, recent restoration schemes have pursued drain blocking as a possible strategy for reducing degradation, fluvial carbon loss and water discolouration. This paper investigates the effect of open cut drainage and the impact of drain blocking on DOC and colour dynamics in blanket peat soil-water solutions. Three treatments (intact peat, drained peat and drain-blocked peat) were monitored in an upland blanket peat catchment in the UK. DOC and colour values were significantly higher on the drained slopes compared with those of the intact peat, which in turn had greater DOC and colour values than the drain-blocked slopes. Consequently, drain blocking is shown to be a highly successful technique in reducing both the DOC concentration and level of discolouration in soil waters, even to values lower than those observed for the intact site, which suggests a process of store exhaustion and flushing may operate. The colour per carbon unit (C/C) ratio was significantly higher at the drain-blocked site than either the intact or the drained treatments, while the E4/E6 ratio (fulvic acid/humic acid) was significantly lower at the blocked site compared to the two other treatments. The high C/C and low E4/E6 ratios indicate that drain blocking also modifies the composition of DOC, such that darker-coloured humic substances become more dominant compared to the intact site. This implies disturbance to DOC production and/or transportation processes operating within the peat.
Impacts of ditch blocking on peatland hydrology - the benefits of long-term monitoring
NASA Astrophysics Data System (ADS)
Holden, Joseph; Green, Sophie; Baird, Andy; Chapman, Pippa; Evans, Chris; Grayson, Richard
2016-04-01
A long-term field trial was conducted on a blanket peatland in North Wales. Twelve ditches were studied. After an initial monitoring period, eight of the ditches had peat dams installed a few metres apart along their entire length (dammed), four of these ditches were also partially infilled through bank reprofiling (reprofiled). Four ditches were left open with no dams or reprofiling (open). These 12 ditches and the surrounding peat were then monitored for a further 4 years. The effect of ditch blocking on local water tables was spatially highly variable but small overall (of the order of 2-3 cm) because the site, despite having ditches, already had relatively shallow water tables (medians within the upper 10 cm of the peat profile). An initial five-fold reduction in discharge occurred in ditches that had been dammed or reprofiled. However, there was evidence of a slow change over time in ditch flow at the site in subsequent years, with the overall volume of water leaving the dammed or reprofiled ditch weirs increasing per unit of rainfall to around twice that which occurred in the first year after the restoration. These changes were not observed in the open ditches. There was therefore clear evidence of the benefits of long-term monitoring as hydrological impacts in the first year after ditch blocking were very different from those in later years as the site conditions gradually changed. The additional water that flowed in later periods of the study from the blocked ditch catchments occurred in the form of a more continuously-flowing baseflow with fewer dry periods. The cause of this increase was related to changes in subsurface flow pathways in the peat in the aftermath of re-wetting. We show that these subsurface pathways mean that even in sloping blanket peatlands, the catchment areas for peatland ditches may be very different from that expressed by surface topography alone. Therefore, peatland studies that have estimated aerially-weighted water or carbon fluxes from one or two open or blocked ditches and where such data have also been used in upscaling estimates, need to be treated with caution.
NASA Astrophysics Data System (ADS)
Ritson, Jonathan; Graham, Nigel; Templeton, Michael; Freeman, Christopher; Clark, Joanna
2015-04-01
Organic rich peat soils are a major store of carbon worldwide. Their existence is predicated on high year-round water tables which create an anoxic environment, thus limiting decay, and also to the recalcitrance of plant litter (dead plant material) commonly found in peatland areas. Climate change threatens the stability of peat soils by altering the biogeochemical cycles which control plant decay, lowering water tables so that oxic degradation can occur and by changing habitat niches such that less recalcitrant species can thrive in peatlands. One of the major fluxes of carbon from peatlands is through dissolved organic carbon (DOC) in surface waters. As peatland areas in the UK are often used as source waters for drinking water supply this presents a problem to water utilities as DOC must be effectively removed to limit colour, odour and the formation of potentially carcinogenic by-products on disinfection. Changes in catchment vegetation may occur due to climate change, nutrient deposition and changing bioclimatic envelopes. How different peatland vegetation contribute to DOC flux and how this may change in the future is therefore of interest. A six week laboratory simulation was performed on typical peatland litter (Sphagnum spp., Calluna vulgaris, Molinea caerulea, Juncus effusus) and a peat soil collected from Exmoor National Park, UK. The simulation monitored DOC flux from the decaying litter/soil and considered the impact of different drought severities using the 50th, 25th, 10th and 5th percentiles of the mean July/August monthly rainfall for Exmoor. On rewetting following the drought, all sources produced significantly different amounts of DOC (Tukey HSD p<0.05) in the order Molinia>Juncus>Calluna>Sphagnum>peat. The source also had a significant (ANOVA p<0.001) effect on coagulation removal efficiency, a typical method of removing DOC during drinking water treatment, with Juncus DOC proving the easiest to remove whilst Sphagnum DOC was the most difficult. Sphagnum DOC had the lowest ratio of humic-like to protein-like fluorescence, which is indicative of DOC which is poorly removed by coagulation. An interactive effect was noted between DOC source and the drought treatment which was explored further using a one-way ANOVA with a Holm-Šidák correction. This suggested peat will produce significantly more DOC when affected by drought (p=0.010), possibly explained by increased oxygenation engaging the 'enzymatic latch' mechanism. A similar analysis was performed on the interaction between drought and DOC source for the specific UV absorbance at 254nm (SUVA) value (a measure of aromaticity). This suggested that Molinea caerulea produces DOC of significantly (p=0.001) higher aromaticity following periods of drought. Comparisons between drought and DOC source factors suggest the source in more important than climatic conditions of decay which is consistent with our previously published findings. These results have implications for marginal peatlands which may be at risk from increased water table drawdown in the future as climate changes and where Molinea caerulea, typically a fen species, is encroaching on bog communities.
Low Evapotranspiration Enhances the Resilience of Peatland Carbon Stocks to Fire
NASA Astrophysics Data System (ADS)
Kettridge, N.; Lukenbach, M. C.; Hokanson, K. J.; Hopkinson, C.; Devito, K. J.; Petrone, R. M.; Mendoza, C. A.; Waddington, J. M.
2017-09-01
Boreal peatlands may be vulnerable to projected changes in the wildfire regime under future climates. Extreme drying during the sensitive postfire period may exceed peatland ecohydrological resilience, triggering long-term degradation of these globally significant carbon stocks. Despite these concerns, we show low peatland evapotranspiration at both the plot- and landscape-scale postfire, in water-limited peatlands dominated by feather moss that are ubiquitous across continental western Canada. Low postfire evapotranspiration enhances the resilience of carbon stocks in such peatlands to wildfire disturbance and reinforces their function as a regional source of water. Near-surface water repellency may provide an important, previously unexplored, regulator of peatland evapotranspiration that can induce low evapotranspiration in the initial postfire years by restricting the supply of water to the peat surface.
See, Siao Wei; Balasubramanian, Rajasekhar; Rianawati, Elisabeth; Karthikeyan, Sathrugnan; Streets, David G
2007-05-15
An intensive field study was conducted in Sumatra, Indonesia, during a peat fire episode to investigate the physical and chemical characteristics of particulate emissions in peat smoke and to provide necessary data for source-receptor analyses. Ambient air sampling was carried out at three different sites located at varying distances from the peatfires to determine changes in mass and number concentrations of PM2.5 and its chemical composition (carbonaceous and nitrogenous materials, polycyclic aromatic hydrocarbons, water-soluble inorganic and organic ions, and total and water-soluble metals). The three sites represent a rural site directly affected by the local peat combustion, a semirural site, and an urban site situated downwind of the peat fires. The mass concentration of PM2.5 and the number concentration of airborne particles were as high as 1600 microg/m3 and 1.7 x 10(5) cm(-3), respectively, in the vicinity of peat fires. The major components of PM2.5 in peat smoke haze were carbonaceous particles, particularly organic carbon, NO3-, and SO4(2-), while the less abundant constituents included ions such as NH4+, NO2-, Na+, K+, organic acids, and metals such as Al, Fe, and Ti. Source apportionment by chemical mass balance receptor modeling indicates that peat smoke can travel long distances and significantly affect the air quality at locations downwind.
Thermomagnetic properties of peat-soil layers from Sag pond near Lembang Fault, West Java, Indonesia
NASA Astrophysics Data System (ADS)
Iryanti, Mimin; Wibowo, Dimas Maulana; Bijaksana, Satria
2015-09-01
Sag pond is a body of water near fault system as water flows blocked by the fault. Sag pond is a special type of environment for peat formation as peat layers in were deposited as the fault moves in episodic fashion. Depending on the history of the fault, peat layers are often interrupted by soil layers. In this study, core of peat-soil layers from a Sag pond in Karyawangi Village near Lembang Fault was obtained and analyzed for its magnetic properties. The 5 m core was obtained using a hand auger. Individual samples were obtained every cm and measured for their magnetic susceptibility. In general, there are three distinct magnetic susceptibility layers that were associated with peat and soil layers. The upper first 1 m is unconsolidated mud layer with its relatively high magnetic susceptibility. Between 1-2.81 m, there is consolidated mud layer and the lowest part (2.82-5) m is basically peat layer. Six samples were then measured for their thermomagnetic properties by measuring their susceptibility during heating and cooling from room temperature to 700°C. The thermomagnetic profiles provide Curie temperatures for various magnetic minerals in the cores. It was found that the upper part (unconsolidated mud) contains predominantly iron-oxides, such as magnetite while the lowest part (peat layer) contains significant amount of iron-sulphides, presumably greigite.
NASA Astrophysics Data System (ADS)
Krause, Stefan; Angermann, Lisa; Naden, Emma; Cassidy, Nigel; Blume, Theresa
2010-05-01
The mixing of groundwater and surface water in hyporheic zones often coincides with high redox reactivity and chemical transformation potential. Depending on redox conditions and reaction types, hyporheic mixing of groundwater and surface water can lead to either attenuation or enrichment of pollutants or nutrients with diametrical implications for stream and aquifer hydro-ecological conditions. This study investigates the reactive transport of nitrate and a chlorinated solvent (Trichloroethylene - TCE) at the aquifer-river interface of a UK lowland river. In this study, distributed temperature sensor networks and hydro-geophysical methods, which have been applied for identifying structural streambed heterogeneity and tracing aquifer river exchange, were combined with hydro-chemical analyses of hyporheic multi-component reactive transport. In stream Electric Resistivity Tomography has been applied to map the complex spatial distribution of highly conductive sandy and gravely sediments in contrast to semi-confining, low conductivity peat lenses. Reach scale (1km) spatial patterns and temporal dynamics of aquifer-river exchange have been identified by heat tracer experiments based on fibre-optic Distributed Temperature Sensing in combination with 2D thermocouple-arrays and small scale heat pulse injection methods for tracing shallow (25 cm) hyporheic flow paths. Spatial patterns of hyporheic redox conditions, dissolved oxygen and organic carbon (DOC) content as well as concentrations of major anions, TCE and its decay products have been observed in 48 nested multi-level piezometers and passive DET (Diffusive Equilibrium in Thin film) gel probes. Our results indicate that patterns of cold spots in streambed sediments can be attributed to fast groundwater up-welling in sandy and gravely sediments resulting in low hyporheic residence times. Contrasting conditions were found at warmer areas at the streambed surface where groundwater - surface water exchange was inhibited by the existence of peat or clay lenses within the streambed. These flow-inhibiting structures have been shown to cause semi-confined conditions in the up-welling groundwater, resulting in long residence times and increased redox-reactivity. Anoxic conditions and high DOC contents combined with long residence times underneath peat layers cause highly efficient denitrification rates, reducing nitrate concentrations from > 50mg/l to below the level of detection. In contrast, sandy and gravely areas of fast groundwater up-welling where characterized by only marginal changes in nitrate concentrations. Observation of the reactive transport of the chlorinated solvent groundwater plume into the river suggest that natural attenuation of TCE, which competes with nitrate for DOC as reductive agent, is limited to the semi-confined, anoxic, low nitrate - high DOC groundwater pockets underneath streambed peat lenses. The investigations supported the development of a conceptual model of aquifer - river exchange and hyporheic reactivity in lowland rivers including temperature traceable "hyporheic super-reactors" of great importance for river restoration, water quality and ecology status.
NASA Astrophysics Data System (ADS)
Krause, S.; Angermann, L.; Naden, E.; Cassidy, N. J.
2009-12-01
The mixing of groundwater and surface water in hyporheic zones often coincides high redox reactivity and chemical transformation potential. Depending on redox conditions and reaction types, hyporheic mixing of groundwater and surface water can lead to either attenuation or enrichment of pollutants or nutrients with diametrical implications for stream and aquifer hydro-ecology. This study investigates the reactive transport of nitrate and the chlorinated solvent Trichloroethylene (TCE) at the aquifer-river interface of a UK lowland river. The investigations are based on novel distributed sensor networks and hydro-geophysical methods for the identification of structural streambed heterogeneity and the tracing of aquifer river exchange combined with hydro-chemical analyses of hyporheic multi-component reactive transport. In stream Electric Resistivity Tomography and Ground Penetrating Radar have been applied to map the complex spatial distribution of highly conductive sandy and gravely sediments in contrast to semi-confining, low conductivity peat lenses. Reach scale (1km) spatial patterns and temporal dynamics of aquifer-river exchange have been identified by heat tracer experiments based on fibre-optic Distributed Temperature Sensing in combination with 2D thermocouple-arrays and small scale heat pulse injection methods for tracing shallow (25 cm) hyporheic flow paths. Spatial patterns of hyporheic redox conditions, dissolved oxygen and organic carbon (DOC) content as well as concentrations of major anions, TCE and its decay products have been observed in 48 nested multi-level piezometers and passive DET (Diffusive Equilibrium in Thin film) gel probes. Our results indicate that patterns of cold spots in streambed sediments can be attributed to fast groundwater up-welling in sandy and gravely sediments resulting in low hyporheic residence times. Contrasting conditions were found at warmer areas at the streambed surface where groundwater - surface water exchange was inhibited by the existence of peat or clay lenses within the streambed. These flow-inhibiting structures have been shown to cause semi-confined conditions in the up-welling groundwater, resulting in long residence times and increased redox-reactivity. Anoxic conditions and high DOC contents combined with long residence times underneath peat layers cause highly efficient denitrification rates, reducing nitrate concentrations from > 50mg/l to below the level of detection. In contrast, sandy and gravely areas of fast groundwater up-welling where characterized by only marginal changes in nitrate concentrations. Observation of the reactive transport of the chlorinated solvent groundwater plume into the river suggest that natural attenuation of TCE, which competes with nitrate for DOC as reductive agent, is limited to the semi-confined, anoxic, low nitrate - high DOC groundwater pockets underneath streambed peat lenses. The investigations supported the development of a conceptual model of aquifer - river exchange and hyporheic reactivity in lowland rivers including temperature traceable “hyporheic super-reactors” of great importance for river restoration, water quality and ecology status.
Physical properties of peats as related to degree of decomposition
D.H. Boelter
1969-01-01
Important physical characteristics, such as water retention, water yield coefficient, and hydraulic conductivity, vary greatly for representative northern Minnesota peat materials. The differences are related to the degree of decomposition, which largely determines the porosity and pore size distribution. Fiber content (> 0.1 mm) and bulk density are properties...
Water table dynamics in undisturbed, drained and restored blanket peat
NASA Astrophysics Data System (ADS)
Holden, J.; Wallage, Z. E.; Lane, S. N.; McDonald, A. T.
2011-05-01
SummaryPeatland water table depth is an important control on runoff production, plant growth and carbon cycling. Many peatlands have been drained but are now subject to activities that might lead to their restoration including the damming of artificial drains. This paper investigates water table dynamics on intact, drained and restored peatland slopes in a blanket peat in northern England using transects of automated water table recorders. Long-term (18 month), seasonal and short-term (storm event) records are explored. The restored site had drains blocked 6 years prior to monitoring commencing. The spatially-weighted mean water table depths over an 18 month period were -5.8 cm, -8.9 cm and -11.5 cm at the intact, restored and drained sites respectively. Most components of water table behaviour at the restored site, including depth exceedance probability curves, seasonality of water table variability, and water table responses to individual rainfall events were intermediate between that of the drained and intact sites. Responses also depended on location with respect to the drains. The results show that restoration of drained blanket peat is difficult and the water table dynamics may not function in the same way as those in undisturbed blanket peat even many years after management intervention. Further measurement of hydrological processes and water table responses to peatland restoration are required to inform land managers of the hydrological success of those projects.
Estimating the water budget for a peat filter treating septic tank effluent in the field
NASA Astrophysics Data System (ADS)
Van Geel, Paul J.; Parker, Wayne J.
2003-02-01
The use of peat as a filter medium for the treatment of a variety of liquid and gas waste streams has increased over the past decade. Peat has been used as an alternate treatment medium to treat septic tank effluent (STE) from domestic and small communal systems. Very little research has been completed to study the hydraulics and water budget of a peat filter operating in the field. This study evaluated the water budget of a peat filter operating at an elementary school near Ottawa, Canada. The peat filter was instrumented with tensiometers to measure the pore water pressures within the filter and a weather station to collect weather data required to estimate potential evapotranspiration. A one-dimensional unsaturated flow model, SoilCover, was calibrated using the pressure data and weather data collected in the field. The calibrated model was use to estimate the water budget for the filter operating with and without STE loading. The calibrated model predicted that the annual precipitation exceeded evapotranspiration for both scenarios. For the filter treating 50 mm/day of STE, there was a slight dilution due to the infiltration resulting in a net dilution factor of 0.97 (loading divided by the loading plus infiltration). The largest rainfall event of 49.9 mm resulted in a dilution factor of approximately 0.87, which corresponded to an approximate decrease in the hydraulic retention time (HRT) of between 12 and 33% depending on the calculation used to determine the HRT. When the filter does not receive STE, the precipitation exceeds evapotranspiration and hence the filter should not dry out when the filter is not in use.
Revegetation processes and environmental conditions in abandoned peat production fields in Estonia
NASA Astrophysics Data System (ADS)
Orru, M.; Orru, H.
2009-04-01
As a result of peat extraction, peat production has been finished in Estonia at different times in 154 peat production areas and 9,500 ha (~1% of peatlands) are abandoned, although the peat reserves are not exhausted yet; besides, several areas are not properly recultivated. In addition 12,000 ha of fens (oligotrophic peat layers) are drained and used as grasslands. If the abandoned and non-recultivated peat production areas are not vegetated, their CO2 emission is considerable and peat mineralises in such areas. The aim of the study was to find out specific ecological and geological factors, which affect recovering of peatlands and influence the recultivation. During the revision the amount and quality of the remained reserves, as well as the state of water regime, drainage network and revegetation was assessed in all 154 abandoned peat production areas. The study showed that the state of them is very variable. Some of them are covered with forest, prevailingly with birches at former drainage ditches, later supplemented by pine trees. In the others predominate grasses among plants, and various species of moss (Cladonia rei, Bryum caespiticum, Sphagnum ripariuma, Sphagnum squarrosum) occur as well. Besides, some abandoned areas are completely overgrown with cotton grass. Open abandoned peat areas, which are not covered by vegetation, are much rarer. We found out, that water regime among the factors plays most important role. Moreover abandoned peat production fields, where the environmental conditions have changed - are appropriate for growth of several moss species, which cannot inhabit the areas already occupied by other species. The most interesting discovers were: second growing site of Polia elongata in West-Estonia and Ephemerum serratum, last found in Estonia in the middle of the 19th century, was identified in central Estonia. Also Campylopus introflexus, what was unknown in Estonia. However, the changes in environmental conditions influence the peat layers structure and technical characteristics of organic soils that affect the vegetation of peatlands.
Kerr, Barry D.; Leighton, David A.
1999-01-01
Compaction, water-level, and lithologic data were collected at extensometer sites on Bacon and Bethel Islands, anchored at 436 and 536 feet below land surface, respectively. The data reported here are part of a study of the processes causing subsidence in the Sacramento?San Joaquin Delta. The depths were selected to ensure that they were well below the peat layer and the primary aquifer, which minimized the effects of peat loss and shallow ground-water withdrawal. Compaction and depth to ground water were measured monthly at Bacon Island from September 1987 through August 1993 and at Bethel Island from August 1988 through August 1993. After automatic digital data loggers were installed at Bacon Island in December 1988 and at Bethel Island in September 1989, hourly readings also were made. Calculated rates of compaction were 0.0015 and 0.0016 feet per year at Bacon and Bethel Islands, respectively. Cumulative compaction at the Bacon Island site from September 1987 to August 1993 was about 0.009 feet. Cumulative compaction at the Bethel Island site from August 1988 to August 1993 was about 0.008 feet.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farmer, R.W.; Dussert, B.W.; Kovacic, S.L.
Laboratory studies have identified the cause of the pH rise, which occurs during water treatment with activated carbon, as an interaction between the naturally occurring anions and protons in the water and the carbon surface. The interaction can be described as an ion exchange type of phenomenon, in which the carbon surface sorbs the anions and corresponding hydronium ions from the water. These studies have shown that the anion sorption and resulting pH increase is independent of the raw material used for the activated carbon production, e.g. bituminous or subbituminous coal, peat, wood or coconut. Also, the pH excursions occurmore » with virgin, reactivated, and acid washed granular carbons. Current pH control technologies focus on adjustment of the wastewater pH prior to discharge or recycle of the initial effluent water until the pH increase abates. However, improved water pH control options have been realized by altering the carbon surface through controlled oxidation rather than the water chemistry or extended preprocessing at the treatment site.« less
The composition and character of DOM from an upland peat catchment - sources, roles and fate
NASA Astrophysics Data System (ADS)
Worrall, F.; Moody, C.; Clay, G.; Boothroyd, I.; Burt, T. P.
2017-12-01
The fluvial fluxes of dissolved organic carbon (DOC) from peatlands form an important part of that ecosystem's carbon cycle, contributing approximately 35% of the overall peatland carbon budget. The source, role and fate of this component of the carbon cycle was explored for a peat covered catchment in the north east of England with dissolved organic matter (DOM) being sampled from both a first-order peat-hosted stream and soil water at two depths within the peat profile. All DOM samples were analysed within the context of analysing the particulate organic matter (POM) from the catchment; the peat profile; and biomass. All samples were analysed using: elemental analysis (C, H, N, O, P and S); bomb calorimetry; thermogravimetric analysis (TGA); 13C solid state NMR; and S isotopes. Furthermore, the degradation of fresh DOC was examined over periods of 70 hours every month for 23 months. The analysis has shown that: DOM is highly oxidised compared to all other organic in the ecosystem and DOM did not exist until [C]/[O] < 1.44. The DOM was dominantly the product of lignin breakdown and not the processing of proteins or carbohydrates, i.e. it was not an intermediate of oxidation to CO2. DOM could only be sourced from high in the peat profile at most above 41 cm depth. Thermodynamic inhibition shows that only DOM from the surface layers could be reactive in the catotelmic layers of the peat. There was a significant role for the composition of the DOM in controlling degradation with degradation rates significantly increasing with the proportion of aldehyde and carboxylic acid functional groups but decreasing with the proportion of N-alkyl functional groups. The study meant that is was possible to consider the behaviour of DOM in terms of its thermodynamic properties (DH, DS & DG) for both formation and reaction.
Impact of managed moorland burning on peat nutrient and base cation status
NASA Astrophysics Data System (ADS)
Palmer, Sheila; Gilpin, Martin; Wearing, Catherine; Johnston, Kerrylyn; Holden, Joseph; Brown, Lee
2013-04-01
Controlled 'patch' burning of moorland vegetation has been used for decades in the UK to stimulate growth of heather (Calluna vulgaris) for game bird habitat and livestock grazing. Typically small patches (300-900 m2) are burned in rotations of 8-25 years. However, our understanding of the short-to-medium term environmental impacts of the practice on these sensitive upland areas has so far been limited by a lack of scientific data. In particular the effect of burning on concentrations of base cations and acid-base status of these highly organic soils has implications both for ecosystem nutrient status and for buffering of acidic waters. As part of the EMBER project peat chemistry data were collected in ten upland blanket peat catchments in the UK. Five catchments were subject to a history of prescribed rotational patch burning. The other five catchments acted as controls which were not subject to burning, nor confounded by other detrimental activities such as drainage or forestry. Soil solution chemistry was also monitored at two intensively studied sites (one regularly burned and one control). Fifty-centimetre soil cores, sectioned into 5-cm intervals, were collected from triplicate patches of four burn ages at each burned site, and from twelve locations at similar hillslope positions at each control site. At the two intensively monitored sites, soil solution chemistry was monitored at four depths in each patch. Across all sites, burned plots had significantly smaller cation exchange capacities, lower concentrations of exchangeable base cations and increased concentrations of exchangeable H+ and Al3+ in near-surface soil. C/N ratios were also lower in burned compared to unburned surface soils. There was no consistent trend between burn age and peat chemistry across all burned sites, possibly reflecting local controls on post-burn recovery rates or external influences on burn management decisions. At the intensively monitored site, plots burned less than two years prior to sampling had significantly smaller exchange capacities and lower concentrations of soil base cations in surface soils relative to plots burned 15-25 years previously. In contrast, surface soil solutions in recently burned plots were enriched in base cations relative to older plots and relative to the control site, possibly due to enhanced leaching at bare soil surfaces. The results offer evidence for an impact of burning on peat nutrient and acid-base status, but suggest that soils recover given time with no further burning.
The Effect of Long-term Nutrient Addition on Peat Properties in an Ombrotrophic Bog
NASA Astrophysics Data System (ADS)
Moore, T. R.; Bubier, J. L.; Knorr, K. H.; Roy, C.
2017-12-01
Atmospheric inputs of nutrients, particularly N and P, to ecosystems have increased and may have a significant effect on nutrient-deficient peatlands such as bogs. At the Mer Bleue ombrotrophic bog near Ottawa, Canada, we have conducted an experiment over 10 to 20 years by adding 1.6 to 6.4 g N m-2 yr-1 (as NH4NO3), with/without 6 g P m-2 yr-1 (as K phosphate), to evaluate the effect of increased inputs on ecosystem functions. Increased N and P amendment has changed the vegetation from a mixed shrub-Sphagnum community into one dominated by shrubs with the disappearance of mosses, with changes in plant production and litter input. The largest N and P amendments have resulted in an increase in bulk density at 0-10 cm and a lowering of the peat surface by 10 to 20 cm, creating an effective rise in the water table and an increase in CH4 emission from 15 to 50 mg m-2 d-1. Peat cores to a depth of 40 cm were collected after 10 to 15 yr of amendment and showed little change in soil pH (range 4.1 to 4.5). There were substantial increases in the concentration of N and P in the peat (8 to 14 and 0.5 to 1.5 mg g-1, respectively) and general decreases in Ca and Mg concentration. The von Post humification index increased by about 1 unit in the heavily fertilized plots, with shrub leaves replacing Sphagnum as the primary litterfall. FTIR analysis of the 0-20 cm peat showed significant increases in abundance of phenolic+aliphatic, aromatic, and carboxylic relative to polysaccharide components, revealed by the following ratios of absorbance at the respective wavenumbers: 1420/1090 cm-1, 0.41 to 0.45; 1510/1090 cm-1, 0.23 to 0.30; 1630/1090 cm-1, 0.53 to 0.65; and 1720/1090 cm-1, 0.44 to 0.48, respectively. Laboratory incubations of peat samples showed that potential rates of aerobic CH4 consumption were unaffected by nutrient treatment, apart from position relative to the water table, whereas potential rates of anaerobic CH4 production near the water table increased under the P amendment. Potential rates of aerobic CO2 production generally decreased with depth in the cores, but were not strongly related to decomposition properties (e.g. Von Post, FTIR). This study shows the profound effect of increased N and P addition on the vegetation composition, carbon cycling and peat chemical properties and decomposability of this ombrotrophic mire.
Water flow and solute transport in floating fen root mats
NASA Astrophysics Data System (ADS)
Stofberg, Sija F.; EATM van der Zee, Sjoerd
2015-04-01
Floating fens are valuable wetlands, found in North-Western Europe, that are formed by floating root mats when old turf ponds are colonized by plants. These terrestrialization ecosystems are known for their biodiversity and the presence of rare plant species, and the root mats reveal different vegetation zones at a small scale. The vegetation zones are a result of strong gradients in abiotic conditions, including groundwater dynamics, nutrients and pH. To prevent irreversible drought effects such as land subsidence and mineralization of peat, water management involves import of water from elsewhere to maintain constant surface water levels. Imported water may have elevated levels of salinity during dry summers, and salt exposure may threaten the vegetation. To assess the risk of exposure of the rare plant species to salinity, the hydrology of such root mats must be understood. Physical properties of root mats have scarcely been investigated. We have measured soil characteristics, hydraulic conductivity, vertical root mat movement and groundwater dynamics in a floating root mat in the nature reserve Nieuwkoopse Plassen, in the Netherlands. The root mat mostly consists of roots and organic material, in which the soil has a high saturated water content, and strongly varies in its stage of decomposition. We have found a distinct negative correlation between degree of decomposition and hydraulic conductivity, similar to observations for bogs in the literature. Our results show that the relatively young, thin edge of the root mat that colonizes the surface water has a high hydraulic conductivity and floats in the surface water, resulting in very small groundwater fluctuations within the root mat. The older part of the root mat, that is connected to the deeper peat layers is hydrologically more isolated and the material has a lower conductivity. Here, the groundwater fluctuates strongly with atmospheric forcing. The zones of hydraulic properties and vegetation, appear to be very similar and likely functionally related. Our experimental field data were used for modelling water flow and solute transport in floating fens, using HYDRUS 2D. Fluctuations of surface water and root mat, as well as geometry and unsaturated zone parameters can have a major influence on groundwater fluctuations and the exchange between rain and surface water and the water in the root mats. In combination with the duration of salt pulses in surface water, and sensitivity of fen plants to salinity (Stofberg et al. 2014, submitted), risks for rare plants can be anticipated.
Lynette R. Potvin; Evan S. Kane; Rodney A. Chimner; Randall K. Kolka; Erik A. Lilleskov
2015-01-01
Aims Our objective was to assess the impacts of water table position and plant functional type on peat structure, plant community composition and aboveground plant production. Methods We initiated a full factorial experiment with 2 water table (WT) treatments (high and low) and 3 plant functional groups (PFG: sedge, Ericaceae,...
NASA Astrophysics Data System (ADS)
Waddington, J. M.; Kettridge, N.; Sherwood, J.; Thompson, D.; Morris, P. J.
2012-12-01
Peatlands are self-regulating ecosystems dominated by negative ecohydrological feedbacks that stabilize their net carbon sink function, producing a globally significant carbon store that is often resilient to disturbances such as drainage and wildfire. However, the effects of these disturbances on peatland ecohydrological function have only been considered previously in isolation. We capitalize on a unique long-term experiment to examine the response of a peatland in boreal western Canada to the compound disturbance of drying and wildfire. We show that the compound effect of such disturbances can reduce the ecohydrological resilience of these ecosystems leaving them vulnerable to irreversible shifts in their ecological, hydrological and biogeochemical function. Peatland ecosystems have a hydrology characterized generally by a long water residence times and a high water table position. Less-dense near-surface peat acts as a hydrological buffer, regulating water-table position and near-surface moisture content. This buffer is lost through combustion and compaction, increasing the flashiness of the peatland hydrology, increasing the vulnerability of the ecosystem to drought conditions. This greatly reduces the recolonization success of keystone Sphagnum moss species. As a result the peatland followed a previously unobserved development trajectory leading to the loss of globally important ecosystem services and the development of a novel 'peat forest' ecosystem. This ecosystem shift is self-reinforcing, as the establishment of invasive species reduces available light essential for Sphagnum establishment.
Lim Kim Choo, Liza Nuriati; Ahmed, Osumanu Haruna
2014-01-01
Pineapples (Ananas comosus (L.) Merr.) cultivation on drained peats could affect the release of carbon dioxide (CO2) into the atmosphere and also the leaching of dissolved organic carbon (DOC). Carbon dioxide emission needs to be partitioned before deciding on whether cultivated peat is net sink or net source of carbon. Partitioning of CO2 emission into root respiration, microbial respiration, and oxidative peat decomposition was achieved using a lysimeter experiment with three treatments: peat soil cultivated with pineapple, bare peat soil, and bare peat soil fumigated with chloroform. Drainage water leached from cultivated peat and bare peat soil was also analyzed for DOC. On a yearly basis, CO2 emissions were higher under bare peat (218.8 t CO2 ha/yr) than under bare peat treated with chloroform (205 t CO2 ha/yr), and they were the lowest (179.6 t CO2 ha/yr) under cultivated peat. Decreasing CO2 emissions under pineapple were attributed to the positive effects of photosynthesis and soil autotrophic activities. An average 235.7 mg/L loss of DOC under bare peat suggests rapid decline of peat organic carbon through heterotrophic respiration and peat decomposition. Soil CO2 emission depended on moderate temperature fluctuations, but it was not affected by soil moisture. PMID:25215335
Controls on the methane released through ebullition affected by permafrost degradation
S.J. Klapstein; M.R. Turetsky; A.D. McGuire; J.W. Harden; C.I. Czimczik; X. Xu; J.P. Chanton; J.M. Waddington
2014-01-01
Permafrost thaw in peat plateaus leads to the flooding of surface soils and the formation of collapse scar bogs, which have the potential to be large emitters of methane (CH4) from surface peat as well as deeper, previously frozen, permafrost carbon (C). We used a network of bubble traps, permanently installed 20 cm and 60 cm beneath the moss surface, to examine...
NASA Astrophysics Data System (ADS)
Matysek, Magdalena; Zona, Donatella; Leake, Jonathan; Banwart, Steven
2017-04-01
Peatlands are globally important areas for carbon preservation: covering only 3% of world's land, they store 30% of total soil carbon. At the same time, peat soils are widely utilised in agriculture: in Europe 14% of peatland area is under cultivation, 40% of UK peatlands have been drained for agricultural use and 24% of deep peat area in England is being farmed. One of the most important regions for crop production on lowland peats in the UK are the East Anglian Fenlands (the Fens): an area of drained peatlands in East England. 88% of the Fenland area is cultivated, sustaining around 4000 farms and supplying 37% of total vegetable production in England. The soils of the area are fertile (89% of agricultural land being classified as grade 1 or 2) and so crops with high nutritional demands tend to dominate. It is estimated that Fenland peats store 41 Tg of Carbon, which is lost from the ecosystem at a rate of 0.4 Tg C/yr. The Fens are at risk due to continued drainage-induced volume loss of the peat layer via shrinkage, compaction and oxidation, which are estimated to result in wastage rate of 2.1 cm/yr. Cultivation of peat soil requires drainage as most crops are intolerant of root-zone anoxia: this leads to creation of oxic conditions in which organic matter becomes vulnerable to mineralisation by aerobic microorganisms. It is, therefore, crucial to find a water table level which would minimise peat loss and at the same time allow for economically viable crop growth. Despite the importance of preservation of agricultural peats, there is a lack of studies which attempt to find water table level that strikes a balance between crop yield and greenhouse gas production. The future of the Fens is overshadowed by another uncertainty: increases in temperature brought by the climate change. It is estimated that average global temperature increase expected by the end of this century (relative to 1986-2005) would be within the range of 0.3-4.8°C, depending on the scenario. Rising temperatures should accelerate the rate of organic matter mineralisation, which will lead to higher emissions of greenhouse gases as well as enhanced plant growth due to better availability of nutrients. The effects of higher temperatures on crop growth and greenhouse gas emission have not been properly investigated in the context of agriculturally-utilised peatlands. This study was conducted on peat cores excavated from a field in the Fens and focused on the following objectives: 1. To examine effects of climate change-induced temperature rises on celery productivity and peat CO2 and CH4 emissions. 2. To find the field water table level that reduces peat emissions of CO2 and CH4 while maintaining celery productivity. The research found higher CO2 emissions from the elevated (+5°C) temperature treatment and lower CO2 emissions from the higher (-30cm) water table level, however, noted no effect on CH4 emissions of any of the treatments. The higher water table decreased aboveground celery biomass. There was no effect of increased temperature on aboveground celery yield.
Oswald, Claire J; Carey, Sean K
2016-06-01
In the Athabasca Oil Sands Region in northeastern Alberta, Canada, oil sands operators are testing the feasibility of peatland construction on the post-mining landscape. In 2009, Syncrude Canada Ltd. began construction of the 52 ha Sandhill Fen pilot watershed, including a 15 ha, hydrologically managed fen peatland built on sand-capped soft oil sands tailings. An integral component of fen reclamation is post-construction monitoring of water quality, including salinity, fluvial carbon, and priority pollutant elements. In this study, the effects of fen reclamation and elevated sulfate levels on mercury (Hg) fate and transport in the constructed system were assessed. Total mercury (THg) and methylmercury (MeHg) concentrations in the fen sediment were lower than in two nearby natural fens, which may be due to the higher mineral content of the Sandhill Fen peat mix and/or a loss of Hg through evasion during the peat harvesting, stockpiling and placement processes. Porewater MeHg concentrations in the Sandhill Fen typically did not exceed 1.0 ng L(-1). The low MeHg concentrations may be a result of elevated porewater sulfate concentrations (mean 346 mg L(-1)) and an increase in sulphide concentrations with depth in the peat, which are known to suppress MeHg production. Total Hg and MeHg concentrations increased during a controlled mid-summer flooding event where the water table rose above the ground surface in most of the fen. The Hg dynamics during this event showed that hydrologic fluctuations in this system exacerbate the release of THg and MeHg downstream. In addition, the elevated SO4(2-) concentrations in the peat porewaters may become a problem with respect to downstream MeHg production once the fen is hydrologically connected to a larger wetland network that is currently being constructed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Karpińska, Maria; Kapała, Jacek; Raciborska, Agnieszka; Kulesza, Grzegorz; Milewska, Anna; Mnich, Stanisław
2017-08-01
In this work were identified and measured the activity of radioactive isotopes present in medicinal preparations from peat mud and estimated the doses obtained from them during therapy. Radioactivity of 22 preparations from peat mud and 20 water samples from water of the North-East region of Poland was studied. The median of the total activity was 24.8 Bq kg -1 . Total maximal isotope activity was observed in the Iwonicka Cube 146 Bq kg -1 while considerable amounts of isotopes were found in the Kolobrzeska Peat Mud Paste 112 Bq kg -1 . The doses obtained during therapy were within the range of 11 nSv-13 μSv depending on extracts of medicinal preparations from peat mud. The probability that such a small dose would stimulate biological effects is low. However, some clinicians believe that one of the possible therapeutic mechanisms in the treatment of rheumatoid disorders is the induction of immune response by ionising radiation.
Arsenic removal using natural biomaterial-based sorbents.
Ansone, Linda; Klavins, Maris; Viksna, Arturs
2013-10-01
Arsenic contamination of water is a major problem worldwide. A possible solution can be approached through developing new sorbents based on cost-effective and environmentally friendly natural biomaterials. We have developed new sorbents based on biomaterial impregnation with iron oxyhydroxide. In this study, raw peat material, iron-modified peat, iron-modified biomass (shingles, straw, sands, cane and moss) as well as iron humate were used for the removal of arsenate from contaminated water. The highest sorption capacity was observed in iron-modified peat, and kinetic studies indicated that the amount of arsenic sorbed on this material exceeds 90 % in 5 h. Arsenate sorption on iron-modified peat is characterised by the pseudo-second-order mechanism. The results of arsenic sorption in the presence of competing substances indicated that sulphate, nitrate, chloride and tartrate anions have practically no influence on As(V) sorption onto Fe-modified peat, whereas the presence of phosphate ions and humic acid significantly lowers the arsenic removal efficiency.
South Florida wetlands ecosystem; biogeochemical processes in peat
Orem, William; ,
1996-01-01
The South Florida wetlands ecosystem is an environment of great size and ecological diversity (figs. 1 and 2). The landscape diversity and subtropical setting of this ecosystem provide a habitat for an abundance of plants and wildlife, some of which are unique to South Florida. South Florida wetlands are currently in crisis, however, due to the combined effects of agriculture, urbanization, and nearly 100 years of water management. Serious problems facing this ecosystem include (1) phosphorus contamination producing nutrient enrichment, which is causing changes in the native vegetation, (2) methylmercury contamination of fish and other wildlife, which poses a potential threat to human health, (3) changes in the natural flow of water in the region, resulting in more frequent drying of wetlands, loss of organic soils, and a reduction in freshwater flow to Florida Bay, (4) hypersalinity, massive algal blooms, and seagrass loss in parts of Florida Bay, and (5) a decrease in wildlife populations, especially those of wading birds. This U.S. Geological Survey (USGS) project focuses on the role of organic-rich sediments (peat) of South Florida wetlands in regulating the concentrations and impact of important chemical species in the environment. The cycling of carbon, nitrogen, phosphorus, and sulfur in peat is an important factor in the regulation of water quality in the South Florida wetlands ecosystem. These elements are central to many of the contamination issues facing South Florida wetlands, such as nutrient enrichment, mercury toxicity, and loss of peat. Many important chemical and biological reactions occur in peat and control the fate of chemical species in wetlands. Wetland scientists often refer to these reactions as biogeochemical processes, because they are chemical reactions usually mediated by microorganisms in a geological environment. An understanding of the biogeochemical processes in peat of South Florida wetlands will provide a basis for evaluating the effects on water quality of (1) constructing buffer wetlands to alleviate nutrient contamination and (2) replumbing the ecosystem to restore natural water flow. The results may also suggest new approaches for solving problems of contamination and water quality in these wetlands. A second focus of this project will be on the geochemical history of the South Florida ecosystem. Peat is a repository of the history of past environmental conditions in the wetland. Before effective action can be taken to correct many of the problems facing these wetlands, we must first study the biogeochemistry of the peat at depth in order to understand whether current problems are the result of recent human activity or are part of a long-term natural cycle. Coordination with other (USGS) projects for South Florida is ongoing. These projects are studying the biological history of the ecosystem by using pollen and shells buried in the peat, together with procedures for dating the peat at various depths, to develop an overall ecosystem history model, with emphasis on the last 100 years.
Conceptualizing Peatlands in a Physically-Based Spatially Distributed Hydrologic Model
NASA Astrophysics Data System (ADS)
Downer, Charles; Wahl, Mark
2017-04-01
In as part of a research effort focused on climate change effects on permafrost near Fairbanks, Alaska, it became apparent that peat soils, overlain by thick sphagnum moss, had a considerable effect on the overall hydrology. Peatlands represent a confounding mixture of vegetation, soils, and water that present challenges for conceptualizing and parametrizing hydrologic models. We employed the Gridded Surface Subsurface Hydrologic Analysis Model (GSSHA) in our analysis of the Caribou Poker Creek Experimental Watershed (CPCRW). GSSHA is a physically-based, spatially distributed, watershed model developed by the U.S. Army to simulate important streamflow-generating processes (Downer and Ogden, 2004). The model enables simulation of surface water and groundwater interactions, as well as soil temperature and frozen ground effects on subsurface water movement. The test site is a 104 km2 basin located in the Yukon-Tanana Uplands of the Northern Plateaus Physiographic Province centered on 65˚10' N latitude and 147˚30' W longitude. The area lies above the Chattanika River floodplain and is characterized by rounded hilltops with gentle slopes and alluvium-floored valleys having minimal relief (Wahrhaftig, 1965) underlain by a mica shist of the Birch Creek formation (Rieger et al., 1972). The region has a cold continental climate characterized by short warm summers and long cold winters. Observed stream flows indicated significant groundwater contribution with sustained base flows even during dry periods. A site visit exposed the presence of surface water flows indicating a mixed basin that would require both surface and subsurface simulation capability to properly capture the response. Soils in the watershed are predominately silt loam underlain by shallow fractured bedrock. Throughout much of the basin, a thick layer of live sphagnum moss and fine peat covers the ground surface. A restrictive layer of permafrost is found on north facing slopes. The combination of thick moss and peat soils presented a conundrum in terms of conceptualizing the hydrology and identifying reasonable parameter ranges for physical properties. Various combinations of overland roughness, surface retention, and subsurface flow were used to represent the peatlands. The process resulted in some interesting results that may shed light on the dominant hydrologic processes associated with peatland, as well as what hydrologic conceptualizations, simulation tools, and approaches are applicable in modeling peatland hydrology. Downer, C.W., Ogden, F.L., 2004. GSSHA: Model to simulate diverse stream flow producing processes. J. Hydrol. Eng. 161-174. Rieger, S., Furbush, C.E., Schoephorster, D.B., Summerfield Jr., H., Geiger, L.C., 1972. Soils of the Caribou-Poker Creeks Research Watershed, Interior Alaska. Hanover, New Hampshire. Wahrhaftig, C., 1965. Physiographic Divisions of Alaska. Washington, DC.
Water uptake by fresh Indonesian peat burning particles is limited by water-soluble organic matter
NASA Astrophysics Data System (ADS)
Chen, Jing; Hapsari Budisulistiorini, Sri; Itoh, Masayuki; Lee, Wen-Chien; Miyakawa, Takuma; Komazaki, Yuichi; Qing Yang, Liu Dong; Kuwata, Mikinori
2017-09-01
The relationship between hygroscopic properties and chemical characteristics of Indonesian biomass burning (BB) particles, which are dominantly generated from peatland fires, was investigated using a humidified tandem differential mobility analyzer. In addition to peat, acacia (a popular species at plantation) and fern (a pioneering species after disturbance by fire) were used for experiments. Fresh Indonesian peat burning particles are almost non-hygroscopic (mean hygroscopicity parameter, κ < 0.06) due to predominant contribution of water-insoluble organics. The range of κ spans from 0.02 to 0.04 (dry diameter = 100 nm, hereinafter) for Riau peat burning particles, while that for Central Kalimantan ranges from 0.05 to 0.06. Fern combustion particles are more hygroscopic (κ = 0. 08), whereas the acacia burning particles have a mediate κ value (0.04). These results suggest that κ is significantly dependent on biomass types. This variance in κ is partially determined by fractions of water-soluble organic carbon (WSOC), as demonstrated by a correlation analysis (R = 0.65). κ of water-soluble organic matter is also quantified, incorporating the 1-octanol-water partitioning method. κ values for the water extracts are high, especially for peat burning particles (A0 (a whole part of the water-soluble fraction): κ = 0.18, A1 (highly water-soluble fraction): κ = 0.30). This result stresses the importance of both the WSOC fraction and κ of the water-soluble fraction in determining the hygroscopicity of organic aerosol particles. Values of κ correlate positively (R = 0.89) with the fraction of m/z 44 ion signal quantified using a mass spectrometric technique, demonstrating the importance of highly oxygenated organic compounds to the water uptake by Indonesian BB particles. These results provide an experimentally validated reference for hygroscopicity of organics-dominated particles, thus contributing to more accurate estimation of environmental and climatic impacts driven by Indonesian BB particles on both regional and global scales.
Patterns and drivers of fungal community depth stratification in Sphagnum peat.
Lamit, Louis J; Romanowicz, Karl J; Potvin, Lynette R; Rivers, Adam R; Singh, Kanwar; Lennon, Jay T; Tringe, Susannah G; Kane, Evan S; Lilleskov, Erik A
2017-07-01
Peatlands store an immense pool of soil carbon vulnerable to microbial oxidation due to drought and intentional draining. We used amplicon sequencing and quantitative PCR to (i) examine how fungi are influenced by depth in the peat profile, water table and plant functional group at the onset of a multiyear mesocosm experiment, and (ii) test if fungi are correlated with abiotic variables of peat and pore water. We hypothesized that each factor influenced fungi, but that depth would have the strongest effect early in the experiment. We found that (i) communities were strongly depth stratified; fungi were four times more abundant in the upper (10-20 cm) than the lower (30-40 cm) depth, and dominance shifted from ericoid mycorrhizal fungi to saprotrophs and endophytes with increasing depth; (ii) the influence of plant functional group was depth dependent, with Ericaceae structuring the community in the upper peat only; (iii) water table had minor influences; and (iv) communities strongly covaried with abiotic variables, including indices of peat and pore water carbon quality. Our results highlight the importance of vertical stratification to peatland fungi, and the depth dependency of plant functional group effects, which must be considered when elucidating the role of fungi in peatland carbon dynamics. Published by Oxford University Press on behalf of FEMS 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Kalmykova, Yuliya; Moona, Nashita; Strömvall, Ann-Margret; Björklund, Karin
2014-06-01
Landfill leachates are repeatedly found contaminated with organic pollutants, such as alkylphenols (APs), phthalates and polycyclic aromatic hydrocarbons (PAHs) at levels exceeding water quality standards. It has been shown that these pollutants may be present in the colloidal and truly dissolved phase in contaminated water, making particle separation an inefficient removal method. The aim of this study was to investigate sorption and degradation of petroleum hydrocarbons (PHCs), selected APs, bisphenol A (BPA), phthalates and PAHs from landfill leachate using sand, granulated activated carbon (GAC) and peat moss filters. A pilot plant was installed at an inactive landfill with mixed industrial and household waste and samples were collected before and after each filter during two years. Leachate pre-treated in oil separator and sedimentation pond failed to meet water quality standards in most samples and little improvement was seen after the sand filter. These techniques are based on particle removal, whereas the analysed pollutants are found, to varying degrees, bound to colloids or dissolved. However, even highly hydrophobic compounds expected to be particle-bound, such as the PHCs and high-molecular weight PAHs, were poorly removed in the sand filter. The APs and BPA were completely removed by the GAC filter, while mass balance calculations indicate that 50-80% of the investigated phenols were removed in the peat filter. Results suggest possible AP degradation in peat filters. No evidence of phthalate degradation in the landfill, pond or the filters was found. The PHCs were completely removed in 50% and 35% of the measured occasions in the GAC and peat filters, respectively. The opposite trend was seen for removal of PAHs in GAC (50%) and peat (63%). Oxygenated PAHs with high toxicity were found in the leachates but not in the pond sediment. These compounds are likely formed in the pond water, which is alarming because sedimentation ponds are commonly used treatment techniques. The oxy-PAHs were effectively removed in the GAC, and especially the peat filter. It was hypothesized that dissolved compounds would adsorb equally well to the peat and GAC filters. This was not completely supported as the GAC filter was in general more efficient than peat. Copyright © 2014 Elsevier Ltd. All rights reserved.
Soil carbon dioxide emissions from a rubber plantation on tropical peat.
Wakhid, Nur; Hirano, Takashi; Okimoto, Yosuke; Nurzakiah, Siti; Nursyamsi, Dedi
2017-03-01
Land-use change in tropical peatland potentially results in a large amount of carbon dioxide (CO 2 ) emissions owing to drainage, which lowers groundwater level (GWL) and consequently enhances oxidative peat decomposition. However, field information on carbon balance is lacking for rubber plantations, which are expanding into Indonesia's peatlands. To assess soil CO 2 emissions from an eight-year-old rubber plantation established on peat after compaction, soil CO 2 efflux was measured monthly using a closed chamber system from December 2014 to December 2015, in which a strong El Niño event occurred, and consequently GWL lowered deeply. Total soil respiration (SR) and oxidative peat decomposition (PD) were separately quantified by trenching. In addition, peat surface elevation was measured to determine annual subsidence along with GWL. With GWL, SR showed a negative logarithmic relationship (p<0.01), whereas PD showed a strong negative linearity (p<0.001). Using the significant relationships, annual SR and PD were calculated from hourly GWL data to be 3293±1039 and 1408±214gCm -2 yr -1 (mean±1 standard deviation), respectively. PD accounted for 43% of SR on an annual basis. SR showed no significant difference between near and far positions from rubber trees (p>0.05). Peat surface elevation varied seasonally in almost parallel with GWL. After correcting for GWL difference, annual total subsidence was determined at 5.64±3.20 and 5.96±0.43cmyr -1 outside and inside the trenching, respectively. Annual subsidence only through peat oxidation that was calculated from the annual PD, peat bulk density and peat carbon content was 1.50cmyr -1 . As a result, oxidative peat decomposition accounted for 25% of total subsidence (5.96cmyr -1 ) on average on an annual basis. The contribution of peat oxidation was lower than those of previous studies probably because of compaction through land preparation. Copyright © 2017 Elsevier B.V. All rights reserved.
Controls on methane released through ebullition in peatlands affected by permafrost degradation
Klapstein, Sara J.; Turetsky, Merritt R.; McGuire, A. David; Harden, Jennifer W.; Czimczik, C.I.; Xu, Xiaomei; Chanton, J.P.; Waddington, James Michael
2014-01-01
Permafrost thaw in peat plateaus leads to the flooding of surface soils and the formation of collapse scar bogs, which have the potential to be large emitters of methane (CH4) from surface peat as well as deeper, previously frozen, permafrost carbon (C). We used a network of bubble traps, permanently installed 20 cm and 60 cm beneath the moss surface, to examine controls on ebullition from three collapse bogs in interior Alaska. Overall, ebullition was dominated by episodic events that were associated with changes in atmospheric pressure, and ebullition was mainly a surface process regulated by both seasonal ice dynamics and plant phenology. The majority (>90%) of ebullition occurred in surface peat layers, with little bubble production in deeper peat. During periods of peak plant biomass, bubbles contained acetate-derived CH4 dominated (>90%) by modern C fixed from the atmosphere following permafrost thaw. Post-senescence, the contribution of CH4 derived from thawing permafrost C was more variable and accounted for up to 22% (on average 7%), in the most recently thawed site. Thus, the formation of thermokarst features resulting from permafrost thaw in peatlands stimulates ebullition and CH4 release both by creating flooded surface conditions conducive to CH4 production and bubbling as well as by exposing thawing permafrost C to mineralization.
Northern Peatland Shifts Under Changing Climate and Their Impact on Permafrost
NASA Astrophysics Data System (ADS)
Shur, Y.; Jorgenson, T.; Kanevskiy, M. Z.
2014-12-01
Formation of peatlands depends primarily on climate and its interactions with hydrology, soil thermal regimes, plant composition, and nutrients. A water balance with precipitation exceeding evaporation is necessary for their formation. The rate of peat accumulation also greatly depends on thermal resources. The prominent impact of the water balance and temperature on peatland formation is evident in the West Siberia Lowland. The rate of peat accumulation steadily increases from arctic tundra to moss tundra, to forest tundra, to northern taiga, and to southern taiga. This increase is a result in increase in air temperature and length of the growing season because all of these zones have water balance favorable for peat formation. Further to south, evaporation prevails over precipitation and peat formation occurs only in isolated areas. Climate change will redefine geographical distribution of climatic and vegetation zones. It is predicted that in arctic and subarctic regions the difference between precipitation and evaporation will increase and as a result these regions will remain favorable to peat accumulation. With increase of thermal resources, the rate of peat accumulation will also increase. The Alaska Arctic Coastal Plain is of a special interest because it has thousands of shallow lakes, which due to warming climate would shift from open waterbodies to peatlands through shoreline paludification and infilling. The accumulation of organic matter will likely turn open water into shore fens and bogs, and eventually to peat plateaus, as is occurring in many boreal landscapes. Expected impact on permafrost in arctic and subarctic regions will include rise of the permafrost table, thickening of the ice-rich intermediate layer with ataxitic (suspended) cryostructure, and replacement of frost boils with earth hummocks. In the contemporary continuous permafrost zone, permafrost formed as climate-driven will be transformed into climate-driven ecosystem protected. Sphagnum mosses, which grow better under warm climates, is a dominant factor in this transformation. Terrestrialization of numerous shallow lakes on the Arctic Coastal Plain of Alaska will lower permafrost temperatures beneath them and in surrounding areas.
Excavating and loading equipment for peat mining
NASA Astrophysics Data System (ADS)
Mikhailov, A. V.; Zhigulskaya, A. I.; Yakonovskaya, T. B.
2017-10-01
Recently, the issues of sustainable development of Russian regions, related to ensuring energy security, are more urgent than ever. To achieve sustainable development, an integrated approach to the use of local natural resources is needed. Practically in all north regions of the Russian Federation, peat as a local natural resource is widespread, which has a practical application in the area of housing services. The paper presents the evaluation of technologies for open-pit peat mining, as well as analysis of technological equipment for peat production. Special attention is paid to a question of peat materials excavating and loading. The problem of equipment selection in a peat surface mine is complex. Many features, restrictions and criteria need to be considered. Use of low and ultra-low ground pressure excavators and low ground pressure front-end loaders with full-range tires to provide the necessary floatation in the peat bog environment is offered.
Physical and chemical characteristics of fibrous peat
NASA Astrophysics Data System (ADS)
Sutejo, Yulindasari; Saggaff, Anis; Rahayu, Wiwik; Hanafiah
2017-11-01
Banyuasin is one of the regency in South Sumatera which has an area of 200.000 Ha of peat land. Peat soil are characterized by high compressibility parameters and low initial shear strength. Block sampling method was used to obtain undisturbed sample. The results of this paper describe the characteristics of peat soil from physical and chemical testing. The physical and chemical characteristics of peat include water content (ω), specific gravity (Gs), Acidity (pH), unit weight (γ), and ignition loss tests. SEM and EDS test was done to determine the differences in fiber content and to analyze chemical elements of the specimen. The average results ω, Gs, and pH are 263.538 %, 1.847, and 3.353. Peat is classified in H4 (by Von Post). The results of organic content (OC), ash content (AC), and fiber content (FC) are found 78.693 %, 21.310 %, and 73.703 %. From the results of physical and chemical tests, the peat in Banyuasin is classified as fibrous peat. All the results of the characteristics and classification of fibrous peat compared with published data were close.
NASA Astrophysics Data System (ADS)
Gill, A. L.; Finzi, A.; Giasson, M. A.
2015-12-01
High latitude peatlands represent a major terrestrial carbon store sensitive to climate change, as well as a globally significant methane source. While elevated atmospheric carbon dioxide concentrations and warming temperatures may increase peat respiration and C losses to the atmosphere, reductions in peatland water tables associated with increased growing season evapotranspiration may alter the nature of trace gas emission and increase peat C losses as CO2 relative to methane (CH4). As CH4 is a greenhouse gas with twenty times the warming potential of CO2, it is critical to understand how surface fluxes of CO2 and CH4 will be influenced by factors associated with global climate change. We used automated soil respiration chambers to assess the influence of elevated atmospheric CO2 and whole ecosystem warming on peatland CH4 and CO2 fluxes at the SPRUCE (Spruce and Peatland Responses Under Climatic and Environmental Change) Experiment in northern Minnesota. Belowground warming treatments were initiated in July 2014 and whole ecosystem warming and elevated CO2 treatments began in August 2015. Here we report soil iCO2 and iCH4 flux responses to the first year of belowground warming and the first two months of whole ecosystem manipulation. We also leverage the spatial and temporal density of measurements across the twenty autochambers to assess how physical (i.e., plant species composition, microtopography) and environmental (i.e., peat temperature, water table position, oxygen availability) factors influence observed rates of CH4 and CO2 loss. We find that methane fluxes increased significantly across warming treatments following the first year of belowground warming, while belowground warming alone had little influence on soil CO2 fluxes. Peat microtopography strongly influenced trace gas emission rates, with higher CH4 fluxes in hollow locations and higher CO2 fluxes in hummock locations. While there was no difference in the isotopic composition of the methane fluxes between hollow and hummock locations, δ13CH4 was more depleted in the early and late growing season, indicating a transition from hydrogenotrophic to acetoclastic methanogenesis during periods of high photosynthetic input.
Environmental factors explaining the vegetation patterns in a temperate peatland.
