Annular core liquid-salt cooled reactor with multiple fuel and blanket zones
Peterson, Per F.
2013-05-14
A liquid fluoride salt cooled, high temperature reactor having a reactor vessel with a pebble-bed reactor core. The reactor core comprises a pebble injection inlet located at a bottom end of the reactor core and a pebble defueling outlet located at a top end of the reactor core, an inner reflector, outer reflector, and an annular pebble-bed region disposed in between the inner reflector and outer reflector. The annular pebble-bed region comprises an annular channel configured for receiving pebble fuel at the pebble injection inlet, the pebble fuel comprising a combination of seed and blanket pebbles having a density lower than the coolant such that the pebbles have positive buoyancy and migrate upward in said annular pebble-bed region toward the defueling outlet. The annular pebble-bed region comprises alternating radial layers of seed pebbles and blanket pebbles.
Preliminary CFD study of Pebble Size and its Effect on Heat Transfer in a Pebble Bed Reactor
NASA Astrophysics Data System (ADS)
Jones, Andrew; Enriquez, Christian; Spangler, Julian; Yee, Tein; Park, Jungkyu; Farfan, Eduardo
2017-11-01
In pebble bed reactors, the typical pebble diameter used is 6cm, and within each pebble is are thousands of nuclear fuel kernels. However, efficiency of the reactor does not solely depend on the number of kernels of fuel within each graphite sphere, but also depends on the type and motion of the coolant within the voids between the spheres and the reactor itself. In this work a physical analysis of the pebble bed nuclear reactor's fluid dynamics is undertaken using Computational Fluid Dynamics software. The primary goal of this work is to observe the relationship between the different pebble diameters in an idealized alignment and the thermal transport efficiency of the reactor. The model constructed of our idealized argument will consist on stacked 8 pebble columns that fixed at the inlet on the reactor. Two different pebble sizes 4 cm and 6 cm will be studied and helium will be supplied as coolant with a fixed flow rate of 96 kg/s, also a fixed pebble surface temperatures will be used. Comparison will then be made to evaluate the efficiency of coolant to transport heat due to the varying sizes of the pebbles. Assistant Professor for the Department of Civil and Construction Engineering PhD.
Neutron Fluence And DPA Rate Analysis In Pebble-Bed HTR Reactor Vessel Using MCNP
NASA Astrophysics Data System (ADS)
Hamzah, Amir; Suwoto; Rohanda, Anis; Adrial, Hery; Bakhri, Syaiful; Sunaryo, Geni Rina
2018-02-01
In the Pebble-bed HTR reactor, the distance between the core and the reactor vessel is very close and the media inside are carbon and He gas. Neutron moderation capability of graphite material is theoretically lower than that of water-moderated reactors. Thus, it is estimated much more the fast neutrons will reach the reactor vessel. The fast neutron collisions with the atoms in the reactor vessel will result in radiation damage and could be reducing the vessel life. The purpose of this study was to obtain the magnitude of neutron fluence in the Pebble-bed HTR reactor vessel. Neutron fluence calculations in the pebble-bed HTR reactor vessel were performed using the MCNP computer program. By determining the tally position, it can be calculated flux, spectrum and neutron fluence in the position of Pebble-bed HTR reactor vessel. The calculations results of total neutron flux and fast neutron flux in the reactor vessel of 1.82x108 n/cm2/s and 1.79x108 n/cm2/s respectively. The fast neutron fluence in the reactor vessel is 3.4x1017 n/cm2 for 60 years reactor operation. Radiation damage in stainless steel material caused by high-energy neutrons (> 1.0 MeV) will occur when it has reached the neutron flux level of 1.0x1024 n/cm2. The neutron fluence results show that there is no radiation damage in the Pebble-bed HTR reactor vessel, so it is predicted that it will be safe to operate at least for 60 years.
NASA Technical Reports Server (NTRS)
Moran, Robert P.
2013-01-01
A review of literature associated with Pebble Bed and Particle Bed reactor core research has revealed a systemic problem inherent to reactor core concepts which utilize randomized rather than structured coolant channel flow paths. For both the Pebble Bed and Particle Bed Reactor designs; case studies reveal that for indeterminate reasons, regions within the core would suffer from excessive heating leading to thermal runaway and localized fuel melting. A thermal Computational Fluid Dynamics model was utilized to verify that In both the Pebble Bed and Particle Bed Reactor concepts randomized coolant channel pathways combined with localized high temperature regions would work together to resist the flow of coolant diverting it away from where it is needed the most to cooler less resistive pathways where it is needed the least. In other words given the choice via randomized coolant pathways the reactor coolant will take the path of least resistance, and hot zones offer the highest resistance. Having identified the relationship between randomized coolant channel pathways and localized fuel melting it is now safe to assume that other reactor concepts that utilize randomized coolant pathways such as the foam core reactor are also susceptible to this phenomenon.
Pebble Fuel Handling and Reactivity Control for Salt-Cooled High Temperature Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, Per; Greenspan, Ehud
2015-02-09
This report documents the work completed on the X-PREX facility under NEUP Project 11- 3172. This project seeks to demonstrate the viability of pebble fuel handling and reactivity control for fluoride salt-cooled high-temperature reactors (FHRs). The research results also improve the understanding of pebble motion in helium-cooled reactors, as well as the general, fundamental understanding of low-velocity granular flows. Successful use of pebble fuels in with salt coolants would bring major benefits for high-temperature reactor technology. Pebble fuels enable on-line refueling and operation with low excess reactivity, and thus simpler reactivity control and improved fuel utilization. If fixed fuel designsmore » are used, the power density of salt- cooled reactors is limited to 10 MW/m 3 to obtain adequate duration between refueling, but pebble fuels allow power densities in the range of 20 to 30 MW/m 3. This can be compared to the typical modular helium reactor power density of 5 MW/m3. Pebble fuels also permit radial zoning in annular cores and use of thorium or graphite pebble blankets to reduce neutron fluences to outer radial reflectors and increase total power production. Combined with high power conversion efficiency, compact low-pressure primary and containment systems, and unique safety characteristics including very large thermal margins (>500°C) to fuel damage during transients and accidents, salt-cooled pebble fuel cores offer the potential to meet the major goals of the Advanced Reactor Concepts Development program to provide electricity at lower cost than light water reactors with improved safety and system performance.This report presents the facility description, experimental results, and supporting simulation methods of the new X-Ray Pebble Recirculation Experiment (X-PREX), which is now operational and being used to collect data on the behavior of slow dense granular flows relevant to pebble bed reactor core designs. The X-PREX facility uses novel digital x-ray tomography methods to track both the translational and rotational motion of spherical pebbles, which provides unique experimental results that can be used to validate discrete element method (DEM) simulations of pebble motion. The validation effort supported by the X-PREX facility provides a means to build confidence in analysis of pebble bed configuration and residence time distributions that impact the neutronics, thermal hydraulics, and safety analysis of pebble bed reactor cores. Experimental and DEM simulation results are reported for silo drainage, a classical problem in the granular flow literature, at several hopper angles. These studies include conventional converging and novel diverging geometries that provide additional flexibility in the design of pebble bed reactor cores. Excellent agreement is found between the X-PREX experimental and DEM simulation results. This report also includes results for additional studies relevant to the design and analysis of pebble bed reactor cores including the study of forces on shut down blades inserted directly into a packed bed and pebble flow in a cylindrical hopper that is representative of a small test reactor.« less
Metcalf, H.E.
1962-12-25
This patent relates to a nuclear reactor power plant incorporating an air-cooled, beryllium oxide-moderated, pebble bed reactor. According to the invention means are provided for circulating a flow of air through tubes in the reactor to a turbine and for directing a sidestream of the circu1ating air through the pebble bed to remove fission products therefrom as well as assist in cooling the reactor. (AEC)
In-pile test of Li 2TiO 3 pebble bed with neutron pulse operation
NASA Astrophysics Data System (ADS)
Tsuchiya, K.; Nakamichi, M.; Kikukawa, A.; Nagao, Y.; Enoeda, M.; Osaki, T.; Ioki, K.; Kawamura, H.
2002-12-01
Lithium titanate (Li 2TiO 3) is one of the candidate materials as tritium breeder in the breeding blanket of fusion reactors, and it is necessary to show the tritium release behavior of Li 2TiO 3 pebble beds. Therefore, a blanket in-pile mockup was developed and in situ tritium release experiments with the Li 2TiO 3 pebble bed were carried out in the Japan Materials Testing Reactor. In this study, the relationship between tritium release behavior from Li 2TiO 3 pebble beds and effects of various parameters were evaluated. The ( R/ G) ratio of tritium release ( R) and tritium generation ( G) was saturated when the temperature at the outside edge of the Li 2TiO 3 pebble bed became 300 °C. The tritium release amount increased cycle by cycle and saturated after about 20 pulse operations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Disser, Jay; Arthur, Edward; Lambert, Janine
2016-09-01
This report examines a preliminary design for a pebble bed fluoride salt-cooled high temperature reactor (PB-FHR) concept, assessing it from an international safeguards perspective. Safeguards features are defined, in a preliminary fashion, and suggestions are made for addressing further nuclear materials accountancy needs.
NASA Astrophysics Data System (ADS)
Cisneros, Anselmo Tomas, Jr.
The Fluoride salt cooled High temperature Reactor (FHR) is a class of advanced nuclear reactors that combine the robust coated particle fuel form from high temperature gas cooled reactors, direct reactor auxillary cooling system (DRACS) passive decay removal of liquid metal fast reactors, and the transparent, high volumetric heat capacitance liquid fluoride salt working fluids---flibe (33%7Li2F-67%BeF)---from molten salt reactors. This combination of fuel and coolant enables FHRs to operate in a high-temperature low-pressure design space that has beneficial safety and economic implications. In 2012, UC Berkeley was charged with developing a pre-conceptual design of a commercial prototype FHR---the Pebble Bed- Fluoride Salt Cooled High Temperature Reactor (PB-FHR)---as part of the Nuclear Energy University Programs' (NEUP) integrated research project. The Mark 1 design of the PB-FHR (Mk1 PB-FHR) is 236 MWt flibe cooled pebble bed nuclear heat source that drives an open-air Brayton combine-cycle power conversion system. The PB-FHR's pebble bed consists of a 19.8% enriched uranium fuel core surrounded by an inert graphite pebble reflector that shields the outer solid graphite reflector, core barrel and reactor vessel. The fuel reaches an average burnup of 178000 MWt-d/MT. The Mk1 PB-FHR exhibits strong negative temperature reactivity feedback from the fuel, graphite moderator and the flibe coolant but a small positive temperature reactivity feedback of the inner reflector and from the outer graphite pebble reflector. A novel neutronics and depletion methodology---the multiple burnup state methodology was developed for an accurate and efficient search for the equilibrium composition of an arbitrary continuously refueled pebble bed reactor core. The Burnup Equilibrium Analysis Utility (BEAU) computer program was developed to implement this methodology. BEAU was successfully benchmarked against published results generated with existing equilibrium depletion codes VSOP and PEBBED for a high temperature gas cooled pebble bed reactor. Three parametric studies were performed for exploring the design space of the PB-FHR---to select a fuel design for the PB-FHR] to select a core configuration; and to optimize the PB-FHR design. These parametric studies investigated trends in the dependence of important reactor performance parameters such as burnup, temperature reactivity feedback, radiation damage, etc on the reactor design variables and attempted to understand the underlying reactor physics responsible for these trends. A pebble fuel parametric study determined that pebble fuel should be designed with a carbon to heavy metal ratio (C/HM) less than 400 to maintain negative coolant temperature reactivity coefficients. Seed and thorium blanket-, seed and inert pebble reflector- and seed only core configurations were investigated for annular FHR PBRs---the C/HM of the blanket pebbles and discharge burnup of the thorium blanket pebbles were additional design variable for core configurations with thorium blankets. Either a thorium blanket or graphite pebble reflector is required to shield the outer graphite reflector enough to extend its service lifetime to 60 EFPY. The fuel fabrication costs and long cycle lengths of the thorium blanket fuel limit the potential economic advantages of using a thorium blanket. Therefore, the seed and pebble reflector core configuration was adopted as the baseline core configuration. Multi-objective optimization with respect to economics was performed for the PB-FHR accounting for safety and other physical design constraints derived from the high-level safety regulatory criteria. These physical constraints were applied along in a design tool, Nuclear Application Value Estimator, that evaluated a simplified cash flow economics model based on estimates of reactor performance parameters calculated using correlations based on the results of parametric design studies for a specific PB-FHR design and a set of economic assumptions about the electricity market to evaluate the economic implications of design decisions. The optimal PB-FHR design---Mark 1 PB-FHR---is described along with a detailed summary of its performance characteristics including: the burnup, the burnup evolution, temperature reactivity coefficients, the power distribution, radiation damage distributions, control element worths, decay heat curves and tritium production rates. The Mk1 PB-FHR satisfies the PB-FHR safety criteria. The fuel, moderator (pebble core, pebble shell, graphite matrix, TRISO layers) and coolant have global negative temperature reactivity coefficients and the fuel temperatures are well within their limits.
NASA Astrophysics Data System (ADS)
Zuhair; Suwoto; Setiadipura, T.; Bakhri, S.; Sunaryo, G. R.
2018-02-01
As a part of the solution searching for possibility to control the plutonium, a current effort is focused on mechanisms to maximize consumption of plutonium. Plutonium core solution is a unique case in the high temperature reactor which is intended to reduce the accumulation of plutonium. However, the safety performance of the plutonium core which tends to produce a positive temperature coefficient of reactivity should be examined. The pebble bed inherent safety features which are characterized by a negative temperature coefficient of reactivity must be maintained under any circumstances. The purpose of this study is to investigate the characteristic of temperature coefficient of reactivity for plutonium core of pebble bed reactor. A series of calculations with plutonium loading varied from 0.5 g to 1.5 g per fuel pebble were performed by the MCNPX code and ENDF/B-VII library. The calculation results show that the k eff curve of 0.5 g Pu/pebble declines sharply with the increase in fuel burnup while the greater Pu loading per pebble yields k eff curve declines slighter. The fuel with high Pu content per pebble may reach long burnup cycle. From the temperature coefficient point of view, it is concluded that the reactor containing 0.5 g-1.25 g Pu/pebble at high burnup has less favorable safety features if it is operated at high temperature. The use of fuel with Pu content of 1.5 g/pebble at high burnup should be considered carefully from core safety aspect because it could affect transient behavior into a fatal accident situation.
PEBBLE: a two-dimensional steady-state pebble bed reactor thermal hydraulics code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vondy, D.R.
1981-09-01
This report documents the local implementation of the PEBBLE code to treat the two-dimensional steady-state pebble bed reactor thermal hydraulics problem. This code is implemented as a module of a computation system used for reactor core history calculations. Given power density data, the geometric description in (RZ), and basic heat removal conditions and thermal properties, the coolant properties, flow conditions, and temperature distributions in the pebble fuel elements are predicted. The calculation is oriented to the continuous fueling, steady state condition with consideration of the effect of the high energy neutron flux exposure and temperature history on the thermal conductivity.more » The coolant flow conditions are calculated for the same geometry as used in the neutronics calculation, power density and fluence data being used directly, and temperature results are made available for subsequent use.« less
Analysis of granular flow in a pebble-bed nuclear reactor.
Rycroft, Chris H; Grest, Gary S; Landry, James W; Bazant, Martin Z
2006-08-01
Pebble-bed nuclear reactor technology, which is currently being revived around the world, raises fundamental questions about dense granular flow in silos. A typical reactor core is composed of graphite fuel pebbles, which drain very slowly in a continuous refueling process. Pebble flow is poorly understood and not easily accessible to experiments, and yet it has a major impact on reactor physics. To address this problem, we perform full-scale, discrete-element simulations in realistic geometries, with up to 440,000 frictional, viscoelastic 6-cm-diam spheres draining in a cylindrical vessel of diameter 3.5m and height 10 m with bottom funnels angled at 30 degrees or 60 degrees. We also simulate a bidisperse core with a dynamic central column of smaller graphite moderator pebbles and show that little mixing occurs down to a 1:2 diameter ratio. We analyze the mean velocity, diffusion and mixing, local ordering and porosity (from Voronoi volumes), the residence-time distribution, and the effects of wall friction and discuss implications for reactor design and the basic physics of granular flow.
NASA Astrophysics Data System (ADS)
Husnayani, I.; Udiyani, P. M.; Bakhri, S.; Sunaryo, G. R.
2018-02-01
Pebble Bed Reactor (PBR) is a high temperature gas-cooled reactor which employs graphite as a moderator and helium as a coolant. In a multi-pass PBR, burnup of the fuel pebble must be measured in each cycle by online measurement in order to determine whether the fuel pebble should be reloaded into the core for another cycle or moved out of the core into spent fuel storage. One of the well-known methods for measuring burnup is based on the activity of radionuclide decay inside the fuel pebble. In this work, the activity and gamma emission of Kr-85m were studied in order to investigate the feasibility of Kr-85m as burnup measurement indicator in a PBR. The activity and gamma emission of Kr-85 were estimated using ORIGEN2.1 computer code. The parameters of HTR-10 were taken as a case study in performing ORIGEN2.1 simulation. The results show that the activity revolution of Kr-85m has a good relationship with the burnup of the pebble fuel in each cycle. The Kr-85m activity reduction in each burnup step,in the range of 12% to 4%, is considered sufficient to show the burnup level in each cycle. The gamma emission of Kr-85m is also sufficiently high which is in the order of 1010 photon/second. From these results, it can be concluded that Kr-85m is suitable to be used as burnup measurement indicator in a pebble bed reactor.
Packing microstructure and local density variations of experimental and computational pebble beds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Auwerda, G. J.; Kloosterman, J. L.; Lathouwers, D.
2012-07-01
In pebble bed type nuclear reactors the fuel is contained in graphite pebbles, which form a randomly stacked bed with a non-uniform packing density. These variations can influence local coolant flow and power density and are a possible cause of hotspots. To analyse local density variations computational methods are needed that can generate randomly stacked pebble beds with a realistic packing structure on a pebble-to-pebble level. We first compare various properties of the local packing structure of a computed bed with those of an image made using computer aided X-ray tomography, looking at properties in the bulk of the bedmore » and near the wall separately. Especially for the bulk of the bed, properties of the computed bed show good comparison with the scanned bed and with literature, giving confidence our method generates beds with realistic packing microstructure. Results also show the packing structure is different near the wall than in the bulk of the bed, with pebbles near the wall forming ordered layers similar to hexagonal close packing. Next, variations in the local packing density are investigated by comparing probability density functions of the packing fraction of small clusters of pebbles throughout the bed. Especially near the wall large variations in local packing fractions exists, with a higher probability for both clusters of pebbles with low (<0.6) and high (>0.65) packing fraction, which could significantly affect flow rates and, together with higher power densities, could result in hotspots. (authors)« less
Year One Summary of X-energy Pebble Fuel Development at ORNL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helmreich, Grant W.; Hunn, John D.; McMurray, Jake W.
2017-06-01
The Advanced Reactor Concepts X-energy (ARC-Xe) Pebble Fuel Development project at Oak Ridge National Laboratory (ORNL) has successfully completed its first year, having made excellent progress in accomplishing programmatic objectives. The primary focus of research at ORNL in support of X-energy has been the training of X-energy fuel fabrication engineers and the establishment of US pebble fuel production capabilities able to supply the Xe-100 pebble-bed reactor. These efforts have been strongly supported by particle fuel fabrication and characterization expertise present at ORNL from the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program.
Material Control and Accounting Design Considerations for High-Temperature Gas Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trond Bjornard; John Hockert
The subject of this report is domestic safeguards and security by design (2SBD) for high-temperature gas reactors, focusing on material control and accountability (MC&A). The motivation for the report is to provide 2SBD support to the Next Generation Nuclear Plant (NGNP) project, which was launched by Congress in 2005. This introductory section will provide some background on the NGNP project and an overview of the 2SBD concept. The remaining chapters focus specifically on design aspects of the candidate high-temperature gas reactors (HTGRs) relevant to MC&A, Nuclear Regulatory Commission (NRC) requirements, and proposed MC&A approaches for the two major HTGR reactormore » types: pebble bed and prismatic. Of the prismatic type, two candidates are under consideration: (1) GA's GT-MHR (Gas Turbine-Modular Helium Reactor), and (2) the Modular High-Temperature Reactor (M-HTR), a derivative of Areva's Antares reactor. The future of the pebble-bed modular reactor (PBMR) for NGNP is uncertain, as the PBMR consortium partners (Westinghouse, PBMR [Pty] and The Shaw Group) were unable to agree on the path forward for NGNP during 2010. However, during the technology assessment of the conceptual design phase (Phase 1) of the NGNP project, AREVA provided design information and technology assessment of their pebble bed fueled plant design called the HTR-Module concept. AREVA does not intend to pursue this design for NGNP, preferring instead a modular reactor based on the prismatic Antares concept. Since MC&A relevant design information is available for both pebble concepts, the pebble-bed HTGRs considered in this report are: (1) Westinghouse PBMR; and (2) AREVA HTR-Module. The DOE Office of Nuclear Energy (DOE-NE) sponsors the Fuel Cycle Research and Development program (FCR&D), which contains an element specifically focused on the domestic (or state) aspects of SBD. This Material Protection, Control and Accountancy Technology (MPACT) program supports the present work summarized in this report, namely the development of guidance to support the consideration of MC&A in the design of both pebble-bed and prismatic-fueled HTGRs. The objective is to identify and incorporate design features into the facility design that will cost effectively aid in making MC&A more effective and efficient, with minimum impact on operations. The theft of nuclear material is addressed through both MC&A and physical protection, while the threat of sabotage is addressed principally through physical protection.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aaron, Adam M.; Cunningham, Richard Burns; Fugate, David L.
Effective high-temperature thermal energy exchange and delivery at temperatures over 600°C has the potential of significant impact by reducing both the capital and operating cost of energy conversion and transport systems. It is one of the key technologies necessary for efficient hydrogen production and could potentially enhance efficiencies of high-temperature solar systems. Today, there are no standard commercially available high-performance heat transfer fluids above 600°C. High pressures associated with water and gaseous coolants (such as helium) at elevated temperatures impose limiting design conditions for the materials in most energy systems. Liquid salts offer high-temperature capabilities at low vapor pressures, goodmore » heat transport properties, and reasonable costs and are therefore leading candidate fluids for next-generation energy production. Liquid-fluoride-salt-cooled, graphite-moderated reactors, referred to as Fluoride Salt Reactors (FHRs), are specifically designed to exploit the excellent heat transfer properties of liquid fluoride salts while maximizing their thermal efficiency and minimizing cost. The FHR s outstanding heat transfer properties, combined with its fully passive safety, make this reactor the most technologically desirable nuclear power reactor class for next-generation energy production. Multiple FHR designs are presently being considered. These range from the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) [1] design originally developed by UC-Berkeley to the Small Advanced High-Temperature Reactor (SmAHTR) and the large scale FHR both being developed at ORNL [2]. The value of high-temperature, molten-salt-cooled reactors is also recognized internationally, and Czechoslovakia, France, India, and China all have salt-cooled reactor development under way. The liquid salt experiment presently being developed uses the PB-AHTR as its focus. One core design of the PB-AHTR features multiple 20 cm diameter, 3.2 m long fuel channels with 3 cm diameter graphite-based fuel pebbles slowly circulating up through the core. Molten salt coolant (FLiBe) at 700°C flows concurrently (at significantly higher velocity) with the pebbles and is used to remove heat generated in the reactor core (approximately 1280 W/pebble), and supply it to a power conversion system. Refueling equipment continuously sorts spent fuel pebbles and replaces spent or damaged pebbles with fresh fuel. By combining greater or fewer numbers of pebble channel assemblies, multiple reactor designs with varying power levels can be offered. The PB-AHTR design is discussed in detail in Reference [1] and is shown schematically in Fig. 1. Fig. 1. PB-AHTR concept (drawing taken from Peterson et al., Design and Development of the Modular PB-AHTR Proceedings of ICApp 08). Pebble behavior within the core is a key issue in proving the viability of this concept. This includes understanding the behavior of the pebbles thermally, hydraulically, and mechanically (quantifying pebble wear characteristics, flow channel wear, etc). The experiment being developed is an initial step in characterizing the pebble behavior under realistic PB-AHTR operating conditions. It focuses on thermal and hydraulic behavior of a static pebble bed using a convective salt loop to provide prototypic fluid conditions to the bed, and a unique inductive heating technique to provide prototypic heating in the pebbles. The facility design is sufficiently versatile to allow a variety of other experimentation to be performed in the future. The facility can accommodate testing of scaled reactor components or sub-components such as flow diodes, salt-to-salt heat exchangers, and improved pump designs as well as testing of refueling equipment, high temperature instrumentation, and other reactor core designs.« less
NASA Astrophysics Data System (ADS)
Fratoni, Massimiliano
This study investigated the neutronic characteristics of the Pebble Bed Advanced High Temperature Reactor (PB-AHTR), a novel nuclear reactor concept that combines liquid salt (7LiF-BeF2---flibe) cooling and TRISO coated-particle fuel technology. The use of flibe enables operation at high power density and atmospheric pressure and improves passive decay-heat removal capabilities, but flibe, unlike conventional helium coolant, is not transparent to neutrons. The flibe occupies 40% of the PB-AHTR core volume and absorbs ˜8% of the neutrons, but also acts as an effective neutron moderator. Two novel methodologies were developed for calculating the time dependent and equilibrium core composition: (1) a simplified single pebble model that is relatively fast; (2) a full 3D core model that is accurate and flexible but computationally intensive. A parametric analysis was performed spanning a wide range of fuel kernel diameters and graphite-to-heavy metal atom ratios to determine the attainable burnup and reactivity coefficients. Using 10% enriched uranium ˜130 GWd/tHM burnup was found to be attainable, when the graphite-to-heavy metal atom ratio (C/HM) is in the range of 300 to 400. At this or smaller C/HM ratio all reactivity coefficients examined---coolant temperature, coolant small and full void, fuel temperature, and moderator temperature, were found to be negative. The PB-AHTR performance was compared to that of alternative options for HTRs, including the helium-cooled pebble-bed reactor and prismatic fuel reactors, both gas-cooled and flibe-cooled. The attainable burnup of all designs was found to be similar. The PB-AHTR generates at least 30% more energy per pebble than the He-cooled pebble-bed reactor. Compared to LWRs the PB-AHTR requires 30% less natural uranium and 20% less separative work per unit of electricity generated. For deep burn TRU fuel made from recycled LWR spent fuel, it was found that in a single pass through the core ˜66% of the TRU can be transmuted; this burnup is slightly superior to that attainable in helium-cooled reactors. A preliminary analysis of the modular variant for the PB-AHTR investigated the triple heterogeneity of this design and determined its performance characteristics.
A simplified DEM-CFD approach for pebble bed reactor simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Y.; Ji, W.
In pebble bed reactors (PBR's), the pebble flow and the coolant flow are coupled with each other through coolant-pebble interactions. Approaches with different fidelities have been proposed to simulate similar phenomena. Coupled Discrete Element Method-Computational Fluid Dynamics (DEM-CFD) approaches are widely studied and applied in these problems due to its good balance between efficiency and accuracy. In this work, based on the symmetry of the PBR geometry, a simplified 3D-DEM/2D-CFD approach is proposed to speed up the DEM-CFD simulation without significant loss of accuracy. Pebble flow is simulated by a full 3-D DEM, while the coolant flow field is calculatedmore » with a 2-D CFD simulation by averaging variables along the annular direction in the cylindrical geometry. Results show that this simplification can greatly enhance the efficiency for cylindrical core, which enables further inclusion of other physics such as thermal and neutronic effect in the multi-physics simulations for PBR's. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mcwilliams, A. J.
2015-09-08
This report reviews literature on reprocessing high temperature gas-cooled reactor graphite fuel components. A basic review of the various fuel components used in the pebble bed type reactors is provided along with a survey of synthesis methods for the fabrication of the fuel components. Several disposal options are considered for the graphite pebble fuel elements including the storage of intact pebbles, volume reduction by separating the graphite from fuel kernels, and complete processing of the pebbles for waste storage. Existing methods for graphite removal are presented and generally consist of mechanical separation techniques such as crushing and grinding chemical techniquesmore » through the use of acid digestion and oxidation. Potential methods for reprocessing the graphite pebbles include improvements to existing methods and novel technologies that have not previously been investigated for nuclear graphite waste applications. The best overall method will be dependent on the desired final waste form and needs to factor in the technical efficiency, political concerns, cost, and implementation.« less
Comparative studies for two different orientations of pebble bed in an HCCB blanket
NASA Astrophysics Data System (ADS)
Paritosh, CHAUDHURI; Chandan, DANANI; E, RAJENDRAKUMAR
2017-12-01
The Indian Test Blanket Module (TBM) program in ITER is one of the major steps in its fusion reactor program towards DEMO and the future fusion power reactor vision. Research and development (R&D) is focused on two types of breeding blanket concepts: lead-lithium ceramic breeder (LLCB) and helium-cooled ceramic breeder (HCCB) blanket systems for the DEMO reactor. As part of the ITER-TBM program, the LLCB concept will be tested in one-half of ITER port no. 2, whose materials and technologies will be tested during ITER operation. The HCCB concept is a variant of the solid breeder blanket, which is presently part of our domestic R&D program for DEMO relevant technology development. In the HCCB concept Li2TiO3 and beryllium are used as the tritium breeder and neutron multiplier, respectively, in the form of a packed bed having edge-on configuration with reduced activation ferritic martensitic steel as the structural material. In this paper two design schemes, mainly two different orientations of pebble beds, are discussed. In the current concept (case-1), the ceramic breeder beds are kept horizontal in the toroidal-radial direction. Due to gravity, the pebbles may settle down at the bottom and create a finite gap between the pebbles and the top cooling plate, which will affect the heat transfer between them. In the alternate design concept (case-2), the pebble bed is vertically (poloidal-radial) orientated where the side plates act as cooling plates instead of top and bottom plates. These two design variants are analyzed analytically and 2D thermal-hydraulic simulation studies are carried out with ANSYS, using the heat loads obtained from neutronic calculations. Based on the analysis the performance is compared and details of the thermal and radiative heat transfer studies are also discussed in this paper.
The effects of temperatures on the pebble flow in a pebble bed high temperature reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sen, R. S.; Cogliati, J. J.; Gougar, H. D.
2012-07-01
The core of a pebble bed high temperature reactor (PBHTR) moves during operation, a feature which leads to better fuel economy (online refueling with no burnable poisons) and lower fuel stress. The pebbles are loaded at the top and trickle to the bottom of the core after which the burnup of each is measured. The pebbles that are not fully burned are recirculated through the core until the target burnup is achieved. The flow pattern of the pebbles through the core is of importance for core simulations because it couples the burnup distribution to the core temperature and power profiles,more » especially in cores with two or more radial burnup 'zones '. The pebble velocity profile is a strong function of the core geometry and the friction between the pebbles and the surrounding structures (other pebbles or graphite reflector blocks). The friction coefficient for graphite in a helium environment is inversely related to the temperature. The Thorium High Temperature Reactor (THTR) operated in Germany between 1983 and 1989. It featured a two-zone core, an inner core (IC) and outer core (OC), with different fuel mixtures loaded in each zone. The rate at which the IC was refueled relative to the OC in THTR was designed to be 0.56. During its operation, however, this ratio was measured to be 0.76, suggesting the pebbles in the inner core traveled faster than expected. It has been postulated that the positive feedback effect between inner core temperature, burnup, and pebble flow was underestimated in THTR. Because of the power shape, the center of the core in a typical cylindrical PBHTR operates at a higher temperature than the region next to the side reflector. The friction between pebbles in the IC is lower than that in the OC, perhaps causing a higher relative flow rate and lower average burnup, which in turn yield a higher local power density. Furthermore, the pebbles in the center region have higher velocities than the pebbles next to the side reflector due to the interaction between the pebbles and the immobile graphite reflector as well as the geometry of the discharge conus near the bottom of the core. In this paper, the coupling between the temperature profile and the pebble flow dynamics was analyzed by using PEBBED/THERMIX and PEBBLES codes by modeling the HTR-10 reactor in China. Two extreme and opposing velocity profiles are used as a starting point for the iterations. The PEBBED/THERMIX code is used to calculate the burnup, power and temperature profiles with one of the velocity profiles as input. The resulting temperature profile is then passed to PEBBLES code to calculate the updated pebble velocity profile taking the new temperature profile into account. If the aforementioned hypothesis is correct, the strong temperature effect upon the friction coefficients would cause the two cases to converge to different final velocity and temperature profiles. The results of this analysis indicates that a single zone pebble bed core is self-stabilizing in terms of the pebble velocity profile and the effect of the temperature profile on the pebble flow is insignificant. (authors)« less
A One-group, One-dimensional Transport Benchmark in Cylindrical Geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barry Ganapol; Abderrafi M. Ougouag
A 1-D, 1-group computational benchmark in cylndrical geometry is described. This neutron transport benchmark is useful for evaluating reactor concepts that possess azimuthal symmetry such as a pebble-bed reactor.
Power Peaking Effect of OTTO Fuel Scheme Pebble Bed Reactor
NASA Astrophysics Data System (ADS)
Setiadipura, T.; Suwoto; Zuhair; Bakhri, S.; Sunaryo, G. R.
2018-02-01
Pebble Bed Reactor (PBR) type of Hight Temperature Gas-cooled Reactor (HTGR) is a very interesting nuclear reactor design to fulfill the growing electricity and heat demand with a superior passive safety features. Effort to introduce the PBR design to the market can be strengthen by simplifying its system with the Once-through-then-out (OTTO) cycle PBR in which the pebble fuel only pass the core once. Important challenge in the OTTO fuel scheme is the power peaking effect which limit the maximum nominal power or burnup of the design. Parametric survey is perform in this study to investigate the contribution of different design parameters to power peaking effect of OTTO cycle PBR. PEBBED code is utilized in this study to perform the equilibrium PBR core analysis for different design parameter and fuel scheme. The parameters include its core diameter, height-per-diameter (H/D), power density, and core nominal power. Results of this study show that diameter and H/D effectsare stronger compare to the power density and nominal core power. Results of this study might become an importance guidance for design optimization of OTTO fuel scheme PBR.
Safeguards Challenges for Pebble-Bed Reactors (PBRs):Peoples Republic of China (PRC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forsberg, Charles W.; Moses, David Lewis
2009-11-01
The Peoples Republic of China (PRC) is operating the HTR-10 pebble-bed reactor (PBR) and is in the process of building a prototype PBR plant with two modular reactors (250-MW(t) per reactor) feeding steam to a single turbine-generator. It is likely to be the first modular hightemperature reactor to be ready for commercial deployment in the world because it is a highpriority project for the PRC. The plant design features multiple modular reactors feeding steam to a single turbine generator where the number of modules determines the plant output. The design and commercialization strategy are based on PRC strengths: (1) amore » rapidly growing electric market that will support low-cost mass production of modular reactor units and (2) a balance of plant system based on economics of scale that uses the same mass-produced turbine-generator systems used in PRC coal plants. If successful, in addition to supplying the PRC market, this strategy could enable China to be the leading exporter of nuclear reactors to developing countries. The modular characteristics of the reactor match much of the need elsewhere in the world. PBRs have major safety advantages and a radically different fuel. The fuel, not the plant systems, is the primary safety system to prevent and mitigate the release of radionuclides under accident conditions. The fuel consists of small (6-cm) pebbles (spheres) containing coatedparticle fuel in a graphitized carbon matrix. The fuel loading per pebble is small (~9 grams of low-enriched uranium) and hundreds of thousands of pebbles are required to fuel a nuclear plant. The uranium concentration in the fuel is an order of magnitude less than in traditional nuclear fuels. These characteristics make the fuel significantly less attractive for illicit use (weapons production or dirty bomb); but, its unusual physical form may require changes in the tools used for safeguards. This report describes PBRs, what is different, and the safeguards challenges. A series of safeguards recommendations are made based on the assumption that the reactor is successfully commercialized and is widely deployed.« less
NASA Astrophysics Data System (ADS)
Scarlat, Raluca Olga
This dissertation treats system design, modeling of transient system response, and characterization of individual phenomena and demonstrates a framework for integration of these three activities early in the design process of a complex engineered system. A system analysis framework for prioritization of experiments, modeling, and development of detailed design is proposed. Two fundamental topics in thermal-hydraulics are discussed, which illustrate the integration of modeling and experimentation with nuclear reactor design and safety analysis: thermal-hydraulic modeling of heat generating pebble bed cores, and scaled experiments for natural circulation heat removal with Boussinesq liquids. The case studies used in this dissertation are derived from the design and safety analysis of a pebble bed fluoride salt cooled high temperature nuclear reactor (PB-FHR), currently under development in the United States at the university and national laboratories level. In the context of the phenomena identification and ranking table (PIRT) methodology, new tools and approaches are proposed and demonstrated here, which are specifically relevant to technology in the early stages of development, and to analysis of passive safety features. A system decomposition approach is proposed. Definition of system functional requirements complements identification and compilation of the current knowledge base for the behavior of the system. Two new graphical tools are developed for ranking of phenomena importance: a phenomena ranking map, and a phenomena identification and ranking matrix (PIRM). The functional requirements established through this methodology were used for the design and optimization of the reactor core, and for the transient analysis and design of the passive natural circulation driven decay heat removal system for the PB-FHR. A numerical modeling approach for heat-generating porous media, with multi-dimensional fluid flow is presented. The application of this modeling approach to the PB-FHR annular pebble bed core cooled by fluoride salt mixtures generated a model that is called Pod. Pod. was used to show the resilience of the PB-FHR core to generation of hot spots or cold spots, due to the effect of buoyancy on the flow and temperature distribution in the packed bed. Pod. was used to investigate the PB-FHR response to ATWS transients. Based on the functional requirements for the core, Pod. was used to generate an optimized design of the flow distribution in the core. An analysis of natural circulation loops cooled by single-phase Boussinesq fluids is presented here, in the context of reactor design that relies on natural circulation decay heat removal, and design of scaled experiments. The scaling arguments are established for a transient natural circulation loop, for loops that have long fluid residence time, and negligible contribution of fluid inertia to the momentum equation. The design of integral effects tests for the loss of forced circulation (LOFC) for PB-FHR is discussed. The special case of natural circulation decay heat removal from a pebble bed reactor was analyzed. A way to define the Reynolds number in a multi-dimensional pebble bed was identified. The scaling methodology for replicating pebble bed friction losses using an electrically resistance heated annular pipe and a needle valve was developed. The thermophysical properties of liquid fluoride salts lead to design of systems with low flow velocities, and hence long fluid residence times. A comparison among liquid coolants for the performance of steady state natural circulation heat removal from a pebble bed was performed. Transient natural circulation experimental data with simulant fluids for fluoride salts is given here. The low flow velocity and the relatively high viscosity of the fluoride salts lead to low Reynolds number flows, and a low Reynolds number in conjunction with a sufficiently high coefficient of thermal expansion makes the system susceptible to local buoyancy effects Experiments indicate that slow exchange of stagnant fluid in static legs can play a significant role in the transient response of natural circulation loops. The effect of non-linear temperature profiles on the hot or cold legs or other segments of the flow loop, which may develop during transient scenarios, should be considered when modeling the performance of natural circulation loops. The data provided here can be used for validation of the application of thermal-hydraulic systems codes to the modeling of heat removal by natural circulation with liquid fluoride salts and its simulant fluids.
THR-TH: a high-temperature gas-cooled nuclear reactor core thermal hydraulics code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vondy, D.R.
1984-07-01
The ORNL version of PEBBLE, the (RZ) pebble bed thermal hydraulics code, has been extended for application to a prismatic gas cooled reactor core. The supplemental treatment is of one-dimensional coolant flow in up to a three-dimensional core description. Power density data from a neutronics and exposure calculation are used as the basic information for the thermal hydraulics calculation of heat removal. Two-dimensional neutronics results may be expanded for a three-dimensional hydraulics calculation. The geometric description for the hydraulics problem is the same as used by the neutronics code. A two-dimensional thermal cell model is used to predict temperatures inmore » the fuel channel. The capability is available in the local BOLD VENTURE computation system for reactor core analysis with capability to account for the effect of temperature feedback by nuclear cross section correlation. Some enhancements have also been added to the original code to add pebble bed modeling flexibility and to generate useful auxiliary results. For example, an estimate is made of the distribution of fuel temperatures based on average and extreme conditions regularly calculated at a number of locations.« less
NASA Astrophysics Data System (ADS)
Chen, Lei; Chen, Youhua; Huang, Kai; Liu, Songlin
2015-12-01
Lithium ceramic pebble beds have been considered in the solid blanket design for fusion reactors. To characterize the fusion solid blanket thermal performance, studies of the effective thermal properties, i.e. the effective thermal conductivity and heat transfer coefficient, of the pebble beds are necessary. In this paper, a 3D computational fluid dynamics discrete element method (CFD-DEM) coupled numerical model was proposed to simulate heat transfer and thereby estimate the effective thermal properties. The DEM was applied to produce a geometric topology of a prototypical blanket pebble bed by directly simulating the contact state of each individual particle using basic interaction laws. Based on this geometric topology, a CFD model was built to analyze the temperature distribution and obtain the effective thermal properties. The current numerical model was shown to be in good agreement with the existing experimental data for effective thermal conductivity available in the literature. supported by National Special Project for Magnetic Confined Nuclear Fusion Energy of China (Nos. 2013GB108004, 2015GB108002, 2014GB122000 and 2014GB119000), and National Natural Science Foundation of China (No. 11175207)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beyer, Brian David; Beddingfield, David H; Durst, Philip
2010-01-01
The design of the Pebble Bed Modular Reactor (PBMR) does not fit or seem appropriate to the IAEA safeguards approach under the categories of light water reactor (LWR), on-load refueled reactor (OLR, i.e. CANDU), or Other (prismatic HTGR) because the fuel is in a bulk form, rather than discrete items. Because the nuclear fuel is a collection of nuclear material inserted in tennis-ball sized spheres containing structural and moderating material and a PBMR core will contain a bulk load on the order of 500,000 spheres, it could be classified as a 'Bulk-Fuel Reactor.' Hence, the IAEA should develop unique safeguardsmore » criteria. In a multi-lab DOE study, it was found that an optimized blend of: (i) developing techniques to verify the plutonium content in spent fuel pebbles, (ii) improving burn-up computer codes for PBMR spent fuel to provide better understanding of the core and spent fuel makeup, and (iii) utilizing bulk verification techniques for PBMR spent fuel storage bins should be combined with the historic IAEA and South African approaches of containment and surveillance to verify and maintain continuity of knowledge of PBMR fuel. For all of these techniques to work the design of the reactor will need to accommodate safeguards and material accountancy measures to a far greater extent than has thus far been the case. The implementation of Safeguards-by-Design as the PBMR design progresses provides an approach to meets these safeguards and accountancy needs.« less
Manufacturing Technology of Ceramic Pebbles for Breeding Blanket.
Lo Frano, Rosa; Puccini, Monica; Stefanelli, Eleonora; Del Serra, Daniele; Malquori, Stefano
2018-05-02
An open issue for the fusion power reactor is the choice of breeding blanket material. The possible use of Helium-Cooled Pebble Breeder ceramic material in the form of pebble beds is of great interest worldwide as demonstrated by the numerous studies and research on this subject. Lithium orthosilicate (Li₄SiO₄) is a promising breeding material investigated in this present study because the neutron capture of Li-6 allows the production of tritium, 6Li (n, t) 4He. Furthermore, lithium orthosilicate has the advantages of low activation characteristics, low thermal expansion coefficient, high thermal conductivity, high density and stability. Even if they are far from the industrial standard, a variety of industrial processes have been proposed for making orthosilicate pebbles with diameters of 0.1⁻1 mm. However, some manufacturing problems have been observed, such as in the chemical stability (agglomeration phenomena). The aim of this study is to provide a new methodology for the production of pebbles based on the drip casting method, which was jointly developed by the DICI-University of Pisa and Industrie Bitossi. Using this new (and alternative) manufacturing technology, in the field of fusion reactors, appropriately sized ceramic pebbles could be produced for use as tritium breeders.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bess, John D.
2014-03-01
PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen criticalmore » configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
John D. Bess
2013-03-01
PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen criticalmore » configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
John D. Bess
2013-03-01
PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen criticalmore » configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.« less
Benchmark Evaluation of HTR-PROTEUS Pebble Bed Experimental Program
Bess, John D.; Montierth, Leland; Köberl, Oliver; ...
2014-10-09
Benchmark models were developed to evaluate 11 critical core configurations of the HTR-PROTEUS pebble bed experimental program. Various additional reactor physics measurements were performed as part of this program; currently only a total of 37 absorber rod worth measurements have been evaluated as acceptable benchmark experiments for Cores 4, 9, and 10. Dominant uncertainties in the experimental keff for all core configurations come from uncertainties in the ²³⁵U enrichment of the fuel, impurities in the moderator pebbles, and the density and impurity content of the radial reflector. Calculations of k eff with MCNP5 and ENDF/B-VII.0 neutron nuclear data aremore » greater than the benchmark values but within 1% and also within the 3σ uncertainty, except for Core 4, which is the only randomly packed pebble configuration. Repeated calculations of k eff with MCNP6.1 and ENDF/B-VII.1 are lower than the benchmark values and within 1% (~3σ) except for Cores 5 and 9, which calculate lower than the benchmark eigenvalues within 4σ. The primary difference between the two nuclear data libraries is the adjustment of the absorption cross section of graphite. Simulations of the absorber rod worth measurements are within 3σ of the benchmark experiment values. The complete benchmark evaluation details are available in the 2014 edition of the International Handbook of Evaluated Reactor Physics Benchmark Experiments.« less
Manufacturing Technology of Ceramic Pebbles for Breeding Blanket
Stefanelli, Eleonora; Del Serra, Daniele; Malquori, Stefano
2018-01-01
An open issue for the fusion power reactor is the choice of breeding blanket material. The possible use of Helium-Cooled Pebble Breeder ceramic material in the form of pebble beds is of great interest worldwide as demonstrated by the numerous studies and research on this subject. Lithium orthosilicate (Li4SiO4) is a promising breeding material investigated in this present study because the neutron capture of Li-6 allows the production of tritium, 6Li (n, t) 4He. Furthermore, lithium orthosilicate has the advantages of low activation characteristics, low thermal expansion coefficient, high thermal conductivity, high density and stability. Even if they are far from the industrial standard, a variety of industrial processes have been proposed for making orthosilicate pebbles with diameters of 0.1–1 mm. However, some manufacturing problems have been observed, such as in the chemical stability (agglomeration phenomena). The aim of this study is to provide a new methodology for the production of pebbles based on the drip casting method, which was jointly developed by the DICI-University of Pisa and Industrie Bitossi. Using this new (and alternative) manufacturing technology, in the field of fusion reactors, appropriately sized ceramic pebbles could be produced for use as tritium breeders. PMID:29724071
Heat transfer and technological investigations on mixed beds of beryllium and Li 4SiO 4 pebbles
NASA Astrophysics Data System (ADS)
Dalle Donne, M.; Goraieb, A.; Huber, R.; Schmitt, B.; Schumacher, G.; Sordon, G.; Weisenburger, A.
1994-09-01
For the European BOT DEMO solid breeder blanket design the use of mixtures of 2 mm beryllium and 0.1-0.2 mm Li 4SiO 4 pebbles with and without 0.1-0.2 mm beryllium pebbles has been proposed. A series of heat transfer and technological investigations are being performed for these pebbles. Namely: (a) Measurements of the thermal conductivity and of the wall heat transfer coefficient of a 2 mm Be pebble bed, of a bed with 2 mm Be plus 0.1-0.2 mm Li 4SiO 4 pebbles and of a bed with 2 mm Be pebbles plus 0.1-0.2 mm Li 4SiO 4 and Be pebbles. (b) Thermal cycle tests of mixed beds of Li 4SiO 4 and beryllium pebbles; during these tests the pressure drop across the bed of the helium purging flow is measured. (c) Annealing tests at 650°C of the Li 4SiO 4 pebbles with and without the beryllium pebbles. (d) Measurement of the failure loads of the Li 4SiO 4 pebbles before and after annealing. Tests (a) and (b) have been performed for bigger Li 4SiO 4 pebbles (0.3-0.6 mm) as well. The results of the experiments are reported in the paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tokuhiro, Akira; Potirniche, Gabriel; Cogliati, Joshua
2014-07-08
An experimental and computational study, consisting of modeling and simulation (M&S), of key thermal-mechanical issues affecting the design and safety of pebble-bed (PB) reactors was conducted. The objective was to broaden understanding and experimentally validate thermal-mechanic phenomena of nuclear grade graphite, specifically, spheres in frictional contact as anticipated in the bed under reactor relevant pressures and temperatures. The contact generates graphite dust particulates that can subsequently be transported into the flowing gaseous coolent. Under postulated depressurization transients and with the potential for leaked fission products to be adsorbed onto graphite 'dust', there is the potential for fission products to escapemore » from the primary volume. This is a design safety concern. Furthermore, earlier safety assessment identified the distinct possibility for the dispersed dust to combust in contact with air if sufficient conditions are met. Both of these phenomena were noted as important to design review and containing uncertainty to warrant study. The team designed and conducted two separate effects tests to study and benchmark the potential dust-generation rate, as well as study the conditions under which a dust explosion may occure in a standardized, instrumented explosion chamber.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kosaka, Hitoshi; Iwahashi, Takashi; Yoshida, Nobuhiro
1998-07-01
A new concept of a gasifier for coal and wastes is proposed where entrained bed and fixed pebble bed are combined. Main features of this pebble bed gasifier are high efficiency molten slag capture, high efficiency gasification and compactness. Coal and RFD combustion experiments using the pebble bed gasifier demonstrated high efficiency capture and continuous extraction of molten slag as well as complete char combustion with extra ordinarily short residence time of pulverized coal and crushed RDF at the temperature level of about 1,500 C within the pebble bed. Durability tests using high temperature electric furnace has shown that highmore » density alumna is a good candidate for pebble material.« less
NASA Astrophysics Data System (ADS)
Lulewicz, J. D.; Roux, N.; Piazza, G.; Reimann, J.; van der Laan, J.
2000-12-01
Li 2ZrO 3 and Li 2TiO 3 pebbles are being investigated at Commissariat à l'Energie Atomique as candidate alternative ceramics for the European helium-cooled pebble bed (HCPB) blanket. The pebbles are fabricated using the extrusion-spheronization-sintering process and are optimized regarding composition, geometrical characteristics, microstructural characteristics, and material purity. Tests were designed and are being performed with other organizations so as to check the functional performance of the pebbles and pebble beds with respect to the HCPB blanket requirements, and, finally, to make the selection of the most appropriate ceramic for the HCPB blanket. Tests include high temperature long-term annealing, thermal shock, thermal cycling, thermal mechanical behaviour of pebble beds, thermal conductivity of pebble beds, and tritium extraction. Current results indicate the attractiveness of these ceramics pebbles for the HCPB blanket.
NASA Technical Reports Server (NTRS)
Moran, Robert P.
2013-01-01
Reactor fuel rod surface area that is perpendicular to coolant flow direction (+S) i.e. perpendicular to the P creates areas of coolant stagnation leading to increased coolant temperatures resulting in localized changes in fluid properties. Changes in coolant fluid properties caused by minor increases in temperature lead to localized reductions in coolant mass flow rates leading to localized thermal instabilities. Reductions in coolant mass flow rates result in further increases in local temperatures exacerbating changes to coolant fluid properties leading to localized thermal runaway. Unchecked localized thermal runaway leads to localized fuel melting. Reactor designs with randomized flow paths are vulnerable to localized thermal instabilities, localized thermal runaway, and localized fuel melting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
John D. Bess; Barbara H. Dolphin; James W. Sterbentz
2013-03-01
In its deployment as a pebble bed reactor (PBR) critical facility from 1992 to 1996, the PROTEUS facility was designated as HTR-PROTEUS. This experimental program was performed as part of an International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) on the Validation of Safety Related Physics Calculations for Low Enriched HTGRs. Within this project, critical experiments were conducted for graphite moderated LEU systems to determine core reactivity, flux and power profiles, reaction-rate ratios, the worth of control rods, both in-core and reflector based, the worth of burnable poisons, kinetic parameters, and the effects of moisture ingress on these parameters.more » Four benchmark experiments were evaluated in this report: Cores 1, 1A, 2, and 3. These core configurations represent the hexagonal close packing (HCP) configurations of the HTR-PROTEUS experiment with a moderator-to-fuel pebble ratio of 1:2. Core 1 represents the only configuration utilizing ZEBRA control rods. Cores 1A, 2, and 3 use withdrawable, hollow, stainless steel control rods. Cores 1 and 1A are similar except for the use of different control rods; Core 1A also has one less layer of pebbles (21 layers instead of 22). Core 2 retains the first 16 layers of pebbles from Cores 1 and 1A and has 16 layers of moderator pebbles stacked above the fueled layers. Core 3 retains the first 17 layers of pebbles but has polyethylene rods inserted between pebbles to simulate water ingress. The additional partial pebble layer (layer 18) for Core 3 was not included as it was used for core operations and not the reported critical configuration. Cores 1, 1A, 2, and 3 were determined to be acceptable benchmark experiments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
John D. Bess; Barbara H. Dolphin; James W. Sterbentz
2012-03-01
In its deployment as a pebble bed reactor (PBR) critical facility from 1992 to 1996, the PROTEUS facility was designated as HTR-PROTEUS. This experimental program was performed as part of an International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) on the Validation of Safety Related Physics Calculations for Low Enriched HTGRs. Within this project, critical experiments were conducted for graphite moderated LEU systems to determine core reactivity, flux and power profiles, reaction-rate ratios, the worth of control rods, both in-core and reflector based, the worth of burnable poisons, kinetic parameters, and the effects of moisture ingress on these parameters.more » Four benchmark experiments were evaluated in this report: Cores 1, 1A, 2, and 3. These core configurations represent the hexagonal close packing (HCP) configurations of the HTR-PROTEUS experiment with a moderator-to-fuel pebble ratio of 1:2. Core 1 represents the only configuration utilizing ZEBRA control rods. Cores 1A, 2, and 3 use withdrawable, hollow, stainless steel control rods. Cores 1 and 1A are similar except for the use of different control rods; Core 1A also has one less layer of pebbles (21 layers instead of 22). Core 2 retains the first 16 layers of pebbles from Cores 1 and 1A and has 16 layers of moderator pebbles stacked above the fueled layers. Core 3 retains the first 17 layers of pebbles but has polyethylene rods inserted between pebbles to simulate water ingress. The additional partial pebble layer (layer 18) for Core 3 was not included as it was used for core operations and not the reported critical configuration. Cores 1, 1A, 2, and 3 were determined to be acceptable benchmark experiments.« less
Ceramic breeder research and development: progress and focus
NASA Astrophysics Data System (ADS)
van der Laan, J. G.; Kawamura, H.; Roux, N.; Yamaki, D.
2000-12-01
The world-wide efforts on ceramic breeder materials in the last two years concerned Li2O, Li4SiO4, Li2TiO3 and Li2ZrO3, with a clear emphasis on the development of Li2TiO3. Pebble-manufacturing processes have been developed up to a 10 kg scale. Characterisation of materials has advanced. A jump-wise progress is observed in the characterisation of pebble-beds, in particular of their thermo-mechanical behaviour. Thermal property data are still limited. A number of breeder materials have been or are being irradiated in material test reactors like HFR and JMTR. The EXOTIC-8 series of in-pile experiments is a major source of tritium release data. This paper discusses the technical advancements and proposes a focus for further research and development (R&D) : pebble-bed mechanical and thermal behaviour and its interactions with the blanket structure as a function of temperature, burn-up, irradiation dose and time; tritium release and retention properties; determination of the key factors limiting blanket life.
DOE Office of Scientific and Technical Information (OSTI.GOV)
John D. Bess; Leland M. Montierth
2013-03-01
In its deployment as a pebble bed reactor (PBR) critical facility from 1992 to 1996, the PROTEUS facility was designated as HTR-PROTEUS. This experimental program was performed as part of an International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) on the Validation of Safety Related Physics Calculations for Low Enriched HTGRs. Within this project, critical experiments were conducted for graphite moderated LEU systems to determine core reactivity, flux and power profiles, reaction-rate ratios, the worth of control rods, both in-core and reflector based, the worth of burnable poisons, kinetic parameters, and the effects of moisture ingress on these parameters.more » One benchmark experiment was evaluated in this report: Core 4. Core 4 represents the only configuration with random pebble packing in the HTR-PROTEUS series of experiments, and has a moderator-to-fuel pebble ratio of 1:1. Three random configurations were performed. The initial configuration, Core 4.1, was rejected because the method for pebble loading, separate delivery tubes for the moderator and fuel pebbles, may not have been completely random; this core loading was rejected by the experimenters. Cores 4.2 and 4.3 were loaded using a single delivery tube, eliminating the possibility for systematic ordering effects. The second and third cores differed slightly in the quantity of pebbles loaded (40 each of moderator and fuel pebbles), stacked height of the pebbles in the core cavity (0.02 m), withdrawn distance of the stainless steel control rods (20 mm), and withdrawn distance of the autorod (30 mm). The 34 coolant channels in the upper axial reflector and the 33 coolant channels in the lower axial reflector were open. Additionally, the axial graphite fillers used in all other HTR-PROTEUS configurations to create a 12-sided core cavity were not used in the randomly packed cores. Instead, graphite fillers were placed on the cavity floor, creating a funnel-like base, to discourage ordering effects during pebble loading. Core 4 was determined to be acceptable benchmark experiment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bess, John D.; Montierth, Leland M.; Sterbentz, James W.
2014-03-01
In its deployment as a pebble bed reactor (PBR) critical facility from 1992 to 1996, the PROTEUS facility was designated as HTR-PROTEUS. This experimental program was performed as part of an International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) on the Validation of Safety Related Physics Calculations for Low Enriched HTGRs. Within this project, critical experiments were conducted for graphite moderated LEU systems to determine core reactivity, flux and power profiles, reaction-rate ratios, the worth of control rods, both in-core and reflector based, the worth of burnable poisons, kinetic parameters, and the effects of moisture ingress on these parameters.more » One benchmark experiment was evaluated in this report: Core 4. Core 4 represents the only configuration with random pebble packing in the HTR-PROTEUS series of experiments, and has a moderator-to-fuel pebble ratio of 1:1. Three random configurations were performed. The initial configuration, Core 4.1, was rejected because the method for pebble loading, separate delivery tubes for the moderator and fuel pebbles, may not have been completely random; this core loading was rejected by the experimenters. Cores 4.2 and 4.3 were loaded using a single delivery tube, eliminating the possibility for systematic ordering effects. The second and third cores differed slightly in the quantity of pebbles loaded (40 each of moderator and fuel pebbles), stacked height of the pebbles in the core cavity (0.02 m), withdrawn distance of the stainless steel control rods (20 mm), and withdrawn distance of the autorod (30 mm). The 34 coolant channels in the upper axial reflector and the 33 coolant channels in the lower axial reflector were open. Additionally, the axial graphite fillers used in all other HTR-PROTEUS configurations to create a 12-sided core cavity were not used in the randomly packed cores. Instead, graphite fillers were placed on the cavity floor, creating a funnel-like base, to discourage ordering effects during pebble loading. Core 4 was determined to be acceptable benchmark experiment.« less
Uncertainty and Sensitivity Analyses of a Pebble Bed HTGR Loss of Cooling Event
Strydom, Gerhard
2013-01-01
The Very High Temperature Reactor Methods Development group at the Idaho National Laboratory identified the need for a defensible and systematic uncertainty and sensitivity approach in 2009. This paper summarizes the results of an uncertainty and sensitivity quantification investigation performed with the SUSA code, utilizing the International Atomic Energy Agency CRP 5 Pebble Bed Modular Reactor benchmark and the INL code suite PEBBED-THERMIX. Eight model input parameters were selected for inclusion in this study, and after the input parameters variations and probability density functions were specified, a total of 800 steady state and depressurized loss of forced cooling (DLOFC) transientmore » PEBBED-THERMIX calculations were performed. The six data sets were statistically analyzed to determine the 5% and 95% DLOFC peak fuel temperature tolerance intervals with 95% confidence levels. It was found that the uncertainties in the decay heat and graphite thermal conductivities were the most significant contributors to the propagated DLOFC peak fuel temperature uncertainty. No significant differences were observed between the results of Simple Random Sampling (SRS) or Latin Hypercube Sampling (LHS) data sets, and use of uniform or normal input parameter distributions also did not lead to any significant differences between these data sets.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoder Jr, Graydon L; Aaron, Adam M; Cunningham, Richard Burns
2014-01-01
The need for high-temperature (greater than 600 C) energy exchange and delivery systems is significantly increasing as the world strives to improve energy efficiency and develop alternatives to petroleum-based fuels. Liquid fluoride salts are one of the few energy transport fluids that have the capability of operating at high temperatures in combination with low system pressures. The Fluoride Salt-Cooled High-Temperature Reactor design uses fluoride salt to remove core heat and interface with a power conversion system. Although a significant amount of experimentation has been performed with these salts, specific aspects of this reactor concept will require experimental confirmation during themore » development process. The experimental facility described here has been constructed to support the development of the Fluoride Salt Cooled High Temperature Reactor concept. The facility is capable of operating at up to 700 C and incorporates a centrifugal pump to circulate FLiNaK salt through a removable test section. A unique inductive heating technique is used to apply heat to the test section, allowing heat transfer testing to be performed. An air-cooled heat exchanger removes added heat. Supporting loop infrastructure includes a pressure control system; trace heating system; and a complement of instrumentation to measure salt flow, temperatures, and pressures around the loop. The initial experiment is aimed at measuring fluoride salt heat transfer inside a heated pebble bed similar to that used for the core of the pebble bed advanced high-temperature reactor. This document describes the details of the loop design, auxiliary systems used to support the facility, the inductive heating system, and facility capabilities.« less
Heat Transfer in Pebble-Bed Nuclear Reactor Cores Cooled by Fluoride Salts
NASA Astrophysics Data System (ADS)
Huddar, Lakshana Ravindranath
With electricity demand predicted to rise by more than 50% within the next 20 years and a burgeoning world population requiring reliable emissions-free base-load electricity, can we design advanced nuclear reactors to help meet this challenge? At the University of California, Berkeley (UCB) Fluoride-salt-cooled High Temperature Reactors (FHR) are currently being investigated. FHRs are designed with better safety and economic characteristics than conventional light water reactors (LWR) currently in operation. These reactors operate at high temperature and low pressure making them more efficient and safer than LWRs. The pebble-bed FHR (PB-FHR) variant includes an annular nuclear reactor core that is filled with randomly packed pebble fuel. It is crucial to characterize the heat transfer within this unique geometry as this informs the safety limits of the reactor. The work presented in this dissertation focused on furthering the understanding of heat transfer in pebble-bed nuclear reactor cores using fluoride salts as a coolant. This was done through experimental, analytical and computational techniques. A complex nuclear system with a coolant that has never previously been in commercial use requires experimental data that can directly inform aspects of its design. It is important to isolate heat transfer phenomena in order to understand the underlying physics in the context of the PB-FHR, as well as to make decisions about further experimental work that needs to be done in support of developing the PB-FHR. Certain organic oils can simulate the heat transfer behaviour of the fluoride salt if relevant non-dimensional parameters are matched. The advantage of this method is that experiments can be done at a much lower temperature and at a smaller geometric scale compared to FHRs, thereby lowering costs. In this dissertation, experiments were designed and performed to collect data demonstrating similitude. The limitations of these experiments were also elucidated by underlining key distortions between the experimental and the prototypical conditions. This dissertation is broadly split into four parts. Firstly, the heat transfer phenomenology in the PB-FHR core was outlined. Although the viscous dissipation term and the thermal diffusion term (including thermal dispersion) were similar in magnitude, they were overshadowed by the advection term which was about 104 times bigger during normal operation and 105 times bigger during accident transients in which natural circulation becomes the main mode of fluid flow. Thus it is safe to neglect the viscous dissipation and the thermal diffusion terms in the PB-FHR core without a significant loss of accuracy. Secondly, separate effects tests (SET) were performed using simulant oils, and the results were compared to the prototypical conditions using flinak as the fluoride salt. The main purpose of these experiments was to study natural convection heat transfer and identify any distortions between the two cases. An isolated copper sphere was immersed in flinak and a parallel experiment was performed using simulant oil. A large discrepancy between the flinak and the oil was noted, due to distortions from assuming quasi-steady state conditions. A steady state experiment using a cylindrical heater immersed in oil was also performed, and the results compared to a similar experiment done at Oak Ridge National Laboratory (ORNL) using flinak. The Nusselt numbers matched within 10% for laminar flows. This supports the conclusion that natural convection similitude does exist for oils used in scaled experiments, allowing natural convection data to be used for for FHR and MSR modeling. This is important, due to the lack of significant experimental data showing natural convection in fluoride salts, so these SETs add to the overall understanding of their heat transfer properties. With the knowledge of the distortions between the oil and the salt, an experiment to measure heat transfer coefficients within a pebble-bed test section was designed, constructed and performed. Oil was pumped through a test section filled with randomly packed copper spheres. The temperature of the oil was pulsed at a constant frequency, which caused a temperature difference between the pebbles and the oil. An excellent match was found between the measured heat transfer coefficients and the literature. This data provides an essential closure parameter for multiphysics modeling of the PB-FHR. Using frequency response techniques in scaled experiments is an innovative approach for extracting dynamic responses to coolant-structure interactions. Finally, an integrated model of the passive decay heat removal system was presented using Flownex and the simulations compared to experimental data. A good match was found with the data, which was within 14%. The work presented in this dissertation shows fundamental details on heat transfer in the PB-FHR core using experimental data and simulations, leading us closer to developing advanced nuclear reactors that can later be commercialized. Advanced nuclear reactors such as the PB-FHR have immense potential in reducing greenhouse gas emissions and combating climate change while being exceedingly safe and providing reliable electricity.
Benchmark Evaluation of the HTR-PROTEUS Absorber Rod Worths (Core 4)
DOE Office of Scientific and Technical Information (OSTI.GOV)
John D. Bess; Leland M. Montierth
2014-06-01
PROTEUS was a zero-power research reactor at the Paul Scherrer Institute (PSI) in Switzerland. The critical assembly was constructed from a large graphite annulus surrounding a central cylindrical cavity. Various experimental programs were investigated in PROTEUS; during the years 1992 through 1996, it was configured as a pebble-bed reactor and designated HTR-PROTEUS. Various critical configurations were assembled with each accompanied by an assortment of reactor physics experiments including differential and integral absorber rod measurements, kinetics, reaction rate distributions, water ingress effects, and small sample reactivity effects [1]. Four benchmark reports were previously prepared and included in the March 2013 editionmore » of the International Handbook of Evaluated Reactor Physics Benchmark Experiments (IRPhEP Handbook) [2] evaluating eleven critical configurations. A summary of that effort was previously provided [3] and an analysis of absorber rod worth measurements for Cores 9 and 10 have been performed prior to this analysis and included in PROTEUS-GCR-EXP-004 [4]. In the current benchmark effort, absorber rod worths measured for Core Configuration 4, which was the only core with a randomly-packed pebble loading, have been evaluated for inclusion as a revision to the HTR-PROTEUS benchmark report PROTEUS-GCR-EXP-002.« less
Results of the Simulation of the HTR-Proteus Core 4.2 Using PEBBED-COMBINE: FY10 Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hans Gougar
2010-07-01
ABSTRACT The Idaho National Laboratory’s deterministic neutronics analysis codes and methods were applied to the computation of the core multiplication factor of the HTR-Proteus pebble bed reactor critical facility. This report is a follow-on to INL/EXT-09-16620 in which the same calculation was performed but using earlier versions of the codes and less developed methods. In that report, results indicated that the cross sections generated using COMBINE-7.0 did not yield satisfactory estimates of keff. It was concluded in the report that the modeling of control rods was not satisfactory. In the past year, improvements to the homogenization capability in COMBINE havemore » enabled the explicit modeling of TRIS particles, pebbles, and heterogeneous core zones including control rod regions using a new multi-scale version of COMBINE in which the 1-dimensional discrete ordinate transport code ANISN has been integrated. The new COMBINE is shown to yield benchmark quality results for pebble unit cell models, the first step in preparing few-group diffusion parameters for core simulations. In this report, the full critical core is modeled once again but with cross sections generated using the capabilities and physics of the improved COMBINE code. The new PEBBED-COMBINE model enables the exact modeling of the pebbles and control rod region along with better approximation to structures in the reflector. Initial results for the core multiplication factor indicate significant improvement in the INL’s tools for modeling the neutronic properties of a pebble bed reactor. Errors on the order of 1.6-2.5% in keff are obtained; a significant improvement over the 5-6% error observed in the earlier This is acceptable for a code system and model in the early stages of development but still too high for a production code. Analysis of a simpler core model indicates an over-prediction of the flux in the low end of the thermal spectrum. Causes of this discrepancy are under investigation. New homogenization techniques and assumptions were used in this analysis and as such, they require further confirmation and validation. Further refinement and review of the complex Proteus core model are likely to reduce the errors even further.« less
Fuel development for gas-cooled fast reactors
NASA Astrophysics Data System (ADS)
Meyer, M. K.; Fielding, R.; Gan, J.
2007-09-01
The Generation IV Gas-cooled Fast Reactor (GFR) concept is proposed to combine the advantages of high-temperature gas-cooled reactors (such as efficient direct conversion with a gas turbine and the potential for application of high-temperature process heat), with the sustainability advantages that are possible with a fast-spectrum reactor. The latter include the ability to fission all transuranics and the potential for breeding. The GFR is part of a consistent set of gas-cooled reactors that includes a medium-term Pebble Bed Modular Reactor (PBMR)-like concept, or concepts based on the Gas Turbine Modular Helium Reactor (GT-MHR), and specialized concepts such as the Very High-Temperature Reactor (VHTR), as well as actinide burning concepts [A Technology Roadmap for Generation IV Nuclear Energy Systems, US DOE Nuclear Energy Research Advisory Committee and the Generation IV International Forum, December 2002]. To achieve the necessary high power density and the ability to retain fission gas at high temperature, the primary fuel concept proposed for testing in the United States is dispersion coated fuel particles in a ceramic matrix. Alternative fuel concepts considered in the US and internationally include coated particle beds, ceramic clad fuel pins, and novel ceramic 'honeycomb' structures. Both mixed carbide and mixed nitride-based solid solutions are considered as fuel phases.
Results from the DOE Advanced Gas Reactor Fuel Development and Qualification Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
David Petti
2014-06-01
Modular HTGR designs were developed to provide natural safety, which prevents core damage under all design basis accidents and presently envisioned severe accidents. The principle that guides their design concepts is to passively maintain core temperatures below fission product release thresholds under all accident scenarios. This level of fuel performance and fission product retention reduces the radioactive source term by many orders of magnitude and allows potential elimination of the need for evacuation and sheltering beyond a small exclusion area. This level, however, is predicated on exceptionally high fuel fabrication quality and performance under normal operation and accident conditions. Germanymore » produced and demonstrated high quality fuel for their pebble bed HTGRs in the 1980s, but no U.S. manufactured fuel had exhibited equivalent performance prior to the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. The design goal of the modular HTGRs is to allow elimination of an exclusion zone and an emergency planning zone outside the plant boundary fence, typically interpreted as being about 400 meters from the reactor. To achieve this, the reactor design concepts require a level of fuel integrity that is better than that claimed for all prior US manufactured TRISO fuel, by a few orders of magnitude. The improved performance level is about a factor of three better than qualified for German TRISO fuel in the 1980’s. At the start of the AGR program, without a reactor design concept selected, the AGR fuel program selected to qualify fuel to an operating envelope that would bound both pebble bed and prismatic options. This resulted in needing a fuel form that could survive at peak fuel temperatures of 1250°C on a time-averaged basis and high burnups in the range of 150 to 200 GWd/MTHM (metric tons of heavy metal) or 16.4 to 21.8% fissions per initial metal atom (FIMA). Although Germany has demonstrated excellent performance of TRISO-coated UO2 particle fuel up to about 10% FIMA and 1150°C, UO2 fuel is known to have limitations because of CO formation and kernel migration at the high burnups, power densities, temperatures, and temperature gradients that may be encountered in the prismatic modular HTGRs. With uranium oxycarbide (UCO) fuel, the kernel composition is engineered to prevent CO formation and kernel migration, which are key threats to fuel integrity at higher burnups, temperatures, and temperature gradients. Furthermore, the recent poor fuel performance of UO2 TRISO fuel pebbles measured in Chinese irradiation testing in Russia and in German pebbles irradiated at 1250°C, and historic data on poorer fuel performance in safety testing of German pebbles that experienced burnups in excess of 10% FIMA [1] have each raised concern about the use of UO2 TRISO above 10% FIMA and 1150°C and the degree of margin available in the fuel system. This continues to be an active area of study internationally.« less
Feasibility study of a fission-suppressed Tokamak fusion breeder
NASA Astrophysics Data System (ADS)
Moir, R. W.; Lee, J. D.; Neef, W. S., Jr.; Berwald, D. H.; Garner, J. K.; Whitley, R. H.; Ghoniem, N.; Wong, C. P. C.; Maya, I.; Schultz, K. R.
