Science.gov

Sample records for pemercepat elektron mbe

  1. Krikalev during Elektron repair

    NASA Image and Video Library

    2005-05-05

    ISS011-E-05509 (5 May 2005) --- Cosmonaut Sergei K. Krikalev, Expedition 11 commander representing Russia's Federal Space Agency, uses a power tool as he makes repairs to the Elektron oxygen generator in the Zvezda Service Module of the International Space Station (ISS).

  2. Krikalev during Elektron repair

    NASA Image and Video Library

    2005-05-05

    ISS011-E-05513 (5 May 2005) --- Cosmonaut Sergei K. Krikalev, Expedition 11 commander representing Russia's Federal Space Agency, poses beside the disconnected Liquid Unit #5 (BZh-5) and the O2 end-filter (BD, secondary purification unit) from the BZh5 he removed while making repairs to the Elektron oxygen generator in the Zvezda Service Module of the international space station.

  3. Krikalev during Elektron repair

    NASA Image and Video Library

    2005-05-05

    ISS011-E-05518 (5 May 2005) --- Cosmonaut Sergei K. Krikalev, Expedition 11 commander representing Russia's Federal Space Agency, working on the Elektron oxygen-generation system in the Zvezda Service Module that has worked intermittently aboard the International Space Station (ISS).

  4. Krikalev during Elektron repair

    NASA Image and Video Library

    2005-05-05

    ISS011-E-05504 (5 May 2005) --- Cosmonaut Sergei K. Krikalev, Expedition 11 commander representing Russia's Federal Space Agency, uses a video camera to document repairs to the Elektron oxygen generator in the Zvezda Service Module of the International Space Station (ISS).

  5. Krikalev during Elektron repair

    NASA Image and Video Library

    2005-05-05

    ISS011-E-05512 (5 May 2005) --- Cosmonaut Sergei K. Krikalev, Expedition 11 commander representing Russia's Federal Space Agency, working on the Elektron oxygen-generation system in the Zvezda Service Module that has worked intermittently aboard the International Space Station (ISS).

  6. Krikalev during Elektron repair

    NASA Image and Video Library

    2005-05-05

    ISS011-E-05510 (5 May 2005) --- Cosmonaut Sergei K. Krikalev, Expedition 11 commander representing Russia's Federal Space Agency, uses a power tool as he makes repairs to the Elektron oxygen generator in the Zvezda Service Module of the International Space Station (ISS).

  7. Phillips during Elektron repair

    NASA Image and Video Library

    2005-05-05

    ISS011-E-05516 (5 May 2005) --- Astronaut John L. Phillips, Expedition 11 NASA ISS science officer and flight engineer, working on the Elektron oxygen-generation system in the Zvezda Service Module that has worked intermittently aboard the International Space Station (ISS).

  8. Phillips during Elektron repair

    NASA Image and Video Library

    2005-05-05

    ISS011-E-05517 (5 May 2005) --- Astronaut John L. Phillips, Expedition 11 NASA ISS science officer and flight engineer, working on the Elektron oxygen-generation system in the Zvezda Service Module that has worked intermittently aboard the International Space Station (ISS).

  9. Krikalev with Elektron in MPLM

    NASA Image and Video Library

    2005-07-28

    ISS011-E-12405 (31 July 2005) --- Cosmonaut Sergei K. Krikalev, Expedition 11 commander representing Russia's Federal Space Agency, holds the Elektron oxygen-generation system in the Italian-built Raffaello Multi-Purpose Logistics Module (MPLM) docked to the International Space Station during the STS-114 mission.

  10. Krikalev with failed Elektron Liquid Unit #6 (BZh-6)

    NASA Image and Video Library

    2005-06-09

    ISS011-E-08465 (9 June 2005) --- Cosmonaut Sergei K. Krikalev, Expedition 11 commander representing Russia's Federal Space Agency, works on the Elektron oxygen-generation system in the Zvezda Service Module on the International Space Station (ISS).

  11. 77 FR 64519 - Magnesium Elektron; Analysis of Agreement Containing Consent Orders To Aid Public Comment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-22

    ... Magnesium Elektron; Analysis of Agreement Containing Consent Orders To Aid Public Comment AGENCY: Federal... INFORMATION section below. Write ``Magnesium Elektron, File No. 091 0094'' on your comment and file your... November 13, 2012. Write ``Magnesium Elektron, File No. 091 0094'' on your comment. Your comment B...

  12. Russian Elektron-VM BZh Liquid Unit Replacement

    NASA Image and Video Library

    2011-07-08

    ISS028-E-014909 (8 July 2011) --- Russian cosmonauts Andrey Borisenko (left), Expedition 28 commander; Alexander Samokutyaev (center) and Sergei Volkov, both flight engineers, are pictured with Russian Elektron oxygen generator systems in the Zvezda Service Module of the International Space Station.

  13. Russian Elektron-VM BZh Liquid Unit Replacement

    NASA Image and Video Library

    2011-07-08

    ISS028-E-014908 (8 July 2011) --- Russian cosmonauts Andrey Borisenko (left), Expedition 28 commander; Alexander Samokutyaev (center) and Sergei Volkov, both flight engineers, are pictured with Russian Elektron oxygen generator systems in the Zvezda Service Module of the International Space Station.

  14. Bursch poses next to the Elektron oxygen generator in the SM during Expedition Four

    NASA Image and Video Library

    2002-04-26

    ISS004-E-11791 (26 April 2002) --- Astronaut Daniel W. Bursch, Expedition Four flight engineer, works on the Elektron Oxygen Generator in the Zvezda Service Module on the International Space Station (ISS).

  15. Walz poses next to the Elektron oxygen generator in the SM during Expedition Four

    NASA Image and Video Library

    2002-04-26

    ISS004-E-11792 (26 April 2002) --- Astronaut Carl E. Walz, Expedition Four flight engineer, works on the Elektron Oxygen Generator in the Zvezda Service Module on the International Space Station (ISS).

  16. Onufrienko makes repairs to the Elektron oxygen generator in the SM during Expedition Four

    NASA Image and Video Library

    2002-04-26

    ISS004-E-11793 (26 April 2002) --- Cosmonaut Yury I. Onufrienko, Expedition Four mission commander, performs maintenance on the Elektron Oxygen Generator in the Zvezda Service Module on the International Space Station (ISS). Onufrienko represents Rosaviakosmos.

  17. On the shock response of the magnesium alloy Elektron 675

    NASA Astrophysics Data System (ADS)

    Hazell, Paul; Appleby-Thomas, Gareth; Siviour, Clive; Wielewski, Euan

    2011-06-01

    Alloying elements such as aluminium, zinc or rare-earths allow precipitation hardening of magnesium (Mg). The low densities of such strengthened Mg alloys have led to their adoption as aerospace materials and (more recently) they are being considered as armour materials. Consequently, understanding their response to high-strain rate loading is becoming increasingly important. Here, the plate-impact technique was employed to measure longitudinal stress evolution in armour-grade wrought Mg-alloy Elektron 675 under 1D shock loading. The strength and spall behaviour was interrogated, with an estimate made of the material's Hugoniot elastic limit. Finally, electron backscatter diffraction (EBSD) techniques were employed to investigate post-shock microstructural changes.

  18. On the shock response of the magnesium alloy elektron 675

    NASA Astrophysics Data System (ADS)

    Hazell, Paul; Appleby-Thomas, Gareth James; Wielewski, Euan; Siviour, Clive Richard; Stennett, Chris

    2012-03-01

    Alloying elements such as aluminum, zinc or rare-earths allow precipitation hardening of magnesium (Mg). The low densities of such strengthened Mg alloys have led to their adoption as aerospace materials and (more recently) they are being considered as armor materials. Consequently, understanding their response to high strain-rate loading is becoming increasingly important. Here, the plate-impact technique was employed to measure longitudinal stress evolution in armor-grade wrought Mg-alloy Elektron 675 under 1D shock loading. The spall behavior was interrogated using a Heterodyne velocimeter (Het-v) system, with an estimate made of the material's Hugoniot elastic limit for both aged and un-aged materials.

  19. Pulser development for MBE-4

    SciTech Connect

    Gough, D.E.; Brodzik, D.A.

    1986-06-01

    The Multiple Beam Experiment MBE4 is designed to accelerate four cesium ion beams from 200 kV to about 1 MV using an induction linac and to demonstrate the process of current amplification simultaneously with acceleration. The injected beam is obtained from a source using a Marx generator providing typically 10 mA/beam with a length of 1.6 meters. This is equivalent to a beam duration time of about 3 ..mu..sec. Twenty four acceleration gaps in groups of four are distributed along the length of the machine which will be some 16 meters long when completed. Each group of four acceleration gaps with appropriate quadrupoles form one section of the machine, identified as A through F. Careful tailoring of the acceleration voltage waveforms at each gap is required to accelerate the beam, amplify the current and provide longitudinal focusing. Ideal voltage waveforms for each gap were generated for a gap voltage limit initially set at 30 kV. These waveforms are shown in Fig. 1. The waveforms for the first 4 gaps are triangular with an approximate width of 3 ..mu..sec, becoming flatter and shorter at subsequent gaps as the beam bunch velocity increases. Ninety two nickel-iron tape wound cores capable of 6.8 mVsec/core and twenty six silicon steel tape wound cores capable of 24 mVsec/core were available. Groups of cores at the first eight gaps have been used in conjunction with an appropriate number of pulsers to provide the necessary accelerating voltage waveforms together with the pulser waveforms at every fourth acceleration gap which provides the longitudinal focusing of the beam. This paper will deal with the performance of the pulsers for the first eight gaps of acceleration and expectations for the next four, currently under construction.

  20. Padalka performs maintenance on the BZh-5 Fluid Unit for the Elektron Oxygen Generator during Expedition 9

    NASA Image and Video Library

    2004-09-08

    ISS009-E-21791 (8 September 2004) --- Cosmonaut Gennady I. Padalka, Expedition 9 commander representing Russia's Federal Space Agency, performs maintenance on a spare version of a part connected to the Russian Elektron oxygen generation system in the Zvezda Service Module of the International Space Station (ISS).

  1. Fabrication of photovoltaic laser energy converterby MBE

    NASA Technical Reports Server (NTRS)

    Lu, Hamilton; Wang, Scott; Chan, W. S.

    1993-01-01

    A laser-energy converter, fabricated by molecular beam epitaxy (MBE), was developed. This converter is a stack of vertical p-n junctions connected in series by low-resistivity, lattice matched CoSi2 layers to achieve a high conversion efficiency. Special high-temperature electron-beam (e-beam) sources were developed especially for the MBE growth of the junctions and CoSi2 layers. Making use of the small (greater than 1.2 percent) lattice mismatch between CoSi2 and Si layers, high-quality and pinhole-free epilayers were achieved, providing a capability of fabricating all the junctions and connecting layers as a single growth process with one pumpdown. Well-defined multiple p-n junctions connected by CoSi2 layers were accomplished by employing a low growth temperature (greater than 700 C) and a low growth rate (less than 0.5 microns/hour). Producing negligible interdiffusion, the low growth temperature and rate also produced negligible pinholes in the CoSi2 layers. For the first time, a stack of three p-n junctions connected by two 10(exp -5) Ohm-cm CoSi2 layers was achieved, meeting the high conversion efficiency requirement. This process can now be optimized for high growth rate to form a practical converter with 10 p-n junctions in the stack.

  2. [Russian oxygen generation system "Elektron-VM": hydrogen content in electrolytically produced oxygen for breathing by International Space Station crews].

    PubMed

    Proshkin, V Yu; Kurmazenko, E A

    2014-01-01

    The article presents the particulars of hydrogen content in electrolysis oxygen produced aboard the ISS Russian segment by oxygen generator "Elektron-VM" (SGK) for crew breathing. Hydrogen content was estimated as in the course of SGK operation in the ISS RS, so during the ground life tests. According to the investigation of hydrogen sources, the primary path of H2 appearance in oxygen is its diffusion through the porous diaphragm separating the electrolytic-cell cathode and anode chambers. Effectiveness of hydrogen oxidation in the SGK reheating unit was evaluated.

  3. Synthesis of MBE-4 accelerating waveforms

    SciTech Connect

    Kim, C.H.; Brady, V.O.; Fessenden, T.J.; Judd, D.L.; Laslett, L.J.

    1985-05-01

    An ion induction linac for HIF must operate near the space charge current limit along most of its length. Small errors in the voltages applied to the accelerating gaps can readily produce local unwanted beam bunching and consequent beam loss. Uncompensated space charge forces will generate current loss from longitudinal beam spreading. In the design of the MBE-4 ideal acceleration voltages were developed that assure self-similar amplifying current waveforms at each position along the accelerator. These were approximately synthesized by adding waveforms that can be obtained from realizable electrical pulsers. A code is used to study effects produced by the imperfect synthesis on the longitudinal ion dynamics and beam current waveforms in the presence of space-charge forces.

  4. 15. VIEW TO SOUTHWEST; EAST BACK MBE BUILDING, THIRD AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. VIEW TO SOUTHWEST; EAST BACK MBE BUILDING, THIRD AND SECOND FLOORS; GASOLINE PUMPS CENTER (Dobson) - Los Angeles Union Passenger Terminal, Mail, Baggage, & Express Building, 800 North Alameda Street, Los Angeles, Los Angeles County, CA

  5. 17. VIEW TO SOUTHWEST; EAST BACK MBE BUILDING IN RELATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. VIEW TO SOUTHWEST; EAST BACK MBE BUILDING IN RELATION TO TRACKS AND PLATFORM (Dobson) - Los Angeles Union Passenger Terminal, Mail, Baggage, & Express Building, 800 North Alameda Street, Los Angeles, Los Angeles County, CA

  6. 42. VIEW TO SOUTHEAST; MBE BUILDING, THIRD FLOOR, CONDUCTORS' LOCKER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. VIEW TO SOUTHEAST; MBE BUILDING, THIRD FLOOR, CONDUCTORS' LOCKER ROOM INTERIOR (Dobson) - Los Angeles Union Passenger Terminal, Mail, Baggage, & Express Building, 800 North Alameda Street, Los Angeles, Los Angeles County, CA

  7. 38. VIEW TO EAST; WEST FRONT MBE BUILDING, FIRST FLOOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. VIEW TO EAST; WEST FRONT MBE BUILDING, FIRST FLOOR ENTRANCE, DETAIL OF DOORS (Dobson) - Los Angeles Union Passenger Terminal, Mail, Baggage, & Express Building, 800 North Alameda Street, Los Angeles, Los Angeles County, CA

  8. 14. VIEW TO SOUTHWEST; EAST BACK AND NORTH SIDE MBE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. VIEW TO SOUTHWEST; EAST BACK AND NORTH SIDE MBE BUILDING, THIRD AND SECOND FLOORS (Dobson) - Los Angeles Union Passenger Terminal, Mail, Baggage, & Express Building, 800 North Alameda Street, Los Angeles, Los Angeles County, CA

  9. 18. VIEW TO NORTHWEST; EAST BACK MBE BUILDING, FIREBOXES (Dobson) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. VIEW TO NORTHWEST; EAST BACK MBE BUILDING, FIREBOXES (Dobson) - Los Angeles Union Passenger Terminal, Mail, Baggage, & Express Building, 800 North Alameda Street, Los Angeles, Los Angeles County, CA

  10. 16. VIEW TO WEST; EAST BACK MBE BUILDING, SECOND FLOOR, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. VIEW TO WEST; EAST BACK MBE BUILDING, SECOND FLOOR, GARAGE ENTRANCE (Dobson) - Los Angeles Union Passenger Terminal, Mail, Baggage, & Express Building, 800 North Alameda Street, Los Angeles, Los Angeles County, CA

  11. 13. VIEW TO SOUTHEAST; WEST FRONT AND NORTH SIDE MBE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. VIEW TO SOUTHEAST; WEST FRONT AND NORTH SIDE MBE BUILDING, THIRD AND SECOND FLOORS (Dobson) - Los Angeles Union Passenger Terminal, Mail, Baggage, & Express Building, 800 North Alameda Street, Los Angeles, Los Angeles County, CA

  12. 20. VIEW TO NORTHEAST; WEST FRONT MBE BUILDING, FIRST FLOOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. VIEW TO NORTHEAST; WEST FRONT MBE BUILDING, FIRST FLOOR ENTRANCE SHOWING DECORATIVE DETAIL (Dobson) - Los Angeles Union Passenger Terminal, Mail, Baggage, & Express Building, 800 North Alameda Street, Los Angeles, Los Angeles County, CA

  13. 39. VIEW TO NORTHEAST; WEST FRONT MBE BUILDING, FIRST FLOOR, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. VIEW TO NORTHEAST; WEST FRONT MBE BUILDING, FIRST FLOOR, FRED HARVEY NEWSSTAND STOREROOM (AREA BURNED BY VANDALS) (Dobson) - Los Angeles Union Passenger Terminal, Mail, Baggage, & Express Building, 800 North Alameda Street, Los Angeles, Los Angeles County, CA

  14. 21. VIEW TO SOUTH; EAST FRONT MBE BUILDING, FIRST FLOOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. VIEW TO SOUTH; EAST FRONT MBE BUILDING, FIRST FLOOR AND WEST FRONT MAINTENANCE DEPARTMENT BUILDING; RAMP UNDERPASS (Dobson) - Los Angeles Union Passenger Terminal, Mail, Baggage, & Express Building, 800 North Alameda Street, Los Angeles, Los Angeles County, CA

  15. 50. VIEW TO EAST; SOUTH END OF MBE BUILDING, FIRST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. VIEW TO EAST; SOUTH END OF MBE BUILDING, FIRST FLOOR; SAFE, DOOR OPEN ELECTRONIC FLASH INTERIOR ILLUMINATION (Andersen) - Los Angeles Union Passenger Terminal, Mail, Baggage, & Express Building, 800 North Alameda Street, Los Angeles, Los Angeles County, CA

  16. van der Waals Heterostructures Grown by MBE

    NASA Astrophysics Data System (ADS)

    Hinkle, Christopher

    In this work, we demonstrate the high-quality MBE heterostructure growth of various layered 2D materials by van der Waals epitaxy (VDWE). The coupling of different types of van der Waals materials including transition metal dichalcogenide thin films (e.g., WSe2, WTe2, HfSe2) , insulating hexagonal boron nitride (h-BN), and topological insulators (e.g., Bi2Se3) allows for the fabrication of novel electronic devices that take advantage of unique quantum confinement and spin-based characteristics. The relaxed lattice-matching criteria of van der Waals epitaxy has allowed for high-quality heterostructure growth with atomically abrupt interfaces, allowing us to couple these materials based primarily on their band alignment and electronic properties. We will discuss the impact of sample preparation, surface reactivity, and lattice mismatch of various substrates (sapphire, graphene, TMDs, Bi2Se3) on the growth mode and quality of the films and will discuss our studies of substrate temperature and flux rates on the resultant growth and grain size. Structural and chemical characterization was conducted via reflection high energy electron diffraction (RHEED, X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning tunneling microscopy/spectroscopy (STM/S), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Experimentally determined band alignments have been determined and compared with first-principles calculations allowing the design of novel low-power logic and magnetic memory devices. Initial results from the electrical characterization of these grown thin films and some simple devices will also be presented. These VDWE grown layered 2D materials show significant potential for fabricating novel heterostructures with tunable band alignments and magnetic properties for a variety of nanoelectronic and optoelectronic applications.

  17. Let the Questions Be Your Guide: MBE as Interdisciplinary Science

    ERIC Educational Resources Information Center

    Rose, L. Todd; Daley, Samantha G.; Rose, David H.

    2011-01-01

    From its inception, the field of Mind, Brain, and Education (MBE) has been conceived as an interdisciplinary science, and with good reason: The phenomena the field aims to understand often arise from interactions among multiple factors, span levels of analysis, and are context dependent. In this article, we argue that to reach its potential as an…

  18. 5. VIEW TO NORTH; RAMP AND WEST FRONT MBE BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW TO NORTH; RAMP AND WEST FRONT MBE BUILDING IN RELATION TO U.S. POST OFFICE TERMINAL ANNEX BUILDING (Dobson) - Los Angeles Union Passenger Terminal, Mail, Baggage, & Express Building, 800 North Alameda Street, Los Angeles, Los Angeles County, CA

  19. Dirac's HdCdTe semimetals grown by MBE technology

    NASA Astrophysics Data System (ADS)

    Grendysa, Jakub; Becker, Charles R.; Trzyna, Malgorzata; Wojnarowska-Nowak, Renata; Bobko, Ewa; Sheregii, Eugen M.

    2016-12-01

    Peculiarities of the MBE growth technology for the Dirac's semimetal based on the Hg1-xCdxTe alloys have been presented. Composition of layers was controlled by ToF-SIMS, FTIR measurements, and by the E1+Δ1 maximum position of optical reflectivity in visible reason. The surface morphology has by determined via atomic force and electron microscopy.

  20. Let the Questions Be Your Guide: MBE as Interdisciplinary Science

    ERIC Educational Resources Information Center

    Rose, L. Todd; Daley, Samantha G.; Rose, David H.

    2011-01-01

    From its inception, the field of Mind, Brain, and Education (MBE) has been conceived as an interdisciplinary science, and with good reason: The phenomena the field aims to understand often arise from interactions among multiple factors, span levels of analysis, and are context dependent. In this article, we argue that to reach its potential as an…

  1. MBE growth and characterization of semiconductor laser coolers

    NASA Astrophysics Data System (ADS)

    Stintz, Andreas; Li, Chia-Yeh; Sheik-Bahae, Mansoor; Malloy, Kevin J.

    2009-02-01

    Laser cooling of a semiconductor has been an elusive but highly desirable goal for several years. Although it is theoretically possible, tedious and often time-consuming sample preparation, processing and testing has slowed the progress on the experimental end. The work presented here focuses on a new approach to the first step, the growth of high quality starting samples by molecular beam epitaxy (MBE). MBE is believed to have an inherent advantage over chemical vapor deposition techniques since typically material with higher purity can be grown by MBE, thereby reducing the chance for parasitic absorption and nonradiative recombinations to occur. Additionally, with MBE very precise control over interfaces is possible, where a significant portion of the non-radiative traps are usually located. The most promising material for laser cooling is the binary compound GaAs. The lattice-matched material Ga0.515In0.485P is chosen for passivating the surface as it has shown much longer radiative lifetimes in GaAs than, for example, AlxGa1-xAs. The present study focuses on growth optimization of Ga0.515In0.485P/GaAs/Ga0.515In0.485P heterostructures and the influence of growth conditions on sample suitability for laser cooling as measured by non-radiative lifetimes in GaAs. In particular, parameters such as growth temperature, group V:III overpressure, substrate orientation, doping, and interface composition on a monolayer length scale are varied and analyzed. The suitability of an optimized sample for semiconductor laser cooling is discussed.

  2. MBE in MOS Technology Applied to Speed Increases in VHSICs.

    DTIC Science & Technology

    1982-09-01

    Mirau inter - ferometry for this layer , meaning that 6000 A per hour growth rate was achieved. However, there may have been a slight buildup of silicon...suboxide disilicon trioxide reflection electron diffraction *ASS ACT (Continue an reves ese if necesary~ and identify be. block number) ilicon molecular beam...epitaxy (MBE) was used to grow submicron undoped 14 ep taxial Si layers on 2-inch Si substrates. The films had low defect dn- sitles. Radiative wafer

  3. Plasmonic and Superconducting Self-Assembled MBE Grown Indium Islands

    NASA Astrophysics Data System (ADS)

    Gibson, Ricky Dean, Jr.

    Molecular beam epitaxy (MBE) grown metal has been a renewed area of interest recently in order to achieve high quality metal films or nanostructures for plasmonics. Recently MBE grown silver films have been shown to possess optical constants closer to that of intrinsic silver leading to lower losses and thus allowing for higher quality plasmonics. MBE has also been used to grow silver nanocrystals and indium droplets, or islands, for plasmonics. These self-assembled nanostructures can be grown in close proximity to quantum confined structures such as InAs/GaAs quantum dots or InGaAs/GaAs quantum wells in a single process, without post-processing and fabrication, allowing for increased plasmonic enhancement due to the improved interface between the semiconductor and plasmonic structures. In this dissertation, widely tunable plasmonic resonances of indium islands will be discussed and plasmonic enhancement results will be presented and compared to those of nanoantennas constructed from standard fabrication processes. The coupling between near-surface quantum confined structures, both fabricated and self-assembled, will be compared to the coupling in typical dielectric cavities, such as photonic crystal nanobeams. Beyond the plasmonic possibilities of indium islands, indium becomes superconducting at 3.4 K. With the proximity effect allowing for electrons in materials in contact with a superconductor to occupy a superconducting like state, allowing for the possibility for a hybrid superconductor/semiconductor optical source. The observation of superconductivity in indium islands will be presented and considerations for a superconductor/semiconductor source will be discussed.

  4. Gold-enhanced oxidation of MBE-grown silicon nanowires

    NASA Astrophysics Data System (ADS)

    Büttner, C. C.; Zakharov, N. D.; Pippel, E.; Gösele, U.; Werner, P.

    2008-07-01

    Thermal oxidation of MBE-grown silicon nanowires with a gold droplet on their tips was investigated. Two kinds of oxidation behavior were observed: (i) enhanced axial oxidation, if there was a direct contact between the gold droplet and the nanowire, and (ii) conventional oxidation for nanowires when there was no direct contact between the gold and silicon. For a dry atmosphere, such enhanced oxidation takes place at temperatures down to 500 °C. Under a wet atmosphere, remarkable oxidation was observed even for temperatures down to 250 °C.

  5. 40 CFR 33.208 - How long does an MBE or WBE certification from EPA last?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false How long does an MBE or WBE certification from EPA last? 33.208 Section 33.208 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... ENVIRONMENTAL PROTECTION AGENCY PROGRAMS Certification § 33.208 How long does an MBE or WBE certification...

  6. 40 CFR 33.208 - How long does an MBE or WBE certification from EPA last?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false How long does an MBE or WBE certification from EPA last? 33.208 Section 33.208 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... ENVIRONMENTAL PROTECTION AGENCY PROGRAMS Certification § 33.208 How long does an MBE or WBE certification...

  7. 40 CFR 33.207 - Can an entity reapply to EPA for MBE or WBE certification?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Can an entity reapply to EPA for MBE or WBE certification? 33.207 Section 33.207 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... ENVIRONMENTAL PROTECTION AGENCY PROGRAMS Certification § 33.207 Can an entity reapply to EPA for MBE or...

  8. 40 CFR 33.207 - Can an entity reapply to EPA for MBE or WBE certification?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Can an entity reapply to EPA for MBE or WBE certification? 33.207 Section 33.207 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... ENVIRONMENTAL PROTECTION AGENCY PROGRAMS Certification § 33.207 Can an entity reapply to EPA for MBE or...

  9. 40 CFR 33.407 - How long do MBE and WBE fair share objectives remain in effect?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false How long do MBE and WBE fair share... ENVIRONMENTAL PROTECTION AGENCY PROGRAMS Fair Share Objectives § 33.407 How long do MBE and WBE fair share objectives remain in effect? Once MBE and WBE fair share objectives have been negotiated, they will remain in...

  10. 40 CFR 33.407 - How long do MBE and WBE fair share objectives remain in effect?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false How long do MBE and WBE fair share... ENVIRONMENTAL PROTECTION AGENCY PROGRAMS Fair Share Objectives § 33.407 How long do MBE and WBE fair share objectives remain in effect? Once MBE and WBE fair share objectives have been negotiated, they will remain in...

  11. 40 CFR 33.407 - How long do MBE and WBE fair share objectives remain in effect?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false How long do MBE and WBE fair share... ENVIRONMENTAL PROTECTION AGENCY PROGRAMS Fair Share Objectives § 33.407 How long do MBE and WBE fair share objectives remain in effect? Once MBE and WBE fair share objectives have been negotiated, they will remain in...

  12. 40 CFR 33.407 - How long do MBE and WBE fair share objectives remain in effect?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false How long do MBE and WBE fair share... ENVIRONMENTAL PROTECTION AGENCY PROGRAMS Fair Share Objectives § 33.407 How long do MBE and WBE fair share objectives remain in effect? Once MBE and WBE fair share objectives have been negotiated, they will remain in...

  13. Growth of Si whiskers by MBE: Mechanism and peculiarities

    NASA Astrophysics Data System (ADS)

    Zakharov, N.; Werner, P.; Sokolov, L.; Gösele, U.

    2007-03-01

    We analyzed the stress-driven mechanism of MBE Si whisker growth. It is shown that the driving force for MBE whisker growth is determined by the relaxation of elastic energy stored in the overgrown layer Ls due to gold intrusion. In this case the supersaturation is determined by the interplay between elastic stresses and surface energy. The latter is considerably decreased due to decoration of the Si surface by gold resulting in formation of thin liquid Si/Au eutectic layer. This suggests that in our case the Si supersaturation is not an independent growth parameter as it is in the chemical vapor deposition growth method. Instead it is determined by stress in the overgrown Si layer. This approach allows us to explain quite well the growth kinetic and the relationship between the radius and the length of the whiskers. The whisker growth in our case can be considered as a stress relaxation mechanism, where the stress relaxation occurs due to transition from the two-dimensional system to the three-dimensional one.

  14. Transverse combining of 4 beams in MBE-4

    SciTech Connect

    Celata, C.M.; Chupp, W.; Faltens, A.; Fawley, W.M.; Ghiorso, W.; Hahn, K.D.; Henestroza, E.; Peters, C.; Seidl, P.

    1995-05-01

    Transverse beam combining is a cost-saving optio employed in many designs for induction linac heavy ion fusion drivers. But resultant transverse emittance increase, due predominantly to anharmonic space charoe forces, must be kept minimal so as not to sacrifice focusability at the target. A prototype combining experiment has been built, using the MBE-4 experiment. Four sources produce four 4 mA Cs{sup +} beams at 200 keV. The ion sources are angled toward each other, so that beams converge. Focusing upstream of the merge consists of 4 quadrupoles and a final combined-function element (quadrupole & dipole). All lattice elements are electrostatic. Due to the small distance between beams at the last element ({approximately} 2 mm), the electrodes here are a cage of small wires, each at different voltage. The beams emerge into the 30 period transport lattice of MBE-4 where emittance growth due to merging, as well as the subsequent evolution of the distribution function, can be diagnosed. The combiner design, simulation predictions, and preliminary results from the experiment are presented.

  15. Comparison of AlGaAs Oxidation in MBE and MOCVD Grown Samples

    DTIC Science & Technology

    2002-01-01

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP012613 TITLE: Comparison of AlGaAs Oxidation in MBE and MOCVD Grown...Research Society H6.11 Comparison of AIGaAs Oxidation in MBE and MOCVD Grown Samples* Y. Chen, A. Roshko, K.A. Bertness, National Institute of Standards and...Simultaneous wet-thermal oxidation of MBE and MOCVD grown AlxGal_xAs layers (x = 0.1 to 1.0) showed that the epitaxial growth method does not influence

  16. AlN growth on sapphire substrate by ammonia MBE

    NASA Astrophysics Data System (ADS)

    Mansurov, V. G.; Nikitin, A. Yu.; Galitsyn, Yu. G.; Svitasheva, S. N.; Zhuravlev, K. S.; Osvath, Z.; Dobos, L.; Horvath, Z. E.; Pecz, B.

    2007-03-01

    Kinetics of (0 0 0 1) Al 2O 3 surface nitridation and subsequent growth of AlN films on the sapphire substrate by ammonia molecular beam epitaxy (MBE) are investigated. Surface morphology evolution during AlN growth is studied in situ by reflection high energy electron diffraction and ex situ by atomic force microscopy. It is found that the surfaces of AlN layers thicker than 100 nm have two major features: a quite smooth background and noticeable amount of hillocks. The influence of growth conditions on the AlN surface morphology is studied in order to find a way for reducing of the hillocks density. A modification of nitridated sapphire surface by small amount of Al (1-2 monolayers) with subsequent treatment of the surface under ammonia flux is proposed. An improvement of AlN surface morphology of the layers grown on the modified surfaces is demonstrated.

  17. MBE-4, a heavy ion multiple-beam experiment

    SciTech Connect

    Avery, R.T.; Chavis, C.S.; Fessenden, T.J.; Gough, D.E.; Henderson, T.F.; Keefe, D.; Meneghetti, J.R.; Pike, C.D.; Vanecek, D.L.; Warick, A.I.

    1985-10-01

    MBE-4, a heavy-ion multiple beam induction linac being built at LBL in FY85/86, will model many features of a much longer device. It will accelerate four spacecharge-dominated Cesium ion beams from, for example, 0.2 MeV, 5 mA/beam, 3.0 sec, 1.6 m length at injection to about0.8 MeV, 15 mA/beam, 1.0 sec, 1.1 m length at the exit. It will permit study of simultaneous focussing, acceleration, current amplification and emittance growth of multiple space-charge-dominated ion beams. Some features of this accelerator are described.

  18. MBE-4, a heavy ion multiple-beam experiment

    SciTech Connect

    Avery, R.T.; Chavis, C.S.; Fessenden, T.J.; Gough, D.E.; Henderson, T.F.; Keefe, D.; Meneghetti, J.R.; Pike, C.D.; Vanecek, D.L.; Warwick, A.I.

    1985-05-01

    MBE-4, a heavy-ion multiple beam induction linac being built at LBL in FY85/86, will model many features of a much longer device. It will accelerate four space-charge-dominated cesium ion beams from, for example, 0.2 MeV, 5 mA/beam, 3.0 ..mu..sec, 1.6 m length at injection to approx.0.8 MeV, 15 mA/beam, 1.0 ..mu..sec, 1.1 m length at the exit. It will permit study of simultaneous focussing, acceleration, current amplification and emittance growth of multiple space-charge-dominated ion beams. Some features of this accelerator are described. 11 refs., 5 figs.

  19. High-volume manufacturing of 8XXnm-10XXnm single emitter pumps by MBE growth technique

    NASA Astrophysics Data System (ADS)

    Gapontsev, V.; Moshegov, N.; Berezin, I.; Trubenko, P.; Komissarov, A.; Miftakhutdinov, D.; Berishev, I.; Strougov, N.; Chuyanov, V.; Raisky, O.; Ovtchinnikov, A.

    2014-03-01

    We report on GaAlInAs/GaAs lasers manufactured by the industry's biggest production MBE tool. This MBE reactor allows for growth on 23 three-inch diameter wafers at a time, at a cost that compares favorably with the MOCVD method. Data on chip-on-submount performance and uniformity across the entire MBE-growth area are presented and compared to the quality of material produced by smaller size production MBE tools. We also present data on performance characteristics of spatially combined fiber coupled passively cooled single emitter-based pumps. The data include performance characteristics of devices operating at ~805nm and ~975nm wavelengths when driven in CW, QCW and pulsed modes; both pumps use ~105μm core diameter fiber to launch power confined within NA<0.15.

  20. MBE growth and characteristics of antimonide-based quantum dots

    NASA Astrophysics Data System (ADS)

    Wang, Xue

    Semiconductor quantum dots (QDs) are an important class of low dimensional materials for optoelectronic applications since they offer the possibility of a three-dimensional carrier confinement. Among III-V semiconductor material systems, antimony-based QDs hold the promise for the realization of low threshold room-temperature mid-infrared lasers because of the low band gap energy (0.17 eV at 300K) of InSb and the large lattice mismatch between InSb and GaSb. The fabrication of InSb/GaSb self-assembled QDs for optoelectronic applications by Molecular Beam Epitaxy (MBE) is ventured in this dissertation. Here both uncapped and capped self-assembled InSb QDs are fabricated by MBE on nominal GaSb (100)+/-0.1°and GaSb (100)+/-6°. The growth conditions are optimized to obtain QDs with both high density and good uniformity. The influence of growth parameters i.e., substrate temperature, nominally deposited thickness, annealing time and substrate orientation on QD size, uniformity and distribution, are systematically studied. The structural and optical properties of these QDs are characterized using in-situ Reflection High-energy Electron Diffraction (RHEED), and ex-situ Atomic Force Microscopy (AFM) and Photo-Luminescence (PL) measurements. Confined energy levels in the strained InSb/GaSb QD system are estimated theoretically and compared with the experimental results. Three-dimensional uncapped InSb QDs were successfully grown on GaSb (100) substrates at a density of 2.8x109/cm2 by MBE via the Stranski-Krastanov mode of self-organization. The two-dimensional to three-dimensional transition in this mode releases the strain arising from the mis-match between the substrate and the epilayer. The average base side length of the resulting QDs is 100+/-24 nm and the height is 4.9+/-1.6 nm. The best size uniformity, with standard deviations of 23% for base length and 48% for height was obtained under the optimized growth conditions of 3.9ML material deposition, a growth

  1. MBE-4: an induction linac experiment for heavy ion fusion

    SciTech Connect

    Fessenden, T.J.; Avery, R.T.; Brodzik, D.A.; Faltens, A.; Gough, D.E.; Henderson, T.F.; Judd, D.L.; Keefe, D.; Kim, C.; Laslett, L.J.

    1986-06-01

    The multiple-beam induction linac approach to a heavy ion fusion driver features continuous current amplification along the accelerator and a minimum of transverse beam manipulation from source to pellet. Current amplification and bunch length control require careful shaping of the accelerating voltages. This driver approach exploits developments in electron induction linac technology that have occurred within the last 15 years at LBL, LLNL and NBS. MBE-4 is a four beam induction linac that models much of the accelerator physics of the electrostatically focused section of a considerably longer induction accelerator. Four parallel Cs/sup +/ beams are electrostatically focussed and will be accelerated from 200 keV to approximately one MeV when the experiment is complete in the spring of 1987. The current in each of the four beams will increase from 10 to 40 mA due to both increase in beam speed and shortening of the bunch length. Results of experiments with the injector and first eight accelerating gaps are presented.

  2. 40 CFR 33.209 - Can EPA re-evaluate the MBE or WBE status of an entity after EPA certifies it to be an MBE or WBE?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE PARTICIPATION BY DISADVANTAGED BUSINESS ENTERPRISES IN UNITED STATES ENVIRONMENTAL PROTECTION AGENCY PROGRAMS Certification § 33.209 Can... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Can EPA re-evaluate the MBE or...

  3. 40 CFR 33.209 - Can EPA re-evaluate the MBE or WBE status of an entity after EPA certifies it to be an MBE or WBE?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE PARTICIPATION BY DISADVANTAGED BUSINESS ENTERPRISES IN UNITED STATES ENVIRONMENTAL PROTECTION AGENCY PROGRAMS Certification § 33.209 Can... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Can EPA re-evaluate the MBE or...

  4. MBE growth of Fe-based superconducting films

    NASA Astrophysics Data System (ADS)

    Ueda, S.; Yamagishi, T.; Takeda, S.; Agatsuma, S.; Takano, S.; Mitsuda, A.; Naito, M.

    2011-11-01

    We report MBE growth of the iron-based superconductors, Sr1-xKxFe2As2, Ba1-xKxFe2As2, and SmFeAs(O,F). In the growth of Sr1-xKxFe2As2 and Ba1-xKxFe2As2 films, the key to incorporating volatile K in films is low-temperature (300-350 °C) growth in reduced As flux. The highest Tc so far obtained are Tcon (Tcend) = 33.4K (31.0 K) and 38.3 K (35.5 K) for Sr1-xKxFe2As2 and Ba1-xKxFe2As2, respectively. In the growth of superconducting SmFeAs(O,F), we have adopted two approaches. In the first approach, we first grew F-free SmFeAsO films, and subsequently introduced F to the films via F diffusion from an overlayer of SmF3 or NdF3. In the second approach, we attempted the growth of as-grown superconducting SmFeAs(O,F) films by coevaporating Sm, SmF3, Fe, and As. In both the approaches, the growth temperature was as high as 650 °C. So far better results have been obtained by the first F diffusion method. The films prepared by F diffusion showed Tcon (Tcend) = 52 K (48.6 K) whereas the as-grown films showed Tcon = 47 K but with a long transition tail.

  5. Characteristics of the MBE1 End-Station at PNC/XOR

    SciTech Connect

    Gordon, R. A.; Crozier, E. D.; Budnik, P. S.; Jiang, D.-T.; Shoults, J.; Barg, B.

    2007-02-02

    An end-station for in-situ characterization of thin films at the PNC/XOR undulator beamline, Sector 20 of the Advanced Photon Source, is detailed. The ability to study films in-situ on a beamline enables examination of surfaces and interfaces on freshly-prepared films, without the influence of a capping layer. The MBE1 molecular beam epitaxy system was designed with this in mind. Now in routine operation and available for General Users on a collaborative basis, the primary function of MBE1 is to undertake polarization-dependent XAFS studies on fresh or stored films, but it also has the capability to do X-ray Standing Wave and Reflectivity measurements. The characteristics of the MBE1 system - its ranges of motions and detector options - are described in detail, with example data illustrating its functionality.

  6. 40 CFR 33.503 - How does a recipient calculate MBE and WBE participation for reporting purposes?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... attributable to the MBE or WBE. If an MBE's or WBE's risk of loss, control or management responsibilities is... ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE PARTICIPATION BY DISADVANTAGED BUSINESS... consistent with normal business practices. (1) Presumption. If 50% or more of the total dollar amount of a...

  7. 40 CFR 33.503 - How does a recipient calculate MBE and WBE participation for reporting purposes?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... attributable to the MBE or WBE. If an MBE's or WBE's risk of loss, control or management responsibilities is... ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE PARTICIPATION BY DISADVANTAGED BUSINESS... consistent with normal business practices. (1) Presumption. If 50% or more of the total dollar amount of a...

  8. Heteroepitaxial growth of single-domain cubic boron nitride films by ion-beam-assisted MBE

    NASA Astrophysics Data System (ADS)

    Hirama, Kazuyuki; Taniyasu, Yoshitaka; Karimoto, Shin-ichi; Yamamoto, Hideki; Kumakura, Kazuhide

    2017-03-01

    Cubic boron nitride (c-BN) films were grown on diamond (001) substrates by a new ion-beam-assisted molecular-beam-epitaxy (MBE) method with the irradiation of Ar+ ions and atomic nitrogen radicals (N*). From X-ray diffraction and cross-sectional transmission electron microscopy images, we confirmed the heteroepitaxial growth of single-domain c-BN(001) films on the diamond (001) substrates. Additionally, we revealed the growth phase diagram of BN films in the ion-beam-assisted MBE. This diagram indicates that the flux intensity of Ar+ ions should be higher than that of boron atoms for epitaxial c-BN growth.

  9. Minority Business Enterprise/Women's Business Enterprise (MBE/WBE) overview

    EPA Pesticide Factsheets

    The data base allows Minority Business Enterprise/Women's Business Enterprise (MBE/WBE) Coordinators to input fair share goals negotiated by EPA and the recipient. This system also provides to all users the ability to see recipient fair share goals.

  10. Growth of III-V films by control of MBE growth front stoichiometry

    NASA Technical Reports Server (NTRS)

    Grunthaner, Frank J. (Inventor); Liu, John K. (Inventor); Hancock, Bruce R. (Inventor)

    1992-01-01

    For the growth of strain-layer materials and high quality single and multiple quantum wells, the instantaneous control of growth front stoichiometry is critical. The process of the invention adjusts the offset or phase of molecular beam epitaxy (MBE) control shutters to program the instantaneous arrival or flux rate of In and As4 reactants to grow InAs. The interrupted growth of first In, then As4, is also a key feature.

  11. New MBE buffer for micron- and quarter-micron-gateGaAs MESFETs

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A new buffer layer has been developed that eliminates backgating in GaAs MESFETs and substantially reduces short-channel effects in GaAs MESFETs with 0.27-micron-long gates. The new buffer is grown by molecular beam epitaxy (MBE) at a substrate temperature of 200 C using Ga and As sub 4 beam fluxes. The buffer is crystalline, highly resistive, optically inactive, and can be overgrown with high quality GaAs. GaAs MESFETs with a gate length of 0.27 microns that incorporate the new buffer show improved dc and RF properties in comparison with a similar MESFET with a thin undoped GaAs buffer. To demonstrate the backgating performance improvement afforded by the new buffer, MESFETs were fabricated using a number of different buffer layers and structures. A schematic cross section of the MESFET structure used in this study is shown. The measured gate length, gate width, and source-drain spacing of this device are 2,98, and 5.5 microns, respectively. An ohmic contact, isolated from the MESFET by mesa etching, served as the sidegate. The MESFETs were fabricated in MBE n-GaAs layers grown on the new buffer and also in MBE n-GaAs layers grown on buffer layers of undoped GaAs, AlGaAs, and GaAs/AlGaAs superlattices. All the buffer layers were grown by MBE and are 2 microns thick. The active layer is doped to approximately 2 x 10 to the 17th/cu cm with silicon and is 0.3 microns thick.

  12. New MBE buffer for micron- and quarter-micron-gateGaAs MESFETs

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A new buffer layer has been developed that eliminates backgating in GaAs MESFETs and substantially reduces short-channel effects in GaAs MESFETs with 0.27-micron-long gates. The new buffer is grown by molecular beam epitaxy (MBE) at a substrate temperature of 200 C using Ga and As sub 4 beam fluxes. The buffer is crystalline, highly resistive, optically inactive, and can be overgrown with high quality GaAs. GaAs MESFETs with a gate length of 0.27 microns that incorporate the new buffer show improved dc and RF properties in comparison with a similar MESFET with a thin undoped GaAs buffer. To demonstrate the backgating performance improvement afforded by the new buffer, MESFETs were fabricated using a number of different buffer layers and structures. A schematic cross section of the MESFET structure used in this study is shown. The measured gate length, gate width, and source-drain spacing of this device are 2,98, and 5.5 microns, respectively. An ohmic contact, isolated from the MESFET by mesa etching, served as the sidegate. The MESFETs were fabricated in MBE n-GaAs layers grown on the new buffer and also in MBE n-GaAs layers grown on buffer layers of undoped GaAs, AlGaAs, and GaAs/AlGaAs superlattices. All the buffer layers were grown by MBE and are 2 microns thick. The active layer is doped to approximately 2 x 10 to the 17th/cu cm with silicon and is 0.3 microns thick.

  13. Ab initio-based approach to structural change of compound semiconductor surfaces during MBE growth

    NASA Astrophysics Data System (ADS)

    Ito, Tomonori; Akiyama, Toru; Nakamura, Kohji

    2009-01-01

    Phase diagrams of GaAs and GaN surfaces are systematically investigated by using our ab initio-based approach in conjunction with molecular beam epitaxy (MBE). The phase diagrams are obtained as a function of growth parameters such as temperature and beam equivalent pressure (BEP). The versatility of our approach is exemplified by the phase diagram calculations for GaAs(0 0 1) surfaces, where the stable phases and those phase boundaries are successfully determined as functions of temperature and As 2 and As 4 BEPs. The initial growth processes are clarified by the phase diagram calculations for GaAs(1 1 1)B-(2×2). The calculated results demonstrate that the As-trimer desorption on the GaAs(1 1 1)B-(2×2) with Ga adatoms occurs beyond 500-700 K while the desorption without Ga adatoms does beyond 800-1000 K. This self-surfactant effect induced by Ga adsorption crucially affects the initial growth of GaAs on the GaAs(1 1 1)B-(2×2). Furthermore, the phase diagram calculations for GaN(0 0 0 1) suggests that Ga adsorption or desorption during GaN MBE growth can easily change the pseudo-(1×1) to the (2×2)-Ga via newly found (1×1) and vice versa. On the basis of this finding, the possibility of ghost island formation during MBE growth is discussed.

  14. Recent progress in MBE grown HgCdTe materials and devices at UWA

    NASA Astrophysics Data System (ADS)

    Gu, R.; Lei, W.; Antoszewski, J.; Madni, I.; Umana-Menbreno, G.; Faraone, L.

    2016-05-01

    HgCdTe has dominated the high performance end of the IR detector market for decades. At present, the fabrication costs of HgCdTe based advanced infrared devices is relatively high, due to the low yield associated with lattice matched CdZnTe substrates and a complicated cooling system. One approach to ease this problem is to use a cost effective alternative substrate, such as Si or GaAs. Recently, GaSb has emerged as a new alternative with better lattice matching. In addition, implementation of MBE-grown unipolar n-type/barrier/n-type detector structures in the HgCdTe material system has been recently proposed and studied intensively to enhance the detector operating temperature. The unipolar nBn photodetector structure can be used to substantially reduce dark current and noise without impeding photocurrent flow. In this paper, recent progress in MBE growth of HgCdTe infrared material at the University of Western Australia (UWA) is reported, including MBE growth of HgCdTe on GaSb alternative substrates and growth of HgCdTe nBn structures.

  15. Morphological and optical properties of titanyl phthalocyanine films deposited by supersonic molecular beam epitaxy (SuMBE)

    NASA Astrophysics Data System (ADS)

    Walzer, Karsten; Toccoli, Tullio; Pallaoro, Alessia; Verucchi, Roberto; Fritz, Torsten; Leo, Karl; Boschetti, Andrea; Iannotta, Salvatore

    2004-12-01

    We studied the growth and properties of titanyl phthalocyanine (TiOPc) thin films made by supersonic molecular beam epitaxy (SuMBE). Interesting differences in the growth properties on amorphous (quartz) and crystalline (mica) substrates were found, indicating that SuMBE gives rise to an epitaxy of disc-like organic molecules on crystalline substrates. The combined control of the kinetic energy of the molecules in the supersonic beam specific to SuMBE and of the substrate temperature during deposition are the key parameters used to determine the final properties of the films. We show that SuMBE is a well-suited epitaxy method for the deposition of relatively large organic molecules, leading to layers of thin organic (single-)crystals with lateral dimensions in the micrometer range. By SuMBE we can control the growth of different polymorphs of TiOPc. We found and studied two ways to produce films of red and infrared absorbing phase II TiOPc, which is of interest for applications in organic solar cells.

  16. Prevalence of mind and body exercises (MBE) in relation to demographics, self-rated health, and purchases of prescribed psychotropic drugs and analgesics.

    PubMed

    Rådmark, Lina; Magnusson Hanson, Linda L; Bojner Horwitz, Eva; Osika, Walter

    2017-01-01

    This study aims to identify any differences regarding gender, age, socioeconomic status (SES), self-rated health, perceived stress and the purchase of prescribed drugs among people who practice mind and body exercises (MBE) extensively compared to people who do not. The study includes 3,913 men and 4,803 women aged 20-72 who participated in the Swedish Longitudinal Occupational Survey of Health (SLOSH). The respondents were divided into three groups depending on frequency of MBE practice (never/seldom/often). Measures regarding MBE practice, health behaviors, self-rated health, and illnesses were drawn from the SLOSH questionnaire, while more objective measures of socioeconomic status and education were derived from registry data. In addition, data on purchases of prescription drugs for all respondents were included in the study. These data were obtained from the Swedish Prescribed Drug Register, which contains information about prescription drugs dispensed at Swedish pharmacies. Separate analyses were performed for mental MBE (mindfulness, meditation, relaxation techniques) and physical MBE (yoga, Tai Chi, Qi Gong), respectively. A high intensity MBE practice is cross-sectionally related to poor self-assessed health (sleeping problems, pain, depressive symptoms, mental disorders), high levels of stress, and high levels of purchases of psychotropic drugs and analgesics. These cross-sectional relationships are generally stronger for mental MBE than for bodily-directed MBE. More women than men are practicing MBE on a regular basis, and physically active people participate to a greater extent in MBE compared with the physically inactive. Overall, the study shows that frequent participation in mind and body exercises is associated with high levels of purchases of psychotropic drugs and analgesics as well as with poor self-assessed health and high levels of stress. However, since this is a cross-sectional study, it is impossible to establish cause and effect, and to

  17. Modified MBE hardware and techniques and role of gallium purity for attainment of two dimensional electron gas mobility >35×106 cm2/V s in AlGaAs/GaAs quantum wells grown by MBE

    NASA Astrophysics Data System (ADS)

    Gardner, Geoffrey C.; Fallahi, Saeed; Watson, John D.; Manfra, Michael J.

    2016-05-01

    We provide evidence that gallium purity is the primary impediment to attainment of ultra-high mobility in a two-dimensional electron gas (2DEG) in AlGaAs/GaAs heterostructures grown by molecular beam epitaxy (MBE). The purity of gallium can be enhanced dramatically by in-situ high temperature outgassing within an operating MBE. Based on analysis of data from an initial growth campaign in a new MBE system and modifications employed for a 2nd growth campaign, we have produced 2DEGs with low temperature mobility μ in excess of 35×106 cm2/V s at density n=3.0×1011/cm2 and μ=18×106 cm2/V s at n=1.1×1011/cm2. Our 2nd campaign data indicate that gallium purity remains the factor currently limiting μ<40×106 cm2/V s. We describe strategies to overcome this limitation.

  18. MBE based HgCdTe APDs and 3D LADAR sensors

    NASA Astrophysics Data System (ADS)

    Jack, Michael; Asbrock, Jim; Bailey, Steven; Baley, Diane; Chapman, George; Crawford, Gina; Drafahl, Betsy; Herrin, Eileen; Kvaas, Robert; McKeag, William; Randall, Valerie; De Lyon, Terry; Hunter, Andy; Jensen, John; Roberts, Tom; Trotta, Patrick; Cook, T. Dean

    2007-04-01

    Raytheon is developing HgCdTe APD arrays and sensor chip assemblies (SCAs) for scanning and staring LADAR systems. The nonlinear characteristics of APDs operating in moderate gain mode place severe requirements on layer thickness and doping uniformity as well as defect density. MBE based HgCdTe APD arrays, engineered for high performance, meet the stringent requirements of low defects, excellent uniformity and reproducibility. In situ controls for alloy composition and substrate temperature have been implemented at HRL, LLC and Raytheon Vision Systems and enable consistent run to run results. The novel epitaxial designed using separate absorption-multiplication (SAM) architectures enables the realization of the unique advantages of HgCdTe including: tunable wavelength, low-noise, high-fill factor, low-crosstalk, and ambient operation. Focal planes built by integrating MBE detectors arrays processed in a 2 x 128 format have been integrated with 2 x 128 scanning ROIC designed. The ROIC reports both range and intensity and can detect multiple laser returns with each pixel autonomously reporting the return. FPAs show exceptionally good bias uniformity <1% at an average gain of 10. Recent breakthrough in device design has resulted in APDs operating at 300K with essentially no excess noise to gains in excess of 100, low NEP <1nW and GHz bandwidth. 3D LADAR sensors utilizing these FPAs have been integrated and demonstrated both at Raytheon Missile Systems and Naval Air Warfare Center Weapons Division at China Lake. Excellent spatial and range resolution has been achieved with 3D imagery demonstrated both at short range and long range. Ongoing development under an Air Force Sponsored MANTECH program of high performance HgCdTe MBE APDs grown on large silicon wafers promise significant FPA cost reduction both by increasing the number of arrays on a given wafer and enabling automated processing.

  19. Strong nonlinear optical enhancement in MBE-grown Bi 1-xSb x

    NASA Astrophysics Data System (ADS)

    Youngdale, E. R.; Meyer, J. R.; Hoffman, C. A.; Bartoli, F. J.; Partin, D. L.; Thrush, C. M.; Heremans, J. P.

    1991-05-01

    We report an experimental study of the linear and nonlinear optical properties of Bi 1-xSb x alloy layers grown by MBE. Non-degenerate four-wave mixing experiments at CO 2 laser wavelengths yield a large third-order nonlinear susceptibility (χ (3)≈3.5 × 10 -4 esu). Furthermore, due to the high reflectivity of the Bi 1-xSb x films at both the air and substrate interfaces, the etalon formed can enhance the nonlinear optical signal by over an order of magnitude.

  20. Self-organized MBE growth of II VI epilayers on patterned GaSb substrates

    NASA Astrophysics Data System (ADS)

    Wissmann, H.; Tran Anh, T.; Rogaschewski, S.; von Ortenberg, M.

    1999-05-01

    We report on the self-organized MBE growth of II-VI epilayers on patterned and unpatterned GaSb substrates resulting in quantum wires and quantum wells, respectively. The HgSe : Fe quantum wires were grown on (0 0 1)GaSb substrates with a buffer of lattice-matched ZnTe 1- xSe x. Due to the anisotropic growth of HgSe on the A-oriented stripes roof-like overgrowth with a definite ridge was obtained. Additional Fe doping in the direct vicinity of the ridge results in a highly conductive quantum wire.