Pellerin, Stéphanie; Lagneau, Louis-Adrien; Lavoie, Martin; Larocque, Marie
2009-08-01
Although ombrotrophic temperate peatlands are important ecosystems for maintaining biodiversity in eastern North America, the environmental factors influencing their flora are only partly understood. The relationships between plant species distribution and environmental factors were thus studied within the oldest temperate peatland of Québec. Plant assemblages were identified by cluster analysis while CCA was used to related vegetation gradients to environmental factors. Five assemblages were identified; three typical of open bog and two characterized by more minerotrophic vegetation. Thicker peat deposit was encounter underlying the bog assemblages while higher water table level and percentage of free surface water distinguished the minerotrophic assemblages. Overall, the floristic patterns observed were spatially structured along the margins and the expanse. The most important environmental factors explaining this spatial gradient were the percentage of free surface water and the highest water-table level.
Important physical properties of peat materials
D.H. Boelter
1968-01-01
Peat materials from 12 bogs in northern Minnesota, U.S.A., showed significant differences in physical properties. It is pointed out that 1) these properties can be related to the hydrology of organic soils only if the soils represent undisturbed field conditions, and 2) volumetric expressions of water content are necessary to correctly evaluate the amount of water in a...
Relationship between peat geochemistry and depositional environments, Cranberry Island, Maine
Raymond, R.; Cameron, C.C.; Cohen, A.D.
1987-01-01
The Heath, Great Cranberry Island, Maine, offers a unique locality for studying lateral and vertical relationships between radically different peat types within 1 km2. The majority of The Heath is a Sphagnum moss-dominated raised bog. Surrounding the raised bog is a swamp/marsh complex containing grass, sedge, Sphagnum moss, alder, tamarack, and skunk cabbage. Swamp/ marsh-deposited peat occurs both around the margins of The Heath and under Sphagnum-dominated peat, which was deposited within the raised bog. A third peat type, dominated by herbaceous aquatics, is present underlying the swamp/marsh-dominated peat but is not present as a dominant botanical community of The Heath. The three peat types have major differences in petrographic characteristics, ash contents, and associated minerals. Sulfur contents range from a low of 0.19 wt.% (dry) within the raised bog to a high of 4.44 wt% (dry) near the west end of The Heath, where swamp/marsh peat occurring directly behind a storm beach berm has been influenced by marine waters. The presence of major geochemical variations within a 1-km2 peat deposit suggests the need for in-depth characterization of potential peat resources prior to use. ?? 1987.
Peat deposits of North Carolina: Bulletin 88
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ingram, R.L.
1987-01-01
Fuel-grade peat is an accumulation of partially decomposed plant material that has less than 25% non-combustible material (ash). In eastern North Carolina peat has formed in the past 10,000 years in swamps or pocosins (coastal swamps), Carolina bays, and river floodplains. Most of the peat is found at the surface with no over-burden and usually ranges in thickness from 1 to 15 ft with an average of 4-1/2 ft. The mean ash content of the fuel-grade peats is about 7.4%, but ash contents of less than 5% are common in most peat deposits. Heating values average 10,100 Btu/lb on amore » moisture-free basis. Fuel-grade peat deposits cover about 677,000 acres (1060 sq mi) in coastal North Carolina with total resources of about 500 million tons of moisture-free peat. Of this total, about 284,000 acres (444 sq mi) with 319 million tons are underlain by peat greater than 4 ft thick. Peat resources are concentrated in the pocosins or coastal swamps of northeastern North Carolina with the Albemarle-Pamlico peninsula having 55% of the resources and the Dismal Swamp, 11%. The remaining coastal swamp deposits are small but significant. Although 96 Carolina bays have peat, only 46 have peat greater than 4 ft thick; and only one has more than 1 million tons of peat. None of the river floodplain peats located were very large, continuous, or of high quality. 75 refs.« less
Use of oil shale ash in road construction: results of follow-up environmental monitoring.
Reinik, Janek; Irha, Natalya; Koroljova, Arina; Meriste, Tõnis
2018-01-05
Oil shale ash (OSA) was used for road construction in a pristine swamp area in East-Estonia during 2013-2014. OSA was used as a binder both in mass stabilization of soft peat soil and in the upper layer. Use of OSA in civil engineering always raises questions about the environmental safety of such activities. Post-construction environmental monitoring of the pilot section was carried out in 2014 and 2015. The monitoring program involved surface water and soil sampling campaigns. Samples were analyzed for selected constituents and parameters of environmental concern. The paper gives data for assessing the environmental impact and evaluation of potential risks associated with construction of roads using OSA. Leaching of hazardous compounds from the pilot section to surrounding aqueous environment was not observed during the monitoring program. Still, the road construction affected the concentration of sulfates in surrounding surface water. Also, the water-soluble content of barium in surface water correlated significantly with the concentrations of chloride and sulfate ion and electric conductivity of the surface water. Therefore, it is recommended to monitor the electric conductivity, concentrations of sulfates, chlorides, and barium in nearby surface water when OSA is used in road construction.
NASA Astrophysics Data System (ADS)
Bertram, Sascha; Bechtold, Michel; Hendriks, Rob; Piayda, Arndt; Regina, Kristiina; Myllys, Merja; Tiemeyer, Bärbel
2017-04-01
Peat soils form a major share of soil suitable for agriculture in northern Europe. Successful agricultural production depends on hydrological and pedological conditions, local climate and agricultural management. Climate change impact assessment on food production and development of mitigation and adaptation strategies require reliable yield forecasts under given emission scenarios. Coupled soil hydrology - crop growth models, driven by regionalized future climate scenarios are a valuable tool and widely used for this purpose. Parameterization on local peat soil conditions and crop breed or grassland specie performance, however, remains a major challenge. The subject of this study is to evaluate the performance and sensitivity of the SWAP-WOFOST coupled soil hydrology and plant growth model with respect to the application on peat soils under different regional conditions across northern Europe. Further, the parameterization of region-specific crop and grass species is discussed. First results of the model application and parameterization at deep peat sites in southern Finland are presented. The model performed very well in reproducing two years of observed, daily ground water level data on four hydrologically contrasting sites. Naturally dry and wet sites could be modelled with the same performance as sites with active water table management by regulated drains in order to improve peat conservation. A simultaneous multi-site calibration scheme was used to estimate plant growth parameters of the local oat breed. Cross-site validation of the modelled yields against two years of observations proved the robustness of the chosen parameter set and gave no indication of possible overparameterization. This study proves the suitability of the coupled SWAP-WOFOST model for the prediction of crop yields and water table dynamics of peat soils in agricultural use under given climate conditions.
Hydrological controls on rate of organic matter mineralization in peats
NASA Astrophysics Data System (ADS)
Ghezzehei, Teamrat; Arnold, Chelsea; Asefaw Berhe, Asmeret
2016-04-01
The predominant factor that ties together the formation and persistence of peat soils across regions is their dependence on localized hydrology. Hydrology also plays a dominant role in the relative strength of peatlands as sinks for atmospheric carbon dioxide and sources of methane, and thus on peatland net climate impact. Drying of peat soils by climate change and/or drainage is typically followed by reduction in methane emissions. However, this may easily be offset by the increase in carbon dioxide production. Therefore, mechanistic understanding of peatland hydrology and its association with carbon cycling is a prerequisite for assessing vulnerability of peats to disturbances and for incorporating the associated feedbacks in carbon-climate models. We will present physically based model that ties together the structure of peat soils (mainly pore size distribution and mechanical stability) to rates of aerobic and anaerobic decomposition over a wide range of soil water potentials. Peats consist of hierarchical structure with clear separation of the pores into a population of micropores within clumps of organic matter and/or soil aggregates and a group of macropores between clumps and/or aggregates. This essentially partitions the carbon stock in peat soils in to multiple pools that become mineralizable at disparate water potential ranges. While the carbon in macropores can readily be decomposed by aerobic microorganisms when the soil is only slightly drained, the carbon in fine pores remains largely protected from aerobic microbes until the water potential exceeds a threshold that lets in oxygen. In this presentation we will show the mathematical development of the model and illustrative examples that compare projections with data derived from the literature.
Neuzil, Sandra G.; Supardi,; Cecil, C. Blaine; Kane, Jean S.; Soedjono, Kadar
1993-01-01
The inorganic geochemistry of three domed ombrogenous peat deposits in Riau and West Kalimantan provinces, Indonesia, was investigated as a possible modern analogue for certain types of low-ash, low-sulfur coal. Mineral matter entering the deposits is apparently limited to small amounts from the allogenic sources of dryfall, rainfall, and diffusion from substrate pore water. In the low-ash peat in the interior of the deposits, a large portion of the mineral matter is authigenic and has been mobilized and stabilized by hydrological, chemical, and biological processes and conditions.Ash yield and sulfur content are low through most of the peat deposits and average 1.1% and 0.14%, respectively, on a moisture-free basis. Ash and sulfur contents only exceed 5% and 0.3%, respectively, near the base of the deposits, with maximum concentrations of 19.9% ash and 0.56% sulfur. Peat water in all three deposits has a low pH, about 4 units, and low dissolved cation concentration, averaging 14 ppm. Near the base, in the geographic interior of each peat deposit, pH is about two units higher and dissolved cation concentration averages 110 ppm. Relative concentrations of the inorganic constituents vary, resulting in chemical facies in the peat. In general, Si, Al, and Fe are the abundant inorganic constituents, although Mg, Ca, and Na dominate in the middle horizon in the geographic interior of coastal peat deposits.The composition of the three deposits reported in this paper indicates that domed ombrogenous peat deposits will result in low ash and sulfur coal, probably less than 10% ash and 1% sulfur, even if marine rocks are laterally and vertically adjacent to the coal.
Lau, Evan; Nolan, Edward J.; Dillard, Zachary W.; Dague, Ryan D.; Semple, Amanda L.; Wentzell, Wendi L.
2015-01-01
Northern temperate forest soils and Sphagnum-dominated peatlands are a major source and sink of methane. In these ecosystems, methane is mainly oxidized by aerobic methanotrophic bacteria, which are typically found in aerated forest soils, surface peat, and Sphagnum moss. We contrasted methanotrophic bacterial diversity and abundances from the (i) organic horizon of forest soil; (ii) surface peat; and (iii) submerged Sphagnum moss from Cranesville Swamp Preserve, West Virginia, using multiplex sequencing of bacterial 16S rRNA (V3 region) gene amplicons. From ~1 million reads, >50,000 unique OTUs (Operational Taxonomic Units), 29 and 34 unique sequences were detected in the Methylococcaceae and Methylocystaceae, respectively, and 24 potential methanotrophs in the Beijerinckiaceae were also identified. Methylacidiphilum-like methanotrophs were not detected. Proteobacterial methanotrophic bacteria constitute <2% of microbiota in these environments, with the Methylocystaceae one to two orders of magnitude more abundant than the Methylococcaceae in all environments sampled. The Methylococcaceae are also less diverse in forest soil compared to the other two habitats. Nonmetric multidimensional scaling analyses indicated that the majority of methanotrophs from the Methylococcaceae and Methylocystaceae tend to occur in one habitat only (peat or Sphagnum moss) or co-occurred in both Sphagnum moss and peat. This study provides insights into the structure of methanotrophic communities in relationship to habitat type, and suggests that peat and Sphagnum moss can influence methanotroph community structure and biogeography. PMID:27682082
NASA Astrophysics Data System (ADS)
Drollinger, Simon; Maier, Andreas; Karer, Jasmin; Glatzel, Stephan
2017-04-01
Peatlands are the only type of ecosystems which have the ability to accumulate significant amounts of carbon (C) under undisturbed conditions. The amount of C sequestered in peatlands depends on the balance between gross primary production, ecosystem respiration and decomposition of plant material. Sphagnum-dominated bogs possess the greatest peat accumulation potential of all peatlands, thus in turn, feature highest C release potentials. Many studies report about the C balances of undisturbed northern peat bogs, however, little is known about the effects of peatland degradation on the C balance between different plant compositions within peat bog ecosystems. Particularly in the Alpine region, where temperature increase during the last century has been almost twice as high as the global mean. The investigated peat bog is located in the inner Alpine Enns valley in the Eastern Alps, Austria (N 47˚ 34.873' E 14˚ 20.810'). It is a pine peat bog covered by Sphagnum mosses and a present extent of about 62 ha. Due to increasing differences in surface height of the peatland compared to the surrounding areas and related lowered water retention capacity attributed to the subsidence of the adjacent intensively managed meadows on deeply drained peat soils, the function of the peatland as a carbon sink is strongly endangered. Hence, the current mean water table depth of the central peat bog area is about -12 cm. To reveal differences in peatland-atmosphere C exchanges within the peatland ecosystem, we investigated CO2 and CH4 fluxes of four different vegetation compositions (PM1-PM4) at the treeless central peat bog area. PM1 is dominated by the graminoids Rhynchospora alba and Eriophorum vaginatum. PM2 is inhabited by small individuals (< 35 cm) of the conifer Pinus mugo, whereas PM3 is dominated by the ericaceous plant Calluna vulgaris. PM4 again is populated by Pinus mugo, but higher growing (35 - 60 cm) and with corresponding higher amount of biomass. Fluxes were measured for at least 120 seconds with the closed dynamic chamber method using infrared gas analysers (UGGA, Los Gatos Research and LI-802, LI-COR Biosciences) at four study sites with three replicates each. Net ecosystem exchange was measured using transparent chambers, whereas soil respiration was revealed using opaque chambers. Measurements were conducted seasonally during the last two years with eight sampling periods. Here, we demonstrate the seasonal variations in CO2 and CH4 fluxes, evaluate the underlying factors being responsible for these variations, examine the differences in diurnal pattern during the seasons and compute the global warming potentials of the released greenhouse gases. Moreover, we estimate the annual C balance per site and revise the seasonal C fluxes by comparing the results with fluxes derived by eddy covariance method.
Insights into the effects of patchy ice layers on water balance heterogeneity in peatlands
NASA Astrophysics Data System (ADS)
Dixon, Simon; Kettridge, Nicholas; Devito, Kevin; Petrone, Rich; Mendoza, Carl; Waddington, Mike
2017-04-01
Peatlands in boreal and sub-arctic settings are characterised by a high degree of seasonality. During winter soils are frozen and snow covers the surface preventing peat moss growth. Conversely, in summer, soils unfreeze and rain and evapotranspiration drive moss productivity. Although advances have been made in understanding growing season water balance and moss dynamics in northern peatlands, there remains a gap in knowledge of inter-seasonal water balance as layers of ice break up during the spring thaw. Understanding the effects of ice layers on spring water balance is important as this coincides with periods of high wildfire risk, such as the devastating Fort McMurrary wildfire of May, 2016. We hypothesise that shallow layers of ice disconnect the growing surface of moss from a falling water table, and prevent water from being supplied from depth. A disconnect between the evaporating surface and deeper water storage will lead to the drying out of the surface layer of moss and a greater risk of severe spring wildfires. We utilise the unsaturated flow model Hydrus 2D to explore water balance in peat layers with an impermeable layer representing ice. Additionally we create models to represent the heterogeneous break up of ice layers observed in Canadian boreal peatlands; these models explore the ability of breaks in an ice layer to connect the evaporating surface to a deeper water table. Results show that peatlands with slower rates of moss growth respond to dry periods by limiting evapotranspiration and thus maintain moist conditions in the sub-surface and a water table above the ice layer. Peatlands which are more productive continue to grow moss and evaporate during dry periods; this results in the near surface mosses drying out and the water table dropping below the level of the ice. Where there are breaks in the ice layer the evaporating surface is able to maintain contact with a falling water table, but connectivity is limited to above the breaks, with limited lateral transfer of water above the ice. Conceptually this means that peatlands which tend to have lower rates of growth are largely unaffected by the presence of a shallow ice layer in the early growing season, and are able to maintain moist sub-surface conditions in the absence of precipitation. They will thus be more resistant to severe wildfire. Conversely, peatlands which tend towards higher levels of moss productivity are able to maintain moss growth during dry periods. In the presence of an ice layer this greater productivity leads to a disconnection from deep water sources, extensive drying out of moss above the ice, and a greater susceptibility to severe wildfires. Our study gives important insights into the mechanisms behind heterogeneity in burning and depth of burn in northern peatland wildfires, as well as into burn heterogeneity within peatland microtopography.
NASA Astrophysics Data System (ADS)
Manning, Frances; Lip Khoon, Kho; Hill, Tim; Arn Teh, Yit
2017-04-01
Oil palm plantations have been expanding rapidly on tropical peat soils in the last 20 years, with 50 % of SE Asian peatlands now managed as industrial or small-holder plantations, up from 11% in 1990. Tropical peat soils are an important carbon (C) store, containing an estimated 17 % of total peatland C. There are large uncertainties as to the soil C dynamics in oil palm plantations on peat due to a shortage of available data. It is therefore essential to understand the soil C cycle in order to promote effective management strategies that optimise yields, whilst maintaining the high C storage capacity of the soil. Here we present CO2 and CH4 fluxes from two oil palm plantations in Sarawak, Malaysia on peat soils. Data were collected from different surface microforms within each plantation that experienced different surface management practices. These included the area next to the palm, in bare soil harvest paths, beneath frond piles, underneath cover crops, from the surface of drains, and from palm stems. Data were collected continuously over one year and analysed with different environmental variables, including soil temperature, WTD, O2, soil moisture and weather data in order to best determine the constraints on the dataset. Total soil respiration (Rtot) varied between 0.09 and 1.59 g C m-2 hr-1. The largest fluxes (0.59 - 1.59 g C m-2 hr-1) were measured next to the palms. Larger CO2 fluxes were observed beneath the cover crops than in the bare soil. This trend was attributed to priming effects from the input of fresh plant litter and exudates. Peat soil type was shown to have significantly different fluxes. The different plantations also had different environmental drivers best explaining the variation in Rtot - with soil moisture being the most significant variable on Sabaju series soil and soil temperature being the most significant environmental variable in the plantation with the Teraja series soil. Rtot was shown to reduce significantly with increasing distance from the palm. The relationship between Rtot and root biomass, which also decreased significantly with increasing distance from the palm, allowed for the partitioning of Rtot into peat oxidation and Ra. Here rates of peat oxidation were estimated to be 0.11 g C m-2 hr-1 following partitioning, and 0.16 g C m-2 hr-1 without partitioning. Methane fluxes varied between 0 and 1.95 g C m-2 hr-1. The largest methane fluxes were emitted from collection drains. Methane oxidation was occasionally observed in field drains, when the water table dropped below the depth of the drain. Soil methane fluxes were lower than those from collection drains. The highest methane fluxes were observed next to palms (0.02 mg C m-2 hr-1) and the lowest under frond piles (0.08 mg C m-2 hr-1). Methane emissions were measured from the palm stems. Preliminary data gives a range between 0.005 and 0.27 µg C m-2 hr-1. These results show wide ranges in both CO2 and CH4 emissions from different sources within the plantations, with the collection drains being the largest source of C fluxes.
NASA Astrophysics Data System (ADS)
Hanson, P. J.; Riggs, J. S.; Barbier, C. N.; Nettles, W. R., IV; Phillips, J. R.; Hook, L.
2014-12-01
Deep soil heating infrastructure was completed in 2014 for a peatland whole-ecosystem warming study that will include air warming starting in 2015 (SPRUCE; http://mnspruce.ornl.gov). In June 2014, we initiated deep soil heating to test the responsiveness of deep peat carbon stocks, microbial communities and biogeochemical cycling processes to heating at 4 warming levels (+2.25, +4.5, +6.75 and +9 °C; 2 replicate plots) compared to fully-constructed control plots (+0 °C; 2 replicate plots). The warming treatments were deployed over eight 113 m2 areas using circular arrays of low-wattage (W) electrical resistance heaters. Perimeter heating was achieved by an exterior circle of 48 100W heaters that apply heat from the surface to a depth of 3 meters. Heating within the study area was accomplished utilizing three zones of 100W "deep only" heaters: an intermediate circle of 12 units, an interior circle of 6 units and one unit placed at the plot center. Heating elements inside the study area apply heat only from -2 to -3 m to keep active heater surfaces away from measured peat volumes. With an average peat depth of 2.5 meters this system was able to warm approximately 113 of the 282 m3 of peat within each target plot. In the absence of the air warming cap, in situ deep peat heating is only effective at sustaining warming in the deep peat layers. Warming levels at depth were achieved over a 25-day (+ 2.25 °C) to a 60-day (+9 °C) period depending on the target treatment temperatures in agreement with a priori energy balance model simulations. Homogeneous temperature distributions between heaters at a given depth interval continued to develop after these targets were reached. Biological and biogeochemical responses to these manipulations are being actively assessed. After one month of transient heating, data for ground-level surface flux of CO2 and CH4 had not shown changes from deep peat heating, but they continue to be tracked and will be summarized in this and related talks.
NASA Astrophysics Data System (ADS)
Wojciech Szajdak, Lech; Szczepański, Marek
2010-05-01
The investigation of peatland is used to show the water quality functioning with respect to different forms of nitrogen and carbon. The purification of ground water by the transect of 4.5 km long consisting organic soils (peat-moorsh soils) was estimated. This transect is located in the Agroecological Landscape Park in Turew, 40 km South-West of Poznan, West Polish Lowland. There is this transect along Wyskoć ditch. pH, the contents of total and dissolved organic carbon, total nitrogen, N-NO3-, N-NH4+ was measured. Additionally C/N factors of peats were estimated. The investigation has shown the impact of the peatland located on the secondary transformed peat - moorsh soils on the lowering of total nitrogen, ammonium, and nitrates as well as total and dissolved organic carbon in ground water. Peat-moorsh soils were described and classified according to Polish hydrogenic soil classification and World Reference Base Soil Notation. There are four investigated points along to Wyskoc ditch. Two times a month during entire vegetation season the following material was taken from this four chosen sites: samples of peat, from the depth of 0-20 cm, samples of water from the ditch, samples of ground water from wells established for this investigation. Samples of peat-moorsh soils were collected at the depth 0-20 cm. Soils were sampled two times a month from 10 sites of each site. Samples were air dried and crushed to pass a 1 mm-mesh sieve. These 10 sub-samples were mixed for the reason of preparing a 'mean sample', which used for the determination of pH (in 1M KCl), dissolved organic carbon (DOC), total organic carbon (TOC), total nitrogen (Ntotal), and N-NO3- as well as N-NH4+. In water from Wyskoć ditch pH, Ntotal, N-NO3-, N-NH4+, DTC (dissolved total carbon) and DOC (dissolved organic carbon) was measured. Ground water samples were collected from four wells established for this investigation. The water was filtered by the middle velocity separation and pH, N-total, N-NO3-, N-NH4+, DTC (dissolved total carbon) and DOC (dissolved organic carbon) ware measured. Peatland located on the secondary transformed peat - moorsh soils has revealed the lowering in ground water: nitrates 38.5%, N-organic 10%, N-total 24.5%, ammonium 38.7%, dissolved total carbon 33.1%, dissolved total inorganic carbon 10%, and dissolved organic carbon 57.5%. The elution of soil organic matter from peat-moorsh soils in broad range of pH and ionic strength was investigated. The rates of the reaction were calculated from the kinetics of first order reaction model. All experiments were repeated at different pH 6.0, 6.5, 7.0, 8.0, 8.5 of 0.5 M ammonium acetate buffer solution. The investigations have shown the impact of the properties of secondary transformed peat-moorsh soils on the rates of the dissolution of organic matter. The rates of organic matter elution for all samples of peats were significant different at four used wavelengths λ=272 nm, λ=320 nm, λ=465 nm, and λ=665 nm. It was observed that the rates increased between λ=272 nm and λ=320 nm and decreased from λ=465 nm to λ=665 nm. Although, the lowest values of the pseudo first-order rate constants measured at λ=665 nm for all samples of peats from four places ranged from 1.9524 10-4 s-1 to 2.7361 10-4 s-1. Therefore, the highest values of t0.5 ranged from 42.2 to 59.2 min for all samples from Zbęchy, Shelterbelt, Mostek and Hirudo. This work was supported by a grant No. N N305 3204 36 founded by Polish Ministry of Education.
Biofiltration of isopentane in peat and compost packed beds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Z.; Govind, R.
1997-05-01
Commercially available biofiltration systems have used natural bioactive materials in packed beds due to low media cost and easy availability. Detailed understanding and modeling of biofiltration systems are lacking in existing literature. Experimental studies on the isopentane treatment in air using peat- and compost-packed beds were conducted with inlet isopentane concentrations of 360 to 960 ppmv, and empty-bed gas-phase residence times of 2 to 10 min. High removal efficiencies (>90%) were achieved at low contaminant concentrations (<500 ppmv) and large empty-bed gas-phase residence times (>8 min). For both peat and compost biofilters, there was an optimal water content that gavemore » the highest removal efficiency. For higher water content, mass transfer of isopentane through the liquid phase controlled the biofiltration removal efficiency. At low water content, irreversible changes in the bioactivity of peat and compost occurred, resulting in an irrecoverable loss of removal efficiency. Increases in biofilter bed temperature from 25 to 40 C improved the removal efficiency. A mathematical model incorporating the effect of water content and temperature was developed to describe the packed-bed biofilter performance. Model predictions agreed closely with experimental data.« less
Speiran, Gary K.; Wurster, Frederick C.
2016-01-01
Spatial differences in hydrologic processes and geochemistry across forested peatlands control the response of the wetland-community species and resiliency to natural and anthropogenic disturbances. Knowing these controls is essential to effectively managing peatlands as resilient wetland habitats. The Great Dismal Swamp is a 45,325 hectare peatland in the Atlantic Coastal Plain of Virginia and North Carolina, USA, managed by the U.S. Fish and Wildlife Service. The existing forest-species distribution is a product of timber harvesting, hydrologic alteration by canal and road construction, and wildfires. Since 2009, studies of hydrologic and geochemical controls have expanded knowledge of groundwater flow paths, water chemistry, response to precipitation events, and characteristics of the peat. Dominant hydrologic and geochemical controls include (1) the gradual slope in land surface, (2) vertical differences in the hydraulic characteristics of the peat, (3) the proximity of lateral groundwater and small stream inflows from uplands, (4) the presence of an extensive canal and road network, and (5) small, adjustable-height dams on the canals. Although upland sources provide some surface water and lateral groundwater inflow to western parts of the swamp, direct groundwater recharge by precipitation is the major source of water throughout the swamp and the only source in many areas. Additionally, the proximity and type of upland water sources affect water levels and nutrient concentrations in canal water and groundwater. Where streams are a dominant upland source, variations in groundwater levels and nutrient concentrations are greater than where recharge by precipitation is the primary water source. Where upland groundwater is a dominant source, water levels are more stable. Because the species distribution of forest communities in the Swamp is strongly influenced by these controls, swamp managers are beginning to incorporate this knowledge into forest, water, and fire management plans.
NASA Astrophysics Data System (ADS)
Schoning, Kristian; Sohlenius, Gustav
2016-04-01
In this investigation we have studied patterns in peat accumulation and changes in mire status since the early 1900s for two areas in Sweden. In the early 1900s the Geological Survey of Sweden collected a vast amount of peat and peatland data, including information on vegetation and land-use. We have used this archive data to evaluate changes in mire vegetation, mire wetness and surface peat properties, rates of peat accumulation, succession in young wetlands and the effects of cultivation on peatlands. In total 156 mires in an uplift area of eastern middle Sweden were included in the data-set, including both pristine mires and peatlands used for agricultural purposes. In this area new peatlands have continuously been formed during the past 7 000 years making it possible to evaluate changes in peat accumulation over time. The other study area is situated in the south Swedish Uplands where we have revisited some larger bogs. The results from our investigation show that many of the peatlands have underwent major changes since the early 1900s. In most of the small peatlands we have found important changes in vegetation where mire vegetation has been replaced by nutrient demanding and/or dry species flora while the tree stand on large mires in south Sweden have increased. In some mires humification has increased in the uppermost peat-layers and the mire surface have become drier compared to the early 1900s. In eastern middle Sweden there are indications that the peat accumulation is lower 0,5 mm/year in older peatlands compared with younger ones 1,2 mm/year, although the mire vegetation in the older peatlands is dominated by sphagnum. The peat depth of the cultivated mires in this area shows a mean decrease of 40 cm since the early 1900s.
A 5 Year Study of Carbon Fluxes from a Restored English Blanket Bog
NASA Astrophysics Data System (ADS)
Worrall, F.; Dixon, S.; Evans, M.
2014-12-01
This study aimed to measure the effects of ecological restoration on blanket peat water table depths, DOC concentrations and CO2 fluxes. In April 2003 the Bleaklow Plateau, an extensive area of deep blanket peat in the Peak District National Park, northern England, was devegetated by a wildfire. As a result the area was selected for large scale restoration. In this study we considered a 5-year study of four restored sites in comparison to both an unrestored, bare peat control and to vegetated control that did not require restoration. Results suggested that sites with revegetation alongside slope stabilisation had the highest rates of photosynthesis and were the largest net (daylight hours) sinks of CO2. Bare sites were the largest net sources of CO2 and had the deepest water table depths. Sites with gully wall stabilisation were between 5-8 times more likely to be net CO2 sinks than the bare sites. Revegetation without gully flow blocking using plastic dams did not have a large effect on water table depths in and around the gullies investigated whereas a blocked gully had water table depths comparable to a naturally revegetating gully. A ten centimetre lowering in water table depth decreased the probability of observing a net CO2 sink, on a given site, by up to 30%. With respect to DOC the study showed that the average soil porewater DOC concentration on the restored sites rose significantly over the 5 year study representing a 34% increase relative to the vegetated control and an 11% increase relative to the unrestored, bare control. Soil pore water concentrations were not significantly different from surface runoff DOC concentrations and therefore restoration as conducted by this study would have contributed to water quality deterioration in the catchment. The most important conclusion of this research was that restoration interventions were apparently effective at increasing the likelihood of net CO2 sink behaviour and raising water tables on degraded, climatically marginal blanket bog. However, had water table restoration been conducted alongside revegetation then a significant decline in DOC concentrations could have also been realised.
Mitigating wildfire carbon loss in managed northern peatlands through restoration.
Granath, Gustaf; Moore, Paul A; Lukenbach, Maxwell C; Waddington, James M
2016-06-27
Northern peatlands can emit large amounts of carbon and harmful smoke pollution during a wildfire. Of particular concern are drained and mined peatlands, where management practices destabilize an array of ecohydrological feedbacks, moss traits and peat properties that moderate water and carbon losses in natural peatlands. Our results demonstrate that drained and mined peatlands in Canada and northern Europe can experience catastrophic deep burns (>200 t C ha(-1) emitted) under current weather conditions. Furthermore, climate change will cause greater water losses in these peatlands and subject even deeper peat layers to wildfire combustion. However, the rewetting of drained peatlands and the restoration of mined peatlands can effectively lower the risk of these deep burns, especially if a new peat moss layer successfully establishes and raises peat moisture content. We argue that restoration efforts are a necessary measure to mitigate the risk of carbon loss in managed peatlands under climate change.
Mitigating wildfire carbon loss in managed northern peatlands through restoration
NASA Astrophysics Data System (ADS)
Granath, Gustaf; Moore, Paul A.; Lukenbach, Maxwell C.; Waddington, James M.
2016-06-01
Northern peatlands can emit large amounts of carbon and harmful smoke pollution during a wildfire. Of particular concern are drained and mined peatlands, where management practices destabilize an array of ecohydrological feedbacks, moss traits and peat properties that moderate water and carbon losses in natural peatlands. Our results demonstrate that drained and mined peatlands in Canada and northern Europe can experience catastrophic deep burns (>200 t C ha-1 emitted) under current weather conditions. Furthermore, climate change will cause greater water losses in these peatlands and subject even deeper peat layers to wildfire combustion. However, the rewetting of drained peatlands and the restoration of mined peatlands can effectively lower the risk of these deep burns, especially if a new peat moss layer successfully establishes and raises peat moisture content. We argue that restoration efforts are a necessary measure to mitigate the risk of carbon loss in managed peatlands under climate change.
Mitigating wildfire carbon loss in managed northern peatlands through restoration
Granath, Gustaf; Moore, Paul A.; Lukenbach, Maxwell C.; Waddington, James M.
2016-01-01
Northern peatlands can emit large amounts of carbon and harmful smoke pollution during a wildfire. Of particular concern are drained and mined peatlands, where management practices destabilize an array of ecohydrological feedbacks, moss traits and peat properties that moderate water and carbon losses in natural peatlands. Our results demonstrate that drained and mined peatlands in Canada and northern Europe can experience catastrophic deep burns (>200 t C ha−1 emitted) under current weather conditions. Furthermore, climate change will cause greater water losses in these peatlands and subject even deeper peat layers to wildfire combustion. However, the rewetting of drained peatlands and the restoration of mined peatlands can effectively lower the risk of these deep burns, especially if a new peat moss layer successfully establishes and raises peat moisture content. We argue that restoration efforts are a necessary measure to mitigate the risk of carbon loss in managed peatlands under climate change. PMID:27346604
Dissolved Organic Carbon in Marginal, Damaged Peatlands: Using 14C to Understand DOC Losses
NASA Astrophysics Data System (ADS)
Luscombe, D.; Grand-Clement, E.; Garnett, M.; Anderson, K.; Gatis, N.; Benaud, P.; Brazier, R.
2013-12-01
Peatlands are widely represented throughout the world and act as an important store of carbon, as well as providing society with a range of other ecosystem services, such as drinking water or the support of rare habitats. However, the combination of historical management practices, and the predicted impact of climate change means that they are now largely under threat. In the shallow peatlands of Exmoor National Park (South West UK), peat cutting and intensive drainage in the 19th and 20th century for agricultural reclamation have changed the hydrological behaviour of the peat. This damage has dried out the upper layers, causing oxidation, erosion and vegetation change. In addition, their location on the southernmost limit of peatlands geographical extent in northern Europe makes them particularly vulnerable to the predicted changes in rainfall and temperature. Recent modelling work has shown that such marginal peatlands may disappear as early as 2050. Restoration programs are currently in place, aiming to restore the hydrological functioning of the peat. However, current dissolved organic carbon (DOC) losses from damaged peatlands are especially of concern, because of the contribution of the aquatic pathways in the C flux, and because of the impact on water quality. DOC has been shown to originate from the drainage of highly-aged organic matter. In stream waters, DOC from low flow tends to contain a larger component of older C compared to that of high flow. Both the impact of extensive drainage on where DOC is originating from and the effect of peatland restoration on this process remain poorly understood. We used 14C dating of DOC from streams and pore water, as well as from damaged peat, in order to gain a better understanding of the process and origin of DOC loss in drained shallow peatlands. This will further help us understand the potential for peatland restoration. Work was carried out in a small intensively monitored catchment in Exmoor. Samples were taken in an area of shallow peat (ca. 20-30 cm depth) drained by a medium size ditch (50 x 50 cm). Samples of DOC from stream water were taken at low and high flow during 3 separate rain events in Winter- Spring 2013 using automatic pump samplers. Samples of DOC in pore water were taken 2 m away from the ditch at 5 and 15 cm depth on two occasions. Finally, matching bulk peat samples were collected at 5 and 15 cm depth. Intensive monitoring data also provides information on water table depth and level in streams. A neighbouring pristine peat area was used as a control, and DOC pore water and bulk peat soil samples were taken at 5, 15 and 45 cm depth on two occasions. Preliminary results show that DOC lost in streams at high flow contains a greater contribution of bomb-14C compared to that at low flow (107 and 101 % modern respectively). Stream water DOC at low flow had a 14C concentration lower than that in pore water at both 5 and 15 cm depth (105 and 102% modern, respectively), suggesting that low flow stream water DOC is predominantly older than that found in pore water at depth.
Peatland Open-water Pool Biogeochemistry: The Influence of Hydrology and Vegetation
NASA Astrophysics Data System (ADS)
Arsenault, J.; Talbot, J.; Moore, T. R.
2017-12-01
Peatland open-water pools are net sources of carbon to the atmosphere. However, their interaction with the surrounding peat remains poorly known. In a previous study, we showed that shallow pools are richer in nutrients than deep pools. While depth was the main driver of biogeochemistry variations across time and space, analyses also showed that pool's adjacent vegetation may have an influence on water chemistry. Our goal is to understand the relationship between the biogeochemistry of open-water pools and their surroundings in a subboreal ombrotrophic peatland of southern Quebec (Canada). To assess the influence of vegetation on pool water chemistry, we compare two areas covered with different types of vegetation: a forested zone dominated by spruce trees and an open area mostly covered by Sphagnum spp. To evaluate the direction of water (in or out of the pools), we installed capacitance water level probes in transects linking pools in the two zones. Wells were also installed next to each probe to collect peat pore water samples. Samples were taken every month during summer 2017 and analyzed for dissolved organic carbon, nitrogen and phosphorus, pH and specific UV absorbance. Preliminary results show differences in peat water chemistry depending on the dominant vegetation. In both zones, water levels fluctuations are disconnected between peat and the pools, suggesting poor horizontal water movement. Pool water chemistry may be mostly influenced by the immediate surrounding vegetation than by the local vegetation pattern. Climate and land-use change may affect the vegetation structure of peatlands, thus affecting pool biogeochemistry. Considering the impact of pools on the overall peatland capacity to accumulate carbon, our results show that more focus must be placed on pools to better understand peatland stability over time.
Distribution and speciation of mercury in the peat bog of Xiaoxing'an Mountain, northeastern China.
Liu, Ruhai; Wang, Qichao; Lu, Xianguo; Fang, Fengman; Wang, Yan
2003-01-01
Most reports on mercury (Hg) in boreal ecosystems are from the Nordic countries and North America. Comparatively little information is available on Hg in wetlands in China. We present here a study on Hg in the Tangwang River forested catchment of the Xiaoxing'an Mountain in the northeast of China. The average total Hg (THg) in peat profile ranged from 65.8 to 186.6 ng g(-1) dry wt with the highest at the depth of 5-10 cm. THg in the peat surface was higher than the background in Heilongjiang province, the Florida Everglades, and Birkeness in Sweden. MethylHg (MeHg) concentration ranged from 0.16 to 1.86 ng g(-1) dry wt, with the highest amount at 10-15 cm depth. MeHg content was 0.2-1.2% of THg. THg and MeHg all decreased with the depth. THg in upland layer of soil (0-20 cm) was comparable to the peat surface, but in deeper layers THg concentration in peat was much higher than that in the forested mineral soil. THg in the peat bog increased, but MeHg decreased after it was drained. THg content in plant was different; THg contents in moss (119 ng g(-1) dry wt, n=12) were much higher than in the herbage, the arbor, and the shrubs. The peat bog has mainly been contaminated by Hg deposition from the atmosphere.
Assessing the Impact of Land Management on Organic Matter Composition in Peat Soils
NASA Astrophysics Data System (ADS)
Savage, A.; Holden, J.; Wainwright, J.
2010-05-01
Peatlands are seen as important stores of terrestrial carbon, accounting for up to one-third of global soil carbon stocks. In some cases peatlands are shown to be emitters of carbon, in other cases carbon sinks depending on the site conditions and nature of degradation. However, carbon budget calculations carried out to date have a number of uncertainties associated with them and the composition of the carbon is generally not considered when determining carbon budgets. Carbon cycling in peat is driven by four key factors (Laiho, 2006):, environmental conditions (e.g. temperature, water table level), substrate quality (e.g. how recalcitrant the peat is), nutrients (e.g. nitrogen required to synthesis the carbon stocks) and microbial community (e.g. are the microbes present able to utilise the available substrate). Land management is also recognised as an additional driver, but the impacts of many types of management are poorly understood. Among the four drivers listed by Laiho (2006) substrate quality is seen as the most significant. To date, little work has been carried out to characterise the quality of organic matter in peat soils; rather crude estimates have been made as to the quantity of carbon that is stored in peatlands, yet without understanding the composition of the peat, limitations are imposed on calculations of rates of carbon loss from peatlands. This work seeks to examine how variations in the chemical composition of organic matter in peat varies with land use. The method published by Wieder and Starr (1998) was followed to determine eight fractions: soluble fats and waxes, hot water soluble, hollocellulose, cellulose, soluble phenolics, acid insoluble carbohydrates, water soluble carbohydrates and lignin. Samples were taken from burnt, grazed, drained, afforested and undisturbed sites at the Moor House UNESCO Biosphere Reserve in Northern England. The method was used to identify if differences were present in the recalcitrance of the peat and linked to gaseous carbon emissions data collected during fortnightly monitoring. R. Laiho (2006) Decomposition in peatlands: Reconciling seemingly contrasting results on the impacts of lowered water levels Soil Biology & Biochemistry, 38, 2011-2024. R.K. Wieder & S.T. Starr (1998) Quantitative determination of organic fractions in highly organic, Sphagnum peat soils Communications in Soil Science and Plant Analysis, 29, 847-857.
Thermal diffusivity of peat, sand and their mixtures at different water contents
NASA Astrophysics Data System (ADS)
Gvozdkova, Anna; Arkhangelskaya, Tatiana
2014-05-01
Thermal diffusivity of peat, sand and their mixtures at different water contents was studied using the unsteady-state method described in (Parikh et al., 1979). Volume sand content in studied samples was 0 % (pure peat), 5, 10, 15, 20, 30, 40, 50, 55 and 62 % (pure sand). Thermal diffusivity of air-dry samples varied from 0.6×10-7m2s-1 for pure peat to 7.0×10-7m2s-1 for pure sand. Adding 5 and 10 vol. % of sand didn't change the thermal diffusivity of studied mixture as compared with that of the pure air-dry peat. Adding 15 % of sand resulted in significant increase of thermal diffusivity by approximately 1.5 times: from 0.6×10-7m2s-1 to 0.9×10-7m2s-1. It means that small amounts of sand with separate sand particles distributed within the peat don't contribute much to the heat transfer through the studied media. And there is a kind of threshold between the 10 and 15 vol. % of sand, after which the continuous sandy chains are formed within the peat, which can serve as preferential paths of heat transport. Adding 20 and 30 % of sand resulted in further increase of thermal diffusivity to 1.3×10-7m2s-1 and 1.7×10-7m2s-1, which is more than two and three times greater than the initial value for pure peat. Thermal diffusivity vs. moisture content dependencies had different shapes. For sand contents of 0 to 40 vol. % the thermal diffusivity increased with water content in the whole studied range from air-dry samples to the capillary moistened ones. For pure peat the experimental curves were almost linear; the more sand was added the more pronounced became the S-shape of the curves. For sand contents of 50 % and more the curves had a pronounced maximum within the range of water contents between 0.10 and 0.25 m3m-3 and then decreased. The experimental k(θ) curves, where k is soil thermal diffusivity, θ is water content, were parameterized with a 4-parameter approximating function (Arkhangelskaya, 2009, 2014). The suggested approximation has an advantage of clear physical interpretation: the parameters are (1) the thermal diffusivity of the dry sample; (2) the difference between the highest thermal diffusivity at some optional water content and that of the dry sample; (3) the optional water content at which the thermal diffusivity reaches its maximum; (4) half-width of the peak of the k(θ) curve. The increase of sand contents in studied mixtures was accompanied by the increase of the parameters (1), (2) and (4) and the decrease of the parameter (3). References Parikh R.J., Havens J.A., Scott H.D., 1979. Thermal diffusivity and conductivity of moist porous media. Soil Science Society of America Journal 43, 1050-1052. Arkhangel'skaya T.A., 2009. Parameterization and mathematical modeling of the dependence of soil thermal diffusivity on the water content. Eurasian Soil Science 42 (2), 162-172. doi: 10.1134/S1064229309020070 Arkhangelskaya T.A., 2014. Diversity of thermal conditions within the paleocryogenic soil complexes of the East European Plain: The discussion of key factors and mathematical modeling // Geoderma. Vol. 213. P. 608-616. doi 10.1016/j.geoderma.2013.04.001
Climatic triggers for peatland initiation
NASA Astrophysics Data System (ADS)
Morris, Paul J.; Swindles, Graeme T.; Valdes, Paul J.; Ivanovic, Ruza F.; Gregoire, Lauren J.; Smith, Mark W.; Tarasov, Lev; Haywood, Alan M.; Bacon, Karen L.
2017-04-01
Peatlands are carbon-dense wetlands characterised by waterlogged, organic-rich soils. Modern-day peatlands have formed mainly since the Last Glacial Maximum (LGM), and despite covering only 3 % of the Earth's land surface are thought to store more than a third of all global soil carbon in the form of poorly decomposed plant detritus. Concern exists that this globally important carbon store may be vulnerable to near-future warming and changes in precipitation patterns, although the links between peatland development and climate are contested. The climatic and other environmental conditions that facilitate the initiation of peat are particularly poorly understood. We present the results of a novel, global study into the climate space of peat initiation since the LGM. We compiled a catalogue of radiocarbon dates of peat initiation from 942 sites that span a range of latitudes and biomes. We used the locations and ages of these peatlands to interrogate downscaled climate hindcasts at 500-yr intervals from a coupled atmosphere-ocean-vegetation general circulation model, HadCM3. This powerful combination of modelling and observational data provides a globally-consistent, temporally-extensive estimate of the climate spaces of peat initiation. In particular, it allows us to identify local and regional climatic changes that may have acted as triggers for peat formation. Peatlands in mid- and high-latitudes of both hemispheres, particularly in maritime locations, developed shortly after local increases in the time integral of growing season temperatures, and were seemingly not influenced by rainfall regime. Peat initiation at such sites appears to have been stimulated by temperature-driven increases in plant productivity in cold, postglacial landscapes, and was not water limited. The exception is the large peatland complex of the Western Siberian Lowlands, which was not glaciated during the last glacial period, and which appears to have been prompted instead by a strong increase in effective precipitation, leading to extensive paludification. Peat initiation in the tropics appears only weakly related to climate, suggesting that other environmental factors such as drainage network evolution and relative sea level change due to tectonic subsidence were more important there. Our model-data fusion also provides valuable context for projected future climate change. In particular, projected temperature increases for the 21st Century, even under modest emissions scenarios, far exceed those experienced by current peatland locations during the course of peat development, and therefore seem likely to exceed these ecosystems' capacities for resistance and resilience.
Gumbricht, Thomas; Roman-Cuesta, Rosa Maria; Verchot, Louis; Herold, Martin; Wittmann, Florian; Householder, Ethan; Herold, Nadine; Murdiyarso, Daniel
2017-09-01
Wetlands are important providers of ecosystem services and key regulators of climate change. They positively contribute to global warming through their greenhouse gas emissions, and negatively through the accumulation of organic material in histosols, particularly in peatlands. Our understanding of wetlands' services is currently constrained by limited knowledge on their distribution, extent, volume, interannual flood variability and disturbance levels. We present an expert system approach to estimate wetland and peatland areas, depths and volumes, which relies on three biophysical indices related to wetland and peat formation: (1) long-term water supply exceeding atmospheric water demand; (2) annually or seasonally water-logged soils; and (3) a geomorphological position where water is supplied and retained. Tropical and subtropical wetlands estimates reach 4.7 million km 2 (Mkm 2 ). In line with current understanding, the American continent is the major contributor (45%), and Brazil, with its Amazonian interfluvial region, contains the largest tropical wetland area (800,720 km 2 ). Our model suggests, however, unprecedented extents and volumes of peatland in the tropics (1.7 Mkm 2 and 7,268 (6,076-7,368) km 3 ), which more than threefold current estimates. Unlike current understanding, our estimates suggest that South America and not Asia contributes the most to tropical peatland area and volume (ca. 44% for both) partly related to some yet unaccounted extended deep deposits but mainly to extended but shallow peat in the Amazon Basin. Brazil leads the peatland area and volume contribution. Asia hosts 38% of both tropical peat area and volume with Indonesia as the main regional contributor and still the holder of the deepest and most extended peat areas in the tropics. Africa hosts more peat than previously reported but climatic and topographic contexts leave it as the least peat-forming continent. Our results suggest large biases in our current understanding of the distribution, area and volumes of tropical peat and their continental contributions. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
Changing of Sumatra backswamp peat properties by seawater and zeolite application
NASA Astrophysics Data System (ADS)
Sarifuddin; Nasution, Z.; Rauf, A.; Mulyanto, B.
2018-02-01
This research attempts to improve the properties of backswamp peatsoil originated from Asahan District, North Sumatra Indonesia by adding sea water and zeolite using factorial randomized block design with volume of sea water as first factor, consisting of without seawater, 500 ml, 1000 ml and 1500 ml and second factor are dosages of zeolite consisting of without zeolite, 100 g, 200 g each 10 kgs of wet peat soil. at green house in faculty of agriculture University of Sumatra Utara (USU) Medan, Indonesia. The result showed that the application of seawater decreased pH, C/N and Cation Exchange Capacity and increased of base saturation of peat soil. Adding of zeolite minerals can buffered the increasing of acidity and Electric Conductivity caused by sea water application. Interaction seawater + zeolite decreased of C/N and increased of percent of base saturation.
NASA Astrophysics Data System (ADS)
Vilumaa, Kadri; Tõnisson, Hannes; Orviku, Kaarel
2014-05-01
Ground Penetrating Radar (GPR) is mainly used for scientific research in coastal geology in the Institute of Ecology at Tallinn University. We currently use SIR-3000 radar with 100, 270 , 300 and 500 MHz antennae. Our main targets have been detecting the thickness of soil and sand layers and finding out the layers in coastal sediments which reflect extreme storm events. Our GPR studies in various settings have suggested that the internal structures of the ridge-dune complexes are dominated by numerous layers dipping in various directions. Such information helps us to reconstruct and understand prevailing processes during their formation (e.g. seaward dipping lamination in coastal ridge-dune complexes indicating cross-shore and wave-induced transport of the sediments). Currently, we are trying to elaborate methodology for distinguishing the differences between aeolian and wave transported sediments by using GPR. However, paludified landscapes (often covered by water), very rough surface (numerous bushes and soft surface), moderate micro topography has slowed this process significantly. Moreover, we have been able to use GPR during the winter period (applied on ice or snow) and compare the quality of our results with the measurements taken during the summer period. We have found that smooth surface (in winter) helps detecting very strong signal differences (border between different sediment types - sand, peat, silt, etc.) but reduces the quality of the signal to the level where the detection of sedimentation patterns within one material (e.g. tilted layers in sand) is difficult. We have carried out several other science-related studies using GPR. These studies include determining the thickness of peat layer in bogs (to calculate the volume of accumulated peat or to find most suitable locations for coring), measuring the thickness of mud and gyttja layer in lakes (to find most suitable locations for coring, reconstructing initial water level of the lake or calculating the volume of stored carbon in the lake). Additionally, we have done several archaeology-related research including the search of buried city walls and caves (Tallinn old town), buried Viking ship (Saaremaa Island) and several other archaeological objects. We have also done some applied studies including the search of underground power cables, heating pipes, melioration systems, ammunition warehouses (from World War II) and buried ammunition from the military training fields. Aknowledgement: The authors acknowledge COST for funding Action TU1208 'Civil Engineering Applications of Ground Penetrating Radar', supporting part of this work.
Only low methane production and emission in degraded peat extraction sites after rewetting
NASA Astrophysics Data System (ADS)
Agethen, Svenja; Waldemer, Carolin; Knorr, Klaus-Holger
2015-04-01
In Central Europe rewetting of bogs after peat extraction is a wide spread technique to halt secondary aerobic decomposition and to reestablish plant species such as Sphagnum spp. and Eriophorum spp. that initialize accumulation of organic carbon in peat. Before extraction, such sites are often used for agriculture causing the aerobic degradation of peat and mobilization of phosphorus, ammonia, and dissolved organic matter (DOM). In nutrient poor ecosystems such as bogs, additional supply of P and N does not only trigger the establishment of uncharacteristic vegetation but also the formation of more labile plant litter and DOM that is readily degradable. Therefore, after rewetting and the development of anoxic conditions especially in initial stages high methane (CH4) emissions are reported for these systems compared to pristine bogs. Regarding the potential of methane production and emissions we investigated three common practices to prepare extraction fields for restoration (years since rewetting): i) Filling of drainage ditches, passive rewetting (1 site, Altendorfer Moor, Stade, NW-Germany, ca. 20 yr.), ii) Removal of upper 30 cm peat layer, removed peat used for construction of polder dikes (2 sites, Königsmoor, Leer, NW-Germany, 2 and 3 yr.), iii) Removal upper peat layer down to 50 cm grown peat, not extracted peat used as polder walls (2 sites, Benthullener Moor, Wardenburg, NW-Germany, 3 and 7 yr.). In each site two vegetated replicate mesocosms (diam. 30 cm, depth 40 cm) were sampled and placed in a greenhouse from May-October 2014 to maintain the water table at surface level. Pore water concentrations of ions, fermentation products and DOM, DOM electron acceptor capacity (EAC), soil gas concentrations of CO2, CH4 and H2, gas fluxes as well as element composition and organic matter quality of DOM and SOM were analyzed. We found out that practice i) with least efforts of nutrient removal in the peat produced the highest CH4 emissions (3.5 mmol m-2 d-1) although still within the range of northern pristine bogs. Also practice ii) showed still inputs of external nutrients and labile DOM, but CH4 production was not yet developed (0.23 and 0.07 mmol m-2 d-1). Practice iii) was most effective in nutrient removal, but only in the 7 yr. site little methane (in the 3 yr. site 0.025 vs. 0.41 mmol m-2 d-1in the 7 yr. site) was emitted. The emissions were well in accord with soil gas concentrations, maximum values for CH4 in practice i) were 115 μmol L-1, 2-5 μmol L-1 in practice ii) and 0.5 vs. 16 μmol L-1 in practice iii). Only small concentrations of inorganic electron acceptors such as sulfate imply the importance of organic matter as electron acceptor. The results show that restored bogs on former strongly degraded extraction fields do not necessarily act as exceptionally high CH4 sources. Contrary to other findings in early stages of rewetting CH4 emissions can also be very low until other electron acceptors are exhausted and methanogens become effective competitors for substrates which happens in the order of years.
NASA Astrophysics Data System (ADS)
Baron, S.; Carignan, J.; Ploquin, A.
2003-04-01
Sixty sites of slags have been documented on the Mont-Lozère in southern France. The petrographic analysis shows that slags are metallurgical wastes (800 to 850 yr BP) which certainly result from smelting activity for lead and silver extraction (Ploquin et al., 2001). The aims of this study are: 1) to trace the source of Pb ores which supplied the smelting sites, by using the Pb isotopic composition of several surrounding Pb deposits, 2) to evaluate the actual pollution caused by these slags, by using elemental and isotopic compositions of soils, water and vegetation, and 3) to document the pollution history of the region, by using elemental and isotopic compositions of peat bog cores collected in the neighbourhood of the historical smelting sites. The lead isotopic composition of galena collected in most surrounding ores is very similar to that of different slag samples. On the other hand, the high precision of the results allowed us to select the mineralised areas which were probably the ore sources. The Pb isotopic composition of slags is even more homogeneous: 208/206 Pb: 2.092±0.002; 206/207 Pb: 1.179±0.001; 208/204 Pb: 38.663±0.025; 207/204 Pb: 15.665±0.006; 206/204 Pb: 18.476±0.023, and will allow source tracing in the environment. The "Narses Mortes" peat bog, around which two smelting sites have been reported, is strongly minerotrophic and contains 8 to 60% ash. A 1.40 m core have been retrieved and divided into 58 individual samples. Minerotrophic peat bog records both atmospheric deposition, soils leaching and the grounwater influence. The measured metal concentrations are normalised to Al contents of peat bog samples and the metal/Al ratios are compared to that of the Mont-Lozère granite: relative excess in metal concentrations are found in peat bog samples. An increasing excess of most metals (Pb, Zn, Cd...) was measured for surface samples, from 55 cm depth to the top of the core (23 cm depth). This profil might be attributed to atmospheric input during the last centuries. Pb and As alone are also enriched in some deeper samples (between 120--90 cm depth). At the moment, no sedimentation rates are available for this section of the peat bog. However, according to palynological data (de Beaulieu, in progress), the bottom of the core might be as old as 5000 years BP. This would place the medieval activities at the base of the surface metal enrichment (˜55 cm depth), having no large effect in Pb concentrations measured in peat bog. The older Pb-As enrichment remain enigmatic and may correspond to earlier anthropogenic activities (2000--2500 BP), a period for which very few traces of metallurgical activities are found in Occidental Europe. 14C dating and Pb isotope works are going on peat bog samples trying to discriminate metals sources.
Acoustic Monitoring of Ebullitive Flux from a Mire Ecosystem in Subarctic Sweden
NASA Astrophysics Data System (ADS)
Burke, S. A.; Varner, R. K.; Palace, M. W.; Wik, M.; Crill, P. M.; McCalley, C. K.; Amante, J.
2012-12-01
Methane (CH4) is a potent green house gas with wetlands being the largest natural source to the atmosphere. Studies in the Stordalen Mire, a dynamic peatland complex 11km east of the Abisko Scientific Research Station (ANS) in northern Sweden, that focused on CH4 transport to the atmosphere from peatlands have shown increased emissions over the past decades. Ebullitive flux (bubbling) is a potentially significant pathway of CH4 from mire/lake ecosystems. Ebullitive fluxes were successfully monitored acoustically in peat and lakes in 2011. This work expands those measurements with installation of sensors in ponds and permafrost thaw margins in 2012. Eighteen acoustic sensors were installed in peat (6), pond (6), and lake (6) sites at Stordalen Mire. Recorders collected acoustic data continuously from each sensor and gas samples were collected from the traps at least once per week beginning 7 July. The CH4 concentration in the gas was measured using gas chromatography and selected samples were also analyzed for 13C-CH4 using a Quantum Cascade Laser (QCL). The acoustic data were evaluated using a MATLAB program for determine the timing and volume of each ebullition event. The CH4 ebullitive flux from the peat was greater in July 2011 than during the same period in 2012. In comparison, the ponds and thaw margins released CH4 at a faster rate in 2012 than was observed in the peat and lake sensors in 2011. Inter-annual differences in ebullitive rates suggest that weather scale differences between years may control CH4 ebullitive flux. 13C-CH4 measured in the pore waters of pond sediment suggests that not all ponds are dominated by the same production processes. However, 13C-CH4 measured in bubbles and sediments are not different, implying little or no oxidation of CH4 during transport to the water surface. Our data suggests that changes in atmospheric pressure and water table height correlated with the ebullitive release in all three sub-ecosystems.
NASA Astrophysics Data System (ADS)
Rausch, N.; Nieminen, T. M.; Ukonmaanaho, L.; Cheburkin, A.; Krachler, M.; Shotyk, W.
2003-05-01
Peat cores taken from ombrotrophic bogs are widely used to reconstruct historical records of atmospheric lead and mercury déposition[1, 2]. In this study, the retention of copper, nickel, cadmium and zinc in peat bogs are studied by comparing high resolution, age dated concentration profiles with emissions from the main local source, the Outokumpu copper-nickel mine. An ombrotrophic peat core was taken from the vicinity of Outokumpu, E Finland. Copper and zinc concentrations of dry peat were measured by XRF, cadmium and nickel by GF-AAS, and sample ages by 210Pb. Only copper and nickel show enhanced concentrations in layers covering the mining period, indicating a retention of these elements. However, the more detailed comparison of ore production rates and concentrations in age-dated samples show clearly that only copper is likely to be permanently fixed, while nickel doesn't reflect the mining activity. Even though copper is retained in the upper part of the profile, a possible redeposition of this element by secondary processes (e.g., water table fluctuations) can not be excluded. This question will be resolved by further investigations, e.g. by pore water profiles.
Drexler, Judith Z.; Paces, James B.; Alpers, Charles N.; Windham-Myers, Lisamarie; Neymark, Leonid; Bullen, Thomas D.; Taylor, Howard E.