1984-12-01
The preliminary conceptual design of a tokama fissile fuel producer is described. The blanket technology is based on the fission suppressed breeding concept where neutron multiplication occurs in a bed of 2 cm diameter beryllium pebbles which are cooled by helium at 50 atmospheres pressure. Uranium-233 is bred in thorium metal fuel elements which are in the form of snap rings attached to each beryllium pebble. Tritium is bred in lithium bearing material contained in tubes immersed in the pebble bed and is recovered by a purge flow of helium. The neutron wall load is 3 MW/m(2) and the blanket material is ferritic steel. The net fissile breeding ratio is 0.54 plus or minus 30% per fusion reaction. This results in the production of 4900 kg of (223)U per year from 3000 MW of fusion power. This quantity of fuel will provide makeup fuel for about 12 LWRs of equal thermal power or about 18 1 GW sub e LWRs. The calculated cost of the produced uranium-233 is between $23/g and $53/g or equivalent to $10/kg to $90/kg of U308 depending on government financing or utility financing assumptions. Additional topics discussed include the Tokamak operating mode (both steady state and long pulse considered), the design and breeding implications of using a poloidal divertor for impurity control, reactor safety, the choice of a tritium breeder, and fuel management.
A fission-fusion hybrid reactor in steady-state L-mode tokamak configuration with natural uranium
NASA Astrophysics Data System (ADS)
Reed, Mark; Parker, Ronald R.; Forget, Benoit
2012-06-01
This work develops a conceptual design for a fusion-fission hybrid reactor operating in steady-state L-mode tokamak configuration with a subcritical natural or depleted uranium pebble bed blanket. A liquid lithium-lead alloy breeds enough tritium to replenish that consumed by the D-T fusion reaction. The fission blanket augments the fusion power such that the fusion core itself need not have a high power gain, thus allowing for fully non-inductive (steady-state) low confinement mode (L-mode) operation at relatively small physical dimensions. A neutron transport Monte Carlo code models the natural uranium fission blanket. Maximizing the fission power gain while breeding sufficient tritium allows for the selection of an optimal set of blanket parameters, which yields a maximum prudent fission power gain of approximately 7. A 0-D tokamak model suffices to analyze approximate tokamak operating conditions. This fission blanket would allow the fusion component of a hybrid reactor with the same dimensions as ITER to operate in steady-state L-mode very comfortably with a fusion power gain of 6.7 and a thermal fusion power of 2.1 GW. Taking this further can determine the approximate minimum scale for a steady-state L-mode tokamak hybrid reactor, which is a major radius of 5.2 m and an aspect ratio of 2.8. This minimum scale device operates barely within the steady-state L-mode realm with a thermal fusion power of 1.7 GW. Basic thermal hydraulic analysis demonstrates that pressurized helium could cool the pebble bed fission blanket with a flow rate below 10 m/s. The Brayton cycle thermal efficiency is 41%. This reactor, dubbed the Steady-state L-mode non-Enriched Uranium Tokamak Hybrid (SLEUTH), with its very fast neutron spectrum, could be superior to pure fission reactors in terms of breeding fissile fuel and transmuting deleterious fission products. It would likely function best as a prolific plutonium breeder, and the plutonium it produces could actually be more proliferation-resistant than that bred by conventional fast reactors. Furthermore, it can maintain constant total hybrid power output as burnup proceeds by varying the neutron source strength.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chukbar, B. K., E-mail: bchukbar@mail.ru
Two methods of modeling a double-heterogeneity fuel are studied: the deterministic positioning and the statistical method CORN of the MCU software package. The effect of distribution of microfuel in a pebble bed on the calculation results is studied. The results of verification of the statistical method CORN for the cases of the microfuel concentration up to 170 cm{sup –3} in a pebble bed are presented. The admissibility of homogenization of the microfuel coating with the graphite matrix is studied. The dependence of the reactivity on the relative location of fuel and graphite spheres in a pebble bed is found.
A Pebble-Bed Breed-and-Burn Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenspan, Ehud
2016-03-31
The primary objective of this project is to use three-dimensional fuel shuffling in order to reduce the minimum peak radiation damage of ~550 dpa present Breed-and-Burn (B&B) fast nuclear reactor cores designs (they feature 2-D fuel shuffling) call for to as close as possible to the presently accepted value of 200 dpa thereby enabling earlier commercialization of B&B reactors which could make substantial contribution to energy sustainability and economic stability without need for fuel recycling. Another objective is increasing the average discharge burnup for the same peak discharge burnup thereby (1) increasing the fuel utilization of 2-D shuffled B&B reactorsmore » and (2) reducing the reprocessing capacity required to support a given capacity of FRs that are to recycle fuel.« less
Beryllium for fusion application - recent results
NASA Astrophysics Data System (ADS)
Khomutov, A.; Barabash, V.; Chakin, V.; Chernov, V.; Davydov, D.; Gorokhov, V.; Kawamura, H.; Kolbasov, B.; Kupriyanov, I.; Longhurst, G.; Scaffidi-Argentina, F.; Shestakov, V.
2002-12-01
The main issues for the application of beryllium in fusion reactors are analyzed taking into account the latest results since the ICFRM-9 (Colorado, USA, October 1999) and presented at 5th IEA Be Workshop (10-12 October 2001, Moscow Russia). Considerable progress has been made recently in understanding the problems connected with the selection of the beryllium grades for different applications, characterization of the beryllium at relevant operational conditions (irradiation effects, thermal fatigue, etc.), and development of required manufacturing technologies. The key remaining problems related to the application of beryllium as an armour in near-term fusion reactors (e.g. ITER) are discussed. The features of the application of beryllium and beryllides as a neutron multiplier in the breeder blanket for power reactors (e.g. DEMO) in pebble-bed form are described.
NASA Astrophysics Data System (ADS)
Nunnenmann, Elena; Fischer, Ulrich; Stieglitz, Robert
2017-09-01
An uncertainty analysis was performed for the tritium breeding ratio (TBR) of a fusion power plant of the European DEMO type using the MCSEN patch to the MCNP Monte Carlo code. The breeding blanket was of the type Helium Cooled Pebble Bed (HCPB), currently under development in the European Power Plant Physics and Technology (PPPT) programme for a fusion power demonstration reactor (DEMO). A suitable 3D model of the DEMO reactor with HCPB blanket modules, as routinely used for blanket design calculations, was employed. The nuclear cross-section data were taken from the JEFF-3.2 data library. For the uncertainty analysis, the isotopes H-1, Li-6, Li-7, Be-9, O-16, Si-28, Si-29, Si-30, Cr-52, Fe-54, Fe-56, Ni-58, W-182, W-183, W-184 and W-186 were considered. The covariance data were taken from JEFF-3.2 where available. Otherwise a combination of FENDL-2.1 for Li-7, EFF-3 for Be-9 and JENDL-3.2 for O-16 were compared with data from TENDL-2014. Another comparison was performed with covariance data from JEFF-3.3T1. The analyses show an overall uncertainty of ± 3.2% for the TBR when using JEFF-3.2 covariance data with the mentioned additions. When using TENDL-2014 covariance data as replacement, the uncertainty increases to ± 8.6%. For JEFF-3.3T1 the uncertainty result is ± 5.6%. The uncertainty is dominated by O-16, Li-6 and Li-7 cross-sections.
Effect on the tritium breeding ratio for a distributed ICRF antenna in a DEMO reactor
NASA Astrophysics Data System (ADS)
Garcia, A.; Noterdaeme, J.-M.; Fischer, U.; Dies, J.
2015-12-01
The paper reports results of MCNP-5 calculations to assess the effect on the Tritium Breeding Ratio (TBR) when integrating a distributed Ion Cyclotron Range of Frequencies (ICRF) antenna in the blanket of DEMO fusion power reactor. The calculations consider different parameters such as the ICRF covering ratio and the type of breeding blanket including the Helium Cooled Pebble Bed (HCPB) and the Helium Cooled Lithium Lead (HCLL) concepts. For an antenna with a full toroidal circumference of 360°, located poloidally at 40° with a poloidal extension of 1 m, the reduction of the TBR is -0.349% for the HCPB blanket and -0.532% for the HCLL blanket. The distributed ICRF antenna is thus shown to have only a marginal effect on the TBR of the DEMO reactor.
A promising tritium breeding material: Nanostructured 2Li2TiO3-Li4SiO4 biphasic ceramic pebbles
NASA Astrophysics Data System (ADS)
Dang, Chen; Yang, Mao; Gong, Yichao; Feng, Lan; Wang, Hailiang; Shi, Yanli; Shi, Qiwu; Qi, Jianqi; Lu, Tiecheng
2018-03-01
As an advanced tritium breeder material for the fusion reactor blanket of the International Thermonuclear Experimental Reactor (ITER), Li2TiO3-Li4SiO4 biphasic ceramic has attracted widely attention due to its merits. In this paper, the uniform precursor powders were prepared by hydrothermal method, and nanostructured 2Li2TiO3-Li4SiO4 biphasic ceramic pebbles were fabricated by an indirect wet method at the first time. In addition, the composition dependence (x/y) of their microstructure characteristics and mechanical properties were investigated. The results indicated that the crush load of biphasic ceramic pebbles was better than that of single phase ceramic pebbles under identical conditions. The 2Li2TiO3-Li4SiO4 ceramic pebbles have good morphology, small grain size (90 nm), satisfactory crush load (37.8 N) and relative density (81.8 %T.D.), which could be a promising breeding material in the future fusion reactor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gan, Yixiang; Kamlah, Marc
In this investigation, a thermo-mechanical model of pebble beds is adopted and developed based on experiments by Dr. Reimann at Forschungszentrum Karlsruhe (FZK). The framework of the present material model is composed of a non-linear elastic law, the Drucker-Prager-Cap theory, and a modified creep law. Furthermore, the volumetric inelastic strain dependent thermal conductivity of beryllium pebble beds is taken into account and full thermo-mechanical coupling is considered. Investigation showed that the Drucker-Prager-Cap model implemented in ABAQUS can not fulfill the requirements of both the prediction of large creep strains and the hardening behaviour caused by creep, which are of importancemore » with respect to the application of pebble beds in fusion blankets. Therefore, UMAT (user defined material's mechanical behaviour) and UMATHT (user defined material's thermal behaviour) routines are used to re-implement the present thermo-mechanical model in ABAQUS. An elastic predictor radial return mapping algorithm is used to solve the non-associated plasticity iteratively, and a proper tangent stiffness matrix is obtained for cost-efficiency in the calculation. An explicit creep mechanism is adopted for the prediction of time-dependent behaviour in order to represent large creep strains in high temperature. Finally, the thermo-mechanical interactions are implemented in a UMATHT routine for the coupled analysis. The oedometric compression tests and creep tests of pebble beds at different temperatures are simulated with the help of the present UMAT and UMATHT routines, and the comparison between the simulation and the experiments is made. (authors)« less
A fission-fusion hybrid reactor in steady-state L-mode tokamak configuration with natural uranium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reed, Mark; Parker, Ronald R.; Forget, Benoit
2012-06-19
This work develops a conceptual design for a fusion-fission hybrid reactor operating in steady-state L-mode tokamak configuration with a subcritical natural or depleted uranium pebble bed blanket. A liquid lithium-lead alloy breeds enough tritium to replenish that consumed by the D-T fusion reaction. The fission blanket augments the fusion power such that the fusion core itself need not have a high power gain, thus allowing for fully non-inductive (steady-state) low confinement mode (L-mode) operation at relatively small physical dimensions. A neutron transport Monte Carlo code models the natural uranium fission blanket. Maximizing the fission power gain while breeding sufficient tritiummore » allows for the selection of an optimal set of blanket parameters, which yields a maximum prudent fission power gain of approximately 7. A 0-D tokamak model suffices to analyze approximate tokamak operating conditions. This fission blanket would allow the fusion component of a hybrid reactor with the same dimensions as ITER to operate in steady-state L-mode very comfortably with a fusion power gain of 6.7 and a thermal fusion power of 2.1 GW. Taking this further can determine the approximate minimum scale for a steady-state L-mode tokamak hybrid reactor, which is a major radius of 5.2 m and an aspect ratio of 2.8. This minimum scale device operates barely within the steady-state L-mode realm with a thermal fusion power of 1.7 GW. Basic thermal hydraulic analysis demonstrates that pressurized helium could cool the pebble bed fission blanket with a flow rate below 10 m/s. The Brayton cycle thermal efficiency is 41%. This reactor, dubbed the Steady-state L-mode non-Enriched Uranium Tokamak Hybrid (SLEUTH), with its very fast neutron spectrum, could be superior to pure fission reactors in terms of breeding fissile fuel and transmuting deleterious fission products. It would likely function best as a prolific plutonium breeder, and the plutonium it produces could actually be more proliferation-resistant than that bred by conventional fast reactors. Furthermore, it can maintain constant total hybrid power output as burnup proceeds by varying the neutron source strength.« less
New Location of Chicxulub's Impact Ejecta in Central Belize.
NASA Astrophysics Data System (ADS)
Ocampo, A.; Ames, D.; Pope, K.; Smit, J.
2003-04-01
Chicxulub ejecta composed of altered glass, accretionary lapilli, and pebble to cobble sized carbonate clasts are found in the Cayo District of central Belize, about 500 km southeast of the Chicxulub impact crater centre. The ejecta layer, found near the town of Armenia, in central Belize, is about 4 m thick, and rests unconformably on a deeply weathered Cretaceous land surface, of the Barton Creek Formation dolomite. There are similarities between these ejecta and the basal bed (spheroid bed) of the continuous ejecta blanket deposits (Albion Formation) found in northern Belize and southern Quintana Roo, Mexico, 340-360 km from Chicxulub. Although, the spheroid bed in the Armenia location exhibits an exceptional state of impact glass preservation, than that found in Northern Belize. Overlying the bed with glass and lapilli is a 5-m-thick layer of limestone pebbles and cobbles, which contain altered glass and shocked quartz in the matrix. The well-rounded limestone pebbles and cobbles show striated and amygdaloidal textures. We interpret the central Belize spheroid bed deposit with accretionary lapilli as ejecta deposited by the rapidly expanding vapour plume, and may contain carbonate condensates. The altered glass component consists of an inter-stratified illite-smectite mixed layer clay dominated by illite. The overlying pebble and cobble bed may be a later deposit containing re-worked ejecta, or a lateral extension of the coarse ejecta beds found in northern Belize. This new impact ejecta deposit, found in central Belize ~500 km from Chicxulub, emphasizes the importance of volatile-rich target rock and the dispersal of ejecta by the expanding vapour plume.
Effect on the tritium breeding ratio for a distributed ICRF antenna in a DEMO reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia, A., E-mail: albert.garcia.hp@gmail.com; Karlsruhe Institute of Technology; Polytechnic University of Catalonia
The paper reports results of MCNP-5 calculations to assess the effect on the Tritium Breeding Ratio (TBR) when integrating a distributed Ion Cyclotron Range of Frequencies (ICRF) antenna in the blanket of DEMO fusion power reactor. The calculations consider different parameters such as the ICRF covering ratio and the type of breeding blanket including the Helium Cooled Pebble Bed (HCPB) and the Helium Cooled Lithium Lead (HCLL) concepts. For an antenna with a full toroidal circumference of 360°, located poloidally at 40° with a poloidal extension of 1 m, the reduction of the TBR is −0.349% for the HCPB blanket andmore » −0.532% for the HCLL blanket. The distributed ICRF antenna is thus shown to have only a marginal effect on the TBR of the DEMO reactor.« less
Transport Corrections in Nodal Diffusion Codes for HTR Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abderrafi M. Ougouag; Frederick N. Gleicher
2010-08-01
The cores and reflectors of High Temperature Reactors (HTRs) of the Next Generation Nuclear Plant (NGNP) type are dominantly diffusive media from the point of view of behavior of the neutrons and their migration between the various structures of the reactor. This means that neutron diffusion theory is sufficient for modeling most features of such reactors and transport theory may not be needed for most applications. Of course, the above statement assumes the availability of homogenized diffusion theory data. The statement is true for most situations but not all. Two features of NGNP-type HTRs require that the diffusion theory-based solutionmore » be corrected for local transport effects. These two cases are the treatment of burnable poisons (BP) in the case of the prismatic block reactors and, for both pebble bed reactor (PBR) and prismatic block reactor (PMR) designs, that of control rods (CR) embedded in non-multiplying regions near the interface between fueled zones and said non-multiplying zones. The need for transport correction arises because diffusion theory-based solutions appear not to provide sufficient fidelity in these situations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hans D. Gougar
The Idaho National Laboratory’s deterministic neutronics analysis codes and methods were applied to the computation of the core multiplication factor of the HTR-Proteus pebble bed reactor critical facility. A combination of unit cell calculations (COMBINE-PEBDAN), 1-D discrete ordinates transport (SCAMP), and nodal diffusion calculations (PEBBED) were employed to yield keff and flux profiles. Preliminary results indicate that these tools, as currently configured and used, do not yield satisfactory estimates of keff. If control rods are not modeled, these methods can deliver much better agreement with experimental core eigenvalues which suggests that development efforts should focus on modeling control rod andmore » other absorber regions. Under some assumptions and in 1D subcore analyses, diffusion theory agrees well with transport. This suggests that developments in specific areas can produce a viable core simulation approach. Some corrections have been identified and can be further developed, specifically: treatment of the upper void region, treatment of inter-pebble streaming, and explicit (multiscale) transport modeling of TRISO fuel particles as a first step in cross section generation. Until corrections are made that yield better agreement with experiment, conclusions from core design and burnup analyses should be regarded as qualitative and not benchmark quality.« less
NASA Astrophysics Data System (ADS)
Suzuki, S.; Enoeda, M.; Hatano, T.; Hirose, T.; Hayashi, K.; Tanigawa, H.; Ochiai, K.; Nishitani, T.; Tobita, K.; Akiba, M.
2006-02-01
This paper presents the significant progress made in the research and development (R&D) of key technologies on the water-cooled solid breeder blanket for the ITER test blanket modules in JAERI. Development of module fabrication technology, bonding technology of armours, measurement of thermo-mechanical properties of pebble beds, neutronics studies on a blanket module mockup and tritium release behaviour from a Li2TiO3 pebble bed under neutron-pulsed operation conditions are summarized. With the improvement of the heat treatment process for blanket module fabrication, a fine-grained microstructure of F82H can be obtained by homogenizing it at 1150 °C followed by normalizing it at 930 °C after the hot isostatic pressing process. Moreover, a promising bonding process for a tungsten armour and an F82H structural material was developed using a solid-state bonding method based on uniaxial hot compression without any artificial compliant layer. As a result of high heat flux tests of F82H first wall mockups, it has been confirmed that a fatigue lifetime correlation, which was developed for the ITER divertor, can be made applicable for the F82H first wall mockup. As for R&D on the breeder material, Li2TiO3, the effect of compression loads on effective thermal conductivity of pebble beds has been clarified for the Li2TiO3 pebble bed. The tritium breeding ratio of a simulated multi-layer blanket structure has successfully been measured using 14 MeV neutrons with an accuracy of 10%. The tritium release rate from the Li2TiO3 pebble has also been successfully measured with pulsed neutron irradiation, which simulates ITER operation.
"Smart pebble" design for environmental monitoring applications
NASA Astrophysics Data System (ADS)
Valyrakis, Manousos; Pavlovskis, Edgars
2014-05-01
Sediment transport, due to primarily the action of water, wind and ice, is one of the most significant geomorphic processes responsible for shaping Earth's surface. It involves entrainment of sediment grains in rivers and estuaries due to the violently fluctuating hydrodynamic forces near the bed. Here an instrumented particle, namely a "smart pebble", is developed to investigate the exact flow conditions under which individual grains may be entrained from the surface of a gravel bed. This could lead in developing a better understanding of the processes involved, while focusing on the response of the particle during a variety of flow entrainment events. The "smart pebble" is a particle instrumented with MEMS sensors appropriate for capturing the hydrodynamic forces a coarse particle might experience during its entrainment from the river bed. A 3-axial gyroscope and accelerometer registers data to a memory card via a microcontroller, embedded in a 3D-printed waterproof hollow spherical particle. The instrumented board is appropriately fit and centred into the shell of the pebble, so as to achieve a nearly uniform distribution of the mass which could otherwise bias its motion. The "smart pebble" is powered by an independent power to ensure autonomy and sufficiently long periods of operation appropriate for deployment in the field. Post-processing and analysis of the acquired data is currently performed offline, using scientific programming software. The performance of the instrumented particle is validated, conducting a series of calibration experiments under well-controlled laboratory conditions. "Smart pebble" allows for a wider range of environmental sensors (e.g. for environmental/pollutant monitoring) to be incorporated so as to extend the range of its application, enabling accurate environmental monitoring which is required to ensure infrastructure resilience and preservation of ecological health.
Optimizing Neutron Thermal Scattering Effects in very High Temperature Reactors. Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hawari, Ayman; Ougouag, Abderrafi
2014-07-08
This project aims to develop a holistic understanding of the phenomenon of neutron thermalization in the VHTR. Neutron thermalization is dependent on the type and structure of the moderating material. The fact that the moderator (and reflector) in the VHTR is a solid material will introduce new and interesting considerations that do not apply in other (e.g. light water) reactors. The moderator structure is expected to undergo radiation induced changes as the irradiation (or burnup) history progresses. In this case, the induced changes in structure will have a direct impact on many properties including the neutronic behavior. This can bemore » easily anticipated if one recognizes the dependence of neutron thermalization on the scattering law of the moderator. For the pebble bed reactor, it is anticipated that the moderating behavior can be tailored, e.g. using moderators that consist of composite materials, which could allow improved optimization of the moderator-to-fuel ratio.« less
"Smart pebble" designs for sediment transport monitoring
NASA Astrophysics Data System (ADS)
Valyrakis, Manousos; Alexakis, Athanasios; Pavlovskis, Edgars
2015-04-01
Sediment transport, due to primarily the action of water, wind and ice, is one of the most significant geomorphic processes responsible for shaping Earth's surface. It involves entrainment of sediment grains in rivers and estuaries due to the violently fluctuating hydrodynamic forces near the bed. Here an instrumented particle, namely a "smart pebble", is developed to investigate the exact flow conditions under which individual grains may be entrained from the surface of a gravel bed. This could lead in developing a better understanding of the processes involved, focusing on the response of the particle during a variety of flow entrainment events. The "smart pebble" is a particle instrumented with MEMS sensors appropriate for capturing the hydrodynamic forces a coarse particle might experience during its entrainment from the river bed. A 3-axial gyroscope and accelerometer registers data to a memory card via a microcontroller, embedded in a 3D-printed waterproof hollow spherical particle. The instrumented board is appropriately fit and centred into the shell of the pebble, so as to achieve a nearly uniform distribution of the mass which could otherwise bias its motion. The "smart pebble" is powered by an independent power to ensure autonomy and sufficiently long periods of operation appropriate for deployment in the field. Post-processing and analysis of the acquired data is currently performed offline, using scientific programming software. The performance of the instrumented particle is validated, conducting a series of calibration experiments under well-controlled laboratory conditions.
Fick, Lambert H.; Merzari, Elia; Hassan, Yassin A.
2017-02-20
Computational analyses of fluid flow through packed pebble bed domains using the Reynolds-averaged NavierStokes framework have had limited success in the past. Because of a lack of high-fidelity experimental or computational data, optimization of Reynolds-averaged closure models for these geometries has not been extensively developed. In the present study, direct numerical simulation was employed to develop a high-fidelity database that can be used for optimizing Reynolds-averaged closure models for pebble bed flows. A face-centered cubic domain with periodic boundaries was used. Flow was simulated at a Reynolds number of 9308 and cross-verified by using available quasi-DNS data. During the simulations,more » low-frequency instability modes were observed that affected the stationary solution. Furthermore, these instabilities were investigated by using the method of proper orthogonal decomposition, and a correlation was found between the time-dependent asymmetry of the averaged velocity profile data and the behavior of the highest energy eigenmodes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fick, Lambert H.; Merzari, Elia; Hassan, Yassin A.
Computational analyses of fluid flow through packed pebble bed domains using the Reynolds-averaged NavierStokes framework have had limited success in the past. Because of a lack of high-fidelity experimental or computational data, optimization of Reynolds-averaged closure models for these geometries has not been extensively developed. In the present study, direct numerical simulation was employed to develop a high-fidelity database that can be used for optimizing Reynolds-averaged closure models for pebble bed flows. A face-centered cubic domain with periodic boundaries was used. Flow was simulated at a Reynolds number of 9308 and cross-verified by using available quasi-DNS data. During the simulations,more » low-frequency instability modes were observed that affected the stationary solution. Furthermore, these instabilities were investigated by using the method of proper orthogonal decomposition, and a correlation was found between the time-dependent asymmetry of the averaged velocity profile data and the behavior of the highest energy eigenmodes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng Xie; Hong Li; Jianzhu Cao
A reform will be implemented in the helium purification system of the 10 MW High Temperature Gas-cooled Test Reactor (HTR-10) in China. The measurement of the gamma dose rates of facilities, including valves, pipes, dust filter, etc., in the purification system of the HTR-10, has been performed. The results indicated that most radiation nuclides are concentrated in the dust filter and facilities at the entrance of the helium purification system upstream of the dust filter. Other facilities have the same gamma dose rate level as the background. Based on the previous study and experiences in AVR, the measurement results canmore » be understood that the radioactive dust carried by the helium gas was filtered by the dust filter. It provides important insights for the decontamination and decommissioning of facilities in the primary loop, especially in the helium purification system of the HTR-10 as well as the High Temperature Reactor-Pebble bed Modules (HTR-PM). (authors)« less
AGC-2 Graphite Pre-irradiation Data Package
DOE Office of Scientific and Technical Information (OSTI.GOV)
David Swank; Joseph Lord; David Rohrbaugh
2010-08-01
The NGNP Graphite R&D program is currently establishing the safe operating envelope of graphite core components for a Very High Temperature Reactor (VHTR) design. The program is generating quantitative data necessary for predicting the behavior and operating performance of the new nuclear graphite grades. To determine the in-service behavior of the graphite for pebble bed and prismatic designs, the Advanced Graphite Creep (AGC) experiment is underway. This experiment is examining the properties and behavior of nuclear grade graphite over a large spectrum of temperatures, neutron fluences and compressive loads. Each experiment consists of over 400 graphite specimens that are characterizedmore » prior to irradiation and following irradiation. Six experiments are planned with the first, AGC-1, currently being irradiated in the Advanced Test Reactor (ATR) and pre-irradiation characterization of the second, AGC-2, completed. This data package establishes the readiness of 512 specimens for assembly into the AGC-2 capsule.« less
Computational study on the behaviors of granular materials under mechanical cycling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xiaoliang; Ye, Minyou; Chen, Hongli, E-mail: hlchen1@ustc.edu.cn
2015-11-07
Considering that fusion pebble beds are probably subjected to the cyclic compression excitation in their future applications, we presented a computational study to report the effect of mechanical cycling on the behaviors of granular matter. The correctness of our numerical experiments was confirmed by a comparison with the effective medium theory. Under the cyclic loads, the fast granular compaction was observed to evolve in a stretched exponential law. Besides, the increasing stiffening in packing structure, especially the decreasing moduli pressure dependence due to granular consolidation, was also observed. For the force chains inside the pebble beds, both the internal forcemore » distribution and the spatial distribution of force chains would become increasingly uniform as the external force perturbation proceeded and therefore produced the stress relief on grains. In this case, the originally proposed 3-parameter Mueth function was found to fail to describe the internal force distribution. Thereby, its improved functional form with 4 parameters was proposed here and proved to better fit the data. These findings will provide more detailed information on the pebble beds for the relevant fusion design and analysis.« less
Nugget-Navaho-Aztec sandstone: interaction of eolian sand sea with Andean-type volcanic arc
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marzolf, J.E.
1986-05-01
The Nugget-Navaho-Aztec sand sea was deposited east of an Andean-type volcanic arc. During the early stage of eolian deposition, fluvially transported sand was concentrated in the marine littoral zone and returned inland by onshore winds from the northwest. With progressive development of the arc, the sea withdrew. Wind direction changed from northwest to northeast. Previously deposited eolian sand was transported southwestward into the volcanic arc. Proximity of the arc can be detected with great difficulty by examining eolian and underlying red-bed facies. In southern Nevada, the volcanic arc is undetectable in eolian facies, but thin sandstone beds containing volcanic clastsmore » or weathered feldspar in the finer grained red-bed facies indicate arc volcanism; volcanic clasts are distinct in a basal conglomerate. Westward into California, the sub-Aztec Sandstone contains volcanic pebbles. The upper part of the Aztec Sandstone contains a 1 to 2-m thick volcaniclastic siltstone. Farther west, the Aztec Sandstone is interbedded with volcanic flows, ash flows, and flow breccias. These rocks might easily be mistaken for red beds in well cores or cuttings. Sand in sets of large-scale cross-beds remain virtually identical in composition and texture to sand in eolian facies of the Colorado Plateau. Where sets of eolian cross-beds lie on volcanics, the quartzose sandstone contains pebble to cobble-size volcanic clasts. Locally, cross-bed sets of yellowish-white, quartzose sandstone alternate with purplish-gray cross-bed sets containing numerous pebble to cobble-size volcanic clasts. The ability to recognize volcanic indicators within Nugget-Navaho-Aztec eolian facies is important in delineating the western margin of the back-arc eolian basin.« less
,
1948-01-01
The accompanying map and sections show examples of the present state of information about the occurrence of the "Leached" uranium-bearing bed in the Florida pebble phosphate district. The dashed lines on the map define, as closely as present data permit, the limit of the area in which this bed contains significant amounts of uranium. The figures next to localities on the map indicate first, the thickness of the bed in feet; and second the uranium content in thousandths of percent. For example, the figures 16-10 next to the TVA localities in Secs. 9 and 10, T. 32 S., R. 26 E. indicate 16 feet at 0.010 percent uranium. A "0" by a locality indicates either that the uranium content is less than 0.001 percent or less than the concentration in the underlying phosphate beds (matrix of the miners) or that the leached bed is not present.
Field evidence of two-phase abrasion process
NASA Astrophysics Data System (ADS)
Miller, K. L.; Szabo, T.; Jerolmack, D. J.; Domokos, G.
2013-12-01
The rounded shape of river rocks is clear evidence that abrasion due to bed load transport is a significant agent for mass loss. Its contribution to downstream fining, however, is typically assumed to be negligible - as diminution trends may be explained solely by size-selective transport. A recent theory has predicted that pebble abrasion occurs in two well separated phases: in Phase 1, an intially-polyhedral pebble rounds to the shape of an inscribed ellipsoid without any change in axis dimensions; in Phase II, axis dimensions are slowly reduced. Importantly, Phase I abrasion means that an initially-blocky pebble may lose up to half its mass without any apparent change in 'size', which is only measured as the length of a single pebble axis by most field researchers. We hypothesize that field studies have significantly underestimated the importance of abrasion because they do not quantify pebble shape, and we set out to demonstrate that two-phase abrasion occurs in a natural stream. Our study examines downstream trends in pebble size and shape along a 10-km stretch of the Rio Mameyes within the Luquillo Critical Zone observatory, where volcaniclastic cobbles and boulders are transported by bed load at slopes up to 10%. The upper reaches of the stream consist of alluviated bedrock valleys that preclude sediment storage and thus minimize size-selective transport, which allows us to isolate the effects of abrasion. The lower 5 km is an alluvial river in which size-selective transport becomes operative. We quantified the shape and size of thousands of pebbles along the profile using hand and image-based techniques. The data provide the first field validation of two-phase abrasion; in the bedrock reaches, pebbles clearly evolve toward ellipsoids without any significant change in axis dimensions (rounding), while in the lower reaches pebbles slowly reduce their axis dimensions with little or no change in roundness. Results also show that shape metrics determined from two-dimensional (2D) imaging provide an adequate representation of the 3D evolution. In particular, the 2D curvature distribution is a sensitive metric of pebble shape, and is strongly related to the recently proposed 'equilibrium points' determined from 3D hand measurements. Although changes in pebble axis dimensions appear to be dominated by size-selective transport, shape data reveal that abrasion produces significant mass loss of pebbles. This mass loss affects both the mobility of the pebbles, and also produces substantial quantities of sand and silt that contribute to floodplain and ocean deposition downstream.
Recovery and recycling of lithium value from spent lithium titanate (Li2TiO3) pebbles
NASA Astrophysics Data System (ADS)
Mandal, D.
2013-09-01
In the first generation fusion reactors the fusion of deuterium (D) and tritium (T) is considered to produce energy to meet the future energy demand. Deuterium is available in nature whereas, tritium is not. Lithium-6 (Li6) isotope has the ability to produce tritium in the n, α nuclear reaction with neutrons. Thus lithium-based ceramics enriched by Li6 isotope are considered for the tritium generation for its use in future fusion reactors. Lithium titanate is one such Li-based ceramic material being considered for its some attractive properties viz., high thermal and chemical stability, high thermal conductivity, and low tritium solubility. It is reported in the literature, that the burn up of these pebbles in the fusion reactor will be limited to only 15-17 atomic percentage. At the end of life, the pebbles will contain more than 45% unused Li6 isotope. Due to the high cost of enriched Li6 and the waste disposal considerations, it is necessary to recover the unused Li from the spent lithium titanate pebbles. Till date, only the feasibilities of different processes are reported, but no process details are available. Experiments were carried out for the recovery of Li from simulated Li2TiO3 pebbles and to reuse of lithium in lithium titanate pebble fabrication. The details of the experiments and results are discussed in this paper. Simulated lithium titanate (Li2TiO3) pebbles. The objective of the study is to develop a process which can be used to recover lithium value form the spent Li2TiO3 pebbles from future fusion reactor. The Li2TiO3 pebbles used in the study were synthesized and fabricated by the solid state reaction process developed by Mandal et al. described in details somewhere else [1,2]. Spherical Li2TiO3 pebbles of size 1.0 mm were used and the properties of the Li2TiO3 pebbles used in the study are shown in Table 1. Hydrochloric acid (HCl), of 99.8% purity, purchased from Merck and Loba Chemicals, Mumbai, India. To leach lithium from Li2TiO3 Hydrochloric acid was used. The reasons to use hydrochloric acid are discussed below. Sodium carbonate (Na2CO3) analytical grade, procured form Merck Chemicals, Mumbai, India. To precipitate lithium as lithium carbonate from lithium hydroxide solution sodium carbonate was used. Distilled water. Distilled was used in the experiments, primarily to dilute hydrochloric acid to the desired molar solution. Leaching agent. Concentration of the leaching agent. Temperature. Speed of agitation. Solid to liquid ratio, and Particle Size. In the experimental work spherical Li2TiO3 pebbles of size 1.0 was used as mentioned above. To study the effect of particle size on the recovery of lithium from fine Li2TiO3 particles of size range 100-200 μm were used. These fines were obtained by pulverizing 1.0 mm Li2TiO3 pebbles in a planetary ball mill and classified standard sieves.It is reported that both HNO3 and HCl give relatively more recovery of lithium compared to H2SO4[11-13]. Though the handling of HCl is difficulties due to the chloride corrosion, it is preferred to HNO3 because the deposal of nitrate waste which will generate due to the latter's use viz. sodium nitrate is a problem as per the norms of pollution control standard [11,12].The leaching of Li2TiO3 pebbles were carried out in a 1000 ml three necked and flat bottom glass reactor. The flux was fitted with a reflux condenser to reduce the loss of solution by evaporation and a thermometer. The solid was suspended in the solution by stirring the solution using a magnetic stirrer. The flux was kept on a hot plate with a temperature controller to heat the slurry at constant temperature. The temperature of the solution was controlled within ±3 °C and the temperature of the slurry was noted at an interval of 5 min and the average temperature of each run is determined by time average of the noted readings.A known of volume of HCl solution with known concentration was added to the flux. After the desired stirring speed and reaction temperature were attained, the solid sample of 5 g was added to the solution in reactor. 5 ml solution was withdrawn and filtered after specific time for analyzing the concentration of lithium in the solution by Atomic Absorption Spectrophotometer (AAS) and 5 ml fresh lixiviant was added into the reactor immediately to maintain the volume of the solution constant.To obtain the optimum conditions, leaching experiments were tested under various conditions, i.e. changing speed of agitation, temperature, S/L ratio and concentration of the acid.
Testing of a "smart-pebble" for measuring particle transport statistics
NASA Astrophysics Data System (ADS)
Kitsikoudis, Vasileios; Avgeris, Loukas; Valyrakis, Manousos
2017-04-01
This paper presents preliminary results from novel experiments aiming to assess coarse sediment transport statistics for a range of transport conditions, via the use of an innovative "smart-pebble" device. This device is a waterproof sphere, which has 7 cm diameter and is equipped with a number of sensors that provide information about the velocity, acceleration and positioning of the "smart-pebble" within the flow field. A series of specifically designed experiments are carried out to monitor the entrainment of a "smart-pebble" for fully developed, uniform, turbulent flow conditions over a hydraulically rough bed. Specifically, the bed surface is configured to three sections, each of them consisting of well packed glass beads of slightly increasing size at the downstream direction. The first section has a streamwise length of L1=150 cm and beads size of D1=15 mm, the second section has a length of L2=85 cm and beads size of D2=22 mm, and the third bed section has a length of L3=55 cm and beads size of D3=25.4 mm. Two cameras monitor the area of interest to provide additional information regarding the "smart-pebble" movement. Three-dimensional flow measurements are obtained with the aid of an acoustic Doppler velocimeter along a measurement grid to assess the flow forcing field. A wide range of flow rates near and above the threshold of entrainment is tested, while using four distinct densities for the "smart-pebble", which can affect its transport speed and total momentum. The acquired data are analyzed to derive Lagrangian transport statistics and the implications of such an important experiment for the transport of particles by rolling are discussed. The flow conditions for the initiation of motion, particle accelerations and equilibrium particle velocities (translating into transport rates), statistics of particle impact and its motion, can be extracted from the acquired data, which can be further compared to develop meaningful insights for sediment transport mechanics from a Lagrangian perspective and at unprecedented temporal detail and accuracy.
In-pile tritium-permeation measurements on T91 tubes with double walls or a Fe-Al/Al 2O 3 coating
NASA Astrophysics Data System (ADS)
Conrad, R.; Bakker, K.; Chabrol, C.; Fütterer, M. A.; van der Laan, J. G.; Rigal, E.; Stijkel, M. P.
2000-12-01
Two new irradiation projects are being performed at the HFR Petten, named EXOTIC-8.9 and EXOTIC-8.10. Issues such as tritium release from candidate ceramic breeder pebbles for the HCPB blanket and tritium permeation through cooling tubes of the WCLL blanket are investigated simultaneously. In EXOTIC-8.9, the tritium release behaviour of a Li 2TiO 3 pebble bed is measured along with the tritium-permeation rate through a double-wall tube (DWT) of T91 with a Cu interlayer. In EXOTIC-8.10, the tritium release behaviour of a Li 4SiO 4 pebble bed is measured along with the tritium permeation rate through a T91 tube with a Fe-Al/Al 2O 3 coating as tritium permeation barrier (TPB). Tritium permeation phenomena are studied by variations of temperatures and purge gas conditions. This paper reports on the results of the first 100 irradiation days.
NASA Astrophysics Data System (ADS)
Poitevin, Y.; Aubert, Ph.; Diegele, E.; de Dinechin, G.; Rey, J.; Rieth, M.; Rigal, E.; von der Weth, A.; Boutard, J.-L.; Tavassoli, F.
2011-10-01
Europe has developed two reference Tritium Breeder Blankets concepts for a DEMO fusion reactor: the Helium-Cooled Lithium-Lead and the Helium-Cooled Pebble-Bed. Both are using the reduced-activation ferritic-martensitic EUROFER-97 steel as structural material and will be tested in ITER under the form of test blanket modules. The fabrication of their EUROFER structures requires developing welding processes like laser, TIG, EB and diffusion welding often beyond the state-of-the-art. The status of European achievements in this area is reviewed, illustrating the variety of processes and key issues behind retained options, in particular with respect to metallurgical aspects and mechanical properties. Fabrication of mock-ups is highlighted and their characterization and performances with respect to design requirements are reviewed.
DISCHARGE VALVE FOR GRANULAR MATERIAL
Stoughton, L.D.; Robinson, S.T.
1962-05-15
A gravity-red dispenser or valve is designed for discharging the fueled spherical elements used in a pebble bed reactor. The dispenser consists of an axially movable tube terminating under a hood having side walls with openings. When the tube is moved so that its top edge is above the tops of the side openings the elements will not flow. As the tube is moved downwardly, the elements flow into the hood through the side openings and over the top edge into the tube at an increasing rate as the tube is lowered further. The tube is spaced at all times from the hood and side walls a distance greater than the diameter of the largest element to prevent damaging of the elements when the dispenser is closed to flow. (AEC)
Development of wet process with substitution reaction for the mass production of Li 2TiO 3 pebbles
NASA Astrophysics Data System (ADS)
Tsuchiya, Kunihiko; Kawamura, Hiroshi
2000-12-01
Recently, lithium titanate (Li 2TiO 3) has attracted the attention of many researchers from the point of good tritium recovery at low temperature, chemical stability, etc. As the shape of Li 2TiO 3, a small pebble was selected as the Japanese design for a fusion reactor blanket. On the other hand, as the fabrication method of Li 2TiO 3 pebbles, the wet process is the most advantageous from the viewpoint of mass production, etc. In this study, fabrication of small Li 2TiO 3 pebbles less than ∅0.5 mm was performed by the wet process with substitution reaction, and the characteristics of Li 2TiO 3 pebbles fabricated by this process were evaluated. From the results of the fabrication tests, excellent prospects were obtained concerning mass production of Li 2TiO 3 pebbles with the target density (80-85% T.D.) and target diameter (less than ∅0.5 mm).
3D thermal modeling of TRISO fuel coupled with neutronic simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Jianwei; Uddin, Rizwan
2010-01-01
The Very High Temperature Gas Reactor (VHTR) is widely considered as one of the top candidates identified in the Next Generation Nuclear Power-plant (NGNP) Technology Roadmap under the U.S . Depanment of Energy's Generation IV program. TRlSO particle is a common element among different VHTR designs and its performance is critical to the safety and reliability of the whole reactor. A TRISO particle experiences complex thermo-mechanical changes during reactor operation in high temperature and high burnup conditions. TRISO fuel performance analysis requires evaluation of these changes on micro scale. Since most of these changes are temperature dependent, 3D thermal modelingmore » of TRISO fuel is a crucial step of the whole analysis package. In this paper, a 3D numerical thermal model was developed to calculate temperature distribution inside TRISO and pebble under different scenarios. 3D simulation is required because pebbles or TRISOs are always subjected to asymmetric thermal conditions since they are randomly packed together. The numerical model was developed using finite difference method and it was benchmarked against ID analytical results and also results reported from literature. Monte-Carlo models were set up to calculate radial power density profile. Complex convective boundary condition was applied on the pebble outer surface. Three reactors were simulated using this model to calculate temperature distribution under different power levels. Two asymmetric boundary conditions were applied to the pebble to test the 3D capabilities. A gas bubble was hypothesized inside the TRISO kernel and 3D simulation was also carried out under this scenario. Intuition-coherent results were obtained and reported in this paper.« less
NASA Astrophysics Data System (ADS)
Kapychev, V.; Davydov, D.; Gorokhov, V.; Ioltukhovskiy, A.; Kazennov, Yu; Tebus, V.; Frolov, V.; Shikov, A.; Shishkov, N.; Kovalenko, V.; Shishkin, N.; Strebkov, Yu
2000-12-01
This paper surveys the modules and materials of blanket tritium-breeding zones developed in the Russian Federation for fusion reactors. Synthesis of lithium orthosilicate, metasilicate and aluminate, fabrication of ceramic pellets and pebbles and experimental reactor units are described. Results of tritium extraction kinetics under irradiation in a water-graphite reactor at a thermal neutron flux of 5×10 13 neutron/(s cm2) are considered. At the present time, development and fabrication of lithium orthosilicate-beryllium modules of the tritium-breeding zone (TBZ), have been carried out within the framework of the ITER and DEMO projects. Two modules containing orthosilicate pellets, porous beryllium and beryllium pebbles are suggested for irradiation tests in the temperature range of 350-700°C. Technical problems associated with manufacturing of the modules are discussed.
Fabrication of Li2TiO3 pebbles using PVA-boric acid reaction for solid breeding materials
NASA Astrophysics Data System (ADS)
Park, Yi-Hyun; Cho, Seungyon; Ahn, Mu-Young
2014-12-01
Lithium metatitanate (Li2TiO3) is a candidate breeding material of the Helium Cooled Ceramic Reflector (HCCR) Test Blanket Module (TBM). The breeding material is used in pebble-bed form to reduce the uncertainty of the interface thermal conductance. In this study, Li2TiO3 pebbles were successfully fabricated by the slurry droplet wetting method using the cross-linking reaction between polyvinyl alcohol (PVA) and boric acid. The effects of fabrication parameters on the shaping of Li2TiO3 green body were investigated. In addition, the basic characteristics of the sintered pebble were also evaluated. The shape of Li2TiO3 green bodies was affected by slurry viscosity, PVA content and boric acid content. The grain size and average crush load of sintered Li2TiO3 pebble were controlled by the sintering time. The boron was completely removed during the final sintering process.
Berger, Vladimir I.; Singer, Donald A.; Theodore, Ted G.; Harris, Anita G.; Stevens, Calvin H.
2001-01-01
Two framework-supported, poorly bedded conglomerate units of the middle Upper Pennsylvanian and middle Lower Permian Strathearn Formation belonging to the overlap assemblage of the Antler orogen are prominent in the northern Carlin trend. These horizons stratigraphically and temporally bracket thrust emplacement of a major allochthonous thrust plate of mainly quartzarenite of the Ordovician Vinini Formation. Lithologic and shape-ratio data from approximately 4,200 pebbles and cobbles at 17 sites as well as biostratigraphic data in the Strathearn, and their geologic implications, are included in this report. Conodont biofacies throughout the Strathearn Formation are normal marine and suggest middle shelf or deeper depositional environments. The conglomerate units roughly are similar in that they contain only chert and quartzarenite pebbles, but they differ in compositional proportions of the two lithologies. The relative proportion of quartzarenite pebbles increases sixfold in the middle Lower Permian upper conglomerate unit versus its content in the middle Upper Pennsylvanian lower unit, whereas chert pebbles predominate in both units. Various roundness categories of chert pebbles in both conglomerate units of the Strathearn show that the equant pebble class (B/A) = 1 clearly is represented strongly even in the subangular category, the lowest roundness categories for the pebbles. Thus, development of equant pebbles cannot be ascribed totally to a rounding process during predeposition transport. The equant character of many pebbles might, in part, be an original feature inherited from pre-erosion rock fractures and (or) bedding that control overall form of the fragments prior to their release to the transport environment. The allochthon of the Coyote thrust has been thrust above the lower conglomerate unit of the Strathearn during a regionally extensive contractional event in the late Paleozoic. The middle Lower Permian upper conglomerate unit, highest unit recognized in the Strathearn Formation, as well as similarly-aged dolomitic siltstone, onlap directly onto quartzarenite that comprises the allochthon of the Coyote thrust. The conglomerate units thus represent submarine fanglomerates whose quartz grains and quartzarenite fragments of variable roundness and shape were derived from a sedimentologically restored largely southeastward advancing late Paleozoic allochthonous lobe of mostly quartzarenite of the Ordovician Vinini Formation. Chert fragments in the conglomerates probably were derived mostly from Devonian Slaven Chert, including a widespread thick melange unit of the Slaven in the footwall of the Coyote thrust. Some chert pebbles may have been derived from the Ordovician Vinini Formation.
NASA Astrophysics Data System (ADS)
Kletetschka, G.; Wasilewski, P. J.; Ocampo, A.; Pope, K.
2001-05-01
A major focus in the search for fossil life on Mars is on recognition of the proper material on the surface. Heavily cratered surface suggests high concentration of fluidized ejecta deposits. Because magnetism of rocks is an easy measure for remote robotic tools we collected samples of ejecta blanket deposits in southern Mexico and throughout Belize as a Martian analog. The ejecta layer (spheroid bed) that blankets the preexisting Cretaceous dolomite units consists of green glassy fragments, pink and white spheroids (accretionary lapilli) and darker fragments of limestone. The spheroid bed is overlain by a coarse unit of pebbles, cobbles, and boulders, which in more distal locations is composed of a pebble conglomerate. Clasts in the conglomerate (Pooks Pebbles) have striated features consistent with hypervelocity collisions during impact. We examined the magnetic properties of individual fragments within the spheroid bed. Green glassy fragments are highly paramagnetic (0.2 to 0.3 Am2kg-1 at 2 Tesla field) with no ferromagnetic component detected. Pink spheroids are slightly paramagnetic (0.001 to 0.04 Am2kg-1 at 2 Tesla field) and commonly contain soft ferromagnetic component (saturation magnetization (Ms) = 0.02 to 0.03 Am2kg-1). White spheroids have more or less equal amount of paramagnetic and diamagnetic components (-0.08 to 0.03 Am2kg-1 at 2 Tesla field) and no apparent ferromagnetism. Darker fragments are diamagnetic (-0.05 to -0.02 Am2kg-1 at 2 Tesla field) with absence of ferromagnetism. Intense paramagnetic properties of the glass allow easy distinction of glass containing samples. Pink spheroids appear to contain the largest amount of ferromagnetic particles. Diamagnetic dark grains are most likely fragments of limestone. Pebbles from the conglomerate unit are dolomite and consequently diamagnetic. The diamagnetism was established with field magnetic susceptibility measurements. Pebbles have very small natural remanent magnetization (NRM). Thermal remanent magnetization (TRM) acquisition in laboratory field (0.04 mT) does, however, indicate that carriers capable of acquiring TRM are present. Absence of TRM in these pebbles indicates that they were not heated above the Currie point of hematite and/or magnetite (680 C and 570 C respectively) after they were deposited.
How river rocks round: resolving the shape-size paradox.
Domokos, Gabor; Jerolmack, Douglas J; Sipos, Andras Á; Török, Akos
2014-01-01
River-bed sediments display two universal downstream trends: fining, in which particle size decreases; and rounding, where pebble shapes evolve toward ellipsoids. Rounding is known to result from transport-induced abrasion; however many researchers argue that the contribution of abrasion to downstream fining is negligible. This presents a paradox: downstream shape change indicates substantial abrasion, while size change apparently rules it out. Here we use laboratory experiments and numerical modeling to show quantitatively that pebble abrasion is a curvature-driven flow problem. As a consequence, abrasion occurs in two well-separated phases: first, pebble edges rapidly round without any change in axis dimensions until the shape becomes entirely convex; and second, axis dimensions are then slowly reduced while the particle remains convex. Explicit study of pebble shape evolution helps resolve the shape-size paradox by reconciling discrepancies between laboratory and field studies, and enhances our ability to decipher the transport history of a river rock.
Reconstructing the transport history of pebbles on Mars
Szabó, Tímea; Domokos, Gábor; Grotzinger, John P.; Jerolmack, Douglas J.
2015-01-01
The discovery of remarkably rounded pebbles by the rover Curiosity, within an exhumed alluvial fan complex in Gale Crater, presents some of the most compelling evidence yet for sustained fluvial activity on Mars. While rounding is known to result from abrasion by inter-particle collisions, geologic interpretations of sediment shape have been qualitative. Here we show how quantitative information on the transport distance of river pebbles can be extracted from their shape alone, using a combination of theory, laboratory experiments and terrestrial field data. We determine that the Martian basalt pebbles have been carried tens of kilometres from their source, by bed-load transport on an alluvial fan. In contrast, angular clasts strewn about the surface of the Curiosity traverse are indicative of later emplacement by rock fragmentation processes. The proposed method for decoding transport history from particle shape provides a new tool for terrestrial and planetary sedimentology. PMID:26460507
How River Rocks Round: Resolving the Shape-Size Paradox
Domokos, Gabor; Jerolmack, Douglas J.; Sipos, Andras Á.; Török, Ákos
2014-01-01
River-bed sediments display two universal downstream trends: fining, in which particle size decreases; and rounding, where pebble shapes evolve toward ellipsoids. Rounding is known to result from transport-induced abrasion; however many researchers argue that the contribution of abrasion to downstream fining is negligible. This presents a paradox: downstream shape change indicates substantial abrasion, while size change apparently rules it out. Here we use laboratory experiments and numerical modeling to show quantitatively that pebble abrasion is a curvature-driven flow problem. As a consequence, abrasion occurs in two well-separated phases: first, pebble edges rapidly round without any change in axis dimensions until the shape becomes entirely convex; and second, axis dimensions are then slowly reduced while the particle remains convex. Explicit study of pebble shape evolution helps resolve the shape-size paradox by reconciling discrepancies between laboratory and field studies, and enhances our ability to decipher the transport history of a river rock. PMID:24533132
NASA Astrophysics Data System (ADS)
Yuan, Rui; Zhang, Changmin; Tang, Yong; Qu, Jianhua; Guo, Xudong; Sun, Yuqiu; Zhu, Rui; Zhou, Yuanquan (Nancy)
2017-11-01
Large-scale conglomerate fan-delta aprons were typical deposits on the slope of Mahu Depression during the Early Triassic. Without outcrops, it is difficult to study the lithofacies only by examining the limited cores from the main oil-bearing interval of the Baikouquan Formation. Borehole electrical imaging log provides abundant high-resolution geologic information that is obtainable only from real rocks previously. Referring to the lithology and sedimentary structure of cores, a case study of fan-deltas in the Lower Triassic Baikouquan Formation of the Mahu Depression presents a methodology for interpreting the complicated lithofacies utilizing borehole electrical images. Eleven types of lithologies and five types of sedimentary structures are summarized in borehole electrical images. The sediments are fining upward from gravel to silt and clay in the Baikouquan Formation. Fine-pebbles and granules are the main deposits in T1b1 and T1b2, but sandstones, siltstones and mudstones are more developed in T1b3. The main sedimentary textures are massive beddings, cross beddings and scour-and-fill structures. Parallel and horizontal beddings are more developed in T1b3 relatively. On integrated analysis of the lithology and sedimentary structure, eight lithofacies from electrical images, referred to as image lithofacies, is established for the fan-deltas. Granules to coarse-pebbles within massive beddings, granules to coarse-pebbles within cross and parallel beddings, siltstones within horizontal and massive beddings are the most developed lithofacies respectively in T1b1, T1b2 and T1b3. It indicates a gradual rise of the lake level of Mahu depression during the Early Triassic, with the fan-delta aprons retrograding towards to the margin of the basin. Therefore, the borehole electrical imaging log compensate for the limitation of cores of the Baikouquan Formation, providing an effective new approach to interpret the lithofacies of fan-delta.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. Pavel V. Tsvetkov
2009-05-20
This project assessed the advantages and limitations of using minor actinides as a fuel component to achieve ultra-long life Very High Temperature Reactor (VHTR) configurations. Researchers considered and compared the capabilities of pebble-bed and prismatic core designs with advanced actinide fuels to achieve ultra-long operation without refueling. Since both core designs permit flexibility in component configuration, fuel utilization, and fuel management, it is possible to improve fissile properties of minor actinides by neutron spectrum shifting through configuration adjustments. The project studied advanced actinide fuels, which could reduce the long-term radio-toxicity and heat load of high-level waste sent to a geologicmore » repository and enable recovery of the energy contained in spent fuel. The ultra-long core life autonomous approach may reduce the technical need for additional repositories and is capable to improve marketability of the Generation IV VHTR by allowing worldwide deployment, including remote regions and regions with limited industrial resources. Utilization of minor actinides in nuclear reactors facilitates developments of new fuel cycles towards sustainable nuclear energy scenarios.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerhard Strydom
2011-01-01
The need for a defendable and systematic uncertainty and sensitivity approach that conforms to the Code Scaling, Applicability, and Uncertainty (CSAU) process, and that could be used for a wide variety of software codes, was defined in 2008. The GRS (Gesellschaft für Anlagen und Reaktorsicherheit) company of Germany has developed one type of CSAU approach that is particularly well suited for legacy coupled core analysis codes, and a trial version of their commercial software product SUSA (Software for Uncertainty and Sensitivity Analyses) was acquired on May 12, 2010. This report summarized the results of the initial investigations performed with SUSA,more » utilizing a typical High Temperature Reactor benchmark (the IAEA CRP-5 PBMR 400MW Exercise 2) and the PEBBED-THERMIX suite of codes. The following steps were performed as part of the uncertainty and sensitivity analysis: 1. Eight PEBBED-THERMIX model input parameters were selected for inclusion in the uncertainty study: the total reactor power, inlet gas temperature, decay heat, and the specific heat capability and thermal conductivity of the fuel, pebble bed and reflector graphite. 2. The input parameters variations and probability density functions were specified, and a total of 800 PEBBED-THERMIX model calculations were performed, divided into 4 sets of 100 and 2 sets of 200 Steady State and Depressurized Loss of Forced Cooling (DLOFC) transient calculations each. 3. The steady state and DLOFC maximum fuel temperature, as well as the daily pebble fuel load rate data, were supplied to SUSA as model output parameters of interest. The 6 data sets were statistically analyzed to determine the 5% and 95% percentile values for each of the 3 output parameters with a 95% confidence level, and typical statistical indictors were also generated (e.g. Kendall, Pearson and Spearman coefficients). 4. A SUSA sensitivity study was performed to obtain correlation data between the input and output parameters, and to identify the primary contributors to the output data uncertainties. It was found that the uncertainties in the decay heat, pebble bed and reflector thermal conductivities were responsible for the bulk of the propagated uncertainty in the DLOFC maximum fuel temperature. It was also determined that the two standard deviation (2s) uncertainty on the maximum fuel temperature was between ±58oC (3.6%) and ±76oC (4.7%) on a mean value of 1604 oC. These values mostly depended on the selection of the distributions types, and not on the number of model calculations above the required Wilks criteria (a (95%,95%) statement would usually require 93 model runs).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bess, John D.; Sterbentz, James W.; Snoj, Luka
PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen criticalmore » configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.« less
Sedimentology of gravelly Lake Lahontan highstand shoreline deposits, Churchill Butte, Nevada, USA
NASA Astrophysics Data System (ADS)
Blair, Terence C.
1999-02-01
Gravelly shoreline deposits of the latest Pleistocene highstand of Lake Lahontan occur in pristine depositional morphology, and are exposed in gravel pits along Churchill Butte in west-central Nevada. Four environments differentiated at this site are alluvial fan/colluvium, lakeshore barrier spit, lake lower-shoreface spit platform, and lake bottom. Lakeshore deposits abut, along erosional wave headcuts, either unsorted muddy to bouldery colluvium fringing Churchill Butte bedrock, or matrix-supported, cobbly and pebbly debris-flow deposits of the Silver Springs fan. The lakeshore barrier spit is dominated by granule pebble gravel concentrated by wave erosion of the colluvial and alluvial-fan facies. The lakeward side of the barrier consists of beachface deposits of well-sorted granules or pebbles in broad, planar beds 1-10 cm thick and sloping 10-15°. They interfinger downslope with thicker (10-25 cm) and less steep (5-10°) lakeward-dipping beds of fine to medium pebble gravel of the lake upper shoreface. Interstratified with the latter are 10-40-cm-thick sets of high-angle cross-beds that dip southward, alongshore. Higher-angle (15-20°), landward-dipping foresets of similar texture but poorer sorting comprise the proximal backshore on the landward side of the barrier. They were deposited during storm surges that overtopped the barrier berm. Gastropod-rich sand and mud, also deposited by storm-induced washover, are found landward of the gravel foresets in a 15-m-wide backshore pond. Algal stromatolites, ostracodes, and diatoms accumulated in this pond between storm events. The lake lower shoreface, extending from water depths of 2 to 8 m, consists of a southward-prograding spit platform built by longshore drift. The key component of this platform is large-scale sandy pebble gravel in 16° southward-dipping `Gilbert' foresets that grade at a water depth of about 6-7 m to 4°-dipping sandy toesets. A shift from bioturbated lower-shoreface sand and silt, to flat and laminated lake-bottom silt and mud, occurs between water depths of 10-40 m and over a shore-normal distance of ≥250 m. This lake-bottom mud facies, unlike the others, is areally expansive.
NASA Astrophysics Data System (ADS)
Zarins, Arturs; Valtenbergs, Oskars; Kizane, Gunta; Supe, Arnis; Knitter, Regina; Kolb, Matthias H. H.; Leys, Oliver; Baumane, Larisa; Conka, Davis
2016-03-01
Lithium orthosilicate (Li4SiO4) pebbles with 2.5 wt.% excess of silicon dioxide (SiO2) are the European Union's designated reference tritium breeding ceramics for the Helium Cooled Pebble Bed (HCPB) Test Blanket Module (TBM). However, the latest irradiation experiments showed that the reference Li4SiO4 pebbles may crack and form fragments under operation conditions as expected in the HCPB TBM. Therefore, it has been suggested to change the chemical composition of the reference Li4SiO4 pebbles and to add titanium dioxide (TiO2), to obtain lithium metatitanate (Li2TiO3) as a second phase. The aim of this research was to investigate the formation and accumulation of radiation-induced defects (RD) and radiolysis products (RP) in the modified Li4SiO4 pebbles with different contents of TiO2 for the first time, in order to estimate and compare radiation stability. The reference and the modified Li4SiO4 pebbles were irradiated with accelerated electrons (E = 5 MeV) up to 5000 MGy absorbed dose at 300-990 K in a dry argon atmosphere. By using electron spin resonance (ESR) spectroscopy it was determined that in the modified Li4SiO4 pebbles, several paramagnetic RD and RP are formed and accumulated, like, E' centres (SiO33-/TiO33-), HC2 centres (SiO43-/TiO3-) etc. On the basis of the obtained results, it is concluded that the modified Li4SiO4 pebbles with TiO2 additions have comparable radiation stability with the reference pebbles.
NASA Astrophysics Data System (ADS)
Valyrakis, Manousos; Farhadi, Hamed
2017-04-01
This study, reports on the analysis of appropriately designed fluvial experiments investigating the transport of coarse bed material using two approaches: particle tracking velocimetry (PTV) to extract bulk transport parameters and inertia sensor data (via the use of "smart-pebbles") to obtain refined statistics for the transport of the particle. The purpose of this study is to provide further insight on the use of technologies (optical techniques and inertial sensors) that are complementary one to another, towards producing improved estimates of bedload transport in natural rivers. The experiments are conducted in the Water Engineering Lab at the University of Glasgow on a tilting recirculating flume with 90 cm width. Ten different discharges have been implemented in this study. A couple of fake beds, made of well-packed beads of three different sizes have been set up in the flume. The particle motion is captured by two high-speed commercial cameras, responsible for recording the top view covering the full length of the fake beds over which the "smart-pebble" is allowed to be transported. "Smart-pebbles" of four different densities are initially located at the upstream end of the configuration, fully exposed to the instream flow. These are instrumented with appropriate inertial sensors that allow recording the particle's motion, in the Langrangian frame, in high resolution. Specifically, the "smart-pebble" employ a tri-axial gyroscope, magnetometer and accelerometer, which are utilized to obtain minute linear and angular displacements in high frequency (up to 200Hz). However, these are not enough to accurately reconstruct the full trajectory of the particles rolling downstream. To that goal optical methods are used. In particular, by using particle tracking velocimetry data and image processing techniques, the location, orientation and velocities of the "smart-pebble" are derived. Specific consideration is given to appropriately preprocess the obtained video, as the captured frames need to be flatted and calibrated due to lens distortion. Special effort is made to ensure the center of mass of the "smart-pebble" in each frame is well identified (using image thresholding techniques to improve colour contrast), so that its trajectory comprising of concequtive displacements is accurately defined. It is sensible to follow a probabilistic analytical approach, considering the stochastic nature of particle transport at low transport rates. By using the output data from the camera and inertial sensor, particle transport velocity and acceleration time-series, are produced for each fluvial transport experiment. To that goal empirical probability distribution functions (PDFs) are derived for the particle's motion features from both techniques and best fits for these are estimated. The parameters of the probability distribution functions are plotted against the Reynolds particle number for all the transport experiments, to identify any trends. Such information can help calibrate the "smart-pebble" for sediment transport studies and can also offer novel insights on the mechanisms of particle transport, from a Lagnrangian perspective.
The Nuclear Renaissance — Implications on Quantitative Nondestructive Evaluations
NASA Astrophysics Data System (ADS)
Matzie, Regis A.
2007-03-01
The world demand for energy is growing rapidly, particularly in developing countries that are trying to raise the standard of living for billions of people, many of whom do not even have access to electricity. With this increased energy demand and the high and volatile price of fossil fuels, nuclear energy is experiencing resurgence. This so-called nuclear renaissance is broad based, reaching across Asia, the United States, Europe, as well as selected countries in Africa and South America. Some countries, such as Italy, that have actually turned away from nuclear energy are reconsidering the advisability of this design. This renaissance provides the opportunity to deploy more advanced reactor designs that are operating today, with improved safety, economy, and operations. In this keynote address, I will briefly present three such advanced reactor designs in whose development Westinghouse is participating. These designs include the advanced passive PWR, AP1000, which recently received design certification for the US Nuclear Regulatory Commission; the Pebble Bed Modular reactor (PBMR) which is being demonstrated in South Africa; and the International Reactor Innovative and Secure (IRIS), which was showcased in the US Department of Energy's recently announced Global Nuclear Energy Partnership (GNEP), program. The salient features of these designs that impact future requirements on quantitative nondestructive evaluations will be discussed. Such features as reactor vessel materials, operating temperature regimes, and new geometric configurations will be described, and mention will be made of the impact on quantitative nondestructive evaluation (NDE) approaches.
Benchmark Simulation of Natural Circulation Cooling System with Salt Working Fluid Using SAM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, K. K.; Scarlat, R. O.; Hu, R.
Liquid salt-cooled reactors, such as the Fluoride Salt-Cooled High-Temperature Reactor (FHR), offer passive decay heat removal through natural circulation using Direct Reactor Auxiliary Cooling System (DRACS) loops. The behavior of such systems should be well-understood through performance analysis. The advanced system thermal-hydraulics tool System Analysis Module (SAM) from Argonne National Laboratory has been selected for this purpose. The work presented here is part of a larger study in which SAM modeling capabilities are being enhanced for the system analyses of FHR or Molten Salt Reactors (MSR). Liquid salt thermophysical properties have been implemented in SAM, as well as properties ofmore » Dowtherm A, which is used as a simulant fluid for scaled experiments, for future code validation studies. Additional physics modules to represent phenomena specific to salt-cooled reactors, such as freezing of coolant, are being implemented in SAM. This study presents a useful first benchmark for the applicability of SAM to liquid salt-cooled reactors: it provides steady-state and transient comparisons for a salt reactor system. A RELAP5-3D model of the Mark-1 Pebble-Bed FHR (Mk1 PB-FHR), and in particular its DRACS loop for emergency heat removal, provides steady state and transient results for flow rates and temperatures in the system that are used here for code-to-code comparison with SAM. The transient studied is a loss of forced circulation with SCRAM event. To the knowledge of the authors, this is the first application of SAM to FHR or any other molten salt reactors. While building these models in SAM, any gaps in the code’s capability to simulate such systems are identified and addressed immediately, or listed as future improvements to the code.« less
1991-08-01
specifications are taken primarily from the 1983 version of the ASME Boiler and Pressure Vessel Code . Other design requirements were developea from standard safe...rules and practices of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code to provide a safe and reliable system
Summary of Planned Implementation for the HTGR Lessons Learned Applicable to the NGNP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ian Mckirdy
2011-09-01
This document presents a reconciliation of the lessons learned during a 2010 comprehensive evaluation of pertinent lessons learned from past and present high temperature gas-cooled reactors that apply to the Next Generation Nuclear Plant Project along with current and planned activities. The data used are from the latest Idaho National Laboratory research and development plans, the conceptual design report from General Atomics, and the pebble bed reactor technology readiness study from AREVA. Only those lessons related to the structures, systems, and components of the Next Generation Nuclear Plant (NGNP), as documented in the recently updated lessons learned report are addressed.more » These reconciliations are ordered according to plant area, followed by the affected system, subsystem, or component; lesson learned; and finally an NGNP implementation statement. This report (1) provides cross references to the original lessons learned document, (2) describes the lesson learned, (3) provides the current NGNP implementation status with design data needs associated with the lesson learned, (4) identifies the research and development being performed related to the lesson learned, and (5) summarizes with a status of how the lesson learned has been addressed by the NGNP Project.« less
NASA Astrophysics Data System (ADS)
Gupta, Sanjeev; Edgar, Lauren; Williams, Rebecca; Rubin, David; Yingst, Aileen; Lewis, Kevin; Kocurek, Gary; Anderson, Ryan; Dromart, Gilles; Edgett, Ken; Hardgrove, Craig; Kah, Linda; Mangold, Nicolas; Milliken, Ralph; Minitti, Michelle; Palucis, Marisa; Rice, Melissa; Stack, Katie; Sumner, Dawn; Williford, Ken
2014-05-01
Since leaving Yellowknife Bay (summer 2013), Mars Science Laboratory Curiosity has investigated a number of key outcrops as it traverses along the Rapid Transit Route toward the entry point to begin its investigations of the extensive rock outcrops at the base of Mount Sharp. Rover observations are characterizing the variability of lithologies and sedimentary facies along the traverse and establishing stratigraphic relationships with the aim of reconstructing depositional processes and palaeoenvironments. Here, we report on sedimentological and stratigraphic observations based on images from the Mastcam and MAHLI instruments at Shaler and the Darwin waypoint. The informally named Shaler outcrop, which forms part of the Glenelg member of the Yellowknife Bay formation [1] is remarkable for the preservation of a rich suite of sedimentary structures and architecture, and was investigated on sols 120-121 and 309-324. The outcrop forms a pebbly sandstone body that is ~0.7 m thick and extends for up to 20 m. Shaler is largely characterized by pebbly sandstone facies showing well-developed decimeter-scale trough cross-stratification. Bedding geometries indicate sub-critical angles of climb, resulting in preservation of only the lee slope deposits. The grain size, and the presence and scale of cross-stratification imply sediment transport and deposition by unidirectional currents in a fluvial sedimentary environment. Curiosity investigated the informally named Darwin waypoint between sols 390 and 401, making detailed Mastcam and MAHLI observations at two separate locations. The Darwin outcrop comprises light-toned sandstone beds separated by darker pebbly sandstones. MAHLI observations permit differentiation of distinct sedimentary facies. The Altar Mountain facies is a poorly sorted pebbly sandstone that is rich in fine pebbles. Pebbles are sub-angular to sub-rounded in shape and show no preferred orientation or fabric. Pebbles and sand grains show clast-to-clast contacts. The clast-supported nature of the facies, the presence of coarse sand grains to fine pebbles, and the occurrence of some rounding of clasts indicates that these are sedimentary clasts that have been transported by aqueous flows. However, the absence of a well-sorted fabric, size grading of clast, and major rounding of grains suggests that these pebbly sandstones were rapidly deposited rather than built up from sustained fluvial reworking, implying that the deposits may be the result of more ephemeral river flows rather than sustained flow discharges. The Bardin Bluffs facies overlies the Altar Mountain facies and shows a more sand-dominated fabric with a smaller proportion of floating fine pebbles. This facies is also clast-supported but contains fewer pebbles and shows an overall fining-up trend. This facies is also interpreted to represent fluvial deposition albeit with a different grain size distribution than the Altar Mountains facies. We will compare and contrast the varying sedimentary fabrics and facies to develop models for the variety of aqueous fluvial transport processes that have led to the deposition of sedimentary rocks en route to Mount Sharp. The origin of these sedimentary rocks with relation to fluvial fan processes in Gale Crater will be discussed. References: [1] Grotzinger, J.P. et al Science 2013, doi: 10.1126/science.1242777.
NASA Astrophysics Data System (ADS)
Zarins, A.; Supe, A.; Kizane, G.; Knitter, R.; Baumane, L.