  1. Nonlinear optical materials based on MBe2BO3F2 (M=Na,K)

    NASA Astrophysics Data System (ADS)

    Mei, Linfeng; Wang, Yebin; Chen, Chuangtian; Wu, Bochuang

    1993-12-01

    In a detailed analysis on the component elements, beryllium borate was chosen, and the alkaline metal beryllium borate fluorides MBe2BO3F2 (MBBF) (M = Na, K) were investigated. The compounds MBBF (M = Na, K) were synthesized by normal solid state reaction from the MBF4-BeO systems at 650-800 C, and the MBBF (M = Na, K) crystals were grown by the flux method. MBFF (Na,K) are promising candidates for VUV NLO crystals. A VUV NLO crystal can play an important role in laser chemistry, laser medical science and other fields.

  2. Control over the optical and electronic performance of GaAs/AlGaAs QWIPs grown by production MBE

    NASA Astrophysics Data System (ADS)

    Roodenko, K.; Choi, K.-K.; Clark, K. P.; Fraser, E. D.; Vargason, K. W.; Kuo, J.-M.; Kao, Y.-C.; Pinsukanjana, P. R.

    2017-08-01

    Commercial production of quantum well infrared detectors (QWIPs) requires targeting specific detector dark current densities and cutoff wavelengths. Molecular beam epitaxy (MBE) allows a tight control over the quantum-well structure. This manuscript discusses the growth of the long-wave infrared (LWIR) QWIP detectors on the multi-wafer MBE reactors at IntelliEpi. We address the tuning of the cutoff wavelength by adjusting of the thickness of the GaAs quantum well (QW) layer and the composition of the AlGaAs barrier. The control over the dark current densities is examined through the correlation with the doping levels and the detector cutoff wavelength.

  3. AlGaAs/GaAs nano-hetero-epitaxy on a patterned GaAs substrate by MBE

    SciTech Connect

    Nishiwaki, T.; Yamaguchi, M.; Sawaki, N.

    2007-04-10

    An AlGaAs/GaAs resonant tunneling diode (RTD) with submicron size was fabricated on {l_brace}111{r_brace} oblique facets of GaAs with selective MBE. The method is based on the fact that a certain facet structure is formed on a patterned substrate in selective MBE because the growth rate depends strongly on the facet structure. The fabrication of a double-barrier structure was attempted on a {l_brace}111{r_brace}B facet. The current-voltage characteristics of the sample showed negative differential resistance at 77K demonstrating that we have achieved an RTD on a submicron facet.

  4. MBE Growth of Ferromagnetic Metal/Compound Semiconductor Heterostructures for Spintronics

    ScienceCinema

    Palmstrom, Chris [University of California, Santa Barbara, California, United States

    2016-07-12

    Electrical transport and spin-dependent transport across ferromagnet/semiconductor contacts is crucial in the realization of spintronic devices. Interfacial reactions, the formation of non-magnetic interlayers, and conductivity mismatch have been attributed to low spin injection efficiency. MBE has been used to grow epitaxial ferromagnetic metal/GA(1-x)AL(x)As heterostructures with the aim of controlling the interfacial structural, electronic, and magnetic properties. In situ, STM, XPS, RHEED and LEED, and ex situ XRD, RBS, TEM, magnetotransport, and magnetic characterization have been used to develop ferromagnetic elemental and metallic compound/compound semiconductor tunneling contacts for spin injection. The efficiency of the spin polarized current injected from the ferromagnetic contact has been determined by measuring the electroluminescence polarization of the light emitted from/GA(1-x)AL(x)As light-emitting diodes as a function of applied magnetic field and temperature. Interfacial reactions during MBE growth and post-growth anneal, as well as the semiconductor device band structure, were found to have a dramatic influence on the measured spin injection, including sign reversal. Lateral spin-transport devices with epitaxial ferromagnetic metal source and drain tunnel barrier contacts have been fabricated with the demonstration of electrical detection and the bias dependence of spin-polarized electron injection and accumulation at the contacts. This talk emphasizes the progress and achievements in the epitaxial growth of a number of ferromagnetic compounds/III-V semiconductor heterostructures and the progress towards spintronic devices.

  5. MBE and ALD grown High k Dielectrics Gate Stacks on GaN

    NASA Astrophysics Data System (ADS)

    Chang, Y. C.; Lee, K. Y.; Lee, W. C.; Lin, T. D.; Lee, Y. J.; Huang, M. L.; Hong, M.; Kwo, J.; Wang, Y. H.

    2007-03-01

    III-nitride compound semiconductors are attractive for high-temperature and high-power MOSFET applications due to their intrinsic properties of wide band gap, high breakdown field, and high saturation velocity under high fields. In this work GaN-based high k MOS diodes were fabricated using MBE-grown Ga2O3(Gd2O3), MBE-grown HfO2 and ALD-grown HfO2 as the gate dielectrics with dielectric constants of 14.7, 17.4 and 16.5, respectively. All MOS diodes exhibited low leakage (<10-6 A/cm^2 at Vfb+1) and well behaved capacitance-voltage curves with a low interfacial density of states of ˜10^11 cm-2eV-1. Energy-band diagrams of the MOS structures have been determined by extracting valance-band offset (δEV) from HR-XPS and with the bandgaps of the oxides. For example, the ALD-grown HfO2-GaN at the interfaces gave approximately δEC and δEV of 1.2 eV and 1.1 eV, respectively.

  6. Recent progress in the doping of MBE HgCdTe

    NASA Astrophysics Data System (ADS)

    Sivananthan, Sivalingam; Wijewarnasuriya, P. S.; Faurie, Jean-Pierre

    1995-09-01

    We present a review of the recent progress in the doping of HgCdTe grown by molecular beam epitaxy. A detailed analysis of the unintentional/intrinsic, n-type, and p-type doping is presented. Our results show that CdZnTe substrates should be carefully screened to reduce the out-diffusion of impurities from the substrate. N-type HgCdTe layers exhibit excellent Hall characteristics down to indium levels of 2 X 10(superscript 15) cm(superscript -3). Electron mobilities in the range of (2 - 3) X 10(superscript 5) cm(superscript 2)/vs at 23 K were obtained. Measured lifetime data fits very well with the intrinsic band-to-band recombination. However, below 2 X 10(superscript 15) cm(superscript -3) doping levels, minority carrier lifetime is limited by Schockley-Reed recombination. We have implemented planar doping with arsenic as p-type dopant during MBE growth. Our results clearly indicate that arsenic incorporates as an acceptor dopant during the growth of MBE HgCdTe.

  7. Superconducting proximity effect in MBE grown Nb-InAs junctions

    NASA Astrophysics Data System (ADS)

    Kan, Carolyn; Xue, Chi; Law, Stephanie; Eckstein, James

    2013-03-01

    Several proposals for the realization of Majorana fermions rely on excellent quality proximity coupling between a superconductor and a high-mobility semiconductor. We examine the long-range proximity coupling between MBE-grown InAs and in situ grown superconducting overlayers by fabricating transport devices, and investigate the effect of substrate choice and growth conditions on the quality of the MBE InAs. GaAs is commonly available as a high quality insulating substrate. Overcoming its lattice mismatch with InAs using GaSb and AlSb layers results in locally smooth terraced surfaces, but global spiral dislocation structures also appear and have a negative impact on the InAs mobility. Growing InAs on homoepitaxial GaSb results in improved morphology and increases the mean free path. We compare the proximity effect in devices made both ways. This material is based upon work supported by the U.S. Department of Energy, Division of Materials Sciences under Award No. DE-FG02 07ER46453, through the Frederick Seitz Materials Research Laboratory at the University of Illinois at Urbana-Champaign.

  8. Final report on LDRD Project: In situ determination of composition and strain during MBE

    SciTech Connect

    Chason, E.; Floro, J.A.; Reno, J.; Klem, J.

    1997-02-01

    Molecular Beam Epitaxy (MBE) of semiconductor heterostructures for advanced electronic and opto-electronic devices requires precise control of the surface composition and strain. The development of advanced in situ diagnostics for real-time monitoring and process control of strain and composition would enhance the yield, reliability and process flexibility of material grown by MBE and benefit leading-edge programs in microelectronics and photonics. The authors have developed a real-time laser-based technique to measure the evolution of stress in epitaxial films during growth by monitoring the change in the wafer curvature. Research has focused on the evolution of stress during the epitaxial growth of Si{sub x}Ge{sub 1{minus}x} alloys on Si(001) substrates. Initial studies have observed the onset and kinetics of strain relaxation during the growth of heteroepitaxial layers. The technique has also been used to measure the segregation of Ge to the surface during alloy growth with monolayer sensitivity, an order of magnitude better resolution than post-growth characterization. In addition, creation of a 2-dimensional array of parallel beams allows rapid surface profiling of the film stress that can be used to monitor process uniformity.

  9. Unraveling the electron pairing mechanism of FeSe by MBE and STM

    NASA Astrophysics Data System (ADS)

    Song, Canli

    Studies of high-transition-temperature superconductivity usually suffer from various imperfections in materials. Here we apply the state-of-the-art molecular beam epitaxy (MBE) to prepare controllably high-quality FeSe films on various substrates, and explore their superconducting properties using cryogenic scanning tunneling microscope. Single impurities, twin boundaries as well as strain are found in the MBE-grown FeSe films on graphene, and invariably suppress the superconductivity. Meanwhile, electronic nematicity and signatures of a bosonic mode, whose energy also decreases with strain, were identified. More significantly, we observed two disconnected superconducting domes at alkali-metal potassium (K)-dosed FeSe surface, stepping towards the mechanistic understanding of superconductivity in FeSe-derived superconductors. Our results are clarifying the secret of high-Tc superconductivity in FeSe-related superconductors, and by implications, in other unconventional superconductors, and guiding how to enhance Tc by interface engineering. This work was nancially supported by National Science Foundation and Ministry of Science and Technology of China.

  10. Thermal stability of MBE-grown epitaxial MoSe2 and WSe2 thin films

    NASA Astrophysics Data System (ADS)

    Chang, Young Jun; Choy, Byoung Ki; Phark, Soo-Hyon; Kim, Minu

    Layered transition metal dichalcogenides (TMDs) draw much attention, because of its unique optical properties and band structures depending on the layer thicknesses. However, MBE growth of epitaxial films demands information about thermal stability of stoichiometry and related electronic structure for high temperature range. We grow epitaxial MoSe2 and WSe2 ultrathin films by using molecular beam epitaxy (MBE). We characterize stoichiometry of films grown at various growth temperature by using various methods, XPS, EDX, and TOF-MEIS. We further test high temperature stability of electronic structure for those films by utilizing in-situ ellipsometry attached to UHV chamber. We discuss threshold temperatures up to 700~1000oC, at which electronic phases changes from semiconductor to metal due to selenium deficiency. This information can be useful for potential application of TMDs for fabrication of Van der Waals multilayers and related devices. This research was supported by Nano.Material Technology Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning. (2009-0082580), NRF-2014R1A1A1002868.

  11. Comparison of the optical characteristics of GaAs photocathodes grown using MBE and MOCVD

    NASA Astrophysics Data System (ADS)

    Bourree, Loig E.; Chasse, David R.; Thamban, P. L. Stephan; Glosser, Robert

    2003-02-01

    Modern image tube intensifier photocathodes rely on a GaAs active layer, which has traditionally been grown using metallorganic chemical vapor deposition (MOCVD) due to its high throughput and lower cost of operation. Molecular beam epitaxy (MBE) processes have not been thoroughly investigated in that context. The latter technique demonstrates greater structural interface control as well as an improved growth quality for a multitude of applications. Still, at this point it is uncertain, considering actual fabrication techniques for image intensifiers, that the higher growth quality will result in an improvement of devices. Studies are being carried out to compare fundamental optical parameters between GaAs photocathodes grown by both MOCVD and MBE following the same growth and fabrication guidelines. These experiments involve using photoluminescence and Raman spectroscopy to obtain electron and phonon energy information on the materials. An atomic force microscope (AFM) is employed to compare the surface roughness of both methods. In addition, the white light responses of the photocathodes are also evaluated during the creation of a negative electron affinity (NEA) surface to observe any differences between the two growth techniques.

  12. Strong photoluminescence emission from GaN grown on amorphous silica substrates by gas source MBE

    NASA Astrophysics Data System (ADS)

    Iwata, K.; Asahi, H.; Asami, K.; Kuroiwa, R.; Gonda, S.

    1998-06-01

    GaN layers are grown on amorphous fused silica glass substrates by gas source MBE using an ion removed electron cyclotron resonance (ECR) radical cell. Reflection high-energy electron diffraction (RHEED) and X-ray diffraction measurements reveal that they are polycrystalline. However, they show a strong photoluminescence emission peak without deep level emission. The emission peak is red-shifted by about 150 meV from that of the excitonic emission peak of GaN grown on a sapphire substrate and has wide spectral half-width (˜250 meV at 77 K). The peak is not corresponding to the donor-acceptor pair (DAP) emission but is excitonic from the excitation power and temperature dependence of PL spectrum. These optical properties indicate that GaN layers grown on a glass substrate are promising for fabrication of large area and low cost light emitting devices and solar cells.

  13. Hole mobility in strained Si/SiGe/vicinal Si(110) grown by gas source MBE

    NASA Astrophysics Data System (ADS)

    Arimoto, Keisuke; Yagi, Sosuke; Yamanaka, Junji; Hara, Kosuke O.; Sawano, Kentarou; Usami, Noritaka; Nakagawa, Kiyokazu

    2017-06-01

    Strained Si/SiGe heterostructures were grown on vicinal Si(110) substrates by using gas-source MBE, and relationship between structural aspects and effective hole mobility was investigated. The surface inclination was found to be effective in obtaining smoother surface. By growing the film at different substrate temperatures, samples which were significantly different in surface morphology and crystalline defects were obtained. Under a certain condition, the strain in the SiGe layer was found to be relaxed mainly by microtwin formation. It was found that this strain relaxation pathway was favorable for pMOSFETs with [1 ̅10 ] channel. As a result, the effective hole mobility as high as 350 cm2/Vs was achieved on conventional Si substrate.

  14. High Quality Factor MBE-grown Aluminum on Silicon Planar Resonators

    NASA Astrophysics Data System (ADS)

    Megrant, Anthony; Chen, Z.; Chiaro, B.; Dunsworth, A.; Quintana, C.; Campbell, B.; Barends, R.; Chen, Y.; Fowler, A.; Hoi, I.-C.; Jeffrey, E.; Kelly, J.; Mutus, J.; Neill, C.; O'Malley, P. J. J.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T.; Palmstrom, C.; Martinis, J. M.; Cleland, A. N.

    2015-03-01

    Linear arrays of planer Xmon qubit circuits fabricated using thin aluminum films on sapphire substrates have resulted in long coherence times and high fidelity gates. Scaling up to larger circuits, including two-dimensional qubit arrays, may however benefit from building circuits on silicon instead of sapphire substrates. I will present recent tests in this direction, reporting on measurements of superconducting coplanar waveguide resonators fabricated using aluminum films deposited on silicon in a molecular beam epitaxy (MBE) system. These resonators exhibit exceptional performance, with quality factors at low temperatures and single photon excitation energies exceeding 5x106. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), through the Army Research Office Grant W911NF-09-1-0375.

  15. Homoepitaxial n-core: p-shell gallium nitride nanowires: HVPE overgrowth on MBE nanowires.

    PubMed

    Sanders, Aric; Blanchard, Paul; Bertness, Kris; Brubaker, Matthew; Dodson, Christopher; Harvey, Todd; Herrero, Andrew; Rourke, Devin; Schlager, John; Sanford, Norman; Chiaramonti, Ann N; Davydov, Albert; Motayed, Abhishek; Tsvetkov, Denis

    2011-11-18

    We present the homoepitaxial growth of p-type, magnesium doped gallium nitride shells by use of halide vapor phase epitaxy (HVPE) on n-type gallium nitride nanowires grown by plasma-assisted molecular beam epitaxy (MBE). Scanning electron microscopy shows clear dopant contrast between the core and shell of the nanowire. The growth of magnesium doped nanowire shells shows little or no effect on the lattice parameters of the underlying nanowires, as measured by x-ray diffraction (XRD). Photoluminescence measurements of the nanowires show the appearance of sub-bandgap features in the blue and the ultraviolet, indicating the presence of acceptors. Finally, electrical measurements confirm the presence of electrically active holes in the nanowires.

  16. The Mid-Barremian Event (MBE): the Prelude to the OAE1a

    NASA Astrophysics Data System (ADS)

    Coccioni, R.; Galeotti, S.; Sprovieri, M.

    2003-12-01

    Detailed litho-, bio- and chemostratigraphic investigations of the Hauterivian-lowermost Aptian Maiolica pelagic limestones in the Umbria-Marche sequence, allowed to identify that the Selli Level, which is the regional sedimentary expression of the OAE 1a, represents the climax of a ca. 5 myr-long cycle of black shale deposition starting at the lower/upper Barremian boundary within polarity Chronozone M3 and H. similis-H. kutznetsovae planktonic foraminiferal Zone, that is in the lowermost part of the calcareous nannofossil Zone NC 5D. This long-term cycle starts with a prominent short-term event, here named mid-Barremian Event (MBE), which is associated with several changes in the biotic and abiotic records. In particular, a comparison of the available chemo- litho-, and biostratigraphic data from the Umbria-Marche Basin, allows to recognise that the MBE is defined by: 1) a 0.5 per mil positive shift in the carbon isotope values (Hadji, 1993; unpublished data); 2) a major step in the initial evolutive radiation of planktonic foraminifera (unpublished data); 3) a major turnover in the radiolarian assemblages (Jud, 1994; O'Dogherty, 1994). The above mentioned change in carbon isotope values can be confidently correlated over the Mediterranean Tethys which is the sole area where a detailed isotopic record is available for the entire Barremian (Erba et al., 1999; Wissler et al., 2002). These lines of evidence concur to define the MBE as an outstanding event associated with large scale changes in the ocean-climate system likely related to the rapid oceanic Ontong-Java Plateau formation, which eventually led to OAE1a. Remarkably, the MBE largely predates the well known series of biotic and geochemical events occurring prior to the OAE1a and may be considered as the real turning point in the Barremian-Aptian long-term cycle of black-shale deposition and evolutionary turnovers in several fossil groups. References Erba, E., Channell, J.E.T., Claps, M., Jones, C., Larson, R

  17. Investigation of Si-substrate preparation for GaAs-on-Si MBE growth

    NASA Astrophysics Data System (ADS)

    Kayambaki, M.; Callec, R.; Constantinidis, G.; Papavassiliou, Ch.; Löchtermann, E.; Krasny, H.; Papadakis, N.; Panayotatos, P.; Georgakilas, A.

    1995-12-01

    Auger electron spectroscopy (AES) and material characterization techniques have been used to investigate different chemical treatments for the preparation of Si substrates for GaAs-on-Si molecular beam epitaxy (MBE). The need for a Si surface passivating oxide is justified and three different oxidizing solutions are compared for substrate cleanliness and oxide volatility. It is shown that the SC2 solution HCl : H 2O 2 : H 2O (1 : 1 : 6) at 75°C is an appropriate treatment for the final Si cleaning step, since it results to a very volatile oxide that can be desorbed at 750°C, without compromising Si surface cleanliness and GaAs purity. Si wafers with optimized preparation/packaging may also be used as "EPI-ready" substrates within some time after manufacturing.

  18. Specific features of NH{sub 3} and plasma-assisted MBE in the fabrication of III-N HEMT heterostructures

    SciTech Connect

    Alexeev, A. N.; Krasovitsky, D. M.; Petrov, S. I.; Chaly, V. P.; Mamaev, V. V.; Sidorov, V. G.

    2015-01-15

    The specific features of how nitride HEMT heterostructures are produced by NH{sub 3} and plasma-assisted (PA) molecular-beam epitaxy (MBE) are considered. It is shown that the use of high-temperature AlN/AlGaN buffer layers grown with ammonia at extremely high temperatures (up to 1150°C) can drastically improve the structural perfection of the active GaN layers and reduce the dislocation density in these layers to values of 9 × 10{sup 8}−1 × 10{sup 9} cm{sup −2}. The use of buffer layers of this kind makes it possible to obtain high-quality GaN/AlGaN heterostructures by both methods. At the same time, in contrast to ammonia MBE which is difficult to apply at T < 500°C (because of the low efficiency of ammonia decomposition), PA MBE is rather effective at low temperatures, e.g., for the growth of InAlN layers lattice-matched with GaN. The results obtained in the MBE growth of AlN/AlGaN/GaN/InAlN heterostructures by both PA-MBE and NH{sub 3}-MBE with an extremely high ammonia flux are demonstrated.

  19. Transcription of ColE1Ap mbeC induced by conjugative plasmids from twelve different incompatibility groups.

    PubMed Central

    Selvaratnam, S; Gealt, M A

    1993-01-01

    Although nonconjugative mobilizable plasmids require helping functions of conjugative plasmids in order to be mobilized into recipients, at least some genes from the nonconjugative plasmids may be induced to assist in the DNA transfer process. Conjugative plasmids from 12 different incompatibility groups mobilized the nonconjugative plasmid ColE1Ap between Escherichia coli strains. Introduction of any of the conjugative plasmids into the ColE1Ap-containing strain resulted in an induction of mbeC, the product of which is a component of the mobilization relaxation complex. Each of the conjugative plasmids caused protein to bind specifically to mbe promoter DNA, suggesting a direct regulatory interaction. Images PMID:8226641

  20. Very strong photoluminescence emission from GaN grown on amorphous silica substrate by gas source MBE

    NASA Astrophysics Data System (ADS)

    Asahi, H.; Iwata, K.; Tampo, H.; Kuroiwa, R.; Hiroki, M.; Asami, K.; Nakamura, S.; Gonda, S.

    1999-05-01

    Polycrystalline GaN layers showing very strong photoluminescence (PL) intensities are successfully grown on amorphous fused silica (SiO 2) substrates by gas source molecular beam epitaxy (MBE) using an ion removed electron cyclotron resonance radical cell. The PL intensity is larger than that of undoped single crystalline GaN grown on sapphire by gas source MBE and is comparable to that of Si-doped single crystalline GaN grown on sapphire by metalorganic vapor-phase epitaxy at Nichia Chemical. The PL peak emission is considered to be excitonic. Undoped GaN layers grown on silica substrates exhibit n-type conduction and both n- and p-type conductions are achieved by impurity doping. These results open up the area of "Polycrystalline Semiconductor Photonics".

  1. MBE growth of HgCdTe on GaSb substrates for application in next generation infrared detectors

    NASA Astrophysics Data System (ADS)

    Gu, R.; Antoszewski, J.; Lei, W.; Madni, I.; Umana-Membrenao, G.; Faraone, L.

    2017-06-01

    HgCdTe has dominated the high performance end of the IR detector market for decades. At present, the cost to fabricate HgCdTe based advanced infrared devices is relatively high. One approach to address this problem is to use cost effective alternative substrate, mainly Si and GaAs. Recently, GaSb has emerged as a new alternative with better lattice matching. In this paper, recent progress in molecular beam epitaxial (MBE) growth of HgCdTe infrared material at UWA is reported. HgCdTe has been grown on GaSb substrates by MBE, and has shown a lower Etch Pit Density (EPD) and higher minority carrier lifetime in comparison to other alternative substrates. This result makes GaSb an interesting and promising alternative substrate material for HgCdTe epitaxy.

  2. Cross-Sectional Study of Macrodefects in MBE Dual-Band HgCdTe on CdZnTe

    NASA Astrophysics Data System (ADS)

    Reddy, M.; Lofgreen, D. D.; Jones, K. A.; Peterson, J. M.; Radford, W. A.; Benson, J. D.; Johnson, S. M.

    2013-11-01

    HgCdTe dual-band mid-wave infrared/long-wave infrared focal-plane arrays on CdZnTe are a key component in advanced electrooptic sensor applications. Molecular beam epitaxy (MBE) has been used successfully for growth of dual-band layers on larger CdZnTe substrates. However, the macrodefect density, which is known to reduce the pixel operability and its run-to-run variation, is larger when compared with layers grown on Si substrate. This paper reports the macrodefect density versus size signature of a well-optimized MBE dual-band growth and a cross-sectional study of a macrodefect that represents the most prevalent class using focused ion beam, scanning transmission electron microscopy, and energy-dispersive x-ray spectroscopy. The results show that the macrodefect originates from a void, which in turn is associated with a pit on the CdZnTe substrate.

  3. Life on the edge: squirrel-cage fringe fields and their effects in the MBE-4 combiner experiment

    SciTech Connect

    Fawley, W.M.

    1996-02-01

    The MBE-4 combiner experiment employs an electrostatic combined-function focusing/bending element, the so-called ``squirrel-cage`` just before the actual merging region. There has been concern that non-linear fields, primarily in the fringe regions at the beginning and end of the cage, may be strong enough to lead to significant emittance degradation. This note present the results of numerical calculations which determined the anharmonic, non-linear components of the 3D fields in the cage and the resultant, orbit-integrated effects upon the MBE-4 beamlets. We find that while the anharmonic effects are small compared to the dipole deflection, the resultant transverse emittance growth is significant when compared to the expected value of the initial emittance of the individual beamlets.

  4. Impact of MBE deposition conditions on InAs/GaInSb superlattices for very long wavelength infrared detection

    NASA Astrophysics Data System (ADS)

    Brown, G. J.; Haugan, H. J.; Mahalingam, K.; Grazulis, L.; Elhamri, S.

    2015-01-01

    The objective of this work is to establish molecular beam epitaxy (MBE) growth processes that can produce high quality InAs/GaInSb superlattice (SL) materials specifically tailored for very long wavelength infrared (VLWIR) detection. To accomplish this goal, several series of MBE growth optimization studies, using a SL structure of 47.0 Å InAs/21.5 Å Ga0.75In0.25Sb, were performed to refine the MBE growth process and optimize growth parameters. Experimental results demonstrated that our "slow" MBE growth process can consistently produce an energy gap near 50 meV. This is an important factor in narrow band gap SLs. However, there are other growth factors that also impact the electrical and optical properties of the SL materials. The SL layers are particularly sensitive to the anion incorporation condition formed during the surface reconstruction process. Since antisite defects are potentially responsible for the inherent residual carrier concentrations and short carrier lifetimes, the optimization of anion incorporation conditions, by manipulating anion fluxes, anion species, and deposition temperature, was systematically studied. Optimization results are reported in the context of comparative studies on the influence of the growth temperature on the crystal structural quality and surface roughness performed under a designed set of deposition conditions. The optimized SL samples produced an overall strong photoresponse signal with a relatively sharp band edge that is essential for developing VLWIR detectors. A quantitative analysis of the lattice strain, performed at the atomic scale by aberration corrected transmission electron microscopy, provided valuable information about the strain distribution at the GaInSb-on-InAs interface and in the InAs layers, which was important for optimizing the anion conditions.

  5. Growth of AlN and GaN thin films via OMVPE and gas source MBE and their characterization

    NASA Astrophysics Data System (ADS)

    Davis, Robert F.; Weeks, T. W.; Bremser, M. D.; Tanaka, S.; Kern, R. S.; Sitar, Z.; Ailey, K. S.; Perry, W. G.; Wang, C.

    1997-02-01

    Thin films of AlN and GaN are deposited primarily via the common forms of organometallic vapor phase epitaxy (OMVPE) and molecular beam epitaxy (MBE). Sapphire is the most common substrate; however, a host of materials have been used with varying degrees of success. Both growth techniques have been employed by the authors to grow AlN and GaN primarily on 6H-SiC(0001). The mismatch in atomic layer stacking sequences along the growth direction produces inversion domain boundaries in the AlN at the SiC steps; this sequence problem may discourage the nucleation of GaN. Films of AlN and GaN grown by MBE at 650°C are textured; monocrystalline films are achieved at 1050°C by this technique and OMVPE. Donor and acceptor doping of GaN has been achieved via MBE without post growth annealing. Acceptor doping in CVD material requires annealing to displace the H from the Mg and eventually remove it from the material. High brightness light emitting diodes are commercially available; however, numerous concerns regarding metal and nitrogen sources, heteroepitaxial nucleation, the role of buffer layers, surface migration rates as a function of temperature, substantial defect densities and their effect on film and device properties, ohmic and rectifying contacts, wet and dry etching and suitable gate and field insulators must and are being addressed.

  6. MOS Ge Diodes Based on High κ Gate Dielectrics Grown by MBE and ALD

    NASA Astrophysics Data System (ADS)

    Lee, Kun Yu; Lee, W. C.; Lin, T. D.; Lee, C. S.; Chang, Y. C.; Lee, Y. J.; Huang, M. L.; Wu, Y. D.; Hong, M.; Kwo, J.

    2007-03-01

    Germanium-based CMOS technology is gaining importance due to its high carrier mobility. In this work high κ gate-dielectrics, Al2O3, HfO2, Y2O3 and Ga2O3(Gd2O3) grown by MBE and ALD were investigated as passivation layers on n type Ge(100). Thermal stability of the MOS diodes was examined after various anneals. Prior to dielectric depositions surface pretreatments were applied to reduce the unwanted GeOx interfacial layer, and to improve electrical properties. Frequency dispersion of C-V curves was reduced by using a 350^oC preclean process, compared to the sample without precleaning. The leakage current density of ALD grown HfO2 (6.8nm) is 4.6×10-6 A/cm^2 with κ of 10.5. The improved CV curve was attributed to less GeOx formed at substrate and oxide interface, as confirmed by XPS analysis. However, with higher cleaning temperature over 400^oC, the CV curves showed additional inversion capacitance, possibly due to minority carriers from defect states near the interface.

  7. Investigation of MBE grown polycrystalline CdTe films on the Medipix readout chip

    NASA Astrophysics Data System (ADS)

    Schütt, S.; Vogt, A.; Frei, K.; Fischer, F.; Fiederle, M.

    2017-06-01

    Cadmium Telluride (CdTe) films are directly deposited on a CMOS (complementary metal-oxide-semiconductor) based readout chip as sensor layer for X-ray detection. This is performed by using a modified Molecular Beam Epitaxy (MBE) setup with a carbon collimator enabling growth rates up to 10 μm/h. To obtain a good contacting behaviour of the 25-50 μm thick CdTe films, Te and Sb2Te3 are additionally evaporated during the process. The investigation of polycrystalline sensor layers deposited at 400 °C with SEM (scanning electron microscopy) and XRD (X-ray diffraction) reveals a columnar growth of the individual grains oriented predominantly in (111). By PES (photoelectron spectroscopy) measurements the chemical composition of the different layers is identified in a depth profile and changes in work function along the contact structure are observed. Detector properties reveal a linear behaviour of the count rate with increasing radiation intensity as well as sensibility to holes and electrons. Spatial resolution measurements result in a resolution of 5 lp/mm, which is a mandatory requirement for medical applications.

  8. MBE growth of active regions for electrically pumped, cw-operating GaSb-based VCSELs

    NASA Astrophysics Data System (ADS)

    Kashani-Shirazi, K.; Bachmann, A.; Boehm, G.; Ziegler, S.; Amann, M.-C.

    2009-03-01

    Electrically pumped, cw-operating, single-mode GaSb-based VCSELs are attractive light sources for trace-gas sensing systems using tunable diode laser absorption spectroscopy (TDLAS) [A. Vicet, D.A. Yarekha, A. Pérona, Y. Rouillard, S. Gaillard, Spectrochimica Acta Part A 58 (2002) 2405-2412]. Only recently, the first electrically pumped (EP) devices emitting at 2.325 μm in cw-mode at room temperature have been reported [A. Bachmann, T. Lim, K. Kashani-Shirazi, O. Dier, C. Lauer, M.-C. Amann, Electronics Letters 44(3) (2008) 202-203]. The fabrication of these devices employs the molecular beam epitaxy (MBE) growth of GaSb/AlAsSb-distributed Bragg mirrors, a multi-quantum-well active region made of AlGaAsSb/InGaAsSb and an InAsSb/GaSb-buried-tunnel junction. As VCSELs are usually driven under high injection rates, an optimum electrical design of active regions is essential for high-performance devices. In this paper we present an enhanced simulation of current flow in the active region under operation conditions. The calculation includes carrier transport by drift, diffusion and tunneling. We discuss different design criteria and material compositions for active regions. Active regions with various barrier materials were incorporated into edge emitter samples to evaluate their performance. Aluminum-containing barriers show better internal efficiency compared to active regions with GaSb as the barrier material.

  9. Growth, structural and optical characterization of MBE {ZnCdSe}/{ZnSe} quantum wells

    NASA Astrophysics Data System (ADS)

    Reisinger, T.; Lankes, S.; Kastner, M. J.; Rosenauer, A.; Franzen, F.; Meier, M.; Gebhardt, W.

    1996-02-01

    {ZnCdSe}/{ZnSe} quantum wells (QW) were grown with molecular beam epitaxy (MBE) on GaAs(001) substrates cleaned with hydrogen plasma. Reflection high-energy electron diffraction (RHEED) was used for in-situ growth control of the QW structures. A quantitative evaluation of the RHEED oscillations yields an exact value of the growth rate. Furthermore, in comparing the growth rate of the barrier and the well a reasonable estimate of the Cd content is possible. The in-situ RHEED measurements were supplemented by ex-situ HRXRD and HRTEM investigations. The latter method was found to be especially useful to evaluate the Cd-concentration profile of the QWs by digital analysis of lattice images (DALI). X-ray rocking curves of MQWs were recorded which show well-resolved satellite peaks. A comparison with simulations based on dynamical diffraction theory yields the structural parameters such as well width, barrier width and composition of the QWs. The XRD and TEM results are compared with the parameters determined by RHEED. In addition, we performed photoluminescence (PL) and photoluminescence excitation (PLE) spectroscopy for optical characterization of the samples. The PLE spectra show an interference pattern which is explained by standing polariton waves.

  10. MCT by MBE on GaAs at AIM: state of the art and roadmap

    NASA Astrophysics Data System (ADS)

    Figgemeier, Heinrich; Wenisch, Jan; Eich, Detlef; Hanna, Stefan; Schirmacher, Wilhelm; Lutz, Holger; Schallenberg, Timo; Breiter, Rainer

    2015-06-01

    In multiple publications over the last years, MCT MBE on GaAs has been shown to be a very versatile and promising material system and indeed may be the prime candidate among the alternative substrates for the fabrication of high-performance detectors across the whole IR composition range. In this paper we report on successful growth of MCT on GaAs over the composition range 0.2 < x(Cd) < 0.8. A single color MWIR 640 × 512, 15 μm pitch detector fabricated from this material with an operability of 99.71% at an operating temperature of 120 K is presented. In the LWIR region, an operability of 99.48% at 65 K has been achieved with a 1280 × 1024, 15 μm pitch detector. Finally we report on preliminary results of a dual-color 640 × 512, 20 μm pitch detector with cutoff wavelengths in the 3 - 4 and 4 - 5 μm range.

  11. Modification of MBE for growth of dilute nitride quantum well photovoltaics

    NASA Astrophysics Data System (ADS)

    Vijaya, G.; Mehrotra, A.; Gunasekera, M.; Freundlich, A.

    2013-03-01

    III-V Dilute Nitride multi-quantum well structures are currently promising candidates to achieve 1 sun efficiencies of >40% with multi-junction design (InGaP/ GaAs/ GaAsN/ Ge). In other works, we have discussed the design having III-V Dilute Nitride GaAsN multi-quantum well (MQW) structures with resonant tunneling setup in the intrinsic region, in order to improve the response potentially yielding 1 sun efficiencies greater than 40%. Earlier efforts in this direction had yielded samples with considerable incorporation of N at the QW/barrier interface, leading to the formation of nitridation and reducing the overall quantum efficiency. In this work we discuss the results of the growth of MQW solar cells in MBE, with a modified run-vent system for the RF N-plasma setup aimed at increasing the sharpness of the well-barrier transition, and the change in quality of the quantum wells grown.

  12. MBE fabrication of self-assembled Si and metal nanostructures on Si surfaces

    SciTech Connect

    Galiana, Natalia; Martin, Pedro-Pablo; Munuera, Carmen; Varela del Arco, Maria; Soria, Federico; Ocal, Carmen; Ruiz, Ana; Alonso, Maria

    2006-01-01

    Two types of fairly regular distributions of Si nanostructures, of interest as templates to grow spatially controlled ensembles of metal (Co, Fe, Ag, etc.) nanostructures, are presented in this paper. Both of them are achieved by self-assembling processes during Si homoepitaxy. One corresponds to films grown by molecular beam epitaxy (MBE) on Si(0 0 1)-2 x 1 surfaces with low (<1 degree) miscut angles. In this case, arrays of 3D Si-islands displaying well defined pyramid-like shapes can be obtained, as evidenced by Scanning Force Microscopy (SFM) and Scanning Transmission Electron Microscopy (STEM). Such arrays exhibit strong similarities with those reported for Ge and SiGe islands on Si(0 0 1), and may thus serve as a simpler route to produce ordered distributions of metallic nanodots. On the other hand, on Si(1 1 1)-7 x 7 vicinal substrates misoriented 4 degrees toward the View the MathML source direction, step rearrangement during homoepitaxy permits to produce nanopatterned surfaces, the building-blocks of which are triangular (1 1 1) platforms, with lateral dimensions of hundreds of nanometers, bound by step bunches about 30 nm high. Furthermore, different Ag deposition experiments support this spontaneous patterning on Si(1 1 1) as a promising approach to achieve regular distributions of metallic nanocrystals with an overall homogeneity in sizes, shapes and spacing.

  13. Accelerator research on MBE-4, an experimental multi-beam induction linac

    SciTech Connect

    Meuth, H.; Fessenden, T.J.; Keefe, D.; Warwick, A.I.

    1988-06-01

    The multiple beam accelerator MBE-4 is a device for research toward a heavy ion driver for inertial confinement fusion, based on the induction linac concept. Its main goal is proof of the principle of current amplification by acceleration and controlled self-similar beam pulse compression. Into the 16-m long device four beams, each with an initial current of 10 mA are injected from a Marx-driven diode at 200 keV. The current amplification is up to nine-fold, with a final beam energy of about 800 keV in the middle of the bunch. Now that all the apparatus' accelerator sections have been completed, installed and aligned, and its unaccelerated transport properties have been studied, our experimental research has reached the crucial phase of implementing appropriate accelerator schedules that approximate self-similar current-pulse compression. These schedules are established through a close interplay of computations using a one-dimensional simulation code and a manual empirical tuning procedure. In a first approach, with a rather vigorous schedule that uses most of the accelerator modules to their voltage limits, we have determined the limits of our capability for controlled pulse compression, mainly due to waveform shaping of the driving pulse-forming networks. We shall report on these results. In the future, we will also aim for gentler schedules that would model more closely an inertial confinement fusion scenario. 8 refs., 11 figs., 1 tab.

  14. Group III-nitride thin films grown using MBE and bismuth

    DOEpatents

    Kisielowski, Christian K.; Rubin, Michael

    2000-01-01

    The present invention comprises growing gallium nitride films in the presence of bismuth using MBE at temperatures of about 1000 K or less. The present invention further comprises the gallium nitride films fabricated using the inventive fabrication method. The inventive films may be doped with magnesium or other dopants. The gallium nitride films were grown on sapphire substrates using a hollow anode Constricted Glow Discharge nitrogen plasma source. When bismuth was used as a surfactant, two-dimensional gallium nitride crystal sizes ranging between 10 .mu.m and 20 .mu.m were observed. This is 20 to 40 times larger than crystal sizes observed when GaN films were grown under similar circumstances but without bismuth. It is thought that the observed increase in crystal size is due bismuth inducing an increased surface diffusion coefficient for gallium. The calculated value of 4.7.times.10.sup.-7 cm.sup.2 /sec. reveals a virtual substrate temperature of 1258 K which is 260 degrees higher than the actual one.

  15. Group III-nitride thin films grown using MBE and bismuth

    DOEpatents

    Kisielowski, Christian K.; Rubin, Michael

    2002-01-01

    The present invention comprises growing gallium nitride films in the presence of bismuth using MBE at temperatures of about 1000 K or less. The present invention further comprises the gallium nitride films fabricated using the inventive fabrication method. The inventive films may be doped with magnesium or other dopants. The gallium nitride films were grown on sapphire substrates using a hollow anode Constricted Glow Discharge nitrogen plasma source. When bismuth was used as a surfactant, two-dimensional gallium nitride crystal sizes ranging between 10 .mu.m and 20 .mu.m were observed. This is 20 to 40 times larger than crystal sizes observed when GaN films were grown under similar circumstances but without bismuth. It is thought that the observed increase in crystal size is due bismuth inducing an increased surface diffusion coefficient for gallium. The calculated value of 4.7.times.10.sup.-7 cm.sup.2 /sec. reveals a virtual substrate temperature of 1258 K which is 260 degrees higher than the actual one.

  16. Microstructural Changes in MBE Growth of Low-Temperature Gallium Arsenide Observed by in Situ Ellipsometry

    NASA Astrophysics Data System (ADS)

    Eyink, Kurt Gerard

    1995-01-01

    An ellipsometer system has been developed for in-situ monitoring of III-V semiconductor growth using molecular beam epitaxy. Included as part of this work, a software package was developed for the calibration, acquisition, display and modeling of ellipsometry data. This calibration software addresses the arbitrary orientations of the analyzer and polarizer components that are present in the mounting of the ellipsometer on the MBE system. In addition, this package calculated the trajectory followed during the growth of a homogeneous film. The materials used in the modeling are restricted to either an isotropic material or a uniaxial material with the optic axis oriented normal to the surface. External to the real-time software package, a general scheme for the analysis of ellipsometric data was developed using MATLAB. The ellipsometer described above was utilized to reproducibly grow and monitor the growth of low temperature (LT) GaAs films in-situ. In particular the capping of GaAs(001) with As was monitored and a method was developed which could be used to characterize the growth temperature of GaAs in the vicinity of 190^circ C. This method utilizes the temperature for the formation of a thin film of As on GaAs(001). Using this technique to set the growth conditions, LT-GaAs films were grown and monitored in real-time with the ellipsometer and characterized ex-situ with X-ray diffraction (XRD) and transmission electron microscopy (TEM.) The ellipsometry data allowed for the observation of the formation of the epitaxial LT-GaAs film and a subsequent region of changing dielectric properties. These results are correlated with observation in double crystal X-ray diffraction (DXRD) and TEM analysis, showing that the refractive index can be used to indicate the composition of the LT-GaAs films and that the ellipsometer can observe the breakdown in the crystallinity of the LT-GaAs layers.

  17. HgCdTe p-on- n Focal-Plane Array Fabrication Using Arsenic Incorporation During MBE Growth

    NASA Astrophysics Data System (ADS)

    Gravrand, O.; Ballet, Ph.; Baylet, J.; Baier, N.

    2009-08-01

    Extrinsic p-type doping during molecular-beam epitaxy (MBE) growth represents an essential generic toolbox for advanced heterostructures based on the HgCdTe material system: PiN diodes, mesa avalanche photodiodes (APD) or third-generation multispectral focal-plane arrays. Today, arsenic appears to be the best candidate to fulfill this role and our group is actively working on its incorporation during MBE growth, using an original radio frequency (RF) plasma source for arsenic. Such a cell is supposed to deliver a monatomic As flux, and as expected we observed high As electrical activation rates after annealing short-wave (SW), mid-wave (MW), and long-wave (LW) layers. At last, a couple of technological runs have been carried out in the MW range in order to validate the approach on practical devices. p-on- n focal-plane arrays (FPA) have been fabricated using a mesa delineated technology on an As-on-In doped metallurgical heterojunction layer grown on a lattice-matched CdZnTe layer (320 × 256, 30 μm pitch, 5 μm cutoff at 77 K). Observed diodes exhibit very interesting electro-optical characteristics: large shunt impedance, high quantum efficiency, and no noticeable excess noise. The resulting focal-plane arrays were observed to be very uniform, leading to high operabilities. Noise equivalent temperature difference (NETD) distributions are very similar to those observed with the As ion-implanted p-on- n technology, fabricated in our laboratory as well. In our opinion, those excellent results demonstrate the feasibility of our MBE in situ arsenic doping process. Good electrical activation rates and high-quality layers can be obtained. We believe that such an approach allows precise control of the p-doping profile in the HgCdTe layer, which is necessary for advanced structure designs.

  18. Investigation of MBE-grown high T c films by RHEED, atomic force microscopy and X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Wang, H. S.; Eissler, D.; Dietsche, W.; Fischer, A.; Ploog, K.

    1993-02-01

    Results on the preparation of the molecular beam epitaxial (MBE) growth and on structural investigations of high Tc DyBa 2Cu 3O 7- y (DBCO) superconducting thin films are presented. We prepared high quality DBCO thin films on SrTiO 3, MgO, LaAlO 3 and NdGaO 3 substrates in situ with high reproductivity. We also grew DBCO/Dy 2O 3/DBCO/SrTiO 3 multilayer structures. The structure and morphology of the films were studied by RHEED, STM, AFM, XRD and X-ray Weissenberg camera techniques.

  19. Electronic, structural and chemical properties of GaAs/ZnSe heterovalent interfaces as dependent on MBE growth conditions and ex situ annealing

    NASA Astrophysics Data System (ADS)

    Komissarova, T. A.; Lebedev, M. V.; Sorokin, S. V.; Klimko, G. V.; Sedova, I. V.; Gronin, S. V.; Komissarov, K. A.; Calvet, W.; Drozdov, M. N.; Ivanov, S. V.

    2017-04-01

    A study of electronic, structural and chemical properties of GaAs/ZnSe heterovalent interfaces (HI) in dependence on molecular beam epitaxy (MBE) growth conditions and post-growth annealing was performed. Initial GaAs surface reconstructions ((2 × 4)As or c(4 × 4)As) and ZnSe growth mode (MBE or migration-enhanced epitaxy (MEE)) were varied for different undoped and n-doped heterovalent structures. Although all the structures have low extended defect density (less than 106 cm‑2) and rather small (less than 5 nm) atomic interdiffusion at the HI, the structural, chemical and electronic properties of the near-interface area (short-distance interdiffusion effects, dominant chemical bonds, and valence band offset values) as well as electrical properties of the n-GaAs/n-ZnSe heterovalent structures were found to be influenced strongly by the MBE growth conditions and post-growth annealing.

  20. Control of active nitrogen species used for PA-MBE growth of group III nitrides on Si

    NASA Astrophysics Data System (ADS)

    Ohachi, Tadashi; Yamabe, Nobuhiko; Yamamoto, Yuka; Wada, Motoi; Ariyada, Osamu

    2011-03-01

    A new spiral parallel mesh electrode (PME) is presented to control active nitrogen species in plasma-assisted molecular beam epitaxial (PA-MBE) growth of group III nitrides and their alloys. Direct flux of active nitrogen from radio frequency inductive coupled plasma (rf-ICP) discharge was able to be measured using a mesh electrode for filtering charge particles and electron emission due to the self-ionization of nitrogen atoms on a negatively biased electrode. In situ measurement of direct nitrogen atom fluxes using the spiral PME during PA-MBE growth of GaN and AlN on Si substrates is investigated. A linear rf power dependence of direct flux of active species on atoms such as nitrogen (N+N*), where N and N* were ground and excited atoms, respectively, from a rf-ICP was confirmed by the spiral PME. An indirect flux of nitrogen adsorbed (ADS) atoms (N+N*) during discharge was also monitored by the spiral PME and received influence of the wall surface of the growth chamber. ADS nitrogen atoms are able to be used for nitridation of Si surface to grow a double buffer layer (DBL) AlN/β-Si3N4/Si.

  1. Fundamental investigations of CdTe deposited by MBE for applications in thin-film solar photovoltaics

    NASA Astrophysics Data System (ADS)

    Colegrove, Eric

    Model CdTe systems --both single-crystalline (sx) and poly-crystalline (px) --are investigated experimentally as a means to understand the role of competing material properties and processing steps in improving the performance of standard thin-film solar cells. Previous device optimization work is reviewed explaining the close space sublimation growth technique and ongoing analysis using scanning transmission electron microscopy. This is followed by motivation for molecular beam epitaxy (MBE) growth studies of CdTe and the results of fundamental material investigations. The results show that (a) the minority carrier lifetimes in hetero-epitaxial layers is limited by surface recombination, (b) source selection and anneals can be tuned to achieve p-type carrier density of 6x1015 cm-3, and (c) counter-intuitively, the increase in p-density is associated with increased mobility in lower crystal quality samples, suggesting the role of anneal. Finally, controlled and re-growth of px-CdTe by MBE studies are discussed with results indicating that shorter lifetimes are directly correlated with the increased surface/interface density.

  2. Dislocation densities reduction in MBE-grown AlN thin films by high-temperature annealing

    NASA Astrophysics Data System (ADS)

    Nemoz, Maud; Dagher, Roy; Matta, Samuel; Michon, Adrien; Vennéguès, Philippe; Brault, Julien

    2017-03-01

    AlN thin films, grown on (0001) sapphire substrates by molecular beam epitaxy (MBE), were annealed at high temperature (up to 1650 °C) in flowing N2. X-ray diffraction (XRD) studies, combined with Williamson-Hall and Srikant plots, have shown that annealing leads to a strong reduction of both edge and mixed threading dislocation densities, as confirmed by transmission electron microscopy (TEM) images, up to 75%. Moreover, it is found that annealing at high temperatures allows the relaxation of the tensile strain in the AlN film due to the growth process. In addition, the morphological properties of the films were determined by atomic force microscopy (AFM) and show that the annealing conditions have a strong impact on the surface morphology and roughness. Finally, an annealing at 1550 °C for 20 min appears as an ideal tradeoff to enhance the structural properties while preserving the initial AlN surface morphology.

  3. Some properties of near-surface layer of graded-gap MBE HgCdTe after boron ion implantation

    NASA Astrophysics Data System (ADS)

    Voitsekhovskii, A. V.; Nesmelov, S. N.; Dzyadukh, S. M.; Izhnin, I. I.

    2017-05-01

    The effect of ion implantation of boron ions with an energy of 100 keV and a dose of (1-6)×1015 cm-2 in the MBE HgCdTe films on the characteristics of the MIS structures based on these films was investigated. The changes of the conductivity type in the near-surface layer of HgCdTe after ion implantation of boron and etching by ions of argon were detected. The concentrations of the major charge carriers in the near-surface layer of the epitaxial films after ion implantation and after ion etching were close to 5.88×1016 cm-3 and 2.47×1017 cm-3, respectively.

  4. MBE growth of CdTe and Hg (1-x) Cd (x) Te films and multilayer structures

    NASA Astrophysics Data System (ADS)

    Farrow, R. F. C.; Noreika, A. J.; Takei, W. J.; Wood, S.; Greggi, J.

    1985-04-01

    The MBE growth of CdTe and Hg1-xCdxTe films on InSb and CdTe substrates has been investigated. Growth conditions for high-perfection CdTe films, exactly lattice-matched to InSb substrates, have been identified. These films are ideal for substrates for Hg1-xCdxTe film growth since they are free from low-angle grain boundaries and also provide electrical isolation of the Hg1-xCdxTe film from the InSb substrate. Magnetophotoconductivity studies of abrupt n-CdTe/p-InSb heterojunctions indicate the presence of an n-type inversion layer in the InSb. This could be the basis for a new type of FET device. Conditions for growth of Hg1-xCdxTe films have been explored and films of suitable quality for LWIR device fabrication have been prepared.

  5. Magnetic Field Studies Near Superconducting Transition in MBE Grown Monolayer NbSe2 on Bilayer Graphene

    NASA Astrophysics Data System (ADS)

    Onishi, Seita; Ugeda, Miguel M.; Zhang, Yi; Chen, Yi; Ojeda-Aristizabal, Claudia; Ryu, Hyejin; Mo, Sung-Kwan; Hussain, Zahid; Shen, Zhi-Xun; Crommie, Michael F.; Zettl, Alex

    Following the work by Frindt on the superconductivity of NbSe2 at reduced thicknesses, recent breakthroughs have enabled the study of bilayers and monolayers. Staley et. al., Tsen et. al., Cao et. al. and Xi et. al. have studied superconductivity in bilayers and monolayers of NbSe2 after mechanical exfoliation and encapsulation with another layered material to protect from air. In this work, we have investigated the superconductivity in monolayer NbSe2 prepared by molecular beam epitaxy growth (MBE) on bilayer graphene (BLG). The superconducting transition has an onset temperature of 1.9K, midpoint temperature of 0.65K and reaches zero resistance at 0.46K. The upper critical field perpendicular to the NbSe2 monolayer is 0.5T at 100mK. We will show the effect of magnetic fields near the superconducting transition and compare with existing theories

  6. Growth and characterization of MBE-grown (Bi1- x Sb x )2Se3 topological insulator

    NASA Astrophysics Data System (ADS)

    Liu, Yuhung; Chong, Cheongwei; Chen, Weichuan; Huang, Jungchun-Andrew; Cheng, Chengmaw; Tsuei, Kuding; Li, Zhongjun; Qiu, Huaili; Viktorovich Marchenkov, Vyacheslav

    2017-07-01

    (Bi1- x Sb x )2Se3 thin films were prepared by molecular beam epitaxy (MBE). The existence of strong and robust topological surface states was demonstrated in the (Bi1- x Sb x )2Se3 ternary system by angle-resolved photoemission spectroscopy (ARPES). The sheet carrier density n 2D was found to be decreased by 75% by doping Sb into Bi2Se3, compared with that in the case of undoped Bi2Se3. The enhancement of the surface state transport due to Sb doping was also revealed via the high-field Hall effect and weak antilocalization measurement. Our results reveal the potential of this system for the study of tunable topological-insulator based device physics.

  7. Possibilities for LWIR detectors using MBE-grown Si(/Si(1-x)Ge(x) structures

    NASA Technical Reports Server (NTRS)

    Hauenstein, Robert J.; Miles, Richard H.; Young, Mary H.

    1990-01-01

    Traditionally, long wavelength infrared (LWIR) detection in Si-based structures has involved either extrinsic Si or Si/metal Schottky barrier devices. Molecular beam epitaxially (MBE) grown Si and Si/Si(1-x)Ge(x) heterostructures offer new possibilities for LWIR detection, including sensors based on intersubband transitions as well as improved conventional devices. The improvement in doping profile control of MBE in comparison with conventional chemical vapor deposited (CVD) Si films has resulted in the successful growth of extrinsic Si:Ga, blocked impurity-band conduction detectors. These structures exhibit a highly abrupt step change in dopant profile between detecting and blocking layers which is extremely difficult or impossible to achieve through conventional epitaxial growth techniques. Through alloying Si with Ge, Schottky barrier infrared detectors are possible, with barrier height values between those involving pure Si or Ge semiconducting materials alone. For both n-type and p-type structures, strain effects can split the band edges, thereby splitting the Schottky threshold and altering the spectral response. Measurements of photoresponse of n-type Au/Si(1-x)Ge(x) Schottky barriers demonstrate this effect. For intersubband multiquntum well (MQW) LWIR detection, Si(1-x)Ge(x)/Si detectors grown on Si substrates promise comparable absorption coefficients to that of the Ga(Al)As system while in addition offering the fundamental advantage of response to normally incident light as well as the practical advantage of Si-compatibility. Researchers grew Si(1-x)Ge(x)/Si MQW structures aimed at sensitivity to IR in the 8 to 12 micron region and longer, guided by recent theoretical work. Preliminary measurements of n- and p-type Si(1-x)Ge(x)/Si MQW structures are given.

  8. Peculiarities of photoluminescence of vertical n +/ n-GaAs/Al0.25Ga0.75As MBE- and MOCVD-grown structures designed for microwave detectors

    NASA Astrophysics Data System (ADS)

    Čerškus, Aurimas; Kundrotas, Jurgis; Sužiedėlis, Algirdas; Gradauskas, Jonas; Ašmontas, Steponas; Johannessen, Eric; Johannessen, Agne

    2015-09-01

    Vertical MBE- and MOCVD-grown structures used for microwave electronics have been studied with continuous wave and time-correlated single photon counting dynamic photoluminescence technique. The photoluminescence spectra and light emission lifetimes are used to explain the recombination mechanisms of the excited carriers. This paper presents results showing the differences in recombination characteristics of layers grown using MBE process compared with MOCVD process. One of these differences is that the PL spectrum of the MOCVD-grown layer is shifted towards the forbidden energy gap region, as well as the characteristic recombination time is longer than for the MBE-grown sample. This peculiarity can be attributed to the formation of the localised band tails in the MOCVD-grown sample. The proposed analytical model explains the differences in microwave detection properties of the samples grown by MBE and MOCVD processes.

  9. Role of band potential roughness on the luminescence properties of InGaN quantum wells grown by MBE on bulk GaN substrates

    NASA Astrophysics Data System (ADS)

    Ž, A.