2013-01-01
The purpose of this study was to determine the history of paleosalinity over the past 6000+ years in the Sacramento-San Joaquin Delta (the Delta), which is the innermost part of the San Francisco Estuary. We used a combination of Sr and U concentrations, d87Sr values, and 234U/238U activity ratios (AR) in peat as proxies for tracking paleosalinity. Peat cores were collected in marshes on Browns Island, Franks Wetland, and Bacon Channel Island in the Delta. Cores were dated using 137Cs, the onset of Pb and Hg contamination from hydraulic gold mining, and 14C. A proof of concept study showed that the dominant emergent macrophyte and major component of peat in the Delta, Schoenoplectus spp., incorporates Sr and U and that the isotopic composition of these elements tracks the ambient water salinity across the Estuary. Concentrations and isotopic compositions of Sr and U in the three main water sources contributing to the Delta (seawater, Sacramento River water, and San Joaquin River water) were used to construct a three-end-member mixing model. Delta paleosalinity was determined by examining variations in the distribution of peat samples through time within the area delineated by the mixing model. The Delta has long been considered a tidal freshwater marsh region, but only peat samples from Franks Wetland and Bacon Channel Island have shown a consistently fresh signal (<0.5 ppt) through time. Therefore, the eastern Delta, which occurs upstream from Bacon Channel Island along the San Joaquin River and its tributaries, has also been fresh for this time period. Over the past 6000+ years, the salinity regime at the western boundary of the Delta (Browns Island) has alternated between fresh and oligohaline (0.5-5 ppt).
NASA Astrophysics Data System (ADS)
Glina, Bartłomiej
2016-12-01
The aim of the study was to assess the concentration of selected trace elements in organic soils used as a source to obtain a unique peat extract for cosmetics production. Peat material for laboratory analysis were collected from fen peatland located in the Prosna River Valley (Borek village). Studied peatland is managed by "Torf Corporation" company as a source of material to obtain peat extract for cosmetics production. In the collected soil samples (four soil profiles) Zn, Cu and Pb concentrations were determined by using atomic absorption spectrometer SpectraAA 220 (Varian), after acid digestion. Obtained results showed that the highest concentrations of selected trace elements were recorded in the surface horizons of organic soils. This fact might be the results of Prosna river flooding or air deposition. Howevere, according to the new Polish regulations (Ordinance of the Minister for Environment 01.09.2016 - the way of conducting contamination assessment of the earth surface), the content of trace elements in the examined soils was greatly belowe the permissible limit for areas from group IV (mine lands). Thus, described soils are proper to obtain peat extract used as a component in cosmetic production.
NASA Astrophysics Data System (ADS)
Ritson, Jonathan P.; Brazier, Richard E.; Graham, Nigel J. D.; Freeman, Chris; Templeton, Michael R.; Clark, Joanna M.
2017-06-01
Drought conditions are expected to increase in frequency and severity as the climate changes, representing a threat to carbon sequestered in peat soils. Downstream water treatment works are also at risk of regulatory compliance failures and higher treatment costs due to the increase in riverine dissolved organic carbon (DOC) often observed after droughts. More frequent droughts may also shift dominant vegetation in peatlands from Sphagnum moss to more drought-tolerant species. This paper examines the impact of drought on the production and treatability of DOC from four vegetation litters (Calluna vulgaris, Juncus effusus, Molinia caerulea and Sphagnum spp.) and a peat soil. We found that mild droughts caused a 39.6 % increase in DOC production from peat and that peat DOC that had been exposed to oxygen was harder to remove by conventional water treatment processes (coagulation/flocculation). Drought had no effect on the amount of DOC production from vegetation litters; however large variation was observed between typical peatland species (Sphagnum and Calluna) and drought-tolerant grassland species (Juncus and Molinia), with the latter producing more DOC per unit weight. This would therefore suggest the increase in riverine DOC often observed post-drought is due entirely to soil microbial processes and DOC solubility rather than litter layer effects. Long-term shifts in species diversity may, therefore, be the most important impact of drought on litter layer DOC flux, whereas pulses related to drought may be observed in peat soils and are likely to become more common in the future. These results provide evidence in support of catchment management which increases the resilience of peat soils to drought, such as ditch blocking to raise water tables.
Characterization of the efficiency of sedimentation basins downstream of harvested peat bogs
NASA Astrophysics Data System (ADS)
Samson-Do, Myriam; St-Hilaire, André
2015-04-01
Peat harvesting is a very lucrative industry in the provinces of Quebec and New-Brunswick (Canada). Peat enters in many potting mix used for horticulture. However, harvesting this resource has some impacts on the environment. First, industries need to drain the peat bog to dry the superficial layer. Then, it is harvested with industrial vacuums and the underlying layer is allowed to dry. The drained water is laden with suspended sediments (mostly organic peat fibers) that may affect biota of the stream where it is discharged. To counter the problem, this water does not go directly on the stream but first flows through a sedimentation basin, built to reduce suspended sediment loads. This work focuses on characterizing and eventually modeling the efficiency of those sedimentation basins. Seven basins were studied in Rivière-du-Loup, St-Valère and Escoumins (Quebec, Canada). They each have a different ratio basin area/drained area (4.7 10-4 to 20.3 10-4). To continuously monitor the sediment loads (calculated from sediment concentrations and discharge) entering and leaving basins, a nephelometer and a level logger were installed in the water column upstream and downstream of sedimentation basins. Their trapping efficiency was measured during the ice-free period (May to October) and for each significant rain event, since it is known that the rain and subsequent runoff induce most of the peat transport in and out of the basin. Results show that the event efficiency decreases as the basin is filled up with trapped sediments. For one basin, the efficiency was 85August. Trapping efficiency can be used as a tool to estimate basin dimensions. This has been done for municipal sedimentation ponds that trap minerals and will be adapted to the current context, where the dominant sediment is organic.
Early diagenesis of organic matter in a Sawgrass peat from the Everglades, Florida
Orem, W.H.; Hatcher, P.G.
1987-01-01
The transformation of plant biopolymers to humic substances in peats during early diagenesis is a critical but poorly understood step in the formation of coal. This paper presents results concerning the structural interrelationships among various fractions of the organic matter in peat and the dissolved organic matter in the pore water from a site in The Everglades, relying primarily on elemental analysis and 13C nuclear magnetic resonance for structural elucidation. Our goal was to obtaine some insight into the sequence of steps involved in the formation of humic substances. Results show that the major change occurring in the whole peat during diagenesis is loss of carbohydrates. The components of the peat which are more resistant to microbial degradation become concentrated in the humin fraction. This resistant fraction of the organic matter includes aliphatic and aromatic components. The aromatic components are thought to be derived from lignin while the aliphatic moieties may represent decomposed algal remains. The carbohydrates lost from the whole peat appear to be concentrated in the fulvic acids and the dissolved organic matter in the pore water. The humic acids consist predominantly of aromatic and aliphatic structures, and may represent partially degraded lignin-like structures and aliphatic compounds from algae. The data presented here suggest that humic and fulvic acids are the partially degraded fractions of the peat while the humin contains the resistant or preserved portion of the organic matter. The proposition that humic substances are formed by the condensation of amino acids and sugars is not supported by the results of this study. ?? 1987.
NASA Astrophysics Data System (ADS)
Raabe, Peter; Blodau, Christian; Hölzel, Norbert; Kleinebecker, Till; Knorr, Klaus-Holger
2016-04-01
In rewetted cut-over bogs in north-western Germany and elsewhere almost no spontaneous recolonization of hummock peat mosses, such as Sphagnum magellanicum, S. papillosum or S. rubellum can be observed. However, to reach goals of climate protection every restoration of formerly mined peatlands should aim to enable the re-establishment of these rare but functionally important plant species. Besides aspects of biodiversity, peatlands dominated by mosses can be expected to emit less methane compared to sites dominated by graminoids. To assess the hydrological and biogeochemical factors constraining the successful establishment of hummock Sphagnum mosses we conducted a field experiment by actively transferring hummock species into six existing restoration sites in the Vechtaer Moor, a large peatland complex with active peat harvesting and parallel restoration efforts. The mosses were transferred as intact sods in triplicate at the beginning of June 2016. Six weeks (mid-July) and 18 weeks later (beginning of October) pore water was sampled in two depths (5 and 20 cm) directly beneath the inoculated Sphagnum sods as well as in untreated control plots and analysed for phosphate, ferrous iron, ammonia, nitrate and total organic carbon (TOC). On the same occasions and additionally in December, the vitality of mosses was estimated. Furthermore, the increment of moss height between July and December was measured by using cranked wires and peat cores were taken for lab analyses of nutrients and major element inventories at the depths of pore water sampling. Preliminary results indicate that vitality of mosses during the period of summer water level draw down was strongly negatively related to plant available phosphate in deeper layers of the residual peat. Furthermore, increment of moss height was strongly negatively related to TOC in the upper pore waters sampled in October. Concentration of ferrous iron in deeper pore waters was in general significantly higher beneath Sphagnum sods compared to control plots suggesting a direct impact of hummock mosses on microsite soil moisture conditions. However, with an increase of water levels towards winter season accompanied by increase of ferrous iron and concurrent increase of phosphate in pore waters of the upper peat layers the vitality was strongly positively related to plant available phosphate. This suggests that actively transferred hummock mosses suffering temporarily from desiccation during the dry summer season are able to recover also under relatively higher trophic conditions as long as water level and redox state favour an optimal supply of required water nutrients.
NASA Astrophysics Data System (ADS)
Raharja, Danang S.; Hadiwardoyo, Sigit P.; Rahayu, Wiwik; Zain, Nasuhi
2017-06-01
Geopolymer is binder material that consists of solid material and the activator solution. Geopolymer material has successfully replaced cement in the manufacture of concrete with aluminosilicate bonding system. Geopolymer concrete has properties similar to cement concrete with high compressive strength, low shrinkage value, relatively low creep value, as well as acid-resistant. Based on these, the addition of polymers in peat soils is expected to improve the bearing capacity of peat soils. A study on the influence of geopolymer addition in peat soils was done by comparing before and after the peat soil was mixed with geopolymer using CBR (California Bearing Ratio) test in unsoaked and soaked conditions. 10% mixture content of the peat dry was used, weighted with a variety of curing time 4 hours, 5 days, and 10 days. There were two methods of mixing: first, peat was mixed with fly ash geopolymer activators and mixed solution (waterglass, NaOH, water), and second, peat was mixed with fly ash and mixed geopolymer (waterglass, NaOH, water, fly ash). Changes were observed in specific gravity, dry density, acidity (pH), and the microscopic structure with Scanning Electron Microscope (SEM). Curing time did not significantly affect the CBR value. It even shows a tendency to decline with longer curing time. The first type mixture obtained CBR value of: 5.4% for 4 hours curing, 4.6% for 5 days curing and 3.6% for 10 days curing. The second type mixture obtained CBR value of: 6.1% for 4 hours curing, 5.2% for 5 days curing and 5.2% for 10 days curing. Furthermore, the specific gravity value, dry density, pH near neutral and swelling percentage increased. From both variants, the second type mixture shows better results than the first type mixture. The results of SEM (Scanning Electron Microscopy) show the structure of the peat which became denser with the fly ash particles filling the peat microporous. Also, the reaction of fly ash with geopolymer is indicated by the solid agglomerates that are larger than normal fly ash particle size.
Effects of spatial heterogeneity in moisture content on the horizontal spread of peat fires.
Prat-Guitart, Nuria; Rein, Guillermo; Hadden, Rory M; Belcher, Claire M; Yearsley, Jon M
2016-12-01
The gravimetric moisture content of peat is the main factor limiting the ignition and spread propagation of smouldering fires. Our aim is to use controlled laboratory experiments to better understand how the spread of smouldering fires is influenced in natural landscape conditions where the moisture content of the top peat layer is not homogeneous. In this paper, we study for the first time the spread of peat fires across a spatial matrix of two moisture contents (dry/wet) in the laboratory. The experiments were undertaken using an open-top insulated box (22×18×6cm) filled with milled peat. The peat was ignited at one side of the box initiating smouldering and horizontal spread. Measurements of the peak temperature inside the peat, fire duration and longwave thermal radiation from the burning samples revealed important local changes of the smouldering behaviour in response to sharp gradients in moisture content. Both, peak temperatures and radiation in wetter peat (after the moisture gradient) were sensitive to the drier moisture condition (preceding the moisture gradient). Drier peat conditions before the moisture gradient led to higher temperatures and higher radiation flux from the fire during the first 6cm of horizontal spread into a wet peat patch. The total spread distance into a wet peat patch was affected by the moisture content gradient. We predicted that in most peat moisture gradients of relevance to natural ecosystems the fire self-extinguishes within the first 10cm of horizontal spread into a wet peat patch. Spread distances of more than 10cm are limited to wet peat patches below 160% moisture content (mass of water per mass of dry peat). We found that spatial gradients of moisture content have important local effects on the horizontal spread and should be considered in field and modelling studies. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Comparative carbon cycle dynamics of the present and last interglacial
NASA Astrophysics Data System (ADS)
Brovkin, Victor; Brücher, Tim; Kleinen, Thomas; Zaehle, Sönke; Joos, Fortunat; Roth, Raphael; Spahni, Renato; Schmitt, Jochen; Fischer, Hubertus; Leuenberger, Markus; Stone, Emma J.; Ridgwell, Andy; Chappellaz, Jérôme; Kehrwald, Natalie; Barbante, Carlo; Blunier, Thomas; Dahl Jensen, Dorthe
2016-04-01
Changes in temperature and carbon dioxide during glacial cycles recorded in Antarctic ice cores are tightly coupled. However, this relationship does not hold for interglacials. While climate cooled towards the end of both the last (Eemian) and present (Holocene) interglacials, CO2 remained stable during the Eemian while rising in the Holocene. We identify and review twelve biogeochemical mechanisms of terrestrial (vegetation dynamics and CO2 fertilization, land use, wildfire, accumulation of peat, changes in permafrost carbon, subaerial volcanic outgassing) and marine origin (changes in sea surface temperature, carbonate compensation to deglaciation and terrestrial biosphere regrowth, shallow-water carbonate sedimentation, changes in the soft tissue pump, and methane hydrates), which potentially may have contributed to the CO2 dynamics during interglacials but which remain not well quantified. We use three Earth System Models (ESMs) of intermediate complexity to compare effects of selected mechanisms on the interglacial CO2 and δ13CO2 changes, focusing on those with substantial potential impacts: namely carbonate sedimentation in shallow waters, peat growth, and (in the case of the Holocene) human land use. A set of specified carbon cycle forcings could qualitatively explain atmospheric CO2 dynamics from 8 ka BP to the pre-industrial. However, when applied to Eemian boundary conditions from 126 to 115 ka BP, the same set of forcings led to disagreement with the observed direction of CO2 changes after 122 ka BP. This failure to simulate late-Eemian CO2 dynamics could be a result of the imposed forcings such as prescribed CaCO3 accumulation and/or an incorrect response of simulated terrestrial carbon to the surface cooling at the end of the interglacial. These experiments also reveal that key natural processes of interglacial CO2 dynamics - shallow water CaCO3 accumulation, peat and permafrost carbon dynamics - are not well represented in the current ESMs. Global-scale modeling of these long-term carbon cycle components started only in the last decade, and uncertainty in parameterization of these mechanisms is a main limitation in the successful modeling of interglacial CO2 dynamics.
The effects of ecological restoration on CO2 fluxes from a climatically marginal upland blanket bog
NASA Astrophysics Data System (ADS)
Dixon, Simon; Qassim, Suzane; Rowson, James; Worrall, Fred; Evans, Martin
2013-04-01
A legacy of gully incision, deposition of industrially-derived aerial pollutants, inappropriate management and wildfire has left large expanses of the topographic Bleaklow Plateau (Peak District National Park, England, UK) bare of vegetation and susceptible to massive erosion of the peat soils. The consequence of such degradation has been to decrease the capacity of the peatland on the plateau to provide important ecosystem services including; loss of net C sink function, discolouration of surface waters, mobilisation to surface waters of stored heavy metals and infilling of upland reservoirs with peat-derived sediment. In response to on-going and worsening degradation a programme of ecological restoration has been undertaken. Restoration methods include: seeding with a lawn grass mix; liming; fertilisation; slope stabilisation; and gully blocking. This talk will present data from a five-year, observational-study of CO2 fluxes from eight sites, with four sites sampling different restoration treatments and four sampling bare and least disturbed areas. The results of the analysis reveal that sites with revegetation alongside slope stabilisation were most productive and were the largest net (daylight hours) sinks of CO2. Unrestored, bare sites, while having relatively low gross fluxes of CO2 were the largest net sources of CO2. Revegetation without slope stabilisation took longer (~18 months) to show an impact on CO2 flux in comparison to the sites with slope stabilisation. Binary logistic regression indicated that a ten centimetre increase in water table depth decreases the odds of observing a net CO2 sink, on a given site, by up to 30%. Sites with slope stabilisation were between 5-8x more likely to be net CO2 sinks than the bare sites. Sites without slope stabilisation were only 2-2.3x more likely to be net CO2 sinks compared to the bare sites. The most important conclusion of this research is that revegetation appears to be effective at increasing the likelihood of net CO2 behaviour on degraded, climatically marginal blanket peat, with revegetation alongside slope stabilisation having the greatest impact.
Transformation of organo-ferric peat colloids by a heterotrophic bacterium
NASA Astrophysics Data System (ADS)
Oleinikova, Olga V.; Shirokova, Liudmila S.; Gérard, Emmanuele; Drozdova, Olga Yu.; Lapitskiy, Sergey A.; Bychkov, Andrey Yu.; Pokrovsky, Oleg S.
2017-05-01
Bacterial mineralization of allochthonous (soil) dissolved organic matter (DOM) in boreal waters governs the CO2 flux from the lakes and rivers to the atmosphere, which is one of the main factor of carbon balance in high latitudes. However, the fate of colloidal trace element (TE) during bacterial processing of DOM remains poorly constrained. We separated monoculture of Pseudomonas saponiphila from a boreal creek and allowed it to react with boreal Fe-rich peat leachate of approximate colloidal (3 kDa-0.45 μm) composition C1000Fe12Al3.3Mg2Ca3.7P1.2Mn0.1Ba0.5 in nutrient-free media. The total net decrease of Dissolved Organic Carbon (DOC) concentration over 4 day of exposure was within 5% of the initial value, whereas the low molecular weight fraction of Corg (LMW<3 kDa) yielded a 16%-decrease due to long-term bio-uptake or coagulation. There was a relative depletion in Fe over Corg of 0.45 μm, colloidal and LMW fraction in the course of peat leachate interaction with P. saponiphila. Al, Mn, Ni, Cu, Ga, REEs, Y, U were mostly affected by bacterial presence and exhibited essentially the adsorption at the cell surface over first hours of reaction, in contrast to Fe, Ti, Zr, and Nb that showed both short-term adsorption and long-term removal by physical coagulation/coprecipitation with Fe hydroxide. The low molecular weight fraction (LMW<3 kDa) of most TE was a factor of 2-5 less affected by microbial presence via adsorption or removal than the high molecular weight (HMW) colloidal fractions (<0.45 μm and <50 kDa). The climate change-induced acceleration of heterotrophic bacterial activity in boreal and subarctic waters may lead to preferential removal of Fe over DOC from conventionally dissolved fraction and the decrease of the proportion of LMW < 3 kDa fraction and the increase of HMW colloids. Enhanced heterotrophic mineralization of organo-ferric colloids under climate warming scenario may compensate for on-going "browning" of surface waters.
Effect of direct electric current on contaminants removal from the peat water with continuous system
NASA Astrophysics Data System (ADS)
Amri, I.; Azis, A.; Drastinawati
2018-04-01
This research was analysed the essentially of treat peat water using an electric current. Initially, the characterization of peat water was determined including of three parameters they are pH, colour, and conductivity solution exhibited values that exceeded the water standard limit. There are two factors influencing the electric coagulation such as electric current and voltage that were observed in the continous study. The results obtained indicated that the majority of the an electric current were very effective for removing TDS, and pH. The research variable for the voltage from 23,5 to 42,5 volt and the electric current from 2,2 to 4,1. The optimum electric current and voltage was found around 1,5 Ampere and 25 volt, it was exhibited at 4 L/minute. In unit study, continous electric reactor showed that the optimal reduction on the 20 minutes treatment were found pH = 7, 256 ppm. It was meet to the minimum standard government permition.
Nichols, Wallace J.; Smath, J.A.; Adamik, J.T.
1983-01-01
Hydrologic data collected on the Great and Denbow Heaths, Maine, include precipitation, pan evaporation, air temperatures, streamflow, groundwater levels, and water quality constituents. These data were collected for a peat bog hydrology study conducted in cooperation with the Maine Geological Survey. The data network consisted of climate information from three rain gages, an evaporation pan, and two maximum-minimum thermometers; surface water information from two continuous gaging stations and 19 partial record sites; groundwater information from an observation well equipped with a continuous recorder and 106 piezometers; and water quality information from 13 wells and seven surface water sites. Water quality constituents include: field determinations of pH, specific conductance, and temperature, and laboratory determinations of common inorganic cations and anions, trace elements, and selected organic compounds. Methods used for the collection and analyses of data included standard Survey techniques modified for the unique hydrologic environment of the study area. (Author 's abstract)
Muhr, Jan; Höhle, Juliane; Otieno, Dennis O; Borken, Werner
2011-03-01
We simulated the effect of prolonged dry summer periods by lowering the water table on three manipulation plots (D(1-3)) in a minerotrophic fen in southeastern Germany in three years (2006-2008). The water table at this site was lowered by drainage and by excluding precipitation; three nonmanipulated control plots (C(1-3)) served as a reference. We found no significant differences in soil respiration (R(Soil)), gross primary production (GPP), or aboveground respiration (R(AG)) between the C(1-3) and D(1-3) plots in any of the measurement years. The water table on the control plots was naturally low, with a median water table (2006-2008) of 8 cm below the surface, and even lower during summer when respiratory activity was highest, with median values (C(1-3)) between 11 and 19 cm below the surface. If it is assumed that oxygen availability in the uppermost 10 cm was not limited by the location of the water table, manipulative lowering of the water table most likely increased oxygen availability only in deeper peat layers where we expect R(Soil) to be limited by poor substrate quality rather than anoxia. This could explain the lack of a manipulation effect. In a second approach, we estimated the influence of the water table on R(Soil) irrespective of treatment. The results showed a significant correlation between R(Soil) and water table, but with R(Soil) decreasing at lower water tables rather than increasing. We thus conclude that decomposition in the litter layer is not limited by waterlogging in summer, and deeper peat layers bear no significant decomposition potential due to poor substrate quality. Consequently, we do not expect enhanced C losses from this site due to increasing frequency of dry summers. Assimilation and respiration of aboveground vegetation were not affected by water table fluctuations between 10 and >60 cm depth, indicating the lack of stress resulting from either anoxia (high water table) or drought (low water table).
A Mediterranean free-floating peat mire hosts microbial communities shared by cold latitude habitats
NASA Astrophysics Data System (ADS)
Concheri, Giuseppe; Stevanato, Piergiorgio; Zaccone, Claudio; Shotyk, William; D'Orazio, Valeria; Miano, Teodoro; Lobianco, Daniela; Piffanelli, Pietro; Rizzi, Valeria; Ferrandi, Chiara; Squartini, Andrea
2017-04-01
The microbiological features of a peculiar and hitherto unexplored environment, i.e., a 4m-deep, free-floating peat island located within the Posta Fibreno lake (central Italy), were analyzed via DNA-based techniques. Methods included RealTime PCR targeting for nitrogen (N) cycle genes (nitrification from eubacteria and archaea, denitrification, N fixation), and Next Generation Sequencing (NGS) using an Illumina platform of prokaryotic (16S) and eukaryotic (ITS) amplicons to assess community members identity and abundance. Two depths were sampled at ca. 40 and 280 cm from the surface, the former corresponding to a portion of Sphagnum residues accumulated less than 30 yrs ago above the water level, and the latter mainly consisting of silty peat belonging to the deeply submerged part of the island, dating back to 1520-1660 AD. Bacterial gene abundances for the N cycle were consistently higher in the deeper sample. Sequencing analyses allowed identifying for the surface sample 1738 prokaryotic and 310 eukaryotic Operational Taxonomic Units (OTUs), while, for the deeper sample, the corresponding values were 2026 and 291 respectively. There was a very limited taxa overlap between the two layers' communities in which dominant taxa featured two different sulphate-reducing Deltaproteobacteria for prokaryotes. For eukaryotes, the surface sample was dominated by the Neobulgaria (Ascomycota) genus, while in the deeper one three quarters of the ITS reads were featured by a taxon observed in Antarctic lakes. The functional guilds represented pertain mostly to species involved in slow organic matter degradation and contexts in which dissolved organic carbon contains one-atom compounds, supportive of methylotrophy and methanogenesis. The identity of taxa partitioning between the acidic surface layer and the neutral core is very reminiscent of the differences reported between bogs and fens peatland types respectively, supporting the view of Posta Fibreno as a hybrid between the two main models. A remarkable feature is the coincidence of most taxa observed with database subjects isolated from mires and lakes in boreal/polar environments in spite of the fact that Posta Fibreno is located in sub-Mediterranean climate conditions. This instance suggests a common ecological feature linking peat-forming mires and habitats alike, in which the process factor would rule in determining the biotic composition in spite of the macroclimatic and geographical variables. The principle offers interpretive clues for a deeper understanding of a number of other biotic-environmental interplay contexts.
NASA Astrophysics Data System (ADS)
Jolivel, M.; Allard, M.
2010-12-01
Recent evaluations indicate that large amounts of organic carbon and fine sediment can be released in fluvial and coastal systems because of permafrost degradation, with impacts on ecosystems. In order to estimate the organic carbon and fine sediment potential production from a river basin, we have made a spatiotemporal comparison between 1957 aerial photographs and a 2009 GeoEye satellite image. A gauging station was installed near the river mouth and measurements of the extent and volume of permafrost degradation were made in the watershed where permafrost degradation is very active. The Sheldrake river watershed is located on the eastern coast of Hudson Bay near the Inuit community of Umiujaq, in the discontinuous permafrost zone. The tree line passes across the watershed. Permafrost mounds (palsas, lithalsas) and plateaus are the most abundant permafrost landforms in this area. They developed principally in east-west oriented valleys, in postglacial marine silts of the Tyrrell Sea. Signs of degradation are numerous. Lithalsas and palsas (with peat cover) weather out and collapse. Thermokarst ponds are replacing permafrost mounds and sometimes, eroded clay and peat are remobilized in the drainage network. Moreover, several retrogressive landslides, mudflows and gully erosion are active along the Sheldrake river banks. The first step consisted in mapping the 80 km2 watershed area and representing surface deposits, drainage network and permafrost distribution (1957 and 2009). First results show that 40 to 70% of the 1957 permafrost has disappeared in 2009 in various sector of the watershed. The percentage of permafrost degradation is positively correlated with distance from the sea and the presence of a well-developed drainage network. The second step is to calculate an equation which will allow changing the missing permafrost surface between 1957 and 2009 into a volume. The equation will take into account the average depth of permafrost and active layer, the mean height of permafrost mounds, the size of landslides, the average thickness of peat cover and its density, the mean water (ice) content. First calculations show that 125 000 tonnes of peat (organic carbon) have been eroded on the watershed since 1957. Then, study of the drainage network and continuous measure of turbidity and water level will allow to estimate the volume of sediment and organic carbon transfer to the sea through the river system.
Kessel, Eric D; Ketcheson, Scott J; Price, Jonathan S
2018-07-15
Post-mine landscape reclamation of the Athabasca Oil Sands Region requires the use of tailings sand, an abundant mine-waste material that often contains large amounts of sodium (Na + ). Due to the mobility of Na + in groundwater and its effects on vegetation, water quality is a concern when incorporating mine waste materials, especially when attempting to construct groundwater-fed peatlands. This research is the first published account of Na + redistribution in groundwater from a constructed tailings sand upland to an adjacent constructed fen peat deposit (Nikanotee Fen). A permeable petroleum coke layer underlying the fen, extending partway into the upland, was important in directing flow and Na + beneath the peat, as designed. Initially, Na + concentration was highest in the tailings sand (average of 232mgL -1 ) and lowest in fen peat (96mgL -1 ). Precipitation-driven recharge to the upland controlled the mass flux of Na from upland to fen, which ranged from 2 to 13tons Na + per year. The mass flux was highest in the driest summer, in part from dry-period flowpaths that direct groundwater with higher concentrations of Na + into the coke layer, and in part because of the high evapotranspiration loss from the fen in dry periods, which induces upward water flow. With the estimated flux rates of 336mmyr -1 , the Na + arrival time to the fen surface was estimated to be between 4 and 11years. Over the four-year study, average Na + concentrations within the fen rooting zone increased from 87 to 200mgL -1 , and in the tailings sand decreased to 196mgL -1 . The planting of more salt-tolerant vegetation in the fen is recommended, given the potential for Na + accumulation. This study shows reclamation designs can use layered flow system to control the rate, pattern, and timing of solute interactions with surface soil systems. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Condro, A. A.; Pawitan, H.; Risdiyanto, I.
2018-05-01
Peatlands are very vulnerable to widespread fires during dry seasons, due to availability of aboveground fuel biomass on the surface and belowground fuel biomass on the sub-surface. Hence, understanding drought propagation occurring within peat layers is crucial with regards to disaster mitigation activities on peatlands. Using a three dimensionally explicit voxel-based model of peatland hydrology, this study predicted drought propagation time lags into sub-surface peat layers after drought events occurrence on the surface of about 1 month during La-Nina and 2.5 months during El-Nino. The study was carried out on a high-conservation-value area of oil palm plantation in West Kalimantan. Validity of the model was evaluated and its applicability for disaster mitigation was discussed. The animations of simulated voxels are available at: goo.gl/HDRMYN (El-Nino 2015 episode) and goo.gl/g1sXPl (La-Nina 2016 episode). The model is available at: goo.gl/RiuMQz.
NASA Astrophysics Data System (ADS)
Griffiths, H.; Royles, J.; Horwath, A.; Hodell, D. A.; Convey, P.; Hodgson, D.; Wingate, L.; Ogeé, J.
2011-12-01
Bryophytes make a significant contribution to carbon sequestration and storage in polar, boreal, temperate and tropical biomes, and yet there is limited understanding of the determinants of carbon isotope composition. Bryophytes are poikilohydric and lack stomata in the vegetative (gametophyte) stage, and lack of roots and reliance on liquid water to maintain hydration status also imposes diffusional limitations on CO2 uptake and extent of carbon isotope discrimination. Real-time gas exchange and instantaneous discrimination studies can be used to quantify responses to liquid phase limitation. Thus, wetted tissues show less negative δ13C signals due to liquid phase conductance and, as the thallus surface dries, maximum CO2 assimilation and discrimination are attained when the limitation is primarily the internal (mesophyll) conductance. Continued desiccation then leads to additional biochemical limitation in drought tolerant species, and low discrimination, although the carbon gain is low at this time. In this paper we explore the extent of carbon isotope discrimination in bulk organic material and cellulose as a function of climatic and environmental conditions, in temperate, tropical and Antarctic bryophytes. Field studies have been used to investigate seasonal variations in precipitation and water vapour inputs for cloud forest formations as a function of bryophyte biomass, diversity and isotope composition in epiphytes (particularly leafy liverworts) along an altitudinal gradient in Peru. In the Antarctic, moss banks sampled on Signy Island consisted of only two species, primarily Chorisodontium aciphyllum and some Polytrichum strictum, allowing the collection of shallow and deep cores representative of growth over the past 200 to 2000 years. The well-preserved peat has provided data on growth (14C) and stable isotopic proxies (13C, 18O) for material contemporary with recent anthropogenic climate forcing (over the past 200 years), for comparison with longer-term trends. Once corrected for source CO2 inputs, the carbon isotope signals are consistent with recent increases in growing season length. Laboratory studies on real-time CO2 uptake and isotope discrimination as a function of water content, for the desiccation-tolerant moss Syntrichia ruralis, reveal the interactions between surface water, liquid phase and mesophyll diffusion limitation. These data have been used to develop a model for isotope discrimination in mosses as a function of water status and we will discuss the extent that such a model can be used predictively to determine moss-peat water status, and infer current and past climatic conditions.
Shallow peatland ecohydrology - the control of peat depth on moss productivity
NASA Astrophysics Data System (ADS)
Dixon, Simon; Kettridge, Nicholas; Moore, Paul; Devito, Kevin; Tilak, Amey; Petrone, Rich; Mendoza, Carl; Waddington, Mike
2017-04-01
Northern peatlands represent an important sink in the global carbon cycle. Shallow peatlands and marginal connective wetlands can be essential components of many northern peatland landscape mosaics, playing a vital role in landscape connectivity and wider landscape hydrology. However the ecohydrological function of these shallow, marginal systems has been largely overlooked, with peatland hydrology research focused on relatively deep bog systems. In order to predict landscape scale wetland function and its vulnerability to climate change we need to understand how these shallow connective systems function. The balance between moss productivity and water loss provide a key component of these systems, as water use efficiency controls the rate of moss growth and thus controls the amount of atmospheric carbon sequestered in peat. Understanding how productivity of shallow peatland systems responds to changes in evaporative stress will aid predictions of peatland landscape hydrological function in a changing climate. To determine the factors influencing peat productivity, water balance simulations using Hydrus 1-D were conducted over annual growing seasons for different soil profile depths, compositions and antecedent moisture conditions. Our results demonstrate a bimodal distribution of peatland responses; either primarily conserving water by limiting evapotranspiration or, maximizing productivity. For sustained periods of evaporative stress, shallow marginal systems are least able to buffer periods of evaporative stress due to limited labile water storage, and will limit evaporation, conserve water and be less productive. Conversely, where present, both deep water storage and a shallow initial water table prolong the onset of high vegetative stress, thus maximizing moss productivity. However, a total depth of 0.8 m is identified as the threshold above which increasing peat depth has no further effect on changing vegetative stress response and thus landscape function. These results are important as moss productivity, along with rate of organic matter decay are the two principle factors controlling the build-up of peat, and therefore sequestration of carbon. With a predicted increase in the frequency and size of rain events in northern latitudes our results indicate the productivity of shallow wetland systems may increase, but greater moisture availability will increase the likelihood they remain as wetlands in a changing climate.
NASA Astrophysics Data System (ADS)
Semenova, N. M.
2018-03-01
The article covers the issues of protection of the wetlands located in different natural and economic conditions of Western Siberia. The main focus is on preservation and wise use of the peatlands in the southern part of the West Siberian Plain, which was greatly altered and transformed during the long-term economic development. The field research was conducted in the southern suburbs of Tomsk. A unique peatland, which is an object of a special protection effort, is described in this work. The peatland develops in the conditions of a rich groundwater feed. The peatland deposits are a mixture of peat and travertine. The extension area and the maximum thickness of organo-mineral deposits were determined. The composition of the peat deposits waters and feeding springs was studied. The specific properties of the surface waters formed under the influence of the wedging-out underground waters of the Paleozoic horizons were considered. The flora and vegetation of the study area were analyzed. A list of rare and endangered plant species was compiled. The ecological and social value of the investigated territory was substantiated. As a result we defined pertinent measures needed to protect the natural landscape and to use wisely its resources.
Saarnio, S; Alm, Jukka; Silvola, Jouko; Lohila, Annalea; Nykänen, Hannu; Martikainen, Pertti J
1997-04-01
Temporal and spatial variation in CH 4 emissions was studied at hummock, Eriophorum lawn, flark and Carex lawn microsites in an oligotrophic pine fen over the growing season using a static chamber method, and CH 4 production and oxidation potentials in peat profiles from hummock and flark were determined in laboratory incubation experiments. Emissions were lowest in the hummocks, and decreased with increasing hummock height, while in the lawns and flarks they increased with increasing sedge cover. Statistical response functions with water table and peat temperature as independent variables were calculated in order to reconstruct seasonal CH 4 emissions by reference to the time series for peat temperature and water table specific to each microsite type. Mean CH 4 emissions in the whole area in the snow-free period of 1993, weighted in terms of the proportions of the microsites, were 1.7 mol CH 4 m -2 . Potential CH 4 production and oxidation rates were very low in the hummocks rising above the groundwater table, but were relatively similar when expressed per dry weight of peat both in the hummocks and flarks below the water table. The CH 4 production potential increased in autumn at both microsites and CH 4 oxidation potential seemed to decrease. The decrease in temperature in autumn certainly reduced in situ decomposition processes, possibly leaving unused substrates in the peat, which would explain the increase in CH 4 production potential.
DiMichele, W.A.; Nelson, W.J.; Elrick, S.; Ames, P.R.
2009-01-01
A catastrophically buried stand of calamitean sphenopsids and sigillarian lycopsids is reported from the Middle Pennsylvanian of southwestern Indiana, in the Illinois Basin. The plants were exposed in the highwall of a small surface mine and were rooted in a thin bed of coal (peat), thus representing a flooded and buried swamp surface. Coarse, floodborne silts and sands buried the forest to a depth of 250 linear meters of exposed highwall surface, the vegetation appears to have been a patchwork of calamitean thickets, with stems perhaps as tall as 3-5 m, within which scattered, but much larger, emergent Sigillaria trees grew, possibly reaching heights of 10-15 m. No ground cover was observed, nor were foliage or reproductive organs attributable to the dominant plants found. The growth of this vegetation in a peat-forming swamp indicates conditions of high water availability, likely in a humid, high-rainfall climate. This kind of plant assemblage, however, cannot be characterized as a rain forest, given that it consisted of medium-height thickets of horsetails with scattered, emergent, and polelike, giant lycopsids, thus lacking a closed upper canopy and possibly only partially shading the ground. Copyright ?? 2009, SEPM (Society for Sedimentary Geology).
NASA Astrophysics Data System (ADS)
Joynt, E.; Grundl, T.; Han, W. S.; Gulbranson, E. L.
2016-12-01
Wetlands are vital components of the carbon cycle containing an estimated 20-30% of the global soil carbon store. The Cedarburg Bog of southeastern Wisconsin contains multiple wetland types, including the southernmost string bog found in North America. Carbon dioxide (CO2) behavior in wetland systems respond to multiple interdependent variables that are collectively not well understood. Modeling CO2 behavior in wetland environments requires a detailed representation of these variables. In 2014 a LI-COR 8100A automated soil gas flux system was installed in the string bog, measuring CO2 concentration and flux. Groundwater data, soil temperature, and weather data (temperature, pressure, precipitation, etc.) were included to reveal correlations between soil CO2 flux/concentration and external forces. In 2015 field data were complemented with soil moisture data and depth profiles of pore water chemistry and stable carbon isotopes from peat and soil gas to discern source and evolution of CO2 at depth. Initial gaseous δ13C(CO2) average -18‰ and deplete overnight suggesting increasing microbial metabolic efficiency. δ13C soil microbial biomass measure roughly -21‰ to -22‰. LI-COR data show diurnal and seasonal trends; CO2 concentration builds overnight while flux increases during the day. CO2 flux magnitude and CO2 concentration range peak in mid-summer, but frequency of increased CO2 flux events varies seasonally each year. Flux averages 7.55 mgCO2/min-m2 during the day but reaches 530 mgCO2/min-m2. Increased atmospheric and soil temperatures and decreasing atmospheric pressure prelude increasing CO2 flux intensity, though correlation strengths vary. Water level may influence CO2 flux, but observations suggest a mobile peat surface with the water table. 2016 imagery from trail cameras will determine extent of peat/well casing movement with water level changes. Further interpretation of data trends will utilize HYDRUS-1D to quantify relationships under changing environmental conditions.
Controls on the chemistry of runoff from an upland peat catchment
NASA Astrophysics Data System (ADS)
Worrall, Fred; Burt, Tim; Adamson, John
2003-07-01
This study uses 2 years of data from a detailed weekly water sampling programme in a 11·4 km2 upland peat catchment in the Northern Pennines, UK. The sampling comprised precipitation, soil-water samples and a number of streams, including the basin outlet. Samples were analysed for: pH, conductivity, alkalinity, Na, K, Ca, Mg, Fe, Al, Total N, SO4, Cl and colour. Principal component analysis (PCA) was used to identify end-members and compositional trends in order to identify controls on the development of water composition. The study showed that the direct use of PCA had several advantages over the use of end-member mixing analysis (EMMA) as it combines an analysis of mixing and evolving waters without the assumption of having to know the compositional sources of the water. In its application to an upland peat catchment, the study supports the view that shallow throughflow at the catotelm/acrotelm boundary is responsible for storm runoff generation and shows that baseflow is controlled by cation exchange in the catotelm and mixing with a base-rich groundwater.
Pagano, Timothy S.; Terry, David B.; Ingram, Arlynn W.
1986-01-01
Seven sheets of map data comprise this geohydrologic report. Sheet 1, surficial geology, illustrates the distribution of: open water areas; artificial fill; made land; urban land; alluvial silt and sand; alluvial sand and gravel; peat, marl, muck and clay; lake silt and/or clay; delta sand and gravel; beach sand and gravel; outwash sand and gravel; ice contact sand and ground; thick till cover bedrock; and thin till over bedrock over the Baldwinsville Area. Sheet 2, geologic sections, shows the layering of the aforementioned components below the surface layer. Sheet 3 illustrates the water infiltration of soil zone. Sheet 4 depicts the aquifer thickness. Sheet 5 illustrates the potentiometric surface, and Sheet 6 the well yield. Finally, Sheet 7 shows the land use in the region, specifically: industrial and extractive; commercial and services; transportation; farmland; forestland; residential; open public land; and water and wetlands. (Lantz-PTT)
NASA Astrophysics Data System (ADS)
Berger, Sina; Gebauer, Gerhard; Blodau, Christian; Knorr, Klaus-Holger
2017-04-01
Peatlands are of vital importance for global carbon (C) cycling as they sequester and store enormous amounts of C. Major threats to peatlands are excessive supply of nutrients from the atmosphere as well as from surface water and groundwater. Up to this date our knowledge of long-term consequences of such excessive nutrient supply is limited. We are unsure about how long peatlands can maintain their functioning under such circumstances. We conducted a detailed study in a once ombrotrophic bog ecosystem (Wylde Lake peatland, Ontario, Canada), which is since the 19th century embedded in a eutrophic environment with intensive agriculture. Moreover, since AD 1954 the peatland borders a water reservoir which is strongly enriched with nutrients. Our objective was to elucidate to which extent the infiltration of nutrient from the peatland periphery can be buffered and whether the inner parts can maintain typical characteristics of a pristine bog. To achieve this goal, along a transect of study sites, we Pb-210- and Cs-137-dated peat cores and determined elements of peat using x-ray fluorescence (XRF). To calculate N input, nitrogen enrichment factors in the vegetation and abundances of stable N isotopes in the peat were determined through isotope ratio mass spectrometry (IRMS). Furthermore, we re-investigated the vascular plant species composition 31 years after a previous investigation and lastly, we sporadically measured greenhouse gas fluxes with chamber techniques. In the central part of the peatland we found great N input rates of 4.28±0.75 and 4.35±0.30 g N m-2 y-1, but even greater rates were found in the peatland fringe area (5.90±0.10 g N m-2 y-1). Also, all elements essential for plant growth were abundant in increased concentrations along all peat cores, especially near the bordering reservoir, presumably due to supply by the reservoir water. A more graminoid dominated vegetation in the wetter areas (near the reservoir) and a rapid increase of tree cover in drier areas (further away from the reservoir), both over a healthy Sphagnum carpet, as well as altered fluxes of CO2, CH4 and N2O indicate a transformation of the once ombrotrophic bog into a poor fen. Very much to our surprise the peatland did not seem to decay after long-term excessive nutrient load, instead it tremendously accelerated peat accumulation which led to maximum growth rates of up to 500 g C m-2 y-1. Peatland functioning in terms of carbon storage appeared to be maintained. Our study, which combines a great variety of methods and which provides detailed insights into various processes along peat profiles and vegetation cover, therefore contradicts numerous previous studies in which it was stated that long-term excessive supply of nutrients to peatlands would cause dying of Sphagnum mosses and hence, a decay and increased peat loss of the affected site already after one decade.
NASA Astrophysics Data System (ADS)
Jayarathne, Thilina; Stockwell, Chelsea E.; Gilbert, Ashley A.; Daugherty, Kaitlyn; Cochrane, Mark A.; Ryan, Kevin C.; Putra, Erianto I.; Saharjo, Bambang H.; Nurhayati, Ati D.; Albar, Israr; Yokelson, Robert J.; Stone, Elizabeth A.
2018-02-01
Fine particulate matter (PM2.5) was collected in situ from peat smoke during the 2015 El Niño peat fire episode in Central Kalimantan, Indonesia. Twenty-one PM samples were collected from 18 peat fire plumes that were primarily smoldering with modified combustion efficiency (MCE) values of 0.725-0.833. PM emissions were determined and chemically characterized for elemental carbon (EC), organic carbon (OC), water-soluble OC, water-soluble ions, metals, and organic species. Fuel-based PM2.5 mass emission factors (EFs) ranged from 6.0 to 29.6 g kg-1 with an average of 17.3 ± 6.0 g kg-1. EC was detected only in 15 plumes and comprised ∼ 1 % of PM mass. Together, OC (72 %), EC (1 %), water-soluble ions (1 %), and metal oxides (0.1 %) comprised 74 ± 11 % of gravimetrically measured PM mass. Assuming that the remaining mass is due to elements that form organic matter (OM; i.e., elements O, H, N) an OM-to-OC conversion factor of 1.26 was estimated by linear regression. Overall, chemical speciation revealed the following characteristics of peat-burning emissions: high OC mass fractions (72 %), primarily water-insoluble OC (84 ± 11 %C), low EC mass fractions (1 %), vanillic to syringic acid ratios of 1.9, and relatively high n-alkane contributions to OC (6.2 %C) with a carbon preference index of 1.2-1.6. Comparison to laboratory studies of peat combustion revealed similarities in the relative composition of PM but greater differences in the absolute EF values. The EFs developed herein, combined with estimates of the mass of peat burned, are used to estimate that 3.2-11 Tg of PM2.5 was emitted to atmosphere during the 2015 El Niño peatland fire event in Indonesia. Combined with gas-phase measurements of CO2, CO, CH4, and volatile organic carbon from Stockwell et al. (2016), it is determined that OC and EC accounted for 2.1 and 0.04 % of total carbon emissions, respectively. These in situ EFs can be used to improve the accuracy of the representation of Indonesian peat burning in emission inventories and receptor-based models.
NASA Astrophysics Data System (ADS)
Yule, Catherine; Lim, Yau; Lim, Tse
2016-04-01
Indo-Malaysian tropical peat swamp forests (PSF) sequester enormous stores of carbon in the form of phenolic compounds, particularly lignin as well as tannins. These phenolic compounds are crucial for ecosystem functioning in PSF through their inter-related roles in peat formation and plant defenses. Disturbance of PSF causes destruction of the peat substrate, but the specific impact of disturbance on phenolic compounds in peat and its associated vegetation has not previously been examined. A scale was developed to score peatland degradation based on the three major human impacts that affect tropical PSF - logging, drainage and fire. The objectives of this study were to compare the amount of phenolic compounds in Macaranga pruinosa, a common PSF tree, and in the peat substrate along a gradient of peatland degradation from pristine peat swamp forest to cleared, drained and burnt peatlands. We examined phenolic compounds in M. pruinosa and in peat and found that levels of total phenolic compounds and total tannins decrease in the leaves of M.pruinosa and also in the surface peat layers with an increase in peatland degradation. We conclude that waterlogged conditions preserve the concentration of phenolic compounds in peat, and that even PSF that has been previously logged but which has recovered a full canopy cover will have high levels of total phenolic content (TPC) in peat. High levels of TPC in peat and in the flora are vital for the inhibition of decomposition of organic matter and this is crucial for the accretion of peat and the sequestration of carbon. Thus regional PSF flourish despite the phenolic rich, toxic, waterlogged, nutrient poor, conditions, and reversal of such conditions is a sign of degradation.
Hunt, R.J.; Bullen, T.D.; Krabbenhoft, D.P.; Kendall, C.
1998-01-01
Wetlands cannot exist without water, but wetland hydrology is difficult to characterize. As a result, compensatory wetland mitigation often only assumes the proper hydrology has been created. In this study, water sources and mass transfer processes in a natural and constructed wetland complex were investigated using isotopes of water and strontium. Water isotope profiles in the saturated zone revealed that the natural wetland and one site in the constructed wetland were primarily fed by ground water; profiles in another constructed wetland site showed recent rain was the predominant source of water in the root zone. Water isotopes in the capillary fringe indicated that the residence time for rain is less in the natural wetland than in the constructed wetland, thus transpiration (an important water sink) was greater in the natural wetland. Strontium isotopes showed a systematic difference between the natural and constructed wetlands that we attribute to the presence or absence of peat. In the peat-rich natural wetland, ??87Sr in the pore water increased along the flowline due to preferential weathering of minerals containing radiogenic Sr in response to elevated Fe concentrations in the water. In the constructed wetland, where peat thickness was thin and Fe concentrations in water were negligible, ??87Sr did not increase along the flowline. The source of the peat (on-site or off-site derived) applied in the constructed wetland controlled the ??87Sr at the top of the profile, but the effects were restricted by strong cation exchange in the underlying fluvial sediments. Based on the results of this study, neither constructed wetland site duplicated the water source and weathering environment of the adjoining natural wetland. Moreover, stable isotopes were shown to be effective tools for investigating wetlands and gaining insight not easily obtained using non-isotopic techniques. These tools have potential widespread application to wetlands that have distinct isotopic endmember sources.
NASA Astrophysics Data System (ADS)
Mursito, Anggoro Tri; Hirajima, T.; Listiyowati, L. N.
2018-02-01
Mempawah peat of West Kalimantan was selected as raw material for studying the physicochemical properties of peat fuel products and their characteristic in the hydrothermal upgrading process at a temperature range of 150°C to 380°C at an average heating rate of 6.6°C/min for 30 minutes. The 13C NMR spectra revealed changes in the effect of temperature on carbon aromaticity of raw peat and peat fuel products which were in 0.39 to 0.63 as the temperature increased. Other phenomenon occurring during the experiment was hydrophilicity index of peat fuel surface decreases of about 1.7 and 1.4 with increased treatment temperature. We also found that hydrothermal upgrading also affected the combustion properties of peat fuel products. Ignition temperature of raw peat and solid products were at 175°C and between 188°C to 285°C respectively. Temperature at the maximum combustion rate of raw peat and solid products was at 460°C, and between 477°C to 509°C were suggested to the increasing of reactivity of solid products respectively. Here, we discussed several phenomenon of the peat fuel product during hydrothermal process with a respect to the change in the physicochemical properties as determined by Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric and Differential Thermal Analysis (TG-DTA) analyses, 13C NMR and also other supporting analytical equipment.
NASA Astrophysics Data System (ADS)
Lobianco, Daniela; D'Orazio, Valeria; Miano, Teodoro; Zaccone, Claudio
2016-04-01
Floating mires are defined by the occurrence of emergent vegetation rooted in highly organic buoyant mats that rise and fall with changes in water level. Islands floating and moving on a lake naturally were already described by Pliny the Elder in his Naturalis historia almost two millennia ago. Actually, he devoted a whole chapter of Naturalis historia to "Of Islands Ever Floating and Swimming", reporting how certain isles were always waving and never stood still. The status of "flotant" has been defined transitory; in fact, these small isles often disappear, in most of the cases because of a transition from floating island to firm land during decades is likely to happen. That is why most of the floating islands described by Pliny the Elder (e.g., Lacus Fundanus, Lacus Cutiliensis, Lacus Mutinensis, Lacus Statoniensis, Lacus Tarquiniensis, Lydia Calaminae, Lacus Vadimonis) do not exist anymore. In the present study, peat formation and organic matter evolution were investigated in order to understand how these peculiar environments form, and how stable actually they are. In fact, it is hoped that peat-forming floating mires could provide an exceptional tool for environmental studies, since much of their evolution, as well as the changes of the surrounding areas, is recorded in their peat deposits. A complete, 4-m deep peat core was collected in July 2012 from the floating island of Posta Fibreno, a relic mire in the Central Italy. This floating island has a diameter of ca. 30 m, a submerged thickness of about 3 m, and the vegetation is organized in concentric belts, from the Carex paniculata palisade to the Sphagnum centre. Here, some of the southernmost Italian populations of Sphagnum palustre occur. The 14C age dating of organic sediments isolated from the sample at 385 cm of depth revealed that the island formed ca. 700 yrs ago (620±30 yr BP). The top 100 cm, consisting almost exclusively of Sphagnum mosses, show a very low bulk density (avg., 0.03±0.01 g cm-3), an ash content ranging from 0.8 and 7.4%, an average gravimetric water content of 26.6±7.7 gwater gdrypeat-1, and a pH generally increasing with depth (from 4.1 to 7.2). The C content along the profile ranged between 35 and 47% (avg., 41±4%), whereas the N between 0.3 and 1.1% (avg., 0.5±0.1%). Main atomic ratios (C/N, H/C and O/C) and FT-IR spectra seem to confirm what found during the visual inspection of the core, i.e., Sphagnum material so well preserved that it is hard to classify it as "peat". In fact, the 14C age dating suggests that the first 110 cm of Sphagnum material accumulated in ca. 55 yrs, thus resulting in an average growing rate of 2 cm yr-1. The remaining 300 cm (from 100 to 400 cm of depth), i.e., the submerged part of the island, consist of peat showing completely different botanical composition (reed-fen peat and silty peat rich in reeds) and physical and chemical properties. In particular, both bulk density (avg., 0.09±0.05 g cm-3) and ash content increase, reaching their maximum at 300-325 cm of depth (0.27 g cm-3 and 17%, respectively), whereas the average gravimetric water content significantly decreases (17.4±9.0 gwater gdrypeat-1). The pH ranges from 6.6 and 7.4. Both C and N along this section of the profile show higher average contents (44±3 and 1.3±0.6%, respectively) compared to those recorded in the upper 100 cm layer; furthermore, the decrease with depth of C/N, H/C and O/C atomic ratios, as well as main absorption bands of FT-IR spectra, clearly indicate the occurrence of an organic matter highly humified. The estimated accumulation rate for the bottom 300 cm of the island is 0.5 cm yr-1. At the best of our knowledge, this work represents the first characterization of a (4 m) deep floating mire profile. At Posta Fibreno, the deep water layer below the base of the island (7 m) and the movement on the water surface probably avoided the transition from floating island to firm land, thus allowing this island to float during the last centuries. The Authors thank the Municipality of Posta Fibreno (FR), Managing Authority of the Regional Natural Reserve of Lake Posta Fibreno, for allowing peat cores sampling.
NASA Astrophysics Data System (ADS)
Akrami, N.; Barker, X. Z.; Horwath, W. R.
2017-12-01
Nitrous Oxide (N2O) with global warming potential of 298 over a 100-year horizon is one of the most potent green house gases. In the United States, agriculture share to N2O emissions is over 70%. Peat lands, however, are being considered as both sources and sinks of greenhouse gases. N2O emissions are a product of both production and consumption processes. However, there is still a lack of understanding of N2O consumption processes in soils. In this work, the potential of re-wetted peat lands planted to rice in Sacramento-San Joaquin Delta, California, to act as a potential sink for N2O is being evaluated. Four peat land soils with 1%, 5%, 11% and 23% of organic carbon have been anaerobically incubated with different water contents (15%, 30%, 50%, 75% and 100% of their water holding capacity). 15N-N2O gas has been injected to the headspace of experiment jars and the production and consumption rate of 15N-N2O, 15N-N2 and production rate of Carbon Dioxide (CO2) and Methane (CH4) along with dissolved Nitrate (NO3-), Nitrite (NO2-), Ammonium (NH4+), Iron (II) and Iron (III) concentration has been quantified. Our results show promising N2O consumption rates under high carbon content and relatively high water content treatments. This research introduces organic carbon and water content as two major criteria in N2O consumption processes in peat lands that make it a potential hotspot for climate changes mitigation through adopting effective management practices to decrease greenhouse gas emissions.
Peat Depth Assessment Using Airborne Geophysical Data for Carbon Stock Modelling
NASA Astrophysics Data System (ADS)
Keaney, Antoinette; McKinley, Jennifer; Ruffell, Alastair; Robinson, Martin; Graham, Conor; Hodgson, Jim; Desissa, Mohammednur
2013-04-01
The Kyoto Agreement demands that all signatory countries have an inventory of their carbon stock, plus possible future changes to this store. This is particularly important for Ireland, where some 16% of the surface is covered by peat bog. Estimates of soil carbon stores are a key component of the required annual returns made by the Irish and UK governments to the Intergovernmental Panel on Climate Change. Saturated peat attenuates gamma-radiation from underlying rocks. This effect can be used to estimate the thickness of peat, within certain limits. This project examines this relationship between peat depth and gamma-radiation using airborne geophysical data generated by the Tellus Survey and newly acquired data collected as part of the EU-funded Tellus Border project, together encompassing Northern Ireland and the border area of the Republic of Ireland. Selected peat bog sites are used to ground truth and evaluate the use of airborne geophysical (radiometric and electromagnetic) data and validate modelled estimates of soil carbon, peat volume and depth to bedrock. Data from two test line sites are presented: one in Bundoran, County Donegal and a second line in Sliabh Beagh, County Monaghan. The plane flew over these areas at different times of the year and at a series of different elevations allowing the data to be assessed temporally with different soil/peat saturation levels. On the ground these flight test lines cover varying surface land use zones allowing future extrapolation of data from the sites. This research applies spatial statistical techniques, including uncertainty estimation in geostatistical prediction and simulation, to investigate and model the use of airborne geophysical data to examine the relationship between reduced radioactivity and peat depth. Ground truthing at test line locations and selected peat bog sites involves use of ground penetrating radar, terrestrial LiDAR, peat depth probing, magnetometry, resistivity, handheld gamma-ray spectrometry, moisture content and rainfall monitoring combined with a real-time Differential Global Positioning System (DGPS) to monitor temporal and spatial variability of bog elevations. This research will assist in determining the accuracy and limitations of modelling soil carbon and changes in peat stocks by investigating the attenuation of gamma-radiation from underlying rocks. Tellus Border is supported by the EU INTERREG IVA programme, which is managed by the Special EU Programmes Body in Northern Ireland, the border Region of Ireland and western Scotland. The Tellus project was funded by the Northern Ireland Development of Enterprise Trade and Investment and by the Rural Development Programme through the Northern Ireland Programme for Building Sustainable Prosperity.
Water resources of the Kettle River watershed, east-central Minnesota
Helgesen, John O.; Lindholm, G.F.; Broussard, W.L.; Ericson, D.W.
1973-01-01
The glacial deposits are generally less than 100 feet thick. Bedrock consists of several types and occasionally crops out at land surface. Topography ranges from gently rolling to steeply undulating. About 1,060 square miles is drained by the Kettle River and its tributaries, and about 510 square miles by smaller streams that are direct tributaries to the St. Croix River. Peat and swamp areas are common, particularly in the eastern part of the area. Most of the watershed is forested, mainly with hardwoods.
Biochemical processes of oligotrophic peat deposits of Vasyugan Mire
NASA Astrophysics Data System (ADS)
Inisheva, L. I.; Sergeeva, M. A.