2012-10-01
One of the technological problems of a fusion reactor is the change in composition and structure of ceramic breeders (Li4SiO4 or Li2TiO3 pebbles) during long-term operation. In this study changes in the composition and microstructure of Li4SiO4 pebbles with 2.5 wt% silicon dioxide additions, fabricated by a melt-spraying process, were investigated after fast electron irradiation (E = 5 MeV, dose rate up to 88 MGy h-1) with high absorbed dose from 1.3 to 10.6 GGy at high temperature (543-573 K) in air and argon atmosphere. Three types of pebbles with different diameters and grain sizes were investigated. Products of radiolysis were studied by means of FTIR and XRD. TSL and ESR spectroscopy were used to detect radiation defects. SEM was used to investigate structure of pebbles. Experiments showed that Li4SiO4 pebbles with a diameter of 500 μm had similar radiation stability as pebbles with diameter <50 μm which were annealed at 1173 K for 128 h in argon and air atmosphere. As well as determined that lithium orthosilicate pebbles with size 500 (1243 K 168 h) and <50 μm (1173 K 128 h) have a higher radiation stability in air and argon atmosphere than pebbles with size <50 μm (1073 K 1 h). Degree of decomposition α10.56 of the lithium orthosilicate pebbles at an absorbed dose of 10.56 GGy in air atmosphere is 1.5% and 0.15% at irradiation in dry argon. It has been suggested that changes of radiation stability of lithium orthosilicate pebbles in air atmosphere comparing with irradiated pebbles in argon atmosphere is effect of chemical reaction of lithium orthosilicate surface with air containing - H2O and CO2 in irradiation process. As well as it has been suggested that silicon dioxide - lithium metasilicate admixtures do not affect formation mechanism of radiation defect and products of radiolysis in lithium orthosilicate pebbles.
Overview of Indian activities on fusion reactor materials
NASA Astrophysics Data System (ADS)
Banerjee, Srikumar
2014-12-01
This paper on overview of Indian activities on fusion reactor materials describes in brief the efforts India has made to develop materials for the first wall of a tokamak, its blanket and superconducting magnet coils. Through a systematic and scientific approach, India has developed and commercially produced reduced activation ferritic/martensitic (RAFM) steel that is comparable to Eurofer 97. Powder of low activation ferritic/martensitic oxide dispersion strengthened steel with characteristics desired for its application in the first wall of a tokamak has been produced on the laboratory scale. V-4Cr-4Ti alloy was also prepared in the laboratory, and kinetics of hydrogen absorption in this was investigated. Cu-1 wt%Cr-0.1 wt%Zr - an alloy meant for use as heat transfer elements for hypervapotrons and heat sink for the first wall - was developed and characterized in detail for its aging behavior. The role of addition of a small quantity of Zr in its improved fatigue performance was delineated, and its diffusion bonding with both W and stainless steel was achieved using Ni as an interlayer. The alloy was produced in large quantities and used for manufacturing both the heat transfer elements and components for the International Thermonuclear Experimental Reactor (ITER). India has proposed to install and test a lead-lithium cooled ceramic breeder test blanket module (LLCB-TBM) at ITER. To meet this objective, efforts have been made to produce and characterize Li2TiO3 pebbles, and also improve the thermal conductivity of packed beds of these pebbles. Liquid metal loops have been set up and corrosion behavior of RAFM steel in flowing Pb-Li eutectic has been studied in the presence as well as absence of magnetic fields. To prevent permeation of tritium and reduce the magneto-hydro-dynamic drag, processes have been developed for coating alumina on RAFM steel. Apart from these activities, different approaches being attempted to make the U-shaped first wall of the TBM box are briefly described. India has also initiated the development of fusion grade superconductors. Success achieved in the fabrication of Nb3Sn based multi-filamentary wires using the internal tin process and cable-in-conduit-conductors is also briefly presented.
Supercell Depletion Studies for Prismatic High Temperature Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Ortensi
2012-10-01
The traditional two-step method of analysis is not accurate enough to represent the neutronic effects present in the prismatic high temperature reactor concept. The long range coupling of the various regions in high temperature reactors poses a set of challenges that are not seen in either LWRs or fast reactors. Unlike LWRs, which exhibit large, localized effects, the dominant effects in PMRs are, for the most part, distributed over larger regions, but with lower magnitude. The 1-D in-line treatment currently used in pebble bed reactor analysis is not sufficient because of the 2-D nature of the prismatic blocks. Considerable challengesmore » exist in the modeling of blocks in the vicinity of reflectors, which, for current small modular reactor designs with thin annular cores, include the majority of the blocks. Additional challenges involve the treatment of burnable poisons, operational and shutdown control rods. The use of a large domain for cross section preparation provides a better representation of the neutron spectrum, enables the proper modeling of BPs and CRs, allows the calculation of generalized equivalence theory parameters, and generates a relative power distribution that can be used in compact power reconstruction. The purpose of this paper is to quantify the effects of the reflector, burnable poison, and operational control rods on an LEU design and to delineate an analysis approach for the Idaho National Laboratory. This work concludes that the use of supercells should capture these long-range effects in the preparation of cross sections and along with a set of triangular meshes to treat BPs, and CRs a high fidelity neutronics computation is attainable.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Three solid-breeder water-cooled blanket concepts have been developed for ITER based on a multilayer configuration. The primary difference among the concepts is in the fabricated form of breeder and multiplier. All the concepts have beryllium for neutron multiplication and solid-breeder temperature control. The blanket design does not use helium gaps or insulator material to control the solid breeder temperature. Lithium oxide (Li{sub 2}O) and lithium zirconate (Li{sub 2}ZrO{sub 3}) are the primary and the backup breeder materials, respectively. The lithium-6 enrichment is 95%. The use of high lithium-6 enrichment reduces the solid breeder volume required in the blanket and consequentlymore » the total tritium inventory in the solid breeder material. Also, it increases the blanket capability to accommodate power variation. The multilayer blanket configuration can accommodate up to a factor of two change in the neutron wall loading without violating the different design guidelines. The blanket material forms are sintered products and packed bed of small pebbles. The first concept has a sintered product material (blocks) for both the beryllium multiplier and the solid breeder. The second concept, the common ITER blanket, uses a packed bed breeder and beryllium blocks. The last concept is similar to the first except for the first and the last beryllium zones. Two small layers of beryllium pebbles are located behind the first wall and the back of the last beryllium zone to reduce the total inventory of the beryllium material and to improve the blanket performance. The design philosophy adopted for the blanket is to produce the necessary tritium required for the ITER operation and to operate at power reactor conditions as much as possible. Also, the reliability and the safety aspects of the blanket are enhanced by using low-pressure water coolant and the separation of the tritium purge flow from the coolant system by several barriers.« less
NASA Astrophysics Data System (ADS)
Srivastava, V. K.; Singh, B. P.
2017-04-01
Late Paleocene sedimentation in the pericratonic Kachchh Basin marks the initial marine transgression during the Cenozoic era. A 17 m thick sandstone-dominated succession, known as the clastic member (CM) of the Matanomadh Formation (MF), is exposed sporadically in the basin. Three facies associations are reconstructed in the succession in three different sections. Facies association-1 contains matrix-supported pebbly conglomerate facies, horizontally-laminated sandstone-mudstone alternation facies, hummocky- and swaley cross-bedded sandstone facies, wave-rippled sandstone facies and climbing ripple cross-laminated sandstone facies. This facies association developed between shoreface and foreshore zone under the influence of storms on a barrier ridge. Facies association-2 contains sigmoidal cross-bedded sandstone facies, sandstone-mudstone alternation facies, flaser-bedded sandstone facies, herringbone cross-bedded sandstone facies and tangential cross-bedded sandstone facies. This facies association possessing tidal bundles and herringbone cross-beds developed on a tidal flat with strong tidal influence. Facies association-3 comprises pebbly sandstone facies, horizontally-bedded sandstone facies, tangential cross-bedded sandstone facies exhibiting reactivation surfaces and tabular cross-bedded sandstone facies. This facies association represents sedimentation in a river-dominated estuary and reactivation surfaces and herringbone cross-beds indicating tidal influence. The bipolar paleocurrent pattern changes to unipolar up-section because of the change in the depositional currents from tidal to fluvial. The sedimentation took place in an open coast similar to the Korean coast. The presence of neap-spring tidal rhythmites further suggests that a semidiurnal system similar to the modern day Indian Ocean was responsible for the sedimentation. Here, the overall sequence developed during the transgressive phase where barrier ridge succession is succeeded by the tidal flat succession and the latter, in turn, is succeeded by the estuarine succession. This study resolves the most debated issue of initial marine transgression in the Kachchh Basin during the Cenozoic.
Design and optimization of resistance wire electric heater for hypersonic wind tunnel
NASA Astrophysics Data System (ADS)
Rehman, Khurram; Malik, Afzaal M.; Khan, I. J.; Hassan, Jehangir
2012-06-01
The range of flow velocities of high speed wind tunnels varies from Mach 1.0 to hypersonic order. In order to achieve such high speed flows, a high expansion nozzle is employed in the converging-diverging section of wind tunnel nozzle. The air for flow is compressed and stored in pressure vessels at temperatures close to ambient conditions. The stored air is dried and has minimum amount of moisture level. However, when this air is expanded rapidly, its temperature drops significantly and liquefaction conditions can be encountered. Air at near room temperature will liquefy due to expansion cooling at a flow velocity of more than Mach 4.0 in a wind tunnel test section. Such liquefaction may not only be hazardous to the model under test and wind tunnel structure; it may also affect the test results. In order to avoid liquefaction of air, a pre-heater is employed in between the pressure vessel and the converging-diverging section of a wind tunnel. A number of techniques are being used for heating the flow in high speed wind tunnels. Some of these include the electric arc heating, pebble bed electric heating, pebble bed natural gas fired heater, hydrogen burner heater, and the laser heater mechanisms. The most common are the pebble bed storage type heaters, which are inefficient, contaminating and time consuming. A well designed electrically heating system can be efficient, clean and simple in operation, for accelerating the wind tunnel flow up to Mach 10. This paper presents CFD analysis of electric preheater for different configurations to optimize its design. This analysis has been done using ANSYS 12.1 FLUENT package while geometry and meshing was done in GAMBIT.
Hill, B.R.; Hill, J.R.; Nolan, K.M.
1990-01-01
Data were collected during a 5-year study of sediment sources in four drainage basins tributary to Lake Tahoe, California-Nevada. The study areas include the Blackwood Creek, General Creek, Edgewood Creek, and Logan House Creek basins. Data include changes in bank and bed positions at channel cross sections; results of stream-channel inventories; analyses of bank and bed material samples; tabulations of bed-material pebble counts; measured rates of hillslope erosion; dimensions of gullies; suspended-sediment data collected during synoptic snowmelt sampling; and physiographic data for the four study basins. (USGS)
Neutron dose rate analysis on HTGR-10 reactor using Monte Carlo code
NASA Astrophysics Data System (ADS)
Suwoto; Adrial, H.; Hamzah, A.; Zuhair; Bakhri, S.; Sunaryo, G. R.
2018-02-01
The HTGR-10 reactor is cylinder-shaped core fuelled with kernel TRISO coated fuel particles in the spherical pebble with helium cooling system. The outlet helium gas coolant temperature outputted from the reactor core is designed to 700 °C. One advantage HTGR type reactor is capable of co-generation, as an addition to generating electricity, the reactor was designed to produce heat at high temperature can be used for other processes. The spherical fuel pebble contains 8335 TRISO UO2 kernel coated particles with enrichment of 10% and 17% are dispersed in a graphite matrix. The main purpose of this study was to analysis the distribution of neutron dose rates generated from HTGR-10 reactors. The calculation and analysis result of neutron dose rate in the HTGR-10 reactor core was performed using Monte Carlo MCNP5v1.6 code. The problems of double heterogeneity in kernel fuel coated particles TRISO and spherical fuel pebble in the HTGR-10 core are modelled well with MCNP5v1.6 code. The neutron flux to dose conversion factors taken from the International Commission on Radiological Protection (ICRP-74) was used to determine the dose rate that passes through the active core, reflectors, core barrel, reactor pressure vessel (RPV) and a biological shield. The calculated results of neutron dose rate with MCNP5v1.6 code using a conversion factor of ICRP-74 (2009) for radiation workers in the radial direction on the outside of the RPV (radial position = 220 cm from the center of the patio HTGR-10) provides the respective value of 9.22E-4 μSv/h and 9.58E-4 μSv/h for enrichment 10% and 17%, respectively. The calculated values of neutron dose rates are compliant with BAPETEN Chairman’s Regulation Number 4 Year 2013 on Radiation Protection and Safety in Nuclear Energy Utilization which sets the limit value for the average effective dose for radiation workers 20 mSv/year or 10μSv/h. Thus the protection and safety for radiation workers to be safe from the radiation source has been fulfilled. From the result analysis, it can be concluded that the model of calculation result of neutron dose rate for HTGR-10 core has met the required radiation safety standards.
WATER PROCESS SYSTEM FLOW DIAGRAM FOR MTR, TRA603. SUMMARY OF ...
WATER PROCESS SYSTEM FLOW DIAGRAM FOR MTR, TRA-603. SUMMARY OF COOLANT FLOW FROM WORKING RESERVOIR TO INTERIOR OF REACTOR'S THERMAL SHIELD. NAMES TANK SECTIONS. PIPE AND DRAIN-LINE SIZES. SHOWS DIRECTION OF AIR FLOW THROUGH PEBBLE AND GRAPHITE BLOCK ZONE. NEUTRON CURTAIN AND THERMAL COLUMN DOOR. BLAW-KNOX 3150-92-7, 3/1950. INL INDEX NO. 531-0603-51-098-100036, REV. 6. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Bioremoval of trivalent chromium using Bacillus biofilms through continuous flow reactor.
Sundar, K; Sadiq, I Mohammed; Mukherjee, Amitava; Chandrasekaran, N
2011-11-30
Present study deals with the applicability of bacterial biofilms for the bioremoval of trivalent chromium from tannery effluents. A continuous flow reactor was designed for the development of biofilms on different substrates like glass beads, pebbles and coarse sand. The parameters for the continuous flow reactor were 20 ml/min flow rate at 30°C, pH4. Biofilm biomass on the substrates was in the following sequence: coarse sand>pebbles>glass beads (4.8 × 10(7), 4.5 × 10(7) and 3.5 × 10(5)CFU/cm(2)), which was confirmed by CLSM. Biofilms developed using consortium of Bacillus subtilis and Bacillus cereus on coarse sand had more surface area and was able to remove 98% of Cr(III), SEM-EDX proved 92.60% Cr(III) adsorption on biofilms supported by coarse sand. Utilization of Bacillus biofilms for effective bioremoval of Cr(III) from chrome tanning effluent could be a better option for tannery industry, especially during post chrome tanning operation. Copyright © 2011 Elsevier B.V. All rights reserved.
Suman; Kardam, Abhishek; Gera, Meeta; Jain, V K
2015-01-01
The present work proposed a nanocellulose (NC)-silver nanoparticles (AgNPs) embedded pebbles-based composite material as a novel reusable cost-effective water purification device for complete removal of dyes, heavy metals and microbes. NC was prepared using acid hydrolysis of cellulose. The AgNPs were generated in situ using glucose and embedded within the porous concrete pebbles by the technique of inter-diffusion of ion, providing a very strong binding of nanoparticles within the porous pebbles and thus preventing any nanomaterials leaching. Fabrication of a continual running water purifier was achieved by making different layering of NC and Ag nano-embedded pebbles in a glass column. The water purifier exhibited not only excellent dye and heavy metal adsorption capacity, but also long-term antibacterial activity against pathogenic and non-pathogenic bacterial strains. The adsorption mainly occurred through electrostatic interaction and pore diffusion also contributed to the process. The bed column purifier has shown 99.48% Pb(II) and 98.30% Cr(III) removal efficiency along with 99% decontamination of microbial load at an optimum working pH of 6.0. The high adsorption capacity and reusability, with complete removal of dyes, heavy metals and Escherichia coli from the simulated contaminated water of composite material, will provide new opportunities to develop a cost-effective and eco-friendly water purifier for commercial application.
NASA Astrophysics Data System (ADS)
Stump, Edmund; Miller, Julia M. G.; Korsch, Russell J.; Edgerton, David G.
1988-03-01
Late Proterozoic glacial deposits have been found on all continents except Antarctica. Here we describe four units of Late Proterozoic diamictite, with a total thickness of about 10m, from Panorama Point, Nimrod Glacier area, Antarctica, which have characteristics compatible with glaciogenic origin. The diamictite occurs within the Goldie Formation, a sequence of marine turbidites, and is associated with a unit of mafic pillow lavas. The diamictite is commonly structureless and in places laminated. Coarse clasts occur as scattered pebbles and cobbles and as pebbly pods and beds. No striated or faceted clasts were found. A few pebbles may pierce the laminae, but a drop-stone origin is uncertain. Deformation and metamorphism have obscured subtleties of original sedimentary structure. Outsize clasts in laminated sandy siltstone (now schistose) suggest a glaciogenic origin for these diamictites, but deposition by mass-flow processes cannot be ruled out. The discovery in Antarctica of possible Late Proterozoic glaciogenic deposits extends their geographic distribution to all of the major continental masses.
Moving bed reactor setup to study complex gas-solid reactions.
Gupta, Puneet; Velazquez-Vargas, Luis G; Valentine, Charles; Fan, Liang-Shih
2007-08-01
A moving bed scale reactor setup for studying complex gas-solid reactions has been designed in order to obtain kinetic data for scale-up purpose. In this bench scale reactor setup, gas and solid reactants can be contacted in a cocurrent and countercurrent manner at high temperatures. Gas and solid sampling can be performed through the reactor bed with their composition profiles determined at steady state. The reactor setup can be used to evaluate and corroborate model parameters accounting for intrinsic reaction rates in both simple and complex gas-solid reaction systems. The moving bed design allows experimentation over a variety of gas and solid compositions in a single experiment unlike differential bed reactors where the gas composition is usually fixed. The data obtained from the reactor can also be used for direct scale-up of designs for moving bed reactors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, S.K.; Zambrano, E.
The Trujillo Formation, overlying the Paleocene Cerro Verde and Valle Hondo formations, reveals a turbiditic origin in a lowstand shelf-edge and bathyal setting in two excellent road sections on the Valera-Carache road and many creek sections. The basal outcrop shows well developed fining upward (FU) sequences of proximal channel turbidite and overbank origin (abandonment phase) and minor coarsening upward (CU) sequences representing progradational pulse in overbank areas. The FU (and thinning-upward) sequence, overlying a shale, consists of: (a) basal stacked conglomeratic arenites (probably inner fan channels) with graded beds, imbricate casts and transported shells; (b) a sand/shale alternating unit (channelmore » margin/interchannel) with flame structure, lenticular bedding, infrequent Tb-d Sequence, rippled flats, and rare Planolites; and (c) a dark shale (overbank-interchannel lows) with scarce Chondrites and Scaladtuba traces. The CU sequence consists of thickening-upward heterolithic facies overlain by lenticular stacked pebbly arenites. The upper unit exposed near Puente Gomez is a typical progradational lobe starting with a basal shale, with intraformational diastems and slumped beds, and Tb-d and Tb-e sequences in thin intercalated sandstones; a heterolithic facies with flute/groove casts, Planolites, Thalassinoides and Neonereites occurs between the shale and a thick cross-stratified sandstone at the top. This CU lobe sequence is discordantly(?) overlain by a thin wedge of massive bedded pebbly sandstones of Middle Eocene(?) Misoa Formation. Unlike the southwesterly sourced subsurface turbidites, those in this area were probably sourced from both the south and north, though locally the southern source might have been more important.« less
Installation package - SIMS prototype system 1A
NASA Technical Reports Server (NTRS)
1976-01-01
This report consists of details for the installation, operation and maintenance of a prototype heating and hot water system, designed for residential or light commercial applications. This system consists of the following subsystems: air type collectors, pebble bed thermal storage, air handling unit, air to water heat exchanger, hot water preheat tank, auxiliary energy, ducting system.
Catalytic wet oxidation of phenol in a trickle bed reactor over a Pt/TiO2 catalyst.
Maugans, Clayton B; Akgerman, Aydin
2003-01-01
Catalytic wet oxidation of phenol was studied in a batch and a trickle bed reactor using 4.45% Pt/TiO2 catalyst in the temperature range 150-205 degrees C. Kinetic data were obtained from batch reactor studies and used to model the reaction kinetics for phenol disappearance and for total organic carbon disappearance. Trickle bed experiments were then performed to generate data from a heterogeneous flow reactor. Catalyst deactivation was observed in the trickle bed reactor, although the exact cause was not determined. Deactivation was observed to linearly increase with the cumulative amount of phenol that had passed over the catalyst bed. Trickle bed reactor modeling was performed using a three-phase heterogeneous model. Model parameters were determined from literature correlations, batch derived kinetic data, and trickle bed derived catalyst deactivation data. The model equations were solved using orthogonal collocations on finite elements. Trickle bed performance was successfully predicted using the batch derived kinetic model and the three-phase reactor model. Thus, using the kinetics determined from limited data in the batch mode, it is possible to predict continuous flow multiphase reactor performance.
Method and apparatus for a combination moving bed thermal treatment reactor and moving bed filter
Badger, Phillip C.; Dunn, Jr., Kenneth J.
2015-09-01
A moving bed gasification/thermal treatment reactor includes a geometry in which moving bed reactor particles serve as both a moving bed filter and a heat carrier to provide thermal energy for thermal treatment reactions, such that the moving bed filter and the heat carrier are one and the same to remove solid particulates or droplets generated by thermal treatment processes or injected into the moving bed filter from other sources.
Two-dimensional over-all neutronics analysis of the ITER device
NASA Astrophysics Data System (ADS)
Zimin, S.; Takatsu, Hideyuki; Mori, Seiji; Seki, Yasushi; Satoh, Satoshi; Tada, Eisuke; Maki, Koichi
1993-07-01
The present work attempts to carry out a comprehensive neutronics analysis of the International Thermonuclear Experimental Reactor (ITER) developed during the Conceptual Design Activities (CDA). The two-dimensional cylindrical over-all calculational models of ITER CDA device including the first wall, blanket, shield, vacuum vessel, magnets, cryostat and support structures were developed for this purpose with a help of the DOGII code. Two dimensional DOT 3.5 code with the FUSION-40 nuclear data library was employed for transport calculations of neutron and gamma ray fluxes, tritium breeding ratio (TBR), and nuclear heating in reactor components. The induced activity calculational code CINAC was employed for the calculations of exposure dose rate after reactor shutdown around the ITER CDA device. The two-dimensional over-all calculational model includes the design specifics such as the pebble bed Li2O/Be layered blanket, the thin double wall vacuum vessel, the concrete cryostat integrated with the over-all ITER design, the top maintenance shield plug, the additional ring biological shield placed under the top cryostat lid around the above-mentioned top maintenance shield plug etc. All the above-mentioned design specifics were included in the employed calculational models. Some alternative design options, such as the water-rich shielding blanket instead of lithium-bearing one, the additional biological shield plug at the top zone between the poloidal field (PF) coil No. 5, and the maintenance shield plug, were calculated as well. Much efforts have been focused on analyses of obtained results. These analyses aimed to obtain necessary recommendations on improving the ITER CDA design.
SIMS prototype system 1: Design data brochure. [solar heating system
NASA Technical Reports Server (NTRS)
1978-01-01
A prototype solar heating and hot water system using air as the collector fluid and a pebble bed for heat storage was designed for installation into a single family dwelling. The system, subsystem, and installation requirements are described. System operation and performance are discussed, and procedures for sizing the system to a specific site are presented.
The geology of the Florida land-pebble phosphate deposits
Cathcart, J.B.; Blade, L.V.; Davidson, D.F.; Ketner, K.B.
1952-01-01
The land-pebble phosphate district is on the Gulf Coastal Plain of Florida. The phosphate deposits are in the Bone Valley formation, dated Pliocene by most writers. These strata overlie the Miocene Hawthorn formation and are overlain by consolidated sands 3 to 20 feet thick. The minable phosphate deposits, called “matrix” in the district, range from a featheredge to about 50 feet in thickness and consist of phosphatic pellets and nodules, quartz sand, and montmorillonitic clay in about equal proportions. Locally the matrix displays cross-bedding and horizontal laminations, but elsewhere it is structureless. The phosphorite particles, composed largely of carbonate-fluorapatite, range in diameter from less than 0.1 mm to about 60 cm and in P2O5 content from 30 to 36 percent. Coarse-pebble deposits, containing 30 to 34 percent P2O5 are found mainly on basement highs; and fine-pebble deposits, containing 32 to 36 percent P2O5 are, are found in basement lows. Deposits in the northern part of the field contain more phosphate particles and their P2O5 content is higher than those in the southern part. The upper part of the phosphatic strata is leached to an advanced degree and consists of quartz sand and clay-sized particules of pseudowavellite and wavellite. The leached zone ranges in thickness from a featheredge to 60 feet. The origin of the land-pebble deposits is incompletely known. Possible modes of origin are a residuum of Miocene age, or a reworked residuum of Pliocene or Quaternary age.
Design optimization of first wall and breeder unit module size for the Indian HCCB blanket module
NASA Astrophysics Data System (ADS)
Deepak, SHARMA; Paritosh, CHAUDHURI
2018-04-01
The Indian test blanket module (TBM) program in ITER is one of the major steps in the Indian fusion reactor program for carrying out the R&D activities in the critical areas like design of tritium breeding blankets relevant to future Indian fusion devices (ITER relevant and DEMO). The Indian Lead–Lithium Cooled Ceramic Breeder (LLCB) blanket concept is one of the Indian DEMO relevant TBM, to be tested in ITER as a part of the TBM program. Helium-Cooled Ceramic Breeder (HCCB) is an alternative blanket concept that consists of lithium titanate (Li2TiO3) as ceramic breeder (CB) material in the form of packed pebble beds and beryllium as the neutron multiplier. Specifically, attentions are given to the optimization of first wall coolant channel design and size of breeder unit module considering coolant pressure and thermal loads for the proposed Indian HCCB blanket based on ITER relevant TBM and loading conditions. These analyses will help proceeding further in designing blankets for loads relevant to the future fusion device.
Packed fluidized bed blanket for fusion reactor
Chi, John W. H.
1984-01-01
A packed fluidized bed blanket for a fusion reactor providing for efficient radiation absorption for energy recovery, efficient neutron absorption for nuclear transformations, ease of blanket removal, processing and replacement, and on-line fueling/refueling. The blanket of the reactor contains a bed of stationary particles during reactor operation, cooled by a radial flow of coolant. During fueling/refueling, an axial flow is introduced into the bed in stages at various axial locations to fluidize the bed. When desired, the fluidization flow can be used to remove particles from the blanket.
Optimization of coupled multiphysics methodology for safety analysis of pebble bed modular reactor
NASA Astrophysics Data System (ADS)
Mkhabela, Peter Tshepo
The research conducted within the framework of this PhD thesis is devoted to the high-fidelity multi-physics (based on neutronics/thermal-hydraulics coupling) analysis of Pebble Bed Modular Reactor (PBMR), which is a High Temperature Reactor (HTR). The Next Generation Nuclear Plant (NGNP) will be a HTR design. The core design and safety analysis methods are considerably less developed and mature for HTR analysis than those currently used for Light Water Reactors (LWRs). Compared to LWRs, the HTR transient analysis is more demanding since it requires proper treatment of both slower and much longer transients (of time scale in hours and days) and fast and short transients (of time scale in minutes and seconds). There is limited operation and experimental data available for HTRs for validation of coupled multi-physics methodologies. This PhD work developed and verified reliable high fidelity coupled multi-physics models subsequently implemented in robust, efficient, and accurate computational tools to analyse the neutronics and thermal-hydraulic behaviour for design optimization and safety evaluation of PBMR concept The study provided a contribution to a greater accuracy of neutronics calculations by including the feedback from thermal hydraulics driven temperature calculation and various multi-physics effects that can influence it. Consideration of the feedback due to the influence of leakage was taken into account by development and implementation of improved buckling feedback models. Modifications were made in the calculation procedure to ensure that the xenon depletion models were accurate for proper interpolation from cross section tables. To achieve this, the NEM/THERMIX coupled code system was developed to create the system that is efficient and stable over the duration of transient calculations that last over several tens of hours. Another achievement of the PhD thesis was development and demonstration of full-physics, three-dimensional safety analysis methodology for the PBMR to provide reference solutions. Investigation of different aspects of the coupled methodology and development of efficient kinetics treatment for the PBMR were carried out, which accounts for all feedback phenomena in an efficient manner. The OECD/NEA PBMR-400 coupled code benchmark was used as a test matrix for the proposed investigations. The integrated thermal-hydraulics and neutronics (multi-physics) methods were extended to enable modeling of a wider range of transients pertinent to the PBMR. First, the effect of the spatial mapping schemes (spatial coupling) was studied and quantified for different types of transients, which resulted in implementation of improved mapping methodology based on user defined criteria. The second aspect that was studied and optimized is the temporal coupling and meshing schemes between the neutronics and thermal-hydraulics time step selection algorithms. The coupled code convergence was achieved supplemented by application of methods to accelerate it. Finally, the modeling of all feedback phenomena in PBMRs was investigated and a novel treatment of cross-section dependencies was introduced for improving the representation of cross-section variations. The added benefit was that in the process of studying and improving the coupled multi-physics methodology more insight was gained into the physics and dynamics of PBMR, which will help also to optimize the PBMR design and improve its safety. One unique contribution of the PhD research is the investigation of the importance of the correct representation of the three-dimensional (3-D) effects in the PBMR analysis. The performed studies demonstrated that explicit 3-D modeling of control rod movement is superior and removes the errors associated with the grey curtain (2-D homogenized) approximation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anthony, R.G.; Akgerman, A.
1993-02-01
The objectives of this project are to develop a new catalyst, the kinetics for this catalyst, reactor models for trickle bed, slurry and fixed bed reactors, and simulate the performance of fixed bed trickle flow reactors, slurry flow reactors, and fixed bed gas phase reactors for conversion of a hydrogen lean synthesis gas to isobutylene. The goals for the quarter include: (1) Conduct experiments using a trickle bed reactor to determine the effect of reactor type on the product distribution. (2) Use spherical pellets of silica as a support for zirconia for the purpose of increasing surface, area and performancemore » of the catalysts. (3) Conduct exploratory experiments to determine the effect of super critical drying of the catalyst on the catalyst surface area and performance. (4) Prepare a ceria/zirconia catalyst by the precipitation method.« less
Shielded fluid stream injector for particle bed reactor
Notestein, John E.
1993-01-01
A shielded fluid-stream injector assembly is provided for particle bed reactors. The assembly includes a perforated pipe injector disposed across the particle bed region of the reactor and an inverted V-shaped shield placed over the pipe, overlapping it to prevent descending particles from coming into direct contact with the pipe. The pipe and shield are fixedly secured at one end to the reactor wall and slidably secured at the other end to compensate for thermal expansion. An axially extending housing aligned with the pipe and outside the reactor and an in-line reamer are provided for removing deposits from the inside of the pipe. The assembly enables fluid streams to be injected and distributed uniformly into the particle bed with minimized clogging of injector ports. The same design may also be used for extraction of fluid streams from particle bed reactors.
Daniels, F.
1957-10-15
Gas-cooled solid-moderator type reactors wherein the fissionable fuel and moderator materials are each in the form of solid pebbles, or discrete particles, and are substantially homogeneously mixed in the proper proportion and placed within the core of the reactor are described. The shape of these discrete particles must be such that voids are present between them when mixed together. Helium enters the bottom of the core and passes through the voids between the fuel and moderator particles to absorb the heat generated by the chain reaction. The hot helium gas is drawn off the top of the core and may be passed through a heat exchanger to produce steam.
Performance of a solar augmented heat pump
NASA Astrophysics Data System (ADS)
Bedinger, A. F. G.; Tomlinson, J. J.; Reid, R. L.; Chaffin, D. J.
Performance of a residential size solar augmented heat pump is reported for the 1979-1980 heating season. The facility located in Knoxville, Tennessee, has a measured heat load coefficient of 339.5 watt/C (644 BTU/hr- F). The solar augmented heat pump system consists of 7.4 cu m of one inch diameter crushed limestone. The heat pump is a nominal 8.8 KW (2 1/2 ton) high efficiency unit. The system includes electric resistance heaters to give the option of adding thermal energy to the pebble bed storage during utility off-peak periods, thus offering considerable load management capability. A 15 KW electric resistance duct heater is used to add thermal energy to the pebble bin as required during off-peak periods. Hourly thermal performance and on site weather data was taken for the period November 1, 1979, to April 13, 1980. Thermal performance data consists of heat flow summations for all modes of the system, pebble bed temperatures, and space temperature. Weather data consists of dry bulb temperature, dew point temperature, total global insolation (in the plane of the collector), and wind speed and direction. An error analysis was performed and the least accurate of the measurements was determined to be the heat flow at 5%. Solar system thermal performance factor was measured to be 8.77. The heat pump thermal performance factor was 1.64. Total system seasonal performance factor was measured to be 1.66. Using a modified version of TRNSYS, the thermal performance of this system was simulated. When simulation results were compared with data collected onsite, the predicted heat flow and power consumption generally were within experimental accuracy.
1991-04-01
Boiler and Pressure Vessel Code . Other design requirements are developed from standard safe... Boiler and Pressure Vessel Code . The following three condi- tions constitute the primary design parameters for pressure vessels: (a) Design Working...rules and practices of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code . Section VIII, Division 1 of the ASME
NASA Astrophysics Data System (ADS)
Caputo Neto, V.; Ribeiro, A.; Nepomuceno, F. O.; Dussin, I. A.; Trouw, R. A. J.
2018-07-01
The Pico do Itapeva Formation is a key metasedimentary unit to the understanding of the extensional events that occurred between the late stage of the southern Brasília Orogen collision and the main collision in the central Ribeira Orogen. The formation crops out in a 20 km long NE-trending narrow belt in the Mantiqueira mountain range in eastern São Paulo State, Brazil. It is located in the interference zone of the southern Brasília and the central Ribeira orogens and records deformation and greenschist facies metamorphism (biotite zone) related to the Brasiliano orogeny. The Pico do Itapeva Formation rests unconformably on a metaigneous substratum of the Socorro-Guaxupé Nappe/Embu Terrane and, on the southern side, is truncated by a steep SE-dipping dextral reverse shear zone. It consists of a coarsening- and thickening-upward succession, with minimum thickness of 800 m, composed of lutite, arkose and conglomerate. These rocks constitute three distinct lithofacies associations: LAI- arkose, arkose-lutite composite beds, lutite and fine conglomerate beds; LAII- arkose, pebbly arkose and scarce lutite and; LAIII- conglomerate and pebbly arkose. Most of the beds are massive; graded beds, dish and convolute structures occur locally. Bed thickness varies from thin to very thick and amalgamated bodies constitute up to 30m thick strata. Three mappable units at scale 1:20,000 were recognized based on different proportions of the three lithofacies associations. The deposits are interpreted as the record of mass flows and associated processes in a fan delta setting developed in an intermontane rift basin. U-Pb LA-ICP-MS detrital zircon ages suggest the maximum depositional age at ca. 611 Ma and the basin evolution is interpreted in the range between 611 and 580 Ma during an inter-orogenic stage between the Brasília and Ribeira orogenies.
Hunter, R.E.
1980-01-01
These deposits comprise a basal gravelly unit and 3 overlying sandy units, each with mud beds, a paleosol, or the modern soil in its uppermost part. The gravelly unit is interpreted as a progradational deposit. The main parts of the sandy units are made up of 1) a crossbedded sand facies, the dominant structure in which is medium-scale crossbedding (interpreted as the product of small eolian dunes), and 2) an irregularly bedded sand facies, which is locally pebbly and is dominated by scour-and-fill structures, interpreted as deposits of interdune ephemeral streams, ephemeral ponds, and wet to dry subaerial flats. The mud beds and paleosols represent times of temporary stabilization of the dune field.- from Author
de Jong, T R; Measor, K R; Chauke, M; Harris, B N; Saltzman, W
2010-09-01
Fathers play a substantial role in infant care in a small but significant number of mammalian species, including humans. However, the neural circuitry controlling paternal behavior is much less understood than its female counterpart. In order to characterize brain areas activated by paternal care, male California mice were separated from their female mate and litter for 3 h and then exposed to a pup or a control object (a glass pebble with the approximate size and oblong shape of a newborn pup) for 10 min. All males receiving a pup showed a strong paternal response towards it, whereas males receiving a pebble interacted with it only occasionally. Despite the clear behavioral differences, exposure to a pup did not increase Fos-like immunoreactivity (Fos-LIR) compared to a pebble in brain areas previously found to be associated with parental care, including the medial preoptic nucleus and medial bed nucleus of the stria terminalis. Pup exposure did, however, significantly increase Fos-LIR in the lateral habenula (LHb) and in predominantly serotonergic neurons in the caudal dorsal raphe nucleus (DRC), as compared to pebble exposure. Both the LHb and DRC are known to be involved in the behavioral responses to strong emotional stimuli; therefore, these areas might play a role in controlling parental behavior in male California mice. Copyright (c) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.
Laurenzis, A; Heits, H; Wübker, S; Heinze, U; Friedrich, C; Werner, U
1998-02-20
A new reactor for biological waste gas treatment was developed to eliminate continuous solvents from waste gases. A trickle-bed reactor was chosen with discontinuous movement of the packed bed and intermittent percolation. The reactor was operated with toluene as the solvent and an optimum average biomass concentration of between 5 and 30 kg dry cell weight per cubic meter packed bed (m3pb). This biomass concentration resulted in a high volumetric degradation rate. Reduction of surplus biomass by stirring and trickling caused a prolonged service life and prevented clogging of the trickle bed and a pressure drop increase. The pressure drop after biomass reduction was almost identical to the theoretical pressure drop as calculated for the irregular packed bed without biomass. The reduction in biomass and intermittent percolation of mineral medium resulted in high volumetric degradation rates of about 100 g of toluene m-3pb h-1 at a load of 150 g of toluene m-3pb h-1. Such a removal rate with a trickle-bed reactor was not reported before. Copyright 1998 John Wiley & Sons, Inc.
Co-Production of Electricity and Hydrogen Using a Novel Iron-based Catalyst
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hilaly, Ahmad; Georgas, Adam; Leboreiro, Jose
2011-09-30
The primary objective of this project was to develop a hydrogen production technology for gasification applications based on a circulating fluid-bed reactor and an attrition resistant iron catalyst. The work towards achieving this objective consisted of three key activities: Development of an iron-based catalyst suitable for a circulating fluid-bed reactor; Design, construction, and operation of a bench-scale circulating fluid-bed reactor system for hydrogen production; Techno-economic analysis of the steam-iron and the pressure swing adsorption hydrogen production processes. This report describes the work completed in each of these activities during this project. The catalyst development and testing program prepared and iron-basedmore » catalysts using different support and promoters to identify catalysts that had sufficient activity for cyclic reduction with syngas and steam oxidation and attrition resistance to enable use in a circulating fluid-bed reactor system. The best performing catalyst from this catalyst development program was produced by a commercial catalyst toll manufacturer to support the bench-scale testing activities. The reactor testing systems used during material development evaluated catalysts in a single fluid-bed reactor by cycling between reduction with syngas and oxidation with steam. The prototype SIP reactor system (PSRS) consisted of two circulating fluid-bed reactors with the iron catalyst being transferred between the two reactors. This design enabled demonstration of the technical feasibility of the combination of the circulating fluid-bed reactor system and the iron-based catalyst for commercial hydrogen production. The specific activities associated with this bench-scale circulating fluid-bed reactor systems that were completed in this project included design, construction, commissioning, and operation. The experimental portion of this project focused on technical demonstration of the performance of an iron-based catalyst and a circulating fluid-bed reactor system for hydrogen production. Although a technology can be technically feasible, successful commercial deployment also requires that a technology offer an economic advantage over existing commercial technologies. To effective estimate the economics of this steam-iron process, a techno-economic analysis of this steam iron process and a commercial pressure swing adsorption process were completed. The results from this analysis described in this report show the economic potential of the steam iron process for integration with a gasification plant for coproduction of hydrogen and electricity.« less
Meng, Yong-Lu; Tian, Song-Jiang; Li, Shu-Fen; Wang, Bo-Yang; Zhang, Min-Hua
2013-05-01
A conventional trickle bed reactor and its modified type both packed with Ca/Al composite oxide-based alkaline catalysts were studied for biodiesel production by transesterification of rapeseed oil and methanol. The effects of the methanol usage and oil flow rate on the FAME yield were investigated under the normal pressure and methanol boiling state. The oil flow rate had a significant effect on the FAME yield for the both reactors. The modified trickle bed reactor kept over 94.5% FAME yield under 0.6 mL/min oil flow rate and 91 mL catalyst bed volume, showing a much higher conversion and operational stability than the conventional type. With the modified trickle bed reactor, both transesterification and methanol separation could be performed simultaneously, and glycerin and methyl esters were separated additionally by gravity separation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Method of shielding a liquid-metal-cooled reactor
Sayre, Robert K.
1978-01-01
The primary heat transport system of a nuclear reactor -- particularly for a liquid-metal-cooled fast-breeder reactor -- is shielded and protected from leakage by establishing and maintaining a bed of a powdered oxide closely and completely surrounding all components thereof by passing a gas upwardly therethrough at such a rate as to slightly expand the bed to the extent that the components of the system are able to expand without damage and yet the particles of the bed remain close enough so that the bed acts as a guard vessel for the system. Preferably the gas contains 1 to 10% oxygen and the gas is passed upwardly through the bed at such a rate that the lower portion of the bed is a fixed bed while the upper portion is a fluidized bed, the line of demarcation therebetween being high enough that the fixed bed portion of the bed serves as guard vessel for the system.
Development of a trickle bed reactor of electro-Fenton process for wastewater treatment.
Lei, Yangming; Liu, Hong; Shen, Zhemin; Wang, Wenhua
2013-10-15
To avoid electrolyte leakage and gas bubbles in the electro-Fenton (E-Fenton) reactors using a gas diffusion cathode, we developed a trickle bed cathode by coating a layer composed of carbon black and polytetrafluoroethylene (C-PTFE) onto graphite chips instead of carbon cloth. The trickle bed cathode was optimized by single-factor and orthogonal experiments, in which carbon black, PTFE, and a surfactant were considered as the determinant of the performance of graphite chips. In the reactor assembled by the trickle bed cathode, H2O2 was generated with a current of 0.3A and a current efficiency of 60%. This performance was attributed to the fine distribution of electrolyte and air, as well as the effective oxygen transfer from the gas phase to the electrolyte-cathode interface. In terms of H2O2 generation and current efficiency, the developed trickle bed reactor had a performance comparable to that of the conventional E-Fenton reactor using a gas diffusion cathode. Further, 123 mg L(-1) of reactive brilliant red X-3B in aqueous solution was decomposed in the optimized trickle bed reactor as E-Fenton reactor. The decolorization ratio reached 97% within 20 min, and the mineralization reached 87% within 3h. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hu, Jian; Jiang, Nan; Li, Jie; Shang, Kefeng; Lu, Na; Wu, Yan; Mizuno, Akira
2016-03-01
The discharge characteristics of the series surface/packed-bed discharge (SSPBD) reactor driven by bipolar pulse power were systemically investigated in this study. In order to evaluate the advantages of the SSPBD reactor, it was compared with traditional surface discharge (SD) reactor and packed-bed discharge (PBD) reactor in terms of the discharge voltage, discharge current, and ozone formation. The SSPBD reactor exhibited a faster rising time and lower tail voltage than the SD and PBD reactors. The distribution of the active species generated in different discharge regions of the SSPBD reactor was analyzed by optical emission spectra and ozone analysis. It was found that the packed-bed discharge region (3.5 mg/L), rather than the surface discharge region (1.3 mg/L) in the SSPBD reactor played a more important role in ozone generation. The optical emission spectroscopy analysis indicated that more intense peaks of the active species (e.g. N2 and OI) in the optical emission spectra were observed in the packed-bed region. supported by National Natural Science Foundation of China (No. 51177007), the Joint Funds of National Natural Science Foundation of China (No. U1462105), and Dalian University of Technology Fundamental Research Fund of China (No. DUT15RC(3)030)
EMERGING TECHNOLOGY BULLETIN: SPOUTED BED REACTOR
The Spouted Bed Reactor (SBR) technology utilizes the unique attributes of the "spouting " fluidization regime, which can provide heat transfer rates comparable to traditional fluid beds, while providing robust circulation of highly heterogeneous solids, concurrent with very agg...
METHOD FOR SENSING DEGREE OF FLUIDIZATION IN FLUIDIZED BED
Levey, R.P. Jr.; Fowler, A.H.
1961-12-12
A method is given for detecting, indicating, and controlling the degree of fluidization in a fluid-bed reactor into which powdered material is fed. The method comprises admitting of gas into the reactor, inserting a springsupported rod into the powder bed of the reactor, exciting the rod to vibrate at its resonant frequency, deriving a signal responsive to the amplitude of vibi-ation of the rod and spring, the signal being directiy proportional to the rate of flow of the gas through the reactor, displaying the signal to provide an indication of the degree of fluidization within the reactor, and controlling the rate of gas flow into the reactor until said signal stabilizes at a constant value to provide substantially complete fluidization within the reactor. (AEC)
Ebeling, Jr., Robert W.; Weaver, Robert B.
1979-01-01
The pressure within a pressurized flow reactor operated under harsh environmental conditions is controlled by establishing and maintaining a fluidized bed of uniformly sized granular material of selected density by passing the gas from the reactor upwardly therethrough at a rate sufficient to fluidize the bed and varying the height of the bed by adding granular material thereto or removing granular material therefrom to adjust the backpressure on the flow reactor.
Hydrodynamics of Packed Bed Reactor in Low Gravity
NASA Technical Reports Server (NTRS)
Motil, Brian J.; Nahra, Henry K.; Balakotaiah, Vemuri
2005-01-01
Packed bed reactors are well known for their vast and diverse applications in the chemical industry; from gas absorption, to stripping, to catalytic conversion. Use of this type of reactor in terrestrial applications has been rather extensive because of its simplicity and relative ease of operation. Developing similar reactors for use in microgravity is critical to many space-based advanced life support systems. However, the hydrodynamics of two-phase flow packed bed reactors in this new environment and the effects of one physiochemical process on another has not been adequately assessed. Surface tension or capillary forces play a much greater role which results in a shifting in flow regime transitions and pressure drop. Results from low gravity experiments related to flow regimes and two-phase pressure drop models are presented in this paper along with a description of plans for a flight experiment on the International Space Station (ISS). Understanding the packed bed hydrodynamics and its effects on mass transfer processes in microgravity is crucial for the design of packed bed chemical or biological reactors to be used for water reclamation and other life support processes involving water purification.
Nelson, Jack L.; Haushild, W.L.
1970-01-01
Amounts of radionuclides from the Hanford reactors contained in bed sediments of the Columbia River were estimated by two methods: (1) from data on radionuclide concentration for the bed sediments between the reactors and McNary Dam, and (2) from data on radionuclide discharge for river stations at Pasco, Washington, and Umatilla, Oregon. Umatilla is 3.2 kilometers below McNary Dam. Accumulations of radionuclides in the Pasco to Umatilla reach estimated by the two methods agree within about 8%. In October 1965 approximately 16,000 curies of gamma emitting radionuclides were resident in bed sediments of the river between the Hanford reactors and McNary Dam. Concentrations and accumulations of chromium-51, zinc-65, cobalt-60, manganese-54, and scandium-46 generally are much higher near McNary Dam than they are in the vicinity of the reactors. These changes are caused by an increase downstream from the reactors in the proportion of the bed sediment that is fine grained and the proportions of the transported zinc, cobalt, manganese, and scandium radionuclides associated with sediment particles.
Innovative approach for benzene degradation using hybrid surface/packed-bed discharge plasmas.
Jiang, Nan; Lu, Na; Shang, Kefeng; Li, Jie; Wu, Yan
2013-09-03
An innovative plasma reactor, which generates hybrid surface/packed-bed discharge (HSPBD) plasmas, was employed for the degradation of benzene. The HSPBD reactor was found to display remarkably better benzene degradation, mineralization, and energy performance than surface or packed-bed discharge reactors alone. The degradation efficiency, CO2 selectivity, and energy yield in the HSPBD reactor were 21%, 11%, and 3.9 g kWh-1 higher, respectively, than in a surface discharge reactor and 30%, 21%, and 5.5 g kWh-1 higher, respectively, than in a packed-bed discharge reactor operated at 280 J L-1. Particularly, the benzene degradation in the HSPBD reactor exhibited an unambiguous synergistic enhancement rather than a simple additive effect using the surface discharge and packed-bed discharge reactors. Moreover, in the HSPBD reactor, the formation of byproducts, such as NO2, was suppressed, while O3 was promoted. The use of N2 as the carrier gas was found to be effective for benzene degradation because of the fast reaction rate of N2(A3∑u+) with benzene, and oxygen species derived from the dissociation of O2 were found to be significant in the mineralization process. Thus, the addition of O2 to N2 allows for efficient degradation of benzene, and the optimized amount of O2 was determined to be 3%.
NASA Astrophysics Data System (ADS)
Attal, Mikaël; Lavé, Jérôme
2009-12-01
In actively eroding landscapes, fluvial abrasion modifies the characteristics of the sediment carried by rivers and consequently has a direct impact on the ability of mountain rivers to erode their bedrock and on the characteristics and volume of the sediment exported from upland catchments. In this experimental study, we use a novel flume replicating hydrodynamic conditions prevailing in mountain rivers to investigate the role played by different controlling variables on pebble abrasion during fluvial transport. Lithology controls abrasion rates and processes, with differences in abrasion rates exceeding two orders of magnitude. Attrition as well as breaking and splitting are efficient processes in reducing particle size. Mass loss by attrition increases with particle velocity but is weakly dependent on particle size. Fragment production is enhanced by the use of large particles, high impact velocities and the presence of joints. Based on our experimental results, we extrapolate a preliminary generic relationship between pebble attrition rate and transport stage (τ*/τ*c), where τ* = fluvial Shields stress and τ*c = critical Shields stress for incipient pebble motion. This relationship predicts that attrition rates are independent of transport stage for (τ*/τ*c) ≤ 3 and increase linearly with transport stage beyond this value. We evaluate the extent to which abrasion rates control downstream fining in several different natural settings. A simplified model predicts that the most resistant lithologies control bed load flux and fining ratio and that the concavity of transport-limited river profiles should rarely exceed 0.25 in the absence of deposition and sorting.
Thermal Hydraulic Analysis of a Packed Bed Reactor Fuel Element
1989-05-25
Engineer and Master of Science in Nuclear Engineering. ABSTRACT A model of the behavior of a packed bed nuclear reactor fuel element is developed . It...RECOMMENDATIONS FOR FURTHER INVESTIGATION .................... 150 APPENDIX A FUEL ELEMENT MODEL PROGRAM DESIGN AND OPERA- T IO N...follow describe the details of the packed bed reactor and then discuss the development of the mathematical representations of the fuel element. These are
Evaluation of tritium release properties of advanced tritium breeders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoshino, T.; Ochiai, K.; Edao, Y.
2015-03-15
Demonstration power plant (DEMO) fusion reactors require advanced tritium breeders with high thermal stability. Lithium titanate (Li{sub 2}TiO{sub 3}) advanced tritium breeders with excess Li (Li{sub 2+x}TiO{sub 3+y}) are stable in a reducing atmosphere at high temperatures. Although the tritium release properties of tritium breeders are documented in databases for DEMO blanket design, no in situ examination under fusion neutron (DT neutron) irradiation has been performed. In this study, a preliminary examination of the tritium release properties of advanced tritium breeders was performed, and DT neutron irradiation experiments were performed at the fusion neutronics source (FNS) facility in JAEA. Consideringmore » the tritium release characteristics, the optimum grain size after sintering is <5 μm. From the results of the optimization of granulation conditions, prototype Li{sub 2+x}TiO{sub 3+y} pebbles with optimum grain size (<5 μm) were successfully fabricated. The Li{sub 2+x}TiO{sub 3+y} pebbles exhibited good tritium release properties similar to the Li{sub 2}TiO{sub 3} pebbles. In particular, the released amount of HT gas for easier tritium handling was higher than that of HTO water. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Handford, C.R.
Rather spotty but excellent exposures of the Cretaceous-age Turkana Grits occur near the western shore of Lake Turkana, northern Kenya. These very coarse to pebbly arkosic sandstones and sandy conglomerates were derived from and rest unconformably upon Precambrian metamorphic basement; they are overlain by late Tertiary basaltic flows that comprise much of the volcanics in the East African Rift Zone. The formation ranges up to 2000 ft thick in the Laburr Range. Several outcrops contain sauropod, crocodile, and tortoise remains as well as abundant trunks of petrified wood (Dryoxylon). Five major facies make up the Turkana Grits and record amore » major episode of continental fluvial deposition in basins flanked by Precambrian basement. Facies 1 is crudely stratified, cobble and boulder conglomerate (clast-supported); Facies 2 is crudely stratified pebble-cobble conglomerate and pebbly sandstone; Facies 3 is trough cross-bedded, very coarse sandstones containing fossils wood and vertebrate remains; Facies 4 is crudely stratified to massive sandstones with ironstone nodules; and Facies 5 is red, purple, and gray mudstone and mud shale with carbonate nodules. Facies 1 through 3 record deposition in proximal to medial braided-stream channel, longitudinal bar and dune complexes. Facies 4 is a lowland, hydromorphic paleosol, and Facies 5 represents overbank and abandoned channel-fill sedimentation in an alluvial plain.« less
Feasibility Study of the Geotextile Waste Filtration Unit.
2000-02-10
Treatment Module 3-32 Figure 3-20. THE SCHEMATIC OF THE MOVING BED BIOFILM REACTOR ( MBBR ) 3൪ Figure 4-1. The Original Distributed Concept for WFUs...Moving Bed Biofilm Reactor ( MBBR ) process appears to be one of the most feasible processes available to meet Force Provider liquid waste stream...Moving Bed Biofilm Reactor ( MBBR ) process was then examined.31 In this system, both activated sludge and fixed-film processes occur in a bioreactor
Factors affecting cleanup of exhaust gases from a pressurized, fluidized-bed coal combustor
NASA Technical Reports Server (NTRS)
Rollbuhler, R. J.; Kobak, J. A.
1980-01-01
The cleanup of effluent gases from the fluidized-bed combustion of coal is examined. Testing conditions include the type and feed rate of the coal and the sulfur sorbent, the coal-sorbent ratio, the coal-combustion air ratio, the depth of the reactor fluidizing bed, and the technique used to physically remove fly ash from the reactor effluent gases. Tests reveal that the particulate loading matter in the effluent gases is a function not only of the reactor-bed surface gas velocity, but also of the type of coal being burnt and the time the bed is operating. At least 95 percent of the fly ash particules in the effluent gas are removed by using a gas-solids separator under controlled operating conditions. Gaseous pollutants in the effluent (nitrogen and sulfur oxides) are held within the proposed Federal limits by controlling the reactor operating conditions and the type and quantity of sorbent material.
Flow instability in particle-bed nuclear reactors
NASA Technical Reports Server (NTRS)
Kerrebrock, J. L.; Kalamas, J.
1993-01-01
A three-dimensional model of the stability of the particle-bed reactor is presented, in which the fluid has mobility in three dimensions. The model accurately represents the stability at low Re numbers as well as the effects of the cold and hot frits and of the heat conduction and radiation in the particle bed. The model can be easily extended to apply to the cylindrical geometry of particle-bed reactors. Exemplary calculations are carried out, showing that a particle bed without a cold frit would be subject to instability if operated at the high-temperature ratios used for nuclear rockets and at power densities below about 4 MW/l; since the desired power density for such a reactor is about 40 MW/l, the operation at design exit temperature but at reduced power could be hazardous. Calculations show however that it might be possible to remove the instability problem by appropriate combinations of cold and hot frits.
Safety apparatus for nuclear reactor to prevent structural damage from overheating by core debris
Gabor, John D.; Cassulo, John C.; Pedersen, Dean R.; Baker, Jr., Louis
1986-01-01
The invention teaches safety apparatus that can be included in a nuclear reactor, either when newly fabricated or as a retrofit add-on, that will minimize proliferation of structural damage to the reactor in the event the reactor is experiencing an overheating malfunction whereby radioactive nuclear debris might break away from and be discharged from the reactor core. The invention provides a porous bed or sublayer on the lower surface of the reactor containment vessel so that the debris falls on and piles up on the bed. Vapor release elements upstand from the bed in some laterally spaced array. Thus should the high heat flux of the debris interior vaporize the coolant at that location, the vaporized coolant can be vented downwardly to and laterally through the bed to the vapor release elements and in turn via the release elements upwardly through the debris. This minimizes the pressure buildup in the debris and allows for continuing infiltration of the liquid coolant into the debris interior.
Safety apparatus for nuclear reactor to prevent structural damage from overheating by core debris
Gabor, John D.; Cassulo, John C.; Pedersen, Dean R.; Baker Jr., Louis
1986-07-01
The invention teaches safety apparatus that can be included in a nuclear reactor, either when newly fabricated or as a retrofit add-on, that will minimize proliferation of structural damage to the reactor in the event the reactor is experiencing an overheating malfunction whereby radioactive nuclear debris might break away from and be discharged from the reactor core. The invention provides a porous bed or sublayer on the lower surface of the reactor containment vessel so that the debris falls on and piles up on the bed. Vapor release elements upstand from the bed in some laterally spaced array. Thus should the high heat flux of the debris interior vaporize the coolant at that location, the vaporized coolant can be vented downwardly to and laterally through the bed to the vapor release elements and in turn via the release elements upwardly through the debris. This minimizes the pressure buildup in the debris and allows for continuing infiltration of the liquid coolant into the debris interior.
Safety apparatus for nuclear reactor to prevent structural damage from overheating by core debris
Gabor, J.D.; Cassulo, J.C.; Pedersen, D.R.; Baker, L. Jr.
The invention teaches safety apparatus that can be included in a nuclear reactor, either when newly fabricated or as a retrofit add-on, that will minimize proliferation of structural damage to the reactor in the event the reactor is experiencing an overheating malfunction whereby radioactive nuclear debris might break away from and can be discharged from the reactor core. The invention provides a porous bed of sublayer on the lower surface of the reactor containment vessel so that the debris falls on and piles up on the bed. Vapor release elements upstand from the bed in some laterally spaced array. Thus should the high heat flux of the debris interior vaporize the coolant at that location, the vaporized coolant can be vented downwardly to and laterally through the bed to the vapor release elements and in turn via the release elements upwardly through the debris. This minimizes the pressure buildup in the debris and allows for continuing infiltration of the liquid coolant into the debris interior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qualls, A. L.; Brown, Nicholas R.; Betzler, Benjamin R.
The fluoride salt-cooled high-temperature reactor (FHR) demonstration reactor (DR) is a concept for a salt-cooled reactor with 100 megawatts of thermal output (MWt). It would use tristructural-isotropic (TRISO) particle fuel within prismatic graphite blocks. FLiBe (2 LiF-BeF 2) is the reference primary coolant. The FHR DR is designed to be small, simple, and affordable. Development of the FHR DR is a necessary intermediate step to enable near-term commercial FHRs. Lower risk technologies are purposely included in the initial FHR DR design to ensure that the reactor can be built, licensed, and operated within an acceptable budget and schedule. These technologiesmore » include TRISO particle fuel, replaceable core structural material, the use of that same material for the primary and intermediate loops, and tube-and-shell primary-to-intermediate heat exchangers. Several preconceptual and conceptual design efforts that have been conducted on FHR concepts bear a significant influence on the FHR DR design. Specific designs include the Oak Ridge National Laboratory (ORNL) advanced high-temperature reactor (AHTR) with 3400/1500 MWt/megawatts of electric output (MWe), as well as a 125 MWt small modular AHTR (SmAHTR) from ORNL. Other important examples are the Mk1 pebble bed FHR (PB-FHR) concept from the University of California, Berkeley (UCB), and an FHR test reactor design developed at the Massachusetts Institute of Technology (MIT). The MIT FHR test reactor is based on a prismatic fuel platform and is directly relevant to the present FHR DR design effort. These FHR concepts are based on reasonable assumptions for credible commercial prototypes. The FHR DR concept also directly benefits from the operating experience of the Molten Salt Reactor Experiment (MSRE), as well as the detailed design efforts for a large molten salt reactor concept and its breeder variant, the Molten Salt Breeder Reactor. The FHR DR technology is most representative of the 3400 MWt AHTR concept, and it will demonstrate key operational features of that design. The FHR DR will be closely scaled to the SmAHTR concept in power and flows, so any technologies demonstrated will be directly applicable to a reactor concept of that size. The FHR DR is not a commercial prototype design, but rather a DR that serves a cost and risk mitigation function for a later commercial prototype. It is expected to have a limited operational lifetime compared to a commercial plant. It is designed to be a low-cost reactor compared to more mature advanced prototype DRs. A primary reason to build the FHR DR is to learn about salt reactor technologies and demonstrate solutions to remaining technical gaps.« less
Flow instability in particle-bed nuclear reactors
NASA Astrophysics Data System (ADS)
Kerrebrock, Jack L.
The particle-bed core offers mitigation of some of the problems of solid-core nuclear rocket reactors. Dividing the fuel elements into small spherical particles contained in a cylindrical bed through which the propellant flows radially, may reduce the thermal stress in the fuel elements, allowing higher propellant temperatures to be reached. The high temperature regions of the reactor are confined to the interior of cylindrical fuel assemblies, so most of the reactor can be relatively cool. This enables the use of structural and moderating materials which reduce the minimum critical size and mass of the reactor. One of the unresolved questions about this concept is whether the flow through the particle-bed will be well behaved, or will be subject to destructive flow instabilities. Most of the recent analyses of the stability of the particle-bed reactor have been extensions of the approach of Bussard and Delauer, where the bed is essentially treated as an array of parallel passages, so that the mass flow is continuous from inlet to outlet through any one passage. A more general three dimensional model of the bed is adopted, in which the fluid has mobility in three dimensions. Comparison of results of the earlier approach to the present one shows that the former does not accurately represent the stability at low Re. The more complete model presented should be capable of meeting this deficiency while accurately representing the effects of the cold and hot frits, and of heat conduction and radiation in the particle-bed. It can be extended to apply to the cylindrical geometry of particle-bed reactors without difficulty. From the exemplary calculations which were carried out, it can be concluded that a particle-bed without a cold frit would be subject to instability if operated at the high temperatures desired for nuclear rockets, and at power densities below about 4 megawatts per liter. Since the desired power density is about 40 megawatts per liter, it can be concluded that operation at design exit temperature but at reduced power could be hazardous for such a reactor. But the calculations also show that an appropriate cold frit could very likely cure the instability. More definite conclusions must await calculations for specific designs.
Flow instability in particle-bed nuclear reactors
NASA Technical Reports Server (NTRS)
Kerrebrock, Jack L.
1993-01-01
The particle-bed core offers mitigation of some of the problems of solid-core nuclear rocket reactors. Dividing the fuel elements into small spherical particles contained in a cylindrical bed through which the propellant flows radially, may reduce the thermal stress in the fuel elements, allowing higher propellant temperatures to be reached. The high temperature regions of the reactor are confined to the interior of cylindrical fuel assemblies, so most of the reactor can be relatively cool. This enables the use of structural and moderating materials which reduce the minimum critical size and mass of the reactor. One of the unresolved questions about this concept is whether the flow through the particle-bed will be well behaved, or will be subject to destructive flow instabilities. Most of the recent analyses of the stability of the particle-bed reactor have been extensions of the approach of Bussard and Delauer, where the bed is essentially treated as an array of parallel passages, so that the mass flow is continuous from inlet to outlet through any one passage. A more general three dimensional model of the bed is adopted, in which the fluid has mobility in three dimensions. Comparison of results of the earlier approach to the present one shows that the former does not accurately represent the stability at low Re. The more complete model presented should be capable of meeting this deficiency while accurately representing the effects of the cold and hot frits, and of heat conduction and radiation in the particle-bed. It can be extended to apply to the cylindrical geometry of particle-bed reactors without difficulty. From the exemplary calculations which were carried out, it can be concluded that a particle-bed without a cold frit would be subject to instability if operated at the high temperatures desired for nuclear rockets, and at power densities below about 4 megawatts per liter. Since the desired power density is about 40 megawatts per liter, it can be concluded that operation at design exit temperature but at reduced power could be hazardous for such a reactor. But the calculations also show that an appropriate cold frit could very likely cure the instability. More definite conclusions must await calculations for specific designs.
Wei, W.; Poag, C. Wylie; Poppe, Lawrence J.; Folger, David W.; Powars, David S.; Mixon, Robert B.; Edwards, Lucy E.; Bruce, Scott
1992-01-01
A remarkable >60-m-thick, upward-fining, polymictic, marine boulder bed is distributed over >15 000 km2 beneath Chesapeake Bay and the surrounding Middle Atlantic Coastal Plain and inner continental shelf. The wide varieties of clast lithologies and microfossil assemblages were derived from at least seven known Cretaceous, Paleocene, and Eocene stratigraphic units. The supporting pebbly matrix contains variably mixed assemblages of microfossils along with trace quantities of impact ejecta. The youngest microfossils in the boulder bed are of early-late Eocene age. On the basis of its unusual characteristics and its stratigraphic equivalent to a layer of impact ejecta at Deep Sea Drilling Project (DSDP) Site 612. It is postulated that this boulder bed was formed by a powerful bolide-generated wave train that scoured the ancient inner shelf and coastal plain of southeastern Virginia.
de Aquino, Samuel; Fuess, Lucas Tadeu; Pires, Eduardo Cleto
2017-07-01
This study reports on the application of an innovative structured-bed reactor (FVR) as an alternative to conventional packed-bed reactors (PBRs) to treat high-strength solid-rich wastewaters. Using the FVR prevents solids from accumulating within the fixed-bed, while maintaining the advantages of the biomass immobilization. The long-term operation (330days) of a FVR and a PBR applied to sugarcane vinasse under increasing organic loads (2.4-18.0kgCODm -3 day -1 ) was assessed, focusing on the impacts of the different media arrangements over the production and retention of biomass. Much higher organic matter degradation rates, as well as long-term operational stability and high conversion efficiencies (>80%) confirmed that the FVR performed better than the PBR. Despite the equivalent operating conditions, the biomass growth yield was different in both reactors, i.e., 0.095gVSSg -1 COD (FVR) and 0.066gVSSg -1 COD (PBR), indicating a clear control of the media arrangement over the biomass production in fixed-bed reactors. Copyright © 2017 Elsevier Ltd. All rights reserved.
System design package for IBM system one: solar heating and domestic hot water
NASA Technical Reports Server (NTRS)
1977-01-01
This report is a collation of documents and drawings that describe a prototype solar heating and hot water system using air as the collector fluid and a pebble bed for heat storage. The system was designed for installation into a single family dwelling. The description, performance specification, subsystem drawings, verification plan/procedure, and hazard analysis of the system was packaged for evaluation of the system with information sufficient to assemble a similar system.
NASA Astrophysics Data System (ADS)
Swanson, Susan K.
2007-04-01
Outcrop-analog studies of the Upper Cambrian Tunnel City Group sandstones in southern Wisconsin show the utility of lithostratigraphic information in hydrostratigraphic studies of siliciclastic sandstone aquifers. Recent work supports the lateral continuity of discrete groundwater flow through these sandstones. Lithologic description of the Reno Member of the Lone Rock Formation (Tunnel City Group) in outcrop and core reveals repeating sequences of three dominant lithofacies, including flat-pebble intraclast conglomerate with a glauconite-rich matrix; glauconitic and feldspathic subquartzose sandstone with horizontal-planar, low-angle, and hummocky lamination; and feldspathic subquartzose sandstone with dolomite-filled burrows. The vertically stacked Reno Member sequences have been interpreted as having a storm-related origin, and they are laterally continuous on the scale of an outcrop. Horizontal fracture locations correlate with bedding planes at contacts between lithofacies. They are most commonly associated with the base of the flat-pebble intraclast conglomerate or with partings along laminae and erosional surfaces in the laminated subquartzose sandstone lithofacies. Sequences show upward increases in natural gamma radiation due to increasing potassium feldspar content. The incorporation of the detailed lithostratigraphic information allows a more accurate interpretation of borehole natural gamma logs where the rocks are buried and saturated and clarifies the role of sedimentary structures in the distribution of features that might promote discrete flow through these rocks.
NASA Technical Reports Server (NTRS)
1971-01-01
The rotating fluidized bed reactor concept is being investigated for possible application in nuclear propulsion systems. Physics calculations show U-233 to be superior to U-235 as a fuel for a cavity reactor of this type. Preliminary estimates of the effect of hydrogen in the reactor, reflector material, and power peaking are given. A preliminary engineering analysis was made for U-235 and U-233 fueled systems. An evaluation of the parameters affecting the design of the system is given, along with the thrust-to-weight ratios. The experimental equipment is described, as are the special photographic techniques and procedures. Characteristics of the fluidized bed and experimental results are given, including photographic evidence of bed fluidization at high rotational velocities.
Rahaman, Md Saifur; Mavinic, Donald S; Meikleham, Alexandra; Ellis, Naoko
2014-03-15
The cost associated with the disposal of phosphate-rich sludge, the stringent regulations to limit phosphate discharge into aquatic environments, and resource shortages resulting from limited phosphorus rock reserves, have diverted attention to phosphorus recovery in the form of struvite (MAP: MgNH4PO4·6H2O) crystals, which can essentially be used as a slow release fertilizer. Fluidized-bed crystallization is one of the most efficient unit processes used in struvite crystallization from wastewater. In this study, a comprehensive mathematical model, incorporating solution thermodynamics, struvite precipitation kinetics and reactor hydrodynamics, was developed to illustrate phosphorus depletion through struvite crystal growth in a continuous, fluidized-bed crystallizer. A thermodynamic equilibrium model for struvite precipitation was linked to the fluidized-bed reactor model. While the equilibrium model provided information on supersaturation generation, the reactor model captured the dynamic behavior of the crystal growth processes, as well as the effect of the reactor hydrodynamics on the overall process performance. The model was then used for performance evaluation of the reactor, in terms of removal efficiencies of struvite constituent species (Mg, NH4 and PO4), and the average product crystal sizes. The model also determined the variation of species concentration of struvite within the crystal bed height. The species concentrations at two extreme ends (inlet and outlet) were used to evaluate the reactor performance. The model predictions provided a reasonably good fit with the experimental results for PO4-P, NH4-N and Mg removals. Predicated average crystal sizes also matched fairly well with the experimental observations. Therefore, this model can be used as a tool for performance evaluation and process optimization of struvite crystallization in a fluidized-bed reactor. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Ramakrishnan, Divakar; Curtis, Wayne R
2004-10-20
Trickle-bed root culture reactors are shown to achieve tissue concentrations as high as 36 g DW/L (752 g FW/L) at a scale of 14 L. Root growth rate in a 1.6-L reactor configuration with improved operational conditions is shown to be indistinguishable from the laboratory-scale benchmark, the shaker flask (mu=0.33 day(-1)). These results demonstrate that trickle-bed reactor systems can sustain tissue concentrations, growth rates and volumetric biomass productivities substantially higher than other reported bioreactor configurations. Mass transfer and fluid dynamics are characterized in trickle-bed root reactors to identify appropriate operating conditions and scale-up criteria. Root tissue respiration goes through a minimum with increasing liquid flow, which is qualitatively consistent with traditional trickle-bed performance. However, liquid hold-up is much higher than traditional trickle-beds and alternative correlations based on liquid hold-up per unit tissue mass are required to account for large changes in biomass volume fraction. Bioreactor characterization is sufficient to carry out preliminary design calculations that indicate scale-up feasibility to at least 10,000 liters.
Nelson, Paul A.; Horowitz, Jeffrey S.
1983-01-01
A heat pump apparatus including a compact arrangement of individual tubular reactors containing hydride-dehydride beds in opposite end sections, each pair of beds in each reactor being operable by sequential and coordinated treatment with a plurality of heat transfer fluids in a plurality of processing stages, and first and second valves located adjacent the reactor end sections with rotatable members having multiple ports and associated portions for separating the hydride beds at each of the end sections into groups and for simultaneously directing a plurality of heat transfer fluids to the different groups. As heat is being generated by a group of beds, others are being regenerated so that heat is continuously available for space heating. As each of the processing stages is completed for a hydride bed or group of beds, each valve member is rotated causing the heat transfer fluid for the heat processing stage to be directed to that bed or group of beds. Each of the end sections are arranged to form a closed perimeter and the valve member may be rotated repeatedly about the perimeter to provide a continuous operation. Both valves are driven by a common motor to provide a coordinated treatment of beds in the same reactors. The heat pump apparatus is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators but may be used with any source of heat, including a source of low-grade heat.
Functional materials for breeding blankets—status and developments
NASA Astrophysics Data System (ADS)
Konishi, S.; Enoeda, M.; Nakamichi, M.; Hoshino, T.; Ying, A.; Sharafat, S.; Smolentsev, S.