    Role of band potential roughness on luminescence decay time and stimulated emission in InGaN quantum wells (QWs) grown by rf plasma-assisted molecular beam epitaxy (MBE) on bulk GaN substrates was studied. A high-photoexcitation regime used ensured conditions similar to those in operating laser diodes. Standard deviation of the potential fluctuations in different thickness InGaN QWs was found to vary in the range of 13-22 meV as revealed by Monte Carlo simulation of localized exciton hopping. A negligible influence of this variation on the luminescence decay time (?700 ps) and stimulated emission threshold (?30 kW/cm2) was observed. We attribute this insensitivity to the low density of localized states (?1 × 1018 cm-3) estimated in our high-quality QWs grown by MBE, and therefore, assign extended states to be mainly responsible for the properties of highly-excited luminescence.

  10. Growth of semiconductor nanostructures by MBE for the study of electron and nuclear spin enhancement and other physical phenomena

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang

    Molecular beam epitaxy (MBE) is an extremely versatile thin film technique, which can produce single-crystal layers with atomic dimensional controls and thus permit the preparation of novel structures and devices tailored to meet specific needs. Spin relaxation time ts is one of the key features in spin-related phenomena and thus of great importance for spintronics. In this work, we prepare high quality samples, mainly of CdTe epilayers, by MBE, characterize their spin relaxation dynamics, and discuss the results theoretically. First, with the goal of understanding the mechanisms of electron relaxation dynamics and nuclear spin enhancement, we focus on the growth and characterization of CdTe epilayers. By changing the shutter sequences and inserting ZnSe buffer layer, we have reproducibly grown (111) and (100) CdTe epilayers of high crystalline qualities by MBE, despite the large lattice mismatch between CdTe and GaAs substrate. Then we investigate ts for the (111) and (100) CdTe epilayers. It is found that for the (111) CdTe, spin relaxation rate t-1s is significantly enhanced and shows no temperature dependence through 130K to 300K, while t-1s for the (100) CdTe is strongly affected by the temperature. It is also found that t-1s is dependent on material quality for both (111) and (100) CdTe. We theoretically discuss the effect of strain and defect on spin relaxation time of CdTe. It is the first experimental observation of the effect of strain on t-1s in a II-VI semiconductor material. Second, the growth and characterization of ZnTe/ZnSe related type II quantum structures, or quantum dots (QDs), are also presented in this work. The PL of Zn-Se-Te related type II quantum structures show blue shifts with higher intensities of exciting laser, an indication of type II QDs. Besides being an attractive method to p-type dope wide bandgap materials, the resulting material may be a promising structure for spin enhancement properties. Third, we present the study of the

  11. Optimization of the Nonradiative Lifetime of Molecular-Beam-Epitaxy (MBE)-Grown Undoped GaAs/AlGaAs Double Heterostructures (DH)

    DTIC Science & Technology

    2013-09-01

    Optimization of the Nonradiative Lifetime of Molecular- Beam-Epitaxy (MBE)-Grown Undoped GaAs/AlGaAs Double Heterostructures (DH) by P...it to the originator. Army Research Laboratory Adelphi, MD 20783-1197 ARL-TR-6660 September 2013 Optimization of the Nonradiative ...REPORT TYPE Final 3. DATES COVERED (From - To) FY2013 4. TITLE AND SUBTITLE Optimization of the Nonradiative Lifetime of Molecular-Beam-Epitaxy

  12. Growth of M- and A-plane GaN on LiGaO{sub 2} by plasma-assisted MBE

    SciTech Connect

    Schuber, R.; Schaadt, D. M.; Chou, M. M. C.; Vincze, P.; Schimmel, Th.

    2011-12-23

    We have performed non-polar M- and A-plane GaN growth on LiGaO{sub 2}(LGO) by plasma-assisted molecular beam expitaxy (MBE). We demonstrate that non-polar GaN growth on LGO yields high phase purity and flat surfaces. We find that annealing of the substrates prior to growth is a suitable method for avoiding a peeling off of the film from the substrate after growth.

  13. A study of the preparation of epitaxy-ready polished surfaces of (100) Gallium Antimonide substrates demonstrating ultra-low surface defects for MBE growth

    NASA Astrophysics Data System (ADS)

    Martinez, Rebecca; Tybjerg, Marius; Flint, Patrick; Fastenau, Joel; Lubyshev, Dmitri; Liu, Amy W. K.; Furlong, Mark J.

    2016-05-01

    Gallium Antimonide (GaSb) is an important Group III-V compound semiconductor which is suitable for use in the manufacture of a wide variety of optoelectronic devices such as infra-red (IR) focal plane detectors. A significant issue for the commercialisation of these products is the production of epitaxy ready GaSb, which remains a challenge for the substrate manufacturer, as the stringent demands of the MBE process, requires a high quality starting wafer. In this work large diameter GaSb crystals were grown by the Czochralski (Cz) method and wafers prepared for chemo-mechanical polishing (CMP). Innovative epi-ready treatments and novel post polish cleaning methodologies were applied. The effect of these modified finishing chemistries on substrate surface quality and the performance of epitaxially grown MBE GaSb IR detector structures were investigated. Improvements in the lowering of surface defectivity, maintaining of the surface roughness and optimisation of all flatness parameters is confirmed both pre and post MBE growth. In this paper we also discuss the influence of bulk GaSb quality on substrate surface performance through the characterisation of epitaxial structures grown on near zero etch pit density (EPD) crystals. In summary progression and development of current substrate polishing techniques has been demonstrated to deliver a consistent improved surface on GaSb wafers with a readily desorbed oxide for epitaxial growth.

  14. A new approach to epitaxially grow high-quality GaN films on Si substrates: the combination of MBE and PLD

    PubMed Central

    Wang, Wenliang; Wang, Haiyan; Yang, Weijia; Zhu, Yunnong; Li, Guoqiang

    2016-01-01

    High-quality GaN epitaxial films have been grown on Si substrates with Al buffer layer by the combination of molecular beam epitaxy (MBE) and pulsed laser deposition (PLD) technologies. MBE is used to grow Al buffer layer at first, and then PLD is deployed to grow GaN epitaxial films on the Al buffer layer. The surface morphology, crystalline quality, and interfacial property of as-grown GaN epitaxial films on Si substrates are studied systematically. The as-grown ~300 nm-thick GaN epitaxial films grown at 850 °C with ~30 nm-thick Al buffer layer on Si substrates show high crystalline quality with the full-width at half-maximum (FWHM) for GaN(0002) and GaN(102) X-ray rocking curves of 0.45° and 0.61°, respectively; very flat GaN surface with the root-mean-square surface roughness of 2.5 nm; as well as the sharp and abrupt GaN/AlGaN/Al/Si hetero-interfaces. Furthermore, the corresponding growth mechanism of GaN epitaxial films grown on Si substrates with Al buffer layer by the combination of MBE and PLD is hence studied in depth. This work provides a novel and simple approach for the epitaxial growth of high-quality GaN epitaxial films on Si substrates. PMID:27101930

  15. High Quality GaAs Growth by MBE on Si Using GeSi Buffers and Prospects for Space Photovoltaics

    NASA Technical Reports Server (NTRS)

    Carlin, J. A.; Ringel, S. A.; Fitzgerald, E. A.; Bulsara, M.

    2005-01-01

    III-V solar cells on Si substrates are of interest for space photovoltaics since this would combine high performance space cells with a strong, lightweight and inexpensive substrate. However, the primary obstacles blocking III-V/Si cells from achieving high performance to date have been fundamental materials incompatabilities, namely the 4% lattice mismatch between GaAs and Si, and the large mismatch in thermal expansion coefficient. In this paper, we report on the molecular beam epitaxial (MBE) growth and properties of GaAs layers and single junction GaAs cells on Si wafers which utilize compositionally graded GeSi Intermediate buffers grown by ultra-high vacuum chemical vapor deposition (UHVCVD) to mitigate the large lattice mismatch between GaAs and Si. Ga As cell structures were found to incorporate a threading dislocation density of 0.9-1.5 x 10 (exp 6) per square centimeter, identical to the underlying relaxed Ge cap of the graded buffer, via a combination of transmission electron microscopy, electron beam induced current, and etch pit density measurements. AlGaAs/GaAs double heterostructures wre grown on the GeSi/Si substrates for time-resolved photoluminescence measurements, which revealed a bulk GaAs minority carrier lifetime in excess of 10 ns, the highest lifetime ever reported for GaAs on Si. A series of growth were performed to ass3ss the impact of a GaAs buffer to a thickness of only 0.1 micrometer. Secondary ion mass spectroscopy studies revealed that there is negligible cross diffusion of Ga, As and Ge at he III-V/Ge interface, identical to our earlier findings for GaAs grown on Ge wafers using MBE. This indicates that there is no need for a buffer to "bury" regions of high autodopjing,a nd that either pn or np configuration cells are easily accomodated by these substrates. Preliminary diodes and single junction Al Ga As heteroface cells were grown and fabricated on the Ge/GeSi/Si substrates for the first time. Diodes fabricated on GaAs, Ge and Ge

  16. MBE growth of strain-compensated InGaAs/InAlAs/InP quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Gutowski, P.; Sankowska, I.; Karbownik, P.; Pierścińska, D.; Serebrennikova, O.; Morawiec, M.; Pruszyńska-Karbownik, E.; Gołaszewska-Malec, K.; Pierściński, K.; Muszalski, J.; Bugajski, M.

    2017-05-01

    We investigate growth conditions for strain-compensated In0.67Ga0.33As/In0.36Al0.64As/InP quantum cascade lasers (QCLs) by solid-source molecular beam epitaxy (SSMBE). The extensive discussion of growth procedures is presented. The technology was first elaborated for In0.53Ga0.47As/In0.52Al0.48As material system lattice matched to InP. After that QCLs with lattice matched active region were grown for validation of design and obtained material quality. The next step was elaboration of growth process and especially growth preparation procedures for strain compensated active regions. The grown structures were examined by HRXRD, AFM, and TEM techniques. The on-line implementation of obtained results in subsequent growth runs was crucial for achieving room temperature operating 4.4-μm lasers. For uncoated devices with Fabry-Perrot resonator up to 250 mW of optical power per facet at 300 K was obtained under pulsed conditions. The paper focuses on MBE technology and presents developed algorithm for strain-compensated QCL growth.

  17. Vanadium dioxide thin films prepared on silicon by low temperature MBE growth and ex-situ annealing

    NASA Astrophysics Data System (ADS)

    Homm, Pia; van Bilzen, Bart; Menghini, Mariela; Locquet, Jean-Pierre; Ivanova, Todora; Sanchez, Luis; Sanchis, Pablo

    Vanadium dioxide (VO2) is a material that shows an insulator to metal transition (IMT) near room temperature. This property can be exploited for applications in field effect devices, electro-optical switches and nonlinear circuit components. We have prepared VO2 thin films on silicon wafers by combining a low temperature MBE growth with an ex-situ annealing at high temperature. We investigated the structural, electrical and optical characteristics of films with thicknesses ranging from 10 to 100 nm. We have also studied the influence of the substrate cleaning. The films grown with our method are polycrystalline with a preferred orientation in the (011) direction of the monoclinic phase. For the films produced on silicon with a native oxide, an IMT at around 75 °C is observed. The magnitude of the resistance change across the IMT decreases with thickness while the refractive index at room temperature corresponds with values reported in the literature for thin films. The successful growth of VO2 films on silicon with good electrical and optical properties is an important step towards the integration of VO2 in novel devices. The authors acknowledge financial support from the FWO project G052010N10 and EU-FP7 SITOGA project. PH acknowledges support from Becas Chile - CONICYT.

  18. MBE growth of Sb-based bulk nBn infrared photodetector structures on 6-inch GaSb substrates

    NASA Astrophysics Data System (ADS)

    Liu, Amy W. K.; Lubyshev, Dmitri; Qiu, Yueming; Fastenau, Joel M.; Wu, Ying; Furlong, Mark J.; Tybjerg, Marius; Martinez, Rebecca J.; Mowbray, Andrew; Smith, Brian

    2015-06-01

    The GaSb-based 6.1 Å lattice constant family of materials and heterostructures provides rich bandgap engineering possibilities and have received considerable attention for their potential and demonstrated performance in infrared (IR) detection and imaging applications. Mid-wave and long-wave IR photodetectors are progressing toward commercial manufacturing applications. To succeed, they must move from research laboratory settings to general semiconductor production, and high-quality GaSb-based epitaxial wafers with diameter larger than the current standard 3-inch are highly desirable. 4-inch GaSb substrates have been in production for a couple of years and are now commercially available. Recently, epi-ready GaSb substrates with diameter in excess of 6-inch were successfully produced. In this work, we report on the MBE (Molecular Beam Epitaxy) growth of generic MWIR bulk nBn photodetectors on 6-inch diameter GaSb substrates. The surface morphology, optical and structural quality of the epiwafers as evaluated by atomic force microscopy (AFM), Nomarski microscopy, low temperature photoluminescence (PL) spectroscopy, and high-resolution x-ray diffraction (XRD) will be discussed. Current density versus voltage (J-V) and photoresponsivity measurements from large-area mesa diode fabricated will also be reported. Material and device properties of these 6-inch epiwafers will be compared to similar structures grown on commercially available 4-inch diameter GaSb substrates.

  19. Characterization of MBE-grown InAlN/GaN heterostructure valence band offsets with varying In composition

    SciTech Connect

    Jiao, Wenyuan Kong, Wei; Li, Jincheng; Kim, Tong-Ho; Brown, April S.; Collar, Kristen; Losurdo, Maria

    2016-03-15

    Angle-resolved X-ray photoelectron spectroscopy (XPS) is used in this work to experimentally determine the valence band offsets of molecular beam epitaxy (MBE)-grown InAlN/GaN heterostructures with varying indium composition. We find that the internal electric field resulting from polarization must be taken into account when analyzing the XPS data. Valence band offsets of 0.12 eV for In{sub 0.18}Al{sub 0.82}N, 0.15 eV for In{sub 0.17}Al{sub 0.83}N, and 0.23 eV for In{sub 0.098}Al{sub 0.902}N with GaN are obtained. The results show that a compositional-depended bowing parameter is needed in order to estimate the valence band energies of InAlN as a function of composition in relation to those of the binary endpoints, AlN and InN.

  20. Influence of Growth Parameters and Annealing on Properties of MBE Grown GaAsSbN SQWs

    NASA Technical Reports Server (NTRS)

    Wu, Liangjin; Iyer, Shanthi; Nunna, Kalyan; Bharatan, Sudhakar; Li, Jia; Collis, Ward J.

    2005-01-01

    In this paper we report the growth of GaAsSbN/GaAs single quantum well (SQW) heterostructures by molecular beam epitaxy (MBE) and their properties. A systematic study has been carried out to determine the effect of growth conditions, such as the source shutter opening sequence and substrate temperature, on the structural and optical properties of the layers. The substrate temperatures in the range of 450-470 C were found to be optimal. Simultaneous opening of the source shutters (SS) resulted in N incorporation almost independent of substrate temperature and Sb incorporation higher at lower substrate temperatures. The effects of ex-situ annealing in nitrogen ambient and in-situ annealing under As ovepressure on the optical properties of the layers have also been investigated. A significant increase in photoluminescence (PL) intensity with reduced full width at half maxima (FWHM) in conjunction with a blue shift in the emission energy was observed on 10 annealing the samples. In in-situ annealed samples, the PL line shapes were more symmetric and the temperature dependence of the PL peak energy indicated significant decrease in the exciton localization energy as exhibited by a less pronounced S-shaped curve. The inverted S-shaped curve observed in the temperature dependence of PL FWHM is also discussed. 1.61 micrometer emission with FWHM of 25 meV at 20K has been obtained in in-situ annealed GaAsSbN/GaAs SQW grown at 470 C by SS.

  1. Microstructures of InN film on 4H-SiC (0001) substrate grown by RF-MBE

    NASA Astrophysics Data System (ADS)

    Jantawongrit, P.; Sanorpim, S.; Yaguchi, H.; Orihara, M.; Limsuwan, P.

    2015-08-01

    InN film was grown on 4H-SiC (0001) substrate by RF plasma-assisted molecular beam epitaxy (RF-MBE). Prior to the growth of InN film, an InN buffer layer with a thickness of ∼5.5 nm was grown on the substrate. Surface morphology, microstructure and structural quality of InN film were investigated. Micro-structural defects, such as stacking faults and anti-phase domain in InN film were carefully investigated using transmission electron microscopy (TEM). The results show that a high density of line contrasts, parallel to the growth direction (c-axis), was clearly observed in the grown InN film. Dark field TEM images recorded with diffraction vectors g=11\\bar{2}0 and g = 0002 revealed that such line contrasts evolved from a coalescence of the adjacent misoriented islands during the initial stage of the InN nucleation on the substrate surface. This InN nucleation also led to a generation of anti-phase domains. Project supported by the Thailand Center of Excellence in Physics (ThEP) and the King Mongkut's University of Technology Thonburi under The National Research University Project. One of the authors (S. Sanorpim) was supported by the National Research Council of Thailand (NRCT) and the Thai Government Stimulus Package 2 (TKK2555), under the Project for Establishment of Comprehensive Center for Innovative Food, Health Products and Agriculture.

  2. Dynamic Curvature and Stress Studies for MBE CdTe on Si and GaAs Substrates

    NASA Astrophysics Data System (ADS)

    Jacobs, R. N.; Jaime Vasquez, M.; Lennon, C. M.; Nozaki, C.; Almeida, L. A.; Pellegrino, J.; Arias, J.; Taylor, C.; Wissman, B.

    2015-09-01

    Infrared focal plane arrays (IRFPA) based on HgCdTe semiconductor alloys have been shown to be ideal for tactical and strategic applications. High density (>1 M pixel), high operability HgCdTe detectors on large area, low-cost composite substrates, such as CdTe-buffered Si or GaAs, are envisioned for next-generation IRFPAs. Thermal expansion mismatch is among various material parameters that govern the structural properties of the final detector layer. It has previously been shown that thermal expansion mismatch plays the dominant role in the residual stress characteristics of these heteroepitaxial structures (Jacobs et al. in J Electron Mater 37:1480, 2008). The wafer curvature (bowing) resulting from residual stress, is a likely source of problems that may occur during subsequent processing. This includes cracking of the film and substrate during post-growth annealing processes or even certain characterization techniques. In this work, we examine dynamic curvature and stress during molecular beam epitaxy (MBE), of CdTe on Si and GaAs substrates. The effect of temperature changes on wafer curvature throughout the growth sequence is documented using a multi-beam optical sensor developed by K-Space Associates. This monitoring technique makes possible the study of growth sequences which employ annealing schemes and/or interlayers to influence the final residual stress state of the heteroepitaxial structures.

  3. Influence of Growth Parameters and Annealing on Properties of MBE Grown GaAsSbN SQWs

    NASA Technical Reports Server (NTRS)

    Wu, Liangjin; Iyer, Shanthi; Nunna, Kalyan; Bharatan, Sudhakar; Li, Jia; Collis, Ward J.

    2005-01-01

    In this paper we report the growth of GaAsSbN/GaAs single quantum well (SQW) heterostructures by molecular beam epitaxy (MBE) and their properties. A systematic study has been carried out to determine the effect of growth conditions, such as the source shutter opening sequence and substrate temperature, on the structural and optical properties of the layers. The substrate temperatures in the range of 450-470 C were found to be optimal. Simultaneous opening of the source shutters (SS) resulted in N incorporation almost independent of substrate temperature and Sb incorporation higher at lower substrate temperatures. The effects of ex-situ annealing in nitrogen ambient and in-situ annealing under As ovepressure on the optical properties of the layers have also been investigated. A significant increase in photoluminescence (PL) intensity with reduced full width at half maxima (FWHM) in conjunction with a blue shift in the emission energy was observed on 10 annealing the samples. In in-situ annealed samples, the PL line shapes were more symmetric and the temperature dependence of the PL peak energy indicated significant decrease in the exciton localization energy as exhibited by a less pronounced S-shaped curve. The inverted S-shaped curve observed in the temperature dependence of PL FWHM is also discussed. 1.61 micrometer emission with FWHM of 25 meV at 20K has been obtained in in-situ annealed GaAsSbN/GaAs SQW grown at 470 C by SS.

  4. Structural, electronic and mechanical properties of alkaline earth metal oxides MO (M=Be, Mg, Ca, Sr, Ba)

    NASA Astrophysics Data System (ADS)

    Cinthia, A. Jemmy; Priyanga, G. Sudha; Rajeswarapalanichamy, R.; Iyakutti, K.

    2015-04-01

    The structural, electronic and mechanical properties of alkaline earth metal oxides MO (M=Be, Mg, Ca, Sr, Ba) in the cubic (B1, B2 and B3) phases and in the wurtzite (B4) phase are investigated using density functional theory calculations as implemented in VASP code. The lattice constants, cohesive energy, bulk modulus, band structures and the density of states are computed. The calculated lattice parameters are in good agreement with the experimental and the other available theoretical results. Electronic structure reveals that all the five alkaline earth metal oxides exhibit semiconducting behavior at zero pressure. The estimated band gaps for the stable wurtzite phase of BeO is 7.2 eV and for the stable cubic NaCl phases of MgO, CaO, SrO and BaO are 4.436 eV, 4.166 eV, 4.013 eV, and 2.274 eV respectively. A pressure induced structural phase transition occurs from wurtzite (B4) to NaCl (B1) phase in BeO at 112.1 GPa and from NaCl (B1) to CsCl (B2) phase in MgO at 514.9 GPa, in CaO at 61.3 GPa, in SrO at 42 GPa and in BaO at 14.5 GPa. The elastic constants are computed at zero and elevated pressures for the B4 and B1 phases for BeO and for the B1 and B2 phases in the case of the other oxides in order to investigate their mechanical stability, anisotropy and hardness. The sound velocities and the Debye temperatures are calculated for all the oxides using the computed elastic constants.

  5. MBE Grown In x Ga1- x N Thin Films with Bright Visible Emission Centered at 550 nm

    NASA Astrophysics Data System (ADS)

    Dasari, K.; Thapa, B.; Wang, J.; Wright, J.; Kaya, S.; Jadwisienczak, W. M.; Palai, R.

    2016-04-01

    The In x Ga1- x N thin films with indium content of x = 14-18 at.% were successfully grown by using molecular beam epitaxy (MBE) at high growth temperatures from 650°C to 800°C. In situ reflection high-energy electron diffraction (RHEED) of the In x Ga1- x N films confirmed the Stranski-Krastanov growth mode. X-ray diffraction (XRD) of the films confirmed their highly crystalline nature having c-axis orientation with a small fraction of secondary InN phase admixture. High-resolution cross-sectional scanning electron microscopy images showed two-dimensional epilayers growth with thickness of about ˜260 nm. The high growth temperature of In x Ga1- x N epilayers is found to be favorable to facilitate more GaN phase than InN phase. All the fundamental electronic states of In, Ga, and N were identified by x-ray photoelectron spectroscopy (XPS) and the indium composition has been calculated from the obtained XPS spectra with CASAXPS software. The composition calculations from XRD, XPS and photoluminescence closely match each other. The biaxial strain has been calculated and found to be increasing with the In content. Growing In x Ga1- x N at high temperatures resulted in the reduction in stress/strain which affects the radiative electron-hole pair recombination. The In x Ga1- x N film with lesser strain showed a brighter and stronger green emission than films with the larger built-in strain. A weak S-shaped near band edge emission profile confirms the relatively homogeneous distribution of indium.

  6. MBE growth of Sb-based type-II strained layer superlattice structures on multiwafer production reactors

    NASA Astrophysics Data System (ADS)

    Lubyshev, Dmitri; Fastenau, Joel M.; Gu, Xing; Liu, Amy W. K.; Prineas, John; Koerperick, Edwin J.; Olesberg, Jonathon T.; Jackson, Eric M.; Nolde, Jill A.; Yi, Changhyun; Aifer, Edward H.

    2010-04-01

    Ga(In)Sb/InAs-based strained-layer superlattices (SLS) have received considerable attention recently for their potential in infrared (IR) applications. These heterostructures create a type-II band alignment such that the conduction band of InAs layer is lower than the valence band of Ga(In)Sb layer. By varying the thickness and composition of the constituent materials, the bandgap of these SLS structures can be tailored to cover a wide range of the mid-wave and long-wave infrared (MWIR and LWIR) absorption bands. Suppression of Auger recombination and reduction of tunneling current can also be realized through careful design of the Type-II band structure. The growth of high-quality Ga(In)Sb/InAs-based SLS epiwafers is challenging due to the complexity of growing a large number of alternating thin layers with mixed group V elements. In this paper, the development of a manufacturable growth process by molecular beam epitaxy (MBE) using a multi-wafer production reactor will be discussed. Various techniques were used to analyze the quality of the epitaxial material. Structural properties were evaluated by high-resolution x-ray diffraction (XRD) and cross-sectional transmission electron microscopy (XTEM). Optical properties were assessed by low-temperature photoluminescence measurements (PL). Surface morphology and roughness data as measured by Nomarski optical microscope and atomic force microscope (AFM) will be presented. Device characteristics such as dynamic impedance, responsivity, quantum efficiency, and J-V characteristics of photodiodes fabricated using our SLS epiwafers will be discussed.

  7. Arsenic-induced intensity oscillations in reflection high-energy electron diffraction measurements. [during MBE of GaAs and InAs

    NASA Technical Reports Server (NTRS)

    Lewis, B. F.; Fernandez, R.; Grunthaner, F. J.; Madhukar, A.

    1986-01-01

    A technique of arsenic-induced RHEED intensity oscillations has been used to accurately measure arsenic incorporation rates as a function of substrate temperature during the homoepitaxial growths of both GaAs and InAs by molecular beam epitaxy (MBE). Measurements were made at growth temperatures from 350 to 650 C and at arsenic fluxes of 0.1 to 10.0 monolayer/s. The method measures only the arsenic actually incorporated into the growing film and does not include the arsenic lost in splitting the arsenic tetramers or lost by evaporation from the sample.

  8. Control over dark current densities and cutoff wavelengths of GaAs/AlGaAs QWIP grown by multi-wafer MBE reactor

    NASA Astrophysics Data System (ADS)

    Roodenko, K.; Choi, K. K.; Clark, K. P.; Fraser, E. D.; Vargason, K. W.; Kuo, J.-M.; Kao, Y.-C.; Pinsukanjana, P. R.

    2016-09-01

    Performance of quantum well infrared photodetector (QWIP) device parameters such as detector cutoff wavelength and the dark current density depend strongly on the quality and the control of the epitaxy material growth. In this work, we report on a methodology to precisely control these critical material parameters for long wavelength infrared (LWIR) GaAs/AlGaAs QWIP epi wafers grown by multi-wafer production Molecular beam epitaxy (MBE). Critical growth parameters such as quantum well (QW) thickness, AlGaAs composition and QW doping level are discussed.

  9. Arsenic-induced intensity oscillations in reflection high-energy electron diffraction measurements. [during MBE of GaAs and InAs

    NASA Technical Reports Server (NTRS)

    Lewis, B. F.; Fernandez, R.; Grunthaner, F. J.; Madhukar, A.

    1986-01-01

    A technique of arsenic-induced RHEED intensity oscillations has been used to accurately measure arsenic incorporation rates as a function of substrate temperature during the homoepitaxial growths of both GaAs and InAs by molecular beam epitaxy (MBE). Measurements were made at growth temperatures from 350 to 650 C and at arsenic fluxes of 0.1 to 10.0 monolayer/s. The method measures only the arsenic actually incorporated into the growing film and does not include the arsenic lost in splitting the arsenic tetramers or lost by evaporation from the sample.

  10. RF-MBE growth of cubic AlN on MgO (001) substrates via 2-step c-GaN buffer layer

    NASA Astrophysics Data System (ADS)

    Kakuda, M.; Morikawa, S.; Kuboya, S.; Katayama, R.; Yaguchi, H.; Onabe, K.

    2013-09-01

    We fabricated cubic AlN (c-AlN) films on MgO (001) substrates via 2-step c-GaN buffer layer by radio-frequency-plasma-assisted molecular beam epitaxy (RF-MBE). The effect of low temperature c-GaN buffer layer on the surface flatness and crystal quality of c-AlN was investigated by AFM and XRD reciprocal space mapping analysis. We examined optical properties of the c-AlN film by spectroscopic ellipsometry. The absorption edge by the direct transition of the c-AlN film was 5.95 eV caused by the hexagonal phase incorporation.

  11. Investigation of p-side contact layers for II-VI compound semiconductor optical devices fabricated on InP substrates by MBE

    NASA Astrophysics Data System (ADS)

    Takamatsu, Shingo; Nomura, Ichirou; Shiraishi, Tomohiro; Kishino, Katsumi

    2015-09-01

    N-doped p-type ZnTe and ZnSeTe contact layers were investigated to evaluate which is more suitable for use in II-VI compound semiconductor optical devices on InP substrates. Contact resistances (Rc) between the contact layers and several electrode materials (Pd/Pt/Au, Pd/Au, and Au) were measured by the circular transmission line model (c-TLM) method using p-n diode samples grown on InP substrates by molecular beam epitaxy (MBE). The lowest Rc (6.5×10-5 Ω cm2) was obtained in the case of the ZnTe contact and Pd/Pt/Au electrode combination, which proves that the combination is suitable for obtaining low Rc. Yellow light-emitting diode devices with a ZnTe and ZnSeTe p-contact layer were fabricated by MBE to investigate the effect of different contact layers. The devices were characterized under direct current injections at room temperature. Yellow emission at around 600 nm was observed for each device. Higher emission intensity and lower slope resistance were obtained for the device with the ZnTe contact layer and Pd/Pt/Au electrode compared with other devices. These device performances are ascribed to the low Rc of the ZnTe contact and Pd/Pt/Au electrode combination.

  12. A comparative study of the structural and electrical properties of n-type InGaN epilayer grown by MBE and commercially

    NASA Astrophysics Data System (ADS)

    Abud, Saleh H.; Ramiy, Asmiet; Hussein, A. S.; Hassan, Z.; Yam, F. K.

    2013-08-01

    This work reports the growth of n-In0.27Ga0.73N/GaN/AlN epitaxial layer on Si(1 1 1) substrate by using plasma-assisted molecular beam epitaxy (MBE) and commercially obtained n-In0.08Ga0.92N/AlN. As-grown and commercial thin films were characterized by using field emission scanning electron microscopy, atomic force microscopy, and high-resolution X-ray diffraction. A high work function metal (Pt) was deposited as metal contact on the thin films, and the electrical characteristics of the films pre- and post-annealed at 500 °C were studied under 3 V. Results show that the electrical characteristics of post-annealed thin films are better than those of pre-annealed thin films.

  13. Abnormal variation of the growth rate under high NH3 injected regime in the growth of GaN by NH3-source MBE

    NASA Astrophysics Data System (ADS)

    Choi, Sungkuk; Jung, Soohoon; Cho, Youngji; Lee, Sangtae; Chang, Jiho

    2017-03-01

    Unusual growth-rate variation during GaN formation using gas-source MBE has been discussed with respect to the chemical reactions occurring in the transition layer. A series of samples were prepared to confirm the assumption by verifying the growth regime and the impacts on the crystal quality of the GaN film. We found that the growth rate can be varied along with the amount of NH3 supply even under NH3-rich condition with a fixed Ga flux. Two growth conditions were investigated for their impact on the transition layer. One was the atomic force microscopy result, which revealed that the adatom migration length is closely related to the transition layer formation. The other one is the photoluminescent spectra, which revealed that the luminescence property of GaN is strongly related to the transition layer.

  14. Influence of infrared radiation on the electrical characteristics of the surface-barrier nanostructures based on MBE HgCdTe

    NASA Astrophysics Data System (ADS)

    Pociask-Bialy, Malgorzata; Izhnin, Ihor; Voitsekhovskii, Alexander; Nesmelov, Sergey; Dzyadukh, Stanislav

    2016-12-01

    Impact of illumination on the admittance of the MIS structures based on MBE Hg1-xCdxTe with graded-gap layers and single quantum wells was investigated. It is shown that for HgCdTe-based nanostructures the illumination greatly affects the capacitance and conductance dependencies. The capacitance-voltage characteristics exhibit a low-frequency behavior, which is associated with a decrease in the differential resistance of the space charge region. Especially informative illumination exposure is in the study of deep traps in n-HgCdTe (x=0.21-0.23) without graded-gap layer. Illumination leads to the low-frequency behavior of capacitance-voltage characteristics of MIS structures based on p-HgCdTe with HgTe single quantum well in the active region, and maximums in the voltage dependences do not appear.

  15. Characterization of vertical Au/β-Ga2O3 single-crystal Schottky photodiodes with MBE-grown high-resistivity epitaxial layer

    NASA Astrophysics Data System (ADS)

    X, Z. Liu; C, Yue; C, T. Xia; W, L. Zhang

    2016-01-01

    High-resistivity β-Ga2O3 thin films were grown on Si-doped n-type conductive β-Ga2O3 single crystals by molecular beam epitaxy (MBE). Vertical-type Schottky diodes were fabricated, and the electrical properties of the Schottky diodes were studied in this letter. The ideality factor and the series resistance of the Schottky diodes were estimated to be about 1.4 and 4.6× 106 Ω. The ionized donor concentration and the spreading voltage in the Schottky diodes region are about 4 × 1018 cm-3 and 7.6 V, respectively. The ultra-violet (UV) photo-sensitivity of the Schottky diodes was demonstrated by a low-pressure mercury lamp illumination. A photoresponsivity of 1.8 A/W and an external quantum efficiency of 8.7 × 102% were observed at forward bias voltage of 3.8 V, the proper driving voltage of read-out integrated circuit for UV camera. The gain of the Schottky diode was attributed to the existence of a potential barrier in the i-n junction between the MBE-grown highly resistive β-Ga2O3 thin films and the n-type conductive β-Ga2O3 single-crystal substrate. Project supported by the National Nature Science Foundation of China (Grant No. 61223002) the Science and Technology Commission of Shanghai Municipality, China (Grant No. 13111103700), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 2012018530003).

  16. Special Features of Admittance in Mis Structures Based on Graded-Gap MBE n-Hg1- x Cd x Te ( x = 0.31-0.32) in a Temperature Range OF 8-300 K

    NASA Astrophysics Data System (ADS)

    Voitsekhovskii, A. V.; Nesmelov, S. N.; Dzyadukh, S. M.; Vasil'ev, V. V.; Varavin, V. S.; Dvoretskii, S. A.; Mikhailov, N. N.; Kuz'min, V. D.; Remesnik, V. G.

    2014-09-01

    Admittance of MIS structures based on graded-gap n-Hg1- х Cd х Te ( x = 0.31-0.32) grown by molecular beam epitaxy (MBE) is investigated in a wide temperature range (8-300 K). It is shown that the temperature and frequency dependences of the differential resistance of space charge region for structures with a graded-gap layer are qualitatively similar to those for structures without a graded-gap layer. It is found that for MIS structures based on MBE n-Hg1- х Cd х Te ( x = 0.31-0.32), regardless of the presence of a graded-gap layer, the differential resistance of space charge region is limited by the processes of Shockley-Read generation in the temperature range of 25-100 K.

  17. Lattice-engineered MBE growth of high-indium mole fraction InGaAs for low cost MMICs and (1.3--1.55 {micro}m) OEICs

    SciTech Connect

    Childs, T.T.; Sokolov, V.; Sullivan, C.T.

    1997-11-01

    Using molecular beam epitaxy (MBE) and lattice engineering techniques, the feasibility of combining photonic devices applicable to the 1.3 to 1.55 {micro}m wavelength range and monolithic microwave (or mm-wave) integrated circuits (MMICs) on GaAs is demonstrated. A key factor in the MBE growth is incorporation of an InGaAs active layer having an indium arsenide mole fraction of 0.35 or greater and its lattice compatibility with the underlying semi-insulating GaAs substrate. The InGaAs layer used for the photonic devices, can also serve as the active channel for the high electron mobility transistors (HEMTs) for application in MMICs. Several examples of active and passive photonic devices grown by MBE are presented including an optical ridge waveguide, and a photodetector for detection of light in the 1.3 {micro}m range. The material structure includes a 3-layer AlGaAs/GaAs/AlGaAs optical waveguide and a thin InGaAs absorbing layer situated directly above the optical waveguide. Metal-semiconductor-metal (MSM) photodetectors are formed on the top surface of the InGaAs layer for collection of the photo-induced carriers. The optical ridge waveguide is designed for lateral incidence of the light to enhance the MSM photodetector responsivity. Initial measurements on the optical waveguide and photodetector are presented.

  18. n-VO2/p-GaN based nitride-oxide heterostructure with various thickness of VO2 layer grown by MBE

    NASA Astrophysics Data System (ADS)

    Wang, Minhuan; Bian, Jiming; Sun, Hongjun; Liu, Weifeng; Zhang, Yuzhi; Luo, Yingmin

    2016-12-01

    High quality VO2 films with precisely controlled thickness were grown on p-GaN/sapphire substrates by oxide molecular beam epitaxy (O-MBE). Results indicated that a distinct reversible semiconductor-to-metal (SMT) phase transition was observed for all the samples in the temperature dependent electrical resistance measurement, and the influence of VO2 layer thickness on the SMT properties of the as-grown n-VO2/p-GaN based nitride-oxide heterostructure was investigated. Meanwhile, the clear rectifying transport characteristics originated from the n-VO2/p-GaN interface were demonstrated before and after SMT of the VO2 over layer, which were attributed to the p-n junction behavior and Schottky contact character, respectively. Moreover, the X-ray photoelectron spectroscopy (XPS) analyses confirmed the valence state of vanadium (V) in VO2 films was principally composed of V4+ with trace amount of V5+. The design and modulation of the n-VO2/p-GaN based heterostructure devices will benefit significantly from these achievements.

  19. Gas-source MBE growth of Ga(In)NP/GaP structures and their applications for red light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Xin, H. P.; Welty, R. J.; Hong, Y. G.; Tu, C. W.

    2001-07-01

    We have studied the effects of N incorporation in Ga(In)P and explored their applications for light-emitting diodes (LEDs). The GaInNP epilayers were grown on (1 0 0) GaP substrates by gas-source MBE using an RF nitrogen radical beam source. Red LEDs based on GaN 0.011P 0.989/GaP double-heterostructure grown on (1 0 0) GaP substrates were successfully fabricated. Compared to conventional AlGaInP LEDs, this LED eliminates etching of the GaAs substrate and wafer-bonding of a transparent GaP substrate. Partially relaxed GaN 0.011P 0.989 active layers, however, degraded the emission efficiency. Incorporation of In in GaN 0.015P 0.985 alloy to lattice-match to GaP not only maintains the direct band gap, but also improves the sample structural quality and increases the integrated PL intensity by 40%, compared to GaN 0.015P 0.985.

  20. Comprehensive strain and band gap analysis of PA-MBE grown AlGaN/GaN heterostructures on sapphire with ultra thin buffer

    SciTech Connect

    Mahata, Mihir Kumar; Ghosh, Saptarsi; Jana, Sanjay Kumar; Bag, Ankush; Kumar, Rahul; Chakraborty, Apurba; Biswas, Dhrubes; Mukhopadhyay, Partha

    2014-11-15

    In this work, cluster tool (CT) Plasma Assisted Molecular Beam Epitaxy (PA-MBE) grown AlGaN/GaN heterostructure on c-plane (0 0 0 1) sapphire (Al{sub 2}O{sub 3}) were investigated by High Resolution X-ray Diffraction (HRXRD), Room Temperature Raman Spectroscopy (RTRS), and Room Temperature Photoluminescence (RTPL). The effects of strain and doping on GaN and AlGaN layers were investigated thoroughly. The out-of-plane (‘c’) and in-plane (‘a’) lattice parameters were measured from RTRS analysis and as well as reciprocal space mapping (RSM) from HRXRD scan of (002) and (105) plane. The in-plane (out-of plane) strain of the samples were found to be −2.5 × 10{sup −3}(1 × 10{sup −3}), and −1.7 × 10{sup −3}(2 × 10{sup −3}) in GaN layer and 5.1 × 10{sup −3} (−3.3 × 10{sup −3}), and 8.8 × 10{sup −3}(−1.3 × 10{sup −3}) in AlGaN layer, respectively. In addition, the band structures of AlGaN/GaN interface were estimated by both theoretical (based on elastic theory) and experimental observations of the RTPL spectrum.

  1. Influence of High Nitrogen Flux on Crystal Quality of Plasma-Assisted MBE Grown GaN Layers Using Raman Spectroscopy: Part-II

    SciTech Connect

    Asghar, M.; Hussain, I.; Islah u din; Saleemi, F.

    2007-05-09

    We have investigated lattice properties of plasma assisted MBE grown hexagonal GaN layers at varying nitrogen and gallium fluxes using Raman spectroscopy. Room temperature Raman spectra of Ga-rich layers and stoichiometric GaN are similar showing excitation modes at 434 cm-1, 567 cm-1 and 729 cm-1 identified as residual laser line, E{sub 2}{sup H} and A1(LO) mode, respectively. Similarity of Ga-rich and stoichiometric GaN layers is interpreted as the indication of comparable crystal quality of both GaN layers. In contrast, Raman scattering associated with N-rich GaN samples mere exhibit a broad band of excitations in the range of 250-650cm-1 leaving out A1(LO) mode. This typical observation along with intensity distribution of the peaks, is correlated with rough surface, bad crystal quality and high concentration of defects. Based on atomic displacement scheme, the broad band is identified as Ga- vacancies.

  2. Controlling the compositional inhomogeneities in AlxGa1-xN/AlyGa1-yN MQWs grown by PA-MBE: Effect on luminescence properties

    NASA Astrophysics Data System (ADS)

    Pramanik, Pallabi; Sen, Sayantani; Singha, Chirantan; Roy, Abhra Shankar; Das, Alakananda; Sen, Susanta; Bhattacharyya, Anirban; Kumar, Deepak; Sridhara Rao, D. V.

    2016-04-01

    Al0.35Ga0.65N/Al0.55Ga0.45N MQWs were grown by PA-MBE using a range of group III/V flux ratios. TEM images indicate sharp interfaces and well/barrier widths of 1.5/2 nm. We observe that small variations of group III/V flux ratio cause dramatic variations in the room temperature photoluminescence (PL) spectra. In addition to band edge luminescence, multiple low energy PL peaks are observed for growths under excess group III conditions, which are absent for near-stoichiometric growth. Temperature dependent PL measurements indicate that at room temperature, emission occurs due to transitions at potential fluctuations generated by the presence of compositional inhomogeneity. These effects are dominant for growth under excess group III conditions due to the presence of a metallic layer on the growth surface during deposition. This can be eliminated by the use of an Indium surfactant during growth, which modifies the diffusion length of Ga and Al adatoms. Under these conditions, the optical properties of MQWs are relatively insensitive to variations in group III to V flux ratio and hence substrate temperature, thus making them suitable for industrial-scale fabrication of optoelectronic devices in the ultraviolet range.

  3. Selective MBE growth of hexagonal networks of trapezoidal and triangular GaAs nanowires on patterned (1 1 1)B substrates

    NASA Astrophysics Data System (ADS)

    Tamai, Isao; Hasegawa, Hideki

    2007-04-01

    As a combination of novel hardware architecture and novel system architecture for future ultrahigh-density III-V nanodevice LSIs, the authors' group has recently proposed a hexagonal binary decision diagram (BDD) quantum circuit approach where gate-controlled path switching BDD node devices for a single or few electrons are laid out on a hexagonal nanowire network to realize a logic function. In this paper, attempts are made to establish a method to grow highly dense hexagonal nanowire networks for future BDD circuits by selective molecular beam epitaxy (MBE) on (1 1 1)B substrates. The (1 1 1)B orientation is suitable for BDD architecture because of the basic three-fold symmetry of the BDD node device. The growth experiments showed complex evolution of the cross-sectional structures, and it was explained in terms of kinetics determining facet boundaries. Straight arrays of triangular nanowires with 60 nm base width as well as hexagonal arrays of trapezoidal nanowires with a node density of 7.5×10 6 cm -2 were successfully grown with the aid of computer simulation. The result shows feasibility of growing high-density hexagonal networks of GaAs nanowires with precise control of the shape and size.

  4. Epitaxial growth of CuGaSe2 thin-films by MBE-Influence of the Cu/Ga ratio

    NASA Astrophysics Data System (ADS)

    Popp, Andreas; Pettenkofer, Christian

    2017-09-01

    By molecular beam epitaxy (MBE) CuGaSe2 (CGS) thin-films with varying Cu/Ga ratios were grown epitaxial on GaAs (100) and stepped GaAs (111)A substrates. Cu/Ga ratios from Cu-poor to Cu-rich were obtained. In this work the appearance of Cu crystallites on the surface of epitaxial CGS (001) layers are observed and strategies to avoid these precipitations are presented. High quality thin CGS films of around 100 nm thickness are obtained, enabling a detailed analysis of the electronic and chemical properties as well as of the crystal structure of the CGS surfaces. The electronic structure with respect to the Cu/Ga ratio was characterized in-situ by XPS and UPS. By LEED a (4 × 1) (Cu-poor and near stoichiometric) and a (4 × 2) (Cu-rich) reconstruction of a zinc blende structure were obtained. For CuGaSe2 (112) the LEED pattern showed a (3 × 1) chalcopyrite reconstruction for Cu/Ga ratios < 1. A (1 × 1) reconstruction of the chalcopyrite structure was observed for Cu-rich (112) samples. The observed dependence of the surface reconstruction on the stoichiometry for CGS grown on GaAs has not been reported in literature so far. Additionally, for Cu-rich stoichiometries a binary phase of Cu2-xSe appeared independently of orientation. The film morphology was investigated ex-situ by SEM.

  5. X-ray magnetic spectroscopy of MBE-grown Mn-doped Bi{sub 2}Se{sub 3} thin films

    SciTech Connect

    Collins-McIntyre, L. J.; Watson, M. D.; Zhang, S. L.; Coldea, A. I.; Hesjedal, T.; Baker, A. A.; Harrison, S. E.; Pushp, A.; Kellock, A. J.; Parkin, S. S. P.; Laan, G. van der

    2014-12-15

    We report the growth of Mn-doped Bi{sub 2}Se{sub 3} thin films by molecular beam epitaxy (MBE), investigated by x-ray diffraction (XRD), atomic force microscopy (AFM), SQUID magnetometry and x-ray magnetic circular dichroism (XMCD). Epitaxial films were deposited on c-plane sapphire substrates by co-evaporation. The films exhibit a spiral growth mechanism typical of this material class, as revealed by AFM. The XRD measurements demonstrate a good crystalline structure which is retained upon doping up to ∼7.5 atomic-% Mn, determined by Rutherford backscattering spectrometry (RBS), and show no evidence of the formation of parasitic phases. However an increasing interstitial incorporation of Mn is observed with increasing doping concentration. A magnetic moment of 5.1 μ{sub B}/Mn is obtained from bulk-sensitive SQUID measurements, and a much lower moment of 1.6 μ{sub B}/Mn from surface-sensitive XMCD. At ∼2.5 K, XMCD at the Mn L{sub 2,3} edge, reveals short-range magnetic order in the films and indicates ferromagnetic order below 1.5 K.

  6. Carrier concentration dependence of donor activation energy in n-type GaN epilayers grown on Si (1 1 1) by plasma-assisted MBE

    SciTech Connect

    Kumar, Mahesh; Bhat, Thirumaleshwara N.; Roul, Basanta; Rajpalke, Mohana K.; Kalghatgi, A.T.; Krupanidhi, S.B.

    2012-06-15

    Highlights: ► The n-type GaN layers were grown by plasma-assisted molecular beam epitaxy. ► The optical characteristics of a donor level in Si-doped GaN were studied. ► Activation energy of a Si-related donor was estimated from temperature dependent PL measurements. ► PL peak positions, FWHM of PL and activation energies are found to be proportional to the cube root of carrier density. ► The involvement of donor levels is supported by the temperature-dependent electron concentration measurements. -- Abstract: The n-type GaN layers were grown by plasma-assisted MBE and either intentionally doped with Si or unintentionally doped. The optical characteristics of a donor level in Si-doped, GaN were studied in terms of photoluminescence (PL) spectroscopy as a function of electron concentration. Temperature dependent PL measurements allowed us to estimate the activation energy of a Si-related donor from temperature-induced decay of PL intensity. PL peak positions, full width at half maximum of PL and activation energies are found to be proportional to the cube root of carrier density. The involvement of donor levels is supported by the temperature-dependent electron concentration measurements.

  7. MBE growth of GaN pn-junction photodetector on AlN/Si(1 1 1) substrate with Ni/Ag as ohmic contact

    NASA Astrophysics Data System (ADS)

    Mohd Yusoff, M. Z.; Baharin, A.; Hassan, Z.; Abu Hassan, H.; Abdullah, M. J.

    2013-04-01

    In this paper, we investigated the growth of GaN pn-junction layers on silicon (1 1 1) by plasma assisted molecular beam epitaxy (PA-MBE) system and the effect of thermal annealing of Ni/Ag contacts on the sample for photodetector applications. Si and Mg were used as n- and p-dopants, respectively. The reflection high energy electron diffraction images indicated a good surface morphology of GaN pn-junction layer. The full width at half maximum (FWHM) obtained from XRD measurement was 0.34°, indicating a good quality layer of sample. The pn-junctions sample has a good optical quality which is reflected by the photoluminescence system measurement. The structural evolution and temperature dependence of the current of Ni/Ag contacts on GaN pn-junction at various annealing were investigated by scanning electron microscopy (SEM) and current-voltage (I-V) measurements. The temperature dependence of the current may be attributed to changes of the surface morphology of Ni/Ag films on the surface. SEM results indicated the degradation of Ni/Ag contacts on GaN pn-junction above 800 °C.

  8. The Studies of Thermal Annealing on Pt/AlGaN Grown on Si(111) by Plasma-Assisted Molecular Beam Epitaxy Pa-Mbe

    NASA Astrophysics Data System (ADS)

    Mohd Yusoff, M. Z.; Hassan, Z.; Chin, C. W.; Thahab, S. M.; Abu Hassan, H.

    The application of thermal annealing at various annealing temperatures (473-1073 K) has been shown to significantly modify surface morphology of platinum (Pt) metal contacts on AlGaN/GaN/AlN heterostructure grown on silicon by plasma-assisted molecular beam epitaxy (PA-MBE). Structural analysis of the AlGaN/GaN samples used for the Pt Schottky contacts fabrication were performed by using high resolution X-ray diffraction (HR-XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The Pt metal contacts were then deposited on the samples followed by current-voltage (I-V) characterization. Thermally-treated samples showed significant decrease in current compared with untreated samples. From the I-V measurements, the Schottky barrier height (SBH) and ideality factor (n) were calculated. We found that the lowest value of SBH obtained was 0.526 eV at 873 K annealing temperature. Unfortunately, there are no values for the SBH and ideality factor at 1073 K annealing temperature. The SEM analysis has shown some island formation at high annealing temperature due to the difference of surface energies between thin metal films and AlGaN that causes dewetting. We suggest that the reason for the barrier height reduction is due to the metal island formation on the samples.

  9. Optical characterisation of catalyst free GaAsP and GaAsP core-shell nanowires grown directly on Si substrates by MBE

    NASA Astrophysics Data System (ADS)

    Orchard, Jonathan R.; Zhang, Yunyan; Wu, Jiang; Liu, Huiyun; Mowbray, David

    2015-02-01

    We realise growth of both GaAsP and GaAs core nanowires (NWs), as well as GaAsP core-shell NWs grown on (111) Si substrates using solid source molecular beam epitaxy (MBE). By modifying the growth conditions it is possible to change the dimensions of the GaAsP NWs and optimisation of these conditions yields high crystal quality structures. Scanning electron microscopy (SEM) as well as temperature, power and time resolved photoluminescence (PL) are used to study the optical and structural properties of the NWs. The incorporation of P into the NWs is used to shift the PL emission for ~ 810 nm to ~ 730 nm at 77 K, and also results in enhanced PL and an improved carrier lifetime. The addition of a p-doped GaAsP shell to a GaAsP core NW reduces the nonradiative recombination at surface states, as evidenced by x14 reduction of PL quenching with temperature, enhanced carrier lifetime, as well as a x3.5 increase in 77 K integrated PL intensity.

  10. Magnetism and Nanoscale Structural and Compositional Irregularities in MBE-grown La2MnNiO6 on SrTiO3(001)

    NASA Astrophysics Data System (ADS)

    Chambers, Scott; Du, Yingge; Droubay, Timothy; Sushko, Peter; Spurgeon, Steven; Devaraj, Arun; Bowden, Mark; Shutthanandan, V.; Gustafsson, Torgny

    Double perovskites (A2BB'O6) are a fascinating class of oxides with considerable potential for applications requiring ferromagnetic and semiconducting properties. We have investigated MBE-grown La2MnNiO6 and have found that despite the fact that Mn and Ni are present as 4 + (d 3 : t2g 3eg0) and 2 + (d 8 : t2g 6eg2) respectively, and exhibit suitable XMCD signatures, the volume-averaged moment per formula unit is considerably less than 5 Bohr magnetons. Our electron energy loss spectroscopy (STEM-EELS) and atom probe tomography (APT) results to date reveal that there is considerable disorder in the B-site sublattice for as-deposited films, despite excellent volume-averaged stoichiometry. While air annealing results in substantial ordering, the moment remains low due to the nucleation of NiO inclusions with needle-like shapes revealed only by APT. First principles modeling suggests that even though the double perovskite is quite stable if nucleated in excess O, the presence of O vacancies facilitates structural disorder. In this talk, we will present our latest results on this fascinating material.

  11. Use of a High-flux Atomic Oxygen Source for MBE growth of the di- and tri- oxides of Cr, Mo, and W

    NASA Astrophysics Data System (ADS)

    Ingle, Nicholas; Hammond, Robert; Beasley, Malcolm

    2000-03-01

    The MBE growth of several of the highly oxidized phases of the Group IIB elements (Cr, Mo, and W) are of great current interest. In particular, CrO_2, a theorized half-metallic ferromagnet, has yet to be grown in a form that allows high quality tunneling measurements to be performed. Also, thin films of WO3 for controlled Na doping studies are of interest to help understand the recently published results on possible superconductivity in this material(S. Reich and Y. Tsabba, EUROPEAN PHYSICAL JOURNAL B v. 9(1) pp. 1-4 MAY 1999 and Shengelaya A, Reich S, Tsabba Y, and Muller KA EUROPEAN PHYSICAL JOURNAL B , v. 12(1) pp. 13-15 NOV 1999). Using a new high-flux atomic oxygen source and detection scheme, RHEED, and in-situ core-level photoemission we present the atomic oxygen-temperature phase diagrams indicating the conditions under which the di- and tri- oxide phases of Cr, Mo, and W can be grown.

  12. Possibility of a quasi-liquid layer of As on GaAs substrate grown by MBE as observed by enhancement of Ga desorption at high As pressure

    NASA Astrophysics Data System (ADS)

    Asai, K.; Feng, J. M.; Vaccaro, P. O.; Fujita, K.; Ohachi, T.

    2000-06-01

    The As vapor pressure dependence of the Ga desorption rate during molecular beam epitaxy (MBE) growth on GaAs( n11)A ( n=1-4 hereafter) substrates was studied by photoluminescence (PL) measurements at 12 K for undoped AlGaAs/GaAs asymmetric double quantum wells (ADQWs). Reflection high energy electron diffraction (RHEED) oscillation measurements on a GaAs(100) surface were also used. Two K-cells of As solid sources (corresponding to beam equivalent pressures (BEPs) of 9.0×10 -6 and 4.5×10 -5 Torr) were used to change the As pressure rapidly. The Ga flux and substrate temperature were kept constant at 0.76 ML/s and 12 K, respectively, while the As flux changed from 7.6 (BEP 9.0×10 -6 Torr) to 32 ML/s (4.5×10 -5 Torr). With increasing As pressure, two separated PL peaks for the wide well (WW) of high index substrates were observed. This peak separation is attributed to a reduced well depth from an increasing Ga desorption rate. The energy differences of the PL peak depending on the off-angle from (111)A to (100) plane indicates an orientation-dependent Ga desorption rate. Moreover, amongst all ( n11)A and (100) planes, the Ga desorption rate was smallest from the (111)A surface. The increase of Ga desorption from the surface at high As pressures probably arose from an increasing coverage with a quasi-liquid layer (QLL).