2009-04-01
The problem of peat and mire ecosystems functioning and their rational use is the main problem of biosphere study. This problem also refers to forecasting of biosphere changes results which are global and anthropogenic. According to many scientists' research the portion of mires in earth carbon balance is about 15% of world's stock. The aim of this study is to investigate biochemical processes in oligotrophic deposits in North-eastern part of Vasyugan Mire. The investigations were made on the territory of scientific-research ground (56Ë 03´ and 56Ë 57´ NL, 82Ë 22´ and 82Ë 42´ EL). It is situated between two rivers Bakchar and Iksa (in outskirts of the village Polynyanka, Bakchar region, Tomsk oblast). Evolution of investigated mire massif began with the domination of eutrophic phytocenosis - Filicinae, then sedge. Later transfer into oligotrophic phase was accompanied by formation of meter high-moor peat deposit. The age of three-meter peat deposit reaches four thousand years. Biochemical processes of carbon cycle cover the whole peat deposit, but the process activity and its direction in different layers are defined by genesis and duration of peat formation. So, the number of cellulose-fermenting aerobes in researched peat deposits ranges from 16.8 to 75.5 million CFU/g, and anaerobic bacteria from 9.6 to 48.6 million CFU/g. The high number of aerobes is characteristic for high water levels, organizing by raised bog peats. Their number decreases along the profile in 1.7 - 2 times. The number of microflora in peat deposit is defined by the position in the landscape profile (different geneses), by the depth, by hydrothermic conditions of years and individual months. But microflora activity shows along all depth of peat deposit. We found the same in the process of studying of micromycete complex structure. There was revealed either active component micromycete complex - mycelium, or inert one - spores in a meter layer of peat deposit. If mushrooms spores are observed in all deposit layers, mycelium of mushrooms deepens into the peat deposit (to 2 meters) within the limits of aerobic (meter) zone and only in particular months of dry years. The existence of seasonal dynamics of eukaryotic cells, and also capability of yeast and other groups of micromycetes for growth, testifies about vital activity of a number of eukaryotic cells at a depth of 2 meters. Researched peat deposits are biochemically active along the whole profile. But they are different in a microflora number of individual physiological groups either in items of the landscape, or in deposit depth. The largest quantity of aerobic cellulose-fermenting microorganisms is marked during dry years. Anaerobic cellulose-fermenting microorganisms dominate during wet years. The quantity of microbe biomass increases in bottom lifts of peat deposits. This fact testifies about viable condition of microbe complex at depth. The formation process of carbon dioxide in peat deposits of Vasyugan Mire actively occurs during dry years and is defined by hydrothermic conditions of a meter layer of peat deposit. The intensity of CO2 isolation for certain correlates with the temperature in horizon of 0 - 50 sm. and with bog waters level. The study of gas composition for the three years showed that the largest concentration of carbon dioxide in peat soils is marked along the whole profile during a dryer year (0.08 - 2.65 millimole/l), increasing other years' level in about 1.5 0 2 times. Emission of carbon dioxide in peat
NASA Astrophysics Data System (ADS)
Kholopov, Yu. V.; Khaidapova, D. D.; Lapteva, E. M.
2018-04-01
Soil pastes at the water content corresponding to the maximum swelling of samples from different genetic horizons of cryometamorphic soils―surface-gleyic iron-illuvial svetlozem (Folic Albic Stagnosol) and peaty and peat humus-impregnated gleyic svetlozems (Histic Gleyic Stagnosols)―have been studied with an MCR-302 modular rheometer (Anton Paar, Austria). It has been found that the strongest interparticle bonds are formed in the horizons of cryometamorphic soils characterized by high contents of humic substances and organomineral Al-Fe-humus compounds. These are horizons of podzol microprofile (Eg and BHF) in iron-illuvial svetlozem and a humus-impregnated horizon (ELhi,g) in peaty and peat svetlozems. Organomineral Al-Fe-humus compounds, as well as the seasonal freezing of soils, determine the elastic-brittle character of interparticle interactions. The contents of clay fractions, exchangeable bases, and organic and organomineral substances impart viscoelastic properties to these contacts. An enhancement of elastic-brittle properties of soil is observed under the impact of gleying and freezing. The threefold decrease of the structural interaction parameter (∫ Z) when going from automorphic to semihydromorphic conditions indicates a decrease in the resistance of peaty and peat svetlozems to mechanical loads under increasing hydromorphism compared to iron-illuvial svetlozems.
Effect of past peat cultivation practices on present dynamics of dissolved organic carbon.
Frank, S; Tiemeyer, B; Bechtold, M; Lücke, A; Bol, R
2017-01-01
Peatlands are a major source of dissolved organic carbon (DOC) for aquatic ecosystems. Naturally high DOC concentrations in peatlands may be increased further by drainage. For agricultural purposes, peat has frequently been mixed with sand, but the effect of this measure on the release and cycling of DOC has rarely been investigated. This study examined the effects of (i) mixing peat with sand and (ii) water table depth (WTD) on DOC concentrations at three grassland sites on shallow organic soils. The soil solution was sampled bi-weekly for two years with suction plates at 15, 30 and 60cm depth. Selected samples were analysed for dissolved organic nitrogen (DON), δ 13 C DOM and δ 15 N DOM . Average DOC concentrations were surprisingly high, ranging from 161 to 192mgl -1 . There was no significant impact of soil organic carbon (SOC) content or WTD on mean DOC concentrations. At all sites, DOC concentrations were highest at the boundary between the SOC-rich horizon and the mineral subsoil. In contrast to the mean concentrations, the temporal patterns of DOC concentrations, their drivers and the properties of dissolved organic matter (DOM) differed between peat-sand mixtures and peat. DOC concentrations responded to changes in environmental conditions, but only after a lag period of a few weeks. At the sites with a peat-sand mixture, temperature and therefore probably biological activity determined the DOC concentrations. At the peat site, the contribution of vegetation-derived DOM was higher. The highest concentrations occurred during long, cool periods of waterlogging, suggesting a stronger physicochemical-based DOC mobilisation. Overall, these results indicate that mixing peat with sand does not improve water quality and may result in DOC losses of around 200kg DOCha -1 a -1 . Copyright © 2016 Office national des forêts. Published by Elsevier B.V. All rights reserved.
Magnetic susceptibility and dielectric properties of peat in Central Kalimantan, Indonesia
NASA Astrophysics Data System (ADS)
Budi, Pranitha Septiana; Zulaikah, Siti; Hidayat, Arif; Azzahro, Rosyida
2017-07-01
Peatlands dominate almost all regions of Borneo, yet its utilization has not been developed optimally. Any information in this field could be obtained using soil magnetization methods by determining the magnetic succeptibility in terms of magnetic susceptibility value that could describe the source and type of magnetic minerals which could describe the source and type of magnetic minerals. Moreover, the dielectric properties of peat soil were also investigated to determine the level of water content by using the dielectric constant value. Samples was taken at six different locations along Pulang pisau to Berengbengkel. Magnetic susceptibility mass value at these locations ranged between -0.0009 - 0.712 (×10-6 m3/kg). Based on the average magnetic susceptibility value, samples that were taken from T1, T3 and T5 belonged to the type of paramagnetic mineral, while samples which were taken from T2, T4 and T6 belonged to the group of diamagnetic mineral. The low value of magnetic susceptibility of peat was probably derived from the pedogenic process. The average value of peat soil in six locations has a large dielectric constant value that is 28.2 which indicated that there was considerable moisture content due to the hydrophilic nature of peatland which means that the ability of peat in water binding is considerably high.
Untangling climate signals from autogenic changes in long-term peatland development
NASA Astrophysics Data System (ADS)
Morris, Paul J.; Baird, Andy J.; Young, Dylan M.; Swindles, Graeme T.
2015-12-01
Peatlands represent important archives of Holocene paleoclimatic information. However, autogenic processes may disconnect peatland hydrological behavior from climate and overwrite climatic signals in peat records. We use a simulation model of peatland development driven by a range of Holocene climate reconstructions to investigate climate signal preservation in peat records. Simulated water-table depths and peat decomposition profiles exhibit homeostatic recovery from prescribed changes in rainfall, whereas changes in temperature cause lasting alterations to peatland structure and function. Autogenic ecohydrological feedbacks provide both high- and low-pass filters for climatic information, particularly rainfall. Large-magnitude climatic changes of an intermediate temporal scale (i.e., multidecadal to centennial) are most readily preserved in our simulated peat records. Simulated decomposition signals are offset from the climatic changes that generate them due to a phenomenon known as secondary decomposition. Our study provides the mechanistic foundations for a framework to separate climatic and autogenic signals in peat records.
NASA Astrophysics Data System (ADS)
Wright, William J.
Peat soils are known to be a significant source of atmospheric greenhouse gasses. However, the releases of methane and carbon dioxide gasses from peat soils are currently not well understood, particularly since the timing of the releases are poorly constrained. Furthermore, most research work performed on peatlands has been focused on temperate to sub-arctic peatlands, while recent works have suggested that gas production rates from low-latitude peat soils are higher than those from colder climates. The purpose of the work proposed here is to introduce an autonomous Ground Penetrating Radar (GPR) method for investigating the timing of gas releases from peat soils at the lab scale utilizing samples originating from Maine and the Florida Everglades, and at the field scale in a Maine peatland. Geophysical data are supported by direct gas flux measurements using the flux chamber method enhanced by timelapse photography, and terrestrial LiDAR (TLS) monitoring surface deformation.
Determination of the water retention of peat soils in the range of the permanent wilting point.
NASA Astrophysics Data System (ADS)
Nünning, Lena; Bechtold, Michel; Dettmann, Ullrich; Piayda, Arndt; Tiemeyer, Bärbel; Durner, Wolfgang
2017-04-01
Global coverage of peatlands decreases due to the use of peat for horticulture and to the drainage of peatlands for agriculture and forestry. While alternatives for peat in horticulture exist, profitable agriculture on peatlands and climate protection are far more difficult to combine. A controlled water management that is optimized to stabilize yields while reducing peat degradation provides a promising path in this direction. For this goal, profound knowledge of hydraulic properties of organic soil is essential, for which, however, literature is scarce. This study aimed to compare different methods to determine the water retention of organic soils in the dry range (pF 3 to 4.5). Three common methods were compared: two pressure based apparatus (ceramic plate vs. membrane, Eijkelkamp) and a dew point potentiameter (WP4C, Decagon Devices), which is based on the equilibrium of soil water potential and air humidity. Two different types of organic soil samples were analyzed: i) samples wet from the field and ii) samples that were rewetted after oven-drying. Additional WP4C measurements were performed at samples from standard evaporation experiments directly after they have been finished. Results were: 1) no systematic differences between pressure apparatus and WP4C measurements, 2) however, high moisture variability of the samples from the pressure apparatus as well as high variability of the WP4C measurements at these samples when they were removed from these devices which indicated that applied pressure did not establish well in all samples, 3) rewetted oven-dried samples resulted in up to three times lower soil moistures even after long equilibrium times, i.e. there was a strong and long-lasting hysteresis effect that was highest for less degraded peat samples, 4) and highly consistent WP4C measurements at samples from the end of the evaporation experiment. Results provide useful information for deriving reliable water retention characteristics for organic soils.
Berthot, Laureline; Pinti, Daniele L; Larocque, Marie; Gagné, Sylvain; Ferlatte, Miryane; Cloutier, Vincent
2016-11-01
Peatlands can play an important role in the hydrological dynamics of a watershed. However, interactions between groundwater and peat water remain poorly understood. Here, we present results of an exploratory study destined to test radon ( 222 Rn) as a potential tracer of groundwater inflows from fluvioglacial landform aquifers to slope peatlands in the Amos region of Quebec, Canada. 222 Rn occurs in groundwater but is expected to be absent from peat water because of its rapid degassing to the atmosphere. Any 222 Rn activity detected in peat water should therefore derive from groundwater inflow. 222 Rn activity was measured in groundwater from municipal, domestic wells and newly drilled and instrumented piezometers from the Saint-Mathieu-Berry and Barraute eskers (n = 9), from the Harricana Moraine (n = 4), and from the fractured bedrock (n = 3). Forty measurements of 222 Rn activity were made from piezometers installed in five slope peatlands, along six transects oriented perpendicular to the fluvioglacial deposits. The relationship between 222 Rn and total dissolved solids (TDS) measured in water from the mineral deposits underlying the peat layer suggests that 222 Rn is introduced by lateral inflow from eskers and moraine together with salinity. This input is then diluted by peat water, depleted in both TDS and 222 Rn. The fact that a relationship between TDS and 222 Rn is visible calls for a continuous inflow of groundwater from lateral eskers/moraines, being 222 Rn rapidly removed from the system by radioactive decay. Although more research is required to improve the sampling and tracing techniques, this work shows the potential of 222 Rn tracer to identify groundwater inflow areas from granular aquifers found in eskers and moraines to slope peatlands. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lipatov, D. N.; Shcheglov, A. I.; Manakhov, D. V.; Karpukhin, M. M.; Zavgorodnyaya, Yu. A.; Tsvetnova, O. B.
2018-05-01
The contents and profile distributions of Cr, Ni, Cu, Zn, Cd, Hg, Pb, and benzo[a]pyrene in oligotrophic peat soils, oligotrophic peat gley soils (Dystric Fibric Histosols), humus-impregnated peat gleyzems (Dystric Histic Gleysols), and mucky gleyzems (Dystric Gleysols) have been analyzed with consideration for their degree of oligotrophicity and anthropogenic loads. Horizons with the accumulation (O, Tpyr, TT) and removal (Ghi,e) of heavy metals have been revealed. The increase in the content of heavy metals and benzo[ a]pyrene in the upper layer of oligotrophic peat soils under technogenic fallouts in the impact zone of flare and motor transport has been considered. Statistical parameters of the spatial variation of parameters in organic and gley horizons have been calculated. The variation coefficients of pollutant elements (Pb and Zn) in the surface horizons of soils increase to 100-125%. Positive correlations revealed between the content of some heavy metals in litter indicate their bioaccumulation and possible joint input with aerotechnogenic fallouts. No correlations are found between the contents of benzo[ a]pyrene and heavy metals, but a reliable negative correlation with the ash content is noted in the peat horizon.
Chen, Yanhui; Xie, Tuanhui; Liang, Qiaofeng; Liu, Mengjiao; Zhao, Mingliu; Wang, Mingkuang; Wang, Guo
2016-04-01
In paddy soils, amendments and moisture play important role in the immobilization of cadmium (Cd). The effects of applying lime, peat, and a combination of both on soil Eh, pH, and Cd availability in contaminated soils were investigated under wetted (80 ± 5 % of water holding capacity) and flooded (completely submerged) conditions. In wetted soils, there was little change in Eh, compared to flooded soils where Eh reduced rapidly. Amendments of lime only or in a mixture with peat increased soil pH to different degrees, depending on the lime application rate. However, peat addition only slightly affected soil pH. The decreased Cd availability in flooded soils was related to submergence duration and was significantly lower than that in wetted soils after 14 days. Liming wetted and flooded soils decreased exchangeable Cd and increased carbonates or Fe-Mn oxides bound fractions, while peat addition transformed Cd from carbonates to organic matter bound fractions. The combined application of peat and lime generally showed better inhibitory effects on the availability of Cd than separately application of lime or peat. Higher application rates of lime, peat, or their mixture were more effective at reducing Cd contamination in flooded soil. This indicates that application of peat and lime mixture under flooded conditions was most effective for in situ remediation of Cd-contaminated soils. Further studies are required to assess the long-term effectiveness of the peat and lime mixture on Cd availability in paddy soils.
Enhanced greenhouse gas emissions from the Arctic with experimental warming
NASA Astrophysics Data System (ADS)
Voigt, Carolina; Lamprecht, Richard E.; Marushchak, Maija E.; Lind, Saara E.; Novakovskiy, Alexander; Aurela, Mika; Martikainen, Pertti J.; Biasi, Christina
2017-04-01
Temperatures in the Arctic are projected to increase more rapidly than in lower latitudes. With temperature being a key factor for regulating biogeochemical processes in ecosystems, even a subtle temperature increase might promote the release of greenhouse gases (GHGs) to the atmosphere. Usually, carbon dioxide (CO2) and methane (CH4) are the GHGs dominating the climatic impact of tundra. However, bare, patterned ground features in the Arctic have recently been identified as hot spots for nitrous oxide (N2O). N2O is a potent greenhouse gas, which is almost 300 times more effective in its global warming potential than CO2; but studies on arctic N2O fluxes are rare. In this study we examined the impact of temperature increase on the seasonal GHG balance of all three important GHGs (CO2, CH4 and N2O) from three tundra surface types (vegetated peat soils, unvegetated peat soils, upland mineral soils) in the Russian Arctic (67˚ 03' N 62˚ 55' E), during the course of two growing seasons. We deployed open-top chambers (OTCs), inducing air and soil surface warming, thus mimicking predicted warming scenarios. We combined detailed CO2, CH4 and N2O flux studies with concentration measurements of these gases within the soil profile down to the active layer-permafrost interface, and complemented these GHG measurements with detailed soil nutrient (nitrate and ammonium) and dissolved organic carbon (DOC) measurements in the soil pore water profile. In our study, gentle air warming (˜1.0 ˚ C) increased the seasonal GHG release of all dominant surface types: the GHG budget of vegetated peat and mineral soils, which together cover more than 80 % of the land area in our study region, shifted from a sink to a source of -300 to 144 g CO2-eq m-2 and from -198 to 105 g CO2-eq m-2, respectively. While the positive warming response was governed by CO2, we provide here the first in situ evidence that warming increases arctic N2O emissions: Warming did not only enhance N2O emissions from the known arctic N2O hot spots (bare peat soils; maximum seasonal release with warming: 87 mg N2O m-2), but also from the vegetated peat surfaces, not emitting N2O under present climate. These surfaces showed signs of a hampered plant growth, leading to reduced soil N uptake with warming, indicating that plants are regulating arctic N2O emissions. The warming treatment was limited to temperature of air and upper soil surface, and did not alter thaw depth. Nonetheless, we observed a clear increase of all three GHGs deep in the soil profile, and attribute this to downward leaching of labile organic substances from the surface soil and/or plants, fueling microbial activity at depth. Our study thus highlights the tight interlinkage between the surface soil, vegetation, and deeper soil layers, which could lead to losses of all three GHGs, including N2O, with subtle temperature increase. We therefore emphasize that indirect effects caused by warming, such as leaching processes, as well as arctic N2O emissions, need to be taken into account when attempting to project feedbacks between the arctic and the global climate system.
Jones, Miriam C.; Grosse, Guido; Jones, Benjamin M.; Anthony, Katey Walter
2012-01-01
Thermokarst lakes and peat-accumulating drained lake basins cover a substantial portion of Arctic lowland landscapes, yet the role of thermokarst lake drainage and ensuing peat formation in landscape-scale carbon (C) budgets remains understudied. Here we use measurements of terrestrial peat thickness, bulk density, organic matter content, and basal radiocarbon age from permafrost cores, soil pits, and exposures in vegetated, drained lake basins to characterize regional lake drainage chronology, C accumulation rates, and the role of thermokarst-lake cycling in carbon dynamics throughout the Holocene on the northern Seward Peninsula, Alaska. Most detectable lake drainage events occurred within the last 4,000 years with the highest drainage frequency during the medieval climate anomaly. Peat accumulation rates were highest in young (50–500 years) drained lake basins (35.2 g C m−2 yr−1) and decreased exponentially with time since drainage to 9 g C m−2 yr−1 in the oldest basins. Spatial analyses of terrestrial peat depth, basal peat radiocarbon ages, basin geomorphology, and satellite-derived land surface properties (Normalized Difference Vegetation Index (NDVI); Minimum Noise Fraction (MNF)) from Landsat satellite data revealed significant relationships between peat thickness and mean basin NDVI or MNF. By upscaling observed relationships, we infer that drained thermokarst lake basins, covering 391 km2 (76%) of the 515 km2 study region, store 6.4–6.6 Tg organic C in drained lake basin terrestrial peat. Peat accumulation in drained lake basins likely serves to offset greenhouse gas release from thermokarst-impacted landscapes and should be incorporated in landscape-scale C budgets.
Using Ground Targets to Validate S-NPP VIIRS Day-Night Band Calibration
NASA Technical Reports Server (NTRS)
Chen, Xuexia; Wu, Aisheng; Xiong, Xiaoxiong; Lei, Ning; Wang, Zhipeng; Chiang, Kwofu
2016-01-01
In this study, the observations from S-NPP VIIRS Day-Night band (DNB) and Moderate resolution bands (M bands) of Libya 4 and Dome C over the first four years of the mission are used to assess the DNB low gain calibration stability. The Sensor Data Records produced by NASA Land Product Evaluation and Algorithm Testing Element (PEATE) are acquired from nearly nadir overpasses for Libya 4 desert and Dome C snow surfaces. A kernel-driven bidirectional reflectance distribution function (BRDF) correction model is used for both Libya 4 and Dome C sites to correct the surface BRDF influence. At both sites, the simulated top-of-atmosphere (TOA) DNB reflectances based on SCIAMACHY spectral data are compared with Land PEATE TOA reflectances based on modulated Relative Spectral Response (RSR). In the Libya 4 site, the results indicate a decrease of 1.03% in Land PEATE TOA reflectance and a decrease of 1.01% in SCIAMACHY derived TOA reflectance over the period from April 2012 to January 2016. In the Dome C site, the decreases are 0.29% and 0.14%, respectively. The consistency between SCIAMACHY and Land PEATE data trends is good. The small difference between SCIAMACHY and Land PEATE derived TOA reflectances could be caused by changes in the surface targets, atmosphere status, and on-orbit calibration. The reflectances and radiances of Land PEATE DNB are also compared with matching M bands and the integral M bands based on M4, M5, and M7. The fitting trends of the DNB to integral M bands ratios indicate a 0.75% decrease at the Libya 4 site and a 1.89% decrease at the Dome C site. Part of the difference is due to an insufficient number of sampled bands available within the DNB wavelength range. The above results indicate that the Land PEATE VIIRS DNB product is accurate and stable. The methods used in this study can be used on other satellite instruments to provide quantitative assessments for calibration stability.
Heterotrophic respiration in drained tropical peat temperatures influenced by shading gradient
NASA Astrophysics Data System (ADS)
Jauhiainen, Jyrki; Kerojoki, Otto; Silvennoinen, Hanna; Limin, Suwido; Vasander, Harri
2015-04-01
Lowland peatlands in Southeast Asia constitute a highly concentrated carbon (C) pool of global significance. These peatlands have formed over periods of several millennia by forest vegetation tolerant to flooding and poor substrates. Uncontrollable drainage and reoccurring wild fires in lack of management after removal of forest cover has impaired the C-storing functions in large reclaimed areas. Intergovernmental Panel on Climate Change (IPCC) reporting sees drained tropical organic soils as one of the largest greenhouse gas emissions releasing terrestrial systems. Vast areas of deforested tropical peatlands do not receive noteworthy shading by vegetation, which increases the amount of solar radiation reaching the peat surface. We studied heterotrophic carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) fluxes in tropical peat in conditions, where; (i) peat temperatures were modified by artificial shading (no shade, 28%, 51% and 90% from the full sun exposure), (ii) root respiration was minimized, (iii) nutrient availability for peat decomposer community was changed (NPK fertilization of 0 and 313 kg ha-1). The experiment was repeated at two over 20 years ago drained fallow agricultural- and degraded sites in Central Kalimantan, Indonesia. Enhanced shading created a lasting decrease in peat temperatures, and decreased diurnal temperature fluctuations, in comparison to less shaded plots. The largest peat temperature difference was between the unshaded and 90% shaded peat surface, where the average temperatures within the topmost 50-cm peat profile differed 3 °C, and diurnal temperatures at 5 cm depth varied up to 4.2 °C in the unshaded and 0.4 °C in the 90% shaded conditions. Highest impacts on the heterotrophic CO2 fluxes caused by the treatments were on agricultural land, where 90% shading from the full exposure resulted in a 33% lower CO2 emission average on the unfertilised plots and a 66% lower emission average on the fertilised plots. Correlation between peat temperature and CO2 flux suggested an approximately 8% (unfertilised) and 25% (fertilised) emissions change for each 1 °C temperature change at 5 cm depth on the agricultural land. CO2 flux responses to the treatments remained low or were inconsistent over the peat temperature range.. Fertilised conditions negatively correlated with N2O efflux with increases in temperature, suggesting a 12-36% lower efflux for each 1 °C increase in peat temperature (at 5 cm depth) at the sites. Despite the apparently similar landscapes of fallow agricultural land and degraded peatland sites, the differences in greenhouse gas dynamics are expected to be an outcome of the long-term management differences. Based on the results it is possible to seek management practices that prolong timespan for using drained tropical peat for cultivation, simultaneously reduce negative climate impacts created from peat substrate carbon loss, and also improve greenhouse gas monitoring techniques at field.
Mitigation of greenhouse gas emission on abandoned peatlands by growing reed canary grass
NASA Astrophysics Data System (ADS)
Järveoja, J.; Laht, J.; Soosaar, K.; Maddison, M.; Ostonen, I.; Mander, Ü.
2012-04-01
We used combined closed-chamber and plant biomass techniques to study the impact of reed canary grass (RCG, Phalaris arundinacea) cultivation on greenhouse gas (GHG) fluxes and carbon balance of an abandoned peat extraction area in Lavassaare, Estonia (N58°34'20''; E24°23'15''). Three core study sites were chosen within the abandoned peat extraction area: (I) bare peat soil (abandoned and not planted site), (II) non-fertilized Phalaris site, (III) and fertilized Phalaris site (all on drained Fibric Histosols). In addition, (IV) the natural raised bog (Fibric Histosol) and (V) the cultivated fen meadow (drained Sapric Histosol) served as reference sites. The CO2, CH4 and N2O fluxes were determined using the closed-chamber method once a month from May 2010 to December 2011. White 60 L chambers made of PVC and sealed with a water-filled ring on the soil surface were installed in 5 replicates on each site. The gas was sampled 3 times per hour in 100 mL pre-evacuated glass bottles, and in the lab the gas concentrations were measured using the Shimadzu GC-2014 (ECD, FID) gas-chromatographic system combined with a Loftfield autosampler. Measurements of groundwater level and soil temperature (10, 20, 30, and 40 cm depths) were performed simultaneously. Biomass assessments of RCG were carried out just after maximal growth of macrophytes, in early September 2010, in April 2011 just after snow melt (time of minimum aboveground biomass), and again in September 2011. Aboveground biomass samples were collected from 1×1m plots. Belowground biomass samples were collected at a depth of 25 cm in 3 replicates adjacent to each chamber using a 10×10 cm auger. Samples were analyzed for N, P and C. Our results showed high nitrous oxide emissions (up to 541 μg N2O-N m-2 h-1) from the fen meadow and high methane emissions from the natural raised bog (up to 12915 μg CH4-C m-2 h-1). The low CH4 emission from the Phalaris plots and bare soil was due to the deeper water table (up to 85 cm below ground) and high sulfur concentration in peat (up to 23 g kg-1), which probably inhibited methanogenesis. The high CO2 emission on fertilized and non-fertilized Phalaris plots in comparison to the bare peat site was probably caused by: (1) the higher plant biomass: more dissolved C coming from roots and greater amount of fine root turnover, (2) the influence of fresh plant litter on the peat mineralization on Phalaris plots, and (3) inhibited mineralization by recalcitrant C of bare peat. Our results demonstrated that as a total, the Phalaris sites acted as net carbon sinks, sequestering C in the amount of 6929.5 and 6083.5 kg CO2-C ha-1 yr-1 on the fertilized and non-fertilized plots, respectively, whereas the bare peat site acted as a carbon source (emitting 687.5 kg CO2-C ha-1 yr-1).
Roe, Helen M; Elliott, Suzanne M; Patterson, R Timothy
2017-08-01
Testate amoeba-derived transfer functions are frequently used in peatland palaeohydrological studies and involve the development of training sets from surficial peats. However, within acrotelmic peats, considerable vertical variation in assemblage composition can occur, particularly along Sphagnum stems, which may limit the representation of the associated 'contemporary' testate amoeba samples as analogues for the peatland surface. This paper presents contiguous testate amoeba assemblage data from nine monoliths collected from different peatland microforms (hummock, hollow, lawn) in three Sphagnum dominated ombrotrophic peatlands in Ontario and Quebec, eastern Canada. The aim is to: (i) gain a greater understanding of the vertical distribution of xerophilous/hygrophilous taxa along Sphagnum stems; (ii) determine the vertical extent of live/encysted taxa along this gradient; and (iii) assess the significance of this distribution on surface sampling protocols. The results show that testate amoeba communities in the uppermost acrotelmic peat layers display considerable variability. This may reflect a complex interplay of abiotic and biotic controls, including moisture, temperature, light and other characteristics, food availability, and mineral particle availability for test construction. These findings underline the complexity of testate amoeba community structure and highlight the importance of analysing both living and dead Sphagnum stem sections when developing calibration sets. Copyright © 2017 Elsevier GmbH. All rights reserved.
Physical and chemical differences between natural and artificial pools in blanket peatlands
NASA Astrophysics Data System (ADS)
Turner, Ed; Baird, Andy; Billett, Mike; Chapman, Pippa; Dinsmore, Kerry; Holden, Joseph
2014-05-01
Natural pools are common features of many northern peatlands. Numerous artificial pools are being created behind dams installed during drain-blocking, a common peatland restoration technique, significantly increasing the area of open water. Natural pools are known to be major sources of GHGs (e.g. Hamilton et al. 1994), but the reasons they are such 'hotspots' is poorly understood. We hypothesize that pools act as 'biochemical reactors' of particulate and dissolved organic carbon (POC and DOC) transported from surrounding peat that is processed into a range of products including CH4 and CO2. Therefore, understanding the processes operating in both natural and artificial pool systems is fundamental to elucidating this hypothesis. Water levels and temperature have been continuously monitored at six natural and six artificial pools within the 'Flow Country' blanket peatland in northern Scotland since May 2013. Bi-weekly sampling of waters from pools, peat matrix through-flow (via piezometers) and surface flow has been conducted for analysis of DOC, POC, DIC, CH4diss and CO2diss, together with GHG flux measurements from pool surfaces and adjacent peat. We show that, to date, pool water levels rapidly respond to rainfall, although artificial pools appear to respond with greater magnitude. For example, over the course of same rainfall event (20-23 June 2013), natural and artificial pool levels increased between 5.3 and 9.8 cm, and 12.5 and 22.6 cm respectively. Temperature measured at c. 5 cm from the base of each pool shows distinct diurnal fluctuations, which are of greater magnitude in all but one of the natural pools compared to the artificial pools: over the same period (20-23 July 2013), the maximum diurnal variation at the artificial pool site was 5.1 °C compared to 9.2 °C within the natural pools. Vegetation cover is generally higher in artificial pools and may have a moderating effect on variations in pool temperature. Results of pool-water DOC analysis from regular sampling at the study site and a wider regional survey indicate DOC concentrations are consistently higher in artificial pools. The implications of these preliminary results in relation to the carbon cycle and GHGs of blanket peatlands are briefly discussed. Hamilton, J. D., Kelly, C. A., Rudd, J. W. M., Hesslein, R. H. and Roulet, N. T. (1994) Flux to the atmosphere of CH4 and CO2 from wetland ponds on the Hudson Bay lowlands (HBLs). Journal of Geophysical Research 99, 1495-1510.
Patterns and drivers of fungal community depth stratification in Sphagnum peat
USDA-ARS?s Scientific Manuscript database
Peatlands store an immense pool of soil carbon vulnerable to microbial oxidation due to drought and intentional draining. We used amplicon sequencing and quantitative PCR to 1) examine how fungi are influenced by depth in the peat profile, water table (WT) and plant functional group (PFG) at the ons...
Hydrochar from sewage sludge and urban wastes as a peat replacement in growing media preparation
NASA Astrophysics Data System (ADS)
Álvarez, Maria Luisa; Méndez, Ana; Paz-Ferreiro, Jorge; Soler-Rovira, Pedro; García-Gil, Juan Carlos; Plaza, César; Gascó, Gabriel
2016-04-01
Nowadays, there is an important trend in Europe for peat replacement with biochar in growing media formulation in order to reduce the environmental impact of peat exploitation. Hydrothermal carbonization (HTC) is a thermochemical process of converting organic feedstock into a high carbon rich solid product named hydrochar. It is performed in water mild temperature (180-260°C) under pressure conditions (2-6MPa) for 5-250 min. The reaction pressure is not controlled in the process and is autogenic with the saturation vapour pressure of water corresponding to the reaction temperature. In recent years, the possibility of subjecting organic wastes to HTC has attracted the scientific community attention due to their interesting advantages over other thermal treatments such as pyrolysis, torrefaction or gasification. The aim of the present paper is to study the possible use of two hydrochars produced by Ingelia (Spain) from sewage sludge and urban waste treatment as growing media material in horticulture. For this, thermal, chemical and hydrophysical properties were determined and compared with that of brown commercial peat.
Soils of peatlands: histosols and gelisols
Randy Kolka; Scott D. Bridgham; Chien-Lu Ping
2016-01-01
Peatlands are a subset of wetlands that have accumulated significant amounts of soil organic matter. Soils of peatlands are colloquially known as peat, with mucks referring to peats that are decomposed to the point that the original plant remains are altered beyond recognition (Chapter 6, SSSA 2008). Generally, soils with a surface organic layer >40 cm thick...
NASA Astrophysics Data System (ADS)
Drexler, J. Z.; Alpers, C. N.; Taylor, H. E.; Windham-Myers, L.; Neymark, L. A.; Paces, J. B.
2010-12-01
Marshes in the Sacramento-San Joaquin Delta, the most landward extent of the San Francisco Estuary, started forming around ~6,700 years ago. Currently, Delta marshes are classified as tidal freshwater, however it is unknown to what degree the salinity regime has varied between brackish and fresh conditions since marsh development. This information is important to managers considering major changes to the flow regime in the Delta, because such changes could impact the future sustainability of endangered species such as the Delta smelt (Hypomesus transpacificus), which live in or just upstream of the mixing zone between fresh and brackish water. The main goal of the Rates and Evolution of PEat Accretion through Time project (REPEAT II) is to reconstruct paleosalinity regimes in the Delta. We are using elemental concentrations of Na, Ca, K, and Mg (the major cations in ocean water) in peat profiles to develop a quantitative index of salinity for the past 6000+ years. We are normalizing the elemental concentrations to Ti (a proxy for inorganic sediment content because it is inversely correlated with loss on ignition, a measure of peat organic content) to correct for bias in elemental concentrations caused by variations in the inorganic sediment content of peat through time. Plots of Ti-normalized element concentration vs. peat depth (or age) indicate that Browns Island, a brackish marsh on the western edge of the Delta, has experienced significant variations in salinity through the millennia. Vertical peat profiles show a spatial trend of decreasing salinity from west (bay-side) to east (landward) (i.e., Browns Island > Sherman Island > Franks Wetland ≧ Bacon Channel Island). During the period from 2300 to 500 calibrated years before present, Na concentrations in peat at Browns Island indicate a particularly saline period, with peat containing up to 3 wt. % Na. In the last 100 years or so, salinity at Browns Island has apparently decreased and the Na content of peat has stabilized at between 0.6 and 1 wt. % Na. We are currently analyzing the roots of live plants collected along a salinity gradient (range of means from ~0.2 to 20 ppt) in the San Francisco Estuary to determine concentrations of Na, Ca, K, and Mg in root material and the empirical relationships between root chemistry and ambient salinity levels. Because the organic component of peat is largely made up of roots that have decomposed in situ, we anticipate using these empirical relationships to quantify salinity regimes in the Delta through time.
Plant regulation of greenhouse gas emissions and carbon lability in a Neotropical peatland
NASA Astrophysics Data System (ADS)
Girkin, Nicholas; Vane, Christopher; Turner, Benjamin; Ostle, Nicholas; Sjogersten, Sofie
2017-04-01
Tropical peatlands are under significant threat from land use changes but there remains a significant knowledge gap regarding the influences of contrasting plant types on greenhouse gas emissions and belowground carbon dynamics. We investigated differences in surface CO2 and CH4 fluxes and differences in soil organic carbon chemistry under contrasting surface vegetation types, a palm (Raphia taedigera) and a broadleaved evergreen tree (Campnosperma panamensis), in a Neotropical peatland. CO2 and CH4 production differed significantly between species, with higher fluxes measured under R. taedigera. There were significant differences in peat carbon properties under each species as revealed by Rock-Eval pyrolysis. Peat from under each species showed contrasting trends in degradation inside and outside the rooting zone, and strong differences in the presence of the most labile fractions of carbon. These results highlight the strong impacts that surface vegetation can have on surface gas emissions as well as the influences exerted on peat carbon chemistry within a tropical forested peatland, with implications for our understanding of changes in land use type across the tropics.
Elder, J.F.; Rybicki, N.B.; Carter, V.; Weintraub, V.
2000-01-01
In five tributary streams (four inflowing and one outflowing) of 1600-ha Trout Lake in northern Wisconsin, USA, we examined factors that can affect the magnitude of stream flow and transport of dissolved organic and inorganic carbon (DOC and DIC) through the streams to the lake. One catchment, the Allequash Creek basin, was investigated in more detail to describe the dynamics of carbon flow and to identify potential carbon sources. Stream flows and carbon loads showed little or no relation to surface-water catchment area. They were more closely related to ground-water watershed area because ground-water discharge, from both local and regional sources, is a major contributor to the hydrologic budgets of these catchments. An important factor in determining carbon influx to the stream is the area of peatland in the catchment. Peatland porewaters contain DOC concentrations up to 40 mg l-1 and are a significant potential carbon source. Ground-water discharge and lateral flow through peat are the suspected mechanisms for transport of that carbon to the streams. Carbon and nitrogen isotopes suggested that the sources of DOC in Allequash Creek above Allequash Lake were wetland vegetation and peat and that the sources below Allequash Lake were filamentous algae and wild rice. Catchments with high proportions of peatland, including the Allequash Creek catchment, tended to have elevated DOC loads in outflowing stream water. Respiration and carbon mineralization in lakes within the system tend to produce low DOC and low DOC/DIC in lake outflows, especially at Trout Lake. In Allequash Lake, however, the shallow peat island and vegetation-filled west end were sources of DOC. Despite the vast carbon reservoir in the peatlands, carbon yields were very low in these catchments. Maximum yields were on the order of 2.5 g m-2 y-1 DOC and 5.5 g m-2 y-1 DIC. The small yields were attributable to low stream flows due to lack of significant overland runoff and very limited stream channel coverage of the total catchment area.
NASA Astrophysics Data System (ADS)
Jeen, S.; Bain, J. G.; Blowes, D. W.
2007-12-01
A column experiment has been conducted to evaluate the performance of three reactive mixtures which may be used in a permeable reactive barrier (PRB) for the treatment of low quality mine drainage water from a waste rock storage area in northern Saskatchewan, Canada. The key element of concern in the drainage water is dissolved Ni, which occurs at approximately 13 mg/L. The water is low pH ~4.3, oxidized, contains high concentrations of dissolved sulfate (4400-4750 mg/L), Al (45 mg/L), Zn (3 mg/L), Co (3 mg/L) and relatively low concentrations of other dissolved heavy metals and iron. Three columns, each containing one of the mixtures, were constructed: column A (peat/lime/limestone/gravel), column B (peat/zero valent iron (ZVI) filings (20%/vol)/limestone/gravel), and column C (peat/ZVI filings (10%/vol)/limestone/gravel). The experimental results have shown that the mixtures promote bacterially-mediated sulfate reduction and metal removal by precipitation of metal sulfides, metal precipitation, and adsorption under relatively high pH conditions (pH of 7 to 8). Reducing conditions (Eh of 0 to -200 mV) have developed in all of the columns, from the highly oxidized influent water (Eh of +500 to +600 mV). Hydrogen sulfide is detected in the effluent water, and dissolved sulfate concentrations decrease by several hundred mg/L. Based on sulfate removal, sulfate reduction occurs more strongly in columns B and C than column A. All of the columns are removing Ni to below the limit of detection (typically < 0.01 mg/L); however, the removal rate in column A is slower than in columns B and C and has decreased over time. Most other metals are removed to low concentrations in all of the columns. The results suggest that while the longevity of mixtures including ZVI will be much longer than mixtures containing only peat, considering economic aspects, the PRB consisting of only peat could also be an alternative option, if breakthrough time can be predicted and replacement of peat can be conducted in a timely manner. This study shows that the use of reactive mixtures that facilitate microbial activities and redox reactions in subsurface could be a valuable means to remove various metal contaminants originated from mine drainage sites.
Impact of mesh tracks and low-ground-pressure vehicle use on blanket peat hydrology
NASA Astrophysics Data System (ADS)
McKendrick-Smith, Kathryn; Holden, Joseph; Parry, Lauren
2016-04-01
Peatlands are subject to multiple uses including drainage, farming and recreation. Low-ground-pressure vehicle access is desirable by land owners and tracks facilitate access. However, there is concern that such activity may impact peat hydrology and so granting permission for track installation has been problematic, particularly without evidence for decision-making. We present the first comprehensive study of mesh track and low-ground-pressure vehicle impacts on peatland hydrology. In the sub-arctic oceanic climate of the Moor House World Biosphere Reserve in the North Pennines, UK, a 1.5 km long experimental track was installed to investigate hydrological impacts. Surface vegetation was cut and the plastic mesh track pinned into the peat surface. The experimental track was split into 7 treatments, designed to reflect typical track usage (0 - 5 vehicle passes per week) and varying vehicle weight. The greatest hydrological impacts were expected for sections of track subject to more frequent vehicle use and in close proximity to the track. In total 554 dipwells (including 15 automated recording at 15-min intervals) were monitored for water-table depth, positioned to capture potential spatial variability in response. Before track installation, samples for vertical and lateral hydraulic conductivity (Ks) analysis (using the modified cube method) were taken at 0-10 cm depth from a frequently driven treatment (n = 15), an infrequently driven treatment (0.5 passes per week) (n = 15) and a control site with no track/driving (n = 15). The test was repeated after 16 months of track use. We present a spatially and temporally rich water-table dataset from the study site showing how the impacts of the track on water table are spatially highly variable. Water-table depths across the site were shallow, typically within the upper 10 cm of the peat profile for > 75% of the time. We show that mesh track and low-ground-pressure vehicle impacts on water-table depth were small except for directly under and close to the track. Where the track runs parallel to the contours, water-tables were found to be deeper downslope of the track and shallower upslope. However in the no track/driving treatment; water table was significantly shallower downslope than upslope. Strong anisotropy was found in both 'before-track' and 'after-track' Ks, with horizontal Ks significantly greater than vertical Ks. No significant difference was found in vertical Ks before and after driving (medians 8.6 x 10-5 and 6.6 x 10-5 cm s-1 respectively). Horizontal Ks was significantly greater after driving (median 2.2 x 10-3 cm s-1) than before (median 3.7 x 10-4 cm s-1). Post-hoc testing highlights variability in response to treatment and topographic position. We suggest that this surprising result is related to rapid regrowth of new vegetation (particularly Sphagnum) through the mesh of the track, which was more dominant on horizontal Ks than the compression from low-ground-pressure vehicle use. Our results indicate that mesh tracks have a significant impact upon hydrology; however response is variable dependent upon topographic and seasonal factors. These findings can be used to inform land-management decision-making for the use of mesh tracks in peatlands.
NASA Astrophysics Data System (ADS)
Branfireun, Brian A.; Roulet, Nigel T.; Kelly, Carol. A.; Rudd, John W. M.
1999-09-01
Recent studies have found that "pristine" peatlands have high peat and pore water methylmercury (MeHg) concentrations and that peatlands may act as large sources of MeHg to the downstream aquatic system, depending upon the degree of hydrologie connectivity and catchment physiography. Sulphate-reducing bacteria have been implicated as principal methylators of inorganic mercury in many environments with previous research focused primarily on mercury methylation in aquatic sediments. Experiments in a poor fen in the Experimental Lakes Area, northwestern Ontario, Canada, demonstrated that the in situ addition of sulphate to peat and peat pore water resulted in a significant increase in pore water MeHg concentrations. As peatlands cover a large area of the Northern Hemisphere, this finding has potentially far ranging implications for the global mercury cycle, particularly in areas impacted by anthropogenically derived sulphate where the methylmercury fraction of total mercury species may be much larger than in nonimpacted environments.
NASA Astrophysics Data System (ADS)
Bernhardt, C. E.; Willard, D. A.
2012-12-01
The Florida Everglades is a subtropical peatland where differences in bedrock topography, water depth, and hydroperiod affect the distribution and composition of vegetation communities. Previous studies have demonstrated that human modification of the natural hydrology and changes in precipitation associated with natural climate variability can alter the distribution wetland vegetation and influence whether a site is accumulating peat or marl. Pollen analysis of sediments from vegetation communities separated by only a few meters, like the ridges and sloughs, demonstrates the strong signature of the local community. However, over decadal to centennial scales, a broader regional climate response is documented in the pollen record. Here, we examine the sedimentary and pollen records from a suite of 42 cores to tease apart local and regional hydrologic patterns in the marl prairie wetland community. The marl prairie community, which covers an area of 190,000 ha, is a short hydroperiod wetland characterized by sparse vegetation and dominated by grasses and sedges. Pollen and geochronologic data from an earlier study suggested that changes in the vegetation (sawgrass marsh to prairie) and sediment type (peat to marl) were tied exclusively to 20th century water management. However, our results show a diverse assemblage of sediment profiles include marl over peat, peat over marl, all peat, and all marl; and, that the onset of marl accumulation is not limited to the 20th century but occurs at several intervals over the last 1700 years. The primary control on substrate type (marl vs. peat) may be local hydrologic and geomorphic features (sinkholes vs depressions) rather than changes in regional hydrology. Pollen evidence from most sites is consistent with our early study and indicates a regional shift to shorter hydroperiod conditions early in the 20th century that are tied to changes in water management. This study reflects the importance of relying on more than just a single core, or single transect of cores, for teasing apart the local and regional effects on peatlands.
Effects of peatland burning on hydrology, water quality and aquatic ecosystems
NASA Astrophysics Data System (ADS)
Brown, L. E.; Holden, J.; Palmer, S. M.
2009-04-01
Controlled burning is used worldwide for the management of vegetation, yet there is serious concern about the environmental implications of such practices. Across the UK many peatlands are burned to encourage and maintain heather growth. However, detailed evaluations of the costs, benefits and sustainability of burning are hampered by a lack of basic scientific data. This paper will present the outline of a new three year NERC-funded project called EMBER which provides the first co-ordinated evaluation of vegetation burning on peatland hydrological and ecological processes. Case study sites influenced by prescribed burns will be established in internationally important sites in the Peak District and North Pennines, UK. EMBER will increase understanding of the processes linking prescribed peat vegetation fires, hydrology, water quality and stream invertebrate communities in upland peat dominated catchments. Four work packages will aim to: 1) increase understanding of the effects of moorland patch burning on the hydrology and physicochemistry of peat, through examination of changes in soil hydrology and water quality; 2) provide a better understanding of the effects of moorland patch burning on basin runoff quantity and quality, through examination of river flow regimes, suspended sediment concentration and water chemistry; 3) assess the influence of changes in stream hydrology, water quality and sediment fluxes on stream ecosystems through examination of stream invertebrate community biodiversity and fish abundance and 4) gain a more fundamental understanding of some environmental drivers of upland aquatic community response to burning by experimentally manipulating fine sediment flux under controlled conditions using a series of streamside mesocosms. Taken together these packages will provide a holistic patch- to basin-scale evaluation of burning from the perspective of peat hydrology, chemistry, river water quantity and quality, and stream ecosystems, thus providing the balanced knowledge base which is currently lacking for peatlands.
NASA Astrophysics Data System (ADS)
Banzhaf, Stefan; Klemedtsson, Leif; Sturkell, Erik; Nyström, Elin; Barthel, Roland
2015-04-01
The overall objective of the presented study is to explore the impact of groundwater fluctuations on greenhouse gas (GHG) emissions from peatlands and in particular from drained organic soils. The hypothesis is that drained organic soils react sensitively to changing water content, i.e. that frequent changes of groundwater level enhance the emissions of GHG from these soils and thus contribute significantly to global warming. The area under investigation is based at the Skogaryd Research Catchment (within Swedish Infrastructure for Ecosystem Sciences, SITES) in western Sweden (Meyer, et al., 2013), which was recently assigned the status of a national research site by the Swedish research council (www.vr.se). Skogaryd is a unique place in Sweden for doing research on organic soils as the area was simultaneously afforested in the 1960s and the drained fertile soils have a different land-use history. The ditching for drainage purposes throughout the entire area has had and still has a huge influence on groundwater level, which in turn is assumed to trigger GHG emissions from the organic soils at Skogaryd. To address the influence of groundwater dynamics on GHG emissions in this system, a characterisation of the subsurface using electrical resistivity and Ground Penetrating Radar (GPR) measurements was carried out. These geophysical measurements were combined with drilling along them to allow for ground truthing. An average peat thickness of around 3 m was estimated for the field site. Below the peat follows a fine sand layer, which reaches a maximum thickness of around 1.0 m right at the valley borders and thins out significantly towards the middle of the valley. Below the fine sand layer follows a layer of marine clay, which extends down to the bedrock at depths between 12 and 15 m below ground surface. The results show that the peat layer in Skogaryd forms an isolated hydraulic system without interaction with deeper or regional groundwater systems. The continuously extending clay layer hinders water moving downward or upward crossing the border of peat and clay. The peat layer is a fast reacting hydraulic system that shows immediate reaction to precipitation or drought and is independent from regional groundwater levels. The study of groundwater controls on the GHG from the drained organic soils at Skogaryd can thus focus on the fast reacting peat layer. Future investigations will show if this conclusion can be generalized for similar situations in Sweden. Geophysical measurements have proved to be a valuable method for estimating the peat thickness over a large area. Meyer A, Tarvainen L, Nousratpour A, Björk RG, Ernfors M, Grelle A, Kasimir Klemedtsson Å, Lindroth A, Räntfors M, Rütting T, Wallin G, Weslien P, Klemedtsson L (2013) A fertile peatland forest does not constitute a major greenhouse gas sink. Biogeosciences 10: 7739-7758 DOI 10.5194/bg-10-7739-2013
van der Merwe, M M; Bandosz, T J
2005-02-01
A study of the reason for the early ignition of coconut-based impregnated carbon in comparison with the peat-based impregnated carbon was conducted. The surface features of carbons were evaluated using various physicochemical methods. The metal analysis of the initial carbon indicated that the content of potassium was higher in the coconut-based carbon. The surface functional group analysis revealed the presence of similar surface species; however, the peat-based carbon was more acidic in its chemical nature. Since the oxygen content was higher in the peat-based carbon, the early ignition of the coconut-based material was attributed to its higher affinity to chemisorb oxygen, which leads to exothermic effects. This conclusion was confirmed by performing oxidation of coconut-based carbon prior to impregnation. This process increased the ignition temperature for Cu/Cr impregnated coconut-based material from 186 to 289 degrees C and for the Cu/Zn/Mo impregnated carbon from 235 to 324 degrees C.
Iriana, Windy; Tonokura, Kenichi; Inoue, Gen; Kawasaki, Masahiro; Kozan, Osamu; Fujimoto, Kazuki; Ohashi, Masafumi; Morino, Isamu; Someya, Yu; Imasu, Ryuichi; Rahman, Muhammad Arif; Gunawan, Dodo
2018-05-31
Tropical peatlands in Indonesia have been disturbed over decades and are a source of carbon dioxide (CO 2 ) into the atmosphere by peat respiration and peatland fire. With a portable solar spectrometer, we have performed measurements of column-averaged CO 2 dry-air molar mixing ratios, XCO 2 , in Palangka Raya, Indonesia, and quantify the emission dynamics of the peatland with use of the data for weather, fire hotspot, ground water table, local airport operation visibility and weather radar images. Total emission of CO 2 from surface and underground peat fires as well as from peatland ecosystem is evaluated by day-to-day variability of XCO 2 . We found that the peatland fire and the net ecosystem CO 2 exchange contributed with the same order of magnitude to the CO 2 emission during the non-El Niño Southern Oscillation year of July 2014-August 2015.
NASA Astrophysics Data System (ADS)
Smidt, Geerd; Tänzer, Detlef
2013-04-01
The new European Competence Centre for Moor and Climate (EFMK) is an initiative by different local communities, environmental protection NGOs, agricultural services, and partners from the peat and other industries in Lower Saxony (Germany). The Centre aims to integrate practical peat bog conservation with a focus on green house gas emission after drainage and after water logging activities. Together with our partners we want to break new ground to protect the remaining bogs in the region. Sphagnum mosses will be produced in paludiculture on-site in cooperation with the local peat industry to provide economic and ecologic alternatives for peat products used in horticulture business. Land-use changes are needed in the region and will be stimulated in cooperation with agricultural services via compensation money transfers from environmental protection funds. On a global scale the ideas of Carbon Credit System have to be discussed to protect the peat bogs for climate protection issues. Environmental education is an important pillar of the EFMK. The local society is invited to explore the unique ecosystem and to participate in peat bog protection activities. Future generations will be taught to understand that the health of our peat bogs is interrelated with the health of the local and global climate. Besides extracurricular classes for schools the centre will provide infrastructure for Master and PhD students, as well for senior researchers for applied research in the surrounding moor. International partners in the scientific and practical fields of peat bog ecology, renaturation, green house gas emissions from peat bogs, and environmental policy are invited to participate in the European Competence Center for Moor and Climate.
NASA Astrophysics Data System (ADS)
Biddle, J. F.; Turich, C.; Brantley, S.; Bruns, M.
2002-12-01
Wetlands produce between 55 and 150 Tg of methane per year, or ~70% of all natural methane, and 20% of total methane (natural and anthropogenic). Understanding inputs to the global methane cycle depends on integrated in situ study of the sources and sinks of methane, as well as the rate and magnitude of methane production and consumption. Bear Meadows Natural Area in central Pennsylvania (N 40° 43.796' W 077° 45.310; 554 m elevation) contains an acidic, methane-producing, peaty bog with vegetation that is typical of wetlands at higher latitudes. In this four year study conducted within a cross-disciplinary training course offered by the NSF-IGERT Biogeochemical Research Initiative in Education (BRIE) program at Penn State University, graduate students applied a combination of geochemical and microbiological techniques to explore microbial diversity and activity in Bear Meadows sediments. The methane flux at the peat:water interface was highly variable, from 0.01 to over 3000 umol/m2/min in both sphagnum and sedge vegetation. The methane released from the bog had a carbon isotopic composition of -60 %o, typical of biogenic methane. Analysis of peat pore waters showed that the most methane was produced 30 cm below the peat:water interface, with a broad peak of methane in pore waters from 20-40 cm. At 21 cm below the peat:water interface, profiles of Archaeal 16S-23S ribosomal RNA spacer regions revealed the presence of populations having 92% similarity to 16S rRNA sequences of Methanoculleus marisnigri. Phospholipid fatty acids (PLFA) and compound specific isotope analysis revealed other biological controls on the methane cycle. PLFAs typical of methanotrophic bacteria were also present within peat cores from 20-30 cm below the water interface. The depleted carbon isotopic composition of these biomarkers (C16:1 and C18:1 fatty acids) was - 31.4 %o and - 33.8%o, indicative of methane oxidation. The presence of biomarkers of methane oxidizing bacteria within the zone of methane production may indicate that there is temporal or spatial heterogeneity in oxygen concentration within the peat. This interdisciplinary approach helped define specific ecological niches where novel methanogens and methane oxidizers may be active in a typical northern wetland. Through BRIE, on-going studies of the Bear Meadows wetland will focus on detecting other potentially novel aerobic and anaerobic microbes, and determining the biological influence on methane release to the atmosphere.
NASA Astrophysics Data System (ADS)
Lukenbach, M. C.; Hokanson, K. J.; Devito, K. J.; Kettridge, N.; Petrone, R. M.; Mendoza, C. A.; Granath, G.; Waddington, J. M.
2017-05-01
In the Boreal Plain of Canada, the margins of peatland ecosystems that regulate solute and nutrient fluxes between peatlands and adjacent mineral uplands are prone to deep peat burning. Whether post-fire carbon accumulation is able to offset large carbon losses associated with the deep burning at peatland margins is unknown. For this reason, we examined how post-fire hydrological conditions (i.e. water table depth and periodicity, soil tension, and surface moisture content) and depth of burn were associated with moss recolonization at the peatland margins of three sites. We then interpreted these findings using a hydrogeological systems approach, given the importance of groundwater in determining conditions in the soil-plant-atmosphere continuum in peatlands. Peatland margins dominated by local groundwater flow from adjacent peatland middles were characterized by dynamic hydrological conditions that, when coupled with lowered peatland margin surface elevations due to deep burning, produced two common hydrological states: 1) flooding during wet periods and 2) rapid water table declines during dry periods. These dynamic hydrological states were unfavorable to peatland moss recolonization and bryophytes typical of post-fire recovery in mineral uplands became established. In contrast, at a peatland margin where post-fire hydrological conditions were moderated by larger-scale groundwater flow, flooding and rapid water table declines were infrequent and, subsequently, greater peatland-dwelling moss recolonization was observed. We argue that peatland margins poorly connected to larger-scale groundwater flow are not only prone to deep burning but also lags in post-fire moss recovery. Consequently, an associated reduction in post-fire peat accumulation may occur and negatively affect the net carbon sink status and ecohydrological and biogeochemical function of these peatlands.
Are colorimetric assays appropriate for measuring phenol oxidase activity in peat soils?
Magdalena M. Wiedermann; Evan S. Kane; Timothy J. Veverica; Erik A. Lilleskov
2017-01-01
The activity of extracellular phenol oxidases is believed to play a critical role in decomposition processes in peatlands. The water logged, acidic conditions, and recalcitrant litter from the peatland vegetation, lead to exceptionally high phenolics in the peat. In order to quantify the activity of oxidative enzymes involved in the modification and break down of...
The hydrology of several peat deposits in northern Minnesota, U.S.A.
R.R. Bay
1968-01-01
A comprehensive peatland hydrology study has provided data on the climate, hydrogeology, water table levels, and run-off from forested peat deposits in northern Minnesota. Groundwater studies identified two types of hydrogeologic situations-perched bogs, independent of the underground flow system, and groundwater bogs, which were influenced by storage changes in the...
Colleen M. Iversen; Joanne Childs; Richard J. Norby; Todd A. Ontl; Randall K. Kolka; Deanne J. Brice; Karis J. McFarlane; Paul J. Hanson
2017-01-01
Background and aims. Fine roots contribute to ecosystem carbon, water, and nutrient fluxes through resource acquisition, respiration, exudation, and turnover, but are understudied in peatlands. We aimed to determine how the amount and timing of fine-root growth in a forested, ombrotrophic bog varied across gradients of vegetation density, peat...
NASA Astrophysics Data System (ADS)
Price, J. S.; Petrone, R. M.; Strack, M.; Cooper, D. J.
2017-12-01
In the Alberta oil sands region, fen peatlands comprised 50% of the boreal landscape. Oil sands mining has stripped over 800 km2 of land surface to access bitumen, necessitating landscape reclamation to re-establish functional wetlands. Fens are peat-dominated wetlands that commonly rely on groundwater to supplement their water budget and deliver dissolved solutes that impart a distinct geochemistry, hence vegetation community. A numerical model was used to test the concept and guide selection of earth materials and system geometry. The goal was to maintain the placed peat in a sufficiently wet condition to support wetland plants and become a net carbon sink, in this sub-humid climate. The 32.1 ha Nikanotee Fen Watershed comprises a 7.7 ha upland, that was designed to recharge sufficient water, and deliver it to the 2.9 ha fen via groundwater flow. These features are surrounded by other reclaimed slopes designed to store water, rather than deliver it downslope. Four years of monitoring since construction show the fen maintains a high water table, and the peatland has become a strong carbon sink, even though the hydrological performance of construction materials varied substantially from what was anticipated (lower hydraulic conductivity). However, solutes associated with the tailings sand used in construction are moving towards the fen, and are expected to influence the future vegetation community and system biogeochemistry. One of the biggest uncertainties is the changing performance of soils and vegetation as they develop.