2017-09-01
The development of tritium breeder, neutron multiplier and flow channel insert materials for the breeding blanket of the DEMO reactor is reviewed. Present emphasis is on the ITER test blanket module (TBM); lithium metatitanate (Li2TiO3) and lithium orthosilicate (Li4SiO4) pebbles have been developed by leading TBM parties. Beryllium pebbles have been selected as the neutron multiplier. Good progress has been made in their fabrication; however, verification of the design by experiments is in the planning stage. Irradiation data are also limited, but the decrease in thermal conductivity of beryllium due to irradiation followed by swelling is a concern. Tests at ITER are regarded as a major milestone. For the DEMO reactor, improvement of the breeder has been attempted to obtain a higher lithium content, and Be12Ti and other beryllide intermetallic compounds that have superior chemical stability have been studied. LiPb eutectic has been considered as a DEMO blanket in the liquid breeder option and is used as a coolant to achieve a higher outlet temperature; a SiC flow channel insert is used to prevent magnetohydrodynamic pressure drop and corrosion. A significant technical gap between ITER TBM and DEMO is recognized, and the world fusion community is working on ITER TBM and DEMO blanket development in parallel.
Packed bed reactor for photochemical .sup.196 Hg isotope separation
Grossman, Mark W.; Speer, Richard
1992-01-01
Straight tubes and randomly oriented pieces of tubing having been employed in a photochemical mercury enrichment reactor and have been found to improve the enrichment factor (E) and utilization (U) compared to a non-packed reactor. One preferred embodiment of this system uses a moving bed (via gravity) for random packing.
Nuclear Thermal Propulsion: A Joint NASA/DOE/DOD Workshop
NASA Technical Reports Server (NTRS)
Clark, John S. (Editor)
1991-01-01
Papers presented at the joint NASA/DOE/DOD workshop on nuclear thermal propulsion are compiled. The following subject areas are covered: nuclear thermal propulsion programs; Rover/NERVA and NERVA systems; Low Pressure Nuclear Thermal Rocket (LPNTR); particle bed reactor nuclear rocket; hybrid propulsion systems; wire core reactor; pellet bed reactor; foil reactor; Droplet Core Nuclear Rocket (DCNR); open cycle gas core nuclear rockets; vapor core propulsion reactors; nuclear light bulb; Nuclear rocket using Indigenous Martian Fuel (NIMF); mission analysis; propulsion and reactor technology; development plans; and safety issues.
Pressurized fluidized bed reactor
Isaksson, J.
1996-03-19
A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine. 1 fig.
Pressurized fluidized bed reactor
Isaksson, Juhani
1996-01-01
A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine.
NASA Astrophysics Data System (ADS)
Myrow, P.; Chen, J.
2013-12-01
A wide variety of unusual penecontemporaneous deformation structures exist in grainstone and flat-pebble conglomerate beds of the Upper Cambrian strata, western Colorado, including slide scarps, thrusted beds, irregular blocks and internally deformed beds. Slide scarps are characterized by concave-up, sharp surfaces that truncate one or more underlying beds. Thrusted beds record movement of a part of a bed onto itself along a moderate to steeply inclined (generally 25°-40°) ramp. The hanging wall lenses in cases show fault-bend geometries, with either intact or mildly deformed bedding. Irregular bedded to internally deformed blocks isolated on generally flat upper bedding surfaces are similar in composition to the underlying beds. These features represent parts of beds that were detached, moved up onto, and some distances across, the laterally adjacent undisturbed bed surfaces. The blocks moved either at the sediment-water interface or intrastratally at shallow depths within overlying muddy deposits. Finally, internally deformed beds have large blocks, fitted fabrics of highly irregular fragments, and contorted lamination, which represent heterogeneous deformation, such as brecciation and liquefaction. The various deformation structures were most probably triggered by earthquakes, considering the nature of deformation (regional distribution of liquefaction structures, and the brittle segmentation and subsequent transportation of semi-consolidated beds) and the reactivation of Mesoproterozoic, crustal-scale shear zones in the central Rockies during the Late Cambrian. Features produced by initial brittle deformation are unusual relative to most reported seismites, and may represent poorly recognized to unrecognized seismogenic structures in the rock record.
JPL in-house fluidized-bed reactor research
NASA Technical Reports Server (NTRS)
Rohatgi, N. K.
1984-01-01
Fluidized bed reactor research techniques for fabrication of quartz linears was reviewed. Silane pyrolysis was employed in this fabrication study. Metallic contaminant levels in the silicon particles were below levels detectable by emission spectroscopy.
Styrene recovery from polystyrene by flash pyrolysis in a conical spouted bed reactor.
Artetxe, Maite; Lopez, Gartzen; Amutio, Maider; Barbarias, Itsaso; Arregi, Aitor; Aguado, Roberto; Bilbao, Javier; Olazar, Martin
2015-11-01
Continuous pyrolysis of polystyrene has been studied in a conical spouted bed reactor with the main aim of enhancing styrene monomer recovery. Thermal degradation in a thermogravimetric analyser was conducted as a preliminary study in order to apply this information in the pyrolysis in the conical spouted bed reactor. The effects of temperature and gas flow rate in the conical spouted bed reactor on product yield and composition have been determined in the 450-600°C range by using a spouting velocity from 1.25 to 3.5 times the minimum one. Styrene yield is strongly influenced by both temperature and gas flow rate, with the maximum yield being 70.6 wt% at 500°C and a gas velocity twice the minimum one. Copyright © 2015 Elsevier Ltd. All rights reserved.
Catalytic fast pyrolysis of white oak wood in-situ using a bubbling fluidized bed reactor
USDA-ARS?s Scientific Manuscript database
Catalytic fast pyrolysis was performed on white oak wood using two zeolite-type catalysts as bed material in a bubbling fluidized bed reactor. The two catalysts chosen, based on a previous screening study, were Ca2+ exchanged Y54 (Ca-Y54) and a proprietary ß-zeolite type catalyst (catalyst M) both ...
NASA Astrophysics Data System (ADS)
Horn, F. L.; Powell, J. R.; Savino, J. M.
Gas-cooled reactors using packed beds of small-diameter, coated fuel particles have been proposed for compact, high-power systems. To test the thermal-hydraulic performance of the particulate reactor fuel under simulated reactor conditions, a bed of 800-micrometer diameter particles was heated by its electrical resistance current and cooled by flowing helium gas. The specific resistance of the bed composed of pyrocarbon-coated particles was measured at several temperatures, and found to be 0.09 ohm-cm at 1273 K and 0.06 ohm-cm at 1600 K. The maximum bed power density reached was 1500 W/cu cm at 1500 K. The pressure drop followed the packed-bed correlation, typically 100,000 Pa/cm. The various frit materials used to contain the bed were also tested to 2000 K in helium and hydrogen to determine their properties and reactions with the fuel. Rhenium metal, zirconium carbide, and zirconium oxide appeared to be the best candidate materials, while tungsten and tungsten-rhenium lost mass and strength.
Fernette, Gregory
2015-01-01
Uranium occurrences are also reported in the Tasiast-Tijirit Terrane of the Archean Rgueïbat Shield, the Mauritanide Belt, and the Coastal Basin. Geologic environments permissive for eight types of uranium deposits are recognized in Mauritania. These deposit types include: calcrete, granite-hosted vein/shear, alkaline intrusive, unconformity-associated, quartz pebble conglomerate, phosphate, sandstone, and red bed-type uranium deposits.
LOFA analysis in helium and Pb-Li circuits of LLCB TBM by FE simulation
NASA Astrophysics Data System (ADS)
Chaudhuri, Paritosh; Ranjithkumar, S.; Sharma, Deepak; Danani, Chandan
2017-04-01
One of the main ITER objectives is to demonstrate the feasibility of the breeding blanket concepts that would lead to tritium self-sufficiency and the extraction of a high-grade heat for electricity production. India has developed the LLCB TBM to be tested in ITER for the validation of design concepts for tritium breeding blankets relevant DEMO and future power reactor. LLCB concept has the unique features of combination of both solid (lithium titanate as packed pebble bed) and liquid breeders (molten lead lithium). India specific IN-RAFMS is the structural material for TBM. The First Wall is actively cooled by high-pressure helium (He) gas [1]. It is important to validate the design of TBM to withstand various loads acting on it including accident analysis like LOCA, LOFA etc. Detailed thermal-hydraulic simulation studies including LOFA in helium and Pb-Li circuits of LLCB TBM have been performed using Finite Element using ANSYS. These analyses will provide important information about the temperature distribution in different materials used in TBM during steady state and transient condition. Thermal-hydraulic safety requirement has also been envisaged for the initiation the FPPS (Fusion Power Shutdown System) during LOFA. All these analysis will be presented in detail in this paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manjon, A.; Iborra, J.L.; Gomez, J.L.
A design equation is presented for packed-bed reactors containing immobilized enzymes in spherical porous particles with internal diffusion effects and obeying reversible one-intermediate Michaelis-Menten kinetics. The equation is also able to explain irreversible and competitive product inhibition kinetics. It allows the axial substrate profiles to be calculated and the dependence of the effectiveness factor along the reactor length to be continuously evaluated. The design equation was applied to explain the behavior of naringinase immobilized in Glycophase-coated porous glass operating in a packed-bed reactor and hydrolyzing both p-nitrophenyl-alpha-L-rhamnoside and naringin. The theoretically predicted results were found to fit well with experimentallymore » measured values. (Refs. 28).« less
Generation and Reduction of NOx on Air-Fed Ozonizers
NASA Astrophysics Data System (ADS)
Ehara, Yoshiyasu; Amemiya, Yusuke; Yamamoto, Toshiaki
A generation and reduction of NOx on air-fed ozonizers using a ferroelectric packed bed reactor have been experimentally investigated. The reactors packed with CaTiO3, SrTiO3 and BaTiO3 pellets are examined for ozone generation. An ac voltage is applied to the reactor to generate partial discharge. Ozone concentration and the different nitrogen oxides at downstream of the packed bed reactor were measured with UV absorption ozone monitor and a Fourier transform infrared spectroscope respectively. The dielectric constant of packed ferroelectric pellets influences the discharge characteristic, ozone and NOx generations are varied by the dielectric constant value. Focusing on a discharge pulse current and maximum discharge magnitude, the ferroelectric packed bed plasma reactors have been evaluated on nitrogen oxide and ozone generated concentrations.
Fox, Peter; Suidan, Makram T.
1990-01-01
Batch tests to measure maximum acetate utilization rates were used to determine the distribution of acetate utilizers in expanded-bed sand and expanded-bed granular activated carbon (GAC) reactors. The reactors were fed a mixture of acetate and 3-ethylphenol, and they contained the same predominant aceticlastic methanogen, Methanothrix sp. Batch tests were performed both on the entire reactor contents and with media removed from the reactors. Results indicated that activity was evenly distributed within the GAC reactors, whereas in the sand reactor a sludge blanket on top of the sand bed contained approximately 50% of the activity. The Monod half-velocity constant (Ks) for the acetate-utilizing methanogens in two expanded-bed GAC reactors was searched for by combining steady-state results with batch test data. All parameters necessary to develop a model with Monod kinetics were experimentally determined except for Ks. However, Ks was a function of the effluent 3-ethylphenol concentration, and batch test results demonstrated that maximum acetate utilization rates were not a function of the effluent 3-ethylphenol concentration. Addition of a competitive inhibition term into the Monod expression predicted the dependence of Ks on the effluent 3-ethylphenol concentration. A two-parameter search determined a Ks of 8.99 mg of acetate per liter and a Ki of 2.41 mg of 3-ethylphenol per liter. Model predictions were in agreement with experimental observations for all effluent 3-ethylphenol concentrations. Batch tests measured the activity for a specific substrate and determined the distribution of activity in the reactor. The use of steady-state data in conjunction with batch test results reduced the number of unknown kinetic parameters and thereby reduced the uncertainty in the results and the assumptions made. PMID:16348175
Fox, P; Suidan, M T
1990-04-01
Batch tests to measure maximum acetate utilization rates were used to determine the distribution of acetate utilizers in expanded-bed sand and expanded-bed granular activated carbon (GAC) reactors. The reactors were fed a mixture of acetate and 3-ethylphenol, and they contained the same predominant aceticlastic methanogen, Methanothrix sp. Batch tests were performed both on the entire reactor contents and with media removed from the reactors. Results indicated that activity was evenly distributed within the GAC reactors, whereas in the sand reactor a sludge blanket on top of the sand bed contained approximately 50% of the activity. The Monod half-velocity constant (K(s)) for the acetate-utilizing methanogens in two expanded-bed GAC reactors was searched for by combining steady-state results with batch test data. All parameters necessary to develop a model with Monod kinetics were experimentally determined except for K(s). However, K(s) was a function of the effluent 3-ethylphenol concentration, and batch test results demonstrated that maximum acetate utilization rates were not a function of the effluent 3-ethylphenol concentration. Addition of a competitive inhibition term into the Monod expression predicted the dependence of K(s) on the effluent 3-ethylphenol concentration. A two-parameter search determined a K(s) of 8.99 mg of acetate per liter and a K(i) of 2.41 mg of 3-ethylphenol per liter. Model predictions were in agreement with experimental observations for all effluent 3-ethylphenol concentrations. Batch tests measured the activity for a specific substrate and determined the distribution of activity in the reactor. The use of steady-state data in conjunction with batch test results reduced the number of unknown kinetic parameters and thereby reduced the uncertainty in the results and the assumptions made.
Manowitz, Bernard; Steinberg, Meyer; Sheehan, Thomas V.; Winsche, Warren E.; Raseman, Chad J.
1976-01-01
A process for the hydrogenation of coal comprising the contacting of powdered coal with hydrogen in a rotating fluidized bed reactor. A rotating fluidized bed reactor suitable for use in this process is also disclosed. The coal residence time in the reactor is limited to less than 5 seconds while the hydrogen contact time is not in excess of 0.2 seconds.
Paul S Wills, PhD; Pfeiffer, Timothy; Baptiste, Richard; Watten, Barnaby J.
2016-01-01
Control of alkalinity, dissolved carbon dioxide (dCO2), and pH are critical in marine recirculating aquaculture systems (RAS) in order to maintain health and maximize growth. A small-scale prototype aragonite sand filled fluidized bed reactor was tested under varying conditions of alkalinity and dCO2 to develop and model the response of dCO2 across the reactor. A large-scale reactor was then incorporated into an operating marine recirculating aquaculture system to observe the reactor as the system moved toward equilibrium. The relationship between alkalinity dCO2, and pH across the reactor are described by multiple regression equations. The change in dCO2 across the small-scale reactor indicated a strong likelihood that an equilibrium alkalinity would be maintained by using a fluidized bed aragonite reactor. The large-scale reactor verified this observation and established equilibrium at an alkalinity of approximately 135 mg/L as CaCO3, dCO2 of 9 mg/L, and a pH of 7.0 within 4 days that was stable during a 14 day test period. The fluidized bed aragonite reactor has the potential to simplify alkalinity and pH control, and aid in dCO2 control in RAS design and operation. Aragonite sand, purchased in bulk, is less expensive than sodium bicarbonate and could reduce overall operating production costs.
Mallick, Subrat Kumar; Chakraborty, Saswati
2017-11-10
Objective of the present study was to simultaneously biodegrade synthetic petroleum refinery wastewater containing phenol (750 mg/L), sulphide (750 mg/L), hydrocarbon (as emulsified diesel of 300 mg/L), ammonia-nitrogen (350 mg/L) at pH >9 in anoxic-aerobic sequential moving bed reactors. The optimum mixing speed of anoxic reactor was observed at 20 rpm and beyond that, removal rate remained constant. In anoxic reactor the minimum hydraulic retention time was observed to be 2 days for complete removal of sulphide, 40-50% removal of phenol and total hydrocarbons and 52% of sulphur recovery. The optimum HRT of aerobic moving bed reactor was observed as 16 h (total HRT of 64 h for anoxic and aerobic reactors) for complete removals of phenol, total hydrocarbons, COD (chemical oxygen demand) and ammonia-nitrogen with nitrification.
Fluidized bed silicon deposition from silane
NASA Technical Reports Server (NTRS)
Hsu, George C. (Inventor); Levin, Harry (Inventor); Hogle, Richard A. (Inventor); Praturi, Ananda (Inventor); Lutwack, Ralph (Inventor)
1982-01-01
A process and apparatus for thermally decomposing silicon containing gas for deposition on fluidized nucleating silicon seed particles is disclosed. Silicon seed particles are produced in a secondary fluidized reactor by thermal decomposition of a silicon containing gas. The thermally produced silicon seed particles are then introduced into a primary fluidized bed reactor to form a fluidized bed. Silicon containing gas is introduced into the primary reactor where it is thermally decomposed and deposited on the fluidized silicon seed particles. Silicon seed particles having the desired amount of thermally decomposed silicon product thereon are removed from the primary fluidized reactor as ultra pure silicon product. An apparatus for carrying out this process is also disclosed.
Fluidized bed silicon deposition from silane
NASA Technical Reports Server (NTRS)
Hsu, George (Inventor); Levin, Harry (Inventor); Hogle, Richard A. (Inventor); Praturi, Ananda (Inventor); Lutwack, Ralph (Inventor)
1984-01-01
A process and apparatus for thermally decomposing silicon containing gas for deposition on fluidized nucleating silicon seed particles is disclosed. Silicon seed particles are produced in a secondary fluidized reactor by thermal decomposition of a silicon containing gas. The thermally produced silicon seed particles are then introduced into a primary fluidized bed reactor to form a fludized bed. Silicon containing gas is introduced into the primary reactor where it is thermally decomposed and deposited on the fluidized silicon seed particles. Silicon seed particles having the desired amount of thermally decomposed silicon product thereon are removed from the primary fluidized reactor as ultra pure silicon product. An apparatus for carrying out this process is also disclosed.
Effect of bed characters on the direct synthesis of dimethyldichlorosilane in fluidized bed reactor.
Zhang, Pan; Duan, Ji H; Chen, Guang H; Wang, Wei W
2015-03-06
This paper presents the numerical investigation of the effects of the general bed characteristics such as superficial gas velocities, bed temperature, bed heights and particle size, on the direct synthesis in a 3D fluidized bed reactor. A 3D model for the gas flow, heat transfer, and mass transfer was coupled to the direct synthesis reaction mechanism verified in the literature. The model was verified by comparing the simulated reaction rate and dimethyldichlorosilane (M2) selectivity with the experimental data in the open literature and real production data. Computed results indicate that superficial gas velocities, bed temperature, bed heights, and particle size have vital effect on the reaction rates and/or M2 selectivity.
Effect of Bed Characters on the Direct Synthesis of Dimethyldichlorosilane in Fluidized Bed Reactor
Zhang, Pan; Duan, Ji H.; Chen, Guang H.; Wang, Wei W.
2015-01-01
This paper presents the numerical investigation of the effects of the general bed characteristics such as superficial gas velocities, bed temperature, bed heights and particle size, on the direct synthesis in a 3D fluidized bed reactor. A 3D model for the gas flow, heat transfer, and mass transfer was coupled to the direct synthesis reaction mechanism verified in the literature. The model was verified by comparing the simulated reaction rate and dimethyldichlorosilane (M2) selectivity with the experimental data in the open literature and real production data. Computed results indicate that superficial gas velocities, bed temperature, bed heights, and particle size have vital effect on the reaction rates and/or M2 selectivity. PMID:25742729
Coal hydrogenation and deashing in ebullated bed catalytic reactor
Huibers, Derk T. A.; Johanson, Edwin S.
1983-01-01
An improved process for hydrogenation of coal containing ash with agglomeration and removal of ash from an ebullated bed catalytic reactor to produce deashed hydrocarbon liquid and gas products. In the process, a flowable coal-oil slurry is reacted with hydrogen in an ebullated catalyst bed reaction zone at elevated temperature and pressure conditions. The upward velocity and viscosity of the reactor liquid are controlled so that a substantial portion of the ash released from the coal is agglomerated to form larger particles in the upper portion of the reactor above the catalyst bed, from which the agglomerated ash is separately withdrawn along with adhering reaction zone liquid. The resulting hydrogenated hydrocarbon effluent material product is phase separated to remove vapor fractions, after which any ash remaining in the liquid fraction can be removed to produce substantially ash-free coal-derived liquid products.
Design of a laboratory scale fluidized bed reactor
NASA Astrophysics Data System (ADS)
Wikström, E.; Andersson, P.; Marklund, S.
1998-04-01
The aim of this project was to construct a laboratory scale fluidized bed reactor that simulates the behavior of full scale municipal solid waste combustors. The design of this reactor is thoroughly described. The size of the laboratory scale fluidized bed reactor is 5 kW, which corresponds to a fuel-feeding rate of approximately 1 kg/h. The reactor system consists of four parts: a bed section, a freeboard section, a convector (postcombustion zone), and an air pollution control (APC) device system. The inside diameter of the reactor is 100 mm at the bed section and it widens to 200 mm in diameter in the freeboard section; the total height of the reactor is 1760 mm. The convector part consists of five identical sections; each section is 2700 mm long and has an inside diameter of 44.3 mm. The reactor is flexible regarding the placement and number of sampling ports. At the beginning of the first convector unit and at the end of each unit there are sampling ports for organic micropollutants (OMP). This makes it possible to study the composition of the flue gases at various residence times. Sampling ports for inorganic compounds and particulate matter are also placed in the convector section. All operating parameters, reactor temperatures, concentrations of CO, CO2, O2, SO2, NO, and NO2 are continuously measured and stored at selected intervals for further evaluation. These unique features enable full control over the fuel feed, air flows, and air distribution as well as over the temperature profile. Elaborate details are provided regarding the configuration of the fuel-feeding systems, the fluidized bed, the convector section, and the APC device. This laboratory reactor enables detailed studies of the formation mechanisms of OMP, such as polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), poly-chlorinated biphenyls (PCBs), and polychlorinated benzenes (PCBzs). With this system formation mechanisms of OMP occurring in both the combustion and postcombustion zones can be studied. Other advantages are memory effect minimization and the reduction of experimental costs compared to full scale combustors. Comparison of the combustion parameters and emission data from this 5 kW laboratory scale reactor with full scale combustors shows good agreement regarding emission levels and PCDD/PCDF congener patterns. This indicates that the important formation and degradation reactions of OMP in the reactor are the same formation mechanisms as in full scale combustors.
Anaerobic treatment of winery wastewater in fixed bed reactors.
Ganesh, Rangaraj; Rajinikanth, Rajagopal; Thanikal, Joseph V; Ramanujam, Ramamoorty Alwar; Torrijos, Michel
2010-06-01
The treatment of winery wastewater in three upflow anaerobic fixed-bed reactors (S9, S30 and S40) with low density floating supports of varying size and specific surface area was investigated. A maximum OLR of 42 g/l day with 80 +/- 0.5% removal efficiency was attained in S9, which had supports with the highest specific surface area. It was found that the efficiency of the reactors increased with decrease in size and increase in specific surface area of the support media. Total biomass accumulation in the reactors was also found to vary as a function of specific surface area and size of the support medium. The Stover-Kincannon kinetic model predicted satisfactorily the performance of the reactors. The maximum removal rate constant (U(max)) was 161.3, 99.0 and 77.5 g/l day and the saturation value constant (K(B)) was 162.0, 99.5 and 78.0 g/l day for S9, S30 and S40, respectively. Due to their higher biomass retention potential, the supports used in this study offer great promise as media in anaerobic fixed bed reactors. Anaerobic fixed-bed reactors with these supports can be applied as high-rate systems for the treatment of large volumes of wastewaters typically containing readily biodegradable organics, such as the winery wastewater.
Pressurized fluidized bed reactor and a method of operating the same
Isaksson, J.
1996-02-20
A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine. 1 fig.
Pressurized fluidized bed reactor and a method of operating the same
Isaksson, Juhani
1996-01-01
A pressurized fluid bed reactor power plant includes a fluidized bed reactor contained within a pressure vessel with a pressurized gas volume between the reactor and the vessel. A first conduit supplies primary gas from the gas volume to the reactor, passing outside the pressure vessel and then returning through the pressure vessel to the reactor, and pressurized gas is supplied from a compressor through a second conduit to the gas volume. A third conduit, comprising a hot gas discharge, carries gases from the reactor, through a filter, and ultimately to a turbine. During normal operation of the plant, pressurized gas is withdrawn from the gas volume through the first conduit and introduced into the reactor at a substantially continuously controlled rate as the primary gas to the reactor. In response to an operational disturbance of the plant, the flow of gas in the first, second, and third conduits is terminated, and thereafter the pressure in the gas volume and in the reactor is substantially simultaneously reduced by opening pressure relief valves in the first and third conduits, and optionally by passing air directly from the second conduit to the turbine.
Qiao, Sen; Kawakubo, Yuki; Koyama, Toichiro; Furukawa, Kenji
2008-11-01
This study evaluated performance of swim-bed (SB) reactors packed with a novel acrylic fiber carrier (BF) and swim-bed activated sludge (SBAS) reactor for partial nitritation of anaerobic sludge digester liquor from a municipal wastewater treatment plant. Comparison of characteristics of sludge obtained from both the reactors was also made. The average conversion rates of ammonium to nitrite were 52.3% and 40.0% under relatively high nitrogen loading rates over 3.0 kg-N/m(3)/d, respectively in two reactors. The average BOD(5) removal efficiencies were 74.3% and 64.4%, respectively in the two reactors. The size of the sludge pellets taken from SB and SBAS reactors was found to be approximately three times (229 mum versus 88 mum) of that of the seed sludge. This sludge also had relatively high extracellular proteins levels indicating better sludge settling capability as compared to the sludge taken from SBAS reactor. Although the effluent nitrite/ammonium ratios had fluctuated in both reactor in some extent, the low dissolved oxygen concentration (average of 2.5 versus 0.35 mg/l), low suspended solids (average of 33.3 versus 33.5 mg/l), and about 50% ammonium conversion to nitrite demonstrated the application potential of anammox process for nitrogen removal.
Estrada-Arriaga, Edson B; Ramirez-Camperos, Esperanza; Moeller-Chavez, Gabriela E; García-Sanchez, Liliana
2012-01-01
An integrated fluidized bed reactor (FBR) has been employed as the treatment for petrochemical industry wastewaters with high organic matter and aromatic compounds, under anaerobic and aerobic conditions. The system was operated at hydraulic residence time (HRT) of 2.7 and 2.2 h in the anaerobic and aerobic reactor, respectively. The degree of fluidization in the beds was 30%. This system showed a high performance on the removal of organic matter and aromatic compounds. At different organic loading rates (OLR), the chemical oxygen demand (COD) removal in the anaerobic reactor was close to 85% and removals of the COD up to 94% were obtained in the aerobic reactor. High removals of benzene, toluene, ethylbenzene, xylenes, styrene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene and naphthalene were achieved in this study.
Lithofacies of Spencer Formation, western Tualatin Valley, Oregon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Atta, R.O.
The Spencer Formation crops out in a narrow band that trends north-northwest on the western edge of the Willamette and Tualatin Valleys, Oregon. It apparently conformably overlies mud rocks of either the Yamhill or the Nestucca Formation and is conformably overlain by the Pittsburgh Bluff Formation. The Spencer Formation consists of two members (informal): a lower highly micaceous sandstone (800-1000 ft) and an upper member that is micaceous siltstone and mudstone (1000-1300 ft). The lower member includes an upper part that is light-gray to creamy-gray, silty to muddy, pebbly lithic arkose to feldspathic litharenite, with minor arkose. Sorting is poormore » and beds may be laminated to ripple cross-laminated or massive and bioturbated with abundant mollusk shells, carbonized wood, and burrows. The lower part of the lower member is medium-gray to greenish-gray, silty, pumiceous lithic arkose to feldspathic litharenite. The texture tends to be more uniform and better sorted than that of the upper part of the member. Bedding is commonly massive due to bioturbation. The upper member is medium to dark-gray mudstone with thin pebble-conglomerate lenses. It intertongues with the lower member. Bioturbation, burrows, and carbonized wood are common. The trend in depositional environments appears to be from outer to mid-neritic (lower part, lower member) to shallow neritic, nearshore, and lagoonal (upper part, lower member, and upper member). The provenance of the Spencer Formation includes both proximal volcanics and distant plutonic and high-grade metamorphics.« less
Advanced development of immobilized enzyme reactors
NASA Technical Reports Server (NTRS)
Jolly, Clifford D.; Schussel, Leonard J.; Carter, Layne
1991-01-01
Fixed-bed reactors have been used at NASA-Marshall to purify wastewater generated by an end-use equipment facility, on the basis of a combination of multifiltration unibeds and enzyme unibeds. The enzyme beds were found to effectively remove such targeted organics as urea, alcohols, and aldehydes, down to levels lying below detection limits. The enzyme beds were also found to remove organic contaminants not specifically targeted.
Marker, Terry L; Felix, Larry G; Linck, Martin B; Roberts, Michael J
2014-09-23
This invention relates to a process for thermochemically transforming biomass or other oxygenated feedstocks into high quality liquid hydrocarbon fuels. In particular, a catalytic hydropyrolysis reactor, containing a deep bed of fluidized catalyst particles is utilized to accept particles of biomass or other oxygenated feedstocks that are significantly smaller than the particles of catalyst in the fluidized bed. The reactor features an insert or other structure disposed within the reactor vessel that inhibits slugging of the bed and thereby minimizes attrition of the catalyst. Within the bed, the biomass feedstock is converted into a vapor-phase product, containing hydrocarbon molecules and other process vapors, and an entrained solid char product, which is separated from the vapor stream after the vapor stream has been exhausted from the top of the reactor. When the product vapor stream is cooled to ambient temperatures, a significant proportion of the hydrocarbons in the product vapor stream can be recovered as a liquid stream of hydrophobic hydrocarbons, with properties consistent with those of gasoline, kerosene, and diesel fuel. Separate streams of gasoline, kerosene, and diesel fuel may also be obtained, either via selective condensation of each type of fuel, or via later distillation of the combined hydrocarbon liquid.
Marker, Terry L.; Felix, Larry G.; Linck, Martin B.; Roberts, Michael J.
2016-12-06
This invention relates to a process for thermochemically transforming biomass or other oxygenated feedstocks into high quality liquid hydrocarbon fuels. In particular, a catalytic hydropyrolysis reactor, containing a deep bed of fluidized catalyst particles is utilized to accept particles of biomass or other oxygenated feedstocks that are significantly smaller than the particles of catalyst in the fluidized bed. The reactor features an insert or other structure disposed within the reactor vessel that inhibits slugging of the bed and thereby minimizes attrition of the catalyst. Within the bed, the biomass feedstock is converted into a vapor-phase product, containing hydrocarbon molecules and other process vapors, and an entrained solid char product, which is separated from the vapor stream after the vapor stream has been exhausted from the top of the reactor. When the product vapor stream is cooled to ambient temperatures, a significant proportion of the hydrocarbons in the product vapor stream can be recovered as a liquid stream of hydrophobic hydrocarbons, with properties consistent with those of gasoline, kerosene, and diesel fuel. Separate streams of gasoline, kerosene, and diesel fuel may also be obtained, either via selective condensation of each type of fuel, or via later distillation of the combined hydrocarbon liquid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Jinshu; Lin, Jinhan; Xu, Mingliang
Hexagonal boron nitride (h-BN) with high thermal conductivity is potentially an effective catalyst for highly exothermic propane oxidative dehydrogenation (ODH) reaction. Here, we report our experimental and theoretic studies of such a catalyst for propane ODH in a fixed-bed reactor. Based on the computational fluid dynamics calculation (CFD) results, the catalyst bed temperature increases by less than 1°C in the h-BN catalyst bed which is much smaller than that (8°C) in the VO x/γ-Al 2O 3 catalyst bed at a similar propane conversion (25%) using a micro-tubular reactor with a diameter of 6 mm. Even in an industrially relevant reactormore » with an inner diameter of 60 mm, a uniform temperature profile can still be maintained using the h-BN catalyst bed due to its excellent thermal conductivity as opposed to a temperature gradient of 47°C in the VO x/γ-Al 2O 3 catalyst bed. The results reported here provide useful information for potential application of h-BN catalyst in propane ODH.« less
Tian, Jinshu; Lin, Jinhan; Xu, Mingliang; ...
2018-04-17
Hexagonal boron nitride (h-BN) with high thermal conductivity is potentially an effective catalyst for highly exothermic propane oxidative dehydrogenation (ODH) reaction. Here, we report our experimental and theoretic studies of such a catalyst for propane ODH in a fixed-bed reactor. Based on the computational fluid dynamics calculation (CFD) results, the catalyst bed temperature increases by less than 1°C in the h-BN catalyst bed which is much smaller than that (8°C) in the VO x/γ-Al 2O 3 catalyst bed at a similar propane conversion (25%) using a micro-tubular reactor with a diameter of 6 mm. Even in an industrially relevant reactormore » with an inner diameter of 60 mm, a uniform temperature profile can still be maintained using the h-BN catalyst bed due to its excellent thermal conductivity as opposed to a temperature gradient of 47°C in the VO x/γ-Al 2O 3 catalyst bed. The results reported here provide useful information for potential application of h-BN catalyst in propane ODH.« less
Guo, Z.; Zweibaum, N.; Shao, M.; ...
2016-04-19
The University of California, Berkeley (UCB) is performing thermal hydraulics safety analysis to develop the technical basis for design and licensing of fluoride-salt-cooled, high-temperature reactors (FHRs). FHR designs investigated by UCB use natural circulation for emergency, passive decay heat removal when normal decay heat removal systems fail. The FHR advanced natural circulation analysis (FANCY) code has been developed for assessment of passive decay heat removal capability and safety analysis of these innovative system designs. The FANCY code uses a one-dimensional, semi-implicit scheme to solve for pressure-linked mass, momentum and energy conservation equations. Graph theory is used to automatically generate amore » staggered mesh for complicated pipe network systems. Heat structure models have been implemented for three types of boundary conditions (Dirichlet, Neumann and Robin boundary conditions). Heat structures can be composed of several layers of different materials, and are used for simulation of heat structure temperature distribution and heat transfer rate. Control models are used to simulate sequences of events or trips of safety systems. A proportional-integral controller is also used to automatically make thermal hydraulic systems reach desired steady state conditions. A point kinetics model is used to model reactor kinetics behavior with temperature reactivity feedback. The underlying large sparse linear systems in these models are efficiently solved by using direct and iterative solvers provided by the SuperLU code on high performance machines. Input interfaces are designed to increase the flexibility of simulation for complicated thermal hydraulic systems. In conclusion, this paper mainly focuses on the methodology used to develop the FANCY code, and safety analysis of the Mark 1 pebble-bed FHR under development at UCB is performed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Z.; Zweibaum, N.; Shao, M.
The University of California, Berkeley (UCB) is performing thermal hydraulics safety analysis to develop the technical basis for design and licensing of fluoride-salt-cooled, high-temperature reactors (FHRs). FHR designs investigated by UCB use natural circulation for emergency, passive decay heat removal when normal decay heat removal systems fail. The FHR advanced natural circulation analysis (FANCY) code has been developed for assessment of passive decay heat removal capability and safety analysis of these innovative system designs. The FANCY code uses a one-dimensional, semi-implicit scheme to solve for pressure-linked mass, momentum and energy conservation equations. Graph theory is used to automatically generate amore » staggered mesh for complicated pipe network systems. Heat structure models have been implemented for three types of boundary conditions (Dirichlet, Neumann and Robin boundary conditions). Heat structures can be composed of several layers of different materials, and are used for simulation of heat structure temperature distribution and heat transfer rate. Control models are used to simulate sequences of events or trips of safety systems. A proportional-integral controller is also used to automatically make thermal hydraulic systems reach desired steady state conditions. A point kinetics model is used to model reactor kinetics behavior with temperature reactivity feedback. The underlying large sparse linear systems in these models are efficiently solved by using direct and iterative solvers provided by the SuperLU code on high performance machines. Input interfaces are designed to increase the flexibility of simulation for complicated thermal hydraulic systems. In conclusion, this paper mainly focuses on the methodology used to develop the FANCY code, and safety analysis of the Mark 1 pebble-bed FHR under development at UCB is performed.« less
The potential of the anaerobic, expanded bed granular activated carbon (GAC) reactor in treating a high strength waste containing RCRA semivolatile organic compounds (VOCs) was studied. Six semivolatiles, orthochlorophenol, nitrobenzene, naphthalene, para-nitrophenol, lindane, a...
JAFARI, Jalil; MESDAGHINIA, Alireza; NABIZADEH, Ramin; FARROKHI, Mehrdad; MAHVI, Amir Hossein
2013-01-01
Background: Anaerobic treatment methods are more suitable for the treatment of concentrated wastewater streams, offer lower operating costs, the production of usable biogas product. The aim of this study was to investigate the performance of an Anaerobic Fluidized Bed Reactor (AFBR)-Aerobic Moving Bed Bio Reactor (MBBR) in series arrangement to treat Currant wastewater. Methods: The bed materials of AFBR were cylindrical particles made of PVC with a diameter of 2–2.3 mm, particle density of 1250 kg/m3. The volume of all bed materials was 1.7 liter which expanded to 2.46 liters in fluidized situation. In MBBR, support media was composed of 1.5 liters Bee-Cell 2000 having porosity of 87% and specific surface area of 650m2/m3. Results: When system operated at 35 ºC, chemical oxygen demand (COD) removal efficiencies were achieved to 98% and 81.6% for organic loading rates (OLR) of 9.4 and 24.2 g COD/l.d, and hydraulic retention times (HRT) of 48 and 18 h, in average COD concentration feeding of 18.4 g/l, respectively. Conclusion: The contribution of AFBR in total COD removal efficiency at an organic loading rate (OLR) of 9.4 g COD/l.d was 95%, and gradually decreased to 76.5% in OLR of 24.2 g COD/l.d. Also with increasing in organic loading rate the contribution of aerobic reactor in removing COD gradually decreased. In this system, the anaerobic reactor played the most important role in the removal of COD, and the aerobic MBBR was actually needed to polish the anaerobic treated wastewater. PMID:26056640
Circulating moving bed system for CO.sub.2 separation, and method of same
Elliott, Jeannine Elizabeth; Copeland, Robert James
2016-12-27
A circulating moving bed and process for separating a carbon dioxide from a gas stream is disclosed. The circulating moving bed can include an adsorption reactor and a desorption reactor, and a sorbent that moves through the two reactors. The sorbent can enter the adsorptive reactor and one end and move to an exit point distal to its entry point, while a CO.sub.2 feed stream can enter near the distal point and move countercurrently through the sorbent to exit at a position near the entry point of the sorbent. The sorbent can adsorb the CO.sub.2 by concentration swing adsorption and adsorptive displacement. The sorbent can then transfer to a regeneration reactor and can move countercurrently against a flow of steam through the regeneration reactor. The sorbent can be regenerated and the carbon dioxide recaptured by desorbing the carbon dioxide from the sorbent using concentration swing desorption and desorptive displacement with steam.
Steam reforming of heptane in a fluidized bed membrane reactor
NASA Astrophysics Data System (ADS)
Rakib, Mohammad A.; Grace, John R.; Lim, C. Jim; Elnashaie, Said S. E. H.
n-Heptane served as a model compound to study steam reforming of naphtha as an alternative feedstock to natural gas for production of pure hydrogen in a fluidized bed membrane reactor. Selective removal of hydrogen using Pd 77Ag 23 membrane panels shifted the equilibrium-limited reactions to greater conversion of the hydrocarbons and lower yields of methane, an intermediate product. Experiments were conducted with no membranes, with one membrane panel, and with six panels along the height of the reactor to understand the performance improvement due to hydrogen removal in a reactor where catalyst particles were fluidized. Results indicate that a fluidized bed membrane reactor (FBMR) can provide a compact reformer for pure hydrogen production from a liquid hydrocarbon feedstock at moderate temperatures (475-550 °C). Under the experimental conditions investigated, the maximum achieved yield of pure hydrogen was 14.7 moles of pure hydrogen per mole of heptane fed.
Medrano, José-Antonio; Julián, Ignacio; Herguido, Javier; Menéndez, Miguel
2013-01-01
Several reactor configurations have been tested for catalytic propane dehydrogenation employing Pt-Sn/MgAl2O4 as a catalyst. Pd-Ag alloy membranes coupled to the multifunctional Two-Zone Fluidized Bed Reactor (TZFBR) provide an improvement in propane conversion by hydrogen removal from the reaction bed through the inorganic membrane in addition to in situ catalyst regeneration. Twofold process intensification is thereby achieved when compared to the use of traditional fluidized bed reactors (FBR), where coke formation and thermodynamic equilibrium represent important process limitations. Experiments were carried out at 500–575 °C and with catalyst mass to molar flow of fed propane ratios between 15.1 and 35.2 g min mmol−1, employing three different reactor configurations: FBR, TZFBR and TZFBR + Membrane (TZFBR + MB). The results in the FBR showed catalyst deactivation, which was faster at high temperatures. In contrast, by employing the TZFBR with the optimum regenerative agent flow (diluted oxygen), the process activity was sustained throughout the time on stream. The TZFBR + MB showed promising results in catalytic propane dehydrogenation, displacing the reaction towards higher propylene production and giving the best results among the different reactor configurations studied. Furthermore, the results obtained in this study were better than those reported on conventional reactors. PMID:24958620
Fluvial experiments using inertial sensors.
NASA Astrophysics Data System (ADS)
Maniatis, Georgios; Valyrakis, Manousos; Hodge, Rebecca; Drysdale, Tim; Hoey, Trevor
2017-04-01
During the last four years we have announced results on the development of a smart pebble that is constructed and calibrated specifically for capturing the dynamics of coarse sediment motion in river beds, at a grain scale. In this presentation we report details of our experimental validation across a range of flow regimes. The smart pebble contains Inertial Measurements Units (IMUs), which are sensors capable of recording the inertial acceleration and the angular velocity of the rigid bodies into which they are attached. IMUs are available across a range of performance levels, with commensurate increase in size, cost and performance as one progresses from integrated-circuit devices for use in commercial applications such as gaming and mobile phones, to larger brick-sized systems sometimes found in industrial applications such as vibration monitoring and quality control, or even the rack-mount equipment used in some aerospace and navigation applications (which can go as far as to include lasers and optical components). In parallel with developments in commercial and industrial settings, geomorphologists started recently to explore means of deploying IMUs in smart pebbles. The less-expensive, chip-scale IMUs have been shown to have adequate performance for this application, as well as offering a sufficiently compact form-factor. Four prototype sensors have been developed so far, and the latest (400 g acceleration range, 50-200 Hz sampling frequency) has been tested in fluvial laboratory experiments. We present results from three different experimental regimes designed for the evaluation of this sensor: a) an entrainment threshold experiment ; b) a bed impact experiment ; and c) a rolling experiment. All experiments used a 100 mm spherical sensor, and set a) were repeated using an equivalent size elliptical sensor. The experiments were conducted in the fluvial laboratory of the University of Glasgow (0.9 m wide flume) under different hydraulic conditions. The use of IMU results into direct parametrization of the inertial forces of grains which for the tested grain sizes were, as expected, always comparable to the independently measured hydrodynamic forces. However, the validity of IMU measurements is subjected to specific design, processing and experimental considerations, and we present the results of our analysis of these.
Mendonça, N M; Niciura, C L; Gianotti, E P; Campos, J R
2004-01-01
This paper describes the performance, sludge production and biofilm characteristics of a full scale fluidized bed anaerobic reactor (32 m3) for domestic wastewater treatment. The reactor was operated with 10.5 m x h(-1) upflow velocity, 3.2 h hydraulic retention time, and recirculation ratio of 0.85 and it presented removal efficiencies of 71+/-8% of COD and 77+/-14% of TSS. During the apparent steady-state period, specific sludge production and sludge age in the reactor were (0.116+/-0.033) kgVSS. kgCOD(-1) and (12+/-5)d, respectively. Biofilm formed in the reactor presented two different patterns: one of them at the beginning of the colonization and the other of mature biofilm. These different colonization patterns are due to bed stratification in the reactor, caused by the difference in local-energy dissipation rates along the reactor's height, and density, shape, etc. of the bioparticles. The biofilm population is formed mainly of syntrophic consortia among sulfate reducing bacteria, methanogenic archaea such as Methanobacterium and Methanosaeta-like cells.
TREATMENT OF VOCS IN HIGH STRENGTH WASTES USING AN ANAEROBIC EXPANDED-BED GAS REACTOR
The potential of the expanded-bed granular activated carbon (GAC) anaerobic reactor in treating a high strength waste containing RCRA volatile organic compounds (VOCs) was studied. A total of six VOCs, methylene chloride, chlorobenzene, carbon tetrachloride, chloroform, toluene ...
An integrated reactor system has been developed to remediate pentachlorophenol (PCP) containing wastes using sequential anaerobic and aerobic biodegradation. Anaerobically, PCP was degraded to approximately equimolar concentrations (>99%) of chlorophenol (CP) in a granular activa...
NASA Astrophysics Data System (ADS)
Aziz, Mohammad Abdul; Al-khulaidi, Rami Ali; Rashid, MM; Islam, M. R.; Rashid, MAN
2017-03-01
In this research, a development and performance test of a fixed-bed batch type pyrolysis reactor for pilot scale pyrolysis oil production was successfully completed. The characteristics of the pyrolysis oil were compared to other experimental results. A solid horizontal condenser, a burner for furnace heating and a reactor shield were designed. Due to the pilot scale pyrolytic oil production encountered numerous problems during the plant’s operation. This fixed-bed batch type pyrolysis reactor method will demonstrate the energy saving concept of solid waste tire by creating energy stability. From this experiment, product yields (wt. %) for liquid or pyrolytic oil were 49%, char 38.3 % and pyrolytic gas 12.7% with an operation running time of 185 minutes.
NASA Technical Reports Server (NTRS)
Blocher, J. M., Jr.; Browning, M. F.
1979-01-01
The construction and operation of an experimental process system development unit (EPSDU) for the production of granular semiconductor grade silicon by the zinc vapor reduction of silicon tetrachloride in a fluidized bed of seed particles is presented. The construction of the process development unit (PDU) is reported. The PDU consists of four critical units of the EPSDU: the fluidized bed reactor, the reactor by product condenser, the zinc vaporizer, and the electrolytic cell. An experimental wetted wall condenser and its operation are described. Procedures are established for safe handling of SiCl4 leaks and spills from the EPSDU and PDU.
Method and apparatus for chemically altering fluids in continuous flow
Heath, W.O.; Virden, J.W. Jr.; Richardson, R.L.; Bergsman, T.M.
1993-10-19
The present invention relates to a continuous flow fluid reactor for chemically altering fluids. The reactor operates on standard frequency (50 to 60 Hz) electricity. The fluid reactor contains particles that are energized by the electricity to form a corona throughout the volume of the reactor and subsequently a non-equilibrium plasma that interacts with the fluid. Particles may form a fixed bed or a fluid bed. Electricity may be provided through electrodes or through an inductive coil. Fluids include gases containing exhaust products and organic fuels requiring oxidation. 4 figures.
Method and apparatus for chemically altering fluids in continuous flow
Heath, William O.; Virden, Jr., Judson W.; Richardson, R. L.; Bergsman, Theresa M.
1993-01-01
The present invention relates to a continuous flow fluid reactor for chemically altering fluids. The reactor operates on standard frequency (50 to 60 Hz) electricity. The fluid reactor contains particles that are energized by the electricity to form a corona throughout the volume of the reactor and subsequently a non-equilibrium plasma that interacts with the fluid. Particles may form a fixed bed or a fluid bed. Electricity may be provided through electrodes or through an inductive coil. Fluids include gases containing exhaust products and organic fuels requiring oxidation.
Methane production by attached film
Jewell, William J.
1981-01-01
A method for purifying wastewater of biodegradable organics by converting the organics to methane and carbon dioxide gases is disclosed, characterized by the use of an anaerobic attached film expanded bed reactor for the reaction process. Dilute organic waste material is initially seeded with a heterogeneous anaerobic bacteria population including a methane-producing bacteria. The seeded organic waste material is introduced into the bottom of the expanded bed reactor which includes a particulate support media coated with a polysaccharide film. A low-velocity upward flow of the organic waste material is established through the bed during which the attached bacterial film reacts with the organic material to produce methane and carbon dioxide gases, purified water, and a small amount of residual effluent material. The residual effluent material is filtered by the film as it flows upwardly through the reactor bed. In a preferred embodiment, partially treated effluent material is recycled from the top of the bed to the bottom of the bed for further treatment. The methane and carbon dioxide gases are then separated from the residual effluent material and purified water.
Reactor for fluidized bed silane decomposition
NASA Technical Reports Server (NTRS)
Iya, Sridhar K. (Inventor)
1989-01-01
An improved heated fluidized bed reactor and method for the production of high purity polycrystalline silicon by silane pyrolysis wherein silicon seed particles are heated in an upper heating zone of the reactor and admixed with particles in a lower zone, in which zone a silane-containing gas stream, having passed through a lower cooled gas distribution zone not conducive to silane pyrolysis, contacts the heated seed particles whereon the silane is heterogeneously reduced to silicon.
APPARATUS FOR SHORT TIME MEASUREMENTS IN A FIXED-BED, GAS/SOLID REACTOR
An apparatus for exposure of a solid to reactive process gas is described which makes possible short time (≥ 0.3 to 15 s) exposures in a fixed-bed reactor. Operating conditions for differential reaction with respect to the gas concentration and rapid quench for arresting hi...
ANALYSIS OF AN AEROBIC FLUIDIZED BED REACTOR DEGRADING MTBE AND BTEX AT REDUCED EBCTS
The purpose of this study was to investigate the biodegradation of MTBE and BTEX using a fluidized bed reactor (FBR) with granular activated carbon (GAC) as a biological attachment medium. Batch experiments were run to analyze the MTBE and TBA degradation kinetics of the culture ...
Universal characteristics of particle shape evolution by bed-load chipping
Sipos, András Árpád; Shaw, Sam; Sarti, Giovanni; Domokos, Gábor
2018-01-01
River currents, wind, and waves drive bed-load transport, in which sediment particles collide with each other and Earth’s surface. A generic consequence is impact attrition and rounding of particles as a result of chipping, often referred to in geological literature as abrasion. Recent studies have shown that the rounding of river pebbles can be modeled as diffusion of surface curvature, indicating that geometric aspects of impact attrition are insensitive to details of collisions and material properties. We present data from fluvial, aeolian, and coastal environments and laboratory experiments that suggest a common relation between circularity and mass attrition for particles transported as bed load. Theory and simulations demonstrate that universal characteristics of shape evolution arise because of three constraints: (i) Initial particles are mildly elongated fragments, (ii) particles collide with similarly-sized particles or the bed, and (iii) collision energy is small enough that chipping dominates over fragmentation but large enough that sliding friction is negligible. We show that bed-load transport selects these constraints, providing the foundation to estimate a particle’s attrition rate from its shape alone in most sedimentary environments. These findings may be used to determine the contribution of attrition to downstream fining in rivers and deserts and to infer transport conditions using only images of sediment grains. PMID:29670937
Universal characteristics of particle shape evolution by bed-load chipping.
Novák-Szabó, Tímea; Sipos, András Árpád; Shaw, Sam; Bertoni, Duccio; Pozzebon, Alessandro; Grottoli, Edoardo; Sarti, Giovanni; Ciavola, Paolo; Domokos, Gábor; Jerolmack, Douglas J
2018-03-01
River currents, wind, and waves drive bed-load transport, in which sediment particles collide with each other and Earth's surface. A generic consequence is impact attrition and rounding of particles as a result of chipping, often referred to in geological literature as abrasion. Recent studies have shown that the rounding of river pebbles can be modeled as diffusion of surface curvature, indicating that geometric aspects of impact attrition are insensitive to details of collisions and material properties. We present data from fluvial, aeolian, and coastal environments and laboratory experiments that suggest a common relation between circularity and mass attrition for particles transported as bed load. Theory and simulations demonstrate that universal characteristics of shape evolution arise because of three constraints: (i) Initial particles are mildly elongated fragments, (ii) particles collide with similarly-sized particles or the bed, and (iii) collision energy is small enough that chipping dominates over fragmentation but large enough that sliding friction is negligible. We show that bed-load transport selects these constraints, providing the foundation to estimate a particle's attrition rate from its shape alone in most sedimentary environments. These findings may be used to determine the contribution of attrition to downstream fining in rivers and deserts and to infer transport conditions using only images of sediment grains.
Wang, Zhiqiang; Pei, Jingjing; Zhang, Jensen S
2014-09-15
Botanical filtration has been proved to be effective for indoor gas pollutant removal. To understand the roles of different transport, storage and removal mechanism by a dynamic botanical air filter, a series of experimental investigations were designed and conducted in this paper. Golden Pothos (Epipremnum aureum) plants was selected for test, and its original soil or activated/pebbles root bed was used in different test cases. It was found that flowing air through the root bed with microbes dynamically was essential to obtain meaningful formaldehyde removal efficiency. For static potted plant as normally place in rooms, the clean air delivery rate (CADR), which is often used to quantify the air cleaning ability of portable air cleaners, was only ∼ 5.1m(3)/h per m(2) bed, while when dynamically with air flow through the bed, the CADR increased to ∼ 233 m(3)/h per m(2) bed. The calculated CADR due to microbial activity is ∼ 108 m(3)/h per m(2) bed. Moisture in the root bed also played an important role, both for maintaining a favorable living condition for microbes and for absorbing water-soluble compounds such as formaldehyde. The role of the plant was to introduce and maintain a favorable microbe community which effectively degraded the volatile organic compounds adsorbed or absorbed by the root bed. The presence of the plant increased the removal efficiency by a factor of two based on the results from the bench-scale root bed experiments. Copyright © 2014 Elsevier B.V. All rights reserved.
Heterogeneous decomposition of silane in a fixed bed reactor
NASA Technical Reports Server (NTRS)
Iya, S. K.; Flagella, R. N.; Dipaolo, F. S.
1982-01-01
Heterogeneous decomposition of silane in a fluidized bed offers an attractive route for the low-cost production of silicon for photovoltaic application. To obtain design data for a fluid bed silane pyrolysis reactor, deposition experiments were conducted in a small-scale fixed bed apparatus. Data on the decomposition mode, plating rate, and deposition morphology were obtained in the temperature range 600-900 C. Conditions favorable for heterogeneous decomposition with good deposition morphology were identified. The kinetic rate data showed the reaction to be first order with an activation energy of 38.8 kcal/mol, which agrees well with work done by others. The results are promising for the development of an economically attractive fluid bed process.
Desulfurizing Coal With an Alkali Treatment
NASA Technical Reports Server (NTRS)
Ravindram, M.; Kalvinskas, J. J.
1987-01-01
Experimental coal-desulfurization process uses alkalies and steam in fluidized-bed reactor. With highly volatile, high-sulfur bituminous coal, process removed 98 percent of pyritic sulfur and 47 percent of organic sulfur. Used in coal liquefaction and in production of clean solid fuels and synthetic liquid fuels. Nitrogen or steam flows through bed of coal in reactor. Alkalies react with sulfur, removing it from coal. Nitrogen flow fluidizes bed while heating or cooling; steam is fluidizing medium during reaction.
Lagrangian Approach to Study Catalytic Fluidized Bed Reactors
NASA Astrophysics Data System (ADS)
Madi, Hossein; Hossein Madi Team; Marcelo Kaufman Rechulski Collaboration; Christian Ludwig Collaboration; Tilman Schildhauer Collaboration
2013-03-01
Lagrangian approach of fluidized bed reactors is a method, which simulates the movement of catalyst particles (caused by the fluidization) by changing the gas composition around them. Application of such an investigation is in the analysis of the state of catalysts and surface reactions under quasi-operando conditions. The hydrodynamics of catalyst particles within a fluidized bed reactor was studied to improve a Lagrangian approach. A fluidized bed methanation employed in the production of Synthetic Natural Gas from wood was chosen as the case study. The Lagrangian perspective was modified and improved to include different particle circulation patterns, which were investigated through this study. Experiments were designed to evaluate the concepts of the model. The results indicate that the setup is able to perform the designed experiments and a good agreement between the simulation and the experimental results were observed. It has been shown that fluidized bed reactors, as opposed to fixed beds, can be used to avoid the deactivation of the methanation catalyst due to carbon deposits. Carbon deposition on the catalysts tested with the Lagrangian approach was investigated by temperature programmed oxidation (TPO) analysis of ex-situ catalyst samples. This investigation was done to identify the effects of particles velocity and their circulation patterns on the amount and type of deposited carbon on the catalyst surface. Ecole Polytechnique Federale de Lausanne(EPFL), Paul Scherrer Institute (PSI)
Torán, J; Blánquez, P; Caminal, G
2017-11-01
Hospital wastewater is a major source of pharmaceutically active compounds (PhACs), which are not all removed in conventional wastewater treatment plants. White rot fungi can degrade PhACs, but their application has been limited to non-sterile conditions due to the competition with other microorganisms for growth. In this study, immobilization of Trametes versicolor on different lignocellulosic supports was studied as strategy to ensure fungal survival under continuous treatment conditions. A fluidized bed reactor and a trickling packed-bed reactor with T. versicolor immobilized on pallet wood were employed for the removal of ibuprofen, ketoprofen and naproxen. Best results were obtained with the trickling packed-bed reactor, which operated for 49days with high removal values in real hospital wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.
Deformational sequence of a portion of the Michipicoten greenstone belt, Chabanel Township, Ontario
NASA Technical Reports Server (NTRS)
Shrady, C. H.; Mcgill, G. E.
1986-01-01
Detailed mapping at a scale of one inch = 400 feet is being carried out within a fume kill, having excellent exposure, located in the southwestern portion of the Michipicoten Greenstone Belt near Wawa, Ontario. The rocks are metasediments and metavolcanics of lower greenschist facies. U-Pb geochronology indicates that they are at least 2698 + or - 11 Ma old. The lithologic packages strike northeast to northwest, but the dominant strike is approximately east-west. Sedimentary structures and graded bedding are well preserved, aiding in the structural interpretation of this multiply deformed area. At least six phases of deformation within a relatively small area of the Michipicoten Greenstone Belt have been tentatively identified. These include the following structural features in approximate order of occurrence: (0) soft-sediment structures; (1) regionally overturned rocks, flattened pebbles, bedding parallel cleavage, and early, approximately bedding parallel faults; (2) northwest to north striking cleavage; (3) northeast striking cleavage and associated folds, and at least some late movement on approximately bedding parallel faults; (4) north-northwest and northeast trending faults; and (5) diabase dikes and associated fracture cleavages. Minor displacement of the diabase dikes occurs on faults that appear to be reactivated older structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beloglazov, S.; Bekris, N.; Glugla, M.
2005-07-15
The tritium extraction from the ITER Helium Cooled Pebble Bed (HCPB) Test Blanket Module purge gas is proposed to be performed in a two steps process: trapping water in a cryogenic Cold Trap, and adsorption of hydrogen isotopes (H{sub 2}, HT, T{sub 2}) as well as impurities (N{sub 2}, O{sub 2}) in a Cryogenic Molecular Sieve Bed (CMSB) at 77K. A CMSB in a semi-technical scale (one-sixth of the flow rate of the ITER-HCPB) was design and constructed at the Forschungszentrum Karlsruhe. The full capacity of CMSB filled with 20 kg of MS-5A was calculated based on adsorption isotherm datamore » to be 9.4 mol of H{sub 2} at partial pressure 120 Pa. The breakthrough tests at flow rates up to 2 Nm{sup 3}h{sup -1} of He with 110 Pa of H{sub 2} conformed with good agreement the adsorption capacity of the CMSB. The mass-transfer zone was found to be relatively narrow (12.5 % of the MS Bed height) allowing to scale up the CMSB to ITER flow rates.« less
Development and performance of an alternative biofilter system.
Lee, D H; Lau, A K; Pinder, K L
2001-01-01
Step tracer tests were carried out on lab-scale biofilters to determine the residence time distributions (RTDs) of gases passing through two types of biofilters: a standard biofilter with vertical gas flow and a modified biofilter with horizontal gas flow. Results were used to define the flow patterns in the reactors. "Non-ideal flow" indicates that the flow reactors did not behave like either type of ideal reactor: the perfectly stirred reactor [often called a "continuously stirred tank reactor" (CSTR)] or the plug-flow reactor. The horizontal biofilter with back-mixing was able to accommodate a shorter residence time without the usual requirement of greater biofilter surface area for increased biofiltration efficiency. Experimental results indicated that the first bed of the modified biofilter behaved like two CSTRs in series, while the second bed may be represented by two or three CSTRs in series. Because of the flow baffles used in the horizontal biofilter system, its performance was more similar to completely mixed systems, and hence, it could not be modeled as a plug-flow reactor. For the standard biofilter, the number of CSTRs was found to be between 2 and 9 depending on the airflow rate. In terms of NH3 removal efficiency and elimination capacity, the standard biofilter was not as good as the modified system; moreover, the second bed of the modified biofilter exhibited greater removal efficiency than the first bed. The elimination rate increased as biofilter load increased. An opposite trend was exhibited with respect to removal efficiency.
Waste tyre pyrolysis: modelling of a moving bed reactor.
Aylón, E; Fernández-Colino, A; Murillo, R; Grasa, G; Navarro, M V; García, T; Mastral, A M
2010-12-01
This paper describes the development of a new model for waste tyre pyrolysis in a moving bed reactor. This model comprises three different sub-models: a kinetic sub-model that predicts solid conversion in terms of reaction time and temperature, a heat transfer sub-model that calculates the temperature profile inside the particle and the energy flux from the surroundings to the tyre particles and, finally, a hydrodynamic model that predicts the solid flow pattern inside the reactor. These three sub-models have been integrated in order to develop a comprehensive reactor model. Experimental results were obtained in a continuous moving bed reactor and used to validate model predictions, with good approximation achieved between the experimental and simulated results. In addition, a parametric study of the model was carried out, which showed that tyre particle heating is clearly faster than average particle residence time inside the reactor. Therefore, this fast particle heating together with fast reaction kinetics enables total solid conversion to be achieved in this system in accordance with the predictive model. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rousseau, Gauthier; Sklivaniti, Angeliki; Vito Papa, Daniel; Ancey, Christophe
2017-04-01
The study of river dynamics usually considers a turbulent stream on an impervious bed. However, it is known that part of the total discharge takes place through the erodible bed, especially for mountain rivers. This hyporheic flow (or subsurface flow) is likely to play an active role in the stability of the erodible bed. The question then arises: How does the hyporheic flow affect bed stability and thereby bed load transport? Monitoring hyporheic flow under natural conditions remains a key challenge. Laboratory experiments and new measurement techniques shed new light on this problem. Using PIV-LIF method (Particle Image Velocimetry - Laser Induced Fluorescence) we investigate hyporheic flows through erodible beds. The experiment is conducted in a 2-m-long and 6-cm-width flume with 2-mm-diameter glass beads and 4-mm-diameter natural pebbles under turbulent stream conditions. In parallel, we develop a simple analytical model that accounts for the interaction between the surface and subsurface flows at the bed interface. As the Reynolds number of the hyporheic flow is fairly high (10 to 100), inertia cannot be neglected. This leads us to use the Darcy-Forchheimer law instead of Darcy's law to model hyporheic flows. We show that this model is consistent with the PIV-LIF experimental results. Moreover, the PIV-LIF data show that hyporheic flows modify the velocity profile and turbulence. Our measurements and empirical model emphasize the exchange processes in coarse-grained river for incipient sediment motion.
Chen, Sheng; Sun, De-zhi; Yu, Guang-lu
2010-03-01
Packed bed biofilm reactor with suspended carrier was used to cultivate ANAMMOX bacteria with sludge inoculums from WWTP secondary settler. The startup of ANAMMOX reactor was comparatively studied using high nitrogen loading method and low nitrogen loading method with aerobically biofilmed on the carrier, and the nitrogen removal characteristic was further investigated. The results showed that the reactor could be started up successfully within 90 days using low nitrogen loading method, the removal efficiencies of ammonium and nitrite were nearly 100% and the TN removal efficiencywas over 75% , however, the high nitrogen loading method was proved unsuccessfully for startup of ANAMMOX reactor probably because of the inhibition effect of high concentration of ammonium and nitrite. The pH value of effluent was slightly higher than the influent and the pH value can be used as an indicator for the process of ANAMMOX reaction. The packed bed ANAMMOX reactor with suspended carrier showed good characteristics of high nitrogen loading and high removal efficiency, 100% of removal efficiency could be achieved when the influent ammonium and nitrite concentration was lower than 800 mg/L.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mkhabela, P.; Han, J.; Tyobeka, B.
2006-07-01
The Nuclear Energy Agency (NEA) of the Organization for Economic Cooperation and Development (OECD) has accepted, through the Nuclear Science Committee (NSC), the inclusion of the Pebble-Bed Modular Reactor 400 MW design (PBMR-400) coupled neutronics/thermal hydraulics transient benchmark problem as part of their official activities. The scope of the benchmark is to establish a well-defined problem, based on a common given library of cross sections, to compare methods and tools in core simulation and thermal hydraulics analysis with a specific focus on transient events through a set of multi-dimensional computational test problems. The benchmark includes three steady state exercises andmore » six transient exercises. This paper describes the first two steady state exercises, their objectives and the international participation in terms of organization, country and computer code utilized. This description is followed by a comparison and analysis of the participants' results submitted for these two exercises. The comparison of results from different codes allows for an assessment of the sensitivity of a result to the method employed and can thus help to focus the development efforts on the most critical areas. The two first exercises also allow for removing of user-related modeling errors and prepare core neutronics and thermal-hydraulics models of the different codes for the rest of the exercises in the benchmark. (authors)« less
Salvi, Harshada M; Kamble, Manoj P; Yadav, Ganapati D
2018-02-01
With increasing demand for perfumes, flavors, beverages, and pharmaceuticals, the various associated industries are resorting to different approaches to enhance yields of desired compounds. The use of fixed-bed biocatalytic reactors in some of the processes for making fine chemicals will be of great value because the reaction times could be reduced substantially as well as high conversion and yields obtained. In the current study, a continuous-flow packed-bed reactor of immobilized Candida antarctica lipase B (Novozym 435) was employed for synthesis of various geraniol esters. Optimization of process parameters such as biocatalyst screening, effect of solvent, mole ratio, temperature and acyl donors was studied in a continuous-flow packed-bed reactor. Maximum conversion of ~ 87% of geranyl propionate was achieved in 15 min residence time at 70 °C using geraniol and propionic acid with a 1:1 mol ratio. Novozym 435 was found to be the most active and stable biocatalyst among all tested. Ternary complex mechanism with propionic acid inhibition was found to fit the data.
Experimental and Computational Study of Multiphase Flow Hydrodynamics in 2D Trickle Bed Reactors
NASA Astrophysics Data System (ADS)
Nadeem, H.; Ben Salem, I.; Kurnia, J. C.; Rabbani, S.; Shamim, T.; Sassi, M.
2014-12-01
Trickle bed reactors are largely used in the refining processes. Co-current heavy oil and hydrogen gas flow downward on catalytic particle bed. Fine particles in the heavy oil and/or soot formed by the exothermic catalytic reactions deposit on the bed and clog the flow channels. This work is funded by the refining company of Abu Dhabi and aims at mitigating pressure buildup due to fine deposition in the TBR. In this work, we focus on meso-scale experimental and computational investigations of the interplay between flow regimes and the various parameters that affect them. A 2D experimental apparatus has been built to investigate the flow regimes with an average pore diameter close to the values encountered in trickle beds. A parametric study is done for the development of flow regimes and the transition between them when the geometry and arrangement of the particles within the porous medium are varied. Liquid and gas flow velocities have also been varied to capture the different flow regimes. Real time images of the multiphase flow are captured using a high speed camera, which were then used to characterize the transition between the different flow regimes. A diffused light source was used behind the 2D Trickle Bed Reactor to enhance visualizations. Experimental data shows very good agreement with the published literature. The computational study focuses on the hydrodynamics of multiphase flow and to identify the flow regime developed inside TBRs using the ANSYS Fluent Software package. Multiphase flow inside TBRs is investigated using the "discrete particle" approach together with Volume of Fluid (VoF) multiphase flow modeling. The effect of the bed particle diameter, spacing, and arrangement are presented that may be used to provide guidelines for designing trickle bed reactors.
Pellet bed reactor for nuclear propelled vehicles: Part 2: Missions and vehicle integration trades
NASA Technical Reports Server (NTRS)
Haloulakos, V. E.
1991-01-01
Mission and vehicle integration tradeoffs involving the use of the pellet bed reactor (PBR) for nuclear powered vehicles is discussed, with much of the information being given in viewgraph form. Information is given on propellant tank geometries, shield weight requirements for conventional tank configurations, effective specific impulse, radiation mapping, radiation dose rate after shutdown, space transfer vehicle design data, a Mars mission summary, sample pellet bed nuclear orbit transfer vehicle mass breakdown, and payload fraction vs. velocity increment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burhenne, Luisa; Giacomin, Caroline; Follett, Trevor
A laboratory-scale, fluidized-bed pellet reactor (BPR) was used to investigate a CaCO 3 crystallization process for the recovery of CO 2 in a Direct Air Capture (DAC) process. The BPR performance was validated against data from a pilot-scale unit. Subsequently, the pellet growth under process-relevant conditions was studied over a period of 144 h. The experimental results with the BPR, containing a bed of pellets sized between 0.65 and 0.84 mm, have shown that a calcium retention of 80% can be achieved at a fluidization velocity of 60 m h -1 and a calcium loading rate of 3 mol hmore » -1. This result is consistent with calcium retention observed at pilot scale operation and hence, results from the BPR are considered representative for the pilot scale unit. Starting with a bed of pellets sized between 0.15 and 0.5 mm, the average pellet growth rate, G, at the reactor bottom increased from 8.1E-10 to 11E–10 m s -1 at the onset and decreased to 4.9E–10 m s -1 over the course of a 144 h test. The calcium retention over the course the test showed the same trend (initial increase and final decrease) as the pellet growth rate. A theoretical bed growth model was developed and validated against data from the pilot scale and benchtop pellet reactors. The model was used to calculate the bed porosity and total pellet surface area in each control volume. Lastly, the pellet surface area growth at the bottom of the reactor reproduced the pellet growth and retention data trends.« less
Burhenne, Luisa; Giacomin, Caroline; Follett, Trevor; ...
2017-10-25
A laboratory-scale, fluidized-bed pellet reactor (BPR) was used to investigate a CaCO 3 crystallization process for the recovery of CO 2 in a Direct Air Capture (DAC) process. The BPR performance was validated against data from a pilot-scale unit. Subsequently, the pellet growth under process-relevant conditions was studied over a period of 144 h. The experimental results with the BPR, containing a bed of pellets sized between 0.65 and 0.84 mm, have shown that a calcium retention of 80% can be achieved at a fluidization velocity of 60 m h -1 and a calcium loading rate of 3 mol hmore » -1. This result is consistent with calcium retention observed at pilot scale operation and hence, results from the BPR are considered representative for the pilot scale unit. Starting with a bed of pellets sized between 0.15 and 0.5 mm, the average pellet growth rate, G, at the reactor bottom increased from 8.1E-10 to 11E–10 m s -1 at the onset and decreased to 4.9E–10 m s -1 over the course of a 144 h test. The calcium retention over the course the test showed the same trend (initial increase and final decrease) as the pellet growth rate. A theoretical bed growth model was developed and validated against data from the pilot scale and benchtop pellet reactors. The model was used to calculate the bed porosity and total pellet surface area in each control volume. Lastly, the pellet surface area growth at the bottom of the reactor reproduced the pellet growth and retention data trends.« less
DECONTAMINATION OF NEUTRON-IRRADIATED REACTOR FUEL
Buyers, A.G.; Rosen, F.D.; Motta, E.E.
1959-12-22
A pyrometallurgical method of decontaminating neutronirradiated reactor fuel is presented. In accordance with the invention, neutron-irradiated reactor fuel may be decontaminated by countercurrently contacting the fuel with a bed of alkali and alkaine fluorides under an inert gas atmosphere and inductively melting the fuel and tracking the resulting descending molten fuel with induction heating as it passes through the bed. By this method, a large, continually fresh surface of salt is exposed to the descending molten fuel which enhances the efficiency of the scrubbing operation.
NASA Technical Reports Server (NTRS)
Sapyta, Joe; Reid, Hank; Walton, Lew
1993-01-01
The topics are presented in viewgraph form and include the following: particle bed reactor (PBR) core cross section; PBR bleed cycle; fuel and moderator flow paths; PBR modeling requirements; characteristics of PBR and nuclear thermal propulsion (NTP) modeling; challenges for PBR and NTP modeling; thermal hydraulic computer codes; capabilities for PBR/reactor application; thermal/hydralic codes; limitations; physical correlations; comparison of predicted friction factor and experimental data; frit pressure drop testing; cold frit mask factor; decay heat flow rate; startup transient simulation; and philosophy of systems modeling.