  13. Endohedral and exohedral metalloborospherenes: M@B40 (M=Ca, Sr) and M&B40 (M=Be, Mg).

    PubMed

    Bai, Hui; Chen, Qiang; Zhai, Hua-Jin; Li, Si-Dian

    2015-01-12

    The recent discovery of the all-boron fullerenes or borospherenes, D(2d) B40(-/0), paves the way for borospherene chemistry. Here we report a density functional theory study on the viability of metalloborospherenes: endohedral M@B40 (M=Ca, Sr) and exohedral M&B40 (M=Be, Mg). Extensive global structural searches indicate that Ca@B40 (1, C(2v), (1)A1) and Sr@B40 (3, D(2d), (1)A1) possess almost perfect endohedral borospherene structures with a metal atom at the center, while Be&B40 (5, C(s), (1)A') and Mg&B40 (7, C(s), (1)A') favor exohedral borospherene geometries with a η(7)-M atom face-capping a heptagon on the waist. Metalloborospherenes provide indirect evidence for the robustness of the borospherene structural motif. The metalloborospherenes are characterized as charge-transfer complexes (M(2+)B40(2-)), where an alkaline earth metal atom donates two electrons to the B40 cage. The high stability of endohedral Ca@B40 (1) and Sr@B40 (3) is due to the match in size between the host cage and the dopant. Bonding analyses indicate that all 122 valence electrons in the systems are delocalized as σ or π bonds, being distributed evenly on the cage surface, akin to the D(2d) B40 borospherene. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. GaInP/GaAs tandem solar cells with highly Te- and Mg-doped GaAs tunnel junctions grown by MBE

    NASA Astrophysics Data System (ADS)

    Zheng, Xin-He; Liu, San-Jie; Xia, Yu; Gan, Xing-Yuan; Wang, Hai-Xiao; Wang, Nai-Ming; Yang, Hui

    2015-10-01

    We report a GaInP/GaAs tandem solar cell with a novel GaAs tunnel junction (TJ) with using tellurium (Te) and magnesium (Mg) as n- and p-type dopants via dual-filament low temperature effusion cells grown by molecular beam epitaxy (MBE) at low temperature. The test Te/Mg-doped GaAs TJ shows a peak current density of 21 A/cm2. The tandem solar cell by the Te/Mg TJ shows a short-circuit current density of 12 mA/cm2, but a low open-circuit voltage range of 1.4 V˜1.71 V under AM1.5 illumination. The secondary ion mass spectroscopy (SIMS) analysis reveals that the Te doping is unexpectedly high and its doping profile extends to the Mg doping region, thus possibly resulting in a less abrupt junction with no tunneling carriers effectively. Furthermore, the tunneling interface shifts from the intended GaAs n++/p++ junction to the AlGaInP/GaAs junction with a higher bandgap AlGaInP tunneling layers, thereby reducing the tunneling peak. The Te concentration of ˜ 2.5 × 1020 in GaAs could cause a lattice strain of 10-3 in magnitude and thus a surface roughening, which also negatively influences the subsequent growth of the top subcell and the GaAs contacting layers. The doping features of Te and Mg are discussed to understand the photovoltaic response of the studied tandem cell. Project supported by the SINANO-SONY Joint Program (Grant No. Y1AAQ11001), the National Natural Science Foundation of China (Grant No. 61274134), the USCB Start-up Program (Grant No. 06105033), and the International Cooperation Projects of Suzhou City, China (Grant No. SH201215).

  15. MBE growth of ordered III-nitride nano/microrods: from classical/quantum light sources to nanotransistors and pseudosubstrates (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Calleja, Enrique

    2017-02-01

    Selective Area Growth (SAG) by Molecular Beam Epitaxy (MBE) is one of the best approaches to develop a variety of nanostructures on different substrates. Ordered axial InGaN/GaN nanoLED structures were grown on GaN/sapphire templates as well as on GaN buffered Si(111) substrates. Core-shell InGaN/GaN microstructures can also be grown following two approaches: i) from top-down (etched) GaN cores and ii) from bottom-up GaN cores. In both cases a subsequent conformal growth of InGaN layers was achieved. Based on this approach, core-shell nanoLED arrays were successfully fabricated. A basic aspect of SAG refers to the initial stages of nanocrystals nucleation within the nanoholes that lead to their stable hexagonal structure and the efficient filtering of dislocations coming from the substrate, strongly dependent on the nano/microrod geometry. A common observed feature is that In incorporation depends strongly on the crystal plane considered, either m- or r-plane, giving rise to two InGaN related emissions. Exploiting this effect, dot-in-a-wire InGaN structures were grown embedded in ordered GaN nanorods acting as Single Photon Emitters. Nano/microrods can also be used as nanoFET transistors with a semi-cylindrical gate direct contact allowing for a very tight electrostatic control of the channel. SAG is also used to grow ordered nanostructures on semi-polar and non-polar orientations GaN/sapphire templates with the aim to fabricate ternary pseudo-substrates with tailored lattice constant and very high crystal quality.

  16. Dominant transverse-electric polarized emission from 298 nm MBE-grown AlN-delta-GaN quantum well ultraviolet light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Liu, Cheng; Ooi, Yu Kee; Islam, S. M.; Xing, Huili Grace; Jena, Debdeep; Zhang, Jing

    2017-02-01

    III-nitride based ultraviolet (UV) light emitting diodes (LEDs) are of considerable interest in replacing gas lasers and mercury lamps for numerous applications. Specifically, AlGaN quantum well (QW) based LEDs have been developed extensively but the external quantum efficiencies of which remain less than 10% for wavelengths <300 nm due to high dislocation density, difficult p-type doping and most importantly, the physics and band structure from the three degeneration valence subbands. One solution to address this issue at deep UV wavelengths is by the use of the AlGaN-delta-GaN QW where the insertion of the delta-GaN layer can ensure the dominant conduction band (C) - heavyhole (HH) transition, leading to large transverse-electric (TE) optical output. Here, we proposed and investigated the physics and polarization-dependent optical characterizations of AlN-delta- GaN QW UV LED at 300 nm. The LED structure is grown by Molecular Beam Epitaxy (MBE) where the delta-GaN layer is 3-4 monolayer (QW-like) sandwiched by 2.5-nm AlN sub-QW layers. The physics analysis shows that the use of AlN-delta-GaN QW ensures a larger separation between the top HH subband and lower-energy bands, and strongly localizes the electron and HH wave functions toward the QW center and hence resulting in 30-time enhancement in TEpolarized spontaneous emission rate, compared to that of a conventional Al0.35Ga0.65N QW. The polarization-dependent electroluminescence measurements confirm our theoretical analysis; a dominant TE-polarized emission was obtained at 298 nm with a minimum transverse-magnetic (TM) polarized emission, indicating the feasibility of high-efficiency TEpolarized UV emitters based on our proposed QW structure.

  17. MBE growth and processing of III/V-nitride semiconductor thin film structures: Growth of gallium indium arsenic nitride and nano-machining with focused ion beam and electron beam

    NASA Astrophysics Data System (ADS)

    Park, Yeonjoon

    The advanced semiconductor material InGaAsN was grown with nitrogen plasma assisted Molecular Beam Epitaxy (MBE). The InGaAsN layers were characterized with High Resolution X-ray Diffraction (HRXDF), Atomic Fore Microscope (AFM), X-ray Photoemission Spectroscopy (XPS) and Photo-Luminescence (PL). The reduction of the band gap energy was observed with the incorporation of nitrogen and the lattice matched condition to the GaAs substrate was achieved with the additional incorporation of indium. A detailed investigation was made for the growth mode changes from planar layer-by-layer growth to 3D faceted growth with a higher concentration of nitrogen. A new X-ray diffraction analysis was developed and applied to the MBE growth on GaAs(111)B, which is one of the facet planes of InGaAsN. As an effort to enhance the processing tools for advanced semiconductor materials, gas assisted Focused Ion Beam (FIB) vertical milling was performed on GaN. The FIB processed area shows an atomically flat surface, which is good enough for the fabrication of Double Bragg Reflector (DBR) mirrors for the Blue GaN Vertical Cavity Surface Emitting Laser (VCSEL) Diodes. An in-situ electron beam system was developed to combine the enhanced lithographic processing capability with the atomic layer growth capability by MBE. The electron beam system has a compensation capability against substrate vibration and thermal drift. In-situ electron beam lithography was performed with the low pressure assisting gas. The advanced processing and characterization methods developed in this thesis will assist the development of superior semiconductor materials for the future.

  18. Issues and examples regarding growth of AlN, GaN and Al{sub x}Ga{sub 1{minus}x}N thin films via OMVPE and gas source MBE

    SciTech Connect

    Davis, R.F.; Weeks, T.W. Jr.; Bremser, M.D.; Tanaka, S.; Kern, R.S.; Sitar, Z.; Ailey, K.S.; Perry, W.G.; Wang, C.

    1996-11-01

    Organometallic vapor phase epitaxy (OMVPE) and molecular beam epitaxy (MBE) are the most common methods for the growth of thin films of AlN and GaN. Sapphire is the most common substrate; however, a host of materials have been used with varying degrees of success. Both growth techniques have been employed by the authors to grow AlN, GaN and Al{sub x}Ga{sub 1{minus}x}N thin films primarily on 6H-SiC(0001). The mismatch in atomic layer stacking sequences along the growth direction produces double positioning boundaries in AlN and the alloys at the SiC steps; the sequence problem appears to discourage the two-dimensional nucleation of GaN. Films of these materials grown by MBE at 650 C are textured; monocrystalline films are achieved between 850 C (pure GaN) and 1,050 C (pure AlN) by this technique and OMVPE. Donor and acceptor doping of GaN has been achieved via MBE without post growth annealing. Acceptor doping in CVD material requires annealing to displace the H from the Mg and eventually remove it from the material. High brightness light emitting diodes are commercially available; however, numerous concerns regarding metal and nitrogen sources, heteroepitaxial nucleation, the role of buffer layers, surface migration rates as a function of temperature, substantial defect densities and their effect on film and device properties, ohmic and rectifying contacts, wet and dry etching and suitable gate and field insulators must and are being addressed. Selected issues surrounding the growth of these materials with particular examples drawn from the authors` research are presented herein.

  19. Nitrogen incorporation rate, optimal growth temperature, and AsH 3-flow rate in GaInNAs growth by gas-source MBE using N-radicals as an N-source

    NASA Astrophysics Data System (ADS)

    Kitatani, T.; Kondow, M.; Nakahara, K.; Larson, M. C.; Yazawa, Y.; Okai, M.; Uomi, K.

    1999-05-01

    We have investigated the conditions for growing GaInNAs by gas-source MBE using N-radicals as an N-source. The optimal growth temperature of GaInNAs with good surface morphology and PL characteristics was clarified: at higher growth temperature, the surface morphology degraded. On the other hand, PL intensity became weak at temperatures lower than the optimal one. This trend is similar to that in GaInAs grown by MBE. AsH 3-flow rate mainly affected crystal quality of GaInNAs rather than incorporation of nitrogen atoms. It was also confirmed experimentally that the N-radicals produced by RF-discharge are incorporated in the epitaxial layer like dopant atoms, indicating that their sticking coefficient is about one. This result is unlike that for the MOCVD growth using dimethylhydrazine as an N-source. These results are crucial to further improve the crystal quality of GaInNAs.

  20. Effects of MgO buffer annealing on optical and electrical quality of P-MBE grown ZnO films on c-sapphire

    NASA Astrophysics Data System (ADS)

    Setiawan, A.; Yao, T.

    2016-04-01

    Zinc oxide (ZnO) has been attracting much attention because of its potential applications in photonic and optoelectronic devices. In this present study, we investigated the effect of MgO buffer annealing on the optical and electrical quality of P-MBE grown ZnO films on c-sapphire with MgO buffer layer. The optical quality was observed by low-temperature PL (photoluminescence) measurement in the near band edge emission region measured at 10K and at 77K. The emission line located at 3.368eV dominates the spectrum in both samples (ZnO with and without MgO buffer annealing) at 10K and 77K. This emission can be divided into two peaks, 3.367eV and 3.363eV and assigned as I2 (ionized donor bound excitons emission) and I4 (Hydrogen donor related emission), respectively. The relative intensity of these donor bound exactions to free exaction emission of the sample without MgO buffer annealing is greater than that of the sample with MgO buffer annealing. Comparison of the PL spectra of ZnO with and without annealing revealed that the intensity of free exciton emission from the sample with MgO buffer annealing is twice of that from the sample without annealing. We also found that the intensity of deep-level broad emission is reduced by about 1/3 by MgO-buffer annealing. Hence, the decrease of deep level emission intensity and the increase of free exciton emission intensity by annealing of MgO buffer corresponds to the reduction of defects of the ZnO film. The PL properties also suggest that there are fewer nonradiative recombination centers in ZnO layers with MgO buffer annealing than those in ZnO layers grown without MgO buffer annealing. The electrical quality was measured by room temperature Hall measurements. We found that the samples have a background n-type carrier concentration. The ZnO samples with MgO buffer annealing has a carrier concentration of 1.17×1017 cm-3 and Hall mobility of 120 cm2/V.s, while the ZnO sample without MgO buffer annealing has a carrier

  1. Study of the Verwey transition of Fe{sub 3}O{sub 4} films and Fe{sub 3}O{sub 4}/MgO multilayers grown by MBE

    SciTech Connect

    Veerdonk, R.J.M. van de; Heijden, P.A.A. van der |; Gijs, M.A.M.; Wolf, R.M.; Jonge, W.J.M. de

    1996-11-01

    Thin magnetite (Fe{sub 3}O{sub 4}) films and Fe{sub 3}O{sub 4}/MgO multilayers have been epitaxially grown by Molecular Beam Epitaxy (MBE) on MgO(100) and MgAl{sub 2}O{sub 4}(100) substrates. The epitaxial growth on MgO(100) substrates, with a slightly larger bulk lattice parameter than that of magnetite, resulted in an in-plane expansion of the magnetite lattice, accompanied by a perpendicular compression. For films grown on MgAl{sub 2}O{sub 4}(100), with a smaller lattice parameter, the substrate misfit is relaxed by the incorporation of misfit dislocations at the interface. It is shown that the substrates have a large effect on the magnetic and electronic properties of the films. The characteristic Verwey transition is shifted towards lower temperatures, broadened, and reduced in amplitude, more so for thinner films. This can not be quantitatively explained by substrate induced stress alone, but is more likely due to a rigid structural coupling between the magnetite film and the cubic lattice of the substrate. Hereby the orthorhombic deformation accompanying the Verwey transition may be suppressed. When growing at reduced oxygen pressure, the length scale for the rigid coupling will be reduced by the introduction of vacancies. This leads to more bulk-like resistivity and Verwey transition characteristics, but also to deviations from stoichiometry, as suggested by magnetization and Ferromagnetic Resonance (FMR) experiments.

  2. Admittance measurements in the temperature range (8-77) K for characterization of MIS structures based on MBE n-Hg0.78Cd0.22Te with and without graded-gap layers

    NASA Astrophysics Data System (ADS)

    Voitsekhovskii, A. V.; Nesmelov, S. N.; Dzyadukh, S. M.

    2017-03-01

    Admittance of MIS structures based on MBE n-Hg1-xCdxTe (x=0.22-0.23) with Al2O3 as insulator is experimentally investigated for the cases of the presence and absence of near-surface graded-gap layers with high content of CdTe. It is shown that the structures with graded-gap layers are characterized by a significant hysteresis of electrical characteristics, a deep and broad dip in the low-frequency capacitance-voltage characteristic, and high values of the differential resistance of the space charge region in the strong inversion. It is found that already at 77 K, the capacitance-voltage characteristics of structures with graded-gap layers have a high-frequency behavior relative to the recharge time of surface states in the frequency range of (1-2000) kHz. At frequencies exceeding 200 kHz and a temperature of (9-15) K, the capacitance-voltage characteristics of the structures without graded-gap layers have a high-frequency behavior relative to the recharge time of surface states located near the Fermi energy for an intrinsic semiconductor. Peculiarities of determining the density of surface states and the electron concentration in MIS structures with and without graded-gap layers are studied.

  3. MBE of (Hg,Cd)Te

    DTIC Science & Technology

    1988-10-01

    TERMS (Contin/ue on reverse if necessary and identify by block number) I IELD IGROUP SUB-GROUP £~iimA~A*~w 1 05 caltlcvi qeIv~~ 12 t]T/40 OSTRACT...Continue on reverse if necessary and identify by block number) Te work sponsored under this contract has centered on the molecular beam epitaxial growth...layhwdfg wth off CdTmbSb undeconvedal Mi gwth codidons is ou nindisulikey conul at wmly anlqwoaf n2Te3 mdemmtalSb. While these stomae sonest that the

  4. Fabrication of nanostructures using MBE and MOVPE

    NASA Astrophysics Data System (ADS)

    Ahopelto, J.; Lipsanen, H. K.; Sopanen, M.; Koljonen, T.; Tuomi, T.; Airaksinen, V. M.; Sinkkonen, J.; Sirén, E.

    1994-01-01

    Two different fabrication techniques to obtain nanometer scale structures without the use of lithography are demonstrated. Quantum dots are made on GaAs by growing strained InP islands by metal-organic vapour phase epitaxy. Quantum confinement of carriers is achieved by the growth of quantum wells on the InP islands. Molecular beam epitaxy is used for the fabrication of a gold island mask on GaAs. Reactive ion etching through the gold mask produces a high density of GaAs columns with diameters down to 20 nm.

  5. Volatile Organic Analyzer (VOA) in 2006: Repair, Revalidation, and Restart of Elektron Event

    NASA Technical Reports Server (NTRS)

    Limero, Thomas

    2007-01-01

    The Volatile Organic Analyzer (VOA) was launched to the International Space Station (ISS) in August 2001 and was the first instrument to provide near real-time measurement of volatile organic compounds in a spacecraft atmosphere. The VOA performed an analysis of the ISS air approximately twice a month for most of its operation through May 2003. This intermittent operation, caused by a software interface issue with the ISS communication bus, slowed the validation of the VOA. However, operational validation was completed in 2003 when analysis of air samples collected in grab sample containers (GSCs) compared favorably with simultaneous VOA runs (1). The VOA has two channels that provide redundant function, albeit at slightly reduced performance, when only one channel is operating (2). Most target compounds can be detected on both channels. In January 2003, the VOA identified a malfunction in the channel 2 preconcentrator and it shut down that channel. The anomaly profile suggested that a fuse might have failed, but the root cause could not be determined. In May 2003, channel 1 was shut down when the detector s elevated temperature could not longer be maintained. Since both VOA channels were now deactivated, VOA operations ended until an in-flight repair could be planned and executed. This paper describes the process to repair the VOA and to revalidate it for operations, and then an account is given of the VOA s contribution following a contingency event on ISS.

  6. Microstructural Characteristics of High Rate Plastic Deformation in Elektron (trademark) WE43 Magnesium Alloy

    DTIC Science & Technology

    2012-04-01

    Mordike T. Ebert, "Magnesium Properties - applications - potential," Materials Science and Engineering A, vol. 302, no. 1, pp. 37-45, 2001. [2...boundary sliding in rolled AZ91 magnesium alloy at high strain rates," Materials Science and Engineering A, vol. 360, no. 1-2, pp. 107-115,2003

  7. Vinogradov makes a repair to the Elektron vent on the SM during Expedition 13

    NASA Image and Video Library

    2006-06-01

    ISS013-E-28984 (1 June 2006) --- Cosmonaut Pavel V. Vinogradov, Expedition 13 commander representing Russia's Federal Space Agency, attired in a Russian Orlan spacesuit, participates in the first session of extravehicular activity (EVA) performed by the Expedition 13 crew during their six-month mission. During the 6-hour, 31-minute spacewalk, Vinogradov and astronaut Jeffrey N. Williams (out of frame), NASA space station science officer, repaired, retrieved and replaced hardware on the U.S. and Russian segments of the International Space Station.

  8. Corrosion protection of aerospace grade magnesium alloy Elektron 43(TM) for use in aircraft cabin interiors

    NASA Astrophysics Data System (ADS)

    Baillio, Sarah S.

    Magnesium alloys exhibit desirable properties for use in transportation technology. In particular, the low density and high specific strength of these alloys is of interest to the aerospace community. However, the concerns of flammability and susceptibility to corrosion have limited the use of magnesium alloys within the aircraft cabin. This work studies a magnesium alloy containing rare earth elements designed to increase resistance to ignition while lowering rate of corrosion. The microstructure of the alloy was documented using scanning electron microscopy. Specimens underwent salt spray testing and the corrosion products were examined using energy dispersive spectroscopy.

  9. MBE growth of GaP on a Si substrate

    SciTech Connect

    Sobolev, M. S. Lazarenko, A. A.; Nikitina, E. V.; Pirogov, E. V.; Gudovskikh, A. S.; Egorov, A. Yu.

    2015-04-15

    It is shown that single-crystal GaP buffer layers can be formed on a Si substrate by molecular-beam epitaxy, with the “migration-enhanced epitaxy” procedure applied in the stage in which the nucleating layer is formed. When a GaP layer is produced on a p-type silicon substrate, a p-n junction is created in a natural way between the p-Si substrate and the surface n-Si layer produced by the diffusion of phosphorus into the substrate during the course of the epitaxial growth of GaP. This p-n junction can be used as the first junction of a silicon-based multijunction photovoltaic converter.

  10. Progress in MBE grown type-II superlattice photodiodes

    NASA Technical Reports Server (NTRS)

    Hill, Cory J.; Li, Jian V.; Mumolo, Jason M.; Gunapala, Sarath D.

    2006-01-01

    We report on the status of GaSb/InAs type-II superlattice diodes grown and fabricated at the Jet Propulsion Laboratory designed for infrared absorption in the 8-12(mu)m range. Recent devices have produced detectivities as high as 8x10 to the tenth power Jones with a differential resistance-area product greater than 6 Ohmcm(sup 2) at 80K with a long wavelength cutoff of approximately 12(mu)m. The measured quantum efficiency of these front-side illuminated devices is close to 30% in the 10-11(mu)m range without antireflection coatings.

  11. Native defects in MBE-grown CdTe

    SciTech Connect

    Olender, Karolina; Wosinski, Tadeusz; Makosa, Andrzej; Tkaczyk, Zbigniew; Kolkovsky, Valery; Karczewski, Grzegorz

    2013-12-04

    Deep-level traps in both n- and p-type CdTe layers, grown by molecular-beam epitaxy on GaAs substrates, have been investigated by means of deep-level transient spectroscopy (DLTS). Four of the traps revealed in the DLTS spectra, which displayed exponential kinetics for capture of charge carriers into the trap states, have been assigned to native point defects: Cd interstitial, Cd vacancy, Te antisite defect and a complex formed of the Te antisite and Cd vacancy. Three further traps, displaying logarithmic capture kinetics, have been ascribed to electron states of treading dislocations generated at the mismatched interface with the substrate and propagated through the CdTe layer.

  12. Quantum wire structures by MBE overgrowth on a cleaved edge

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Loren; Störmer, H. L.; West, K.; Baldwin, K. W.

    1991-05-01

    We have recently demonstrated the existence of a high mobility (6.1×10 5 cm 2/V·s) two-dimensional electron gas (2DEG) at the (110) vicinal surface formed by cleaving [L. Pfeiffer et al., Appl. Phys. Letters 56 (1990) 1697] a (100) GaAs wafer. We have now expanded this work to modulation-doped overgrowth on the cleaved edge of a multiperiod superlattice. We report here the first observation of the quantum Hall characteristics in such a two-dimensional system containing an atomically precise 71 Å GaAs by 31 Å Al 0.24Ga 0.76As compositional superlattice. The onset of Shubnikov-De Haas oscillations occurs at only 3000 G, implying the Landau cyclotron orbits are phase coherent over diameters as large as 5000 Å, corresponding to more than 200 GaAs/AlGaAs interface crossings.

  13. High Speed Quantum-Well Optoelectronic Devices by MBE

    DTIC Science & Technology

    1989-05-01

    emitwing ( transverse ) device structures. In both areas, significant advances have resulted as well. Surface-emitting lasers with segmented periodic...quantum-wire and strained-layer structures, including lasers . In the third section novel transverse modulators and lasers that use vertical Fabry-Perot...QWW Lasers 11 b. Extremely Wide Modulation Bandwidth in a low Threshold Current Strained Quantum Well Laser 12 Ill. Novel Transverse Modulators and

  14. Growing Epitaxial Graphene on an Insulator by MBE

    NASA Astrophysics Data System (ADS)

    Mohapatra, Chandra; Eckstein, James

    2009-03-01

    We have used electron beam evaporation of solid carbon (C) to deposit graphene on MgO <111> at 850C. The growth appears epitaxial as observed by in-situ RHEED which also reveals that the hot scattering surface transitions from an insulator to a conductor after deposition of 1 monolayer of C. Growth at higher temperatures gives better crystallinity. We further characterize the film by ex-situ Raman spectroscopy, AFM and transport. Raman reveals all the characteristic G, D and 2D peaks of graphene and the 2D peak can be fit to a single lorentzian typical for graphene. AFM pictures show that the surface consists of flat connected domains, which are uniform across the substrate. Electrical transport shows insulating behavior with resistance (R) varying as 1/T^2. This work was supported by the DOE BES at the F. Seitz Materials Research Laboratory at the University of Illinois, Urbana.

  15. MBE Growth of GaAs Whiskers on Si Nanowires

    NASA Astrophysics Data System (ADS)

    Maxwell Andrews, Aaron; Klang, Pavel; Detz, Hermann; Lugstein, Alois; Schramböck, Matthias; Steinmair, Mathias; Hyun, Youn-Joo; Bertagnolli, Emmerich; Müller, Thomas; Unterrainer, Karl; Schrenk, Werner; Strasser, Gottfried

    2010-01-01

    We present the growth of GaAs nanowhiskers by molecular beam epitaxy on Si (111) nanowires grown by low-pressure chemical vapor deposition. The whiskers grow in the wurtzite phase, along the [0001] direction, on the {112} facets of the Si nanowire, forming a star-like six-fold radial symmetry. The photoluminescence shows a 30 meV blue shift with respect to bulk GaAs, additionally a GaAs/AlAs core-shell heterostructure shows increased luminescence.

  16. MBE Growth of GaAs Whiskers on Si Nanowires

    SciTech Connect

    Maxwell Andrews, Aaron

    2010-01-04

    We present the growth of GaAs nanowhiskers by molecular beam epitaxy on Si (111) nanowires grown by low-pressure chemical vapor deposition. The whiskers grow in the wurtzite phase, along the [0001] direction, on the {l_brace}112{r_brace} facets of the Si nanowire, forming a star-like six-fold radial symmetry. The photoluminescence shows a 30 meV blue shift with respect to bulk GaAs, additionally a GaAs/AlAs core-shell heterostructure shows increased luminescence.

  17. MBE Growth and Characterization of Hg Based Compounds and Heterostructures

    DTIC Science & Technology

    2002-06-03

    quantum Hall plateaus for temperatures up to approximately 60 K. A large Rashba spin -orbit splitting of the first conduction subband, Hi, has been...distribution of electrons in the QW and thus enhances the Rashba spin splitting , i.e. AEH1 = k’. Furthermore, the presence of two periodic SdH...maximum population difference between the two Rashba spin split H1 subbands by a factor of approximately two. © 2002 Elsevier Science B.V All rights

  18. MBE Growth of Graded Structures for Polarized Electron Emitters

    SciTech Connect

    Not Available

    2010-08-25

    SVT Associates, in collaboration with SLAC, have investigated two novel photocathode design concepts in an effort to increase polarization and quantum efficiency. AlGaAsSb/GaAs superlattice photocathodes were fabricated to explore the effect of antimony on device operation. In the second approach, an internal electrical field was created within the superlattice active layer by varying the aluminum composition in AlGaAs/GaAs. A 25% increase in quantum efficiency as a result of the gradient was observed.

  19. Program plan for the MBE-4 multiple beam experiment

    SciTech Connect

    Avery, R.T.

    1985-02-01

    The technical description treats the arrangement of the Injector System (made up of an existing High Voltage Marx Generator, a new Four-beam Source array and a Beam Conditioning Unit for matching and steering) and the Accelerator Apparatus which contains the 24 shaped-pulsed accelerating units. Flexibility in diagnostic capability and physics experiments has been maintained insofar as possible.

  20. The Ballistic and Corrosion Evaluation of Magnesium Elektron E675 vs. Baseline Magnesium Alloy AZ31B and Aluminum Alloy 5083 for Armor Applications

    DTIC Science & Technology

    2011-06-01

    MURMAN S CIMPOERU D PAUL PO BOX 4331 MELBOURNE VIC 3001 AUSTRALIA 1 OSAKA UNIVERSITY JOINING & WELDING RSCH INST K KONDOH 11...UNIV APPLIED RSRCH LAB ACOUSTICS PRGM D SWANSON 504L APPLIED SCI BLDG UNIVERSITY PK PA 16803 1 PACIFIC NORTHWEST NATL LAB E NYBERG...1 MIHOGAOAKA IBARAKI OSAKA 567-0047 JAPAN 1 DEFENSE RESEARCH AGENCY B JAMES PORTON DOWN SALISBURY WTTTS SP04 OJQ UNITED KINGDOM

  1. Surface defect states in MBE-grown CdTe layers

    SciTech Connect

    Olender, Karolina; Wosinski, Tadeusz; Fronc, Krzysztof; Tkaczyk, Zbigniew; Chusnutdinow, Sergij; Karczewski, Grzegorz

    2014-02-21

    Semiconductor surface plays an important role in the technology of semiconductor devices. In the present work we report results of our deep-level transient spectroscopy (DLTS) investigations of surface defect states in nitrogen doped p-type CdTe layers grown by the molecular-beam epitaxy technique. We observed a deep-level trap associated with surface states, with the activation energy for hole emission of 0.33 eV. DLTS peak position in the spectra for this trap, and its ionization energy, strongly depend on the electric field. Our measurements allow to determine a mechanism responsible for the enhancement of hole emission rate from the traps as the phonon-assisted tunnel effect. Density of surface defect states significantly decreased as a result of passivation in ammonium sulfide. Capacitance-voltage measurements confirmed the results obtained by the DLTS technique.

  2. Bi flux-dependent MBE growth of GaSbBi alloys

    DOE PAGES

    Rajpalke, M. K.; Linhart, W. M.; Yu, K. M.; ...

    2015-03-05

    The incorporation of Bi in GaSb1-xBix alloys grown by molecular beam epitaxy is investigated as a function of Bi flux at fixed growth temperature (275 °C) and growth rate (1 μm h⁻¹). The Bi content is found to vary proportionally with Bi flux with Bi contents, as measured by Rutherford backscattering, in the range 0 < x ≤ 4.5%. The GaSbBi samples grown at the lowest Bi fluxes have smooth surfaces free of metallic droplets. The higher Bi flux samples have surface Bi droplets. The room temperature band gap of the GaSbBi epitaxial layers determined from optical absorption decreases linearlymore » with increasing Bi content with a reduction of ~32 meV/%Bi.« less

  3. III-N light emitting diodes fabricated using RF nitrogen gas source MBE

    NASA Astrophysics Data System (ADS)

    Van Hove, J. M.; Carpenter, G.; Nelson, E.; Wowchak, A.; Chow, P. P.

    1996-07-01

    Homo- and heterojunction III-N light emitting diodes using RF atomic nitrogen plasma molecular beam epitaxy have been grown. GaN films deposited on sapphire using this growth technique exhibited an extremely sharp X-ray diffraction with a full width half maximum of 112 arc sec. p-type doping of the nitride films was done with elemental Mg and resulted in as-grown p-type material with resistivities as low as 2 Ω · cm. Both homo- and heterojunction LEDs showed clear rectification. Emission from the GaN homojunction deposited on n-type SiC was peaked at 410 nm while the AlGaNGaN(Zn)AlGaN double heterojunction LEDs emission was centered about 520 nm.

  4. Development of MBE II-VI Epilayers on GaAs(211)B

    DTIC Science & Technology

    2012-10-01

    Surface morphologies were examined by Nomarski and atomic force microscopy. Near-surface chemistry was performed using x-ray photoelectron spectroscopy...lower than measured by the noncontact thermocouple as stated in this article. RESULTS We started our investigation by examining the quality of current... force microscopy (AFM) images for as-received (a) and chemical defect decorated (b)16 GaAs. Polishing damage on a >5 nm scale is visible in Fig. 1a

  5. On the origin and elimination of macroscopic defects in MBE films

    NASA Astrophysics Data System (ADS)

    Wood, C. E. C.; Rathbun, L.; Ohno, H.; DeSimone, D.

    1981-02-01

    Spitting of group III metal droplets from Knudsen type effusion cells has been found culpable for a genre of problematical macroscopic surface topographical defects observed in the growth of semiconductor films by molecular beam epitaxy. Successful precautions are described which virtually eliminate the problem.

  6. In Memory of Dorothy Heathcote, MBE (29 August 1926 to 8 October 2011)

    ERIC Educational Resources Information Center

    Saxton, Juliana; Miller, Carole

    2012-01-01

    In this article, the authors aim to provide a multifaceted lens on to Dorothy Heathcote's enormous influence on the field of drama education. They choose to order the reminiscences historically, focusing on Heathcote's consistency of passion and purpose. The anecdotes, lesson descriptions, and reminiscences capture her voice, her energy, and her…

  7. Space-charge behavior of 'Thin-MOS' diodes with MBE-grown silicon films

    NASA Technical Reports Server (NTRS)

    Lieneweg, U.; Bean, J. C.

    1984-01-01

    Basic theoretical and experimental characteristics of a novel 'Thin-MOS' technology, which has promising aspects for integrated high-frequency devices up to several hundred gigahertz are presented. The operation of such devices depends on charge injection into undoped silicon layers of about 1000-A thickness, grown by molecular beam epitaxy on heavily doped substrates, and isolation by thermally grown oxides of about 100-A thickness. Capacitance-voltage characteristics measured at high and low frequencies agree well with theoretical ones derived from uni and ambipolar space-charge models. It is concluded that after oxidation the residual doping in the epilayer is less than approximately 10 to the 16th/cu cm and rises by 3 orders of magnitude at the substrate interface within less than 100 A and that interface states at the oxide interface can be kept low.

  8. Formation of pyramid-like nanostructures in MBE grown Si films on Si(001)

    SciTech Connect

    Galiana, Natalia; Martin, Pedro-Pablo; Garzon, L.; Rodriguez-Cañas, E.; Munuera, Carmen; Esteban-Betegon, F.; Varela del Arco, Maria; Ocal, Carmen; Alonso, Maria; Ruiz, Ana

    2010-01-01

    The growth of Si homoepitaxial layers on Si(001) substrates by molecular beam epitaxy is analyzed for a set of growth conditions in which diverse nanometric scale features develop. Using Si substrates prepared by exposure to HF vapor and annealing in ultra high vacuum, a rich variety of surface morphologies is found for different deposited layer thicknesses and substrate temperatures in a reproducible way, showing a critical dependence on both. Arrays of 3D islands (truncated pyramids), percolated ridge networks and square pit (inverted pyramids) distributions are observed. We analyze the obtained arrangements and find remarkable similarities to other semiconductor though heteroepitaxial systems. The nano-scale entities (islands or pits) display certain self assembly and ordering, concerning size, shape and spacing. Film growth sequence follows the islands-coalescence-2D growth pathway, eventually leading to optimum flat morphologies for high enough thickness and temperature.

  9. Self-assembled strained GeSiSn nanoscale structures grown by MBE on Si(100)

    NASA Astrophysics Data System (ADS)

    Nikiforov, A. I.; Timofeev, V. A.; Tuktamyshev, A. R.; Yakimov, A. I.; Mashanov, V. I.; Gutakovskii, A. K.

    2017-01-01

    Gradual relaxation of elastic deformations in a silicon layer at the growth of a covering layer on strained layers was established. The dependence of the thickness of a silicon film, where full elastic strain relaxation occurs, on the germanium layer thickness was determined. The dependence of the critical thickness of 2D-3D transition of temperature and composition of the GeSiSn film on Si(100) was studied. Regularities of the formation of multilayer structures on quantum wells comprising pseudomorphous GeSiSn layers without relaxed buffer layers but creating the structures directly on Si. A possibility of synthesizing multilayer structures by molecular beam epitaxy was shown, and the crystal lattice constants using the high-resolution transmission electron microscopy were determined. Based on multilayer GeSiSn/Si structures the p-i-n-diodes, which demonstrated the photoresponse increasing by several orders of magnitude compared to the Sn-free structures at an increase in the Sn content, were created.

  10. Factors affecting the shape of MBE-grown laterally aligned Fe nanowires.

    PubMed

    Lok, Shu K; Tian, Jia C; Wang, Yuxing; Lai, Ying H; Lortz, Rolf; Petrovic, Alexander; Panagopoulos, Christos; Wong, George K L; Wang, Gan; Sou, Iam K

    2012-12-07

    Various microstructural and chemical analysis techniques were applied to study two types (type-A and B) of self-assembled laterally aligned Fe nanowires (NWs) fabricated by molecular beam epitaxy on a ZnS buffer layer. The formation of the three-dimensional shapes of these NWs was found to be driven by the principle of surface energy minimization. We have provided phenomenological models to address the factors affecting the observed topological shape of these NWs, including the role of the lattice relationship between the Fe NWs and the underlying buffer layer, growth temperature, Fe nominal coverage and substrate orientation. Magnetic hysteresis measurements were performed at different temperature, demonstrating the Fe NWs possess a coercivity about 30 times larger than that of a Fe thin film. The observed gradual magnetization reversal indicates the magnetization process is accomplished by the rotation of magnetic moments within a single domain.

  11. Features of SOI substrates heating in MBE growth process obtained by low-coherence tandem interferometry

    NASA Astrophysics Data System (ADS)

    Volkov, P. V.; Goryunov, A.. V.; Lobanov, D. N.; Luk'yanov, A. Yu.; Novikov, A. V.; Tertyshnik, A. D.; Shaleev, M. V.; Yurasov, D. V.

    2016-08-01

    Differences in heating of silicon and silicon-on-insulator (SOI) substrates in molecular beam epitaxy were revealed by low-coherence tandem interferometry. Using this technique the interference effects which impede the correct evaluation of SOI substrate temperature by infrared pyrometers can be eliminated and so the reliable temperature readout can be achieved. It was shown that at the same thermocouple and heater power settings the real temperature of SOI substrates is higher than of silicon ones and the difference may be as high as 40-50 °C at temperatures close to 600 °C. It is supposed that such effect is caused by the additional absorption of heater radiation by the buried oxide layer in the mid-infrared range. Independent proof of this effect was obtained by growing on both types of substrates a series of structures with self-assembled Ge nanoislands whose parameters are known to be very temperature sensitive. The proposed low-coherence interferometry technique provides precise real-time control of the growth temperature and so allows formation of SiGe nanostructures with desired parameters.

  12. High mobility GaAs/AlAs/(211)Si structures grown by MBE

    NASA Astrophysics Data System (ADS)

    Christou, A.; Varmazis, K.; Hatzopoulos, Z.

    1987-02-01

    The growth on the preferred (211) silicon surface has been accomplished utilizing an interfacial layer of 100 Å of AlAs. We report on the (i) surface preparation, (ii) arsenic rich growth and (iii) mobility measurements of the resultant GaAs/AlAs(211) Si structure. An arsenic rich initial growth was utilized, which resulted in a sharp 2×2 reconstructed GaAs surface. In comparison, a gallium rich surface resulted in antiphase domains and in worst case Ga rich modules. Surface oxides were desorbed at 800°C prior to deposition at a final substrate temperature of 600-610°C for GaAs and 700°C for AlAs. The deposition in both cases was initiated at 250°C. Undoped GaAs/AlAs/(211) Si structures resulted in room temperature mobility values of 5275-8000 cm 2/V·s. The mobility values were optimizing by varying the thickness of the AlAs. A thickness of 100-120 Å was found to be necessary to prevent compensation due to outdiffusion from the silicon substrate. The GaAs films were shown to be smooth without evidence of antiphase domains.

  13. Structural and magnetic properties of MBE grown GeMnN2 thin films

    SciTech Connect

    Liu, Y; Lazarov, V. K.; Cheung, S.H.; Keavney, D.J.; Gai, Zheng; Gajdardziska-Josifovska, M; Weinert, M; Li, Lian

    2012-01-01

    Epitaxial GeMnN{sub 2} thin films are synthesized by plasma-assisted molecular beam epitaxy. Transmission electron microscopy and x-ray diffraction measurements confirm that it is the orthorhombic variant, consistent with the predictions of first-principles calculations. The magnetic properties of the films are related to defects, with samples grown under Ge-rich conditions exhibiting a net magnetic moment above room temperature. These results are explained by first-principles calculations, indicating that the preferential substitution of one magnetic sublattice of GeMnN{sub 2} by impurities and/or intrinsic defects such as Ge antisites produces a net magnetic moment in an antiferromagnetic background, and also introduces spin-polarized carriers near the Fermi level.

  14. Direct observation of interface asymmetry in GaAs-AlAs superlattices grown by MBE.

    NASA Astrophysics Data System (ADS)

    McCartney, M.; Menéndez, J.; Pfeiffer, L. N.; West, K. W.

    1996-03-01

    Transmission electron microscopy techniques have been applied to the study of compositional profiles in (GaAs)_6(AlAs)6 superlattices grown by Molecular Beam Epitaxy. Cross-sectional samples in [100] and [110] orientations were used in both high-resolution and diffraction contrast imaging. Comparisons were made with simulated images computed from theoretically predicted compositional profiles. In samples grown at temperatures below 450 ^circC, the shape of the compositional profiles is found to be consistent with Ga surface segregation models. If Ga segregates to the AlAs surface, the direct (AlAs on GaAs) interface is predicted to be broad due to the penetration of Ga atoms into the AlAs layers. The indirect interface is expected to be sharper because Al does not segregate to the GaAs surface. The microscopy results are consistent with Raman experiments on the same samples.(G.S. Spencer, J. Menéndez, L.N. Pfeiffer, and K.W. West, Phys. Rev. B 52), 8205 (1995).

  15. Crystal Lattice Defects in MBE Grown Si Layers Heavily Doped with Er

    NASA Astrophysics Data System (ADS)

    Zakharov, N. D.; Werner, P.; Vdovin, V. I.; Denisov, D. V.; Sobolev, N. A.; Gösele, U.

    The main types of crystal structure defects in [Er]>2×1019 doped layers are: (i) spherical Er and (ii) ellipsoidal ErSi precipitates, as well as (iii) ErSi2 platelets on {111} planes. In the sample with [Er]=4x1019, small complexes consisting of tiny Er precipitates and four petals of ErSi2 platelets have been found additionally. The layer with [Er]= 8×1018 cm-3 was defect free. The formation of silicides from a supersaturated solid solution and Er precipitates is accompanied by the emission of vacancies V resulting in the formation of pores, V-V and V-Er complexes.

  16. Growth Studies of CVD-MBE by In-Situ Diagnostics

    DTIC Science & Technology

    1992-10-29

    photoluminescence (PL) linewidths in quantum wells as well as record on/off ratio asymmetric Fabry Perot reflection modulators. The tools developed...have attained record narrow photoluminescence (PL) linewidths in quantum wells as well as record on/off ratio asymmetric Fabry Perot reflection...6 2.2. Dynamic growth rate modeling ..................................................... 7 2.3. Quantum well growth

  17. MBE Growth and Transfer of HgCdTe Epitaxial Films from InSb Substrates

    NASA Astrophysics Data System (ADS)

    de Lyon, T. J.; Rajavel, R. D.; Nosho, B. Z.; Terterian, S.; Beliciu, M. L.; Patterson, P. R.; Chang, D. T.; Boag-O'Brien, M. F.; Holden, B. T.; Jacobs, R. N.; Benson, J. D.

    2010-07-01

    An investigation of the heteroepitaxial growth of HgCdTe films onto InSb(211)B substrates is reported. High-quality HgCdTe(211)B single-crystal films have been successfully deposited onto InSb(211)B substrates and have been characterized with x-ray diffraction rocking curve analysis, etch pit density analysis, and surface void defect mapping. X-ray rocking curve (422) reflection full-width at half-maximum of 60 arcsec has been obtained for 7- μm-thick x = 0.22 HgCdTe epitaxial films, and etch pit densities of 3 × 106 cm-2 to 3 × 107 cm-2 have been observed. A significant reduction in HgCdTe void defect densities to 100 cm-2 to 200 cm-2 has been observed on InSb, including a complete absence of large “void cluster” defects that are often observed for growth on CdZnTe. Wafer bow induced by the growth of HgCdTe on InSb is less than 1 μm for 2-inch-diameter substrates. Significant diffusion of In into HgCdTe is observed for HgCdTe/InSb wafers that are subjected to Hg anneals at 250°C to 300°C. A preliminary investigation of the transfer of HgCdTe films from InSb onto Si substrates has also been undertaken, using an adhesive wafer bonding approach evaluated with scanning acoustic microscopy. The infrared transmission characteristics of the bonding adhesive have been investigated with respect to postgrowth annealing procedures to establish the compatibility of the bonding approach with HgCdTe device processing and detector operation.

  18. Simple self-gettering differential-pump for minimizing source oxidation in oxide-MBE environment

    SciTech Connect

    Kim, Yong-Seung; Bansal, Namrata; Oh, Seongshik

    2011-07-15

    Source oxidation of easily oxidizing elements such as Ca, Sr, Ba, and Ti in an oxidizing ambient leads to their flux instability and is one of the biggest problems in the multielemental oxide molecular beam epitaxy technique. Here, the authors report a new scheme that can completely eliminate the source oxidation problem: a self-gettering differential pump using the source itself as the pumping medium. The pump simply comprises a long collimator mounted in front of the source in extended port geometry. With this arrangement, the oxygen partial pressure near the source was easily maintained well below the source oxidation regime, resulting in a stabilized flux, comparable to that of an ultrahigh-vacuum environment. Moreover, this pump has a self-feedback mechanism that allows a stronger pumping effectiveness for more easily oxidizing elements, which is a desired property for eliminating the source oxidation problem.

  19. MBE growth technology for high quality strained III-V layers

    NASA Technical Reports Server (NTRS)

    Grunthaner, Frank J. (Inventor); Liu, John K. (Inventor); Hancock, Bruce R. (Inventor)

    1990-01-01

    The III-V films are grown on large automatically perfect terraces of III-V substrates which have a different lattice constant, with temperature and Group III and V arrival rates chosen to give a Group III element stable surface. The growth is pulsed to inhibit Group III metal accumulation of low temperature, and to permit the film to relax to equilibrium. The method of the invention: (1) minimizes starting step density on sample surface; (2) deposits InAs and GaAs using an interrupted growth mode (0.25 to 2 monolayers at a time); (3) maintains the instantaneous surface stoichiometry during growth (As-stable for GaAs, In-stable for InAs); and (4) uses time-resolved RHEED to achieve aspects (1) through (3).

  20. Manufacturable MBE growth process for Sb-based photodetector materials on large diameter substrates

    NASA Astrophysics Data System (ADS)

    Lubyshev, Dmitri; Qiu, Yueming; Fastenau, Joel M.; Liu, Amy W. K.; Koerperick, Edwin J.; Olesberg, Jon T.; Norton, Dennis, Jr.

    2012-01-01

    Antimony-based photodetector materials have attracted considerable interest for their potential and demonstrated performance in infrared detection and imaging applications. Mid-wavelength infrared detector has been demonstrated using bulk InAsSb/AlAsSb-based nBn structures. Heterostructures based on InAs/Ga(In)Sb strained layer superlattices create a type-II band alignment that can be tailored to cover a wide range of the mid- and long-wavelength infrared absorption bands by varying the thickness and composition of the constituent materials. Through careful design, these Sb-based detectors can realize desirable features such as higher operating temperature, better uniformity, suppression of Auger recombination, reduction of tunneling currents, and higher quantum efficiency. The manufacturing challenge of these structures is the reproducible growth of high-quality Sb-based epiwafers due to their complex designs including large numbers of alternating thin layers and mixed group-V elements. In this paper, we discuss the manufacturability of such epiwafers on 3" and 4" diameter GaSb substrates by molecular beam epitaxy using multi-wafer production tools. Various techniques were used to characterize the material properties of these wafers, including high-resolution x-ray diffraction, low-temperature photoluminescence, Nomarski optical microscopy, and atomic force microscopy.

  1. Sb-based IR photodetector epiwafers on 100 mm GaSb substrates manufactured by MBE

    NASA Astrophysics Data System (ADS)

    Fastenau, Joel M.; Lubyshev, Dmitri; Qiu, Yueming; Liu, Amy W. K.; Koerperick, Edwin J.; Olesberg, Jon T.; Norton, Dennis

    2013-07-01

    Antimony-based materials continue to provide great interest for infrared photodetector and focal plane array imaging applications. Detector architectures include InAs/Ga(In)Sb strained-layer superlattices, which create a type-II band alignment that can be tailored to cover a wide range of the mid- and long-wavelength bands by varying the thickness and composition of the constituent materials, and bulk InAsSb-based XBn barrier designs. These materials can provide desirable detector features such as wider wavelength range, suppression of tunneling currents, improved quantum efficiency, and higher operating temperatures. In order to bring these advantages to market, a reliable manufacturing process must be established on large diameter substrates. We report our latest work on the molecular beam epitaxy growth of Sb-detector epiwafers on 100 mm diameter GaSb substrates in a multi-wafer production format. The growth process has been established to address the challenges of these demanding structures, including the large numbers of alternating thin layers and mixed group-V elements. Various characterization techniques demonstrate excellent surface morphology, crystalline structure quality, and optical properties of the epiwafers. The measured wafer-to-wafer consistency and cross-wafer uniformity demonstrate the potential for volume manufacturing.

  2. Pulsed irradiation of optimized, MBE grown, AlGaAs/GaAs radiation hardened photodiodes. Rev

    SciTech Connect

    Wiczer, J.J.; Fischer, T.A.; Dawson, L.R.; Osbourn, G.C.; Zipperian, T.E.; Barnes, C.E.

    1984-01-01

    An AlGaAs/GaAs double heterojunction, mesa isolated, photodiode grown by molecular beam epitaxy was irradiated with 18 MeV electrons, 1 to 10 MeV x-rays, and neutrons from a pulsed reactor. Test results indicate that the AlGaAs/GaAs photodiodes generate approximately 10 to 20 times less photocurrent during exposure to a pulse of ionizing-radiation than radiation hardened silicon PIN photodiodes. Studies of neutron induced permanent damage in the AlGaAs/GaAs photodiode show only small changes in optical responsivity and a factor of 8 increase in leakage currents after exposure to 3.6 x 10/sup 15/ neutrons/cm/sup 2/ and 900 krad gamma. The silicon PIN photodiode was exposed to only 28% of the fluence used on the AlGaAs photodiodes and we observed a 40% decrease in optical responsivity and a factor of 7000 increase in leakage current.

  3. High uniaxial magnetic anisotropy of the Fe1-xSix films synthesized by MBE

    NASA Astrophysics Data System (ADS)

    Yakovlev, Ivan A.; Tarasov, Ivan A.; Lyashchenko, Sergey A.

    2017-10-01

    The structure and the magnetic anisotropy of the films obtained by simultaneous deposition of iron and silicon on n-Si(111) 7×7 at 130 °C are investigated. It is found the uniaxial magnetic anisotropy field for the Fe1-xSix films with x=0.25 (Fe3Si stoichiometric ratio) deposited on Si(111) 7×7 depends on both the surface miscut angle and the oblique sputtering direction and changes from 0.82 Oe up to 117.26 Oe.

  4. Room temperature absorption in laterally biased quantum infrared detectors fabricated by MBE regrowth

    NASA Astrophysics Data System (ADS)

    Guzmán, Álvaro; San-Román, Rocío; Hierro, Adrián

    2011-05-01

    In this paper, we show room temperature operation of a quantum well infrared photodetector (QWIP) using lateral conduction through ohmic contacts deposited at both sides of two n-doped quantum wells. To reduce the dark current due to direct conduction in the wells, we apply an electric field between the quantum wells and two pinch-off Schottky gates, in a fashion similar to a field effect device. Since the normal incidence absorption is strongly reduced in intersubband transitions in quantum wells, we first analyze the response of a detector based on quantum dots (QD). This QD device shows photocurrent signal up to 150 K when it is processed in conventional vertical detector. However, it is possible to observe room temperature signal when it is processed in a lateral structure. Finally, the room temperature photoresponse of the QWIP is demonstrated, and compared with theory. An excellent agreement between the estimated and measured characteristics of the device is found.

  5. MBE growth technology for high quality strained III-V layers

    NASA Technical Reports Server (NTRS)

    Grunthaner, Frank J. (Inventor); Liu, John K. (Inventor); Hancock, Bruce R. (Inventor)

    1992-01-01

    III-V films are grown on large automatically perfect terraces of III-V substrates which have a different lattice constant, with temperature and Group II and V arrival rates chosen to give a Group III element stable surface. The growth is pulsed to inhibit Group III metal accumulation to low temperature, and to permit the film to relax to equilibrium. The method of the invention 1) minimizes starting step density on sample surface; 2) deposits InAs and GaAs using an interrupted growth mode (0.25 to 2 mono-layers at a time); 3) maintains the instantaneous surface stoichiometry during growth (As-stable for GaAs, In-stable for InAs); and 4) uses time-resolved RHEED to achieve aspects (1)-14 (3).

  6. Magnetic properties of Ni films deposited on MBE grown Bi2Se3 layers

    NASA Astrophysics Data System (ADS)

    Yoo, Taehee; Nasir, Alviu Rey; Bac, Seul-Ki; Lee, Sangyeop; Choi, Seonghoon; Lee, Sanghoon; Liu, X.; Furdyna, J. K.

    2017-05-01

    We have investigated the magnetic properties of the Ni films deposited on a GaAs and a Bi2Se3 buffer grown by molecular beam epitaxy on a GaAs (001) substrate. The magnetization measurements at 4 K revealed that the coercivity of the Ni films decreases monotonically with increasing thickness up to 25 nm in both cases. However, the coercivity measured at 4 K was always larger in the Ni film deposited on the surface of Bi2Se3 than in the film deposited on the GaAs. Such enhancement of the coercivity decreases with increasing temperature and film thickness. This suggests that the Bi2Se3 surface alters the magnetic properties of the Ni film. The increase of the coercivity was more serious in an un-capped Ni/Bi2Se3 sample, which showed an exchange bias effect due to the oxidation of the top surface of the Ni film. These observations are important for the investigation of spin dependent phenomena in magnetic systems involving a ferromagnet/topological insulator interface.

  7. Impact of CdZnTe Substrates on MBE HgCdTe Deposition

    NASA Astrophysics Data System (ADS)

    Benson, J. D.; Bubulac, L. O.; Jaime-Vasquez, M.; Arias, J. M.; Smith, P. J.; Jacobs, R. N.; Markunas, J. K.; Almeida, L. A.; Stoltz, A.; Wijewarnasuriya, P. S.; Peterson, J.; Reddy, M.; Jones, K.; Johnson, S. M.; Lofgreen, D. D.

    2017-09-01

    The highest sensitivity, lowest dark current infrared focal plane arrays (IRFPAs) are produced using HgCdTe on CdZnTe substrates. As-received state-of-the-art CdZnTe 6 × 6 and 7 × 7.5 cm substrates were analyzed using Nomarski phase contrast microscopy, Auger electron spectroscopy, scanning electron microscopy/energy dispersive spectroscopy, and scanning profilometry. On all CdZnTe substrates tested, we observed as-received large area macro-defect contamination. Using a defect specification limit of 50 contiguous defective pixels, we identified non-compliant 1280 × 720 12- μm pitch focal plane arrays due to as-received substrate macro-defect contamination. Using the above specification, up to 20% IRFPA wafer yield loss is due to state-of-the-art as-received CdZnTe substrate macro-contamination.

  8. Nanometer scale composition study of MBE grown BGaN performed by atom probe tomography

    NASA Astrophysics Data System (ADS)

    Bonef, Bastien; Cramer, Richard; Speck, James S.

    2017-06-01

    Laser assisted atom probe tomography is used to characterize the alloy distribution in BGaN. The effect of the evaporation conditions applied on the atom probe specimens on the mass spectrum and the quantification of the III site atoms is first evaluated. The evolution of the Ga++/Ga+ charge state ratio is used to monitor the strength of the applied field. Experiments revealed that applying high electric fields on the specimen results in the loss of gallium atoms, leading to the over-estimation of boron concentration. Moreover, spatial analysis of the surface field revealed a significant loss of atoms at the center of the specimen where high fields are applied. A good agreement between X-ray diffraction and atom probe tomography concentration measurements is obtained when low fields are applied on the tip. A random distribution of boron in the BGaN layer grown by molecular beam epitaxy is obtained by performing accurate and site specific statistical distribution analysis.