NASA Astrophysics Data System (ADS)
Nykänen, Hannu; Mpamah, Promise; Rissanen, Antti; Pitkänen, Aki; Turunen, Jukka; Simola, Heikki
2015-04-01
Peatlands form a significant carbon pool in the global carbon cycle. Change in peat hydrology, due to global warming is projected to change microbiological processes and peat carbon pool. We tested if bulk stable carbon and nitrogen isotopes serve as indicators of severe long term drying in peatlands drained for forestry. Depth profile analysis of peat, for their carbon and nitrogen content as well as their carbon and nitrogen stable isotopic signatures, were conducted for peatlands in southern and eastern Finland, having ombrotrophic and minerotrophic natural and corresponding drained pairs or separate drained sites. The selection of sites allowed us to compare changes due to different fertility and changes due to long term artificial drying. Drainage lasting over 40 years has led to changes in hydrology, vegetation, nutrient mineralization and respiration. Furthermore, increased nutrient uptake and possible recycling of peat nitrogen and carbon trough vegetation back to the peat surface, also possibly has an effect on the stable isotopic composition of peat carbon and nitrogen. We think that drainage induced changes somehow correspond to those caused by changed hydrology due to climate change. We will present data from these measurements and discuss their implications for carbon and nitrogen flows in peatlands.
PALADYN v1.0, a comprehensive land surface-vegetation-carbon cycle model of intermediate complexity
NASA Astrophysics Data System (ADS)
Willeit, Matteo; Ganopolski, Andrey
2016-10-01
PALADYN is presented; it is a new comprehensive and computationally efficient land surface-vegetation-carbon cycle model designed to be used in Earth system models of intermediate complexity for long-term simulations and paleoclimate studies. The model treats in a consistent manner the interaction between atmosphere, terrestrial vegetation and soil through the fluxes of energy, water and carbon. Energy, water and carbon are conserved. PALADYN explicitly treats permafrost, both in physical processes and as an important carbon pool. It distinguishes nine surface types: five different vegetation types, bare soil, land ice, lake and ocean shelf. Including the ocean shelf allows the treatment of continuous changes in sea level and shelf area associated with glacial cycles. Over each surface type, the model solves the surface energy balance and computes the fluxes of sensible, latent and ground heat and upward shortwave and longwave radiation. The model includes a single snow layer. Vegetation and bare soil share a single soil column. The soil is vertically discretized into five layers where prognostic equations for temperature, water and carbon are consistently solved. Phase changes of water in the soil are explicitly considered. A surface hydrology module computes precipitation interception by vegetation, surface runoff and soil infiltration. The soil water equation is based on Darcy's law. Given soil water content, the wetland fraction is computed based on a topographic index. The temperature profile is also computed in the upper part of ice sheets and in the ocean shelf soil. Photosynthesis is computed using a light use efficiency model. Carbon assimilation by vegetation is coupled to the transpiration of water through stomatal conductance. PALADYN includes a dynamic vegetation module with five plant functional types competing for the grid cell share with their respective net primary productivity. PALADYN distinguishes between mineral soil carbon, peat carbon, buried carbon and shelf carbon. Each soil carbon type has its own soil carbon pools generally represented by a litter, a fast and a slow carbon pool in each soil layer. Carbon can be redistributed between the layers by vertical diffusion and advection. For the vegetated macro surface type, decomposition is a function of soil temperature and soil moisture. Carbon in permanently frozen layers is assigned a long turnover time which effectively locks carbon in permafrost. Carbon buried below ice sheets and on flooded ocean shelves is treated differently. The model also includes a dynamic peat module. PALADYN includes carbon isotopes 13C and 14C, which are tracked through all carbon pools. Isotopic discrimination is modelled only during photosynthesis. A simple methane module is implemented to represent methane emissions from anaerobic carbon decomposition in wetlands (including peatlands) and flooded ocean shelf. The model description is accompanied by a thorough model evaluation in offline mode for the present day and the historical period.
Sorption of the monoterpenes α-pinene and limonene to carbonaceous geosorbents including biochar.
Hale, Sarah E; Endo, Satoshi; Arp, Hans Peter H; Zimmerman, Andrew R; Cornelissen, Gerard
2015-01-01
The sorption of two monoterpenes, α pinene and limonene to the carbonaceous geosorbents graphite, bituminous coal, lignite coke, biochar and Pahokee peat was quantified. Polyethylene (PE) passive samplers were calibrated for the first time for these compounds by determining the PE-water partitioning coefficients and used as a tool to determine sorption to the carbonaceous geosorbents. Log KPE-water values were 3.49±0.58 for α pinene and 4.08±0.27 for limonene. The sorption of limonene to all materials was stronger than that for α pinene (differences of 0.2-1.3 log units between distribution coefficients for the monoterpenes). Placing Kd values in increasing order for α pinene gave biochar≈Pahokee peat≈bituminous coal≈lignite coke
Stability of peatland carbon to rising temperatures
R. M. Wilson; A. M. Hopple; M. M. Tfaily; S. D. Sebestyen; C. W. Schadt; L. Pfeifer-Meister; C. Medvedeff; K. J. McFarlane; J. E. Kostka; M. Kolton; R.K. Kolka; L. A. Kluber; J. K. Keller; T. P. Guilderson; N. A. Griffiths; J. P. Chanton; S. D. Bridgham; P. J. Hanson
2016-01-01
Peatlands contain one-third of soil carbon (C), mostly buried in deep, saturated anoxic zones (catotelm). The response of catotelm C to climate forcing is uncertain, because prior experiments have focused on surface warming. We show that deep peat heating of a 2âm-thick peat column results in an exponential increase in CH4 emissions. However,...
NASA Astrophysics Data System (ADS)
Kocum, Jan; Janský, Bohumír.; Česák, Julius
2010-05-01
Increasing frequency of catastrophic flash floods and extreme droughts in recent years results in an urgent need of solving of flood protection questions and measures leading to discharge increase in dry periods. Flattening of discharge call for the use of untraditional practices as a suitable complement to classical engineering methods. These measures could be represented by gradual increase of river catchment retention capacity in headstream areas. Very favorable conditions for this research solution are concentrated to the upper part of Otava River basin (Vltava River left tributary, Šumava Mts., southwestern Czechia) representing the core zone of a number of extreme floods in Central Europe and the area with high peat land proportion. A number of automatic ultrasound and hydrostatic pressure water level gauges, climatic stations and precipitation gauges and utilization of modern equipment and methods were used in chosen experimental catchments to assess the landscape retention potential and to find out rainfall-runoff relations in this area. Successively, the detailed analysis of peat land hydrological function was carried out. The peat bogs influence on runoff conditions were assessed by thorough comparison of runoff regimes in subcatchments with different peat land proportion. The peat bog influence on hydrological process can be considered also with respect to its affecting of water quality. Therefore, hydrological monitoring was completed by ion, carbon (TOC) and oxygen isotopes balance observing within periods of high or low discharges in order to precise runoff phases separation by means of anion deficiency. Pedological survey of different soil types and textures was carried out to precise the estimation of its water capacity. Detailed analyses of extreme runoff ascending and descending phases and minimum discharges in profiles closing several subcatchments with different physical-geographic conditions show higher peak flow frequency and their shorter reaction to causal amount of precipitation in the case of highly peaty areas, therefore more distinct runoff variability of streams draining peat land localities. These findings were affirmed by geochemical approach laboratory outcomes within the meaning of significant contribution of runoff from peat lands to the total runoff during extreme flood situations. An important component of rainfall-runoff process in source areas of czech rivers represented by snow conditions was analyses very in detail by means of monitoring of snow cover height and its water equivalent in chosen experimental catchments. Outcomes of this study should markedly help with significant precising of estimation of water storage retained in a snow cover. Consecutive runoff simulations using mathematical techniques would then improve a hydrological forecast. In terms of present dyking of former channels draining peat land represented by so called peat bog revitalization partial findings refer to positive effect during mean runoff situations but their considerably negative influence on runoff process in cases of extremely high discharges. In order to achieve retention potential enhancement in source areas of czech rivers an evaluation of possible former accumulative reservoirs (used for wood floating in former times) restoration which could function for example as dry (green) polders should be considered. The system of such small storage bins could function as an alternative and supplement to greater dam reservoirs. Possible spaces for water retention are measured by geodetic total station and modelled by suitable methods in GIS software. Existing outcomes advert to the fact that the effectiveness of such reservoir system would not have to be neglecting. By implementation of these unforceable measures realized in river headstream areas it could be contributed to reduction of peak flows and to increase of water resources during extreme droughts in future.
NASA Astrophysics Data System (ADS)
Bonaiuti, Simona; Blodau, Christian; Knorr, Klaus-Holger
2017-04-01
In deep and permanently water saturated peat deposits, extremely low diffusive transport and concomitant build-up of metabolic end-products, i.e of dissolved inorganic carbon (DIC) and methane (CH4), have been found to slow-down anaerobic respiration and methanogenesis. Such accumulation of DIC and CH4 lowers the Gibbs free energy yield of terminal respiration and methanogenesis, which can inhibit the course of anaerobic metabolic processes. In particular, this affects terminal steps of the breakdown of organic carbon (C), such as methanogenesis, acetogenesis and fermentation processes, which occur near thermodynamic minimum energy thresholds. This effect is thus of critical importance for the long-term C sequestration, as the slow-down of decomposition ultimately regulates the long-term fate of C in deep peat deposits. The exact controls of this observed slow-down of organic matter mineralization are not yet fully understood. Moreover, altered patterns of water or gas transport due to predicted changes in climate may affect these controls in peat soils. Therefore, the aim of this study was to investigate how burial of peat leads to an inactivation of anaerobic decomposition and to investigate the effects of advective water transport and persistently anoxic conditions on anaerobic decomposition, temporal evolution of thermodynamic energy yields to methanogenesis and methanogenic pathways. To this end, we conducted a column experiment with homogenized, ombrotrophic peat over a period of 300 days at 20˚ C. We tested i) a control treatment under diffusive transport only, ii) an advective flow treatment with a flow of 10 mm d-1, and iv) an anoxic treatment to evaluate changes in decomposition in absence of oxygen in the unsaturated zone of the cores. A slow-down of anaerobic respiration and methanogenesis generally set in at larger depths after 150 days at CH4 concentrations of 0.6-0.9 mmol L-1 and DIC concentrations of 6-12 mmol L-1. This effect occurred at higher concentration levels and faster than previously observed. Advective water transport effectively extended the zone of methanogenesis down to 40 cm depth until inhibiting conditions were reached, although net turnover at greater depths was not affected. Strictly anoxic conditions in the unsaturated zone, where diffusive transport is high, had little effect on accelerating anaerobic decomposition. The slow-down of net production rates of CO2 and CH4 agreed well with the decline over time of Gibbs free energies available to methanogenesis, supporting a thermodynamic constraint on decomposition in deeper peat deposits. Keywords: Peatlands; Anaerobic decomposition; Methanogenesis; Production rates; Advection; Anoxia; Thermodynamic calculations.
Methane Exchange in a Coastal Fen in the First Year after Flooding - A Systems Shift
Hahn, Juliane; Köhler, Stefan; Glatzel, Stephan; Jurasinski, Gerald
2015-01-01
Background Peatland restoration can have several objectives, for example re-establishing the natural habitat, supporting unique biodiversity attributes or re-initiating key biogeochemical processes, which can ultimately lead to a reduction in greenhouse gas (GHG) emissions. Every restoration measure, however, is itself a disturbance to the ecosystem. Methods Here, we examine an ecosystem shift in a coastal fen at the southern Baltic Sea which was rewetted by flooding. The analyses are based on one year of bi-weekly closed chamber measurements of methane fluxes gathered at spots located in different vegetation stands. During measurement campaigns, we recorded data on water levels, peat temperatures, and chemical properties of peat water. In addition we analyzed the first 20 cm of peat before and after flooding for dry bulk density (DBD), content of organic matter and total amounts of carbon (C), nitrogen (N), sulfur (S), and other nutrients. Results Rewetting turned the site from a summer dry fen into a shallow lake with water levels up to 0.60 m. We observed a substantial die-back of vegetation, especially in stands of sedges (Carex acutiformis Ehrh). Concentrations of total organic carbon and nitrogen in the peat water, as well as dry bulk density and concentrations of C, N and S in the peat increased. In the first year after rewetting, the average annual exchange of methane amounted to 0.26 ± 0.06 kg m-2. This is equivalent to a 190-times increase in methane compared to pre-flooding conditions. Highest methane fluxes occurred in sedge stands which suffered from the heaviest die-back. None of the recorded environmental variables showed consistent relationships with the amounts of methane exchanged. Conclusions Our results suggest that rewetting projects should be monitored not only with regard to vegetation development but also with respect to biogeochemical conditions. Further, high methane emissions that likely occur directly after rewetting by flooding should be considered when forecasting the overall effect of rewetting on GHG exchange. PMID:26461916
Methane Exchange in a Coastal Fen in the First Year after Flooding--A Systems Shift.
Hahn, Juliane; Köhler, Stefan; Glatzel, Stephan; Jurasinski, Gerald
2015-01-01
Peatland restoration can have several objectives, for example re-establishing the natural habitat, supporting unique biodiversity attributes or re-initiating key biogeochemical processes, which can ultimately lead to a reduction in greenhouse gas (GHG) emissions. Every restoration measure, however, is itself a disturbance to the ecosystem. Here, we examine an ecosystem shift in a coastal fen at the southern Baltic Sea which was rewetted by flooding. The analyses are based on one year of bi-weekly closed chamber measurements of methane fluxes gathered at spots located in different vegetation stands. During measurement campaigns, we recorded data on water levels, peat temperatures, and chemical properties of peat water. In addition we analyzed the first 20 cm of peat before and after flooding for dry bulk density (DBD), content of organic matter and total amounts of carbon (C), nitrogen (N), sulfur (S), and other nutrients. Rewetting turned the site from a summer dry fen into a shallow lake with water levels up to 0.60 m. We observed a substantial die-back of vegetation, especially in stands of sedges (Carex acutiformis Ehrh). Concentrations of total organic carbon and nitrogen in the peat water, as well as dry bulk density and concentrations of C, N and S in the peat increased. In the first year after rewetting, the average annual exchange of methane amounted to 0.26 ± 0.06 kg m-2. This is equivalent to a 190-times increase in methane compared to pre-flooding conditions. Highest methane fluxes occurred in sedge stands which suffered from the heaviest die-back. None of the recorded environmental variables showed consistent relationships with the amounts of methane exchanged. Our results suggest that rewetting projects should be monitored not only with regard to vegetation development but also with respect to biogeochemical conditions. Further, high methane emissions that likely occur directly after rewetting by flooding should be considered when forecasting the overall effect of rewetting on GHG exchange.
Shaddox, Travis W; Kruse, Jason K; Miller, Grady L; Nkedi-Kizza, Peter; Sartain, Jerry B
2016-09-01
United States Golf Association putting greens are susceptible to nitrogen (N) and phosphorus (P) leaching. Inorganic soil amendments are used to increase moisture and nutrient retention and may influence N and P leaching. This study was conducted to determine whether N and P leaching could be reduced using soil amendments and surfactant-modified soil amendments. Treatments included a control (sand), sand-peat, zeolite, calcined clay, hexadecyltrimethylammonium-zeolite, and hexadecyltrimethylammonium-calcined clay. Lysimeters were filled with a 30-cm rootzone layer of sand-peat (85:15 by volume), below which a 5-cm treatment layer of amendments was placed. A solution of NO-N, NH-N, and orthophosphate-P (2300, 2480, and 4400 μg mL, respectively) was injected at the top of each lysimeter, and leachate was collected using an autocollector set to collect a 10-mL sample every min until four pore volumes were collected. Uncoated amendments, sand, and peat had no influence on NO-N retention, whereas hexadecyltrimethylammonium-coated amendments reduced NO-N leaching to below detectable limits. Both coated and uncoated amendments reduced NH-N leaching, with zeolite reducing NH-N leached to near zero regardless of hexadecyltrimethylammonium coating. Pure sand resulted in a 13% reduction of applied orthophosphate-P leaching, whereas peat contributed to orthophosphate-P leaching. Surfactant-modified amendments reduced orthophosphate-P leaching by as much as 97%. Surfactant-modified soil amendments can reduce NO-N, NH-N, and orthophosphate-P leaching and, thus, may be a viable option for removing leached N and P before they enter surface or ground waters. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Transformation of peat horizon in swampy southern taiga forests under the impact of surface drainage
NASA Astrophysics Data System (ADS)
Vomperskii, S. E.; Vomperskaya, M. I.; Glukhova, T. V.; Valyaeva, N. A.
2017-10-01
The results of stationary studies of swampy southern taiga forests in Yaroslavl oblast are presented. Estimates of changes in the thickness of peat horizon in peat podzolic gley soils (Folic Albeluvisols) of forests subjected to clearcutting and further intensive forest management in the past 30 years are given. The mean annual precipitation in these three decades has been 116 mm higher than that during the preceding three decades, which has led to a progressive swamping of spruce stands on heavy loamy soils within virtually flat (with slopes up to 0.0035) surfaces and an increase in the organic matter storage in the peat soil horizon with the mean annual rate of 22-68 g/m2. On more pronounced slopes (0.0050), no swamping of spruce and pine stands growing on sandy soils has taken place. Surface drainage of swampy forests through the network of shallow ditches has led to an increase in the productivity of forests; in most cases, the pool of organic matter in the peat horizon has been decreasing with the mean annual rate of 32-46 g/m2. This attests to the reversible character of swamping in dependence on climatic fluctuations and forestry measures. Changes in the carbon pool of swampy soils during short (several years) excessively wet or excessively dry periods may be significantly higher than the average values for 30 years in different types of forests. This allows us to consider swampy forests as the source of significant errors in the estimates of the current contribution of biota to the carbon cycle, because their role (as well as the role of other forests) is assessed without taking into account considerable short-term fluctuations in the carbon pool of their soils.
Impact of managed moorland burning on DOC concentrations in soil solutions and stream waters
NASA Astrophysics Data System (ADS)
Palmer, Sheila; Wearing, Catherine; Johnson, Kerrylyn; Holden, Joseph; Brown, Lee
2013-04-01
In the UK uplands, prescribed burning of moorland vegetation is a common practice to maintain suitable habitats for game birds. Many of these landscapes are in catchments covered by significant deposits of blanket peat (typically one metre or more in depth). There is growing interest in the effect of land management on the stability of these peatland carbon stores, and their contribution to dissolved and particulate organic carbon in surface waters (DOC and POC, respectively) and subsequent effects on stream biogeochemistry and ecology. Yet there are surprisingly few published catchment-scale studies on the effect of moorland burning on DOC and POC. As part of the EMBER project, stream chemistry data were collected approximately monthly in ten upland blanket peat catchments in the UK, five of which acted as controls and were not subject to burning. The other five catchments were subject to a history of prescribed burning, typically in small patches (300-900 m2) in rotations of 8-25 years. Soil solution DOC was also monitored at four depths at two intensively studied sites (one regularly burned and one control). At the two intensive sites, soil solution DOC was considerably higher at the burned site, particularly in surface solutions where concentrations in excess of 100 mg/L were recorded on several occasions (median 37 mg/L over 18 months). The high soil solution DOC concentrations at the burned site occurred in the most recently burned plots (less than 2 years prior to start of sampling) and the lowest DOC concentrations were observed in plots burned 15-25 years previously. On average, median stream DOC and POC concentrations were approximately 43% and 35% higher respectively in burned catchments relative to control catchments. All streams exhibited peak DOC in late summer/early autumn with higher peak DOC concentrations in burned catchments (20-66 mg/L) compared to control catchments (18-54 mg/L). During winter months, DOC concentrations were low in control catchments (typically less than 15 mg/L) but were highly variable in burned catchments (9-40 mg/L), implying some instability of peat carbon stores and/or fluctuation in source. The results offer strong evidence for an impact of burning on the delivery of DOC to streams, possibly through increased surface run-off from bare or partially vegetated patches.
NASA Astrophysics Data System (ADS)
Säurich, Annelie; Tiemeyer, Bärbel; Don, Axel; Burkart, Stefan
2017-04-01
Drained peatlands are hotspots of carbon dioxide (CO2) emissions from agriculture. As a consequence of both drainage induced mineralization and anthropogenic sand mixing, large areas of former peatlands under agricultural use contain soil organic carbon (SOC) at the boundary between mineral and organic soils. Studies on SOC dynamics of such "low carbon organic soils" are rare as the focus of previous studies was mainly either on mineral soils or "true" peat soil. However, the variability of CO2 emissions increases with disturbance and therefore, we have yet to understand the reasons behind the relatively high CO2 emissions of these soils. Peat properties, soil organic matter (SOM) quality and water content are obviously influencing the rate of CO2 emissions, but a systematic evaluation of the hydrological and biogeochemical drivers for mineralization of disturbed peatlands is missing. With this incubation experiment, we aim at assessing the drivers of the high variability of CO2 emissions from strongly anthropogenically disturbed organic soil by systematically comparing strongly degraded peat with and without addition of sand under different moisture conditions and for different peat types. The selection of samples was based on results of a previous incubation study, using disturbed samples from the German Agricultural Soil Inventory. We sampled undisturbed soil columns from topsoil and subsoil (three replicates of each) of ten peatland sites all used as grassland. Peat types comprise six fens (sedge, Phragmites and wood peat) and four bogs (Sphagnum peat). All sites have an intact peat horizon that is permanently below groundwater level and a strongly disturbed topsoil horizon. Three of the fen and two of the bog sites have a topsoil horizon altered by sand-mixing. In addition the soil profile was mapped and samples for the determination of soil hydraulic properties were collected. All 64 soil columns (including four additional reference samples) will be installed in a microcosm system under a constant temperature of 10°C. The water-saturated soil columns will be drained via suction plates at the bottom of the columns by stepwise increase of the suction. The head space of the soil columns will be permanently flushed with moistened synthetic air and CO2 concentrations will be measured via online gas chromatography. First results will be presented.
Effect of freeze-thaw cycles on greenhouse gas fluxes from peat soils
NASA Astrophysics Data System (ADS)
Oh, H. D.; Rezanezhad, F.; Markelov, I.; McCarter, C. P. R.; Van Cappellen, P.
2017-12-01
The ongoing displacement of climate zones by global warming is increasing the frequency and intensity of freeze-thaw cycles in middle and high latitude regions, many of which are dominated by organic soils such as peat. Repeated freezing and thawing of soils changes their physical properties, geochemistry, and microbial community structure, which together govern the biogeochemical cycling of carbon and nutrients. In this presentation, we focus on how freeze-thaw cycles influence greenhouse gas fluxes from peat using a newly developed experimental soil column system that simulates realistic soil temperature profiles during freeze-thaw cycles. We measured the surface and subsurface changes to gas and aqueous phase chemistry to delineate the diffusion pathways and quantify soil greenhouse gas fluxes during freeze-thaw cycles using sulfur hexafluoride (SF6) as a conservative tracer. Three peat columns were assembled inside a temperature controlled chamber with different soil structures. All three columns were packed with 40 cm of undisturbed, slightly decomposed peat, where the soil of two columns had an additional 10 cm layer on top (one with loose Sphagnum moss and one with an impermeable plug). The results indicate that the release of SF6 and CO2 gas from the soil surface was influenced by the recurrent development of a physical ice barrier, which prevented gas exchange between the soil and atmosphere during freezing conditions. With the onset of thawing a pulse of SF6 and CO2 occurred, resulting in a flux of 3.24 and 2095.52 µmol/m2h, respectively, due to the build-up of gases in the liquid-phase pore space during freezing. Additionally, we developed a model to determine the specific diffusion coefficients for each peat column. These data allow us to better predict how increased frequency and intensity of freeze-thaw cycles will affect greenhouse gas emissions in northern peat soils.
Peat bogs as hotspots for organoarsenical formation and persistence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mikutta, Christian; Rothwell, James J.
Here, peatlands have received significant atmospheric inputs of As and S since the onset of the Industrial Revolution, but the effect of S deposition on the fate of As is largely unknown. It may encompass the formation of As sulfides and organosulfur-bound As, or the indirect stimulation of As biotransformation processes, which are presently not considered as important As immobilization pathways in wetlands. To investigate the immobilization mechanisms of anthropogenically derived As in peatlands subjected to long-term atmospheric pollution, we explored the solid-phase speciation of As, Fe, and S in English peat bogs by X-ray absorption spectroscopy. Additionally, we analyzedmore » the speciation of As in pore- and streamwaters. Linear combination fits of extended X-ray absorption fine structure (EXAFS) data imply that 62–100% (average: 82%) of solid-phase As (As tot: 9–92 mg/kg) was present as organic As(V) and As(III). In agreement with appreciable concentrations of organoarsenicals in surface waters (pH: 4.0–4.4, Eh: 165–190 mV, average Astot: 1.5–129 μg/L), our findings reveal extensive biotransformation of atmospheric As and the enrichment of organoarsenicals in the peat, suggesting that the importance of organometal(loid)s in wetlands subjected to prolonged air pollution is higher than previously assumed.« less
Peat bogs as hotspots for organoarsenical formation and persistence
Mikutta, Christian; Rothwell, James J.
2016-04-01
Here, peatlands have received significant atmospheric inputs of As and S since the onset of the Industrial Revolution, but the effect of S deposition on the fate of As is largely unknown. It may encompass the formation of As sulfides and organosulfur-bound As, or the indirect stimulation of As biotransformation processes, which are presently not considered as important As immobilization pathways in wetlands. To investigate the immobilization mechanisms of anthropogenically derived As in peatlands subjected to long-term atmospheric pollution, we explored the solid-phase speciation of As, Fe, and S in English peat bogs by X-ray absorption spectroscopy. Additionally, we analyzedmore » the speciation of As in pore- and streamwaters. Linear combination fits of extended X-ray absorption fine structure (EXAFS) data imply that 62–100% (average: 82%) of solid-phase As (As tot: 9–92 mg/kg) was present as organic As(V) and As(III). In agreement with appreciable concentrations of organoarsenicals in surface waters (pH: 4.0–4.4, Eh: 165–190 mV, average Astot: 1.5–129 μg/L), our findings reveal extensive biotransformation of atmospheric As and the enrichment of organoarsenicals in the peat, suggesting that the importance of organometal(loid)s in wetlands subjected to prolonged air pollution is higher than previously assumed.« less
NASA Astrophysics Data System (ADS)
Bauer, I. E.; Bhatti, J. S.; Hurdle, P. A.
2004-05-01
Field-based decomposition studies that examine several site types tend to use one of two approaches: Either the decay of one (or more) standard litters is examined in all sites, or litters native to each site type are incubated in the environment they came from. The first of these approaches examines effects of environment on decay, whereas the latter determines rates of mass loss characteristic of each site type. Both methods are usually restricted to a limited number of litters, and neither allows for a direct estimate of ecosystem-level parameters (e.g. heterotrophic respiration). In order to examine changes in total organic matter turnover along forest - peatland gradients in central Saskatchewan, we measured mass loss of native peat samples from six different depths (surface to 50 cm) over one year. Samples were obtained by sectioning short peat cores, and cores and samples were returned to their original position after determining the initial weight of each sample. A standard litter (birch popsicle sticks) was included at each depth, and water tables and soil temperature were monitored over the growing season. After one year, average mass loss in surface peat samples was similar to published values from litter bag studies, ranging from 12 to 21 percent in the environments examined. Native peat mass loss showed few systematic differences between sites or along the forest - peatland gradient, with over 60 percent of the total variability explained by depth alone. Mass loss of standard litter samples was highly variable, with high values in areas at the transition between upland and peatland that may have experienced recent disturbance. In combination, these results suggest strong litter-based control over natural rates of organic matter turnover. Estimates of heterotrophic respiration calculated from the mass loss data are higher than values obtained by eddy covariance or static chamber techniques, probably reflecting loss of material during the handling of samples or increased mass loss from manipulated profiles. Nevertheless, the core-based method is a useful tool in examining carbon dynamics of organic soils, since it provides a good relative index of organic matter turnover, and allows for separate examination of environmental and litter-based effects.
Determining critical groundwater level to prevent degraded peatland from severe peat fire
NASA Astrophysics Data System (ADS)
Putra, E. I.; Cochrane, M. A.; Vetrita, Y.; Graham, L.; Saharjo, B. H.
2018-05-01
Peat fires have been a severe recurrent problem for Indonesia, but droughts due to prolonged dry season aggravate burning conditions. To get a better understanding of this issue, we studied fire conditions in a portion of the ex-Mega Rice Project (MRP) area, Central Kalimantan. To examine fire season and hydrology factors affecting peat fires we analyzed daily TRMM data, Nino 3.4 SST Anomalies, and changing groundwater levels (GWL) from 300 dipwells. Our results quantify time-lags between the period of lowest precipitation and the lowest GWL; providing some ability to predict fire risk in advance of the lowest GWL. The rise of Nino 3.4 SST anomalies is significant risk factors for peat fire as they signify dry months which may yield large fire occurrences. GWL in 2011 was lower than in 2012, but fires were more frequent in 2012, indicating that low precipitation amounts in the wet season of 2011/2012 left the peat in a dry condition early in 2012. Most of the fires occurred in areas with GWL less than -30 cm, powerfully illustrating the importance of maintaining GWL at more than -10 cm, to prevent degraded peatlands from experiencing surface and deep peat fires.
NASA Astrophysics Data System (ADS)
Cabolova, Anastasija
Peatlands cover a total area of approximately 3 million square kilometers and are one of the largest natural sources of atmospheric methane ( CH4) and carbon dioxide (CO 2). Most traditional methods used to estimate biogenic gas dynamics are invasive and provide little or no information about lateral distribution of gas. In contrast, Ground Penetrating Radar (GPR) is an emerging technique for non-invasive investigation of gas dynamics in peat soils. This thesis establishes a direct comparison between gas dynamics (i.e. build-up and release) of four different types of peat soil using GPR. Peat soil blocks were collected at peatlands with contrasting latitudes, including the Everglades, Maine and Minnesota. A unique two-antenna GPR setup was used to monitor biogenic gas buildup and ebullition events over a period of 4.5 months, constraining GPR data with surface deformation measurements and direct CH 4 and CO2 concentration measurements. The effect of atmospheric pressure was also investigated. This study has implications for better understanding global gas dynamics and carbon cycling in peat soils and its role in climate change.
NASA Astrophysics Data System (ADS)
Evans, Chris D.; Page, Susan E.; Jones, Tim; Moore, Sam; Gauci, Vincent; Laiho, Raija; Hruška, Jakub; Allott, Tim E. H.; Billett, Michael F.; Tipping, Ed; Freeman, Chris; Garnett, Mark H.
2014-11-01
Carbon sequestration and storage in peatlands rely on consistently high water tables. Anthropogenic pressures including drainage, burning, land conversion for agriculture, timber, and biofuel production, cause loss of pressures including drainage, burning, land conversion for agriculture, timber, and biofuel production, cause loss of peat-forming vegetation and exposure of previously anaerobic peat to aerobic decomposition. This can shift peatlands from net CO2 sinks to large CO2 sources, releasing carbon held for millennia. Peatlands also export significant quantities of carbon via fluvial pathways, mainly as dissolved organic carbon (DOC). We analyzed radiocarbon (14C) levels of DOC in drainage water from multiple peatlands in Europe and Southeast Asia, to infer differences in the age of carbon lost from intact and drained systems. In most cases, drainage led to increased release of older carbon from the peat profile but with marked differences related to peat type. Very low DOC-14C levels in runoff from drained tropical peatlands indicate loss of very old (centuries to millennia) stored peat carbon. High-latitude peatlands appear more resilient to drainage; 14C measurements from UK blanket bogs suggest that exported DOC remains young (<50 years) despite drainage. Boreal and temperate fens and raised bogs in Finland and the Czech Republic showed intermediate sensitivity. We attribute observed differences to physical and climatic differences between peatlands, in particular, hydraulic conductivity and temperature, as well as the extent of disturbance associated with drainage, notably land use changes in the tropics. Data from the UK Peak District, an area where air pollution and intensive land management have triggered Sphagnum loss and peat erosion, suggest that additional anthropogenic pressures may trigger fluvial loss of much older (>500 year) carbon in high-latitude systems. Rewetting at least partially offsets drainage effects on DOC age.
Patterns and drivers of fungal community depth stratification in Sphagnum peat
Louis J. Lamit; Karl J. Romanowicz; Lynette R. Potvin; Adam R. Rivers; Kanwar Singh; Jay T. Lennon; Susannah G. Tringe; Evan S. Kane; Erik A. Lilleskov
2017-01-01
Peatlands store an immense pool of soil carbon vulnerable to microbial oxidation due to drought and intentional draining. We used amplicon sequencing and quantitative PCR to (i) examine how fungi are influenced by depth in the peat profile, water table and plant functional group at the onset of a multiyear mesocosm experiment, and (ii) test if fungi are correlated with...
National scale assessment of total trihalomethanes in Irish drinking water.
O'Driscoll, Connie; Sheahan, Jerome; Renou-Wilson, Florence; Croot, Peter; Pilla, Francesco; Misstear, Bruce; Xiao, Liwen
2018-04-15
Ireland reported the highest non-compliance with respect to total trihalomethanes (TTHMs) in drinking water across the 27 European Union Member States for the year 2010. We carried out a GIS-based investigation of the links between geographical parameters and catchment land-uses with TTHMs concentrations in Irish drinking water. A high risk catchment map was created using peat presence, rainfall (>1400 mm) and slope (<5%) and overlain with a map comprising the national dataset of routinely monitored TTHM concentrations. It appeared evident from the map that the presence of peat, rainfall and slope could be used to identify catchments at high risk to TTHM exceedances. Furthermore, statistical analyses highlighted that the presence of peat soil with agricultural land was a significant driver of TTHM exceedances for all treatment types. PARAFAC analysis from three case studies identified a fluorophore indicative of reprocessed humic natural organic matter as the dominant component following treatment at the three sites. Case studies also indicated that (1) chloroform contributed to the majority of the TTHMs in the drinking water supplies and (2) the supply networks contributed to about 30 μg L -1 of TTHMs. Copyright © 2018 Elsevier Ltd. All rights reserved.
Gamble, James M.; Burow, Karen R.; Wheeler, Gail A.; Hilditch, Robert; Drexler, Judy Z.
2003-01-01
Data were collected during a study to determine the effects of continuous shallow flooding on ground-water discharge to an agricultural drainage ditch on Twitchell Island, California. The conceptual model of the hydrogeologic setting was detailed with soil coring and borehole-geophysical logs. Twenty-two monitoring wells were installed to observe hydraulic head. Ten aquifer slug tests were done in peat and mineral sediments. Ground-water and surface-water temperature was monitored at 14 locations. Flow to and from the pond was monitored through direct measurement of flows and through the calculation of a water budget. These data were gathered to support the development of a two-dimensional ground-water flow model. The model will be used to estimate subsurface discharge to the drainage ditch as a result of the pond. The estimated discharge will be used to estimate the concentrations of DOC that can be expected in the ditch.
NASA Astrophysics Data System (ADS)
Gharedaghloo, Behrad; Price, Jonathan S.; Rezanezhad, Fereidoun; Quinton, William L.
2018-06-01
Micro-scale properties of peat pore space and their influence on hydraulic and transport properties of peat soils have been given little attention so far. Characterizing the variation of these properties in a peat profile can increase our knowledge on the processes controlling contaminant transport through peatlands. As opposed to the common macro-scale (or bulk) representation of groundwater flow and transport processes, a pore network model (PNM) simulates flow and transport processes within individual pores. Here, a pore network modeling code capable of simulating advective and diffusive transport processes through a 3D unstructured pore network was developed; its predictive performance was evaluated by comparing its results to empirical values and to the results of computational fluid dynamics (CFD) simulations. This is the first time that peat pore networks have been extracted from X-ray micro-computed tomography (μCT) images of peat deposits and peat pore characteristics evaluated in a 3D approach. Water flow and solute transport were modeled in the unstructured pore networks mapped directly from μCT images. The modeling results were processed to determine the bulk properties of peat deposits. Results portray the commonly observed decrease in hydraulic conductivity with depth, which was attributed to the reduction of pore radius and increase in pore tortuosity. The increase in pore tortuosity with depth was associated with more decomposed peat soil and decreasing pore coordination number with depth, which extended the flow path of fluid particles. Results also revealed that hydraulic conductivity is isotropic locally, but becomes anisotropic after upscaling to core-scale; this suggests the anisotropy of peat hydraulic conductivity observed in core-scale and field-scale is due to the strong heterogeneity in the vertical dimension that is imposed by the layered structure of peat soils. Transport simulations revealed that for a given solute, the effective diffusion coefficient decreases with depth due to the corresponding increase of diffusional tortuosity. Longitudinal dispersivity of peat also was computed by analyzing advective-dominant transport simulations that showed peat dispersivity is similar to the empirical values reported in the same peat soil; it is not sensitive to soil depth and does not vary much along the soil profile.
McCartan, L.; Peper, J.D.; Bachman, L.J.; Horton, J. Wright
1999-01-01
Geologic map units contain much information about the mineralogy, chemistry, and physical attributes of the rocks mapped. This paper presents information from regional-scale geologic maps in Maryland and Virginia, which are in the southern part of the Chesapeake Bay watershed in the eastern United States. The geologic map information is discussed and analyzed in relation to water chemistry data from shallow wells and stream reaches in the area. Two environmental problems in the Chesapeake Bay watershed are used as test examples. The problems, high acidity and high nitrate concentrations in streams and rivers, tend to be mitigated by some rock and sediment types and not by others. Carbonate rocks (limestone, dolomite, and carbonate-cemented rocks) have the greatest capacity to neutralize acidic ground water and surface water in contact with them. Rocks and sediments having high carbon or sulfur contents (such as peat and black shale) potentially contribute the most toward denitrification of ground water and surface water in contact with them. Rocks and sediments that are composed mostly of quartz, feldspar, and light-colored clay (rocks such as granite and sandstone, sediments such as sand and gravel) tend not to alter the chemistry of waters that are in contact with them. The testing of relationships between regionally mapped geologic units and water chemistry is in a preliminary stage, and initial results are encouraging.Geologic map units contain much information about the mineralogy, chemistry, and physical attributes of the rocks mapped. This paper presents information from regional-scale geologic maps in Maryland and Virginia, which are in the southern part of the Chesapeake Bay watershed in the eastern United States. The geologic map information is discussed and analyzed in relation to water chemistry data from shallow wells and stream reaches in the area. Two environmental problems in the Chesapeake Bay watershed are used as test examples. The problems, high acidity and high nitrate concentrations in streams and rivers, tend to be mitigated by some rock and sediment types and not by others. Carbonate rocks (limestone, dolomite, and carbonate-cemented rocks) have the greatest capacity to neutralize acidic ground water and surface water in contact with them. Rocks and sediments having high carbon or sulfur contents (such as peat and black shale) potentially contribute the most toward denitrification of ground water and surface water in contact with them. Rocks and sediments that are composed mostly of quartz, feldspar, and light-colored clay (rocks such as granite and sandstone, sediments such as sand and gravel) tend not to alter the chemistry of waters that are in contact with them. The testing of relationships between regionally mapped geologic units and water chemistry is in a preliminary stage, and initial results are encouraging.
SPRUCE Peat Physical and Chemical Characteristics from Experimental Plot Cores, 2012
Iversen, C. M. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Hanson, P. J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Brice, D. J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Phillips, J. R. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; McFarlane, K. J. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Hobbie, E. A. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.; Kolka, R. K. [Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.
2012-01-01
This data set reports the results of physical and chemical analyses of peat core samples from the SPRUCE experimental study plots located in the S1-Bog. On August 13-15, 2012, a team of SPRUCE investigators and collaborators collected core samples of peat in the SPRUCE experimental plots. The goal was to characterize the biological, physical, and chemical characteristics of peat, and how those characteristics changed throughout the depth profile of the bog, prior to the initialization of the SPRUCE experimental warming and CO2 treatments. Cores were collected from 16 experimental plots; samples were collected from the hummock and hollow surfaces to depths of 200-300 cm in defined increments. Three replicate cores were collected from both hummock and hollow locations in each plot. The coring locations within each plot were mapped
NASA Astrophysics Data System (ADS)
Schot, P. P.; van der Wal, J.
1992-06-01
The relations between groundwater composition, land use, soil conditions and flow patterns on a regional scale are studied for the Gooi and Vechtstreek area in the Netherlands. This densely populated area consists of a glacier-created ridge with dry sand soils bordered by the Vecht and Eem River plains with wet peat and clay soils. R-mode factor analysis and Q-mode cluster analysis were applied to a set of 1349 groundwater analyses to determine the factors controlling groundwater composition and the main resulting water types. The results indicate that groundwater composition in the study area is affected on a regional scale by human activities through changes in land use and intervention in natural flow patterns. On the ridge, ground water is recharged by precipitation, which dissolves carbonates from the matrix of the sandy aquifer. Increased solute concentrations in shallow ground water, especially of nitrate, sulphate and potassium, indicate increased pollution resulting from urbanization and increasingly intensive agricultural activity over the past decades. In the Vecht River plain infiltration occurs as a result of drainage of polders and groundwater extraction on the ridge. Recharge occurs by precipitation and from polluted surface water to which ammonium, organic complexes and carbonic acid are added through decomposition of organic matter in the peat and clay soils. The carbonic acid results in enhanced dissolution of carbonates present in the soil and the underlying sandy aquifer. Oxygen depletion and subsequent low redox potentials result in denitrification, dissolution of manganese and iron oxides, and sulphate reduction. The flow of ground water from high-level to low-level polders causes displacement of a former stagnant brakish groundwater body under the Vecht River plain accompanied by increased mixing of fresh and brackish ground water.
Peat conditions mapping using MODIS time series
NASA Astrophysics Data System (ADS)
Poggio, Laura; Gimona, Alessandro; Bruneau, Patricia; Johnson, Sally; McBride, Andrew; Artz, Rebekka
2016-04-01
Large areas of Scotland are covered in peatlands, providing an important sink of carbon in their near natural state but act as a potential source of gaseous and dissolved carbon emission if not in good conditions. Data on the condition of most peatlands in Scotland are, however, scarce and largely confined to sites under nature protection designations, often biased towards sites in better condition. The best information available at present is derived from labour intensive field-based monitoring of relatively few designated sites (Common Standard Monitoring Dataset). In order to provide a national dataset of peat conditions, the available point information from the CSM data was modelled with morphological features and information derived from MODIS sensor. In particular we used time series of indices describing vegetation greenness (Enhanced Vegetation Index), water availability (Normalised Water Difference index), Land Surface Temperature and vegetation productivity (Gross Primary productivity). A scorpan-kriging approach was used, in particular using Generalised Additive Models for the description of the trend. The model provided the probability of a site to be in favourable conditions and the uncertainty of the predictions was taken into account. The internal validation (leave-one-out) provided a mis-classification error of around 0.25. The derived dataset was then used, among others, in the decision making process for the selection of sites for restoration.
Environmental controls on leaf wax δD ratios in surface peats across the monsoonal region of China
NASA Astrophysics Data System (ADS)
Huang, X.; Xue, J.; Wang, X.; Meyers, P. A.
2015-09-01
Leaf wax molecular and isotopic ratios are generally considered robust isotopic paleohydrologic proxies. Here we evaluate the proxy value of the molecular distributions and hydrogen isotopic compositions of long chain n-alkanes (δDalk) in surface peats collected from peatlands across a range of annual air temperatures from 1 to 15 °C and a range of annual mean precipitation from 720 to 2070 mm in the monsoonal region of China. The alkane ratios (ACL and CPI) and δDalk values show relatively large variations in multiple samples from a single site, highlighting the complexity of these ratios at a small spatial scale. In the montane Zoigê peatland, the apparent fractionation between precipitation and δDalk is more positive than in the other six sites, which is possibly an effect of the higher conductivity of the water in this high elevation site (3500 m a.s.l.). At a larger spatial scale, the site-averaged CPI ratios and the δDalk values of n-C29 and n-C31 alkanes show significant correlation with the air temperature and precipitation. These results support the application of the CPI ratio and the δDalk ratios of n-C29 and n-C31 alkanes as sensitive paleohydrologic proxies on millennial and larger timescales.
NASA Astrophysics Data System (ADS)
Mikhaylenko, E. A.; Stepchenko, L. M.
2009-04-01
The mechanism of adaptive action of peat preparations needs further understanding. Therefore, the research studied of the effects of the peat "Hydrohumate", on the adaptation processes of young rats, born from mothers who received this preparation togethewater durinr with g a lengthy time psycho-emotional stress (swimming). The test measured selected activity of proteolytic lysosomol cathepsin L in the spleen, heart and liver tissues, and in the grey matter of the large hemispheres of the cerebrum and cerebellum. The amount of cathepsin L activity was determined in 15- and 30-day-old rats with azocasein as substrate. The experiment established that rats, born from stressed mothers that drank plain water during stress had less body mass and altered organ indexes, including the adrenal gland index, compared to rats born from mothers who drank water with the peat preparation added. The change of cathepsin L activity in offspring of treated rats compared to controls demonstrates that structural adaptations occurred, affecting a perceptible and labile system such as the activity of lysosomal enzymes. Discussion will include the effect of humic preparations added to water on rats in the adaptive mechanisms of offspring after prenatal stress.
McKenzie, J.M.; Voss, C.I.; Siegel, D.I.
2007-01-01
In northern peatlands, subsurface ice formation is an important process that can control heat transport, groundwater flow, and biological activity. Temperature was measured over one and a half years in a vertical profile in the Red Lake Bog, Minnesota. To successfully simulate the transport of heat within the peat profile, the U.S. Geological Survey's SUTRA computer code was modified. The modified code simulates fully saturated, coupled porewater-energy transport, with freezing and melting porewater, and includes proportional heat capacity and thermal conductivity of water and ice, decreasing matrix permeability due to ice formation, and latent heat. The model is verified by correctly simulating the Lunardini analytical solution for ice formation in a porous medium with a mixed ice-water zone. The modified SUTRA model correctly simulates the temperature and ice distributions in the peat bog. Two possible benchmark problems for groundwater and energy transport with ice formation and melting are proposed that may be used by other researchers for code comparison. ?? 2006 Elsevier Ltd. All rights reserved.
Ground water recharge and discharge in the central Everglades
Harvey, Judson W.; Krupa, Steven L.; Krest, James M.
2004-01-01
Rates of ground water recharge and discharge are not well known in the central Everglades. Here we report estimates of ground water recharge and discharge at 15 sites in the Everglades Nutrient Removal Project and in Water Conservation Area 2A (WCA-2A), along with measurements of hydraulic properties of peat at 11 sites. A simple hydrogeologic simulation was used to assess how specific factors have influenced recharge and discharge. Simulations and measurements agreed that the highest values of recharge and discharge occur within 600 m of levees, the result of ground water flow beneath levees. There was disagreement in the interior wetlands of WCA-2A (located > 1000 m from levees) where measurements of recharge and discharge were substantially higher than simulated fluxes. A five-year time series (1997 to 2002) of measured fluxes indicated that recharge and discharge underwent reversals in direction on weekly, monthly, and annual timescales at interior sites in WCA-2A. Ground water discharge tended to occur during average to moderately dry conditions when local surface water levels were decreasing. Recharge tended to occur during moderately wet periods or during very dry periods just as water levels began to increase following precipitation or in response to a pulse of surface water released from water-control structures by water managers. Discharge also tended to occur at sites in the wetland interior for ∼1 week preceding the arrival of the surface water pulse. We conclude that ground water recharge and discharge vary cyclically in the interior wetlands of the central Everglades, driven by the differential responses of surface water and ground water to annual, seasonal, and weekly trends in precipitation and operation of water-control structures.
Lu, Xin; Liu, Lizhu; Fan, Ruqin; Luo, Jia; Yan, Shaohua; Rengel, Zed; Zhang, Zhenhua
2017-10-01
Composting is one of the post-treatment methods for phytoremediation plants. Due to a high potential of water hyacinth to accumulate pollutants, the physicochemical parameters, microbial activity as well as fates of copper (Cu) and tetracyclines (TCs) were investigated for the different amended water hyacinth biomass harvested from intensive livestock and poultry wastewater, including unamended water hyacinth (W), water hyacinth amended with peat (WP), and water hyacinth amended with pig manure (WPM) during the composting process. Pig manure application accelerated the composting process as evidenced by an increase of temperature, electrical conductivity (EC), NH 4 -N, as well as functional diversity of microbial communities compared to W and WP treatments. Composting process was slowed down by high Cu, but not by TCs. The addition of peat significantly increased the residual fraction of Cu, while pig manure addition increased available Cu concentration in the final compost. Cu could be effectively transformed into low available (oxidizable) and residual fractions after fermentation. In contrast, less than 0.5% of initial concentrations of TCs were determined at the end of 60-day composting for all treatments in the final composts. The dissipation of TCs was accelerated by the high Cu concentration during composting. Therefore, composting is an effective method for the post-treatment and resource utilization of phytoremediation plants containing Cu and/or TCs.
R. Kasten Dumroese; Deborah S. Page-Dumroese; Robert E. Brown
2011-01-01
Nursery irrigation regimes that recharged container capacity when target volumetric water content reached 72%, 58%, and 44% (by volume) influenced Pinus ponderosa Douglas ex Lawson & C. Lawson growth more than either a 1:1 (by volume) Sphagnum peat - vermiculite (PV) or a 7:3 (by volume) Sphagnum peat - sawdust (PS) medium. Exponential fertilization avoided...
Fluvial organic carbon losses from oil palm plantations on tropical peat, Sarawak, Southeast Asia
NASA Astrophysics Data System (ADS)
Cook, Sarah; Page, Susan; Evans, Chris; Whelan, Mick; Gauci, Vincent; Lip Khoon, Kho
2017-04-01
Tropical peatlands are valuable stores of carbon. However, tropical peat swamp forests (TPSFs) in Southeast Asia have increasingly been converted to other land-uses. For example, more than 25% of TPSFs are now under oil palm plantations. This conversion - requiring felling and burning of trees and drainage of the peat - can enhance carbon mineralization, dissolved organic carbon (DOC) losses and can contribute significantly to global anthropogenic greenhouse gas emissions, changing these natural carbon sinks into carbon sources. At present, relatively few scientifically sound studies provide dependable estimates of gaseous and fluvial carbon losses from oil palm plantations or from drained tropical peat in general. Here we present an annual (54 week) estimate of the export of dissolved and particulate organic carbon in water draining two oil palm estates and nearby stands of TPSF in Sarawak, Malaysia, subjected to varying degrees of past anthropogenic disturbance. Spectrophotometric techniques including SUVA254 (Specific Ultra-Violet Absorption) were used to gain insight into the aromaticity and subsequent bioavailability of the exported DOC. Water draining plantation and deforested land had a higher proportion of labile carbon compared to water draining forested areas. Preliminary data suggest a total fluvial DOC flux from plantations of ca. 190 g C m-2 year-1; nearly three times estimates from intact TPSFs (63 g C m-2 year-1). DOC accounted for between 86 % - 94 % of the total organic carbon lost (most of which was bioavailable). Wit et al. (2015) estimates that an average of 53 % of peat-derived DOC is decomposed and emitted as CO2, on a monthly basis. Based on these estimates our data suggests an additional 101 g CO2 m-2 may be emitted indirectly from fluvial organic carbon in degraded TPSFs per year. Overall, these findings emphasize the importance of including fluvial organic carbon fluxes when quantifying the impact of anthropogenic disturbance on the peatland carbon budget. Given the increasing expansion of oil palm plantations on tropical peat, within Southeast Asia, it is essential that fluvial organic carbon data is incorporated into assessment criteria, helping countries to better monitor, report and verify their land-based greenhouse gas emissions.
The San Niccolo' experimental area for studying the hydrology of coastal Mediterranean peatlands
NASA Astrophysics Data System (ADS)
Rossetto, Rudy; Barbagli, Alessio; Sabbatini, Tiziana; Silvestri, Nicola; Bonari, Enrico
2015-04-01
Starting from 1930, a large part of the Massaciuccoli Lake coastal area (Tuscany, Italy) has been drained for agricultural purposes by a complex network of artificial drains and pumping stations. In the drained areas, peat soils, with values of organic matter up to 50% in some cases, are largely present (Pistocchi et al., 2012). As a consequence of the human impact, environmental problems arose in the last 50 years: i. the eutrophication status of the Massaciuccoli lake caused by nutrient enrichment (N, P) in surface- and ground-water (Rossetto et al., 2010a); ii. the subsidence (2-3 m in 70 years) of the lake bordering areas due to soil compaction and mineralization (Rossetto et al., 2010b). As a potential solution to improve water quality and to decrease soil organic matter mineralization, a rewetted pilot experimental area of 15 ha with phyto-treatment functionalities has been set up. This pilot, adequately instrumented, now constitutes an open field lab to conduct research on the hydrology of coastal Mediterranean peatlands. Site investigation was performed and data on stratigraphy (from top on average: 1/2 m thick peat layer, 1/3 m organic matter-rich silt, 1/3 m stiff blue-gray clay, up to 30 m thick sand layer) and water (ground- and surface-water) quantity and quality were gathered and related to both local and regional groundwater flows. The inferred hydrological conceptual model revealed the pilot is set in a regional discharge area and the ground-water dependent nature of the agro-ecosystem, with mixing of waters with different origins. The site has been divided in three different phyto-treatment systems: a constructed wetland system, internally and externally banked in order to force water flow to a convoluted pattern where Phragmites australis L. and Thypha angustifolia L. constitute the sparse natural vegetation; a vegetation filter system based on the plantation of seven different no-food crops managed according to a periodic cutting and biomass harvesting (eg: Populus spp., Salix spp., Arundo donax L., Miscanthus x giganteus ). The system is crossed by a dense network of ditches supplying water to the crops through lateral infiltration and partial submersion; a wetland system consisting in a flooded area where the re-colonization of spontaneous vegetation takes place. The designed monitoring system includes sensors in surface- and ground-water. The ground-water monitoring system consists of a set of 15 piezometer clusters. At each cluster three piezometers (3 inch diameter, screened in the last 30 cm) are set at about 3 m, 2 m and 1 m depth to allow multilevel monitoring and sampling so to investigate a large part of the aquifer and the relationships between the surface-water and ground-water systems. An unsaturated pilot monitoring station has been designed and it will be set in operation to gain information on infiltration and/or exfiltration processes and evapotranspiration. Ten sensors for continuously monitoring groundwater head, temperature and electrical conductivity are in operation. Surface water are monitored by means of six gauging stations where sensors are recording at least head, temperature and electrical conductivity. At four of them continuous sampling takes place with a composite daily sample made up of four samples, each gathered every six hours. A complete hydrological monitoring protocol has been set in place starting by meteorological data aquisition. As well as continuous monitoring with in-situ sensors and composite sampling with automatic samplers, discrete monitoring on monthly basis takes place. Main physico/chemical parameters (temperature, pH, dissolved oxygen, electrical conductivity and redox potential) are routinely monitored. The experimental area is in operation since December 2013. Acknowledgements The authors wish to thank the Consorzio 1 - Toscana Nord for technical support. References Pistocchi C., Silvestri N., Rossetto R., Sabbatini T., Guidi M., Baneschi I., Bonari E. & Trevisan D. (2012) - A simple model to assess nitrogen and phosphorus contamination in ungauged surface drainage networks: application to the Massaciuccoli Lake Catchment, Italy. Journal of Environmental Quality 41, 544-53. Rossetto,R., Basile, P., Cavallaro, E., Menichetti,S., Pistocchi, C., Sabbatini, T., Silvestri, N. & Bonari, E. (2010a) - Phosphorous presence in groundwater from peat oxidation: preliminary results from the Lake Massaciuccoli area (Italy). International Groundwater Symposium I.A.H.R. Valencia (Spain). Rossetto R., Basile P., Cannavò S., Pistocchi C., Sabbatini T., Silvestri N. & Bonari E. (2010b) - Surface water and groundwater monitoring and numerical modeling of the southern sector of the Massaciuccoli Lake basin (Italy). Rendiconti Online Società Geologica Italiana 11, 189-190.
Stratigraphic response of salt marshes to slow rates of sea-level change
NASA Astrophysics Data System (ADS)
Daly, J.; Bell, T.
2006-12-01
Conventional models of salt-marsh development show an idealized spatial relationship between salt-marsh floral and foraminiferal zones, where the landward margin of the marsh gradually migrates inland in response to sea-level rise. This model predicts that transgression will result in persistent and possibly expanded salt marshes at the surface, depending on a variety of factors including sediment supply, hydrologic conditions, tidal range, and rate of sea-level rise. However, in areas with abundant sediment supply and slow rates of sea- level rise, the extent of back-barrier salt marshes may decline over time as the barrier-spits mature. Sea level around the northeast coast of Newfoundland is rising at a very slow rate during the late Holocene (<0.5 mm/yr). Sandy barrier-spits and tombolos are common coastal features, but salt marshes are rare. The generalized stratigraphy of dutch cores collected in back-barrier settings in this region is a surface layer of sphagnum peat with abundant woody roots, underlain by sedge-dominated peat that transitions gradually to a thin layer of Juncus sp. peat with agglutinated foraminifera, dominantly Jadammina macrescens and Balticammina pseudomacrescens. These basal peats are interpreted as salt-marsh peats, characterized by the presence of foraminifera that are absent in overlying peat units. This sequence indicates that salt marshes developed in back-barrier environments during the initial stages of barrier progradation, then gradually transitioned to environments increasingly dominated by freshwater flora. These transitions are interpreted to reflect the progradation of the spit, decreased tidal exchange in the back-barrier, and increased influence of freshwater streams discharging into the back-barrier setting. Decreased marine influence on the back-barrier environment leads to a floral and faunal shift associated with a regressive stratigraphy in an area experiencing sea-level rise. For studies of Holocene sea-level change requiring salt-marsh stratigraphic records, it is necessary to account for changing micro-environments to locate sites appropriate for study; salt marshes may play an important role in defining the record, but may not exist at the surface to guide investigation.
NASA Astrophysics Data System (ADS)
Koster, Kay; Stouthamer, Esther; Cohen, Kim; Stafleu, Jan; Busschers, Freek; Middelkoop, Hans
2016-04-01
Peat is abundantly present within the Holocene coastal-deltaic sequence of the Netherlands, where it is alternating with clastic fluvial, estuarine and lagoonal deposits. The areas that are rich in peat are vulnerable to land subsidence, resulting from consolidation and oxidation, due to loading by overlying deposits, infrastructure and buildings, as well as excessive artificial drainage. The physical properties of the peat are very heterogeneous, with variable clastic admixture up to 80% of its mass and rapid decrease in porosity with increasing effective stress. Mapping the spatial distribution of the peat properties is essential for identifying areas most susceptible to future land subsidence, as mineral content determines volume loss by oxidation, and porosity influences the rate of consolidation. Here we present the outline of a study focusing on mapping mechanical peat properties in relation to density and amount of admixed clastic constituents of Holocene peat layers (in 3D). In this study we use a staged approach: 1) Identifying soil mechanical properties in two large datasets that are managed by Utrecht University and the Geological Survey. 2) Determining relations between these properties and palaeogeographical development of the area by evaluating these properties against known geological concepts such as distance to clastic source (river, estuary etc.). 3) Implementing the obtained relations in GeoTOP, which is a 3D geological subsurface model of the Netherlands developed by the Geological Survey. The model will be used, among others, to assess the susceptibility of different areas to peat related land subsidence and load bearing capacity of the subsurface. So far, our analysis has focused stage 1, by establishing empirical relations between mechanical peat properties in ~70 paired (piezometer) cone penetration tests and continuously cored boreholes with LOI measurements. Results show strong correlations between net cone resistance (qn), excess pore water (u1-u0), and total vertical stress (σvo), suggesting that the overburden strongly controls the vertical differential susceptibility of peat layers to consolidation.