Feasibility of rotating fluidized bed reactor for rocket propulsion
NASA Technical Reports Server (NTRS)
Ludewig, H.; Manning, A. J.; Raseman, C. J.
1974-01-01
The rotating fluidized bed reactor concept is outlined, and its application to rocket propulsion is discussed. Experimental results obtained indicate that minimum fluidization correlations commonly in use for 1-g beds can also be applied to multiple-g beds. It was found that for a low thrust system (20,000 lbf) the fuel particle size and/or particle stress play a limiting role on performance. The superiority of U-233 as a fuel for this type of rocket engine is clearly demonstrated in the analysis. The maximum thrust/weight ratio for a 90,000N thrust engine was found to be approximately 65N/kg.
Tanaka, Yasuo
2002-08-01
A wastewater treatment system employing a UASB reactor in temperate regions requires biogas as a heat source for the UASB reactor during low temperature seasons. In this case, removal of H2S in the biogas by means of a scrubber before burning is necessary in order to prevent the boilers from corroding. Heating of the UASB reactor is, however, unnecessary in a warm season, and the scrubber and biogas become useless. Methane-dependent water quality improvement using the scrubber and biogas would be one way to use them efficiently during the warm season. The possible dual-purpose use of a packed-bed reactor was examined, with one of its uses being the scrubbing of biogas during the cold season and the other being the methane-dependent improvement of effluent water quality during the warm season. A bench scale packed-bed filled with plastic latticed-ring media was installed in a livestock wastewater treatment plant consisting of a UASB reactor and a trickling filter for post-treatment. The packed-bed was operated with biogas flowing at a superficial velocity of 0.14-0.39 m h(-1) and the hydraulic loading of trickling filter effluent sprayed onto the media 9.4-26.1 m3 m2 day(-1). H2S in the biogas from the UASB reactor was reduced from 1,200-2,500 ppm to less than 2 ppm by the reactor. Methane-dependent water quality improvement was examined using a laboratory scale reactor to which methane and/or air was supplied from the bottom, while plant effluent was spread from the top of the reactor. When the mixture gas of methane and air (volume ratio 1:3) was added to the reactor, biofilm grew on the surface of the media. Accompanying this growth, ammonium and phosphate in the spread water decreased, probably due to assimilation by the methane-oxidizing bacteria. Though assimilation activity dropped after the accumulation of biomass, it could be reactivated by washing out the excess biomass. Periodical backwash at a rate of more than once a week seemed to efficiently maintain the removal activity. The dark brown color of the wastewater could be also reduced in concert with methane oxidation. It seemed that methane-oxidizing bacteria degraded color-causing compounds. These results suggest that the packed-bed reactor is useful for both H2S purification of biogas and methane-dependent effluent water quality improvement.
Solar heated fluidized bed gasification system
NASA Technical Reports Server (NTRS)
Qader, S. A. (Inventor)
1981-01-01
A solar-powered fluidized bed gasification system for gasifying carbonaceous material is presented. The system includes a solar gasifier which is heated by fluidizing gas and steam. Energy to heat the gas and steam is supplied by a high heat capacity refractory honeycomb which surrounds the fluid bed reactor zone. The high heat capacity refractory honeycomb is heated by solar energy focused on the honeycomb by solar concentrator through solar window. The fluid bed reaction zone is also heated directly and uniformly by thermal contact of the high heat capacity ceramic honeycomb with the walls of the fluidized bed reactor. Provisions are also made for recovering and recycling catalysts used in the gasification process. Back-up furnace is provided for start-up procedures and for supplying heat to the fluid bed reaction zone when adequate supplies of solar energy are not available.
Investigation of internal elements impaction on particles circulation in a fluidized bed reactor
NASA Astrophysics Data System (ADS)
Solovev, S. A.; Soloveva, O. V.; Antipin, A. V.; Shamsutdinov, E. V.
2018-01-01
A numerical study of the fluidized bed apparatus in the presence of various internal elements is carried out. A chemical reaction for temperature-dependent processes with heat absorption is considered. The task of incoming heated catalyst granules to the reactor is investigated. The main emphasis is focused on the circulation flows of the catalyst particles, heating of the reactor, and the efficiency of the chemical reaction. The analysis of the impact of various design elements on the efficiency of the reactor is carried out. The influence of feeding heated catalyst device design on the effectiveness of whole reactor heating is educed. The influence of the presence of fine particles on the efficiency of the reaction for different reactor design features is also educed.
Hydrogen sulfide removal from air by Acidithiobacillus thiooxidans in a trickle bed reactor.
Ramirez, M; Gómez, J M; Cantero, D; Páca, J; Halecký, M; Kozliak, E I; Sobotka, M
2009-09-01
A strain of Acidithiobacillus thiooxidans immobilized in polyurethane foam was utilized for H(2)S removal in a bench-scale trickle-bed reactor, testing the limits of acidity and SO(4) (2-) accumulation. The use of this acidophilic strain resulted in remarkable stability in the performance of the system. The reactor maintained a >98-99 % H(2)S removal efficiency for c of up to 66 ppmv and empty bed residence time
Heat-transfer characteristics of flowing and stationary particle-bed-type fusion-reactor blankets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nietert, R.E.
1983-02-01
The following five appendices are included: (1) physical properties of materials, (2) thermal entrance length Nusselt number variations, (3) stationary particle bed temperature variations, (4) falling bed experimental data and calculations, and (5) stationary bed experimental data and calculations. (MOW)
Li, Dongbing; Briens, Cedric; Berruti, Franco
2015-01-01
Lignin pyrolysis was studied in a bubbling fluidized bed reactor equipped with a fractional condensation train, using nitrogen as the fluidization gas. The effect of different bed materials (silica sand, lignin char, activated lignin char, birch bark char, and foamed glass beads) on bio-oil yield and quality was investigated for a pyrolysis temperature of 550 °C. Results how that a bed of activated lignin char is preferable to the commonly used silica sand: pyrolysis of Kraft lignin with a bed of activated lignin char not only provides a pure char product, but also a higher dry bio-oil yield (with a relative increase of 43%), lower pyrolytic water production, and better bio-oil quality. The bio-oil obtained from Kraft lignin pyrolysis with a bed of activated lignin char has a lower average molecular weight, less tar, more phenolics, and less acidity than when sand is used as bed material. Copyright © 2015 Elsevier Ltd. All rights reserved.
MHD oxidant intermediate temperature ceramic heater study
NASA Technical Reports Server (NTRS)
Carlson, A. W.; Chait, I. L.; Saari, D. P.; Marksberry, C. L.
1981-01-01
The use of three types of directly fired ceramic heaters for preheating oxygen enriched air to an intermediate temperature of 1144K was investigated. The three types of ceramic heaters are: (1) a fixed bed, periodic flow ceramic brick regenerative heater; (2) a ceramic pebble regenerative heater. The heater design, performance and operating characteristics under conditions in which the particulate matter is not solidified are evaluated. A comparison and overall evaluation of the three types of ceramic heaters and temperature range determination at which the particulate matter in the MHD exhaust gas is estimated to be a dry powder are presented.
Limitations for heavy metal release during thermo-chemical treatment of sewage sludge ash
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nowak, Benedikt, E-mail: benedikt.nowak@tuwien.ac.at; Perutka, Libor; Aschenbrenner, Philipp
2011-06-15
Phosphate recycling from sewage sludge can be achieved by heavy metal removal from sewage sludge ash (SSA) producing a fertilizer product: mixing SSA with chloride and treating this mixture (eventually after granulation) in a rotary kiln at 1000 {+-} 100 deg. C leads to the formation of volatile heavy metal compounds that evaporate and to P-phases with high bio-availability. Due to economical and ecological reasons, it is necessary to reduce the energy consumption of this technology. Generally, fluidized bed reactors are characterized by high heat and mass transfer and thus promise the saving of energy. Therefore, a rotary reactor andmore » a fluidized bed reactor (both laboratory-scale and operated in batch mode) are used for the treatment of granulates containing SSA and CaCl{sub 2}. Treatment temperature, residence time and - in case of the fluidized bed reactor - superficial velocity are varied between 800 and 900 deg. C, 10 and 30 min and 3.4 and 4.6 m s{sup -1}. Cd and Pb can be removed well (>95 %) in all experiments. Cu removal ranges from 25% to 84%, for Zn 75-90% are realized. The amount of heavy metals removed increases with increasing temperature and residence time which is most pronounced for Cu. In the pellet, three major reactions occur: formation of HCl and Cl{sub 2} from CaCl{sub 2}; diffusion and reaction of these gases with heavy metal compounds; side reactions from heavy metal compounds with matrix material. Although, heat and mass transfer are higher in the fluidized bed reactor, Pb and Zn removal is slightly better in the rotary reactor. This is due the accelerated migration of formed HCl and Cl{sub 2} out of the pellets into the reactor atmosphere. Cu is apparently limited by the diffusion of its chloride thus the removal is higher in the fluidized bed unit.« less
Qureshi, Nasib; Annous, Bassam A; Ezeji, Thaddeus C; Karcher, Patrick; Maddox, Ian S
2005-01-01
This article describes the use of biofilm reactors for the production of various chemicals by fermentation and wastewater treatment. Biofilm formation is a natural process where microbial cells attach to the support (adsorbent) or form flocs/aggregates (also called granules) without use of chemicals and form thick layers of cells known as "biofilms." As a result of biofilm formation, cell densities in the reactor increase and cell concentrations as high as 74 gL-1 can be achieved. The reactor configurations can be as simple as a batch reactor, continuous stirred tank reactor (CSTR), packed bed reactor (PBR), fluidized bed reactor (FBR), airlift reactor (ALR), upflow anaerobic sludge blanket (UASB) reactor, or any other suitable configuration. In UASB granular biofilm particles are used. This article demonstrates that reactor productivities in these reactors have been superior to any other reactor types. This article describes production of ethanol, butanol, lactic acid, acetic acid/vinegar, succinic acid, and fumaric acid in addition to wastewater treatment in the biofilm reactors. As the title suggests, biofilm reactors have high potential to be employed in biotechnology/bioconversion industry for viable economic reasons. In this article, various reactor types have been compared for the above bioconversion processes. PMID:16122390
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woods, Brian; Gutowska, Izabela; Chiger, Howard
Computer simulations of nuclear reactor thermal-hydraulic phenomena are often used in the design and licensing of nuclear reactor systems. In order to assess the accuracy of these computer simulations, computer codes and methods are often validated against experimental data. This experimental data must be of sufficiently high quality in order to conduct a robust validation exercise. In addition, this experimental data is generally collected at experimental facilities that are of a smaller scale than the reactor systems that are being simulated due to cost considerations. Therefore, smaller scale test facilities must be designed and constructed in such a fashion tomore » ensure that the prototypical behavior of a particular nuclear reactor system is preserved. The work completed through this project has resulted in scaling analyses and conceptual design development for a test facility capable of collecting code validation data for the following high temperature gas reactor systems and events— 1. Passive natural circulation core cooling system, 2. pebble bed gas reactor concept, 3. General Atomics Energy Multiplier Module reactor, and 4. prismatic block design steam-water ingress event. In the event that code validation data for these systems or events is needed in the future, significant progress in the design of an appropriate integral-type test facility has already been completed as a result of this project. Where applicable, the next step would be to begin the detailed design development and material procurement. As part of this project applicable scaling analyses were completed and test facility design requirements developed. Conceptual designs were developed for the implementation of these design requirements at the Oregon State University (OSU) High Temperature Test Facility (HTTF). The original HTTF is based on a ¼-scale model of a high temperature gas reactor concept with the capability for both forced and natural circulation flow through a prismatic core with an electrical heat source. The peak core region temperature capability is 1400°C. As part of this project, an inventory of test facilities that could be used for these experimental programs was completed. Several of these facilities showed some promise, however, upon further investigation it became clear that only the OSU HTTF had the power and/or peak temperature limits that would allow for the experimental programs envisioned herein. Thus the conceptual design and feasibility study development focused on examining the feasibility of configuring the current HTTF to collect validation data for these experimental programs. In addition to the scaling analyses and conceptual design development, a test plan was developed for the envisioned modified test facility. This test plan included a discussion on an appropriate shakedown test program as well as the specific matrix tests. Finally, a feasibility study was completed to determine the cost and schedule considerations that would be important to any test program developed to investigate these designs and events.« less
Nordgård, A S R; Bergland, W H; Bakke, R; Vadstein, O; Østgaard, K; Bakke, I
2015-12-01
To elucidate how granular sludge inoculum and particle-rich organic loading affect the structure of the microbial communities and process performance in upflow anaerobic sludge bed (UASB) reactors. We investigated four reactors run on dairy manure filtrate and four on pig manure supernatant for three months achieving similar methane yields. The reactors fed with less particle rich pig manure stabilized faster and had highest capacity. Microbial community dynamics analysed by a PCR/denaturing gradient gel electrophoresis approach showed that influent was a major determinant for the composition of the reactor communities. Comparisons of pre- and non-adapted inoculum in the reactors run on pig manure supernatant showed that the community structure of the nonadapted inoculum adapted in approximately two months. Microbiota variance partitioning analysis revealed that running time, organic loading rate and inoculum together explained 26 and 31% of the variance in bacterial and archaeal communities respectively. The microbial communities of UASBs adapted to the reactor conditions in treatment of particle rich manure fractions, obtaining high capacity, especially on pig manure supernatant. These findings provide relevant insight into the microbial community dynamics in startup and operation of sludge bed reactors for methane production from slurry fractions, a major potential source of biogas. © 2015 The Society for Applied Microbiology.
Biological production of ethanol from coal. Task 4 report, Continuous reactor studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The production of ethanol from synthesis gas by the anaerobic bacterium C. ljungdahlii has been demonstrated in continuous stirred tank reactors (CSTRs), CSTRs with cell recycle and trickle bed reactors. Various liquid media were utilized in these studies including basal medium, basal media with 1/2 B-vitamins and no yeast extract and a medium specifically designed for the growth of C. ljungdahlii in the CSTR. Ethanol production was successful in each of the three reactor types, although trickle bed operation with C. ljungdahlii was not as good as with the stirred tank reactors. Operation in the CSTR with cell recycle wasmore » particularly promising, producing 47 g/L ethanol with only minor concentrations of the by-product acetate.« less
Fluidized bed coal desulfurization
NASA Technical Reports Server (NTRS)
Ravindram, M.
1983-01-01
Laboratory scale experiments were conducted on two high volatile bituminous coals in a bench scale batch fluidized bed reactor. Chemical pretreatment and posttreatment of coals were tried as a means of enhancing desulfurization. Sequential chlorination and dechlorination cum hydrodesulfurization under modest conditions relative to the water slurry process were found to result in substantial sulfur reductions of about 80%. Sulfur forms as well as proximate and ultimate analyses of the processed coals are included. These studies indicate that a fluidized bed reactor process has considerable potential for being developed into a simple and economic process for coal desulfurization.
Silva, Bruno Garcia; Damianovic, Márcia Helena Rissato Zamariolli; Foresti, Eugenio
2018-04-20
This study assessed the simultaneous nitrification and denitrification processes and remaining organic matter removal from anaerobic reactor effluent treating wastewater in a single reactor. A structured-bed reactor, with polyurethane foam as support media, was subjected to intermittent aeration and effluent recirculation. Aerated/non-aerated periods varied in the range of 2/1-1/3 h. The chemical oxygen demand (COD) in the effluent remained between 26 and 42 mg L -1 throughout all the aeration conditions. Aeration periods of 1/2 h removed 80 and 26% of Total Kjeldahl Nitrogen and Total Nitrogen, respectively. A low solid production was observed during the 300 days of operation, resulting in a solid retention time of 139 days. The results indicate that the non-aerated periods generated alkalinity that favored nitrification, maintaining low COD concentrations in the effluent. The structured bed reactor presented a low solid production and effluent loss below 20 mgSSV L -1 , similar to concentrations obtained in secondary decanters.
Behavior of nitrogen removal in an aerobic sponge based moving bed biofilm reactor.
Zhang, Xinbo; Song, Zi; Guo, Wenshan; Lu, Yanmin; Qi, Li; Wen, Haitao; Ngo, Huu Hao
2017-12-01
This study aims to investigate the behavior of nitrogen removal in an aerobic sponge based moving bed biofilm reactor by evaluating nitrification and denitrification rates of sponge biocarriers from three aerobic moving bed biofilm reactors (MBBRs) with filling ratios of 10% (R-10), 20% (R-20) and 30% (R-30). Results showed that the highest removal efficiencies of total nitrogen in three reactors were 84.5% (R-10), 93.6% (R-20) and 95.3% (R-30). Correspondingly, simultaneous nitrification and denitrification rate (SND) was 90.9%, 97.6% and 100%, respectively. Although R-20 had the highest attached-growth biomass (AGB) per gram of sponge compared to the other two reactors, R-30 showed the maximum ammonium oxidation rate (AOR) (2.1826±0.0717mgNH 4 + -N/gAGB/h) and denitrification rate (DNR) (5.0852±0.0891mgNO 3 - -N/gAGB/h), followed by R-20 and R-10. These results indicated AOR, DNR and AGB were affected by the filling ratio under the same operation mode. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gas-Liquid Two-Phase Flows Through Packed Bed Reactors in Microgravity
NASA Technical Reports Server (NTRS)
Motil, Brian J.; Balakotaiah, Vemuri
2001-01-01
The simultaneous flow of gas and liquid through a fixed bed of particles occurs in many unit operations of interest to the designers of space-based as well as terrestrial equipment. Examples include separation columns, gas-liquid reactors, humidification, drying, extraction, and leaching. These operations are critical to a wide variety of industries such as petroleum, pharmaceutical, mining, biological, and chemical. NASA recognizes that similar operations will need to be performed in space and on planetary bodies such as Mars if we are to achieve our goals of human exploration and the development of space. The goal of this research is to understand how to apply our current understanding of two-phase fluid flow through fixed-bed reactors to zero- or partial-gravity environments. Previous experiments by NASA have shown that reactors designed to work on Earth do not necessarily function in a similar manner in space. Two experiments, the Water Processor Assembly and the Volatile Removal Assembly have encountered difficulties in predicting and controlling the distribution of the phases (a crucial element in the operation of this type of reactor) as well as the overall pressure drop.
Relative performance of three stream bed stability indices as indicators of stream health.
Kusnierz, Paul C; Holbrook, Christopher M
2017-10-16
Bed stability is an important stream habitat attribute because it affects geomorphology and biotic communities. Natural resource managers desire indices of bed stability that can be used under a wide range of geomorphic conditions, are biologically meaningful, and are easily incorporated into sampling protocols. To eliminate potential bias due to presence of instream wood and increase precision of stability values, we modified a stream bed instability index (ISI) to include measurements of bankfull depth (d bf ) and median particle diameter (D 50 ) only in riffles and increased the pebble count to decrease variability (i.e., increase precision) in D 50 . The new riffle-based instability index (RISI) was compared to two established indices: ISI and the riffle stability index (RSI). RISI and ISI were strongly associated with each other but neither was closely associated with RSI. RISI and ISI were closely associated with both a diatom- and two macrovertebrate-based stream health indices, but RSI was only weakly associated with the macroinvertebrate indices. Unexpectedly, precision of D 50 did not differ between RISI and ISI. Results suggest that RISI is a viable alternative to both ISI and RSI for evaluating bed stability in multiple stream types. With few data requirements and a simple protocol, RISI may also better conform to riffle-based sampling methods used by some water quality practitioners.
Relative performance of three stream bed stability indices as indicators of stream health
Kusnierz, Paul C; Holbrook, Christopher
2017-01-01
Bed stability is an important stream habitat attribute because it affects geomorphology and biotic communities. Natural resource managers desire indices of bed stability that can be used under a wide range of geomorphic conditions, are biologically meaningful, and are easily incorporated into sampling protocols. To eliminate potential bias due to presence of instream wood and increase precision of stability values, we modified a stream bed instability index (ISI) to include measurements of bankfull depth (dbf) and median particle diameter (D50) only in riffles and increased the pebble count to decrease variability (i.e., increase precision) in D50.The new riffle-based instability index (RISI) was compared to two established indices: ISI and the riffle stability index (RSI). RISI and ISI were strongly associated with each other but neither was closely associated with RSI. RISI and ISI were closely associated with both a diatom- and two macrovertebrate-based stream health indices, but RSI was only weakly associated with the macroinvertebrate indices. Unexpectedly, precision of D50 did not differ between RISI and ISI. Results suggest that RISI is a viable alternative to both ISI and RSI for evaluating bed stability in multiple stream types. With few data requirements and a simple protocol, RISI may also better conform to riffle-based sampling methods used by some water quality practitioners.
Modeling fixed and fluidized reactors for cassava starch Saccharification with immobilized enzyme
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zanin, G.M.; De Moraes, F.F.
1997-12-31
Cassava starch saccharification in fixed-and fluidized-bed reactors using immobilized enzyme was modeled in a previous paper using a simple model in which all dextrins were grouped in a single substrate. In that case, although good fit of the model to experimental data was obtained, physical inconsistency appeared as negative kinetic constants. In this work, a multisubstrate model, developed earlier for saccharification with free enzyme, is adapted for immobilized enzyme. This latter model takes into account the formation of intermediate substrates, which are dextrins competing for the catalytic site of the enzyme, reversibility of some reactions, inhibition by substrate and product,more » and the formation of isomaltose. Kinetic parameters to be used with this model were obtained from initial velocity saccharification tests using the immobilized enzyme and different liquefied starch concentrations. The new model was found to be valid for modeling both fixed- and fluidized-bed reactors. It did not present inconsistencies as the earlier one had and has shown that apparent glucose inhibition is about seven times higher in the fixed-bed than in fluidized-bed reactor. 13 refs., 5 figs., 1 tab.« less
The application of moving bed biofilm reactor to denitrification process after trickling filters.
Kopec, Lukasz; Drewnowski, Jakub; Kopec, Adam
2016-12-01
The paper presents research of a prototype moving bed biofilm reactor (MBBR). The device was used for the post-denitrification process and was installed at the end of a technological system consisting of a septic tank and two trickling filters. The concentrations of suspended biomass and biomass attached on the EvU Perl moving bed surface were determined. The impact of the external organic carbon concentration on the denitrification rate and efficiency of total nitrogen removal was also examined. The study showed that the greater part of the biomass was in the suspended form and only 6% of the total biomass was attached to the surface of the moving bed. Abrasion forces between carriers of the moving bed caused the fast stripping of attached microorganisms and formation of flocs. Thanks to immobilization of a small amount of biomass, the MBBR was less prone to leaching of the biomass and the occurrence of scum and swelling sludge. It was revealed that the maximum rate of denitrification was an average of 0.73 gN-NO 3 /gDM·d (DM: dry matter), and was achieved when the reactor was maintained in external organic carbon concentration exceeding 300 mgO 2 /dm 3 chemical oxygen demand. The reactor proved to be an effective device enabling the increase of total nitrogen removal from 53.5% to 86.0%.
Development of a Reactor Model for Chemical Conversion of Lunar Regolith
NASA Technical Reports Server (NTRS)
Hegde, U.; Balasubramaniam, R.; Gokoglu, S.
2009-01-01
Lunar regolith will be used for a variety of purposes such as oxygen and propellant production and manufacture of various materials. The design and development of chemical conversion reactors for processing lunar regolith will require an understanding of the coupling among the chemical, mass and energy transport processes occurring at the length and time scales of the overall reactor with those occurring at the corresponding scales of the regolith particles. To this end, a coupled transport model is developed using, as an example, the reduction of ilmenite-containing regolith by a continuous flow of hydrogen in a flow-through reactor. The ilmenite conversion occurs on the surface and within the regolith particles. As the ilmenite reduction proceeds, the hydrogen in the reactor is consumed, and this, in turn, affects the conversion rate of the ilmenite in the particles. Several important quantities are identified as a result of the analysis. Reactor scale parameters include the void fraction (i.e., the fraction of the reactor volume not occupied by the regolith particles) and the residence time of hydrogen in the reactor. Particle scale quantities include the time for hydrogen to diffuse into the pores of the regolith particles and the chemical reaction time. The paper investigates the relationships between these quantities and their impact on the regolith conversion. Application of the model to various chemical reactor types, such as fluidized-bed, packed-bed, and rotary-bed configurations, are discussed.
Development of a Reactor Model for Chemical Conversion of Lunar Regolith
NASA Technical Reports Server (NTRS)
Hedge, uday; Balasubramaniam, R.; Gokoglu, S.
2007-01-01
Lunar regolith will be used for a variety of purposes such as oxygen and propellant production and manufacture of various materials. The design and development of chemical conversion reactors for processing lunar regolith will require an understanding of the coupling among the chemical, mass and energy transport processes occurring at the length and time scales of the overall reactor with those occurring at the corresponding scales of the regolith particles. To this end, a coupled transport model is developed using, as an example, the reduction of ilmenite-containing regolith by a continuous flow of hydrogen in a flow-through reactor. The ilmenite conversion occurs on the surface and within the regolith particles. As the ilmenite reduction proceeds, the hydrogen in the reactor is consumed, and this, in turn, affects the conversion rate of the ilmenite in the particles. Several important quantities are identified as a result of the analysis. Reactor scale parameters include the void fraction (i.e., the fraction of the reactor volume not occupied by the regolith particles) and the residence time of hydrogen in the reactor. Particle scale quantities include the time for hydrogen to diffuse into the pores of the regolith particles and the chemical reaction time. The paper investigates the relationships between these quantities and their impact on the regolith conversion. Application of the model to various chemical reactor types, such as fluidized-bed, packed-bed, and rotary-bed configurations, are discussed.
Spatial Distribution of Bed Particles in Natural Boulder-Bed Streams
NASA Astrophysics Data System (ADS)
Clancy, K. F.; Prestegaard, K. L.
2001-12-01
The Wolman pebble count is used to obtain the size distribution of bed particles in natural streams. Statistics such as median particle size (D50) are used in resistance calculations. Additional information such as bed particle heterogeneity may also be obtained from the particle distribution, which is used to predict sediment transport rates (Hey, 1979), (Ferguson, Prestegaard, Ashworth, 1989). Boulder-bed streams have an extreme range of particles in the particle size distribution ranging from sand size particles to particles larger than 0.5-m. A study of a natural boulder-bed reach demonstrated that the spatial distribution of the particles is a significant factor in predicting sediment transport and stream bed and bank stability. Further experiments were performed to test the limits of the spatial distribution's effect on sediment transport. Three stream reaches 40-m in length were selected with similar hydrologic characteristics and spatial distributions but varying average size particles. We used a grid 0.5 by 0.5-m and measured four particles within each grid cell. Digital photographs of the streambed were taken in each grid cell. The photographs were examined using image analysis software to obtain particle size and position of the largest particles (D84) within the reach's particle distribution. Cross section, topography and stream depth were surveyed. Velocity and velocity profiles were measured and recorded. With these data and additional surveys of bankfull floods, we tested the significance of the spatial distributions as average particle size decreases. The spatial distribution of streambed particles may provide information about stream valley formation, bank stability, sediment transport, and the growth rate of riparian vegetation.
The Emerging Paradigm of Pebble Accretion
NASA Astrophysics Data System (ADS)
Ormel, Chris W.
Pebble accretion is the mechanism in which small particles ("pebbles") accrete onto big bodies
Nuclear reactor cooling system decontamination reagent regeneration. [PWR; BWR
Anstine, L.D.; James, D.B.; Melaika, E.A.; Peterson, J.P. Jr.
1980-06-06
An improved method for decontaminating the coolant system of water-cooled nuclear power reactors and for regenerating the decontamination solution is described. A small amount of one or more weak-acid organic complexing agents is added to the reactor coolant, and the pH is adjusted to form a decontamination solution which is circulated throughout the coolant system to dissolve metal oxides from the interior surfaces and complex the resulting metal ions and radionuclide ions. The coolant containing the complexed metal ions and radionuclide ions is passed through a strong-base anion exchange resin bed which has been presaturated with a solution containing the complexing agents in the same ratio and having the same pH as the decontamination solution. As the decontamination solution passes through the resin bed, metal-complexed anions are exchanged for the metal-ion-free anions on the bed, while metal-ion-free anions in the solution pass through the bed, thus removing the metal ions and regenerating the decontamination solution.
Nuclear reactor cooling system decontamination reagent regeneration
Anstine, Larry D.; James, Dean B.; Melaika, Edward A.; Peterson, Jr., John P.
1985-01-01
An improved method for decontaminating the coolant system of water-cooled nuclear power reactors and for regenerating the decontamination solution. A small amount of one or more weak-acid organic complexing agents is added to the reactor coolant, and the pH is adjusted to form a decontamination solution which is circulated throughout the coolant system to dissolve metal oxides from the interior surfaces and complex the resulting metal ions and radionuclide ions. The coolant containing the complexed metal ions and radionuclide ions is passed through a strong-base anion exchange resin bed which has been presaturated with a solution containing the complexing agents in the same ratio and having the same pH as the decontamination solution. As the decontamination solution passes through the resin bed, metal-complexed anions are exchanged for the metal-ion-free anions on the bed, while metal-ion-free anions in the solution pass through the bed, thus removing the metal ions and regenerating the decontamination solution.
Design and Analysis of Embedded I&C for a Fully Submerged Magnetically Suspended Impeller Pump
Melin, Alexander M.; Kisner, Roger A.
2018-04-03
Improving nuclear reactor power system designs and fuel-processing technologies for safer and more efficient operation requires the development of new component designs. In particular, many of the advanced reactor designs such as the molten salt reactors and high-temperature gas-cooled reactors have operating environments beyond the capability of most currently available commercial components. To address this gap, new cross-cutting technologies need to be developed that will enable design, fabrication, and reliable operation of new classes of reactor components. The Advanced Sensor Initiative of the Nuclear Energy Enabling Technologies initiative is investigating advanced sensor and control designs that are capable of operatingmore » in these extreme environments. Under this initiative, Oak Ridge National Laboratory (ORNL) has been developing embedded instrumentation and control (I&C) for extreme environments. To develop, test, and validate these new sensing and control techniques, ORNL is building a pump test bed that utilizes submerged magnetic bearings to levitate the shaft. The eventual goal is to apply these techniques to a high-temperature (700°C) canned rotor pump that utilizes active magnetic bearings to eliminate the need for mechanical bearings and seals. The technologies will benefit the Next Generation Power Plant, Advanced Reactor Concepts, and Small Modular Reactor programs. In this paper, we will detail the design and analysis of the embedded I&C test bed with submerged magnetic bearings, focusing on the interplay between the different major systems. Then we will analyze the forces on the shaft and their role in the magnetic bearing design. Next, we will develop the radial and thrust bearing geometries needed to meet the operational requirements of the test bed. In conclusion, we will present some initial system identification results to validate the theoretical models of the test bed dynamics.« less
Design and Analysis of Embedded I&C for a Fully Submerged Magnetically Suspended Impeller Pump
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melin, Alexander M.; Kisner, Roger A.
Improving nuclear reactor power system designs and fuel-processing technologies for safer and more efficient operation requires the development of new component designs. In particular, many of the advanced reactor designs such as the molten salt reactors and high-temperature gas-cooled reactors have operating environments beyond the capability of most currently available commercial components. To address this gap, new cross-cutting technologies need to be developed that will enable design, fabrication, and reliable operation of new classes of reactor components. The Advanced Sensor Initiative of the Nuclear Energy Enabling Technologies initiative is investigating advanced sensor and control designs that are capable of operatingmore » in these extreme environments. Under this initiative, Oak Ridge National Laboratory (ORNL) has been developing embedded instrumentation and control (I&C) for extreme environments. To develop, test, and validate these new sensing and control techniques, ORNL is building a pump test bed that utilizes submerged magnetic bearings to levitate the shaft. The eventual goal is to apply these techniques to a high-temperature (700°C) canned rotor pump that utilizes active magnetic bearings to eliminate the need for mechanical bearings and seals. The technologies will benefit the Next Generation Power Plant, Advanced Reactor Concepts, and Small Modular Reactor programs. In this paper, we will detail the design and analysis of the embedded I&C test bed with submerged magnetic bearings, focusing on the interplay between the different major systems. Then we will analyze the forces on the shaft and their role in the magnetic bearing design. Next, we will develop the radial and thrust bearing geometries needed to meet the operational requirements of the test bed. In conclusion, we will present some initial system identification results to validate the theoretical models of the test bed dynamics.« less
Wübker, S M; Laurenzis, A; Werner, U; Friedrich, C
1997-08-20
The kinetics of degradation of toluene from a model waste gas and of biomass formation were examined in a bioscrubber operated under different nutrient limitations with a mixed culture. The applicability of the kinetics of continuous cultivation of the mixed culture was examined for a special trickle-bed reactor with a periodically moved filter bed. The efficiency of toluene elimination of the bioscrubber was 50 to 57% and depended on the toluene mass transfer as evident from a constant productivity of 0.026 g dry cell weight/L . h over the dilution rate. Under potassium limitation the biomass productivity was reduced by 60% to 0.011 g dry cell weight/L . h at a dilution rate of 0.013/h. Conversely, at low dilution rates the specific toluene degradation rates increased. Excess biomass in a trickle-bed reactor causes reduction of interfacial area and mass transfer, and increase in pressure drop. To avoid these disadvantages, the trickle-bed was moved periodically and biomass was removed with outflowing medium. The concentration of steady state biomass fixed on polyamide beads decreased hyperbolically with the dilution rate. Also, the efficiency of toluene degradation decreased from 72 to 56% with increasing dilution rate while the productivity increased. Potassium limitation generally caused a reduction in biomass, productivity, and yield while the specific degradation increased with dilution rate. This allowed the application of the principles of the chemostat to the trickle-bed reactor described here, for toluene degradation from waste gases. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 686-692, 1997.
Gross, A; Sklarz, M Y; Yakirevich, A; Soares, M I M
2008-01-01
The quantity of freshwater available worldwide is declining, revealing a pressing need for its more efficient use. Moreover, in many developing countries and lightly populated areas, raw wastewater is discarded into the environment posing serious ecological and health problems. Unfortunately, this situation will persist unless low-cost, effective and simple technologies are brought in. The aim of this study is to present such a treatment method, a novel setup which is termed recirculating vertical flow constructed wetland (RVFCW). The RVFCW is composed of two components: (i) a three-layer bed consisting of planted organic soil over an upper layer of filtering media (i.e. tuff or beads) and a lower layer of limestone pebbles, and (ii) a reservoir located beneath the bed. Wastewater flows directly into the plant root zone and trickles down through the three-layer bed into the reservoir, allowing passive aeration. From the reservoir the water is recirculated back to the bed, several times, until the desired purification is achieved. The results obtained show that the RVFCW is an effective and convenient strategy to treat (domestic, grey and agro) wastewater for re-use in irrigation. The system performance is expected to be further improved once current optimization experiments and mathematical modeling studies are concluded. IWA Publishing 2008.
Universal shape evolution of particles by bed-load
NASA Astrophysics Data System (ADS)
Jerolmack, D. J.; Domokos, G.; Shaw, S.; Sipos, A.; Szabo, T.
2016-12-01
River currents, wind and waves drive bed-load transport, in which sediment particles collide with each other and the Earth's surface. A generic consequence is erosion and rounding of particles as a result of chipping, often referred to in geological literature as abrasion. Recent studies have shown that the erosion of river pebbles can be modeled as diffusion of surface curvature, indicating that geometric aspects of chipping erosion are insensitive to details of collisions and material properties. Here we present data from fluvial, aeolian and coastal environments that suggest a universal relation between particle circularity and mass lost due to bed-load chipping. Simulations and experiments support the diffusion model and demonstrate that three constraints are required to produce this universal curve: (i) initial particles are fragments; (ii) erosion is dominated by collisions among like-sized particles; and (iii) collision energy is small enough that chipping dominates over fragmentation. We show that the mechanics of bedrock weathering and bed-load transport select these constraints, providing the foundation to estimate a particle's erosion rate from its shape alone in most sedimentary environments. These findings may be used to determine the contribution of chipping to downstream fining in rivers and deserts, and to infer transport conditions using only images of sediment grains.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, M.A.; Ochs, S.
1990-01-01
Deposition was partly controlled by paleotopographic relief of underlying Permian strata. Triassic Black Dragon sediments filled lowlands on an erosion surface (unconformity) cut into the Permian White Rim Sandstone and Kaibab Limestone. The Black Dragon Member consists of four distinct facies containing a wide variety of sedimentary structures that characterize both fluvial and tidal environments. The facies are: (1) a Chert Pebble Conglomerate (CPC) facies, characterized by calcite-cemented channel-fills of nodular and banded chert pebbles; (2) an Interbedded Sandstone, Siltstone, and Shale (SSS) facies, containing oscillation ripples and flaser bedding; (3) a large-scale Trough Cross-Stratified Sandstone (TXS) facies, consisting ofmore » 6.6-13.1 ft (2-4 m) thick sets of fine- to medium-grained sandstone; and (4) an Oolitic and Algal Limestone (OAL) facies, with cross-stratified oolitic beds, fenestral fabric, and laminated algal rip-up clasts. The CPC facies and the TXS facies were deposited by braided streams when the shoreline lay west of the San Rafael Swell. Rivers drained off and eroded localized Permian highlands, located most likely within a 62 mi (100 km) distance to the south and southeast of the study area. The SSS facies which constitutes the bulk of the Black Dragon Member, and the OAL facies are inter- and supratidal deposits formed during relative sea level highstands, when the shoreline lay within or east of the San Rafael Swell. A decrease in continent-derived sand supply and a corresponding increase in carbonate production within the OAL facies characterizes the end of Black Dragon deposition and the gradation into the overlying Sinbad Limestone Member.« less
Brezinski, D.K.; Cecil, C.B.; Skema, V.W.; Stamm, R.
2008-01-01
A Late Devonian polymictic diamictite extends for more than 400??km from northeastern Pennsylvania across western Maryland and into east-central West Virginia. The matrix-supported, unbedded, locally sheared diamictite contains subangular to rounded clasts up to 2??m in diameter. The mostly rounded clasts are both locally derived and exotic; some exhibit striations, faceting, and polish. The diamictite commonly is overlain by laminated siltstone/mudstone facies associations (laminites). The laminites contain isolated clasts ranging in size from sand and pebbles to boulders, some of which are striated. The diamictite/laminite sequence is capped by massive, coarse-grained, pebbly sandstone that is trough cross-bedded. A stratigraphic change from red, calcic paleo-Vertisols in strata below the diamictite to non-calcic paleo-Spodosols and coal beds at and above the diamictite interval suggests that the climate became much wetter during deposition of the diamictite. The diamictite deposit is contemporaneous with regressive facies that reflect fluvial incision during the Late Devonian of the Appalachian basin. These deposits record a Late Devonian episode of climatic cooling so extreme that it produced glaciation in the Appalachian basin. Evidence for this episode of climatic cooling is preserved as the interpreted glacial deposits of diamictite, overlain by glaciolacustrine varves containing dropstones, and capped by sandstone interpreted as braided stream outwash. The Appalachian glacigenic deposits are contemporaneous with glacial deposits in South America, and suggest that Late Devonian climatic cooling was global. This period of dramatic global cooling may represent the end of the mid-Paleozoic warm interval that began in the Middle Silurian. ?? 2008 Elsevier B.V. All rights reserved.
Dong, Zhiyong; Lu, Mang; Huang, Wenhui; Xu, Xiaochun
2011-11-30
In this study, a novel suspended ceramic carrier was prepared, which has high strength, optimum density (close to water), and high porosity. Two different carriers, unmodified and sepiolite-modified suspended ceramic carriers were used to feed two moving bed biofilm reactors (MBBRs) with a filling fraction of 50% to treat oilfield produced water. The hydraulic retention time (HRT) was varied from 36 to 10h. The results, during a monitoring period of 190 days, showed that removal efficiency of chemical oxygen demand was the highest in reactor 3 filled with the sepiolite-modified carriers, followed by reactor 2 filled with the unmodified carriers, with the lowest in reactor 1 (activated sludge reactor), at an HRT of 10h. Similar trends were found in the removal efficiencies of ammonia nitrogen and polycyclic aromatic hydrocarbons. Reactor 3 was more shock resistant than reactors 2 and 1. The results indicate that the suspended ceramic carrier is an excellent MBBR carrier. Copyright © 2011 Elsevier B.V. All rights reserved.
Heat dissipating nuclear reactor
Hunsbedt, A.; Lazarus, J.D.
1985-11-21
Disclosed is a nuclear reactor containment adapted to retain and cool core debris in the unlikely event of a core meltdown and subsequent breach in the reactor vessel. The reactor vessel is seated in a cavity which has a thick metal sidewall that is integral with a thick metal basemat at the bottom of the cavity. The basemat extends beyond the perimeter of the cavity sidewall. Underneath the basemat is a porous bed with water pipes and steam pipes running into it. Water is introduced into the bed and converted into steam which is vented to the atmosphere. A plurality of metal pilings in the form of H-beams extend from the metal base plate downwardly and outwardly into the earth.
Heat dissipating nuclear reactor
Hunsbedt, Anstein; Lazarus, Jonathan D.
1987-01-01
Disclosed is a nuclear reactor containment adapted to retain and cool core debris in the unlikely event of a core meltdown and subsequent breach in the reactor vessel. The reactor vessel is seated in a cavity which has a thick metal sidewall that is integral with a thick metal basemat at the bottom of the cavity. The basemat extends beyond the perimeter of the cavity sidewall. Underneath the basemat is a porous bed with water pipes and steam pipes running into it. Water is introduced into the bed and converted into steam which is vented to the atmosphere. A plurality of metal pilings in the form of H-beams extends from the metal base plate downwardly and outwardly into the earth.
Characterization of metal adsorption kinetic properties in batch and fixed-bed reactors.
Chen, J Paul; Wang, Lin
2004-01-01
Copper adsorption kinetic properties in batch and fixed-bed reactors were studied in this paper. The isothermal adsorption experiments showed that the copper adsorption capacity of a granular activated carbon (Filtrasorb 200) increased when ionic strength was higher. The presence of EDTA diminished the adsorption. An intraparticle diffusion model and a fixed-bed model were successfully used to describe the batch kinetic and fixed-bed operation behaviors. The kinetics became faster when the solution pH was not controlled, implying that the surface precipitation caused some metal uptake. The external mass transfer coefficient, the diffusivity and the dispersion coefficient were obtained from the modeling. It was found that both external mass transfer and dispersion coefficients increased when the flow rate was higher. Finally effects of kinetic parameters on simulation of fixed-bed operation were conducted.
Numerical modelling of the evolution of conglomerate deformation up to high simple-shear strain
NASA Astrophysics Data System (ADS)
Ran, Hao; Bons, Paul D.; Wang, Genhou; Steinbach, Florian; Finch, Melanie; Ran, Shuming; Liang, Xiao; Zhou, Jie
2017-04-01
Deformed conglomerates have been widely used to investigate deformation history and structural analysis, using strain analyses techniques, such as the Rf-Φ and Fry methods on deformed pebbles. Although geologists have focused on the study of deformed conglomerates for several decades, some problems of the process and mechanism of deformation, such as the development of structures in pebbles and matrix, are still not understand well. Numerical modelling provides a method to investigate the process of deformation, as a function of different controlling parameters, up to high strains at conditions that cannot be achieved in the laboratory. We use the 2D numerical modelling platform Elle coupled to the full field crystal visco-plasticity code (VPFFT) to simulate the deformation of conglomerates under simple shear conditions, achieving high finite strains of ≥10. Probably for the first time, we included the effect of an anisotropy, i.e. mica-rich matrix. Our simulations show the deformation of pebbles not only depends on the viscosity contrast between pebbles and matrix but emphasises the importance of interaction between neighbouring pebbles. Under the same finite strain shearing the pebbles of conglomerates with high pebble densities show higher Rf and lower Φ than those of conglomerates with a low density pebbles. Strain localisation can be observed at both the margin of strong pebbles and in the bridging area between the pebbles. At low to medium finite strain, local areas show the opposite (antithetic) shear sense because of the different relative rotation and movement of pebbles or clusters of pebbles. Very hard pebbles retain their original shape and may rotate, depending on the anisotropy of the matrix. σ-clasts are formed by pebbles with moderate viscosity contrast between pebble and a softer matrix. By contrast, δ-clasts are not observed in our simulations with both isotropic and anisotropic matrices, which is consistent with their relative scarcity in natural mylonites. The formation of SC-fabrics is enhanced by anisotropy of the matrix, which facilitates strain partitioning in low-strain S-domains and high strain C-domains.
Pebble-isolation mass: Scaling law and implications for the formation of super-Earths and gas giants
NASA Astrophysics Data System (ADS)
Bitsch, Bertram; Morbidelli, Alessandro; Johansen, Anders; Lega, Elena; Lambrechts, Michiel; Crida, Aurélien
2018-04-01
The growth of a planetary core by pebble accretion stops at the so-called pebble isolation mass, when the core generates a pressure bump that traps drifting pebbles outside its orbit. The value of the pebble isolation mass is crucial in determining the final planet mass. If the isolation mass is very low, gas accretion is protracted and the planet remains at a few Earth masses with a mainly solid composition. For higher values of the pebble isolation mass, the planet might be able to accrete gas from the protoplanetary disc and grow into a gas giant. Previous works have determined a scaling of the pebble isolation mass with cube of the disc aspect ratio. Here, we expand on previous measurements and explore the dependency of the pebble isolation mass on all relevant parameters of the protoplanetary disc. We use 3D hydrodynamical simulations to measure the pebble isolation mass and derive a simple scaling law that captures the dependence on the local disc structure and the turbulent viscosity parameter α. We find that small pebbles, coupled to the gas, with Stokes number τf < 0.005 can drift through the partial gap at pebble isolation mass. However, as the planetary mass increases, particles must be decreasingly smaller to penetrate the pressure bump. Turbulent diffusion of particles, however, can lead to an increase of the pebble isolation mass by a factor of two, depending on the strength of the background viscosity and on the pebble size. We finally explore the implications of the new scaling law of the pebble isolation mass on the formation of planetary systems by numerically integrating the growth and migration pathways of planets in evolving protoplanetary discs. Compared to models neglecting the dependence of the pebble isolation mass on the α-viscosity, our models including this effect result in higher core masses for giant planets. These higher core masses are more similar to the core masses of the giant planets in the solar system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sai, P.M.S.; Ahmed, J.; Krishnaiah, K.
Activated carbon is produced from coconut shell char using steam or carbon dioxide as the reacting gas in a 100 mm diameter fluidized bed reactor. The effect of process parameters such as reaction time, fluidizing velocity, particle size, static bed height, temperature of activation, fluidizing medium, and solid raw material on activation is studied. The product is characterized by determination of iodine number and BET surface area. The product obtained in the fluidized bed reactor is much superior in quality to the activated carbons produced by conventional processes. Based on the experimental observations, the optimum values of process parameters aremore » identified.« less
Adsorption of Streptococcus faecalis on diatomite carriers for use in biotransformations.
Anderson, W A; Bay, P; Legge, R L; Moo-Young, M
1990-01-01
Adsorption of cells on particulate carriers is potentially one of the most cost-effective immobilization techniques available. Diatomite carriers, such as Celite, have desirable physical properties, are inexpensive, and are suitable for both mycelial and bacterial systems. This work investigated the use of diatomite carriers as a biocatalyst support in a packed-bed reactor where L-tyrosine was enzymatically decarboxylated using adsorbed, non-growing cells of Streptococcus faecalis. Composition of microbial adsorption on different Celite types, with mean pore sizes ranging from 0.55 to 22 microns, showed there was no significant difference in biomass loading capacity under the conditions used. Using Celite 560, biomass loadings in a packed-bed reactor varied from 10 to 30 g dm-3 of reactor volume, which compares favourably with other adsorption methods. When used to decarboxylate L-tyrosine, the reactor was found to have a half-life of 15-20 h. A combination of enzyme activity loss and slow leakage of biomass from the packed-bed reactor was responsible for the decline in conversion. Treatment of the S. faecalis cells with glutaraldehyde significantly reduced the enzyme activity loss and extended the reactor half-life to 65 h, but had little effect on the rate of cell leakage from the reactor. Further work on reduction of cell leakage rate seems necessary for evaluation of the system's practicality.
Fluorescence-based monitoring of tracer and substrate distribution in an UASB reactor.
Lou, S J; Tartakovsky, B; Zeng, Y; Wu, P; Guiot, S R
2006-11-01
In this work, rhodamine-related fluorescence was measured on-line at four reactor heights in order to study hydrodynamics within an upflow anaerobic sludge bed reactor. A linear dependence of the dispersion coefficient (D) on the upflow velocity was observed, while the influence of the organic loading rate (OLR) was insignificant. Furthermore, the Bodenstein number of the reactor loaded with granulated sludge was found to be position-dependent with the largest values measured at the bottom of the sludge bed. This trend was not observed in the reactor without sludge. Chemical oxygen demand (COD) and volatile fatty acid (VFA) concentrations were measured at the same reactor heights as in rhodamine tests using conventional off-line analytical methods and on-line multiwavelength fluorometry. Significant spatial COD and VFA gradients were observed at organic loading rates above 6g COD l(R)(-1)d(-1) and linear upflow velocities below 0.8m h(-1).
Wood, Joseph; Turner, Paul H
2003-03-01
Near-infrared (NIR) spectroscopy has been applied to determine the conversion of itaconic acid in the effluent stream of a trickle bed reactor. Hydrogenation of itaconic to methyl succinic acid was carried out, with the trickle bed operating in recycle mode. For the first time, NIR spectra of itaconic and methyl succinic acids in aqueous solution, and aqueous mixtures withdrawn from the reactor over a range of reaction times, have been recorded using a fiberoptic sampling probe. The infrared spectra displayed a clear isolated absorption band at a wavenumber of 6186 cm(-1) (wavelength 1.617 microm) resulting from the =C-H bonds of itaconic acid, which was found to decrease in intensity with increasing reaction time. The feature could be more clearly observed from plots of the first derivatives of the spectra. A partial least-squares (PLS) model was developed from the spectra of 13 reference samples and was used successfully to calculate the concentration of the two acids in the reactor effluent solution. Itaconic acid conversions of 23-29% were calculated after 360 min of reaction time. The potential of FT-NIR with fiber-optic sampling for remote monitoring of three-phase catalytic reactors and validation of catalytic reactor models is highlighted in the paper.
Apple juice clarification by immobilized pectolytic enzymes in packed or fluidized bed reactors.
Diano, Nadia; Grimaldi, Tiziana; Bianco, Mariangela; Rossi, Sergio; Gabrovska, Katya; Yordanova, Galya; Godjevargova, Tzonka; Grano, Valentina; Nicolucci, Carla; Mita, Luigi; Bencivenga, Umberto; Canciglia, Paolo; Mita, Damiano G
2008-12-10
The catalytic behavior of a mixture of pectic enzymes, covalently immobilized on different supports (glass microspheres, nylon 6/6 pellets, and PAN beads), was analyzed with a pectin aqueous solution that simulates apple juice. The following parameters were investigated: the rate constant at which pectin hydrolysis is conducted, the time (tau(50)) in which the reduction of 50% of the initial viscosity is reached, and the time (tau(comp,dep)) required to obtain complete depectinization. The best catalytic system was proven to be PAN beads, and their pH and temperature behavior were determined. The yields of two bed reactors, packed or fluidized, using the catalytic PAN beads, were compared to the circulation flow rate of real apple juice. The experimental conditions were as follows: pH 4.0, T = 50 degrees C, and beads volume = 20 cm(3). The initial pectin concentration was the one that was present in our apple juice sample. No differences were observed at low circulation rates, while at higher recirculation rates, the time required to obtain complete pectin hydrolysis into the fluidized reactor was found to be 0.25 times smaller than in the packed bed reactor: 131 min for the packed reactors and 41 min for the fluidized reactors.
Electrowinning apparatus and process
Buschmann, Wayne E [Boulder, CO
2012-06-19
Apparatus and processes are disclosed for electrowinning metal from a fluid stream. A representative apparatus comprises at least one spouted bed reactor wherein each said reactor includes an anolyte chamber comprising an anode and configured for containing an anolyte, a catholyte chamber comprising a current collector and configured for containing a particulate cathode bed and a flowing stream of an electrically conductive metal-containing fluid, and a membrane separating said anolyte chamber and said catholyte chamber, an inlet for an electrically conductive metal-containing fluid stream; and a particle bed churning device configured for spouting particle bed particles in the catholyte chamber independently of the flow of said metal-containing fluid stream. In operation, reduced heavy metals or their oxides are recovered from the cathode particles.
Sze, Morgan C.; Schindler, Harvey D.
1982-01-01
Coal is catalytically hydroliquefied by passing coal dispersed in a liquefaction solvent and hydrogen upwardly through a plurality of parallel expanded catalyst beds, in a single reactor, in separate streams, each having a cross-sectional flow area of no greater than 255 inches square, with each of the streams through each of the catalyst beds having a length and a liquid and gas superficial velocity to maintain an expanded catalyst bed and provide a Peclet Number of at least 3. If recycle is employed, the ratio of recycle to total feed (coal and liquefaction solvent) is no greater than 2:1, based on volume. Such conditions provide for improved selectivity to liquid product to thereby reduce hydrogen consumption. The plurality of beds are formed by partitions in the reactor.
Bio-oil production from palm fronds by fast pyrolysis process in fluidized bed reactor
NASA Astrophysics Data System (ADS)
Rinaldi, Nino; Simanungkalit, Sabar P.; Kiky Corneliasari, S.
2017-01-01
Fast pyrolysis process of palm fronds has been conducted in the fluidized bed reactor to yield bio-oil product (pyrolysis oil). The process employed sea sand as the heat transfer medium. The objective of this study is to design of the fluidized bed rector, to conduct fast pyrolysis process to product bio-oil from palm fronds, and to characterize the feed and bio-oil product. The fast pyrolysis process was conducted continuously with the feeding rate around 500 g/hr. It was found that the biomass conversion is about 35.5% to yield bio-oil, however this conversion is still minor. It is suggested due to the heating system inside the reactor was not enough to decompose the palm fronds as a feedstock. Moreover, the acids compounds ware mostly observed on the bio-oil product.
Karst is a repository for old sediments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hobbs, H.C.
1994-04-01
The Paleozoic plateau of southeastern Minnesota has been repeatedly glaciated, and has accumulated several sheets of loess. In the eastern part of this area, most of the older sediments have been eroded away and the late Wisconsinan Peoria loess directly overlies limestone. A lag of erratics from one or more older tills occurs sporadically on the bedrock surface. A more complete record is preserved in some sinkholes and solution cavities. Sinkholes (surface depressions) contain material that washed or collapsed into the hole, as well as material that was deposited directly (such as loess). Solution cavities contain only material sorted bymore » water. Sinkhole fills exposed in roadcuts and quarry walls commonly lack the surface expression and black-dirt funnel'' of active sinkholes. Several of these contain erratic-bearing sediment interpreted as slopewash and mudflow. One appears to contain actual till--unsorted, unbedded pebble-loam that is not mixed with other materials commonly found on the limestone surface, such as red clay or loess. It cannot be determined whether this material was deposited directly or collapsed in later. Solution cavities are typically packed with sediment right up to the top. The bulk of such deposits is typically clay and silt; however, erratic pebbles are present in some. The fine sediment is sorted and bedded, at least in places. In one large cavity fill, a layer of rip-up clay clasts occurs near the top. Study of the stratigraphy of karst sediments in southeastern Minnesota is still preliminary. Techniques which are used to correlate them include: physical characteristics, texture analysis (on material that has not been sorted), sand and pebble lithology, and magnetic polarity. Techniques that could be used include clay mineralogy, geochemical analysis, and thermoluminescence.« less
The extraction of bitumen from western oil sands: Volume 2. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oblad, A.G.; Dahlstrom, D.A.; Deo, M.D.
1997-11-26
The program is composed of 20 projects, of which 17 are laboratory bench or laboratory pilot scale processes or computer process simulations that are performed in existing facilities on the University of Utah campus in north-east Salt Lake City. These tasks are: (1) coupled fluidized-bed bitumen recovery and coked sand combustion; (2) water-based recovery of bitumen; (3) oil sand pyrolysis in a continuous rotary kiln reactor; (4) oil sand pyrolysis in a large diameter fluidized bed reactor; (5) oil sand pyrolysis in a small diameter fluidized bed reactor; (6) combustion of spent sand in a transport reactor; (7) recovery andmore » upgrading of oil sand bitumen using solvent extraction methods; (8) fixed-bed hydrotreating of Uinta Basin bitumens and bitumen-derived hydrocarbon liquids; (9) ebullieted bed hydrotreating of bitumen and bitumen derived liquids; (10) bitumen upgrading by hydropyrolysis; (11) evaluation of Utah`s major oil sand deposits for the production of asphalt, high-energy jet fuels and other specialty products; (12) characterization of the bitumens and reservoir rocks from the Uinta Basin oil sand deposits; (13) bitumen upgrading pilot plant recommendations; (14) liquid-solid separation and fine tailings thickening; (15) in-situ production of heavy oil from Uinta Basin oil sand deposits; (16) oil sand research and development group analytical facility; and (17) process economics. This volume contains reports on nine of these projects, references, and a bibliography. 351 refs., 192 figs., 65 tabs.« less
NASA Astrophysics Data System (ADS)
Seo, Yong-Seog; Seo, Dong-Joo; Seo, Yu-Taek; Yoon, Wang-Lai
The objective of this study is to investigate numerically a compact steam methane reforming (SMR) system integrated with a water-gas shift (WGS) reactor. Separate numerical models are established for the combustion part, SMR and WGS reaction bed. The concentration of species at the exits of the SMR and WGS bed, and the temperatures in the WGS bed are in good agreement with the measured data. Heat transfer to the catalyst beds and the catalytic reactions in the SMR and WGS catalyst bed are investigated as a function of the operation parameters. The conversion of methane at the exit of the SMR catalyst bed is calculated to be 87%, and the carbon monoxide concentration at the outlet of the WGS bed is estimated to be 0.45%. The effects of the cooling heat flux at the outside wall of the system and steam-to-carbon (S/C) ratio are also examined. As the cooling heat flux increases, both the methane conversion and carbon monoxide content are reduced in the SMR bed, and the carbon monoxide conversion is improved in the WGS bed. Both methane conversion and carbon dioxide reduction increase with increasing steam-to-carbon ratio.
Apparatus for high flux photocatalytic pollution control using a rotating fluidized bed reactor
Tabatabaie-Raissi, Ali; Muradov, Nazim Z.; Martin, Eric
2003-06-24
An apparatus based on optimizing photoprocess energetics by decoupling of the process energy efficiency from the DRE for target contaminants. The technique is applicable to both low- and high-flux photoreactor design and scale-up. An apparatus for high-flux photocatalytic pollution control is based on the implementation of multifunctional metal oxide aerogels and other media in conjunction with a novel rotating fluidized particle bed reactor.
Industrial wastewater treatment in a new gas-induced ozone reactor.
Lin, Sheng H; Wang, Ching H
2003-03-17
The present work was to investigate industrial wastewater treatment by ozonation in a new gas-induced reactor in conjunction with chemical coagulation pretreatment. The reactor was specifically designed in a fashion that gas induction was created on the liquid surface by the high-speed action of an impeller turbine inside a draft tube to maximize the ozone gas utilization. A new design feature of the present reactor system was a fixed granular activated carbon (GAC) bed packed in a circular compartment between the reactor wall and the shaft tube. The fixed GAC bed provided additional adsorption and catalytic degradation of organic pollutants. Combination of the fixed GAC bed and ozonation results in enhanced oxidation of organic pollutants. In addition to enhanced pollutant oxidation, ozonation was found to provide in situ GAC regeneration that was considered crucial in the present reaction system. Kinetic investigations were also made using a proposed complex kinetic model to elucidate the possible oxidation reaction mechanisms of the present gas-induced ozonation system. As a complementary measure, chemical coagulation pretreatment was found able to achieve up to 50% COD and 85% ADMI removal. Experimental tests were conducted to identify its optimum operating conditions. Copyright 2003 Elsevier Science B.V.
Araújo, Paulo Jardel P; Leite, Manuela Souza; Ravagnani, Teresa M Kakuta
2016-01-01
Styrene is an important monomer in the manufacture of thermoplastic. Most of it is produced by the catalytic dehydrogenation of ethylbenzene. In this process that depends on reversible reactions, the yield is usually limited by the establishment of thermodynamic equilibrium in the reactor. The styrene yield can be increased by using a hybrid process, with reaction and separation simultaneously. It is proposed using permselective composite membrane to remove hydrogen and thus suppress the reverse and secondary reactions. This paper describes the simulation of a dehydrogenation process carried out in a tubular fixed-bed reactor wrapped in a permselective composite membrane. A mathematical model was developed, incorporating the various mass transport mechanisms found in each of the membrane layers and in the catalytic fixed bed. The effects of the reactor feed conditions (temperature, steam-to-oil ratio, and the weight hourly space velocity), the fixed-bed geometry (length, diameter, and volume), and the membrane geometry (thickness of the layers) on the styrene yield were analyzed. These variables were used to determine experimental conditions that favour the production of styrene. The simulation showed that an increase of 40.98% in the styrene yield, compared to a conventional fixed-bed process, could be obtained by wrapping the reactor in a permselective composite membrane.
The Development of Small Solar Concentrating Systems with Heat Storage for Rural Food Preparation
NASA Astrophysics Data System (ADS)
van den Heetkamp, R. R. J.
A system, consisting of a parabolic reflector mounted on a polar axis tracker, has been designed and built. Air at atmospheric pressure is heated by the concentrated solar radiation to temperatures of up to 400°C as it is sucked through the receiver and into the pebble-bed heat storage unit, by means of a fan at the bottom of the storage. The stored heat is recovered by the reversal of the fan and the resulting hot air can be used in a convection oven and other appliances. This report discusses practical aspects, as well as preliminary test results, of such a system.
Alfonso-Gordillo, Guadalupe; Flores-Ortiz, César Mateo; Morales-Barrera, Liliana
2016-01-01
This study investigated the aerobic biodegradation of methyl tertiary-butyl ether (MTBE) by a microbial consortium in a continuous up-flow packed-bed biofilm reactor using tezontle stone particles as a supporting material for the biofilm. Although MTBE is toxic for microbial communities, the microbial consortium used here was able to resist MTBE loading rates up to 128.3 mg L-1 h-1, with removal efficiencies of MTBE and chemical oxygen demand (COD) higher than 90%. A linear relationship was observed between the MTBE loading rate and the MTBE removal rate, as well as between the COD loading rate and the COD removal rate, within the interval of MTBE loading rates from 11.98 to 183.71 mg L-1 h-1. The metabolic intermediate tertiary butyl alcohol (TBA) was not detected in the effluent during all reactor runs, and the intermediate 2-hydroxy butyric acid (2-HIBA) was only detected at MTBE loading rates higher than 128.3 mg L-1 h-1. The results of toxicity bioassays with organisms from two different trophic levels revealed that the toxicity of the influent was significantly reduced after treatment in the packed-bed reactor. The packed-bed reactor system used in this study was highly effective for the continuous biodegradation of MTBE and is therefore a promising alternative for detoxifying MTBE-laden wastewater and groundwater. PMID:27907122
Alfonso-Gordillo, Guadalupe; Flores-Ortiz, César Mateo; Morales-Barrera, Liliana; Cristiani-Urbina, Eliseo
2016-01-01
This study investigated the aerobic biodegradation of methyl tertiary-butyl ether (MTBE) by a microbial consortium in a continuous up-flow packed-bed biofilm reactor using tezontle stone particles as a supporting material for the biofilm. Although MTBE is toxic for microbial communities, the microbial consortium used here was able to resist MTBE loading rates up to 128.3 mg L-1 h-1, with removal efficiencies of MTBE and chemical oxygen demand (COD) higher than 90%. A linear relationship was observed between the MTBE loading rate and the MTBE removal rate, as well as between the COD loading rate and the COD removal rate, within the interval of MTBE loading rates from 11.98 to 183.71 mg L-1 h-1. The metabolic intermediate tertiary butyl alcohol (TBA) was not detected in the effluent during all reactor runs, and the intermediate 2-hydroxy butyric acid (2-HIBA) was only detected at MTBE loading rates higher than 128.3 mg L-1 h-1. The results of toxicity bioassays with organisms from two different trophic levels revealed that the toxicity of the influent was significantly reduced after treatment in the packed-bed reactor. The packed-bed reactor system used in this study was highly effective for the continuous biodegradation of MTBE and is therefore a promising alternative for detoxifying MTBE-laden wastewater and groundwater.
Effect of small-scale biomass gasification at the state of refractory lining the fixed bed reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janša, Jan, E-mail: jan.jansa@vsb.cz; Peer, Vaclav, E-mail: vaclav.peer@vsb.cz; Pavloková, Petra, E-mail: petra.pavlokova@vsb.cz
The article deals with the influence of biomass gasification on the condition of the refractory lining of a fixed bed reactor. The refractory lining of the gasifier is one part of the device, which significantly affects the operational reliability and durability. After removing the refractory lining of the gasifier from the experimental reactor, there was done an assessment how gasification of different kinds of biomass reflected on its condition in terms of the main factors affecting its life. Gasification of biomass is reflected on the lining, especially through sticking at the bottom of the reactor. Measures for prolonging the lifemore » of lining consist in the reduction of temperature in the reactor, in this case, in order to avoid ash fusion biomass which it is difficult for this type of gasifier.« less
Ultra-High Temperature ContinuousReactors based on Electro-thermal FluidizedBed Concept
Fedorov, Sergiy S.; Rohatgi, Upendra Singh; Barsukov, Igor V.; ...
2015-12-08
This paper presents the results of research and development in high-temperature (i.e. 2,000- 3,000ºС) continuous furnaces operating on the principle of electro-thermal fluidized bed for the purification of recycled, finely sized carbon materials. The basis of this fluidized bed furnace is specific electrical resistance and a new correlation has been developed to predict specific electrical resistance for the natural graphite-based precursors entering the fluidized bed reactor This correlation has been validated with the data from a fully functional pilot furnace whose throughput capacity is 10 kg per hour built as part of this work. Data collected in the course ofmore » graphite refining experiments demonstrated that difference between the calculated and measured values of specific electrical resistance of fluidized bed does not exceed 25%. It was concluded that due to chaotic nature of electro-thermal fluidized bed reactors this discrepancy is acceptable. The fluid mechanics of the three types of operating regimes, have been described. The numerical relationships obtained as part of this work allowed proposing an algorithm for selection of technological operational modes with large- scale high-temperature furnaces rated for throughputs of several tons of product per hour. Optimizations proposed now allow producing natural graphite-based end product with the purity level of 99.98+ wt%C which is the key passing criteria for applications in the advanced battery markets.« less
NASA Astrophysics Data System (ADS)
Sakamoto, Shingo X.; Sasa, Shuji; Sawayama, Shuhei; Tsujimoto, Ryo; Terauchi, Genki; Yagi, Hiroshi; Komatsu, Teruhisa
2012-10-01
Seaweed beds are very important for abalones and sea urchins as a habitat. In Sanriku Coast, these animals are target species of coastal fisheries. The huge tsunami hit Sanriku Coast facing Pacific Ocean on 11 March 2011. It is needed for fishermen to know present situation of seaweed beds and understand damages of the huge tsunami on natural environments to recover coastal fisheries. We selected Shizugawa Bay as a study site because abalone catch of Shizugawa Bay occupied the first position in Sanriku Coast. To evaluate impact of tsunami on seaweed beds, we compared high spatial resolution satellite image of Shizugawa Bay before the tsunami with that after the tsunami by remote sensing with ground surveys to know impact of the tsunami on seaweed beds. We used two multi-band imageries of commercial high-resolution satellite, Geoeye-1, which were taken on 4 November 2009 before the tsunami and on 22 February 2012 after the tsunami. Although divers observed the tsunami damaged a very small part of Eisenia bicyclis distributions on rock substrates at the bay head, it was not observed clearly by satellite image analysis. On the other hand, we found increase in seaweed beds after the tsunami from the image analysis. The tsunami broke concrete breakwaters, entrained a large amount of rocks and pebble from land to the sea, and disseminated them in the bay. Thus, hard substrates suitable for attachment of seaweeds were increased. Ground surveys revealed that seaweeds consisting of E. bicyclis, Sargassum and Laminaria species grew on these hard substrates on the sandy bottom.
Deep particle bed dryout model based on flooding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuan, P.
1987-01-01
Examination of the damaged Three Mile island Unit 2 (TMI-2) reactor indicates that a deep (approx. 1-m) bed of relatively large (approx. 1-mm) particles was formed in the core. Cooling of such beds is crucial to the arrest of core damage progression. The Lipinski model, based on flows in the bed, has been used to predict the coolability, but uncertainties exist in the turbulent permeability. Models based on flooding at the top of the bed either have a dimensional viscosity term, or no viscosity dependence, thus limiting their applicability. This paper presents a dimensionless correlation based on flooding data thatmore » involves a liquid Reynolds number. The derived dryout model from this correlation is compared with data for deep beds of large particles at atmospheric pressure, and with other models over a wide pressure range. It is concluded that the present model can give quite accurate predictions for the dryout heat flux of particle beds formed during a light water reactor accident and it is easy to use and agrees with the Lipinski n = 5 model, which requires iterative calculations.« less
NASA Astrophysics Data System (ADS)
Ngecu, Wilson M.; Gaciri, Steve J.
1995-10-01
The greenstone belt of the Tanzanian shield in Western Kenya is composed of two supracrustal successions, which form the Nyanzian and Kavirondian Groups. The Nyanzian Group at the base is composed of mafic tholeiitic basalts, calc-alkaline dacites and rhyolites. The group is unconformably overlain by the Kavirondian Group. During recent field mapping, the Kavirondian Group was divided into three formations. The Shivakala Formation consists of thickly bedded basal conglomerates, which are interbedded with thin sandstone beds. The Igukhu Formation conformably overlies the Shivakala Formation and is composed of thickly and locally thinly bedded greywacke. The uppermost Mudaa Formation is composed of blocky mudstones and thinly laminated shales. A high proportion of volcanic, granitic and chert pebbles in the conglomerates, along with abundant quartz, feldspars and mudstone fragments in the greywacke, indicates a mixed provenance of volcanic, granitic and recycled sedimentary rocks. Primary sedimentary structures and lithofacies associations indicate that the conglomerates were deposited in an alluvial fan/fan-delta setting. The greywackes represent proximal turbidites while the mudstone and shales were deposited mainly as distal turbidites. In the study area there is no evidence of transitional nearshore or shallow marine facies transitional to the continental and deep marine facies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yung, Matthew M.; Stanton, Alexander R.; Iisa, Kristiina
Metal-impregnated (Ni or Ga) ZSM-5 catalysts were studied for biomass pyrolysis vapor upgrading to produce hydrocarbons using three reactors constituting a 100 000x change in the amount of catalyst used in experiments. Catalysts were screened for pyrolysis vapor phase upgrading activity in two small-scale reactors: (i) a Pyroprobe with a 10 mg catalyst in a fixed bed and (ii) a fixed-bed reactor with 500 mg of catalyst. The best performing catalysts were then validated with a larger scale fluidized-bed reactor (using ~1 kg of catalyst) that produced measurable quantities of bio-oil for analysis and evaluation of mass balances. Despite somemore » inherent differences across the reactor systems (such as residence time, reactor type, analytical techniques, mode of catalyst and biomass feed) there was good agreement of reaction results for production of aromatic hydrocarbons, light gases, and coke deposition. Relative to ZSM-5, Ni or Ga addition to ZSM-5 increased production of fully deoxygenated aromatic hydrocarbons and light gases. In the fluidized bed reactor, Ga/ZSM-5 slightly enhanced carbon efficiency to condensed oil, which includes oxygenates in addition to aromatic hydrocarbons, and reduced oil oxygen content compared to ZSM-5. Ni/ZSM-5, while giving the highest yield of fully deoxygenated aromatic hydrocarbons, gave lower overall carbon efficiency to oil but with the lowest oxygen content. Reaction product analysis coupled with fresh and spent catalyst characterization indicated that the improved performance of Ni/ZSM-5 is related to decreasing deactivation by coking, which keeps the active acid sites accessible for the deoxygenation and aromatization reactions that produce fully deoxygenated aromatic hydrocarbons. The addition of Ga enhances the dehydrogenation activity of the catalyst, which leads to enhanced olefin formation and higher fully deoxygenated aromatic hydrocarbon yields compared to unmodified ZSM-5. Catalyst characterization by ammonia temperature programmed desorption, surface area measurements, and postreaction temperature-programmed oxidation (TPO) also showed that the metal-modified zeolites retained a greater percentage of their initial acidity and surface area, which was consistent between the reactor scales. These results demonstrate that the trends observed with smaller (milligram to gram) catalyst reactors are applicable to larger, more industrially relevant (kg) scales to help guide catalyst research toward application.« less
JPRS Report, Science & Technology, China: Energy
1988-06-29
capacity. There are currently two types of HTGR reactor designs: the particle-bed core , which uses spherical fuel elements, and the rod type core , in...and trial operating experience with the HTGR reactor. Its main design features are as follows. 1. A particle-bed core , continuous fueling and...Favorable for Development of Small-Scale HTGR (Xu Jiming; HE DONGLI GONGCHENG, Feb 88) 47 ERRATUM: In JPRS-CEN-88-003 of 25 April 1988 in article
DOE Office of Scientific and Technical Information (OSTI.GOV)
Senor, David J.; Painter, Chad L.; Geelhood, Ken J.