  9. In Memory of Dorothy Heathcote, MBE (29 August 1926 to 8 October 2011)

    ERIC Educational Resources Information Center

    Saxton, Juliana; Miller, Carole

    2012-01-01

    In this article, the authors aim to provide a multifaceted lens on to Dorothy Heathcote's enormous influence on the field of drama education. They choose to order the reminiscences historically, focusing on Heathcote's consistency of passion and purpose. The anecdotes, lesson descriptions, and reminiscences capture her voice, her energy, and her…

  10. MBE synthesis of (In,Mn)As quantum dots using Mn selective doping

    NASA Astrophysics Data System (ADS)

    Bouravleuv, Alexei; Sapega, Victor; Nevedomskii, Vladimir; Khrebtov, Artem; Samsonenko, Yuriy; Cirlin, George; Strocov, Vladimir

    2017-06-01

    The structural and optical properties of (In,Mn)As obtained by molecular beam epitaxy using Mn selective doping were investigated. Despite relatively high growth temperature, the (In,Mn)As quantum dot structures have a high crystalline quality. The synthesis of multi-layered quantum dot structure, as well as p-i-n structure with embedded (In,Mn)As quantum dot layer was carried out. The results obtained can be of importance for the creation of novel light emitting devices.

  11. Incorporation of Sb and As in MBE grown GaAsxSb1-x layers

    NASA Astrophysics Data System (ADS)

    Zederbauer, Tobias; Andrews, Aaron Maxwell; MacFarland, Don; Detz, Hermann; Schrenk, Werner; Strasser, Gottfried

    2017-03-01

    With the increasing interest in low effective mass materials for intersubband devices, mixed As-Sb compounds, like GaAsxSb1-x or AlxIn1-xAsySb1-y, gain more and more attention. The growth of these materials, however, still provides significant challenges due to the complex interaction between As and Sb. In this work, we provide an in-depth study on the incorporation of Sb into the GaAsxSb1-x layers and compare our findings to the present literature on this topic. It is found that both the composition and the crystal quality of GaAsxSb1-x layers are strongly influenced by the growth rate due to the As-for-Sb exchange reaction which takes place at the growing surface, and that high crystal quality can be achieved when the growth is performed under Sb limited conditions.

  12. Properties of arsenic-implanted Hg1-xCdxTe MBE films

    NASA Astrophysics Data System (ADS)

    Izhnin, Igor I.; Voitsekhovskii, Alexandr V.; Korotaev, Alexandr G.; Fitsych, Olena I.; Bonchyk, Oleksandr Yu.; Savytskyy, Hrygory V.; Mynbaev, Karim D.; Varavin, Vasilii S.; Dvoretsky, Sergey A.; Yakushev, Maxim V.; Jakiela, Rafal; Trzyna, Malgorzata

    2016-12-01

    Defect structure of arsenic-implanted Hg1-xCdxTe films (x=0.23-0.30) grown with molecular-beam epitaxy on Si substrates was investigated with the use of optical methods and by studying the electrical properties of the films. The structural perfection of the films remained higher after implantation with more energetic arsenic ions (350 keV vs 190 keV). 100%-activation of implanted ions as a result of post-implantation annealing was achieved, as well as the effective removal of radiation-induced donor defects. In some samples, however, activation of acceptor-like defects not related to mercury vacancies as a result of annealing was observed, possibly related to the effect of the substrate.

  13. A RHEED/MBE-STM investigation of the static and dynamic InAs(001) surface

    NASA Astrophysics Data System (ADS)

    Bomphrey, J. J.; Ashwin, M. J.; Jones, T. S.

    2017-02-01

    We report here the temperature-dependent incorporation kinetics of dimeric arsenic in InAs(001) homoepitaxy, using reflection high-energy electron diffraction (RHEED). Surface reconstructions, in combination with the RHEED investigation have provided insight into the growth of InAs(001), developing an accurate method of controlling the V:III ratio, which has been utilised to probe the low temperature epitaxial growth of indium arsenide epitaxial layers.

  14. Investigation of VO-Zni native donor complex in MBE grown bulk ZnO

    NASA Astrophysics Data System (ADS)

    Asghar, M.; Mahmood, K.; Ferguson, I. T.; Raja, M. Yasin A.; Xie, Y. H.; Tsu, R.; Hasan, M.-A.

    2013-10-01

    In this paper, we have experimentally investigated the theoretical predictions of VO-Zni to be a native donor in ZnO. Intrinsically zinc-rich n-type ZnO thin films having ND ˜ 6.23 × 1018 cm-3 grown by molecular beam epitaxy on Si (0 0 1) substrate were annealed in oxygen environment at 500-800 °C, keeping a step of 100 °C for 1 h, each. Room temperature Hall measurements demonstrated that free donor (VO-Zni) concentration decreased exponentially and Arrhenius plot yielded activation energy to be 1.2 ± 0.01 eV. This value is in agreement with theoretically reported activation energy of VO-Zni donor complex in ZnO. We argue; this observation can be explained by two-step process: (i) incoming oxygen fills VO of VO-Zni complex leaving behind Zni; (ii) Zni releases its energy and moves to a lower energy state with respect to the conduction band minima and/or occupies an inactive location. Consequently, Zni-VO complex loses its donor role in the lattice. Our experimental data supported theoretical predictions of VO-Zni to be a native donor. Results from photoluminescence spectroscopy carried out on Zn-rich ZnO additionally justify the existence of VO-Zni complex.

  15. Device Fabrication using Crystalline CdTe and CdTe Ternary Alloys Grown by MBE

    SciTech Connect

    Zaunbrecher, Katherine; Burst, James; Seyedmohammadi, Shahram; Malik, Roger; Li, Jian V.; Gessert, Timothy A.; Barnes, Teresa

    2015-06-14

    We fabricated epitaxial CdTe:In/CdTe:As homojunction and CdZnTe/CdTe and CdMgTe/CdTe heterojunction devices grown on bulk CdTe substrates in order to study the fundamental device physics of CdTe solar cells. Selection of emitter-layer alloys was based on passivation studies using double heterostructures as well as band alignment. Initial results show significant device integration challenges, including low dopant activation, high resistivity substrates and the development of low-resistance contacts. To date, the highest open-circuit voltage is 715 mV in a CdZnTe/CdTe heterojunction following anneal, while the highest fill factor of 52% was attained in an annealed CdTe homojunction. In general, all currentvoltage measurements show high series resistance, capacitancevoltages measurements show variable doping, and quantum efficiency measurements show low collection. Ongoing work includes overcoming the high resistance in these devices and addressing other possible device limitations such as non-optimum junction depth, interface recombination, and reduced bulk lifetime due to structural defects.

  16. MBE Growth of AlN Nanowires on Si Substrates by Aluminizing Nucleation

    NASA Astrophysics Data System (ADS)

    E, Yanxiong; Hao, Zhibiao; Yu, Jiadong; Wu, Chao; Liu, Runze; Wang, Lai; Xiong, Bing; Wang, Jian; Han, Yanjun; Sun, Changzheng; Luo, Yi

    2015-10-01

    By introducing an aluminization process to achieve nucleation of nanowires (NWs), spontaneous growth of AlN NWs on Si substrates has been realized by plasma-assisted molecular beam epitaxy. The AlN NWs are grown from the nuclei formed by the aluminization process, and the NW density and diameter can be controlled by the aluminization parameters. The influence of growth conditions on the morphologies of AlN NWs is carefully investigated. Island-like films are found to grow between the NWs due to poor migration ability of Al adatoms. The films are proved to be Al-polar different from the N-polar AlN NWs, which can explain the absence of newly formed NWs. Increasing the V/III ratio can efficiently suppress the growth of Al-polar AlN films.

  17. Defect reduction in MBE-grown AlN by multicycle rapid thermal annealing

    NASA Astrophysics Data System (ADS)

    Greenlee, Jordan D.; Gunning, Brendan; Feigelson, Boris N.; Anderson, Travis J.; Koehler, Andrew D.; Hobart, Karl D.; Kub, Francis J.; Doolittle, W. Alan

    2016-01-01

    Multicycle rapid thermal annealing (MRTA) is shown to reduce the defect density of molecular beam epitaxially grown AlN films. No damage to the AlN surface occurred after performing the MRTA process at 1520°C. However, the individual grain structure was altered, with the emergence of step edges. This change in grain structure and diffusion of AlN resulted in an improvement in the crystalline structure. The Raman E2 linewidth decreased, confirming an improvement in crystal quality. The optical band edge of the AlN maintained the expected value of 6.2 eV throughout MRTA annealing, and the band edge sharpened after MRTA annealing at increased temperatures, providing further evidence of crystalline improvement. X-ray diffraction shows a substantial improvement in the (002) and (102) rocking curve FWHM for both the 1400 and 1520°C MRTA annealing conditions compared to the as-grown films, indicating that the screw and edge type dislocation densities decreased. Overall, the MRTA post-growth annealing of AlN lowers defect density, and thus will be a key step to improving optoelectronic and power electronic devices. [Figure not available: see fulltext.

  18. Factors affecting the shape of MBE-grown laterally aligned Fe nanowires

    NASA Astrophysics Data System (ADS)

    Lok, Shu K.; Tian, Jia C.; Wang, Yuxing; Lai, Ying H.; Lortz, Rolf; Petrovic, Alexander; Panagopoulos, Christos; Wong, George K. L.; Wang, Gan; Sou, Iam K.

    2012-12-01

    Various microstructural and chemical analysis techniques were applied to study two types (type-A and B) of self-assembled laterally aligned Fe nanowires (NWs) fabricated by molecular beam epitaxy on a ZnS buffer layer. The formation of the three-dimensional shapes of these NWs was found to be driven by the principle of surface energy minimization. We have provided phenomenological models to address the factors affecting the observed topological shape of these NWs, including the role of the lattice relationship between the Fe NWs and the underlying buffer layer, growth temperature, Fe nominal coverage and substrate orientation. Magnetic hysteresis measurements were performed at different temperature, demonstrating the Fe NWs possess a coercivity about 30 times larger than that of a Fe thin film. The observed gradual magnetization reversal indicates the magnetization process is accomplished by the rotation of magnetic moments within a single domain.

  19. MBE growth of high-quality GaAsN bulk layers

    NASA Astrophysics Data System (ADS)

    Wang, J. S.; Kovsh, A. R.; Wei, L.; Chi, J. Y.; Wu, Y. T.; Wang, P. Y.; Ustinov, V. M.

    2001-12-01

    We have studied the correlation between nitrogen composition of bulk GaAsN layers grown by molecular beam epitaxy using rf plasma cell and photoluminescence (PL) intensity. We have carried out careful optimization of the plasma cell aperture layout and plasma operation regimes as well as the growth condition of the GaAsN. We have demonstrated the same efficiency of PL from GaAsN layers with up to 1.5% of nitrogen as for GaAs analogues grown at the same temperature. The integrated PL intensity of the sample containing 2.5% drops only three times. Using post-growth annealing we eliminated defects related to low-temperature growth and thereby achieved the same radiative efficiency for GaAsN samples grown at 520 °C as for the reference layer of GaAs grown at 600 °C.

  20. Deep-level defects in MBE-grown Ga(As,N) layers

    NASA Astrophysics Data System (ADS)

    Krispin, P.; Spruytte, S. G.; Harris, J. S.; Ploog, K. H.

    2001-12-01

    Deep levels are examined in the whole band gap of strained Ga(As,N) with 3% GaN composition by deep-level transient Fourier spectroscopy on as-grown as well as annealed GaAs/Ga(As,N)/GaAs heterojunctions grown by molecular beam epitaxy. In the lower half of the band gap, there are only hole traps, which are not associated with nitrogen-related defects. For n-type structures, we find in as-grown samples a huge concentration of an electron trap at EC-0.25 eV, which is most likely connected with the nitrogen split interstitial defect (N-N) As. The concentration of this giant trap can be strongly reduced by rapid thermal annealing.

  1. Characteristics of multivalent impurity doped C 60 films grown by MBE

    NASA Astrophysics Data System (ADS)

    Nishinaga, Jiro; Aihara, Tomoyuki; Kawaharazuka, Atsushi; Horikoshi, Yoshiji

    2007-04-01

    Metal-doped C 60 films (aluminum, gallium and germanium) are grown on GaAs and quartz glass substrates by solid source molecular beam epitaxy. Mechanical and optical properties of the films are investigated by Vickers hardness test and photoluminescence (PL) measurement. Vickers hardness values of all the impurity-doped C 60 films are considerably enhanced. PL peaks of the electron transition between the highest occupied molecular orbital and the lowest unoccupied molecular orbital states of C 60 molecules are confirmed in Al-doped and Ga-doped C 60 films, but not in Ge-doped C 60 films. Optimized bonding structures of these impurity atoms to C 60 molecules are determined by using ab initio calculations. Stable covalent bonds between impurities and C 60 molecules are verified to be formed. The impurity atoms may act as bridges between C 60 molecules. The distortion of C 60 cages due to the bonding with metals is confirmed. In the Al- and Ga-doped C 60 films, this distortion probably makes the dipole forbidden transition relieved. The binding energies are found to be related to the experimentally determined Vickers hardness.

  2. MBE growth of self-assisted InAs nanowires on graphene

    NASA Astrophysics Data System (ADS)

    Kang, Jung-Hyun; Ronen, Yuval; Cohen, Yonatan; Convertino, Domenica; Rossi, Antonio; Coletti, Camilla; Heun, Stefan; Sorba, Lucia; Kacman, Perla; Shtrikman, Hadas

    2016-11-01

    Self-assisted growth of InAs nanowires on graphene by molecular beam epitaxy is reported. Nanowires with diameter of ∼50 nm and aspect ratio of up to 100 were achieved. The morphological and structural properties of the nanowires were carefully studied by changing the substrate from bilayer graphene through buffer layer to quasi-free-standing monolayer graphene. The positional relation of the InAs NWs with the graphene substrate was determined. A 30° orientation configuration of some of the InAs NWs is shown to be related to the surface corrugation of the graphene substrate. InAs NW-based devices for transport measurements were fabricated, and the conductance measurements showed a semi-ballistic behavior. In Josephson junction measurements in the non-linear regime, multiple Andreev reflections were observed, and an inelastic scattering length of about 900 nm was derived.

  3. Studies on the nucleation of MBE grown III-nitride nanowires on Si

    NASA Astrophysics Data System (ADS)

    Yanxiong, E.; Hao, Zhibiao; Yu, Jiadong; Wu, Chao; Wang, Lai; Xiong, Bing; Wang, Jian; Han, Yanjun; Sun, Changzheng; Luo, Yi

    2017-01-01

    Not Available Project supported by the National Basic Research Program of China (Grant No. 2013CB632804), the National Natural Science Foundation of China (Grant Nos. 61176015, 61176059, 61210014, 61321004, and 61307024), and the High Technology Research and Development Program of China (Grant No. 2012AA050601).

  4. Monte Carlo simulation of the kinetic effects on GaAs/GaAs(001) MBE growth

    NASA Astrophysics Data System (ADS)

    Ageev, Oleg A.; Solodovnik, Maxim S.; Balakirev, Sergey V.; Mikhaylin, Ilya A.; Eremenko, Mikhail M.

    2017-01-01

    The molecular beam epitaxial growth of GaAs on the GaAs(001)-(2×4) surface is investigated using a kinetic Monte Carlo-based method. The developed algorithm permits to focus on the kinetic effects in a wide range of growth conditions and enables considerable computational speedup. The simulation results show that the growth rate has a dramatic influence upon both the island morphology and Ga surface diffusion length. The average island size reduces with increasing growth rate while the island density increases with increasing growth rate as well as As4/Ga beam equivalent pressure ratio. As the growth rate increases, the island density becomes weaker dependent upon the As4/Ga pressure ratio and approaches to a saturation value. We also discuss three characteristics of Ga surface diffusion, namely a diffusion length of a Ga adatom deposited first, an average diffusion length, and an island spacing as an average distance between islands. The calculations show that the As4/Ga pressure ratio dependences of these characteristics obey the same law, but with different coefficients. An increase of the As4/Ga pressure ratio leads to a decrease in both the diffusion length and island spacing. However, its influence becomes stronger with increasing growth rate for the first Ga adatom diffusion length and weaker for the average diffusion length and for the island spacing.

  5. Optical studies of MBE-grown InN nanocolumns: Evidence of surface electron accumulation

    NASA Astrophysics Data System (ADS)

    Segura-Ruiz, J.; Garro, N.; Cantarero, A.; Denker, C.; Malindretos, J.; Rizzi, A.

    2009-03-01

    Vertically self-aligned InN nanocolumns have been investigated by means of scanning electron microscopy, Raman scattering, and photoluminescence spectroscopy. Different nanocolumn morphologies corresponding to different molecular beam epitaxy growth conditions have been studied. Raman spectra revealed strain-free nanocolumns with high crystalline quality for the full set of samples studied. Longitudinal optical modes both uncoupled and coupled to an electron plasma coexist in the Raman spectra pointing to the existence of two distinctive regions in the nanocolumn: a surface layer of degenerated electrons and a nondegenerated inner core. The characteristics of the low-temperature photoluminescence and its dependence on temperature and excitation power can be explained by a model considering localized holes recombining with degenerated electrons close to the nonpolar surface. The differences observed in the optical response of different samples showing similar crystalline quality have been attributed to the variation in the electron accumulation layer with the growth conditions.

  6. Growth and structure of MBE grown TiO2 anatase films with rutile nano-crystallites

    SciTech Connect

    Shao, Rui; Wang, Chong M.; McCready, David E.; Droubay, Timothy C.; Chambers, Scott A.

    2007-03-15

    We have grown TiO2 anatase films with rutile nanocrystalline inclusions using molecular beam epitaxy under different growth conditions. This model system is important for investigating the role of rutile/anatase interfaces in heterogeneous photocatalysis. To control the film structure, we grew a pure anatase (001) layer at a slow rate and then increased the growth rate to drive the nucleation of rutile particles. Structure analysis indicates that the rutile phase has four preferred orientations in the anatase film.

  7. Defect studies in MBE grown GaSb{sub 1−x}Bi{sub x} layers

    SciTech Connect

    Segercrantz, N.; Kujala, J.; Tuomisto, F.; Slotte, J.; Song, Y.; Wang, S.

    2014-02-21

    Positron annihilation spectroscopy in Doppler broadening mode is used to study epitaxial layers of GaSb{sub 1−x}Bi{sub x} on undoped GaSb. The samples were grown by Molecular Beam Epitaxy at different temperatures and with different Bi/Sb beam equivalent pressure ratios resulting in Bi concentrations of 0–0.7 %. The results show a relationship between the growth parameters and Doppler broadening parameters. Incorporating Bi into GaSb decreases the vacancy concentration in the epitaxial layers compared to the sample with no Bi in the epitaxial layer.

  8. MBE Growth of InN/GaN(0001) and Shape Transitions of InN islands

    NASA Astrophysics Data System (ADS)

    Cao, Yongge; Xie, Maohai; Liu, Ying; Ng, Y. F.

    2003-03-01

    Plasma-assisted molecular-beam epitaxial growth of InN on GaN(0001) is investigated. Both layer-by-layer and Stranski-Krastanov (SK) growth modes are observed under different growth windows. Strain relaxation is studied by real-time recording of the in-plane lattice spacing evolutions on RHEED pattern, which suggest a gradual relaxation of the strain in InN film commenced during the first bilayer (BL) deposition and almost completed after 2-4 BLs. For SK growth, 3D islanding initiates after the strain has mostly been relieved, presumably by dislocations. Based on statistical analysis, the shape transitions of 3D islands are firstly observed in the III-nitrides system. The InN islands transform gradually from pyramids to platelets with increasing of In flux. Under In-rich growth condition, the reverse trend of island shape evolution dependence on volume size, compared with Equilibrium Crystal Shape (ECS) theory, is induced by the Indium self-surfactant effects, in which Indium adlayer on the top surface of InN islands will depress the thermodynamic driving force for the vertical growth of 3D islands. Lateral growth of 3D islands is not only the result of kinetic process but also favored by thermodynamics while Indium self-surfactant exist.

  9. 40 CFR 33.203 - How does an entity qualify as an MBE or WBE under EPA's 10% statute?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of 1990, 42 U.S.C. 7601 note, Black Americans, Hispanic Americans, Native Americans, Asian Americans, Women and Disabled Americans are presumed to be socially and economically disadvantaged individuals. In...

  10. A hybrid MBE-based growth method for large-area synthesis of stacked hexagonal boron nitride/graphene heterostructures

    PubMed Central

    Wofford, Joseph M.; Nakhaie, Siamak; Krause, Thilo; Liu, Xianjie; Ramsteiner, Manfred; Hanke, Michael; Riechert, Henning; J. Lopes, J. Marcelo

    2017-01-01

    Van der Waals heterostructures combining hexagonal boron nitride (h-BN) and graphene offer many potential advantages, but remain difficult to produce as continuous films over large areas. In particular, the growth of h-BN on graphene has proven to be challenging due to the inertness of the graphene surface. Here we exploit a scalable molecular beam epitaxy based method to allow both the h-BN and graphene to form in a stacked heterostructure in the favorable growth environment provided by a Ni(111) substrate. This involves first saturating a Ni film on MgO(111) with C, growing h-BN on the exposed metal surface, and precipitating the C back to the h-BN/Ni interface to form graphene. The resulting laterally continuous heterostructure is composed of a top layer of few-layer thick h-BN on an intermediate few-layer thick graphene, lying on top of Ni/MgO(111). Examinations by synchrotron-based grazing incidence diffraction, X-ray photoemission spectroscopy, and UV-Raman spectroscopy reveal that while the h-BN is relaxed, the lattice constant of graphene is significantly reduced, likely due to nitrogen doping. These results illustrate a different pathway for the production of h-BN/graphene heterostructures, and open a new perspective for the large-area preparation of heterosystems combining graphene and other 2D or 3D materials. PMID:28240323

  11. Spectroscopic determination of the bandgap crossover composition in MBE-grown AlxGa1-xAs

    DOE PAGES

    Fluegel, Brian; Alberi, Kirstin; Reno, John; ...

    2015-03-12

    The aluminum concentration dependence of the energies of the direct and indirect bandgaps arising from the Γ and X conduction bands are measured at 1.7 K in the semiconductor alloy AlxGa1-xAs. The composition at which the bands cross is determined from photoluminescence of molecular-beam epitaxy samples grown very close to crossover. The use of resonant laser excitation and the improved sample linewidth allows precise determination of the bound exciton transition energies. Moreover, photoluminescence excitation spectroscopy is used to measure the binding energies of the donor-bound excitons and the Γ free exciton binding energy.

  12. 40 CFR 33.203 - How does an entity qualify as an MBE or WBE under EPA's 10% statute?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of 1990, 42 U.S.C. 7601 note, Black Americans, Hispanic Americans, Native Americans, Asian Americans, Women and Disabled Americans are presumed to be socially and economically disadvantaged individuals. In...

  13. 40 CFR 33.203 - How does an entity qualify as an MBE or WBE under EPA's 10% statute?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of 1990, 42 U.S.C. 7601 note, Black Americans, Hispanic Americans, Native Americans, Asian Americans, Women and Disabled Americans are presumed to be socially and economically disadvantaged individuals. In...

  14. The striking influence of rapid thermal annealing on InGaAsP grown by MBE: material and photovoltaic device

    NASA Astrophysics Data System (ADS)

    Ji, Lian; Tan, Ming; Ding, Chao; Honda, Kazuki; Harasawa, Ryo; Yasue, Yuya; Wu, Yuanyuan; Dai, Pan; Tackeuchi, Atsushi; Bian, Lifeng; Lu, Shulong; Yang, Hui

    2017-01-01

    Rapid thermal annealing (RTA) has been performed on InGaAsP solar cells with the bandgap energy of 1 eV grown by molecular beam epitaxy. With the employment of RTA under an optimized condition, the open voltage was increased from 0.45 to 0.5 V and the photoelectric conversion efficiency was increased from 11.87-13.2%, respectively, which was attributed to the crystal quality improvement of p-type InGaAsP and therefore a reduced recombination current inside depletion region. The integral photoluminescence (PL) intensity of p-type InGaAsP increased to 166 times after annealing at 800 °C and its PL decay time increased by one order of magnitude. While the changes of nominally undoped and n-doped InGaAsP were negligible. The different behaviors of the effect of RTA on InGaAsP of different doping types were attributed to the highly mobile "activator" - beryllium (Be) atom in p-type InGaAsP.

  15. Sn-enriched Ge/GeSn nanostructures grown by MBE on (001) GaAs and Si wafers

    SciTech Connect

    Sadofyev, Yu. G. Martovitsky, V. P.; Klekovkin, A. V.; Saraykin, V. V.; Vasil’evskii, I. S.

    2015-12-15

    Elastically stressed metastable GeSn layers with a tin molar fraction as large as 0.185 are grown on (001) Si and GaAs wafers covered with a germanium buffer layer. A set of wafers with a deviation angle in the range 0°–10° is used. It is established that the GeSn crystal undergoes monoclinic deformation with the angle β to 88° in addition to tetragonal deformation. Misorientation of the wafers surface results in increasing efficiency of the incorporation of tin adatoms into the GeSn crystal lattice. Phase separation in the solid solution upon postgrowth annealing of the structures begins long before the termination of plastic relaxation of elastic heteroepitaxial stresses. Tin released as a result of GeSn decomposition predominantly tends to be found on the surface of the sample. Manifestations of the brittle–plastic mechanism of the relaxation of stresses resulting in the occurrence of microcracks in the subsurface region of the structures under investigation are found.

  16. Growth and Characterization of InSb Thin Films on GaAs (001) without Any Buffer Layers by MBE

    NASA Astrophysics Data System (ADS)

    Zhao, Xiao-Meng; Zhang, Yang; Cui, Li-Jie; Guan, Min; Wang, Bao-Qiang; Zhu, Zhan-Ping; Zeng, Yi-Ping

    2017-07-01

    Not Available Supported by the Youth Innovation Promotion Association of Chinese Academy of Sciences under Grant No 2015094, the National Natural Science Foundation of China under Grant Nos 61204012, 61274049 and 61376058, the Beijing Natural Science Foundation under Grant Nos 4142053 and 4132070, and the Beijing Nova Program under Grant Nos 2010B056 and xxhz201503.

  17. Growth and characterizations of various GaN nanostructures on C-plane sapphire using laser MBE

    NASA Astrophysics Data System (ADS)

    Ch., Ramesh; Tyagi, P.; Maurya, K. K.; Kumar, M. Senthil; Kushvaha, S. S.

    2017-05-01

    We have grown various GaN nanostructures such as three-dimensional islands, nanowalls and nanocolumns on c-plane sapphire substrates using laser assisted molecular beam epitaxy (LMBE) system. The shape of the GaN nanostructures was controlled by using different nucleation surfaces such as bare and nitridated sapphire with GaN or AlN buffer layers. The structural and surface morphological properties of grown GaN nanostructures were characterized by ex-situ high resolution x-ray diffraction, Raman spectroscopy and field emission scanning electron microscopy. The symmetric x-ray rocking curve along GaN (0002) plane shows that the GaN grown on pre-nitridated sapphire with GaN or AlN buffer layer possesses good crystalline quality compared to sapphire without nitridation. The Raman spectroscopy measurements revealed the wurtzite phase for all the GaN nanostructures grown on c-sapphire.

  18. Doping of MBE grown cubic GaN on 3C-SiC (001) by CBr{sub 4}

    SciTech Connect

    Zado, A.; Tschumak, E.; Lischka, K.; As, D. J.; Gerlach, J. W.

    2010-11-01

    We report on carbon doping of cubic GaN by CBr{sub 4} using plasma-assisted molecular beam epitaxy on 3C-SiC (001) substrates. The samples consist of a 70 nm thick GaN buffer followed by a 550 nm thick GaN:C layer. Carbon doping is realized with a home-made carbon tetrabromide sublimation source. The CBr{sub 4} beam equivalent pressure was established by a needle valve and was varied between 2x10{sup -9} mbar and 6x10{sup -6} mbar. The growth was controlled by in-situ reflection high energy electron diffraction. The incorporated carbon concentration is obtained from secondary ion mass spectroscopy. Capacitance voltage characteristics were measured using metal-insulator-semiconductor structures. Capacitance voltage measurements on nominally undoped cubic GaN showed n-type conductivity with N{sub D}-N{sub A} = 1x10{sup 17} cm{sup -3}. With increasing CBr{sub 4} flux the conductivity type changes to p-type and for the highest CBr{sub 4} flux N{sub A}-N{sub D} = 4{center_dot}5x10{sup 18} cm{sup -3} was obtained.

  19. AFM Quantitative Morphological Analysis Of The Step Bunching Instability Formed On GaAs(110) During H-assisted MBE

    NASA Astrophysics Data System (ADS)

    Crespillo, M. L.; Tejedor, P.

    2007-04-01

    Power Spectral Density (PSD) analysis of Atomic Force Microscopy (AFM) images has been applied to study the effect of H-assisted surface oxide cleaning on the step bunching and Bales-Zangwill instabilities that develop during homoepitaxial growth from molecular beams of Ga and As4 on vicinal GaAs(110) substrates at high temperatures and high As:Ga flux ratios, leading to the formation of a characteristic ripple pattern along the [001] tilt direction. As growth proceeds in the presence of chemisorbed H, step bunching gradually vanishes and the ripple pattern breaks up into an array of self-organized nanowires running along the [11¯0] step edge direction.

  20. Deep-UV emission at 219 nm from ultrathin MBE GaN/AlN quantum heterostructures

    NASA Astrophysics Data System (ADS)

    Islam, S. M.; Protasenko, Vladimir; Lee, Kevin; Rouvimov, Sergei; Verma, Jai; Xing, Huili Grace; Jena, Debdeep

    2017-08-01

    Deep ultraviolet (UV) optical emission below 250 nm (˜5 eV) in semiconductors is traditionally obtained from high aluminum containing AlGaN alloy quantum wells. It is shown here that high-quality epitaxial ultrathin binary GaN quantum disks embedded in an AlN matrix can produce efficient optical emission in the 219-235 nm (˜5.7-5.3 eV) spectral range, far above the bulk bandgap (3.4 eV) of GaN. The quantum confinement energy in these heterostructures is larger than the bandgaps of traditional semiconductors, made possible by the large band offsets. These molecular beam epitaxy-grown extreme quantum-confinement GaN/AlN heterostructures exhibit an internal quantum efficiency of 40% at wavelengths as short as 219 nm. These observations together with the ability to engineer the interband optical matrix elements to control the direction of photon emission in such binary quantum disk active regions offer unique advantages over alloy AlGaN quantum well counterparts for the realization of deep-UV light-emitting diodes and lasers.

  1. Overcoming Etch Challenges on a 6″ Hg1- x Cd x Te MBE on Si Wafer

    NASA Astrophysics Data System (ADS)

    Apte, Palash; Norton, Elyse; Robinson, Solomon

    2017-10-01

    The effect of increasing photoresist (PR) thickness on the inductively coupled plasma (ICP) dry etched characteristics of a 6″ (c.15 cm) molecular beam epitaxy Hg1- x Cd x Te/Si wafer is investigated. It is determined that the Hg1- x Cd x Te etch rate (ER) does not vary significantly with a change in the PR thickness. Also, the vertical ER of the PR is seen to be independent of the PR thickness, but the lateral ER is seen to reduce significantly with increased PR thickness. Indeed, very little reduction in the pixel mesa area post-dry etch is seen for the thicker PR. Consequently, the trench sidewall angle is also seen to vary as a function of the PR thickness. Since ICP is the more attractive choice for dry etching Hg1- x Cd x Te, this simple, cost-effective way to extend the capabilities of dry etching (larger mesa top area post-dry etch, ability to create tailor-made trench sidewall angles for optimal conformal passivation deposition, and potential for reduced dry etch damage) described here would allow for the fabrication of next generation infrared detectors with increased yield and reduced cost. Although similar results have been presented using the electron cyclotron resonance system to dry etch Hg1- x Cd x Te, to the best of our knowledge, this is the first time that such results have been presented using an ICP system.

  2. Insertion of CdSe quantum dots in ZnSe nanowires: MBE growth and microstructure analysis

    NASA Astrophysics Data System (ADS)

    den Hertog, M.; Elouneg-Jamroz, M.; Bellet-Amalric, E.; Bounouar, S.; Bougerol, C.; André, R.; Genuist, Y.; Poizat, J. P.; Kheng, K.; Tatarenko, S.

    2011-05-01

    ZnSe nanowire growth has been successfully achieved on ZnSe (1 0 0) and (1 1 1)B buffer layers deposited on GaAs substrates. Cubic [1 0 0] oriented ZnSe nanowires or [0 0 0 1] oriented hexagonal NWs are obtained on (1 0 0) substrates while [1 1 1] oriented cubic mixed with [0 0 0 1] oriented hexagonal regions are obtained on (1 1 1)B substrates. Most of the NWs are perpendicular to the surface in the last case. CdSe quantum dots were successfully incorporated in the ZnSe NWs as demonstrated by transmission electron microscopy, energy filtered TEM and high angle annular dark field scanning TEM measurements.

  3. Bandedge optical properties of MBE grown GaAsBi films measured by photoluminescence and photothermal deflection spectroscopy

    NASA Astrophysics Data System (ADS)

    Beaudoin, M.; Lewis, R. B.; Andrews, J. J.; Bahrami-Yekta, V.; Masnadi-Shirazi, M.; O'Leary, S. K.; Tiedje, T.

    2015-09-01

    The bandedge optical properties of GaAsBi films, as thick as 470 nm, with Bi content varying from 0.7% Bi to 2.8% Bi grown by molecular beam epitaxy on GaAs substrates are measured by photoluminescence (PL) and photothermal deflection spectroscopy (PDS). The PDS spectra were fit with a modified Fernelius model which takes into account multiple reflections within the GaAsBi layer and GaAs substrate. Three undoped samples and two samples that are degenerately doped with silicon are studied. The undoped samples show a clear Urbach absorption edge with a composition dependent bandgap that decreases by 56 meV/% Bi and a composition independent Urbach slope parameter of 25 meV due to absorption by Bi cluster states near the valence band. The doped samples show a long absorption tail possibly due to absorption by gap states and free carriers in addition to a Burstein-Moss bandgap shift. PL of the undoped samples shows a lower energy emission peak due to defects not observed in the usually available thin samples (50 nm or less) grown under similar conditions.

  4. MBE Growth of CdTe and Hg sub 1-x Cd sub x Te Films and Multilayer Structures.

    DTIC Science & Technology

    2014-09-26

    large dislocation density film, r and (c) shows a near-perfect film with very few r, extended defects. 10 Figure 4. Bright-field, cross-section...001) InSb substrate. The single, symmetric CdTe peak is consistent with a film which has a dislocation density of 10 -I05 cm-2, is free of low-angle...film which has a dislocation density of ᝺ cm - , is free of low-angle grain boundaries,~and is exactly lattice-matched to the InSb substrate in the

  5. ECR-assisted MBE growth of In 1- xGa xN heteroepitaxial films on Si

    NASA Astrophysics Data System (ADS)

    Yodo, Tokuo; Kitayama, Yasunari; Miyaki, Kazunari; Yona, Hiroaki; Harada, Yoshiyuki

    2004-10-01

    We have investigated characteristics of hexagonal- ( α-) In 1- xGa xN alloy films grown on Si(111) substrates with residual O impurities below 1% (estimated to be ˜ 0.5˜ 1%). The abnormally high incorporation efficiency of Ga atoms in In 1- xGa xN under the III-family-rich condition was suppressed under an N-rich condition: the surface morphology became mirror-like morphology without In or/and Ga droplets on the surface and the Ga composition (x) was well-controlled as a linear function of Ga beam flux pressure under the condition. Although the band-gap energies of α-In 1- xGa xN films agreed very well with the results of Y. Nanishi, Y. Saito and T. Yamaguchi [Japan. J. Appl. Phys. 42 (2003) 2549] in the high x-region of x≧0.7, they largely deflected from their data toward the higher energy side in the x-region of x<0.7. This large deflection is not explainable by phase separation, because phase separation becomes heavier particularly in the high x-region. We suspect the influence of residual O impurities at lower than 1% in the alloy films to be the cause of the large deflection.

  6. Use of Atomic Hydrogen to Prepare GaSb Substrates for Subsequent ZnTe Growth by MBE

    DTIC Science & Technology

    2014-03-11

    electron microscopy as well as x-ray photoelectron spectroscopy , x-ray diffraction, atomic force 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE...cross-section transmission electron microscopy as well as x-ray photoelectron spectroscopy , x-ray diffraction, atomic force microscopy and imaging...electron microscopy as well as x- ray photoelectron spectroscopy , x-ray diffraction, atomic force microscopy and imaging photoluminescence measurements

  7. Optical Properties and Structure of Si/InAs/Si Layers Grown by MBE on Si Substrate

    DTIC Science & Technology

    2000-06-23

    Masalov, D. V . Kurochkin, 0. M. Gorbenko, N. I. Komyak, V . M. Ustinov, A. Yu . Egorov, A. R. Kovsh, M. V . Maximov, A. E Tsatsul’nikov, B. V . Volovik...Smolski, D. V . Denisov , Zh. I. Alferov, N. N. Ledentsov, R. Heitz and D. Bimberg, 7-th Int. Symp. ’Nanostructures: Physics and Technology’, St. Petersburg...p 216, 1999. [6] N. D. Zakharov, P. Werner, R. Heitz, D. Bimberg, N. N. Ledentsov, V .M. Ustinov, D. V . Denisov , Zh. I. Alferov and G. E. Cirlin, MRS

  8. Adsorption-controlled growth of BiFeO3 by MBE and integration with wide band gap semiconductors.

    SciTech Connect

    Ramesh, Ramamoorthy; Uecker, Reinhard , Germany); Doolittle, W. Alan; Reiche, P. , Germany); Liu, Zi-Kui; Bernhagen, Margitta , Germany); Tian, Wei; Ihlefeld, Jon F.; Schlom, Darrell G.

    2008-08-01

    BiFeO3 thin films have been deposited on (101) DyScO3, (0001) AlGaN/GaN, and (0001) SiC single crystal substrates by reactive molecular-beam epitaxy in an adsorption-controlled growth regime. This is achieved by supplying a bismuth over-pressure and utilizing the differential vapor pressures between bismuth oxides and BiFeO3 to control stoichiometry. Four-circle x-ray diffraction reveals phase-pure, epitaxial films with rocking curve full width at half maximum values as narrow as 7.2 arc seconds. Epitaxial growth of (0001)-oriented BiFeO3 thin films on (0001) GaN, including AlGaN HEMT structures, and (0001) SiC has been realized utilizing intervening epitaxial (111) SrTiO3/(100) TiO2 buffer layers. The epitaxial BiFeO3 thin films have two in-plane orientations: [1120] BiFeO3 [1120] GaN (SiC) plus a twin variant related by a 180{sup o} in-plane rotation. This epitaxial integration of the ferroelectric with the highest known polarization, BiFeO3, with wide band gap semiconductors is an important step toward novel field-effect devices.

  9. Room temperature mid-infrared InAsSbN multi-quantum well photodiodes grown by MBE

    NASA Astrophysics Data System (ADS)

    Kesaria, M.; de la Mare, M.; Krier, A.

    2016-11-01

    Room temperature photoresponse in the mid-infrared spectral region is demonstrated from InAsSbN/InAs multi-quantum well photodiodes grown by nitrogen plasma assisted molecular beam epitaxy. The structural quality of the InAsSbN MQWs was ascertained in situ by reflection high energy electron diffraction and ex situ by high resolution x-ray diffraction and photoluminescence measurements. The extended long wavelength photoresponse is identified to originate from the electron-heavy hole (e1-hh1) and electron-light hole (e1-lh1) transitions in the InAsSbN MQW, with a cut off wavelength ~4.20 µm and peak detectivity D *  =  1.25  ×  109 cm Hz1/2 W-1.

  10. AFM Quantitative Morphological Analysis Of The Step Bunching Instability Formed On GaAs(110) During H-assisted MBE

    SciTech Connect

    Crespillo, M. L.; Tejedor, P.

    2007-04-10

    Power Spectral Density (PSD) analysis of Atomic Force Microscopy (AFM) images has been applied to study the effect of H-assisted surface oxide cleaning on the step bunching and Bales-Zangwill instabilities that develop during homoepitaxial growth from molecular beams of Ga and As4 on vicinal GaAs(110) substrates at high temperatures and high As:Ga flux ratios, leading to the formation of a characteristic ripple pattern along the [001] tilt direction. As growth proceeds in the presence of chemisorbed H, step bunching gradually vanishes and the ripple pattern breaks up into an array of self-organized nanowires running along the [11-bar0] step edge direction.

  11. 40 CFR 33.202 - How does an entity qualify as an MBE or WBE under EPA's 8% statute?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ability to compete in the free enterprise system is impaired due to diminished capital and credit... personal net worth of less than $750,000. (d) HBCU. An HBCU automatically qualifies as an entity owned or...

  12. 40 CFR 33.203 - How does an entity qualify as an MBE or WBE under EPA's 10% statute?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... compete in the free enterprise system is impaired due to diminished capital and credit opportunities, as... Program, an individual claiming disadvantaged status must have an initial and continued personal net worth...

  13. 40 CFR 33.202 - How does an entity qualify as an MBE or WBE under EPA's 8% statute?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... good character and citizens of the United States. An entity need not demonstrate potential for success... AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE PARTICIPATION BY DISADVANTAGED BUSINESS ENTERPRISES IN UNITED STATES ENVIRONMENTAL PROTECTION AGENCY PROGRAMS Certification § 33.202 How does an entity qualify as...

  14. 40 CFR 33.202 - How does an entity qualify as an MBE or WBE under EPA's 8% statute?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... good character and citizens of the United States. An entity need not demonstrate potential for success... AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE PARTICIPATION BY DISADVANTAGED BUSINESS ENTERPRISES IN UNITED STATES ENVIRONMENTAL PROTECTION AGENCY PROGRAMS Certification § 33.202 How does an entity qualify as...

  15. Influence of Defects in HgCdTe Grown by Molecular Beam Epitaxy (MBE) on Electrical Devices

    DTIC Science & Technology

    1992-11-30

    be of type I or type II configuration since they are energetically almost equivalent (Fig. 2). Therefore, twin boundaries will exist after island...will also reveal the presence of twin boundaries as illustrated in Fig. 4. It can be seen that the triangular pits are rotated by 180° from one domain...grown material. The increase in the acceptor level could be explained by the presence of numerous (111)A planes in the twin boundaries and antiphase

  16. Atomic force microscopy studies of homoepitaxial GaN layers grown on GaN template by laser MBE

    SciTech Connect

    Choudhary, B. S.; Singh, A.; Tyagi, P. K.; Tanwar, S.; Kumar, M. Senthil; Kushvaha, S. S.

    2016-04-13

    We have grown homoepitaxial GaN films on metal organic chemical vapor deposition (MOCVD) grown 3.5 µm thick GaN on sapphire (0001) substrate (GaN template) using an ultra-high vacuum (UHV) laser assisted molecular beam epitaxy (LMBE) system. The GaN films were grown by laser ablating a polycrystalline solid GaN target in the presence of active r.f. nitrogen plasma. The influence of laser repetition rates (10-30 Hz) on the surface morphology of homoepitaxial GaN layers have been studied using atomic force microscopy. It was found that GaN layer grown at 10 Hz shows a smooth surface with uniform grain size compared to the rough surface with irregular shape grains obtained at 30 Hz. The variation of surface roughness of the homoepitaxial GaN layer with and without wet chemical etching has been also studied and it was observed that the roughness of the film decreased after wet etching due to the curved structure/rough surface.

  17. Surface roughness estimation of MBE grown CdTe/GaAs(211)B by ex-situ spectroscopic ellipsometry

    SciTech Connect

    Karakaya, Merve; Bilgilisoy, Elif; Arı, Ozan; Selamet, Yusuf

    2016-07-15

    Spectroscopic ellipsometry (SE) ranging from 1.24 eV to 5.05 eV is used to obtain the film thickness and optical properties of high index (211) CdTe films. A three-layer optical model (oxide/CdTe/GaAs) was chosen for the ex-situ ellipsometric data analysis. Surface roughness cannot be determined by the optical model if oxide is included. We show that roughness can be accurately estimated, without any optical model, by utilizing the correlation between SE data (namely the imaginary part of the dielectric function, <ε{sub 2} > or phase angle, ψ) and atomic force microscopy (AFM) roughness. <ε{sub 2} > and ψ values at 3.31 eV, which corresponds to E{sub 1} critical transition energy of CdTe band structure, are chosen for the correlation since E{sub 1} gives higher resolution than the other critical transition energies. On the other hand, due to the anisotropic characteristic of (211) oriented CdTe surfaces, SE data (<ε{sub 2} > and ψ) shows varieties for different azimuthal angle measurements. For this reason, in order to estimate the surface roughness by considering these correlations, it is shown that SE measurements need to be taken at the same surface azimuthal angle. Estimating surface roughness in this manner is an accurate way to eliminate cumbersome surface roughness measurement by AFM.

  18. Growth of crystallized AlOx on AlN/GaN heterostructures by in-situ RF-MBE

    NASA Astrophysics Data System (ADS)

    Sugiura, Yohei; Honda, Tohru; Higashiwaki, Masataka

    2014-11-01

    We report successful growth of a crystallized AlOx layer on top of AlN/GaN heterostructures by using RF-plasma molecular-beam epitaxy for exploring a new-type oxide/nitride heterostructure system. The insertion of an AlOx buffer layer, which was formed by following three steps of (i) an Al metal deposition at 150 °C, (ii) an oxidation of the Al metal by oxygen plasma irradiation, and (iii) an annealing of the oxidized layer at 800 °C, facilitated the formation of a crystalline AlOx layer on top of the AlN/GaN structures. Surface morphologies observed by atomic force microscope showed that the AlOx buffer layer was directly formed on the nitride structure and fully covered the AlN layer. The AlOx top layer grown on the buffer layer had a flat and smooth surface. A cross-sectional transmission electron microscopy micrograph revealed that the AlOx thin film grown at 800 °C on the nitride structure was fully crystallized.

  19. Hilda Mary Woods MBE, DSc, LRAM, FSS (1892–1971): reflections on a Fellow of the Royal Statistical Society

    PubMed Central

    Farewell, Vern; Johnson, Tony; Gear, Rosemary

    2012-01-01

    We have previously described the content of a text by Woods and Russell, An Introduction to Medical Statistics, compared it with Principles of Medical Statistics by Hill and set both volumes against the background of vital statistics up until 1937. The two books mark a watershed in the history of medical statistics. Very little has been recorded about the life and career of the first author of the earlier textbook, who was a Fellow of the Royal Statistical Society for at least 25 years, an omission which we can now rectify with this paper. We describe her education, entry into medical statistics, relationship with Major Greenwood and her subsequent career and life in Ceylon, Kenya, Australia, England and South Africa. PMID:22973076

  20. Two-dimensional superconductivity realized in an MBE-grown Bi2 Te3 /FeTe heterostructure

    NASA Astrophysics Data System (ADS)

    He, Qing Lin; Liu, Hongchao; He, Mingquan; Lai, Ying Hoi; He, Hongtao; Wang, Gan; Law, Kam Tuen; Lortz, Rolf; Wang, Jiannong; Sou, Iam Keong

    2014-03-01

    We report a superconductivity realized at the interface of a Bi2Te3/FeTe heterostructure fabricated via van der Waals epitaxy using the molecular beam epitaxy technique, which appears even when the thickness of Bi2Te3 is as thin as one quintuple layer. The two-dimensional nature of the observed superconductivity with the highest transition temperature around 12 K was verified by the existence of a Berezinsky-Kosterlitz-Thouless transition and the diverging ratio of in-plane to out-plane upper critical field on approaching the superconducting transition temperature. The underlying mechanism of this interfacial superconductivity will be discussed. The heterostructure studied in this work provides an ideal platform with unconventional superconductivity for hosting Majorana fermions and studying their exotic physics. The work described here was substantially supported by grants from the Research Grants Council of the Hong Kong Special Administrative Region, China (project No. 604910, 605011, AOE/P-04/08-3, 605512 and 603010).

  1. A hybrid MBE-based growth method for large-area synthesis of stacked hexagonal boron nitride/graphene heterostructures.

    PubMed

    Wofford, Joseph M; Nakhaie, Siamak; Krause, Thilo; Liu, Xianjie; Ramsteiner, Manfred; Hanke, Michael; Riechert, Henning; J Lopes, J Marcelo

    2017-02-27

    Van der Waals heterostructures combining hexagonal boron nitride (h-BN) and graphene offer many potential advantages, but remain difficult to produce as continuous films over large areas. In particular, the growth of h-BN on graphene has proven to be challenging due to the inertness of the graphene surface. Here we exploit a scalable molecular beam epitaxy based method to allow both the h-BN and graphene to form in a stacked heterostructure in the favorable growth environment provided by a Ni(111) substrate. This involves first saturating a Ni film on MgO(111) with C, growing h-BN on the exposed metal surface, and precipitating the C back to the h-BN/Ni interface to form graphene. The resulting laterally continuous heterostructure is composed of a top layer of few-layer thick h-BN on an intermediate few-layer thick graphene, lying on top of Ni/MgO(111). Examinations by synchrotron-based grazing incidence diffraction, X-ray photoemission spectroscopy, and UV-Raman spectroscopy reveal that while the h-BN is relaxed, the lattice constant of graphene is significantly reduced, likely due to nitrogen doping. These results illustrate a different pathway for the production of h-BN/graphene heterostructures, and open a new perspective for the large-area preparation of heterosystems combining graphene and other 2D or 3D materials.

  2. A Complexity Approach toward Mind-Brain-Education (MBE); Challenges and Opportunities in Educational Intervention and Research

    ERIC Educational Resources Information Center

    Steenbeek, Henderien W.; van Geert, Paul L. C.

    2015-01-01

    In the context of an educational or clinical intervention, we often ask questions such as "How does this intervention influence the task behavior of autistic children?" or "How does working memory influence inhibition of immediate responses?" What do we mean by the word "influence" here? In this article, we introduce…

  3. Nitrogen-Activated Phase Separation in InGaAsN/GaAs Heterostructures Grown by MBE

    DTIC Science & Technology

    2001-06-01

    Gorbenko 6, W. Passenberg2 , H. Kuenzel 2 , N. Grote 2, V. M. Ustinov1 , H. Kirmse 3 , W. Neuman 3 , P. Werner 4, N. D. Zakharov 4, D. Bimberg 5 and Zh. I...Phys’. 84, 6409 (1998). [9] S. Sato and S. Satoh, J. Cryst. Growth 192, 381 (1998). [10] B. .Soshnikov, A. M. Gorbenko , A. P . Golubok and N. N

  4. Droplet-mediated formation of embedded GaAs nanowires in MBE GaAs1-x Bi x films

    NASA Astrophysics Data System (ADS)

    Wood, Adam W.; Collar, Kristen; Li, Jincheng; Brown, April S.; Babcock, Susan E.

    2016-03-01

    We have examined the morphology and composition of embedded nanowires that can be formed during molecular beam epitaxy of GaAs1-x Bi x using high angle annular dark field (‘Z-contrast’) imaging in an aberration-corrected scanning transmission electron microscope. Samples were grown in Ga-rich growth conditions on a stationary GaAs substrate. Ga-rich droplets are observed on the surface with lateral trails extending from the droplet in the [110] direction. Cross-sectional scanning transmission electron microscopy of the film reveals epitaxial nanowire structures of composition ˜GaAs embedded in the GaAs1-x Bi x epitaxial layers. These nanowires extend from a surface droplet to the substrate at a shallow angle of inclination (˜4°). They typically are 4 μm long and have a lens-shaped cross section with major and minor axes dimensions of 800 and 120 nm. The top surface of the nanowires exhibits a linear trace in longitudinal cross-section, across which the composition change from ˜GaAs to GaAs1-x Bi x appears abrupt. The bottom surfaces of the nanowires appear wavy and the composition change appears to be graded over ˜25 nm. The droplets have phase separated into Ga- and Bi-rich components. A qualitative model is proposed in which Bi is gettered into Ga droplets, leaving Bi depleted nanowires in the wakes of the droplets as they migrate in one direction across the surface during GaAs1-x Bi x film growth.

  5. 40 CFR 33.211 - What is the process for appealing or challenging an EPA MBE or WBE certification determination?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... that there was good cause, beyond the control of the appellant or challenger, for the late filing of... request of the appellant, challenger or the entity affected by the Director's appeal or challenge decision...

  6. 40 CFR 33.211 - What is the process for appealing or challenging an EPA MBE or WBE certification determination?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... that there was good cause, beyond the control of the appellant or challenger, for the late filing of... request of the appellant, challenger or the entity affected by the Director's appeal or challenge decision...

  7. 40 CFR 33.211 - What is the process for appealing or challenging an EPA MBE or WBE certification determination?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... that there was good cause, beyond the control of the appellant or challenger, for the late filing of... request of the appellant, challenger or the entity affected by the Director's appeal or challenge decision...

  8. 40 CFR 33.211 - What is the process for appealing or challenging an EPA MBE or WBE certification determination?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... that there was good cause, beyond the control of the appellant or challenger, for the late filing of... request of the appellant, challenger or the entity affected by the Director's appeal or challenge decision...

  9. 40 CFR 33.211 - What is the process for appealing or challenging an EPA MBE or WBE certification determination?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... that there was good cause, beyond the control of the appellant or challenger, for the late filing of... request of the appellant, challenger or the entity affected by the Director's appeal or challenge decision...

  10. Photo-carrier and Electronic Studies of Silicon-Doped GaAs Grown by MBE Using PCR

    NASA Astrophysics Data System (ADS)

    Villada, J. A.; Jiménez-Sandoval, S.; López-López, M.; Mendoza, J.; Espinosa-Arbeláez, D. G.; Rodríguez-García, M. E.

    2010-05-01

    Photo-carrier radiometry (PCR) has been used to study the distribution of impurities and the lattice damage in silicon-doped gallium arsenide in a noncontact way. The results from the PCR study are correlated with Hall effect measurements. Samples for this study were grown by molecular beam epitaxy. Of all possible parameters that can be manipulated, the silicon effusion cell temperature was the only one that was varied, in order to obtain samples with different silicon concentrations. The distribution of impurities was obtained by scanning the surface of each sample. The PCR amplitude and phase images were obtained as a function of the x- y position. According to the PCR images, it is evident that the impurities are not uniformly distributed across the sample. From these images, the average value of the amplitude and phase data across the surface was obtained for each sample in order to study the PCR signal behavior as a function of the silicon effusion cell temperature.

  11. A Complexity Approach toward Mind-Brain-Education (MBE); Challenges and Opportunities in Educational Intervention and Research

    ERIC Educational Resources Information Center

    Steenbeek, Henderien W.; van Geert, Paul L. C.

    2015-01-01

    In the context of an educational or clinical intervention, we often ask questions such as "How does this intervention influence the task behavior of autistic children?" or "How does working memory influence inhibition of immediate responses?" What do we mean by the word "influence" here? In this article, we introduce…

  12. 40 CFR 33.202 - How does an entity qualify as an MBE or WBE under EPA's 8% statute?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the implementing regulations of section 8(a)(5) of the Small Business Act (15 U.S.C. 637(a)(5); 13 CFR... defined by section 8(a)(6) of the Small Business Act (15 U.S.C. 637(a)(6)) and its implementing... AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE PARTICIPATION BY DISADVANTAGED BUSINESS ENTERPRISES IN...

  13. 40 CFR 33.203 - How does an entity qualify as an MBE or WBE under EPA's 10% statute?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... regulations of section 8(a)(5) of the Small Business Act (15 U.S.C. 637(a)(5); 13 CFR 124.103; see also 13 CFR... section 8(a)(6) of the Small Business Act (15 U.S.C. 637(a)(6)) and its implementing regulations (13 CFR... AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE PARTICIPATION BY DISADVANTAGED BUSINESS ENTERPRISES IN...

  14. 75 FR 52001 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-24

    ... Request; Minority Business Enterprise/ Woman Business Enterprise (MBE/WBE) Utilization Under Federal... Protection Agency, MBE/WBE ] Utilization Under Federal Grants, Cooperative Agreements, and Interagency... Enterprise/Woman Business Enterprise (MBE/ WBE) Utilization Under Federal Grants, Cooperative Agreements, and...

  15. Dependence of interfacial conduction on oxygen annealing in MBE-grown LaAlO3 /SrTiO3 heterostructures

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Ngai, Joseph; Ahn, Charles; McMahon, Christopher; Hawthorn, David G.; Wei, J. Y. T.