NASA Astrophysics Data System (ADS)
Juutinen, Sari; Bubier, Jill; Larmola, Tuula; Humphreys, Elyn; Arnkil, Sini; Roy, Cameron; Moore, Tim
2016-04-01
Atmospheric nitrogen (N) deposition has led to nutrient enrichment in wetlands, particularly in temperate areas, affecting plant community composition, carbon (C) cycling, and microbial dynamics. It is vital to understand the temporal scales and mechanisms of the changes, because peatlands are long-term sinks of C, but sources of methane (CH4), an important greenhouse gas. Rainwater fed (ombrotrophic) bogs are considered to be vulnerable to nutrient loading due to their natural nutrient poor status. We fertilized Mer Bleue Bog, a Sphagnum moss and evergreen shrub-dominated ombrotrophic bog near Ottawa, Ontario, now for 11-16 years with N (NO3 NH4) at 0.6, 3.2, and 6.4 g N m-2 y-1 (~5, 10 and 20 times ambient N deposition during summer months) with and without phosphorus (P) and potassium (K). Treatments were applied to triplicate plots (3 x 3 m) from May - August 2000-2015 and control plots received distilled water. We measured CH4 fluxes with static chambers weekly from May to September 2015 and peat samples were incubated in laboratory to measure CH4 production and consumption potentials. Methane fluxes at the site were generally low, but after 16 years, mean CH4 emissions have increased and more than doubled in high nitrogen addition treatments if P and K input was also increased (3.2 and 6.4 g N m-2yr-1 with PK), owing to drastic changes in vegetation and soil moisture. Vegetation changes include a loss of Sphagnum moss and introduction of new species, typical to minerogenic mires, which together with increased decomposition have led to decreased surface elevation and to higher water table level relative to the surface. The trajectories indicate that the N only treatments may result in similar responses, but only over longer time scales. Elevated atmospheric deposition of nutrients to peatlands may increase loss of C not only due to changes in CO2 exchange but also due to enhanced CH4 emissions in peatlands through a complex suite of feedbacks and interactions among vegetation, microclimate, and microbial processes. It is uncertain, however, how the vegetation change continues due to collapsing surface and higher water table levels, and how that will affect future CH4 emissions and C balance.
Palmer, Katharina; Biasi, Christina; Horn, Marcus A
2012-01-01
Cryoturbated peat circles (that is, bare surface soil mixed by frost action; pH 3–4) in the Russian discontinuous permafrost tundra are nitrate-rich ‘hotspots' of nitrous oxide (N2O) emissions in arctic ecosystems, whereas adjacent unturbated peat areas are not. N2O was produced and subsequently consumed at pH 4 in unsupplemented anoxic microcosms with cryoturbated but not in those with unturbated peat soil. Nitrate, nitrite and acetylene stimulated net N2O production of both soils in anoxic microcosms, indicating denitrification as the source of N2O. Up to 500 and 10 μ nitrate stimulated denitrification in cryoturbated and unturbated peat soils, respectively. Apparent maximal reaction velocities of nitrite-dependent denitrification were 28 and 18 nmol N2O gDW−1 h−1, for cryoturbated and unturbated peat soils, respectively. Barcoded amplicon pyrosequencing of narG, nirK/nirS and nosZ (encoding nitrate, nitrite and N2O reductases, respectively) yielded ≈49 000 quality-filtered sequences with an average sequence length of 444 bp. Up to 19 species-level operational taxonomic units were detected per soil and gene, many of which were distantly related to cultured denitrifiers or environmental sequences. Denitrification-associated gene diversity in cryoturbated and in unturbated peat soils differed. Quantitative PCR (inhibition-corrected per DNA extract) revealed higher copy numbers of narG in cryoturbated than in unturbated peat soil. Copy numbers of nirS were up to 1000 × higher than those of nirK in both soils, and nirS nirK−1 copy number ratios in cryoturbated and unturbated peat soils differed. The collective data indicate that the contrasting N2O emission patterns of cryoturbated and unturbated peat soils are associated with contrasting denitrifier communities. PMID:22134649
Feasibility of a peat biogasification process
NASA Astrophysics Data System (ADS)
Buivid, M. G.; Wise, D. L.; Rader, A. M.; McCarty, P. L.; Owen, W. F.
1980-07-01
The feasibility of a two-stage biogasification process for the conversion of peat reserves, the energy content of which in the United States is greater than that of uranium, shale oil or petroleum and natural gas combined, into pipeline-quality methane is investigated. Samples of wet-harvested reed-sedge peat were pretreated in alkaline and nonalkaline conditions in the presence and absence of oxidation in order to determine the most favorable conditions for the conversion of cellulosic and lignaceous fractions to water-soluble, fermentable compounds, and the resulting products were subjected to anaerobic fermentation to methane. Conversion efficiencies obtained reveal that up to 26% of the initial heat content of peat was converted to methane when alkaline heat pretreatment was employed. Analysis of the process parameters by a computer model to determine equipment sizes, mass and energy balances and costs indicates that for a 79,200 GJ/day plant the total capital requirement would be $323,000,000, annual operating costs would be $44,000,000 and average SNG cost would be $3.16/GJ, assuming a 90% stream factor with a delivered peat slurry costing $0.0033/kg.
NASA Astrophysics Data System (ADS)
Oswald, C.; Carey, S. K.
2013-12-01
In the Athabasca oil sands region, mined landscapes must be reclaimed to a functioning natural ecosystem as part of the mine closure process. To test wetland construction techniques on oil sands tailings, 55 ha of mined landscape on the Syncrude Canada Ltd. property is being reclaimed to a watershed containing a graminoid fen. The 18 ha constructed fen consists of an approximately 50 cm thick peat-mineral soil layer separated from underlying tailings sand by a thin layer of clay till. The water table in the fen is maintained by pumping water into the fen from a nearby lake and controlling outflow with under-drains. The objective of this study was to assess total mercury (THg) and methyl mercury (MeHg) concentration dynamics in water exported from the fen in relation to organic carbon quantity and composition. Water quality data from summer 2012 when the fen pumps were first turned on show that dissolved organic carbon (DOC) concentrations are on average twice as high in water flowing through the underlying tailings sand aquifer (median: 42.0 mg/L) compared to DOC concentrations in water flowing through the fen peat package (median: 20.3 mg/L). Given these DOC concentrations, filtered THg concentrations are very low (median values are 0.81 ng/L and 0.17 ng/L for water flowing through the fen peat and sand tailings, respectively) compared to concentrations reported for other boreal wetlands. Although a relationship was identified between filtered THg and DOC (r2=0.60), its slope (0.06 ng Hg/mg C) is an order-of-magnitude smaller than the typical range of slopes found at other wetland sites potentially suggesting a small pool of mercury in the peat and/or limited partitioning of mercury into solution. Filtered MeHg concentrations in all water samples are near the limit of detection and suggest that biogeochemical conditions conducive to methylation did not exist in the fen peat or tailings sand at the time of sampling. In addition to these baseline THg and MeHg results that will be used to assess the evolution of mercury dynamics in the fen as the hydrology and vegetation become established, we are investigating the composition of dissolved organic matter (DOM) using optical techniques in the water flowing through the fen peat and underlying tailing sand aquifer. During 2013, continuous in situ measurements of chromophoric DOM fluorescence (FDOM) were measured at the fen outlet to identify sources of C and their relative contribution to discharge waters. We compare these field measurements to laboratory measurements of FDOM on discrete water samples using a benchtop spectrofluorometer to develop relationships between FDOM, DOC and filtered THg and MeHg. The use of continuous in situ FDOM measurements as a proxy for DOC and mercury concentrations will improve our understanding of the effects of hydrologic management and natural seasonal variations in fen hydrology on DOC and Hg fluxes from different soil layers in the constructed system. Furthermore, we expect that the modeling of excitation-emission matrices using parallel factor analysis on discrete water samples will provide important information on the sources and reactivity of organic carbon being transported through different soil compartments in the fen.
Immunomodulative properties of humic peat preparations
NASA Astrophysics Data System (ADS)
Stepchenko, L. M.; Syedykh, N. J.
2010-05-01
It is proved, that the humic peat preparations promote the resistance of plants, animals and poultry to the influence of both abyotyc and byotyc extreme factors of external environment, to action. It was shown by us before, that biologically active compounds from peat promote stability against different diseases of agricultural animals and poultry. We conducted researches of humic preparations influence (hydrohumate and oxyhumate) on several indexes of immunoreactivity of the organisms of chickens broilers, ostriches, cows and laboratory rats. It is found out, that adding of humic preparations to forage or drinking water results in the normalization of immunity indexes; in particular, leucocytes level, in the increase of the level of some classes of immunoglobuline in blood, of haemoglobin level, T- and B-lymphocytes level, as well as common unspecific resistance - lyzocymic, phagocytic and bactericidic activity. These results allow to suggest that the peat humic preparations show immunomodulative activity, influencing both on humoral and cel immunity links.
Bergamaschi, Brian A.; Fram, Miranda S.; Fujii, Roger; Aiken, George R.; Kendall, Carol; Silva, Steven R.
2000-01-01
Over 20 million people drink water from the Sacramento-San Joaquin Delta despite problematic levels of natural organic matter (NOM) and bromide in Delta water, which can form trihalomethanes (THMs) during the treatment process. It is widely believed that NOM released from Delta peat islands is a substantial contributor to the pool of THM precursors present in Delta waters. Dissolved NOM was isolated from samples collected at five channel sites within the Sacramento-San Joaquin Rivers and Delta, California, USA, and from a peat island agricultural drain. To help understand the sources of THM precursors, samples were analyzed to determine their chemical and isotopic composition, their propensity to form THMs, and the isotopic composition of the THMs.The chemical composition of the isolates was quite variable, as indicated by significant differences in carbon-13 nuclear magnetic resonance spectra and carbon-to-nitrogen concentration ratios. The lowest propensity to form THMs per unit of dissolved organic carbon was observed in the peat island agricultural drain isolate, even though it possessed the highest fraction of aromatic material and the highest specific ultraviolet absorbance. Changes in the chemical and isotopic composition of the isolates and the isotopic composition of the THMs suggest that the source of the THMs precursors was different between samples and between isolates. The pattern of variability in compositional and isotopic data for these samples was not consistent with simple mixing of river- and peat-derived organic material.
Understanding the Impact of Land Management on Carbon Losses from Peatlands
NASA Astrophysics Data System (ADS)
Savage, A.; Holden, J.; Wainwright, J.
2010-05-01
British peatlands have historically been managed in many different ways to provide an income for rural communities. Such practices involve heather burning on grouse shooting estates, sheep grazing, drainage to increase the area of land available for agriculture and afforestation. Carbon budget calculations for unmanaged peatlands have demonstrated that peatlands are carbon sinks. At present, little is known about how management affects carbon stocks, and whether one strategy might be favoured over another in the future, from a carbon stock preservation perspective. As the need to safeguard carbon stocks rises up the political agenda, questions are being asked about how peatlands should be managed to limit carbon losses. Carbon cycling in peat is governed by four drivers (Laiho, 2006), environmental conditions (e.g. temperature, water table level), substrate quality (e.g. how recalcitrant the peat is), nutrients (e.g. nitrogen required to synthesis the carbon stocks) and microbial community (e.g. are the microbes present able to utilise the available substrate). Changes in one or more of these drivers will influence the carbon budget of a peatland. How land management influences these drivers is unclear at present. Carbon budget calculations carried out by Worrall et al. (2003 and 2009) indicate that carbon dioxide and dissolved organic carbon (DOC) account for the greatest losses of carbon from peatland systems. If climate change predictions are realised, peatlands are expected to become sources of carbon as rising temperatures and falling water tables will result in increased rates of carbon mineralisation and subsequent losses of carbon. By investigating the influence of land management on these key carbon loss pathways, more accurate predictions of the effects of climate change on UK peatlands can be made. A field study was carried out in the British uplands to determine how carbon losses vary between differently managed peatlands, and to identify some of the underlying causes for such variations. The study focused on three of the driving factors identified by Laiho (2006): substrate quality, environmental conditions and nutrients. In addition, the physical properties of the peat - bulk density and air filled porosity which will control rates of gas and water movement within the peat profile, were studied. This paper will present the results of the work which was carried out at the Moor House, National Nature Reserve. The work involved collection of peat cores from burnt, grazed, drained, afforested and unmanaged areas of peat. The chemical and physical properties of the peat that are relevant to carbon cycling (e.g. nutrients, metals, substrate quality, air filled porosity) were analysed and compared between sites, and correlated with carbon losses which were measured on a fortnightly basis; and meteorological and hydrological data which were collected throughout the study period. Based on these results, suggestions for peatland management strategies that preserve carbon stocks will be presented. Laiho, R. (2006) "Decomposition in peatlands: Reconciling seemingly contrasting results on the impacts of lowered water levels." Soil Biology & Biochemistry 38(8): 2011-2024. Worrall, F. et al. (2003) "Carbon budget for a British upland peat catchment." Science of the Total Environment 312(1-3): 133-146. Worrall, F. et al. (2009) "The Multi-Annual Carbon Budget of a Peat-Covered Catchment" Science of the Total Environment 407: 4084-4094
Harvey, J.W.; McCormick, P.V.
2009-01-01
The Everglades (Florida, USA) is one of the world's larger subtropical peatlands with biological communities adapted to waters low in total dissolved solids and nutrients. Detecting how the pre-drainage hydrological system has been altered is crucial to preserving its functional attributes. However, reliable tools for hindcasting historic conditions in the Everglades are limited. A recent synthesis demonstrates that the proportion of surface-water inflows has increased relative to precipitation, accounting for 33% of total inputs compared with 18% historically. The largest new source of water is canal drainage from areas of former wetlands converted to agriculture. Interactions between groundwater and surface water have also increased, due to increasing vertical hydraulic gradients resulting from topographic and water-level alterations on the otherwise extremely flat landscape. Environmental solute tracer data were used to determine groundwater's changing role, from a freshwater storage reservoir that sustained the Everglades ecosystem during dry periods to a reservoir of increasingly degraded water quality. Although some of this degradation is attributable to increased discharge of deep saline groundwater, other mineral sources such as fertilizer additives and peat oxidation have made a greater contribution to water-quality changes that are altering mineral-sensitive biological communities. ?? Springer-Verlag 2008.
Iversen, Colleen M.; Childs, Joanne; Norby, Richard J.; ...
2017-03-30
Fine roots contribute to ecosystem carbon, water, and nutrient fluxes through resource acquisition, respiration, exudation, and turnover, but are understudied in peatlands. Here, we aimed to determine how the amount and timing of fine-root growth in a forested, ombrotrophic bog varied across gradients of vegetation density, peat microtopography, and changes in environmental conditions across the growing season and throughout the peat profile. We quantified fine-root peak standing crop and growth using non-destructive minirhizotron technology over a two-year period, focusing on the dominant woody species in the bog: Picea mariana, Larix laricina, Rhododendron groenlandicum, and Chamaedaphne calyculata. The fine roots ofmore » trees and shrubs were concentrated in raised hummock microtopography, with more tree roots associated with greater tree densities and a unimodal peak in shrub roots at intermediate tree densities. Fine-root growth tended to be seasonally dynamic, but shallowly distributed, in a thin layer of nutrient-poor, aerobic peat above the growing season water table level. Finally, the dynamics and distribution of fine roots in this forested ombrotrophic bog varied across space and time in response to biological, edaphic, and climatic conditions, and we expect these relationships to be sensitive to projected environmental changes in northern peatlands.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iversen, Colleen M.; Childs, Joanne; Norby, Richard J.
Fine roots contribute to ecosystem carbon, water, and nutrient fluxes through resource acquisition, respiration, exudation, and turnover, but are understudied in peatlands. Here, we aimed to determine how the amount and timing of fine-root growth in a forested, ombrotrophic bog varied across gradients of vegetation density, peat microtopography, and changes in environmental conditions across the growing season and throughout the peat profile. We quantified fine-root peak standing crop and growth using non-destructive minirhizotron technology over a two-year period, focusing on the dominant woody species in the bog: Picea mariana, Larix laricina, Rhododendron groenlandicum, and Chamaedaphne calyculata. The fine roots ofmore » trees and shrubs were concentrated in raised hummock microtopography, with more tree roots associated with greater tree densities and a unimodal peak in shrub roots at intermediate tree densities. Fine-root growth tended to be seasonally dynamic, but shallowly distributed, in a thin layer of nutrient-poor, aerobic peat above the growing season water table level. Finally, the dynamics and distribution of fine roots in this forested ombrotrophic bog varied across space and time in response to biological, edaphic, and climatic conditions, and we expect these relationships to be sensitive to projected environmental changes in northern peatlands.« less
Emission of greenhouse gases from geographically isolated wetlands of Western Siberia
NASA Astrophysics Data System (ADS)
Golovatskaya, E.; Dyukarev, E.; Veretennikova, E.
2014-12-01
Wetlands are integral components of landscapes with specific nutrient dynamics and carbon sequestration potentials, which frequently differ, based on hydroperiod and seasonal hydropattern, as well as the constituent concentration of inputs, site-specific storages and vegetation structures. Human modifications have the potential to significantly alter controls on carbon dynamics. This study focused on determining carbon emissions (CO2 and CH4) from geographically isolated peatlands within the Ob-Tom River Interfluve area of Western Siberia affected by water diversion for municipal use by the city of Tomsk, Russia. Two oligotrophic wetlands within the study area were selected for site-specific CO2 studies, the Timiryazevskoe (16 ha) and Kirsanovskoe wetlands (29 ha), both affected by the Tomsk water intake (177 water wells 250 000 m3 water daily). Measurements of СО2 and CH4 emissions from peat surfaces were carried out bi-monthly in growing periods from 2008-2013 in two dominate vegetation zones, pine- shrub-sphagnum phytocenosis (ryam) and sedge-sphagnum fens. СО2 emissions were measured using OPTOGAS-500.4 infrared gas analyzer and dark chamber. Methane emissions were measured using static chamber method. Air samples were collected by syringes and analyzed at gas chromatograph Shimadzu-GC14B. Observations were accompanied by measurement of air temperature and humidity, surface temperature, peat temperature at various depths and the water table level. CО2 emission over the vegetative growing period had clearly pronounced seasonal dynamics with maximum values in the middle of the growing season (mid-July) and minimum values in spring and autumn. The average total flux over the studied period is 123±55 gС/m2 at sedge-sphagnum fen of Kirsanovskoe wetland and 323±66 gС/m2 at fen of Timiryazevskoe wetland. Total СО2 flux for the snow-free period at ryam sites of Timiryazevskoe and Kirsanovskoe wetlands is 238±84 and 260±47 gС/m2 accordingly. Methane emission from the surface of isolated wetlands for the snow-free period varies from 0.3±1.1 to 2.9±2.3 gC/m2 on ryam sites of Kirsanovskoe and Timiryazevskoe wetlands respectively. The total CH4 flux on sedge-sphagnum fen varies from 2.5±3.0 at Kirsanovskoe wetlands to 31.6±26.3 gC/m2 at Timiryazevskoe wetland.
INNOVATIVE TECHNOLOGY EVALUATION REPORT ...
The Russian Peat Borer designed and fabricated by Aquatic Research Instruments was demonstrated under the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation Program in April and May 1999 at sites in EPA Regions 1 and 5, respectively. In addition to assessing ease of sampler operation, key objectives of the demonstration included evaluating the sampler?s ability to (1) consistently collect a given volume of sediment, (2) consistently collect sediment in a given depth interval, (3) collect samples with consistent characteristics from a homogenous layer of sediment, and (4) collect samples under a variety of site conditions. This report describes the demonstration results for the Russian Peat Borer and two conventional samplers (the Hand Corer and Vibrocorer) used as reference samplers. During the demonstration, the Russian Peat Borer was the only sampler that collected samples in the deep depth interval (4 to 11 feet below sediment surface). It collected representative and relatively uncompressed core samples of consolidated sediment in discrete depth intervals. The reference samplers collected relatively compressed samples of both consolidated and unconsolidated sediments from the sediment surface downward; sample representativeness may be questionable because of core shortening and core compression. Sediment stratification was preserved only for consolidated sediment samples collected by the Russian Peat Borer but for bo
Earth Observations taken by the Expedition 15 Crew
2007-05-11
ISS015-E-07725 (11 May 2007) --- Marsh Island, Louisiana is featured in this image photographed by an Expedition 15 crewmember on the International Space Station. Marsh Island, located along the southwestern coastline of Louisiana, is a remnant of an abandoned lobe of the Mississippi River Delta formed approximately 5000-7500 years before the present day, according to scientists. It is composed primarily of organic-rich muds and brackish marsh vegetation (some peat -- semiconsolidated plant and organic matter -- is also present). The intricate lake, pond and stream network of the island is highlighted in this image by silver-gray sunglint -- light reflected off of water surfaces directly back to the crewmember on the space station. Sunglint also illuminates water surfaces in the adjacent Gulf of Mexico and West Cote Blanche Bay -- variations in intensity of reflectance in these water bodies is due to surface roughness (often related to wind-driven waves or currents) and the presence of surfactants that can change the surface properties of the water. Marsh Island is a popular fishing, shrimping and birding location. The island has experienced significant loss of vegetation and land area -- nearly 3,000 hectares (7,000 acres) - due to erosion, with a corresponding loss of habitat for local and migratory birds, shrimp, alligators and deer. While Marsh Island is uninhabited, it has been the focus of intensive development for management of erosion, such as revegetation of deteriorated marsh areas. Leveed canals (straight silver-gray water features) help drain areas for above-surface revegetation, while sill dams help stabilize water levels and foster regrowth of important subsurface vegetation such as widgeongrass.
NASA Astrophysics Data System (ADS)
Finkelstein, Sarah A.; Davis, Anthony M.
2006-01-01
Pollen and diatom assemblages, and peat stratigraphies, from a coastal wetland on the northern shore of Lake Erie were used to analyze water level and climatic changes since the middle Holocene and their effects on wetland plant communities. Peat deposition began 4700 cal yr B.P. during the Nipissing II transgression, which was driven by isostatic rebound. At that time, a diatom-rich wild rice marsh existed at the site. Water level dropped at the end of the Nipissing rise at least 2 m within 200 yr, leading to the development of shallower-water plant communities and an environment too dry for most diatoms to persist. The sharp decline in water level was probably driven primarily by outlet incision, but climate likely played some role. The paleoecological records provide evidence for post-Nipissing century-scale transgressions occurring around 2300, 1160, 700 and 450 cal yr B.P. The chronology for these transgressions correlates with other studies from the region and implies climatic forcing. Peat inception in shallow sloughs across part of the study area around 700 cal yr B.P. coincides with the Little Ice Age. These records, considered alongside others from the region, suggest that the Little Ice Age may have resulted in a wetter climate across the eastern Great Lakes region.
NASA Astrophysics Data System (ADS)
Peros, M. C.; Chan, K.; Ponsford, L.; Carroll, J.; Magnan, G.
2014-12-01
Raised peat bogs receive all precipitation and nutrients from the atmosphere and are thus widely used archives for information on past environments and climates. In this paper we provide high-resolution multi-proxy data from a raised bog from northeastern Prince Edward Island, located in the Gulf of St. Lawrence, Canada. We studied testate amoeba (a proxy for water table depth), macrocharcoal (a proxy for local-scale fire), peat humification (a proxy for decomposition), plant macrofossils (indicative of local-scale vegetation), and organic matter content (yielding carbon accumulation rates) from a 5.5 m long core lifted from the center of Baltic Bog. Eleven AMS radiocarbon dates show that peat accumulation began before 9000 cal yr BP and continued almost uninterrupted until the present. The macrofossil data show that a transition from a sedge-dominated fen to a sphagnum-dominated bog occurred around 8000 cal yr BP, and sphagnum remained dominant in the bog throughout most of the Holocene. A testate amoeba-based reconstruction of water table depth indicates that conditions were drier during the early Holocene (~8000 to 5000 cal yr BP) and became gradually wetter into the late Holocene. In addition, a number of higher frequency shifts in precipitation are inferred throughout the Holocene on the basis of the testate amoeba and humification results. The macrocharcoal evidence indicates fire—probably in the surrounding forest—was relatively more common during the early Holocene, perhaps due to drier climate conditions. A large influx of charcoal at around 2000 cal yr BP suggests the presence of one or more major fires at this time, and a concurrent decrease in the rate of peat accumulation indicates the fire may have affected the bog itself. The data from Baltic Bog is broadly comparable to other proxy data (in particular pollen studies) from the Canadian Maritimes. This work is important because it: 1) helps us better understand the role of hydroclimatic variability in influencing peat bog ecosystems; and 2), represents one of the few peat-based records of Holocene paleoclimate from the region.
Sources and distribution of trace elements in Estonian peat
NASA Astrophysics Data System (ADS)
Orru, Hans; Orru, Mall
2006-10-01
This paper presents the results of the distribution of trace elements in Estonian mires. Sixty four mires, representative of the different landscape units, were analyzed for the content of 16 trace elements (Cr, Mn, Ni, Cu, Zn, and Pb using AAS; Cd by GF-AAS; Hg by the cold vapour method; and V, Co, As, Sr, Mo, Th, and U by XRF) as well as other peat characteristics (peat type, degree of humification, pH and ash content). The results of the research show that concentrations of trace elements in peat are generally low: V 3.8 ± 0.6, Cr 3.1 ± 0.2, Mn 35.1 ± 2.7, Co 0.50 ± 0.05, Ni 3.7 ± 0.2, Cu 4.4 ± 0.3, Zn 10.0 ± 0.7, As 2.4 ± 0.3, Sr 21.9 ± 0.9, Mo 1.2 ± 0.2, Cd 0.12 ± 0.01, Hg 0.05 ± 0.01, Pb 3.3 ± 0.2, Th 0.47 ± 0.05, U 1.3 ± 0.2 μg g - 1 and S 0.25 ± 0.02%. Statistical analyses on these large database showed that Co has the highest positive correlations with many elements and ash content. As, Ni, Mo, ash content and pH are also significantly correlated. The lowest abundance of most trace elements was recorded in mires fed only by precipitation (ombrotrophic), and the highest in mires fed by groundwater and springs (minerotrophic), which are situated in the flood plains of river valleys. Concentrations usually differ between the superficial, middle and bottom peat layers, but the significance decreases depending on the type of mire in the following order: transitional mires - raised bogs - fens. Differences among mire types are highest for the superficial but not significant for the basal peat layers. The use of peat with high concentrations of trace elements in agriculture, horticulture, as fuel, for water purification etc., may pose a risk for humans: via the food chain, through inhalation, drinking water etc.
Larsen, Laurel G.; Nicholas Aumen,; Bernhardt, Christopher E.; Vic Engel,; Givnish, Thomas J.; S Hagerthey, P McCormick; Harvey, Judson; Lynn Leonard,; McCormick, P.; McVoy, Christopher; Noe, Gregory; Nungesser, Martha K.; Rutchey, K.; Sklar, Fred; Troxler, Tiffany G.; Volin, John C.; Willard, Debra A.
2011-01-01
More than half of the original Everglades extent formed a patterned peat mosaic of elevated ridges, lower and more open sloughs, and tree islands aligned parallel to the dominant flow direction. This ecologically important landscape structure remained in a dynamic equilibrium for millennia prior to rapid degradation over the past century in response to human manipulation of the hydrologic system. Restoration of the patterned landscape structure is one of the primary objectives of the Everglades restoration effort. Recent research has revealed that three main drivers regulated feedbacks that initiated and maintained landscape structure: the spatial and temporal distribution of surface water depths, surface and subsurface flow, and phosphorus supply. Causes of recent degradation include but are not limited to perturbations to these historically important controls; shifts in mineral and sulfate supply may have also contributed to degradation. Restoring predrainage hydrologic conditions will likely preserve remaining landscape pattern structure, provided a sufficient supply of surface water with low nutrient and low total dissolved solids content exists to maintain a rainfall-driven water chemistry. However, because of hysteresis in landscape evolution trajectories, restoration of areas with a fully degraded landscape could require additional human intervention.
Thermodynamic constrains on the flux of organic matter through a peatland ecosystem
NASA Astrophysics Data System (ADS)
Worrall, Fred; Moody, Catherine; Clay, Gareth; Kettridge, Nick; Burt, Tim
2017-04-01
The transformations and transitions of organic matter into, through and out of a peatland ecosystem must obey the 2nd law of thermodynamics. Beer and Blodau (Geochimica Cosmochimica Acta, 2007, 71, 12, 2989-3002) showed that the evolution of CH4 in peatlands was constrained by equilibrium occurring at depth in the peat as the pore water became a closed system. However, that study did not consider the transition in the solid components of the organic matter flux through the entire ecosystem. For this study, organic matter samples were taken from each organic matter reservoir and fluvial transfer pathway and analysed the samples by elemental analysis and bomb calorimetry. The samples analysed were: above- and below-ground biomass, heather, mosses, sedges, plant litter layer, peat soil, and monthly samples of particulate and dissolved organic matter. All organic matter samples were taken from a 100% peat catchment within Moor House National Nature Reserve in the North Pennines, UK, and collected samples were compared to standards of lignin, cellulose, and plant protein. It was possible to calculate ∆H_f^OM ∆S_f^OM and ∆G_f^OM for each of the samples and standards. By assuming that each thermodynamic property can be expressed per g C and that any increase in ∆G_f^OM can be balanced by the production of CO2, DOM or CH4 then it is possible to predict the consequences of the fixation of 1 g of carbon in a peatland soil. The value of ∆G_f^OMincreases from glucose to components of the biomass: 1g of C fixed as glucose by photosynthesis would result in 0.68 g C as biomass and 0.32 g C as CO2. The transition from biomass to litter could occur spontaneously but the transition from surface to 1m depth in the peat profile would release 0.18 g C as CO2 per 1 g of carbon entering the peat profile. Therefore, for every 1 g of carbon fixed from photosynthesis then 0.44g of C would be released as CO2 and 0.54 g C would be present at 1 m depth. Alternatively, if DOM only were released in transition down the peat profile then for every 1 g of carbon fixed by photosynthesis 0.32 g C would be released as CO2 and 0.22 g C would be lost as DOM and leaving 0.46 g C as residual peat at 1m depth. If the variation in ∆G_f^OM of the DOM were considered then for every 1 g of C produced as DOM then between 0 and 0.57g C would be lost as CO2. At median value of DOM loss then for every 1g of carbon fixed as photosynthesis 0.39 g C would be lost as CO2 and 0.15 g lost as DOM with 0.46 g C as residual peat. Alternatively, if CH4 only were released down the soil profile then no organic matter would be left in the peat profile, i.e. CH4 is not an efficient method of transferring Gibbs free energy. The measured carbon budget for this catchment is that 1 g C fixed as photosynthesis resulted in 0.42 g C as CO2; 0.29 g C as DOM; 0.04 g C as CH4 and 0.24 g C as residual peat at 1m depth.
A post-Calumet shoreline along southern Lake Michigan
Capps, D.K.; Thompson, T.A.; Booth, R.K.
2007-01-01
The southern shore of Lake Michigan is the type area for many of ancestral Lake Michigan's late Pleistocene lake phases, but coastal deposits and features of the Algonquin phase of northern Lake Michigan, Lake Huron, and Lake Superior are not recognized in the area. Isostatic rebound models suggest that Algonquin phase deposits should be 100 m or more below modern lake level. A relict shoreline, however, exists along the lakeward margin of the Calumet Beach that was erosional west of Deep River and depositional east of the river. For this post-Calumet shoreline, the elevation of basal foreshore deposits east of Deep River and the base of the scarp west of Deep River indicate a slightly westward dipping water plane that is centered at ???184 m above mean sea level. Basal foreshore elevations also indicate that lake level fell ???2 m during the development of the shoreline. The pooled mean of radiocarbon dates from the surface of the peat below post-Calumet shoreline foreshore deposits indicate that the lake transgressed over the peat at 10,560 ?? 70 years B.P. Pollen assemblages from the peat are consistent with this age. The elevation and age of the post-Calumet shoreline are similar to the Main Algonquin phase of Lake Huron. Recent isostatic rebound models do not adequately address a high-elevation Algonquin-age shoreline along the southern shore of Lake Michigan, but the Goldthwait (1908) hinge-line model does. ?? 2006 Springer Science+Business Media B.V.
Nieminen, Mika; Piirainen, Sirpa; Sikström, Ulf; Löfgren, Stefan; Marttila, Hannu; Sarkkola, Sakari; Laurén, Ari; Finér, Leena
2018-03-27
The objective of this study was to evaluate the potential of different water management options to mitigate sediment and nutrient exports from ditch network maintenance (DNM) areas in boreal peatland forests. Available literature was reviewed, past data reanalyzed, effects of drainage intensity modeled, and major research gaps identified. The results indicate that excess downstream loads may be difficult to prevent. Water protection structures constructed to capture eroded matter are either inefficient (sedimentation ponds) or difficult to apply (wetland buffers). It may be more efficient to decrease erosion, either by limiting peak water velocity (dam structures) or by adjusting ditch depth and spacing to enable satisfactory drainage without exposing the mineral soil below peat. Future research should be directed towards the effects of ditch breaks and adjusted ditch depth and spacing in managing water quality in DNM areas.
NASA Astrophysics Data System (ADS)
Comas, Xavier; Wright, William
2014-08-01
The spatial and temporal variability in accumulation and release of greenhouse gases (mainly methane and carbon dioxide) to the atmosphere from peat soils remains very uncertain. The use of near-surface geophysical methods such as ground penetrating radar (GPR) has proven useful during the last decade to expand scales of measurement as related to in situ gas distribution and dynamics beyond traditional methods (i.e., gas chambers). However, this approach has focused exclusively on boreal peatlands, while no studies in subtropical systems like the Everglades using these techniques exist. In this paper GPR is combined with gas traps, time-lapse cameras, gas chromatography, and surface deformation measurements to explore biogenic gas dynamics (mainly gas buildup and release) in two locations in the Everglades. Similar to previous studies in northern peatlands, our data in the Everglades show a statistically significant correlation between the following: (1) GPR-estimated gas content and gas fluxes, (2) GPR-estimated gas content and surface deformation, and (3) atmospheric pressure and both GPR-estimated gas content and gas flux. From these results several gas-releasing events ranging between 33.8 and 718.8 mg CH4 m-2 d-1 were detected as identified by the following: (1) decreases in GPR-estimated gas content within the peat matrix, (2) increases in gas fluxes captured by gas traps and time-lapse cameras, and (3) decreases in surface deformation. Furthermore, gas-releasing events corresponded to periods of high atmospheric pressure. Changes in gas accumulation and release were attributed to differences in seasonality and peat soil type between sites. These results suggest that biogenic gas releases in the Everglades are spatially and temporarily variable. For example, flux events measured at hourly scales were up to threefold larger when compared to daily fluxes, therefore suggesting that flux measurements decline when averaged over longer time spans. This research therefore questions what the appropriate spatial and temporal scale of measurement is necessary to properly capture the dynamics of biogenic gas release in subtropical peat soils.
Land use of drained peatlands: Greenhouse gas fluxes, plant production, and economics.
Kasimir, Åsa; He, Hongxing; Coria, Jessica; Nordén, Anna
2017-10-10
Drained peatlands are hotspots for greenhouse gas (GHG) emissions, which could be mitigated by rewetting and land use change. We performed an ecological/economic analysis of rewetting drained fertile peatlands in a hemiboreal climate using different land use strategies over 80 years. Vegetation, soil processes, and total GHG emissions were modeled using the CoupModel for four scenarios: (1) business as usual-Norway spruce with average soil water table of -40 cm; (2) willow with groundwater at -20 cm; (3) reed canary grass with groundwater at -10 cm; and (4) a fully rewetted peatland. The predictions were based on previous model calibrations with several high-resolution datasets consisting of water, heat, carbon, and nitrogen cycling. Spruce growth was calibrated by tree-ring data that extended the time period covered. The GHG balance of four scenarios, including vegetation and soil, were 4.7, 7.1, 9.1, and 6.2 Mg CO 2 eq ha -1 year -1 , respectively. The total soil emissions (including litter and peat respiration CO 2 + N 2 O + CH 4 ) were 33.1, 19.3, 15.3, and 11.0 Mg CO 2 eq ha -1 year -1 , respectively, of which the peat loss contributed 35%, 24%, and 7% of the soil emissions for the three drained scenarios, respectively. No peat was lost for the wet peatland. It was also found that draining increases vegetation growth, but not as drastically as peat respiration does. The cost-benefit analysis (CBA) is sensitive to time frame, discount rate, and carbon price. Our results indicate that the net benefit was greater with a somewhat higher soil water table and when the peatland was vegetated with willow and reed canary grass (Scenarios 2 and 3). We conclude that saving peat and avoiding methane release using fairly wet conditions can significantly reduce GHG emissions, and that this strategy should be considered for land use planning and policy-making. © 2017 John Wiley & Sons Ltd.
Controls on Methanogenesis in Organic-Rich Anaerobic Environments
NASA Astrophysics Data System (ADS)
Wilson, R.; Tfaily, M.; Chanton, J.; Rich, V. I.; Saleska, S. R.; Holmes, B.; Langford, L.; Hanson, P. J.; Bridgham, S. D.; Hopple, A.; Keller, J.; Cory, A.; Kostka, J. E.
2017-12-01
Peatlands contain an amount of C equal to half the CO2 in the atmosphere. That C is stored as organic C (OC) in peat deposits which form when plant productivity exceeds heterotrophic respiration. This balance has been attributed to cold, anaerobic, low pH conditions which slow microbial respiration rates, high aromatic content which may inhibit microbial decomposition, and recalcitrance of OC under terminal electron-acceptor (TEA) depleted conditions. Peat has been described as a potential C bomb which could release Gt of C into the atmosphere if rising global temperatures shifted this balance in favor of increased microbial respiration. At the Spruce and Peatlands Responses Under Changing Environments (SPRUCE) experimental site in Minnesota, U.S.A., peat up to 2 m deep was heated (+2.25°C to +9°C above ambient) both in situ and in laboratory incubations to test the response of microbial respiration to increasing temperatures. Our results demonstrated (1) that temperature did not influence CO2 or CH4 production rates in deep anaerobic peat, (2) that microbial decomposition was dominated by dissolved OC rather than the solid phase peat, and (3) that microbial decomposition in surface peat may become more methanogenic with warming. This shift towards higher CH4 production relative to CO2 has significant climate change implications since CH4 is a much stronger greenhouse gas than CO2. Under TEA-poor, anaerobic conditions, such as peat deposits, thermodynamic principles dictate that cellulose, the dominant OC form in Sphagnum peat, should be mineralized into equimolar CO2 and CH4. However, deviations from this predicted ratio abound. The literature of rumen, a system similar to peat in many ways, revealed a potential mechanism for sustaining elevated CO2 production without accumulating inhibitory H2. Using FTICRMS, we found ubiquitous hydrogenation of unsaturated OC which could be acting as TEAs in peat deposits. This mechanism has the further advantages of alleviating the toxicity of aromatic compounds and potentially making otherwise recalcitrant aromatic molecules susceptible to anaerobic decomposition thereby providing a critical step in the diagenesis of peat. Incubation experiments adding H2 support these findings and incubations of irradiated peat suggest an abiotic contribution to CO2 production.
NASA Astrophysics Data System (ADS)
Nater, E. A.; Furman, O.; Toner, B. M.; Sebestyen, S. D.; Tfaily, M. M.; Chanton, J.; Fissore, C.; McFarlane, K. J.; Hanson, P. J.; Iversen, C. M.; Kolka, R. K.
2014-12-01
Climate change has the potential to affect mercury (Hg), sulfur (S) and carbon (C) stores and cycling in northern peatland ecosystems (NPEs). SPRUCE (Spruce and Peatland Responses Under Climate and Environmental change) is an interdisciplinary study of the effects of elevated temperature and CO2 enrichment on NPEs. Peat cores (0-3.0 m) were collected from 16 large plots located on the S1 peatland (an ombrotrophic bog treed with Picea mariana and Larix laricina) in August, 2012 for baseline characterization before the experiment begins. Peat samples were analyzed at depth increments for total Hg, bulk density, humification indices, and elemental composition. Net Hg accumulation rates over the last 10,000 years were derived from Hg concentrations and peat accumulation rates based on peat depth chronology established using 14C and 13C dating of peat cores. Historic Hg deposition rates are being modeled from pre-industrial deposition rates in S1 scaled by regional lake sediment records. Effects of peatland processes and factors (hydrology, decomposition, redox chemistry, vegetative changes, microtopography) on the biogeochemistry of Hg, S, and other elements are being assessed by comparing observed elemental depth profiles with accumulation profiles predicted solely from atmospheric deposition. We are using principal component analyses and cluster analyses to elucidate relationships between humification indices, peat physical properties, and inorganic and organic geochemistry data to interpret the main processes controlling net Hg accumulation and elemental concentrations in surface and subsurface peat layers. These findings are critical to predicting how climate change will affect future accumulation of Hg as well as existing Hg stores in NPE, and for providing reference baselines for SPRUCE future investigations.
Gill, Allison L; Giasson, Marc-André; Yu, Rieka; Finzi, Adrien C
2017-12-01
Boreal peatlands contain approximately 500 Pg carbon (C) in the soil, emit globally significant quantities of methane (CH 4 ), and are highly sensitive to climate change. Warming associated with global climate change is likely to increase the rate of the temperature-sensitive processes that decompose stored organic carbon and release carbon dioxide (CO 2 ) and CH 4 . Variation in the temperature sensitivity of CO 2 and CH 4 production and increased peat aerobicity due to enhanced growing-season evapotranspiration may alter the nature of peatland trace gas emission. As CH 4 is a powerful greenhouse gas with 34 times the warming potential of CO 2 , it is critical to understand how factors associated with global change will influence surface CO 2 and CH 4 fluxes. Here, we leverage the Spruce and Peatland Responses Under Changing Environments (SPRUCE) climate change manipulation experiment to understand the impact of a 0-9°C gradient in deep belowground warming ("Deep Peat Heat", DPH) on peat surface CO 2 and CH 4 fluxes. We find that DPH treatments increased both CO 2 and CH 4 emission. Methane production was more sensitive to warming than CO 2 production, decreasing the C-CO 2 :C-CH 4 of the respired carbon. Methane production is dominated by hydrogenotrophic methanogenesis but deep peat warming increased the δ 13 C of CH 4 suggesting an increasing contribution of acetoclastic methanogenesis to total CH 4 production with warming. Although the total quantity of C emitted from the SPRUCE Bog as CH 4 is <2%, CH 4 represents >50% of seasonal C emissions in the highest-warming treatments when adjusted for CO 2 equivalents on a 100-year timescale. These results suggest that warming in boreal regions may increase CH 4 emissions from peatlands and result in a positive feedback to ongoing warming. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Altdorff, Daniel; van der Kruk, Jan; Bechtold, Michel; Tiemeyer, Bärbel; Huismann, Sander
2013-04-01
Intact peatlands are natural sinks of climate-relevant atmospheric CO2 and they are able to store high amounts of organic carbon (C). In addition, intact peatlands are increasingly important given positive effects on biodiversity, hydrological processes and corresponding management issues. Nevertheless, large parts of peatlands in populated areas were modified by human activity during the last centuries. In Germany, more than 90% of the peatlands are drained, mainly for agricultural use. Due to the recent recognition of the positive effects of intact peatlands, there are presently several initiatives for re-wetting parts of these peatlands. However, a restoration to nearly natural conditions needs an evaluation of the current situation as well as an assessment of the restoration potential. Therefore, soil properties like peat layer thickness, bulk density and moisture content need to be known. Non-invasive hydrogeophysical methods offer the possibility for a time and cost-effective characterization of peatlands. In this study, we investigated a medium-scale peatland area (approximately 35 ha) of the 3000 ha large 'Großes Moor' peatland. We present apparent conductivity (ECa) values obtained from Electromagnetic Induction (EMI) measurements representative for three investigation depths (approximately 0.25, 0.5, and 1m). We selected zones with dissimilar ECa to identify areas where strong changes in the subsoil properties with depth are expected (i.e. shallow peat soil on top of sand). Within these areas, additional measurements were made using Ground Penetration Radar (GPR) and soil sampling was performed. In total, six 30 m long GPR profiles and corresponding common midpoint (CMP) measurements were recorded. Additionally, 15 soil cores were taken down to a depth of 0.9 m in order to obtain peat thickness, water content, pore water EC, bulk density (BD), as well as C and N content. Each core was divided into several 5 to 20 cm thick layers to obtain information on the vertical variation of these soil properties with depth. Our results indicate that the peat layer is generally characterized by lower BD, higher pore water EC, higher C content, and higher water contents compared to the underlying sand layer. Preliminary EMI results indicate a ECa - C content correlation that decreases with EMI investigation depth from 0.25 to 1 m. Regarding all soil core properties, the strongest contrast occurs at the peat-sand interface. This contrast also clearly appears in some of the GPR results. The EMI apparent conductivities are positively correlated with soil water content and peat thickness obtained from the soil cores. Preliminary GPR results confirm an increased thickness of the upper layer in areas with increased ECa values. The EMI results also reveal clear patterns linked over several fields with different land use history that represent natural structures in the subsurface.
Elliott, David R.; Caporn, Simon J. M.; Nwaishi, Felix; Nilsson, R. Henrik; Sen, Robin
2015-01-01
The UK hosts 15–19% of global upland ombrotrophic (rain fed) peatlands that are estimated to store 3.2 billion tonnes of carbon and represent a critical upland habitat with regard to biodiversity and ecosystem services provision. Net production is dependent on an imbalance between growth of peat-forming Sphagnum mosses and microbial decomposition by microorganisms that are limited by cold, acidic, and anaerobic conditions. In the Southern Pennines, land-use change, drainage, and over 200 years of anthropogenic N and heavy metal deposition have contributed to severe peatland degradation manifested as a loss of vegetation leaving bare peat susceptible to erosion and deep gullying. A restoration programme designed to regain peat hydrology, stability and functionality has involved re-vegetation through nurse grass, dwarf shrub and Sphagnum re-introduction. Our aim was to characterise bacterial and fungal communities, via high-throughput rRNA gene sequencing, in the surface acrotelm/mesotelm of degraded bare peat, long-term stable vegetated peat, and natural and managed restorations. Compared to long-term vegetated areas the bare peat microbiome had significantly higher levels of oligotrophic marker phyla (Acidobacteria, Verrucomicrobia, TM6) and lower Bacteroidetes and Actinobacteria, together with much higher ligninolytic Basidiomycota. Fewer distinct microbial sequences and significantly fewer cultivable microbes were detected in bare peat compared to other areas. Microbial community structure was linked to restoration activity and correlated with soil edaphic variables (e.g. moisture and heavy metals). Although rapid community changes were evident following restoration activity, restored bare peat did not approach a similar microbial community structure to non-eroded areas even after 25 years, which may be related to the stabilisation of historic deposited heavy metals pollution in long-term stable areas. These primary findings are discussed in relation to bare peat oligotrophy, re-vegetation recalcitrance, rhizosphere-microbe-soil interactions, C, N and P cycling, trajectory of restoration, and ecosystem service implications for peatland restoration. PMID:25969988
Elliott, David R; Caporn, Simon J M; Nwaishi, Felix; Nilsson, R Henrik; Sen, Robin
2015-01-01
The UK hosts 15-19% of global upland ombrotrophic (rain fed) peatlands that are estimated to store 3.2 billion tonnes of carbon and represent a critical upland habitat with regard to biodiversity and ecosystem services provision. Net production is dependent on an imbalance between growth of peat-forming Sphagnum mosses and microbial decomposition by microorganisms that are limited by cold, acidic, and anaerobic conditions. In the Southern Pennines, land-use change, drainage, and over 200 years of anthropogenic N and heavy metal deposition have contributed to severe peatland degradation manifested as a loss of vegetation leaving bare peat susceptible to erosion and deep gullying. A restoration programme designed to regain peat hydrology, stability and functionality has involved re-vegetation through nurse grass, dwarf shrub and Sphagnum re-introduction. Our aim was to characterise bacterial and fungal communities, via high-throughput rRNA gene sequencing, in the surface acrotelm/mesotelm of degraded bare peat, long-term stable vegetated peat, and natural and managed restorations. Compared to long-term vegetated areas the bare peat microbiome had significantly higher levels of oligotrophic marker phyla (Acidobacteria, Verrucomicrobia, TM6) and lower Bacteroidetes and Actinobacteria, together with much higher ligninolytic Basidiomycota. Fewer distinct microbial sequences and significantly fewer cultivable microbes were detected in bare peat compared to other areas. Microbial community structure was linked to restoration activity and correlated with soil edaphic variables (e.g. moisture and heavy metals). Although rapid community changes were evident following restoration activity, restored bare peat did not approach a similar microbial community structure to non-eroded areas even after 25 years, which may be related to the stabilisation of historic deposited heavy metals pollution in long-term stable areas. These primary findings are discussed in relation to bare peat oligotrophy, re-vegetation recalcitrance, rhizosphere-microbe-soil interactions, C, N and P cycling, trajectory of restoration, and ecosystem service implications for peatland restoration.
Surface covering of downed logs: drivers of a neglected process in dead wood ecology.
Dynesius, Mats; Gibb, Heloise; Hjältén, Joakim
2010-10-07
Many species use coarse woody debris (CWD) and are disadvantaged by the forestry-induced loss of this resource. A neglected process affecting CWD is the covering of the surfaces of downed logs caused by sinking into the ground (increasing soil contact, mostly covering the underside of the log), and dense overgrowth by ground vegetation. Such cover is likely to profoundly influence the quality and accessibility of CWD for wood-inhabiting organisms, but the factors affecting covering are largely unknown. In a five-year experiment we determined predictors of covering rate of fresh logs in boreal forests and clear-cuts. Logs with branches were little covered because they had low longitudinal ground contact. For branchless logs, longitudinal ground contact was most strongly related to estimated peat depth (positive relation). The strongest predictor for total cover of branchless logs was longitudinal ground contact. To evaluate the effect on cover of factors other than longitudinal ground contact, we separately analyzed data from only those log sections that were in contact with the ground. Four factors were prominent predictors of percentage cover of such log sections: estimated peat depth, canopy shade (both increasing cover), potential solar radiation calculated from slope and slope aspect, and diameter of the log (both reducing cover). Peat increased cover directly through its low resistance, which allowed logs to sink and soil contact to increase. High moisture and low temperatures in pole-ward facing slopes and under a canopy favor peat formation through lowered decomposition and enhanced growth of peat-forming mosses, which also proved to rapidly overgrow logs. We found that in some boreal forests, peat and fast-growing mosses can rapidly cover logs lying on the ground. When actively introducing CWD for conservation purposes, we recommend that such rapid covering is avoided, thereby most likely improving the CWD's longevity as habitat for many species.
NASA Astrophysics Data System (ADS)
Zak, Dominik; Roth, Cyril; Gelbrecht, Jörg; Fenner, Nathalie; Reuter, Hendrik
2015-04-01
Recently, more than 30,000 ha of drained minerotrophic peatlands (= fens) in NE Germany were rewetted to restore their ecological functions. Due to an extended drainage history, a re-establishment of their original state is not expected in the short-term. Elevated concentrations of dissolved organic carbon, ammonium and phosphate have been measured in the soil porewater of the upper degraded peat layers of rewetted fens at levels of one to three orders higher than the values in pristine systems; an indicator of increased microbial activity in the upper degraded soil layers. On the other hand there is evidence that the substrate availability within the degraded peat layer is lowered since the organic matter has formerly been subject to intense decomposition over the decades of drainage and intense agricultural use of the areas. Previously however, it was suggested that inhibition of hydrolytic enzymes by polyphenolic substances is suspended during aeration of peat soils mainly due to the decomposition of the inhibiting polyphenols by oxidising enzymes such as phenol oxidase. Accordingly we hypothesised a lack of enzyme inhibiting polyphenols in degraded peat soils of rewetted fens compared to less decomposed peat of more natural fens. We collected both peat samples at the soil surface (0-20 cm) and fresh roots of dominating vascular plants and mosses (as peat parent material) from five formerly drained rewetted sites and five more natural sites of NE Germany and NW Poland. Less decomposed peat and living roots were used to obtain an internal standard for polyphenol analysis and to run enzyme inhibition tests. For all samples we determined the total phenolic contents and in addition we distinguished between the contents of hydrolysable and condensed tannic substances. From a methodical perspective the advantage of internal standards compared to the commercially available standards cyanidin chloride and tannic acid became apparent. Quantification with cyanidin or tannic acid led to a considerable underestimation (up to 90%) of polyphenolic concentrations in peat soils. As hypothesised we found that highly degraded peat contains far lower levels of total polyphenolics (factor 8) and condensed tannins (factor 50) than less decomposed peat. In addition we detected large differences between different plant species with highest polyphenolic contents for the roots of Carex appropinquata that were more than 10-fold higher than Sphagnum spp. (450 mg/g dry mass vs. 39 mg/g dry mass). Despite these differences, we did not find a significant correlation between enzyme activities and peat degradation state, indicating that there is no simple linear relationship between polyphenolic contents and microbial activity.
Sorption of radioiodide in an acidic, nutrient-poor boreal bog: insights into the microbial impact.
Lusa, M; Bomberg, M; Aromaa, H; Knuutinen, J; Lehto, J
2015-05-01
Batch sorption experiments were conducted to evaluate the sorption behaviour of iodide and the microbial impact on iodide sorption in the surface moss, subsurface peat, gyttja, and clay layers of a nutrient-poor boreal bog. The batch distribution coefficient (Kd) values of iodide decreased as a function of sampling depth. The highest Kd values, 4800 L/Kg dry weight (DW) (geometric mean), were observed in the fresh surface moss and the lowest in the bottom clay (geometric mean 90 mL/g DW). In the surface moss, peat and gyttja layers, which have a high organic matter content (on average 97%), maximum sorption was observed at a pH between ∼ 4 and 5 and in the clay layer at pH 2. The Kd values were significantly lower in sterilized samples, being 20-fold lower than the values found for the unsterilized samples. In addition, the recolonization of sterilized samples with a microbial population from the fresh samples restored the sorption capacity of surface moss, peat and gyttja samples, indicating that the decrease in the sorption was due to the destruction of microbes and supporting the hypothesis that microbes are necessary for the incorporation of iodide into the organic matter. Anoxic conditions reduced the sorption of iodide in fresh, untreated samples, similarly to the effect of sterilization, which supports the hypothesis that iodide is oxidized into I2/HIO before incorporation into the organic matter. Furthermore, the Kd values positively correlated with peroxidase activity in surface moss, subsurface peat and gyttja layers at +20 °C, and with the bacterial cell counts obtained from plate count agar at +4 °C. Our results demonstrate the importance of viable microbes for the sorption of iodide in the bog environment, having a high organic matter content and a low pH. Copyright © 2015 Elsevier Ltd. All rights reserved.
Impact of long-term wetting on belowground respiration and methanogenesis in Luther Bog, Ontario
NASA Astrophysics Data System (ADS)
Goebel, Marie; Blodau, Christian
2016-04-01
Peatlands play a major role in the global carbon cycle. They store one-third of total world soil carbon, sequester carbon dioxide (CO2) and release CO2 and methane (CH4). Climate and land-use change are predicted to cause either wetter winters and wetter summers or wetter winters and drier summers in the area where northern peatlands are located. Feedback on processes in the peat is poorly understood on the time scale of decades. In this study, we investigated impacts of long-term wetting and long-term fluctuating water table on potential CO2 and CH4 production rates and organic matter quality of the fractions bulk peat, pore water and leachate. Bulk peat potential CO2 production rates of 2.38 to 25.55 μmol g-1 d-1 (aerobic) and 1.53 to 7.33 μmol g-1 d-1 (anaerobic) decreased with depth along with a decrease in organic matter quality. Potential CH4 production rates (0.002 to 2.60 μmol g-1 d-1) increased with anaerobic conditions and a lack of electron acceptors rather than being dependent on the availability of labile organic matter. This pattern was less evident in solute fraction samples where labile compounds in top layers were probably either too labile to be detected or water movement obscured differences between depths. Bulk peat potential anaerobic CO2 and CH4 production increased through long-term wetting. As wetting did not change organic matter quality or aerobic production rates, increased anaerobic production rates likely originate from microorganisms adapted to anaerobic conditions. All indicators of organic matter quality, FTIR ratios, SUVA254, E2:E3, HIX, FI and PARAFAC, provided similar results. Other than expected, wetting did not result in higher organic matter quality in bulk peat and leachate. Drier conditions in summer led to reduced organic matter quality. In pore water, long-term wetter conditions resulted in a higher organic matter quality. Slow-down of decomposition due to anaerobic conditions is unlikely, as this was not the case with respect to the other fractions. Mixing with groundwater could have transported organic matter of high quality to the wetted site. Potential CO2 production rates were not affected by long-term water table change. Organic matter quality of the wetted site may have been also overestimated in our study as vegetation change may have changed litter and peat quality as well. This study revealed that long-term wetting probably does not change organic matter quality as decisively as expected. Potential anaerobic CO2 and CH4 production rates rather increased as long as conditions were more constantly anoxic. Long-term lowered or fluctuating water table could potentially result in smaller future emissions due to a reduced organic matter quality, but also to less carbon sequestration.
Subsidence in tropical peatlands: Estimating CO2 fluxes from peatlands in Southeast Asia
NASA Astrophysics Data System (ADS)
Hoyt, A.; Harvey, C. F.; Seppalainen, S. S.; Chaussard, E.
2017-12-01
Tropical peatlands of Southeast Asia are an important global carbon stock. However, they are being rapidly deforested and drained. Peatland drainage facilitates peat decomposition, releases sequestered peat carbon to the atmosphere as CO2, and leads to subsidence of the peat surface. As a result, subsidence measurements can be used to monitor peatland carbon loss over time. Until now, subsidence measurements have been primarily limited to ground-based point measurements using subsidence poles. Here we demonstrate a powerful method to measure peatland subsidence rates across much larger areas than ever before. Using remotely sensed InSAR data, we map subsidence rates across thousands of square kilometers in Southeast Asia and validate our results against ground-based subsidence measurements. The method allows us to monitor subsidence in remote locations, providing unprecedented spatial information, and the first comprehensive survey of land uses such as degraded peatlands, burnt and open areas, shrub lands, and smallholder farmlands. Strong spatial patterns emerged, with the highest subsidence rates occurring at the centers of peat domes, where the peat is thickest and drainage depths are likely to be largest. Peatland subsidence rates were also strongly dependent on current and historical land use, with typical subsidence rates ranging from 2-4 cm/yr. Finally, we scaled up our results to calculate total annual emissions from peat decomposition in degraded peatlands.