2007-12-01
Spherical cermet fuel elements are proposed for use in the Atoms For Peace Reactor (AFPR-100) concept. AFPR-100 is a small-scale, inherently safe, proliferation-resistant reactor that would be ideal for deployment to nations with emerging economies that decide to select nuclear power for the generation of carbon-free electricity. The basic concept of the AFPR core is a water-cooled fixed particle bed, randomly packed with spherical fuel elements. The flow of coolant within the particle bed is at such a low rate that the bed does not fluidize. This report summarizes an approach to fuel fabrication, results associated with fuel performance modeling,more » core neutronics and thermal hydraulics analyses demonstrating a ~20 year core life, and a conclusion that the proliferation resistance of the AFPR reactor concept is high.« less
Fluidized bed gasification of industrial solid recovered fuels.
Arena, Umberto; Di Gregorio, Fabrizio
2016-04-01
The study evaluates the technical feasibility of the fluidized bed gasification of three solid recovered fuels (SRFs), obtained as co-products of a recycling process. The SRFs were pelletized and fed to a pilot scale bubbling fluidized bed reactor, operated in gasification and co-gasification mode. The tests were carried out under conditions of thermal and chemical steady state, with a bed of olivine particles and at different values of equivalence ratio. The results provide a complete syngas characterization, in terms of its heating value and composition (including tars, particulates, and acid/basic pollutants) and of the chemical and physical characterization of bed material and entrained fines collected at the cyclone outlet. The feasibility of the fluidized bed gasification process of the different SRFs was evaluated with the support of a material and substance flow analysis, and a feedstock energy analysis. The results confirm the flexibility of fluidized bed reactor, which makes it one of the preferable technologies for the gasification of different kind of wastes, even in co-gasification mode. The fluidized bed gasification process of the tested SRFs appears technically feasible, yielding a syngas of valuable quality for energy applications in an appropriate plant configuration. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pant, H J; Sharma, V K
2016-10-01
A radiotracer investigation was carried out to measure residence time distribution (RTD) of liquid phase in a trickle bed reactor (TBR). The main objectives of the investigation were to investigate radial and axial mixing of the liquid phase, and evaluate performance of the liquid distributor/redistributor at different operating conditions. Mean residence times (MRTs), holdups (H) and fraction of flow flowing along different quadrants were estimated. The analysis of the measured RTD curves indicated radial non-uniform distribution of liquid phase across the beds. The overall RTD of the liquid phase, measured at the exit of the reactor was simulated using a multi-parameter axial dispersion with exchange model (ADEM), and model parameters were obtained. The results of model simulations indicated that the TBR behaved as a plug flow reactor at most of the operating conditions used in the investigation. The results of the investigation helped to improve the existing design as well as to design a full-scale industrial TBR for petroleum refining applications. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rabbani, S.; Ben Salem, I.; Nadeem, H.; Kurnia, J. C.; Shamim, T.; Sassi, M.
2014-12-01
Pressure drop estimation and prediction of liquid holdup play a crucial role in design and operation of trickle bed reactors. Experiments are performed for Light Gas Oil (LGO)-nitrogen system in ambient temperature conditions in an industrial pilot plant with reactor height 0.79 m and diameter of 0.0183 m and pressure ranging from atmospheric to 10 bars. It was found that pressure drop increased with increase in system pressure, superficial gas velocity and superficial liquid velocity. It was demonstrated in the experiments that liquid holdup of the system increases with the increase in superficial liquid velocity and tends to decrease with increase in superficial gas velocity which is in good agreement with existing literature. Similar conditions were also simulated using CFD-software FLUENT. The Volume of Fluid (VoF) technique was employed in combination with "discrete particle approach" and results were compared with that of experiments. The overall pressure drop results were compared with the different available models and a new comprehensive model was proposed to predict the pressure drop in Trickle Bed Flow Reactor.
Hennebel, Tom; Verhagen, Pieter; Simoen, Henri; De Gusseme, Bart; Vlaeminck, Siegfried E; Boon, Nico; Verstraete, Willy
2009-08-01
Trichloroethylene is a toxic and recalcitrant groundwater pollutant. Palladium nanoparticles bio-precipitated on Shewanella oneidensis were encapsulated in polyurethane, polyacrylamide, alginate, silica or coated on zeolites. The reactivity of these bio-Pd beads and zeolites was tested in batch experiments and trichloroethylene dechlorination followed first order reaction kinetics. The calculated k-values of the encapsulated catalysts were a factor of six lower compared to non-encapsulated bio-Pd. Bio-Pd, used as a catalyst, was able to dechlorinate 100 mgL(-1) trichloroethylene within a time period of 1h. The main reaction product was ethane; yet small levels of chlorinated intermediates were detected. Subsequently polyurethane cubes empowered with bio-Pd were implemented in a fixed bed reactor for the treatment of water containing trichloroethylene. The influent recycle configuration resulted in a cumulative removal of 98% after 22 h. The same reactor in a flow through configuration achieved removal rates up to 1059 mg trichloroethylene g Pd(-1)d(-1). This work showed that fixed bed reactors with bio-Pd polyurethane cubes can be instrumental for remediation of water contaminated with trichloroethylene.
Enhanced biofiltration using cell attachment promotors.
Goncalves, Juan J; Govind, Rakesh
2009-02-15
H2S polluted airstreams were treated in two biotrickling filter columns packed with polyurethane (PU) foam cubes, one with cubes coated with a solution of 25 mg/L of polyethyleneimine (PEI, coated reactor) and the other containing just plain PU cubes (uncoated reactor) at empty bed residence times (EBRT) ranging from 6 to 60 s. and inlet H2S concentrations ranging from 30 to 235 ppm, (overall loads of up to 44 gH2S/m3bed/h), with overall removal efficiencies (RE) in the range of 90-100% over 125 days. The acclimatization characteristics of the coated reactor outperformed those of the uncoated one, and both the observed elimination capacity (EC) of 77 gH2S/m3bed/h and retention of volatile solids (VS) of 42 mgVS/cube were maxima in the coated reactor. Insights into the controlling removal mechanisms were also provided by means of dimensionless analysis of the experimental data. Denaturing gradient gel electrophoresis (DGGE) showed that the dominant surviving species in both units belonged to the genus Acidithiobacillus.
Conversion of NO with a catalytic packed-bed dielectric barrier discharge reactor
NASA Astrophysics Data System (ADS)
Xu, CAO; Weixuan, ZHAO; Renxi, ZHANG; Huiqi, HOU; Shanping, CHEN; Ruina, ZHANG
2017-11-01
This paper discusses the conversion of nitric oxide (NO) with a low-temperature plasma induced by a catalytic packed-bed dielectric barrier discharge (DBD) reactor. Alumina oxide (Al2O3), glass (SiO2) and zirconium oxide (ZrO2), three different spherical packed materials of the same size, were each present in the DBD reactor. The NO conversion under varying input voltage and specific energy density, and the effects of catalysts (titanium dioxide (TiO2) and manganese oxide (MnO x ) coated on Al2O3) on NO conversion were investigated. The experimental results showed that NO conversion was greatly enhanced in the presence of packed materials in the reactor, and the catalytic packed bed of MnO x /Al2O3 showed better performance than that of TiO2/Al2O3. The surface and crystal structures of the materials and catalysts were characterized through scanning electron microscopy analysis. The final products were clearly observed by a Fourier transform infrared spectrometer and provided a better understanding of NO conversion.
Solar photocatalytic disinfection with immobilised TiO(2) at pilot-plant scale.
Sordo, Carlos; Van Grieken, Rafael; Marugán, Javier; Fernández-Ibáñez, Pilar
2010-01-01
The photocatalytic disinfection efficiency has been investigated for two immobilized TiO(2) catalytic systems (wall reactor and fixed-bed reactor) in a solar pilot plant. Their performances have been compared with the use of a slurry reactor and the solar disinfection without catalyst. The use of photocatalytic TiO(2) wall reactors does no show clear benefits over the solar disinfection process in the absence of catalyst. The reason is that the efficiency of the solar disinfection is so high that the presence of titania in the reactor wall reduces the global efficiency due to the competition for the absorption of photons. As expected, the maximum efficiency was shown by the slurry TiO(2) reactor, due to the optimum contact between bacteria and catalyst. However, it is noticeable that the use of the fixed-bed reactor leads to inactivation rate quite close to that of the slurry, requiring comparable accumulated solar energy of about 6 kJ L(-1) to achieve a 6-log decrease in the concentration of viable bacteria and allowing a total disinfection of the water (below the detection limit of 1 CFU mL(-1)). Not only the high titania surface area of this configuration is responsible for the bacteria inactivation but the important contribution of the mechanical stress has to be considered. The main advantage of the fixed-bed TiO(2) catalyst is the outstanding stability, without deactivation effects after ten reaction cycles, being readily applicable for continuous water treatment systems.
The influence of sediment transport rate on the development of structure in gravel bed rivers
NASA Astrophysics Data System (ADS)
Ockelford, Annie; Rice, Steve; Powell, Mark; Reid, Ian; Nguyen, Thao; Tate, Nick; Wood, Jo
2013-04-01
Although adjustments of surface grain size are known to be strongly influenced by sediment transport rate little work has systematically explored how different transport rates can affect the development of surface structure in gravel bed rivers. Specifically, it has been well established that the transport of mixed sized sediments leads to the development of a coarser surface or armour layer which occurs over larger areas of the gravel bed. Armour layer development is known to moderate overall sediment transport rate as well as being extremely sensitive to changes in applied shear stress. However, during this armouring process a bed is created where, smaller gain scale changes, to the bed surface are also apparent such as the development of pebble clusters and imbricate structures. Although these smaller scale changes affect the overall surface grain size distribution very little their presence has the ability to significantly increase the surface stability and hence alter overall sediment transport rates. Consequently, the interplay between the moderation of transport rate as a function of surface coarsening at a larger scale and moderation of transport rate as a function of the development of structure on the bed surface at the smaller scale is complicated and warrants further investigation. During experiments a unimodal grain size distribution (σg = 1.30, D50 = 8.8mm) was exposed to 3 different levels of constant discharge that produced sediment transport conditions ranging from marginal transport to conditions approaching full mobility of all size fractions. Sediment was re-circulated during the experiments surface grain size distribution bed load and fractional transport rates were measured at a high temporal resolution such that the time evolution of the beds could be fully described. Discussion concentrates on analysing the effects of the evolving bed condition sediment transport rate (capacity) and transported grain size (competence). The outcome of this research is pertinent to developing new methods of linking the development of bed surface organisation with near bed flow characteristics and bed load transport in gravel bed rivers. Keywords: Graded, Sediment, Structure
Lopes, Rodrigo J G; Almeida, Teresa S A; Quinta-Ferreira, Rosa M
2011-05-15
Centralized environmental regulations require the use of efficient detoxification technologies for the secure disposal of hazardous wastewaters. Guided by federal directives, existing plants need reengineering activities and careful analysis to improve their overall effectiveness and to become environmentally friendly. Here, we illustrate the application of an integrated methodology which encompasses the experimental investigation of catalytic wet air oxidation and CFD simulation of trickle-bed reactors. As long as trickle-bed reactors are determined by the flow environment coupled with chemical kinetics, first, on the optimization of prominent numerical solution parameters, the CFD model was validated with experimental data taken from a trickle bed pilot plant specifically designed for the catalytic wet oxidation of phenolic wastewaters. Second, several experimental and computational runs were carried out under unsteady-state operation to evaluate the dynamic performance addressing the TOC concentration and temperature profiles. CFD computations of total organic carbon conversion were found to agree better with experimental data at lower temperatures. Finally, the comparison of test data with simulation results demonstrated that this integrated framework was able to describe the mineralization of organic matter in trickle beds and the validated consequence model can be exploited to promote cleaner remediation technologies of contaminated waters. Copyright © 2011 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howe, Daniel T.; Taasevigen, Danny J.; Gerber, Mark A.
This research investigates the bed agglomeration phenomena during the steam gasification of a high lignin residue produced from the simultaneous saccharification and fermentation (SSF) of corn stover in a bubbling fluidized bed. The studies were conducted at 895°C using alumina as bed material. Biomass was fed at 1.5 kg/hr, while steam was fed to give a velocity equal to 2.5 times the minimum fluidization velocity, with a steam/carbon ratio of 0.9. The pelletized feedstock was co-fed with a cooling nitrogen stream to mitigate feed line plugging issues. Tar production was high at 50.3 g/Nm3, and the fraction of C10+ compoundsmore » was greater than that seen in the gasification of traditional lignocellulosic feedstocks. Carbon closures over 94 % were achieved for all experiments. Bed agglomeration was found to be problematic, indicated by pressure drop increases observed below the bed and upstream of the feed line. Two size categories of solids were recovered from the reactor, +60 mesh and -60 mesh. After a 2.75-hour experiment, 61.7 wt % was recovered as -60 mesh particles and 38.2 wt% of the recovered reactor solids were +60 mesh. A sizeable percentage, 31.8 wt%, was +20 mesh. The -60 mesh particles were mainly formed by the initial bed material (Al2O3). Almost 50 wt. % of the + 20 mesh particles was found to be formed by organics. The unreacted carbon remaining in the reactor resulted in a low conversion rate to product gas. ICP-AES, SEM, SEM-EDS, and XRD confirmed that the large agglomerates (+ 20 mesh) were not encapsulated bed material but rather un-gasified feedstock pellets with sand particles attached to it.« less
NASA Astrophysics Data System (ADS)
Persico, Lyman P.; Nichols, Kyle K.; Bierman, Paul R.
2005-07-01
To quantify short-term sediment movement rates across Mojave Desert piedmonts, 1600 painted and numbered pebbles were laid out in paired, orthogonal, 20 m lines at 4 sites and resurveyed five times over 2 years and revisited 2 years later. Pebble lines cross shallow (5-15 cm), ephemeral channels and adjacent unconsolidated interfluves, the latter being the dominant landform at all sites. Two sites are located on surfaces that have been or are impacted by military training activities, including the use of tracked vehicles. The two other sites have not been disturbed by human impact. Three different processes transport pebbles. Episodic streamflow in ephemeral channels transports a few pebbles long distances (decimeters to meters) down gradient. Bioturbation moves many pebbles small distances (centimeters) in any direction, and vehicular disturbance transports pebbles varying distances (centimeters to meters) in any direction. Significant down-gradient sediment movement occurred dominantly in channels where flowing water was concentrated. Interfluves were stable surfaces where little transport occurred. Off-road vehicle use is coincident with accelerated pebble movement. Pebbles moved further and faster down gradient at the disturbed Iron Mountain and East Range Road sites (mean speeds of 0.18 and 0.34 m yr-1, respectively) than at the undisturbed Chemehuevi and Goldstone sites, (mean speeds of 0.17 and 0.02 m yr-1, respectively). Mean pebble movement is highly and negatively correlated with vegetation density. Short-term pebble movement rates are several times lower than long-term (103 to 104 year) rates, suggesting the importance of rare, extreme precipitation events for sediment transport such as those of fall and winter 2004.
Method of feeding particulate material to a fluidized bed
Borio, Richard W.; Goodstine, Stephen L.
1984-01-01
A centrifugal spreader type feeder that supplies a mixture of particulate limestone and coal to the top of a fluidized bed reactor having a flow of air upward therethrough. Large particles of particulate matter are distributed over the upper surface of the bed to utilize the natural mixing within the bed, while fine particles are adapted to utilize an independent feeder that separates them from the large particles and injects them into the bed.
TiO2-photocatalyzed As(III) oxidation in a fixed-bed, flow-through reactor.
Ferguson, Megan A; Hering, Janet G
2006-07-01
Compliance with the U.S. drinking water standard for arsenic (As) of 10 microg L(-1) is required in January 2006. This will necessitate implementation of treatment technologies for As removal by thousands of water suppliers. Although a variety of such technologies is available, most require preoxidation of As(III) to As(V) for efficient performance. Previous batch studies with illuminated TiO2 slurries have demonstrated that TiO2-photocatalyzed AS(III) oxidation occurs rapidly. This study examined reaction efficiency in a flow-through, fixed-bed reactor that provides a better model for treatment in practice. Glass beads were coated with mixed P25/sol gel TiO2 and employed in an upflow reactor irradiated from above. The reactor residence time, influent As(III) concentration, number of TiO2 coatings on the beads, solution matrix, and light source were varied to characterize this reaction and determine its feasibility for water treatment. Repeated usage of the same beads in multiple experiments or extended use was found to affect effluent As(V) concentrations but not the steady-state effluent As(III) concentration, which suggests that As(III) oxidation at the TiO2 surface undergoes dynamic sorption equilibration. Catalyst poisoning was not observed either from As(V) or from competitively adsorbing anions, although the higher steady-state effluent As(III) concentrations in synthetic groundwater compared to 5 mM NaNO3 indicated that competitive sorbates in the matrix partially hinder the reaction. A reactive transport model with rate constants proportional to incident light at each bead layer fit the experimental data well despite simplifying assumptions. TiO2-photocatalyzed oxidation of As(III) was also effective under natural sunlight. Limitations to the efficiency of As(III) oxidation in the fixed-bed reactor were attributable to constraints of the reactor geometry, which could be overcome by improved design. The fixed-bed TiO2 reactor offers an environmentally benign method for As(III) oxidation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaufman, E. N.; Cooper, S. P.; Clement, S. L.
A continuous biparticle fluidized bed reactor is developed for the simultaneous fermentation and purification of lactic acid. In this processing scheme, bacteria are immobilized in gelatin beads and are fluidized in a columnar reactor. Solid particles with sorbent capacity for the product are introduced at the top of the reactor, and fall counter currently to the biocatalyst, effecting in situ removal of the inhibitory product, while also controlling reactor pH at optimal levels. Initial long-term fermentation trials using immobilized Lactobacillus delbreuckii have demonstrated a 12 fold increase in volumetric productivity during adsorbent addition as opposed to control fermentations in themore » same reactor. Unoptimized regeneration of the loaded sorbent has effected at least an 8 fold concentration of lactic acid, and a 68 fold enhancement in separation from glucose compared to original levels in the fermentation broth. The benefits of this reactor system as opposed to conventional batch fermentation are discussed in terms of productivity and process economics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaufman, E.N.; Cooper, S.P.; Clement, S.L.
1995-12-31
A continuous biparticle fluidized-bed reactor is developed for the simultaneous fermentation and purification of lactic acid. In this processing scheme, bacteria are immobilized in gelatin beads and are fluidized in a columnar reactor. Solid particles with sorbent capacity for the product are introduced at the top of the reactor, and fall counter currently to the biocatalyst, effecting in situ removal of the inhibitory product, while also controlling reactor pH at optimal levels. Initial long-term fermentation trials using immobilized Lactobacillus delbreuckii have demonstrated a 12-fold increase in volumetric productivity during absorbent addition as opposed to control fermentations in the same reactor.more » Unoptimized regeneration of the loaded sorbent has effected at least an eightfold concentration of lactic acid and a 68-fold enhancement in separation from glucose compared to original levels in the fermentation broth. The benefits of this reactor system as opposed to conventional batch fermentation are discussed in terms of productivity and process economics.« less
Abrasion and Fragmentation Processes in Marly Sediment Transport
NASA Astrophysics Data System (ADS)
Le Bouteiller, C.; Naaim, F.; Mathys, N.; Lave, J.; Kaitna, R.
2009-04-01
In the highly erosive marly catchments of Draix (Southern Alps, France), downstream fining of sediments has been observed and can not be explained by selective sorting. Moreover, high concentrations of suspended fine sediment (up to 800 g/L) are measured during flood events in these basins. These observations lead to the hypothesis that abrasion and fragmentation of marly sediments during transport play an important role in the production of fine sediments. Several experiments are conducted in order to quantify these processes: material from the river bed is introduced into the water flow in a circular flume as well as in a large scale rotating drum. Abrasion rates range from 5 to 15%/km, depending on the lithology: marls from the upper basin are more erosive than those from the lower basin. Modifications of grain size distribution in the rough fraction are also observed. Field measurements are also conducted. Downstream of the main marly sediment sources, the river bed is composed of marls and limestone pebbles. We have sampled the river bed for analysis of grain size distribution and lithology. First results show a decrease of the proportion of marls along the river bed. This is in accordance with the high erosion rates observed in our laboratory experiments. Further investigations are planned in order to study more precisely marl grain size distribution, especially in the finer fraction.
Apparatus and method for solar coal gasification
Gregg, David W.
1980-01-01
Apparatus for using focused solar radiation to gasify coal and other carbonaceous materials. Incident solar radiation is focused from an array of heliostats onto a tower-mounted secondary mirror which redirects the focused solar radiation down through a window onto the surface of a vertically-moving bed of coal, or a fluidized bed of coal, contained within a gasification reactor. The reactor is designed to minimize contact between the window and solids in the reactor. Steam introduced into the gasification reactor reacts with the heated coal to produce gas consisting mainly of carbon monoxide and hydrogen, commonly called "synthesis gas", which can be converted to methane, methanol, gasoline, and other useful products. One of the novel features of the invention is the generation of process steam at the rear surface of the secondary mirror.
Apparatus for solar coal gasification
Gregg, D.W.
Apparatus for using focused solar radiation to gasify coal and other carbonaceous materials is described. Incident solar radiation is focused from an array of heliostats onto a tower-mounted secondary mirror which redirects the focused solar radiation down through a window onto the surface of a vertically-moving bed of coal, or a fluidized bed of coal, contained within a gasification reactor. The reactor is designed to minimize contact between the window and solids in the reactor. Steam introduced into the gasification reactor reacts with the heated coal to produce gas consisting mainly of carbon monoxide and hydrogen, commonly called synthesis gas, which can be converted to methane, methanol, gasoline, and other useful products. One of the novel features of the invention is the generation of process steam at the rear surface of the secondary mirror.
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.; El-Genk, Mohamed S.; Harper, William B., Jr.
1992-01-01
Capitalizing on past and future development of high temperature gas reactor (HTGR) technology, a low mass 15 MWe closed gas turbine cycle power system using a pellet bed reactor heating helium working fluid is proposed for Nuclear Electric Propulsion (NEP) applications. Although the design of this directly coupled system architecture, comprising the reactor/power system/space radiator subsystems, is presented in conceptual form, sufficient detail is included to permit an assessment of overall system performance and mass. Furthermore, an attempt is made to show how tailoring of the main subsystem design characteristics can be utilized to achieve synergistic system level advantages that can lead to improved reliability and enhanced system life while reducing the number of parasitic load driven peripheral subsystems.
Seal, Robert R.
2012-01-01
Pebble; Big Chunk is approximately 30 miles (48 km) north-northwest of Pebble; and Shotgun is approximately 110 miles (177 km) northwest of Pebble. The H and D Block prospects, west of Pebble, represent additional porphyry copper exploration targets in the watershed.
Zone heating for fluidized bed silane pyrolysis
NASA Technical Reports Server (NTRS)
Iya, Sridhar K. (Inventor)
1987-01-01
An improved heated fluidized bed reactor and method for the production of high purity polycrystalline silicon by silane pyrolysis wherein silicon seed particles are heated in an upper heating zone of the reactor and admixed with particles in a lower reaction zone, in which zone a silane-containing gas stream, having passed through a lower cooled gas distribution zone not conducive to silane pyrolysis, contacts the heated seed particles whereon the silane is heterogeneously reduced to silicon.
Araújo, Paulo Jardel P.; Leite, Manuela Souza; Kakuta Ravagnani, Teresa M.
2016-01-01
Styrene is an important monomer in the manufacture of thermoplastic. Most of it is produced by the catalytic dehydrogenation of ethylbenzene. In this process that depends on reversible reactions, the yield is usually limited by the establishment of thermodynamic equilibrium in the reactor. The styrene yield can be increased by using a hybrid process, with reaction and separation simultaneously. It is proposed using permselective composite membrane to remove hydrogen and thus suppress the reverse and secondary reactions. This paper describes the simulation of a dehydrogenation process carried out in a tubular fixed-bed reactor wrapped in a permselective composite membrane. A mathematical model was developed, incorporating the various mass transport mechanisms found in each of the membrane layers and in the catalytic fixed bed. The effects of the reactor feed conditions (temperature, steam-to-oil ratio, and the weight hourly space velocity), the fixed-bed geometry (length, diameter, and volume), and the membrane geometry (thickness of the layers) on the styrene yield were analyzed. These variables were used to determine experimental conditions that favour the production of styrene. The simulation showed that an increase of 40.98% in the styrene yield, compared to a conventional fixed-bed process, could be obtained by wrapping the reactor in a permselective composite membrane. PMID:27069982
Deep-sea tsunami deposits in the Miocene Nishizaki Formation of Boso Peninsula, Central Japan
NASA Astrophysics Data System (ADS)
Lee, I. T.; Ogawa, Y.
2003-12-01
Many sets of deep-sea deposits considered to be formed by return flow of tsunami were found from the middle Miocene Nishizaki Formation of Boso Peninsula, Central Japan, which is located near the convergent plate boundary at present as well as in the past, and has been frequently attacked by tsunami. The characteristics of the tsunami deposits in the Nishizaki Formation are as follows. Each set consists of 10-20 beds with parallel laminations formed under upper plane regime composed of alternated pumiceous beds in white and black colors. The white bed comprises coarse sands and pebbles with thickness of 5-10 cm. In contrast, the black bed is made of silts with thickness less than 1 cm. Among the 10-20 beds, the grain size is coarsest in the middle part of the set in general. The uppermost bed of each set shows cross-lamination formed by lower plane regime, gradually changing into finer graded bed on top. Sometimes, the lower part of the parallel laminated bed is associated with an underlying debrite or turbidite bed. Each set of these parallel-laminated beds is lenticular in shape thinning to the east in consistent with the generally eastward paleocurrent of the cross-lamination at the top. Such sedimentary characteristics are different from any event deposits reported in deep-sea but similar to the deep-sea K/T boundary deposits in the Caribbean region. Statistically, tsunami waves occur totally 12-13 times. Among them the height of 5-6th wave is known to be strongest. Interval time of each return flow is known to be 30-40 minutes, enough to settle the finer clastics at each bed top. The parallel-laminated parts have common dish structure and never trace fossils, indicating rather rapid deposition for the whole parts of the set. Consequently, the sedimentary characteristics shown from the parallel-laminated beds of the Nishizaki Formation are attributed to the return flow of tsunami to the deep-sea. We considered that such deep-sea parallel-laminated deposits of pumiceous clastics occur just after a large earthquake which forms the debrite or turbidite at the lowermost part.
Umaña, Oscar; Nikolaeva, Svetlana; Sánchez, Enrique; Borja, Rafael; Raposo, Francisco
2008-10-01
Two laboratory-scale anaerobic fixed bed reactors were evaluated while treating dairy manure at upflow mode and semicontinuous feeding. One reactor was packed with a combination of waste tyre rubber and zeolite (R1) while the other had only waste tyre rubber as a microorganism immobilization support (R2). Effluent quality improved when the hydraulic retention time (HRT) increased from 1.0 to 5.5 days. Higher COD, BOD5, total and volatile solids removal efficiencies were always achieved in the reactor R1. No clogging was observed during the operation period. Methane yield was also a function of the HRT and of the type of support used, and was 12.5% and 40% higher in reactor R1 than in R2 for HRTs of 5.5 and 1.0 days, respectively. The results obtained demonstrated that this type of reactor is capable of operating with dairy manure at a HRT 5 times lower than that used in a conventional reactor.
Orgill, James J; Atiyeh, Hasan K; Devarapalli, Mamatha; Phillips, John R; Lewis, Randy S; Huhnke, Raymond L
2013-04-01
Trickle-bed reactor (TBR), hollow fiber membrane reactor (HFR) and stirred tank reactor (STR) can be used in fermentation of sparingly soluble gasses such as CO and H2 to produce biofuels and bio-based chemicals. Gas fermenting reactors must provide high mass transfer capabilities that match the kinetic requirements of the microorganisms used. The present study compared the volumetric mass transfer coefficient (K(tot)A/V(L)) of three reactor types; the TBR with 3 mm and 6 mm beads, five different modules of HFRs, and the STR. The analysis was performed using O2 as the gaseous mass transfer agent. The non-porous polydimethylsiloxane (PDMS) HFR provided the highest K(tot)A/V(L) (1062 h(-1)), followed by the TBR with 6mm beads (421 h(-1)), and then the STR (114 h(-1)). The mass transfer characteristics in each reactor were affected by agitation speed, and gas and liquid flow rates. Furthermore, issues regarding the comparison of mass transfer coefficients are discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.
Hairy root culture in a liquid-dispersed bioreactor: characterization of spatial heterogeneity.
Williams, G R; Doran, P M
2000-01-01
A liquid-dispersed reactor equipped with a vertical mesh cylinder for inoculum support was developed for culture of Atropa belladonna hairy roots. The working volume of the culture vessel was 4.4 L with an aspect ratio of 1.7. Medium was dispersed as a spray onto the top of the root bed, and the roots grew radially outward from the central mesh cylinder to the vessel wall. Significant benefits in terms of liquid drainage and reduced interstitial liquid holdup were obtained using a vertical rather than horizontal support structure for the biomass and by operating the reactor with cocurrent air and liquid flow. With root growth, a pattern of spatial heterogeneity developed in the vessel. Higher local biomass densities, lower volumes of interstitial liquid, lower sugar concentrations, and higher root atropine contents were found in the upper sections of the root bed compared with the lower sections, suggesting a greater level of metabolic activity toward the top of the reactor. Although gas-liquid oxygen transfer to the spray droplets was very rapid, there was evidence of significant oxygen limitations in the reactor. Substantial volumes of non-free-draining interstitial liquid accumulated in the root bed. Roots near the bottom of the vessel trapped up to 3-4 times their own weight in liquid, thus eliminating the advantages of improved contact with the gas phase offered by liquid-dispersed culture systems. Local nutrient and product concentrations in the non-free-draining liquid were significantly different from those in the bulk medium, indicating poor liquid mixing within the root bed. Oxygen enrichment of the gas phase improved neither growth nor atropine production, highlighting the greater importance of liquid-solid compared with gas-liquid oxygen transfer resistance. The absence of mechanical or pneumatic agitation and the tendency of the root bed to accumulate liquid and impede drainage were identified as the major limitations to reactor performance. Improved reactor operating strategies and selection or development of root lines offering minimal resistance to liquid flow and low liquid retention characteristics are possible solutions to these problems.
Development of the Packed Bed Reactor ISS Flight Experiment
NASA Technical Reports Server (NTRS)
Patton, Martin O.; Bruzas, Anthony E.; Rame, Enrique; Motil, Brian J.
2012-01-01
Packed bed reactors are compact, require minimum power and maintenance to operate, and are highly reliable. These features make this technology a leading candidate as a potential unit operation in support of long duration human space exploration. On earth, this type of reactor accounts for approximately 80% of all the reactors used in the chemical process industry today. Development of this technology for space exploration is truly crosscutting with many other potential applications (e.g., in-situ chemical processing of planetary materials and transport of nutrients through soil). NASA is developing an ISS experiment to address this technology with particular focus on water reclamation and air revitalization. Earlier research and development efforts funded by NASA have resulted in two hydrodynamic models which require validation with appropriate instrumentation in an extended microgravity environment. The first model developed by Motil et al., (2003) is based on a modified Ergun equation. This model was demonstrated at moderate gas and liquid flow rates, but extension to the lower flow rates expected in many advanced life support systems must be validated. The other model, developed by Guo et al., (2004) is based on Darcy s (1856) law for two-phase flow. This model has been validated for a narrow range of flow parameters indirectly (without full instrumentation) and included test points where the flow was not fully developed. The flight experiment presented will be designed with removable test sections to test the hydrodynamic models. The experiment will provide flexibility to test additional beds with different types of packing in the future. One initial test bed is based on the VRA (Volatile Removal Assembly), a packed bed reactor currently on ISS whose behavior in micro-gravity is not fully understood. Improving the performance of this system through an accurate model will increase our ability to purify water in the space environment.
A biphasic oxidation of alcohols to aldehydes and ketones using a simplified packed-bed microreactor
Bogdan, Andrew
2009-01-01
Summary We demonstrate the preparation and characterization of a simplified packed-bed microreactor using an immobilized TEMPO catalyst shown to oxidize primary and secondary alcohols via the biphasic Anelli-Montanari protocol. Oxidations occurred in high yields with great stability over time. We observed that plugs of aqueous oxidant and organic alcohol entered the reactor as plugs but merged into an emulsion on the packed-bed. The emulsion coalesced into larger plugs upon exiting the reactor, leaving the organic product separate from the aqueous by-products. Furthermore, the microreactor oxidized a wide range of alcohols and remained active in excess of 100 trials without showing any loss of catalytic activity. PMID:19478910
Investigation of Multiphase Flow in a Packed Bed Reactor Under Microgravity Conditions
NASA Technical Reports Server (NTRS)
Lian, Yongsheng; Motil, Brian; Rame, Enrique
2016-01-01
In this paper we study the two-phase flow phenomena in a packed bed reactor using an integrated experimental and numerical method. The cylindrical bed is filled with uniformly sized spheres. In the experiment water and air are injected into the bed simultaneously. The pressure distribution along the bed will be measured. The numerical simulation is based on a two-phase flow solver which solves the Navier-Stokes equations on Cartesian grids. A novel coupled level set and moment of fluid method is used to construct the interface. A sequential method is used to position spheres in the cylinder. Preliminary experimental results showed that the tested flow rates resulted in pulse flow. The numerical simulation revealed that air bubbles could merge into larger bubbles and also could break up into smaller bubbles to pass through the pores in the bed. Preliminary results showed that flow passed through regions where the porosity is high. Comparison between the experimental and numerical results in terms of pressure distributions at different flow injection rates will be conducted. Comparison of flow phenomena under terrestrial gravity and microgravity will be made.
Upadhyaya, Giridhar; Clancy, Tara M; Snyder, Kathryn V; Brown, Jess; Hayes, Kim F; Raskin, Lutgarde
2012-03-15
Contaminant removal from drinking water sources under reducing conditions conducive for the growth of denitrifying, arsenate reducing, and sulfate reducing microbes using a fixed-bed bioreactor may require oxygen-free gas (e.g., N2 gas) during backwashing. However, the use of air-assisted backwashing has practical advantages, including simpler operation, improved safety, and lower cost. A study was conducted to evaluate whether replacing N2 gas with air during backwashing would impact performance in a nitrate and arsenic removing anaerobic bioreactor system that consisted of two biologically active carbon reactors in series. Gas-assisted backwashing, comprised of 2 min of gas injection to fluidize the bed and dislodge biomass and solid phase products, was performed in the first reactor (reactor A) every two days. The second reactor (reactor B) was subjected to N2 gas-assisted backwashing every 3-4 months. Complete removal of 50 mg/L NO3- was achieved in reactor A before and after the switch from N2-assisted backwashing (NAB) to air-assisted backwashing (AAB). Substantial sulfate removal was achieved with both backwashing strategies. Prolonged practice of AAB (more than two months), however, diminished sulfate reduction in reactor B somewhat. Arsenic removal in reactor A was impacted slightly by long-term use of AAB, but arsenic removals achieved by the entire system during NAB and AAB periods were not significantly different (p>0.05) and arsenic concentrations were reduced from approximately 200 μg/L to below 20 μg/L. These results indicate that AAB can be implemented in anaerobic nitrate and arsenic removal systems. Copyright © 2011 Elsevier Ltd. All rights reserved.
Characterization and anaerobic treatment of the sanitary landfill leachate in Istanbul.
Inanc, B; Calli, B; Saatci, A
2000-01-01
In this study, characterization and anaerobic treatability of leachate from Komurcuoda Sanitary Landfill located on the Asian part of Istanbul were investigated. Time based fluctuations in characteristics of leachate were monitored for an 8 month period. Samples were taken from a 200 m3 holding tank located at the lowest elevation of the landfill. COD concentrations have ranged between 18,800 and 47,800 mg/l while BOD5 between 6820 and 38,500 mg/L. COD and BOD5 values were higher in summer and lower in winter due to dilution by precipitation. On the other hand, it was quite interesting that such a dilution effect was not observed for ammonia. The highest ammonia concentration, 2690 mg/L was in November 1998. BOD5/COD ratio was larger than 0.7 for most samples indicating high biodegradability, and acidic phase of decomposition in the landfill. For anaerobic treatability, three different reactors, namely an upflow anaerobic sludge bed reactor, an anaerobic upflow filter and a hybrid bed reactor, were used. The anaerobic reactors were operated for more than 230 days and were continuing operation when this paper was prepared. Organic loading was increased gradually from 1.3 kg COD/m3.day to 8.2 kg COD/m3.day while hydraulic retention time was reduced from 2.4 days to 2.0 days. All the reactors showed similar performances against organic loadings with efficiencies between 80% and 90%. However the reactors have experienced high ammonia concentrations several times throughout the experimental period, and showed different inhibition levels. Anaerobic filter was the least affected reactor while UASB was the most. Hybrid bed reactor has exhibited a similar performance to anaerobic filter although not to the same degree.
Xiong, Qingang; Ramirez, Emilio; Pannala, Sreekanth; ...
2015-10-09
The impact of bubbling bed hydrodynamics on temporal variations in the exit tar yield for biomass fast pyrolysis was investigated using computational simulations of an experimental laboratory-scale reactor. A multi-fluid computational fluid dynamics model was employed to simulate the differential conservation equations in the reactor, and this was combined with a multi-component, multi-step pyrolysis kinetics scheme for biomass to account for chemical reactions. The predicted mean tar yields at the reactor exit appear to match corresponding experimental observations. Parametric studies predicted that increasing the fluidization velocity should improve the mean tar yield but increase its temporal variations. Increases in themore » mean tar yield coincide with reducing the diameter of sand particles or increasing the initial sand bed height. However, trends in tar yield variability are more complex than the trends in mean yield. The standard deviation in tar yield reaches a maximum with changes in sand particle size. As a result, the standard deviation in tar yield increases with the increases in initial bed height in freely bubbling state, while reaches a maximum in slugging state.« less
How cores grow by pebble accretion. I. Direct core growth
NASA Astrophysics Data System (ADS)
Brouwers, M. G.; Vazan, A.; Ormel, C. W.
2018-03-01
Context. Planet formation by pebble accretion is an alternative to planetesimal-driven core accretion. In this scenario, planets grow by the accretion of cm- to m-sized pebbles instead of km-sized planetesimals. One of the main differences with planetesimal-driven core accretion is the increased thermal ablation experienced by pebbles. This can provide early enrichment to the planet's envelope, which influences its subsequent evolution and changes the process of core growth. Aims: We aim to predict core masses and envelope compositions of planets that form by pebble accretion and compare mass deposition of pebbles to planetesimals. Specifically, we calculate the core mass where pebbles completely evaporate and are absorbed before reaching the core, which signifies the end of direct core growth. Methods: We model the early growth of a protoplanet by calculating the structure of its envelope, taking into account the fate of impacting pebbles or planetesimals. The region where high-Z material can exist in vapor form is determined by the temperature-dependent vapor pressure. We include enrichment effects by locally modifying the mean molecular weight of the envelope. Results: In the pebble case, three phases of core growth can be identified. In the first phase (Mcore < 0.23-0.39 M⊕), pebbles impact the core without significant ablation. During the second phase (Mcore < 0.5M⊕), ablation becomes increasingly severe. A layer of high-Z vapor starts to form around the core that absorbs a small fraction of the ablated mass. The rest of the material either rains out to the core or instead mixes outwards, slowing core growth. In the third phase (Mcore > 0.5M⊕), the high-Z inner region expands outwards, absorbing an increasing fraction of the ablated material as vapor. Rainout ends before the core mass reaches 0.6 M⊕, terminating direct core growth. In the case of icy H2O pebbles, this happens before 0.1 M⊕. Conclusions: Our results indicate that pebble accretion can directly form rocky cores up to only 0.6 M⊕, and is unable to form similarly sized icy cores. Subsequent core growth can proceed indirectly when the planet cools, provided it is able to retain its high-Z material.
Fluidized bed combustor and tube construction therefor
De Feo, Angelo; Hosek, William
1981-01-01
A fluidized bed combustor comprises a reactor or a housing which has a windbox distributor plate adjacent the lower end thereof which contains a multiplicity of hole and air discharge nozzles for discharging air and coal into a fluidized bed which is maintained above the distributor plate and below a take-off connection or flue to a cyclone separator in which some of the products of combustion are treated to remove the dust which is returned into the fluidized bed. A windbox is spaced below the fluidized bed and it has a plurality of tubes passing therethrough with the passage of combustion air and fluidizing air which passes through an air space so that fluidizing air is discharged into the reaction chamber fluidized bed at the bottom thereof to maintain the bed in a fluidized condition. A fluid, such as air, is passed through the tubes which extend through the windbox and provide a preheating of the combustion air and into an annular space between telescoped inner and outer tubes which comprise heat exchanger tubes or cooling tubes which extend upwardly through the distributor plate into the fluidized bed. The heat exchanger tubes are advantageously arranged so that they may be exposed in groups within the reactor in a cluster which is arranged within holding rings.
Tube construction for fluidized bed combustor
De Feo, Angelo; Hosek, William
1984-01-01
A fluidized bed combustor comprises a reactor or a housing which has a windbox distributor plate adjacent the lower end thereof which contains a multiplicity of hole and air discharge nozzles for discharging air and coal into a fluidized bed which is maintained above the distributor plate and below a take-off connection or flue to a cyclone separator in which some of the products of combustion are treated to remove the dust which is returned into the fluidized bed. A windbox is spaced below the fluidized bed and it has a plurality of tubes passing therethrough with the passage of combustion air and fluidizing air which passes through an air space so that fluidizing air is discharged into the reaction chamber fluidized bed at the bottom thereof to maintain the bed in a fluidized condition. A fluid, such as air, is passed through the tubes which extend through the windbox and provide a preheating of the combustion air and into an annular space between telescoped inner and outer tubes which comprise heat exchanger tubes or cooling tubes which extend upwardly through the distributor plate into the fluidized bed. The heat exchanger tubes are advantageously arranged so that they may be exposed in groups within the reactor in a cluster which is arranged within holding rings.
NASA Astrophysics Data System (ADS)
Mohd Salleh, Khairul Anuar; Rahman, Mohd Fitri Abdul; Lee, Hyoung Koo; Al Dahhan, Muthanna H.
2014-06-01
Local liquid velocity measurements in Trickle Bed Reactors (TBRs) are one of the essential components in its hydrodynamic studies. These measurements are used to effectively determine a reactor's operating condition. This study was conducted to validate a newly developed technique that combines Digital Industrial Radiography (DIR) with Particle Tracking Velocimetry (PTV) to measure the Local Liquid Velocity (VLL) inside TBRs. Three millimeter-sized Expanded Polystyrene (EPS) beads were used as packing material. Three validation procedures were designed to test the newly developed technique. All procedures and statistical approaches provided strong evidence that the technique can be used to measure the VLL within TBRs.
Fluidized bed coal combustion reactor
NASA Technical Reports Server (NTRS)
Moynihan, P. I.; Young, D. L. (Inventor)
1981-01-01
A fluidized bed coal reactor includes a combination nozzle-injector ash-removal unit formed by a grid of closely spaced open channels, each containing a worm screw conveyor, which function as continuous ash removal troughs. A pressurized air-coal mixture is introduced below the unit and is injected through the elongated nozzles formed by the spaces between the channels. The ash build-up in the troughs protects the worm screw conveyors as does the cooling action of the injected mixture. The ash layer and the pressure from the injectors support a fluidized flame combustion zone above the grid which heats water in boiler tubes disposed within and/or above the combustion zone and/or within the walls of the reactor.
Mohd Salleh, Khairul Anuar; Rahman, Mohd Fitri Abdul; Lee, Hyoung Koo; Al Dahhan, Muthanna H
2014-06-01
Local liquid velocity measurements in Trickle Bed Reactors (TBRs) are one of the essential components in its hydrodynamic studies. These measurements are used to effectively determine a reactor's operating condition. This study was conducted to validate a newly developed technique that combines Digital Industrial Radiography (DIR) with Particle Tracking Velocimetry (PTV) to measure the Local Liquid Velocity (V(LL)) inside TBRs. Three millimeter-sized Expanded Polystyrene (EPS) beads were used as packing material. Three validation procedures were designed to test the newly developed technique. All procedures and statistical approaches provided strong evidence that the technique can be used to measure the V(LL) within TBRs.
Modeling and simulation of an enzymatic reactor for hydrolysis of palm oil.
Bhatia, S; Naidu, A D; Kamaruddin, A H
1999-01-01
Hydrolysis of palm oil has become an important process in Oleochemical industries. Therefore, an investigation was carried out for hydrolysis of palm oil to fatty acid and glycerol using immobilized lipase in packed bed reactor. The conversion vs. residence time data were used in Michaelis-Menten rate equation to evaluate the kinetic parameters. A mathematical model for the rate of palm oil hydrolysis was proposed incorporating role of external mass transfer and pore diffusion. The model was simulated for steady-state isothermal operation of immobilized lipase packed bed reactor. The experimental data were compared with the simulated results. External mass transfer was found to affect the rate of palm oil hydrolysis at higher residence time.
Rahman, N K; Kamaruddin, A H; Uzir, M H
2011-08-01
The influence of water activity and water content was investigated with farnesyl laurate synthesis catalyzed by Lipozyme RM IM. Lipozyme RM IM activity depended strongly on initial water activity value. The best results were achieved for a reaction medium with an initial water activity of 0.11 since it gives the best conversion value of 96.80%. The rate constants obtained in the kinetics study using Ping-Pong-Bi-Bi and Ordered-Bi-Bi mechanisms with dead-end complex inhibition of lauric acid were compared. The corresponding parameters were found to obey the Ordered-Bi-Bi mechanism with dead-end complex inhibition of lauric acid. Kinetic parameters were calculated based on this model as follows: V (max) = 5.80 mmol l(-1) min(-1) g enzyme(-1), K (m,A) = 0.70 mmol l(-1) g enzyme(-1), K (m,B) = 115.48 mmol l(-1) g enzyme(-1), K (i) = 11.25 mmol l(-1) g enzyme(-1). The optimum conditions for the esterification of farnesol with lauric acid in a continuous packed bed reactor were found as the following: 18.18 cm packed bed height and 0.9 ml/min substrate flow rate. The optimum molar conversion of lauric acid to farnesyl laurate was 98.07 ± 0.82%. The effect of mass transfer in the packed bed reactor has also been studied using two models for cases of reaction limited and mass transfer limited. A very good agreement between the mass transfer limited model and the experimental data obtained indicating that the esterification in a packed bed reactor was mass transfer limited.
Kouvo, Petri
2003-04-01
This work focused on trace metal behavior and removal in a fabric filter or in a humidification reactor during the cofiring of sawdust and refuse-derived fuels (RDFs) in a pilot-scale bubbling fluidized bed (BFB) boiler. Trace metal emissions measurements before and after the fabric filter revealed that removal efficiency in the fabric filter was in the range of 80-100%, and that the European Union (EU) Directive on Incineration of Waste restrictions for trace metal emissions are easily achieved even if addition of RDFs substantially increases the concentration of trace metals in fuel blends. Limestone injection enhanced the removal of As and Se but had no noticeable effect on the removal of other trace metals. Extensive formation of HgCl2 and condensation on fly ash particles during sawdust plus 40% RDF cofiring resulted in a 92% Hg removal efficiency in the fabric filter. Limestone injection had no effect on the Hg removal in the fabric filter but decreased the Hg removal in a humidification reactor from 40 to 28%. Results of the bed material and fly ash analysis suggested capture of Cu, Pb, Mn, Ni, and Zn in the bed material but also suggested that these metals may be released from the bed if the fuel characteristics or process conditions are changed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, C.H.
1989-01-01
A novel process employing immobilized cells and in-situ product removal was studied for acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum and ethanol fermentation by Saccharomyces cerevisiae. Experimental studies of ABE fermentation in a trickle bed reactor without product separation showed that solvent production could be improved by one order of magnitude compared to conventional batch fermentation. Control of effluent pH near 4.3 and feed glucose concentrations higher than 10 g/L were the necessary conditions for cell growth and solvent production. A mathematical model using an equilibrium staged model predicted efficient separation of butanol from the fermentation broth. Activity coefficients of multicomponentmore » system were estimated by Wilson's equation or the ASOG method. Inhibition by butanol and organic acids was incorporated into the kinetic expression. Experimental performance of simultaneous fermentation and separation in an immobilized cell trickle bed reactor showed that glucose conversion was improved as predicted by mathematical modeling and analysis. The effect of pH and temperature on ethanol fermentation by Saccharomyces cerevisiae was studied in free and immobilized cell reactors. Conditions for the highest glucose conversion, cell viability and least glycerol yield were determined.« less
Treatment of mountain refuge wastewater by fixed and moving bed biofilm systems.
Andreottola, G; Damiani, E; Foladori, P; Nardelli, P; Ragazzi, M
2003-01-01
Tourists visiting mountain refuges in the Alps have increased significantly in the last decade and the number of refuges and huts at high altitude too. In this research the results of an intensive monitoring of a wastewater treatment plant (WWTP) for a tourist mountain refuge located at 2,981 m a.s.l. are described. Two biofilm reactors were adopted: (a) a Moving Bed Biofilm Reactor (MBBR); (b) a submerged Fixed Bed Biofilm Reactor (FBBR). The aims of this research were: (i) the evaluation of the main parameters characterising the processes and involved in the design of the wastewater plants, in order to compare advantages and disadvantages of the two tested alternatives; (ii) the acquisition of an adequate knowledge of the problems connected with the wastewater treatment in alpine refuges. The main results have been: (i) a quick start-up of the biological reactors obtainable thanks to a pre-colonization before the transportation of the plastic carriers to the refuge at the beginning of the tourist season; (ii) low volume and area requirement; (iii) significantly higher removal efficiency compared to other fixed biomass systems, such as trickling filters, but the energy consumption is higher.
A CFD model for biomass fast pyrolysis in fluidized-bed reactors
NASA Astrophysics Data System (ADS)
Xue, Qingluan; Heindel, T. J.; Fox, R. O.
2010-11-01
A numerical study is conducted to evaluate the performance and optimal operating conditions of fluidized-bed reactors for fast pyrolysis of biomass to bio-oil. A comprehensive CFD model, coupling a pyrolysis kinetic model with a detailed hydrodynamics model, is developed. A lumped kinetic model is applied to describe the pyrolysis of biomass particles. Variable particle porosity is used to account for the evolution of particle physical properties. The kinetic scheme includes primary decomposition and secondary cracking of tar. Biomass is composed of reference components: cellulose, hemicellulose, and lignin. Products are categorized into groups: gaseous, tar vapor, and solid char. The particle kinetic processes and their interaction with the reactive gas phase are modeled with a multi-fluid model derived from the kinetic theory of granular flow. The gas, sand and biomass constitute three continuum phases coupled by the interphase source terms. The model is applied to investigate the effect of operating conditions on the tar yield in a fluidized-bed reactor. The influence of various parameters on tar yield, including operating temperature and others are investigated. Predicted optimal conditions for tar yield and scale-up of the reactor are discussed.
HYBRID SULFUR PROCESS REFERENCE DESIGN AND COST ANALYSIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorensek, M.; Summers, W.; Boltrunis, C.
2009-05-12
This report documents a detailed study to determine the expected efficiency and product costs for producing hydrogen via water-splitting using energy from an advanced nuclear reactor. It was determined that the overall efficiency from nuclear heat to hydrogen is high, and the cost of hydrogen is competitive under a high energy cost scenario. It would require over 40% more nuclear energy to generate an equivalent amount of hydrogen using conventional water-cooled nuclear reactors combined with water electrolysis compared to the proposed plant design described herein. There is a great deal of interest worldwide in reducing dependence on fossil fuels, whilemore » also minimizing the impact of the energy sector on global climate change. One potential opportunity to contribute to this effort is to replace the use of fossil fuels for hydrogen production by the use of water-splitting powered by nuclear energy. Hydrogen production is required for fertilizer (e.g. ammonia) production, oil refining, synfuels production, and other important industrial applications. It is typically produced by reacting natural gas, naphtha or coal with steam, which consumes significant amounts of energy and produces carbon dioxide as a byproduct. In the future, hydrogen could also be used as a transportation fuel, replacing petroleum. New processes are being developed that would permit hydrogen to be produced from water using only heat or a combination of heat and electricity produced by advanced, high temperature nuclear reactors. The U.S. Department of Energy (DOE) is developing these processes under a program known as the Nuclear Hydrogen Initiative (NHI). The Republic of South Africa (RSA) also is interested in developing advanced high temperature nuclear reactors and related chemical processes that could produce hydrogen fuel via water-splitting. This report focuses on the analysis of a nuclear hydrogen production system that combines the Pebble Bed Modular Reactor (PBMR), under development by PBMR (Pty.) Ltd. in the RSA, with the Hybrid Sulfur (HyS) Process, under development by the Savannah River National Laboratory (SRNL) in the US as part of the NHI. This work was performed by SRNL, Westinghouse Electric Company, Shaw, PBMR (Pty) Ltd., and Technology Insights under a Technical Consulting Agreement (TCA). Westinghouse Electric, serving as the lead for the PBMR process heat application team, established a cost-shared TCA with SRNL to prepare an updated HyS thermochemical water-splitting process flowsheet, a nuclear hydrogen plant preconceptual design and a cost estimate, including the cost of hydrogen production. SRNL was funded by DOE under the NHI program, and the Westinghouse team was self-funded. The results of this work are presented in this Final Report. Appendices have been attached to provide a detailed source of information in order to document the work under the TCA contract.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
AL-Dahhan, Muthanna; Rizwan-Uddin, Rizwan; Usman, S.
All the goals and the objectives set for the project were successfully executed and achieved and all the milestones have been successfully completed. The results that have been obtained for the first time advance the scientific and engineering knowledge and understanding of the plenum-to plenum natural convection of prismatic block nuclear reactors that is encountered during accident or abnormal operation. These have been accomplished by developing and implementing for the first time unique and flexible scaled-down separate and integrated effects experimental plenumto- plenum facility (P2PF) with dual channels at this time that has been equipped with sophisticated measurement techniques integratedmore » in a novel way on the heated and cooled channels. The unique facility is an asset now that can be extended to research multiple channels and to study the effects of hot plumes in the plena for future projects if funding will be available. It can also be modified to research natural convection of pebble bed reactors. Hence, it complement the HTTF at Oregon State University. However, in this study, heat transfer coefficients from the inner wall surface to the flowing gas (both helium and air were used) and the radial temperature and gas velocity profiles have been measured and investigated along the height of the heated and cooled channels using in house developed wall flush mounted heat transfer probes, thermocouple with in house developed adjuster for radial movement with 1 mm increment inside the channel and hot wire anemometry with also in house developed adjuster for 1 mm radial movement inside the channel, respectively. Also advanced tracer technique has been developed to quantify also for the first time the dispersion of the gas dynamics of the hot and cold channels. The research has provided new knowledge and new benchmarking data that can be used to validate computational fluid dynamics (CFD) codes with conjugate heat transfer. The work and its results that have been performed within the budget have demonstrated their superior technical effectiveness and high economic feasibility to perform needed studies for safety analysis and assessment at least cost for these types of gas cooled very high temperature 4th generation nuclear reactors. Accordingly, the results obtained in this project and the unique facility and techniques that have been developed will benefit greatly the public by advancing the technology of the prismatic block nuclear reactors toward commercialization and to ensure they will be designed and operated safely by utilizing the obtained knowledge and having well validated CFD simulations integrated with heat transfer computations« less
A Numerical Model for Trickle Bed Reactors
NASA Astrophysics Data System (ADS)
Propp, Richard M.; Colella, Phillip; Crutchfield, William Y.; Day, Marcus S.
2000-12-01
Trickle bed reactors are governed by equations of flow in porous media such as Darcy's law and the conservation of mass. Our numerical method for solving these equations is based on a total-velocity splitting, sequential formulation which leads to an implicit pressure equation and a semi-implicit mass conservation equation. We use high-resolution finite-difference methods to discretize these equations. Our solution scheme extends previous work in modeling porous media flows in two ways. First, we incorporate physical effects due to capillary pressure, a nonlinear inlet boundary condition, spatial porosity variations, and inertial effects on phase mobilities. In particular, capillary forces introduce a parabolic component into the recast evolution equation, and the inertial effects give rise to hyperbolic nonconvexity. Second, we introduce a modification of the slope-limiting algorithm to prevent our numerical method from producing spurious shocks. We present a numerical algorithm for accommodating these difficulties, show the algorithm is second-order accurate, and demonstrate its performance on a number of simplified problems relevant to trickle bed reactor modeling.
High performance biological methanation in a thermophilic anaerobic trickle bed reactor.
Strübing, Dietmar; Huber, Bettina; Lebuhn, Michael; Drewes, Jörg E; Koch, Konrad
2017-12-01
In order to enhance energy efficiency of biological methanation of CO 2 and H 2 , this study investigated the performance of a thermophilic (55°C) anaerobic trickle bed reactor (ATBR) (58.1L) at ambient pressure. With a methane production rate of up to 15.4m 3 CH4 /(m 3 trickle bed ·d) at methane concentrations above 98%, the ATBR can easily compete with the performance of other mixed culture methanation reactors. Control of pH and nutrient supply turned out to be crucial for stable operation and was affected significantly by dilution due to metabolic water production, especially during demand-orientated operation. Considering practical applications, inoculation with digested sludge, containing a diverse biocenosis, showed high adaptive capacity due to intrinsic biological diversity. However, no macroscopic biofilm formation was observed at thermophilic conditions even after 313days of operation. The applied approach illustrates the high potential of thermophilic ATBRs as a very efficient energy conversion and storage technology. Copyright © 2017 Elsevier Ltd. All rights reserved.
Immobilized glucose oxidase--catalase and their deactivation in a differential-bed loop reactor.
Prenosil, J E
1979-01-01
Glucose oxidase containing catalase was immobilized with a copolymer of phenylenediamine and glutaraldehyde on pumice and titania carrier to study the enzymatic oxidation of glucose in a differential-bed loop reactor. The reaction rate was found to be first order with respect to the concentration of limiting oxygen substrate, suggesting a strong external mass-transfer resistance for all the flow rates used. The partial pressure of oxygen was varied from 21.3 up to 202.6 kPa. The use of a differential-bed loop reactor for the determination of the active enzyme concentration in the catalyst with negligible internal pore diffusion resistance is shown. Catalyst deactivation was studied, especially with respect to the presence of catalase. It is believed that the hydrogen peroxide formed in the oxidation reaction deactivates catalase first; if an excess of catalase is present, the deactivation of glucose oxidase remains small. The mathematical model subsequently developed adequately describes the experimental results.
Chen, Hsiao-Ching; Ju, Hen-Yi; Wu, Tsung-Ta; Liu, Yung-Chuan; Lee, Chih-Chen; Chang, Cheng; Chung, Yi-Lin; Shieh, Chwen-Jen
2011-01-01
An optimal continuous production of biodiesel by methanolysis of soybean oil in a packed-bed reactor was developed using immobilized lipase (Novozym 435) as a catalyst in a tert-butanol solvent system. Response surface methodology (RSM) and Box-Behnken design were employed to evaluate the effects of reaction temperature, flow rate, and substrate molar ratio on the molar conversion of biodiesel. The results showed that flow rate and temperature have significant effects on the percentage of molar conversion. On the basis of ridge max analysis, the optimum conditions were as follows: flow rate 0.1 mL/min, temperature 52.1°C, and substrate molar ratio 1 : 4. The predicted and experimental values of molar conversion were 83.31 ± 2.07% and 82.81 ± .98%, respectively. Furthermore, the continuous process over 30 days showed no appreciable decrease in the molar conversion. The paper demonstrates the applicability of using immobilized lipase and a packed-bed reactor for continuous biodiesel synthesis.
Vadgama, Rajeshkumar N; Odaneth, Annamma A; Lali, Arvind M
2015-12-01
Isopropyl myristate is a useful functional molecule responding to the requirements of numerous fields of application in cosmetic, pharmaceutical and food industry. In the present work, lipase-catalyzed production of isopropyl myristate by esterification of myristic acid with isopropyl alcohol (molar ratio of 1:15) in the homogenous reaction medium was performed on a bench-scale packed bed reactors, in order to obtain suitable reaction performance data for upscaling. An immobilized lipase B from Candida antartica was used as the biocatalyst based on our previous study. The process intensification resulted in a clean and green synthesis process comprising a series of packed bed reactors of immobilized enzyme and water dehydrant. In addition, use of the single phase reaction system facilitates efficient recovery of the product with no effluent generated and recyclability of unreacted substrates. The single phase reaction system coupled with a continuous operating bioreactor ensures a stable operational life for the enzyme.
Xiu, G H; Jiang, L; Li, P
2001-07-05
A mathematical model has been developed for immobilized enzyme-catalyzed kinetic resolution of racemate in a fixed-bed reactor in which the enzyme-catalyzed reaction (the irreversible uni-uni competitive Michaelis-Menten kinetics is chosen as an example) was coupled with intraparticle diffusion, external mass transfer, and axial dispersion. The effects of mass-transfer limitations, competitive inhibition of substrates, deactivation on the enzyme effective enantioselectivity, and the optical purity and yield of the desired product are examined quantitatively over a wide range of parameters using the orthogonal collocation method. For a first-order reaction, an analytical solution is derived from the mathematical model for slab-, cylindrical-, and spherical-enzyme supports. Based on the analytical solution for the steady-state resolution process, a new concise formulation is presented to predict quantitatively the mass-transfer limitations on enzyme effective enantioselectivity and optical purity and yield of the desired product for a continuous steady-state kinetic resolution process in a fixed-bed reactor. Copyright 2001 John Wiley & Sons, Inc.
Method and apparatus for incinerating hazardous waste
Korenberg, Jacob
1990-01-01
An incineration apparatus and method for disposal of infectious hazardous waste including a fluidized bed reactor containing a bed of granular material. The reactor includes a first chamber, a second chamber, and a vertical partition separating the first and second chambers. A pressurized stream of air is supplied to the reactor at a sufficient velocity to fluidize the granular material in both the first and second chambers. Waste materials to be incinerated are fed into the first chamber of the fluidized bed, the fine waste materials being initially incinerated in the first chamber and subsequently circulated over the partition to the second chamber wherein further incineration occurs. Coarse waste materials are removed from the first chamber, comminuted, and recirculated to the second chamber for further incineration. Any partially incinerated waste materials and ash from the bottom of the second chamber are removed and recirculated to the second chamber for further incineration. This process is repeated until all infectious hazardous waste has been completely incinerated.
Yung, Matthew M.; Stanton, Alexander R.; Iisa, Kristiina; ...
2016-10-07
Metal-impregnated (Ni or Ga) ZSM-5 catalysts were studied for biomass pyrolysis vapor upgrading to produce hydrocarbons using three reactors constituting a 100 000x change in the amount of catalyst used in experiments. Catalysts were screened for pyrolysis vapor phase upgrading activity in two small-scale reactors: (i) a Pyroprobe with a 10 mg catalyst in a fixed bed and (ii) a fixed-bed reactor with 500 mg of catalyst. The best performing catalysts were then validated with a larger scale fluidized-bed reactor (using ~1 kg of catalyst) that produced measurable quantities of bio-oil for analysis and evaluation of mass balances. Despite somemore » inherent differences across the reactor systems (such as residence time, reactor type, analytical techniques, mode of catalyst and biomass feed) there was good agreement of reaction results for production of aromatic hydrocarbons, light gases, and coke deposition. Relative to ZSM-5, Ni or Ga addition to ZSM-5 increased production of fully deoxygenated aromatic hydrocarbons and light gases. In the fluidized bed reactor, Ga/ZSM-5 slightly enhanced carbon efficiency to condensed oil, which includes oxygenates in addition to aromatic hydrocarbons, and reduced oil oxygen content compared to ZSM-5. Ni/ZSM-5, while giving the highest yield of fully deoxygenated aromatic hydrocarbons, gave lower overall carbon efficiency to oil but with the lowest oxygen content. Reaction product analysis coupled with fresh and spent catalyst characterization indicated that the improved performance of Ni/ZSM-5 is related to decreasing deactivation by coking, which keeps the active acid sites accessible for the deoxygenation and aromatization reactions that produce fully deoxygenated aromatic hydrocarbons. The addition of Ga enhances the dehydrogenation activity of the catalyst, which leads to enhanced olefin formation and higher fully deoxygenated aromatic hydrocarbon yields compared to unmodified ZSM-5. Catalyst characterization by ammonia temperature programmed desorption, surface area measurements, and postreaction temperature-programmed oxidation (TPO) also showed that the metal-modified zeolites retained a greater percentage of their initial acidity and surface area, which was consistent between the reactor scales. These results demonstrate that the trends observed with smaller (milligram to gram) catalyst reactors are applicable to larger, more industrially relevant (kg) scales to help guide catalyst research toward application.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anthony, R.G.; Akgerman, A.
1994-05-06
Previous work on isosynthesis (conversion of synthesis gas to isobutane and isobutylene) was performed at very low conversions or extreme process conditions. The objectives of this research were (1) determine the optimum process conditions for isosynthesis; (2) determine the optimum catalyst preparation method and catalyst composition/properties for isosynthesis; (3) determine the kinetics for the best catalyst; (4) develop reactor models for trickle bed, slurry, and fixed bed reactors; and (5) simulate the performance of fixed bed trickle flow reactors, slurry flow reactors, and fixed bed gas phase reactors for isosynthesis. More improvement in catalyst activity and selectivity is needed beforemore » isosynthesis can become a commercially feasible (stand-alone) process. Catalysts prepared by the precipitation method show the most promise for future development as compared with those prepared hydrothermally, by calcining zirconyl nitrate, or by a modified sol-gel method. For current catalysts the high temperatures (>673 K) required for activity also cause the production of methane (because of thermodynamics). A catalyst with higher activity at lower temperatures would magnify the unique selectivity of zirconia for isobutylene. Perhaps with a more active catalyst and acidification, oxygenate production could be limited at lower temperatures. Pressures above 50 atm cause an undesirable shift in product distribution toward heavier hydrocarbons. A model was developed that can predict carbon monoxide conversion an product distribution. The rate equation for carbon monoxide conversion contains only a rate constant and an adsorption equilibrium constant. The product distribution was predicted using a simple ratio of the rate of CO conversion. This report is divided into Introduction, Experimental, and Results and Discussion sections.« less
Hooyer, T.S.; Iverson, N.R.; Lagroix, F.; Thomason, J.F.
2008-01-01
Wet-based portions of ice sheets may move primarily by shearing their till beds, resting in high sediment fluxes and the development of subglacial landforms. This model of glacier movement, which requires high bed shear strains, can be tested using till microstructural characteristics that evolve during till deformation. Here we examine the development of magnetic fabric using a ring shear device to defom two Wisconsin-age basal tills to shear strains as high as 70. Hysteresis experiments and the dependence of magnetic susceptibility of these tills on temperature demonstrate that anisotropy of magnetic susceptibility (AMS) develops during shear due to the rotation of primarily magnetite particles that are silt sized or smaller. At moderate shear strains (???6-25), principal axes of maximum magnetic susceptibility develop a strong fabric (S1 eignevalues of 0.83-0.96), without further strengthening at higher strains, During deformation, directions of maximum susceptibility cluster strongly in the direction of shear and plunge 'up-glacier,' consistent with the behavior of pebbles and sand particles studied in earlier experiments. In contrast, the magnitude of AMS does not vary systematically with strain and is small relative to its variability among samples; this is because most magnetite grains are contained as inclusions in larger particles and hence do not align during shear. Although processes other than pervasive bed deformation may result in strong flow parallel fabrics, AMS fabrics provide a rapid and objective means of identifying basal tills that have not been sheared sufficiently to be compatible with the bed deformation model. Copyright 2008 by the American Geophysical Union.
Prevention of clogging in a biological trickle-bed reactor removing toluene from contaminated air.
Weber, F J; Hartmans, S
1996-04-05
Removal of organic compounds like toluene from waste gases with a trickle-bed reactor can result in clogging of the reactor due to the formation of an excessive amount of biomass. We therefore limited the amount of nutrients available for growth, to prevent clogging of the reactor. As a consequence of this nutrient limitation a lower removal rate was observed. However, when a fungal culture was used to inoculate the reactor, the toluene removal rate under nutrient limiting conditions was higher. Over a period of 375 days, an average removal rate of 27 g C/(m(3) h) was obtained with the reactor inoculated with the fungal culture. From the carbon balance over the reactor and the nitrogen availability it was concluded that, under these nutrient-limited conditions, large amounts of carbohydrates are probably formed. We also studied the application of a NaOH wash to remove excess biomass, as a method to prevent clogging. Under these conditions an average toluene removal rate of 35 g C/(m(3) h) was obtained. After about 50 days there was no net increase in the biomass content of the reactor. The amount of biomass which was formed in the reactor equaled the amount removed by the NaOH wash.
Bertin, Lorenzo; Berselli, Sara; Fava, Fabio; Petrangeli-Papini, Marco; Marchetti, Leonardo
2004-01-01
Anaerobic digestion is one of the most promising technologies for disposing olive mill wastewaters (OMWs). The process is generally carried out in the conventional contact bioreactors, which however are often unable to efficiently remove OMW phenolic compounds, that therefore occur in the effluents. The possibility of mitigating this problem by employing an anaerobic OMW-digesting microbial consortium passively immobilized in column reactors packed with granular activated carbon (GAC) or "Manville" silica beads (SB) was here investigated. Under batch conditions, both GAC- and SB-packed-bed biofilm reactors exhibited OMW COD and phenolic compound removal efficiencies markedly higher (from 60% to 250%) than those attained in a parallel anaerobic dispersed growth reactor developed with the same inoculum; GAC-reactor exhibited COD and phenolic compound depletion yields higher by 62% and 78%, respectively, than those achieved with the identically configured SB-biofilm reactor. Both biofilm reactors also mediated an extensive OMW remediation under continuous conditions, where GAC-reactor was much more effective than the corresponding SB-one, and showed a tolerance to high and variable organic loads along with a volumetric productivity in terms of COD and phenolic compound removal significantly higher than those averagely displayed by most of the conventional and packed-bed laboratory-scale reactors previously proposed for the OMW digestion.
Design and performance of a trickle-bed bioreactor with immobilized hybridoma cells.
Phillips, H A; Scharer, J M; Bols, N C; Moo-Young, M
1992-01-01
A trickle-bed system employing inert matrices of vermiculite or polyurethane foam packed in the downcomer section of a split-flow air-lift reactor has been developed for hybridoma culture to enhance antibody productivity. This quiescent condition favoured occlusion and allowed the cells to achieve densities twelve fold greater (12.8 x 10(6) cells/ml reactor for polyurethane foam) than in free cell suspension. The reactor was operated in a cyclic batch mode whereby defined volumes of medium were periodically withdrawn and replaced with equal volumes of fresh medium. The pH of the medium was used as the indicator of the feeding schedule. Glucose, lactate and ammonia concentrations reached a stationary value after 5 days. With vermiculite packing, a monoclonal antibody (MAb) concentration of 2.4 mg/l was achieved after 12 days. The MAb concentration declined then increased to a value of 1.8 mg/l. In the polyurethane foam average monoclonal antibody (MAb) concentrations reached a stationary value of 1.1 mg/l in the first 20 days and increased to a new stationary state value of 2.1 mg/l for the remainder of the production. MAb productivity in the trickle-bed reactor was 0.3 mg/l.d (polyurethane foam) and 0.18 mg/l.d (vermiculite) in comparison to 0.12 mg/l.d for free cell suspension. This trickle-bed system seems to be an attractive way of increasing MAb productivity in culture.
Reactor for in situ measurements of spatially resolved kinetic data in heterogeneous catalysis
NASA Astrophysics Data System (ADS)
Horn, R.; Korup, O.; Geske, M.; Zavyalova, U.; Oprea, I.; Schlögl, R.