    2014-03-01

    The observation of interfacial metallicity in thin-film heterostructures of LaAlO3 (LAO) and SrTiO3 (STO) has sparked great interest in recent years. This metallicity has been attributed to electronic reconstruction induced by interfacial polar discontinuity. However, the intrinsic oxygen variability of STO is also believed to influence the conduction of LAO/STO films, especially in films grown by pulsed laser deposition which can induce defects in STO. To better understand the role of such defects, we study LAO films of varying thickness grown on STO by molecular beam epitaxy and post-annealed in oxygen. X-ray photoelectron spectroscopy is used to correlate the atomic valences with the conduction properties, in an effort to relate the interfacial electronic structure with the presence of oxygen vacancies. Work supported by NSERC, CFI/OIT, and the Canadian Institute for Advanced Research.

  16. Structure and morphology characters of GaN grown by ECR-MBE using hydrogen-nitrogen mixed gas plasma[Electron Cyclotron Resonance-Molecular Beam Epitaxy

    SciTech Connect

    Araki, Tsutomu; Chiba, Yasuo; Nanishi, Yasushi

    2000-07-01

    GaN growth by electron-cyclotron-resonance plasma-excited molecular beam epitaxy using hydrogen-nitrogen mixed gas plasma were carried out on GaN templates with a different polar-surface. Structure and surface morphology of the GaN layers were characterized using transmission electron microscopy. The GaN layer grown with hydrogen on N-polar template showed a relatively flat morphology including hillocks. Columnar domain existed in the center of the hillock, which might be attributed to the existence of tiny inversion domain with Ga-polarity. On the other hand, columnar structure was formed in the GaN layer grown with hydrogen on Ga-polar template.

  17. High-Output-Power Densities from MBE-grown n- and p-Type PbTeSe-based Thermoelectrics via Improved Contact Metallization

    DTIC Science & Technology

    2011-10-19

    7 - Au, Sn, Zn, Pb, In, Ag , Ti, Cr, Sb, W, Ni, Fe, Cu, Al, and Ge [5-15]. In most cases the contact resistivity values were worse (higher) than...probe, thermoelement, and Cu heat sink were connected electrically in series to a load resistance (length of Ag coated Cu wire), and the power output·was...cleaning on: (a) adsorbed oxygen,. (b) adsorbed carbon, (c) Sn and SnO , and (d) Te and Te{h. Atomic hydrogen cleaned at a substrate temperature of

  18. Research Initiative (RI) Proposal to Enhance Oxide MBE Growth through Facilitization of an Ozone Source and Oxygen Resistant Zn Effusion Cell

    DTIC Science & Technology

    2014-02-11

    2211 Oxides, Oxide Semiconductors, ZnO , MgZnO REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR/MONITOR’S ACRONYM(S...University of Central Florida 12201 Research Parkway, Suite 501 Orlando, FL 32826-3246 Key Words: Oxides, Oxide semiconductors, ZnO , MgZnO...an ozone system and are positioned to advance our national understanding of the value of ozone growth of ZnO and related compounds in comparison to

  19. MBE Growth, Characterization and Electronic Device Processing of HgCdTe, HgZnTe, Related Heterojunctions and HgCdTe-CdTe Superlattices

    DTIC Science & Technology

    1987-12-31

    and 3. T. NI. Wotherspoon. J. Phys. D 12, LI 117 (1979). ( 100) orientation, whereas p-type Hg, - Cd.Te layers are T~ P. Faune . J1. Reno, S...parameters are well con- ’J. P. Faune and A. Million. ]. Cryst. Growth 54. 582 (198 1) trolled, the quality of Hg1 - Cd.Te grown in both the ’J. P... Faune and A. Million. AppI. Phys. Lett- 41, 264 (1982). ( Ill ) B and the ( 100) orientations is comparable, thus giv- J P. Faurie. S. Sivananthan. NI

  20. Sb[subscript 2]Te[subscript 3] and Bi[subscript 2]Te[subscript 3] Thin Films Grown by Room-Temperature MBE

    SciTech Connect

    Aabdin, Z.; Peranio, N.; Winkler, M.; Bessas, D.; König, J.; Hermann, R.P.; Böttner, H.; Eibl, O.

    2012-10-23

    Sb{sub 2}Te3 and Bi{sub 2}Te3 thin films were grown on SiO{sub 2} and BaF{sub 2} substrates at room temperature using molecular beam epitaxy. Metallic layers with thicknesses of 0.2 nm were alternately deposited at room temperature, and the films were subsequently annealed at 250 C for 2 h. x-Ray diffraction and energy-filtered transmission electron microscopy (TEM) combined with high-accuracy energy-dispersive x-ray spectrometry revealed stoichiometric films, grain sizes of less than 500 nm, and a texture. High-quality in-plane thermoelectric properties were obtained for Sb{sub 2}Te3 films at room temperature, i.e., low charge carrier density (2.6 x 10{sup 19} cm{sup -3}, large thermopower (130 {micro}V K{sup -1}), large charge carrier mobility (402 cm{sup 2} V{sup -1} s{sup -1}), and resulting large power factor (29 {micro}W cm{sup -1} K{sup -2}). Bi{sub 2}Te3 films also showed low charge carrier density (2.7 x 10{sup 19} cm{sup -3}), moderate thermopower (-153 {micro}V K{sup -1}), but very low charge carrier mobility (80 cm{sup 2} V{sup -1} s{sup -1}), yielding low power factor (8 {micro}W cm{sup -1} K{sup -2}). The low mobilities were attributed to Bi-rich grain boundary phases identified by analytical energy-filtered TEM.

  1. Multistage nucleation of two-dimensional Si islands on Si(111)-7x7 during MBE growth: STM experiments and extended rate-equation model

    SciTech Connect

    Filimonov, Sergey; Cherepanov, Vasily; Voigtlaender, Bert; Hervieu, Yuri

    2007-07-15

    The submonolayer density of two-dimensional (2D) islands in Si/Si(111)-7x7 molecular beam epitaxy is measured using scanning tunneling microscopy. At a relatively low deposition temperature of 673 K, the density of 2D islands is a power function of the deposition flux N{sub 2D}{proportional_to}F{sup {chi}} with the exponent {chi}=0.24 being smaller than that predicted by the standard nucleation theory. The nonstandard scaling of the 2D island density is explained by the multistage character of the nucleation process on the Si(111)-7x7 surface which involves consecutive stages of formation of stable Si clusters, formation of pairs of clusters, and transformation of the cluster pairs to 2D islands. Using an extended rate-equation model, we analyze the temperature and growth rate dependencies of the density of single clusters, cluster pairs, and 2D islands and show that an activation barrier of {approx}1.26 eV delays the transformation of cluster pairs to 2D islands. The delayed transformation of cluster pairs to 2D islands is the reason for the nonstandard scaling of the 2D island density observed at low deposition temperatures.

  2. Application of the ALE and MBE Methods to the Growth of Layered Hg sub x Cd sub 1-x Te Films.

    DTIC Science & Technology

    1986-09-26

    interfaces, quantum well struc- ’W. Lorenz and C. Engle., Surf. Sci. 114, 6037 (1982). lures and superlattices to be grown without the need for the 0M. Pessa...the growth cham- ber. Although the ion source worked very well for an Ar beam in test mea- surements it was hard to get any stable Hg flux through...deposition ( MOCVD ) ]. It is a self-regulatory process which, in its simplest form, produces one complete molecular layer of a compound per

  3. CMOS-compatible dense arrays of Ge quantum dots on the Si(001) surface: hut cluster nucleation, atomic structure and array life cycle during UHV MBE growth

    PubMed Central

    2011-01-01

    We report a direct observation of Ge hut nucleation on Si(001) during UHV molecular beam epitaxy at 360°C. Nuclei of pyramids and wedges were observed on the wetting layer (WL) (M × N) patches starting from the coverage of 5.1 Å and found to have different structures. Atomic models of nuclei of both hut species have been built as well as models of the growing clusters. The growth of huts of each species has been demonstrated to follow generic scenarios. The formation of the second atomic layer of a wedge results in rearrangement of its first layer. Its ridge structure does not repeat the nucleus. A pyramid grows without phase transitions. A structure of its vertex copies the nucleus. Transitions between hut species turned out to be impossible. The wedges contain point defects in the upper corners of the triangular faces and have preferential growth directions along the ridges. The derived structure of the {105} facet follows the paired dimer model. Further growth of hut arrays results in domination of wedges, and the density of pyramids exponentially drops. The second generation of huts arises at coverages >10 Å; new huts occupy the whole WL at coverages ~14 Å. Nanocrystalline Ge 2D layer begins forming at coverages >14 Å. PMID:21711886

  4. GaAs/AlGaAs Electronics and InGaAs(P) Optoelectronics on InP Substrates by Gas Source MBE

    DTIC Science & Technology

    1989-02-12

    EMENTARY NOTATION 7. COSATI CODES 18. SUBjECT TERMS (Cor.nuew’ n m n"if nmnsay and Wtft by blo00 ftmbtf) FIELD GROUP SUB-GROUP 19. ABSTRACT (Contin. an r...HBTs on InP (about 30) is found to be generally smaller that that from AIGaAs/Ga.As HBT on GaAs. PL studies of the GaAs buffer layer of a field ...to model and analyze the long-channel MESFETs, the saturation of electron velocity due to high electric field has been taken into consideration in

  5. Investigation of surface potential in the V-defect region of MBE Cd{sub x}Hg{sub 1−x}Te film

    SciTech Connect

    Novikov, V. A. Grigoryev, D. V.

    2015-03-15

    Atomic-force microscopy is used to investigate the distribution of the contact-potential difference (surface potential) in Cd{sub x}Hg{sub 1−x}Te epitaxial films grown by molecular-beam epitaxy. Modification of the solid-solution composition near the V-defect results in a variation in the contact-potential difference. It is shown that the solid-solution composition varies by ∼0.05 (2.5 at %) towards increasing mercury content in the V-defect region, and a region of mercury depletion by 0.36 at % is observed at the V-defect periphery. From analysis of the surface-potential distribution, it is shown that the Cd{sub x}Hg{sub 1−x}Te epitaxial film contains unform V-defects with a diameter less than 1 μm in addition to macroscopic V-defects.

  6. Spectroscopic determination of the bandgap crossover composition in MBE-grown AlxGa1-xAs

    SciTech Connect

    Fluegel, Brian; Alberi, Kirstin; Reno, John; Mascarenhas, Angelo

    2015-03-12

    The aluminum concentration dependence of the energies of the direct and indirect bandgaps arising from the Γ and X conduction bands are measured at 1.7 K in the semiconductor alloy AlxGa1-xAs. The composition at which the bands cross is determined from photoluminescence of molecular-beam epitaxy samples grown very close to crossover. The use of resonant laser excitation and the improved sample linewidth allows precise determination of the bound exciton transition energies. Moreover, photoluminescence excitation spectroscopy is used to measure the binding energies of the donor-bound excitons and the Γ free exciton binding energy.

  7. DLTS study of deep centers created by Ar-ion bombardment in n- and p-type MBE AlGaAs

    NASA Astrophysics Data System (ADS)

    Kaniewska, M.; Sadowski, J.; Guziewicz, M.

    2004-07-01

    The thermal emission rate of dominant traps in molecular beam epitaxial n- and p-type AlGaAs subjected to Ar-ion beam etching has been studied by deep level transient spectroscopy. Emission signatures were determined and compared with results obtained by other authors for irradiation induced and grown-in defects in GaAs and AlGaAs. The most significant result of this study is the observation that the process-induced defects in n- as well as p-type AlGaAs exhibit emission signatures, which are characteristic of native defects found in GaAs. The effect is discussed in terms of a compensation effect and related band bending.

  8. Electrical and structural properties of (Pd/Au) Schottky contact to as grown and rapid thermally annealed GaN grown by MBE

    SciTech Connect

    Nirwal, Varun Singh Singh, Joginder; Gautam, Khyati; Peta, Koteswara Rao

    2016-05-06

    We studied effect of thermally annealed GaN surface on the electrical and structural properties of (Pd/Au) Schottky contact to Ga-polar GaN grown by molecular beam epitaxy on Si substrate. Current voltage (I-V) measurement was used to study electrical properties while X-ray diffraction (XRD) measurement was used to study structural properties. The Schottky barrier height calculated using I-V characteristics was 0.59 eV for (Pd/Au) Schottky contact on as grown GaN, which increased to 0.73 eV for the Schottky contact fabricated on 700 °C annealed GaN film. The reverse bias leakage current at -1 V was also significantly reduced from 6.42×10{sup −5} A to 7.31×10{sup −7} A after annealing. The value of series resistance (Rs) was extracted from Cheung method and the value of R{sub s} decreased from 373 Ω to 172 Ω after annealing. XRD results revealed the formation of gallide phases at the interface of (Pd/Au) and GaN for annealed sample, which could be the reason for improvement in the electrical properties of Schottky contact after annealing.

  9. Phase transition on the Si(001) clean surface prepared in UHV MBE chamber: a study by high-resolution STM and in situ RHEED

    PubMed Central

    2011-01-01

    The Si(001) surface deoxidized by short annealing at T ~ 925°C in the ultrahigh vacuum molecuar beam epitaxy chamber has been in situ investigated using high-resolution scanning tunneling microscopy (STM)and redegreesected high-energy electron diffraction (RHEED. RHEED patterns corresponding to (2 × 1) and (4 × 4) structures were observed during sample treatment. The (4 × 4) reconstruction arose at T ≲ 600°C after annealing. The reconstruction was observed to be reversible: the (4 × 4) structure turned into the (2 × 1) one at T ≳ 600°C, the (4 × 4) structure appeared again at recurring cooling. The c(8 × 8) reconstruction was revealed by STM at room temperature on the same samples. A fraction of the surface area covered by the c(8 × 8) structure decreased, as the sample cooling rate was reduced. The (2 × 1) structure was observed on the surface free of the c(8 × 8) one. The c(8 × 8) structure has been evidenced to manifest itself as the (4 × 4) one in the RHEED patterns. A model of the c(8 × 8) structure formation has been built on the basis of the STM data. Origin of the high-order structure on the Si(001) surface and its connection with the epinucleation phenomenon are discussed. PACS 68.35.B-·68.37.Ef·68.49.Jk·68.47.Fg PMID:21711733

  10. Photoluminescence Mapping and Angle-Resolved Photoluminescence of MBE-Grown InGaAs/GaAs RC LED and VCSEL Structures

    DTIC Science & Technology

    2002-06-03

    structures. The first method is spatially resolved photoluminescence, i.e. mapping of the spontaneous emission and the cavity resonance wavelength over the...the physical processes underlying light generation in microcavity devices. The information provided by both methods is crucial for designing optimum...challenge among optical devices, properties of InGaAs/GaAs RC LEDs, although the The high degree of complexity of the epitaxial structure methods used are

  11. Ohio State University Cooperative Research and Development Agreement (CRDA). Crystal Growth by Molecular Beam Epitaxy (MBE) and Characterization of Optoelectronic Devices

    DTIC Science & Technology

    2003-10-01

    Packaging, Sociedade Brasileira de Microelectronica and International Microelectronic and Packaging Society, Campinas, Brazil, 1999. [5] C. M. Warnky...ing the weights of a laser’s spatial modes including curve fitting,5 matrix inversion ,6,7 M2 analysis,8 fre- quency mixing,9 and coherence

  12. Investigation of Si and O Donor Impurities in Unintentionally Doped MBE-Grown GaN on SiC(0001) Substrate

    NASA Astrophysics Data System (ADS)

    Tingberg, Tobias; Ive, Tommy; Larsson, Anders

    2017-08-01

    We have investigated the unintentional n-type background doping in GaN(0001) layers grown on semi-insulating 4H-SiC(0001) substrate by plasma-assisted molecular beam epitaxy under Ga-rich conditions at growth temperatures from 780°C and 900°C. All layers exhibited very smooth surface morphology with monolayer steps as revealed by atomic force microscopy. Hall-effect measurements showed that the sample grown at 900°C had carrier concentration of 9.8 × 1017 cm-3 while the sample grown at 780°C had resistivity too high to obtain reliable measurements. Secondary-ion mass spectroscopy revealed O and Si concentrations of <1017 cm-3 in the sample grown at 900°C but >1017 cm-3 in the sample grown at 780°C. The trend for the atomic concentrations of O and Si, which are common donor impurities in GaN, was thus contrary to the trend of the carrier concentration. The full-width at half-maximum for x-ray rocking curves obtained across the GaN(0002) and GaN(10 \\bar{1} 5) reflections for the sample grown at 900°C was 62 arcsec and 587 arcsec, respectively. The half-width increased with decreasing growth temperature. The atomic concentrations of O and Si are too low to account for the unintentional background doping levels. A possible explanation proposed in early reports for the background doping is N-vacancies.

  13. 40 CFR 33.210 - Does an entity certified as an MBE or WBE by EPA need to keep EPA informed of any changes which...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... certification, an affidavit sworn to by the entity's owners before a person who is authorized by state law to... of an affidavit sworn to by the applicant before a person who is authorized by State law...

  14. 40 CFR 33.210 - Does an entity certified as an MBE or WBE by EPA need to keep EPA informed of any changes which...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... certification, an affidavit sworn to by the entity's owners before a person who is authorized by state law to... of an affidavit sworn to by the applicant before a person who is authorized by State law...

  15. 40 CFR 33.210 - Does an entity certified as an MBE or WBE by EPA need to keep EPA informed of any changes which...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... certification, an affidavit sworn to by the entity's owners before a person who is authorized by state law to... of an affidavit sworn to by the applicant before a person who is authorized by State law...

  16. Droplet-mediated formation of embedded GaAs nanowires in MBE GaAs(1-x)Bi(x) films.

    PubMed

    Wood, Adam W; Collar, Kristen; Li, Jincheng; Brown, April S; Babcock, Susan E

    2016-03-18

    We have examined the morphology and composition of embedded nanowires that can be formed during molecular beam epitaxy of GaAs(1-x)Bi(x) using high angle annular dark field ('Z-contrast') imaging in an aberration-corrected scanning transmission electron microscope. Samples were grown in Ga-rich growth conditions on a stationary GaAs substrate. Ga-rich droplets are observed on the surface with lateral trails extending from the droplet in the [110] direction. Cross-sectional scanning transmission electron microscopy of the film reveals epitaxial nanowire structures of composition ∼GaAs embedded in the GaAs(1-x)Bi(x) epitaxial layers. These nanowires extend from a surface droplet to the substrate at a shallow angle of inclination (∼4°). They typically are 4 μm long and have a lens-shaped cross section with major and minor axes dimensions of 800 and 120 nm. The top surface of the nanowires exhibits a linear trace in longitudinal cross-section, across which the composition change from ∼GaAs to GaAs(1-x)Bi(x) appears abrupt. The bottom surfaces of the nanowires appear wavy and the composition change appears to be graded over ∼25 nm. The droplets have phase separated into Ga- and Bi-rich components. A qualitative model is proposed in which Bi is gettered into Ga droplets, leaving Bi depleted nanowires in the wakes of the droplets as they migrate in one direction across the surface during GaAs(1-x)Bi(x) film growth.

  17. Increased bismuth concentration in MBE GaAs{sub 1−x}Bi{sub x} films by oscillating III/V flux ratio during growth

    SciTech Connect

    Wood, Adam W. Babcock, Susan E.; Li, Jincheng; Brown, April S.

    2015-05-15

    The authors have examined bismuth concentration profiles in GaAs{sub 1−x}Bi{sub x} films grown by molecular beam epitaxy using high angle annular dark field imaging (Z-contrast imaging) in an aberration-corrected scanning transmission electron microscope in conjunction with x-ray diffraction. Samples were grown with a gradient in each of the component fluxes, and therefore, the III/V ratio across the substrate. Rotating the sample during growth exposed the growth surface to an oscillating III/V flux ratio. Sinusoidal [Bi] profiles resulted in the growth direction, the wavelength and number of which were consistent with the growth rate and the rate of substrate rotation. However, the magnitude of [Bi] in the observed fluctuations was greater than the maximum [Bi] achieved using the same Bi flux and Ga/As flux ratios in steady-state conditions on a stationary substrate, suggesting that varying the III/V flux ratio during growth promotes the incorporation of Bi in GaAs{sub 1−x}Bi{sub x} films. A proposed qualitative model for how this enhancement might occur hypothesizes a critical role for alternating growth and shrinkage of Ga-Bi predroplet clusters on the surface as the growing material is rotated through Ga-rich and As-rich flux compositions.

  18. Development of MBE grown Pb-salt semiconductor lasers for the 8.0 to 15.0 micrometer spectral region

    NASA Technical Reports Server (NTRS)

    Miller, M. D.

    1981-01-01

    Diodes lasers are fabricated using multiple source molecular beam expitaxial growth of (PbSn)Te on BaF2 substrates. Methods for crystal growth, crystal transfer, and device fabrication by photolithographic techniques were developed. The lasers operate in the spectra range from 10 microns to 14 microns and at temperatures from 12K to 60K continuous wave and to 95 K pulsed.

  19. Ethanol surface chemistry on MBE-grown GaN(0001), GaOx/GaN(0001), and Ga2O3(2¯01).

    PubMed

    Kollmannsberger, Sebastian L; Walenta, Constantin A; Winnerl, Andrea; Knoller, Fabian; Pereira, Rui N; Tschurl, Martin; Stutzmann, Martin; Heiz, Ueli

    2017-09-28

    In this work, ethanol is used as a chemical probe to study the passivation of molecular beam epitaxy-grown GaN(0001) by surface oxidation. With a high degree of oxidation, no reaction from ethanol to acetaldehyde in temperature-programmed desorption experiments is observed. The acetaldehyde formation is attributed to a mechanism based on α-H abstraction from the dissociatively bound alcohol molecule. The reactivity is related to negatively charged surface states, which are removed upon oxidation of the GaN(0001) surface. This is compared with the Ga2O3(2¯01) single crystal surface, which is found to be inert for the acetaldehyde production. These results offer a toolbox to explore the surface chemistry of nitrides and oxynitrides on an atomic scale and relate their intrinsic activity to systems under ambient atmosphere.

  20. MBE growth of GaAsN/GaP(N) quantum wells with abrupt heterointerfaces for photonics applications on Si substrates

    NASA Astrophysics Data System (ADS)

    Umeno, K.; Furukawa, Y.; Wakahara, A.; Noma, R.; Okada, H.; Yonezu, H.; Takagi, Y.; Kan, H.

    2009-03-01

    We demonstrated an appropriate growth procedure for GaAsN/GaP(N) single quantum wells (SQWs) with abrupt heterointerfaces in solid-source molecular beam epitaxy able to prevent the formation of unwanted As/P intermixing layers caused by residual As pressure. It was clarified that a GaP capping layer, grown on the top of the GaAsN SQW, was effective in avoiding the P/As exchange reaction on the GaAsN SQW surface. In fact, gettering by Ga was effective in removing the residual As 2 pressure, thus preventing the formation of the unwanted As/P intermixing layer. Then, we suggested that a GaAs 0.965N 0.035/GaP 0.98N 0.02 SQW has a type-I band alignment with the conduction band offset larger than 300 meV. Finally, we fabricated a GaAs 0.965N 0.035/GaP SQW light-emitting diodes (LEDs) on the Si substrate. The GaAs 0.965N 0.035/GaP SQW LED emitted in the infrared region at a wavelength at 860 nm. Therefore, the GaAsN/GaP(N) SQW can be used as a direct-transition active layer in light-emitting devices on Si, to realize monolithic optoelectronic integrated circuits and systems operating in the wavelength range around 850 nm.

  1. Critical thickness of MBE-grown Ga 1-xIn xSb ( x<0.2) on GaSb

    NASA Astrophysics Data System (ADS)

    Nilsen, T. A.; Breivik, M.; Selvig, E.; Fimland, B. O.

    2009-03-01

    Several Ga 1-xIn xSb layers, capped with 1 μm of GaSb, were grown on GaSb(0 0 1) substrates by molecular beam epitaxy in a Varian Gen II Modular system using either the conventional sample growth position with substrate rotation, or a tilted sample position with no substrate rotation. The GaInSb layers were examined by X-ray diffraction (XRD) using both symmetrical and asymmetrical reflections. The "tilted sample method" gave a variation of ±25% in thickness of the Ga 1-xIn xSb layers, while the indium (In) content varied by ±10% around the nominal value. The disappearance of thickness fringes in 004 XRD scans was used to determine the onset of relaxation, as determining the in-plane lattice constant for tilted samples was found to be difficult. Determining residual strain in samples grown by the tilted method was likewise found to be very difficult. The critical thickness for several In mole fractions between 5% and 19% was determined and was found to be from 2.2 to 2.7 times higher than predicted by Matthews and Blakeslee (1974) [J. Crystal Growth 27 (1974) 118] but lower than that predicted by People and Bean (1985) [Appl. Phys. Lett. 47 (1985) 322].

  2. Influence of the interface layer on the strain relaxation of ZnSe epitaxial layers grown by MBE on (001)GaAs

    NASA Astrophysics Data System (ADS)

    Giannini, C.; Carlino, E.; Sciacovelli, P.; Tapfer, L.; Sauvage-Simkin, M.; Garreau, Y.; Jedrecy, N.; Véron, M. B.; Pinchaux, R.

    1999-05-01

    ZnSe epilayers grown by molecular beam epitaxy on GaAs(001) substrates are investigated by grazing incidence x-ray diffraction, reciprocal space mapping and transmission electron microscopy. Our data show that the Zn/Se beam pressure ratio employed during the early stages of the ZnSe growth (2 nm) strongly affects the structural properties of the overgrown stoichiometric epilayer. The different strain status of the interface (tensile and compressive for the Zn-rich and Se-rich interfaces, respectively) is directly involved in the defects evolution mechanism. While the same order of magnitude of 60° dislocations was measured in all the specimens, three orders of magnitude more stacking-faults were measured in samples with a Zn-rich interface with respect to those with a Se-rich interface. In addition, a contraction of the lattice parameter towards the sample surface along the growth direction is observed only in the sample grown with an excess of Se at the interface. This lattice gradient can be explained by the presence of point defects within the II-VI epilayer thickness. The formation of point defects could be favoured by the presence of the Se-rich compressive strained interface.

  3. The characteristics of MBE-grown In{sub x}Al{sub 1−x}N/GaN surface states

    SciTech Connect

    Jiao, Wenyuan; Kong, Wei; Li, Jincheng; Kim, Tong-Ho; Brown, April S.; Collar, Kristen; Losurdo, Maria

    2016-08-22

    The density and energy distribution of In{sub x}Al{sub 1−x}N/GaN surface donor states are studied for In{sub x}Al{sub 1−x}N structures with varying indium compositions. The results support a surface states model with a constant energy distribution of 2.17–2.63 eV below the conduction band minimum and a concentration of 4.64–8.27 × 10{sup 13} cm{sup −2} eV{sup −1}. It is shown that the properties of the surface states are affected by the surface indium composition x{sub s}, as opposed to the bulk composition, x{sub b} (In{sub x}Al{sub 1−x}N). Higher surface indium composition x{sub s} increases the density of surface states and narrows their energy distribution.

  4. X-ray crystal truncation rod scattering from MBE grown (CaF 2-SrF 2)/Si(111) superlattices

    NASA Astrophysics Data System (ADS)

    Harada, J.; Itoh, Y.; Shimura, T.; Takahashi, I.; Alvarez, J. C.; Sokolov, N. S.

    1994-01-01

    Flouride CaF 2-SrF 2 superlattices (SLs) grown by molecular beam epitaxy have been studied by means of X-ray diffractometry for the first time. The diffraction patterns showed reasonably good crystalline quality of the SLs and a type-B epitaxial relation to the Si(111) substrate. From the analysis of the crystal truncation rod (CTR) profiles, based on the pseudomorphic model, it was obtained that despite the same high temperature (770°C) of formation of the CaF 2/Si(111) interface its structure depended on the growth temperature of the SLs. The shape of the CTR profiles confirmed the existence of the superlattice which consists of one or two monolayer thick SrF 2 layers. Some CaF 2/SrF 2-interface roughness was noticeable.

  5. Luminescence Study of Ion-Implanted and MBE-Grown Er-Doped GaAs and A1(x)Ga(1-x)As

    DTIC Science & Technology

    1993-03-01

    Semiconductors," Phys. Rev. B. 4E (3): 1423-1428 (July 1992). M . Salvi, H. L’Harridon, P. N. Favennec, D. Moutonne:, M . Gauneau, and M . Kechouane . "A...normal coordinates: H = M (p2 + M2w2q2), 0 2 where p = Mdu/dt and q = u = R - P,. The basic assumption of the CC diagram is that the effect of the electronic...also found two different processes involved in the temperature quenching of Yb3+. Klein (1988] fitted the PL intensity to an expression of the form I M

  6. MBE growth of ALGaN/GaN HEMTS on resistive Si(1 1 1) substrate with RF small signal and power performances

    NASA Astrophysics Data System (ADS)

    Cordier, Y.; Semond, F.; Lorenzini, P.; Grandjean, N.; Natali, F.; Damilano, B.; Massies, J.; Hoël, V.; Minko, A.; Vellas, N.; Gaquière, C.; DeJaeger, J. C.; Dessertene, B.; Cassette, S.; Surrugue, M.; Adam, D.; Grattepain, J.-C.; Aubry, R.; Delage, S. L.

    2003-04-01

    In this paper, we report on the properties of GaN films and AlGaN/GaN HEMT structures grown by molecular beam epitaxy on resistive Si(1 1 1) substrates. The properties of the GaN buffer layer and the AlGaN/GaN HEMTs are presented. Finally, both static and high-frequency performances of sub-micron gate length devices are analyzed demonstrating their RF power capability.

  7. Suppression of interfacial intermixing between MBE-grown Heusler alloy Ni2MnIn and (0 0 1)InAs or InAs-HEMT structures

    NASA Astrophysics Data System (ADS)

    Bohse, S.; Zolotaryov, A.; Kreuzpaintner, W.; Lott, D.; Kornowski, A.; Stemmann, A.; Heyn, Ch.; Hansen, W.

    2011-05-01

    This paper reports on the application of a thin MgO interlayer as a diffusion barrier between a Ni2MnIn Heusler film and the substrate consisting of either (0 0 1)InAs or a high electron mobility transistor structure with an InAs channel layer. The functionality of the MgO interlayers is studied in dependence of their layer thicknesses. Our studies reveal that MgO interlayers are effective diffusion barriers, which in conjunction with post-growth annealing significantly improve the structural and magnetic properties of the Heusler films. For all as-grown samples, a Curie temperature of 170 K was found indicating that the Ni2MnIn films are crystallized in the B2 phase. Post-growth annealing for 15 h at 350 °C of samples with MgO layer thicknesses smaller than 3 nm leads to a strong decrease in magnetisation. This film degradation may be attributed to the intermixing of the Heusler films with substrate material through not-completely closed MgO films. For samples with a MgO interlayer thickness of 3 nm, the Curie temperature increases up to 300 K. This Curie temperature is close to the value reported for bulk Ni2MnIn films in the desired L21 phase. Furthermore, an increase in saturation magnetisation by a factor of 2.4 was observed.

  8. Behavior of temperature dependent electrical properties of Pd/Au Schottky contact to GaN grown on Si substrate by MBE

    NASA Astrophysics Data System (ADS)

    Singh Nirwal, Varun; Rao Peta, Koteswara

    2016-12-01

    We investigated the effect of temperature on the behavior of electrical properties of Pd/Au Schottky contact to GaN/Si (111) in the temperature range of 125-325 K in steps of 25 K using current-voltage (I-V) and capacitance-voltage (C-V) analysis. The Schottky barrier height (ϕ I-V ) and ideality factor is calculated using standard thermionic emission theory. The value of ϕ I-V was found to increase from 0.41 ± 0.002 eV to 0.79 ± 0.008 eV when temperature varied from 125 to 325 K. The ideality factor of diodes also decreased from 5.91 ± 0.01 to 1.03 ± 0.05 with increase in temperature. The series resistance (R s) is calculated using Cheung’s method and it is observed that the value of R s decreased from 74.40 ± 0.32 Ω to 58.59 ± 0.11 Ω when the temperature increased from 125 to 325 K. Barrier height (ϕ C-V ) and effective carrier concentration (Nd ) is also reported from C-V characteristics as a function of temperature and the value of ϕ C-V was found to decrease with increase in temperature. The behavior of barrier heights obtained from I-V and C-V characteristics is different due to difference in the nature of measurement techniques. The deviation of conventional Richardson’s constant from theoretical value of GaN is due to unusual behavior of temperature dependent electrical properties and barrier inhomogeneity. This is successfully explained by assuming the double Gaussian distribution of inhomogeneous barrier heights of Au/Pd/GaN/Si Schottky diode.

  9. Role of dislocation-free GaN substrates in the growth of indium containing optoelectronic structures by plasma-assisted MBE

    NASA Astrophysics Data System (ADS)

    Skierbiszewski, C.; Siekacz, M.; Perlin, P.; Feduniewicz-Żmuda, A.; Cywiński, G.; Grzegory, I.; Leszczyński, M.; Wasilewski, Z. R.; Porowski, S.

    2007-07-01

    Plasma-assisted molecular beam epitaxy (PAMBE) has recently emerged as a viable tool for production of nitride blue-violet laser diodes operating at room temperature in continuous wave mode and high output powers [C. Skierbiszewski, P. Wisniewski, M. Siekacz, P. Perlin, A. Feduniewicz-Zmuda, G. Nowak, I. Grzegory, M. Leszczynski, S. Porowski, Appl. Phys. Lett. 88 (2006) 221108]. The present work reviews the current state of the art in this program as well as discusses its future directions. Two elements are given particular attention: (1) the epitaxial growth in metal-rich conditions, which enables effective lateral diffusion of N adatoms at low growth temperatures and (2) the role of threading dislocations in destabilizing the growth front. Low-temperature growth by PAMBE on dislocation-free GaN substrates is instrumental in achieving high performance of optoelectronic structures. The inherent to this process capability of sustaining two-dimensional step-flow growth mode (with straight and parallel atomic steps) at low growth temperatures opens up the way to the growth of strained multilayer structures with no compositional fluctuations and with flat interfaces.

  10. In-situ cyclic pulse annealing of InN on AlN/Si during IR-lamp-heated MBE growth

    NASA Astrophysics Data System (ADS)

    Suzuki, Akira; Bungi, Yu; Araki, Tsutomu; Nanishi, Yasushi; Mori, Yasuaki; Yamamoto, Hiroaki; Harima, Hiroshi

    2009-05-01

    To improve crystal quality of InN, an in-situ cyclic rapid pulse annealing during growth was carried out using infrared-lamp-heated molecular beam epitaxy. A cycle of 4 min growth of InN at 400 °C and 3 s pulse annealing at a higher temperature was repeated 15 times on AlN on Si substrate. Annealing temperatures were 550, 590, 620, and 660 °C. The back of Si was directly heated by lamp irradiation through a quartz rod. A total InN film thickness was about 200 nm. With increasing annealing temperature up to 620 °C, crystal grain size by scanning electron microscope showed a tendency to increase, while widths of X-ray diffraction rocking curve of (0 0 0 2) reflection and E 2 (high) mode peak of Raman scattering spectra decreased. A peak of In (1 0 1) appeared in X-ray diffraction by annealing higher than 590 °C, and In droplets were found on the surface by annealing at 660 °C.

  11. MBE Growth, Characterization and Electronic Device Processing of HgCdTe, HgZnTe, Related Heterojunctions and HgCdTe-CdTe Superlattices

    DTIC Science & Technology

    1987-09-15

    see the quarterly report of June 15, 1987 for the definition of Tmin and T max ) are presented. In this paper updated data on the best electrical...outdiffusion is probably the major reason for the formation of these clusters. Ref.: (1) G. K. Wertheim et al., Phys. Rev. Lett. 51, 2310 (1983), (2) S

  12. Initial stage growth of GexSi1−x layers and Ge quantum dot formation on GexSi1−x surface by MBE

    PubMed Central

    2012-01-01

    Critical thicknesses of two-dimensional to three-dimensional growth in GexSi1−x layers were measured as a function of composition for different growth temperatures. In addition to the (2 × 1) superstructure for a Ge film grown on Si(100), the GexSi1−x layers are characterized by the formation of (2 × n) reconstruction. We measured n for all layers of Ge/GexSi1−x/Ge heterosystem using our software with respect to the video recording of reflection high-energy electron diffraction (RHEED) pattern during growth. The n reaches a minimum value of about 8 for clear Ge layer, whereas for GexSi1−x films, n is increased from 8 to 14. The presence of a thin strained film of the GexSi1−x caused not only the changes in critical thicknesses of the transitions, but also affected the properties of the germanium nanocluster array for the top Ge layer. Based on the RHEED data, the hut-like island form, which has not been previously observed by us between the hut and dome islands, has been detected. Data on the growth of Ge/GexSi1−x/Ge heterostructures with the uniform array of islands in the second layer of the Ge film have been received. PMID:23043796

  13. CMOS-compatible dense arrays of Ge quantum dots on the Si(001) surface: hut cluster nucleation, atomic structure and array life cycle during UHV MBE growth.

    PubMed

    Arapkina, Larisa V; Yuryev, Vladimir A

    2011-04-15

    We report a direct observation of Ge hut nucleation on Si(001) during UHV molecular beam epitaxy at 360°C. Nuclei of pyramids and wedges were observed on the wetting layer (WL) (M × N) patches starting from the coverage of 5.1 Å and found to have different structures. Atomic models of nuclei of both hut species have been built as well as models of the growing clusters. The growth of huts of each species has been demonstrated to follow generic scenarios. The formation of the second atomic layer of a wedge results in rearrangement of its first layer. Its ridge structure does not repeat the nucleus. A pyramid grows without phase transitions. A structure of its vertex copies the nucleus. Transitions between hut species turned out to be impossible. The wedges contain point defects in the upper corners of the triangular faces and have preferential growth directions along the ridges. The derived structure of the {105} facet follows the paired dimer model. Further growth of hut arrays results in domination of wedges, and the density of pyramids exponentially drops. The second generation of huts arises at coverages >10 Å; new huts occupy the whole WL at coverages ~14 Å. Nanocrystalline Ge 2D layer begins forming at coverages >14 Å.

  14. Heavy Ion Fusion Accelerator Research (HIFAR) half-year report, October 1, 1989--March 31, 1990

    SciTech Connect

    Not Available

    1990-03-01

    This report discusses the following topics: Transverse Emittance Studies on MBE-4; MBE-4 Simulations; Beam Centroid Motion and Misalignments in MBE-4; Survey and Alignment of MBE-4; Energy Analysis of the 5mA MBE-4 Beam; An Improved 10 mA Ion Source for MBE-4; Emittance Degradation via a Wire Grid; Ion Source Development; 2 MV Injector; Electrostatic Quadrupole Prototype Development Activity; Magnetic Induction Core Studies; A Preliminary Consideration of Beam Splitting in Momentum Space; and Status of the Optimization Code HILDA.

  15. Elektrotechnik

    NASA Astrophysics Data System (ADS)

    Böge, Gert

    Ursprünglicher Sitz der Elektrizität ist das Atom. Das Wasserstoffatom z.B. besteht aus einem Proton als Kern und einem Elektron, das diesen Kern auf einer bestimmten Bahn umkreist. Das Proton bezeichnet man als elektrisch positiv, - das Elektron als negativ geladen. Zwischen beiden befindet sich die "Elektrizität“ in Form eines besonderen Raumzustandes, der als elektrisches Feld bezeichnet wird. Normalerweise erscheint ein Stoff nach außen hin elektrisch neutral, weil ebenso viele positive wie negative Ladungen in ihm enthalten sind.

  16. Quantenwelt im Nanozylinder: Elektronische Eigenschaften von Kohlenstoff-Nanoröhrchen

    NASA Astrophysics Data System (ADS)

    Strunk, Christoph

    2005-07-01

    Kohlenstoff-Nanoröhren sind einzelne oder mehrfach ineinander gesteckte molekulare Hohlzylinder. In ihnen bilden Kohlenstoffatome ein Graphit ähnliches Kristallgitter. Diese Fullerene zeichnen sich durch eine außerordentlich hohe Elastizität und Zugfestigkeit aus. In ihren elektronischen Eigenschaften verhalten sie sich entweder wie Halbleiter oder wie metallische Leiter. Aus halbleitenden Nanoröhren konnten bereits winzige Feldeffekttransistoren hergestellt werden, ein erster Schritt hin zu einer molekularen Elektronik. Die Grundlagenforscher interessiert vor allem das Verhalten metallischer Nanoröhren bei tiefen Temperaturen. An ihren elektronischen Systemen lassen sich zum Beispiel Quanteninterferenzphänomene oder Elektron-Elektron-Wechselwirkungen untersuchen.

  17. Mind, Brain, and Education: A Transdisciplinary Field

    ERIC Educational Resources Information Center

    Knox, Rockey

    2016-01-01

    The emerging field of mind, brain, and education (MBE) is grappling with core issues associated with its identity, scope, and method. This article examines some of the most pressing issues that structure the development of MBE as a transdisciplinary effort. Rather than representing the ongoing debates in MBE as superficial squabbles to eventually…

  18. Mind, Brain, and Education: A Transdisciplinary Field

    ERIC Educational Resources Information Center

    Knox, Rockey

    2016-01-01

    The emerging field of mind, brain, and education (MBE) is grappling with core issues associated with its identity, scope, and method. This article examines some of the most pressing issues that structure the development of MBE as a transdisciplinary effort. Rather than representing the ongoing debates in MBE as superficial squabbles to eventually…

  19. 40 CFR 33.501 - What are the recordkeeping requirements of this part?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quote on prime contracts, or bid or quote subcontracts on EPA assisted projects, including both MBE/WBEs... procurement on which the entity bid or quoted, and when; and (4) Entity's status as an MBE/WBE or non-MBE/WBE...

  20. 40 CFR 33.501 - What are the recordkeeping requirements of this part?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quote on prime contracts, or bid or quote subcontracts on EPA assisted projects, including both MBE/WBEs... procurement on which the entity bid or quoted, and when; and (4) Entity's status as an MBE/WBE or non-MBE/WBE...

  1. Morphological and Structural Investigation of the Early Stages of Epitaxial Growth of Alpha-Fe2O3 (0001) on Alpha-Al2O3 (0001) by Oxygen-Plasma-Assisted MBE

    SciTech Connect

    Yi, Sang I.; Liang, Yong ); Thevuthasan, Theva ); Chambers, Scott A. )

    1999-01-01

    We have investigated the early stages of Alpha-Fe2O3 (0001) film growth on Alpha-Al2O3 (0001) using oxygen-plasma-enhanced molecular beam epitaxy along with reflection high-energy electron diffraction, noncontact atomic force microscopy, and x-ray photoelectron spectroscopy and diffraction. A compressionally-strained, fully-stoichiometric Alpha-Fe2O3 film three monolayers thick forms prior to the onset of three-dimensional island formation and lattice relaxation. The surface of this film appears to buckle along <1120>, giving rise to a new set of inwardly-contracted diffraction spots which, if not resolved from the substrate spots, could be interpreted as a 12% in-plane lattice parameter expansion. Such an interpretation has led prior investigator to conclude that the interfacial layer consists of a disordered cation layer with an in-plane lattice parameter {approx}6% larger than that of Alpha-Fe2O3[4]. Our interpretation of the diffraction data suggests that the interfacial layer is badly distorted, but commensurate with the substrate.

  2. Room-temperature MBE deposition, thermoelectric properties, and advanced structural characterization of binary Bi[subscript 2]Te[subscript 3] and Sb[subscript 2]Te[subscript 3] thin films

    SciTech Connect

    Peranio, N.; Winkler, M.; Bessas, D.; Aabdin, Z.; König, J.; Böttner, H.; Hermann, R.P.; Eibl, O.

    2012-10-23

    Sb{sub 2}Te{sub 3} and Bi{sub 2}Te{sub 3} thin films were grown at room temperature on SiO{sub 2} and BaF{sub 2} substrates using molecular beam epitaxy. A layer-by-layer growth was achieved such that metallic layers of the elements with 0.2 nm thickness were deposited. The layer structure in the as-deposited films was confirmed by X-ray diffraction and was seen more clearly in Sb{sub 2}Te{sub 3} thin films. Subsequent annealing was done at 250 C for 2 h and produced the Sb{sub 2}Te{sub 3} and Bi{sub 2}Te{sub 3} crystal structure as confirmed by high-energy X-ray diffraction. This preparation process is referred to as nano-alloying and it was demonstrated to yield single-phase thin films of these compounds. In the thin films a significant texture could be identified with the crystal c axis being almost parallel to the growth direction for Sb{sub 2}Te{sub 3} and tilted by about 30{sup o} for Bi{sub 2}Te{sub 3} thin films. In-plane transport properties were measured for the annealed films at room temperature. Both films yielded a charge carrier density of about 2.6 x 10{sup 19} cm{sup -3}. The Sb{sub 2}Te{sub 3} films were p-type, had a thermopower of +130 {micro}V K{sup -1}, and surprisingly high mobilities of 402 cm{sup 2} V{sup -1} s{sup -1}. The Bi{sub 2}Te{sub 3} films were n-type, showed a thermopower of -153 {micro}V K{sup -1}, and yielded significantly smaller mobilities of 80 cm2 V{sup -1} s{sup -1}. The chemical composition and microstructure of the films were investigated by transmission electron microscopy (TEM) on cross sections of the thin films. The grain sizes were about 500 nm for the Sb{sub 2}Te{sub 3} and 250 nm for the Bi{sub 2}Te{sub 3} films. In the Bi{sub 2}Te{sub 3} thin film, energy-filtered TEM allowed to image a Bi-rich grain boundary phase, several nanometers thick. This secondary phase explains the poor mobilities of the Bi{sub 2}Te{sub 3} thin film. With these results the high potential of the nano-alloying deposition technique for growing films with a more complex layer architecture is demonstrated.

  3. Temperature and Field Dependences of Parameters of the Equivalent Circuit Elements of MIS Structures Based on MBE n-Hg0.775Cd0.225Te in the Strong Inversion Mode

    NASA Astrophysics Data System (ADS)

    Voitsekhovskii, A. V.; Nesmelov, S. N.; Dzyadukh, S. M.

    2016-11-01

    A technique is proposed for the determining the parameters of the equivalent circuit elements in strong inversion mode using the measurement results of the admittance of MIS structures based on n-Hg0.775Cd0.225Te grown by molecular beam epitaxy. It is shown that at 77 K and frequencies above 10 kHz, the capacitancevoltage characteristics of MIS structures based on n-Hg0.775Cd0.225Te with a near-surface graded gap layer have a high-frequency behavior with respect to the recharge time of surface states located near the Fermi level of intrinsic semiconductor. It is established that the electron concentration in the near-surface graded-gap layer exceeds an average concentration found by the Hall method by more than 2 times. The proposed technique was used for determining the temperature dependences of the insulator capacitance, capacitance and differential resistance of the space-charge region, and capacitance of the inversion layer in MIS structures based on n-Hg0.775Cd0.225Te without a graded-gap layer. The temperature and voltage dependences of the parameters of the equivalent circuit elements in strong inversion are calculated. The results of calculation are qualitatively consistent with the results obtained from the measurements of the admittance.

  4. Study of a MHEMT heterostructure with an In{sub 0.4}Ga{sub 0.6}As channel MBE-grown on a GaAs substrate using reciprocal space mapping

    SciTech Connect

    Aleshin, A. N. Bugaev, A. S.; Ermakova, M. A.; Ruban, O. A.

    2015-08-15

    The crystallographic characteristics of the design elements of a metamorphic high-electron-mobility (MHEMT) heterostructure with an In{sub 0.4}Ga{sub 0.6}As channel are determined based on reciprocal space mapping. The heterostructure is grown by molecular beam epitaxy on the vicinal surface of a GaAs substrate with a deviation angle from the (001) plane of 2° and consists of a stepped metamorphic buffer containing six layers including an inverse step, a high-temperature buffer layer with constant composition, and active HEMT layers. The InAs content in the layers of the metamorphic buffer is varied from 0.1 to 0.48. Reciprocal space maps are constructed for the (004) symmetric reflection and (224)+ asymmetric reflection. It is found that the heterostructure layers are characterized both by a tilt angle relative to the plane of the (001) substrate and a rotation angle around the [001] axis. The tilt angle of the layer increases as the InAs concentration in the layer increases. It is shown that a high-temperature buffer layer of constant composition has the largest degree of relaxation compared with all other layers of the heterostructure.

  5. Impact of the growth temperature on the performance of 1.70-eV Al0.22Ga0.78As solar cells grown by MBE

    NASA Astrophysics Data System (ADS)

    Onno, Arthur; Tang, Mingchu; Oberbeck, Lars; Wu, Jiang; Liu, Huiyun

    2017-10-01

    Growth of high material quality Aluminum Gallium Arsenide (AlxGa1-xAs) is known to be challenging, in particular with an Al content x above 20%. As a result, the use of AlxGa1-xAs in devices requiring high minority carrier lifetimes, such as solar cells, has been limited. Nonetheless, it has long been established that the substrate temperature is a key parameter in improving AlxGa1-xAs material quality. In order to optimize the growth temperature of 1.70-eV Al0.22Ga0.78As solar cells, five samples have been grown by Solid-Source Molecular Beam Epitaxy (SSMBE) at 580 °C, 600 °C, 620 °C, 640 °C, and 660 °C, respectively. A strong improvement in performance is observed with increasing the growth temperature from 580 °C to 620 °C. An open-circuit voltage above 1.21 V has in particular been demonstrated on the sample grown at 620 °C, translating into a bandgap-voltage offset Woc below 0.5 V. Above 620 °C, performances - in particular the short-circuit current density - moderately decrease. This trend is confirmed by photoluminescence, current density versus voltage characterization under illumination, and external quantum efficiency measurements.

  6. Impact of varying buffer thickness generated strain and threading dislocations on the formation of plasma assisted MBE grown ultra-thin AlGaN/GaN heterostructure on silicon

    SciTech Connect

    Chowdhury, Subhra; Biswas, Dhrubes

    2015-05-15

    Plasma-assisted molecular beam epitaxy (PAMBE) growth of ultra-thin Al{sub 0.2}Ga{sub 0.8}N/GaN heterostructures on Si(111) substrate with three buffer thickness (600 nm/400 nm/200 nm) have been reported. An unique growth process has been developed that supports lower temperature epitaxy of GaN buffer which minimizes thermally generated tensile strain through appropriate nitridation and AlN initiated epitaxy for achieving high quality GaN buffer which supports such ultra-thin heterostructures in the range of 10-15Å. It is followed by investigations of role of buffer thickness on formation of ultra-thin Al{sub 0.2}Ga{sub 0.8}N/GaN heterostructure, in terms of stress-strain and threading dislocation (TD). Structural characterization were performed by High-Resolution X-Ray Diffraction (HRXRD), room-temperature Photoluminescence (RT-PL), High Resolution Transmission Electron Microscopy (HRTEM) and Atomic Force Microscopy (AFM). Analysis revealed increasing biaxial tensile stress of 0.6918 ± 0.04, 1.1084, 1.1814 GPa in heterostructures with decreasing buffer thickness of 600, 400, 200 nm respectively which are summed up with residual tensile strain causing red-shift in RT-PL peak. Also, increasing buffer thickness drastically reduced TD density from the order 10{sup 10} cm{sup −2} to 10{sup 8} cm{sup −2}. Surface morphology through AFM leads to decrease of pits and root mean square value with increasing buffer thickness which are resulted due to reduction of combined effect of strain and TDs.

  7. Influence of Illumination on the Electrical Properties of p-(ZnMgTe/ZnTe:N)/CdTe/n-(CdTe:I)/GaAs Heterojunction Grown by Molecular Beam Epitaxy (MBE)

    NASA Astrophysics Data System (ADS)

    Jum'h, I.; Abd El-Sadek, M. S.; Al-Taani, H.; Yahia, I. S.; Karczewski, G.

    2017-02-01

    Heterostructure p-(ZnMgTe/ZnTe:N)/CdTe/n-(CdTe:I)/GaAs was evaporated using molecular beam epitaxy and investigated for photovoltaic energy conversion application. The electrical properties of the studied heterostructure were measured and characterized in order to understand the relevant electrical transport mechanisms. Electrical properties derived from the current-voltage ( I- V) characteristics of solar cells provide essential information necessary for the analysis of performance losses and device efficiency. I- V characteristics are investigated in dark conditions and under different light intensities. All the electrical and power parameters of the heterostructure were measured, calculated and explained.

  8. Electron Concentration in the Near-Surface Graded-Gap Layer of MBE n-Hg1- x Cd x Te ( x = 0.22-0.40) Determined from the Capacitance Measurements of MIS-Structures

    NASA Astrophysics Data System (ADS)

    Voitsekhovskii, A. V.; Nesmelov, S. N.; Dzyadukh, S. M.; Grigor'ev, D. V.; Lyapunov, D. V.

    2017-05-01

    Capacitance-voltage (C-V) characteristics of MIS structures based on the graded-gap n-Hg1- x Cd x Te ( x = 0.22-0.40) grown by molecular-beam epitaxy were experimentally studied in the temperature range of 9-77 K. The concentrations of majority charge carriers in the near-surface layer of the semiconductor are determined from the capacitance value at the minimum of the (C-V) characteristic due to the high-frequency behavior of the capacitance characteristics of the structures with graded-gap layers with respect to the recharge time of surface states. The electron concentration in the near-surface layer of the graded-gap n-Hg1- x Cd x Te at x = 0.22-0.23 in the working layer, found from the value of the capacitance at the minimum, considerably exceeds the integral electron concentration determined by the Hall method. With an increase in the composition in the working layer to x = 0.30-0.40, the difference in the values of the electron concentrations decreases substantially for the near-surface layers with close compositions on the surface. The results obtained are explained by the appearance of additional native defects of donor type in the near-surface graded-gap layer, and this effect is most clearly manifested at large composition gradients in the graded-gap layer. The results of processing of experimental C-V characteristics are in qualitative agreement with the results of studying the electron concentration distribution over the film thickness performed by the Hall method.

  9. Continuous wave and modulation performance of 1550nm band wafer-fused VCSELs with MBE-grown InP-based active region and GaAs-based DBRs

    NASA Astrophysics Data System (ADS)

    Babichev, A. V.; Karachinsky, L. Ya.; Novikov, I. I.; Gladyshev, A. G.; Mikhailov, S.; Iakovlev, V.; Sirbu, A.; Stepniak, G.; Chorchos, L.; Turkiewicz, J. P.; Agustin, M.; Ledentsov, N. N.; Voropaev, K. O.; Ionov, A. S.; Egorov, A. Yu.

    2017-02-01

    We report for the first time on wafer-fused InGaAs-InP/AlGaAs-GaAs 1550 nm vertical-cavity surface-emitting lasers (VCSELs) incorporating a InAlGaAs/InP MQW active region with re-grown tunnel junction sandwiched between top and bottom undoped AlGaAs/GaAs distributed Bragg reflectors (DBRs) all grown by molecular beam epitaxy. InP-based active region includes seven compressively strained quantum wells (2.8 nm) optimized to provide high differential gain. Devices with this active region demonstrate lasing threshold current < 2.5 mA and output optical power > 2 mW in the temperature range of 10-70°C. The wall-plug efficiency (WPE) value-reaches 20 %. Lasing spectra show single mode CW operation with a longitudinal side mode suppression ratio (SMSR) up to 45 dB at > 2 mW output power. Small signal modulation response measurements show a 3-dB modulation bandwidth of 9 GHz at pump current of 10 mA and a D-factor value of 3 GHz/(mA)1/2. Open-eye diagram at 30 Gb/s of standard NRZ is demonstrated. Achieved CW and modulation performance is quite sufficient for fiber to the home (FTTH) applications where very large volumes of low-cost lasers are required.