Methane flux from Minnesota Peatlands
NASA Astrophysics Data System (ADS)
Crill, P. M.; Bartlett, K. B.; Harriss, R. C.; Gorham, E.; Verry, E. S.; Sebacher, D. I.; Madzar, L.; Sanner, W.
1988-12-01
Northern (>40°N) wetlands have been suggested as the largest natural source of methane (CH4) to the troposphere. To refine our estimates of source strengths from this region and to investigate climatic controls on the process, fluxes were measured from a variety of Minnesota peatlands during May, June, and August 1986. Sites included forested and unforested ombrotrophic bogs and minerotrophic fens in and near the U.S. Department of Agriculture Marcell Experimental Forest and the Red Lake peatlands. Late spring and summer fluxes ranged from 11 to 866 mg CH4 m-2 d-1, averaging 207 mg CH4 m-2 d-1 overall. At Marcell Forest, forested bogs and fen sites had lower fluxes (averages of 77 ± 21 mg CH4 m-2 d-1 and 142 ± 19 mg CH4 m-2 d-1) than open bogs (average of 294 ± 30 mg CH4 m-2 d-1). In the Red Lake peatland, circumneutral fens, with standing water above the peat surface, produced more methane than acid bog sites in which the water table was beneath the moss surface (325 ± 31 and 102 ± 13 mg CH4 m-2 d-1, respectively). Peat temperature was an important control. Methane flux increased in response to increasing soil temperature. For example, the open bog in the Marcell Forest with the highest CH4 flux exhibited a 74-fold increase in flux over a three-fold increase in temperature. We estimate that the methane flux from all peatlands north of 40° may be on the order of 70 to 90 Tg/yr though estimates of this sort are plagued by uncertainties in the areal extent of peatlands, length of the CH4 producing season, and the spatial and temporal variability of the flux.
NASA Astrophysics Data System (ADS)
Günther, Anke; Huth, Vytas; Jurasinski, Gerald; Albrecht, Kerstin; Glatzel, Stephan
2015-04-01
In Europe, rising prices for farm land make it increasingly difficult for government administrations to compete with external investors during the acquisition of land for wetland conservation. Thus, adding economic value to these, otherwise "lost", areas by combining extensive land use with nature conservation efforts could increase the amount of ground available for wetland restoration. Against this background, the concept of paludiculture aims to provide biomass for multiple purposes from peatlands with water tables high enough to conserve the peat body. However, as plants have been shown to contribute to greenhouse gas exchange in peatlands, manipulating the vegetation (by harvesting, sowing etc.) might alter the effect of the restored peatlands on climate. Here, we present greenhouse gas data from two experimental paludiculture systems on formerly drained intensive grasslands in northern Germany. In a fen that has been rewetted more than 15 years ago three species of reed plants were harvested to simulate biomass production for bioenergy and as construction material. And in a peat bog that has been converted from drained grassland to a field with a controlled water table around ground surface Sphagnum mosses were cultivated to provide an alternative growing substrate for horticulture. In both systems, we determined carbon dioxide, methane, and nitrous oxide exchange using closed chambers over two years. Additionally, water and peat chemistry and environmental parameters as recorded by a weather station were analyzed. Both restored peatlands show greenhouse gas balances comparable to those of natural ecosystems. Nitrous oxide was not emitted in either system. Fluctuations of the emissions reflect changes in weather conditions across the study years. In the fen, relative emission patterns between plant species were not constant over time. We did not find a negative short-term effect of biomass harvest or Sphagnum cultivation on net greenhouse gas balances. Therefore, paludiculture may likely provide a possibility to add economic value to restored peatlands while retaining the positive effects of rewetting for greenhouse gas mitigation.
Illuminating Geochemical Controls of Methane Oxidation Along a Gradient of Permafrost Thaw
NASA Astrophysics Data System (ADS)
Perryman, C. R.; Kashi, N.; McCalley, C. K.; Malhotra, A.; Giesler, R.; Varner, R.
2017-12-01
Increases in annual mean temperature in the subarctic have accelerated the thaw of organic-rich permafrost peatlands, exacerbating methane (CH4) production from microbial decomposition of peat deposits and subsequent CH4 emissions. Methanotrophic bacteria may oxidize/consume upwards of 90% of produced CH4 in some settings, pending substrate availability and environmental conditions. Redox chemistry may also control the rate of CH4 oxidation in thawing permafrost areas, particularly redox potential (Eh) and the availability of oxygen (O2) and other terminal electron receptors. We investigated potential CH4 oxidation rates across a permafrost thaw gradient in Stordalen Mire (68°21'N,18°49'E) near Abisko, Sweden. Methane oxidation rates for sites from thawing and collapsed palsa, semi-wet Sphagnum, and open-water sedge sites were determined through laboratory incubations. Peat cores were extracted from two depths at each site and incubated at in situ temperatures and CH4 concentrations. Headspace samples were collected over a 48-hour period and analyzed for CH4 concentration using flame ionization detection gas chromatography (GC-FID). Dissolved O2, Eh, and dissolved CH4 were measured in sites with porewater. Oxidation rates ranged from <0.1 to 19 μg of CH4 per gram of dry biomass per day. Eh remained positive (41.6 to 316.8 mV) with available dissolved O2 (0.3 - 5.2 mg/L) in all measurement locations down to 20cm, indicating in situ aerobic CH4 oxidation is viable across these environments. Potential CH4 oxidation rates increased with increasing dissolved CH4 concentration. Highest potential CH4 oxidation rates were found in open-water sedge sites. Eh and dissolved O2 were lowest at these sites, suggesting that methanotrophs with low-O2 demand may populate sedge areas. Furthermore, potential CH4 oxidation rates were higher at depth than at the surface in thawing palsa, suggesting CH4 oxidation may mitigate CH4 production triggered by warming in these actively thawing environments. Forthcoming elemental analyses of peat and pore water will further elucidate trends and geochemical controls of CH4 oxidation rates in thawing permafrost areas.
NASA Astrophysics Data System (ADS)
Huguet, Arnaud; Meador, Travis B.; Laggoun-Défarge, Fatima; Könneke, Martin; Wu, Weichao; Derenne, Sylvie; Hinrichs, Kai-Uwe
2017-04-01
Interpretations of the abundance and distribution of branched glycerol dialkyl glycerol tetraether (brGDGT) lipids have been increasingly applied to infer changes in paleoenvironment and to estimate terrigenous organic matter inputs into estuarine and marine sediments. However, only preliminary information is known regarding the ecology and physiology of the source organisms of these biomarkers. We assessed the production rates of brGDGTs under different redox conditions in peat, where these lipids are found in high concentrations, particularly at greater depths below the fluctuating water table. The incorporation of hydrogen relative to carbon into lipids observed in our dual stable isotope probing assay indicates that brGDGTs were produced by heterotrophic bacteria. Unexpectedly, incubations with stable isotope tracers of the surface horizon (5-20 cm) initiated under oxic conditions before turning suboxic and eventually anoxic exhibited up to one order of magnitude higher rates of brGDGT production (16-87 ng cm-3 y-1) relative to the deeper, anoxic zone (20-35 cm; ca. 7 ng cm-3 y-1), and anoxic incubations of the surface horizon (<3 ng cm-3 y-1). Turnover times of brGDGTs in the surface horizon ranged between 8 and 41 years in the incubations initiated under oxic conditions, in contrast to 123-742 years in anoxic incubations. As brGDGTs were actively produced during both anoxic incubations and those exposed to oxygen, we conclude that their source organisms are likely facultative aerobic heterotrophs that are particularly active in the peat acrotelm. Production rates of bacterial fatty acids (ca. 2 μg cm-3 y-1) were roughly two orders of magnitude higher than those of brGDGTs, suggesting that brGDGT producers are a minor constituent of the microbial community or that brGDGTs are a small component of the microbial cell membrane in comparison to fatty acids, despite the typically high brGDGT concentrations observed in peat. Multivariate analysis identified two branched fatty acids that shared a similar production pattern as brGDGTs among the experimental treatments and may be associated with brGDGT biosynthesis.
NASA Astrophysics Data System (ADS)
Tang, Yingying; Harpenslager, Sarah F.; van Kempen, Monique M. L.; Verbaarschot, Evi J. H.; Loeffen, Laury M. J. M.; Roelofs, Jan G. M.; Smolders, Alfons J. P.; Lamers, Leon P. M.
2017-02-01
The sequestration of nutrients from surface waters by aquatic macrophytes and sediments provides an important service to both natural and constructed wetlands. While emergent species take up nutrients from the sediment, submerged and floating macrophytes filter nutrients directly from the surface water, which may be more efficient in constructed wetlands. It remains unclear, however, whether their efficiency is sufficient for wastewater purification and how plant species and nutrient loading affects nutrient distribution over plants, water and sediment. We therefore determined nutrient removal efficiencies of different vegetation (Azolla filiculoides, Ceratophyllum demersum and Myriophyllum spicatum) and sediment types (clay, peaty clay and peat) at three nutrient input rates, in a full factorial, outdoor mesocosm experiment. At low loading (0.43 mg P m-2 d-1), plant uptake was the main pathway (100 %) for phosphorus (P) removal, while sediments showed a net P release. A. filiculoides and M. spicatum showed the highest biomass production and could be harvested regularly for nutrient recycling, whereas C. demersum was outcompeted by spontaneously developing macrophytes and algae. Higher nutrient loading only stimulated A. filiculoides growth. At higher rates ( ≥ 21.4 mg P m-2 d-1), 50-90 % of added P ended up in sediments, with peat sediments becoming more easily saturated. For nitrogen (N), 45-90 % was either taken up by the sediment or lost to the atmosphere at loadings ≥ 62 mg N m-2 d-1. This shows that aquatic macrophytes can indeed function as an efficient nutrient filter but only for low loading rates (polishing) and not for high rates (purification). The outcome of this controlled study not only contributes to our understanding of nutrient dynamics in constructed wetlands but also shows the differential effects of wetland sediment types and plant species. Furthermore, the acquired knowledge may benefit the application of macrophyte harvesting to remove and recycle nutrients from both constructed wetlands and nutrient-loaded natural wetlands.
Snyder, Daniel T.; Morace, Jennifer L.
1997-01-01
The results of this study could be useful in helping to prioritize which drained wetlands may provide the greatest benefits with regard to reducing nutrient loads to the lake if restoration or land-use modifications are instituted. Recent acquisition and planned restoration of drained wetland areas at the Wood River and Williamson River North properties may produce significant reduction in the quantity of nutrients released by the decomposition of peat soils of these areas. If the water table rises to predrainage levels, the peats soils may become inundated most of the year, resulting in the continued long-term storage of nutrients within the peat soils by reducing aerobic decomposition. The maximum benefit, in terms of decreasing potential nutrient loss due to peat decomposition, could be the reduction of total nitrogen and total phosphorus loss to about one-half that of the 1994–95 annual loss estimated for all the drained wetlands sampled for this study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veska, E.; Eaton, R.S.
Field and laboratory investigations were undertaken of the environment surrounding abandoned U mill tailings at Rayrock, Northwest Territories, Canada, to examine the extent of 226Ra and U contamination. Samples of ground water, surface water, and unconsolidated geological material from the Rayrock area were collected for chemical and radiochemical analyses. Results indicated that the surface waters contained levels of 226Ra as high as 20 Bq L-1, 210Pb as high as 1.1 Bq L-1, and ground water U as high as 2800 micrograms L-1. Lower levels of 226Ra, 210Pb, and U, 3.6 Bq L-1, 0.5 Bq L-1, and 4 micrograms L-1, respectively,more » were found in a small lake adjacent to the tailings area. Analysis of tailings and soil in the immediate vicinity indicates that the radionuclides and U are mobilized and can move within the tailings. Some of the mobilized radionuclides will be bound by the surrounding peat. The remainder may move to Lake Alpha in ground water. Surface water flow also transports some contaminants both in the water of Alpha Creek and by washing tailings into Lake Alpha. The potential annual external and internal dose equivalents to a hypothetical resident were calculated based on exposure from the abandoned U mill tailings, drinking water, and fish caught in the lakes in the vicinity of the tailings. While Alpha Creek and Lake Alpha water showed evidence of contamination, the rest of the water system and the fish were at natural background levels of radioactivity.« less
NASA Astrophysics Data System (ADS)
Wehr, R. A.; McCalley, C. K.; Logan, T. A.; Chanton, J.; Crill, P. M.; Rich, V. I.; Saleska, S. R.
2017-12-01
Emission of the greenhouse gas methane from wetlands is of prime concern in the prediction of climate change - especially emission associated with thawing permafrost, which may drive a positive feedback loop of emission and warming. In addition to the biochemistry of methane production and consumption, wetland methane emission depends critically on the transport mechanisms by which methane moves through and out of the ecosystem. We therefore developed a model of methane biochemistry and transport for a sphagnum bog representing an intermediate permafrost thaw stage in Stordalen Mire, Sweden. In order to simultaneously reproduce measured profiles of both the concentrations and isotopic compositions of both methane and carbon dioxide in the peat pore water (Fig. 1) - as well as the surface methane emission - it was necessary for the model to include ebullition, plant-mediated transport via aerenchyma, and subsurface horizontal water flow. Diffusion of gas through the pore water was relatively unimportant. As a result, 90% of the produced methane escaped the wetland rather than being consumed by methanotrophic organisms in the near-surface pore water. Our model provides a comprehensive picture of methane emission from this bog site by quantifying the vertical profiles of: acetoclastic methanogenesis, hydrogenotrophic methanogenesis, methane oxidation, aerobic respiration, ebullition, plant-mediated transport, subsurface horizontal water flow, and diffusion.
Investigating the potential of floating mires as record of palaeoenvironmental changes
NASA Astrophysics Data System (ADS)
Zaccone, C.; Adamo, P.; Giordano, S.; Miano, T. M.
2012-04-01
Peat-forming floating mires could provide an exceptional resource for palaeoenvironmental and environmental monitoring studies, as much of their own history, as well as the history of their surrounds, is recorded in their peat deposits. In his Naturalis historia (AD 77-79), Pliny the Elder described floating islands on Lake Vadimonis (now Posta Fibreno Lake, Italy). Actually, a small floating island (ca. 35 m of diameter and 3 m of submerged thickness) still occurs on this calcareous lake fed by karstic springs at the base of the Apennine Mountains. Here the southernmost Italian populations of Sphagnum palustre occur on the small surface of this floating mire known as "La Rota", i.e., a cup-formed core of Sphagnum peat and rhizomes of Helophytes, erratically floating on the water-body of a submerged doline, annexed to the easternmost edge of the lake, characterised by the extension of a large reed bed. Geological evidence point out the existence in the area of a large lacustrine basin since Late Pleistocene. The progressive filling of the lake caused by changing in climatic conditions and neotectonic events, brought about the formation of peat deposits in the area, following different depositional cycles in a swampy environment. Then, a round-shaped portion of fen, originated around lake margins in waterlogged areas, was somehow isolated from the bank and started to float. Coupling data about concentrations and fluxes of several major and trace elements of different origin (i.e., dust particles, volcanic emissions, cosmogenic dusts and marine aerosols), with climate records (plant micro- and macrofossils, pollens, isotopic ratios), biomolecular records (e.g., lipids), detailed age-depth modelling (i.e., 210Pb, 137Cs, 14C), and humification indexes, the present work is hoped to identify and better understand the reliability of this particular "archive", and thus possible relationships between biogeochemical processes occurring in this floating bog and environmental changes.
NASA Astrophysics Data System (ADS)
Azhar, ATS; Norhaliza, W.; Ismail, B.; Ezree, AM; Nizam, ZM
2017-08-01
Shear strength of the soil is one of the most important parameters in engineering design, especially during the pre- or post-construction periods, since it is mainly used to measure and evaluate the foundation or slope stability of soil. Peat normally known as a soil that has a very low value of shear strength, and in order to determine and understand the shear strength of the peat, it is a difficult task in geotechnical engineering due to several factors such as types of fabrics, the origin of the soil, water content, organic matter and the degree of humification. The aim of this study is to determine the effective undrained shear strength properties of reconstituted peat of different sizes. All the reconstituted peat samples were formed with the size that passed the opening sieve of 0.425 mm (
NASA Astrophysics Data System (ADS)
Vybornova, Olga; Pfeiffer, Eva-Maria; Kutzbach, Lars
2016-04-01
In peatlands, all biogeochemical processes and the amount of exported carbon and nitrogen compounds are strongly influenced by changes in the water table. Peatland drainage leads to increased peat oxidization and changes peatlands from carbon sinks to net carbon sources. Especially, the emissions of the important greenhouse gases (GHG) carbon dioxide, methane and nitrous oxide are increased due to drainage. The currently ongoing restoration in the bog Himmelmoor (N 53° 44'20", E 9° 51'00", Quickborn) with an extent of about 6 km2 one of the largest raised bogs in Schleswig-Holstein, offers the possibility to characterize and to document the development of the fluxes at different sites before, during and after rewetting, using a method of small-scale closed chambers. Six subsites with differing water level and land use were identified: an area that was rewetted 30 years ago with Sphagnum vegetation, an area rewetted in 2009, an area with on-going peat extraction, deep peat cutting ditches refilled with peat with and without Eriophorum angustifolium vegetation and a comparatively dry peat dam. We determined that in the course of years 2014-2015 the measured N2O and CO2 fluxes varied between -0,1 and 1,9 mg m-2 h-1 and between -0,12 and 1,09 g m-2 h-1, respectively, and the highest nitrous oxide as well as carbon dioxide fluxes are typical for the dry peat dam study site. The measured CH4 fluxes were between -1,8 and 22,7 mg m-2 h-1, where the highest rates were found on the area rewetted 30 years ago and on the peat cutting ditches with Eriophorum angustifolium. Accounting for the different global warming potentials (GWP) of the measured greenhouse gases, the annual GHG balance was calculated. Emissions from all study sites ranged between 5,2 and 36 t CO2-eq ha-1 year-1 and were dominated by high emissions of CO2 (2,5 up to 25,5 t CO2-eq ha-1 year-1). Highest emission rates were found at the dry peat dam site and at the area rewetted 30 years ago. The peat dams and piles are also strong N2O sources. The rewetted, vegetated microtopes are strong CH4 sources, whereas all other areas show insignificant CH4 fluxes. The annual GHG emissions in the area rewetted 30 years ago are at least triply as high as the rates of the extraction on-going area, thus demonstrating the long period needed for the establishment of a carbon balance that is similar to the pre-drainage situation.
Vitt, D.H.; Wieder, K.; Halsey, L.A.; Turetsky, M.
2003-01-01
Peatlands cover about 30% of northeastern Alberta and are ecosystems that are sensitive to nitrogen deposition. In polluted areas of the UK, high atmospheric N deposition (as a component of acid deposition) has been considered among the causes of Sphagnum decline in bogs (ombrogenous peatlands). In relatively unpolluted areas of western Canada and northern Sweden, short-term experimental studies have shown that Sphagnum responds quickly to nutrient loading, with uptake and retention of nitrogen and increased production. Here we examine the response of Sphagnum fuscum to enhanced nitrogen deposition generated during 34 years of oil sands mining through the determination of net primary production (NPP) and nitrogen concentrations in the upper peat column. We chose six continental bogs receiving differing atmospheric nitrogen loads (modeled using a CALPUFF 2D dispersion model). Sphagnum fuscum net primary production (NPP) at the high deposition site (Steepbank - mean of 600 g/m2; median of 486 g/m2) was over three times as high than at five other sites with lower N deposition. Additionally, production of S. fuscum may be influenced to some extent by distance of the moss surface from the water table. Across all sites, peat nitrogen concentrations are highest at the surface, decreasing in the top 3 cm with no significant change with increasing depth. We conclude that elevated N deposition at the Steepbank site has enhanced Sphagnum production. Increased N concentrations are evident only in the top 1-cm of the peat profile. Thus, 34 years after mine startup, increased N-deposition has increased net primary production of Sphagnum fuscum without causing elevated levels of nitrogen in the organic matter profile. A response to N-stress for Sphagnum fuscum is proposed at 14-34 kg ha-1 yr-1. A review of N-deposition values reveals a critical N-deposition value of between 14.8 and 15.7 kg ha -1 yr-1 for NPP of Sphagnum species.
NASA Astrophysics Data System (ADS)
Agatova, A. R.; Khazina, I. V.; Bronnikova, M. A.; Uspenskaya, O. N.; Nepop, R. K.
2018-03-01
This paper presents the results of multidisciplinary investigations of the peat-bed under hummocky permafrosted boggy meadow within the Boguty basin. For the last 7600 years 4 evolutionary phases of peatbog formation within the drained part of Low Boguty Lake bottom were established and corresponding 4 pollen complexes were described. 18 radiocarbon dates suggest some chronological bench marks of postglacial landscape evolution in the region. After degradation of Sartan glaciation about 14000 BP, trees grew in now forestless areas at 11000 BP and 8500-7800 BP. The climate in the first half of the Holocene was warmer and more humid. Accumulation of lacustrine loams within the studied peatbog occurred before 7600 BP with predominated algae Pediastrum, Zygnemataceae and Botryococcus. After the lake level lowered in the result of destructing moraine dam, two lower peat horizons were developed about 7600 – 7200 BP. An episode of significant lake desiccation (later than 7200 BP) was recorded in all proxy archives. Further rise of water supply led to increasing the number of water-bog plants, diatomaceous, euglenic and green algae. At the same time, the pollen of xerophytes began to predominate in the pollen complexes, indicating aridization. The final stage reflects stable peatbog drying and its transformation into boggy meadow, decomposition and mineralization of peat.
Intrinsic Hydrophobicity of Rammed Earth
NASA Astrophysics Data System (ADS)
Holub, M.; Stone, C.; Balintova, M.; Grul, R.
2015-11-01
Rammed earth is well known for its vapour diffusion properties, its ability to regulate humidity within the built environment. Rammed earth is also an aesthetically iconic material such as marble or granite and therefore is preferably left exposed. However exposed rammed earth is often coated with silane/siloxane water repellents or the structure is modified architecturally (large roof overhangs) to accommodate for the hydrophilic nature of the material. This paper sets out to find out optimal hydrophobicity for rammed earth based on natural composite fibres and surface coating without adversely affecting the vapour diffusivity of the material. The material is not required to be waterproof, but should resist at least driving rain. In order to evaluate different approaches to increase hydrophobicity of rammed earth surface, peat fibres and four types of repellents were used.
Spatial variability in plant species composition and peatland carbon exchange
NASA Astrophysics Data System (ADS)
Goud, E.; Moore, T. R.; Roulet, N. T.
2015-12-01
Plant species shifts in response to global change will have significant impacts on ecosystem carbon (C) exchange and storage arising from changes in hydrology. Spatial variation in peatland C fluxes have largely been attributed to the spatial distribution of microhabitats that arise from variation in surface topography and water table depth, but little is known about how plant species composition impacts peatland C cycling or how these impacts will be influenced by changing environmental conditions. We quantified the effect of species composition and environmental variables on carbon dioxide (CO2) and methane (CH4) fluxes over 2 years in a temperate peatland for four plant communities situated along a water table gradient from ombrotrophic bog to beaver pond. We hypothesized that (i) spatial heterogeneity in species composition would drive predictable spatial heterogeneity in C fluxes due to variation in plant traits and ecological tolerances, and (ii) increases in peat temperature would increase C fluxes. Species had different effects on C fluxes primarily due to differences in leaf traits. Differences in ecological tolerances among communities resulted in different rates of CO2 exchange in response to changes in water table depth. There was an overall reduction in ecosystem respiration (ER), gross primary productivity (GPP) and CH4 flux in response to colder peat temperatures in the second year, and the additive effects of a deeper water table in the bog margin and pond sites further reduced flux rates in these areas. These results demonstrate that different plant species can increase or decrease the flux of C into and out of peatlands based on differences in leaf traits and ecological tolerances, and that CO2 and CH4 fluxes are sensitive to changes in soil temperature, especially when coupled with changes in moisture availability.
Airborne Electromagnetic Mapping of Peatlands: a Case Study in Norway.
NASA Astrophysics Data System (ADS)
Silvestri, S.; Viezzoli, A.; Pfaffhuber, A. A.; Vettore, A.
2017-12-01
Peatlands are extraordinary reservoirs of organic carbon that can be found over a wide range of latitudes, in tropical, to temperate, to (sub)polar climates. According to some estimates, the carbon stored in peatlands almost match the atmospheric carbon pool. Peatlands degradation due to natural and anthropogenic factors releases every year large amount of CO2 and other green house gasses into the atmosphere. The conservation of peatlands is therefore a key measure to reduce emissions and to mitigate climate change. An effective plan to prevent peatlands degradation must move from a precise estimate of the volume of peat stored across vast territories around the world. One example are the several bogs that characterize large surfaces in Norway. Our research combines the use of high spatial resolution satellite optical data with Airborne Electromagnetic (AEM) and field measurements in order to map the extension and thickness of peat in Brøttum, Ringsaker province, Norway. The methodology allows us to quantify the volume of peat as well as the organic carbon stock. The variable thickness typical of Norwegian bogs allows us to test the limits of the AEM methodology in resolving near surface peat layers. This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 747809. Start date: 1 June 2017. Duration: 24 months
Influences and interactions of inundation, peat, and snow on active layer thickness
Atchley, Adam L.; Coon, Ethan T.; Painter, Scott L.; ...
2016-05-18
Active layer thickness (ALT), the uppermost layer of soil that thaws on an annual basis, is a direct control on the amount of organic carbon potentially available for decomposition and release to the atmosphere as carbon-rich Arctic permafrost soils thaw in a warming climate. Here, we investigate how key site characteristics affect ALT using an integrated surface/subsurface permafrost thermal hydrology model. ALT is most sensitive to organic layer thickness followed by snow depth but is relatively insensitive to the amount of water on the landscape with other conditions held fixed. Furthermore, the weak ALT sensitivity to subsurface saturation suggests thatmore » changes in Arctic landscape hydrology may only have a minor effect on future ALT. But, surface inundation amplifies the sensitivities to the other parameters and under large snowpacks can trigger the formation of near-surface taliks.« less
Effects of polar and nonpolar groups on the solubility of organic compounds in soil organic matter
Chiou, C.T.; Kile, D.E.
1994-01-01
Vapor sorption capacities on a high-organic-content peat, a model for soil organic matter (SOM), were determined at room temperature for the following liquids: n-hexane, 1,4-dioxane, nitroethane, acetone, acetonitrile, 1-propanol, ethanol, and methanol. The linear organic vapor sorption is in keeping with the dominance of vapor partition in peat SOM. These data and similar results of carbon tetrachloride (CT), trichloroethylene (TCE), benzene, ethylene glycol monoethyl ether (EGME), and water on the same peat from earlier studies are used to evaluate the effect of polarity on the vapor partition in SOM. The extrapolated liquid solubility from the vapor isotherm increases sharply from 3-6 wt % for low-polarity liquids (hexane, CT, and benzene) to 62 wt % for polar methanol and correlates positively with the liquid's component solubility parameters for polar interaction (??P) and hydrogen bonding (??h). The same polarity effect may be expected to influence the relative solubilities of a variety of contaminants in SOM and, therefore, the relative deviations between the SOM-water partition coefficients (Kom) and corresponding octanol-water partition coefficients (Kow) for different classes of compounds. The large solubility disparity in SOM between polar and nonpolar solutes suggests that the accurate prediction of Kom from Kow or Sw (solute water solubility) would be limited to compounds of similar polarity.
Bratton, J.F.; Böhlke, J.K.; Krantz, D.E.; Tobias, C.R.
2009-01-01
To better understand large-scale interactions between fresh and saline groundwater beneath an Atlantic coastal estuary, an offshore drilling and sampling study was performed in a large barrier-bounded lagoon, Chincoteague Bay, Maryland, USA. Groundwater that was significantly fresher than overlying bay water was found in shallow plumes up to 8??m thick extending more than 1700??m offshore. Groundwater saltier than bay surface water was found locally beneath the lagoon and the barrier island, indicating recharge by saline water concentrated by evaporation prior to infiltration. Steep salinity and nutrient gradients occur within a few meters of the sediment surface in most locations studied, with buried peats and estuarine muds acting as confining units. Groundwater ages were generally more than 50??years in both fresh and brackish waters as deep as 23??m below the bay bottom. Water chemistry and isotopic data indicate that freshened plumes beneath the estuary are mixtures of water originally recharged on land and varying amounts of estuarine surface water that circulated through the bay floor, possibly at some distance from the sampling location. Ammonium is the dominant fixed nitrogen species in saline groundwater beneath the estuary at the locations sampled. Isotopic and dissolved-gas data from one location indicate that denitrification within the subsurface flow system removed terrestrial nitrate from fresh groundwater prior to discharge along the western side of the estuary. Similar situations, with one or more shallow semi-confined flow systems where groundwater geochemistry is strongly influenced by circulation of surface estuary water through organic-rich sediments, may be common on the Atlantic margin and elsewhere.
Raudina, T V; Loiko, S V; Lim, A; Manasypov, R M; Shirokova, L S; Istigechev, G I; Kuzmina, D M; Kulizhsky, S P; Vorobyev, S N; Pokrovsky, O S
2018-09-01
Soil pore waters are a vital component of the ecosystem as they are efficient tracers of mineral weathering, plant litter leaching, and nutrient uptake by vegetation. In the permafrost environment, maximal hydraulic connectivity and element transport from soils to rivers and lakes occurs via supra-permafrost flow (i.e. water, gases, suspended matter, and solutes migration over the permafrost table). To assess possible consequences of permafrost thaw and climate warming on carbon and Green House gases (GHG) dynamics we used a "substituting space for time" approach in the largest frozen peatland of the world. We sampled stagnant supra-permafrost (active layer) waters in peat columns of western Siberia Lowland (WSL) across substantial gradients of climate (-4.0 to -9.1°C mean annual temperature, 360 to 600mm annual precipitation), active layer thickness (ALT) (>300 to 40cm), and permafrost coverage (sporadic, discontinuous and continuous). We analyzed CO 2 , CH 4 , dissolved carbon, and major and trace elements (TE) in 93 soil pit samples corresponding to several typical micro landscapes constituting the WSL territory (peat mounds, hollows, and permafrost subsidences and depressions). We expected a decrease in intensity of DOC and TE mobilization from soil and vegetation litter to the supra-permafrost water with increasing permafrost coverage, decreasing annual temperature and ALT along a latitudinal transect from 62.3°N to 67.4°N. However, a number of solutes (DOC, CO 2 , alkaline earth metals, Si, trivalent and tetravalent hydrolysates, and micronutrients (Mn, Co, Ni, Cu, V, Mo) exhibited a northward increasing trend with highest concentrations within the continuous permafrost zone. Within the "substituting space for time" climate change scenario and northward shift of the permafrost boundary, our results suggest that CO 2 , DOC, and many major and trace elements will decrease their concentration in soil supra-permafrost waters at the boundary between thaw and frozen layers. As a result, export of DOC and elements from peat soil to lakes and rivers of the WSL (and further to the Arctic Ocean) may decrease. Copyright © 2018 Elsevier B.V. All rights reserved.
Seasonal patterns and controls on net ecosystem CO2 exchange in a boreal peatland complex
NASA Astrophysics Data System (ADS)
Bubier, Jill L.; Crill, Patrick M.; Moore, Tim R.; Savage, Kathleen; Varner, Ruth K.
1998-12-01
We measured seasonal patterns of net ecosystem exchange (NEE) of CO2 in a diverse peatland complex underlain by discontinuous permafrost in northern Manitoba, Canada, as part of the Boreal Ecosystems Atmosphere Study (BOREAS). Study sites spanned the full range of peatland trophic and moisture gradients found in boreal environments from bog (pH 3.9) to rich fen (pH 7.2). During midseason (July-August, 1996), highest rates of NEE and respiration followed the trophic sequence of bog (5.4 to -3.9 μmol CO2 m-2 s-1) < poor fen (6.3 to -6.5 μmol CO2 m-2 s-1) < intermediate fen (10.5 to -7.8 μmol CO2 m-2 s-1) < rich fen (14.9 to -8.7 μmol CO2m-2 s-1). The sequence changed during spring (May-June) and fall (September-October) when ericaceous shrub (e.g., Chamaedaphne calyculata) bogs and sedge (Carex spp.) communities in poor to intermediate fens had higher maximum CO2 fixation rates than deciduous shrub-dominated (Salix spp. and Betula spp.) rich fens. Timing of snowmelt and differential rates of peat surface thaw in microtopographic hummocks and hollows controlled the onset of carbon uptake in spring. Maximum photosynthesis and respiration were closely correlated throughout the growing season with a ratio of approximately 1/3 ecosystem respiration to maximum carbon uptake at all sites across the trophic gradient. Soil temperatures above the water table and timing of surface thaw and freeze-up in the spring and fall were more important to net CO2 exchange than deep soil warming. This close coupling of maximum CO2 uptake and respiration to easily measurable variables, such as trophic status, peat temperature, and water table, will improve models of wetland carbon exchange. Although trophic status, aboveground net primary productivity, and surface temperatures were more important than water level in predicting respiration on a daily basis, the mean position of the water table was a good predictor (r2 = 0.63) of mean respiration rates across the range of plant community and moisture gradients. Q10 values ranged from 3.0 to 4.1 from bog to rich fen, but when normalized by above ground vascular plant biomass, the Q10 for all sites was 3.3.
NASA Astrophysics Data System (ADS)
Osterwalder, S.; Sommar, J.; Åkerblom, S.; Jocher, G.; Fritsche, J.; Nilsson, M. B.; Bishop, K.; Alewell, C.
2018-01-01
Quantitative estimates of the land-atmosphere exchange of gaseous elemental mercury (GEM) are biased by the measurement technique employed, because no standard method or scale in space and time are agreed upon. Here we present concurrent GEM exchange measurements over a boreal peatland using a novel relaxed eddy accumulation (REA) system, a rectangular Teflon® dynamic flux chamber (DFC) and a DFC designed according to aerodynamic considerations (Aero-DFC). During four consecutive days the DFCs were placed alternately on two measurement plots in every cardinal direction around the REA sampling mast. Spatial heterogeneity in peat surface characteristics (0-34 cm) was identified by measuring total mercury in eight peat cores (57 ± 8 ng g-1, average ± SE), vascular plant coverage (32-52%), water table level (4.5-14.1 cm) and dissolved gaseous elemental mercury concentrations (28-51 pg L-1) in the peat water. The GEM fluxes measured by the DFCs showed a distinct diel pattern, but no spatial difference in the average fluxes was detected (ANOVA, α = 0.05). Even though the correlation between the Teflon® DFC and Aero-DFC was significant (r = 0.76, p < 0.05) the cumulative flux of the Aero-DFC was a factor of three larger. The average flux of the Aero-DFC (1.9 ng m-2 h-1) and REA (2 ng m-2 h-1) were in good agreement. The results indicate that the novel REA design is in agreement for cumulative flux estimates with the Aero-DFC, which incorporates the effect of atmospheric turbulence. The comparison was performed over a fetch with spatially rather homogenous GEM flux dynamics under fairly consistent weather conditions, minimizing the effect of weather influence on the data from the three measurement systems. However, in complex biomes with heterogeneous surface characteristics where there can be large spatial variability in GEM gas exchange, the small footprint of chambers (<0.2 m2) makes for large coefficients of variation. Thus many chamber measurement replications are needed to establish a credible biome GEM flux estimate, even for a single point in time. Dynamic flux chambers will, however, be able to resolve systematic differences between small scale features, such as experimentally manipulated plots or small scale spatial heterogeneity.
Holden, J; Chapman, P J; Palmer, S M; Kay, P; Grayson, R
2012-06-30
Discolouration of natural surface waters due to the humic component of dissolved organic carbon (DOC) is a costly problem for water supply companies. This paper reviews what is known about the impacts of prescribed moorland vegetation burning on water colour. Relevant research has taken place at three scales: laboratory experiments on peat cores, plot scale sampling of soil waters and catchment scale sampling of stream waters. While laboratory studies suggest burning increases colour production, the evidence from catchment and plot studies is contradictory. Plot studies suggest colour production may decrease or remain unchanged following burning although there is evidence for some transient changes. Catchment studies suggest prescribed moorland burning causes stream water colour to increase, although in most cases the evidence is not clear cut since most studies could not clearly disentangle the effects of burning from those of vegetation cover. The differences in findings between plot and catchment studies may be explained by: i) the short-term nature of some studies which do not measure long-term response and recovery times to burning; ii) the lack of colour measurements from shallow soil depths which contribute more to streamflow than soil water from deeper in the peat; and iii) the possibility of hydrological interactions occurring between different experimental plots at some sites. Additionally, the increase in recent patch burning in some catchments that has been statistically attributed by some authors to increases in stream water colour cannot be reconciled with theoretical calculations. When dilution with waters derived from other parts of the catchment are taken into account, large values of colour have to be theoretically derived from those recently burnt areas that occupy a small proportion of the catchment area in order to balance the change in stream water colour observed in recent years. Therefore, much further process-based work is required to properly investigate whether prescribed vegetation burning is a direct driver of enhanced colour and DOC in upland streams, rivers and lakes. Copyright © 2012 Elsevier Ltd. All rights reserved.
Study on Magnesium in Rainwater and Fertilizer Infiltration to Solidified Peat
NASA Astrophysics Data System (ADS)
Tajuddin, S. A. M.; Rahman, J. A.; Mohamed, R. M. S. R.
2018-04-01
Magnesium is a component of several primary and secondary minerals in the soil which are essentially insoluble for agricultural purpose. The presence of water infiltrate in the soil allows magnesium to dissolve together into the groundwater. In fertilizers, magnesium is categorized as secondary macronutrient which supplies food and encouraging for plants growth. The main objective of this study was to determine the concentration of magnesium in fibric peat when applied the solidification under different conditions. Physical model was used as a mechanism for the analysis of the experimental data using a soil column as an equipment to produce water leaching. In this investigation, there were four outlets in the soil column which were prepared from the top of the column to the bottom with the purpose of identifying the concentration of magnesium for each soil level. The water leaching of each outlet was tested using atomic absorption spectroscopy (AAS). The results obtained showed that the highest concentrations of magnesium for flush and control condition at outlet 4 was 12.50 ppm and 1.29 ppm respectively. Similarly, fibric with solidified peat under rainwater recorded the highest value of 3.16 at outlet 1 for wet condition while for dry condition at outlet 4 of 1.33 ppm. However, the difference in fibric with solidified peat under rainwater and fertilizer condition showed that the highest value for the wet condition was achieved at outlet 1 with 5.43 ppm while highest value of 1.26 ppm was obtained for the dry condition at the outlet 4. It was concluded that the outlets in the soil column gave a detailed analysis of the concentration of magnesium in the soil which was influenced by the environmental conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vedagiri, U.K.
1989-01-01
The purpose of this study was to investigate the behavior of lead in naturally acidic Sphagnum moss-dominated wetlands of the New Jersey Pinelands and to compare it to the behavior of lead in similar wetlands which had been impacted by storm-water runoff. Data from the field showed that the runoff-impacted sites were characterized by elevated pH, elimination of Spaghnum ground cover, erosion of peat substrate and high lead accumulations, contributing to an effective but decreasing sink capacity. Laboratory experiments explored differences in fractionation, mobility and bioavailability of lead between the two systems. The low pH and high dissolved organic mattermore » of the pristine waters led to higher solubilization and complexing of added lead compared to impacted waters. Lead added to runoff showed unexpectedly high solubility and lability, possibly due to low suspended solids. Lead added to runoff was also much more mobile vertically through peat columns than lead added to swampwater, possibly due to its high lability. The extremely high porosity of the peat substrate allows rapid vertical migration of solutes during events of sudden influx, such as storms. Sphagnum moss greatly decreased vertical transport by binding and flow retardation. The lead that is held in the moss layer was differentially available to different species. Red maple seedlings were better able to take up lead from the peat substrate in the absence of moss cover while cranberry plants showed the reverse pattern. This may be related to differences in rooting requirements and growth of the two species. Lead added in runoff was initially less available to the plants than in swampwater, but was ultimately taken up the red maple, which could tolerate conditions in the impacted substrates.« less
NASA Astrophysics Data System (ADS)
McCarter, Colin P. R.; Price, Jonathan S.
2017-06-01
Ladder fen peatlands have excellent potential for wastewater polishing as they naturally contain both open water (pools) and subsurface (peat) treatment landforms; however, there is a poor understanding of solute transport in ladder fens with and without the increased hydrological load imposed by wastewater discharge. To better understand solute transport in ladder fens under wastewater polishing conditions a continuous solute (NaCl) tracer experiment (38 m3 day-1 of water, chloride - 47.2 mg L-1, and sodium - 25.3 mg L-1) was conducted during the summer of 2014 (day of year 192-243) in a small ladder fen in the James Bay Lowland. The transmissivity distribution and effective porosity (average 0.5) of the peat ribs were determined through repeated bail tests and the drainable porosity of 18 peat cores at -100 mb, respectively. Water samples were taken at least every 7 days to capture the solute (sodium and chloride) plumes. Both solute plumes never reached the site outflow (∼250 m downgradient) and displayed complex plume morphology, typically following the patterns of higher hydraulic conductivity within the upper 0.1 m of the saturated peat, rather than the microtopography. Based on the 50% breakthrough isotherms, sodium and chloride were transported at an average solute velocity of 1.9 and 1.1 m day-1, respectively (average linear groundwater velocity = 2.1 m day-1); thus, the solutes were retarded by a factor of 2.1 and 1.2 for sodium and chloride, respectively. Due to the inherent retardation of solutes into inactive pores and relatively high solute residence times, this study demonstrates the potential for wastewater polishing in ladder fens.
McFarlane, Karis J.; Hanson, Paul J.; Iversen, Colleen M.; ...
2018-05-30
Here, we evaluated the spatial heterogeneity of historical carbon accumulation rates in a forested, ombrotrophic bog in Minnesota to aid understanding of responses to an ongoing decade-long warming manipulation. Eighteen peat cores indicated that the bog has been accumulating carbon for over 11,000 years, to yield 176±40 kg C m –2 to 225±58 cm of peat depth. Estimated peat basal ages ranged from 5100 to 11,100 cal BP. The long-term apparent rate of carbon accumulation over the entire peat profile was 22±2 kg C m –2yr –1. Plot location within the study area did not affect carbon accumulation rates, butmore » estimated basal ages were younger in profiles from plots closer to the bog lagg and farther from the bog outlet. In addition, carbon accumulation varied considerably over time. Early Holocene net carbon accumulation rates were 30±6 g C m –2yr –1. Around 3300 calendar BP, net carbon accumulation rates dropped to 15±8 g C m –2yr –1until the last century when net accumulation rates increased again to 74±57 g C m –2yr –1. During this period of low accumulation, regional droughts may have lowered the water table, allowing for enhanced aerobic decomposition and making the bog more susceptible to fire. These results suggest that experimental warming treatments, as well as a future warmer climate may reduce net carbon accumulation in peat in this and other southern boreal peatlands. Furthermore, our we caution against historical interpretations extrapolated from one or a few peat cores.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McFarlane, Karis J.; Hanson, Paul J.; Iversen, Colleen M.
Here, we evaluated the spatial heterogeneity of historical carbon accumulation rates in a forested, ombrotrophic bog in Minnesota to aid understanding of responses to an ongoing decade-long warming manipulation. Eighteen peat cores indicated that the bog has been accumulating carbon for over 11,000 years, to yield 176±40 kg C m –2 to 225±58 cm of peat depth. Estimated peat basal ages ranged from 5100 to 11,100 cal BP. The long-term apparent rate of carbon accumulation over the entire peat profile was 22±2 kg C m –2yr –1. Plot location within the study area did not affect carbon accumulation rates, butmore » estimated basal ages were younger in profiles from plots closer to the bog lagg and farther from the bog outlet. In addition, carbon accumulation varied considerably over time. Early Holocene net carbon accumulation rates were 30±6 g C m –2yr –1. Around 3300 calendar BP, net carbon accumulation rates dropped to 15±8 g C m –2yr –1until the last century when net accumulation rates increased again to 74±57 g C m –2yr –1. During this period of low accumulation, regional droughts may have lowered the water table, allowing for enhanced aerobic decomposition and making the bog more susceptible to fire. These results suggest that experimental warming treatments, as well as a future warmer climate may reduce net carbon accumulation in peat in this and other southern boreal peatlands. Furthermore, our we caution against historical interpretations extrapolated from one or a few peat cores.« less
NASA Astrophysics Data System (ADS)
Krąpiec, Marek; Margielewski, Włodzimierz; Korzeń, Katarzyna; Szychowska-Krąpiec, Elżbieta; Nalepka, Dorota; Łajczak, Adam
2016-09-01
The results of dendrochronological and palynological analyses of subfossil pine trees occurring in the peat deposits of the Puścizna Wielka raised bog (Polish Carpathians, Southern Poland) - the only site with numerous subfossil pine trees in the mountainous regions of Central Europe presently known - indicate that the majority of the tree populations grew in the peat bog during the periods ca 5415-3940 cal BP and 3050-2560 cal BP. Several forestless episodes, dated to 5245-5155 cal BP, 4525-4395 cal BP and 3940-3050 cal BP, were preceded by tree dying-off phases caused by an extreme periodical increase in humidity and general climate cooling trends. These events are documented based on analyses of pollen and non-pollen palynomorph assemblages, dendrochronological analyses of the trees, as well as numerous radiocarbon datings of the sediment horizons occurring within the peat bog profile. The phases of germinations, and, in turn, of tree and shrub invasions of the peat bog areas have been closely connected to drying and occasional warming of the regional climate. The last of the forestless periods began about 2600 years ago and continued up to the very recent times. Currently, as a result of desiccation of the peat bog and the lowering of the groundwater level (due to improved water drainage system), pine trees have returned the peat bog again. These results demonstrate that studies of subfossil bog-pine trees are quite effective in documenting and reconstructing periods of humidity fluctuation that occurred within the Carpathian region over the last several millennia.
Geohydrology of the lowland lakes area, Anchorage, Alaska
Zenone, Chester
1976-01-01
Unconsolidated deposits, chiefly of glacial origin, make up the surficial geologic materials in the Anchorage lowland lakes area , the western part of the Anchorage glacial outwash plain. Postglacial accumulation of peat, commonly 5 to 10 feet thick, and the presence of ground water at or very near the surface combine to create the swamp-muskeg terrane of much of the area. Deeper, confined ground water is also present beneath thick silt and clay layers that underlie the surficial deposits. Domestic water supply for the lowland lakes area is provided largely by public-supply wells completed in the deep, confined aquifers. No large perennial streams traverse the area, thus streamflow is not a major parameter in the area 's natural water balance. The major uses of surface water are recreational, including fishing and boating at several of the larger lakes, and private and commercial aircraft operations at Hood-Spenard Lakes floatplane base. The hydrology and water balance of these lakes is complex. Water levels in some lakes appear to be closely related to adjacent ground-water levels. Other lakes are evidently perched above the local water table. The relation of lake level to adjacent ground-water level may vary along the shoreline of a single lake. The effect of residential development practices on lake basin water balance is not completely understood. At Sand Lake, the largest lake in this area of rapid urbanization, the water level has declined about 6 feet since the early 1960's. (Woodard-USGS)
Peatland water repellency: Importance of soil water content, moss species, and burn severity
NASA Astrophysics Data System (ADS)
Moore, P. A.; Lukenbach, M. C.; Kettridge, N.; Petrone, R. M.; Devito, K. J.; Waddington, J. M.
2017-11-01
Wildfire is the largest disturbance affecting peatlands, with northern peat reserves expected to become more vulnerable to wildfire as climate change enhances the length and severity of the fire season. Recent research suggests that high water table positions after wildfire are critical to limit atmospheric carbon losses and enable the re-establishment of keystone peatland mosses (i.e. Sphagnum). Post-fire recovery of the moss surface in Sphagnum-feathermoss peatlands, however, has been shown to be limited where moss type and burn severity interact to result in a water repellent surface. While in situ measurements of moss water repellency in peatlands have been shown to be greater for feathermoss in both a burned and unburned state in comparison to Sphagnum moss, it is difficult to separate the effect of water content from species. Consequently, we carried out a laboratory based drying experiment where we compared the water repellency of two dominant peatland moss species, Sphagnum and feathermoss, for several burn severity classes including unburned samples. The results suggest that water repellency in moss is primarily controlled by water content, where a sharp threshold exists at gravimetric water contents (GWC) lower than ∼1.4 g g-1. While GWC is shown to be a strong predictor of water repellency, the effect is enhanced by burning. Based on soil water retention curves, we suggest that it is highly unlikely that Sphagnum will exhibit strong hydrophobic conditions under field conditions.
A Few Issues on the Peat Research in the Altai Mountains
NASA Astrophysics Data System (ADS)
Inisheva, Lydia I.; Larina, Galina; Shurova, Maya
2010-05-01
At the present time we carry out complex research of marsh ecosystems in various areas of Gorny Altai to reveal the perspective deposits of peat in the Altai Mountains with the purpose of its use in the medical and recreational spheres. The peat deposits of the Northeastern Altai, Central Altai, and Southeastern Altai are surveyed; the selective chemical analysis of peat and marsh waters is carried out. The group structure of organic substance of various samples of peat is investigated by the method of Institutes of Peat. The toxic metals of Cd, Pb, Hg, Cu, Zn, and As were defined by the method of stripping voltammetry. The region of the Altai Mountains is characterized by the contrastive distribution of some heavy metals and arsenic in a soil cover. This is caused by a variety of petrography and granulometry of soil forming material, and also by a landscape and geochemical situation in the system of vertical zoning. The sources of natural accumulation of heavy metals in the ground might be the deposits of polymetals. In this connection the content of the specified toxic elements in the peat under research has been identified. The peat of the Turochak deposit is characterized by a significant ash content - up to 41,9%; the increased ash content is typical of the Kutyush deposit: from 6,1% up to 19, %. The peat of the Northeastern Altai is referred to non-bitumunous: the content of bitumen makes up less than 5%. In comparison with the European peat the peat under study of the transitive and lowland type is characterized by the significant content of easy hydrolysable substances in the amount of 24,8-41,1%. The amount of the non-hydrolysable rest makes up around 4,3 - 7,4 %. The total content of fulvic acids is less than the content of humic acids by 2,9 - 5,8 times. The high content of humic acids which can reach up to 58 % is characteristic of certain deposits. Humic acids extracted from the peat are characterized, as a rule, by similar IR-spectra. The distinctions are shown in an unequal intensity of characteristic absorption bands, in their spreading and some shifts. It is revealed that humic acids of peat with the increase in a degree of decomposition are exposed to transformation; therefore the increase in their structure of functional groups is observed. As a result of the research which was carried out the following elements among heavy metals in the lowland peat of the Altai Mountains are revealed: Cd (2,7 - 30)> Hg (0,67)> Zn (0,22) ~Pb (0,21)> Cu (0,13)> As (0,03). The degree of mobility of chemical elements in the peat varies within the limits of 1,3 - 36%. According to the degree of their mobility these elements form the following line: Zn (36 %)> Pb (18,1 %)> Cd (9,6 %)> Cu (1,3 %). The content and the character of distribution of the heavy metals under study and arsenic in the peat of the Altai Mountains have their unique features in comparison with the same valley analogues. The mountain peat of the Central Altai contains much less Hg than the West Siberian one: 0,078 mg/g and 0,69 mg/g accordingly. Cd represents itself as the concentrator in the lowland peat of the Northeastern and Central Altai, its content is actually the same and makes up approximately 0,3 mg/kg. The lowland Altai and West Siberian peat has the same amount of Pb: 4-5 mg/kg; they have smaller amounts of Zn and Cu in comparison with the European and West Siberian peat. The revealed features of distribution of some toxic metals are the display of specificity of peat genesis in the conditions of a mountain relief. The complex of the data received by us allows to consider the peat of the Altai Mountains as a non-polluting raw source concerning the amount of some natural toxic substances. The possible perspective directions of practical application of the mountain peat can be medicine, veterinary science, and agriculture.
NASA Astrophysics Data System (ADS)
McClellan, M. D.; Comas, X.; Wright, W. J.; Mount, G. J.
2014-12-01
Peat soils store a large fraction of the global carbon (C) in soil. It is estimated that 95% of carbon in peatlands is stored in the peat soil, while less than 5% occurs in the vegetation. The majority of studies related to C stocks in peatlands have taken place in northern latitudes leaving the tropical and subtropical latitudes clearly understudied. In this study we use a combination of indirect non-invasive geophysical methods (mainly ground penetrating radar, GPR) as well as direct measurements (direct coring) to calculate total C stocks within subtropical depressional wetlands in the Disney Wilderness Preserve (DWP, Orlando, FL). A set of three-dimensional (3D) GPR surveys were used to detect variability of the peat layer thickness and the underlying peat-sand mix layer across several depressional wetlands. Direct samples collected at selected locations were used to confirm depth of each interface and to estimate C content in the laboratory. Layer thickness estimated from GPR and direct C content were used to estimate total peat volume and C content for the entire depressional wetland. Through the use of aerial photos a relationship between surface area along the depressional wetlands and total peat thickness (and thus C content) was established for the depressions surveyed and applied throughout the entire preserve. This work shows the importance of depressional wetlands as critical contributors of the C budget at the DWP.
Diáková, Kateřina; Čapek, Petr; Kohoutová, Iva; Mpamah, Promise A; Bárta, Jiří; Biasi, Christina; Martikainen, Pertti J; Šantrůčková, Hana
2016-09-01
Arctic peatlands store large stocks of organic carbon which are vulnerable to the climate change but their fate is uncertain. There is increasing evidence that a part of it will be lost as a result of faster microbial mineralization. We studied the vulnerability of 3500-5900 years old bare peat uplifted from permafrost layers by cryogenic processes to the surface of an arctic peat plateau. We aimed to find biotic and abiotic drivers of CLOSS from old peat and compare them with those of adjacent, young vegetated soils of the peat plateau and mineral tundra. The soils were incubated in laboratory at three temperatures (4°C, 12°C and 20°C) and two oxygen levels (aerobic, anaerobic). CLOSS was monitored and soil parameters (organic carbon quality, nutrient availability, microbial activity, biomass and stoichiometry, and extracellular oxidative and hydrolytic enzyme pools) were determined. We found that CLOSS from the old peat was constrained by low microbial biomass representing only 0.22% of organic carbon. CLOSS was only slightly reduced by the absence of oxygen and exponentially increased with temperature, showing the same temperature sensitivity under both aerobic and anaerobic conditions. We conclude that carbon in the old bare peat is stabilized by a combination of physical, chemical and biological controls including soil compaction, organic carbon quality, low microbial biomass and the absence of plants. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Phenol oxidase activity in secondary transformed peat-moorsh soils
NASA Astrophysics Data System (ADS)
Styła, K.; Szajdak, L.
2009-04-01
The chemical composition of peat depends on the geobotanical conditions of its formation and on the depth of sampling. The evolution of hydrogenic peat soils is closely related to the genesis of peat and to the changes in water conditions. Due to a number of factors including oscillation of ground water level, different redox potential, changes of aerobic conditions, different plant communities, and root exudes, and products of the degradation of plant remains, peat-moorsh soils may undergo a process of secondary transformation conditions (Sokolowska et al. 2005; Szajdak et al. 2007). Phenol oxidase is one of the few enzymes able to degrade recalcitrant phenolic materials as lignin (Freeman et al. 2004). Phenol oxidase enzymes catalyze polyphenol oxidation in the presence of oxygen (O2) by removing phenolic hydrogen or hydrogenes to from radicals or quinines. These products undergo nucleophilic addition reactions in the presence or absence of free - NH2 group with the eventual production of humic acid-like polymers. The presence of phenol oxidase in soil environments is important in the formation of humic substances a desirable process because the carbon is stored in a stable form (Matocha et al. 2004). The investigations were carried out on the transect of peatland 4.5 km long, located in the Agroecological Landscape Park host D. Chlapowski in Turew (40 km South-West of Poznań, West Polish Lowland). The sites of investigation were located along Wyskoć ditch. The following material was taken from four chosen sites marked as Zbechy, Bridge, Shelterbelt and Hirudo in two layers: cartel (0-50cm) and cattle (50-100cm). The object of this study was to characterize the biochemical properties by the determination of the phenol oxidize activity in two layers of the four different peat-moors soils used as meadow. The phenol oxidase activity was determined spectrophotometrically by measuring quinone formation at λmax=525 nm with catechol as substrate by method of Perucci et al. (2000). In peat the highest activities of phenol oxidase was observed in the combinations marked as Shelterbelt and whereas the lowest - in Zbechy, Bridge and Hirudo. Activities of this enzyme in peat ranged from 15.35 to 38.33 μmol h-1g d.m soil. Increased activities of phenol oxidase have been recorded on the depth 50-100cm - catotelm (21.74-38.33 μmol h-1g d.m soil) in comparison with the depth 0-50cm - acrotelm (15.35-28.32 μmol h-1g d.m soil). References Freeman, C., Ostle N.J., Fener, N., Kang H. 2004. A regulatory role for phenol oxidase during decomposition in peatlands. Soil Biology and Biochemistry, 36, 1663-1667. Matocha Ch.J., Haszler G.R., Grove J.H. 2004. Nitrogen fertilization suppresses soil phenol oxidase enzyme activity in no-tillage systems. Soil Science, 169/10, 708-714. Perucci P., Casucci C., Dumontet S. 2000. An improved method to evaluate the o-diphenol oxidase activity of soil. Soil Biology and Biochemistry, 32, 1927-1933. Sokolowska Z., Szajdak L., Matyka-Sarzyńska D. 2005. Impact of the degree of secondary transformation on amid-base properties of organic compounds in mucks. Geoderma, 127, 80-90. Szajdak L., Szczepański M., Bogacz A. 2007. Impact of secondary transformation of peat-moorsh soils on the decrease of nitrogen and carbon compounds in ground water. Agronomy Research, 5/2, 189-200.
Untangling climatic and autogenic signals in peat records
NASA Astrophysics Data System (ADS)
Morris, Paul J.; Baird, Andrew J.; Young, Dylan M.; Swindles, Graeme T.
2016-04-01
Raised bogs contain potentially valuable information about Holocene climate change. However, autogenic processes may disconnect peatland hydrological behaviour from climate, and overwrite and degrade climatic signals in peat records. How can genuine climate signals be separated from autogenic changes? What level of detail of climatic information should we expect to be able to recover from peat-based reconstructions? We used an updated version of the DigiBog model to simulate peatland development and response to reconstructed Holocene rainfall and temperature reconstructions. The model represents key processes that are influential in peatland development and climate signal preservation, and includes a network of feedbacks between peat accumulation, decomposition, hydraulic structure and hydrological processes. It also incorporates the effects of temperature upon evapotranspiration, plant (litter) productivity and peat decomposition. Negative feedbacks in the model cause simulated water-table depths and peat humification records to exhibit homeostatic recovery from prescribed changes in rainfall, chiefly through changes in drainage. However, the simulated bogs show less resilience to changes in temperature, which cause lasting alterations to peatland structure and function and may therefore be more readily detectable in peat records. The network of feedbacks represented in DigiBog also provide both high- and low-pass filters for climatic information, meaning that the fidelity with which climate signals are preserved in simulated peatlands is determined by both the magnitude and the rate of climate change. Large-magnitude climatic events of an intermediate frequency (i.e., multi-decadal to centennial) are best preserved in the simulated bogs. We found that simulated humification records are further degraded by a phenomenon known as secondary decomposition. Decomposition signals are consistently offset from the climatic events that generate them, and decomposition records of dry-wet-dry climate sequences appear to be particularly vulnerable to overwriting. Our findings have direct implications not only for the interpretation of peat-based records of past climates, but also for understanding the likely vulnerability of peatland ecosystems and carbon stocks to future climate change.