2010-06-01
The present work describes a reactor that allows in situ measurements of spatially resolved kinetic data in heterogeneous catalysis. The reactor design allows measurements up to temperatures of 1300 °C and 45 bar pressure, i.e., conditions of industrial relevance. The reactor involves reactants flowing through a solid catalyst bed containing a sampling capillary with a side sampling orifice through which a small fraction of the reacting fluid (gas or liquid) is transferred into an analytical device (e.g., mass spectrometer, gas chromatograph, high pressure liquid chromatograph) for quantitative analysis. The sampling capillary can be moved with μm resolution in or against flow direction to measure species profiles through the catalyst bed. Rotation of the sampling capillary allows averaging over several scan lines. The position of the sampling orifice is such that the capillary channel through the catalyst bed remains always occupied by the capillary preventing flow disturbance and fluid bypassing. The second function of the sampling capillary is to provide a well which can accommodate temperature probes such as a thermocouple or a pyrometer fiber. If a thermocouple is inserted in the sampling capillary and aligned with the sampling orifice fluid temperature profiles can be measured. A pyrometer fiber can be used to measure the temperature profile of the solid catalyst bed. Spatial profile measurements are demonstrated for methane oxidation on Pt and methane oxidative coupling on Li/MgO, both catalysts supported on reticulated α -Al2O3 foam supports.
Yuan, G; Chen, D; Yin, L; Wang, Z; Zhao, L; Wang, J Y
2014-06-01
In this research a gas-liquid fluidized bed reactor was developed for removing chlorine (Cl) from polyvinyl chloride (PVC) to favor its pyrolysis treatment. In order to efficiently remove Cl within a limited time before extensive generation of hydrocarbon products, the gas-liquid fluidized bed reactor was running at 280-320 °C, where hot N2 was used as fluidizing gas to fluidize the molten polymer, letting the molten polymer contact well with N2 to release Cl in form of HCl. Experimental results showed that dechlorination efficiency is mainly temperature dependent and 300 °C is a proper reaction temperature for efficient dechlorination within a limited time duration and for prevention of extensive pyrolysis; under this temperature 99.5% of Cl removal efficiency can be obtained within reaction time around 1 min after melting is completed as the flow rate of N2 gas was set around 0.47-0.85 Nm(3) kg(-1) for the molten PVC. Larger N2 flow rate and additives in PVC would enhance HCl release but did not change the final dechlorination efficiency; and excessive N2 flow rate should be avoided for prevention of polymer entrainment. HCl is emitted from PVC granules or scraps at the mean time they started to melt and the melting stage should be taken into consideration when design the gas-liquid fluidized bed reactor for dechlorination. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jiang, Bin; Hao, Li; Zhang, Luhong; Sun, Yongli; Xiao, Xiaoming
2015-01-01
In the present contribution, a numerical study of fluid flow and heat transfer performance in a pilot-scale multi-tubular fixed bed reactor for propylene to acrolein oxidation reaction is presented using computational fluid dynamics (CFD) method. Firstly, a two-dimensional CFD model is developed to simulate flow behaviors, catalytic oxidation reaction, heat and mass transfer adopting porous medium model on tube side to achieve the temperature distribution and investigate the effect of operation parameters on hot spot temperature. Secondly, based on the conclusions of tube-side, a novel configuration multi-tubular fixed-bed reactor comprising 790 tubes design with disk-and-doughnut baffles is proposed by comparing with segmental baffles reactor and their performance of fluid flow and heat transfer is analyzed to ensure the uniformity condition using molten salt as heat carrier medium on shell-side by three-dimensional CFD method. The results reveal that comprehensive performance of the reactor with disk-and-doughnut baffles is better than that of with segmental baffles. Finally, the effects of operating conditions to control the hot spots are investigated. The results show that the flow velocity range about 0.65 m/s is applicable and the co-current cooling system flow direction is better than counter-current flow to control the hottest temperature.
Bian, Wei; Zhang, Shuyan; Zhang, Yanzhuo; Li, Wenjing; Kan, Ruizhe; Wang, Wenxiao; Zheng, Zhaoming; Li, Jun
2017-02-01
A ratio control strategy was implemented in a continuous moving bed biofilm reactor (MBBR) to investigate the response to different temperatures. The control strategy was designed to maintain a constant ratio between dissolved oxygen (DO) and total ammonia nitrogen (TAN) concentrations. The results revealed that a stable nitritation in a biofilm reactor could be achieved via ratio control, which compensated the negative influence of low temperatures by stronger oxygen-limiting conditions. Even with a temperature as low as 6°C, stable nitritation could be achieved when the controlling ratio did not exceed 0.17. Oxygen-limiting conditions in the biofilm reactor were determined by the DO/TAN concentrations ratio, instead of the mere DO concentration. This ratio control strategy allowed the achievement of stable nitritation without complete wash-out of NOB from the reactor. Through the ratio control strategy full nitritation of sidestream wastewater was allowed; however, for mainstream wastewater, only partial nitritation was recommended. Copyright © 2016 Elsevier Ltd. All rights reserved.
Integrated reformer and shift reactor
Bentley, Jeffrey M.; Clawson, Lawrence G.; Mitchell, William L.; Dorson, Matthew H.
2006-06-27
A hydrocarbon fuel reformer for producing diatomic hydrogen gas is disclosed. The reformer includes a first reaction vessel, a shift reactor vessel annularly disposed about the first reaction vessel, including a first shift reactor zone, and a first helical tube disposed within the first shift reactor zone having an inlet end communicating with a water supply source. The water supply source is preferably adapted to supply liquid-phase water to the first helical tube at flow conditions sufficient to ensure discharge of liquid-phase and steam-phase water from an outlet end of the first helical tube. The reformer may further include a first catalyst bed disposed in the first shift reactor zone, having a low-temperature shift catalyst in contact with the first helical tube. The catalyst bed includes a plurality of coil sections disposed in coaxial relation to other coil sections and to the central longitudinal axis of the reformer, each coil section extending between the first and second ends, and each coil section being in direct fluid communication with at least one other coil section.
2012-03-01
Propylene Glycol Deicer Biodegredation Kinetics: Complete-Mix Stirred Tank Reactors , Filter, and Fluidized Bed . Journal of Environmental...scale sequencing batch reactor containing municipal waste water treatment facility activated sludge (AS) performing simultaneous organic carbon...Sequencing Batch Reactor Operation ..................................................................... 13 PG extraction from AS
A Hydrodynamic Characteristic of a Dual Fluidized Bed Gasification
NASA Astrophysics Data System (ADS)
Sung, Yeon Kyung; Song, Jae Hun; Bang, Byung Ryeul; Yu, Tae U.; Lee, Uen Do
A cold model dual fluidized bed (DFB) reactor, consisting of two parallel interconnected bubbling and fast fluidized beds, was designed for developing an auto-thermal biomass gasifier. The combustor of this system burns the rest char of the gasification process and provides heat to the gasifier by circulating solids inventory. To find an optimal mixing and circulation of heavy solid inventory and light biomass and char materials, we investigate two types of DFB reactors which have different configuration of distributor and way-out location of the solid inventory and char materials in the gasifier. To determine appropriate operating conditions, we measured minimum fluidization velocity, solid circulation rate, axial solid holdup and gas bypassing between the lower loop seal and the gasifier.
Evaluating a 2D image-based computerized approach for measuring riverine pebble roundness
NASA Astrophysics Data System (ADS)
Cassel, Mathieu; Piégay, Hervé; Lavé, Jérôme; Vaudor, Lise; Hadmoko Sri, Danang; Wibiwo Budi, Sandy; Lavigne, Franck
2018-06-01
The geometrical characteristics of pebbles are important features to study transport pathways, sedimentary history, depositional environments, abrasion processes or to target sediment sources. Both the shape and roundness of pebbles can be described by a still growing number of metrics in 2D and 3D or by visual charts. Despite new developments, existing tools remain proprietary and no pebble roundness toolbox has been available widely within the scientific community. The toolbox developed by Roussillon et al. (2009) automatically computes the size, shape and roundness indexes of pebbles from their 2D maximal projection plans. Using a digital camera, this toolbox operates using 2D pictures taken of pebbles placed on a one square meter red board, allowing data collection to be quickly and efficiently acquired at a large scale. Now that the toolbox is freely available for download,
PARFUME Theory and Model basis Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darrell L. Knudson; Gregory K Miller; G.K. Miller
2009-09-01
The success of gas reactors depends upon the safety and quality of the coated particle fuel. The fuel performance modeling code PARFUME simulates the mechanical, thermal and physico-chemical behavior of fuel particles during irradiation. This report documents the theory and material properties behind vari¬ous capabilities of the code, which include: 1) various options for calculating CO production and fission product gas release, 2) an analytical solution for stresses in the coating layers that accounts for irradiation-induced creep and swelling of the pyrocarbon layers, 3) a thermal model that calculates a time-dependent temperature profile through a pebble bed sphere or amore » prismatic block core, as well as through the layers of each analyzed particle, 4) simulation of multi-dimensional particle behavior associated with cracking in the IPyC layer, partial debonding of the IPyC from the SiC, particle asphericity, and kernel migration (or amoeba effect), 5) two independent methods for determining particle failure probabilities, 6) a model for calculating release-to-birth (R/B) ratios of gaseous fission products that accounts for particle failures and uranium contamination in the fuel matrix, and 7) the evaluation of an accident condition, where a particle experiences a sudden change in temperature following a period of normal irradiation. The accident condi¬tion entails diffusion of fission products through the particle coating layers and through the fuel matrix to the coolant boundary. This document represents the initial version of the PARFUME Theory and Model Basis Report. More detailed descriptions will be provided in future revisions.« less
Modeling a Packed Bed Reactor Utilizing the Sabatier Process
NASA Technical Reports Server (NTRS)
Shah, Malay G.; Meier, Anne J.; Hintze, Paul E.
2017-01-01
A numerical model is being developed using Python which characterizes the conversion and temperature profiles of a packed bed reactor (PBR) that utilizes the Sabatier process; the reaction produces methane and water from carbon dioxide and hydrogen. While the specific kinetics of the Sabatier reaction on the RuAl2O3 catalyst pellets are unknown, an empirical reaction rate equation1 is used for the overall reaction. As this reaction is highly exothermic, proper thermal control is of the utmost importance to ensure maximum conversion and to avoid reactor runaway. It is therefore necessary to determine what wall temperature profile will ensure safe and efficient operation of the reactor. This wall temperature will be maintained by active thermal controls on the outer surface of the reactor. Two cylindrical PBRs are currently being tested experimentally and will be used for validation of the Python model. They are similar in design except one of them is larger and incorporates a preheat loop by feeding the reactant gas through a pipe along the center of the catalyst bed. The further complexity of adding a preheat pipe to the model to mimic the larger reactor is yet to be implemented and validated; preliminary validation is done using the smaller PBR with no reactant preheating. When mapping experimental values of the wall temperature from the smaller PBR into the Python model, a good approximation of the total conversion and temperature profile has been achieved. A separate CFD model incorporates more complex three-dimensional effects by including the solid catalyst pellets within the domain. The goal is to improve the Python model to the point where the results of other reactor geometry can be reasonably predicted relatively quickly when compared to the much more computationally expensive CFD approach. Once a reactor size is narrowed down using the Python approach, CFD will be used to generate a more thorough prediction of the reactors performance.
Influence of operating pressure on the biological hydrogen methanation in trickle-bed reactors.
Ullrich, Timo; Lindner, Jonas; Bär, Katharina; Mörs, Friedemann; Graf, Frank; Lemmer, Andreas
2018-01-01
In order to investigate the influence of pressures up to 9bar absolute on the productivity of trickle-bed reactors for biological methanation of hydrogen and carbon dioxide, experiments were carried out in a continuously operated experimental plant with three identical reactors. The pressure increase promises a longer residence time and improved mass transfer of H 2 due to higher gas partial pressures. The study covers effects of different pressures on important parameters like gas hourly space velocity, methane formation rate, conversion rates and product gas quality. The methane content of 64.13±3.81vol-% at 1.5bar could be increased up to 86.51±0.49vol-% by raising the pressure to 9bar. Methane formation rates of up to 4.28±0.26m 3 m -3 d -1 were achieved. Thus, pressure increase could significantly improve reactor performance. Copyright © 2017 Elsevier Ltd. All rights reserved.
Stormo, Keith E.
1996-07-02
A dynamic bed reactor is disclosed in which a compressible open cell foam matrix is periodically compressed and expanded to move a liquid or fluid through the matrix. In preferred embodiments, the matrix contains an active material such as an enzyme, biological cell, chelating agent, oligonucleotide, adsorbent or other material that acts upon the liquid or fluid passing through the matrix. The active material may be physically immobilized in the matrix, or attached by covalent or ionic bonds. Microbeads, substantially all of which have diameters less than 50 microns, can be used to immobilize the active material in the matrix and further improve reactor efficiency. A particularly preferred matrix is made of open cell polyurethane foam, which adsorbs pollutants such as polychlorophenol or o-nitrophenol. The reactors of the present invention allow unidirectional non-laminar flow through the matrix, and promote intimate exposure of liquid reactants to active agents such as microorganisms immobilized in the matrix.
Upflow fixed bed bioelectrochemical reactor for wastewater treatment applications.
González-Gutiérrez, Linda; Frontana, Carlos; Martínez, Eduardo
2015-01-01
A cylindrical Upflow Fixed Bed Reactor (UFB-BER) with granular activated carbon, steel mesh electrodes and anaerobic microorganisms, was constructed for analyzing how hydrodynamic parameters affect the reactions involved during wastewater treatment processes for azo dye degradation. Dye removal percentage was not compromised by decreasing HRTm (99-90% upon changing HRTm from 4 to 1h in single pass mode). Using the residence time distribution method for hydrodynamic characterization, it was found that a higher dispersion in the reactor occurs for HRTm=1h, than for HRTm=4h. A kinetic analysis suggests that this dispersion effect could be associated to a higher specific reaction rate dependent on the azo dye concentration. Copyright © 2014 Elsevier Ltd. All rights reserved.
Pyrolysis of softwood carbohydrates in a fluidized bed reactor.
Aho, Atte; Kumar, Narendra; Eränen, Kari; Holmbom, Bjarne; Hupa, Mikko; Salmi, Tapio; Murzin, Dmitry Yu
2008-09-01
In the present work pyrolysis of pure pine wood and softwood carbohydrates, namely cellulose and galactoglucomannan (the major hemicellulose in coniferous wood), was conducted in a batch mode operated fluidized bed reactor. Temperature ramping (5 degrees C/min) was applied to the heating until a reactor temperature of 460 degrees C was reached. Thereafter the temperature was kept until the release of non-condensable gases stopped. The different raw materials gave significantly different bio-oils. Levoglucosan was the dominant product in the cellulose pyrolysis oil. Acetic acid was found in the highest concentrations in both the galactoglucomannan and in the pine wood pyrolysis oils. Acetic acid is most likely formed by removal of O-acetyl groups from mannose units present in GGM structure.
Pyrolysis of Softwood Carbohydrates in a Fluidized Bed Reactor
Aho, Atte; Kumar, Narendra; Eränen, Kari; Holmbom, Bjarne; Hupa, Mikko; Salmi, Tapio; Murzin, Dmitry Yu.
2008-01-01
In the present work pyrolysis of pure pine wood and softwood carbohydrates, namely cellulose and galactoglucomannan (the major hemicellulose in coniferous wood), was conducted in a batch mode operated fluidized bed reactor. Temperature ramping (5 °C/min) was applied to the heating until a reactor temperature of 460 °C was reached. Thereafter the temperature was kept until the release of non-condensable gases stopped. The different raw materials gave significantly different bio-oils. Levoglucosan was the dominant product in the cellulose pyrolysis oil. Acetic acid was found in the highest concentrations in both the galactoglucomannan and in the pine wood pyrolysis oils. Acetic acid is most likely formed by removal of O-acetyl groups from mannose units present in GGM structure. PMID:19325824
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haghighi, M. H.; Kring, C. T.; McGehee, J. T.
2002-02-26
The Molten Salt Reactor Experiment (MSRE) site is located in Tennessee, on the U.S. Department of Energy (DOE) Oak Ridge Reservation (ORR). The MSRE was run by Oak Ridge National Laboratory (ORNL) to demonstrate the desirable features of the molten-salt concept in a practical reactor that could be operated safely and reliably. It introduced the idea of a homogeneous reactor using fuel salt media and graphite moderation for power and breeder reactors. The MSRE reactor and associated components are located in cells beneath the floor in the high-bay area of Building 7503. The reactor was operated from June 1965 tomore » December 1969. When the reactor was shut down, fuel salt was drained from the reactor circuit to two drain tanks. A ''clean'' salt was then circulated through the reactor as a decontamination measure and drained to a third drain tank. When operations ceased, the fuel and flush salts were allowed to cool and solidify in the drain tanks. At shutdown, the MSRE facility complex was placed in a surveillance and maintenance program. Beginning in 1987, it was discovered that gaseous uranium (U-233/U-232) hexafluoride (UF6) had moved throughout the MSRE process systems. The UF6 had been generated when radiolysis in the fluorine salts caused the individual constituents to dissociate to their component atoms, including free fluorine. Some of the free fluorine combined with uranium fluorides (UF4) in the salt to produce UF6. UF6 is gaseous at slightly above ambient temperatures; thus, periodic heating of the fuel salts (which was intended to remedy the radiolysis problems) and simple diffusion had allowed the UF6 to move out of the salt and into the process systems of MSRE. One of the systems that UF6 migrated into due to this process was the offgas system which is vented to the MSRE main charcoal beds and MSRE auxiliary charcoal bed (ACB). Recently, the majority of the uranium laden-charcoal material residing within the ACB was safely and successfully removed using the uranium deposit removal system and equipment. After removal a series of NDA measurements was performed to determine the amount of uranium material remaining in the ACB, the amount of uranium material removed from the ACB, and the amount of uranium material remaining in the uranium removal equipment due to removal activities.« less
NASA Astrophysics Data System (ADS)
DeMange, P.; Marian, J.; Caro, M.; Caro, A.
2009-11-01
Concept designs for the laser inertial fusion/fission energy (LIFE) engine include a neutron multiplication blanket containing Be pebbles flowing in a molten salt coolant. These pebbles must be designed to withstand the extreme irradiation and temperature conditions in the blanket to enable a reliable and cost-effective operation of LIFE. In this work, we develop design criteria for spherical Be pebbles on the basis of their thermo-mechanical behaviour under continued neutron exposure. We consider the effects of high fluence and fast fluxes on the elastic, thermal and mechanical properties of nuclear-grade Be. Our results suggest a maximum pebble diameter of 30 mm to avoid tensile failure, coated with an anti-corrosive, high-strength metallic shell to avoid failure by pebble contact. Moreover, we find that the operation temperature must always be kept above 450 °C to enable creep to relax the stresses induced by swelling. Under these circumstances, we estimate the pebble lifetime to be at least 16 months if uncoated, and up to six years when coated. We identify the sources of uncertainty on the properties used and discuss the advantages of new intermetallic beryllides and their use in LIFE's neutron multiplier. To establish Be-pebble lifetimes with improved confidence, reliable experiments to measure irradiation creep must be performed.
Biparticle fluidized bed reactor
Scott, Charles D.; Marasco, Joseph A.
1995-01-01
A fluidized bed reactor system utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves.
Biparticle fluidized bed reactor
Scott, Charles D.; Marasco, Joseph A.
1996-01-01
A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary and tertiary particulate phases, continuously introduced and removed simultaneously in the cocurrent and countercurrent mode, act in a role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Means for introducing and removing the sorbent phases include feed screw mechanisms and multivane slurry valves.
Biparticle fluidized bed reactor
Scott, C.D.; Marasco, J.A.
1995-04-25
A fluidized bed reactor system utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figs.
Biparticle fluidized bed reactor
Scott, C.D.
1993-12-14
A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase is described. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figures.
Biparticle fluidized bed reactor
Scott, C.D.; Marasco, J.A.
1996-02-27
A fluidized bed reactor system is described which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary and tertiary particulate phases, continuously introduced and removed simultaneously in the cocurrent and countercurrent mode, act in a role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Means for introducing and removing the sorbent phases include feed screw mechanisms and multivane slurry valves. 3 figs.
Biparticle fluidized bed reactor
Scott, Charles D.
1993-01-01
A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves.
Mixed fluvial systems of Messak Sandstone, a deposit of Nubian lithofacies, southwestern Libya
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lorenz, J.C.
1987-05-01
The Messak Sandstone is a coarse to pebbly, tabular cross-bedded, Lower Cretaceous deposit of the widespread Nubian lithofacies. It was deposited at the northern edge of the Murzuq basin in southwestern Libya. Although the sedimentary record is predominantly one of braided fluvial systems, a common subfacies within the formation is interpreted to record the passage of straight-crested sand waves across laterally migrating point bars in sinuous rivers, similar to the pattern documented by Singh and Kumar on the modern Ganga and Yamuna Rivers. Because the sand waves were larger on the lower parts of the point bars, lateral migration createdmore » diagnostic thinning-upward, unidirectional cosets of tabular cross-beds as well as fining-upward, grain-size trends. Common, thick, interbedded claystones, deposited in associated paludal and lacustrine environments, and high variance in cross-bed dispersion patterns also suggest the local presence of sinuous fluvial systems within the overall braided regime. The Messak Sandstone contains some of the features that led Harms et al to propose an unconventional low-sinuosity fluvial environment for the Nubian lithofacies in Egypt, and the continuously high water levels of this model may explain channel-scale clay drapes and overturned cross-beds in the Messak. However, most of the Messak characteristics are incompatible with the low-sinuosity model, suggesting instead that the fluvial channels in the Murzuq basin alternated between braided and high-sinuosity patterns.« less
Minimum-sized ideal reactor for continuous alcohol fermentation using immobilized microorganism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamane, T.; Shimizu, S.
Recently, alcohol fermentation has gained considerable attention with the aim of lowering its production cost in the production processes of both fuel ethanol and alcoholic beverages. The over-all cost is a summation of costs of various subsystems such as raw material (sugar, starch, and cellulosic substances) treatment, fermentation process, and alcohol separation from water solutions; lowering the cost of the fermentation processes is very important in lowering the total cost. Several new techniques have been developed for economic continuous ethanol production, use of a continuous wine fermentor with no mechanical stirring, cell recycle combined with continuous removal of ethanol undermore » vaccum, a technique involving a bed of yeast admixed with an inert carrier, and use of immobilized yeast reactors in packed-bed column and in a three-stage double conical fluidized-bed bioreactor. All these techniques lead to increases more or less, in reactor productivity, which in turn result in the reduction of the reactor size for a given production rate and a particular conversion. Since an improvement in the fermentation process often leads to a reduction of fermentor size and hence, a lowering of the initial construction cost, it is important to theoretically arrive at a solution to what is the minimum-size setup of ideal reactors from the viewpoint of liquid backmixing. In this short communication, the minimum-sized ideal reactor for continuous alcohol fermentation using immobilized cells will be specifically discussed on the basis of a mathematical model. The solution will serve for designing an optimal bioreactor. (Refs. 26).« less
Fabrication and tritium release property of Li2TiO3-Li4SiO4 biphasic ceramics
NASA Astrophysics Data System (ADS)
Yang, Mao; Ran, Guangming; Wang, Hailiang; Dang, Chen; Huang, Zhangyi; Chen, Xiaojun; Lu, Tiecheng; Xiao, Chengjian
2018-05-01
Li2TiO3-Li4SiO4 biphasic ceramic pebbles have been developed as an advanced tritium breeder due to the potential to combine the advantages of both Li2TiO3 and Li4SiO4. Wet method was developed for the pebble fabrication and Li2TiO3-Li4SiO4 biphasic ceramic pebbles were successfully prepared by wet method using the powders synthesized by hydrothermal method. The tritium release properties of the Li2TiO3-Li4SiO4 biphasic ceramic pebbles were evaluated. The biphasic pebbles exhibited good tritium release property at low temperatures and the tritium release temperature was around 470 °C. Because of the isotope exchange reaction between H2 and tritium, the addition of 0.1%H2 to purge gas He could significantly enhance the tritium gas release and the fraction of molecular form of tritium increased from 28% to 55%. The results indicate that the Li2TiO3-Li4SiO4 biphasic ceramic pebbles fabricated by wet method exhibit good tritium release property and hold promising potential as advanced breeder pebbles.
Zhang, Jin-Sheng; Yuan, Xing-Zhong; Zeng, Guang-Ming; Dong, Bei-Bei; Liang, Yun-Shan
2009-11-01
In this study, the system composed with the external loop fluidized bed reactor and constructed wetland was used to treat the landfill leachate. The change of water quality for the landfill leachate treated by this system was investigated. The experimental results indicated that the COD and NH4(+) -N of the influent reduced from 4000 mg x L(-1) and 300 mg x L(-1) to 1 500 mg x L(-1) and 150 mg x L(-1) after the external loop three phase fluidized bed reactor and steady at 200 mg x L(-1) and 10 mg x L(-1) behind treated by the constructed wetland. The heavy metals of Cd, Zn, Pb were also reduced for treatment by external loop three phase fluidized bed reactor. They were steady at 0.01 mg x L(-1), 0.5 mg x L(-1), 0.1 mg x L(-1) from 0.12 mg x L(-1), 3.0 mg x L(-1), 1.4 mg x L(-1) because of the constructed wetland. We also compared the different plants for the efficiency, the results showed that whatever plants, there was little effects on the efficiency of the COD and NH4(+) -N, but the effect of heavy metal was markedness.
Attrition resistant bulk iron catalysts and processes for preparing and using same
Jothimurugesan, Kandaswamy [Ponca City, OK; Goodwin, Jr., James G.; Gangwal, Santosh K [Cary, NC
2007-08-21
An attrition resistant precipitated bulk iron catalyst is prepared from iron oxide precursor and a binder by spray drying. The catalysts are preferably used in carbon monoxide hydrogenation processes such as Fischer-Tropsch synthesis. These catalysts are suitable for use in fluidized-bed reactors, transport reactors and, especially, slurry bubble column reactors.
USDA-ARS?s Scientific Manuscript database
Five reactor systems (free cell batch, free cell continuous, entrapped cell immobilized, adsorbed cell packed bed, and cell recycle membrane reactors) were compared for ethanol production from xylose employing Escherichia coli FBR5. In the free cell batch and free cell continuous reactors (continuo...
Letters initiating Clean Water Act 404(c) review of mining at Pebble deposit
Correspondence between EPA and the Pebble Limited Partnership and the State of Alaska initiating review under section 404(c) of the Clean Water Act of potential adverse environmental effects associated with mining the Pebble deposit in southwest Alaska.
Wu, Chun-Sheng; Huang, Ju-Sheng; Chou, Hsin-Hsien
2006-01-01
Predictive models for describing the hydrodynamic behavior (bed-expansion and bed-pressure gradient) of a three-phase anaerobic fluidized bed reactor (AFBR) was developed according to wake theory together with more realistic dynamic bed-expansion experiments (with and without internal biogas production). A reliable correlation equation for the parameter k (mean volume ratio of wakes to bubbles) was also established, which is of help in estimating liquid hold up of fluidized beds. The experimental expansion ratio of three-phase fluidized beds (E(GLS)) was approximately 18% higher than that of two-phase fluidized beds (E(LS)); whereas the experimental bed-pressure gradient of the former [(-DeltaP/H)(GLS)] was approximately 9.3% lower than that of the latter [(-DeltaP/H)(LS)]. Both the experimental and modeling results indicated that a higher superficial gas velocity (u(g)) gave a higher E(GLS) and a higher E(GLS) to E(LS) ratio as well as a lower (-DeltaP/H)(GLS) and a lower (-DeltaP/H)(GLS) to (-DeltaP/H)(LS) ratio. As for the operation stability of the AFBR, the sensitivity of u(g) to expansion height (H(GLS)) and (-DeltaP/H)(GLS) is between the sensitivity of superficial liquid velocity and biofilm thickness. The model predictions of E(GLS), (-DeltaP)(GLS), and (-DeltaP/H)(GLS) agreed well the experimental measurements. Accordingly, the predictive models accounting for internal biogas production described fairly well the hydrodynamic behavior of the AFBR.
Mayer, Paul M; Smith, Levica M; Ford, Robert G; Watterson, Dustin C; McCutchen, Marshall D; Ryan, Mark R
2009-04-01
Predation selects against conspicuous colors in bird eggs and nests, while thermoregulatory constraints select for nest-building behavior that regulates incubation temperatures. We present results that suggest a trade-off between nest crypticity and thermoregulation of eggs based on selection of nest materials by piping plovers (Charadrius melodus), a ground-nesting bird that constructs simple, pebble-lined nests highly vulnerable to predators and exposed to temperature extremes. Piping plovers selected pebbles that were whiter and appeared closer in color to eggs than randomly available pebbles, suggesting a crypsis function. However, nests that were more contrasting in color to surrounding substrates were at greater risk of predation, suggesting an alternate strategy driving selection of white rocks. Near-infrared reflectance of nest pebbles was higher than randomly available pebbles, indicating a direct physical mechanism for heat control through pebble selection. Artificial nests constructed of randomly available pebbles heated more quickly and conferred heat to model eggs, causing eggs to heat more rapidly than in nests constructed from piping plover nest pebbles. Thermal models and field data indicated that temperatures inside nests may remain up to 2-6 degrees C cooler than surrounding substrates. Thermal models indicated that nests heat especially rapidly if not incubated, suggesting that nest construction behavior may serve to keep eggs cooler during the unattended laying period. Thus, pebble selection suggests a potential trade-off between maximizing heat reflectance to improve egg microclimate and minimizing conspicuous contrast of nests with the surrounding substrate to conceal eggs from predators. Nest construction behavior that employs light-colored, thermally reflective materials may represent an evolutionary response by birds and other egg-laying organisms to egg predation and heat stress.
Characteristics of sedimentary structures in coarse-grained alluvial rivers
NASA Astrophysics Data System (ADS)
Ackerley, David; Powell, Mark
2013-04-01
The characteristics of coarse-grained alluvial surfaces have important implications for the estimation of flow resistance, entrainment thresholds and sediment transport rates in gravel-bed rivers. This area of research has, thus, demanded attention from geomorphologists, sedimentologists, and river engineers. The majority of research has focused towards understanding the characteristics and adjustments in surface grain size. Bed stability, however, is not ultimately defined by particle size but how grains are arranged within the bed surface. For example, by the organisation of particles into a variety of grain and form scale sedimentary structures and bedforms (e.g. imbrication; pebble clusters, stone nets, transverse ribs). While it is widely acknowledged sedimentary structuring must be considered within estimates of flow resistance and sediment transport, relatively little is known about the structural properties of water-worked river gravels. As a consequence, we remain woefully ignorant of this important aspect of gravel-bed river sedimentology. The aim of this poster is to present some preliminary results of a study designed to characterise the morphodynamics of sedimentary structures in coarse-grained alluvial rivers and their implications upon entrainment thresholds and sediment transport rates. The poster focuses on investigating the variability in grain and form scale sedimentary structuring across a number of field sites. Representative patches of three gravel bars on the Rivers Wharfe, Manifold and Afon Elan, UK, have been surveyed using a Leica HDS 3000 Terrestrial Laser Scanner. The resultant raw point-cloud data, recorded at a 4mm resolution, has been registered, filtered, and interpolated to produce highly detailed 2½D digital elevation models of gravel-bed surface topography. These surfaces have been analysed using a number of structural parameters including bed elevation probability distribution function statistics (standard deviation, skewness, kurtosis), semivariograms, and inclination indices. This research enhances our understanding of alluvial bed surface structures and lays the foundations for developing a more detailed understanding of their morphodynamics.
Kathiele Poppe, Jakeline; Matte, Carla Roberta; Olave de Freitas, Vitória; Fernandez-Lafuente, Roberto; Rodrigues, Rafael C; Záchia Ayub, Marco Antônio
2018-04-30
This work describes the continuous synthesis of ethyl esters via enzymatic catalysis on a packed-bed continuous reactor, using mixtures of immobilized lipases (combi-lipases) of Candida antarctica (CALB), Thermomyces lanuginosus (TLL), and Rhizomucor miehei (RML). The influence of the addition of glass beads to the reactor bed, evaluation of the use of different solvents, and flow rate on reaction conditions were studied. All experiments were conducted using the best combination of lipases according to the fatty acid composition of the waste oil (combi-lipase composition: 40% of TLL, 35% of CALB, and 25% of RML), and soybean oil (combi-lipase composition: 22.5% of TLL, 50% of CALB, and 27.5% of RML). The best general reaction conditions were found to be using tert-butanol as solvent, and the flow rate of 0.08 mL min -1 . The combi-lipase reactors operating at steady state for over 30 days (720 h), kept conversion yields of approximately 50%, with average productivity of 1.94 g ethyl esters g substrate -1 h -1 , regardless of the type of oil in use. This article is protected by copyright. All rights reserved. © 2018 American Institute of Chemical Engineers.
NASA Astrophysics Data System (ADS)
Malhotra, Chetan; Patil, Rajshree; Kausley, Shankar; Ahmad, Dilshad
2013-06-01
Rice-husk-ash is used as the base material for developing novel compositions to deal with the challenge of purifying drinking water in low-income households in India. For example, rice-husk-ash cast in a matrix of cement and pebbles can be formed into a filtration bed which can trap up to 95% of turbidity and bacteria present in water. This innovation was proliferated in villages across India as a do-it-yourself rural water filter. Another innovation involves embedding silver nanoparticles within the rice husk ash matrix to create a bactericidal filtration bed which has now been commercialized in India as a low-cost for-profit household water purifier. Other innovations include the impregnation of rice-husk-ash with iron hydroxide for the removal of arsenic from water and the impregnation of rice-husk ash with aluminum hydroxide for the removal of fluoride ions from water which together have the potential to benefit over 100 million people across India who are suffering from the health effects of drinking groundwater contaminated with arsenic and fluoride.
An Experimental Investigation of Sewage Sludge Gasification in a Fluidized Bed Reactor
Calvo, L. F.; García, A. I.; Otero, M.
2013-01-01
The gasification of sewage sludge was carried out in a simple atmospheric fluidized bed gasifier. Flow and fuel feed rate were adjusted for experimentally obtaining an air mass : fuel mass ratio (A/F) of 0.2 < A/F < 0.4. Fuel characterization, mass and power balances, produced gas composition, gas phase alkali and ammonia, tar concentration, agglomeration tendencies, and gas efficiencies were assessed. Although accumulation of material inside the reactor was a main problem, this was avoided by removing and adding bed media along gasification. This allowed improving the process heat transfer and, therefore, gasification efficiency. The heating value of the produced gas was 8.4 MJ/Nm, attaining a hot gas efficiency of 70% and a cold gas efficiency of 57%. PMID:24453863
Removal of oxides of nitrogen from gases in multi-stage coal combustion
Mollot, D.J.; Bonk, D.L.; Dowdy, T.E.
1998-01-13
Polluting NO{sub x} gas values are removed from off-gas of a multi-stage coal combustion process which includes an initial carbonizing reaction, firing of char from this reaction in a fluidized bed reactor, and burning of gases from the carbonizing and fluidized bed reactions in a topping combustor having a first, fuel-rich zone and a second, fuel-lean zone. The improvement by means of which NO{sub x} gases are removed is directed to introducing NO{sub x}-free oxidizing gas such as compressor air into the second, fuel-lean zone and completing combustion with this source of oxidizing gas. Excess air fed to the fluidized bed reactor is also controlled to obtain desired stoichiometry in the first, fuel-rich zone of the topping combustor. 2 figs.
Removal of oxides of nitrogen from gases in multi-stage coal combustion
Mollot, Darren J.; Bonk, Donald L.; Dowdy, Thomas E.
1998-01-01
Polluting NO.sub.x gas values are removed from off-gas of a multi-stage coal combustion process which includes an initial carbonizing reaction, firing of char from this reaction in a fluidized bed reactor, and burning of gases from the carbonizing and fluidized bed reactions in a topping combustor having a first, fuel-rich zone and a second, fuel-lean zone. The improvement by means of which NO.sub.x gases are removed is directed to introducing NO.sub.x -free oxidizing gas such as compressor air into the second, fuel-lean zone and completing combustion with this source of oxidizing gas. Excess air fed to the fluidized bed reactor is also controlled to obtain desired stoichiometry in the first, fuel-rich zone of the topping combustor.
Post-irradiation examinations of Li 4SiO 4 pebbles irradiated in the EXOTIC-7 experiment
NASA Astrophysics Data System (ADS)
Piazza, G.; Scaffidi-Argentina, F.; Werle, H.
2000-12-01
Extraction of tritium in ceramics-7 (EXOTIC-7) was the first in-pile test with 6Li-enriched (50%) lithium orthosilicate (Li 4SiO 4) pebbles and with DEMO representative Li-burnup. Post-irradiation examinations (PIEs) of the Li 4SiO 4 have been performed at the Forschungszentrum Karlsruhe (FZK) to investigate the tritium release kinetics, the effects of Li-burnup, of the contact with beryllium during irradiation and the changes in the mechanical stability of the pebbles due to irradiation. Based on these data one can conclude that neither the contact with beryllium nor a burnup up to 13% have a detrimental effect on the tritium release of Li 4SiO 4 pebbles, but at 18% Li-burnup the residence time is increased by about a factor of 3. The mechanical strength of both irradiated and unirradiated pebbles has been examined by means of crush tests. According to the PIE no significant changes in the mechanical stability of the pebbles have been observed.
High-Purity Silicon Seeds for Silane Pyrolysis
NASA Technical Reports Server (NTRS)
Hsu, G. C.; Rohatgi, N. K.; Morrison, A.
1985-01-01
Seed particles for fluidized-bed production of silicon made by new contamination-free, economical method. In new method, large particles of semiconductor-grade silicon fired at each other by high-speed streams of gas and thereby break up into particles of suitable size for fluidized bed. No foreign materials introduced, and leaching unnecessary. Method used to feed fluidized-bed reactor for continuous production of high-purity silicon.
The Formation of Terrestrial Planets from the Direct Accretion of Pebbles
NASA Astrophysics Data System (ADS)
Levison, Harold F.; Kretke, Katherine; Walsh, Kevin
2014-11-01
A radical new scenario has recently been suggested for the formation of giant planet cores that reports to solve this long-standing problem. This scenario, known as pebble accretion, envisions: 1) Planetesimals form directly from millimeter- to meter-sized objects (the pebbles) that are concentrated by turbulent eddies and then gravitationally collapse to form 100 — 1000 km objects (Cuzzi+ 2008, AJ 687, 1432; Johansen+ 2007, Nature 448, 1022). 2) These planetesimals quickly sweep up the remaining pebbles because their capture cross sections are significantly enhanced by aerodynamic drag (Lambrechts & Johansen 2012, A&A 544, A32; Ormel & Klahr (2010) A&A Volume 520, id.A43). Calculations show that a single 1000 km object embedded in a swarm of pebbles can grow to ~10 Earth-masses in less than 10,000 years. These short timescales present a problem in the terrestrial planet region because it took many tens of millions of years for the Earth to form (Touboul+ 2007, Nature 450, 1206). However, recent full-scale simulations of core formation have shown that the only way to grow a small number of giant planets in the Solar System is for the pebbles to form over a long period of time (Kretke & Levison 2014, AJ, submitted; Levison & Kretke in prep.) in a process we call 'Slow Pebble Accretion'. Thus, here we will present preliminary results of a study of slow pebble accretion in the terrestrial planet zone.
Hammarstrom, J.M.; Sibrell, P.L.; Belkin, H.E.
2003-01-01
Armoring of limestone is a common cause of failure in limestone-based acid-mine drainage (AMD) treatment systems. Limestone is the least expensive material available for acid neutralization, but is not typically recommended for highly acidic, Fe-rich waters due to armoring with Fe(III) oxyhydroxide coatings. A new AMD treatment technology that uses CO2 in a pulsed limestone bed reactor minimizes armor formation and enhances limestone reaction with AMD. Limestone was characterized before and after treatment with constant flow and with the new pulsed limestone bed process using AMD from an inactive coal mine in Pennsylvania (pH = 2.9, Fe = 150 mg/l, acidity = 1000 mg/l CaCO3). In constant flow experiments, limestone is completely armored with reddish-colored ochre within 48 h of contact in a fluidized bed reactor. Effluent pH initially increased from the inflow pH of 2.9 to over 7, but then decreased to 6 during operation. Limestone removed from a pulsed bed pilot plant is a mixture of unarmored, rounded and etched limestone grains and partially armored limestone and refractory mineral grains (dolomite, pyrite). The ???30% of the residual grains in the pulsed flow reactor that are armored have thicker (50- to 100-??m), more aluminous coatings and lack the gypsum rind that develops in the constant flow experiment. Aluminium-rich zones developed in the interior parts of armor rims in both the constant flow and pulsed limestone bed experiments in response to pH changes at the solid/solution interface. ?? 2003 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whiting, G.K.; Liu, Y.A.; Squires, A.M.
1986-10-01
Vibrofluidized microreactor systems have been developed for studies of unsteady-state Fischer-Tropsch synthesis. This development is aimed at preventing carbon deposition on a fused-iron catalyst in a novel reactor called the ''heat tray.'' This reactor involves a supernatant gas flowing over a shallow fluidized bed of catalyst particles. Three systems were built: (1) a vibrofluidized-bed microreactor system for obtaining baseline carbon deposition information under industrially important reaction conditions; (2) a sliding-plug vibrofluidized-bed microreactor system for rapid switching of feed gases in the F-T synthesis; and (3) a cold-flow microreactor model for studying the gas mixing characteristics of the sliding-plug vibrofluidized-bed microreactor.more » The results show that catalyst defluidization occurred under steady-state synthesis conditions below 395 C using a feed gas of H/sub 2//CO ratio of 2:1 or less. Above 395 C, the probability of hydrocarbon chain growth (..cap alpha.. < 0.50 to prevent accumulation of high-molecular-weight species that cause defluidization. Carbon deposition was rapid above 395 C when a feed gas of H/sub 2//CO ratio of 2:1 or less was used. Cold-flow microreactor model studies show that rapid (on the order of seconds), quantitative switching of feed gases over a vibrofluidized bed of catalyst could be achieved. Vibrofluidization of the catalyst bed induced little backmixing of feed gas over the investigated flow-rate range of 417 to 1650 actual mm/sup 3//s. Further, cold-flow microreactor model studies showed intense solid mixing when a bed of fused-iron catalyst (150 to 300 microns) was vibrofluidized at 24 cycles per second with a peak-to-peak amplitude of 4 mm. The development of the microreactor systems provided an easy way of accurately determining integral fluid-bed kinetics in a laboratory reactor. 408 refs., 156 figs., 27 tabs.« less
Arriaga, Sonia; Muñoz, Raúl; Hernández, Sergio; Guieysse, Benoit; Revah, Sergio
2006-04-01
Biofiltration of hydrophobic volatile pollutants is intrinsically limited by poor transfer of the pollutants from the gaseous to the liquid biotic phase, where biodegradation occurs. This study was conducted to evaluate the potential of silicone oil for enhancing the transport and subsequent biodegradation of hexane by the fungus Fusarium solani in various bioreactor configurations. Silicone oil was first selected among various solvents for its biocompatibility, nonbiodegradability, and good partitioning properties toward hexane. In batch tests, the use of silicone oil improved hexane specific biodegradation by approximately 60%. Subsequent biodegradation experiments were conducted in stirred-tank (1.5 L) and packed-bed (2.5 L) bioreactors fed with a constant gaseous hexane load of 180 g x m(-3)(reactor) x h(-1) and operated for 12 and 40 days, respectively. In the stirred reactors, the maximum hexane elimination capacity (EC) increased from 50 g x m(-3)(reactor) x h(-1) (removal efficiency, RE of 28%) in the control not supplied with silicone oil to 120 g x m(-3)(reactor) x h(-1) in the biphasic system (67% RE). In the packed-bed bioreactors, the maximum EC ranged from 110 (50% RE) to 180 g x m(-3)(reactor) x h(-1) (> 90% RE) in the control and two-liquid-phase systems, respectively. These results represent, to the best of our knowledge, the first reported case of fungi use in a two-liquid-phase bioreactor and the highest hexane removal capacities so far reported in biofilters.
NASA Astrophysics Data System (ADS)
Ben-Mansour, R.; Li, H.; Habib, M. A.; Hossain, M. M.
2018-02-01
Global warming has become a worldwide concern due to its severe impacts and consequences on the climate system and ecosystem. As a promising technology proving good carbon capture ability with low-efficiency penalty, Chemical Looping Combustion technology has risen much interest. However, the radiative heat transfer was hardly studied, nor its effects were clearly declared. The present work provides a mathematical model for radiative heat transfer within fuel reactor of chemical looping combustion systems and conducts a numerical research on the effects of boundary conditions, solid particles reflectivity, particles size, and the operating temperature. The results indicate that radiative heat transfer has very limited impacts on the flow pattern. Meanwhile, the temperature variations in the static bed region (where solid particles are dense) brought by radiation are also insignificant. However, the effects of radiation on temperature profiles within free bed region (where solid particles are very sparse) are obvious, especially when convective-radiative (mixed) boundary condition is applied on fuel reactor walls. Smaller oxygen carrier particle size results in larger absorption & scattering coefficients. The consideration of radiative heat transfer within fuel reactor increases the temperature gradient within free bed region. On the other hand, the conversion performance of fuel is nearly not affected by radiation heat transfer within fuel reactor. However, the consideration of radiative heat transfer enhances the heat transfer between the gas phase and solid phase, especially when the operating temperature is low.
Das, Dipa; Samal, Debi Prasad; Meikap, Bhim C
2016-07-28
To mitigate the emission of carbon dioxide (CO2), we have developed and designed a four-stage fluidized bed reactor. There is a counter current exchange between solid adsorbent and gas flow. In this present investigation diethanol amine (DEA) impregnated activated carbon made from green coconut shell was used as adsorbent. This type of adsorbent not only adsorbs CO2 due to the presence of pore but also chemically reacts with CO2 and form secondary zwitterions. Sampling and analysis of CO2 was performed using Orsat apparatus. The effect of initial CO2 concentration, gas velocity, solid rate, weir height etc. on removal efficiency of CO2 have been investigated and presented. The percentage removal of CO2 has been found close to 80% under low gas flow rate (0.188 m/s), high solid flow rate (4.12 kg/h) and weir height of 50 mm. From this result it has been found out that multistage fluidized bed reactor may be a suitable equipment for removal of CO2 from flue gas.
Co-pyrolysis behaviors of saw dust and Shenfu coal in drop tube furnace and fixed bed reactor.
Li, Shuaidan; Chen, Xueli; Wang, Li; Liu, Aibin; Yu, Guangsuo
2013-11-01
Co-pyrolysis behaviors of saw dust (SD) and Shenfu bituminous coal (SF) were studied in a drop tube furnace and a fixed bed reactor at different temperatures respectively. Six different biomass/coal ratios (B:C) were used. Compared the results with the calculated value obtained by the additional behavior, CO volume yields were lower while H2, CH4, CO2, volume yields were higher. Blend char yields had a good agreement with the calculated values, and their structures remained similar with SD and SF char's. Synergy effect occurred in gaseous phase, which was mainly caused by the secondary reactions. Compared the blend char yields in the drop tube furnace with those in the fixed bed reactor, the results showed the contacting way of biomass and coal particles had little influence on char yield in co-pyrolysis process. The reactivity index of blend char achieved the minimum at B:C=40:60 and the maximum at B:C=80:20. Copyright © 2013 Elsevier Ltd. All rights reserved.
Mu, Lin; Chen, Jianbiao; Yao, Pikai; Zhou, Dapeng; Zhao, Liang; Yin, Hongchao
2016-12-01
Co-pyrolysis characteristics of petrochemical wastewater sludge and Huolinhe lignite were investigated using thermogravimetric analyzer and packed-bed reactor coupled with Fourier transform infrared spectrometer and gas chromatography. The pyrolysis characteristics of the blends at various sludge blending ratios were compared with those of the individual materials. Thermogravimetric experiments showed that the interactions between the blends were beneficial to generate more residues. In packed-bed reactor, synergetic effects promoted the release of gas products and left less liquid and solid products than those calculated by additive manner. Fourier transform infrared spectrometer analysis showed that main functional groups in chars gradually disappeared with pyrolysis temperatures increasing, and H 2 O, CH 4 , CO, and CO 2 appeared in volatiles during pyrolysis. Gas compositions analysis indicated that, the yields of H 2 and CO clearly increased as the pyrolysis temperature and sludge blending ratio increasing, while the changes of CH 4 and CO 2 yields were relatively complex. Copyright © 2016 Elsevier Ltd. All rights reserved.
[Kinetics of catalytic wet air oxidation of phenol in trickle bed reactor].
Li, Guang-ming; Zhao, Jian-fu; Wang, Hua; Zhao, Xiu-hua; Zhou, Yang-yuan
2004-05-01
By using a trickle bed reactor which was designed by the authors, the catalytic wet air oxidation reaction of phenol on CuO/gamma-Al2O3 catalyst was studied. The results showed that in mild operation conditions (at temperature of 180 degrees C, pressure of 3 MPa, liquid feed rate of 1.668 L x h(-1) and oxygen feed rate of 160 L x h(-1)), the removal of phenol can be over 90%. The curve of phenol conversion is similar to "S" like autocatalytic reaction, and is accordance with chain reaction of free radical. The kinetic model of pseudo homogenous reactor fits the catalytic wet air oxidation reaction of phenol. The effects of initial concentration of phenol, liquid feed rate and temperature for reaction also were investigated.
Biological hydrogen production by Clostridium acetobutylicum in an unsaturated flow reactor.
Zhang, Husen; Bruns, Mary Ann; Logan, Bruce E
2006-02-01
A mesophilic unsaturated flow (trickle bed) reactor was designed and tested for H2 production via fermentation of glucose. The reactor consisted of a column packed with glass beads and inoculated with a pure culture (Clostridium acetobutylicum ATCC 824). A defined medium containing glucose was fed at a flow rate of 1.6 mL/min (0.096 L/h) into the capped reactor, producing a hydraulic retention time of 2.1 min. Gas-phase H2 concentrations were constant, averaging 74 +/- 3% for all conditions tested. H2 production rates increased from 89 to 220 mL/hL of reactor when influent glucose concentrations were varied from 1.0 to 10.5 g/L. Specific H2 production rate ranged from 680 to 1270 mL/g glucose per liter of reactor (total volume). The H2 yield was 15-27%, based on a theoretical limit by fermentation of 4 moles of H2 from 1 mole of glucose. The major fermentation by-products in the liquid effluent were acetate and butyrate. The reactor rapidly (within 60-72 h) became clogged with biomass, requiring manual cleaning of the system. In order to make long-term operation of the reactor feasible, biofilm accumulation in the reactor will need to be controlled through some process such as backwashing. These tests using an unsaturated flow reactor demonstrate the feasibility of the process to produce high H2 gas concentrations in a trickle-bed type of reactor. A likely application of this reactor technology could be H2 gas recovery from pre-treatment of high carbohydrate-containing wastewaters.
East, Amy E.; Pess, George R.; Bountry, Jennifer A.; Magirl, Christopher S.; Ritchie, Andrew C.; Logan, Joshua; Randle, Timothy J.; Mastin, Mark C.; Minear, Justin T.; Duda, Jeffrey J.; Liermann, Martin C.; McHenry, Michael L.; Beechie, Timothy J.; Shafroth, Patrick B.
2015-01-01
As 10.5 million t (7.1 million m3) of sediment was released from two former reservoirs, downstream dispersion of a sediment wave caused widespread bed aggradation of ~ 1 m (greater where pools filled), changed the river from pool–riffle to braided morphology, and decreased the slope of the lowermost river. The newly deposited sediment, which was finer than most of the pre-dam-removal bed, formed new bars (largely pebble, granule, and sand material), prompting aggradational channel avulsion that increased the channel braiding index by almost 50%. As a result of mainstem bed aggradation, floodplain channels received flow and accumulated new sediment even during low to moderate flow conditions. The river system showed a two- to tenfold greater geomorphic response to dam removal (in terms of bed elevation change magnitude) than it had to a 40-year flood event four years before dam removal. Two years after dam removal began, as the river had started to incise through deposits of the initial sediment wave, ~ 1.2 million t of new sediment (~ 10% of the amount released from the two reservoirs) was stored along 18 river km of the mainstem channel and 25 km of floodplain channels. The Elwha River thus was able to transport most of the released sediment to the river mouth. The geomorphic alterations and changing bed sediment grain size along the Elwha River have important ecological implications, affecting aquatic habitat structure, benthic fauna, salmonid fish spawning and rearing potential, and riparian vegetation. The response of the river to dam removal represents a unique opportunity to observe and quantify fundamental geomorphic processes associated with a massive sediment influx, and also provides important lessons for future river-restoration endeavors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toyne, C.D.
1986-04-01
A 2900-m thick Campanian-Maestrichtian(.) turbidite sequence in Upper Mono Creek Canyon is interpreted to be a progradational submarine fan complex comprised of outer fan, middle fan, inner fan, and slope facies. The basal 600 m of the section consists of thinly bedded, laterally continuous fine sandstones, siltstones, and mudstones (mainly Mutti and Ricci Lucci facies D), interpreted to be outer fan interlobe and lobe-fringe deposits. These are punctuated by infrequent medium to very thickly bedded, flat-based, fine to coarse sandstones (facies C and B), which commonly coarsen and thicken upward, and are interpreted to be depositional lobes. Overlying these depositsmore » are approximately 1400 m of middle fan deposits composed of frequent lenticular, commonly channelized and amalgamated, thickly bedded, fine to very coarse sandstones (facies C and B) organized in fining- and thinning-upward sequences, interpreted to be braided-channel deposits. These alternate with less common nonchannelized coarsening- and thickening-upward sequences suggestive of lobe-apical cycles. These multistory sand deposits are nested within thick intervals of fine sandstones, siltstones, and mudstones (facies C and D), interpreted to be levee, crevasse-splay, and interchannel deposits. Interfingered with and overlying these deposits are approximately 500 m of fining- and thinning-upward or noncyclic, erosionally based, commonly amalgamated, very thickly bedded, medium to very coarse sandstones, pebbly sandstones, and conglomerates (facies A and B), interpreted to be inner fan deposits. Intercalated within this facies, infrequent, laterally discontinuous, thin to thickly bedded, fine to coarse sandstones, siltstones, and mudstones exist, interpreted to be interchannel, levee, and possibly channel-fill deposits.« less
Additive Manufacturing of Catalyst Substrates for Steam-Methane Reforming
NASA Astrophysics Data System (ADS)
Kramer, Michelle; McKelvie, Millie; Watson, Matthew
2018-01-01
Steam-methane reforming is a highly endothermic reaction, which is carried out at temperatures up to 1100 °C and pressures up to 3000 kPa, typically with a Ni-based catalyst distributed over a substrate of discrete alumina pellets or beads. Standard pellet geometries (spheres, hollow cylinders) limit the degree of mass transfer between gaseous reactants and catalyst. Further, heat is supplied to the exterior of the reactor wall, and heat transfer is limited due to the nature of point contacts between the reactor wall and the substrate pellets. This limits the degree to which the process can be intensified, as well as limiting the diameter of the reactor wall. Additive manufacturing now gives us the capability to design structures with tailored heat and mass transfer properties, not only within the packed bed of the reactor, but also at the interface between the reactor wall and the packed bed. In this work, the use of additive manufacturing to produce monolithic-structured catalyst substrate models, made from acrylonitrile-butadiene-styrene, with enhanced conductive heat transfer is described. By integrating the reactor wall into the catalyst substrate structure, the effective thermal conductivity increased by 34% from 0.122 to 0.164 W/(m K).
Electrical Capacitance Volume Tomography for the Packed Bed Reactor ISS Flight Experiment
NASA Technical Reports Server (NTRS)
Marashdeh, Qussai; Motil, Brian; Wang, Aining; Liang-Shih, Fan
2013-01-01
Fixed packed bed reactors are compact, require minimum power and maintenance to operate, and are highly reliable. These features make this technology a highly desirable unit operation for long duration life support systems in space. NASA is developing an ISS experiment to address this technology with particular focus on water reclamation and air revitalization. Earlier research and development efforts funded by NASA have resulted in two hydrodynamic models which require validation with appropriate instrumentation in an extended microgravity environment. To validate these models, the instantaneous distribution of the gas and liquid phases must be measured.Electrical Capacitance Volume Tomography (ECVT) is a non-invasive imaging technology recently developed for multi-phase flow applications. It is based on distributing flexible capacitance plates on the peripheral of a flow column and collecting real-time measurements of inter-electrode capacitances. Capacitance measurements here are directly related to dielectric constant distribution, a physical property that is also related to material distribution in the imaging domain. Reconstruction algorithms are employed to map volume images of dielectric distribution in the imaging domain, which is in turn related to phase distribution. ECVT is suitable for imaging interacting materials of different dielectric constants, typical in multi-phase flow systems. ECVT is being used extensively for measuring flow variables in various gas-liquid and gas-solid flow systems. Recent application of ECVT include flows in risers and exit regions of circulating fluidized beds, gas-liquid and gas-solid bubble columns, trickle beds, and slurry bubble columns. ECVT is also used to validate flow models and CFD simulations. The technology is uniquely qualified for imaging phase concentrations in packed bed reactors for the ISS flight experiments as it exhibits favorable features of compact size, low profile sensors, high imaging speed, and flexibility to fit around columns of various shapes and sizes. ECVT is also safer than other commonly used imaging modalities as it operates in the range of low frequencies (1 MHz) and does not radiate radioactive energy. In this effort, ECVT is being used to image flow parameters in a packed bed reactor for an ISS flight experiment.
Gong, Lingxiao; Jun, Li; Yang, Qing; Wang, Shuying; Ma, Bin; Peng, Yongzhen
2012-09-01
In this work, a novel integrated reactor incorporating anoxic fixed bed biofilm reactor (FBBR), oxic moving bed biofilm reactor (MBBR) and settler sequentially was proposed for nitrogen removal from rural domestic sewage. For purposes of achieving high efficiency, low costs and easy maintenance, biomass characteristics and simultaneous nitrification-denitrification (SND) were investigated under long sludge retention time during a 149-day period. The results showed that enhanced SND with proportions of 37.7-42.2% tapped the reactor potentials of efficiency and economy both, despite of C/N ratio of 2.5-4.0 in influent. TN was removed averagely by 69.3% at least, even under internal recycling ratio of 200% and less proportions of biomass assimilation (<3%). Consequently, lower internal recycle and intermittent wasted sludge discharge were feasible to save costs, together with cancellations of sludge return and anoxic stir. Furthermore, biomass with low observed heterotrophic yields (0.053 ± 0.035 g VSS/g COD) and VSS/TSS ratio (<0.55) in MBBR, simplified wasted sludge disposal. Copyright © 2012 Elsevier Ltd. All rights reserved.
Barros, Aruana Rocha; Adorno, Maria Angela Tallarico; Sakamoto, Isabel Kimiko; Maintinguer, Sandra Imaculada; Varesche, Maria Bernadete Amâncio; Silva, Edson Luiz
2011-02-01
This study evaluated two different support materials (ground tire and polyethylene terephthalate [PET]) for biohydrogen production in an anaerobic fluidized bed reactor (AFBR) treating synthetic wastewater containing glucose (4000 mg L(-1)). The AFBR, which contained either ground tire (R1) or PET (R2) as support materials, were inoculated with thermally pretreated anaerobic sludge and operated at a temperature of 30°C. The AFBR were operated with a range of hydraulic retention times (HRT) between 1 and 8h. The reactor R1 operating with a HRT of 2h showed better performance than reactor R2, reaching a maximum hydrogen yield of 2.25 mol H(2)mol(-1) glucose with 1.3mg of biomass (as the total volatile solids) attached to each gram of ground tire. Subsequent 16S rRNA gene sequencing and phylogenetic analysis of particle samples revealed that reactor R1 favored the presence of hydrogen-producing bacteria such as Clostridium, Bacillus, and Enterobacter. Copyright © 2010 Elsevier Ltd. All rights reserved.
Nutrients removal in hybrid fluidised bed bioreactors operated with aeration cycles.
Martin, Martin; Enríquez, L López; Fernández-Polanco, M; Villaverde, S; Garcia-Encina, P A
2007-01-01
Abstract Two hybrid fluidised bed reactors filled with sepiolite and granular activated carbon (GAC) were operated with short cycled aeration for removing organic matter, total nitrogen and phosphorous, respectively. Both reactors were continuously operated with synthetic and/or industrial wastewater containing 350-500 mg COD/L, 110-130 mg NKT/L, 90-100 mg NH3-N/L and 12-15 mg P/L for 8 months. The reactor filled with sepiolite, treating only synthetic wastewater, removed COD, ammonia, total nitrogen and phosphorous up to 88, 91, 55 and 80% with a hydraulic retention time (HRT) of 10 h, respectively. These efficiencies correspond to removal rates of 0.95 kgCODm(-3)d(-1) and 0.16 kg total N m(-3)d(-1). The reactor filled with GAC was operated for 4 months with synthetic wastewater and 4 months with industrial wastewater, removing 98% of COD, 96% of ammonia, and 66% of total nitrogen, with an HRT of 13.6 h. No significant phosphorous removing activity was observed in this reactor. Microbial communities growing with both reactors were followed using polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) techniques. The microbial fingerprints, i.e. DGGE profiles, indicated that biological communities in both reactors were stable along the operational period even when the operating conditions were changed.
Cyclic process for producing methane in a tubular reactor with effective heat removal
Frost, Albert C.; Yang, Chang-Lee
1986-01-01
Carbon monoxide-containing gas streams are converted to methane by a cyclic, essentially two-step process in which said carbon monoxide is disproportionated to form carbon dioxide and active surface carbon deposited on the surface of a catalyst, and said carbon is reacted with steam to form product methane and by-product carbon dioxide. The exothermic heat of reaction generated in each step is effectively removed during each complete cycle so as to avoid a build up of heat from cycle-to-cycle, with particularly advantageous techniques being employed for fixed bed, tubular and fluidized bed reactor operations.
Pyrolysis reactor and fluidized bed combustion chamber
Green, Norman W.
1981-01-06
A solid carbonaceous material is pyrolyzed in a descending flow pyrolysis reactor in the presence of a particulate source of heat to yield a particulate carbon containing solid residue. The particulate source of heat is obtained by educting with a gaseous source of oxygen the particulate carbon containing solid residue from a fluidized bed into a first combustion zone coupled to a second combustion zone. A source of oxygen is introduced into the second combustion zone to oxidize carbon monoxide formed in the first combustion zone to heat the solid residue to the temperature of the particulate source of heat.
Penn State geoPebble system: Design,Implementation, and Initial Results
NASA Astrophysics Data System (ADS)
Urbina, J. V.; Anandakrishnan, S.; Bilen, S. G.; Fleishman, A.; Burkett, P.
2014-12-01
The Penn State geoPebble system is a new network of wirelessly interconnected seismic and GPS sensor nodes with flexible architecture. This network will be used for studies of ice sheets in Antarctica and Greenland, as well as to investigate mountain glaciers. The network will consist of ˜150 geoPebbles that can be deployed in a user-defined spatial geometry. We present our design methodology, which has enabled us to develop these state-of- the art sensors using commercial-off-the-shelf hardware combined with custom-designed hardware and software. Each geoPebble is a self- contained, wirelessly connected sensor for collecting seismic measurements and position information. Key elements of each node encompasses a three-component seismic recorder, which includes an amplifier, filter, and 24- bit analog-to-digital converter that can sample up to 10 kHz. Each unit also includes a microphone channel to record the ground-coupled airwave. The timing for each node is available from GPS measurements and a local precision oscillator that is conditioned by the GPS timing pulses. In addition, we record the carrier-phase measurement of the L1 GPS signal in order to determine location at sub-decimeter accuracy (relative to other geoPebbles within a few kilometers radius). Each geoPebble includes 16 GB of solid-state storage, wireless communications capability to a central supervisory unit, and auxiliary measurements capability (including tilt from accelerometers, absolute orientation from magnetometers and temperature). A novel aspect of the geoPebble is a wireless charging system for the internal battery (using inductive coupling techniques). The geoPebbles include all the sensors (geophones, GPS, microphone), communications (WiFi), and power (battery and charging) internally, so the geoPebble system can operate without any cabling connections (though we do provide an external connector so that different geophones can be used). We report initial field-deployment results and current efforts to test this new instrument system and how we are addressing the challenges imposed by the extreme weather conditions on the Antarctic continent. After fully validating its operational conditions, the geoPebble system will be available for NSF-sponsored glaciology research projects.
Splechtna, Barbara; Petzelbauer, Inge; Kuhn, Bernhard; Kulbe, Klaus D; Nidetzky, Bernd
2002-01-01
Recombinant beta-glycosidase CelB from the hyperthermophilic archaeon Pyrococcusfuriosus was produced through expression of the plasmid-encoded gene in Escherichia coli. Bioreactor cultivations of E. coli in the presence of the inductor isopropyl-1-thio-beta-D-galactoside (0.1 mM) gave approx 100,000 U of enzyme activity/L of culture medium after 8 h of growth. A technical-grade enzyme for the hydrolysis of lactose was prepared by precipitating the mesophilic protein at 80 degrees C. A hollow-fiber membrane reactor was developed, and its performance during continuous processing of ultrahigh temperature-treated (UHT) skim milk at 70 degrees C was analyzed regarding long-term stability, productivity, and diffusional limitation thereof. CelB was covalently attached onto Eupergit C in yields of 80%, and a packed-bed immobilized enzyme reactor was used for the continuous hydrolysis of lactose in UHT skim milk at 70 degrees C. The packed-bed reactor was approximately 10-fold more stable and gave about the same productivity at 80% substrate conversion as the hollow-fiber reactor at 60% substrate conversion. The marked difference in the stability of free and immobilized CelB seems to reflect mainly binding of the soluble enzyme to the membrane surface of the hollow-fiber module. Under these bound conditions, CelB is essentially inactive. CelB is essentially inactive. Microbial contamination of the reactors did not occur during reaction times of up to 39 d, given that UHT skim milk and not pasteurized skim milk was used as the substrate.
High rate manure supernatant digestion.
Bergland, Wenche Hennie; Dinamarca, Carlos; Toradzadegan, Mehrdad; Nordgård, Anna Synnøve Røstad; Bakke, Ingrid; Bakke, Rune
2015-06-01
The study shows that high rate anaerobic digestion may be an efficient way to obtain sustainable energy recovery from slurries such as pig manure. High process capacity and robustness to 5% daily load increases are observed in the 370 mL sludge bed AD reactors investigated. The supernatant from partly settled, stored pig manure was fed at rates giving hydraulic retention times, HRT, gradually decreased from 42 to 1.7 h imposing a maximum organic load of 400 g COD L(-1) reactor d(-1). The reactors reached a biogas production rate of 97 g COD L(-1) reactor d(-1) at the highest load at which process stress signs were apparent. The yield was ∼0.47 g COD methane g(-1) CODT feed at HRT above 17 h, gradually decreasing to 0.24 at the lowest HRT (0.166 NL CH4 g(-1) CODT feed decreasing to 0.086). Reactor pH was innately stable at 8.0 ± 0.1 at all HRTs with alkalinity between 9 and 11 g L(-1). The first stress symptom occurred as reduced methane yield when HRT dropped below 17 h. When HRT dropped below 4 h the propionate removal stopped. The yield from acetate removal was constant at 0.17 g COD acetate removed per g CODT substrate. This robust methanogenesis implies that pig manure supernatant, and probably other similar slurries, can be digested for methane production in compact and effective sludge bed reactors. Denaturing gradient gel electrophoresis (DGGE) analysis indicated a relatively fast adaptation of the microbial communities to manure and implies that non-adapted granular sludge can be used to start such sludge bed bioreactors. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Fabrication and characterization of crushed titanium-beryllium intermetallic compounds
NASA Astrophysics Data System (ADS)
Kim, Jae-Hwan; Nakamichi, Masaru
2018-01-01
To develop a technique for the mass production of beryllide pebbles, a crushing method for the granulation of beryllides was used in this study. Two types of crushed Be12Ti pebbles were prepared using mortar-ground (MG) and planetary-ball-milled (PM) powders. A granulation yield of approximately 50 wt.% with sizes in the range of 0.85-1.18 mm was achieved. Scanning electron microscopy (SEM) images revealed that the MG pebbles exhibited larger porosity because the larger size of the powder resulted in lower density with higher porosity. However, the considerably larger fraction of fine pores in the PM pebbles resulted in an increased Brunauer-Emmett-Teller (BET) specific surface area, as clearly demonstrated by high-magnification SEM images. To evaluate the reactivity with water vapor, the weight gain and H2 generation rate were also investigated. The results suggested that the PM pebbles exhibited notably lower reactivity, weight gain, and H2 generation rate, which may be due to the dramatically decreased BET specific surface. The fine pores were filled with stable oxides followed by a significant decrease of the surface area during oxidation. Optimization was performed to improve the circularity of the crushed pebbles. Grinding tests using planetary milling without balls for different times clearly demonstrated that the circularity improved (with an estimated value of 0.8) by cutting and polishing the sharp edges; however, long-duration milling for 99 h resulted in attachment of the polished powders to the pebble surface, leading to surface color variation of the crushed pebbles.
Acetone-butanol-ethanol (ABE) fermentation in an immobilized cell trickle bed reactor.
Park, C H; Okos, M R; Wankat, P C
1989-06-05
Acetone-butanol-ethanol (ABE) fermentation was successfully carried out in an immobilized cell trickle bed reactor. The reactor was composed of two serial columns packed with Clostridium acetobutylicum ATCC 824 entrapped on the surface of natural sponge segments at a cell loading in the range of 2.03-5.56 g dry cells/g sponge. The average cell loading was 3.58 g dry cells/g sponge. Batch experiments indicated that a critical pH above 4.2 is necessary for the initiation of cell growth. One of the media used during continuous experiments consisted of a salt mixture alone and the other a nutrient medium containing a salt mixture with yeast extract and peptone. Effluent pH was controlled by supplying various fractions of the two different types of media. A nutrient medium fraction above 0.6 was crucial for successful fermentation in a trickle bed reactor. The nutrient medium fraction is the ratio of the volume of the nutrient medium to the total volume of nutrient plus salt medium. Supplying nutrient medium to both columns continuously was an effective way to meet both pH and nutrient requirement. A 257-mL reactor could ferment 45 g/L glucose from an initial concentration of 60 g/L glucose at a rate of 70 mL/h. Butanol, acetone, and ethanol concentrations were 8.82, 5.22, and 1.45 g/L, respectively, with a butanol and total solvent yield of 19.4 and 34.1 wt %. Solvent productivity in an immobilized cell trickle bed reactor was 4.2 g/L h, which was 10 times higher than that obtained in a batch fermentation using free cells and 2.76 times higher than that of an immobilized CSTR. If the nutrient medium fraction was below 0.6 and the pH was below 4.2, the system degenerated. Oxygen also contributed to the system degeneration. Upon degeneration, glucose consumption and solvent yield decreased to 30.9 g/L and 23.0 wt %, respectively. The yield of total liquid product (40.0 wt %) and butanol selectivity (60.0 wt %) remained almost constant. Once the cells were degenerated, they could not be recovered.
Process for the preparation of cumene
Smith, Jr., Lawrence A.; Arganbright, Robert P.; Hearn, Dennis
1991-01-01
Cumene is produced in a catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 50.degree. C. to 500.degree. C., using as the catalyst a mole sieve characterized as acidic by feeding propylene to the catalyst bed while benzene is conveniently added through the reflux to result in a molar excess present in the reactor to that required to react with propylene, thereby reacting substantially all of the propylene and recovering benzene as the principal overhead and cumene and diisopropyl benzene in the bottoms. The bottoms are fractionated, the cumene recovered and the bottoms are contacted with benzene in the liquid phase in a fixed bed straight pass reactor under conditions to transalkylate the benzene thereby converting most of the diisopropyl benzene to cumene which is again separated and recovered.
Process for the preparation of cumene
Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.
1991-10-08
Cumene is produced in a catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 50 C to 500 C, using as the catalyst a molecular sieve characterized as acidic by feeding propylene to the catalyst bed while benzene is conveniently added through the reflux to result in a molar excess present in the reactor to that required to react with propylene, thereby reacting substantially all of the propylene and recovering benzene as the principal overhead and cumene and diisopropyl benzene in the bottoms. The bottoms are fractionated, the cumene recovered and the bottoms are contacted with benzene in the liquid phase in a fixed bed straight pass reactor under conditions to transalkylate the benzene thereby converting most of the diisopropyl benzene to cumene which is again separated and recovered. 2 figures.
Vlyssides, Apostolos G; Mai, Sofia T H; Barampouti, Elli Maria P; Loukakis, Haralampos N
2009-07-01
To estimate the influence of gravel mesh (fine and coarse) and vegetation (Phragmites and Arundo) on the efficiency of a reed bed, a pilot plant was included after the wastewater treatment plant of a cosmetic industry treatment system according to a 22 factorial experimental design. The maximum biochemical oxygen demand (BOD5), chemical oxygen demand (COD) and total phosphorous (TP) reduction was observed in the reactor, where Phragmites and fine gravel were used. In the reactor with Phragmites and coarse gravel, the maximum total Kjeldahl nitrogen (TKN) and total suspended solids (TSS) reduction was observed. The maximum total solids reduction was measured in the reed bed, which was filled with Arundo and coarse gravel. Conclusively, the treatment of a cosmetic industry's wastewater by reed beds as a tertiary treatment method is quite effective.