  10. A simple prediction score system for malignant brain edema progression in large hemispheric infarction

    PubMed Central

    Jo, KwangWook; Bajgur, Suhas S.; Kim, Hoon; Choi, Huimahn A.; Huh, Pil-Woo; Lee, Kiwon

    2017-01-01

    Malignant brain edema (MBE) due to hemispheric infarction can result in brain herniation, poor outcomes, and death; outcome may be improved if certain interventions, such as decompressive craniectomy, are performed early. We sought to generate a prediction score to easily identify those patients at high risk for MBE. 121 patients with large hemispheric infarction (LHI) (2011 to 2014) were included. Patients were divided into two groups: those who developed MBE and those who did not. Independent predictors of MBE were identified by logistic regression and a score was developed. Four factors were independently associated with MBE: baseline National Institutes of Health Stroke Scale (NIHSS) score (p = 0.048), Alberta Stroke Program Early Computed Tomography Score (ASPECTS) (p = 0.007), collateral score (CS) (p<0.001) and revascularization failure (p = 0.013). Points were assigned for each factor as follows: NIHSS ≤ 8 (= 0), 9–17 (= 1), ≥ 18 (= 2); ASPECTS≤ 7 (= 1), >8 (= 0); CS<2 (= 1), ≥2 (= 0); revascularization failure (= 1),success (= 0). The MBE Score (MBES) represents the sum of these individual points. Of 26 patients with a MBES of 0 to 1, none developed MBE. All patients with a MBES of 6 developed MBE. Both MBE development and functional outcomes were strongly associated with the MBES (p = 0.007 and 0.002, respectively). The MBE score is a simple reliable tool for the prediction of MBE. PMID:28178299

  11. Thermoelectric properties of epitaxial β-FeSi2 thin films grown on Si(111) substrates with various film qualities

    NASA Astrophysics Data System (ADS)

    Watanabe, Kentaro; Taniguchi, Tatsuhiko; Sakane, Shunya; Aoki, Shunsuke; Suzuki, Takeyuki; Fujita, Takeshi; Nakamura, Yoshiaki

    2017-05-01

    Si-based epitaxial β-FeSi2 thin films are attractive as materials for on-chip thermoelectric power generators. We investigated the structure, crystallinity, and thermoelectric properties of β-FeSi2 thin films epitaxially grown on Si(111) substrates by using three different techniques: conventional reactive deposition epitaxy followed by molecular beam epitaxy (RDE+MBE), solid phase epitaxy (SPE) based on codeposition of Fe and Si presented previously, and SPE followed by MBE (SPE+MBE) presented newly by this work. Their epitaxial growth temperatures were fixed at 530 °C for comparison. RDE+MBE thin films exhibited high crystalline quality, but rough surfaces and rugged β-FeSi2/Si(111) interfaces. On the other hand, SPE thin films showed flat surfaces and abrupt β-FeSi2/Si(111) interfaces but low crystallinity. We found that SPE+MBE thin films realized crystallinity higher than SPE thin films, and also had flatter surfaces and sharper interfaces than RDE+MBE thin films. In SPE+MBE thin film growth, due to the initial SPE process with low temperature codeposition, thermal interdiffusion of Fe and Si was suppressed, resulting in the surface flatness and abrupt interface. Second high temperature MBE process improved the crystallinity. We also investigated thermoelectric properties of these β-FeSi2 thin films. Structural factors affecting the thermoelectric properties of RDE+MBE, SPE, and SPE+MBE thin films were investigated.

  12. Establishing the need and identifying goals for a curriculum in medical business ethics: a survey of students and residents at two medical centers in Missouri.

    PubMed

    Kraus, Elena M; Bakanas, Erin; Gursahani, Kamal; DuBois, James M

    2014-10-09

    In recent years, issues in medical business ethics (MBE), such as conflicts of interest (COI), Medicare fraud and abuse, and the structure and functioning of reimbursement systems, have received significant attention from the media and professional associations in the United States. As a result of highly publicized instances of financial interests altering physician decision-making, major professional organizations and government bodies have produced reports and guidelines to encourage self-regulation and impose rules to limit physician relationships with for-profit entities. Nevertheless, no published curricula exist in the area of MBE. This study aimed to establish a baseline level of knowledge and the educational goals medical students and residents prioritize in the area of MBE. 732 medical students and 380 residents at two academic medical centers in the state of Missouri, USA, completed a brief survey indicating their awareness of major MBE guidance documents, knowledge of key MBE research, beliefs about the goals of an education in MBE, and the areas of MBE they were most interested in learning more about. Medical students and residents had little awareness of recent and major reports on MBE topics, and had minimal knowledge of basic MBE facts. Residents scored statistically better than medical students in both of these areas. Medical students and residents were in close agreement regarding the goals of an MBE curriculum. Both groups showed significant interest in learning more about MBE topics with an emphasis on background topics such as "the business aspects of medicine" and "health care delivery systems". The content of major reports by professional associations and expert bodies has not trickled down to medical students and residents, yet both groups are interested in learning more about MBE topics. Our survey suggests potentially beneficial ways to frame and embed MBE topics into the larger framework of medical education.

  13. Superlattice Optical Bistability Research.

    DTIC Science & Technology

    2014-09-26

    These superlattices are grown by molecular beam epitaxy in a MBE system specifically designed to handle mercury . MBE is an ultrahigh vacuum evaporative...multilayer heterojunction and superlattice device applications. 2.0 Growth Studies The MBE growth of mercury compound is still relatively new and novel...CdTe. The growth of HgTe, however, was complicated by the high volatily of mercury . A large amount of mercury flux must be maintained to compensate

  14. Effect of different stages of tensile deformation on micromagnetic parameters in high-strength, low-alloy steel

    SciTech Connect

    Vaidyanathan, S.; Moorthy, V.; Kalyanasundaram, P.; Jayakumar, T.; Raj, B.

    1999-08-01

    The influence of tensile deformation on the magnetic Barkhausen emissions (MBE) and hysteresis loop has been studied in a high-strength, low-alloy steel (HSLA) and its weldment. The magnetic measurements were made both in loaded and unloaded conditions for different stress levels. The root-mean-square (RMS) voltage of the MBE has been used for analysis. This study shows that the preyield and postyield deformation can be identified from the change in the MBE profile. The initial elastic deformation showed a linear increase in the MBE level in the loaded condition, and the MBE level remained constant in the unloaded condition. The microplastic yielding, well below the macroyield stress, significantly reduces the MBE, indicating the operation of grain-boundary dislocation sources below the macroyield stress. This is indicated by the slow increase in the MBE level in the loaded condition and the decrease in the MBE level in the unloaded condition. The macroyielding resulted in a significant increase in the MBE level in the loaded condition and, more clearly, in the unloaded condition. The increase in the MBE level during macroyielding has been attributed to the grain rotation phenomenon, in order to maintain the boundary integrity between adjacent grains, which would preferentially align the magnetic domains along the stress direction. This study shows that MBE during tensile deformation can be classified into four stages: (1) perfectly elastic, (2) microplastic yielding, (3) macroyielding, and (4) progressive plastic deformation. A multimagnetic parameter approach, combining the hysteresis loop and MBE, has been suggested to evaluate the residual stresses.

  15. Thermally stimulated current spectroscopy on silicon planar-doped GaAs samples

    NASA Astrophysics Data System (ADS)

    Rubinger, R. M.; Bezerra, J. C.; Chagas, E. F.; González, J. C.; Rodrigues, W. N.; Ribeiro, G. M.; Moreira, M. V. B.; de Oliveira, A. G.

    1998-10-01

    Using thermally stimulated current (TSC) spectroscopy we have identified the presence of several deep traps in low temperature grown (LTG) nonintentionally doped bulk molecular beam epitaxy (MBE)-GaAs and silicon planar-doped MBE-GaAs samples. The experiments of TSC spectroscopy were carried out on a LTG MBE-GaAs epilayer grown at 300 °C and the planar-doped layer with a nominal silicon concentration of 3.4×1012cm-2. The LTG nonintentionally doped bulk MBE-GaAs sample shows three peaks in the TSC spectra but the planar-doped MBE-GaAs sample shows spectra similar to those of bulk samples grown by the liquid-encapsulated Czochralski and vertical gradient freeze methods. The main achievement is the experimental evidence that the potential well present in the planar-doped sample is effective in detecting the presence of different deep traps previously not seen in LTG bulk MBE-GaAs epilayers due to a shorter carrier lifetime (about 10-12 s) in the conduction band which occurs due to EL2-like deep traps recombination. This fact is evidenced by a strong hopping conduction in LTG bulk MBE-GaAs samples at temperatures lower than 300 K, but not in planar-doped MBE-GaAs samples because the two-dimensional electron gas has a higher mobility than lateral LTG bulk MBE-GaAs epilayers.

  16. Heavy Ion Fusion Accelerator Research (HIFAR) year-end report, April 1, 1986-September 30, 1986

    SciTech Connect

    Not Available

    1986-10-01

    Activities are reported on MBE-4, the four-beam proof-of-principle ion induction linear accelerator with the capability of beam-current amplification. Mechanical aspects of MBE-4, quadrupole insulator performance, and pulsers are discussed. The computer code, SLID, has been used to help understand the longitudinal beam dynamics in MBE-4. A computer-controlled emittance scanning system is in use in MBE-4. A systematic effort is under way to discover and correct all the defects peculiar to the low energy part of the linac design code. (LEW)

  17. Heavy Ion Fusion Accelerator Research (HIFAR) year-end report, April 1, 1989--September 30, 1989

    SciTech Connect

    Not Available

    1989-12-01

    This report contains the following topics on heavy ion fusion: MBE-4 drifting beam quadrupole operating range; transverse emittance growth in MBE-4; an improved ion source for MBE-4; drifting beam studies on MBE-4; 2-MV injector; improvements in lifetime of the C{sup +} source; injector control system; Maxwell spark gap test update; ILSE cosine 2{theta} quadrupole magnet development; electrostatic quadrupole prototype development activity; induction accelerator cell development; effect of a spread in beamlet currents on longitudinal stability; and heavy ion linac driver analysis.

  18. In-Situ Scanning Electron Microscopy Comparison of Microstructure and Deformation Between WE43-F and WE43-T5 Magnesium Alloys

    DTIC Science & Technology

    2012-05-01

    Materials and Manufacturing Science Division, Aberdeen Proving Ground, MD 21005 USA 2. Magnesium Elektron North America, 1001 College St. Madison, IL...diffraction ( EBSD ). The FEI Nova NanoSEM 600 SEM was used to characterize the microstructure before and after the tensile tests. EDS (EDAX Genesis) was...used to determine the precipitate chemistry for both F and T5 samples. EBSD characterization of the crystallographic orientation texturing of the

  19. In Situ Selected Area Doping of GaAs by Molecular Beam Epitaxy.

    DTIC Science & Technology

    1985-07-01

    utilized a multichambered, cyropumped, LN shrouded, homebuilt MBE apparatus. The MBE system consists of three chambers: a load-lock chamber, an antechamber... homebuilt apparatus. The three chambers consist of a * load-lock chamber for fast introduction of the GaAs substrate wafers into vacuum, an

  20. Multiperiod quantum-cascade nanoheterostructures: Epitaxy and diagnostics

    SciTech Connect

    Egorov, A. Yu. Brunkov, P. N.; Nikitina, E. V.; Pirogov, E. V.; Sobolev, M. S.; Lazarenko, A. A.; Baidakova, M. V.; Kirilenko, D. A.; Konnikov, S. G.

    2014-12-15

    Advances in the production technology of multiperiod nanoheterostructures of quantum-cascade lasers with 60 cascades by molecular-beam epitaxy (MBE) on an industrial multiple-substrate MBE machine are discussed. The results obtained in studying the nanoheterostructures of quantum-cascade lasers by transmission electron microscopy, high-resolution X-ray diffraction analysis, and photoluminescence mapping are presented.

  1. Communication in Mind, Brain, and Education: Making Disciplinary Differences Explicit

    ERIC Educational Resources Information Center

    Kalra, Priya; O'Keeffe, Jamie K.

    2011-01-01

    Difficulties in communication within Mind, Brain, and Education (MBE) can arise from several sources. One source is differences in orientation among the areas of research, policy, and practice. Another source is lack of understanding of the entrenched and unspoken differences across research disciplines in MBE--that is, recognition that research…

  2. Evaluation of "Maths by Email." Final Report

    ERIC Educational Resources Information Center

    Kissane, Barry; McConney, Andrew

    2010-01-01

    "Maths by Email" (MbE) is a free fortnightly email newsletter produced through a partnership between CSIRO Education and the Australian Mathematical Sciences Institute (AMSI), with funding from the Australian Government Department of Education, Employment and Workplace Relations (DEEWR). The principal aim of MbE has been "to…

  3. Communication in Mind, Brain, and Education: Making Disciplinary Differences Explicit

    ERIC Educational Resources Information Center

    Kalra, Priya; O'Keeffe, Jamie K.

    2011-01-01

    Difficulties in communication within Mind, Brain, and Education (MBE) can arise from several sources. One source is differences in orientation among the areas of research, policy, and practice. Another source is lack of understanding of the entrenched and unspoken differences across research disciplines in MBE--that is, recognition that research…

  4. A Multivariate Generalizability Analysis of the Multistate Bar Examination

    ERIC Educational Resources Information Center

    Yin, Ping

    2005-01-01

    The main purpose of this study is to examine the content structure of the Multistate Bar Examination (MBE) using the "table of specifications" model from the perspective of multivariate generalizability theory. Specifically, using MBE data collected over different years (six administrations: three from the February test and three from July test),…

  5. Structural Design of Two Fluorine-Beryllium Borates BaMBe2(BO3)2F2 (M = Mg, Ca) Containing Flexible Two-Dimensional [Be3B3O6F3]∞ Single Layers without Structural Instability Problems.

    PubMed

    Guo, Shu; Jiang, Xingxing; Xia, Mingjun; Liu, Lijuan; Fang, Zhi; Huang, Qian; Wu, Ruofei; Wang, Xiaoyang; Lin, Zheshuai; Chen, Chuangtian

    2017-09-08

    Molecular structural design is a compelling strategy to develop new compounds and optimize the crystal structure by atomic-scale manipulation. Herein, two fluorine-beryllium borates, BaMgBe2(BO3)2F2 and BaCaBe2(BO3)2F2, have been rationally designed to overcome the structural instability problems of Sr2Be2B2O7 (SBBO). When relatively large Ba atoms were introduced, the [Be6B6O15]∞ double layers of SBBO were successfully broken, generating flexible [Be3B3O6F3]∞ single layers. Also, the strategy adopted in this work has many implications in understanding the structural chemistry and designing novel optical functional materials in a beryllium borate system.

  6. The asymmetry in the characteristics of GaAs/AlGaAs quantum well infrared photodetectors

    NASA Astrophysics Data System (ADS)

    Li, Na; Fu, L.; Li, Ning; Chan, Y. C.; Lu, W.; Shen, S. C.; Tan, H. H.; Jagadish, C.

    2001-02-01

    The asymmetry of GaAs/AlGaAs quantum wells grown by molecular beam epitaxy (MBE) and metal-organic chemical vapor deposition (MOCVD) is investigated by measuring the current-voltage ( I- V) and responsivity characteristics of quantum well infrared photodetectors (QWIPs). Different asymmetry behaviors were observed in MBE and MOCVD grown devices due to their different growth mechanisms. Furthermore, the role of one of the post-growth techniques, ion implantation induced quantum well intermixing, on varying the asymmetry of the MBE QWIPs was also studied.

  7. Heavy Ion Fusion Accelerator Research (HIFAR)

    SciTech Connect

    Not Available

    1991-04-01

    This report discusses the following topics: emittance variations in current-amplifying ion induction lina; transverse emittance studies of an induction accelerator of heavy ions; drift compression experiments on MBE-4 and related emittance; low emittance uniform- density C{sub s}+ sources for heavy ion fusion accelerator studies; survey of alignment of MBE-4; time-of-flight dependence on the MBE-4 quadrupole voltage; high order calculation of the multiple content of three dimensional electrostatic geometries; an induction linac injector for scaled experiments; induction accelerator test module for HIF; longitudinal instability in HIF beams; and analysis of resonant longitudinal instability in a heavy ion induction linac.

  8. Silicon sheet with molecular beam epitaxy for high efficiency solar cells

    NASA Technical Reports Server (NTRS)

    Allen, F. G.

    1983-01-01

    The capabilities of the new technique of Molecular Beam Epitaxy (MBE) are applied to the growth of high efficiency silicon solar cells. Because MBE can provide well controlled doping profiles of any desired arbitrary design, including doping profiles of such complexity as built-in surface fields or tandem junction cells, it would appear to be the ideal method for development of high efficiency solar cells. It was proposed that UCLA grow and characterize silicon films and p-n junctions of MBE to determine whether the high crystal quality needed for solar cells could be achieved.

  9. Effect of acid labile ether protecting groups on the oxide etch resistance and lithographic performance of 248-nm resists

    NASA Astrophysics Data System (ADS)

    Varanasi, Pushkara R.; Cornett, Kathleen M.; Lawson, Margaret C.

    2000-06-01

    In our attempts to develop etch resistance 248 nm positive resists, we have designed and synthesized thermally stable and acid sensitive methylbenzyl ether (MBE) protected poly(hydroxystyrene) derivatives. Results presented in this paper clearly illustrate that the MBE protecting group provides superior etch resistance to conventional carbonate, ester and acetal/ketal based protecting groups. It is also shown that the MBE protecting group is thermally stable and undergoes acid catalyzed deprotection leading to preferential rearrangement products due to electrophilic ring substitution. Such a rearrangement is shown to provide a unique mechanism to reduce/eliminate resist shrinkage and improve lithographic performance.

  10. Heavy ion fusion half year report, October 1, 1984-March 30, 1985

    SciTech Connect

    Not Available

    1985-06-01

    Summaries of research are given for each of the following experiments: (1) MBE-4: a four-beam induction linac experiment, (2) performance of the MBE-4 injector, (3) design procedure for acceleration and bunching in an induction linac, (4) longitudinal dynamics of MBE-4, (5) transverse beam dynamics, (6) envelope functions of high-current beam, (7) electrostatic energy analyzer, (8) longitudinal beam control, (9) a capacitive beam-charge monitor for SBTE, (10) materials R and D, (11) simulations of Robertson's lens, and (12) SBTE high sigma/sub 0/ high-current stability limits. (MOW)

  11. 75 FR 81635 - Privacy Act of 1974: Notice of New System of Records, Single Family Computerized Homes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-28

    ... receives CHUMS data for statistical research. The Computerized Homes Underwriting Management System... other Federal agencies, including the Federal Reserve, for purposes of statistical research, not... Enterprise (MBE) Code, and sex, for statistical tracking purposes) of builders, fee appraisers, and...

  12. Minority Business Enterprises and Woman Business Enterprises Grant Utilization

    EPA Pesticide Factsheets

    The policy goal of the MBE/WBE Programs is to assure that minority business enterprises and woman business enterprises are given the opportunity to participate in contract and procurement for supplies, construction, equipment & services under any EPA grant

  13. Large-format multi-wafer production of 5" GaSb-based photodetectors by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Loubychev, Dmitri; Fastenau, Joel M.; Kattner, Michael; Frey, Phillip; Liu, Amy W. K.; Furlong, Mark J.

    2017-02-01

    GaSb and its heterostructures grown by molecular beam epitaxy (MBE) have received much attention given their application in a wide range of mid-wave and long-wave IR photodetector applications. With the maturation of the MBE growth process, focus is now turned to improving manufacturing readiness and the transition to the production of large-format wafers. We will discuss the transition from the development of early detector layer structures on 2" diameter GaSb substrates, through today's 3"/4" production standard, and to the onset of 5" pilot production from the perspective of volume compound semiconductor manufacturing. We will report on the growth of 5" GaSb-based MWIR nBn detector structures using a large format 5×5" production MBE platform. Structural and optical properties, as well as electrical data from large-area mesa diodes will be presented and compared with results achieved with smaller batch size MBE reactor platform.

  14. 10. VIEW TO NORTHWEST; OBLIQUE VIEW OF SOUTH END OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. VIEW TO NORTHWEST; OBLIQUE VIEW OF SOUTH END OF MBE BUILDING (Asano) - Los Angeles Union Passenger Terminal, Mail, Baggage, & Express Building, 800 North Alameda Street, Los Angeles, Los Angeles County, CA

  15. 40. VIEW TO WEST; EAST FRONT YARD MASTER'S OFFICE, INSIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. VIEW TO WEST; EAST FRONT YARD MASTER'S OFFICE, INSIDE GARAGE, SECOND FLOOR, MBE BUILDING (Dobson) - Los Angeles Union Passenger Terminal, Mail, Baggage, & Express Building, 800 North Alameda Street, Los Angeles, Los Angeles County, CA

  16. 1. VIEW TO SOUTH; RAMP AND WEST FRONT MAIL, BAGGAGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW TO SOUTH; RAMP AND WEST FRONT MAIL, BAGGAGE AND EXPRESS BUILDING (MBE) IN RELATION TO TERMINAL BUILDING (Dobson) - Los Angeles Union Passenger Terminal, Mail, Baggage, & Express Building, 800 North Alameda Street, Los Angeles, Los Angeles County, CA

  17. 19. VIEW TO SOUTHEAST, NORTH SIDE RETAINING WALL; WEST FRONT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. VIEW TO SOUTHEAST, NORTH SIDE RETAINING WALL; WEST FRONT MBE BUILDING, FIRST FLOOR (Dobson) - Los Angeles Union Passenger Terminal, Mail, Baggage, & Express Building, 800 North Alameda Street, Los Angeles, Los Angeles County, CA

  18. 12. VIEW TO NORTHWEST; OBLIQUE VIEW OF SOUTH END OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. VIEW TO NORTHWEST; OBLIQUE VIEW OF SOUTH END OF MBE BUILDING AND ADJOINING TRACK SHED (Asano) - Los Angeles Union Passenger Terminal, Mail, Baggage, & Express Building, 800 North Alameda Street, Los Angeles, Los Angeles County, CA

  19. 9. VIEW TO NORTH; SOUTH RETAINING WALL AND SOUTH FACADE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. VIEW TO NORTH; SOUTH RETAINING WALL AND SOUTH FACADE OF MBE BUILDING (Asano) - Los Angeles Union Passenger Terminal, Mail, Baggage, & Express Building, 800 North Alameda Street, Los Angeles, Los Angeles County, CA

  20. 8. VIEW TO NORTHEAST; OBLIQUE VIEW OF SOUTH END OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW TO NORTHEAST; OBLIQUE VIEW OF SOUTH END OF MBE BUILDING (Asano) - Los Angeles Union Passenger Terminal, Mail, Baggage, & Express Building, 800 North Alameda Street, Los Angeles, Los Angeles County, CA

  1. 7. VIEW TO EAST; WEST FACADE OF SOUTH END OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW TO EAST; WEST FACADE OF SOUTH END OF MBE BUILDING (Asano) - Los Angeles Union Passenger Terminal, Mail, Baggage, & Express Building, 800 North Alameda Street, Los Angeles, Los Angeles County, CA

  2. 8-9 and 14-15 meu Two-Color 640x486 GaAs/AlGaAs Quantum Well Infrared Photodetector (QWIP) Focal Plane Array Camera

    NASA Technical Reports Server (NTRS)

    Guanapala, S.; Bandara, S.; Singh, A.; Liu, J.; Rafol, S.; Luong, E.; Mumolo, J.; Tran, N.; Vincent, J.; Shott, C.; Long, J.; LeVan, P.

    1999-01-01

    An optimized long-wavelength two-color Quantum Well Infrared Phototdetector (QWIP) device structure has been designed. This device structure was grown on a three-inch semi-insulating GaAs substrate by molecular beam epitaxy (MBE).

  3. Heavy-Ion Fusion Accelerator Research, 1991

    SciTech Connect

    Not Available

    1992-03-01

    This report discusses the following topics: research with multiple- beam experiment MBE-4; induction linac systems experiments; and long- range research and development of heavy-ion fusion accelerators.

  4. Inversion domains in GaN grown on sapphire

    SciTech Connect

    Romano, L.T.; Northrup, J.E.; OKeefe, M.A.

    1996-10-01

    Planar defects observed in GaN films grown on (0001) sapphire have been identified as inversion domain boundaries (IDBs) by a combination of high resolution transmission electron microscopy, multiple dark field imaging, and convergent beam electron diffraction techniques. Films grown by molecular beam epitaxy (MBE), metalorganic vapor deposition (MOCVD), and hydride vapor phase epitaxy (HVPE) were investigated and all were found to contain IDBs. The IDBs in the MBE and HVPE films extended from the interface to the film surface and formed columnar domains that ranged in width from 3 to 20 nm in the MBE films and up to 100 nm in the HVPE films. For the films investigated, the MBE films had the highest density, and the MOCVD films had the lowest density of IDBs. The nucleation of inversion domains (IDs) may result from step-related inhomogeneities of the GaN/sapphire interface. {copyright} {ital 1996 American Institute of Physics.}

  5. Comparison of the In distribution in InGaN/GaN quantum well structures grown by molecular beam epitaxy and metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Potin, V.; Hahn, E.; Rosenauer, A.; Gerthsen, D.; Kuhn, B.; Scholz, F.; Dussaigne, A.; Damilano, B.; Grandjean, N.

    2004-02-01

    We have compared the In distribution in InGaN quantum wells grown by molecular beam epitaxy (MBE) and metalorganic vapor phase epitaxy (MOVPE). The samples were studied by conventional and high-resolution transmission electron microscopy (HRTEM). The local and average In concentrations and the In distribution in the quantum wells were determined using the digital analysis of lattice images (DALI) method based on the evaluation of HRTEM lattice-fringe images. Similar lateral fluctuations of the In concentration were observed in MBE- and MOVPE-grown samples. The In concentration varies on a small scale (In-rich clusters with lateral extensions below 4 nm) and on a larger scale of a few 10 nm, which is attributed to phase separation. In contrast, the In distribution in growth direction differs significantly in the MBE and MOVPE samples which is explained by different In-segregation efficiencies and In desorption before the GaN cap layer deposition during MBE.

  6. 23 CFR 230.202 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... for Minority, Disadvantaged, and Women Business Enterprises § 230.202 Definitions. (a) Minority... Federal-aid highway program as a minority business enterprise (MBE), women business enterprise (WBE), or...

  7. 8-9 and 14-15 meu Two-Color 640x486 GaAs/AlGaAs Quantum Well Infrared Photodetector (QWIP) Focal Plane Array Camera

    NASA Technical Reports Server (NTRS)

    Guanapala, S.; Bandara, S.; Singh, A.; Liu, J.; Rafol, S.; Luong, E.; Mumolo, J.; Tran, N.; Vincent, J.; Shott, C.; hide

    1999-01-01

    An optimized long-wavelength two-color Quantum Well Infrared Phototdetector (QWIP) device structure has been designed. This device structure was grown on a three-inch semi-insulating GaAs substrate by molecular beam epitaxy (MBE).

  8. Effects of substrate orientation on the growth of InSb nanostructures by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Chou, C. Y.; Torfi, A.; Pei, C.; Wang, W. I.

    2016-05-01

    In this work, the effects of substrate orientation on InSb quantum structure growth by molecular beam epitaxy (MBE) are presented. Motivated by the observation that (411) evolves naturally as a stable facet during MBE crystal growth, comparison studies have been carried out to investigate the effects of the crystal orientation of the underlying GaSb substrate on the growth of InSb by MBE. By depositing InSb on a number of different substrate orientations, namely: (100), (311), (411), and (511), a higher nanostructure density was observed on the (411) surface compared with the other orientations. This result suggests that the (411) orientation presents a superior surface in MBE growth to develop a super-flat GaSb buffer surface, naturally favorable for nanostructure growth.

  9. Silicon surface preparation for III-V molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Madiomanana, K.; Bahri, M.; Rodriguez, J. B.; Largeau, L.; Cerutti, L.; Mauguin, O.; Castellano, A.; Patriarche, G.; Tournié, E.

    2015-03-01

    We report on a silicon substrate preparation for III-V molecular-beam epitaxy (MBE). It combines sequences of ex situ and in situ treatments. The ex situ process is composed of cycles of HF dip and O2 plasma treatments. Ellipsometry and atomic force microscopy performed after each step during the substrate preparation reveal surface cleaning and de-oxidation. The in situ treatment consists in flash annealing the substrate in the MBE chamber prior to epitaxial growth. GaSb-based multiple quantum well heterostructures emitting at 1.55 μm were grown by MBE on Si substrates prepared by different methods. Structural characterizations using XRD and TEM coupled with photoluminescence spectroscopy demonstrates the efficiency of our preparation process. This study thus unravels a simple and reproducible protocol to prepare the Si surface prior to III-V MBE.

  10. EPA Form 5700‑52A: United States Environmental Protection Agency Minority Business Enterprise/Woman Business Enterprise Utilization under Federal Grants and Cooperative Agreements

    EPA Pesticide Factsheets

    MBE/WBE utilization is based on 40 CFR Part 33. EPA Form 5700-52A must be completed by recipients of Federal grants, cooperative agreements, or other Federal financial assistance which involve procurement of supplies, equipment, construction, etc.

  11. Smoothness and cleanliness of the GaAs (100) surface after thermal desorption of the native oxide for the synthesis of high mobility structures using molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Lee, J. J. D.; West, K. W.; Baldwin, K. W.; Pfeiffer, L. N.

    2012-10-01

    To prepare a GaAs substrate for molecular beam epitaxial (MBE) growth, the nominal ˜3 nm native oxide is typically thermally desorbed into vacuum. To test the completeness and quality of this desorption, we describe a technique, which combines MBE, thermal desorption, atomic force microscopy (AFM), reflection high-energy electron diffraction (RHEED), and secondary ion mass spectroscopy (SIMS), for detecting roughness and trace residues of contamination on (100) GaAs surfaces before MBE growth. At all desorption temperatures in the range 600-665 °C, our RHEED measurements show that the native oxide is largely desorbed within 4 min. However, the SIMS and AFM data indicate that a residue of carbon invariably remains on the GaAs (100) surface, and tenaciously resists all further attempts at its removal by thermal desorption. Since thermal desorption of the native oxide has long been the standard technique for preparing GaAs substrates for MBE growth, we suggest that MBE growth on GaAs has in general been accomplished by epitaxially growing through a partial monolayer of carbon. We believe this is the likely reason for the generally unsatisfactory quality of GaAs MBE growth after lithographic patterning on previously MBE grown structures. Our AFM data also indicate that extended native oxide desorption times or high desorption temperatures not only are ineffective at removal of the carbon residue, but are always accompanied by additional strong roughening effects on the GaAs surface morphology. Finally, we demonstrate that smoother starting surfaces for MBE growth correlate well with higher two-dimensional carrier mobilities in the resulting AlGaAs/GaAs heterostructures.

  12. International Conference on the Physics of Semiconductors (17th) Held in San Francisco, California on August 6-10, 1984

    DTIC Science & Technology

    1984-09-30

    from MOCVD quantum well structures we have previously studied, which have a slow decay component far stronger than that of the MBE structure. Our MBE...ESAKI a B Transition k Quantum Wells LunchAug. 6 C (Gornlk) Two DimensionalD Materials Symposium on Materials and Devices A (Cho, Matsushita) A... Quantum Wells Aug. 8 DI Transport Interface Electronic PropertiesA (Williams) b A (Rossi) Electronic r States THURSDAY O 5B Aug. 9 C Multiple k C Quantum

  13. Comparison of Epitaxial Growth Techniques for III-V Layer Structures

    DTIC Science & Technology

    1992-05-22

    FOR Ill-V LAYER STRUCTURES DTIC byS ELECTE G. B. STRINGFELLOW MAY 2 819S2 A Prepared for Publication in the Proceedings of croissance de cristaux et de...epitaxial growth techniques have been used for semiconductors, including liquid phase epitaxy (LPE), chloride vapor phase epitaxy (CIVPE) using...MBE (GSMBE), organometallic MBE (OMMBE or MOMBE), and chemical beam epitaxy (CBE). II. LIQUID PHASE EPITAXY The first technique listed, LPE, was one of

  14. An Investigation into the Effect of High-Power Pulse IR Radiation on the Properties of Surfaces of CdxHg1-хTe Heteroepitaxial Layers

    NASA Astrophysics Data System (ADS)

    Boltar', K. O.; Burlakov, I. D.; Voitsekhovskii, А. V.; Sizov, А. L.; Sredin, V. G.; Talipov, N. Kh.; Shul'ga, S. А.

    2013-12-01

    The results of investigations into radiation modification of surfaces of Cd x Hg1- x Te (CMT) heteroepitaxial layers grown by molecular-beam and liquid-phase epitaxy (MBE- and LPE CMT HEL) affected by high-power pulse short-wavelength IR radiation are discussed. It is found that the surfaces of MBE CMT HEL and LPE CMT are enhanced by mercury as a result of high-power pulse short-wavelength IR radiation.

  15. Delta-Doping at Wafer Level for High Throughput, High Yield Fabrication of Silicon Imaging Arrays

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael E. (Inventor); Nikzad, Shoulch (Inventor); Jones, Todd J. (Inventor); Greer, Frank (Inventor); Carver, Alexander G. (Inventor)

    2014-01-01

    Systems and methods for producing high quantum efficiency silicon devices. A silicon MBE has a preparation chamber that provides for cleaning silicon surfaces using an oxygen plasma to remove impurities and a gaseous (dry) NH3 + NF3 room temperature oxide removal process that leaves the silicon surface hydrogen terminated. Silicon wafers up to 8 inches in diameter have devices that can be fabricated using the cleaning procedures and MBE processing, including delta doping.

  16. Theoretical and material studies on thin-film electroluminescent devices

    NASA Technical Reports Server (NTRS)

    Summers, C. J.; Goldman, J. A.; Brennan, K.

    1988-01-01

    During this report period work was performed on the modeling of High Field Electronic Transport in Bulk ZnS and ZnSe, and also on the surface cleaning of Si for MBE growth. Some MBE growth runs have also been performed in the Varian GEN II System. A brief outline of the experimental work is given. A complete summary will be done at the end of the next reporting period at the completion of the investigation. The theoretical studies are included.

  17. Fabrication of precision high quality facets on molecular beam epitaxy material

    DOEpatents

    Petersen, Holly E.; Goward, William D.; Dijaili, Sol P.

    2001-01-01

    Fabricating mirrored vertical surfaces on semiconductor layered material grown by molecular beam epitaxy (MBE). Low energy chemically assisted ion beam etching (CAIBE) is employed to prepare mirrored vertical surfaces on MBE-grown III-V materials under unusually low concentrations of oxygen in evacuated etching atmospheres of chlorine and xenon ion beams. UV-stabilized smooth-surfaced photoresist materials contribute to highly vertical, high quality mirrored surfaces during the etching.

  18. Perceptions and Practices of Mass Bat Exposure Events in the Setting of Rabies Among U.S. Public Health Agencies.

    PubMed

    Hsu, C H; Brown, C M; Murphy, J M; Haskell, M G; Williams, C; Feldman, K; Mitchell, K; Blanton, J D; Petersen, B W; Wallace, R M

    2017-03-01

    Current guidelines in the setting of exposures to potentially rabid bats established by the Advisory Committee on Immunization Practices (ACIP) address post-exposure prophylaxis (PEP) administration in situations where a person may not be aware that a bite or direct contact has occurred and the bat is not available for diagnostic testing. These include instances when a bat is discovered in a room where a person awakens from sleep, is a child without an adult witness, has a mental disability or is intoxicated. The current ACIP guidelines, however, do not address PEP in the setting of multiple persons exposed to a bat or a bat colony, otherwise known as mass bat exposure (MBE) events. Due to a dearth of recommendations for response to these events, the reported reactions by public health agencies have varied widely. To address this perceived limitation, a survey of 45 state public health agencies was conducted to characterize prior experiences with MBE and practices to mitigate the public health risks. In general, most states (69% of the respondents) felt current ACIP guidelines were unclear in MBE scenarios. Thirty-three of the 45 states reported prior experience with MBE, receiving an average of 16.9 MBE calls per year and an investment of 106.7 person-hours annually on MBE investigations. PEP criteria, investigation methods and the experts recruited in MBE investigations varied between states. These dissimilarities could reflect differences in experience, scenario and resources. The lack of consistency in state responses to potential mass exposures to a highly fatal disease along with the large contingent of states dissatisfied with current ACIP guidance warrants the development of national guidelines in MBE settings.

  19. Research in the Optical Sciences

    DTIC Science & Technology

    1994-02-01

    Semiconductor Structures D. Sarid , M. Gallagher and T. Ruskell ....................................... 49 Propagation of Short Optical Pulses in Passive...optical microscope was developed and tested. High quality single-crystal layers of beryllium were grown on germanium by molecular beam epitaxy (MBE...exam February 12. RESEARCH FINDINGS "This year we continued our study of epitaxial beryllium growth using molecular beam epitaxy (MBE). We were

  20. Robust Visible and Infrared Light Emitting Devices Using Rare-Earth-Doped GaN

    DTIC Science & Technology

    2006-05-31

    is encapsulated within thin barium titanate (BTO) dielectric layers for enhanced charge trapping at phosphor-dielectric interface. A high density...XRD). Fig. 3 illustrates the XRD spectra for the 4 15 min IGE and 60 min MBE GaN samples . The inserts of Fig. 3 show SEM microphotographs of both... samples grown using various 3 20 min IGE and 60 min MBE on Si substrates. Above bandgap PL was measured at room temperature under 325nm HeCd laser

  1. Reliability-Limiting Defects in GaN/AlGaN High Electron Mobility Transistors

    DTIC Science & Technology

    2011-12-01

    ammonia-MBE growth on semi-insulating SiC, the GaN channel layers are typically grown at ~ 900 °C [28]. vii. Dislocations in MBE material The...5 2.2. Schematic diagram of metal organic chemical vapor deposition (MOCVD) growth. ............ 7 2.3. Schematic illustration of molecular...of a GaN HEMT, showing the gated and ungated portion of the channel . ...... 48 6.2. Gate voltage dependence of excess drain voltage low frequency

  2. Research on Materials and Components for Opto-Electronic Signal Processing and Computing

    DTIC Science & Technology

    1989-07-20

    and optical devices may potentially be integrated monolithically on the same chip. The advantages of integrated opto-electronic signal processing... monolithically integrated modulation/detector diode pair that has recently been fabricated based on sample MBE-533. MBE-533 consists of 50 periods... integrating monolithically photo diodes with MQW samples and have demonstrated that optical-optical interaction in a MQW detector/modulator pair is

  3. Arsenic {delta}-doped HgTe/HgCdTe superlattices grown by molecular beam epitaxy

    SciTech Connect

    Tsen, G. K. O.; Musca, C. A.; Dell, J. M.; Antoszewski, J.; Faraone, L.; Becker, C. R.

    2008-02-25

    Arsenic incorporation in HgTe/Hg{sub 0.05}Cd{sub 0.95}Te superlattices grown by molecular beam epitaxy (MBE) is reported. The incorporation was carried out by a {delta}-doping approach where arsenic was incorporated during MBE growth as acceptors. The superlattices were characterized via high resolution x-ray diffraction, Fourier transform infrared spectroscopy, secondary ion mass spectrometry, and magnetotransport Hall measurements coupled with the quantitative mobility spectrum analysis algorithm.

  4. Ballistic-electron-emission microscopy investigation of Schottky barrier interface formation

    NASA Technical Reports Server (NTRS)

    Hecht, M. H.; Bell, L. D.; Kaiser, W. J.; Grunthaner, F. J.

    1989-01-01

    Ballistic-electron-emission microscopy (BEEM) has been used to investigate the origin of defects at the Au/GaAs(100) Schottky barrier interface. In addition, molecular beam epitaxy (MBE) and in situ fabrication methods have been employed to control Schottky barrier interface properties. BEEM characterization combined with MBE methods has enabled the development of a near-ideal Schottky barrier interface with drastically reduced defect density.

  5. Characterization of the Order-Annealing Response of Nanostructured Iron-Palladium Based Ferromagnetic Thin-Films

    DTIC Science & Technology

    2001-11-01

    techniques have been used to characterize the response of room temperature magnetron sputtered Fe-Pd thin films on Si-susbtrates to post-deposition order...beam epitaxy (MBE) [3] and by magnetron sputtering on Pt-underlayers on MgO substrates [4]. The latter method allows more rapid deposition and is...currently popularly employed in most industrial operations. Unlike MBE, magnetron sputtering without substrate heating usually produces intermetallic

  6. Effect of tensile deformation on micromagnetic parameters in 0.2% carbon steel and 2.25Cr-1Mo steel

    SciTech Connect

    Moorthy, V.; Vaidyanathan, S.; Jayakumar, T.; Raj, B.; Kashyap, B.P.

    1999-04-23

    The influence of prior tensile deformation on the magnetic Barkhausen emission (MBE) and the hysteresis (B-H) curve has been studied in 0.2% carbon steel and 2.25Cr-1Mo steel under different tempered conditions. This study shows that the micromagnetic parameters can be used to identify the four stages of deformation, namely (1) perfectly elastic, (2) microplastic yielding, (3) macroyielding and (4) progressive plastic deformation. However, it is observed that the MBE profile shows more distinct changes at different stages of tensile deformation than the hysteresis curve. It has been established that the beginning of microplastic yielding and macroyielding can be identified from the MBE profile which is not possible from the stress-strain plot. The onset of microplastic yielding can be identified from the decrease in the MBE peak height. The macroyielding can be identified from the merging of the initially present two-peak MBE profile into a single central peak with relatively higher peak height and narrow profile width. The difference between the variation of MBE and hysteresis curve parameters with strain beyond macroyielding indicates the difference in the deformation state of the surface and bulk of the sample.

  7. The many-body expansion combined with neural networks

    NASA Astrophysics Data System (ADS)

    Yao, Kun; Herr, John E.; Parkhill, John

    2017-01-01

    Fragmentation methods such as the many-body expansion (MBE) are a common strategy to model large systems by partitioning energies into a hierarchy of decreasingly significant contributions. The number of calculations required for chemical accuracy is still prohibitively expensive for the ab initio MBE to compete with force field approximations for applications beyond single-point energies. Alongside the MBE, empirical models of ab initio potential energy surfaces have improved, especially non-linear models based on neural networks (NNs) which can reproduce ab initio potential energy surfaces rapidly and accurately. Although they are fast, NNs suffer from their own curse of dimensionality; they must be trained on a representative sample of chemical space. In this paper we examine the synergy of the MBE and NN's and explore their complementarity. The MBE offers a systematic way to treat systems of arbitrary size while reducing the scaling problem of large systems. NN's reduce, by a factor in excess of 106, the computational overhead of the MBE and reproduce the accuracy of ab initio calculations without specialized force fields. We show that for a small molecule extended system like methanol, accuracy can be achieved with drastically different chemical embeddings. To assess this we test a new chemical embedding which can be inverted to predict molecules with desired properties. We also provide our open-source code for the neural network many-body expansion, Tensormol.

  8. Inelastic processes in atomic collisions involving ground state and laser-prepared atoms

    NASA Astrophysics Data System (ADS)

    Planje, Willem Gilles

    1999-11-01

    In dit proefschrift worden experimenten beschreven waarbij ionen of atomen met een bepaalde snelheid op een ensemble van doelwitatomen worden gericht. Wanneer twee deeltjes elkaar voldoende genaderd hebben, vindt er wissel- werking plaats waarbij allerlei processen kunnen optreden. Deze processen resulteren in specieke eindproducten. Kennis over de interactie tussen twee botsingspartners wordt verkregen door te bekijken welke eindproducten ontstaan, en in welke mate. Een belangrijke grootheid die van invloed is op mogelijke processen is de onderlinge snelheid van de twee kernen, oftewel de botsingssnelheid. Wanneer de botsingssnelheid voldoende klein is dan kunnen de verschillende reactiemechanismen zowel kwalitatief als kwanti- tatief vaak goed voorspeld worden door het systeem te beschouwen als een kort-stondig molecuul, opgebouwd uit de twee botsende deeltjes. De ver- schillende processen die kunnen optreden worden gekwaliceerd afhankelijk van de vorming van bepaalde eindproducten. Ruwweg de volgende indeling kan gemaakt worden: 1. de interne structuur van de eindproducten zijn identiek aan die van de beginproducten. We spreken dan van een elastische botsing. 2. e en van de deeltjes of beiden worden in een aangeslagen toestand ge- bracht (of ge¨oniseerd). Dit zijn processen waarbij de herschikte elek- tronen zich bij de oorspronkelijke kern bevinden. We spreken dan van excitatie of ionisatie. 3. e en of meerdere elektronen bevinden zich bij de andere kern na de botsing (eventueel in aangeslagen toestand). We spreken dan van elek- tronenoverdracht. In het eerste deel van deze dissertatie worden botsingsexperimenten tussen heliumionen en natriumatomen beschreven waarbij het proces van elek- tronenoverdracht wordt onderzocht. Bij dit mechanisme is het buitenste 117?Samenvatting natriumelektron betrokken. Deze kan relatief gemakkelijk `overspringen' naar het heliumion wanneer deze zich dicht in de buurt van het natrium- atoom bevindt. Het elektron kan hierbij een

  9. Comparison of total water vapor column from GOME-2 on MetOp-A against ground-based GPS measurements at the Iberian Peninsula.

    PubMed

    Román, R; Antón, M; Cachorro, V E; Loyola, D; Ortiz de Galisteo, J P; de Frutos, A; Romero-Campos, P M

    2015-11-15

    Water vapor column (WVC) obtained by GOME-2 instrument (GDP-4.6 version) onboard MetOp-A satellite platform is compared against reference WVC values derived from GPS (Global Positioning System) instruments from 2007 to 2012 at 21 places located at Iberian Peninsula. The accuracy and precision of GOME-2 to estimate the WVC is studied for different Iberian Peninsula zones using the mean (MBE) and the standard deviation (SD) of the GOME-2 and GPS differences. A direct comparison of all available data shows an overestimation of GOME-2 compared to GPS with a MBE of 0.7 mm (10%) and a precision quantified by a SD equals to 4.4mm (31%). South-Western zone presents the highest overestimation with a MBE of 1.9 mm (17%), while Continental zone shows the lowest SD absolute value (3.3mm) due mainly to the low WVC values reached at this zone. The influence of solar zenith angle (SZA), cloud fraction (CF), and the type of surface and its albedo on the differences between GOME-2 and GPS is analyzed in detail. MBE and SD increase when SZA increases, but MBE decreases (taking negative values) when CF increases and SD shows no significant dependence on CF. Under cloud-free conditions, the differences between WVC from GOME-2 and GPS are within the WVC error given by GOME-2. The changes of MBE and SD on Surface Albedo are not so evident, but MBE slightly decreases when the Surface Albedo increases. WVC from GOME-2 is, in general, more precise for land than for sea pixels.

  10. Comparison of morphology evolution of Ge(001) homoepitaxial films grown by pulsed laser deposition and molecular-beam epitaxy

    SciTech Connect

    Shin Byungha; Leonard, John P.; McCamy, James W.; Aziz, Michael J.

    2005-10-31

    Using a dual molecular-beam epitaxy (MBE)-pulsed laser deposition (PLD) ultrahigh vacuum chamber, we have conducted the first experiments under identical thermal, background, and surface preparation conditions to compare Ge(001) homoepitaxial growth morphology in PLD and MBE. We find that in PLD with low kinetic energy and in MBE the film morphology evolves in a similar fashion: initially irregularly shaped mounds form, followed by pyramidal mounds with edges of the square-base along the <100> directions; the film roughness and mound separation increase with film thickness. In PLD with high kinetic energy, well-defined pyramidal mounds are not observed and the morphology rather resembles that of an ion-etched Ge(001) surface. The areal feature density is higher for PLD films than for MBE films grown at the same average growth rate and temperature. Furthermore, the dependence upon film thickness of roughness and feature separation differ for PLD and MBE. We attribute these differences to the higher yield of defect generation by energetic species in PLD.

  11. The Ciprofloxacin Impact on Biofilm Formation by Proteus Mirabilis and P. Vulgaris Strains

    PubMed Central

    Kwiecinska-Pirog, Joanna; Skowron, Krzysztof; Bartczak, Wojciech; Gospodarek-Komkowska, Eugenia

    2016-01-01

    Background Proteus spp. bacilli belong to opportunistic human pathogens, which are primarily responsible for urinary tract and wound infections. An important virulence factor is their ability to form biofilms that greatly reduce the effectiveness of antibiotics in the site of infection. Objectives The aim of this study was to determine the value of the minimum concentration of ciprofloxacin that eradicates a biofilm of Proteus spp. strains. Materials and Methods A biofilm formation of 20 strains of P. mirabilis and 20 strains of P. vulgaris were evaluated by a spectrophotometric method using 0.1% 2, 3, 5-Triphenyl-tetrazolium chloride solution (TTC, AVANTORTM). On the basis of the results of the absorbance of the formazan, a degree of reduction of biofilm and minimum biofilm eradication (MBE) values of MBE50 and MBE90 were determined. Results All tested strains formed a biofilm. A value of 1.0 μg/mL ciprofloxacin is MBE50 for the strains of both tested species. An MBE90 value of ciprofloxacin for isolates of P. vulgaris was 2 μg/mL and for P. mirabilis was 512 μg/mL. Conclusions Minimum biofilm eradication values of ciprofloxacin obtained in the study are close to the values of the minimal inhibition concentration (MIC). PMID:27303616

  12. Molecular beam epitaxy as a method for the growth of free-standing bulk zinc-blende GaN and AlGaN crystals

    NASA Astrophysics Data System (ADS)

    Novikov, S. V.; Staddon, C. R.; Foxon, C. T.; Luckert, F.; Edwards, P. R.; Martin, R. W.; Kent, A. J.

    2011-05-01

    We have studied the growth of zinc-blende GaN and AlxGa1-xN layers, structures and bulk crystals by molecular beam epitaxy (MBE). MBE is normally regarded as an epitaxial technique for growth of very thin layers with monolayer control of their thickness. However, we have used the MBE technique for bulk crystal growth and have produced GaN layers up to 100 μm in thickness. Thick, undoped, cubic GaN films were grown on semi-insulating GaAs (0 0 1) substrates by a modified plasma-assisted molecular beam epitaxy (PA-MBE) method and were removed from the GaAs substrate after the growth. The resulting free-standing GaN wafers may be used as substrates for further epitaxy of cubic GaN-based structures and devices. We have demonstrated that the PA-MBE process, we had developed, also allows us to achieve free-standing zinc-blende AlxGa1-xN wafers.

  13. High responsivity in molecular beam epitaxy grown β-Ga2O3 metal semiconductor metal solar blind deep-UV photodetector

    NASA Astrophysics Data System (ADS)

    Singh Pratiyush, Anamika; Krishnamoorthy, Sriram; Vishnu Solanke, Swanand; Xia, Zhanbo; Muralidharan, Rangarajan; Rajan, Siddharth; Nath, Digbijoy N.

    2017-05-01

    In this report, we demonstrate high spectral responsivity (SR) in MBE grown epitaxial β-Ga2O3-based solar blind metal-semiconductor-metal (MSM) photodetectors (PD). The (-201)-oriented β-Ga2O3 thin film was grown using plasma-assisted MBE on c-plane sapphire substrates. MSM devices fabricated with Ni/Au contacts in an interdigitated geometry were found to exhibit peak SR > 1.5 A/W at 236-240 nm at a bias of 4 V with a UV to visible rejection ratio > 105. The devices exhibited very low dark current < 10 nA at 20 V and showed no persistent photoconductivity (PPC) as evident from the sharp transients with a photo-to-dark current ratio > 103. These results represent the state-of-art performance for the MBE-grown β-Ga2O3 MSM solar blind detector.

  14. Growth and photoluminescence characteristics of AlGaAs nanowires

    NASA Astrophysics Data System (ADS)

    Wu, Z. H.; Sun, M.; Mei, X. Y.; Ruda, H. E.

    2004-07-01

    Growth of high-quality single-crystal AlGaAs nanowires was demonstrated using the vapor-liquid-solid (VLS) mechanism with molecular-beam epitaxy (MBE). Highly ordered AlGaAs nanowire arrays and GaAs /AlGaAs multilayer nanowires were also prepared. Photoluminescence (PL) from homogeneous AlGaAs and GaAs /AlGaAs multilayer nanowires was measured. The Al composition of the AlGaAs nanowires was found to be significantly lower than that for planar MBE films grown under the same conditions, as determined from PL and energy-dispersive x-ray spectroscopy measurements. This is explained in terms of the different growth mechanisms for VLS and normal MBE. Such AlGaAs nanowires are expected to have a wide range of applications in electronic and photonic devices.

  15. GaN nanowires with pentagon shape cross-section by ammonia-source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Lin, Yong; Leung, Benjamin; Li, Qiming; Figiel, Jeffrey. J.; Wang, George T.

    2015-10-01

    Ammonia-based molecular beam epitaxy (NH3-MBE) was used to grow catalyst-assisted GaN nanowires on (1 1 bar 02) r-plane sapphire substrates. Dislocation free [ 11 2 bar 0 ] oriented nanowires are formed with pentagon shape cross-section, instead of the usual triangular shape facet configuration. Specifically, the cross-section is the result of the additional two nonpolar { 10 1 bar 0 } side facets, which appear due to a decrease in relative growth rate of the { 10 1 bar 0 } facets to the { 10 1 bar 1 } and { 10 1 bar 1 } facets under the growth regime in NH3-MBE. Compared to GaN nanowires grown by Ni-catalyzed metal-organic chemical vapor deposition, the NH3-MBE grown GaN nanowires show more than an order of magnitude increase in band-edge to yellow luminescence intensity ratio, as measured by cathodoluminescence, indicating improved microstructural and optical properties.

  16. Comparative study of LaNiO3/LaAlO3 heterostructures grown by pulsed laser deposition and oxide molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Wrobel, F.; Mark, A. F.; Christiani, G.; Sigle, W.; Habermeier, H.-U.; van Aken, P. A.; Logvenov, G.; Keimer, B.; Benckiser, E.

    2017-01-01

    Variations in growth conditions associated with different deposition techniques can greatly affect the phase stability and defect structure of complex oxide heterostructures. We synthesized superlattices of the paramagnetic metal LaNiO3 and the large band gap insulator LaAlO3 by atomic layer-by-layer molecular beam epitaxy (MBE) and pulsed laser deposition (PLD) and compared their crystallinity and microstructure as revealed by high-resolution transmission electron microscopy images and resistivity. The MBE samples show a higher density of stacking faults but smoother interfaces and generally higher electrical conductivity. Our study identifies the opportunities and challenges of MBE and PLD growth and serves as a general guide for the choice of the deposition technique for perovskite oxides.

  17. Development of molecular beam epitaxy technology for III–V compound semiconductor heterostructure devices

    SciTech Connect

    Cheng, K. Y.

    2013-09-15

    Molecular beam epitaxy (MBE) is a versatile ultrahigh vacuum technique for growing multiple epitaxial layers of semiconductor crystals with high precision. The extreme control of the MBE technique over composition variation, interface sharpness, impurity doping profiles, and epitaxial layer thickness to the atomic level makes it possible to demonstrate a wide variety of novel semiconductor structures. Since its invention nearly 40 years ago, the MBE technique has evolved from a laboratory apparatus for exploring new materials and novel devices to a favored tool for the mass production of III–V high-speed devices. This paper will review some of the past developments in this technology and propose an outlook of future developments.

  18. Surface stability and the selection rules of substrate orientation for optimal growth of epitaxial II-VI semiconductors

    SciTech Connect

    Yin, Wan-Jian; Yang, Ji-Hui; Zaunbrecher, Katherine; Gessert, Tim; Barnes, Teresa; Wei, Su-Huai; Yan, Yanfa

    2015-10-05

    The surface structures of ionic zinc-blende CdTe (001), (110), (111), and (211) surfaces are systematically studied by first-principles density functional calculations. Based on the surface structures and surface energies, we identify the detrimental twinning appearing in molecular beam epitaxy (MBE) growth of II-VI compounds as the (111) lamellar twin boundaries. To avoid the appearance of twinning in MBE growth, we propose the following selection rules for choosing optimal substrate orientations: (1) the surface should be nonpolar so that there is no large surface reconstructions that could act as a nucleation center and promote the formation of twins; (2) the surface structure should have low symmetry so that there are no multiple equivalent directions for growth. These straightforward rules, in consistent with experimental observations, provide guidelines for selecting proper substrates for high-quality MBE growth of II-VI compounds.

  19. Universality and dependence on initial conditions in the class of the nonlinear molecular beam epitaxy equation.

    PubMed

    Carrasco, I S S; Oliveira, T J

    2016-11-01

    We report extensive numerical simulations of growth models belonging to the nonlinear molecular beam epitaxy (nMBE) class, on flat (fixed-size) and expanding substrates (ES). In both d=1+1 and 2+1, we find that growth regime height distributions (HDs), and spatial and temporal covariances are universal, but are dependent on the initial conditions, while the critical exponents are the same for flat and ES systems. Thus, the nMBE class does split into subclasses, as does the Kardar-Parisi-Zhang (KPZ) class. Applying the "KPZ ansatz" to nMBE models, we estimate the cumulants of the 1+1 HDs. Spatial covariance for the flat subclass is hallmarked by a minimum, which is not present in the ES one. Temporal correlations are shown to decay following well-known conjectures.