NASA Astrophysics Data System (ADS)
Novak, M.; Zemanova, L.; Buzek, F.; Jackova, I.; Adamova, M.; Komarek, A.; Vile, M. A.; Wieder, R. K.; Stepanova, M.
2009-10-01
An 18-month reciprocal peat transplant experiment was conducted between two peatlands in the Czech Republic. Both sites were 100% Sphagnum-covered, with no vascular plants, and no hummocks and hollows. Atmospheric depositions of sulfur were up to 10 times higher at the northern site Velke jerabi jezero (VJJ), compared to the southern site Cervene blato (CB). Forty-cm deep peat cores, 10 cm in diameter, were used as transplants and controls in five replicates. Our objective was to evaluate whether CO2 and CH4 production potentials in Sphagnum peat bogs are governed mainly by organic matter quality, or by environmental conditions. Production rates and δ13C values of CO2 and CH4 were measured in the laboratory at time t=18 months. All measured parameters converged to those of the host site, indicating that, at least in the short-term perspective, environmental conditions were a more important control of greenhouse gas emissions than organic carbon quality. Since sulfate reducers outcompete methanogens, we hypothesized that the S-polluted site VJJ should have lower methane emissions than CB. In fact, the opposite was true, with higher methane emissions from VJJ. As a first step in an effort to link C isotope composition of emitted gases and residual peat substrate, we determined whether multiple vertical δ13C profiles in peat agree. A high degree of within-site homogeneity in δ13C was found. The δ13C value increased downcore at both CB and VJJ. However, 20 cm below surface, a reversal to lower δ13C downcore was seen at VJJ. Based on 210Pb dating, peat at 20 cm depth at VJJ was only 15 years old. Increasing δ13C values in VJJ peat accumulated between 1880-1990 could not be caused by assimilation of atmospheric CO2 gradually enriched in the light isotope 12C due to fossil fuel burning.
NASA Astrophysics Data System (ADS)
Hapsari, Kartika Anggi; Biagioni, Siria; Jennerjahn, Tim C.; Reimer, Peter Meyer; Saad, Asmadi; Achnopha, Yudhi; Sabiham, Supiandi; Behling, Hermann
2017-08-01
Tropical peatlands are important for the global carbon cycle as they store 18% of the total global peat carbon. As they are vulnerable to changes in temperature and precipitation, a rapidly changing environment endangers peatlands and their carbon storage potential. Understanding the mechanisms of peatland carbon accumulation from studying past developments may, therefore, help to assess the future role of tropical peatlands. Using a multi-proxy palaeoecological approach, a peat core taken from the Sungai Buluh peatland in Central Sumatra has been analyzed for its pollen and spore, macro charcoal and biogeochemical composition. The result suggests that peat and C accumulation rates were driven mainly by sea level change, river water level, climatic variability and anthropogenic activities. It is also suggested that peat C accumulation in Sungai Buluh is correlated to the abundance of Freycinetia, Myrtaceae, Calophyllum, Stemonuraceae, Ficus and Euphorbiaceae. Sungai Buluh has reasonable potential for being a future global tropical peat C sinks. However, considering the impact of rapid global climate change in addition to land-use change following rapid economic growth in Indonesia, such potential may be lost. Taking advantage of available palaeoecological records and advances made in Quaternary studies, some considerations for management practice such as identification of priority taxa and conservation sites are suggested.
Decomposition and organic matter quality in continental peatlands: The ghost of permafrost past
Turetsky, M.R.
2004-01-01
Permafrost patterning in boreal peatlands contributes to landscape heterogeneity, as peat plateaus, palsas, and localized permafrost mounds are interspersed among unfrozen bogs and fens. The degradation of localized permafrost in peatlands alters local topography, hydrology, thermal regimes, and plant communities, and creates unique peatland features called "internal lawns." I used laboratory incubations to quantify carbon dioxide (CO 2) production in peat formed under different permafrost regimes (with permafrost, without permafrost, melted permafrost), and explored the relationships among proximate organic matter fractions, nutrient concentrations, and decomposition. Peat within each feature (internal lawn, bog, permafrost mound) is more chemically similar than peat collected within the same province (Alberta, Saskatchewan) or within depth intervals (surface, deep). Internal lawn peat produces more CO2 than the other peatland types. Across peatland features, acid-insoluble material (AIM) and AIM/nitrogen are significant predictors of decomposition. However, within each peatland feature, soluble proximate fractions are better predictors of CO2 production. Permafrost stability in peatlands influences plant and soil environments, which control litter inputs, organic matter quality, and decomposition rates. Spatial patterns of permafrost, as well as ecosystem processes within various permafrost features, should be considered when assessing the fate of soil carbon in northern ecosystems. ?? 2004 Springer Science+Business Media, Inc.
Impact of fire on macropore flow and the hydraulic conductivity of near-surface blanket peat
NASA Astrophysics Data System (ADS)
Holden, Joseph; Wearing, Catherine; Palmer, Sheila; Jackson, Benjamin; Johnston, Kerrylyn; Brown, Lee
2013-04-01
Peatlands can be subject to wildfire or deliberate burning in many locations. Wildfires are known to impact soil properties and runoff production in most soil types but relatively little work has been conducted on peatlands. Furthermore in large parts of the UK uplands prescribed vegetation burning on peat has taken place at regular intervals (e.g. every 8-25 years) on patches of around 300-900 sq. metres over the past century to support increased grouse populations for sport shooting. However, there have been few studies on how these prescribed fires influence near-surface hydrology. It is known that macropores transport a large proportion of flow in near-surface peat layers and we investigated their role in flow transport for fire sites using tension infiltrometers. Measurements were performed, at replicated hillslope positions to control for slope position effects, on unburnt peat (U) and where prescribed burning had taken place two years (P2), four years (P4) and >15 years (P15+) prior to sampling. For the prescribed burning plots, vegetation burning had also occurred at around a 15-20 year interval for most of the past century. We also sampled a nearby wildfire site (W) with the same sampling design where wildfire had occurred four months prior to sampling. Both the contribution of macropore flow to overall infiltration, and the saturated hydraulic conductivity, were significantly lower in the recently burnt sites (W, P2, P4), compared to P15+ and U. There was no significant difference in macropore flow contributions, effective macroporosity and saturated hydraulic conductivity between P15+ and U. The results suggest fire influences the near-surface hydrological functioning of peatlands but that 'recovery' for some hydrological processes to prescribed vegetation burning may be possible within two decades if there are no further fires.
NASA Astrophysics Data System (ADS)
Hanson, P. J.; Chanton, J.; Iversen, C. M.; McFarlane, K. J.; Tfaily, M. M.; Xu, X.
2013-12-01
An ombrotrophic Picea-Sphagnum peatland located on the Marcell Experimental Forest in northern Minnesota is being prepared for experimental manipulations to evaluate carbon cycle responses to warming and elevated CO2. Pretreatment characterization of the peatland, which has a mean peat depth of ~3 meters, showed that belowground carbon (C) stocks were greater than 2200 MgC ha-1. This is easily 10× greater than the combined above- and belowground C stocks found in typical eastern deciduous forests. Carbon has accumulated under saturated, cool to cold conditions since the last glaciers receded some 10,000 years ago. Mean bulk-14C assessments show a modern C signature and decadal turnover time for peat in the raised hummock topography, as well as in the oxic acrotelm layer which extends to a depth of 30-cm below hollow microtopography. Deeper peat layers (below 30-cm depth) have C ages ranging from 1000- to 2000 years for relatively shallow layers, to between 7000 and 8000 years at 2.5 m depth. In contrast, the 14C signatures of dissolved inorganic C (DIC) and dissolved organic C (DOC), which reflect the substrates consumed by microbes, were relatively modern, even at depths of up to 2 meters. The modern 14C signatures indicate that microbial respiration at depth is fueled by surface inputs of DOC. Furthermore, the contrast in δ14C between solid-phase peat and DOC at deeper peat depths will allow researchers to quantify the effects of warming and elevated CO2 on the fate of peat stored in this ombrotrophic peatland for millennia. It is unclear whether C accumulation in peatlands will continue under warmer conditions associated with atmospheric and climatic change. Modeled projections for net peat C turnover throughout the peat profile will be discussed in the context of the planned warming manipulations. Initial hypotheses suggest that peat accumulation may be sustained for low levels of warming, but shift to a pattern of net carbon release as both CO2 and CH4 for warmer future climates.
Ground water and vegetation in two peat bogs in northern Minnesota
Roger R. Bay
1967-01-01
Plant cover and water quality of bog waters are related to the surrounding ground-water flow systems in two bogs--one perched above and isolated from the regional ground-water system, the other nonperched and continuous with the regional system. The nonperched bog has higher pH, higher specific conductivity, and greater variety in plant cover than the perched bog....
Grady, William C.; Eble, Cortland F.; Neuzil, Sandra G.
1993-01-01
Analyses of modern Indonesian peat samples reveal that the optical characteristics of peat constituents are consistent with the characteristics of macerals observed in brown coal and, as found by previous workers, brown-coal maceral terminology can be used in the analysis of modern peat. A core from the margin and one from near the center of a domed peat deposit in Riau Province, Sumatra, reveal that the volume of huminite macerals representing well-preserved cell structures (red, red-gray, and gray textinite; ulminite; and corpo/textinite) decreases upward. Huminite macerals representing severely degraded (<20 microns) cellular debris (degraded textinite, attrinite, and densinite) increase uniformly from the base to the surface. Greater degradation of the huminite macerals in the upper peat layers in the interior of the deposit is interpreted to be the result of fungal activity that increased in response to increasingly aerobic conditions associated with the doming of the peat deposit. Aerobic conditions concurrent with the activities of fungi may result in incipient oxidation of the severely degraded huminite macerals. This oxidation could lead to the formation of degradosemifusinite, micrinite, and macrinite maceral precursors in the peat, which may become evident only upon coalification. The core at the margin was petrographically more homogeneous than the core from the center and was dominated by well-preserved huminite macerals except in the upper 1 m, which showed signs of aerobic degradation and was similar to the upper 1 m of the peat in the interior of the deposit.The Stockton and other Middle Pennsylvanian Appalachian coal beds show analogous vertical trends in vitrinite maceral composition. The succession from telocollinite-rich, bright coal lithotypes in the lower benches upward to thin-banded/matrix collinite and desmocollinite in higher splint coal benches is believed to reflect a progression similar to that from the well-preserved textinite macerals in the lower portions of the peat cores to severely fragmented and degraded cellular materials (degraded textinite, attrinite, and densinite) in the upper portions of the cores. This petrographic sequence from bright to splint coal in the Stockton and other Middle Pennsylvanian coal beds supports previous interpretations of an upward transition from planar to domed swamp accumulations.
Peatlands and potatoes; organic wetland soils in Uganda
NASA Astrophysics Data System (ADS)
Farmer, Jenny; Langan, Charlie; Gimona, Alessandro; Poggio, Laura; Smith, Jo
2017-04-01
Land use change in Uganda's wetlands has received very little research attention. Peat soils dominate the papyrus wetlands of the south west of the country, but the areas they are found in have been increasingly converted to potato cultivation. Our research in Uganda set out to (a) document both the annual use of and changes to these soils under potato cultivation, and (b) the extent and condition of these soils across wetland systems. During our research we found it was necessary to develop locally appropriate protocols for sampling and analysis of soil characteristics, based on field conditions and locally available resources. Over the period of one year we studied the use of the peat soil for potato cultivation by smallholder farmers in Ruhuma wetland and measured changes to surface peat properties and soil nutrients in fields over that time. Farmer's use of the fields changed over the year, with cultivation, harvesting and fallow periods, which impacted on soil micro-topography. Measured soil properties changed over the course of the year as a result of the land use, with bulk density, nitrogen content, potassium and magnesium all reducing. Comparison of changes in soil carbon stocks over the study period were difficult to make as it was not possible to reach the bottom of the peat layer. However, a layer of fallow weeds discarded onto the soil prior to preparation of the raised potato beds provided a time marker which gave insight into carbon losses over the year. To determine the peatland extent, a spatial survey was conducted in the Kanyabaha-Rushebeya wetland system, capturing peat depths and key soil properties (bulk density, organic matter and carbon contents). Generalised additive models were used to map peat depth and soil characteristics across the system, and maps were developed for these as well as drainage and land use classes. Comparison of peat cores between the two study areas indicates spatial variability in peat depths and the influence of neighbouring mineral soil hillslopes. Our work provides valuable insight into the condition and use of these tropical peat soils, which are under-researched yet highly depended upon by local communities, with wider climate impacts. Cultivation of these peat soils has implications for their future sustainability and use, and having insight into the impacts of land management on these soils improves local and national level capacity for better soil management.
Transport and thermodynamics constrain belowground carbon turnover in a northern peatland
NASA Astrophysics Data System (ADS)
Beer, Julia; Blodau, Christian
2007-06-01
Rates of anaerobic respiration are of central importance for the long-term burial of carbon (C) in peatlands, which are a relevant sink in the global C cycle. To identify constraints on anaerobic peat decomposition, we determined detailed concentration depth profiles of decomposition end-products, i.e. methane (CH 4) and dissolved inorganic carbon (DIC), along with concentrations of relevant decomposition intermediates at an ombrotrophic Canadian peat bog. The magnitude of in situ net production rates of DIC and CH 4 was estimated by inverse pore-water modeling. Vertical transport in the peat was slow and dominated by diffusion leading to the buildup of DIC and CH 4 with depth (5500 μmol L -1 DIC, 500 μmol L -1 CH 4). Highest DIC and CH 4 production rates occurred close to the water table (decomposition constant kd ˜ 10 -3-10 -4 a -1) or in some distinct zones at depth ( kd ˜ 10 -4 a -1). Deeper into the peat, decomposition proceeded very slowly at about kd = 10 -7 a -1. This pattern could be related to thermodynamic and transport constraints. The accumulation of metabolic end-products diminished in situ energy yields of acetoclastic methanogenesis to the threshold for microbially mediated processes (-20 to -25 kJ mol -1 CH 4). The methanogenic precursor acetate also accumulated (150 μmol L -1). In line with these findings, CH 4 was formed by hydrogenotrophic methanogenesis at Gibbs free energies of -35 to -40 kJ mol -1 CH 4. This was indicated by an isotopic fractionation α-CH of 1.069-1.079. Fermentative degradation of acetate, propionate and butyrate attained Gibbs free energies close to 0 kJ mol -1 substrate. Although methanogenesis was apparently limited by some other factor in some peat layers, transport and thermodynamic constraints likely impeded respiratory processes in the deeper peat. Constraints on the removal of DIC and CH 4 may thus slow decomposition and contribute to the sustained burial of C in northern peatlands.
Krause, Sascha; Niklaus, Pascal A; Badwan Morcillo, Sara; Meima Franke, Marion; Lüke, Claudia; Reim, Andreas; Bodelier, Paul L E
2015-11-01
The restoration of peatlands is an important strategy to counteract subsidence and loss of biodiversity. However, responses of important microbial soil processes are poorly understood. We assessed functioning, diversity and spatial organization of methanotrophic communities in drained and rewetted peat meadows with different water table management and agricultural practice. Results show that the methanotrophic diversity was similar between drained and rewetted sites with a remarkable dominance of the genus Methylocystis. Enzyme kinetics depicted no major differences, indicating flexibility in the methane (CH4) concentrations that can be used by the methanotrophic community. Short-term flooding led to temporary elevated CH4 emission but to neither major changes in abundances of methane-oxidizing bacteria (MOB) nor major changes in CH4 consumption kinetics in drained agriculturally used peat meadows. Radiolabeling and autoradiographic imaging of intact soil cores revealed a markedly different spatial arrangement of the CH4 consuming zone in cores exposed to near-atmospheric and elevated CH4. The observed spatial patterns of CH4 consumption in drained peat meadows with and without short-term flooding highlighted the spatial complexity and responsiveness of the CH4 consuming zone upon environmental change. The methanotrophic microbial community is not generally altered and harbors MOB that can cover a large range of CH4 concentrations offered due to water-table fluctuations, effectively mitigating CH4 emissions. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Erosion of Northern Hemisphere blanket peatlands under 21st-century climate change
NASA Astrophysics Data System (ADS)
Li, Pengfei; Holden, Joseph; Irvine, Brian; Mu, Xingmin
2017-04-01
Peatlands are important terrestrial carbon stores particularly in the Northern Hemisphere. Many peatlands, such as those in the British Isles, Sweden, and Canada, have undergone increased erosion, resulting in degraded water quality and depleted soil carbon stocks. It is unclear how climate change may impact future peat erosion. Here we use a physically based erosion model (Pan-European Soil Erosion Risk Assessment-PEAT), driven by seven different global climate models (GCMs), to predict fluvial blanket peat erosion in the Northern Hemisphere under 21st-century climate change. After an initial decline, total hemispheric blanket peat erosion rates are found to increase during 2070-2099 (2080s) compared with the baseline period (1961-1990) for most of the GCMs. Regional erosion variability is high with changes to baseline ranging between -1.27 and +21.63 t ha-1 yr-1 in the 2080s. These responses are driven by effects of temperature (generally more dominant) and precipitation change on weathering processes. Low-latitude and warm blanket peatlands are at most risk to fluvial erosion under 21st-century climate change.
NASA Astrophysics Data System (ADS)
Kurina, Irina V.; Blyakharchuk, Tatiana A.
2018-03-01
Our research is devoted to paleohydrological reconstruction in the swamp located in the river valley on the piedmont of the Altai Mountains in the south of Western Siberia. The reconstruction was carried out based on rhizopod analysis for the last 3100 cal yr. A large amount of different testate amoebae was found in the peat. Total 64 testate amoebae taxa were recorded in the peat core with the most abundant being: Trinema lineare, Centropyxis aculeata, C. aerophila, Euglypha rotunda, Cryptodifflugia sp. Decrease of surface wetness in the swamp are observed 2280, 2140, 1900–600 cal yr BP and increase – in 2700, 2500–1900, 230–215 cal yr BP. The results of our reconstruction of the swamp paleohydrology agrees well with the paleoclimatic data obtained earlier for the central area of the south of Western Siberia Plain. It indicates a high sensitivity of the swamp to climatic changes in the Holocene. The rhizopod analysis proved to be very effective when used for paleohydrology reconstruction in minerotrophic peat.
Scott Painter; Ethan Coon; Cathy Wilson; Dylan Harp; Adam Atchley
2016-04-21
This Modeling Archive is in support of an NGEE Arctic publication currently in review [4/2016]. The Advanced Terrestrial Simulator (ATS) was used to simulate thermal hydrological conditions across varied environmental conditions for an ensemble of 1D models of Arctic permafrost. The thickness of organic soil is varied from 2 to 40cm, snow depth is varied from approximately 0 to 1.2 meters, water table depth was varied from -51cm below the soil surface to 31 cm above the soil surface. A total of 15,960 ensemble members are included. Data produced includes the third and fourth simulation year: active layer thickness, time of deepest thaw depth, temperature of the unfrozen soil, and unfrozen liquid saturation, for each ensemble member. Input files used to run the ensemble are also included.
Arsenic Transport and Transformation Associated with MSMA Application on a Golf Course Green
Feng, Min; Schrlau, Jill E.; Snyder, Raymond; Snyder, George H.; Chen, Ming; Cisar, John L.; Cai, Yong
2008-01-01
The impact of extensively used arsenic-containing herbicides on groundwater beneath golf courses has become a topic of interest. Although currently used organoarsenicals are less toxic, their application into the environment may produce the more toxic inorganic arsenicals. The objective of this work was to understand the behavior of arsenic species in percolate water from monosodium methanearsonate (MSMA) applied golf course greens, as well as to determine the influences of root-zone media for United State Golf Association (USGA) putting green construction on arsenic retention and species conversion. The field test was established at the Fort Lauderdale Research and Education Center (FLREC), University of Florida. Percolate water was collected after MSMA application for speciation and total arsenic analyses. The results showed that the substrate composition significantly influenced arsenic mobility and arsenic species transformation in the percolate water. In comparison to uncoated sands (S) and uncoated sands and peat (S + P), naturally coated sands and peat (NS + P) showed a higher capacity of preventing arsenic from leaching into percolate water, implying that the coatings of sands with clay reduce arsenic leaching. Arsenic species transformation occurred in soil, resulting in co-occurrence of four arsenic species, arsenite (AsIII), arsenate (AsV), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) in percolate water. The results indicated that substrate composition can significantly affect both arsenic retention in soil and arsenic speciation in percolate water. The clay coatings on the soil particles and the addition of peat in the soil changed the arsenic bioavailability, which in turn controlled the microorganism-mediated arsenic transformation. To better explain and understand arsenic transformation and transport after applying MSMA in golf green, a conceptual model was proposed. PMID:15853401
NASA Astrophysics Data System (ADS)
Benscoter, B.; McClellan, M. D.; Benavides, V.; Harshbarger, D.; Comas, X.
2014-12-01
Depressional marshes are ubiquitous throughout central and south Florida. Often distributed within a matrix of sandy pine flatwoods and hammocks, these wetlands have a seasonally variable water table, alternating between inundation and complete drydown. Though these landforms are typically small individually, they comprise a substantial component of the landscape and provide vital habitat for an array of flora and fauna. Given their fluctuating hydrology, conditions for soil and plant carbon (C) exchange mechanisms can vary greatly both spatially and temporally. In this study, we are developing a C budget for depressional marsh landforms by assessing ecosystem carbon exchange along an ecotone gradient and quantifying belowground C stocks using non-invasive geophysical methods (ground penetrating radar, GPR) at the Disney Wilderness Preserve (DWP) in Kissimmee, FL, USA. Using a series of closed chambers transecting the marsh from the center outward into the surrounding flatwoods, we are quantifying the effects of seasonal water table change on the magnitude of C exchange. Three dimensional GPR surveys were used to quantify peat layer thickness, and were constrained with direct core sampling to verify subsurface lithology and to assess peat C content. Using the relationship between landform surface area and belowground C volume, we assessed the cumulative C storage in depressional marshes across the DWP landscape. In conjunction with a nearby eddy covariance tower and seasonal hydrologic data, these response functions will help to evaluate the contribution of these small but widespread landscape features on regional C cycling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Many times the start up of granular activated carbon adsorption systems for the control of organic contaminants in wastewater cm exhibit unacceptable increases in the adscurber effluent pH. Experience shows that the duration of the pH increase ranges from several hours to several days, during which time several hundred bed volumes of water can be discharged with a pH in excess of 9. Laboratory studies have identified the cause of the pH rise as an interaction between the naturally occurring anions and protons ar the water and the carbon surface. The interaction can be described as an ion exchange typemore » of phenomenon, in which the carbon surface sorbs the anions and corresponding hydronium ions from the water. Capacities of the carbon for the anions range from 2 to 9 mg/g GAC, depending upon the water characteristics, the carbon type, the nature of the anion and its influent concentration. These studies have shown de the anion sorption and resulting pH increase is independent of the raw material used for die activated carbon production, e.g. bituminous or sub-bituminous coal, peat, wood or coconut. Also, the pH excursions occur with virgin, reactivated, and acid washed granular carbons. Current pH control technologies focus on adjustment of wastewater pH prior to discharge or recycle of the initial effluent water until the pH increase abates. However, improved water pH control options have been realized by altering the carbon surface rather than the water chemistry. The change to the carbon surface is accomplished through a controlled oxidation process. This process provides a more acidic carbon surface with a reduced affinity for the anions in the waste water. As a result, the pH excursions above 9 are eliminated and the initial effluent from the adsorption system can be discharged without further treatment.« less
Denitrification potential in relation to lithology in five headwater riparian zones.
Hill, Alan R; Vidon, Philippe G F; Langat, Jackson
2004-01-01
The influence of riparian zone lithology on nitrate dynamics is poorly understood. We investigated vertical variations in potential denitrification activity in relation to the lithology and stratigraphy of five headwater riparian zones on glacial till and outwash landscapes in southern Ontario, Canada. Conductive coarse sand and gravel layers occurred in four of the five riparian areas. These layers were thin and did not extend to the field-riparian perimeter in some riparian zones, which limited their role as conduits for ground water flow. We found widespread organic-rich layers at depths ranging from 40 to 300 cm that resulted from natural floodplain processes and the burial of surface soils by rapid valley-bottom sedimentation after European settlement. The organic matter content of these layers varied considerably from 2 to 5% (relic channel deposit) to 5 to 21% (buried soils) and 30 to 62% (buried peat). Denitrification potential (DNP) was measured by the acetylene block method in sediment slurries amended with nitrate. The highest DNP rates were usually found in the top 0- to 15-cm surface soil layer in all riparian zones. However, a steep decline in DNP with depth was often absent and high DNP activity occurred in the deep organic-rich layers. Water table variations in 2000-2002 indicated that ground water only interacted frequently with riparian surface soils between late March and May, whereas subsurface organic layers that sustain considerable DNP were below the water table for most of the year. These results suggest that riparian zones with organic deposits at depth may effectively remove nitrate from ground water even when the water table does not interact with organic-rich surface soil horizons.
Temperature-Induced Increase in Methane Release from Peat Bogs: A Mesocosm Experiment
van Winden, Julia F.; Reichart, Gert-Jan; McNamara, Niall P.; Benthien, Albert; Damsté, Jaap S. Sinninghe.
2012-01-01
Peat bogs are primarily situated at mid to high latitudes and future climatic change projections indicate that these areas may become increasingly wetter and warmer. Methane emissions from peat bogs are reduced by symbiotic methane oxidizing bacteria (methanotrophs). Higher temperatures and increasing water levels will enhance methane production, but also methane oxidation. To unravel the temperature effect on methane and carbon cycling, a set of mesocosm experiments were executed, where intact peat cores containing actively growing Sphagnum were incubated at 5, 10, 15, 20, and 25°C. After two months of incubation, methane flux measurements indicated that, at increasing temperatures, methanotrophs are not able to fully compensate for the increasing methane production by methanogens. Net methane fluxes showed a strong temperature-dependence, with higher methane fluxes at higher temperatures. After removal of Sphagnum, methane fluxes were higher, increasing with increasing temperature. This indicates that the methanotrophs associated with Sphagnum plants play an important role in limiting the net methane flux from peat. Methanotrophs appear to consume almost all methane transported through diffusion between 5 and 15°C. Still, even though methane consumption increased with increasing temperature, the higher fluxes from the methane producing microbes could not be balanced by methanotrophic activity. The efficiency of the Sphagnum-methanotroph consortium as a filter for methane escape thus decreases with increasing temperature. Whereas 98% of the produced methane is retained at 5°C, this drops to approximately 50% at 25°C. This implies that warming at the mid to high latitudes may be enhanced through increased methane release from peat bogs. PMID:22768100
Carbon budget for a British upland peat catchment.
Worrall, Fred; Reed, Mark; Warburton, Jeff; Burt, Tim
2003-08-01
This study describes the analysis of fluvial carbon flux from an upland peat catchment in the North Pennines. Dissolved organic carbon (DOC), pH, alkalinity and calcium were measured in weekly samples, with particulate organic carbon (POC) measured from the suspended sediment load from the stream outlet of an 11.4-km(2) catchment. For calendar year 1999, regular monitoring of the catchment was supplemented with detailed quasi-continuous measurements of flow and stream temperature, and DOC for the months September through November. The measurements were used to calculate the annual flux of dissolved CO(2), dissolved inorganic carbon, DOC and POC from the catchment and were combined with CO(2) and CH(4) gaseous exchanges calculated from previously published values and the observations of water table height within the peat. The study catchment represents a net sink of 15.4+/-11.9 gC/m(2)/yr. Carbon flows calculated for the study catchment are combined with values in the literature, using a Monte Carlo method, to estimate the carbon budget for British upland peat. For all British upland peat the calculation suggests a net carbon sink of between 0.15 and 0.29 MtC/yr. This is the first study to include a comprehensive study of the fluvial export of carbon within carbon budgets and shows the size of the peat carbon sink to be smaller than previous estimates, although sensitivity analysis shows that the primary productivity rather than fluvial carbon flux is a more important element in estimating the carbon budget in this regard.
Lou, Xue-Dong; Zhai, Sheng-Qiang; Kang, Bing; Hu, Ya-Lin; Hu, Li-Le
2014-01-01
A large portion of the global carbon pool is stored in peatlands, which are sensitive to a changing environment conditions. The hydrological loss of dissolved organic carbon (DOC) is believed to play a key role in determining the carbon balance in peatlands. Zoige peatland, the largest peat store in China, is experiencing climatic warming and drying as well as experiencing severe artificial drainage. Using a fully crossed factorial design, we experimentally manipulated temperature and controlled the water tables in large mesocosms containing intact peat monoliths. Specifically, we determined the impact of warming and water table position on the hydrological loss of DOC, the exported amounts, concentrations and qualities of DOC, and the discharge volume in Zoige peatland. Our results revealed that of the water table position had a greater impact on DOC export than the warming treatment, which showed no interactive effects with the water table treatment. Both DOC concentration and discharge volume were significantly increased when water table drawdown, while only the DOC concentration was significantly promoted by warming treatment. Annual DOC export was increased by 69% and 102% when the water table, controlled at 0 cm, was experimentally lowered by −10 cm and −20 cm. Increases in colored and aromatic constituents of DOC (measured by Abs254 nm, SUVA254 nm, Abs400 nm, and SUVA400 nm) were observed under the lower water tables and at the higher peat temperature. Our results provide an indication of the potential impacts of climatic change and anthropogenic drainage on the carbon cycle and/or water storage in a peatland and simultaneously imply the likelihood of potential damage to downstream ecosystems. Furthermore, our results highlight the need for local protection and sustainable development, as well as suggest that more research is required to better understand the impacts of climatic change and artificial disturbances on peatland degradation. PMID:25369065
Lou, Xue-Dong; Zhai, Sheng-Qiang; Kang, Bing; Hu, Ya-Lin; Hu, Li-Le
2014-01-01
A large portion of the global carbon pool is stored in peatlands, which are sensitive to a changing environment conditions. The hydrological loss of dissolved organic carbon (DOC) is believed to play a key role in determining the carbon balance in peatlands. Zoige peatland, the largest peat store in China, is experiencing climatic warming and drying as well as experiencing severe artificial drainage. Using a fully crossed factorial design, we experimentally manipulated temperature and controlled the water tables in large mesocosms containing intact peat monoliths. Specifically, we determined the impact of warming and water table position on the hydrological loss of DOC, the exported amounts, concentrations and qualities of DOC, and the discharge volume in Zoige peatland. Our results revealed that of the water table position had a greater impact on DOC export than the warming treatment, which showed no interactive effects with the water table treatment. Both DOC concentration and discharge volume were significantly increased when water table drawdown, while only the DOC concentration was significantly promoted by warming treatment. Annual DOC export was increased by 69% and 102% when the water table, controlled at 0 cm, was experimentally lowered by -10 cm and -20 cm. Increases in colored and aromatic constituents of DOC (measured by Abs(254 nm), SUVA(254 nm), Abs(400 nm), and SUVA(400 nm)) were observed under the lower water tables and at the higher peat temperature. Our results provide an indication of the potential impacts of climatic change and anthropogenic drainage on the carbon cycle and/or water storage in a peatland and simultaneously imply the likelihood of potential damage to downstream ecosystems. Furthermore, our results highlight the need for local protection and sustainable development, as well as suggest that more research is required to better understand the impacts of climatic change and artificial disturbances on peatland degradation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tfaily, Malak; Cooper, Bill; Kostka,
2014-01-01
A large-scale ecosystem manipulation (Spruce and Peatland Responses under Climatic and Environmental Change, SPRUCE) is being constructed in the Marcell Experimental Forest, Minnesota, USA, to determine the effects of climatic forcing on ecosystem processes in northern peatlands. Prior to the initiation of the manipulation, we characterized the solid-phase peat to a depth of 2 meters using a variety of techniques, including peat C:N ratios, 13C and 15N isotopic composition, Fourier Transform Infrared (FT IR), and 13C Nuclear Magnetic Resonance spectroscopy (13C NMR). FT IR determined peat humification-levels increased rapidly between and 75 cm, indicating a highly reactive zone. We observedmore » a rapid drop in the abundance of O-alkyl-C, carboxyl-C, and other oxygenated functionalities within this zone and a concomitant increase in the abundance of alkyl- and nitrogen-containing compounds. Below 75-cm, minimal change was observed except that aromatic functionalities accumulated with depth. Incubation studies revealed the highest methane production rates and greatest CH4:CO2 ratios within this and 75 cm zone. Hydrology and surface vegetation played a role in belowground carbon cycling. Radiocarbon signatures of microbial respiration products in deeper porewaters resembled the signatures of dissolved organic carbon rather than solid phase peat, indicating that more recently photosynthesized organic matter fueled the bulk of subsurface microbial respiration. Oxygen-containing functionalities, especially O-alkyl-C, appear to serve as an excellent proxy for soil decomposition rate, and in addition should be a sensitive indicator of the response of the solid phase peat to the climatic manipulation.« less
Past Peatland Distribution as an Indicator of Hydroclimate and Temperature
NASA Astrophysics Data System (ADS)
Treat, C. C.; Jones, M.; Lacourse, T.; Payne, R.; Peteet, D. M.; Sannel, B.; Stelling, J.; Talbot, J.; Williams, C. J.; Kleinen, T.; Grosse, G.; Yu, Z.; Finkelstein, S. A.; Broothaerts, N.; Dommain, R.; Kuhry, P.; Lähteenoja, O.; Dalton, A.; Notebaert, B.; Swindles, G. T.; Tarnocai, C.; Verstraeten, G.; Xia, Z.; Brovkin, V.
2016-12-01
Peatlands, wetlands with > 30 cm of organic sediment, cover more than 3 x 106 km2 of the earth surface and have been accumulating carbon and sediments throughout the Holocene. The location of peatland formation and accumulation has been dynamic over time, as peat formation in areas like Alaska and the West Siberian Lowlands preceded peat formation in Fennoscandia and Eastern North America due to more favorable climate for peat formation. Using the geographic distribution of peatlands in the past can indicate general climatic conditions, including hydroclimate, given that the underlying geology is well understood. Peatlands form under a variety of climatic conditions and landscape positions but do not persist under arid conditions, instead requiring either humid conditions or cold temperatures. However, peatlands may have existed in the past in areas not currently suitable for peatland formation and persistence, but where peats can be found at depth within the sediment column. Here we map the locations of histic paleosols, relict peat, and buried peats since the Last Glacial Maximum using a compilation of sites from previous studies. We compare these records of past peatland distribution to present-day peatland distribution. We evaluate regional differences in timing of peatland development in these buried peatlands to the development of extant peatlands. Finally, we compare the timing of past peatland extent to the to modeled paleoclimate during the Quaternary. In addition to implications for paleoclimate, these past peatlands are not well accounted for in present-day soil carbon stocks but could be an important component of deep soil carbon pools.
Deccesion of peat-moorsh soils under different land use
NASA Astrophysics Data System (ADS)
Lipka, K.; Zając, E.
2009-04-01
Use of peatlands has a serious impact on soil properties as well as on loss of organic matter. On the basis of survey carried out in 1976, 1993 and 2001 in the Mrowla river valley near Rzeszow, authors analysed changes of the peat-moorsh soils under different land use. The 25- year period was analysed. Survey results comprised: loss of organic matter, advance of moorsh forming process and change of prognostic soil-moisture complexes (after Okruszko). Stratigraphic profiles made in the years1996-2001 were compared and rate of organic mass loss was calculated. The highest values were stated for ploughfields with crop rotation (root plants, industrial plants and cereals). Intensified soil aeration and moorsh forming process as well as wind erosion caused gradual lowering of ground level. Depth of degraded peat layer in roof of surveyed peat deposits was between 0,2 and 0,8 m. Ground surface was lowering of 1,68 cm per year. It was found that, for ploughfields especially, peat-moorhs soil showing medium degree of moorsh forming process (MtII) and prognostic soil-moisture complex BC (periodically drying), after 17 years already, had changed into a soil with high degree of moorsh forming process (MtIII) and prognostic soil-moisture complex C (drying). For meadows and pastures land used such evident change wasn't noticed. During the whole investigation period (25 years) mean lowering of the peat-moorsh soils level along transects lines for different land use was: 1,15 cm per year for meadows and pastures, 1,58 cm pea year for plougfields and 1,38 cm per year for alder wood.
Harvey, J.W.; Newlin, J.T.; Krupa, S.L.
2006-01-01
Surface-water and ground-water flow are coupled in the central Everglades, although the remoteness of this system has hindered many previous attempts to quantify interactions between surface water and ground water. We modeled flow through a 43,000 ha basin in the central Everglades called Water Conservation Area 2A. The purpose of the model was to quantify recharge and discharge in the basin's vast interior areas. The presence and distribution of tritium in ground water was the principal constraint on the modeling, based on measurements in 25 research wells ranging in depth from 2 to 37 m. In addition to average characteristics of surface-water flow, the model parameters included depth of the layer of 'interactive' ground water that is actively exchanged with surface water, average residence time of interactive ground water, and the associated recharge and discharge fluxes across the wetland ground surface. Results indicated that only a relatively thin (8 m) layer of the 60 m deep surfical aquifer actively exchanges surface water and ground water on a decadal timescale. The calculated storage depth of interactive ground water was 3.1 m after adjustment for the porosity of peat and sandy limestone. Modeling of the tritium data yielded an average residence time of 90 years in interactive ground water, with associated recharge and discharge fluxes equal to 0.01 cm d -1. 3H/3He isotopic ratio measurements (which correct for effects of vertical mixing in the aquifer with deeper, tritium-dead water) were available from several wells, and these indicated an average residence time of 25 years, suggesting that residence time was overestimated using tritium measurements alone. Indeed, both residence time and storage depth would be expected to be overestimated due to vertical mixing. The estimate of recharge and discharge (0.01 cm d-1) that resulted from tritium modeling therefore is still considered reliable, because the ratio of residence time and storage depth (used to calculated recharge and discharge) is much less sensitive to vertical mixing compared with residence time alone. We conclude that a small but potentially significant component of flow through the Everglades is recharged to the aquifer and stored there for years to decades before discharged back to surface water. Long-term storage of water and solutes in the ground-water system beneath the wetlands has implications for restoration of Everglades water quality.
NASA Astrophysics Data System (ADS)
Harvey, Judson W.; Newlin, Jessica T.; Krupa, Steven L.
2006-04-01
Surface-water and ground-water flow are coupled in the central Everglades, although the remoteness of this system has hindered many previous attempts to quantify interactions between surface water and ground water. We modeled flow through a 43,000 ha basin in the central Everglades called Water Conservation Area 2A. The purpose of the model was to quantify recharge and discharge in the basin's vast interior areas. The presence and distribution of tritium in ground water was the principal constraint on the modeling, based on measurements in 25 research wells ranging in depth from 2 to 37 m. In addition to average characteristics of surface-water flow, the model parameters included depth of the layer of 'interactive' ground water that is actively exchanged with surface water, average residence time of interactive ground water, and the associated recharge and discharge fluxes across the wetland ground surface. Results indicated that only a relatively thin (8 m) layer of the 60 m deep surfical aquifer actively exchanges surface water and ground water on a decadal timescale. The calculated storage depth of interactive ground water was 3.1 m after adjustment for the porosity of peat and sandy limestone. Modeling of the tritium data yielded an average residence time of 90 years in interactive ground water, with associated recharge and discharge fluxes equal to 0.01 cm d -1. 3H/ 3He isotopic ratio measurements (which correct for effects of vertical mixing in the aquifer with deeper, tritium-dead water) were available from several wells, and these indicated an average residence time of 25 years, suggesting that residence time was overestimated using tritium measurements alone. Indeed, both residence time and storage depth would be expected to be overestimated due to vertical mixing. The estimate of recharge and discharge (0.01 cm d -1) that resulted from tritium modeling therefore is still considered reliable, because the ratio of residence time and storage depth (used to calculated recharge and discharge) is much less sensitive to vertical mixing compared with residence time alone. We conclude that a small but potentially significant component of flow through the Everglades is recharged to the aquifer and stored there for years to decades before discharged back to surface water. Long-term storage of water and solutes in the ground-water system beneath the wetlands has implications for restoration of Everglades water quality.
Issues related to incorporating northern peatlands into global climate models
NASA Astrophysics Data System (ADS)
Frolking, Steve; Roulet, Nigel; Lawrence, David
Northern peatlands cover ˜3-4 million km2 (˜10% of the land north of 45°N) and contain ˜200-400 Pg carbon (˜10-20% of total global soil carbon), almost entirely as peat (organic soil). Recent developments in global climate models have included incorporation of the terrestrial carbon cycle and representation of several terrestrial ecosystem types and processes in their land surface modules. Peatlands share many general properties with upland, mineral-soil ecosystems, and general ecosystem carbon, water, and energy cycle functions (productivity, decomposition, water infiltration, evapotranspiration, runoff, latent, sensible, and ground heat fluxes). However, northern peatlands also have several unique characteristics that will require some rethinking or revising of land surface algorithms in global climate models. Here we review some of these characteristics, deep organic soils, a significant fraction of bryophyte vegetation, shallow water tables, spatial heterogeneity, anaerobic biogeochemistry, and disturbance regimes, in the context of incorporating them into global climate models. With the incorporation of peatlands, global climate models will be able to simulate the fate of northern peatland carbon under climate change, and estimate the magnitude and strength of any climate system feedbacks associated with the dynamics of this large carbon pool.
Bergman, Inger; Bishop, Kevin; Tu, Qiang; Frech, Wolfgang; Åkerblom, Staffan; Nilsson, Mats
2012-01-01
In this paper we investigate the hypothesis that long-term sulphate (SO(4) (2-)) deposition has made peatlands a larger source of methyl mercury (MeHg) to remote boreal lakes. This was done on experimental plots at a boreal, low sedge mire where the effect of long-term addition of SO(4) (2-) on peat pore water MeHg concentrations was observed weekly throughout the snow-free portion of 1999. The additions of SO(4) (2-) started in 1995. The seasonal mean of the pore water MeHg concentrations on the plots with 17 kg ha(-1) yr(-1) of sulphur (S) addition (1.3±0.08 ng L(-1), SE; n = 44) was significantly (p<0.0001) higher than the mean MeHg concentration on the plots with 3 kg ha(-1) yr(-1) of ambient S deposition (0.6±0.02 ng L(-1), SE; n = 44). The temporal variation in pore water MeHg concentrations during the snow free season was larger in the S-addition plots, with an amplitude of >2 ng L(-1) compared to +/-0.5 ng L(-1) in the ambient S deposition plots. The concentrations of pore water MeHg in the S-addition plots were positively correlated (r(2) = 0.21; p = 0.001) to the groundwater level, with the lowest concentrations of MeHg during the period with the lowest groundwater levels. The pore water MeHg concentrations were not correlated to total Hg, DOC concentration or pH. The results from this study indicate that the persistently higher pore water concentrations of MeHg in the S-addition plots are caused by the long-term additions of SO(4) (2-) to the mire surface. Since these waters are an important source of runoff, the results support the hypothesis that SO(4) (2-) deposition has increased the contribution of peatlands to MeHg in downstream aquatic systems. This would mean that the increased deposition of SO(4) (2-) in acid rain has contributed to the modern increase in the MeHg burdens of remote lakes hydrologically connected to peatlands.
Response of anaerobic carbon cycling to water table manipulation in an Alaskan rich fen
Kane, E.S.; Chivers, M.R.; Turetsky, M.R.; Treat, C.C.; Petersen, D.G.; Waldrop, M.; Harden, J.W.; McGuire, A.D.
2013-01-01
To test the effects of altered hydrology on organic soil decomposition, we investigated CO2 and CH4 production potential of rich-fen peat (mean surface pH = 6.3) collected from a field water table manipulation experiment including control, raised and lowered water table treatments. Mean anaerobic CO2 production potential at 10 cm depth (14.1 ± 0.9 μmol C g−1 d−1) was as high as aerobic CO2 production potential (10.6 ± 1.5 μmol C g−1 d−1), while CH4 production was low (mean of 7.8 ± 1.5 nmol C g−1 d−1). Denitrification enzyme activity indicated a very high denitrification potential (197 ± 23 μg N g−1 d−1), but net NO-3 reduction suggested this was a relatively minor pathway for anaerobic CO2 production. Abundances of denitrifier genes (nirK and nosZ) did not change across water table treatments. SO2-4 reduction also did not appear to be an important pathway for anaerobic CO2 production. The net accumulation of acetate and formate as decomposition end products in the raised water table treatment suggested that fermentation was a significant pathway for carbon mineralization, even in the presence of NO-3. Dissolved organic carbon (DOC) concentrations were the strongest predictors of potential anaerobic and aerobic CO2 production. Across all water table treatments, the CO2:CH4 ratio increased with initial DOC leachate concentrations. While the field water table treatment did not have a significant effect on mean CO2 or CH4 production potential, the CO2:CH4 ratio was highest in shallow peat incubations from the drained treatment. These data suggest that with continued drying or with a more variable water table, anaerobic CO2 production may be favored over CH4 production in this rich fen. Future research examining the potential for dissolved organic substances to facilitate anaerobic respiration, or alternative redox processes that limit the effectiveness of organic acids as substrates in anaerobic metabolism, would help explain additional uncertainty concerning carbon mineralization in this system.
NASA Astrophysics Data System (ADS)
Bechtold, Michel; Schlaffer, Stefan
2015-04-01
The Advanced Synthetic Aperture Radar (ASAR) onboard ENVISAT collected C-Band microwave backscatter data from 2005 to 2012. Backscatter in the C-Band depends to a large degree on the roughness and the moisture status of vegetation and soil surface with a penetration depth of ca. 3 cm. In wetlands with stable high water levels, the annual soil surface moisture dynamics are very distinct compared to the surrounding areas, which allows the monitoring of such environments with ASAR data (Reschke et al. 2012). Also in drained peatlands, moisture status of vegetation and soil surface strongly depends on water table depth due to high hydraulic conductivities of many peat soils in the low suction range (Dettmann et al. 2014). We hypothesize that this allows the characterization of water table depths with ASAR data. Here we analyze whether ASAR data can be used for the spatial and temporal estimation of water table depths in different peatlands (natural, near-natural, agriculturally-used and rewetted). Mapping and monitoring of water table depths is of crucial importance, e.g. for upscaling greenhouse gas emissions and evaluating the success of peatland rewetting projects. Here, ASAR data is analyzed with a new map of water table depths for the organic soils in Germany (Bechtold et al. 2014) as well as with a comprehensive data set of monitored peatland water levels from 1100 dip wells and 54 peatlands. ASAR time series from the years 2005-2012 with irregular temporal sampling intervals of 3-14 days were processed. Areas covered by snow were masked. Primary results about the accuracy of spatial estimates show significant correlations between long-term backscatter statistics and spatially-averaged water table depths extracted from the map at the resolution of the ASAR data. Backscatter also correlates with long-term averages of point-scale water table depth data of the monitoring wells. For the latter, correlation is highest between the dry reference backscatter values and summer mean water table depth. Using the boosted regression tree model of Bechtold et al., we evaluate whether the ASAR data can improve prediction accuracy and/or replace parts of ancillary data that is often not available in other countries. In the temporal domain primary results often show a better dependency between backscatter and water table depths compared to the spatial domain. For a variety of vegetation covers the temporal monitoring potential of ASAR data is evaluated at the level of annual water table depth statistics. Bechtold, M., Tiemeyer, B., Laggner, A., Leppelt, T., Frahm, E., and Belting, S., 2014. Large-scale regionalization of water table depth in peatlands optimized for greenhouse gas emission upscaling, Hydrol. Earth Syst. Sci., 18, 3319-3339. Dettmann, U., Bechtold, M., Frahm, E., Tiemeyer, B., 2014. On the applicability of unimodal and bimodal van Genuchten-Mualem based models to peat and other organic soils under evaporation conditions. Journal of Hydrology, 515, 103-115. Reschke, J., Bartsch, A., Schlaffer, S., Schepaschenko, D., 2012. Capability of C-Band SAR for Operational Wetland Monitoring at High Latitudes. Remote Sens. 4, 2923-2943.
The fate of experimentally deposited nitrogen in mesocosms from two Canadian peatlands.
Blodau, Christian; Basiliko, Nathan; Mayer, Bernhard; Moore, Tim R
2006-07-01
In large regions of Europe and North America, peatlands have been exposed to elevated rates of atmospheric nitrogen (N) deposition. We investigated the fate of experimentally added N (NH(4)(15)NO3) at two different N loads (1.2 and 4.7 g N m(-2) yr(-1)) and water tables (1 and 32 cm) in intact cores from two peatlands, located in Central and Eastern Canada. The sites receive an estimated total N load of 0.6 g m(-2) a(-1) and 1.5 g m(-2) yr(-1), excluding nitrogen fixation. In all treatments, experimentally added nitrate (NO(3-)) was fully (96-99%) and ammonium (NH(4+)) mostly (81-97%) retained by the plant cover, mainly consisting of Sphagnum mosses, or in the unsaturated zone below. However, on average only 48% of the (15)N were recovered from the plant cover, and substantial amounts were found in depth layers of 2-6 cm (21-46%) and 8-12 cm (1.4-10.8%) below the moss surface. The amount of (15)N retained also significantly decreased with a lower water table from 56+/-9% to 40+/-10%. These findings document a substantial mobility of N, particularly during water table drawdown. Analysis of (15)N by a sequential diffusion procedure revealed a transfer of (15)N from NO(3-) into NH(4+) and dissolved organic N (DON), but the contents of (15)N in these pools accounted for less than 1% of the total N, natural background subtracted. The mass flux of dissolved (15)N into the peat was small compared to the total mass flux of (15)N. The accumulation of (15)N in the bulk peat must have been caused by a mechanism that was not investigated, possibly by transport of particulate organic N.
Uranium delivery and uptake in a montane wetland, north-central Colorado, USA
Schumann, R. Randall; Zielinski, Robert A.; Otton, James K.; Pantea, Michael P.; Orem, William H.
2017-01-01
Comprehensive sampling of peat, underlying lakebed sediments, and coexisting waters of a naturally uraniferous montane wetland are combined with hydrologic measurements to define the important controls on uranium (U) supply and uptake. The major source of U to the wetland is groundwater flowing through locally fractured and faulted granite gneiss of Proterozoic age. Dissolved U concentrations in four springs and one seep ranged from 20 to 83 ppb (μg/l). Maximum U concentrations are ∼300 ppm (mg/kg) in lakebed sediments and >3000 ppm in peat. Uranium in lakebed sediments is primarily stratabound in the more organic-rich layers, but samples of similar organic content display variable U concentrations. Post-depositional modifications include variable additions of U delivered by groundwater. Uranium distribution in peat is heterogeneous and primarily controlled by proximity to groundwater-fed springs and seeps that act as local point sources of U, and by proximity to groundwater directed along the peat/lakebeds contact. Uranium is initially sorbed on various organic components of peat as oxidized U(VI) present in groundwater. Selective extractions indicate that the majority of sorbed U remains as the oxidized species despite reducing conditions that should favor formation of U(IV). Possible explanations are kinetic hindrances related to strong complex formation between uranyl and humic substances, inhibition of anaerobic bacterial activity by low supply of dissolved iron and sulfate, and by cold temperatures.
Pierce, B.S.; Stanton, R.W.; Eble, C.F.
1993-01-01
The Stockton coal bed (Middle Pennsylvanian) is a relatively high ash coal composed primarily of moderately thin banded, sparsely thin banded, and nonbanded coal (splint and cannel coal). Comparisons of petrographic, palynologic, and paleobotanic data gathered from the same sample sets from a single column of the Stockton coal bed indicate that compositional correspondences among the sets exist regardless of coal type. Some correspondences are believed to exist because of original plant constituents and others because of the paleoenvironment of peat formation. Using some combination of these data is critical when interpreting paleoenvironmental conditions because (1) a direct correspondence is lacking between many of the data and (2) each of the three data sets provides a unique and important perspective on the paleomire. The Stockton paleomire in the area of this study supported a diverse flora that consisted of both small and arboreous lycopsids, small ferns and tree ferns, calamites, cordaites, and pteridosperms. There appear to have been two successions of Lycospora spore-dominated, vitrinite-rich, liptinite-poor peat formation, which were followed by inertinite-rich peat formation marked by a tree fern-dominant spore assemblage and abundant unidentifiable plant tissues. These are interpreted to be two water-laden or topogenous peat formational stages followed by slightly domed, better drained peat formation. ?? 1993.
Classifying and mapping wetlands and peat resources using digital cartography
Cameron, Cornelia C.; Emery, David A.
1992-01-01
Digital cartography allows the portrayal of spatial associations among diverse data types and is ideally suited for land use and resource analysis. We have developed methodology that uses digital cartography for the classification of wetlands and their associated peat resources and applied it to a 1:24 000 scale map area in New Hampshire. Classifying and mapping wetlands involves integrating the spatial distribution of wetlands types with depth variations in associated peat quality and character. A hierarchically structured classification that integrates the spatial distribution of variations in (1) vegetation, (2) soil type, (3) hydrology, (4) geologic aspects, and (5) peat characteristics has been developed and can be used to build digital cartographic files for resource and land use analysis. The first three parameters are the bases used by the National Wetlands Inventory to classify wetlands and deepwater habitats of the United States. The fourth parameter, geological aspects, includes slope, relief, depth of wetland (from surface to underlying rock or substrate), wetland stratigraphy, and the type and structure of solid and unconsolidated rock surrounding and underlying the wetland. The fifth parameter, peat characteristics, includes the subsurface variation in ash, acidity, moisture, heating value (Btu), sulfur content, and other chemical properties as shown in specimens obtained from core holes. These parameters can be shown as a series of map data overlays with tables that can be integrated for resource or land use analysis.
Kunhi Mouvenchery, Yamuna; Jaeger, Alexander; Aquino, Adelia J. A.; Tunega, Daniel; Diehl, Dörte; Bertmer, Marko; Schaumann, Gabriele Ellen
2013-01-01
It is assumed to be common knowledge that multivalent cations cross-link soil organic matter (SOM) molecules via cation bridges (CaB). The concept has not been explicitly demonstrated in solid SOM by targeted experiments, yet. Therefore, the requirements for and characteristics of CaB remain unidentified. In this study, a combined experimental and molecular modeling approach was adopted to investigate the interaction of cations on a peat OM from physicochemical perspective. Before treatment with salt solutions of Al3+, Ca2+ or Na+, respectively, the original exchangeable cations were removed using cation exchange resin. Cation treatment was conducted at two different values of pH prior to adjusting pH to 4.1. Cation sorption is slower (>>2 h) than deprotonation of functional groups (<2 h) and was described by a Langmuir model. The maximum uptake increased with pH of cation addition and decreased with increasing cation valency. Sorption coefficients were similar for all cations and at both pH. This contradicts the general expectations for electrostatic interactions, suggesting that not only the interaction chemistry but also spatial distribution of functional groups in OM determines binding of cations in this peat. The reaction of contact angle, matrix rigidity due to water molecule bridges (WaMB) and molecular mobility of water (NMR analysis) suggested that cross-linking via CaB has low relevance in this peat. This unexpected finding is probably due to the low cation exchange capacity, resulting in low abundance of charged functionalities. Molecular modeling demonstrates that large average distances between functionalities (∼3 nm in this peat) cannot be bridged by CaB-WaMB associations. However, aging strongly increased matrix rigidity, suggesting successive increase of WaMB size to connect functionalities and thus increasing degree of cross-linking by CaB-WaMB associations. Results thus demonstrated that the physicochemical structure of OM is decisive for CaB and aging-induced structural reorganisation can enhance cross-link formation. PMID:23750256
Kunhi Mouvenchery, Yamuna; Jaeger, Alexander; Aquino, Adelia J A; Tunega, Daniel; Diehl, Dörte; Bertmer, Marko; Schaumann, Gabriele Ellen
2013-01-01
It is assumed to be common knowledge that multivalent cations cross-link soil organic matter (SOM) molecules via cation bridges (CaB). The concept has not been explicitly demonstrated in solid SOM by targeted experiments, yet. Therefore, the requirements for and characteristics of CaB remain unidentified. In this study, a combined experimental and molecular modeling approach was adopted to investigate the interaction of cations on a peat OM from physicochemical perspective. Before treatment with salt solutions of Al(3+), Ca(2+) or Na(+), respectively, the original exchangeable cations were removed using cation exchange resin. Cation treatment was conducted at two different values of pH prior to adjusting pH to 4.1. Cation sorption is slower (>2 h) than deprotonation of functional groups (<2 h) and was described by a Langmuir model. The maximum uptake increased with pH of cation addition and decreased with increasing cation valency. Sorption coefficients were similar for all cations and at both pH. This contradicts the general expectations for electrostatic interactions, suggesting that not only the interaction chemistry but also spatial distribution of functional groups in OM determines binding of cations in this peat. The reaction of contact angle, matrix rigidity due to water molecule bridges (WaMB) and molecular mobility of water (NMR analysis) suggested that cross-linking via CaB has low relevance in this peat. This unexpected finding is probably due to the low cation exchange capacity, resulting in low abundance of charged functionalities. Molecular modeling demonstrates that large average distances between functionalities (∼3 nm in this peat) cannot be bridged by CaB-WaMB associations. However, aging strongly increased matrix rigidity, suggesting successive increase of WaMB size to connect functionalities and thus increasing degree of cross-linking by CaB-WaMB associations. Results thus demonstrated that the physicochemical structure of OM is decisive for CaB and aging-induced structural reorganisation can enhance cross-link formation.
Introducing a boreal wetland model within the Earth System model framework
NASA Astrophysics Data System (ADS)
Getzieh, R. J.; Brovkin, V.; Reick, C.; Kleinen, T.; Raddatz, T.; Raivonen, M.; Sevanto, S.
2009-04-01
Wetlands of the northern high latitudes with their low temperatures and waterlogged conditions are prerequisite for peat accumulation. They store at least 25% of the global soil organic carbon and constitute currently the largest natural source of methane. These boreal and subarctic peat carbon pools are sensitive to climate change since the ratio of carbon sequestration and emission is closely dependent on hydrology and temperature. Global biogeochemistry models used for simulations of CO2 dynamics in the past and future climates usually ignore changes in the peat storages. Our approach aims at the evaluation of the boreal wetland feedback to climate through the CO2 and CH4 fluxes on decadal to millennial time scales. A generic model of organic matter accumulation and decay in boreal wetlands is under development in the MPI for Meteorology in cooperation with the University of Helsinki. Our approach is to develop a wetland model which is consistent with the physical and biogeochemical components of the land surface module JSBACH as a part of the Earth System model framework ECHAM5-MPIOM-JSBACH. As prototypes, we use modelling approach by Frolking et al. (2001) for the peat dynamics and the wetland model by Wania (2007) for vegetation cover and plant productivity. An initial distribution of wetlands follows the GLWD-3 map by Lehner and Döll (2004). First results of the modelling approach will be presented. References: Frolking, S. E., N. T. Roulet, T. R. Moore, P. J. H. Richard, M. Lavoie and S. D. Muller (2001): Modeling Northern Peatland Decomposition and Peat Accumulation, Ecosystems, 4, 479-498. Lehner, B., Döll P. (2004): Development and validation of a global database of lakes, reservoirs and wetlands. Journal of Hydrology 296 (1-4), 1-22. Wania, R. (2007): Modelling northern peatland land surface processes, vegetation dynamics and methane emissions. PhD thesis, University of Bristol, 122 pp.