Process for the preparation of ethyl benzene
Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.
1995-12-19
Ethyl benzene is produced in a catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 50 C to 300 C, using as the catalyst a mole sieve characterized as acidic by feeding ethylene to the catalyst bed while benzene is conveniently added through the reflux to result in a molar excess present in the reactor to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene and diethyl benzene in the bottoms. The bottoms are fractionated, the ethyl benzene recovered and the bottoms are contacted with benzene in the liquid phase in a fixed bed straight pass reactor under conditions to transalkylate the benzene thereby converting most of the diethyl benzene to ethyl benzene which is again separated and recovered. 2 figs.
Process for the preparation of ethyl benzene
Smith, Jr., Lawrence A.; Arganbright, Robert P.; Hearn, Dennis
1995-01-01
Ethyl benzene is produced in a catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 50.degree. C. to 300.degree. C., using as the catalyst a mole sieve characterized as acidic by feeding ethylene to the catalyst bed while benzene is conveniently added through the reflux to result in a molar excess present in the reactor to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene and diethyl benzene in the bottoms. The bottoms are fractionated, the ethyl benzene recovered and the bottoms are contacted with benzene in the liquid phase in a fixed bed straight pass reactor under conditions to transalkylate the benzene thereby converting most of the diethyl benzene to ethyl benzene which is again separated and recovered.
Effect of shear stress on cell cultures and other reactor problems
NASA Technical Reports Server (NTRS)
Schleier, H.
1981-01-01
Anchorage dependent cell cultures in fluidized beds are tested. Feasibility calculations indicate the allowed parameters and estimate the shear stresses therein. In addition, the diffusion equation with first order reaction is solved for the spherical shell (double bubble) reactor with various constraints.
Delnavaz, M; Ayati, B; Ganjidoust, H
2010-07-15
In this study, the results of 1-year efficiency forecasting using artificial neural networks (ANN) models of a moving bed biofilm reactor (MBBR) for a toxic and hard biodegradable aniline removal were investigated. The reactor was operated in an aerobic batch and continuous condition with 50% by volume which was filled with light expanded clay aggregate (LECA) as carrier. Efficiency evaluation of the reactors was obtained at different retention time (RT) of 8, 24, 48 and 72 h with an influent COD from 100 to 4000 mg/L. Exploratory data analysis was used to detect relationships between the data and dependent evaluated one. The appropriate architecture of the neural network models was determined using several steps of training and testing of the models. The ANN-based models were found to provide an efficient and a robust tool in predicting MBBR performance for treating aromatic amine compounds. 2010 Elsevier B.V. All rights reserved.
Malovanyy, Andriy; Yang, Jingjing; Trela, Jozef; Plaza, Elzbieta
2015-03-01
In this study the combination of an upflow anaerobic sludge blanket (UASB) reactor and a deammonification moving bed biofilm reactor (MBBR) for mainstream wastewater treatment was tested. The competition between aerobic ammonium oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) was studied during a 5months period of transition from reject water to mainstream wastewater followed by a 16months period of mainstream wastewater treatment. The decrease of influent ammonium concentration led to a wash-out of suspended biomass which had a major contribution to nitrite production. Influence of a dissolved oxygen concentration and a transient anoxia mechanism of NOB suppression were studied. It was shown that anoxic phase duration has no effect on NOB metabolism recovery and oxygen diffusion rather than affinities of AOB and NOB to oxygen determine the rate of nitrogen conversion in a biofilm system. Anammox activity remained on the level comparable to reject water treatment systems. Copyright © 2014 Elsevier Ltd. All rights reserved.
Leachate flush strategies for managing volatile fatty acids accumulation in leach-bed reactors.
Riggio, S; Torrijos, M; Vives, G; Esposito, G; van Hullebusch, E D; Steyer, J P; Escudié, R
2017-05-01
In anaerobic leach-bed reactors (LBRs) co-digesting an easily- and a slowly-degradable substrate, the importance of the leachate flush both on extracting volatile fatty acids (VFAs) at the beginning of newly-started batches and on their consumption in mature reactors was tested. Regarding VFA extraction three leachate flush-rate conditions were studied: 0.5, 1 and 2Lkg -1 TSd -1 . Results showed that increasing the leachate flush-rate during the acidification phase is essential to increase degradation kinetics. After this initial phase, leachate injection is less important and the flush-rate could be reduced. The injection in mature reactors of leachate with an acetic acid concentration of 5 or 10gL -1 showed that for an optimized VFA consumption in LBRs, VFAs should be provided straight after the methane production peak in order to profit from a higher methanogenic activity, and every 6-7h to maintain a high biogas production rate. Copyright © 2017 Elsevier Ltd. All rights reserved.
Duan, Liang; Jiang, Wei; Song, Yonghui; Xia, Siqing; Hermanowicz, Slawomir W
2013-11-01
The characteristics of extracellular polymeric substances (EPS) and soluble microbial products (SMP) in conventional membrane bioreactor (MBR) and in moving bed biofilm reactor-membrane bioreactors (MBBR-MBR) were investigated in long-term (170 days) experiments. The results showed that all reactors had high removal efficiency of ammonium and COD, despite very different fouling conditions. The MBBR-MBR with media fill ratio of 26.7% had much lower total membrane resistance and no obvious fouling were detected during the whole operation. In contrast, MBR and MBBR-MBR with lower and higher media fill experienced more significant fouling. Low fouling at optimum fill ratio may be due to the higher percentage of small molecular size (<1 kDa) and lower percentage of large molecular size (>100 kDa) of EPS and SMP in the reactor. The composition of EPS and SMP affected fouling due to different O-H bonds in hydroxyl functional groups, and less polysaccharides and lipids. Copyright © 2013 Elsevier Ltd. All rights reserved.
Simultaneous organic nitrogen and sulfate removal in an anaerobic GAC fluidised bed reactor.
Fdz-Polanco, F; Fdz-Polanco, M; Fernandez, N; Urueña, M A; García, P A; Villaverde, S
2001-01-01
A granular activated carbon (GAC) anaerobic fluidised bed reactor treating vinasse from an ethanol distillery of sugar beet molasses was operated for 250 days under three different organic loading rates. The reactor showed good performance in terms of organic matter removal and methane production but an anomalous behaviour in terms of unusual high concentrations of molecular nitrogen and low concentration of hydrogen sulphide in the biogas. The analysis of the different nitrogenous and sulphur compounds and the mass balances of these species in the liquid and gas phases clearly indicated an uncommon evolution of nitrogen and sulphur in the reactor. Up to 55% of the TKN and up to 80% of the sulphur disappear in the liquid phase. This is the opposite to any previously reported results in the bibliography. The new postulated anaerobic process of ammonia and sulphate removal seems to follow the mechanism: SO4 = +2 NH4+-->S + N2 + 4H2O (delta G degree = -47.8 kJ/mol).
Kinetics study of palm oil hydrolysis using immobilized lipase Candida rugosa in packed bed reactor.
Min, C S; Bhatia, S; Kamaruddin, A H
1999-01-01
Continuous hydrolysis of palm oil triglyceride in organic solvent using immobilized Candida rugosa on the Amberlite MB-1 as a source of immobilized lipase was studied in packed bed reactor. The enzymatic kinetics of hydrolysis reaction was studied by changing the substrate concentration, reaction temperature and residence time(tau) in the reactor. At 55 degrees C, the optimum water concentration was found to be 15 % weight per volume of solution (%w/v). The Michaelis-Menten kinetic model was used to obtain the reaction parameters, Km(app) and V max(app). The activation energies were found to be quite low indicating that the lipase-catalyzed process is controlled by diffusion of substrates. The Michaelis-Menten kinetic model was found to be suitable at low water concentration 10-15 %w/v of solution. At higher water concentration, substrate inhibition model was used for data analysis. Reactor operation was found to play an important role in the palm oil hydrolysis kinetic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laurie, M.; Vlahovic, L.; Rondinella, V.V.
Temperature measurements in the nuclear field require a high degree of reliability and accuracy. Despite their sheathed form, thermocouples subjected to nuclear radiations undergo changes due to radiation damage and transmutation that lead to significant EMF drift during long-term fuel irradiation experiment. For the purpose of a High Temperature Reactor fuel irradiation to take place in the High Flux Reactor Petten, a dedicated fixed-point cell was jointly developed by LNE-Cnam and JRC-IET. The developed cell to be housed in the irradiation rig was tailor made to quantify the thermocouple drift during the irradiation (about two year duration) and withstand highmore » temperature (in the range 950 deg. C - 1100 deg. C) in the presence of contaminated helium in a graphite environment. Considering the different levels of temperature achieved in the irradiation facility and the large palette of thermocouple types aimed at surveying the HTR fuel pebble during the qualification test both copper (1084.62 deg. C) and gold (1064.18 deg. C) fixed-point materials were considered. The aim of this paper is to first describe the fixed-point mini-cell designed to be embedded in the reactor rig and to discuss the preliminary results achieved during some out of pile tests as much as some robustness tests representative of the reactor scram scenarios. (authors)« less
NASA Astrophysics Data System (ADS)
Bertoni, Duccio; Sarti, Giovanni; Benelli, Giuliano; Pozzebon, Alessandro; Raguseo, Gianluca
2010-07-01
In this paper, Radio Frequency Identification technology has been applied to track both underwater and subaerial displacement of pebbles along an artificial coarse beach at Marina di Pisa, Italy. Several preliminary laboratory tests have been performed to adapt the RFID technique for underwater use, which has been the primary impediment to this promising approach to the study of coarse sediment transport and movement. Tests showed the reliability of low frequencies for this kind of work, since they enable good signal transmission and reception through water. Passive ABS plastic transponders were inserted into about 100 pebbles and released onto the beach in March, 2009. A CORE-125 reader was chosen as the operating antenna to continuously transmit low frequency (125 kHz) signals. An acoustic signal toned whenever a pebble was detected while the unambiguous identification code of the pebble is shown immediately on the screen of a laptop connected to the reader. The positions of the pebbles were recorded with a total station. After two months (May, 2009), 74 marked pebbles were retrieved, 77% of the total. The positions of the retrieved pebbles were also recorded with the total station, thus allowing calculation of the coarse sediment transport tendency. About 60% of the recovered pebbles (44 out of 74) were found on the upper shoreface. The analysis of the marked pebble trajectories revealed a divergent transport movement in the northernmost sector of the beach. This movement was probably triggered by an irregularity of the submerged breakwater fronting the shoreline. The southern sector is characterised by chaotic pathways related to the formation and evolution of beach cusps. This outcome highlights and confirms the importance of a complete definition of the beach system, with no separation between the underwater and the subaerial portion of the shore when it comes to sediment transport and movement. This successful application of RFID technology to the underwater environment provides a chance to broaden understanding of a topic in need of further study.
Bertin, Lorenzo; Colao, Maria Chiara; Ruzzi, Maurizio; Marchetti, Leonardo; Fava, Fabio
2006-01-01
Background Olive mill wastewater (OMW) is the aqueous effluent of olive oil producing processes. Given its high COD and content of phenols, it has to be decontaminated before being discharged. Anaerobic digestion is one of the most promising treatment process for such an effluent, as it combines high decontamination efficiency with methane production. The large scale anaerobic digestion of OMWs is normally conducted in dispersed-growth reactors, where however are generally achieved unsatisfactory COD removal and methane production yields. The possibility of intensifying the performance of the process using a packed bed biofilm reactor, as anaerobic treatment alternative, was demonstrated. Even in this case, however, a post-treatment step is required to further reduce the COD. In this work, a biological post-treatment, consisting of an aerobic biological "Manville" silica bead-packed bed aerobic reactor, was developed, tested for its ability to complete COD removal from the anaerobic digestion effluents, and characterized biologically through molecular tools. Results The aerobic post-treatment was assessed through a 2 month-continuous feeding with the digested effluent at 50.42 and 2.04 gl-1day-1 of COD and phenol loading rates, respectively. It was found to be a stable process, able to remove 24 and 39% of such organic loads, respectively, and to account for 1/4 of the overall decontamination efficiency displayed by the anaerobic-aerobic integrated system when fed with an amended OMW at 31.74 and 1.70 gl-1day-1 of COD and phenol loading rates, respectively. Analysis of 16S rRNA gene sequences of biomass samples from the aerobic reactor biofilm revealed that it was colonized by Rhodobacterales, Bacteroidales, Pseudomonadales, Enterobacteriales, Rhodocyclales and genera incertae sedis TM7. Some taxons occurring in the influent were not detected in the biofilm, whereas others, such as Paracoccus, Pseudomonas, Acinetobacter and Enterobacter, enriched significantly in the biofilter throughout the treatment. Conclusion The silica-bead packed bed biofilm reactor developed and characterized in this study was able to significantly decontaminate anaerobically digested OMWs. Therefore, the application of an integrated anaerobic-aerobic process resulted in an improved system for valorization and decontamination of OMWs. PMID:16595023
FIXED-BED HYDROGENATION OF ORGANIC COMPOUNDS IN SUPERCRITICAL CARBON DIOXIDE. (R826034)
The Pd/C hydrogenation of cyclohexene to cyclohexane was performed in a continuous fixed-bed reactor employing CO2 to solubilize the reaction mixture in a single supercritical (sc) phase surrounding the solid catalyst. Employing an equimolar feed of...
NASA Astrophysics Data System (ADS)
Pare, Pascal; Gribenko, Alexander V.; Cox, Leif H.; Čuma, Martin; Wilson, Glenn A.; Zhdanov, Michael S.; Legault, Jean; Smit, Jaco; Polome, Louis
2012-04-01
Geological, geochemical, and geophysical surveys have been conducted in the area of the Pebble Cu-Au-Mo porphyry deposit in south-west Alaska since 1985. This case study compares three-dimensional (3D) inversion results from Anglo American's proprietary SPECTREM 2000 fixed-wing time-domain airborne electromagnetic (AEM) and Geotech's ZTEM airborne audio-frequency magnetics (AFMAG) systems flown over the Pebble deposit. Within the commonality of their physics, 3D inversions of both SPECTREM and ZTEM recover conductivity models consistent with each other and the known geology. Both 3D inversions recover conductors coincident with alteration associated with both Pebble East and Pebble West. The high grade CuEqn 0.6% ore shell is not consistently following the high conductive trend, suggesting that the SPECTREM and ZTEM responses correspond in part to the sulphide distribution, but not directly with the ore mineralization. As in any exploration project, interpretation of both surveys has yielded an improved understanding of the geology, alteration and mineralization of the Pebble system and this will serve well for on-going exploration activities. There are distinct practical advantages to the use of both SPECTREM and ZTEM, so we draw no recommendation for either system. We can conclude however, that 3D inversion of both AEM and ZTEM surveys is now a practical consideration and that it has added value to exploration at Pebble.
Forming Giant Planet Cores by Pebble Accretion -- Why Slow and Steady wins the Race
NASA Astrophysics Data System (ADS)
Kretke, Katherine A.; Levison, Harold F.
2014-05-01
In recent years there has been a radical new solution proposed to solve the problem of giant planet core formation. "Pebbles", particles ranging from centimeters to meters in size, have been shown to accrete extremely efficiently due to aerodynamic drag. Large capture cross-sections combined with fast pebble drift rates can allow a single planetesimal to grow from Ceres size to 10s of Earth masses well within the lifetime of gaseous circumstellar disks. However, at large sizes, the the capture-cross section of pebbles goes with the Hill sphere, forcing pebble accretion to becomes a fundamentally "oligarchic-like" process. This makes it difficult to form a few giant planet cores; instead a more generic result is many 10s to 100s of competing oligarchs. In this work, we present a way to get around this oligarchic dilemma If pebbles are assumed to form slowly over a long period of time, then the planetesimal growth rates are slow enough for the planetesimals to dynamically excite each other. As the larger planetisimals/proto-planets stir their smaller companions, these smaller bodies are excited to such a degree that they spend only a small fraction of their orbits embedded in the cooler pebble disk. This allows the larger bodies to starve their neighbors and maintain a relative runaway growth rate to high mass, effectively forming the cores of giant planets.
Biodegradation of endocrine disruptors in urban wastewater using Pleurotus ostreatus bioreactor.
Křesinová, Zdena; Linhartová, Lucie; Filipová, Alena; Ezechiáš, Martin; Mašín, Pavel; Cajthaml, Tomáš
2018-07-25
The white rot fungus Pleurotus ostreatus HK 35, which is also an edible industrial mushroom commonly cultivated in farms, was tested in the degradation of typical representatives of endocrine disrupters (EDCs; bisphenol A, estrone, 17β-estradiol, estriol, 17α-ethinylestradiol, triclosan and 4-n-nonylphenol); its degradation efficiency under model laboratory conditions was greater than 90% within 12 days and better than that of another published strain P. ostreatus 3004. A spent mushroom substrate from a local farm was tested for its applicability in various batch and trickle-bed reactors in degrading EDCs in model fortified and real communal wastewater. The reactors were tested under various regimes including a pilot-scale trickle-bed reactor, which was finally tested at a wastewater treatment plant. The result revealed that the spent substrate is an efficient biodegradation agent, where the fungus was usually able to remove about 95% of EDCs together with suppression of the estrogenic activity of the sample. The results showed the fungus was able to operate in the presence of bacterial microflora in wastewater without any substantial negative effects on the degradation abilities. Finally, a pilot-scale trickle-bed reactor was installed in a wastewater treatment plant and successfully operated for 10days, where the bioreactor was able to remove more than 76% of EDCs present in the wastewater. Copyright © 2017 Elsevier B.V. All rights reserved.
Improved hydrocracker temperature control: Mobil quench zone technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarli, M.S.; McGovern, S.J.; Lewis, D.W.
1993-01-01
Hydrocracking is a well established process in the oil refining industry. There are over 2.7 million barrels of installed capacity world-wide. The hydrocracking process comprises several families of highly exothermic reactions and the total adiabatic temperature rise can easily exceed 200 F. Reactor temperature control is therefore very important. Hydrocracking reactors are typically constructed with multiple catalyst beds in series. Cold recycle gas is usually injected between the catalyst beds to quench the reactions, thereby controlling overall temperature rise. The design of this quench zone is the key to good reactor temperature control, particularly when processing poorer quality, i.e., highermore » heat release, feeds. Mobil Research and Development Corporation (MRDC) has developed a robust and very effective quench zone technology (QZT) package, which is now being licensed to the industry for hydrocracking applications.« less
Xie, Shu-Guang; Wen, Dong-Hui; Shi, Dong-Wen; Tang, Xiao-Yan
2006-10-01
To investigate the reduction of chlorination by-products (CBPs) precursors using the fluidized-bed biofilm reactor (FBBR). Reduction of total organic carbon (TOC), ultraviolet absorbance (UV254), trihalomethane (THM) formation potential (THMFP), haloacetic acid (HAA) formation potential (HAAFP), and ammonia in FBBR were evaluated in detail. Results The reduction of TOC or UV254 was low, on average 12.6% and 4.7%, respectively, while the reduction of THMFP and HAAFP was significant. The reduction of ammonia was 30%-40% even below 3 degrees C, however, it could quickly rise to over 50% above 3degrees C. Conclusions The FBBR effectively reduces CBPs and ammonia in drinking water even at low temperature and seems to be a very promising and competitive drinking water reactor for polluted surface source waters, especially in China.
EFFECT OF MOISTURE ON ADSORPTION OF ELEMENTAL MERCURY BY ACTIVATED CARBON
The paper discusses experiments using activated carbon to capture elemental mercury (Hgo), and a bench-scale dixed-bed reactor and a flow reactor to determine the role of surface moisture in Hgo adsorption. Three activated-carbon samples, with different pore structure and ash co...
David, Pierre-luc; Bulteau, Gaëlle; Humeau, Philippe; Gérente, Claire; Andrès, Yves
2013-01-01
The increasing demand for water and the decrease in global water resources require research into alternative solutions to preserve them. The present study deals with the optimization of a treatment process, i.e. an aerobic fluidized bed reactor and the modelling of the degradation that takes place within it. The methodology employed is based on the hydrodynamics of the treatment process linked to the biodegradation kinetics of greywater coming from a washing machine. The residence time distribution (RTD) approach is selected for the hydrodynamic study. Biodegradation kinetics are quantified by respirometry and dissolved organic carbon (DOC) analysis on several mass quantities of colonized particles. RTD determinations show that there are no dysfunctions in the fluidized bed. Its hydrodynamic behaviour is similar to the one of a continuous stirred-tank reactor. A first-order reaction is obtained from the DOC biodegradation study. A model describing the degradation that takes place into the reactor is proposed, and from a sensitive study, the influence of the operating conditions on DOC biodegradation is defined. The theoretical results calculated from the first-order equation C(t) = 0.593 x C(0) x e(-kt) are compared with the experimental results and validated by a Student test. The value of the kinetic constant k is 0.011 h(-1) in the presence of a biomass carrier. The results highlight that it is possible to design a reactor in order to obtain a carbon content lower than 15 mg C L(-1) when the characteristics of raw greywater are known.
Hydrolysis and fractionation of lignocellulosic biomass
Torget, Robert W.; Padukone, Nandan; Hatzis, Christos; Wyman, Charles E.
2000-01-01
A multi-function process is described for the hydrolysis and fractionation of lignocellulosic biomass to separate hemicellulosic sugars from other biomass components such as extractives and proteins; a portion of the solubilized lignin; cellulose; glucose derived from cellulose; and insoluble lignin from said biomass comprising one or more of the following: optionally, as function 1, introducing a dilute acid of pH 1.0-5.0 into a continual shrinking bed reactor containing a lignocellulosic biomass material at a temperature of about 94 to about 160.degree. C. for a period of about 10 to about 120 minutes at a volumetric flow rate of about 1 to about 5 reactor volumes to effect solubilization of extractives, lignin, and protein by keeping the solid to liquid ratio constant throughout the solubilization process; as function 2, introducing a dilute acid of pH 1.0-5.0, either as virgin acid or an acidic stream from another function, into a continual shrinking bed reactor containing either fresh biomass or the partially fractionated lignocellulosic biomass material from function 1 at a temperature of about 94-220.degree. C. for a period of about 10 to about 60 minutes at a volumetric flow rate of about 1 to about 5 reactor volumes to effect solubilization of hemicellulosic sugars, semisoluble sugars and other compounds, and amorphous glucans by keeping the solid to liquid ratio constant throughout the solubilization process; as function 3, optionally, introducing a dilute acid of pH 1.0-5.0 either as virgin acid or an acidic stream from another function, into a continual shrinking bed reactor containing the partially fractionated lignocellulosic biomass material from function 2 at a temperature of about 180-280.degree. C. for a period of about 10 to about 60 minutes at a volumetric flow rate of 1 to about 5 reactor volumes to effect solubilization of cellulosic sugars by keeping the solid to liquid ratio constant throughout the solubilization process; and as function 4, optionally, introducing a dilute acid of pH 1.0-5.0 either as virgin acid or an acidic stream from another function, into a continual shrinking bed reactor containing the partially fractionated lignocellulosic biomass material from function 3 at a temperature of about 180-280.degree. C. for a period of about 10 to about 60 minutes at a volumetric flow rate of about 1 to about 5 reactor volumes to effect solubilization of cellulosic sugars by keeping the solid to liquid ratio constant throughout the solubilization process.
Strategies for the startup of methanogenic inverse fluidized-bed reactors using colonized particles.
Alvarado-Lassman, A; Sandoval-Ramos, A; Flores-Altamirano, M G; Vallejo-Cantú, N A; Méndez-Contreras, J M
2010-05-01
One of the inconveniences in the startup of methanogenic inverse fluidized-bed reactors (IFBRs) is the long period required for biofilm formation and stabilization of the system. Previous researchers have preferred to start up in batch mode to shorten stabilization times. Much less work has been done with continuous-mode startup for the IFBR configuration of reactors. In this study, we prepared two IFBRs with similar characteristics to compare startup times for batch- and continuous-operation modes. The reactors were inoculated with a small quantity of colonized particles and run for a period of 3 months, to establish the optimal startup strategy using synthetic media as a substrate (glucose as a source of carbon). After the startup stage, the continuous- and batch-mode reactors removed more than 80% of the chemical oxygen demand (COD) in 51 and 60 days of operation, respectively; however, at the end of the experiments, the continuous-mode reactor had more biomass attached to the support media than the batch-mode reactor. Both reactors developed fully covered support media, but only the continuous-mode reactor had methane yields close to the theoretical value that is typical of stable reactors. Then, a combined startup strategy was proposed, with industrial wastewater as the substrate, using a sequence of batch cycles followed by continuous operation, which allows stable operation at an organic loading rate of 20 g COD/L x d in 15 days. Using a fraction of colonized support as an inoculum presents advantages, with respect to previously reported strategies.
Attrition of coal ash particles in a fluidized-bed reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomeczek, J.; Mocek, P.
2007-05-15
Experimental data of ash-particles attrition in a fluidized bed is presented, and also the results of modeling. Five sizes of ash particles (1.02-1.25; 1.25-1.6; 1.6-2.0; 2.0-5.0; 5.0-10.0 mm) produced in an industrial CFB boiler were examined. A new model of mechanical attrition has been proposed which incorporates new parameters: the shape factor of particles and the ratio of the bed height to bed diameter, strongly influencing the rate of bed mass loss. The model describes very well experimental data for coal-ash particles attrition. The attrition-rate coefficient for ash particles was evaluated.
Oscillatory bedload transport: Data review and simple formulation
NASA Astrophysics Data System (ADS)
Hallermeier, Robert J.
1982-11-01
This review displays over 700 rates of sediment transport by oscillatory flow from 20 sources. Sediments include fine sands to pebbles, both of quartz and of lightweight materials, and the transport rates in water range over seven orders of magnitude. Most data are average gross (to and fro) bedload rates collinear with laboratory flow over a horizontal sediment bed, although other situations with net transport, suspended load, or oblique field waves are considered. As peak flow velocity nears twice the threshold velocity for sediment motion, bedload appears to be fully developed and the transport rate is near that given by a simple formula including flow frequency and peak velocity, and sediment size and density. At lesser peak velocities, bedload rates are markedly smaller and distinctly different regimes of sediment mobilization and transport may be identified.
ENGINEERING APPLICATIONS OF ANALOG COMPUTERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryant, L.T.; Janicke, M.J.; Just, L.C.
1961-02-01
Six examples are given of the application of analog computers in the fields of reactor engineering, heat transfer, and dynamics: deceleration of a reactor control rod by dashpot, pressure variations through a packed bed, reactor kinetics over many decades with thermal feedback (simulation of a TREAT transient), vibrating system with two degrees of freedom, temperature distribution in a radiating fin, and temperature distribution in an irfinite slab with variable thermal properties. (D.L.C.)
Boltz, Joshua P; Johnson, Bruce R; Daigger, Glen T; Sandino, Julian; Elenter, Deborah
2009-06-01
A steady-state model presented by Boltz, Johnson, Daigger, and Sandino (2009) describing integrated fixed-film activated sludge (IFAS) and moving-bed biofilm reactor (MBBR) systems has been demonstrated to simulate, with reasonable accuracy, four wastewater treatment configurations with published operational data. Conditions simulated include combined carbon oxidation and nitrification (both IFAS and MBBR), tertiary nitrification MBBR, and post denitrification IFAS with methanol addition as the external carbon source. Simulation results illustrate that the IFAS/MBBR model is sufficiently accurate for describing ammonia-nitrogen reduction, nitrate/nitrite-nitrogen reduction and production, biofilm and suspended biomass distribution, and sludge production.
Israeli co-retorting of coal and oil shale would break even at 22/barrel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Work is being carried out at the Hebrew University of Jerusalem on co-retorting of coal and oil shale. The work is funded under a cooperative agreement with the US Department of Energy. The project is exploring the conversion of US eastern high-sulfur bituminous coal in a split-stage, fluidized-bed reactor. Pyrolysis occurs in the first stage and char combustion in the second stage. These data for coal will be compared with similar data from the same reactor fueled by high-sulfur eastern US oil shale and Israeli oil shales. The project includes research at three major levels: pyrolysis in lab-scale fluidized-bed reactor;more » retorting in split-stage, fluidized-bed bench-scale process (1/4 tpd); and scale-up, preparation of full-size flowchart, and economic evaluation. In the past year's research, a preliminary economic evaluation was completed for a scaled-up process using a feed of high-sulfur coal and carbonate-containing Israeli oil shale. A full-scale plant in Israel was estimated to break even at an equivalent crude oil price of $150/ton ($22/barrel).« less
Improved gas tagging and cover gas combination for nuclear reactor
Gross, K.C.; Laug, M.T.
1983-09-26
The invention discloses the use of stable isotopes of neon and argon, sealed as tags in different cladding nuclear fuel elements to be used in a liquid metal fast breeder reactor. Cladding failure allows fission gases and these tag isotopes to escape and to combine with the cover gas. The isotopes are Ne/sup 20/, Ne/sup 21/ and Ne/sup 22/ and Ar/sup 36/, Ar/sup 38/ and Ar/sup 40/, and the cover gas is He. Serially connected cryogenically operated charcoal beds are used to clean the cover gas and to separate out the tags. The first or cover gas cleanup bed is held between 0 and -25/sup 0/C to remove the fission gases from the cover gas and tags, and the second or tag recovery system bed between -170 and -185/sup 0/C to isolate the tags from the cover gas. Spectrometric analysis is used to identify the specific tags that are recovered, and thus the specific leaking fuel element. By cataloging the fuel element tags to the location of the fuel elements in the reactor, the location of the leaking fuel element can then be determined.
NASA Astrophysics Data System (ADS)
Feldman, Y.; Zak, A.; Popovitz-Biro, R.; Tenne, R.
2000-10-01
MS 2 (M=Mo, W) hollow onion-like nanoparticles were the first inorganic fullerene-like ( IF) materials, found in 1992. Understanding of the IF-MS 2 growth mechanism in 1996 enabled us to build a rather simple reactor, which produced about 0.4 g per batch, of an almost pure IF-WS 2 powder. Soon after, it was found that the new powder showed better tribological properties compared with the regular MS 2 (M=Mo, W) powder, which is a well-known solid lubricant. The present work shows a new synthetic approach, which allows for a scale-up of IF-WS 2 production by more than two orders of magnitude. The falling-bed and, especially, fluidized-bed methods, which are presented here, pave the way for an almost ideal growth condition of the IF synthesis from an oxide precursor. As a result, the presently produced IF has a more uniform (spherical) shape and can grow to a larger size (up to 0.5 μm). It is expected that the relatively spherical IF-WS 2 nanoparticles, which are produced by the falling (fluidized) bed reactor, will exhibit superior tribological properties, than reported before.
Kobayashi, Tsutomu; Tang, Yueqin; Urakami, Toyoshi; Morimura, Shigeru; Kida, Kenji
2014-02-01
Sweet potato shochu is a traditional Japanese spirit produced mainly in the South Kyushu area in Japan. The amount of stillage reaches approximately 8 x 10(5) tons per year. Wastewater mainly containing stillage from the production of sweet potato-shochu was treated thermophilically in a full-scale treatment plant using fixed-bed reactors (8 reactors x 283 m3). Following the addition of Ni2+ and Co2+, the reactors have been stably operated for six years at a high chemical oxygen demand (COD) loading rate of 14 kg/(m3 x day). Analysis of coenzyme content and microbial communities indicated that similar microbial communities were present in the liquid phase and on the fiber carriers installed in reactors. Bacteria in the phyla Firmicutes as well as Bacteroidetes were dominant bacteria, and Methanosarcina thermophila as well as Methanothermobacter crinale were dominant methanogens in the reactors. This study reveals that stillage from sweet potato-shochu production can be treated effectively in a full-scale fixed-bed reactor under thermophilic conditions with the help of Ni2+ and Co2+. The high diversity of bacterial community and the coexistence of both aceticlastic and hydrogenotrophic methanogens contributed to the excellent fermentation performance.
NASA Technical Reports Server (NTRS)
Breneman, W. C.; Farrier, E. G.; Rexer, J.
1977-01-01
Extended operation of a small process-development unit routinely produced high quality silane in 97+% yield from dichlorosilane. The production rate was consistent with design loadings for the fractionating column and for the redistribution reactor. A glass fluid-bed reactor was constructed for room temperature operation. The behavior of a bed of silcon particles was observed as a function of various feedstocks, component configurations, and operating conditions. For operating modes other than spouting, the bed behaved in an erratic and unstable manner. A method was developed for casting molten silicon powder into crack-free solid pellets for process evaluation. The silicon powder was melted and cast into thin walled quartz tubes that sacrificially broke on cooling.
Experimental investigation of bubbling in particle beds with high solid holdup
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Songbai; Hirahara, Daisuke; Tanaka, Youhei
2011-02-15
A series of experiments on bubbling behavior in particle beds was performed to clarify three-phase flow dynamics in debris beds formed after core-disruptive accident (CDA) in sodium-cooled fast breeder reactors (FBRs). Although in the past, several experiments have been performed in packed beds to investigate flow patterns, most of these were under comparatively higher gas flow rate, which may be not expected during an early sodium boiling period in debris beds. The current experiments were conducted under two dimensional (2D) and three dimensional (3D) conditions separately, in which water was used as liquid phase, and bubbles were generated by injectingmore » nitrogen gas from the bottom of the viewing tank. Various particle-bed parameters were varied, including particle-bed height (from 30 mm to 200 mm), particle diameter (from 0.4 mm to 6 mm) and particle type (beads made of acrylic, glass, alumina and zirconia). Under these experimental conditions, three kinds of bubbling behavior were observed for the first time using digital image analysis methods that were further verified by quantitative detailed analysis of bubbling properties including surface bubbling frequency and surface bubble size under both 2D and 3D conditions. This investigation, which hopefully provides fundamental data for a better understanding and an improved estimation of CDAs in FBRs, is expected to benefit future analysis and verification of computer models developed in advanced fast reactor safety analysis codes. (author)« less
USDA-ARS?s Scientific Manuscript database
A model for the evolution of pyrolysis products in a fluidized bed has been developed. In this study the unsteady constitutive transport equations for inert gas flow and decomposition kinetics were modeled using the commercial computational fluid dynamics (CFD) software FLUENT-12. The model system d...
JPL in-house fluidized bed reactor research
NASA Technical Reports Server (NTRS)
Rohatgi, N. K.
1985-01-01
The progress in the in-house program on the silane fluidized-bed system is reported. A seed-particle cleaning procedure was developed to obtain material purity near the level required to produce a semiconductor-grade product. The liner-seal design was consistently proven to withstand heating/cooling cycles in all of the experimental runs.
Numerical Study of Pyrolysis of Biomass in Fluidized Beds
NASA Technical Reports Server (NTRS)
Bellan, Josette; Lathouwers, Danny
2003-01-01
A report presents a numerical-simulation study of pyrolysis of biomass in fluidized-bed reactors, performed by use of the mathematical model described in Model of Fluidized Bed Containing Reacting Solids and Gases (NPO-30163), which appears elsewhere in this issue of NASA Tech Briefs. The purpose of the study was to investigate the effect of various operating conditions on the efficiency of production of condensable tar from biomass. The numerical results indicate that for a fixed particle size, the fluidizing-gas temperature is the foremost parameter that affects the tar yield. For the range of fluidizing-gas temperatures investigated, and under the assumption that the pyrolysis rate exceeds the feed rate, the optimum steady-state tar collection was found to occur at 750 K. In cases in which the assumption was not valid, the optimum temperature for tar collection was found to be only slightly higher. Scaling up of the reactor was found to exert a small negative effect on tar collection at the optimal operating temperature. It is also found that slightly better scaling is obtained by use of shallower fluidized beds with greater fluidization velocities.
Steamworlds: Atmospheric Structure and Critical Mass of Planets Accreting Icy Pebbles
NASA Astrophysics Data System (ADS)
Chambers, John
2017-11-01
In the core accretion model, gas-giant planets first form a solid core, which then accretes gas from a protoplanetary disk when the core exceeds a critical mass. Here, we model the atmosphere of a core that grows by accreting ice-rich pebbles. The ice fraction of pebbles evaporates in warm regions of the atmosphere, saturating it with water vapor. Excess water precipitates to lower altitudes. Beneath an outer radiative region, the atmosphere is convective, following a moist adiabat in saturated regions due to water condensation and precipitation. Atmospheric mass, density, and temperature increase with core mass. For nominal model parameters, planets with core masses (ice + rock) between 0.08 and 0.16 Earth masses have surface temperatures between 273 and 647 K and form an ocean. In more massive planets, water exists as a supercritical convecting fluid mixed with gas from the disk. Typically, the core mass reaches a maximum (the critical mass) as a function of the total mass when the core is 2-5 Earth masses. The critical mass depends in a complicated way on pebble size, mass flux, and dust opacity due to the occasional appearance of multiple core-mass maxima. The core mass for an atmosphere of 50% hydrogen and helium may be a more robust indicator of the onset of gas accretion. This mass is typically 1-3 Earth masses for pebbles that are 50% ice by mass, increasing with opacity and pebble flux and decreasing with pebble ice/rock ratio.
Pressurized reactor system and a method of operating the same
Isaksson, J.M.
1996-06-18
A method and apparatus are provided for operating a pressurized reactor system in order to precisely control the temperature within a pressure vessel in order to minimize condensation of corrosive materials from gases on the surfaces of the pressure vessel or contained circulating fluidized bed reactor, and to prevent the temperature of the components from reaching a detrimentally high level, while at the same time allowing quick heating of the pressure vessel interior volume during start-up. Super-atmospheric pressure gas is introduced from the first conduit into the fluidized bed reactor and heat derived reactions such as combustion and gasification are maintained in the reactor. Gas is exhausted from the reactor and pressure vessel through a second conduit. Gas is circulated from one part of the inside volume to another to control the temperature of the inside volume, such as by passing the gas through an exterior conduit which has a heat exchanger, control valve, blower and compressor associated therewith, or by causing natural convection flow of circulating gas within one or more generally vertically extending gas passages entirely within the pressure vessel (and containing heat exchangers, flow rate control valves, or the like therein). Preferably, inert gas is provided as a circulating gas, and the inert gas may also be used in emergency shut-down situations. In emergency shut-down reaction gas being supplied to the reactor is cut off, while inert gas from the interior gas volume of the pressure vessel is introduced into the reactor. 2 figs.
Pressurized reactor system and a method of operating the same
Isaksson, Juhani M.
1996-01-01
A method and apparatus are provided for operating a pressurized reactor system in order to precisely control the temperature within a pressure vessel in order to minimize condensation of corrosive materials from gases on the surfaces of the pressure vessel or contained circulating fluidized bed reactor, and to prevent the temperature of the components from reaching a detrimentally high level, while at the same time allowing quick heating of the pressure vessel interior volume during start-up. Superatmospheric pressure gas is introduced from the first conduit into the fluidized bed reactor and heat derived reactions such as combustion and gassification are maintained in the reactor. Gas is exhausted from the reactor and pressure vessel through a second conduit. Gas is circulated from one part of the inside volume to another to control the temperature of the inside volume, such as by passing the gas through an exterior conduit which has a heat exchanger, control valve, blower and compressor associated therewith, or by causing natural convection flow of circulating gas within one or more generally vertically extending gas passages entirely within the pressure vessel (and containing heat exchangers, flow rate control valves, or the like therein). Preferably, inert gas is provided as a circulating gas, and the inert gas may also be used in emergency shut-down situations. In emergency shut-down reaction gas being supplied to the reactor is cut off, while inert gas from the interior gas volume of the pressure vessel is introduced into the reactor.
Zhu, Longbao; Zhou, Li; Huang, Nan; Cui, Wenjing; Liu, Zhongmei; Xiao, Ke; Zhou, Zhemin
2014-01-01
An efficient enzymatic process was developed to produce optically pure D-phenylalanine through asymmetric resolution of the racemic DL-phenylalanine using immobilized phenylalanine ammonia-lyase (RgPAL) from Rhodotorula glutinis JN-1. RgPAL was immobilized on a modified mesoporous silica support (MCM-41-NH-GA). The resulting MCM-41-NH-GA-RgPAL showed high activity and stability. The resolution efficiency using MCM-41-NH-GA-RgPAL in a recirculating packed-bed reactor (RPBR) was higher than that in a stirred-tank reactor. Under optimal operational conditions, the volumetric conversion rate of L-phenylalanine and the productivity of D-phenylalanine reached 96.7 mM h⁻¹ and 0.32 g L⁻¹ h⁻¹, respectively. The optical purity (eeD) of D-phenylalanine exceeded 99%. The RPBR ran continuously for 16 batches, the conversion ratio did not decrease. The reactor was scaled up 25-fold, and the productivity of D-phenylalanine (eeD>99%) in the scaled-up reactor reached 7.2 g L⁻¹ h⁻¹. These results suggest that the resolution process is an alternative method to produce highly pure D-phenylalanine.
Huang, Nan; Cui, Wenjing; Liu, Zhongmei; Xiao, Ke; Zhou, Zhemin
2014-01-01
An efficient enzymatic process was developed to produce optically pure D-phenylalanine through asymmetric resolution of the racemic DL-phenylalanine using immobilized phenylalanine ammonia-lyase (RgPAL) from Rhodotorula glutinis JN-1. RgPAL was immobilized on a modified mesoporous silica support (MCM-41-NH-GA). The resulting MCM-41-NH-GA-RgPAL showed high activity and stability. The resolution efficiency using MCM-41-NH-GA-RgPAL in a recirculating packed-bed reactor (RPBR) was higher than that in a stirred-tank reactor. Under optimal operational conditions, the volumetric conversion rate of L-phenylalanine and the productivity of D-phenylalanine reached 96.7 mM h−1 and 0.32 g L−1 h−1, respectively. The optical purity (ee D) of D-phenylalanine exceeded 99%. The RPBR ran continuously for 16 batches, the conversion ratio did not decrease. The reactor was scaled up 25-fold, and the productivity of D-phenylalanine (ee D>99%) in the scaled-up reactor reached 7.2 g L−1 h−1. These results suggest that the resolution process is an alternative method to produce highly pure D-phenylalanine. PMID:25268937
Silicon production in a fluidized bed reactor
NASA Technical Reports Server (NTRS)
Rohatgi, N. K.
1986-01-01
Part of the development effort of the JPL in-house technology involved in the Flat-Plate Solar Array (FSA) Project was the investigation of a low-cost process to produce semiconductor-grade silicon for terrestrial photovoltaic cell applications. The process selected was based on pyrolysis of silane in a fluidized-bed reactor (FBR). Following initial investigations involving 1- and 2-in. diameter reactors, a 6-in. diameter, engineering-scale FBR was constructed to establish reactor performance, mechanism of silicon deposition, product morphology, and product purity. The overall mass balance for all experiments indicates that more than 90% of the total silicon fed into the reactor is deposited on silicon seed particles and the remaining 10% becomes elutriated fines. Silicon production rates were demonstrated of 1.5 kg/h at 30% silane concentration and 3.5 kg/h at 80% silane concentration. The mechanism of silicon deposition is described by a six-path process: heterogeneous deposition, homogeneous decomposition, coalescence, coagulation, scavenging, and heterogeneous growth on fines. The bulk of the growth silicon layer appears to be made up of small diameter particles. This product morphology lends support to the concept of the scavenging of homogeneously nucleated silicon.
Degradation of TCE using sequential anaerobic biofilm and aerobic immobilized bed reactor
NASA Technical Reports Server (NTRS)
Chapatwala, Kirit D.; Babu, G. R. V.; Baresi, Larry; Trunzo, Richard M.
1995-01-01
Bacteria capable of degrading trichloroethylene (TCE) were isolated from contaminated wastewaters and soil sites. The aerobic cultures were identified as Pseudomonas aeruginosa (four species) and Pseudomonas fluorescens. The optimal conditions for the growth of aerobic cultures were determined. The minimal inhibitory concentration values of TCE for Pseudomonas sps. were also determined. The aerobic cells were immobilized in calcium alginate in the form of beads. Degradation of TCE by the anaerobic and dichloroethylene (DCE) by aerobic cultures was studied using dual reactors - anaerobic biofilm and aerobic immobilized bed reactor. The minimal mineral salt (MMS) medium saturated with TCE was pumped at the rate of 1 ml per hour into the anaerobic reactor. The MMS medium saturated with DCE and supplemented with xylenes and toluene (3 ppm each) was pumped at the rate of 1 ml per hour into the fluidized air-uplift-type reactor containing the immobilized aerobic cells. The concentrations of TCE and DCE and the metabolites formed during their degradation by the anaerobic and aerobic cultures were monitored by GC. The preliminary study suggests that the anaerobic and aerobic cultures of our isolates can degrade TCE and DCE.
Fluidized bed coupled rotary reactor for nanoparticles coating via atomic layer deposition
NASA Astrophysics Data System (ADS)
Duan, Chen-Long; Liu, Xiao; Shan, Bin; Chen, Rong
2015-07-01
A fluidized bed coupled rotary reactor has been designed for coating on nanoparticles (NPs) via atomic layer deposition. It consists of five major parts: reaction chamber, dosing and fluidizing section, pumping section, rotary manipulator components, as well as a double-layer cartridge for the storage of particles. In the deposition procedure, continuous fluidization of particles enlarges and homogenizes the void fraction in the particle bed, while rotation enhances the gas-solid interactions to stabilize fluidization. The particle cartridge presented here enables both the fluidization and rotation acting on the particle bed, demonstrated by the analysis of pressure drop. Moreover, enlarged interstitials and intense gas-solid contact under sufficient fluidizing velocity and proper rotation speed facilitate the precursor delivery throughout the particle bed and consequently provide a fast coating process. The cartridge can ensure precursors flowing through the particle bed exclusively to achieve high utilization without static exposure operation. By optimizing superficial gas velocities and rotation speeds, minimum pulse time for complete coating has been shortened in experiment, and in situ mass spectrometry showed the precursor usage can reach 90%. Inductively coupled plasma-optical emission spectroscopy results suggested a saturated growth of nanoscale Al2O3 films on spherical SiO2 NPs. Finally, the uniformity and composition of the shells were characterized by high angle annular dark field-transmission electron microscopy and energy dispersive X-ray spectroscopy.
Systems Based Approaches for Thermochemical Conversion of Biomass to Bioenergy and Bioproducts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Steven
2016-07-11
Auburn’s Center for Bioenergy and Bioproducts conducts research on production of synthesis gas for use in power generation and the production of liquid fuels. The overall goal of our gasification research is to identify optimal processes for producing clean syngas to use in production of fuels and chemicals from underutilized agricultural and forest biomass feedstocks. This project focused on construction and commissioning of a bubbling-bed fluidized-bed gasifier and subsequent shakedown of the gasification and gas cleanup system. The result of this project is a fully commissioned gasification laboratory that is conducting testing on agricultural and forest biomass. Initial tests onmore » forest biomass have served as the foundation for follow-up studies on gasification under a more extensive range of temperatures, pressures, and oxidant conditions. The laboratory gasification system consists of a biomass storage tank capable of holding up to 6 tons of biomass; a biomass feeding system, with loss-in-weight metering system, capable of feeding biomass at pressures up to 650 psig; a bubbling-bed fluidized-bed gasification reactor capable of operating at pressures up to 650 psig and temperatures of 1500oF with biomass flowrates of 80 lb/hr and syngas production rates of 37 scfm; a warm-gas filtration system; fixed bed reactors for gas conditioning; and a final quench cooling system and activated carbon filtration system for gas conditioning prior to routing to Fischer-Tropsch reactors, or storage, or venting. This completed laboratory enables research to help develop economically feasible technologies for production of biomass-derived synthesis gases that will be used for clean, renewable power generation and for production of liquid transportation fuels. Moreover, this research program provides the infrastructure to educate the next generation of engineers and scientists needed to implement these technologies.« less
Improvements in Production of Single-Walled Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Balzano, Leandro; Resasco, Daniel E.
2009-01-01
A continuing program of research and development has been directed toward improvement of a prior batch process in which single-walled carbon nanotubes are formed by catalytic disproportionation of carbon monoxide in a fluidized-bed reactor. The overall effect of the improvements has been to make progress toward converting the process from a batch mode to a continuous mode and to scaling of production to larger quantities. Efforts have also been made to optimize associated purification and dispersion post processes to make them effective at large scales and to investigate means of incorporating the purified products into composite materials. The ultimate purpose of the program is to enable the production of high-quality single-walled carbon nanotubes in quantities large enough and at costs low enough to foster the further development of practical applications. The fluidized bed used in this process contains mixed-metal catalyst particles. The choice of the catalyst and the operating conditions is such that the yield of single-walled carbon nanotubes, relative to all forms of carbon (including carbon fibers, multi-walled carbon nanotubes, and graphite) produced in the disproportionation reaction is more than 90 weight percent. After the reaction, the nanotubes are dispersed in various solvents in preparation for end use, which typically involves blending into a plastic, ceramic, or other matrix to form a composite material. Notwithstanding the batch nature of the unmodified prior fluidized-bed process, the fluidized-bed reactor operates in a continuous mode during the process. The operation is almost entirely automated, utilizing mass flow controllers, a control computer running software specific to the process, and other equipment. Moreover, an important inherent advantage of fluidized- bed reactors in general is that solid particles can be added to and removed from fluidized beds during operation. For these reasons, the process and equipment were amenable to modification for conversion from batch to continuous production.
A fuzzy-logic-based controller for methane production in anaerobic fixed-film reactors.
Robles, A; Latrille, E; Ruano, M V; Steyer, J P
2017-01-01
The main objective of this work was to develop a controller for biogas production in continuous anaerobic fixed-bed reactors, which used effluent total volatile fatty acids (VFA) concentration as control input in order to prevent process acidification at closed loop. To this aim, a fuzzy-logic-based control system was developed, tuned and validated in an anaerobic fixed-bed reactor at pilot scale that treated industrial winery wastewater. The proposed controller varied the flow rate of wastewater entering the system as a function of the gaseous outflow rate of methane and VFA concentration. Simulation results show that the proposed controller is capable to achieve great process stability even when operating at high VFA concentrations. Pilot results showed the potential of this control approach to maintain the process working properly under similar conditions to the ones expected at full-scale plants.
Shin, D H; Shin, W S; Kim, Y H; Han, Myung Ho; Choi, S J
2006-01-01
A combined process consisted of a Moving-Bed Biofilm Reactor (MBBR) and chemical coagulation was investigated for textile wastewater treatment. The pilot scale MBBR system is composed of three MBBRs (anaerobic, aerobic-1 and aerobic-2 in series), each reactor was filled with 20% (v/v) of polyurethane-activated carbon (PU-AC) carrier for biological treatment followed by chemical coagulation with FeCl2. ln the MBBR process, 85% of COD and 70% of color (influent COD = 807.5 mg/L and color = 3,400 PtCo unit) were removed using relatively low MLSS concentration and short hydraulic retention time (HRT = 44 hr). The biologically treated dyeing wastewater was subjected to chemical coagulation. After coagulation with FeCl2, 95% of COD and 97% of color were removed overall. The combined process of MBBR and chemical coagulation has promising potential for dyeing wastewater treatment.
Lim, Jun-Wei; Seng, Chye-Eng; Lim, Poh-Eng; Ng, Si-Ling; Sujari, Amat-Ngilmi Ahmad
2011-11-01
The performance of moving bed sequencing batch reactors (MBSBRs) added with 8 % (v/v) of polyurethane (PU) foam cubes as carrier media in nitrogen removal was investigated in treating low COD/N wastewater. The results indicate that MBSBR with 8-mL cubes achieved the highest total nitrogen (TN) removal efficiency of 37% during the aeration period, followed by 31%, 24% and 19 % for MBSBRs with 27-, 64- and 125-mL cubes, respectively. The increased TN removal in MBSBRs was mainly due to simultaneous nitrification and denitrification (SND) process which was verified by batch studies. The relatively lower TN removal in MBSBR with larger PU foam cubes was attributed to the observation that larger PU foam cubes were not fully attached by biomass. Higher concentrations of 8-mL PU foam cubes in batch reactors yielded higher TN removal. Copyright © 2011 Elsevier Ltd. All rights reserved.
Cappannella, Elena; Benucci, Ilaria; Lombardelli, Claudio; Liburdi, Katia; Bavaro, Teodora; Esti, Marco
2016-11-01
Lysozyme from hen egg white (HEWL) was covalently immobilized on spherical supports based on microbial chitosan in order to develop a system for the continuous, efficient and food-grade enzymatic lysis of lactic bacteria (Oenococcus oeni) in white and red wine. The objective is to limit the sulfur dioxide dosage required to control malolactic fermentation, via a cell concentration typical during this process. The immobilization procedure was optimized in batch mode, evaluating the enzyme loading, the specific activity, and the kinetic parameters in model wine. Subsequently, a bench-scale fluidized-bed reactor was developed, applying the optimized process conditions. HEWL appeared more effective in the immobilized form than in the free one, when the reactor was applied in real white and red wine. This preliminary study suggests that covalent immobilization renders the enzyme less sensitive to the inhibitory effect of wine flavans. Copyright © 2016 Elsevier Ltd. All rights reserved.
Anaerobic biodegradation of diesel fuel-contaminated wastewater in a fluidized bed reactor.
Cuenca, M Alvarez; Vezuli, J; Lohi, A; Upreti, S R
2006-06-01
Diesel fuel spills have a major impact on the quality of groundwater. In this work, the performance of an Anaerobic Fluidized Bed Reactor (AFBR) treating synthetic wastewater is experimentally evaluated. The wastewater comprises tap water containing 100, 200 and 300 mg/L of diesel fuel and nutrients. Granular, inert, activated carbon particles are employed to provide support for biomass inside the reactor where diesel fuel is the sole source of carbon for anaerobic microorganisms. For different rates of organic loading, the AFBR performance is evaluated in terms of the removal of diesel fuel as well as chemical oxygen demand (COD) from wastewater. For the aforementioned diesel fuel concentrations and a wastewater flow rate of 1,200 L/day, the COD removal ranges between 61.9 and 84.1%. The concentration of diesel fuel in the effluent is less than 50 mg/L, and meets the Level II groundwater standards of the MUST guidelines of Alberta.
NASA Technical Reports Server (NTRS)
Frye, Robert
1990-01-01
Research at the Environmental Research Lab in support of Biosphere 2 was both basic and applied in nature. One aspect of the applied research involved the use of biological reactors for the scrubbing of trace atmospheric organic contaminants. The research involved a quantitative study of the efficiency of operation of Soil Bed Reactors (SBR) and the optimal operating conditions for contaminant removal. The basic configuration of a SBR is that air is moved through a living soil that supports a population of plants. Upon exposure to the soil, contaminants are either passively adsorbed onto the surface of soil particles, chemically transformed in the soil to usable compounds that are taken up by the plants or microbes as a metabolic energy source and converted to CO2 and water.
The slow and fast pyrolysis of cherry seed.
Duman, Gozde; Okutucu, Cagdas; Ucar, Suat; Stahl, Ralph; Yanik, Jale
2011-01-01
The slow and fast pyrolysis of cherry seeds (CWS) and cherry seeds shells (CSS) was studied in fixed-bed and fluidized bed reactors at different pyrolysis temperatures. The effects of reactor type and temperature on the yields and composition of products were investigated. In the case of fast pyrolysis, the maximum bio-oil yield was found to be about 44 wt% at pyrolysis temperature of 500 °C for both CWS and CSS, whereas the bio yields were of 21 and 15 wt% obtained at 500 °C from slow pyrolysis of CWS and CSS, respectively. Both temperature and reactor type affected the composition of bio-oils. The results showed that bio-oils obtained from slow pyrolysis of CWS and CSS can be used as a fuel for combustion systems in industry and the bio-oil produced from fast pyrolysis can be evaluated as a chemical feedstock. Copyright © 2010 Elsevier Ltd. All rights reserved.
Inter-comparison of Computer Codes for TRISO-based Fuel Micro-Modeling and Performance Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brian Boer; Chang Keun Jo; Wen Wu
2010-10-01
The Next Generation Nuclear Plant (NGNP), the Deep Burn Pebble Bed Reactor (DB-PBR) and the Deep Burn Prismatic Block Reactor (DB-PMR) are all based on fuels that use TRISO particles as their fundamental constituent. The TRISO particle properties include very high durability in radiation environments, hence the designs reliance on the TRISO to form the principal barrier to radioactive materials release. This durability forms the basis for the selection of this fuel type for applications such as Deep Bun (DB), which require exposures up to four times those expected for light water reactors. It follows that the study and predictionmore » of the durability of TRISO particles must be carried as part of the safety and overall performance characterization of all the designs mentioned above. Such evaluations have been carried out independently by the performers of the DB project using independently developed codes. These codes, PASTA, PISA and COPA, incorporate models for stress analysis on the various layers of the TRISO particle (and of the intervening matrix material for some of them), model for fission products release and migration then accumulation within the SiC layer of the TRISO particle, just next to the layer, models for free oxygen and CO formation and migration to the same location, models for temperature field modeling within the various layers of the TRISO particle and models for the prediction of failure rates. All these models may be either internal to the code or external. This large number of models and the possibility of different constitutive data and model formulations and the possibility of a variety of solution techniques makes it highly unlikely that the model would give identical results in the modeling of identical situations. The purpose of this paper is to present the results of an inter-comparison between the codes and to identify areas of agreement and areas that need reconciliation. The inter-comparison has been carried out by the cooperating institutions using a set of pre-defined TRISO conditions (burnup levels, temperature or power levels, etc.) and the outcome will be tabulated in the full length paper. The areas of agreement will be pointed out and the areas that require further modeling or reconciliation will be shown. In general the agreement between the codes is good within less than one order of magnitude in the prediction of TRISO failure rates.« less
Thermal valorization of post-consumer film waste in a bubbling bed gasifier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martínez-Lera, S., E-mail: susanamartinezlera@gmail.com; Torrico, J.; Pallarés, J.
2013-07-15
Highlights: • Film waste from packaging is a common waste, a fraction of which is not recyclable. • Gasification can make use of the high energy value of the non-recyclable fraction. • This waste and two reference polymers were gasified in a bubbling bed reactor. • This experimental research proves technical feasibility of the process. • It also analyzes impact of composition and ER on the performance of the plant. - Abstract: The use of plastic bags and film packaging is very frequent in manifold sectors and film waste is usually present in different sources of municipal and industrial wastes.more » A significant part of it is not suitable for mechanical recycling but could be safely transformed into a valuable gas by means of thermal valorization. In this research, the gasification of film wastes has been experimentally investigated through experiments in a fluidized bed reactor of two reference polymers, polyethylene and polypropylene, and actual post-consumer film waste. After a complete experimental characterization of the three materials, several gasification experiments have been performed to analyze the influence of the fuel and of equivalence ratio on gas production and composition, on tar generation and on efficiency. The experiments prove that film waste and analogue polymer derived wastes can be successfully gasified in a fluidized bed reactor, yielding a gas with a higher heating value in a range from 3.6 to 5.6 MJ/m{sup 3} and cold gas efficiencies up to 60%.« less
Apparatus for controlling molten core debris
Golden, Martin P. [Trafford, PA; Tilbrook, Roger W. [Monroeville, PA; Heylmun, Neal F. [Pittsburgh, PA
1977-07-19
Apparatus for containing, cooling, diluting, dispersing and maintaining subcritical the molten core debris assumed to melt through the bottom of a nuclear reactor pressure vessel in the unlikely event of a core meltdown. The apparatus is basically a sacrificial bed system which includes an inverted conical funnel, a core debris receptacle including a spherical dome, a spherically layered bed of primarily magnesia bricks, a cooling system of zig-zag piping in graphite blocks about and below the bed and a cylindrical liner surrounding the graphite blocks including a steel shell surrounded by firebrick. Tantalum absorber rods are used in the receptacle and bed.
Multi-Megawatt Space Nuclear Power Generation
1993-06-28
electric generation, both for open- and closed-cycle opera- tion. These reactors use the particulate fuel of the type developed for HTGR reactors. What...commercial HTGR power reactors, the particles are held in place and directly cooled. Figure 2.7 shows the two types of fuel particles developed for...of MW(e), for pulsed energy devices. The FBR would use HTGR -type particle fuel , contained in a annular bed be- tween two porous frits. Helium would
Synthoil hydrodynamics. Combined third and fourth quarterly report, December 1, 1975--May 31, 1976
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brenner, H.; Prieve, D.C.; Fitch, B.
1977-08-01
This report deals with two-phase flow (gas and liquid) in a packed bed in the synthoil process reactor and preheater; in particular, nonuniform radial distribution of the liquid phase is studied. In addition, temperature profiles and possible instability of control due to the exothermic reactions are studied with respect to the synthoil reactor. This factor may limit the reactor diameter to about six inches. (LTN)
NASA Technical Reports Server (NTRS)
1997-01-01
This close-up Sojourner rover image of a small rock shows that weathering has etched-out pebbles to produce sockets. In the image, sunlight is coming from the upper left. Sockets (with shadows on top) are visible at the lower left and pebbles (with bright tops and shadowed bases) are seen at the lower center and lower right. Two pebbles (about 0.5 cm across) are visible at the lower center.
Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).Modeling of HT and HTO release from irradiated lithium metazirconate
NASA Astrophysics Data System (ADS)
Beloglazov, S.; Nishikawa, M.; Glugla, M.; Kinjyo, T.
2004-08-01
Modeling studies of tritium release from irradiated Li 2ZrO 3 (MAPI) pebbles have been carried out in order to evaluate the effect of purge gas composition on tritium release behavior. The release characteristics were obtained by temperature programmed desorption (TPD) technique in the series of post-irradiation experiments in JRR-4 research reactor of JAERI. Nitrogen with hydrogen at various partial pressures (100 and 1000 Pa) was used as a purge gas. Two sets of ionization chambers and its dedicated electrometers allowed the tritium concentration to be monitored in the chemical form of HT and overall tritium concentration in the mixture HT and HTO simultaneously during desorption runs. The tritium release curves were numerically fitted in order to evaluate the mass transfer coefficients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeigler, Kristine E.; Ferguson, Blythe A.
2012-07-01
The Savannah River National Laboratory (SRNL) has established an In Situ Decommissioning (ISD) Sensor Network Test Bed, a unique, small scale, configurable environment, for the assessment of prospective sensors on actual ISD system material, at minimal cost. The Department of Energy (DOE) is presently implementing permanent entombment of contaminated, large nuclear structures via ISD. The ISD end state consists of a grout-filled concrete civil structure within the concrete frame of the original building. Validation of ISD system performance models and verification of actual system conditions can be achieved through the development a system of sensors to monitor the materials andmore » condition of the structure. The ISD Sensor Network Test Bed has been designed and deployed to addresses the DOE-Environmental Management Technology Need to develop a remote monitoring system to determine and verify ISD system performance. Commercial off-the-shelf sensors have been installed on concrete blocks taken from walls of the P Reactor Building at the Savannah River Site. Deployment of this low-cost structural monitoring system provides hands-on experience with sensor networks. The initial sensor system consists of groutable thermistors for temperature and moisture monitoring, strain gauges for crack growth monitoring, tilt-meters for settlement monitoring, and a communication system for data collection. Baseline data and lessons learned from system design and installation and initial field testing will be utilized for future ISD sensor network development and deployment. The Sensor Network Test Bed at SRNL uses COTS sensors on concrete blocks from the outer wall of the P Reactor Building to measure conditions expected to occur in ISD structures. Knowledge and lessons learned gained from installation, testing, and monitoring of the equipment will be applied to sensor installation in a meso-scale test bed at FIU and in future ISD structures. The initial data collected from the sensors installed on the P Reactor Building blocks define the baseline materials condition of the P Reactor ISD external concrete structure. Continued monitoring of the blocks will enable evaluation of the effects of aging on the P Reactor ISD structure. The collected data will support validation of the material degradation model and assessment of the condition of the ISD structure over time. The following are recommendations for continued development of the ISD Sensor Network Test Bed: - Establish a long-term monitoring program using the concrete blocks with existing sensor and/or additional sensors for trending the concrete materials and structural condition; - Continue development of a stand-alone test bed sensor system that is self-powered and provides wireless transmission of data to a user-accessible dashboard; - Develop and implement periodic NDE/DE characterization of the concrete blocks to provide verification and validation for the measurements obtained through the sensor system and concrete degradation model(s). (authors)« less
Water softening by induced crystallization in fluidized bed.
Chen, Yuefang; Fan, Rong; An, Danfeng; Cheng, Yujie; Tan, Hazel
2016-12-01
Fluidized bed and induced crystallization technology were combined to design a new type of induced crystallization fluidized bed reactor. The added particulate matter served as crystal nucleus to induce crystallization so that the insoluble material, which was in a saturated state, could precipitate on its surface. In this study, by filling the fluidized bed with quartz sand and by adjusting water pH, precipitation of calcium carbonate was induced on the surface of quartz sand, and the removal of water hardness was achieved. With a reactor influent flow of 60L/hr, a fixed-bed height of 0.5m, pH value of 9.5, quartz sand nuclear diameter of 0.2-0.4mm, and a reflux ratio of 60%, the effluent concentration of calcium hardness was reduced to 60mg/L and 86.6% removal efficiency was achieved. The resulting effluent reached the quality standard set for circulating cooling water. Majority of the material on the surface of quartz sand was calculated to be calcium carbonate based on energy spectrum analysis and moisture content was around 15.994%. With the low moisture content, dewatering treatment is no longer required and this results to cost savings on total water treatment process. Copyright © 2016. Published by Elsevier B.V.
Onodera, Takashi; Sase, Shinya; Choeisai, Pairaya; Yoochatchaval, Wilasinee; Sumino, Haruhiko; Yamaguchi, Takashi; Ebie, Yoshitaka; Xu, Kaiqin; Tomioka, Noriko; Syutsubo, Kazuaki
2011-01-01
A combination of an acidification reactor and an up-flow staged sludge bed (USSB) reactor was applied for treatment of molasses wastewater containing a large amount of organic compounds and sulfate. The USSB reactor had three gas-solid separators (GSS) along the height of the reactor. The combined system was continuously operated at mesophilic temperature over 400 days. In the acidification reactor, acid formation and sulfate reduction were effectively carried out. The sugars contained in the influent wastewater were mostly acidified into acetate, propionate, and n-butyrate. In addition, 10-30% of influent sulfur was removed from the acidification reactor by means of sulfate reduction followed by stripping of hydrogen sulfide. The USSB achieved a high organic loading rate (OLR) of 30 kgCOD m(-3) day(-1) with 82% COD removal. Vigorous biogas production was observed at a rate of 15 Nm(3) biogas m(-3) reactor day(-1). The produced biogas, including hydrogen sulfide, was removed from the wastewater mostly via the GSS. The GSS provided a moderate superficial biogas flux and low sulfide concentration in the sludge bed, resulting in the prevention of sludge washout and sulfide inhibition of methanogens. By advantages of this feature, the USSB may have been responsible for achieving sufficient retention (approximately 60 gVSS L(-1)) of the granular sludge with high methanogenic activity (0.88 gCOD gVSS(-1) day(-1) for acetate and as high as 2.6 gCOD gVSS(-1) day(-1) for H(2)/CO(2)). Analysis of the microbial community revealed that sugar-degrading acid-forming bacteria proliferated in the sludge of the USSB as well as the acidification reactor at high OLR conditions.
Characterization of biofilm in 200W fluidized bed reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Michelle H.; Saurey, Sabrina D.; Lee, Brady D.
2014-09-29
Contaminated groundwater beneath the 200 West Area at the Hanford Site in Southeast Washington is currently being treated using a pump and treat system to remove organics, inorganics, radionuclides, and metals. A granular activated carbon-based fluidized bed reactor (FBR) has been added to remove nitrate, hexavalent chromium and carbon tetrachloride. Initial analytical results indicated the microorganisms effectively reduced many of the contaminants to less than cleanup levels. However shortly thereafter operational upsets of the FBR include carbon carry over, over production of microbial extracellular polymeric substance (biofilm) materials, and over production of hydrogen sulfide. As a result detailed investigations weremore » undertaken to understand the functional diversity and activity of the microbial community present in the FBR over time. Molecular analyses including terminal restriction fragment length polymorphism analysis, quantitative polymerase chain reaction and fluorescent in situ hybridization analyses were performed on the microbial community extracted from the biofilm within the bed and from the inoculum, to determine functional dynamics of the FBR bed over time and following operational changes. Findings from these analyses indicated: 1) the microbial community within the bed was completely different than community used for inoculation, and was likely from the groundwater; 2) analyses early in the testing showed an FBR community dominated by a few Curvibacter and Flavobacterium species; 3) the final sample taken indicated that the microbial community in the FBR bed had become more diverse; and 4) qPCR analyses indicated that bacteria involved in nitrogen cycling, including denitrifiers and anaerobic ammonia oxidizing bacteria, were dominant in the bed. These results indicate that molecular tools can be powerful for determining functional diversity within FBR type reactors. Coupled with micronutrient, influent and effluent chemistry evaluations, a more complete understanding of the balance between system additions (nutrients, groundwater) and biology can be achieved, thus increasing long-term predictions of performance. These analyses uniquely provide information that can be used in optimizing the overall performance, efficiency, and stability of the system both in real time as well as over the long-term, as the system design is altered or improved and/or new streams are added.« less
Kinetics of thermophilic anaerobes in fixed-bed reactors.
Perez, M; Romero, L I; Sales, D
2001-08-01
The main objective of this study is to estimate growth kinetic constants and the concentration of "active" attached biomass in two anaerobic thermophilic reactors which contain different initial sizes of immobilized anaerobic mixed cultures and decompose distillery wastewater. This paper studies the substrate decomposition in two lab-scale fixed-bed reactors operating at batch conditions with corrugated tubes as support media. It can be demonstrated that high micro-organisms-substrate ratios favor the degradation activity of the different anaerobic cultures, allowing the stable operation without lag-phases and giving better quality in effluent. The kinetic parameters obtained--maximum specific growth rates (mu(max)), non-biodegradable substrate (S(NB)) and "active or viable biomass" concentrations (X(V0))--were obtained by applying the Romero kinetic model [L.I. Romero, 1991. Desarrollo de un modelo matemático general para los procesos fermentativos, Cinética de la degradación anaerobia, Ph.D. Thesis, University of Cádiz (Spain), Serv. Pub. Univ. Cádiz], with COD as substrate and methane (CH4) as the main product of the anaerobic process. This method is suitable to calculate and to differentiate the main kinetic parameters of both the total anaerobic mixed culture and the methanogenic population. Comparison of experimental measured concentration of volatile attached solids (VS(att)) in both reactors with the estimated "active" biomass concentrations obtained by applying Romero kinetic model [L.I. Romero, 1991. Desarrollo de un modelo matemático general para los procesos fermentativos, Cinética de la degradación anaerobia, Ph.D. Thesis, University of Cádiz (Spain), Serv. Pub. Univ. Cádiz] shows that a large amount of inert matter is present in the fixed-bed reactor.
In Situ and ex Situ Catalytic Pyrolysis of Pine in a Bench-Scale Fluidized Bed Reactor System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iisa, Kristiina; French, Richard J.; Orton, Kellene A.
In situ and ex situ catalytic pyrolysis were compared in a system with two 2-in. bubbling fluidized bed reactors. Pine was pyrolyzed in the system with a catalyst, HZSM-5 with a silica-to-alumina ratio of 30, placed either in the first (pyrolysis) reactor or the second (upgrading) reactor. Both the pyrolysis and upgrading temperatures were 500 degrees C, and the weight hourly space velocity was 1.1 h -1. Five catalytic cycles were completed in each experiment. The catalytic cycles were continued until oxygenates in the vapors became dominant. The catalyst was then oxidized, after which a new catalytic cycle was begun.more » The in situ configuration gave slightly higher oil yield but also higher oxygen content than the ex situ configuration, which indicates that the catalyst deactivated faster in the in situ configuration than the ex situ configuration. Analysis of the spent catalysts confirmed higher accumulation of metals in the in situ experiment. In all experiments, the organic oil mass yields varied between 14 and 17% and the carbon efficiencies between 20 and 25%. The organic oxygen concentrations in the oils were 16-18%, which represented a 45% reduction compared to corresponding noncatalytic pyrolysis oils prepared in the same fluidized bed reactor system. GC/MS analysis showed the oils to contain one- to four-ring aromatic hydrocarbons and a variety of oxygenates (phenols, furans, benzofurans, methoxyphenols, naphthalenols, indenols). Lastly, high fractions of oxygen were rejected as water, CO, and CO 2, which indicates the importance of dehydration, decarbonylation, and decarboxylation reactions. Light gases were the major sources of carbon losses, followed by char and coke.« less