  20. Growth of delta-doped layers on silicon CCD/S for enhanced ultraviolet response

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael E. (Inventor); Grunthaner, Paula J. (Inventor); Grunthaner, Frank J. (Inventor); Terhune, Robert W. (Inventor); Hecht, Michael H. (Inventor)

    1994-01-01

    The backside surface potential well of a backside-illuminated CCD is confined to within about half a nanometer of the surface by using molecular beam epitaxy (MBE) to grow a delta-doped silicon layer on the back surface. Delta-doping in an MBE process is achieved by temporarily interrupting the evaporated silicon source during MBE growth without interrupting the evaporated p+ dopant source (e.g., boron). This produces an extremely sharp dopant profile in which the dopant is confined to only a few atomic layers, creating an electric field high enough to confine the backside surface potential well to within half a nanometer of the surface. Because the probability of UV-generated electrons being trapped by such a narrow potential well is low, the internal quantum efficiency of the CCD is nearly 100% throughout the UV wavelength range. Furthermore, the quantum efficiency is quite stable.

  1. Investigation of Quantum Effects in Heterostructures.

    DTIC Science & Technology

    2014-09-26

    identlty by block number) .j --) InAs/GaSb and GaSb/AlSb superlattices, GaSb/InAs/GaSb quantum wells and GaAs / GaA #As heterojunctions were prepared by MBE...MBE technique. Two MBE systems were available: Riber 1000 for InAs/GaSb/ASb; and Varian GEN-I for GaAs /GaAlAs. The figure shown below (taken frurn VG...studies are GaAs , GaAIAs, InAs, GaSb, AISb, Si and Ge. 3.0- Uase AlP CS0.5 2.0 ,. •b Eg CdTe (ZLm) -Si 1 -Oi 1.00 In~s kSb S 0F I I I I I I I I I I I T e

  2. The controlled growth of perovskite thin films: Opportunities, challenges, and synthesis

    SciTech Connect

    Schlom, D.G.; Theis, C.D.; Hawley, M.E.

    1997-10-01

    The broad spectrum of electronic and optical properties exhibited by perovskites offers tremendous opportunities for microelectronic devices, especially when a combination of properties in a single device is desired. Molecular beam epitaxy (MBE) has achieved unparalleled control in the integration of semiconductors at the monolayer-level; its use for the integration of perovskites with similar nanoscale customization appears promising. Composition control and oxidation are often significant challenges to the growth of perovskites by MBE, but we show that these can be met through the use of purified ozone as an oxidant and real-time atomic absorption composition control. The opportunities, challenges, and synthesis of oxide heterostructures by reactive MBE are described, with examples taken from the growth of oxide superconductors and oxide ferroelectrics.

  3. Molecular beam epitaxy of SrTiO3 with a growth window

    NASA Astrophysics Data System (ADS)

    Jalan, Bharat; Moetakef, Pouya; Stemmer, Susanne

    2009-07-01

    Many complex oxides with only nonvolatile constituents do not have a wide growth window in conventional molecular beam epitaxy (MBE) approaches, which makes it difficult to obtain stoichiometric films. Here it is shown that a growth window in which the stoichiometry is self-regulating can be achieved for SrTiO3 films by using a hybrid MBE approach that uses a volatile metal-organic source for Ti, titanium tetra isopropoxide (TTIP). The growth window widens and shifts to higher TTIP/Sr flux ratios with increasing temperature, showing that it is related to the desorption of the volatile TTIP. We demonstrate stoichiometric, highly perfect, insulating SrTiO3 films. The approach can be adapted for the growth of other complex oxides that previously were believed to have no wide MBE growth window.

  4. Molecular beam epitaxy of SrTiO{sub 3} with a growth window

    SciTech Connect

    Jalan, Bharat; Moetakef, Pouya; Stemmer, Susanne

    2009-07-20

    Many complex oxides with only nonvolatile constituents do not have a wide growth window in conventional molecular beam epitaxy (MBE) approaches, which makes it difficult to obtain stoichiometric films. Here it is shown that a growth window in which the stoichiometry is self-regulating can be achieved for SrTiO{sub 3} films by using a hybrid MBE approach that uses a volatile metal-organic source for Ti, titanium tetra isopropoxide (TTIP). The growth window widens and shifts to higher TTIP/Sr flux ratios with increasing temperature, showing that it is related to the desorption of the volatile TTIP. We demonstrate stoichiometric, highly perfect, insulating SrTiO{sub 3} films. The approach can be adapted for the growth of other complex oxides that previously were believed to have no wide MBE growth window.

  5. The impact of substrate selection for the controlled growth of graphene by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Schumann, T.; Lopes, J. M. J.; Wofford, J. M.; Oliveira, M. H.; Dubslaff, M.; Hanke, M.; Jahn, U.; Geelhaar, L.; Riechert, H.

    2015-09-01

    We examine how substrate selection impacts the resulting film properties in graphene growth by molecular beam epitaxy (MBE). Graphene growth on metallic as well as dielectric templates was investigated. We find that MBE offers control over the number of atomic graphene layers regardless of the substrate used. High structural quality could be achieved for graphene prepared on Ni (111) films which were epitaxially grown on MgO (111). For growth either on Al2O3 (0001) or on (6√3×6√3)R30°-reconstructed SiC (0001) surfaces, graphene with a higher density of defects is obtained. Interestingly, despite their defective nature, the layers possess a well defined epitaxial relation to the underlying substrate. These results demonstrate the feasibility of MBE as a technique for realizing the scalable synthesis of this two-dimensional crystal on a variety of substrates.

  6. Use of polyacrylamide gel moving boundary electrophoresis to enable low-power protein analysis in a compact microdevice.

    PubMed

    Duncombe, Todd A; Herr, Amy E

    2012-10-16

    In designing a protein electrophoresis platform composed of a single-inlet, single-outlet microchannel powered solely by voltage control (no pumps, values, injectors), we adapted the original protein electrophoresis format-moving boundary electrophoresis (MBE)-to a high-performance, compact microfluidic format. Key to the microfluidic adaptation is minimization of injection dispersion during sample injection. To reduce injection dispersion, we utilize a photopatterned free-solution-polyacrylamide gel (PAG) stacking interface at the head of the MBE microchannel. The nanoporous PAG molecular sieve physically induces a mobility shift that acts to enrich and sharpen protein fronts as proteins enter the microchannel. Various PAG configurations are characterized, with injection dispersion reduced by up to 85%. When employed for analysis of a model protein sample, microfluidic PAG MBE baseline-resolved species in 5 s and in a separation distance of less than 1 mm. PAG MBE thus demonstrates electrophoretic assays with minimal interfacing and sample handling, while maintaining separation performance. Owing to the short separation lengths needed in PAG MBE, we reduced the separation channel length to demonstrate an electrophoretic immunoassay powered with an off-the-shelf 9 V battery. The electrophoretic immunoassay consumed less than 3 μW of power and was completed in 30 s. To our knowledge, this is the lowest voltage and lowest power electrophoretic protein separation reported. Looking forward, we see the low-power PAG MBE as a basis for highly multiplexed protein separations (mobility shift screening assays) as well as for portable low-power diagnostic assays.

  7. Magnetic Resonance of Defects in Heteroepitaxial Semiconductor Structures

    DTIC Science & Technology

    1992-05-11

    Resistivity of Low-Temperature MBE GaAs," in: Semi-Insulating II/V Materials 1990, Eds. A.G. Milnes and C.J. Miner ( Adam Hilger, Bristol 1990), p. 111. 6...Resistivity of Low-Temperature MBE GaAs," in: Semi-Insulating III/V Materials 1990, Eds. A.G. Milnes and C.J. Miner ( Adam Hilger, Bristol 1990), p...and Temperature on the Structure of Low-Temperature GaAs, Z Liliental- Weber, A. Claverie, P. Werner, W. Schaff , and E. R. Weber, in: Defects in

  8. Two Different Methods for Numerical Solution of the Modified Burgers' Equation

    PubMed Central

    Karakoç, Seydi Battal Gazi; Başhan, Ali; Geyikli, Turabi

    2014-01-01

    A numerical solution of the modified Burgers' equation (MBE) is obtained by using quartic B-spline subdomain finite element method (SFEM) over which the nonlinear term is locally linearized and using quartic B-spline differential quadrature (QBDQM) method. The accuracy and efficiency of the methods are discussed by computing L 2 and L ∞ error norms. Comparisons are made with those of some earlier papers. The obtained numerical results show that the methods are effective numerical schemes to solve the MBE. A linear stability analysis, based on the von Neumann scheme, shows the SFEM is unconditionally stable. A rate of convergence analysis is also given for the DQM. PMID:25162064

  9. Graphene growth by molecular beam epitaxy on the carbon-face of SiC

    SciTech Connect

    Moreau, E.; Godey, S.; Ferrer, F. J.; Vignaud, D.; Wallart, X.; Avila, J.; Asensio, M. C.; Bournel, F.; Gallet, J.-J.

    2010-12-13

    Graphene layers have been grown by molecular beam epitaxy (MBE) on the (0001) C-face of SiC and have been characterized by atomic force microscopy, low energy electron diffraction (LEED), and UV photoelectron spectroscopy. Contrary to the graphitization process, the step-terrace structure of SiC is fully preserved during the MBE growth. LEED patterns show multiple orientation domains which are characteristic of graphene on SiC (0001), indicating non-Bernal rotated graphene planes. Well-defined Dirac cones, typical of single-layer graphene, have been observed in the valence band for few graphene layers by synchrotron spectroscopy, confirming the electronic decoupling of graphene layers.

  10. Passivation of InAs and GaSb with Novel High kappa Dielectrics

    DTIC Science & Technology

    2011-01-05

    Ga2O3 ( Gd2O3 ) (amorphous) and Gd2O3 (single crystals), and ALD-Al2O3 and HfO2 II、 growth of InAs and GaSb epi-layers using molecular beam epitaxy (MBE...spectroscopy ( XPS ), and high-resolution XPS using synchrotron radiation i. to probe the chemistry (interfacial atomic bonding) in the hetero...epitaxy (MBE), followed by the in-situ growth of Gd2O3 3 ML thick in ultra high vacuum (UHV) with electron beam evaporation and then by atomic layer

  11. A portable molecular beam epitaxy system for in situ x-ray investigations at synchrotron beamlines.

    PubMed

    Slobodskyy, T; Schroth, P; Grigoriev, D; Minkevich, A A; Hu, D Z; Schaadt, D M; Baumbach, T

    2012-10-01

    A portable synchrotron molecular beam epitaxy (MBE) system is designed and applied for in situ investigations. The growth chamber is equipped with all the standard MBE components such as effusion cells with shutters, main shutter, cooling shroud, manipulator, reflection high energy electron diffraction setup, and pressure gauges. The characteristic feature of the system is the beryllium windows which are used for in situ x-ray measurements. An UHV sample transfer case allows in vacuo transfer of samples prepared elsewhere. We describe the system design and demonstrate its performance by investigating the annealing process of buried InGaAs self-organized quantum dots.

  12. Heavily boron-doped Si layers grown below 700 C by molecular beam epitaxy using a HBO2 source

    NASA Technical Reports Server (NTRS)

    Lin, T. L.; Fathauer, R. W.; Grunthaner, P. J.

    1989-01-01

    Boron doping in Si layers grown by molecular beam epitaxy (MBE) at 500-700 C using an HBO2 source has been studied. The maximum boron concentration without detectable oxygen incorporation for a given substrate temperature and Si growth rate has been determined using secondary-ion mass spectrometry analysis. Boron present in the Si MBE layers grown at 550-700 C was found to be electrically active, independent of the amount of oxygen incorporation. By reducing the Si growth rate, highly boron-doped layers have been grown at 600 C without detectable oxygen incorporation.

  13. Study of InGaAs based MODFET structures using variable angle spectroscopic ellipsometry

    NASA Technical Reports Server (NTRS)

    Alterovitz, S. A.; Sieg, R. M.; Yao, H. D.; Snyder, P. G.; Woollam, J. A.; Pamulapati, J.; Bhattacharya, P. K.; Sekula-Moise, P. A.

    1991-01-01

    Variable angle spectroscopic ellipsometry was used to estimate the thicknesses of all layers within the optical penetration depth of InGaAs based MODFET structures. Strained and unstrained InGaAs channels were made by MBE on InP substrates and by MOCVD on GaAs substrates. In most cases, ellipsometrically determined thicknesses were within 10 percent of the growth calibration results. The MBE made InGaAs strained layers showed large strain effects, indicating a probable shift in the critical points of their dielectric function toward the InP lattice matched concentration.

  14. A portable molecular beam epitaxy system for in situ x-ray investigations at synchrotron beamlines

    SciTech Connect

    Slobodskyy, T.; Schroth, P.; Grigoriev, D.; Minkevich, A. A.; Baumbach, T.; Hu, D. Z.; Schaadt, D. M.

    2012-10-15

    A portable synchrotron molecular beam epitaxy (MBE) system is designed and applied for in situ investigations. The growth chamber is equipped with all the standard MBE components such as effusion cells with shutters, main shutter, cooling shroud, manipulator, reflection high energy electron diffraction setup, and pressure gauges. The characteristic feature of the system is the beryllium windows which are used for in situ x-ray measurements. An UHV sample transfer case allows in vacuo transfer of samples prepared elsewhere. We describe the system design and demonstrate its performance by investigating the annealing process of buried InGaAs self-organized quantum dots.

  15. Perspective: Oxide molecular-beam epitaxy rocks!

    SciTech Connect

    Schlom, Darrell G.

    2015-06-01

    Molecular-beam epitaxy (MBE) is the “gold standard” synthesis technique for preparing semiconductor heterostructures with high purity, high mobility, and exquisite control of layer thickness at the atomic-layer level. Its use for the growth of multicomponent oxides got off to a rocky start 30 yr ago, but in the ensuing decades, it has become the definitive method for the preparation of oxide heterostructures too, particularly when it is desired to explore their intrinsic properties. Examples illustrating the unparalleled achievements of oxide MBE are given; these motivate its expanding use for exploring the potentially revolutionary states of matter possessed by oxide systems.

  16. Molecular beam epitaxy and metalorganic chemical vapor deposition growth of epitaxial CdTe on (100) GaAs/Si and (111) GaAs/Si substrates

    NASA Technical Reports Server (NTRS)

    Nouhi, A.; Radhakrishnan, G.; Katz, J.; Koliwad, K.

    1988-01-01

    Epitaxial CdTe has been grown on both (100)GaAs/Si and (111)GaAs/Si substrates. A combination of molecular beam epitaxy (MBE) and metalorganic chemical vapor deposition (MOCVD) has been employed for the first time to achieve this growth: the GaAs layers are grown on Si substrates by MBE and the CdTe film is subsequently deposited on GaAs/Si by MOCVD. The grown layers have been characterized by X-ray diffraction, scanning electron microscopy, and photoluminescence.

  17. Incorporation model of N into GaInNAs alloys grown by radio-frequency plasma-assisted molecular beam epitaxy

    SciTech Connect

    Aho, A.; Korpijärvi, V.-M.; Tukiainen, A.; Puustinen, J.; Guina, M.

    2014-12-07

    We present a Maxwell-Boltzmann electron energy distribution based model for the incorporation rate of nitrogen into GaInNAs grown by molecular beam epitaxy (MBE) using a radio frequency plasma source. Nitrogen concentration is predicted as a function of radio-frequency system primary resistance, N flow, and RF power, and group III growth rate. The semi-empirical model is shown to be repeatable with a maximum error of 6%. The model was validated for two different MBE systems by growing GaInNAs on GaAs(100) with variable nitrogen composition of 0%–6%.

  18. Proximity Effects of Beryllium-Doped GaN Buffer Layers on the Electronic Properties of Epitaxial AlGaN/GaN Heterostructures

    DTIC Science & Technology

    2010-05-17

    rf - plasma assisted MBE - grown homoepitaxial GaN has shown that oxygen, a shallow donor in GaN , is present at...properties of Al- GaN / GaN HEMTs grown by rf - MBE on native GaN substrates . 2. Experimental Seven AlGaN/ GaN heterostructures were grown by rf - plasma assisted... GaN /Be:GaN heterostructures have been grown by rf - plasma molecular beam epitaxy on free- standing semi-insulating

  19. Photodetectors using III-V nitrides

    DOEpatents

    Moustakas, T.D.; Misra, M.

    1997-10-14

    A photodetector using a III-V nitride and having predetermined electrical properties is disclosed. The photodetector includes a substrate with interdigitated electrodes formed on its surface. The substrate has a sapphire base layer, a buffer layer formed from a III-V nitride and a single crystal III-V nitride film. The three layers are formed by electron cyclotron resonance microwave plasma-assisted molecular beam epitaxy (ECR-assisted MBE). Use of the ECR-assisted MBE process allows control and predetermination of the electrical properties of the photodetector. 24 figs.

  20. Photodetectors using III-V nitrides

    DOEpatents

    Moustakas, Theodore D.; Misra, Mira

    1997-01-01

    A photodetector using a III-V nitride and having predetermined electrical properties is disclosed. The photodetector includes a substrate with interdigitated electrodes formed on its surface. The substrate has a sapphire base layer, a buffer layer formed from a III-V nitride and a single crystal III-V nitride film. The three layers are formed by electron cyclotron resonance microwave plasma-assisted molecular beam epitaxy (ECR-assisted MBE). Use of the ECR-assisted MBE process allows control and predetermination of the electrical properties of the photodetector.

  1. Ge surface segregation at low temperature during SiGe growth by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Godbey, D. J.; Lill, J. V.; Deppe, J.; Hobart, K. D.

    1994-08-01

    The temperature dependence of germanium surface segregation during growth by solid source SiGe molecular beam epitaxy (MBE) was studied by x-ray photoelectron spectroscopy and kinetic Monte Carlo (KMC) modeling. Germanium segregation persisted at temperatures 60 °C below that predicted by a two-state exchange model. KMC simulations, where film growth, surface diffusion, and surface segregation are modeled consistently, successfully describe the low temperature segregation of germanium. Realistic descriptions of MBE must follow the physical rates of the growth, surface diffusion, and surface segregation processes.

  2. Heavily boron-doped Si layers grown below 700 C by molecular beam epitaxy using a HBO2 source

    NASA Technical Reports Server (NTRS)

    Lin, T. L.; Fathauer, R. W.; Grunthaner, P. J.

    1989-01-01

    Boron doping in Si layers grown by molecular beam epitaxy (MBE) at 500-700 C using an HBO2 source has been studied. The maximum boron concentration without detectable oxygen incorporation for a given substrate temperature and Si growth rate has been determined using secondary-ion mass spectrometry analysis. Boron present in the Si MBE layers grown at 550-700 C was found to be electrically active, independent of the amount of oxygen incorporation. By reducing the Si growth rate, highly boron-doped layers have been grown at 600 C without detectable oxygen incorporation.

  3. Two different methods for numerical solution of the modified Burgers' equation.

    PubMed

    Karakoç, Seydi Battal Gazi; Başhan, Ali; Geyikli, Turabi

    2014-01-01

    A numerical solution of the modified Burgers' equation (MBE) is obtained by using quartic B-spline subdomain finite element method (SFEM) over which the nonlinear term is locally linearized and using quartic B-spline differential quadrature (QBDQM) method. The accuracy and efficiency of the methods are discussed by computing L 2 and L ∞ error norms. Comparisons are made with those of some earlier papers. The obtained numerical results show that the methods are effective numerical schemes to solve the MBE. A linear stability analysis, based on the von Neumann scheme, shows the SFEM is unconditionally stable. A rate of convergence analysis is also given for the DQM.

  4. Optical properties of self assembled GaN polarity inversion domain boundary

    SciTech Connect

    Liu, M.-C.; Cheng, Y.-J.; Chang, J.-R.; Chang, C.-Y.; Hsu, S.-C.

    2011-07-11

    We report the fabrication of GaN lateral polarity inversion heterostructure with self assembled crystalline inversion domain boundaries (IDBs). The sample was fabricated by two step molecular-beam epitaxy (MBE) with microlithography patterning in between to define IDBs. Despite the use of circular pattern, hexagonal crystalline IDBs were self assembled from the circular pattern during the second MBE growth. Both cathodoluminescent (CL) and photoluminescent (PL) measurements show a significant enhanced emission at IDBs and in particular at hexagonal corners. The ability to fabricate self assembled crystalline IDBs and its enhanced emission property can be useful in optoelectronic applications.

  5. Morning breathing exercises prolong lifespan by improving hyperventilation in people living with respiratory cancer

    PubMed Central

    Wu, Wei-Jie; Wang, Shan-Huan; Ling, Wei; Geng, Li-Jun; Zhang, Xiao-Xi; Yu, Lan; Chen, Jun; Luo, Jiang-Xi; Zhao, Hai-Lu

    2017-01-01

    Abstract Disturbance of oxygen–carbon dioxide homeostasis has an impact on cancer. Little is known about the effect of breath training on cancer patients. Here we report our 10-year experience with morning breathing exercises (MBE) in peer-support programs for cancer survivors. We performed a cohort study to investigate long-term surviving patients with lung cancer (LC) and nasopharyngeal cancer (NPC) who practiced MBE on a daily basis. End-tidal breath holding time (ETBHT) after MBE was measured to reflect improvement in alveolar O2 pressure and alveolar CO2 pressure capacity. Patients (female, 57) with a diagnosis of LC (90 patients) and NPC (32 patients) were included. Seventy-six of them were MBE trainees. Average survival years were higher in MBE trainees (9.8 ± 9.5) than nontrainees (3.3 ± 2.8). The 5-year survival rate was 56.6% for MBE trainees and 19.6% for nontrainees (RR = 5.371, 95% CI = 2.271–12.636, P < 0.001). Survival probability of the trainees further increased 17.9-fold for the 10-year survival rate. Compared with the nontrainees, the MBE trainees shows no significant differences in ETBHT (baseline, P = 0.795; 1–2 years, P = 0.301; 3–4 years, P = 0.059) at baseline and within the first 4 years. From the 5th year onwards, significant improvements were observed in ETBHT, aCO2%, PaCO2, and PaO2 (P = 0.028). In total, 18 trainees (40.9%) and 20 nontrainees (74.1%) developed new metastasis (RR = 0.315, 95% CI = 0.108–0.919, P = 0.031). MBE might benefit for the long-term survival in patients with LC and NPC due to improvement in hyperventilation. PMID:28079815

  6. Emerging Applications Using Magnesium Alloy Powders: A Feasibility Study

    NASA Astrophysics Data System (ADS)

    Tandon, Rajiv; Madan, Deepak

    The use of powder metallurgy offers a potential processing route based on tailored compositions and unique microstructures to achieve high performance in magnesium alloys. This paper highlights recent advances in the production, qualification, and characterization of gas atomized AZ91E, WE43 and Elektron21 alloy powders. Transmission electron microscopy (TEM) was used to understand the bulk and surface structure of the atomized powder. The potential for using these magnesium alloy powders for emerging applications involves establishing compatibility with viable consolidation processes such as cold spray, laser assisted deposition, forging and extrusion. This study summarizes the preliminary results for various ongoing investigations using WE43 powder as an example. Results show that powder metallurgy processed WE43 results in comparable properties to those obtained from cast and wrought and offers potential for improvement.

  7. The Use of In Situ X-ray Imaging Methods in the Research and Development of Magnesium-Based Grain-Refined and Nanocomposite Materials

    NASA Astrophysics Data System (ADS)

    Sillekens, W. H.; Casari, D.; Mirihanage, W. U.; Terzi, S.; Mathiesen, R. H.; Salvo, L.; Daudin, R.; Lhuissier, P.; Guo, E.; Lee, P. D.

    2016-12-01

    Metallurgists have an ever-increasing suite of analytical techniques at their disposition. Among these techniques are the in situ methods, being those approaches that are designed to actually study events that occur in the material during for instance solidification, (thermo)-mechanical working or heat treatment. As such they are a powerful tool in unraveling the mechanisms behind these processes, supplementary to ex situ methods that instead analyze the materials before and after their processing. In this paper, case studies are presented of how in situ imaging methods—and more specifically micro-focus x-ray radiography and synchrotron x-ray tomography—are used in the research and development of magnesium-based grain-refined and nanocomposite materials. These results are drawn from the EC collaborative research project ExoMet (www.exomet-project.eu). The first example concerns the solidification of a Mg-Nd-Gd alloy with Zr addition to assess the role of zirconium content and cooling rate in crystal nucleation and growth. The second example concerns the solidification of a Mg-Zn-Al alloy and its SiC-containing nanocomposite material to reveal the influence of particle addition on microstructural development. The third example concerns the (partial) melting-solidification of Elektron21/AlN and Elektron21/Y2O3 nanocomposite materials to study such effects as particle pushing/engulfment and agglomeration during repeated processing. Such studies firstly visualize and by that confirm what is known or assumed. Secondly, they advance science by monitoring and quantifying phenomena as they evolve during processing and by that contribute toward a better understanding of the physics at play.

  8. 40 CFR 33.212 - What conduct is prohibited by this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false What conduct is prohibited by this... PROTECTION AGENCY PROGRAMS Certification § 33.212 What conduct is prohibited by this subpart? An entity that does not meet the eligibility criteria of this subpart may not attempt to participate as an MBE or WBE...

  9. The Birth of a Field and the Rebirth of the Laboratory School

    ERIC Educational Resources Information Center

    Schwartz, Marc; Gerlach, Jeanne

    2011-01-01

    We describe the emergence of a new field, "Mind Brain and Education", dedicated to the science of learning, as well as the roles researchers, policy makers, and educators need to play in developing this collaborative effort. The article highlights the challenges that MBE faces and the strategy researchers and educators in Texas are…

  10. Selective Chemical Response of Transition Metal Dichalcogenides and Metal Dichalcogenides in Ambient Conditions.

    PubMed

    Park, Jun Hong; Vishwanath, Suresh; Wolf, Steven; Zhang, Kehao; Kwak, Iljo; Edmonds, Mary; Breeden, Michael; Liu, Xinyu; Dobrowolska, Margaret; Furdyna, Jacek; Robinson, Joshua A; Xing, Huili Grace; Kummel, Andrew C

    2017-08-30

    To fabricate practical devices based on semiconducting two-dimensional (2D) materials, the source, channel, and drain materials are exposed to ambient air. However, the response of layered 2D materials to air has not been fully elucidated at the molecular level. In the present report, the effects of air exposure on transition metal dichalcogenides (TMD) and metal dichalcogenides (MD) are studied using ultrahigh-vacuum scanning tunneling microscopy (STM). The effects of a 1-day ambient air exposure on MBE-grown WSe2, chemical vapor deposition (CVD)-grown MoS2, and MBE SnSe2 are compared. Both MBE-grown WSe2 and CVD-grown MoS2 display a selective air exposure response at the step edges, consistent with oxidation on WSe2 and adsorption of hydrocarbon on MoS2, while the terraces and domain/grain boundaries of both TMDs are nearly inert to ambient air. Conversely, MBE-grown SnSe2, an MD, is not stable in ambient air. After exposure in ambient air for 1 day, the entire surface of SnSe2 is decomposed to SnOx and SeOx, as seen with X-ray photoelectron spectroscopy. Since the oxidation enthalpy of all three materials is similar, the data is consistent with greater oxidation of SnSe2 being driven by the weak bonding of SnSe2.

  11. Material Technology for Vortex Electronics

    NASA Astrophysics Data System (ADS)

    Kobayashi, T.; Oda, S.; Michikami, O.; Terashima, T.

    High-T_c superconductor (HTSC) thin films are typically grown by mean of pulsed laser deposition (PLD), metalorganic chemical vapor deposition (MOCVD), sputtering or molecular beam epitaxy (MBE). This chapter reviews recent progress in the thin film growth technologies of HTSCs.

  12. The study of multilayers Fe/Hf and Ni/Hf by slow positron beam technique

    NASA Astrophysics Data System (ADS)

    Tashiro, Mutsumi; Nakajyo, Terunobu; Murashige, Yusuke; Koizumi, Tomoya; Kanazawa, Ikuzo; Komori, Fumio; Soe, We-Hyo; Yamamoto, Ryoichi; Ito, Yasuo

    1997-05-01

    The S-parameters versus the incident positron energy are measured in the Ni/Hf multilayer, thin Hf film, thin Fe film and the bilayer Fe/Hf. We have analyzed the change in vacancy-type defects in these multilayers and thin films with the deposition temperature in the MBE system.

  13. Chemistry Related to Semiconductor Growth Involving Organometallics

    DTIC Science & Technology

    1990-05-11

    Alternatively, the universality of MBE is compromised by its inability to grow P-containing films in a reproducible manner due to the allotropic nature of...The Alcatel pump exhausts into an Emcore toxic gas scrubber filled with a sulfur impregnated activated charcoal capable of absorbing up to 40 percent

  14. Center for High-Frequency Microelectronics

    DTIC Science & Technology

    1992-08-31

    ducibility of Si-doped p-type (311)A GaAs layers for application to Ineterojunction bipolar transistors (HBT’s) grown by molecu- lar beam epitaxy (MBE). We...Coulomb effects modify the ordinary Onsager pi" ture and the relation I" = TS. The coefficients S and II are found to be ve-" _- :five to the coupling of

  15. Kinetic-energy induced smoothening and delay of epitaxial breakdown in pulsed-laser deposition

    SciTech Connect

    Shin, Byungha; Aziz, Michael J.

    2007-08-15

    We have isolated the effect of kinetic energy of depositing species from the effect of flux pulsing during pulsed-laser deposition (PLD) on surface morphology evolution of Ge(001) homoepitaxy at low temperature (100 deg. C). Using a dual molecular beam epitaxy (MBE) PLD chamber, we compare morphology evolution from three different growth methods under identical experimental conditions except for the differing nature of the depositing flux: (a) PLD with average kinetic energy 300 eV (PLD-KE); (b) PLD with suppressed kinetic energy comparable to thermal evaporation energy (PLD-TH); and (c) MBE. The thicknesses at which epitaxial breakdown occurs are ranked in the order PLD-KE>MBE>PLD-TH; additionally, the surface is smoother in PLD-KE than in MBE. The surface roughness of the films grown by PLD-TH cannot be compared due to the early epitaxial breakdown. These results demonstrate convincingly that kinetic energy is more important than flux pulsing in the enhancement of epitaxial growth, i.e., the reduction in roughness and the delay of epitaxial breakdown.

  16. Applying CLIPS to control of molecular beam epitaxy processing

    NASA Technical Reports Server (NTRS)

    Rabeau, Arthur A.; Bensaoula, Abdelhak; Jamison, Keith D.; Horton, Charles; Ignatiev, Alex; Glover, John R.

    1990-01-01

    A key element of U.S. industrial competitiveness in the 1990's will be the exploitation of advanced technologies which involve low-volume, high-profit manufacturing. The demands of such manufacture limit participation to a few major entities in the U.S. and elsewhere, and offset the lower manufacturing costs of other countries which have, for example, captured much of the consumer electronics market. One such technology is thin-film epitaxy, a technology which encompasses several techniques such as Molecular Beam Epitaxy (MBE), Chemical Beam Epitaxy (CBE), and Vapor-Phase Epitaxy (VPE). Molecular Beam Epitaxy (MBE) is a technology for creating a variety of electronic and electro-optical materials. Compared to standard microelectronic production techniques (including gaseous diffusion, ion implantation, and chemical vapor deposition), MBE is much more exact, though much slower. Although newer than the standard technologies, MBE is the technology of choice for fabrication of ultraprecise materials for cutting-edge microelectronic devices and for research into the properties of new materials.

  17. Heavy ion fusion end of the year report, April 1, 1984-September 30, 1984

    SciTech Connect

    Not Available

    1984-12-01

    Research progress is reported for each of the following areas: (1) multiple-beam experiment, (2) current amplification in MBE-4, (3) single-beam transport experiment, (4) neutral beam focusing experiment, (5) range energy measurements, (6) source development work, and (7) induction linac component development. (MOW)

  18. Molecular beam source for high vapor pressure materials

    SciTech Connect

    Myers, T.H.; Schetzina, J.F.

    1982-02-01

    A molecular beam source for deposition of high vapor pressure materials in MBE systems is described. The source consists of a collimating effusion cell of original design which is heated by a temperature-controlled Radak II oven (Luxel Corporation). Construction details of the source are given along with calibration and performance data.

  19. 48 CFR 2426.7001 - Policy.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... SOCIOECONOMIC PROGRAMS OTHER SOCIOECONOMIC PROGRAMS Minority Business Enterprises 2426.7001 Policy. It is the policy of the Department to foster and promote Minority Business Enterprise (MBE) participation in its procurement program, to the extent permitted by law and consistent with its primary mission. A...

  20. Spectroscopic Studies with Multiple Quantum Well Materials with Applications to Optical Signal Processing at Room Temperature.

    DTIC Science & Technology

    1987-11-17

    means of a quarter-wave plate or Soleil - Babinet compensator. However, at high peak powers, the polarization becomes intensity dependent and is not the...beam epitaxy (MBE) on Si- The sapphire mirror with the MQW sample was at- doped (100) GaAs substrates. The substrate preparation tached to a copper

  1. A Substantive Process Analysis of Responses to Items from the Multistate Bar Examination

    ERIC Educational Resources Information Center

    Bonner, Sarah M.; D'Agostino, Jerome V.

    2012-01-01

    We investigated examinees' cognitive processes while they solved selected items from the Multistate Bar Exam (MBE), a high-stakes professional certification examination. We focused on ascertaining those mental processes most frequently used by examinees, and the most common types of errors in their thinking. We compared the relationships between…

  2. An Education Grounded in Biology: Interdisciplinary and Ethical Considerations

    ERIC Educational Resources Information Center

    Gardner, Howard

    2009-01-01

    Work in the new area of Mind, Brain, and Education (MBE) raises epistemological and ethical issues. With respect to epistemology, the norms of the component disciplines must be honored and the resulting amalgam must be more than a mere sum of the parts. With respect to ethics, the roles of scientist, educator, and practitioner each raise ethical…

  3. Testing the Digital Thread in Support of Model-Based Manufacturing and Inspection.

    PubMed

    Hedberg, Thomas; Lubell, Joshua; Fischer, Lyle; Maggiano, Larry; Feeney, Allison Barnard

    2016-06-01

    A number of manufacturing companies have reported anecdotal evidence describing the benefits of Model-Based Enterprise (MBE). Based on this evidence, major players in industry have embraced a vision to deploy MBE. In our view, the best chance of realizing this vision is the creation of a single "digital thread." Under MBE, there exists a Model-Based Definition (MBD), created by the Engineering function, that downstream functions reuse to complete Model-Based Manufacturing and Model-Based Inspection activities. The ensemble of data that enables the combination of model-based definition, manufacturing, and inspection defines this digital thread. Such a digital thread would enable real-time design and analysis, collaborative process-flow development, automated artifact creation, and full-process traceability in a seamless real-time collaborative development among project participants. This paper documents the strengths and weaknesses in the current, industry strategies for implementing MBE. It also identifies gaps in the transition and/or exchange of data between various manufacturing processes. Lastly, this paper presents measured results from a study of model-based processes compared to drawing-based processes and provides evidence to support the anecdotal evidence and vision made by industry.

  4. Can the Differences between Education and Neuroscience Be Overcome by Mind, Brain, and Education?

    ERIC Educational Resources Information Center

    Samuels, Boba M.

    2009-01-01

    The new field of Mind, Brain, and Education (MBE)--sometimes called educational neuroscience--is posited as a mediator between neuroscience and education. Several foundational concerns, however, can be raised about this emerging field. The differences between neuroscience and education are many, including differences in their histories,…

  5. IR Detectors Technology

    DTIC Science & Technology

    2000-07-01

    report results from a contract tasking Charles University as follows: The contractor will prepare Near perfect ( CdZn )Te crystals of diameter up to...crystals. The objective is to produce near-perfect ( CdZn )Te substrates in orientations (111) and (211) for LPE/MBE epitaxial growth applications. Point

  6. On local pairs vs. BCS: Quo vadis high-Tc superconductivity

    DOE PAGES

    Pavuna, D.; Dubuis, G.; Bollinger, A. T.; ...

    2016-07-28

    Since the discovery of high-temperature superconductivity in cuprates, proposals have been made that pairing may be local, in particular in underdoped samples. Furthermore, we briefly review evidence for local pairs from our experiments on thin films of La 2–xSrxCuO4, synthesized by atomic layer-by-layer molecular beam epitaxy (ALL-MBE).

  7. A First Course in Mind, Brain, and Education

    ERIC Educational Resources Information Center

    Blake, Peter R.; Gardner, Howard

    2007-01-01

    We describe what may well be the first course devoted explicitly to the topic of Mind, Brain, and Education (MBE). In the course, students examine four central topics (literacy, numeracy, emotion/motivation, and conceptual change) through the perspectives of psychology, neuroscience, genetics, and education. We describe the pedagogical tools we…

  8. Molecular Beam Epitaxy 1990: Proceedings of the International Conference on Molecular Beam Epitaxy (6th) Held in La Jolla, California on 27-31 August 1990.

    DTIC Science & Technology

    1991-01-01

    Zn small, or practically zero. The luminescence from Se wells thicker than 3 ML shows a sharp peak whose Fig. 5 Schematic depicting ZnZe grouth on...IEEE Trans. Electron Devices ED-30 (1983) 877. The authors have achieved a selective CoSt2 - 131 R.D. Rathman. N.P. Economou , D.J. Silversmith. R.W. MBE

  9. Detecting changes in ultrasound backscattered statistics by using Nakagami parameters: Comparisons of moment-based and maximum likelihood estimators.

    PubMed

    Lin, Jen-Jen; Cheng, Jung-Yu; Huang, Li-Fei; Lin, Ying-Hsiu; Wan, Yung-Liang; Tsui, Po-Hsiang

    2017-05-01

    The Nakagami distribution is an approximation useful to the statistics of ultrasound backscattered signals for tissue characterization. Various estimators may affect the Nakagami parameter in the detection of changes in backscattered statistics. In particular, the moment-based estimator (MBE) and maximum likelihood estimator (MLE) are two primary methods used to estimate the Nakagami parameters of ultrasound signals. This study explored the effects of the MBE and different MLE approximations on Nakagami parameter estimations. Ultrasound backscattered signals of different scatterer number densities were generated using a simulation model, and phantom experiments and measurements of human liver tissues were also conducted to acquire real backscattered echoes. Envelope signals were employed to estimate the Nakagami parameters by using the MBE, first- and second-order approximations of MLE (MLE1 and MLE2, respectively), and Greenwood approximation (MLEgw) for comparisons. The simulation results demonstrated that, compared with the MBE and MLE1, the MLE2 and MLEgw enabled more stable parameter estimations with small sample sizes. Notably, the required data length of the envelope signal was 3.6 times the pulse length. The phantom and tissue measurement results also showed that the Nakagami parameters estimated using the MLE2 and MLEgw could simultaneously differentiate various scatterer concentrations with lower standard deviations and reliably reflect physical meanings associated with the backscattered statistics. Therefore, the MLE2 and MLEgw are suggested as estimators for the development of Nakagami-based methodologies for ultrasound tissue characterization.

  10. 32. VIEW TO EAST ALONG GENERAL ALIGNMENT OF PROPOSED EXTENSION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. VIEW TO EAST ALONG GENERAL ALIGNMENT OF PROPOSED EXTENSION OF EL MONTE BUSWAY FROM THIRD FLOOR OF MBE BUILDING SHOWING ROOF OF REA LOADING DOCK (Asano) - Los Angeles Union Passenger Terminal, Mail, Baggage, & Express Building, 800 North Alameda Street, Los Angeles, Los Angeles County, CA

  11. 30. VIEW TO EAST ALONG GENERAL ALIGNMENT OF PROPOSED EXTENSION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. VIEW TO EAST ALONG GENERAL ALIGNMENT OF PROPOSED EXTENSION OF EL MONTE BUSWAY FROM ATOP PARKING STRUCTURE (MBE BUILDING AT LEFT REAR) (Asano) - Los Angeles Union Passenger Terminal, Mail, Baggage, & Express Building, 800 North Alameda Street, Los Angeles, Los Angeles County, CA

  12. 23. VIEW TO EAST ALONG GENERAL ALIGNMENT OF PROPOSED EXTENSION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. VIEW TO EAST ALONG GENERAL ALIGNMENT OF PROPOSED EXTENSION OF EL MONTE BUSWAY FROM ALAMEDA STREET; THE REA LOADING DOCK AND MBE BUILDING ARE VISIBLE ON THE FAR SIDE OF THE PARKING LOT (Asano) - Los Angeles Union Passenger Terminal, Mail, Baggage, & Express Building, 800 North Alameda Street, Los Angeles, Los Angeles County, CA

  13. GHz-THz Electronics

    DTIC Science & Technology

    2013-03-07

    Schlom & Kyle Shen (Cornell) Tight coupling of molecular-beam epitaxy (MBE) and angle-resolved photoelectron spectroscopy (ARPES) reveals metal...electronics • Paul Maki – nitride electronics • Chagaan Baatar – 2D materials • Marc Ulrich – topological insulators • Pani Varanasi – 2D materials • Mike

  14. An Education Grounded in Biology: Interdisciplinary and Ethical Considerations

    ERIC Educational Resources Information Center

    Gardner, Howard

    2009-01-01

    Work in the new area of Mind, Brain, and Education (MBE) raises epistemological and ethical issues. With respect to epistemology, the norms of the component disciplines must be honored and the resulting amalgam must be more than a mere sum of the parts. With respect to ethics, the roles of scientist, educator, and practitioner each raise ethical…

  15. Magnetic anisotropy in ultrathin Fe films on GaAs, ZnSe, and Ge (001) substrates

    SciTech Connect

    Tivakornsasithorn, K.; Liu, X.; Li, X.; Dobrowolska, M.; Furdyna, J. K.

    2014-07-28

    We discuss magnetic anisotropy parameters of ferromagnetic body-centered cubic (bcc) Fe films grown by molecular beam epitaxy (MBE) on (001) substrates of face-centered cubic (fcc) GaAs, ZnSe, and Ge. High-quality MBE growth of these metal/semiconductor combinations is made possible by the fortuitous atomic relationship between the bcc Fe and the underlying fcc semiconductor surfaces, resulting in excellent lattice match. Magnetization measurements by superconducting quantum interference device (SQUID) indicate that the Fe films grown on (001) GaAs surfaces are characterized by a very strong uniaxial in-plane anisotropy; those grown on (001) Ge surfaces have a fully cubic anisotropy; and Fe films grown on ZnSe represent an intermediate case between the preceding two combinations. Ferromagnetic resonance measurements carried out on these three systems provide a strikingly clear quantitative picture of the anisotropy parameters, in excellent agreement with the SQUID results. Based on these results, we propose that the observed anisotropy of cubic Fe films grown in this way results from the surface reconstruction of the specific semiconductor substrate on which the Fe film is deposited. These results suggest that, by controlling surface reconstruction of the substrate during the MBE growth, one may be able to engineer the magnetic anisotropy in Fe, and possibly also in other MBE-grown ferromagnetic films.

  16. Wurtzite Al xGa 1- xN bulk crystals grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Novikov, S. V.; Staddon, C. R.; Powell, R. E. L.; Akimov, A. V.; Luckert, F.; Edwards, P. R.; Martin, R. W.; Kent, A. J.; Foxon, C. T.

    2011-05-01

    We have studied the growth of wurtzite GaN and Al xGa 1- xN layers and bulk crystals by molecular beam epitaxy (MBE). MBE is normally regarded as an epitaxial technique for the growth of very thin layers with monolayer control of their thickness. However, we have used the MBE technique for bulk crystal growth and have produced 2 in diameter wurtzite Al xGa 1- xN layers up to 10 μm in thickness. Undoped wurtzite Al xGa 1- xN films were grown on GaAs (1 1 1)B substrates by a plasma-assisted molecular beam epitaxy (PA-MBE) method and were removed from the GaAs substrate after the growth. The fact that free-standing ternary Al xGa 1- xN wafers can be grown is very significant for the potential future production of wurtzite Al xGa 1- xN substrates optimized for AlGaN-based device structures.

  17. Molecular beam epitaxy growth of germanium junctions for multi-junction solar cell applications

    NASA Astrophysics Data System (ADS)

    Masuda, T.; Faucher, J.; Lee, M. L.

    2016-11-01

    We report on the molecular beam epitaxy (MBE) growth and device characteristics of Ge solar cells. Integrating a Ge bottom cell beneath a lattice-matched triple junction stack grown by MBE could enable ultra-high efficiencies without metamorphic growth or wafer bonding. However, a diffused junction cannot be readily formed in Ge by MBE due to the low sticking coefficient of group-V molecules on Ge surfaces. We therefore realized Ge junctions by growth of homo-epitaxial n-Ge on p-Ge wafers within a standard III-V MBE system. We then fabricated Ge solar cells, finding growth temperature and post-growth annealing to be key factors for achieving high efficiency. Open-circuit voltage and fill factor values of ~0.175 V and ~0.59 without a window layer were obtained, both of which are comparable to diffused Ge junctions formed by metal-organic vapor phase epitaxy. We also demonstrate growth of high-quality, single-domain GaAs on the Ge junction, as needed for subsequent growth of III-V subcells, and that the surface passivation afforded by the GaAs layer slightly improves the Ge cell performance.

  18. 640x486 Long-wavelength Dualband GaAs/AlGaAs Quantum Well Infrared Photodetector (QWIP) Focal Plane Array Camera

    NASA Technical Reports Server (NTRS)

    Gunapala, S.; Bandara, S.; Liu, J.; Rafol, S.; Luong, E.; Mumolo, J.; Tran, N.

    1999-01-01

    An optimized long-wavelength/very long-wavelength two-color Quantum Well Infrared Photodetector (QWIP) device structure has been designed. This device structure was grown on a three-inch semi-insulating GaAs substrate by molecular beam epitaxy (MBE).

  19. Engineering Photonic Devices and Materials Through Quantum Confinement and Electromagnetic Design

    DTIC Science & Technology

    2010-12-20

    selectivity based on the Al concentration in AlGaAs films [27]. Preliminary calibration has demonstrated that a 4:1 ratio of citric acid to hydrogen ... peroxide etches GaAs at a rate approximately 100 times faster than Al0.3Ga0.7As. To take advantage of this effect, we propose a material based on an MBE

  20. Solid State Research

    DTIC Science & Technology

    2000-04-20

    Whall and Parker [1] first suggested using multilayer systems prepared by molecular-beam epitaxy (MBE) for improved thermoelectric materials. Several...compounds. T. C. Harman D. L. Spears P. J. Taylor M. P. Walsh 12 REFERENCES 1. T. E. Whall and E. H. C. Parker, First European Conference on

  1. Effects of a hyperonic many-body force on BΛ values of hypernuclei

    NASA Astrophysics Data System (ADS)

    Isaka, M.; Yamamoto, Y.; Rijken, Th. A.

    2017-04-01

    The stiff equation of state (EoS) giving the neutron-star mass of 2 M⊙ suggests the existence of strongly repulsive many-body effects (MBE) not only in nucleon channels but also in hyperonic ones. As a specific model for MBE, the repulsive multi-Pomeron exchange potential (MPP) is added to the two-body interaction together with the phenomenological three-body attraction. For various versions of the Nijmegen interaction models, the MBE parts are determined so as to reproduce the observed data of BΛ. The mass dependence of BΛ values is shown to be reproduced well by adding MBE to the strong MPP repulsion, assuring the stiff EoS of hyperon-mixed neutron-star matter, in which P -state components of the adopted interaction model lead to almost vanishing contributions. The nuclear matter Λ N G -matrix interactions are derived and used in Λ hypernuclei on the basis of the averaged-density approximation (ADA). The BΛ values of hypernuclei with 9 ≤A ≤59 are analyzed in the framework of antisymmetrized molecular dynamics with use of the two types of Λ N G -matrix interactions including strong and weak MPP repulsions. The calculated values of BΛ reproduce the experimental data well within a few hundred keV. The values of BΛ in p states also can be reproduced well, when the ADA is modified to be suitable also for weakly bound Λ states.

  2. Can the Differences between Education and Neuroscience Be Overcome by Mind, Brain, and Education?

    ERIC Educational Resources Information Center

    Samuels, Boba M.

    2009-01-01

    The new field of Mind, Brain, and Education (MBE)--sometimes called educational neuroscience--is posited as a mediator between neuroscience and education. Several foundational concerns, however, can be raised about this emerging field. The differences between neuroscience and education are many, including differences in their histories,…

  3. 48 CFR 2426.7001 - Policy.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SOCIOECONOMIC PROGRAMS OTHER SOCIOECONOMIC PROGRAMS Minority Business Enterprises 2426.7001 Policy. It is the policy of the Department to foster and promote Minority Business Enterprise (MBE) participation in its procurement program, to the extent permitted by law and consistent with its primary mission. A...

  4. Multiple-Barrier Resonant Tunneling Structures for Application in a Microwave Generator Stabilized by Microstrip Resonator

    DTIC Science & Technology

    2000-06-23

    presented. Resonance - tunneling structures with one and two quantum wells (QW) were fabricated in the same MBE technique conditions. The structures were...thickness was used as barriers of resonance - tunneling structures. GaAs is a quantum well material. In case of DBRTS the width of QW has made 4 nm, and in

  5. A First Course in Mind, Brain, and Education

    ERIC Educational Resources Information Center

    Blake, Peter R.; Gardner, Howard

    2007-01-01

    We describe what may well be the first course devoted explicitly to the topic of Mind, Brain, and Education (MBE). In the course, students examine four central topics (literacy, numeracy, emotion/motivation, and conceptual change) through the perspectives of psychology, neuroscience, genetics, and education. We describe the pedagogical tools we…

  6. Nitride semiconductors for ultraviolet detection

    NASA Astrophysics Data System (ADS)

    Davis, Robert F.; Gruss, K.; Hanser, D.; Perry, B.; Smith, L.

    1993-12-01

    Monocrystalline thin films of AlN and GaN have been deposited on vicinal alpha(6H)-SiC(0001) wafers via gas-source MBE and cold-wall metalorganic (MO) CVD and extensively investigated via high-resolution TEM. Elemental metal sources combined with activated nitrogen generated using an ECR plasma were employed in the MBE system; triethylgallium, triethylaluminum and ammonia were used in the MOCVD system. The MBE research has also included n-(Si) and p-type(Mg) doping and the creation of p-n junctions. The effects on growth of T, P, and MO flux have been investigated in the MOCVD work. Below the critical thickness, AlN only contains threading dislocations emanating from the misfit dislocations; above this thickness, defects parallel to the growth surface greatly increase. The defect density of AlN grown on SiC at 1100 C is much lower than that contained in materials deposited at 700 C. Deposition of GaN on an AlN buffer layer previously deposited on sapphire or SiC results in a larger number of dislocations parallel to the growth surface. A system for the deposition of InN and its solid solutions which addresses the problems of the low decomposition pressure has also been designed. The feasibility of designing an ammonia cracker cell for the MBE system to provide an alternative source of activated nitrogen is being investigated.

  7. Mind, Brain and Education: A Decade of Evolution

    ERIC Educational Resources Information Center

    Schwartz, Marc

    2015-01-01

    This article examines the evolution of Mind, Brain, and Education (MBE), the field, alongside that of the International Mind, Brain and Education Society (IMBES). The reflections stem mostly from my observations while serving as vice president, president-elect, and president of IMBES during the past 10 years. The article highlights the evolution…

  8. 640x486 Long-wavelength Dualband GaAs/AlGaAs Quantum Well Infrared Photodetector (QWIP) Focal Plane Array Camera

    NASA Technical Reports Server (NTRS)

    Gunapala, S.; Bandara, S.; Liu, J.; Rafol, S.; Luong, E.; Mumolo, J.; Tran, N.

    1999-01-01

    An optimized long-wavelength/very long-wavelength two-color Quantum Well Infrared Photodetector (QWIP) device structure has been designed. This device structure was grown on a three-inch semi-insulating GaAs substrate by molecular beam epitaxy (MBE).

  9. Blue-Green Laser Diode Research Program. Revision.

    DTIC Science & Technology

    1987-05-01

    previously reported by Williams et. al. [7] which suggested the MBE-grown ZnSe layer examined in cross-section to contain a high concentration of...Park, J. KI imn, and H.A. Her, SPIE Conference, Say Point, rloride, (1967). 6. P.A. Ponce, W. Stutius, and J.G. werther , Thin. Sol. rilms, 104, 1335

  10. Undoped Buffer Layer Development.

    DTIC Science & Technology

    1984-01-01

    boiled for several hours in aqua regia , followed by boiling for several more hours in deionized water before being dried in air and loaded into the...different from Report) 1S. SUPPLEMENTARY NOTES it. IKy WORDS (Canal... an reverse 4aaIo It eesarav d Ientify by block nuinbr) Epitaxial layer MBE

  11. Linking Mind, Brain, and Education to Clinical Practice: A Proposal for Transdisciplinary Collaboration

    ERIC Educational Resources Information Center

    Ronstadt, Katie; Yellin, Paul B.

    2010-01-01

    It has been suggested that the field of Mind, Brain, and Education (MBE) requires a stable infrastructure for translating research into practice. Hinton and Fischer (2008) point to the academic medical center as a model for similar translational work and suggest a similar approach for linking scientists to research schools. We propose expanding…

  12. Mind, Brain and Education: A Decade of Evolution

    ERIC Educational Resources Information Center

    Schwartz, Marc

    2015-01-01

    This article examines the evolution of Mind, Brain, and Education (MBE), the field, alongside that of the International Mind, Brain and Education Society (IMBES). The reflections stem mostly from my observations while serving as vice president, president-elect, and president of IMBES during the past 10 years. The article highlights the evolution…

  13. 40 CFR 33.205 - How does an entity become certified by EPA?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... Perform an on-site visit to local job sites if there are such sites on which the entity is working at the... disadvantaged individuals at some time in the past, if the entity currently meets the ownership and/or control... pertains solely to counting toward MBE and WBE objectives as provided in subpart E of this part. (5...

  14. In Situ Grown Quantum-Wire Lasers

    DTIC Science & Technology

    1994-04-07

    laser development . This latter effort also required substantial improvements in the MBE growth technology. Much of this technology is now ready for transfer to industry. In fact, a number of joint projects with industry are underway, as a result of this

  15. 40 CFR 33.404 - When must a recipient negotiate fair share objectives with EPA?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false When must a recipient negotiate fair... STATES ENVIRONMENTAL PROTECTION AGENCY PROGRAMS Fair Share Objectives § 33.404 When must a recipient negotiate fair share objectives with EPA? A recipient must submit its proposed MBE and WBE fair share...

  16. 40 CFR 33.404 - When must a recipient negotiate fair share objectives with EPA?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false When must a recipient negotiate fair... STATES ENVIRONMENTAL PROTECTION AGENCY PROGRAMS Fair Share Objectives § 33.404 When must a recipient negotiate fair share objectives with EPA? A recipient must submit its proposed MBE and WBE fair share...

  17. 40 CFR 33.404 - When must a recipient negotiate fair share objectives with EPA?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false When must a recipient negotiate fair... STATES ENVIRONMENTAL PROTECTION AGENCY PROGRAMS Fair Share Objectives § 33.404 When must a recipient negotiate fair share objectives with EPA? A recipient must submit its proposed MBE and WBE fair share...

  18. 40 CFR 33.404 - When must a recipient negotiate fair share objectives with EPA?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false When must a recipient negotiate fair... STATES ENVIRONMENTAL PROTECTION AGENCY PROGRAMS Fair Share Objectives § 33.404 When must a recipient negotiate fair share objectives with EPA? A recipient must submit its proposed MBE and WBE fair share...

  19. 40 CFR 33.404 - When must a recipient negotiate fair share objectives with EPA?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false When must a recipient negotiate fair... STATES ENVIRONMENTAL PROTECTION AGENCY PROGRAMS Fair Share Objectives § 33.404 When must a recipient negotiate fair share objectives with EPA? A recipient must submit its proposed MBE and WBE fair share...

  20. Testing the Digital Thread in Support of Model-Based Manufacturing and Inspection

    PubMed Central

    Hedberg, Thomas; Lubell, Joshua; Fischer, Lyle; Maggiano, Larry; Feeney, Allison Barnard

    2016-01-01

    A number of manufacturing companies have reported anecdotal evidence describing the benefits of Model-Based Enterprise (MBE). Based on this evidence, major players in industry have embraced a vision to deploy MBE. In our view, the best chance of realizing this vision is the creation of a single “digital thread.” Under MBE, there exists a Model-Based Definition (MBD), created by the Engineering function, that downstream functions reuse to complete Model-Based Manufacturing and Model-Based Inspection activities. The ensemble of data that enables the combination of model-based definition, manufacturing, and inspection defines this digital thread. Such a digital thread would enable real-time design and analysis, collaborative process-flow development, automated artifact creation, and full-process traceability in a seamless real-time collaborative development among project participants. This paper documents the strengths and weaknesses in the current, industry strategies for implementing MBE. It also identifies gaps in the transition and/or exchange of data between various manufacturing processes. Lastly, this paper presents measured results from a study of model-based processes compared to drawing-based processes and provides evidence to support the anecdotal evidence and vision made by industry. PMID:27325911